
An Open Pipeline for Generating Executable Neural
Circuits from Fruit Fly Brain Data

Lev E. Givon

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2016

©2016

Lev E. Givon

All Rights Reserved

ABSTRACT

An Open Pipeline for Generating Executable Neural Circuits
from Fruit Fly Brain Data

Lev E. Givon

Despite considerable progress in mapping the fly’s connectome and elucidating the pat-

terns of information flow in its brain, the complexity of the fly brain’s structure and the

still-incomplete state of knowledge regarding its neural circuitry pose significant challenges

beyond satisfying the computational resource requirements of current fly brain models that

must be addressed to successfully reverse the information processing capabilities of the fly

brain. These include the need to explicitly facilitate collaborative development of brain mod-

els by combining the efforts of multiple researchers, and the need to enable programmatic

generation of brain models that effectively utilize the burgeoning amount of increasingly

detailed publicly available fly connectome data.

This thesis presents an open pipeline for modular construction of executable models of

the fruit fly brain from incomplete biological brain data that addresses both of the above

requirements. This pipeline consists of two major open-source components respectively

called Neurokernel and NeuroArch.

Neurokernel is a framework for collaborative construction of executable connectome-

based fly brain models by integration of independently developed models of different func-

tional units in the brain into a single emulation that can be executed upon multiple Graphics

Processing Units (GPUs). Neurokernel enforces a programming model that enables func-

tional unit models that comply with its interface requirements to communicate during exe-

cution regardless of their internal design. We demonstrate the power of this programming

model by using it to integrate independently developed models of the fly retina and lamina

into a single vision processing system. We also show how Neurokernel’s communication

performance can scale over multiple GPUs, number of functional units in a brain emulation,

and over the number of communication ports exposed by a functional unit model.

Although the increasing amount of experimentally obtained biological data regarding

the fruit fly brain affords brain modelers a potentially valuable resource for model develop-

ment, the actual use of this data to construct executable neural circuit models is currently

challenging because of the disparate nature of different data sources, the range of storage

formats they use, and the limited query features of those formats complicates the process

of inferring executable circuit designs from biological data. To overcome these limitations,

we created a software package called NeuroArch that defines a data model for concurrent

representation of both biological data and model structure and the relationships between

them within a single graph database. Coupled with a powerful interface for querying both

types of data within the database in a uniform high-level manner, this representation enables

construction and dispatching of executable neural circuits to Neurokernel for execution and

evaluation.

We demonstrate the utility of the NeuroArch/Neurokernel pipeline by using the packages

to generate an executable model of the central complex of the fruit fly brain from both

published and hypothetical data regarding overlapping neuron arborizations in different

regions of the central complex neuropils. We also show how the pipeline empowers circuit

model designers to devise computational analogues to biological experiments such as parallel

concurrent recording from multiple neurons and emulation of genetic mutations that alter

the fly’s neural circuitry.

Table of Contents

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Approach and Contributions . 4

2 Neurokernel: a Framework for Integration of Executable Fruit Fly Brain

Models 10

2.1 Introduction . 10

2.2 Framework Design and Features . 11

2.2.1 Modeling the Fruit Fly Brain . 11

2.2.2 Architecture of the Neurokernel . 13

2.2.3 Neurokernel Programming Model . 15

2.2.4 Application Programming Interface . 18

2.2.5 Using the Neurokernel API . 22

2.2.6 Neurodriver - a Configurable LPU Implementation 26

2.3 Results . 27

2.3.1 Integration of Independently Developed LPU Models 27

2.3.2 Module Communication Performance 29

2.3.3 Neurodriver Performance . 35

i

2.4 Related Work . 37

2.4.1 General Purpose Neuronal Network Simulators 37

2.4.2 GPU-based Neuronal Network Simulators 39

2.4.3 Neuromorphic Simulation Platforms 41

2.4.4 Simulator Interfacing Packages . 43

2.4.5 Whole Brain Simulation Projects . 44

2.5 Summary . 45

3 NeuroArch: a Graph dB for Representation of Executable Fly Brain Cir-

cuits 48

3.1 Introduction . 48

3.2 Data Representation Requirements . 49

3.2.1 Represented Information . 49

3.2.2 Biological Circuit Query Requirements 52

3.2.3 Executable Circuits Query Requirements 53

3.3 Data Model . 54

3.3.1 Biological Circuit Data and Its Subdivisions 54

3.3.2 Naming Scheme for Biological Data . 55

3.3.3 Data and Abstractions for Executable Circuits 56

3.3.4 Combined Hierarchy of Biological and Executable Circuit Entities . . . 57

3.4 Mapping the Data Model into an Object Graph Database 59

3.4.1 Supported Relationships . 59

3.4.2 Storage of Biological Data Objects . 61

3.4.3 Storage of Executable Circuit Data Objects 62

3.4.4 Naming and Storage of Multiple Model Versions 62

3.4.5 An Example - Representation of the Lamina and Retina 63

3.5 NeuroArch Application Programming Interface 67

3.5.1 Object Graph Mapping . 67

ii

3.5.2 Supported Queries . 67

3.5.3 Support for Operations on Query Results 69

3.5.4 Multimodal Views . 69

3.5.5 Interface to Neurokernel . 71

3.6 Testing Neuroarch’s Functionality . 71

3.7 Related Work . 72

3.7.1 Open Biological Data Repositories . 72

3.7.2 Model Representation Technologies . 75

3.7.3 Model Sharing Resources . 78

3.8 Summary . 78

4 Generating an Executable Model of the Central Complex 80

4.1 Introduction . 80

4.2 Terminology . 81

4.2.1 Neuropil Nomenclature . 81

4.2.2 Neuron Labeling . 83

4.3 Structure of Neuropils in and Associated with the Central Complex 86

4.3.1 Protocerebral Bridge (PB) . 86

4.3.2 Fan-Shaped Body (FB) . 86

4.3.3 Ellipsoid Body (EB) . 87

4.3.4 Noduli (NO) . 89

4.3.5 Bulb (BU) . 90

4.3.6 Lateral Accessory Lobe (LAL) . 90

4.3.7 Crepine (CRE) . 91

4.3.8 Other Neuropils (IB, PS, SMP, WED) 91

4.4 Central Complex Input Pathways and Neuron Responses 92

4.5 Identified Neurons in the Central Complex . 93

4.5.1 Index of Identified Neurons . 93

iii

4.5.2 Neurotransmitter Profiles . 96

4.5.3 Local Neurons . 96

4.5.4 Projection Neurons . 97

4.6 Generating an Executable Circuit Model . 108

4.6.1 Neuron Organization . 108

4.6.2 Executable Circuit Generation . 109

4.6.3 Executing the Circuit . 110

4.6.4 Use Cases . 112

4.7 Related Work . 119

4.8 Summary . 120

5 Conclusions and Future Research Directions 121

5.1 Conclusions . 121

5.1.1 When to Use the Pipeline . 121

5.1.2 Summary . 122

5.2 Neurokernel - Future Development . 122

5.2.1 Automating Computational Resource Allocation 122

5.2.2 Accelerated Neural Model Execution Engine 123

5.2.3 In Vivo Model Validation . 123

5.3 NeuroArch - Future Development . 125

5.3.1 Model Construction Using Composition Operations 125

5.3.2 Using NeuroArch Data for Neurokernel Resource Allocation 126

5.3.3 Support for Input/Output File Formats 127

5.3.4 Online Data Sharing . 128

5.3.5 Performance Assessment . 129

5.3.6 Graphical Visualization of Circuit Data 129

5.3.7 Support for Dynamic Models . 129

5.3.8 Storing Model States . 130

iv

5.4 Generating a Modeling of the Central Complex - Future Development 130

Bibliography 130

Appendix 146

v

List of Figures

1.1 Pipeline for generating executable circuits from biological data. 4

2.1 Modular structure of fruit fly brain. 13

2.2 Structure of the Neurokernel framework’s architecture. 14

2.3 Neurokernel programming model. 16

2.4 LPU interface. 16

2.5 Neurokernel brain modeling architectural hierarchy. 21

2.6 Example of response to natural input by combined retina/lamina model. . . . 29

2.7 Synchronization performance for 2 LPUs accessing 2 GPUs scaled over num-

ber of output ports per LPU. 32

2.8 Synchronization time speedup for scaling over number of LPUs. 33

2.9 Synchronization performance for multiple LPUs partitioned over multiple

GPUs. 34

2.10 Comparison of Neurodriver and Brian2GeNN performance 36

3.1 Objects and relationships in NeuroArch’s data model. 58

3.2 Object types and containment/ownership relationships in NeuroArch’s

database. 60

3.3 Data transmission relationships between executable circuit objects. 61

3.4 Representation of multiple versions of a single LPU circuit. 63

3.5 Containment/ownership relationships between biological and executable cir-

cuit database objects in representation of lamina and retina. 64

vi

3.6 Data transmission relationships between a subset of the circuit design com-

ponents of the lamina LPU . 66

4.1 Example of CX neuron arborizations . 84

4.2 Schematic of regions in PB . 86

4.3 Schematic of regions in FB . 87

4.4 Schematic of regions in EB . 89

4.5 Schematic of regions in NO . 90

4.6 Schematic of regions in BU . 90

4.7 Schematic of regions in LAL . 91

4.8 Schematic of regions in CRE . 91

4.9 Information flow between CX and accessory neuropils 92

4.10 PB local neuron innervation pattern . 96

4.11 FB local neuron innervation pattern . 97

4.12 BU-EB neurons . 99

4.13 EB-LAL-PB neuropil innervation pattern . 100

4.14 IB-LAL-PS-PB neuropil innervation pattern 101

4.15 PB-EB-NO neuropil innervation pattern . 102

4.16 PB-EB-LAL neuropil innervation pattern . 103

4.17 PB-FB-CRE neuropil innervation pattern . 104

4.18 PB-FB-NO neuropil innervation pattern . 105

4.19 PB-FB-LAL neuropil innervation pattern (layer 2 of FB) 106

4.20 PB-FB-LAL neuropil innervation pattern . 107

4.21 WED-PS-PB neuropil innervation pattern . 108

4.22 Moving bar visual input to generated CX model 111

4.23 Schematic of information flow in CX circuit model 112

4.24 Response of CX projection neurons innervating PB to moving bar input . . . 113

4.25 Response of CX projection neurons innervating BU/bu to moving bar input . 114

vii

4.26 Hypothesized innervation pattern of PB local neurons in no bridge mutant . . 116

4.27 Response of mutant CX projection neurons innervating PB to moving bar input117

4.28 Response of mutant CX projection neurons innervating BU/bu to moving bar

input . 118

5.1 Schematic of in vivo fly brain model validation process. 124

5.2 Example of how a circuit may be defined in terms of query operators applied

to query results and the motifs extracted by individual queries. 126

viii

List of Tables

2.1 Path-like port identifier and selector syntax examples. 17

2.2 Example of connections between ports in two LPUs. 17

2.3 Attributes of the ports in the connectivity pattern described in Tab. 2.2. . . . 18

2.4 Example of input and output data mapped to and from data arrays for in-

terface ports in the pattern described in Tab. 2.2 and Tab. 2.3. 20

3.1 Containment relationships between biological circuit entities in NeuroArch’s

data model. 55

3.2 Ownership relationships between executable circuit entities in NeuroArch’s

data model. 56

3.3 Objects used to store biological data. 61

3.4 Objects used to store executable circuit component data. 62

3.5 Node types required to represent the lamina and retina in NeuroArch’s database. 65

4.1 Geometric overlap between EB tiles and wedges. 88

4.2 Identified local neurons in CX neuropils. 93

4.3 Identified projection neurons connecting CX and accessory neuropils 94

4.4 Projection neurons connecting CX and accessory neuropils with unresolved

neurite types. 95

4.5 Assignment of neuron families to LPUs in generated CX model. 108

4.6 Fields in ArborizationData node . 109

ix

1 Neurotransmitters in the fruit fly CX . 146

2 Neurotransmitter profiles of specific neural pathways in the fruit fly CX

(adapted from [82, Fig. 7c] and [88]). 147

3 PB local neurons. 147

4 EB-LAL-PB neurons. 148

5 One identified class of FB local neurons. 148

6 IB-LAL-PS-PB neurons. 149

7 PB-EB-LAL neurons. 149

8 PB-EB-NO neurons. 150

9 PB-FB-CRE neurons. 150

10 PB-FB-NO neurons innervating region (3,P) of NO. 151

11 PB-FB-NO neurons innervating region (3,M) of NO. 152

12 PB-FB-NO neurons innervating region (3,A) of NO. 152

13 PB-FB-NO neurons innervating region (2,D) of NO. 153

14 PB-FB-NO neurons innervating region (2,V) of NO. 154

15 PB-FB-LAL neurons. 154

16 PB-FB-LAL neurons. 155

17 PB-FB-LAL neurons. 155

18 WED-PS-PB neurons. 156

19 Hypothesized arborizations of BU-EB neurons. 157

20 Hypothesized FB local neurons linking segments in layers 1, 2, 4, and 5,

respectively. 158

21 Hypothesized FB local neurons linking adjacent segments within the same

layer in layers 1-5. 159

22 Hypothesized FB local neurons linking adjacent layers within the same seg-

ment for layers 1-5. 160

23 Hypothesized FB local neurons linking nonadjacent layers within the same

segment. 161

x

24 Hypothesized PB local neurons in the no bridge mutant. 162

xi

Acknowledgements

First and foremost, I would like to extend special thanks to my adviser Prof. Aurel A.

Lazar for his novel insights into studying the information processing properties of the brain

that led me to become involved in the exciting field of computational neuroscience. His inci-

sive feedback on my ideas, willingness to discuss ongoing research at all hours, and securing

of cutting-edge parallel computing equipment were instrumental in making the work pre-

sented in this dissertation possible. Parts of this dissertation were developed in collaboration

with my current Bionet Group colleagues Nikul H. Ukani, Chung-Heng Yeh, and Yiyin Zhou,

whom I thank for their tireless work and excellent ideas. I would like to commend them

and Bionet Group alumni Anmo Kim, Wenze Li, Eftychios A. Pnevmatikakis, Konstanti-

nos Psychas, Yevgeniy B. Slutskiy, and Robert J. Turetsky for maintaining a supportive lab

atmosphere that fosters genuine collaboration and mutual assistance when tackling the chal-

lenges that arise in the course of research. I would also like to thank Prof. Brian McCabe

for useful feedback regarding part of the work presented in this thesis.

I would like to thank Juergen Berger for kindly permitting reuse of his fruit fly photo-

graph and thank Nacho Vizcaíno, Richard Benton, Bertram Gerber, and Matthieu Louis for

permitting reuse of the robot fly image they composed for the ESF-EMBO 2010 Conference

on Functional Neurobiology in Minibrains.

I would like to thank Profs. Paul Sajda, Christine Hendon, Nima Mesgarani, and Matei

Ciocarlie for taking the time to serve on my dissertation committee and provide useful

feedback regarding my research. I also would like to thank Prof. Sajda and Prof. Roxana

Geambasu for having served on my thesis proposal committee.

I would like to thank the host of developers in the open-source scientific computing

xii

community who were not only instrumental in developing the software that made the work

presented in this thesis possible, but took the time to personally address questions that

arose in the course of my research work. In particular, I would like to express appreciation

to Rolf Vandevaart (NVIDIA) for his assistance in debugging issues regarding GPU support

in OpenMPI [42], Dr. Andreas Klöckner (UIUC) for valuable feedback related to the use of

Python with GPUs and for his excellent PyCUDA [71] package, and Dr. Lisandro Dalcin

(KAUST) for addressing questions regarding the use of Python and MPI via his mpi4py

package [28].

I would like to gratefully acknowledge the Electrical Engineering Department of Columbia

University, the Center for Neural Engineering and Computation at Columbia University, the

Dean’s Office of the Fu Foundation School of Engineering and Applied Science at Columbia

University, Columbia Business School, Columbia Technology Ventures, CaseRails Inc., the

Air Force Office of Scientific Research (grant #FA9550-12-10232), and the National Science

Foundation (grant #1544383) for their financial support of my research. Special thanks are

due to the Engineering Graduate Student Council of Columbia University for awarding me

a Professional Development Scholarship (funded by the Dean’s Office) that sponsored part

of my research work.

I would like to thank my parents Yokhai and Frieda Givon, my brother Shai, and my

late grandmother Gita Simkin for always being there for me throughout graduate school.

I would also like to gratefully acknowledge the many friends and relatives in New York

City who kindly opened their doors to me and my wife during our years in graduate school

when we needed a breather between research projects - in particular, Dr. Perry and Margy-

Ruth Davis, Steve and Naomi Wolinsky, David and Ceil Olivestone, R. Arthur and Sarah

Marmorstein, R. Robert and Beile Block, and Drs. Heshy and Linda Friedman.

Finally, I would like to thank my dear wife Dr. Yvette Y. Yien for her constant support,

wisdom, and love.

xiii

To my dear wife Yvette.
כלנה על עלית ואת חיל עשו בנות רבות

xiv

Chapter 1. Introduction

Chapter 1

Introduction

1.1 Motivation

Reverse engineering the information processing functions of the brain is an engineering

grand challenge of immense interest that has the potential to drive important advances in

computer architecture, artificial intelligence, and medicine. The human brain is an obvious

and tantalizing target of this effort however, its structural and architectural complexity

place severe limitations upon the extent to which models built and executed with currently

available computational technology can relate its biological structure to its information

processing capabilities. Successful development of human brain models must therefore be

preceded by an increased understanding of the structural/architectural complexity of the

more tractable brains of simpler organisms and how they implement specific information

processing functions and govern behavior [66].

The nervous system of the fruit fly Drosophila melanogaster possesses a range of features

that recommend it as a model organism of choice for relating brain structure to function.

Despite the obvious differences in size and complexity between the mammalian and fruit

fly brains, researchers dating back to Cajal have observed common design principles in the

structure of their sensory subsystems [124] and striking similarities in circuits underlying

regulation of behavioral actions [131]. Many of the genes and proteins expressed in the

1

Chapter 1. Introduction

mammalian brain are also conserved in the genome of Drosophila [3]. These features strongly

suggest that valuable insight into the workings of the mammalian brain can be obtained by

focusing on that of Drosophila.

Remarkably, the fruit fly is capable of a host of complex nonreactive behaviors that

are governed by a brain containing only ∼ 105 neurons and ∼ 107 synapses organized into

fewer than 50 distinct functional units, many of which are known to be directly involved

in functions such as sensory processing, locomotion, and control [22]. The relationship

between the fruit fly’s brain and its behaviors can be experimentally probed using a powerful

toolkit of genetic techniques for manipulation of the fruit fly’s neural circuitry such as the

GAL4 driver system [35, 119, 129, 137, 85], recent advances in experimental methods for

precise recordings of the fruit fly’s neuronal responses to stimuli [68, 140, 69], techniques for

analyzing the fly’s behavioral responses to stimuli [15, 84, 23], and progress in reconstruction

of the fly connectome, or neural connectivity map [24, 134]. These techniques have provided

access to an immense amount of valuable structural and behavioral data that can be used

to model how the fruit fly brain’s neural circuitry implements processing of sensory stimuli

[41, 93, 22, 61, 94, 125].

Biological experimentation techniques alone are essential but insufficient for determining

how the fly brain implements specific functions; to paraphrase Richard Feynman, our under-

standing of the brain remains incomplete if we fail to create an executable brain model that

replicates its functions. Despite considerable progress in mapping the fruit fly’s connectome

and elucidating the patterns of information flow in its brain, the complexity of the fly brain’s

structure and the still-incomplete state of knowledge regarding its neural circuitry pose sig-

nificant challenges to the translation of biological data to executable hypotheses that can be

tested in silico. Although the highly parallel structure of neural circuits demands computa-

tionally efficient means of testing brain models, attempting to optimize the performance of

neural circuit simulations given current uncertainty regarding the appropriate computational

modeling paradigm to employ is premature and overlooks other requirements that must be

2

Chapter 1. Introduction

met to successfully emulate the fly brain. When seen in light of the relative tractability of

the fly brain, the dramatic increase in power of commodity parallel computing technology

at the disposal of neuroscientists over the past decade affords the opportunity to effectively

address those requirements without being overly preoccupied by the computational needs of

executable brain models.

Its relative tractability nothwithstanding, the complexity of the fly brain is such that

effectively combining the efforts of multiple researchers is essential to the successful reverse

engineering of the fly brain. The multiplicity of neural simulators and modeling tools cur-

rently available complicates collaborative model construction because of the difficulty of

combining models of different parts of the fly brain devised by different researchers. While

open neural formats for simulator-independent model specification are a step in the right

direction, they currently lack a programming model that defines how different neural circuit

models may communicate. This inability to combine hypotheses regarding the information

processing capabilities of different parts of the brain prevents the neuroscience community

from pursuing an effective divide-and-conquer strategy to reverse engineering the fly brain’s

functions.

The second major requirement of developing a whole brain model is the need to trans-

late biological data into testable hypotheses. The challenges of this requirement continue

to mount as ever more detailed data regarding the fly connectome becomes available. Ef-

fective utilization of such extensive data sets requires that model construction be at least

partially performed via algorithmic means as opposed to explicit manual specification of a

neural circuit. Extracting data from large biological data sets for the purposes of algorithmic

model generation can only be performed efficiently if the data is hosted in a database with

a sufficiently powerful querying mechanism and exposed through an interface that explic-

itly provides developers with an API for accessing this mechanism from model generation

applications. Existing open fly connectome datasets, however, are either hosted in a range

of static files formats that cannot be directly queried or exposed through database query

3

Chapter 1. Introduction

interfaces that require manual interaction by a user. Similarly, the inevitable modification

of circuit models that correspond to a significant portion of the fly brain and/or employ a

high level of detail requires a means of directly and efficiently querying a model’s structure.

Although open neuronal model sharing resources do exist, they do not provide any means

for directly querying the internal structure of the models that they host.

1.2 Approach and Contributions

Overall Contribution The intersection of an increasing abundance of fruit fly biologi-

cal data with the availability of commodity computing hardware of previously unavailable

power affords neuroscientists with an unprecedented opportunity to advance towards the

goal of reverse engineering the fly brain. To enable the neuroscience community to seize this

opportunity, this thesis addresses the above challenges by presenting an open brain mod-

eling pipeline explicitly designed for collaborative model development and for algorithmic

construction of executable circuits from biological data (Fig. 1.1). To foster the open science

approach advanced by this work, the designs of the software and models presented in this

thesis were developed in a series of Requests for Comments (RFCs) [12] and Jupyter [111]

notebooks made available to the public. These RFCs contain detailed descriptions of the

software presented in § 2 and § 3 and the models presented in § 2.3, § 3.4.5, § 3.6 and § 4

that use them. Both the RFCs [80, 73, 46, 44] and Jupyter notebooks are publicly available

on the Neurokernel project website http://neurokernel.github.io/docs.html.

Figure 1.1: Pipeline for generating executable circuits from biological data. NeuroArch’s
data model and query API enables sophisticated querying of loaded biological data to gen-
erate neural circuit models for execution by Neurokernel. Executable circuits designed and
constructed by independent researchers are also stored in NeuroArch to enable their subse-
quent refinement after evaluation by Neurokernel.

4

http://neurokernel.github.io/docs.html

Chapter 1. Introduction

Neurokernel The Neurokernel framework enables implementation of models of the con-

stituent functional units in the fly brain that can be executed on multiple Graphics Process-

ing Units (GPUs). In order to achieve scaling over multiple computational resources while

providing the programmability required to develop such models, Neurokernel’s architecture

provides GPU resource management and programming services to brain emulations analo-

gous to those an operating system kernel provides to software applications. A key feature

of Neurokernel is its enforcing of a programming model that provides models of functional

units of the fly brain called Local Processing Units (LPUs) with a mandatory communication

interface. This enables LPU models developed by independent researchers to be combined

into a comprehensive brain model even if they possess different internal designs. The Neu-

rokernel core developed by the author1 provides fly brain researchers with the following key

components for developing brain emulations:

• a set of Python classes that LPU developers can subclass to implement new LPUs that

utilize NVIDIA GPU hardware via PyCUDA[71] without having to explicitly invoke

any communication services;

• support for an XPATH-like identifier syntax to facilitate labeling and management of

large numbers of communication ports exposed by each LPU and connectivity pattern;

• a class for construction of inter-LPU connectivity patterns from a variety of inputs

such as XPATH-like selectors, tables, or bipartite graphs of the connections between

two sets of ports;

• a data structure for mapping XPATH-like identifiers and selectors to arrays of GPU

memory that can be used by an LPU’s internal logic to read from and write to com-

munication ports using their identifiers rather than integer indexes;

• an inter-LPU communication mechanism that automatically utilizes OpenMPI [42] to

1http://github.com/neurokernel/neurokernel

5

http://github.com/neurokernel/neurokernel

Chapter 1. Introduction

exploit peer-to-peer memory transfer features of modern GPU technology to accelerate

transmission of data between LPUs executed on different GPUs.

• an emulation manager that distributes LPU classes in a specified emulation to GPUs

for instantiation and execution with no user intervention;

• an emulation launcher that sets up the MPI environment required by a Neurokernel

emulation with almost no user intervention.

Further details regarding Neurokernel are presented in § 2; a demonstration of Neurokernel’s

use in integrating multiple LPUs into a model of part of the fruit fly’s vision system developed

by Konstantinos Psychas, Nikul Ukani, and Yiyin Zhou is presented in § 2.3.1.

Neurodriver Being that the Neurokernel core does not prescribe any specific neuron

or synapse models, the author, Nikul Ukani, Chung-Heng Yeh, and Yiyin Zhou jointly

implemented a Python package called Neurodriver2 that provides an LPU implementation

with extensible support for a range of point neuron models such as Leaky Integrate-and-

Fire, Morris-Lecar, and Hodgkin-Huxley, and conductance-based synapse models. This

package enables construction of LPU models without having to write any Python code by

providing support for loading LPU circuits composed of supported neurons and synapses and

inter-LPU connectivity saved in a format such as the Graph Exchange Format (GEXF) 3.

Since all communication between LPUs is handled by Neurokernel, LPU models based upon

Neurodriver can automatically interact with other LPUs without any effort on the part of

the model developer. New GPU-based neuron and synapse models can be added by means of

a simple plugin architecture. Neurodriver is described in § 2.2.6 and its performance shown

to be competitive with that of other GPU-based simulation engines that support Python

for the scenarios currently targeted by Neurokernel in § 2.3.3

2http://github.com/neurokernel/neurodriver
3http://www.gexf.net

6

http://github.com/neurokernel/neurodriver
http://www.gexf.net

Chapter 1. Introduction

NeuroArch Although the support for loading LPU circuits obviates the need to explicitly

implement many LPU designs in Python, manual specification and revision of circuit models

becomes increasingly cumbersome as they increase in complexity to account for higher levels

of biological detail. The growing number and magnitude of available datasets comprising

fruit fly connectome and genetic data also raises significant challenges as to how to effectively

utilize large-scale biological data stored in a disparate set of formats and databases to create

more accurate brain models. To overcome these impediments to model development, the

author and Nikul Ukani designed a graph database platform called NeuroArch for facilitating

algorithmic generation of executable neural circuit models from biological data. The current

Python implementation of this database by the author

• provides an extensible data model that enables concurrent representation of both bio-

logical and executable circuit model data in a linked hierarchy of entities corresponding

to different levels of circuit subdivision or modeling abstraction;

• exploits this hierarchy to enable queries on biological and/or executable circuit data

designed to extract subgraphs of interest (e.g., circuit motifs, LPUs, connectivity pat-

terns, etc.) for analysis or execution;

• encapsulates queries in a manner that permits them to be composed into more complex

queries via set operations without having to explicitly write any query;

• provides an extensible Object Graph Mapping (OGM) that enables entities in Neu-

roArch’s graph database to be accessed as Python class instances whose methods

conveniently expose the above query mechanism;

• exposes query results via a multimodal view interface that permits them to be easily

accessed either as tabular or graph-based Python data structure using widely used

Python data analysis packages;

7

Chapter 1. Introduction

• utilizes an enterprise open source property graph database platform4 to support com-

plex internal graph traversals;

• provides a means of exporting stored executable circuits to a form that Neurokernel

can execute (provided that the circuit uses neuron and synapse models supported by

Neurodriver);

• provides loaders for importing fly connectome data from disparate public sources such

as NeuroMorpho [4] and Janelia Research [1] and executable circuit data for LPU

models designed by other researchers into NeuroArch’s graph database.

Further details regarding NeuroArch are presented in § 3.

An Executable Model Generator for the Fruit Fly Central Complex To show

that Neurokernel and NeuroArch enable algorithmic construction of executable models of

portions of the fly brain by inferring circuit structure from incomplete biological information,

the author designed and implemented a system for generating a model of the fruit fly’s central

complex that utilizes NeuroArch to facilitate inference of synaptic connections between

neurons from incomplete neuron arborization information. The use of NeuroArch also affords

the flexibility to generate LPU circuits that utilize different internal components. Details

regarding the biological data used by this system, the evaluation of generated circuits by

Neurokernel, and a demonstration of how NeuroArch’s API enables rapid modification of

the generated circuit to evaluate a range of model variations are presented in § 4.

scikit-cuda There exist a range of free software libraries that provide many powerful

GPU-based numerical routines that are potentially useful in LPU implementations, but

provide no direct access to these routines from Python. To enable their use in Neurokernel,

the author developed a package called scikit-cuda5 [47] that provides high-level numerical

4http://orientdb.com
5http://github.com/lebedov/scikit-cuda

8

http://orientdb.com
http://github.com/lebedov/scikit-cuda

Chapter 1. Introduction

Python functions similar to those in other high-level numerical computing packages such

as NumPy [136] and SciPy [64] that utilize the aforementioned GPU-based libraries. This

package is utilized by the retina/lamina model discussed in § 2.3.1. Since its initial release,

the package has attracted numerous contributions from researchers and developers in a range

of computational fields.

9

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

Chapter 2

Neurokernel: a Framework for

Integration of Executable Fruit Fly

Brain Models

2.1 Introduction

Neurokernel’s design is predicated upon the organization of the fruit fly brain into a fixed

number of functional modules characterized by local neural circuitry called Local Processing

Units (LPUs); we review the anatomy of the fruit fly brain that motivates this design in

§ 2.2.1 and describe Neurokernel’s architecture, support for GPU resources, and programma-

bility in § 2.2.2. Neurokernel explicitly enforces a programming model for implementing

models of these functional modules that separates their internal design from the connec-

tivity patterns that link their external communication interfaces; this modular architecture

facilitates collaboration between researchers focusing on different functional modules in the

fly brain by enabling models independently developed by different researchers to be inte-

grated into a single whole brain model irrespective of their internal designs. We present

Parts of this chapter appear in [44].

10

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

Neurokernel’s programming model in § 2.2.3 and detail its API in § 2.2.4. We also present

a configurable LPU implementation called Neurodriver that can be used to construct LPUs

using several common neuron and synapse models without writing any code; this package

is described in § 2.2.6. To illustrate the use of Neurokernel’s API, we use it it to integrate

independently developed models of the retina and lamina neuropils in the fly’s visual system;

this integration is described in § 2.3.1. We provide performance benchmarks of Neurokernel’s

module communication services in § 2.3.2 that demonstrate its ability to exploit technology

for accelerated data transmission between multiple GPUs to achieve scalable performance.

We also benchmark Neurodriver’s performance and compare it with another recently de-

veloped GPU-based Python neuronal network simulation engine in § 2.3.3 to demonstrate

Neurodriver’s suitable performance when executing neural circuits comprising numbers of

neurons and synapses similar to those found in actual neuropils. We review existing neural

simulation tools and projects in the context of fly brain emulation and compare them with

Neurokernel in § 2.4. Finally, we conclude the section with § 2.5.

2.2 Framework Design and Features

2.2.1 Modeling the Fruit Fly Brain

Analysis of the Drosophila connectome has revealed that its brain can be decomposed into

fewer than 50 distinct neural circuits, most of which correspond to anatomically distinct

regions in the fly brain [22]. These regions, or neuropils, include sensory circuits such as

the olfactory system’s antennal lobe and the visual system’s lamina and medulla, as well

as control and integration neuropils such as the protocerebral bridge and ellipsoid body

(Fig. 2.1). Neuropils range in size from about 6,000 neurons (lamina) to 40,000 neurons

(medulla). Most of these modules are referred to as local processing units (LPUs) because

they are characterized by unique populations of local neurons whose processes are restricted

to specific neuropils.

11

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

The axons of an LPU’s local neurons and the synaptic connections between them and

other neurons in the LPU constitute an internal pattern of connectivity that is distinct from

the bundles, or tracts, of projection neuron processes that transmit data to neurons in other

LPUs (Fig. 2.1); this suggests that an LPU’s local neuron population and synaptic connec-

tions largely determine its functional properties. While the connection densities within and

between LPUs is not fully known, the total strength of connections between LPUs (defined

in terms of total numbers of dendritic and axonal terminals for all projection neurons linking

a LPU with other LPUs) has been observed to vary between 600 and 44,000 for a sample

of 13,000 projection neurons in the adult Drosophila brain [127]. The fruit fly brain also

comprises modules referred to as hubs that contain no local neurons; they appear to serve

as communication relays between different LPUs.

In contrast to a purely anatomical subdivision, the decomposition of the brain into func-

tional modules casts the problem of reverse engineering the brain as one of discovering the

information processing performed by each individual LPU and determining how specific

patterns of axonal connectivity between these LPUs integrates them into functional sub-

systems. Modeling both these functional modules and the connectivity patterns that link

them independent of the internal design of each module is a fundamental requirement of

Neurokernel’s architecture.

12

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

Figure 2.1: Modular structure of fruit fly brain. Individual neuropils are identified by
different colors in the left-hand figure, with the names of several major neuropils listed.
Most neuropils are paired across the fly’s two hemispheres. The right-hand figure depicts a
tract of neuronal axons connecting neuropils across hemispheres highlighted in yellow (image
created using data and software from [108, 109, 107], reproduced with permission).

2.2.2 Architecture of the Neurokernel

We refer to our software framework for fruit fly brain emulation as a kernel because it aims

to provide two classes of functions associated with traditional computer operating systems

[72]: it must serve as a resource allocator that enables the scalable use of parallel computing

resources to accelerate the execution of an emulation, and it must serve as an extended

machine that provides software services and interfaces that can be programmed to emulate

and integrate functional modules in the fly brain.

Neurokernel’s architectural design consists of three planes that separate between the

time scales of a model’s representation and its execution on multiple parallel processors

(Fig. 2.2). Each plane exposes a vertical API that provides abstractions/services of that

plane to higher level planes; this enables development of new features within one plane

while minimizing the need to modify code associated with other planes. Services that im-

plement the computational primitives and numerical methods required to execute supported

models on parallel processors are provided by the framework’s compute plane. Translation

or mapping of a models’ specified components to the methods provided by the compute

13

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

plane and management of the parallel hardware and data communication resources required

to efficiently execute a model is performed by Neurokernel’s control plane. Finally, the

framework’s application plane provides support for specification of neural circuit models,

connectivity patterns, and interfaces that enable independently developed models of the fly

brain’s functional subsystems to be interconnected; we describe these interfaces in greater

detail in § 2.2.4.

Figure 2.2: The three-plane structure of the Neurokernel architecture is based on the prin-
ciple of separation of time scales. The application plane provides support for hardware-
independent specification of LPUs and their interconnects. Services that implement the
neural primitives and computing methods required to execute neural circuit model instan-
tiations on GPUs are provided by the compute plane. Translation or mapping of specified
model components to the methods provided by the compute plane and management of mul-
tiple GPUs and communication resources is performed by the control plane operating on a
cluster of CPUs.

14

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

2.2.3 Neurokernel Programming Model

2.2.3.1 Interface Configuration

A key aspect of Neurokernel’s design is the separation it imposes between the internal

processing performed by an LPU model and how that model communicates with other

models (Fig. 2.3). Neurokernel’s programming model requires that one specifies how an

LPU’s interface is configured and connected to those of other LPUs. The interface of an LPU

must be described exclusively in terms of communication ports that either transmit data to

or receive data from ports exposed by other LPUs after each execution step. Each port must

be configured either to receive input or emit output, and must be configured to either accept

spike data represented as boolean values or graded potential data represented as floating

point values (Fig. 2.4). Both of these settings are mutually exclusive; a single port may not

both receive input and emit output, nor may it accept both spike and graded potential data.

Ports may be connected to arbitrary internal components of an LPU; a graded potential

port, for example, need not be associated with a neuron model’s membrane voltage. Ports

are uniquely specified relative to other ports within an interface using a path-like identifier

syntax to facilitate hierarchical organization of large numbers of ports (Tab. 2.1).

15

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

Figure 2.3: Neurokernel programming model. An LPU model’s internal components (cyan)
are exposed via input and output ports (yellow and orange). Connections between LPUs are
described by patterns (green) that link the ports of one LPU to those of another. Connections
may only be defined between ports of the same transmission type.

Figure 2.4: LPU interface. Each communication port must either receive input (yellow)
or emit output (orange), and must either transmit spikes (diamonds) or graded potentials
(circles).

16

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

Identifier/Selector Comments
/med/L1[0] selects a single port
/med/L1/0 equivalent to /med/L1[0]
/med+/L1[0] equivalent to /med/L1[0]
/med/[L1,L2][0] selects two ports
/med/L1[0,1] another example of two ports
/med/L1[0],/med/L1[1] equivalent to /med/L1[0,1]
/med/L1[0:10] selects ten ports
/med/L1/* selects all ports starting with /med/L1
(/med/L1,/med/L2)+[0] equivalent to /med/[L1,L2][0]
/med/[L1,L2].+[0:2] equivalent to /med/L1[0],/med/L2[1]

Table 2.1: Path-like port identifier and selector syntax examples. In these examples, the
identifier level strings med and L1 are chosen to respectively denote an LPU and a neuron
within that LPU. An interface designer may select whichever level strings are deemed suitable
to label ports in an interface, however.

2.2.3.2 Pattern Configuration

A single LPU may potentially be connected to many other LPUs; these connections must

be expressed as patterns between pairs of LPUs (Fig. 2.3). Each pattern must be expressed

in terms of (1) two interfaces - each comprising a set of ports - between which connections

may be defined, (2) the actual connections between individual ports in the two interfaces

(Tab. 2.2), and (3) the attributes of each port in the pattern’s interfaces (Tab. 2.3).

Source Port Destination Port
/lam[0] /med[0]
/lam[0] /med[1]
/lam[1] /med[2]
/med[3] /lam[3]
/med[4] /lam[4]
/med[4] /lam[5]

Table 2.2: Example of connections between ports in two LPUs respectively denoted lam and
med. An instance of the Pattern class comprises these connections and the port attributes
in Tab. 2.3.

Port attributes are used by Neurokernel to determine compatibility between LPU and

17

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

Port Interface I/O Port Type
/lam[0] 0 in graded potential
/lam[1] 0 in graded potential
/lam[2] 0 out graded potential
/lam[3] 0 out spiking
/lam[4] 0 out spiking
/lam[5] 0 out spiking
/med[0] 1 out graded potential
/med[1] 1 out graded potential
/med[2] 1 out graded potential
/med[3] 1 in spiking
/med[4] 1 in spiking

Table 2.3: Attributes of the ports in the connectivity pattern described in Tab. 2.2.

pattern objects. To provide LPU designers with the freedom to determine how to multiplex

input data from multiple sources within an LPU, Neurokernel does not permit multiple input

ports in a pattern to be connected to a single output port. Input ports in a pattern may be

connected to multiple output ports. It should be noted that the connections defined by an

inter-LPU connectivity pattern do not represent synaptic models; any synapses comprised

by a brain model must be a part of the design of a constituent LPU and connected to the

LPU’s ports in order to either receive or transmit data from or to modeling components in

other LPUs.

2.2.4 Application Programming Interface

In contrast to other currently available GPU-based neural emulation packages [38, 39, 96,

143, 10], Neurokernel is implemented entirely in Python, a high-level language with a rich

ecosystem of scientific packages that has enjoyed increasing popularity in neuroscience re-

search. Although GPUs can be directly programmed using frameworks such as NVIDIA

CUDA and OpenCL, the difficulty of writing and optimizing code using these frameworks

exclusively has led to the development of packages that enable run-time code generation

(RTCG) using higher level languages [13]. Neurokernel uses the PyCUDA package to provide

18

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

RTCG support for NVIDIA’s GPU hardware [71] and scikit-cuda [47] to provide high-level

access to GPU-powered numerical libraries without forgoing the development advantages

afforded by Python.

To make use of Neurokernel’s LPU API, all LPU models must subclass a base Python

class called Module that provides LPU designers with the freedom to organize the internal

structure of their model implementations as they see fit independent of the LPU interface

configuration. Implementation of a Neurokernel-compatible LPU requires that (1) the LPU

be uniquely identified relative to all other LPUs to which it may be connected in a subsystem

or whole-brain emulation, (2) the execution of all operations comprised by a single step of

the LPU’s emulation be performed by invocation of a single method called run_step(), and

that (3) the LPU’s interface be configured as described in § 2.2.3.1.

An instantiated LPU’s graded potential and spiking ports are respectively associated

with GPU data arrays that Neurokernel accesses to transmit data between LPUs during

emulation execution; LPU designers are responsible for reading the data elements associ-

ated with input ports and populating the elements associated with output ports in the

run_step() method. Modeling components that do not communicate with other LPUs and

the internal connectivity patterns defined between them are not made accessible through

the LPU’s interface (Fig. 2.3).

Inter-LPU connectivity patterns correspond to the connections described by the tracts

depicted in Fig. 2.1. These are represented by a tensor-like class called Pattern that contains

the port and connection data described in § 2.2.3.2. To conserve memory, only existing

connections are stored in a Pattern instance. In addition to manually constructing inter-

LPU connectivity patterns using the configuration methods provided by the Pattern class,

Neurokernel also supports loading connectivity patterns from CSV, GEXF, or XML files

using a schema similar to NeuroML [48] with components that enable the specification of

LPUs, connectivity patterns, and the ports they expose. Inter-LPU connections currently

remain static throughout an emulation; future versions of Neurokernel will support dynamic

19

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

instantiation and removal of connections while a model is being executed.

The designer of an LPU is responsible for associating ports with internal components

that either consume input data or emit output data. Neurokernel provides a class called

GPUPortMapper that maps port identifiers to GPU data arrays; by default, each Module

instance contains two GPUPortMapper instances that respectively associate the LPU’s ports

with arrays containing graded potential and spike values. After each invocation of the LPU’s

run_step() method, data within these arrays associated with the LPU’s output ports is

automatically transmitted to the port data arrays of destination LPUs, while input data

from source LPUs is automatically inserted into those elements associated with the LPU’s

input ports (Tab. 2.4).

Graded Potential Ports Spiking Ports
Port Array Index Array Data Port Array Index Array Data

/lam[0] 0 0.71 /lam[3] 0 1
/lam[1] 1 0.83 /lam[4] 1 0
/lam[2] 2 0.52 /lam[5] 2 1

Table 2.4: Example of input and output data mapped to and from data arrays by the
GPUPortMapper class for the ports comprised by interface 0 in the pattern described in
Tab. 2.2 and Tab. 2.3.

In addition to the classes that represent LPUs and inter-LPU connectivity patterns,

Neurokernel provides an emulation manager class called Manager that provides services for

configuring LPU classes, connecting them with specified connectivity patterns, and deter-

mining how to route data between LPUs based upon those patterns. The manager class

hides the process and communication management performed by OpenMPI so as to obviate

the need for model designers to directly interact with the traditional MPI job launching

interface. Once an emulation has been fully configured via the manager class, it may be

executed for a specified interval of time or for a specified number of steps.

Apart from the API requirements discussed above, Neurokernel currently places no ex-

plicit restrictions upon an LPU model’s internal implementation, how it interacts with avail-

20

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

able GPUs, how LPUs record their output, or the topology of interconnections between

different LPUs. An LPU implementation called Neurodriver that provides built-in support

for several commonly used neuron and synapse models is available (§ 2.2.6), however. Com-

patible LPUs and inter-LPU patterns may be arbitrarily composed to construct subsystems

(Fig. 2.5). It should be noted that the current LPU interface is not intended to be final;

we anticipate its gradual extension to support communication between models that more

accurately account for the range of interactions that occur within the fruit fly’s brain.

Figure 2.5: Neurokernel brain modeling architectural hierarchy. Independently developed
LPUs and connectivity patterns may be composed into subsystems (red, green) which may
in turn be connected to other subsystems to construct a model of the whole brain (yellow).

Communication between LPU instances in a running Neurokernel emulation is performed

using MPI by means of the mpi4py Python bindings [28] to enable brain emulations to

take advantage of multiple GPUs hosted either on single computer or a computer cluster.

Neurokernel uses OpenMPI [42] to provide accelerated access between GPUs that support

NVIDIA’s GPUDirect Peer-to-Peer technology [100, 101] when the source and destination

memory locations of an MPI data transfer are both in GPU memory. Neurokernel-based

21

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

models are executed in a bulk synchronous fashion; each LPU’s execution step is executed

asynchronously relative to other LPUs’ execution steps, but data associated with the output

ports of all connected LPUs must be propagated to their respective destinations before those

LPUs can proceed to the next execution step. Since data is transmitted between connected

LPUs at every execution step, the output ports of all LPUs are effectively sampled at the

same rate. Individual LPUs may perform internal computations at a finer time resolution,

provided that they update their output port data arrays at the end of each invocation of

their run_step() methods.

2.2.5 Using the Neurokernel API

This section illustrates how to use the Neurokernel classes described in § 2.2.4 to construct

and execute an emulation consisting of multiple connected LPUs. The section assumes that

Neurokernel and its relevant dependencies (including OpenMPI) have already been installed

on a system containing multiple GPUs. First, we import several required Python modules;

the mpi_relaunch module provided by Neurokernel sets up the MPI environment required

to enable communication between LPUs.

import neurokernel.mpi_relaunch

from mpi4py import MPI
import numpy as np
import pycuda.gpuarray as gpuarray

from neurokernel.mpi import setup_logger
from neurokernel.core_gpu import Module , Manager
from neurokernel.pattern import Pattern
from neurokernel.plsel import Selector , SelectorMethods

Next, we create a subclass of Module whose run_step() method accesses the class in-

stance’s port data arrays; the example below generates random graded potential and spiking

output port data.

class MyModule(Module):
"""
Example of derived module class.

22

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

"""

def run_step(self):

Call the run_step () method of the parent class (Module):
super(MyModule , self). run_step ()

Log input graded potential data:
self.log_info(’input gpot port data: ’+\

str(self.pm[’gpot’][self.in_gpot_ports]))

Log input spike data:
self.log_info(’input spike port data: ’+\

str(self.pm[’spike’][self.in_spike_ports]))

Output random graded potential data:
out_gpot_data = \

gpuarray.to_gpu(np.random.rand(len(self.out_gpot_ports)))
self.pm[’gpot’][self.out_gpot_ports] = out_gpot_data
self.log_info(’output gpot port data: ’+str(out_gpot_data))

Output spikes to randomly selected output ports:
out_spike_data = \

gpuarray.to_gpu(np.random.randint(0, 2,
len(self.out_spike_ports)))

self.pm[’spike’][self.out_spike_ports] = out_spike_data
self.log_info(’output spike port data: ’+str(out_spike_data))

The data arrays associated with an LPU’s ports may be accessed using their path-like

identifiers via two instances of the GPUPortMapper class stored in the self.pm attribute.

Updated data associated with output ports is propagated to the relevant destination LPUs

by Neurokernel before the next iteration of the emulation’s execution.

To connect two LPUs, we specify the ports to be exposed by each LPU using path-

like selectors. The example below describes the interfaces for two LPUs that each expose

two graded potential input ports, two graded potential output ports, two spiking input

ports, and two spiking output ports. Selector is a convenience class that provides methods

and overloaded operators for combining and manipulating sets of validated port identifiers.

For example, Selector(’/a/in/gpot[0:2]’) corresponds to the set of two input graded

potential port identifiers /a/in/gpot[0] and /a/in/gpot[1]. Additional methods for ma-

nipulating port identifiers are provided by the SelectorMethods class.

Define input graded potential , output graded potential ,

23

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

input spiking , and output spiking ports for LPUS ’a’ and ’b’:
m1_sel_in_gpot = Selector(’/a/in/gpot [0:2] ’)
m1_sel_out_gpot = Selector(’/a/out/gpot [0:2]’)
m1_sel_in_spike = Selector(’/a/in/spike [0:2]’)
m1_sel_out_spike = Selector(’/a/out/spike [0:2] ’)

m2_sel_in_gpot = Selector(’/b/in/gpot [0:2] ’)
m2_sel_out_gpot = Selector(’/b/out/gpot [0:2]’)
m2_sel_in_spike = Selector(’/b/in/spike [0:2]’)
m2_sel_out_spike = Selector(’/b/out/spike [0:2] ’)

Combine selectors to obtain sets of all input , output ,
graded potential , and spiking ports for the two LPUs:
m1_sel = m1_sel_in_gpot+m1_sel_out_gpot +\

m1_sel_in_spike+m1_sel_out_spike
m1_sel_in = m1_sel_in_gpot+m1_sel_in_spike
m1_sel_out = m1_sel_out_gpot+m1_sel_out_spike
m1_sel_gpot = m1_sel_in_gpot+m1_sel_out_gpot
m1_sel_spike = m1_sel_in_spike+m1_sel_out_spike

m2_sel = m2_sel_in_gpot+m2_sel_out_gpot +\
m2_sel_in_spike+m2_sel_out_spike

m2_sel_in = m2_sel_in_gpot+m2_sel_in_spike
m2_sel_out = m2_sel_out_gpot+m2_sel_out_spike
m2_sel_gpot = m2_sel_in_gpot+m2_sel_out_gpot
m2_sel_spike = m2_sel_in_spike+m2_sel_out_spike

Count the number of graded potential and
spiking ports exposed by each LPU:
N1_gpot = SelectorMethods.count_ports(m1_sel_gpot)
N1_spike = SelectorMethods.count_ports(m1_sel_spike)

N2_gpot = SelectorMethods.count_ports(m2_sel_gpot)
N2_spike = SelectorMethods.count_ports(m2_sel_spike)

Using the above LPU interface data, we construct an inter-LPU connectivity pattern by

instantiating the Pattern class, setting its port input/output and transmission types, and

populating it with connections:

Initialize connectivity pattern that can link
ports in m1_sel with ports in m2_sel:
pat12 = Pattern(m1_sel , m2_sel)

Set the input/output and transmission type attributes of each port in the
pattern ’s two interfaces:
pat12.interface[m1_sel_out_gpot] = [0, ’in’, ’gpot’]
pat12.interface[m1_sel_in_gpot] = [0, ’out’, ’gpot’]
pat12.interface[m1_sel_out_spike] = [0, ’in’, ’spike ’]
pat12.interface[m1_sel_in_spike] = [0, ’out’, ’spike ’]
pat12.interface[m2_sel_in_gpot] = [1, ’out’, ’gpot’]
pat12.interface[m2_sel_out_gpot] = [1, ’in’, ’gpot’]

24

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

pat12.interface[m2_sel_in_spike] = [1, ’out’, ’spike ’]
pat12.interface[m2_sel_out_spike] = [1, ’in’, ’spike ’]

Create the connections between ports:
pat12[’/a/out/gpot [0]’, ’/b/in/gpot [0]’] = 1
pat12[’/a/out/gpot [1]’, ’/b/in/gpot [1]’] = 1
pat12[’/b/out/gpot [0]’, ’/a/in/gpot [0]’] = 1
pat12[’/b/out/gpot [1]’, ’/a/in/gpot [1]’] = 1
pat12[’/a/out/spike [0]’, ’/b/in/spike [0]’] = 1
pat12[’/a/out/spike [1]’, ’/b/in/spike [1]’] = 1
pat12[’/b/out/spike [0]’, ’/a/in/spike [0]’] = 1
pat12[’/b/out/spike [1]’, ’/a/in/spike [1]’] = 1

Certain types of patterns can also be constructed using several class methods provided by

the Pattern class that afford faster performance than the above for selectors containing

large numbers of ports. For example, the above pattern can also be constructed as follows:

pat12 = Pattern.from_concat(m1_sel , m2_sel ,
from_sel=m1_sel_out+m2_sel_out ,
to_sel=m2_sel_in+m1_sel_in ,
gpot_sel=m1_sel_gpot+m2_sel_gpot ,
spike_sel=m1_sel_spike+m2_sel_spike , data =1)

We can then pass the defined LPU class and the parameters to be used during instantiation

to a Manager class instance that connects them together with the above pattern. The

setup_logger function may be used to enable output of log messages generated during

execution:

logger = setup_logger(screen=True , file_name=’neurokernel.log’,
mpi_comm=MPI.COMM_WORLD , multiline=True)

man = Manager ()

m1_id = ’m1 ’
man.add(MyModule , m1_id , m1_sel , m1_sel_in , m1_sel_out ,

m1_sel_gpot , m1_sel_spike ,
np.zeros(N1_gpot , dtype=np.double),
np.zeros(N1_spike , dtype=int),
device =0)

m2_id = ’m2 ’
man.add(MyModule , m2_id , m2_sel , m2_sel_in , m2_sel_out ,

m2_sel_gpot , m2_sel_spike ,
np.zeros(N2_gpot , dtype=np.double),
np.zeros(N2_spike , dtype=int),
device =1)

man.connect(m1_id , m2_id , pat12 , 0, 1)

25

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

After all LPUs and connectivity patterns are provided to the manager, the emulation may

be executed for a specified number of steps as follows. Neurokernel uses the dynamic process

creation feature of MPI-2 supported by OpenMPI to automatically spawn as many MPI

processes are needed to run the emulation. Each LPU class and its associated instantiation

parameters are transmitted to a spawned process where the class is instantiated and its run

loop executed.

Compute number of execution steps given emulation duration
and time step (both in seconds):
duration = 10.0
dt = 1e-2
steps = int(duration/dt)

man.spawn ()
man.start(steps)
man.wait()

2.2.6 Neurodriver - a Configurable LPU Implementation

To facilitate the use of Neurokernel for developing LPU models, we developed a package

called Neurodriver that enables declarative construction of LPU models composed of sup-

ported neuron and synapse models. Neurodriver contains a subclass of the Module class

described in § 2.2.4 that can execute a property graph describing an LPU’s circuit; this

graph may be loaded from a GEXF file or explicitly defined in Python as a NetworkX

data structure [53]. Neurodriver currently supports the Leaky Integrate-and-Fire, Morris-

Lecar, and Hodgkin-Huxley neuron models, as well as alpha function and conductance-based

synapses. A stochastic model of the photoreceptors in the fly retina has also been devel-

oped for Neurodriver as part of the retina/lamina model described in § 2.3.1. Neurons may

be configured to transmit spikes (if they produce action potentials) or membrane potential

values to synapses.

Neurodriver provides a plugin mechanism that may be used to add support for new

models by subclassing base neuron and synapse Python classes that provide a uniform

framework for invoking the GPU-based numerical equations associated with a model. Once

26

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

a new model class has been added to Neurodriver’s Python path, Neurodriver can execute

LPU graphs that reference the model.

2.3 Results

To evaluate Neurokernel’s ability to facilitate interfacing of functional brain modules that

can be executed on GPUs, we employed Neurokernel’s programming model (§ 2.2.3) to

interconnect independently developed LPUs in the fruit fly’s early visual system to provide

insights into the representation and processing of the visual field by the cascaded LPUs. We

also evaluated Neurokernel’s scaling of communication performance in simple configurations

of the architecture parameterized by numbers of ports and LPUs and assessed Neurodriver’s

scaling of execution performance for neuropil-scale circuits of point neuron and conductance-

based synapse models.

2.3.1 Integration of Independently Developed LPU Models

The integrated early visual system model we considered consists of models of the fruit fly’s

retina and lamina. The retina model comprises a hexagonal array of 721 ommatidia, each

of which contains 6 photoreceptor neurons. The photoreceptor model employs a stochastic

model of how light input (photons) produce a membrane potential output. Each pho-

toreceptor consists of 30,000 microvilli modeled by 15 equations per microvillus, a photon

absorption model, and a model of how the aggregate microvilli contributions produce the

photoreceptor’s membrane potential [73]; the entire retina model employs a total of about

1.95 billion equations. The lamina model consists of 4,326 Morris-Lecar neurons config-

ured to not emit action potentials and about 50,000 conductance-based inhibitory synapses

expressing histamine [80]. The LPUs were linked by 4,326 feed-forward connections from

the retina to the lamina; the connections from the retina to the lamina were configured

to map output ports exposed by the retina to input ports in the lamina based upon the

neural superposition rule [70]. The source code for the visual system model is available at

27

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

http://github.com/neurokernel/retina-lamina

The combined retina and lamina models were executed on up to 4 Tesla K20Xm NVIDIA

GPUs with an 8 second natural video scene provided as input to the retinal model’s pho-

toreceptors. The computed membrane potentials of specific photoreceptors in each retinal

ommatidium and of select neurons in each cartridge of the lamina were recorded (Fig. 2.6).

In this example, the observed R1 photoreceptor outputs demonstrate the preservation of

visual information received from the retina by the lamina LPU. The L1 and L2 lamina neu-

ron outputs demonstrate the signal inversion taking place in the two pathways shaping the

motion detection circuitry of the fly. These initial results illustrate how Neurokernel’s API

enables LPU model designers to treat their models as neurocomputing modules that may

be combined into complex information processing pipelines whose input/output properties

may be obtained and evaluated.

28

http://github.com/neurokernel/retina-lamina

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

Figure 2.6: Example of natural input to the combined retina/lamina model. The hexag-
onal tiling depicts the array of ommatidia in the retina and the corresponding retinotopic
cartridges in the lamina. Outputs of select photoreceptors in the retina (R1) that are fed
to neurons in the lamina and outputs of specific neurons in the lamina (L1, L2) are also
depicted.

2.3.2 Module Communication Performance

We compared the performance of emulations in which port data stored in GPU memory is

copied to and from host memory for traditional network-based transmission by OpenMPI

to that of emulations in which port data stored in GPU memory is directly passed to Open-

MPI’s communication functions. The latter functions enabled OpenMPI to use NVIDIA’s

GPUDirect Peer-to-Peer technology to perform accelerated transmission of data between

GPUs whose hardware supports the technology by bypassing the host system’s CPU and

29

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

memory [101]. All tests discussed below were performed on a host containing 2 Intel Xeon

6-core E5-2620 CPUs, 32 Gb of RAM, and 4 NVIDIA Tesla K20Xm GPUs running Ubuntu

Linux 14.04, NVIDIA CUDA 7.0, and OpenMPI 1.8.5 built with CUDA support. The code

required to obtain the benchmarks is included in the Neurokernel source code available

online.

2.3.2.1 Scaling over Number of LPU Output Ports

To evaluate how well inter-LPU communication scales over the number of ports exposed by

an LPU on a multi-GPU machine, we constructed and ran emulations comprising multiple

connected instances of an LPU class with an empty run_step() method (see § 2.2.4) and

measured (1) the average time taken per execution step to synchronize the data exposed

by the output ports in each of two connected LPUs with their respective destination input

ports; (2) the average throughput per execution step (in terms of number of port data

elements transmitted per second) of the synchronization, where each port is stored either as

a 32-bit integer or double-precision floating point number (both of which occupy 8 bytes).

We initially examined how the above performance metrics scaled over the number of

output ports exposed by each LPU in a 2-LPU emulation and over the number of LPUs in

an emulation where each LPU is connected to every other LPU and the total number of

output ports exposed by each LPU is fixed. We compared the performance for scenarios

where data in GPU memory is directly exposed to OpenMPI to that for scenarios where

the data is copied to the host memory prior to transmission; the former scenarios enabled

OpenMPI to accelerate data transmission between GPUs using NVIDIA’s GPUDirect Peer-

to-Peer technology. The metrics for each set of parameters were averaged over 3 trials; the

emulation was executed for 500 steps during each trial.

The scaling of performance over number of ports depicted in Fig. 2.7 clearly illustrate

the ability of GPU-to-GPU communication between locally hosted GPUs to ensure that

increasing the number of ports exposed by an LPU does not increase model execution time

30

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

for numbers of ports similar to the numbers of neurons in actual LPUs. We also observed

noticeable speedups in synchronization time for scenarios using more than 2 GPUs as the

number of ports exposed by each LPU is increased (Fig. 2.8). As the number of GPUs in use

reached the maximum available in our test system, overall speedup diminished; this appears

to be due to gradual saturation of the host’s PCI bus.

2.3.2.2 Scaling over Number of LPUs

Current research on the fruit fly brain is mainly focused on LPUs in the fly’s central com-

plex and olfactory and vision systems. Since the interplay between these systems will be key

to increasing understanding of multisensory integration and how sensory data might inform

behavior mediated by the central complex, we examined how well Neurokernel’s communica-

tion mechanism performs in scenarios where LPUs from these three systems are successively

added to a multi-LPU emulation. Starting with the pair of LPUs with the largest number

of inter-LPU connections, we sorted the 19 LPUs in the above three systems in decreasing

order of the number of connections contributed with the addition of each successive LPU

and measured the average speedup in synchronization time per execution step due to direct

GPU-to-GPU data. The number of connections for each LPU was based upon estimates

from a mesoscopic reconstruction of the fruit fly connectome; these numbers appear in Doc-

ument S2 of the supplement of [127]. The LPU class instances were designed to send and

receive data only; no other computation was performed or benchmarked during execution.

To amortize inter-LPU transmission costs, the LPUs were partitioned across the available

GPUs using the METIS graph partitioning package [67] to minimize the total edge cut.

The speedup afforded by direct GPU-to-GPU data (Fig. 2.9) illustrates that current GPU

technology can readily power multi-LPU models based upon currently available connectome

data.

31

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

(a) Average synchronization time per execution step

(b) Average synchronization throughput (in number of ports per unit time) per execution step.

Figure 2.7: Synchronization performance for an emulation comprising 2 interconnected LPUs
accessing 2 different GPUs on the same host scaled over number of output ports exposed by
each LPU. The number of output ports was varied over 25 equally spaced values between
50 and 15,000.

32

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

Figure 2.8: Speedup of average synchronization time per execution step for an emulation
scaled over number of LPUs, where each LPU is mapped to a single GPU. The total number
of output ports exposed by each LPU was varied between 250 and 10,000 at 250 port
intervals.

33

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

Figure 2.9: Synchronization performance for an emulation comprising between 4 and 19
interconnected LPUs selected from the central complex, olfactory, and vision systems par-
titioned over 2 to 4 GPUs on the same host.

34

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

2.3.3 Neurodriver Performance

To assess whether Neurodriver affords reasonable performance when executing neural circuits

containing numbers of neurons and synapses comparable to those found in actual neuropils,

we compared its performance to that of Brian2GeNN, a package that enables the Brian

simulator [52] to use the GeNN code generation framework [144] to accelerate execution

of spiking neuronal network circuits defined using Brian’s Python interface using a GPU.

Brian2GeNN was used for this comparison rather than other GPU-based simulators (§ 2.4)

because it is the only available GPU-based neural simulator other than Neurodriver under

active development as of 2016 that has a functioning Python interface and can support the

same neuron and synapse models as Neurodriver. The code required to run these benchmarks

is available online at http://github.com/neurokernel/neurodriver-benchmark

For both Neurodriver and Brian2GeNN, we constructed networks of Leaky Integrate-

and-Fire neurons randomly connected by alpha function synapses. A constant current was

injected into a subset of neurons in each implementation to elicit spiking activity. Both

implementations were run for 3 seconds at a time resolution of 1 · 104 seconds on the same

host system described in § 2.3.2. The number of neurons in each network was scaled from

100 to 12000 neurons and from 2500 and 1.6·106 synapses, respectively. Fig. 2.10 depicts the

average times over 3 trials for each network size plotted with respect to number of neurons

and number of synapses.

Given the differences between the respective designs of Neurodriver and Brian2GeNN,

several considerations were taken to make the comparison as fair as possible:

• The execution time of the run loop of Neurodriver’s LPU class was measured on the

spawned MPI process after class instantiation and initialization of all internal variables.

Since Brian2GeNN must currently perform code generation during every simulation

run, its execution time was measured to include invocation of the simulation run

mechanism and the time taken by code generation.

35

http://github.com/neurokernel/neurodriver-benchmark

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

• A constant input signal was provided to a subset of the neurons in both the Neurodriver

and Brian2GeNN circuit implementations. The input was copied into the requisite

GPU variables in both implementations at every execution step.

• Since Brian2GeNN transfers the output produced by the GeNN-generated code back

to the parent Python session, spikes generated at every run step of the Neurodriver

implementation were also copied back to host memory after every execution step.

Figure 2.10: Comparison of performance of Neurodriver and Brian2GeNN when simulating
3 seconds of activity produced by randomly connected spiking neural networks containing
between 100 and 12000 neurons and between 2500 and 1.6 · 106 synapses in response to
a constant input to a subset of the neurons. The execution times were averaged over 3
trials per network size. Both plots depict the same average execution times with respect to
numbers of neurons and synapses, respectively.

The above results indicate that Neurodriver exhibits superior performance compared to

Brian2GeNN for networks containing up to about 1.05 · 104 neurons and 1.3 · 107 synapses.

For larger networks, the efficiency of the code generated by GeNN enables Brian2GeNN

to achieve better scaling of execution times with respect to network size than Neurodriver.

36

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

Given that only a few of the neuropils in the fruit fly contain numbers of components greater

than the above range [22, 80], these results demonstrate that Neurodriver can provide com-

petitive performance for multi-LPU emulations that target most of the fly brain neuropils.

Although Brian2GeNN’s performance scales better than that of Neurodriver with respect to

network size, it is worth noting that Neurodriver’s use of Neurokernel’s communication API

enables it to be used in emulations that require multiple GPUs and/or require interaction

between neurons in different LPUs that do not emit spikes. We address the possibility of

employing approaches similar to Brian2GeNN in future releases of Neurokernel in § 5.2.2.

2.4 Related Work

2.4.1 General Purpose Neuronal Network Simulators

Computational neuroscientists can currently choose from an array of actively developed

neuronal network simulation software to power their models. GENESIS [11], NEURON

[19], and MOOSE [116] enable construction of neural circuit models using components such

as multicompartmental neuron models capable of simulating high levels of biophysical detail.

NEST provides well-tested support for over 50 published neuron models and over 10 synapse

models [43]. NEURON has been used to simulate randomly connected networks of spiking

point neurons up to 4·106 neurons with 4·1010 connections on a Blue Gene/P supercomputer

(3·105 cores, 144 TB RAM) with a performance of about 0.005 of real-time speed [57]; NEST

has been used to simulate spiking networks containing about 5 times as large [56] on the

K supercomputer (7 · 105 cores, 1.4 PB RAM) with similar execution speeds. Since these

packages do not currently support the use of GPUs, their performance on less powerful

desktop computer systems is considerably more limited, however. Both GENESIS and

NEURON provide graphical user interfaces and their own scripting languages (SLI and

HOC, respectively) for defining neuron/synapse models and networks, although they and

MOOSE all currently provide Python interfaces.

37

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

The Brian simulator [52, 130] provides neuroscientists with the ability to define a wide

range of neuron and synapse models in terms of actual differential equations while largely

eliminating the need to explicitly address numerical considerations associated with imple-

menting such models. Although the project does leverage vectorized operations and a code

generation backend to accelerate model execution [130], it prioritizes programmability over

performance through its use of Python rather than a compiled language such as C++ and

its focus upon easy model specification and the flexibility to mathematically define arbitrary

models. An extension to Brian under development as of 2016 called Brian2GeNN aims to

utilize the GeNN code generation framework [144] to provide GPU support; GeNN is further

discussed in § 2.4.2.

The PyNN project [30] also focuses upon ease of use by providing a high-level Python

interface to a range of commonly used neuron and synapse models while leaving the efficient

implementation of the models to other simulation engines; PyNN currently supports the

use of NEURON, NEST, PCSIM, and Brian as backends. PyNN’s object oriented interface

defines classes corresponding to populations of neurons, projections comprising synaptic

connections between populations, and connectors that encapsulate the algorithm used to

create a projection.

While the above projects have considerably increased the ease of defining neuronal cir-

cuit models, they do not provide a straightforward means of supporting collaborative brain

model development because of the lack of a programming model that enables independently

developed circuits to be interconnected. Most of these simulators support the notions of

neuron populations and connectivity projections from one population of neurons to another.

Projects alone, however, are insufficient for conceptually modularizing the brain into func-

tional circuits that may be simultaneously investigated by different researchers because they

do not define how modeling components in one circuit are to communicate with those in an-

other circuit independently of the respective components’ identities. GPU support in these

projects is also nonexistent or under development as of 2016.

38

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

2.4.2 GPU-based Neuronal Network Simulators

The use of GPU parallel computing technology by neuronal network simulators has sig-

nificantly advanced the performance available to researchers without access to large-scale

supercomputers. Although most general-purpose neural simulators (§ 2.4.1) have yet to

incorporate support for GPUs, an increasing range of GPU-based simulators are currently

available.

NeMo is a spiking neural network simulator capable of simulating networks comprising

105 neurons and 107 synapses on a single GPU at real-time execution speeds using a novel

just-in-time spike delivery technique to reduce memory bandwidth requirements [38, 39].

NeMo supports user-configurable synaptic plasticity and conduction delays, but does not

implement any models other than the Izhikevich neuron model [63]. Neurons that do not

produce spikes are also not supported.

CARLSim 3 [97, 117, 10] is a simulator that supports accelerated execution of networks

of Izhikevich neurons on both commodity x86 CPUs and NVIDIA GPUs. Implemented in

C/C++ and CUDA, it supports a programming interface modeled on the design of PyNN

[30] to ease its use by model developers. Unique features provided by CARLsim 3 include

an implementation of spike-timing dependent plasticity (STDP) that supports dopaminergic

neuromodulation and an interface to the ECJ automatic parameter tuning system that can

be used to tune almost any parameter of a simulated network. The simulator has been

used to implement models of visual processing, neuromodulation, synaptic plasticity, and

attention comprising up to 105 neurons and 106 synapses at 50% of real-time performance.

CARLSim 3 does not provide a Python interface and does not yet support multiple GPUs.

The Nengo [6] simulator enables construction of neuronal networks that can model cog-

nitive processes described in terms of the Neural Engineering Framework (NEF) [36]. It

supports Python and can utilize GPUs to accelerate performance by means of PyOpenCL

[71]. Nengo has been used to realize Spaun [37], a functional brain model comprising 2.5 ·106

spiking neurons that can perform a range of cognitive tasks. Neural circuit models that do

39

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

not utilize the NEF principle (which has yet to be empirically verified) cannot be easily

implemented in Nengo, however.

GeNN is a simulator package that generates and compiles automatically optimized GPU

code to obtain significant execution acceleration for spiking neural networks comprising up

to 106 point neurons on a single GPU [143]. As GeNN itself does not possess a Python

interface, work is underway to combine the flexibility of Brian with GeNN’s support for

GPU-based simulations by means of a backend called Brian2GeNN [144].

Despite the high level of parallelism they provide, the relatively limited memory band-

width of GPUs poses challenges in the effective use of multiple GPUs to execute models

that involve high levels of coupling between model components. Spiking neural network

simulators can exploit spike sparsity to mitigate the costs of inter-GPU data transfer. Neo-

cortical Simulator (NCS) 6 [59], for example, supports simulation of large-scale networks

of Izhikevich neurons or hybrid spiking neurons whose membrane potential follows a Leaky

Integrate-and-Fire model after crossing a threshold and whose subthreshold dynamics follow

the Hodgkin-Huxley model. NCS6 is capable of executing up to 106 neurons of the above

types connected by up to 5 · 107 synapses on multiple CPUs or NVIDIA GPUs. Similarly,

HRLSim [92] can execute networks comprising 1.1 · 105 Leaky Integrate-and-Fire or Izhike-

vich neurons and 1.1 · 106 synapses in real-time using multiple NVIDIA GPUs, although its

source code does not appear to be publicly available.

Given that significant portions of the fly brain (e.g., the lamina and medulla in the fly

vision system) consist of neurons that have not been observed to emit action potentials,

simulators that only support networks of spiking neurons sacrifice a significant level of

biological plausibility to achieve superficially impressive execution performance. In contrast

to the above simulators that focus on optimizing performance for networks composed entirely

of neurons that communicate via spikes, the Myriad simulator explicitly targets densely

integrated biophysical networks of neurons that require multiple state updates at every

simulation step [121, 120, 122]. To mitigate the cost associated with large numbers of

40

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

state updates, Myriad employs a novel code generation approach that translates neuronal

networks defined using a Python interface into networks of low-level computational elements

that can be efficiently parallelized on a GPU. The developers of Myriad plan to release it as

open source in the future.

2.4.3 Neuromorphic Simulation Platforms

Neuromorphic platforms whose design is directly inspired by the brain have the potential to

execute large-scale neural circuit models at speeds that significantly exceed those achievable

with traditional von Neumann computer architectures while consuming significantly less

power than other parallel computing hardware platforms.

SpiNNaker and FACETS/BrainScaleS are scalable neuromorphic platforms designed to

eventually provide the performance required to emulate the human brain. SpiNNaker com-

bines multiple independent digital ARM microprocessors with a customized on-chip inter-

connect [115]. Inspired by the features of biological neural circuits, SpiNNaker provides

a model of natively parallel model of computation that supports event-driven processing,

memory access by any processor without notification or synchronization, and the ability to

reconfigure the hardware while it is running. SpiNNaker has been used to implement both

spiking neural network models composed of Izhikevich neurons and artificial neural network

algorithms such as the multilayer perceptron (MLP). FACETS/BrainScaleS takes a different

architectural approach that combines local analog neuron and synapse computations with

asynchronous spike event communication; each FACETS hardware subsystem comprises a

custom mixed-signal ASIC for emulation of spiking neurons and synapses combined with

a digital ASIC for communication [14]. It can support networks comprising up to 2 · 105

programmable spiking neurons and 4.5 · 107 synapses. PyNN support for both SpiNNaker

and FACETS/BrainScaleS is available.

Neurogrid is neuromorphic platform capable of real-time simulation of 1 · 106 spiking

neurons and 1 · 109 synapses with power requirements of only a few watts [8]. Neurogrid

41

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

uses shared circuits to emulate most components of a neural circuit to maximize the number

of synaptic connections it can support. Like FACETS, Neurogrid employs a mixed-signal

design; all circuits other than axonal arbors are implemented in analog, while spike events

are transmitted digitally. In addition to the above hardware, Neurogrid provides a software

stack with a GUI interface and support for model specification in Python.

TrueNorth is a low-power chip for running massive networks of spiking neurons. Com-

prising 4096 neurosynaptic cores that each contain a network of input and output lines

connected by programmable synapses, a single TrueNorth chip is capable of running net-

works of 106 spiking neurons and 2.56 ·108 synapses in real-time [90]. Neurons and synapses

may be individually configured to obtain a range of different behaviors. TrueNorth’s ar-

chitecture can be tiled in two dimensions to construct systems that support even larger

networks. The architecture has been used as a substrate for computationally intensive tasks

such as convolutional networks and machine learning algorithms. Networks designed to run

on TrueNorth currently must be specified using a compositional language designed for the

architecture.

In contrast to the above platforms that are built upon customized hardware, NeuroFlow

is a general-purpose spiking neural network simulator that can run on commercially available

FPGAs [21]. It currently supports common point neuron models, exponential and alpha

function synapses, and STDP. To obviate the need for specialized knowledge regarding the

use of FPGA hardware, NeuroFlow provides a Python API that uses PyNN. Using a single

FPGA, NeuroFlow can achieve execution speeds almost 3 times as great as those of GPU-

based simulators such as CARLSim 3 and almost 34 times as great as those of CPU-based

simulators such as NEST for networks containing up to 5.9 · 105 neurons.

Despite the exciting possibilities afforded by hardware with non-von Neumann archi-

tectures, uncertainty regarding the appropriate computational paradigm for modeling the

brain implies that more progress must be made on exploring models of brain processing

before we can design an optimal hardware platform for brain emulation. Neurokernel’s cur-

42

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

rent design is therefore predicated upon the use of technologies such as commodity GPUs

and Python that afford maximal model construction flexibility to a wide audience with rea-

sonable computational hardware performance. As neuromorphic technology matures and

becomes available to the wider neurocomputing community, we anticipate extending Neu-

rokernel’s compute plane to support the use of such hardware alongside and eventually in

the place of GPU technology to power whole brain emulations.

2.4.4 Simulator Interfacing Packages

Although the increasingly wide array of neuronal network simulators actively in use do

afford a range of unique features, there has been only modest interest in run-time simulator

interoperability that can enable models implemented for different simulators to interact

during run-time. MUSIC is an API for run-time data exchange between neural circuit

models executed on different simulators [33]. MUSIC’s API associates communication ports

with data sources or sinks in the connected models; these ports support transmission of either

spike data or continuous values such as membrane potentials. A key advantage of MUSIC’s

design is that it eliminates the need for communication handshakes between connected

simulators, which can run at different time resolutions if so desired. To use MUSIC, existing

neural simulators must use MPI and be explicitly modified to support MUSIC’s API; as of

the present, communication of spike events between different simulators using MUSIC has

only been implemented for NEST [43] and MOOSE [116]. In contrast to Neurokernel’s port

labeling syntax, MUSIC does not provide any port labeling scheme to facilitate management

of large numbers of ports, nor does it define a programming model for encapsulating models

with an implementation-independent communication interface. Given that it was designed

prior to the recent rise in interest in using multiple GPUs for large simulations and the

concomitant development of technologies for accelerated inter-GPU data transfers such as

NVIDIA’s GPUDirect and CUDA-enabled OpenMPI, MUSIC’s communication scheme also

does not address the performance questions that arise due to the limited GPU memory

43

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

transfer bandwidth. As of 2016, MUSIC no longer seems to be under development and does

not appear to be in active use by any popular simulation platforms.

The PCSIM spiking neural network simulator was one of the first general-purpose sim-

ulation packages to provide a primary Python interface despite being implemented in a

compiled language [106]. A unique feature provided by PCSIM is its support for encapsu-

lating network elements implemented using other simulators such as Brian (provided that

the implemented elements can exchange data with PCSIM’s Python API). Custom network

elements must expose input and output ports that may be connected to native PCSIM mod-

eling components; ports may only be labeled using integer ranges, however. No longer under

development since 2010, PCSIM does not support the use of GPUs.

2.4.5 Whole Brain Simulation Projects

As of 2016, no comprehensive computational model of the entire fruit fly brain predicated

upon connectome data exists. There are, however, several ongoing efforts to develop brain

or nervous system models for other model organisms with similar complexity.

The OpenWorm Project aims to develop a whole-body biophysical simulation of the

nematode C. elegans to examine hypotheses as to how its behaviors arise from its biological

architecture [133]. It capitalizes upon on the extremely small number of neurons in the

worm’s nervous system and the full reconstruction of its connectome [139]. The project

comprises several related software packages such as Sibernetic [104], a platform for simulating

the worm’s interactions with its fluid environment on a CPU or GPU, and Geppetto [18],

a more general web-based platform for simulation and visualization of biological systems.

OpenWorm shares many of the same open science goals as that of the work in this thesis.

Neurokernel’s design requirements differ from those of OpenWorm owing to the much higher

level of complexity of the fly’s connectome. Neurokernel’s LPU interface API, for example,

is predicated upon the assumption that successful construction of an accurate whole fly

brain emulation must necessarily involve integration of multiple LPU models of different

44

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

provenance. Similarly, Neurokernel’s communication mechanism presupposes the eventual

need for multiple GPUs as fly brain models become more comprehensive and biologically

plausible.

The Flysim project has constructed a CPU-based simulation of 22,000 neurons from the

FlyCircuit database [22] in the fly brain [60]. This model only employs spiking neurons

and ionotropic synapses, however, does not currently distinguish between different modules

within the brain, and does not support the use of GPUs. To better support the demands

of models that account for more detailed fly neuron data that will be available in the near

future, developers of this project are currently investigating the porting of their simulation

to Neurokernel to utilize its GPU support.

The Green Brain Project aims to construct a modular model of the honeybee brain that

describes how it realizes olfactory and visual detection, classification, and learning functions,

as well as multisensory integration of olfactory and visual information. This project utilizes

the GeNN neural network simulator to execute models of sensory subsystems in the bee

brain [25], some of which have already been published [142].

2.5 Summary

Although the computational power of spiking neural networks has been shown to be greater

than other neural network models [83], attempting to model the fruit fly brain without ac-

counting for the nontrivial number of its neurons that do not emit spikes poses significant

problems. The currently minimal support for executing heterogeneous networks comprising

non-spiking neurons on GPUs was a major factor in the implementation of the Neurodriver

component. Future versions of Neurodriver stand to benefit from GPU-based implementa-

tions simulation engines currently under development such as Brian2GeNN and Myriad that

did not exist when the Neurokernel project was initiated.

Currently available neural simulation software affords researchers with a range of ways of

constructing neural circuit models. These include tools that enable models to be explicitly

45

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

expressed as systems of differential equations [52], structured documents [48], or explicit

calls to a high-level programming API [19, 30, 37]. They also include tools for defining and

manipulating neural connectivity patterns [51, 9, 32]. A platform for developing emulations

of the entire fruit fly brain, however, must provide programming services for expressing the

functional architecture of the whole brain (or its subsystems) in terms of subunits with high-

level information processing properties that clearly separate between the internal design

of each subunit and how they communicate with each other. Neurokernel’s architecture

specifically targets these gaps by providing both the high-level APIs needed to explicitly

define and manipulate the architectural elements of brain models as well as the low-level

computational substrate required to efficiently execute those models’ implementations on

multiple GPUs (see Fig. 2.2).

Existing tools for interfacing neural models or simulators such as [106, 33] currently

provide no native support for the use of GPUs and none of the aforementioned services

required to scale over multiple GPU resources. Neurokernel addresses the problem of model

incompatibility in the context of fly brain modeling by ensuring that GPU-based LPU model

implementations and inter-LPU connectivity patterns that comply with its APIs are inter-

operable regardless of their internal implementations.

Despite the impressive performance GPU-based spiking neural network software can cur-

rently achieve for simulations comprising increasingly large numbers of neurons and synapses,

enabling increasingly detailed fruit fly brain models to efficiently scale over multiple GPUs

will require resource allocation and management features that are not yet provided by cur-

rently available neural simulation packages that support GPUs (§ 2.4.2). By explicitly

providing services and APIs for management of GPU resources, Neurokernel will enable fly

brain emulations to benefit from the near-term advantages of scaling over multiple GPUs

while leaving the door open to anticipated improvements in GPU technology that can further

accelerate the performance of fly brain models.

The challenges of reverse engineering neural systems have spurred a growing number

46

Chapter 2. Neurokernel: a Framework for Integration of Executable Fruit Fly Brain
Models

of projects specifically designed to encourage collaborative neuroscience research endeavors.

These include technologies for model sharing [58, 48, 50], curation of publicly available elec-

trophysiological data [128], and the construction of comprehensive nervous system models

for specific organisms [133]. For collaborative efforts at fruit fly brain modeling to succeed,

however, there is a need to both ensure the interoperability of independently developed

LPU models without modification of their internal implementations while simultaneously

enforcing a model of the overall brain connectivity architecture. By imposing mandatory

communication interfaces upon models, Neurokernel explicitly ensures that LPU models

may be combined with other compatible models to construct subsystem or whole brain

emulations.

Although the Neurokernel project is specifically focused upon reverse engineering the

fruit fly brain, the framework’s ability to capitalize upon the structural modularity of the

brain and facilitate collaborative modeling stand to benefit efforts to reverse engineer the

brains of other model organisms. To this end, Neurokernel has already been used to success-

fully scale up the retinal model described in § 2.3.1 to emulate the retina of the house fly

[74], which comprises almost 10 times as many differential equations (18.8 billion) as that

of the fruit fly (1.95 billion). Further development of Neurokernel’s support for multiple

GPUs (§ 5.2) and - eventually - neuromorphic hardware will open the doors to collaborative

modeling of the brains of even more complex organisms such as the zebra fish and mouse.

47

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

Chapter 3

NeuroArch: a Graph dB for

Representation of Executable Fly

Brain Circuits

3.1 Introduction

NeuroArch is a software package for specification, storage, and querying of both biological

data regarding the fruit fly brain and executable models built upon that data within a single

graph database. A key aim of NeuroArch is to enable the algorithmic construction of neural

circuit models based upon large-scale biological data sets by closing the gap between biolog-

ical data and the models that depend upon them; we describe the high-level requirements

for representation of fly brain circuit data to achieve this aim in § 3.2. NeuroArch employs

a data model that preserves the structural and semantic relationships between different bi-

ological and modeling objects; this data model is presented in § 3.3 and its mapping into a

graph database described in § 3.4. In § 3.5, we present features of NeuroArch’s API that

exploit the data model to fulfill some of the requirements described in § 3.2 and present

Parts of this chapter appear in [45, 46].

48

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

demonstrations of the API’s functionality in § 3.6. We compare NeuroArch with currently

available open fruit fly biological data resources, neural model sharing services, and neural

model specification technologies in § 3.7 and summarize NeuroArch’s unique design features

in § 3.8.

3.2 Data Representation Requirements

3.2.1 Represented Information

NeuroArch’s database must be able to store data regarding both neurobiological circuits and

the design of executable neural circuits that model their biological counterparts. The former

includes data such as neuron and synapse structure and characteristics from sources such

as EM reconstruction, transgenic lines and genetic data; the latter includes parameters of

constituent component models and abstractions that describe a neural circuit’s architecture.

Since data regarding the same biological entities may be provided by different experimental

data sources, NeuroArch must support concurrent representation of biological data with

different origins to enable the incompleteness of data from one source to be complemented by

data from a different source. Similarly, NeuroArch must support concurrent representation

of multiple versions of a single circuit designed by different parties or containing different

design variations.

3.2.1.1 Biological Circuit Entities

Entities corresponding to biological data NeuroArch must support are listed below. Some

of these entities correspond to sets or subdivisions of other biological entities, while others

correspond to attributes of other entities.

Arborization Data Data regarding the arborization of dendrites within specific brain

regions, e.g., the identity of the neurons that arborize within a specific glomerulus in the

49

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

protocerebral bridge and the polarity of their respective neurites. This geometric data may

be less detailed than neuron morphology data.

Biological Sensor A set of sensory neurons such as photoreceptors, olfactory sensory

neurons, or mechanosensory cells.

Chemical Synapse A neurotransmitter-mediated connection between two neurons. Hence-

forth referred to as a synapse in the remainder of this RFC.

Data Source The source (e.g., a lab or research group) of a set of biological fly brain

data.

Gap Junction A non-chemical connection between two neurons.

Genetic Data Data regarding the genetic line associated with other biological entities

such as neurons or synapses.

Neural Circuit Motif A brain circuit other than (and typically smaller than) a neuropil,

e.g., cartridge (in lamina), column (in medulla), channel (in antennal lobe), etc.

Neuron Morphology Data Data describing a neuron’s geometry.

Neuron A single neuron, e.g., Tm-1, L1, etc.

Neuropil Any named anatomical region of the fly brain, e.g., lamina, medulla, etc. [62].

Neurotransmitter Associated with a specific neuron or synapse, e.g., histamine, acetyl-

choline, GABA, etc.

Species The species associated with a given set of biological data, e.g., D. melanogaster,

D. simulans, D. busckii, etc.

50

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

Tracts A bundle of neuron axons at the mesoscopic scale, i.e., information regarding the

individual neurons in the bundle may be absent even if knowledge regarding the endpoints

and total number of axons is known.

3.2.1.2 Executable Circuit Entities

Entities required to represent executable circuit designs are listed below. Some of these enti-

ties represent architectural abstractions, while others (such as model parameters) correspond

to attributes of other entities.

Axon Model An instance of a model of a neuron’s axon.

Axon Hillock Model An instance of a model of a neuron’s axon hillock, e.g., Leaky

Integrate-and-Fire, Hodgkin-Huxley, Morris-Lecar (configured to emit spikes), etc.

Circuit Motif Model An instance of a neural circuit model, e.g., canonical circuits,

composition rules in the fly vision system [79].

Communication Port A single input or output channel of an LPU model or pattern.

Dendrite Model An instance of a model of a neuron’s dendrites.

Gap Junction Model An instance of a model of a gap junction between two neurons.

Inter-LPU Connectivity Pattern An instance of the connectivity between the ports

exposed by two LPUs’ interfaces.

LPU or Pattern Interface A set of ports exposed by an LPU or pattern for communi-

cation with those in the interfaces of other LPUs or patterns.

51

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

LPU An instance of a model of a specific neuropil that owns the objects that describe its

internal design.

Membrane Model An instance of a model describing a neuron’s membrane voltage, e.g.,

Morris-Lecar configured to not emit spikes.

Model Parameters Parameters associated with a functional model of structures such as

a neuron, synapse, or gap junction.

Model Version An identifier distinguishing one version of an LPU or inter-LPU connec-

tivity pattern from other instances of the same LPU or pattern.

Neuron Model An instance of a model of an entire neuron. This entity owns other

entities that correspond to models of specific components of a neuron.

Synapse Model An instance of a model of a chemical synapse between two neurons.

3.2.2 Biological Circuit Query Requirements

1. The database should be able to store information from a variety of sources, e.g., EM

reconstruction, transgenic lines, genetic data, etc. It should be possible to retrieve

the data associated with a specific biological object that originates in different data

sources.

2. NeuroArch must support querying of all stored biological data. For example, a neu-

robiologist should be able to retrieve all neurons associated with a particular genetic

line whose neurotransmitter profile differs from that of the corresponding neurons in

the wild type fruit fly.

3. Queries should be expressible in a high-level and intuitive fashion that enables neuro-

biologists to access high-level subdivisions (e.g., cartridges and columns in the vision

52

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

neuropils) as well as lower level components such as neurons and synapses.

4. Queries should be able to incorporate and handle ‘fuzzy’ information. For example, it

should be possible to represent data regarding a population of neurons with a charac-

teristic associated with some fraction of the population rather than with individually

identified neurons.

5. Queries should support names of biological structures and their synonyms as defined

in existing anatomical ontologies [27].

6. NeuroArch should support representation of the confidence level of a dataset. For

example, the confidence associated with synaptic connections inferred from overlapping

arborizations should be assigned a lower level of confidence than that of connections

obtained from EM reconstruction.

7. Data from multiple sources should be integrated such that queries can seamlessly

traverse multiple sources even if the sources overlap or one dataset lacks information

present in another dataset, e.g., one should be able to query neurons in multiple

connected neuropils even if the data for those neuropils originates in different datasets.

3.2.3 Executable Circuits Query Requirements

1. NeuroArch must support defining and manipulating models whose respective internal

structures may employ labeling schemes that potentially contain a greater or lesser

number of abstraction levels than other models.

2. It should be possible to use biological information stored in NeuroArch to generate or

update information of executable models of LPUs.

3. Queries in NeuroArch should be able to span all levels of model abstraction and access

biological as well as modeling data. For example, it should be possible to retrieve the

neurotransmitter profiles of the synapse model instances comprised by an LPU.

53

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

4. Data stored in NeuroArch should be accessible and/or modifiable in multiple modes

suitable for different applications, i.e., as a subgraph (to preserve graph relationships

amongst components in the query results) or a table (to facilitate tabular or relational

manipulations of the query results).

5. To enable circuit model execution, model objects defined in NeuroArch must corre-

spond to code in Neurokernel’s draft LPU implementation that numerically realize

those models.

3.3 Data Model

NeuroArch’s data model distinguishes between the representation of biological circuit data

and executable circuit data. It employs two interconnected hierarchies to represent the

information described in § 3.2.1. These hierarchies describe how entities at one level of

granularity/abstraction are defined in terms of entities at some lower level of granulari-

ty/abstraction.

3.3.1 Biological Circuit Data and Its Subdivisions

Biological data in NeuroArch may be described at multiple levels of structural subdivisions

that partition the data into subsets of increasingly finer granularity (Tab. 3.1). Subdivisions

unique to specific neuropils (e.g., Cartridge, Column, Channel, etc.) may also be defined by

the data model. Some of the information described in § 3.2.1.1 is deemed to be attributes

of specific entities in the data model and therefore does not appear in Tab. 3.1.

54

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

Level Name Contains

Highest DataSource GapJunction, Neuron, Synapse
Species Neuropil

...
BioSensor Circuit
Neuropil Circuit
Tract Circuit

... Circuit GapJunction, Neuron, Synapse

Lowest
GapJunction
Neuron
Synapse

Table 3.1: Containment relationships between biological circuit entities in NeuroArch’s data
model.

3.3.2 Naming Scheme for Biological Data

Every biological entity defined in the fruit fly brain (some of which may correspond to sets of

other entities) must be assigned a unique name. The naming scheme should in principle be

extensible to other model organisms, e.g., C. elegans, zebra fish, mouse, etc. Unique names

should include identifying information about the successive levels of subdivision associated

with the entity in question (§ 3.2.1.1); this can be done employing a naming syntax analogous

to that employed in Uniform Resource Identifiers (URIs) that exploits the hierarchy of

subdivisions described in § 3.3.1:

/Species/BioSensor/Circuit/Neuron

/Species/Neuropil/Circuit/Neuron

/Species/Tract

Synapse and gap junction names should be based upon names of the neurons they con-

nect, e.g., Dm2_C3 could denote a synapse between presynaptic neuron Dm2 and postsynaptic

neuron C3. Synapse and gap junction names must be able to distinguish between multiple

synapses or gap junctions between two neurons. For example, the following identifiers could

55

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

be assigned to synapses between R1 photoreceptors in a specific cartridge of the retina and

L1 neurons in the corresponding cartridge of the lamina. Note that the synapse is deemed

to belong to the postsynaptic neuropil, i.e., the lamina, rather than the retina.

/Drosophila_melanogaster/Lamina/Cartridge0/R1_L1/0

/Drosophila_melanogaster/Lamina/Cartridge0/R1_L1/1

3.3.3 Data and Abstractions for Executable Circuits

Data in NeuroArch that represents elements of executable circuits may be described at

multiple levels of structural abstraction (Tab. 3.2). As with biological data, additional

objects and levels may be defined depending upon the structure of the LPU model:

Level Name Owns
Highest Species LPU, Pattern

...
LPU CircuitModel
Pattern Interface

...
Interface Port
CircuitModel GapJunctionModel,

NeuronModel,
SynapseModel

NeuronModel AxonHillockModel,
AxonModel,
DendriteModel,
MembraneModel

Lowest

AxonHillockModel
AxonModel
DendriteModel
GapJunctionModel
MembraneModel
SynapseModel

Table 3.2: Ownership relationships between executable circuit entities in NeuroArch’s data
model.

56

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

3.3.4 Combined Hierarchy of Biological and Executable Circuit Entities

Fig. 3.1 depicts the combined hierarchies of biological and executable circuit entities sup-

ported by the data model. NeuroArch permits additional entities beyond those described

in Fig. 3.1 to be specified, provided that entities on all levels consistently employ ownership

relationships. This permits storage of executable circuit models and biological datasets with

differing levels of abstraction or structural detail.

57

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

A
x
o
n
H
il
lo
ck

M
o
d
e
l

S
y
n
a
p
se

G
a
p
J
u
n
ct
io
n

N
e
u
ro

n
M

o
d
e
l

S
y
n
a
p
se
M

o
d
e
l

P
a
tt
e
rn

L
P
U

N
e
u
ro

n
G
a
p
J
u
n
ct
io
n
M

o
d
e
l

M
e
m
b
ra

n
e
M

o
d
e
l

N
e
u
ro

p
il

D
a
ta
S
o
u
rc
e

C
ir
cu

it

T
ra

ct

In
te
rf
a
ce

B
io
S
e
n
so

r

A
x
o
n
M

o
d
e
l

P
o
rt

C
ir
cu

it
M

o
d
e
l

S
p
e
ci
e
s

D
e
n
d
ri
te
M

o
d
e
l

F
ig
ur
e
3.
1:

O
bj
ec
ts

an
d
re
la
ti
on

sh
ip
s
in

N
eu
ro
A
rc
h’
s
da

ta
m
od

el
.
G
re
en

no
de

s
de

no
te

bi
ol
og

ic
al

ci
rc
ui
t
en
ti
ti
es
,
w
hi
le

cy
an

no
de
s
co
rr
es
po

nd
to

ex
ec
ut
ab

le
ci
rc
ui
t
en
ti
ti
es
;
th
e
pu

rp
le

no
de

re
pr
es
en
ti
ng

th
e
sp
ec
ie
s
as
so
ci
at
ed

w
it
h
sp
ec
ifi
c
bi
ol
og
ic
al

or
ex
ec
ut
ab

le
ci
rc
ui
t
en
ti
ti
es

is
th
e
ro
ot

of
bo

th
hi
er
ar
ch
ie
s.

G
re
en

ed
ge
s
de

no
te

co
nt
ai
nm

en
t
of

lo
w
er

le
ve
l
bi
ol
og

ic
al

ci
rc
ui
t

en
ti
ti
es

in
hi
gh

er
le
ve
ls
ub

di
vi
si
on

s
of

th
e
fly

br
ai
n.

C
ya
n
ed

ge
s
de

no
te

ow
ne

rs
hi
p
of

ex
ec
ut
ab

le
ci
rc
ui
t
en
ti
ti
es

at
lo
w
er

le
ve
ls

of
ab

st
ra
ct
io
n
by

th
os
e
at

hi
gh

er
le
ve
ls

of
ab

st
ra
ct
io
n.

N
od

es
re
pr
es
en
ti
ng

ac
tu
al

ne
ur
on

s
an

d
sy
na

ps
es

co
nt
ai
ne

d
by

a
da

ta
so
ur
ce

ar
e
co
nn

ec
te
d
to

th
e
or
an

ge
da

ta
so
ur
ce

no
de

by
or
an

ge
ed

ge
s
re
pr
es
en
ti
ng

co
nt
ai
nm

en
t.

58

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

3.4 Mapping the Data Model into an Object Graph Database

NeuroArch is implemented in Python and built upon the open-source database OrientDB1.

This backend choice was made because of OrientDB’s multi-model architecture that com-

bines graph database support with NOSQL document storage features, its support for both

a built-in SQL-like query language and the Gremlin2 graph traversal language supported by

many graph databases, and the availability of an actively developed Python interface3 to the

database. OrientDB also permits definition of node and edge types that subclass existing

node and edge types; NeuroArch exploits this feature to enable the extension of the data

model to include new node types required to represent biological structures or executable

circuit elements not defined in Tab. 3.1 or 3.2.

3.4.1 Supported Relationships

Relationships between nodes in NeuroArch’s database may either represent containment

or ownership of one node by another (in the sense that one node represents a physical

subdivision or lower level of abstraction than the node that contains or owns it) or the

transmission of information between nodes. These relationships are depicted in Figs. 3.2

and 3.3, respectively.

1http://orientdb.com
2http://github.com/tinkerpop/gremlin/
3http://github.com/ostico/pyorient

59

http://orientdb.com
http://github.com/tinkerpop/gremlin/
http://github.com/ostico/pyorient

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

N
e
u
ro

n

P
a
tt
e
rn

M
e
m
b
ra

n
e
M

o
d
e
l

M
e
m
b
ra

n
e
P
a
ra

m
D
a
ta

V
e
rs
io
n

S
y
n
a
p
se
P
a
ra

m
D
a
ta

A
rb

o
ri
za

ti
o
n
D
a
ta

A
x
o
n
P
a
ra

m
D
a
ta

G
e
n
e
ti
cD

a
ta

N
e
u
ro

p
il

T
ra

ct

In
te
rf
a
ce

C
ir
cu

it
M

o
d
e
l

D
e
n
d
ri
te
P
a
ra

m
D
a
ta

S
y
n
a
p
se

S
y
n
a
p
se
M

o
d
e
l

L
P
U

A
x
o
n
H
il
lo
ck

P
a
ra

m
D
a
ta

D
e
n
d
ri
te
M

o
d
e
l

C
ir
cu

it

B
io
S
e
n
so

r

G
a
p
J
u
n
ct
io
n
P
a
ra

m
D
a
ta

N
e
u
ro

tr
a
n
sm

it
te
rD

a
ta

S
p
e
ci
e
s

A
x
o
n
H
il
lo
ck

M
o
d
e
l

N
e
u
ro

n
M

o
d
e
l

M
o
rp

h
o
lo
g
y
D
a
ta

G
a
p
J
u
n
ct
io
n

G
a
p
J
u
n
ct
io
n
M

o
d
e
l

D
a
ta
S
o
u
rc
e

A
x
o
n
M

o
d
e
l

P
o
rt

F
ig
ur
e
3.
2:

O
bj
ec
t
ty
pe

s
an

d
co
nt
ai
nm

en
t/
ow

ne
rs
hi
p
re
la
ti
on

sh
ip
s
in

N
eu

ro
A
rc
h’
s
da

ta
ba

se
.

G
re
en

no
de

s
de

no
te

ob
je
ct
s

co
rr
es
po

nd
in
g
to

bi
ol
og

ic
al

ci
rc
ui
t
en
ti
ti
es
,
w
hi
le

cy
an

no
de

s
de

no
te

ob
je
ct
s
co
rr
es
po

nd
in
g
to

ex
ec
ut
ab

le
ci
rc
ui
t
en
ti
ti
es
.

R
ec
ta
ng

ul
ar

no
de
s
co
rr
es
po

nd
to

en
ti
ti
es

de
fin

ed
by

N
eu

ro
A
rc
h’
s
da

ta
m
od

el
th
at

ar
e
m
ap

pe
d
di
re
ct
ly

to
da

ta
ba

se
ob

je
ct

ty
pe

s,
w
hi
le

ro
un

de
d
no

de
s
co
rr
es
po

nd
to

ad
di
ti
on

al
da

ta
ba

se
ob

je
ct

ty
pe

s
th
at

co
nt
ai
n
at
tr
ib
ut
es

of
ce
rt
ai
n
en
ti
ti
es

in
th
e

da
ta

m
od

el
.
B
la
ck

ed
ge
s
re
pr
es
en
t
bo

th
co
nt
ai
nm

en
t
of

lo
w
er

le
ve
lb

io
lo
gi
ca
lc

ir
cu
it
ob

je
ct
s
by

ob
je
ct
s
co
rr
es
po

nd
in
g
to

hi
gh

er
le
ve
ls
ub

di
vi
si
on

s
an

d
ow

ne
rs
hi
p
of

lo
w
er

le
ve
le

xe
cu

ta
bl
e
ci
rc
ui
t
ob

je
ct
s
by

ob
je
ct
s
co
rr
es
po

nd
in
g
to

hi
gh

er
le
ve
la

bs
tr
ac
ti
on

s.

60

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

AxonHillockModel

SynapseModel

MembraneModel

GapJunctionModel

DendriteModel

AxonModel

Port

Figure 3.3: Data transmission relationships (red) between executable circuit objects (cyan)
in NeuroArch’s database.

3.4.2 Storage of Biological Data Objects

Most of the objects in NeuroArch’s data model can be mapped directly into nodes in a

graph database. In order to facilitate certain queries, data attributes associated with specific

objects are mapped to additional nodes in the database that are linked to those that represent

the objects that own them. For example, a Neuron object may own various descriptive

data such as anatomical or genetic information; these data are stored in MorphologyData,

ArborizationData, and GeneticData nodes respectively (Tab. 3.3).

Name Owned by
NeurotransmitterData Synapse
MorphologyData Neuron
GeneticData Neuron
ArborizationData Neuron

Table 3.3: Objects used to store biological data.

61

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

3.4.3 Storage of Executable Circuit Data Objects

As with the biological data objects described in § 3.4.2, attributes of objects representing

components of executable circuits may be mapped to separate nodes to facilitate certain

queries (Tab. 3.4).

Name Owned by
AxonParamData AxonModel
AxonHillockParamData AxonHillockModel
DendriteParamData DendriteModel
GapJunctionParamData GapJunctionModel
MembraneParamData MembraneModel
SynapseParamData SynapseModel

Table 3.4: Objects used to store executable circuit component data.

3.4.4 Naming and Storage of Multiple Model Versions

To enable the evaluation of different instances of a single neural circuit, NeuroArch must

support storage of multiple versions of each LPU and inter-LPU connectivity pattern. Dif-

ferent versions of a single LPU or pattern are distinguished in NeuroArch’s database by

attaching a Version node containing a unique identifier to each node that respectively de-

scribe a particular version of the LPU or Pattern circuit in question (Fig. 3.4). Each LPU or

Pattern node instance owns its own fully independent copy of the subgraph of lower level

components that describe its version.

3.4.4.1 Relating Biological Data to Modeling Data

While the process of developing models of neural circuits in the fly brain requires support

for simultaneous storage of multiple versions of a single LPU, biological data loaded from

a particular data source is expected to remain static. NeuroArch therefore must store only

one copy of each biological dataset to avoid redundancy. Each data source must be clearly

identified in NeuroArch’s database (§ 3.2.1.1, Fig. 3.2).

62

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

Version 0

Version 1

Version
0

Version
1

LPU
Name=0

LPU
Name=0

Circuit
Name=2

Circuit
Name=1

Circuit
Name=1

Circuit
Name=0

Circuit
Name=0

Figure 3.4: Representation of multiple versions of a single LPU (with name 0) using an
additional Version node (yellow). Version 1 of the sample LPU differs from version 0 by
virtue of the presence of an additional Circuit node in its subgraph.

3.4.5 An Example - Representation of the Lamina and Retina

As an example of how NeuroArch’s data model may be used and extended to represent

specific regions in fruit fly brain, structures within the Drosophila lamina and retina as

described in [79] can be mapped to the data model as depicted in Figs. 3.5 and 3.6 and

Tab. 3.5.

63

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

Ommatidium

Photoreceptor

Cartridge

GeneticData

NoncolumnarCircuit

Neuron Synapse

NeuropilBioSensor

MorphologyData

Species

NeurotransmitterData

(a) Containment relationships between biological circuit objects in the lamina and retina. Biological
circuit node types specific to the lamina and retina descended from those in Fig. 3.2 are listed in
Tab. 3.5a.

NeuronModel

OmmatidiumModel

SynapseParamData

LPU

MembraneModel

MembraneParamData

CartridgeModel VersionNoncolumnarCircuitModelInterface

Species

SynapseModelPort

PhotoreceptorParamData

PhotoreceptorModel

(b) Ownership relationships between executable circuit objects in the lamina and retina. Executable
circuit node types specific to the lamina and retina descended from those in Fig. 3.2 are listed in
Tab. 3.5b.

Figure 3.5: Containment/ownership relationships between biological and executable circuit
database objects required to represent the lamina and retina. Rounded nodes represent
attributes of entities in NeuroArch’s data model that are mapped to nodes in NeuroArch’s
database (see Fig. 3.2)

64

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

Node Type Parent Type Instance Name Examples
BioSensor Retina
Cartridge Circuit Cart1..Cart768
Neuron L1..L6, Am, Lawf, C2, C3, T1
Neuropil Lamina
NoncolumnarCircuit Circuit AmacrineCircuit
Ommatidium Circuit Cart1..Cart768
Photoreceptor Neuron R1..R6
Species D. Melanogaster
Synapse R1_L1, etc.

(a) Node types required to represent biological circuit entities in the lamina and retina.
Node Type Parent Type Instance Name Examples
CartridgeModel CircuitModel Cart1..Cart768
Interface Lamina, Retina
LPU Lamina, Retina
MembraneModel L1..L6, Am, Lawf, C2, C3, T1
MembraneParamData V1..V4, phi, etc.
NoncolumnarModel CircuitModel AmacrineCircuit
OmmatidiumModel CircuitModel Cart1..Cart768
Port /lam/gpot/out0, etc.
PhotoreceptorModel NeuronModel R1..R6
PhotoreceptorParamData MembraneParamData R1..R6
SynapseModel R1_L1, etc.
SynapseParamData power, delay, etc.
Version 0, my_lpu, etc.

(b) Node types required to represent executable circuit entities in the lamina and retina.

Table 3.5: Node types required to represent the lamina and retina in NeuroArch’s database.
The sample names for instances of these nodes are illustrative; other names may be used as
appropriate.

65

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

L4 9-L2 1

L4 3-L4 13

L2 7-L4 1

L4 2-L2 0

L4 2-L2 1

L4 5-L4 15

L4 1-L4 0

L4 1-L4 6

L4 3-L2 0

L2 4-L4 3L4 3-L2 4

L2 6-L4 0

L2 6-L4 1

L4 1-L2 7

L4 1-L2 6

L4 3-L4 4

L4 4-L4 15

L2 5-L4 4

L2 5-L4 0

L4 8-L4 1

L4 2-L4 3

L4 2-L4 0 L4 0-L2 6

L4 0-L2 5

L4 0-L4 4

L4 0-L4 5

L2 0-L4 2

L2 0-L4 3

L2 1-L4 2

L2 1-L4 9

L2 1

L2 0

L2 7

L2 6

L2 5

L2 4

L4 9

L4 9-L4 2

L4 9-L4 1

L4 7-L4 6

L4 6-L4 5

L4 4-L2 5

L4 1

L4 0

L4 3

L4 2

L4 5

L4 4

L4 7

L4 6

Figure 3.6: Data transmission (red) relationships between a subset of the circuit design
components of the lamina LPU. This diagram only depicts the nodes corresponding to L2
and L4 neurons in several adjacent cartridges (cyan) and synapses between them (orange).

66

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

3.5 NeuroArch Application Programming Interface

Although the OrientDB graph database employed by NeuroArch supports powerful graph

queries via its dialect of SQL and the Gremlin graph traversal language [123], the complexity

of such queries can rapidly increase depending on the number of different elements in the

database and the nature of the traversal that must be performed to obtain the query results.

To obviate the need to explicitly construct such queries, NeuroArch provides a programming

interface for generating useful queries against stored data that does not require explicit

specification of a complex low-level query string.

3.5.1 Object Graph Mapping

NeuroArch exposes model data via an object graph mapping (OGM) that not only encap-

sulates individually stored elements, but also enables one to perform a selection of complex

queries without having to express them in OrientDB SQL or Gremlin. The OGM provides

methods associated with each object that dynamically construct and execute queries. This

approach is similar to the concept of object relational mapping (ORM) used to interface with

data models stored in relational databases. Two key differences between NeuroArch’s OGM

and that of currently available general-purpose OGMs are (i) its use of the hierarchical data

model described in § 3.3 to enable extraction of subcircuits owned by nodes corresponding

to specific subdivisions of biological components or circuit abstractions; (ii) the ability to

use the subgraph extracted by an OGM query as the starting point for traversals by subse-

quent queries or as an operand that may be passed to graph operators (§ 3.5.3). To enable

subsequent reuse of query results by subsequent queries or graph operations, NeuroArch

permits optional storage of an extracted subgraph in its graph database. This subgraph can

be discarded when no longer needed.

3.5.2 Supported Queries

NeuroArch’s OGM provides methods that encapsulate the following queries:

67

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

Lower Level Components Owned by a Given Object Using the ownership hierarchy,

NeuroArch can easily retrieve the tree of lower level components owned by a specified object

(or some portion thereof) up to some arbitrary number of ownership levels. These compo-

nents may in turn be used to obtain the induced subgraph if there exist data transmission

edges between those components. This functionality facilitates extraction of subcircuits from

the biological or executable circuit data stored in NeuroArch. For example, the subgraph of

Neuron and Synapse instances for a specified Neuropil instance may be obtained given the

latter:

Extract node corresponding to lamina neuropil; the ’graph ’ object
encapsulates the entire graph database:
lamina = graph.neuropils.query(name=’lamina ’).one()

Find subgraph of neurons and synapses:
result = lamina.traverse_owns ([’Neuron ’, ’Synapse ’])

Higher Level Components that Own a Given Object By traversing the ownership

hierarchy from lower level components to higher level components, NeuroArch can determine

what high-level biological subdivisions or executable circuit abstractions contain a given

component. For example, one may determine which Cartridge instance in the lamina

neuropil owns a given L1 neuron represented by an Neuron instance.

Multicriterion Filtering of Query Results Low-level graph query languages can be

used to easily extract classes of elements or elements with specific attribute values; restricting

those queries to the results of traversals that return subgraphs corresponding to biological

or executable circuit motifs increases the complexity of the queries required to obtain the

desired results. To address this increase in complexity, NeuroArch enables the results of a

query to be qualified by simultaneous application of multiple search criteria. For example,

all neuron membrane models of L2 neurons in the lamina with a specific model parameter

value can be extracted as follows:

Extract node corresponding to lamina LPU; the ’graph’ object

68

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

encapsulates the entire graph database:
lamina = graph.LPUs.query(name=’lamina ’).one()

Find subgraph of neuron membrane model instances
and synapse model instances:
lamina_ml = lamina.traverse_owns ([’MembraneModel ’, ’SynapseModel ’])

Restrict query to Morris -Lecar instances
modeling L1 neurons with a specific parameter value:
result = lamina_ml.has(attrs={’name’: ’L1’, ’phi’: 0.025} ,

classes =[’MorrisLecar ’])

3.5.3 Support for Operations on Query Results

NeuroArch supports the passing of OGM query results to graph operators to enable intuitive

expression of complex queries in terms of set operations such as union, intersection, and

difference applied to the nodes in a subgraph. As an example, the difference operator can be

used to exclude all amacrine cells from the lamina LPU circuit. If the original lamina circuit

comprises executable components supported by Neurokernel, the modified circuit may also

be executed.

Extract node corresponding to lamina LPU:
lamina = graph.lpus.query(name=’lamina ’).one()

Extract all nodes corresponding to specific neuron membrane potential
or conductance -based synapse models:
all_lamina_neuron_synapses = \

lamina.traverse_owns ([’MorrisLecar ’,’ConductanceSynapseModel ’])

Find all amacrine neurons by name:
amacrine_neurons = all_lamina_neurons.has(attrs ={’name’: ’Am’})

Obtain subgraph determined by difference of nodes:
lamina_without_amacrine = all_lamina_neurons_synapses \

- amacrine_neurons

3.5.4 Multimodal Views

NeuroArch’s OGM provides access to object or query result data in views that expose both

tabular and graph data structures to support different applications. NeuroArch uses the

69

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

tabular and graph data structures respectively provided by Pandas4 [89] and NetworkX5

[53]; this enables use of the rich APIs provided by these actively developed and widely used

packages to access and/or manipulate exposed data. Multimodal views are both readable

and writable; NeuroArch can propagate modifications made to data exposed by a view back

into its database. Since NeuroArch exposes the results of a query performed through its

OGM, a view to the results of a query can therefore seamlessly expose the data associated

with multiple nodes or edges returned by the query within a single tabular or graph data

structure.

To illustrate the utility of multimodal views, consider the scenario of modifying a partic-

ular parameter in all model instances of a particular neuron type in a model of the lamina

LPU. By exposing the model parameters of all instances of the neuron type in question

as a Pandas DataFrame object, the object’s API may be exploited to perform the desired

modification with a single line of code:

Extract node corresponding to lamina LPU:
lamina = graph.lpus.query(name=’lamina ’).one()

Extract all nodes corresponding to specific neuron
membrane potential model:
all_lamina_neurons = \

lamina.traverse_owns ([’MorrisLecar ’])

Find all L1 neurons by name:
L1_neurons = all_lamina_neurons.has(attrs={’name’: ’L1’})

Set phi parameter of all L1 neurons to single value:
L1_neurons.view_table[’phi’] = 0.03

Save modifications to view:
L1_neurons.view_table_save ()

One can visualize the graph structure of the query results by exposing the same query as a

NetworkX graph:

import networkx as nx

4http://pandas.pydata.org
5http://networkx.github.io

70

http://pandas.pydata.org
http://networkx.github.io

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

Convert graph to pygraphviz format and set visualization attributes:
g = L1_neurons.view_graph ()
p = nx.to_agraph(g)
p.node_attr.update ({’shape’: ’rect’, ’style’: ’filled ’})
p.draw(’L1_neurons.jpg’, prog=’circo ’)

3.5.5 Interface to Neurokernel

To enable evaluation of stored circuit models, NeuroArch’s API can be invoked directly by

a Neurokernel emulation to instantiate and execute circuits stored in NeuroArch’s database.

Circuit models stored in NeuroArch can only be executed if they comprise components with

numerical implementations provided by Neurokernel. Since the graph structure of LPU

circuit data used by the implementation of Neurokernel described in [44] differs from that

assumed by NeuroArch’s data model (§ 3.3.3), NeuroArch provides graph transformation

routines for converting extracted data to the structure expected by Neurokernel. The latter

routines will become unnecessary when Neurokernel is updated to be directly compatible

with NeuroArch’s data model.

3.6 Testing Neuroarch’s Functionality

To test the features described in § 3.5, NeuroArch was used to address the following proof-

of-concept scenarios.

Arbitrary LPUs consisting of about 100 non-spiking Morris-Lecar neurons and Leaky

Integrate-and-Fire neurons randomly connected with alpha-function and conductance-based

synapses were generated using NetworkX and loaded into NeuroArch’s database along with

connectivity patterns that linked random ports exposed by each LPU. The LPU and pattern

generation algorithm was identical to that provided in the introductory example included

in the Neurodriver repository 6. NeuroArch’s OGM was invoked within a Neurokernel

emulation to extract these LPUs and pattern circuits, convert them to the current graph

6http://github.com/neurokernel/neurodriver

71

http://github.com/neurokernel/neurodriver

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

structure expected by Neurokernel (§ 3.5.5), and instantiate the object classes required

to execute the emulation. The output was successfully validated for a simple input signal

provided to the same neurons in both the introductory example and the NeuroArch example.

To examine more realistic circuit scenarios, we scaled up the above scenario by increasing

(i) the number of LPUs (up to 8 LPUs), (ii) the number of neurons within each LPU (up

to 10,000 per LPU), and (iii) the number of ports exposed by each LPU (up to 10,000 per

LPU). We also loaded, extracted, and executed a lamina/medulla model comprising almost

17,000 neurons developed for Neurokernel testing purposes 7. NeuroArch was able to handle

all of these scenarios, although the time required to both load LPU data into NeuroArch’s

database and retrieve it within a Neurokernel emulation increased noticeably with the total

number of components in the overall circuit due to the nonoptimal configuration of the

database and system used by NeuroArch.

We also used NeuroArch’s multimodal views to modify the parameters of select pop-

ulations of neurons and synapses within the above LPU circuits prior to extraction and

execution by Neurokernel. We validated the effects of these modifications by recording the

expected perturbations of the activity of the spiking neurons of the example LPUs and the

graded potential neurons in the lamina/medulla model.

Finally, we used NeuroArch to generate of models of the fly’s central complex executable

by Neurokernel using incomplete biological information. The experimental scenarios enabled

by the use of NeuroArch are presented in § 4.

3.7 Related Work

3.7.1 Open Biological Data Repositories

The immense interest in the fruit fly as a model organism in neuroscience and other bio-

logical fields has led to a growing array of open fruit fly biological data resources. These

7http://github.com/neurokernel/vision

72

http://github.com/neurokernel/vision

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

range from highly detailed solitary datasets such as the fruit fly medulla connectome [1] to

databases such as NeuroMorpho [4] that expose digital reconstructions of neuron morpholo-

gies from imaging data for the fruit fly and other model organisms. In addition to providing

extensive sets of neuron morphologies, databases such as FlyCircuit [22] also provide spatial

distribution, neurotransmitter data, genetic driver, and neural tract information for each

stored neuron. FlyBase provides genomic reference information for several fruit fly species

organized into acknowledged gene sets [5]. These resources afford varying levels of queri-

ability. Some datasets such as those provided by [1] can only be accessed as raw data files.

NeuroMorpho and FlyCircuit provide online search tools that permit the use of metadata

or anatomical characteristics in querying available neuron data. FlyBase permits users to

search for specific genes or groups of related genes and to navigate to specific points in the

fly genome using genetic coordinates or landmarks [34].

The profusion of data modalities represented by currently available open fly data re-

sources places an increasing burden upon users of this data to relate the different modalities

during research. Although databases such as FlyCircuit do contain some linkage between

anatomical neuron data, source genetic drivers used to identify a specific neuron, and drivers

of related neurons, the database only accounts for a portion of the fly brain and does not

cross-reference other important resources such as FlyBase. To address this disparate array

of resources, the Virtual Fly Brain (VFB) project [91] integrates fly brain data from various

sources behind a single online user interface using an consortium-developed ontology that

provides a common framework for labeling fruit fly anatomical features [27]. Users may

graphically browse brain data by anatomical region and construct ontology queries for spe-

cific neuron data by combining search elements such as the regions innervated by a neuron

and expressed genes or phenotypes associated with a neuron.

The rapidly growing magnitude of fly neuron datasets has also spurred development of

technologies for more efficient navigation of collected data. NBLAST is an algorithm for

quantifying pairwise similarity of unannotated neuron data by spatial position within the

73

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

brain and local geometry [26]. Inspired by algorithms for finding matches between genetic

sequences, NBLAST can be used to cluster large neuron datasets and search for neurons

proximate to a given query neuron’s location or with similar geometric characteristics. An

online instance of the algorithm is available that may be used to query the FlyCircuit

database and visualize query results in 3D.

Query mechanisms such as those provided by VFB and NBLAST afford the possibility

of constructing more complex queries than simple searches for data annotation labels and

terms. VFB’s query mechanism has the additional advantage of supporting expression of

constructed queries in a clearly intelligible format. Although the accessibility of these tools

is invaluable for manually studying and analyzing neuron data, their lack of support for any

public query API significantly limits their utility in software-driven model development; data

obtained from manually performed queries against the above repositories must currently be

downloaded and reformatted in order to be used by applications designed to infer model

structure. NeuroArch explicitly targets this shortcoming with a database interface designed

for algorithm developers to use within model generation programs rather than manually.

Encapsulation of typical queries required to retrieve circuit data for execution enables re-

searchers to focus upon defining how models are constructed from biological data than on

the low-level desiderata of how to translate between different data formats and search for

specific data points required for model construction.

Links between related data such as genetic driver lines and the neurons they pinpoint

can be accessed to varying extents by the query interfaces of existing online fly brain data

resources; however, the underlying graph structure formed by integration of different biologi-

cal data sets is not exposed for explicit traversal. Restricting the possible queries model that

may be performed against integrated data to those a user may manually enter significantly

limits the extent to which model developers can exploit large biological data sets to algo-

rithmically construct models that are not feasible to assemble manually. By storing fly data

in a graph database that supports powerful general-purpose graph query languages such as

74

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

Gremlin [123], the current range of queries encapsulated by NeuroArch’s OGM can be easily

extended to include additional queries model developers may require in the future. Although

NeuroArch’s current OGM is designed to for writing desktop model generation programs,

the underlying graph database technology makes it possible to expose NeuroArch’s API

through web interfaces should the need arise.

NeuroArch’s design aims for representation of fly brain data are similar to those of Bio4j,

an open-source platform for integration of open bioinformatic datasets using typed graph

models [105]. Like NeuroArch, Bio4j aims to link biological data (e.g., protein sequences)

with semantic data (e.g., protein functional annotations, gene ontologies, organism tax-

onomies, enzyme nomenclature) from multiple sources within a single graph database to

enable reasoning based upon the structure of the data in addition to the individual data

points. Bio4j provides a data model that addresses how elements from different data sources

are connected in order to obtain conclusions not achievable using a single unintegrated

source; it also provides a Domain Specific Language (DSL) to facilitate creation of the com-

plex database queries required to navigate the various types of graph elements. In contrast

to Bio4j, however, NeuroArch also includes models created using biological data within the

same data model and graph database to enable the same query tools to be used both for

exploring existing data and improving existing models via programs rather than by manual

means.

3.7.2 Model Representation Technologies

The increasing importance of biologically detailed neuron and network models in shed-

ding light on how the brain implements its information processing functions has prompted

the development of a range of neuroinformatic technologies for representation and sharing

of neuronal model descriptions. Although simulators such as GENESIS, NEURON, and

NEST provide their own native languages for model specification (§ 2.4), the lack of inter-

operability between these languages has led to the development of cross-simulator support

75

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

for model specification in Python and open model description languages such as NeuroML,

NineML, and SpineML that build upon the Extensible Markup Language (XML) to provide

simulator-independent formats for specifying the structure and parameters of neural circuit

models. As noted in § 2.4, PyNN provides a high-level Python interface for constructing

neural circuit using a range of neuron and synapse models that can be run using several

neuronal network simulators [30]. NeuroML 1.x enables specification of neuronal models

at multiple levels of detail ranging from low-level descriptions of electrochemical channels

through conductance-based compartmental neuron models to descriptions of network con-

nectivity between neurons [48]. NineML provides additional flexibility by enabling the use

of neurons with arbitrary dynamics and arbitrary network connectivity patterns [114]. To

address limitations in NeuroML 1.x and the incomplete state of the NineML format, Neu-

roML 2.0 [49] and SpineML [118] respectively provide support for point neuron networks

and specification of simulation runtime information. A key feature of NeuroML 2.0 is the

Low Entropy Model Specification Language (LEMS), an XML dialect designed to describe

the dynamical behavior of modeling components.

NeuroML and related specification formats provide the means of specifying connectivity

patterns between neurons and synapses in a circuit. These patterns may be expressed as

explicit connections between individual neurons and synapses, or may employ select algorith-

mic templates that describe how a pattern may be generated [48]. The number of templates

available places limitations upon what patterns may be easily defined, however. To enable

additional pattern construction flexibility, the Connection Set Algebra (CSA) provides a

means of describing a wide range of connectivity patterns independent of neuron popula-

tion sizes and specific neuron and synapse models [32]. New patterns may be constructed

from existing patterns using operators in the algebra. Support for CSA is available as a

standalone Python package and is being incorporated into the NineML specification.

From the perspective of a circuit designer, formats such as NeuroML provide a human-

readable means of neural circuit model expression that hides the model’s numerical com-

76

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

plexity. As circuit models grow in both size and detail to account for increasingly compre-

hensive neuronal data sets such as [4, 22, 16, 1], both manual construction and modification

of circuit model expressed using specification formats becomes unfeasible. While amenable

to processing by the array of available tools designed for structured documents, neuronal

model specification formats lack the query capabilities afforded by database platforms that

are needed to efficiently navigate the graph structure and modify large circuits. NeuroArch

addresses this limitation by making the easily queryable graph database representation of

integrated executable circuit components and the biological data used to infer them the pri-

mary representation manipulated by model designers; neural circuit specification or graph

file formats are used to either import or record snapshots of NeuroArch’s database contents,

but do not constitute the main representation with which model construction/manipulation

applications interact.

Given that the precise formulation of neuronal models is essential to their critical eval-

uation [99], open formats for unambiguous neuronal model specification enable researchers

to share and compare different computational models that would otherwise have to be man-

ually reconstructed from published descriptions. These formats, however, do not explicitly

prescribe a means of interfacing independently developed network models even when those

models are represented using the same format. This limits their utility as a basis for ex-

plicitly collaborative construction of brain models in which different functional subcircuits

may be designed by different researchers. NeuroArch’s data model addresses this limitation

by explicitly requiring that circuit models designed to interact with other circuits contain

communication interfaces that may be linked to the compatible interfaces exposed by other

circuits; moreover, such models may be immediately integrated and concurrently evaluated

with Neurokernel if they are composed of neuron and synapse models supported by Neuro-

driver (§ 2.2.6).

77

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

3.7.3 Model Sharing Resources

Online resources such as ModelDB [58] enable researchers to publicly share neuronal and

network models in conjunction with associated publications. ModelDB imposes few con-

straints on how models must be represented and does not preserve any information as to

how a model may have been improved or altered since its creation; modification of an exist-

ing model or its integration with models of other neural circuits in the brain still may require

significant efforts on the part of a researcher. The Open Source Brain Project (OSB) [50]

remedies some of these limitations by standardizing upon NeuroML for model specification.

Individual models are maintained as separate projects on the public revision control site

GitHub8 to record a history of changes and improvements made to a model. Apart from or-

ganizing stored models into basic navigable categories such as author, neuron type, concept,

and simulation environment, neither ModelDB nor OSB supports direct querying of model

internals. ModelDB is integrated with a searchable database of neuronal properties called

NeuronDB [87], but the latter resource does not incorporate the most recent large fruit fly

datasets available from FlyCircuit, NeuroMorpho, and other sites. OSB does not currently

provide any direct integration with existing biological databases. NeuroArch’s data model,

by contrast, explicitly represents both biological data and the executable circuits inferred

from them within a single resource. Circuit model designers using NeuroArch may there-

fore immediately build upon existing models within NeuroArch’s database by testing new

hypotheses as to how to interpret biological data during model construction without having

to manually import or translate existing models from other representations.

3.8 Summary

The explosion in publicly available fly connectome data and increasing need for open sci-

ence approaches to model development in recent years have motivated the development of a

8http://github.com

78

Chapter 3. NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits

profusion of valuable online biological data repositories and neuroinformatic tools for respec-

tively sharing neurobiological and modeling data within the research community. Existing

data repositories do not provide the means of programmatic access required to efficiently

access large sets of biological data from programs that implement model construction algo-

rithms. The relational structure of existing fly databases also precludes utilization of the

inherent graph structure of fly connectome data and the graph relationships between linked

data of different modalities. NeuroArch targets these limitations by providing a graph-based

representation of stored biological data and a high-level API for sophisticated querying of

brain data by programs rather than manual users. NeuroArch also reduces the complexity of

translating biological data from disparate sources into executable circuits model by exposing

information regarding both through a single interface; NeuroArch’s API lets brain modelers

focus on how to infer accurate circuit models from connectome data rather than the tech-

nical aspects of extracting and loading biological data required for model construction or

translating models between different representation formats.

79

Chapter 4. Generating an Executable Model of the Central Complex

Chapter 4

Generating an Executable Model of

the Central Complex

4.1 Introduction

In this chapter, we present the use of the open pipeline developed in § 2 and 3 to generate

executable models of functional units in the fruit fly brain from incomplete biological data.

The central complex (CX) is a group of neuropils in the fruit fly brain known to play an

essential role in the spatial representation and memory of visual data, directional control of

locomotion, and integration of spatial information for locomotor control [112, 132]. Although

increasingly detailed information regarding the structure of the various neurons in these

neuropils has become available [82, 141], information regarding the synaptic connectivity

and local neuron circuitry in the CX still remains far from complete. The fact that the

CX neuropils do not directly receive sensory input signals further complicates analysis of

its information processing functions because of their dependence upon the preprocessing

performed by other neuropils.

After reviewing the nomenclature used to label neuropils in § 4.2.1, we describe how

projection neurons in the CX neuropils may be uniquely labeled in terms of their arborization

80

Chapter 4. Generating an Executable Model of the Central Complex

regions and terminal polarities in § 4.2.2 We review the high-level structure of the CX

neuropils and accessory neuropils directly connected to those in the CX, identify the relevant

arborization regions within them in § 4.3, and identify the families of local and projection

neurons that innervate them in § 4.5. Using arborization data compiled for these neurons

(listed in Appendix 5.4), we detail the use of NeuroArch to enable the inferring of synapses

between a subset of the known CX projection neurons with overlapping arborizations. These

hypothesized synapses are then used to construct executable LPU models corresponding to

two of the CX neuropils in § 4.6. Finally, we review other work on neural circuit model

generation and modeling CX in the context of the approach advanced in this chapter in

§ 4.7 and conclude the chapter in § 4.8.

4.2 Terminology

4.2.1 Neuropil Nomenclature

Drosophila neuropils are identified in this document using the nomenclature described in

[62]. Some neuropils are referred to by different names either in other literature or in other

insects; [62, Tab. S13] maps the employed nomenclature to that used in [22] and - for the

most part - in [82]. For neuropils that occur in pairs, upper case denotes the neuropil on

the left side of the fly brain (from a dorsal perspective the fly) while lower case denotes the

neuropil on the right side of the fly brain.

• Antennal Lobe (AL).

• Anterior optic tubercle (AOTU) - Also known as optic tubercle (OPTU [22]).

• Antler (ATL) - Corresponds to dorsal part of caudalcentral protocerebrum (CCP) [62,

Tab. S13].

• Bulb (BU) - Also known as lateral triangle (LT, LAT, Lat Tri [82, Tab. S13] or LTR

[54]).

81

Chapter 4. Generating an Executable Model of the Central Complex

• Crepine (CRE) - Posterior part also known as dorsal part of IDFP [62, Tab. S13];

comprises a region called the rubus (RUB) [141, p. 1001] or round body (RB) [141, p.

1031].

• Lateral accessory lobe (LAL) - Also known ventral body (VBO [54]) or inferior dor-

sofrontal protocerebrum (IDFP) [82, Fig. S1]. Comprises the gall (GA) [62, Tab.

S13], whose dorsal and ventral portions are referred to as the dorsal and ventral spin-

dle bodies (DSB and VSB, respectively) [141, p. 1021].

• Ellipsoid body (EB) - Also known as lower central body (CBL [112]).

• Fan-shaped body (FB) - Also known as upper central body (CBU [112]).

• Inferior Bridge (IB) - Corresponds to ventral part of caudalcentral protocerebrum

(CCP) [62, Tab. S13].

• Lobula (LO).

• Lobula Plate (LOP).

• Noduli (NO).

• Posterior slope (PS) - Corresponds to caudalmedial protocerebrum (CMP) and - pos-

sibly - part of the ventromedial protocerebrum (VMP) [62, Tab. S13].

• Protocerebral Bridge (PB).

• Superior medial protocerebrum (SMP) - Corresponds to superior dorsolateral proto-

cerebrum (SDFP) and medial part of inner dorsolateral protocerebrum (IDLP) [62,

Tab. S13].

• Ventrolateral protocerebrum (VLP) - Contains optic glomeruli [62, p. 42, Supp.].

• Wedge (WED) - Also known as the caudal ventrolateral protocerebrum (CVLP) [62,

p. 42, Supp.].

82

Chapter 4. Generating an Executable Model of the Central Complex

4.2.2 Neuron Labeling

Most neurons innervating the various CX and accessory neuropils possess at least two distinct

clusters of dendrites (postsynaptic terminals) and/or axons (presynaptic terminals) that

occupy geometrically distinct regions of the innervated neuropils [54]. These clusters are

referred to as arborizations (Fig. 4.1). Since many CX neurons belong to distinct sets of

morphologically similar neurons with similar arborization patterns, it is useful to use the

latter to uniquely label each CX neuron type. If neurotransmitter profiles are ignored and

each CX neuron type is assumed to be represented by a single neuron, then each neuron’s

label unambiguously encodes the geometric regions of its arborizations and whether each

arborization contains dendrites, axons, or both. This labeling scheme can be described in

terms of the following parsing expression grammar (PEG) [40]; the grammar may be used to

extract the arborizations of a particular neuron for constructing models of the CX circuitry

(e.g., by using overlapping presynaptic and postsynaptic arborizations to infer synaptic

connectivity). Note that a special case for handling the string LRB in the 〈name〉 rule

(which corresponds to the left RB region of CRE) is necessary to prevent that string from

being incorrectly parsed into LB and RB.

83

Chapter 4. Generating an Executable Model of the Central Complex

Figure 4.1: Example of neuron arborizations for a PB-EB-LAL neuron (§ 4.5.4.8) [141].
Each of the neuron arborizations occupies a specific region in different neuropils. (©2015
Wiley Periodicals, Inc.)

〈label〉 := 〈arborization〉 (〈hyphen〉〈arborization〉)+

〈arborization〉 := 〈neuropil〉〈slash〉〈regions〉〈slash〉〈neurite type〉

〈regions〉 := 〈region〉 (〈bar〉〈region〉) ∗

〈neuropil〉 := (BU/bu/CRE/cre/EB/FB/IB/ib/LAL/

lal/NO/no/PB/PS/ps/SMP/smp/WED/wed)

〈region〉 := 〈tuple2〉/〈tuple3〉/〈name〉

〈tuple2〉 := 〈left paren〉〈name〉〈comma〉〈name〉〈right paren〉

〈tuple3〉 := 〈left paren〉〈name〉〈comma〉〈name〉〈comma〉〈name〉〈right paren〉

〈name〉 := LRB/ (〈side〉? (〈integer〉/〈range〉/〈alpha〉/〈list〉)) /

(〈side〉! (〈integer〉/〈range〉/〈alpha〉/〈list〉))

84

Chapter 4. Generating an Executable Model of the Central Complex

〈side〉 := (L/R/LR/RL)

〈neurite type〉 := (s/b/bs/sb)

〈range〉 := 〈left bracket〉〈integer〉〈hyphen〉〈integer〉〈right bracket〉

〈list〉 := 〈left bracket〉〈alpha〉 (〈comma〉〈alpha〉) ∗ 〈right bracket〉

〈integer〉 := [0− 9]+

〈alpha〉 := [a− z,A− Z, 0− 9]+

〈hyphen〉 := −

〈bar〉 := |

〈slash〉 := /

〈comma〉 := ,

〈left paren〉 := (

〈right paren〉 :=)

〈left bracket〉 := [

〈right bracket〉 :=]

Neuropils are denoted by their abbreviated names as specified in § 4.2.1 and [62]; regions or

compartments within neuropils are described and assigned names in § 4.3. The neurite type

may be spine (s), bouton (or bleb) (b), or a combination thereof (bs, sb). In the absence

of detailed data regarding synapses, information flow polarity is assumed to be reflected by

neurite type; spines are assumed to be postsynaptic (and accept input), while boutons are

assumed to be presynaptic (and emit output) [141, p. 1002]. Left and right are assumed to

be with respect to a dorsal view of the fly.

85

Chapter 4. Generating an Executable Model of the Central Complex

4.3 Structure of Neuropils in and Associated with the Central

Complex

This section presents details regarding the high-level structure of the various CX neuropils

and the accessory neuropils to which they are connected.

4.3.1 Protocerebral Bridge (PB)

The PB neuropil comprises 18 regions called glomeruli [141] connected to other substructures

within the CX (Fig. 4.2). The local neuron population of PB comprises 8 [141, p. 1007] or

10 [82, p. 1743] types of local neurons (Fig. 4.10, Tab. 3). A single PB region label matches

the following regular expression:

〈glomerulus〉 := [L,R][1− 9]

Figure 4.2: Schematic of regions in PB used to identify neurons by their arbors [82, 141].

4.3.2 Fan-Shaped Body (FB)

The FB neuropil comprises multiple lateral layers [112]; most recent work suggests the

presence of 9 layers [141, p. 1011]. The neuropil is subdivided vertically into 8 [82] or 7

[141, p. 1010] columns called segments [54]; however, it seems that only some of its layers

(1-5) exhibit clearly columnar structure [141, p. 1008] (4.3). Regions in FB are connected

by local neurons called pontine neurons; some of these neurons connect adjacent layers,

while others connect adjacent segments [54, p. 349, 352]. A representative class of pontine

neurons comprising symmetric neurons that connect each segment in one side of FB with

each segment in the other side such that the presynaptic and postsynaptic arborizations are

86

Chapter 4. Generating an Executable Model of the Central Complex

4 segments apart [54, p. 352] (although more recent work suggests that each neuron might

be a bundle of 2 neurons [145, p. 1439]) is depicted in Tab. 5. Other classes dorsoventrally

connecting different layers in FB may exist, but they have not been systematically identified.

A single region in FB is denoted by a label matching the regular expression

〈region〉 := \(
layer︷ ︸︸ ︷

[1− 9],

segment︷ ︸︸ ︷
[L,R][1− 4] \)

Figure 4.3: Schematic of regions in FB used to identify neurons by their arbors [82, 141].

4.3.3 Ellipsoid Body (EB)

The EB neuropil is a toroidal structure that comprises 16 wedges [141, p. 1013] (Fig. 4.4a),

8 tiles [141, p. 1018] (Fig. 4.4b), 3 shells (anterior, medial, posterior) [141, p. 1013], and

4 rings [82] (Fig. 4.4c). Wedges extend radially through full radius of the EB torus and

occupy the posterior and medial shells or all 3 shells [141, p. 1013]. Tiles are restricted to

the posterior shell [141, p. 1014]; tiles geometrically overlap with corresponding wedges as

described in Tab. 4.1. Although EB appears to contain local neurons [22], these neurons

have not yet been systematically identified; there is some evidence for EB pontine neurons

in related fly species such as Neobellieria [113, p. 11]. Each region in EB is denoted by a

87

Chapter 4. Generating an Executable Model of the Central Complex

label that matches the regular expression

〈region〉 :=
tile︷ ︸︸ ︷

[1− 8] |\(
wedge︷ ︸︸ ︷

[L,R][1− 8],

shell︷ ︸︸ ︷
[P,M,A]+,

ring︷ ︸︸ ︷
[1− 4] \)

For EB regions other than tiles, the region denoted by a label comprises the volume inter-

sected by the specified wedges, shells, and rings. For example, (L1, [P,M], 4) represents the

volume in which wedge L1, shells P and M, and ring 4 overlap.

Tile Wedge
EB/1/x EB/([L1,R1],P,x)/x
EB/2/x EB/(R[2,3],P,x)/x
EB/3/x EB/(R[4,5],P,x)/x
EB/4/x EB/(R[6,7],P,x)/x
EB/5/x EB/([R8,L8],P,x)/x
EB/6/x EB/(L[6,7],P,x)/x
EB/7/x EB/(L[4,5],P,x)/x
EB/8/x EB/(L[2,3],P,x)/x

Table 4.1: Geometric overlap between EB tiles and wedges.

88

Chapter 4. Generating an Executable Model of the Central Complex

(a) Shells (L) and wedges (R)[141]. (b) Tiles [141].

(c) Rings [146].

Figure 4.4: Schematics of regions in EB. All circular schematics are anterior; sagittal views
in Figs. 4.4a and 4.4c are posterior to anterior from left to right).

4.3.4 Noduli (NO)

The NO neuropils comprise 3 distinct structures (NO1, NO2, NO3) divided into subcom-

partments (Fig. 4.5) [141, p. 1017]. In contrast to the other CX neuropils, the noduli

lack segregated populations of local neurons [22, p. 5]. Each NO region label matches the

following regular expressions:

〈subcompartment〉 :=


[L,R] for NO1

[L,R][V,D] for NO2

[L,R][A,M,P] for NO3

89

Chapter 4. Generating an Executable Model of the Central Complex

Figure 4.5: Schematic of regions in NO used to identify neurons by their arbors [141].

4.3.5 Bulb (BU)

Each of the BU neuropils comprises multiple regions referred to as microglomeruli. There

appear to be 80 microglomeruli in each BU neuropil (Fig. 4.6) [82, p. 1741]. These mi-

croglomeruli ostensibly exhibit retinotopic organization [125]. Each of the BU region labels

matches the regular expression

〈microglomerulus〉 := [L,R][0− 9]+

where the integer portion of the labels ranges from 1 to 80.

Figure 4.6: Schematic of regions in BU used to identify neurons by their arbors [82]. The
relative positions of the regions does not necessarily correspond to their actual physical
positions.

4.3.6 Lateral Accessory Lobe (LAL)

Each LAL neuropil comprises a region called the gall that is subdivided into a tip, dorsal, and

ventral subregion; the remainder of LAL is referred to as the hammer body (HB) (Fig. 4.7)

90

Chapter 4. Generating an Executable Model of the Central Complex

[82]. Each of these regions has a label that matches the regular expression

〈region〉 := [L,R] (HB|GT|DG|VG)

Figure 4.7: Schematic of regions in LAL used to identify neurons by their arbors [141].

4.3.7 Crepine (CRE)

Each CRE neuropil is divided into two regions (Fig. 4.8); these match the regular expression

〈region〉 := [L,R] (RB|CRE)

Figure 4.8: Schematic of regions in CRE used to identify neurons by their arbors [141].

4.3.8 Other Neuropils (IB, PS, SMP, WED)

Distinct regions of interest within IB, PS, SMP, and WED have not been identified; they

are therefore regarded as comprising single regions on each side of the fly brain. Each region

in these neuropils matches the regular expression

〈region〉 := [L,R] (IB|PS|SMP|WED)

91

Chapter 4. Generating an Executable Model of the Central Complex

4.4 Central Complex Input Pathways and Neuron Responses

The neuropils in the CX are connected to various neuropils, but evidently not to any that

directly receive sensory input except the antennal lobe (AL) [54, Fig. 24a]. Apart from

connections between the CX neuropils and the accessory neuropils depicted in Fig. 4.9,

connections have been observed between superior/inferior protocerebra and FB, between

AOTU and BU [103, p. 9], and between VLP and PB [110, p. 9]. Preprocessed visual data

from LO appears to enter the EB from BU via AOTU [102, p. 939], while additional visual

input enters PB from other optic glomeruli in VLP [110, p. 9]. Other input enters FB via

LAL. There also seems to be evidence of CX receiving mechanosensory information from

the fly’s legs [132, p. 6].

aotuAOTU

wed

al

SMP

BU

LOP

CRE

ib

PS

NO

lo

plp

smp

PB

lop

VLP

lal

WED

cre

AL

EB

bu

vlp

IB

LAL

PLP

no

FB

LO

ps

Figure 4.9: Information flow between CX neuropils (green), sensory neuropils (orange),
neuropils that receive input from sensory neuropils (gray), and other accessory neuropils
connected to the CX (yellow). Only known pathways are depicted.

92

Chapter 4. Generating an Executable Model of the Central Complex

Neuropil References
FB [54, p. 349, 352], [145, p. 1439]
PB [82, p. 1743],[141, p. 1007]

Table 4.2: Identified local neurons in CX neuropils.

Spiking responses have been recorded from cells in FB during CX-related experiments

using Drosophila [138, p. 64], from neurons supplying PB, tangential/pontine cells in FB,

and ring cells in EB in Neobellieria [113], and from CX neurons in other insects [7].

4.5 Identified Neurons in the Central Complex

Local and projection neurons innervating the central complex can be classified into sev-

eral families, most of which are characterized by unique arborization patterns. CX neuron

families are listed in Tab. 4.2 and 4.3; known arborization patterns are described later in

this section. In all neuropil innervation diagrams depicted below, arrow heads represent

presynaptic arborizations and arrow tails represent postsynaptic arborizations.

4.5.1 Index of Identified Neurons

93

Chapter 4. Generating an Executable Model of the Central Complex
N
eu

ro
n

Fa
m
il
y

L
oc
at
io
n
s
of

P
os
ts
yn

ap
ti
c

A
rb
or
iz
at
io
n
s

(D
en

d
ri
te
s)

L
oc
at
io
n
s
of

P
re
sy
n
ap

ti
c

A
rb
or
iz
at
io
n
s

(A
xo

n
s)

R
ef
er
en

ce
s

A
L-
P
B

A
L

P
B

[5
4,

p.
36

2,
F
ig
.
24

a]
B
U
-E

B
B
U

E
B

[5
4,

p.
35

2,
F
ig
.
20

a-
d]

B
U
-L
A
L

B
U

LA
L

[5
4,

F
ig
.
14

]
D
A
L

SM
P

LA
L,

SM
P

[2
0,

p.
68

0]
E
B
-F
B

E
B
,F

B
E
B
,F

B
[5
4,

F
ig
.
13

a]
E
B
-F
B
-L
A
L-
SM

P
E
B

F
B
,L

A
L,

SM
P

[5
4,

p.
35

3,
F
ig
.
21

a-
b]

E
B
-L
A
L-
P
B

E
B

E
B
,L

A
L,

P
B

[8
2,

F
ig
.
4J

-M
]

E
B
-N

O
E
B
,N

O
E
B
,N

O
[5
4,

F
ig
.
13

b]
F

B
U
,F

B
,L

A
L,

N
O

F
B
,N

O
[5
4,

F
ig
.
14

,2
2,

p.
35

3,
35

6]
F
B
-B

U
-L
A
L

F
B

B
U
,L

A
L

[5
4,

F
ig
.
14

]
F
B
-N

O
F
B
,N

O
F
B

[5
4,

F
ig
.
11

]
IB

-L
A
L-
P
S-
P
B

IB
,L

A
L,

P
S

P
B

[8
2,

p.
17
43

,F
ig
.
4A

][
14

1,
F
ig
.
3N

]
P
B
-E

B
P
B

E
B

[5
4,

p.
35

0,
F
ig
.
12

b]
P
B
-E

B
-B

U
P
B

B
U
,E

B
[5
4,

F
ig
.
10

b]
P
B
-E

B
-L
A
L

P
B

E
B
,L

A
L

[8
2,

F
ig
.
5E

]
P
B
-E

B
-N

O
P
B

E
B
,N

O
[8
2,

p.
17

45
,F

ig
.
5G

]
P
B
-F
B

P
B

F
B
,P

B
[5
4,

F
ig
.
12

b]
P
B
-F
B
-C

R
E

P
B

C
R
E
,F

B
[8
2,

F
ig
.
6F

][
14

1,
F
ig
.
3L

]
P
B
-F
B
-E

B
E
B
,F

B
,P

B
E
B
,F

B
[5
4,

F
ig
.
12

e,
f]

P
B
-F
B
-L
A
L

P
B

F
B
,L

A
L

[8
2,

F
ig
.
6F

-H
]

P
B
-F
B
-L
A
L-
C
R
E

P
B

C
R
E
,F

B
,L

A
L

[1
41

,F
ig
.
3M

]
P
B
-F
B
-N

O
P
B

F
B
,N

O
[8
2,

p.
17

46
,F

ig
.
5L

]
P
S-
IB

-P
B

IB
,P

S
P
B

[1
41

,F
ig
.
3S

-T
]

P
S-
P
B

P
S

P
B

[1
41

,F
ig
.
3R

]
W

E
D
-P

S-
P
B

P
S,

W
E
D

P
B

[8
2,

p.
17

44
,F

ig
.
4B

,D
]

T
ab

le
4.
3:

Id
en
ti
fie

d
pr
oj
ec
ti
on

ne
ur
on

s
co
nn

ec
ti
ng

C
X

an
d
ac
ce
ss
or
y
ne

ur
op

ils
.
A
dd

it
io
na

li
np

ut
s
fr
om

vi
si
on

ne
ur
op

ils
an

d
A
O
T
U

to
A
T
L,

B
U
,
LA

L,
P
LP

,
P
S,

SM
P,

V
LP

an
d
ou

tp
ut
s
to

lo
co
m
ot
io
n
ne

ur
op

ils
ha

ve
al
so

be
en

ob
se
rv
ed

[1
02

,
p.

93
9]
,

[1
10

,F
ig
.
6]
,[
82

],
[1
03

,p
.
9]
.

94

Chapter 4. Generating an Executable Model of the Central Complex

Neuron Family Locations of Arboriza-
tions

References

CC LAL, NO
EB-NO EB, NO [54, p. 351]
FB-EB EB, FB [54, p. 351]
FB-NO FB, NO [54, Fig. 11]

Table 4.4: Projection neurons connecting CX and accessory neuropils with unresolved neu-
rite types.

95

Chapter 4. Generating an Executable Model of the Central Complex

4.5.2 Neurotransmitter Profiles

A range of neurotransmitters appear to be present in the CX neuropils (Tab. 1). Neurotrans-

mitters associated with specific CX neural pathways have been identified (Tab. 2); however,

the neurotransmitter associated with each specific arborization remains unclear.

4.5.3 Local Neurons

4.5.3.1 PB Local Neurons

Different studies of PB have identified 8 [141, p. 1007] or 10 [82, p. 1743] distinct local

neurons. Tab. 3 and Fig. 4.10 assume the presence of 8 glomeruli on each side of PB as

indicated by [141], that R2-R9 in [141] correspond to R1-R8 in [82], and that postsynaptic

arborizations are spaced 7 glomeruli apart in all but the first 2 neuron types.

Figure 4.10: Innervation pattern of PB local neurons (Tab. 3).

4.5.3.2 FB Local Neurons

Several classes of local neurons referred to as pontine neurons have been observed to connect

different regions of FB with each other [54, p. 349], [146, p. 1507]. One class (Tab. 5)

96

Chapter 4. Generating an Executable Model of the Central Complex

comprises symmetric neurons thatconnect each segment in one side of FB at the with each

segment in the other side such that the presynaptic and postsynaptic arborizations are 4

segments apart [54, p. 352] (although more recent work suggests that each neuron might

be a bundle of 2 neurons [145, p. 1439]). Judging by the structure of pontine neurons in

other insects [55], arborizations might not be strictly confined to targeted regions. Other

classes dorsoventrally connecting different layers in FB may exist, but they have not been

systematically identified [54, p. 349]. It is unclear whether local neurons other than pontine

neurons exist in FB.

Figure 4.11: Innervation pattern of FB local neurons (Tab. 5).

4.5.3.3 EB Local Neurons

Although there appear to be local neurons in EB [22], they do not appear to have been

systematically identified yet.

4.5.4 Projection Neurons

4.5.4.1 BU-EB Projection Neurons

Neurons with postsynaptic arborizations in BU and presynaptic arborizations in EB are

typically referred to as ring or R neurons [54, p. 352] by virtue of the shape of their EB

arborizations. 5 types of ring neurons (R1, R2, R3, R4m, R4d) have been observed [146,

p. 1509]; specific ring neuron types appear to be essential to different visual behaviors [31,

p. 120]. Each ring neuron type arborizes in a single microglomerulus [125, p. 262] and

a different portion of the EB radius (Fig. 4.12); these types correspond to different sets

of BU microglomeruli (and hence comprise multiple neurons). About 20 of each of these

97

Chapter 4. Generating an Executable Model of the Central Complex

types of neurons have been estimated in each hemisphere of the fruit fly brain [146, p.

1510]; combined with visual confirmation of the presence of 80 microglomeruli (§ 4.3.5),

this suggests that there are 16 of each neuron type present in BU. Some ring neurons

are GABAergic [82, p. 1750], while others are glutamatergic [82, Fig. 7C]; their synaptic

connections to other neurons in EB therefore seem to be inhibitory. There is recent evidence

that some ring neurons may be cholinergic and hence possess excitatory synapses [88, p.

1598]. Coincident synapses (i.e., those in which two independent presynaptic zones coincide

with a single postsynaptic zone) have been observed in EB between ring neurons in specific

domains and other neurons both in and outside of those domains. [88, p. 1592]; it seems

that such synapses may also exist between other neurons that innervate EB [88, p. 1594].

Connections between AOTU and BU have been observed [103, p. 9]; these presumably

constitute a pathway for input visual information from LO via AOTU [102, p. 939] to EB

via ring neurons.

98

Chapter 4. Generating an Executable Model of the Central Complex

Figure 4.12: Spatial organization of ring neuron arborizations in BU microglomeruli (yellow)
and regions in EB (red); posterior is left of sagittal section of EB, anterior is right. The
depicted EB regions do not exactly correspond to the rings in Fig. 4.4c. Only a fraction of
the microglomeruli/neurons are depicted.

4.5.4.2 EB-FB-LAL-SMP Projection Neurons

Neurons with presynaptic ring-shaped arborizations in EB and postsynaptic arborizations

in other neuropils are referred to as extrinsic ring neurons. Two types (ExR1, ExR2) have

been observed; these neurons appear to constitute a dopaminergic pathway [82, Fig. 7C].

ExR1 neurons are presynaptic in EB, FB, and LAL, and postsynaptic in SMP [54, p. 353]

[VirtualFlyBrain]. ExR2 appears to have presynaptic arborizations in EB and arborizations

in SMP, but the remainder of the neuron’s structure has not been reconstructed.

4.5.4.3 EB-LAL-PB Projection Neurons

These neurons correspond to the EB-PB-VBO or EIP neurons in [82, Fig. 2]; they constitute

a cholinergic pathway [82, Fig. 7C]. The neuron arborizations in Tab. 4 and Fig. 4.13 make

99

http://www.virtualflybrain.org/site/tools/anatomy_finder/index.htm?id=FBbt:00003655&name=extrinsic%20ring%20neuron%20ExR1

Chapter 4. Generating an Executable Model of the Central Complex

the assumption that the C, O, and P rings in [82] collectively correspond to the P and M

shells in [141] and that the C and P rings collectively correspond to the P shell.

Figure 4.13: Neuropil innervation pattern for EB-LAL-PB neurons (Tab. 4).

4.5.4.4 F Projection Neurons

F neurons innervate entire layers of FB, with some types associated with specific layers [54,

p. 353]. Fm neurons have bleb-like (presynaptic) arborizations in layer 2 of FB; Fm1 neurons

100

Chapter 4. Generating an Executable Model of the Central Complex

have spiny (postsynaptic arborizations in SLP or SIP, Fm2 neurons have spiny arborizations

in LAL, and Fm3 neurons have spiny arborizations in ICL [54, p. 353]. Some Fl neurons

have spiny branches in LAL [54, p. 354], while other Fl neurons have spiny branches that

innervate the entire BU [54, p. 354].

4.5.4.5 IB-LAL-PS-PB Projection Neurons

These neurons corresponds to the CVLP-IDFP-VMP-PB or CIVP neurons in [82, Fig. 2]

and the PB-LAL-PS neurons in [141, Fig. 3N]. They receive indirect input from the vision

system and innervate all glomeruli in PB indicated in Tab. 6:

Figure 4.14: Neuropil innervation pattern for IB-LAL-PS-PB neurons (Tab. 6).

4.5.4.6 PB-EB-BU Projection Neurons

Neurons with postsynaptic arborizations in PB and presynaptic arborizations in EB and

BU have been observed. These correspond to the PB-EB-LTR neurons in [54, Fig. 10b].

Details regarding possible neuron types have not been determined.

101

Chapter 4. Generating an Executable Model of the Central Complex

4.5.4.7 PB-EB-NO Projection Neurons

Neurons with postsynaptic arborizations in PB and presynaptic arborizations in EB and

NO are referred to as PEN neurons in [82, p. 1745]. They constitute a cholinergic pathway

[82, Fig. 7C]. The connections in Tab. 8 and Fig. 4.15 are based upon [141, Fig. 14a], which

differ from those described in [82, Fig. 5g].

Figure 4.15: Neuropil innervation pattern for PB-EB-NO neurons (Tab. 8).

102

Chapter 4. Generating an Executable Model of the Central Complex

4.5.4.8 PB-EB-LAL Projection Neurons

These neurons have postsynaptic arborizations in PB and presynaptic arborizations in EB

and LAL; they correspond to PB-EB-IDFP or PEI neurons in [82, Fig. 2]. These neurons

constitute a cholinergic pathway [82, Fig. 7C]. The connections in Tab. 7 and Fig. 4.16 are

based upon [141, Fig. 14b], which differ from those described in [82, Fig. 5e].

Figure 4.16: Neuropil innervation pattern for PB-EB-LAL neurons (Tab. 7).

103

Chapter 4. Generating an Executable Model of the Central Complex

4.5.4.9 PB-FB-CRE Projection Neurons

The neurons in Tab. 9 and Fig. 4.17 correspond to the PB-FB-VBO or PFI neurons that

connect to RB in [82, Fig. 2]. They constitute a cholinergic pathway [82, Fig. 7C].

Figure 4.17: Neuropil innervation pattern for PB-FB-CRE neurons (Tab. 9).

4.5.4.10 PB-FB-NO Projection Neurons

Neurons with postsynaptic arborizations in PB and presynaptic arborizations in FB and

NO are referred to as the vertical fiber system [54, Fig. 5b]; they correspond to the PFN

neurons described in [82, p. 1745]. These neurons constitute a cholinergic pathway [82, Fig.

7C]. The 5 sets of PB-FB-NO neurons are listed in Tabs. 10, 11, 12, 13, and 14 and depicted

in Fig. 4.18.

104

Chapter 4. Generating an Executable Model of the Central Complex

Figure 4.18: Neuropil innervation pattern for PB-FB-NO neurons (Tabs. 10, 11, 12, 13, 14).

105

Chapter 4. Generating an Executable Model of the Central Complex

4.5.4.11 PB-FB-LAL Projection Neurons

Neurons with postsynaptic arborizations in PB and FB and presynaptic arborizations in

LAL are referred to as PFI neurons in [82, p. 1745]. They correspond to the PB-FB-VBO

or PFI neurons that connect to HB in [82, Fig. 2], and are also referred to as the horizontal

fiber system [54, Fig. 6b]. 1 These neurons constitute a cholinergic pathway [82, Fig. 7C].

Figure 4.19: Neuropil innervation pattern for PB-FB-LAL neurons innervating layer 2 of
FB (Tab. 15).

1These sources appear to consider CRE as part of LAL; this document treats CRE separately.

106

Chapter 4. Generating an Executable Model of the Central Complex

Figure 4.20: Neuropil innervation pattern for PB-FB-LAL neurons (Tab. 16, 17).

4.5.4.12 WED-PS-PB Projection Neurons

The neurons in Tab. 18 correspond to CCP-VMP-PB or CVP neurons in [82, Fig. 2] and

receive input from the vision system. They constitute a cholinergic pathway [82, Fig. 7C].

107

Chapter 4. Generating an Executable Model of the Central Complex

Figure 4.21: Neuropil innervation pattern for WED-PS-PB neurons (Tab. 18).

4.6 Generating an Executable Circuit Model

4.6.1 Neuron Organization

In light of the current lack of data regarding synapses between the various neurons identified

in the central complex neuropils, data regarding the arborizations of these neurons was used

to infer the presence or absence of synapses to generate an executable model of the central

complex. Local and projection neurons were assigned to LPUs as indicated in Tab. 4.5.

LPU Neuron Families
BU, bu BU-EB
EB EB-LAL-PB
FB FB local
PB PB local, PB-EB-NO, PB-

EB-LAL, PB-FB-CRE, PB-
FB-NO, PB-FB-LAL, WED-
PS-PB, IB-LAL-PS-PB

Table 4.5: Assignment of neuron families to LPUs in generated CX model.

108

Chapter 4. Generating an Executable Model of the Central Complex

Although the BU-EB neurons have not been systematically characterized, available infor-

mation regarding these neurons (§ 4.5.4.1) was used to hypothesize the arborization structure

for a total of 80 neurons in each hemisphere of the fly brain (Tab. 19). Likewise, we also

hypothesized isomorphic sets of pontine neurons that link the following regions in FB based

upon [54, p. 349]:

• nonadjacent segments in layers 1, 2, 4, and 5 (Tab. 20);

• adjacent segments within the same layer in layers 1-5 [54, Fig. 9a] (Tab. 21).

• adjacent layers within the same segment for layers 1-5 [54, Fig. 9a] (Tab. 22).

• nonadjacent layers within the same segment, with both presynaptic and postsynaptic

terminals in each layer [54, Fig. 9b] (Tab. 23); based upon the latter source, we assume

two sets of neurons connecting layers 1 and 8 and 2 and 7, respectively.

4.6.2 Executable Circuit Generation

To infer the presence of synaptic connections between neurons, the above neuron names

were loaded into a NeuroArch database [46] in accordance with its data model. Using a

parser for the grammar described in § 4.2.2, each neuron’s name was parsed to extract its

constituent arborization records (Tab. 4.6); these records were reinserted into the database

as ArborizationData nodes and connected to the Neuron nodes created for the neuron in

each family listed above.

Field Data Type Sample Values
neurite set of ‘b’ or ‘s’ [b], [b, s]
neuropil string PB, EB
region set of strings or tuples [L1], [(1, R1)]

Table 4.6: Fields in ArborizationData node. Region strings or tuples conform to the
formats described in § 4.3.

After extraction of arborization data, all pairs of neurons in the database were compared

to find those pairs with geometrically overlapping arborizations and differing neurite types

109

Chapter 4. Generating an Executable Model of the Central Complex

(i.e. presynaptic versus postsynaptic). This resulted in the creation of Synapse nodes that

were connected to the associated Neuron node pairs in NeuroArch’s database.

To illustrate the synapse inference process, consider the neurons EB/([R3,R5],[P,M],[1-

4])/s-EB/(R4,[P,M],[1-4])/b-LAL/RDG/b-PB/L3/b (Tab. 4) and PB/L4/s-EB/2/b-

LAL/RVG/b (Tab. 7). Since the region EB/(R3,P,[1-4])/s overlaps with region EB/2/b

(Tab. 4.1) and the terminal types of the two neurons in the overlapping region differ, we

infer the presence of a synapse with information flow from the latter neuron to the former.

Neuron and synapse models were instantiated for each respective biological neuron and

synapse in NeuroArch’s database to construct LPUs corresponding to the BU, FB, EB,

and PB neuropils. All neurons were modeled as Leaky Integrate-and-Fire neurons, and all

synapses modeled to produce alpha function responses to presynaptic spikes. Since the goal

of this model construction was to demonstrate algorithmic generation of an executable circuit

rather than replicate a specific observed pattern of activity in the corresponding biological

circuit, neuron and synapse parameters were set to ensure that some responses were elicited

in response to the described inputs but were not otherwise tuned. Communication ports were

created for every neuron model instance comprised by one LPU connected to a synapse model

instance in the other neuropil; the connectivity pattern linking the ports associated with the

neuron and synapse models was also added to the NeuroArch database. NeuroArch’s API

was used to extract the constructed LPUs and patterns and dispatch them to Neurokernel

[44] for execution.

4.6.3 Executing the Circuit

To test the executability of the generated circuit and its ability to respond to input data, the

generated model was driven by a simple visual stimulus consisting of an illuminated vertical

bar proceeding horizontally across the 2D visual space (Fig. 4.22). Since the central complex

neuropils do not receive direct connections from the vision neuropils, the visual stimulus was

passed into three banks of receptive fields whose outputs were respectively provided to BU,

110

Chapter 4. Generating an Executable Model of the Central Complex

bu, and PB as input (Fig. 4.23). The receptive fields for BU and bu each consisted of 80

evenly spaced 2D grids of circular Gaussians that correspond to one of the microglomeruli

in BU; each receptive field was connected to one BU-EB neuron such that the 16 neurons in

each of the 5 groups described in § 4.5.4.1 processed input from a rectangle occupying 1
5 of

the 2D visual space. The receptive fields for PB consisted of 18 vertical rectangular regions

with a constant magnitude; each receptive field was connected to all local and projection

neurons that innervated the glomerulus corresponding to the receptive field region. The

responses of the neurons in each family to the two input signals are organized in the same

order in the respective raster plots.

Figure 4.22: Moving bar visual input to generated CX model. The plots depict the movement
of an illuminated vertical bar horizontally across a dark background.

111

Chapter 4. Generating an Executable Model of the Central Complex

Figure 4.23: Schematic of information flow in generated CX model. 2D visual signals are
passed through rectangular grids of Gaussian receptive fields whose outputs drive BU-EB
neurons and through a bank of vertical rectangular receptive fields whose outputs drive
neurons that innervate the PB glomeruli. The generated model only comprises neurons that
innervate the depicted LPUs (BU, bu, EB, FB, and PB).

4.6.4 Use Cases

The NeuroArch and Neurokernel pipeline used to generate the CX model described above

enables analysis and manipulation of the model using computational analogues to experi-

mental techniques.

4.6.4.1 Virtual Electrophysiology

One can use NeuroArch/Neurokernel to concurrently probe the responses different sets of

neurons in multiple neuropils in a computational experiment. Figs. 4.24 and 4.25 depict

the responses of neurons innervating the PB and BU/bu neuropils to the signal depicted in

Fig. 4.22.

112

Chapter 4. Generating an Executable Model of the Central Complex

(a) Response to bar moving left to right.

(b) Response to bar moving right to left.

Figure 4.24: Response of CX projection neurons innervating PB to moving bar input.

113

Chapter 4. Generating an Executable Model of the Central Complex

(a) Response to bar moving left to right.

(b) Response to bar moving right to left.

Figure 4.25: Response of CX projection neurons innervating BU/bu to moving bar input.

114

Chapter 4. Generating an Executable Model of the Central Complex

4.6.4.2 Virtual Genetic Manipulation

To test hypotheses regarding incompletely characterized parts of the fly brain, one can

create models that either attempt to replicate abnormal behaviors or emulate abnormal

circuit structures observed in different mutant fly strains. For example, one can attempt to

model phenotypes corresponding to mutations affecting the structure of PB (e.g., no bridge,

tay bridge, etc.) by altering the PB model generation process accordingly. Given that these

mutations are known to alter the fly’s step length [132, p. 7] and since neurons innervating

the motor ganglia are known to be postsynaptic to those that innervate LAL, it is reasonable

to expect that analogous modifications to the structure of PB may alter the observed output

of CX projection neurons that innervate LAL.

We used NeuroArch to emulate the no bridge mutant by altering the PB local neurons

to remove all local connections between the left and right sides of PB and positing the exis-

tence of additional local neurons caused by the mutation (Fig. 4.26); the synapse inference

algorithm was then run on the modified database to construct a mutant CX model. Al-

though descriptions of the no bridge mutant suggest that several of the medial glomeruli are

not present, our model does not alter any of the other known neurons in CX. The effects

of the mutation on the response of the PB projection neuron families can be observed by

comparing the mutant model output in Fig. 4.27 to Fig. 4.24. As the BU-EB neurons do not

receive any input from other neurons in the generated model, their responses in the mutant

model (Fig. 4.28) are identical to those in the original model.

115

Chapter 4. Generating an Executable Model of the Central Complex

Figure 4.26: Hypothesized innervation pattern of PB local neurons in no bridge mutant
(Tab. 24).

116

Chapter 4. Generating an Executable Model of the Central Complex

(a) Response to bar moving left to right.

(b) Response to bar moving right to left.

Figure 4.27: Response of CX projection neurons innervating PB in constructed no bridge
mutant CX model to moving bar input.

117

Chapter 4. Generating an Executable Model of the Central Complex

(a) Response to bar moving left to right.

(b) Response to bar moving right to left.

Figure 4.28: Response of CX projection neurons innervating BU/bu in constructed no bridge
mutant CX model to moving bar input.

118

Chapter 4. Generating an Executable Model of the Central Complex

4.7 Related Work

In contrast to the neuropils known to be part of the fly’s vision, audition, and olfaction

systems, relatively few functional models of the spatial memory and locomotor control pro-

cessing features of the fruit fly CX have been proposed or implemented. This dearth of

models is reflective of the greater difficulty of characterizing the inputs of the CX neuropils

compared to those of neuropils that directly receive sensory signals. One recent model specu-

lated how neurons that transmit data from PB to FB could be involved in altering attractive

and aversive responses to objects in the visual field, as well as how neurons that transmit

data between PB and EB could play a role in short-term memory of object positions [132].

This model, however, does not account for several significant neural pathways such as that

between BU and EB that are known to be essential to specific CX functions, and does not

provide any executable hypothesis to confirm the putative roles of the neurons in specific

functions attributed to CX.

The circular geometry of the EB neuropil has prompted comparisons with models of

directional encoding that employ ring attractors. In light of the apparent role EB plays in

spatial memory formation, a ring attractor network based upon the structure of EB was

implemented that is capable of producing a hill of activity in a ring of neurons that tracks

the estimated location of a visual target even when that target is briefly obscured; this

behavior could explain how spatial information needed to enable detour behavior observed

in live flies is represented in its brain [2]. While it does account for the observed presence of

distinct excitatory and inhibitory pathways that innervate EB, the model does not address

the interplay between the multiple inputs into EB from different neuropils (BU, PB) that

receive data from the fly’s vision system.

119

Chapter 4. Generating an Executable Model of the Central Complex

4.8 Summary

The many gaps in knowledge regarding both the internal circuitry of the CX neuropils and

the nature of the inputs they receive from other brain regions virtually guarantees that

making further progress in understanding how the CX implements its various functions will

involve repeated redesign and modification of computational models. Advances in in vivo

imaging of CX neuron activity have already begun to provide valuable detailed data on the

responses of specific families of neurons in the CX neuropils [125, 126] that must be accounted

for in hypotheses regarding CX circuit functions. The ability of the NeuroArch/Neurokernel

pipeline to enable computational analogues of parallel recordings and targeted structural

manipulation of the CX circuitry empowers researchers to translate these highly successful

experimental paradigms from a biological context to the realm of circuit model design.

120

Chapter 5. Conclusions and Future Research Directions

Chapter 5

Conclusions and Future Research

Directions

5.1 Conclusions

5.1.1 When to Use the Pipeline

As indicated in § 2.5, the NeuroArch/Neurokernel pipeline aims to prioritize the programma-

bility required to collaboratively build fly brain models over the optimization of model exe-

cution performance or extensive support for arbitrarily detailed neuron and synapse models.

The pipeline specifically targets models of the brain expressed in terms of its constituent

functional processing units, which in turn currently must be implemented in terms of neuron

and synapse models supported by Neurodriver. Efforts to emulate the brains of other model

organisms that need the concerted abilities of multiple researchers to succeed can benefit

from utilizing this pipeline to modularize their brain modeling goals, although performance

considerations will need to be reassessed for model organisms with more complex brains

than the fruit fly. Conversely, neuroscientists who wish to study the properties of new neu-

ron/synapse models not currently supported by Neurodriver, develop isolated circuit models

that do not need to communicate with other circuits, or utilize non-neural concepts such as

121

Chapter 5. Conclusions and Future Research Directions

mean field models may find existing simulators such as those detailed in § 2.4 preferable for

their purposes. The Neurokernel/NeuroArch pipeline and other neuronal network simulators

should therefore be regarded as complementary tools in the computational neuroscientist’s

arsenal.

5.1.2 Summary

The successful emulation of the fruit fly brain is an ambitious goal that requires the joint

efforts of neurobiologists and computational researchers to succeed. To further this end,

we have presented an open pipeline for fly brain model construction and execution that

(1) enables multiple fruit fly researchers to combine their individual circuit design efforts

into executable comprehensive models of the fly brain, and (2) enables the construction

of fly brain models by generation of executable circuits from structured biological data

rather than by explicitly specifying the structure of the executable circuit directly. We

have demonstrated the power of this pipeline by using it to successfully integrate models

of the fly retina and lamina into a working partial model of the fly vision system and to

generate executable models of neuropils in the central complex from incomplete biological

data regarding the neurons in those neuropils.

5.2 Neurokernel - Future Development

5.2.1 Automating Computational Resource Allocation

Although Neurokernel currently permits brain models to make use of multiple GPUs, it

requires programmers to explicitly manage the GPU resources used by a model’s imple-

mentation. Given that a functional API for building and interconnecting LPUs within

Neurokernel’s application has been obtained (§ 2.2.4), the next major goal is to implement

a prototype GPU resource allocation mechanism within the control plane to automate se-

lection and management of available GPUs used to execute a fly brain model. Direct access

122

Chapter 5. Conclusions and Future Research Directions

to GPUs will also be restricted to modeling components implemented by LPU developers

and added to Neurokernel’s compute plane; models implemented or defined in the applica-

tion plane will instantiate and invoke these components. These developments will permit

experimentation with different resource allocation policies as LPU models become more

complex to account for a greater level of biological detail. Restricting parallel hardware ac-

cess to modeling components exposed by the compute plane will also facilitate development

of future support for other parallel computing technologies such as non-NVIDIA GPUs or

neuromorphic hardware.

5.2.2 Accelerated Neural Model Execution Engine

As simulator engines incorporate more extensive support for running sophisticated neural

models on GPUs such as those afforded by Brian2GeNN or Myriad (§ 2.4.2), basing Neu-

rokernel’s compute plane upon them will enable Neurokernel to benefit from the extensive

performance optimizations obtained by these packages while proving support for the col-

laborative programming model needed to develop a model of the entire fruit fly brain that

general-purpose simulators lack. This development will hopefully enable Neurokernel’s mod-

ular approach to modeling an entire brain to be scaled up to organisms with larger brains

than the fruit fly in the future as new parallel computing technology becomes available.

5.2.3 In Vivo Model Validation

Efforts at reverse engineering the brain must ultimately confront the need to validate hy-

potheses regarding neural information processing against actual biological systems. In

order to achieve biological validation of the Neurokernel, the computational modeling of

the fruit fly brain must be tightly integrated with increasingly precise electrophysiologi-

cal techniques and the recorded data evaluated with novel system identification methods

[68, 69, 76, 75, 81, 77, 78]. This will enable direct comparison of the output of models exe-

cuted by Neurokernel to that of corresponding neurons in the brain regions of interest. Given

123

Chapter 5. Conclusions and Future Research Directions

that recently designed GPU-based systems for emulating neuronal networks of single spiking

neuron types have demonstrated near real-time execution performance for networks of up to

∼ 105 spiking neurons and ∼ 107 synapses using single GPUs [97, 39, 117, 10], and in light

of advances in the power and accessibility of neuromorphic technology [30, 115, 8, 90, 21],

we anticipate that future advances in parallel computing technology will enable Neuroker-

nel’s model execution efficiency to advance significantly towards the time scale of the actual

fly brain even as more realistic neuron and synapse models are employed. These advances

will enable researchers to validate models of circuits in the live fly’s brain within similar

time scales and use the observed discrepancies to inform subsequent model improvements

(Fig. 5.1).

Figure 5.1: In vivo validation is essential to the development of accurate fly brain models.
Neural responses to sensory stimuli are recorded from the live fly brain in real time and
compared to the computed responses of the corresponding components in a fly brain model
executed on the same time scale. Discrepancies between these responses and new connectome
data may be used to improve the model’s accuracy (fruit fly photograph adapted from Berger
and fly robot image adapted from Vizcaíno, Benton, Gerber, and Louis, both reproduced
with permission).

124

Chapter 5. Conclusions and Future Research Directions

5.3 NeuroArch - Future Development

5.3.1 Model Construction Using Composition Operations

A major advantage of NeuroArch’s OGM (§ 3.5.1) is that it enables the result of a query

on existing neural circuit data to be treated as an operand that can be manipulated by

query result operators. Given that existing anatomical datasets (such as that of the medulla

from Janelia [1]) provide incomplete data regarding the structure of neuropils, the process

of inferring circuit functionality can potentially exploit NeuroArch’s encapsulation of query

results and support for operators defined on those results to construct more comprehensive

circuit models by composing subunits that each consist of the result of individual queries.

Although such circuits can be stored in NeuroArch’s database by fully expanding the oper-

ators and their operands into a graph of components comprised by the current NeuroArch

data model, doing so does not store any information as to how the circuit is defined in terms

of subgraphs and operators.

To store the latter information, NeuroArch’s data model must be extended to introduce

nodes that correspond to operators and query results, the latter which own the component

nodes extracted by the query. This would enable storage of the execution tree of operator

and query result nodes that must be processed to obtain the constructed circuit (Fig. 5.2).

To obtain the fully equivalent graph of low-level objects corresponding to the representation

in terms of query results and operators, NeuroArch’s query API will need to provide services

that can execute the operators stored in the database.

125

Chapter 5. Conclusions and Future Research Directions

Query

Q1

Query

Q0

Operator

Connect N1 in results of Q0 to N0 in results of Q1

SynapseModel

S

Circuit
C

MembraneModel
N0

MembraneModel
N1

(a) Representation of sample circuit in terms of operators and queries (blue) and the components
(cyan) comprised by an individual query. In this example, both queries return the same subgraph
of components.

SynapseModel

S

SynapseModel

S

MembraneModel
N0

MembraneModel
N0

Circuit
C1

Circuit
C0

MembraneModel
N1

MembraneModel
N1

(b) Equivalent components of sample circuit described by queries and operators in Fig. 5.2a.

Figure 5.2: Example of how a circuit may be defined in terms of graph operators applied
to query results and the motifs extracted by individual queries. As in Figs. 3.2 and 3.3,
black edges denote ownership while red edges denote data transmission connections between
objects.

5.3.2 Using NeuroArch Data for Neurokernel Resource Allocation

To improve the performance of model execution by Neurokernel, the structure of executable

circuits stored in NeuroArch can be analyzed to estimate the computational resources re-

quired by Neurokernel to efficiently run a given circuit on available GPU resources. For

example, the graph of a circuit’s constituent neurons and synapses could be processed by a

graph partitioning algorithm to determine how to amortize data transmission costs between

GPUs during execution. To enable the above functionality, NeuroArch’s API will need to

provide services for extracting relevant circuit information required to compute resource re-

quirements. NeuroArch’s data model can also be extended to explicitly include metadata

regarding the computational costs of different executable elements in its database. For ex-

ample, an instance of a point model of a neuron’s membrane potential might be assigned a

higher cost than an instance of a passive multicompartmental model.

126

Chapter 5. Conclusions and Future Research Directions

5.3.3 Support for Input/Output File Formats

NeuroArch’s support for loading neural circuit data is currently limited to the GEXF graph

storage format. Support for loading data from and saving data to additional specification

formats used by other neuroinformatic tools such as SWC1, CSV, NeuroML [48], NineML

[114], or SpineML [118] would

(i) facilitate importing of existing data stored in those formats into NeuroArch for use in

circuit design,

(ii) enhance interoperability with other tools that employ those formats, and

(iii) enable sharing of data between users running different NeuroArch instances (§ 5.3.4).

Some of this functionality can be achieved by exploiting the import/export features of the

Python packages used by NeuroArch’s multimodal views that support some of the above

formats (§ 3.5.4). Loading/saving of multiple versions of a single model should also be

supported. Currently available neural circuit datasets that are in a non-standard format

(such as the medulla data from Janelia, manually constructed annotations for a specific

dataset, etc.) will require customized loaders; NeuroArch’s API should expose Python

functions and/or classes that must be used by a new data loader to manipulate the database.

This part of the API should manage creation of new nodes and relationships in the database,

handle versioning, and perform requisite sanity checks to prevent inadvertent loading of

incorrectly formatted data.

Given that NeuroArch affords researchers the opportunity to define entirely new model-

ing elements and architectural abstractions (§ 3.3.3) support for import/export of a model

data specified using components defined in a fixed schema (such as that of NeuroML)

necessarily limits what sort of abstractions may be represented in an imported/exported

model specification. This limitation could be addressed by generation/parsing of customized

1http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.html

127

http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.html

Chapter 5. Conclusions and Future Research Directions

XML schemas alongside exported/imported models; NeuroML’s parser generation mecha-

nism (which is used by Neurokernel’s current support for importing NeuroML-like XML)

can be exploited to address this need.

In the event that NeuroArch is extended to support storage of model execution state

snapshots (§ 5.3.8), its data sharing services should also be extended to provide a way to

store/load such data in a suitable file format.

5.3.4 Online Data Sharing

To facilitate sharing of models with other researchers, NeuroArch should provide a service

whereby biological or circuit design data stored in one NeuroArch instance can be easily

shared with other researchers. This could be achieved either

(i) by enabling loading/saving of an entire model in a suitable file format; (§ 5.3.3);

(ii) by enabling running NeuroArch instances to expose services on the Internet that permit

them to be queried (which should be technically possible given that the underlying

OrientDB graph database supports network access); or

(iii) by providing a service that enables models to be easily published online in a form

that can be immediately imported into other NeuroArch instances. This service could

potentially

(a) use a revision control system such as Git or Mercurial to upload data to or retrieve

data from a public repository on GitHub2 or Bitbucket3;

(b) take advantage of the API provided by the Zenodo research data sharing ser-

vice4 to automatically request a DOI for a published model that could be made

2http://github.com
3http://bitbucket.org
4http://zenodo.org/dev

128

http://github.com
http://bitbucket.org
http://zenodo.org/dev

Chapter 5. Conclusions and Future Research Directions

available to other researchers as the access point for obtaining model data for

immediate loading into a NeuroArch instance.

5.3.5 Performance Assessment

Given that complex queries performed by NeuroArch’s OGM can be computationally in-

tensive for circuits with large numbers of components, there is a need to quantify the

performance of NeuroArch’s query mechanism and graph operator support in a range of

circumstances to optimize future performance. NeuroArch should therefore provide a means

of benchmarking the data access and manipulation services provided by its API.

5.3.6 Graphical Visualization of Circuit Data

NeuroArch’s novel conflation of biological and circuit design data from multiple sources in

a single graph database can drive new ways of graphically interacting with fly brain data.

One interesting possibility is using NeuroArch as a backend to Geppetto [18], an open-source

web application for exploration and visualization of biological models developed as part of

the OpenWorm Project. Although Geppetto was originally designed to support simulations

of C. elegans, its modular architecture can be extended to support technologies such as

multiple GPUs required to emulate the fruit fly brain.

5.3.7 Support for Dynamic Models

Model configurations executed by Neurokernel cannot currently change during execution,

i.e., the projected flow of model data from NeuroArch to Neurokernel is unidirectional. This

effectively precludes development of models whose parameters or structure change over the

course of model execution. Apart from enabling consideration of a new class of circuit

models, support for dynamically changing stored model data could be useful in developing

semiautomated model refinement systems. To support model plasticity, NeuroArch’s API

must provide low-latency services for propagating updates to a stored model’s parameters

129

Chapter 5. Conclusions and Future Research Directions

in real-time without degrading the performance of model execution by Neurokernel.

5.3.8 Storing Model States

Software debuggers provide programmers with the means of examining variable states at

times prior to termination of program execution to pinpoint the causes of anomalous program

behavior. The analogous ability to obtain a snapshot of a circuit model’s states at points

during execution by Neurokernel before a model has finished running is similarly valuable to

model refinement. NeuroArch’s data model should be extended to support representation of

state data associated with the components of an executed circuit model at multiple times.

5.4 Generating a Modeling of the Central Complex - Future

Development

The arborization data used to construct the CX model described in § 4 does not contain any

information regarding the number of synapses between neurons, how the neurotransmitters

expressed by different neurons should inform the design of their respective models, or what

role local neurons play in processing. Analysis of central complex neuron morphologies

and neurotransmitter profiles could fill some of these gaps and enable generation of more

biologically plausible models of the CX neuropils.

130

Bibliography

Bibliography

[1] Fruit fly medulla connectome. https://github.com/janelia-flyem/
ConnectomeHackathon2015. Janelia Research Campus, HHMI. Accessed: 2015-
12-01.

[2] P. Arena, S. Maceo, L. Patane, and R. Strauss. A spiking network for spatial memory
formation: Towards a fly-inspired ellipsoid body model. In The 2013 International
Joint Conference on Neural Networks (IJCNN), pages 1–6, August 2013. http://dx.
doi.org/10.1109/IJCNN.2013.6706882.

[3] J. Douglas Armstrong and Jano I. van Hemert. Towards a virtual fly brain. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 367(1896):2387 –2397, June 2009. http://dx.doi.org/10.1098/rsta.
2008.0308.

[4] Giorgio A. Ascoli, Duncan E. Donohue, and Maryam Halavi. NeuroMorpho.Org: A
Central Resource for Neuronal Morphologies. 27(35):9247–9251, August 2007. http:
//www.jneurosci.org/content/27/35/9247.short.

[5] Helen Attrill, Kathleen Falls, Joshua L. Goodman, Gillian H. Millburn, Giulia Anton-
azzo, Alix J. Rey, Steven J. Marygold, and the FlyBase Consortium. FlyBase: estab-
lishing a Gene Group resource for Drosophila melanogaster. Nucleic Acids Research,
44(D1):D786–D792, January 2016. http://dx.doi.org/10.1093/nar/gkv1046.

[6] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C. Stewart,
Daniel Rasmussen, Xuan Choo, Aaron Russell Voelker, and Chris Eliasmith. Nengo:
a python tool for building large-scale functional brain models. Frontiers in Neuroin-
formatics, 7, January 2014. http://dx.doi.org/10.3389/fninf.2013.00048.

[7] John A. Bender, Alan J. Pollack, and Roy E. Ritzmann. Neural Activity in the
Central Complex of the Insect Brain Is Linked to Locomotor Changes. Current Biology,
20(10):921–926, May 2010. http://dx.doi.org/10.1016/j.cub.2010.03.054.

[8] B. V. Benjamin, Peiran Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran,
J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen. Neuro-
grid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations.
Proceedings of the IEEE, 102(5):699–716, May 2014. 10.1109/JPROC.2014.2313565.

131

https://github.com/janelia-flyem/ConnectomeHackathon2015
https://github.com/janelia-flyem/ConnectomeHackathon2015
http://dx.doi.org/10.1109/IJCNN.2013.6706882
http://dx.doi.org/10.1109/IJCNN.2013.6706882
http://dx.doi.org/10.1098/rsta.2008.0308
http://dx.doi.org/10.1098/rsta.2008.0308
http://www.jneurosci.org/content/27/35/9247.short
http://www.jneurosci.org/content/27/35/9247.short
http://dx.doi.org/10.1093/nar/gkv1046
http://dx.doi.org/10.3389/fninf.2013.00048
http://dx.doi.org/10.1016/j.cub.2010.03.054
10.1109/JPROC.2014.2313565

Bibliography

[9] Ulysses Bernardet and Paul F. M. J. Verschure. iqr: A tool for the construction of
multi-level simulations of brain and behaviour. Neuroinformatics, 8(2):113–134, June
2010. http://dx.doi.org/10.1007/s12021-010-9069-7.

[10] M. Beyeler, K.D. Carlson, Ting-Shuo Chou, N. Dutt, and J.L. Krichmar. CARLsim
3: A user-friendly and highly optimized library for the creation of neurobiologically
detailed spiking neural networks. In 2015 International Joint Conference on Neural
Networks (IJCNN), pages 1–8, July 2015. http://dx.doi.org/10.1109/IJCNN.2015.
7280424.

[11] James Bower and David Beeman. The Book of GENESIS: Exploring Realistic Neural
Models with the GEneral NEural SImulations System. Springer, Santa Clara, Calif,
December 1994.

[12] S. Bradner. The Internet Standards Process - Revision 3. Internet RFCs, ISSN 2070-
1721, RFC 2026, October 1996. http://www.rfc-editor.org/rfc/rfc2026.txt.

[13] Romain Brette and Dan F. M. Goodman. Simulating spiking neural networks
on GPU, December 2012. http://informahealthcare.com/doi/abs/10.3109/
0954898X.2012.730170.

[14] Daniel Brüderle, Mihai A. Petrovici, Bernhard Vogginger, Matthias Ehrlich, Thomas
Pfeil, Sebastian Millner, Andreas Grübl, Karsten Wendt, Eric Müller, Marc-Olivier
Schwartz, Dan Husmann Oliveira, Sebastian Jeltsch, Johannes Fieres, Moritz Schilling,
Paul Müller, Oliver Breitwieser, Venelin Petkov, Lyle Muller, Andrew P. Davison,
Pradeep Krishnamurthy, Jens Kremkow, Mikael Lundqvist, Eilif Muller, Johannes
Partzsch, Stefan Scholze, Lukas Zühl, Christian Mayr, Alain Destexhe, Markus
Diesmann, Tobias C. Potjans, Anders Lansner, René Schüffny, Johannes Schem-
mel, and Karlheinz Meier. A comprehensive workflow for general-purpose neural
modeling with highly configurable neuromorphic hardware systems. Biological Cy-
bernetics, 104(4-5):263–296, May 2011. http://www.springerlink.com/content/
xlh783325w537622/.

[15] Seth A. Budick and Michael H. Dickinson. Free-flight responses of Drosophila
melanogaster to attractive odors. Journal of Experimental Biology, 209(15):3001 –
3017, 2006. http://dx.doi.org/10.1242/jeb.02305.

[16] Randal Burns, William Gray Roncal, Dean Kleissas, Kunal Lillaney, Priya Man-
avalan, Eric Perlman, Daniel R. Berger, Davi D. Bock, Kwanghun Chung, Logan
Grosenick, Narayanan Kasthuri, Nicholas C. Weiler, Karl Deisseroth, Michael Kazh-
dan, Jeff Lichtman, R. Clay Reid, Stephen J. Smith, Alexander S. Szalay, Joshua T.
Vogelstein, and R. Jacob Vogelstein. The Open Connectome Project Data Clus-
ter: Scalable Analysis and Vision for High-Throughput Neuroscience. Scientific and
statistical database management: International Conference, SSDBM ...: proceedings.
International Conference on Scientific and Statistical Database Management, 2013.
http://dx.doi.org/10.1145/2484838.2484870.

132

http://dx.doi.org/10.1007/s12021-010-9069-7
http://dx.doi.org/10.1109/IJCNN.2015.7280424
http://dx.doi.org/10.1109/IJCNN.2015.7280424
http://www.rfc-editor.org/rfc/rfc2026.txt
http://informahealthcare.com/doi/abs/10.3109/0954898X.2012.730170
http://informahealthcare.com/doi/abs/10.3109/0954898X.2012.730170
http://www.springerlink.com/content/xlh783325w537622/
http://www.springerlink.com/content/xlh783325w537622/
http://dx.doi.org/10.1242/jeb.02305
http://dx.doi.org/10.1145/2484838.2484870

Bibliography

[17] Sebastian Busch, Mareike Selcho, Kei Ito, and Hiromu Tanimoto. A map of oc-
topaminergic neurons in the Drosophila brain. The Journal of Comparative Neurology,
513(6):643–667, April 2009. http://dx.doi.org/10.1002/cne.21966.

[18] Matteo Cantarelli, Giovanni Idili, Adrian Quintana Perez, Boris Marin, and Jesus
Martinez. Geppetto simulation platform for complex biological systems [Internet],
2016. http://geppetto.org.

[19] Nicholas T. Carnevale and Michael L. Hines. The NEURON Book. Cambridge Uni-
versity Press, Cambridge; New York, 2006.

[20] Chun-Chao Chen, Jie-Kai Wu, Hsuan-Wen Lin, Tsung-Pin Pai, Tsai-Feng Fu, Chia-
Lin Wu, Tim Tully, and Ann-Shyn Chiang. Visualizing Long-Term Memory Formation
in Two Neurons of the Drosophila Brain. Science, 335(6069):678–685, February 2012.
http://dx.doi.org/10.1126/science.1212735.

[21] Kit Cheung, Simon R. Schultz, and Wayne Luk. NeuroFlow: A General Purpose Spik-
ing Neural Network Simulation Platform using Customizable Processors. Neuromor-
phic Engineering, page 516, 2016. http://dx.doi.org/10.3389/fnins.2015.00516.

[22] Ann-Shyn Chiang, Chih-Yung Lin, Chao-Chun Chuang, Hsiu-Ming Chang, Chang-
Huain Hsieh, Chang-Wei Yeh, Chi-Tin Shih, Jian-Jheng Wu, Guo-Tzau Wang, and
Yung-Chang Chen. Three-dimensional reconstruction of brain-wide wiring networks
in Drosophila at single-cell resolution. Current Biology, 21(1):1–11, January 2011.
http://dx.doi.org/10.1016/j.cub.2010.11.056.

[23] M. Eugenia Chiappe, Johannes D. Seelig, Michael B. Reiser, and Vivek Jayaraman.
Walking modulates speed sensitivity in Drosophila motion vision. Current Biology,
20(16):1470–1475, August 2010. http://dx.doi.org/10.1016/j.cub.2010.06.072.

[24] Dmitri B. Chklovskii, Shiv Vitaladevuni, and Louis K. Scheffer. Semi-automated re-
construction of neural circuits using electron microscopy. Current Opinion in Neuro-
biology, 20(5):667–675, October 2010. http://dx.doi.org/16/j.conb.2010.08.002.

[25] Alex Cope, Chelsea Sabo, Esin Yavuz, Kevin Gurney, James Marshall, Thomas
Nowotny, and Eleni Vasilaki. The Green Brain Project - Developing a Neuromimetic
Robotic Honeybee. In Nathan F. Lepora, Anna Mura, Holger G. Krapp, Paul F.
M. J. Verschure, and Tony J. Prescott, editors, Biomimetic and Biohybrid Systems,
number 8064 in Lecture Notes in Computer Science, pages 362–363. Springer Berlin
Heidelberg, July 2013. http://dx.doi.org/10.1007/978-3-642-39802-5_35.

[26] Marta Costa, James D. Manton, Aaron D. Ostrovsky, Steffen Prohaska, and Gre-
gory S.X.E. Jefferis. NBLAST: Rapid, sensitive comparison of neuronal structure
and construction of neuron family databases. bioRxiv, page 006346, February 2016.
http://dx.doi.org/10.1101/006346.

133

http://dx.doi.org/10.1002/cne.21966
http://geppetto.org
http://dx.doi.org/10.1126/science.1212735
http://dx.doi.org/10.3389/fnins.2015.00516
http://dx.doi.org/10.1016/j.cub.2010.11.056
http://dx.doi.org/10.1016/j.cub.2010.06.072
http://dx.doi.org/16/j.conb.2010.08.002
http://dx.doi.org/10.1007/978-3-642-39802-5_35
http://dx.doi.org/10.1101/006346

Bibliography

[27] Marta Costa, Simon Reeve, Gary Grumbling, and David Osumi-Sutherland. The
Drosophila anatomy ontology. Journal of Biomedical Semantics, 4(1):32, October
2013. http://www.jbiomedsem.com/content/4/1/32/abstract.

[28] Lisandro D. Dalcin, Pablo A. Kler, Rodrigo R. Paz, and Alejandro Cosimo. Parallel
distributed computing using Python. Advances in Water Resources, 34(9):1124–1139,
2011. http://dx.doi.org/10.1016/j.advwatres.2011.04.013.

[29] Richard W. Daniels, Maria V. Gelfand, Catherine A. Collins, and Aaron DiAntonio.
Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS.
The Journal of Comparative Neurology, 508(1):131–152, May 2008. http://dx.doi.
org/10.1002/cne.21670.

[30] Andrew P. Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif Muller,
Dejan Pecevski, Laurent Perrinet, and Pierre Yger. PyNN: a common interface for
neuronal network simulators. Frontiers in Neuroinformatics, 2:11, 2009. http://dx.
doi.org/10.3389/neuro.11.011.2008.

[31] Alex D.M. Dewar, Antoine Wystrach, Paul Graham, and Andrew Philippides.
Navigation-specific neural coding in the visual system of Drosophila. Bio Systems,
136:120–127, October 2015. http://dx.doi.org/10.1016/j.biosystems.2015.07.
008.

[32] Mikael Djurfeldt. The Connection-Set Algebra - A Novel Formalism for the Repre-
sentation of Connectivity Structure in Neuronal Network Models. Neuroinformatics,
10(3):287–304, July 2012. http://dx.doi.org/10.1007/s12021-012-9146-1.

[33] Mikael Djurfeldt, Johannes Hjorth, Jochen M. Eppler, Niraj Dudani, Moritz Helias,
Tobias C. Potjans, Upinder S. Bhalla, Markus Diesmann, Jeanette Hellgren Kotaleski,
and Örjan Ekeberg. Run-time interoperability between neuronal network simulators
based on the MUSIC framework. Neuroinformatics, 8(1):43–60, March 2010. http:
//dx.doi.org/10.1007/s12021-010-9064-z.

[34] Gilberto dos Santos, Andrew J. Schroeder, Joshua L. Goodman, Victor B. Strelets,
Madeline A. Crosby, Jim Thurmond, David B. Emmert, William M. Gelbart, and
the FlyBase Consortium. FlyBase: introduction of the Drosophila melanogaster Re-
lease 6 reference genome assembly and large-scale migration of genome annotations.
Nucleic Acids Research, November 2014. http://dx.doi.org/10.1093/nar/gku1099.

[35] Joseph B. Duffy. GAL4 system in Drosophila: a fly geneticist’s Swiss Army knife.
Genesis (New York, N.Y.: 2000), 34(1-2):1–15, October 2002. http://dx.doi.org/
10.1002/gene.10150.

[36] Chris Eliasmith and Charles H. Anderson. Neural Engineering: Computation, Rep-
resentation, and Dynamics in Neurobiological Systems. The MIT Press, new edition
edition, August 2004.

134

http://www.jbiomedsem.com/content/4/1/32/abstract
http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://dx.doi.org/10.1002/cne.21670
http://dx.doi.org/10.1002/cne.21670
http://dx.doi.org/10.3389/neuro.11.011.2008
http://dx.doi.org/10.3389/neuro.11.011.2008
http://dx.doi.org/10.1016/j.biosystems.2015.07.008
http://dx.doi.org/10.1016/j.biosystems.2015.07.008
http://dx.doi.org/10.1007/s12021-012-9146-1
http://dx.doi.org/10.1007/s12021-010-9064-z
http://dx.doi.org/10.1007/s12021-010-9064-z
http://dx.doi.org/10.1093/nar/gku1099
http://dx.doi.org/10.1002/gene.10150
http://dx.doi.org/10.1002/gene.10150

Bibliography

[37] Chris Eliasmith, Terrence C. Stewart, Xuan Choo, Trevor Bekolay, Travis DeWolf,
Yichuan Tang, and Daniel Rasmussen. A large-scale model of the functioning
brain. Science, 338(6111):1202–1205, November 2012. http://dx.doi.org/10.1126/
science.1225266.

[38] A.K. Fidjeland, E.B. Roesch, M.P. Shanahan, and W. Luk. NeMo: A Platform for
Neural Modelling of Spiking Neurons Using GPUs. In 20th IEEE International Con-
ference on Application-specific Systems, Architectures and Processors, 2009. ASAP
2009, pages 137–144, July 2009. http://dx.doi.org/10.1109/ASAP.2009.24.

[39] A.K. Fidjeland and M.P. Shanahan. Accelerated simulation of spiking neural networks
using GPUs. In Neural Networks (IJCNN), The 2010 International Joint Conference
on, pages 1–8, 2010. http://dx.doi.org/10.1109/IJCNN.2010.5596678.

[40] Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation.
In ACM SIGPLAN Notices, volume 39, pages 111–122. ACM, 2004. http://dx.doi.
org/10.1145/982962.964011.

[41] Mark A. Frye and Michael H. Dickinson. Closing the loop between neurobiology
and flight behavior in Drosophila. Current Opinion in Neurobiology, 14(6):729–736,
December 2004. http://dx.doi.org/10.1016/j.conb.2004.10.004.

[42] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timo-
thy S. Woodall. Open MPI: Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting,
pages 97–104, Budapest, Hungary, September 2004. http://dx.doi.org/10.1007/
978-3-540-30218-6_19.

[43] Marc-Oliver Gewaltig and Markus Diesmann. NEST (NEural {simulation} {tool}).
Scholarpedia, 2(4):1430, 2007. http://dx.doi.org/10.4249/scholarpedia.1430.

[44] Lev E. Givon and Aurel A. Lazar. Neurokernel: An open source platform for emulating
the fruit fly brain. PLoS ONE, January 2016. http://dx.doi.org/10.1371/journal.
pone.0146581.s001. Also available as Neurokernel RFC #4: http://dx.doi.org/
10.5281/zenodo.31947.

[45] Lev E. Givon, Aurel A. Lazar, and Nikul H. Ukani. Neuroarch: A Graph-Based
Platform for Constructing and Querying Models of the Fruit Fly Brain Architecture.
Frontiers in Neuroinformatics, (42), Aug 2014.

[46] Lev E. Givon, Aurel A. Lazar, and Nikul H. Ukani. NeuroArch: A Graph dB for
Querying and Executing Fruit Fly Brain Circuits. December 2015. http://dx.doi.
org/10.5281/zenodo.44225.

135

http://dx.doi.org/10.1126/science.1225266
http://dx.doi.org/10.1126/science.1225266
http://dx.doi.org/10.1109/ASAP.2009.24
http://dx.doi.org/10.1109/IJCNN.2010.5596678
http://dx.doi.org/10.1145/982962.964011
http://dx.doi.org/10.1145/982962.964011
http://dx.doi.org/10.1016/j.conb.2004.10.004
http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.4249/scholarpedia.1430
http://dx.doi.org/10.1371/journal.pone.0146581.s001
http://dx.doi.org/10.1371/journal.pone.0146581.s001
http://dx.doi.org/10.5281/zenodo.31947
http://dx.doi.org/10.5281/zenodo.31947
http://dx.doi.org/10.5281/zenodo.44225
http://dx.doi.org/10.5281/zenodo.44225

Bibliography

[47] Lev E. Givon, Thomas Unterthiner, N. Benjamin Erichson, David Wei Chiang,
Eric Larson, Luke Pfister, Sander Dieleman, Gregory R. Lee, Stefan van der Walt,
Teodor Mihai Moldovan, Frédéric Bastien, Xing Shi, Jan Schlüter, Brian Thomas,
Chris Capdevila, Alex Rubinsteyn, Michael M. Forbes, Jacob Frelinger, Tim Klein,
Bruce Merry, Lars Pastewka, Steve Taylor, Feng Wang, and Yiyin Zhou. scikit-
cuda 0.5.1: a Python interface to GPU-powered libraries [Internet], December 2015.
http://dx.doi.org/10.5281/zenodo.40565.

[48] Padraig Gleeson, Sharon Crook, Robert C. Cannon, Michael L. Hines, Guy O. Billings,
Matteo Farinella, Thomas M. Morse, Andrew P. Davison, Subhasis Ray, Upinder S.
Bhalla, Simon R. Barnes, Yoana D. Dimitrova, and R. Angus Silver. NeuroML: a
language for describing data driven models of neurons and networks with a high degree
of biological detail. PLoS Comput Biol, 6(6):e1000815, June 2010. http://dx.doi.
org/10.1371/journal.pcbi.1000815.

[49] Padraig Gleeson, Sharon Crook, Angus Silver, and Robert Cannon. Development of
NeuroML version 2.0: greater extensibility, support for abstract neuronal models and
interaction with systems biology languages. BMC Neuroscience, 12(Suppl 1):P29, July
2011. http://dx.doi.org/10.1186/1471-2202-12-S1-P29.

[50] Padraig Gleeson, Eugenio Piasini, Sharon Crook, Robert Cannon, Volker Steuber,
Dieter Jaeger, Sergio Solinas, Egidio D’Angelo, and R. Angus Silver. The Open
Source Brain Initiative: enabling collaborative modelling in computational neuro-
science. BMC Neuroscience, 13(Suppl 1):O7, July 2012. http://dx.doi.org/10.
1186/1471-2202-13-S1-O7.

[51] Padraig Gleeson, Volker Steuber, and R. Angus Silver. neuroConstruct: a tool for
modeling networks of neurons in 3D space. Neuron, 54(2):219–235, April 2007. http:
//dx.doi.org/10.1016/j.neuron.2007.03.025.

[52] Dan F.M. Goodman and Romain Brette. The Brian simulator. Frontiers in Neuro-
science, September 2009. http://dx.doi.org/10.3389/neuro.01.026.2009.

[53] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network struc-
ture, dynamics, and function using NetworkX. In Gäel Varoquaux, Travis Vaught,
and Jarrod Millman, editors, Proceedings of the 7th Python in Science Confer-
ence (SciPy2008), pages 11–15, August 2008. http://conference.scipy.org/
proceedings/SciPy2008/index.html.

[54] U. Hanesch, K. F. Fischbach, and M. Heisenberg. Neuronal architecture of the central
complex in Drosophila melanogaster. Cell and Tissue Research, 257(2):343–366, 1989.
http://dx.doi.org/10.1007/BF00261838.

[55] Stanley Heinze and Uwe Homberg. Neuroarchitecture of the central complex of the
desert locust: Intrinsic and columnar neurons. The Journal of Comparative Neurology,
511(4):454–478, December 2008. http://dx.doi.org/10.1002/cne.21842.

136

http://dx.doi.org/10.5281/zenodo.40565
http://dx.doi.org/10.1371/journal.pcbi.1000815
http://dx.doi.org/10.1371/journal.pcbi.1000815
http://dx.doi.org/10.1186/1471-2202-12-S1-P29
http://dx.doi.org/10.1186/1471-2202-13-S1-O7
http://dx.doi.org/10.1186/1471-2202-13-S1-O7
http://dx.doi.org/10.1016/j.neuron.2007.03.025
http://dx.doi.org/10.1016/j.neuron.2007.03.025
http://dx.doi.org/10.3389/neuro.01.026.2009
http://conference.scipy.org/proceedings/SciPy2008/index.html
http://conference.scipy.org/proceedings/SciPy2008/index.html
http://dx.doi.org/10.1007/BF00261838
http://dx.doi.org/10.1002/cne.21842

Bibliography

[56] Moritz Helias, Susanne Kunkel, Gen Masumoto, Jun Igarashi, Jochen Martin Eppler,
Shin Ishii, Tomoki Fukai, Abigail Morrison, and Markus Diesmann. Supercomputers
ready for use as discovery machines for neuroscience. Frontiers in Neuroinformatics,
6:26, 2012. http://dx.doi.org/10.3389/fninf.2012.00026.

[57] Michael Hines, Sameer Kumar, and Felix Schürmann. Comparison of neuronal spike
exchange methods on a Blue Gene/P supercomputer. Frontiers in Computational
Neuroscience, 5, November 2011. http://dx.doi.org/10.3389/fncom.2011.00049.

[58] Michael L. Hines, Thomas Morse, Michele Migliore, Nicholas T. Carnevale, and Gor-
don M. Shepherd. ModelDB: a database to support computational neuroscience. Jour-
nal of Computational Neuroscience, 17(1):7–11, August 2004. PMID: 15218350.

[59] Roger V. Hoang, Devyani Tanna, Laurence C. Jayet Bray, Sergiu M. Dascalu, and
Frederick C. Harris Jr. A novel CPU/GPU simulation environment for large-scale
biologically realistic neural modeling. Frontiers in Neuroinformatics, 7:19, 2013. http:
//dx.doi.org/10.3389/fninf.2013.00019.

[60] Yu-Chi Huang, Cheng-Te Wang, Guo-Tzau Wang, Ta-Shun Su, Pao-Yueh Hsiao,
Ching-Yao Lin, Chang-Huain Hsieh, Hsiu-Ming Chang, and Chung-Chuan Lo. The
Flysim project - persistent simulation and real-time visualization of fruit fly whole-
brain spiking neural network model. In Frontiers in Neuroinformatics, Leiden, Nether-
lands, August 2014. http://dx.doi.org/10.3389/conf.fninf.2014.18.00043.

[61] Stephen J. Huston and Vivek Jayaraman. Studying sensorimotor integration in insects.
Current Opinion in Neurobiology, 21(4):527–534, August 2011. http://dx.doi.org/
10.1016/j.conb.2011.05.030.

[62] Kei Ito, Kazunori Shinomiya, Masayoshi Ito, J. Douglas Armstrong, George Boyan,
Volker Hartenstein, Steffen Harzsch, Martin Heisenberg, Uwe Homberg, Arnim Jenett,
Haig Keshishian, Linda L. Restifo, Wolfgang Rössler, Julie H. Simpson, Nicholas J.
Strausfeld, Roland Strauss, Leslie B. Vosshall, and Insect Brain Name Working Group.
A systematic nomenclature for the insect brain. Neuron, 81(4):755–765, February 2014.
http://dx.doi.org/10.1016/j.neuron.2013.12.017.

[63] E.M. Izhikevich. Simple model of spiking neurons. Neural Networks, IEEE Transac-
tions on, 14(6):1569–1572, 2003. http://dx.doi.org/10.1109/TNN.2003.820440.

[64] Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: open source scientific tools
for Python, 2001. http://www.scipy.org.

[65] Lily Kahsai and Åsa M.E. Winther. Chemical neuroanatomy of the Drosophila central
complex: Distribution of multiple neuropeptides in relation to neurotransmitters. The
Journal of Comparative Neurology, 519(2):290–315, 2011. http://dx.doi.org/10.
1002/cne.22520.

137

http://dx.doi.org/10.3389/fninf.2012.00026
http://dx.doi.org/10.3389/fncom.2011.00049
http://dx.doi.org/10.3389/fninf.2013.00019
http://dx.doi.org/10.3389/fninf.2013.00019
http://dx.doi.org/10.3389/conf.fninf.2014.18.00043
http://dx.doi.org/10.1016/j.conb.2011.05.030
http://dx.doi.org/10.1016/j.conb.2011.05.030
http://dx.doi.org/10.1016/j.neuron.2013.12.017
http://dx.doi.org/10.1109/TNN.2003.820440
http://www.scipy.org
http://dx.doi.org/10.1002/cne.22520
http://dx.doi.org/10.1002/cne.22520

Bibliography

[66] Eric R. Kandel, Henry Markram, Paul M. Matthews, Rafael Yuste, and Christof
Koch. Neuroscience thinks big (and collaboratively). Nature Reviews Neuroscience,
14(9):659–664, September 2013. http://dx.doi.org/10.1038/nrn3578.

[67] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392,
1998. http://dx.doi.org/10.1137/S1064827595287997.

[68] Anmo J. Kim, Aurel A. Lazar, and Yevgeniy B. Slutskiy. System identification
of Drosophila olfactory sensory neurons. Journal of Computational Neuroscience,
30(1):143–161, August 2011. http://dx.doi.org/10.1007/s10827-010-0265-0.

[69] Anmo J. Kim, Aurel A. Lazar, and Yevgeniy B. Slutskiy. Projection neurons in
Drosophila antennal lobes signal the acceleration of odor concentrations. eLife, page
e06651, May 2015. http://dx.doi.org/10.7554/eLife.06651.

[70] Kuno Kirschfeld. Die projektion der optischen umwelt auf das raster der rhabdomere
im komplex auge von musca. Experimental Brain Research, 3:248–270, 1967.

[71] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, and
Ahmed Fasih. PyCUDA and PyOpenCL: a scripting-based approach to GPU run-
time code generation. Parallel Computing, 38(3):157–174, March 2012. http://dx.
doi.org/10.1016/j.parco.2011.09.001.

[72] Aurel A. Lazar. Programming telecommunication networks. IEEE Network, 11(5):8–
18, October 1997. http://dx.doi.org/10.1109/65.620517.

[73] Aurel A. Lazar, Konstantinos Psychas, Nikul H. Ukani, and Yiyin Zhou. A Parallel
Processing Model of the Drosophila Retina, August 2015. NK RFC #3, http://dx.
doi.org/10.5281/zenodo.30036.

[74] Aurel A. Lazar, Konstantinos Psychas, Nikul H. Ukani, and Yiyin Zhou. Retina of the
fruit fly eyes: a detailed simulation model. BMC Neuroscience 2015, 16(Suppl 1):301,
2015. http://dx.doi.org/10.1186/1471-2202-16-S1-P301.

[75] Aurel A. Lazar and Yevgeniy B. Slutskiy. Channel Identification Machines for Mul-
tidimensional Receptive Fields. Frontiers in Computational Neuroscience, 8, 2014.
http://dx.doi.org/10.3389/fncom.2014.00117.

[76] Aurel A. Lazar and Yevgeniy B. Slutskiy. Functional Identification of Spike-Processing
Neural Circuits. Neural Computation, 26(2), February 2014. http://dx.doi.org/10.
1162/NECO_a_00543.

[77] Aurel A. Lazar and Yevgeniy B. Slutskiy. Spiking Neural Circuits with Dendritic
Stimulus Processors. Journal of Computational Neuroscience, 38(1):1–24, 2015. http:
//dx.doi.org/10.1007/s10827-014-0522-8.

138

http://dx.doi.org/10.1038/nrn3578
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1007/s10827-010-0265-0
http://dx.doi.org/10.7554/eLife.06651
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://dx.doi.org/10.1109/65.620517
http://dx.doi.org/10.5281/zenodo.30036
http://dx.doi.org/10.5281/zenodo.30036
http://dx.doi.org/10.1186/1471-2202-16-S1-P301
http://dx.doi.org/10.3389/fncom.2014.00117
http://dx.doi.org/10.1162/NECO_a_00543
http://dx.doi.org/10.1162/NECO_a_00543
http://dx.doi.org/10.1007/s10827-014-0522-8
http://dx.doi.org/10.1007/s10827-014-0522-8

Bibliography

[78] Aurel A. Lazar, Yevgeniy B. Slutskiy, and Yiyin Zhou. Massively Parallel Neural
Circuits for Stereoscopic Color Vision: Encoding, Decoding and Identification. Neural
Networks, 63:254–271, 2015. http://dx.doi.org/10.1016/j.neunet.2014.10.014.

[79] Aurel A. Lazar, Nikul H. Ukani, and Yiyin Zhou. The cartridge: A canonical
neural circuit abstraction of the lamina neuropil – construction and composition
rules. Neurokernel Request for Comments, Neurokernel RFC #2, January 2014.
http://dx.doi.org/10.5281/zenodo.11856.

[80] Aurel A. Lazar, Nikul H. Ukani, and Yiyin Zhou. The Cartridge: A Canonical Neural
Circuit Abstraction of the Lamina Neuropil - Construction and Composition Rules,
January 2014. NK RFC #2, http://dx.doi.org/10.5281/zenodo.11856.

[81] Aurel A. Lazar and Yiyin Zhou. Volterra Dendritic Stimulus Processors and Bio-
physical Spike Generators with Intrinsic Noise Sources. Frontiers in Computational
Neuroscience, 8, 2014. http://dx.doi.org/10.3389/fncom.2014.00095.

[82] Chih-Yung Lin, Chao-Chun Chuang, Tzu-En Hua, Chun-Chao Chen, Barry J. Dickson,
Ralph J. Greenspan, and Ann-Shyn Chiang. A comprehensive wiring diagram of the
protocerebral bridge for visual information processing in the Drosophila brain. Cell
Reports, 3(5):1739–1753, May 2013. http://dx.doi.org/10.1016/j.celrep.2013.
04.022.

[83] Wolfgang Maass. Networks of spiking neurons: The third generation of neural network
models. Neural Networks, 10(9):1659–1671, December 1997. http://dx.doi.org/10.
1016/S0893-6080(97)00011-7.

[84] Gaby Maimon, Andrew D. Straw, and Michael H. Dickinson. A simple vision-based
algorithm for decision making in flying Drosophila. Current Biology, 18(6):464–470,
March 2008. http://dx.doi.org/10.1016/j.cub.2008.02.054.

[85] Matthew S. Maisak, Juergen Haag, Georg Ammer, Etienne Serbe, Matthias Meier,
Aljoscha Leonhardt, Tabea Schilling, Armin Bahl, Gerald M. Rubin, Aljoscha Nern,
Barry J. Dickson, Dierk F. Reiff, Elisabeth Hopp, and Alexander Borst. A directional
tuning map of Drosophila elementary motion detectors. Nature, 500(7461):212–216,
August 2013. http://dx.doi.org/10.1038/nature12320.

[86] Zhengmei Mao and Ronald L. Davis. Eight Different Types of Dopaminergic Neurons
Innervate the Drosophila Mushroom Body Neuropil: Anatomical and Physiological
Heterogeneity. Frontiers in Neural Circuits, 3, July 2009. http://dx.doi.org/10.
3389/neuro.04.005.2009.

[87] L. Marenco, P. Nadkarni, E. Skoufos, G. Shepherd, and P. Miller. Neuronal database
integration: the Senselab EAV data model. Proceedings of the AMIA Symposium,
pages 102–106, 1999. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2232788/.

139

http://dx.doi.org/10.1016/j.neunet.2014.10.014
http://dx.doi.org/10.5281/zenodo.11856
http://dx.doi.org/10.5281/zenodo.11856
http://dx.doi.org/10.3389/fncom.2014.00095
http://dx.doi.org/10.1016/j.celrep.2013.04.022
http://dx.doi.org/10.1016/j.celrep.2013.04.022
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1016/j.cub.2008.02.054
http://dx.doi.org/10.1038/nature12320
http://dx.doi.org/10.3389/neuro.04.005.2009
http://dx.doi.org/10.3389/neuro.04.005.2009
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2232788/

Bibliography

[88] Alfonso Martín-Peña, Angel Acebes, José-Rodrigo Rodríguez, Valerie Chevalier, Ser-
gio Casas-Tinto, Tilman Triphan, Roland Strauss, and Alberto Ferrús. Cell types and
coincident synapses in the ellipsoid body of Drosophila. European Journal of Neuro-
science, 39(10):1586–1601, May 2014. http://dx.doi.org/10.1111/ejn.12537.

[89] Wes McKinney. pandas: a foundational Python library for data analysis and statis-
tics. In International Conference for High Performance Computing, Networking,
Storage, and Analysis, November 2011. http://www.scribd.com/doc/71048089/
pandas-a-Foundational-Python-Library-for-Data-Analysis-and-Statistics.

[90] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun
Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Naka-
mura, Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar Appuswamy, Brian
Taba, Arnon Amir, Myron D. Flickner, William P. Risk, Rajit Manohar, and Dhar-
mendra S. Modha. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science, 345(6197):668–673, August 2014.
http://science.sciencemag.org/content/345/6197/668.

[91] Nestor Milyaev, David Osumi-Sutherland, Simon Reeve, Nicholas Burton, Richard A
Baldock, and J. Douglas Armstrong. The Virtual Fly Brain browser and query in-
terface. Bioinformatics, 28(3):411–415, February 2012. http://bioinformatics.
oxfordjournals.org/content/28/3/411.

[92] K. Minkovich, C.M. Thibeault, M.J. O’Brien, A. Nogin, Y. Cho, and N. Srinivasa.
HRLSim: a high performance spiking neural network simulator for GPGPU clusters.
IEEE Transactions on Neural Networks and Learning Systems, 25(2):316–331, 2014.
http://dx.doi.org/10.1109/TNNLS.2013.2276056.

[93] Javier Morante and Claude Desplan. The color-vision circuit in the medulla of
Drosophila. Current Biology, 18(8):553–565, April 2008. http://dx.doi.org/10.
1016/j.cub.2008.02.075.

[94] Laiyong Mu, Kei Ito, Jonathan P. Bacon, and Nicholas J. Strausfeld. Optic glomeruli
and their inputs in Drosophila share an organizational ground pattern with the an-
tennal lobes. The Journal of Neuroscience, 32(18):6061–6071, May 2012. http:
//dx.doi.org/10.1523/JNEUROSCI.0221-12.2012.

[95] U. Müller. The nitric oxide system in insects. Progress in Neurobiology, 51(3):363–381,
February 1997.

[96] Jim Mutch, Ulf Knoblich, and Tomaso Poggio. CNS: a GPU-based framework for
simulating cortically-organized networks. Technical Report MIT-CSAIL-TR-2010-013,
MIT, 2010. http://gpucomputing.net/?q=node/429.

[97] Jayram Moorkanikara Nageswaran, Nikil Dutt, Jeffrey L. Krichmar, Alex Nicolau, and
Alexander V. Veidenbaum. A configurable simulation environment for the efficient sim-
ulation of large-scale spiking neural networks on graphics processors. Neural Networks,
22(5-6):791–800, July 2009. http://dx.doi.org/10.1016/j.neunet.2009.06.028.

140

http://dx.doi.org/10.1111/ejn.12537
http://www.scribd.com/doc/71048089/pandas-a-Foundational-Python-Library-for-Data-Analysis-and-Statistics
http://www.scribd.com/doc/71048089/pandas-a-Foundational-Python-Library-for-Data-Analysis-and-Statistics
http://science.sciencemag.org/content/345/6197/668
http://bioinformatics.oxfordjournals.org/content/28/3/411
http://bioinformatics.oxfordjournals.org/content/28/3/411
http://dx.doi.org/10.1109/TNNLS.2013.2276056
http://dx.doi.org/10.1016/j.cub.2008.02.075
http://dx.doi.org/10.1016/j.cub.2008.02.075
http://dx.doi.org/10.1523/JNEUROSCI.0221-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.0221-12.2012
http://gpucomputing.net/?q=node/429
http://dx.doi.org/10.1016/j.neunet.2009.06.028

Bibliography

[98] D. R. Nässel. Histamine in the brain of insects: a review. Microscopy Research and
Technique, 44(2-3):121–136, February 1999. http://dx.doi.org/10.1002/(SICI)
1097-0029(19990115/01)44:2/3%3C121::AID-JEMT6%3E3.0.CO;2-F.

[99] Eilen Nordlie, Marc-Oliver Gewaltig, and Hans Ekkehard Plesser. Towards Repro-
ducible Descriptions of Neuronal Network Models. PLoS Comput Biol, 5(8):e1000456,
2009. http://dx.doi.org/10.1371/journal.pcbi.1000456.

[100] NVIDIA. CUDA Toolkit 4.0 Readiness for CUDA Applications, March 2011.

[101] NVIDIA. Kepler GK110 whitepaper, 2012.

[102] Hideo Otsuna and Kei Ito. Systematic analysis of the visual projection neurons of
Drosophila melanogaster. I. Lobula-specific pathways. The Journal of Comparative
Neurology, 497(6):928–958, August 2006.

[103] Hideo Otsuna, Kazunori Shinomiya, and Kei Ito. Parallel neural pathways in higher
visual centers of the Drosophila brain that mediate wavelength-specific behavior. Fron-
tiers in Neural Circuits, 8, February 2014. http://dx.doi.org/10.3389/fncir.
2014.00008.

[104] Andrey Palyanov, Sergey Khayrulin, and Mike Vella. Sibernetic fluid mechanics sim-
ulator [Internet], 2015. http://openworm.github.io/sibernetic/.

[105] Pablo Pareja-Tobes, Raquel Tobes, Marina Manrique, Eduardo Pareja, and Eduardo
Pareja-Tobes. Bio4j: a high-performance cloud-enabled graph-based data platform.
bioRxiv, page 016758, March 2015. http://dx.doi.org/10.1101/016758.

[106] Dejan Pecevski, Thomas Natschläger, and Klaus Schuch. PCSIM: a parallel simulation
environment for neural circuits fully integrated with Python. Frontiers in Neuroinfor-
matics, 3:11, 2009. http://dx.doi.org/10.3389/neuro.11.011.2009.

[107] Hanchuan Peng, Alessandro Bria, Zhi Zhou, Giulio Iannello, and Fuhui Long. Exten-
sible visualization and analysis for multidimensional images using Vaa3d. Nature Pro-
tocols, 9(1):193–208, January 2014. http://dx.doi.org/10.1038/nprot.2014.011.

[108] Hanchuan Peng, Zongcai Ruan, Fuhui Long, Julie H. Simpson, and Eugene W.
Myers. V3D enables real-time 3d visualization and quantitative analysis of large-
scale biological image data sets. Nature Biotechnology, 28(4):348–353, April 2010.
http://dx.doi.org/10.1038/nbt.1612.

[109] Hanchuan Peng, Jianyong Tang, Hang Xiao, Alessandro Bria, Jianlong Zhou, Victoria
Butler, Zhi Zhou, Paloma T. Gonzalez-Bellido, Seung W. Oh, Jichao Chen, Ananya
Mitra, Richard W. Tsien, Hongkui Zeng, Giorgio A. Ascoli, Giulio Iannello, Michael
Hawrylycz, Eugene Myers, and Fuhui Long. Virtual finger boosts three-dimensional
imaging and microsurgery as well as terabyte volume image visualization and analysis.
Nature Communications, 5:4342, 2014. http://dx.doi.org/10.1038/ncomms5342.

141

http://dx.doi.org/10.1002/(SICI)1097-0029(19990115/01)44:2/3%3C121::AID-JEMT6%3E3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0029(19990115/01)44:2/3%3C121::AID-JEMT6%3E3.0.CO;2-F
http://dx.doi.org/10.1371/journal.pcbi.1000456
http://dx.doi.org/10.3389/fncir.2014.00008
http://dx.doi.org/10.3389/fncir.2014.00008
http://openworm.github.io/sibernetic/
http://dx.doi.org/10.1101/016758
http://dx.doi.org/10.3389/neuro.11.011.2009
http://dx.doi.org/10.1038/nprot.2014.011
http://dx.doi.org/10.1038/nbt.1612
http://dx.doi.org/10.1038/ncomms5342

Bibliography

[110] Wayne Pereanu, Abilasha Kumar, Arnim Jennett, Heinrich Reichert, and Volker
Hartenstein. http://dx.doi.org/10.1002/cne.22376.

[111] F. Perez and B.E. Granger. IPython: a system for interactive scientific computing.
Computing in Science Engineering, 9(3):21 –29, June 2007. http://dx.doi.org/10.
1109/MCSE.2007.53.

[112] Keram Pfeiffer and Uwe Homberg. Organization and Functional Roles of the Central
Complex in the Insect Brain. Annual Review of Entomology, 59(1):165–184, 2014.
http://dx.doi.org/10.1146/annurev-ento-011613-162031.

[113] James Phillips-Portillo. The Central Complex of the Flesh Fly, Neobellieria bullata:
Recordings and Morphologies of Protocerebral Inputs and Small-Field Neurons. The
Journal of Comparative Neurology, 520(14):3088–3104, October 2012. http://dx.
doi.org/10.1002/cne.23134.

[114] Ivan Raikov and INCF Multiscale Modeling Taskforce. NineML - a description lan-
guage for spiking neuron network modeling: the abstraction layer. In BMC Neuro-
science 2010, volume 11, page P66, San Antonio, 2010. http://www.biomedcentral.
com/1471-2202/11/S1/P66.

[115] Alexander D. Rast, Xin Jin, Francesco Galluppi, Luis A. Plana, Cameron Patterson,
and Steve Furber. Scalable event-driven native parallel processing: the SpiNNaker
neuromimetic system. In Proceedings of the 7th ACM international conference on
Computing frontiers, CF ’10, page 21–30, New York, NY, USA, 2010. ACM. ACM
ID: 1787279.

[116] Subhasis Ray and Upinder S. Bhalla. PyMOOSE: Interoperable Scripting in Python
for MOOSE. Frontiers in Neuroinformatics, 2, December 2008. http://dx.doi.org/
10.3389/neuro.11.006.2008.

[117] Micah Richert, Jayram Moorkanikara Nageswaran, Nikil Dutt, and Jeffrey L. Krich-
mar. An efficient simulation environment for modeling large-scale cortical process-
ing. Frontiers in Neuroinformatics, 5:19, 2011. http://dx.doi.org/10.3389/fninf.
2011.00019.

[118] Paul Richmond, Alex Cope, Kevin Gurney, and David J. Allerton. From Model
Specification to Simulation of Biologically Constrained Networks of Spiking Neu-
rons. Neuroinformatics, 12(2):307–323, November 2013. http://dx.doi.org/10.
1007/s12021-013-9208-z.

[119] Jens Rister, Dennis Pauls, Bettina Schnell, Chun-Yuan Ting, Chi-Hon Lee, Irina
Sinakevitch, Javier Morante, Nicholas J. Strausfeld, Kei Ito, and Martin Heisen-
berg. Dissection of the peripheral motion channel in the visual system of Drosophila
melanogaster. Neuron, 56(1):155–170, October 2007. http://dx.doi.org/10.1016/
j.neuron.2007.09.014.

142

http://dx.doi.org/10.1002/cne.22376
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1146/annurev-ento-011613-162031
http://dx.doi.org/10.1002/cne.23134
http://dx.doi.org/10.1002/cne.23134
http://www.biomedcentral.com/1471-2202/11/S1/P66
http://www.biomedcentral.com/1471-2202/11/S1/P66
http://dx.doi.org/10.3389/neuro.11.006.2008
http://dx.doi.org/10.3389/neuro.11.006.2008
http://dx.doi.org/10.3389/fninf.2011.00019
http://dx.doi.org/10.3389/fninf.2011.00019
http://dx.doi.org/10.1007/s12021-013-9208-z
http://dx.doi.org/10.1007/s12021-013-9208-z
http://dx.doi.org/10.1016/j.neuron.2007.09.014
http://dx.doi.org/10.1016/j.neuron.2007.09.014

Bibliography

[120] Pedro Rittner and Thomas A. Cleland. Myriad: a transparently parallel GPU - based
simulator for densely integrated biophysical models. In Society of Neuroscience Ab-
stracts, page 187.02, 2014.

[121] Pedro Rittner and Thomas A. Cleland. The Myriad simulator : densely coupled
realistic neural networks on GPU. page P4169, 2014.

[122] Pedro Rittner, Andrew J. Davies, and Thomas A. Cleland. The Myriad simulator: par-
allel computation for densely integrated models. In Society of Neuroscience Abstracts,
page 451.12, 2015.

[123] Marko A. Rodriguez. The Gremlin Graph Traversal Machine and Language (Invited
Talk). In Proceedings of the 15th Symposium on Database Programming Languages,
DBPL 2015, pages 1–10, New York, NY, USA, 2015. ACM. http://doi.acm.org/
10.1145/2815072.2815073.

[124] Joshua R. Sanes and S. Lawrence Zipursky. Design principles of insect and vertebrate
visual systems. Neuron, 66(1):15–36, April 2010. http://dx.doi.org/10.1016/j.
neuron.2010.01.018.

[125] Johannes D. Seelig and Vivek Jayaraman. Feature detection and orientation tuning
in the Drosophila central complex. Nature, advance online publication, October 2013.
http://dx.doi.org/10.1038/nature12601.

[126] Johannes D. Seelig and Vivek Jayaraman. Neural dynamics for landmark orientation
and angular path integration. Nature, 521(7551):186–191, May 2015. http://dx.doi.
org/10.1038/nature14446.

[127] Chi-Tin Shih, Olaf Sporns, Shou-Li Yuan, Ta-Shun Su, Yen-Jen Lin, Chao-Chun
Chuang, Ting-Yuan Wang, Chung-Chuang Lo, Ralph J. Greenspan, and Ann-Shyn
Chiang. Connectomics-Based Analysis of Information Flow in the Drosophila Brain.
Current Biology, 25(10):1249–1258, May 2015. http://dx.doi.org/10.1016/j.cub.
2015.03.021.

[128] Tripathy Shreejoy, Richard Gerkin, Judy Savitskaya, and Nathaniel Urban. Neuro-
Electro.org: a community database on the electrophysiological diversity of mammalian
neuron types. Frontiers in Neuroinformatics, 7, 2013.

[129] Zhuoyi Song, Marten Postma, Stephen A. Billings, Daniel Coca, Roger C. Hardie,
and Mikko Juusola. Stochastic, adaptive sampling of information by microvilli in fly
photoreceptors. Current Biology, 22(15):1371–1380, June 2012. http://dx.doi.org/
10.1016/j.cub.2012.05.047.

[130] Marcel Stimberg, Dan F. M. Goodman, Victor Benichoux, and Romain Brette.
Equation-oriented specification of neural models for simulations. Frontiers in Neu-
roinformatics, 8:6, 2014. http://dx.doi.org/10.3389/fninf.2014.00006.

143

http://doi.acm.org/10.1145/2815072.2815073
http://doi.acm.org/10.1145/2815072.2815073
http://dx.doi.org/10.1016/j.neuron.2010.01.018
http://dx.doi.org/10.1016/j.neuron.2010.01.018
http://dx.doi.org/10.1038/nature12601
http://dx.doi.org/10.1038/nature14446
http://dx.doi.org/10.1038/nature14446
http://dx.doi.org/10.1016/j.cub.2015.03.021
http://dx.doi.org/10.1016/j.cub.2015.03.021
http://dx.doi.org/10.1016/j.cub.2012.05.047
http://dx.doi.org/10.1016/j.cub.2012.05.047
http://dx.doi.org/10.3389/fninf.2014.00006

Bibliography

[131] Nicholas J. Strausfeld and Frank Hirth. Deep Homology of Arthropod Central Complex
and Vertebrate Basal Ganglia. Science, 340(6129):157–161, April 2013. http://dx.
doi.org/10.1126/science.1231828.

[132] R. Strauss. Neurobiological Models of the Central Complex and the Mushroom
Bodies. In Paolo Arena and Luca Patanè, editors, Spatial Temporal Patterns for
Action-Oriented Perception in Roving Robots II, number 21 in Cognitive Systems
Monographs, pages 3–41. Springer International Publishing, January 2014. http:
//link.springer.com/chapter/10.1007/978-3-319-02362-5_1.

[133] Balazs Szigeti, Padraig Gleeson, Michael Vella, Sergey Khayrulin, Andrey Palyanov,
Jim Hokanson, Michael Currie, Matteo Cantarelli, Giovanni Idili, and Stephen Larson.
OpenWorm: an open-science approach to modelling Caenorhabditis elegans. Frontiers
in Computational Neuroscience, 8:137, 2014. http://dx.doi.org/10.3389/fncom.
2014.00137.

[134] Shin-Ya Takemura, Arjun Bharioke, Zhiyuan Lu, Aljoscha Nern, Shiv Vitaladevuni,
Patricia K. Rivlin, William T. Katz, Donald J. Olbris, Stephen M. Plaza, Philip
Winston, Ting Zhao, Jane Anne Horne, Richard D. Fetter, Satoko Takemura, Katerina
Blazek, Lei-Ann Chang, Omotara Ogundeyi, Mathew A. Saunders, Victor Shapiro,
Christopher Sigmund, Gerald M. Rubin, Louis K. Scheffer, Ian A. Meinertzhagen,
and Dmitri B. Chklovskii. A visual motion detection circuit suggested by Drosophila
connectomics. Nature, 500(7461):175–181, August 2013. http://dx.doi.org/10.
1038/nature12450.

[135] A. M. Vallés and K. White. Serotonin-containing neurons in Drosophila melanogaster:
development and distribution. The Journal of Comparative Neurology, 268(3):414–428,
February 1988. http://dx.doi.org/10.1002/cne.902680310.

[136] S. van der Walt, S.C. Colbert, and G. Varoquaux. The NumPy Array: A Structure
for Efficient Numerical Computation. Computing in Science Engineering, 13(2):22–30,
March 2011. http://dx.doi.org/10.1109/MCSE.2011.37.

[137] Trevor J. Wardill, Olivier List, Xiaofeng Li, Sidhartha Dongre, Marie McCulloch,
Chun-Yuan Ting, Cahir J. O’Kane, Shiming Tang, Chi-Hon Lee, Roger C. Hardie,
and Mikko Juusola. Multiple spectral inputs improve motion discrimination in the
Drosophila visual system. Science, 336(6083):925–931, May 2012. http://dx.doi.
org/10.1126/science.1215317.

[138] Peter T. Weir, Bettina Schnell, and Michael H Dickinson. Central complex neurons
exhibit behaviorally gated responses to visual motion in Drosophila. Journal of Neu-
rophysiology, 111(1):62–71, January 2014. http://dx.doi.org/10.1152/jn.00593.
2013.

[139] J.G. White, E. Southgate, J.N. Thomson, and S. Brenner. The structure of the nervous
system of the nematode Caenorhabditis elegans. Philosophical Transactions of the

144

http://dx.doi.org/10.1126/science.1231828
http://dx.doi.org/10.1126/science.1231828
http://link.springer.com/chapter/10.1007/978-3-319-02362-5_1
http://link.springer.com/chapter/10.1007/978-3-319-02362-5_1
http://dx.doi.org/10.3389/fncom.2014.00137
http://dx.doi.org/10.3389/fncom.2014.00137
http://dx.doi.org/10.1038/nature12450
http://dx.doi.org/10.1038/nature12450
http://dx.doi.org/10.1002/cne.902680310
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1126/science.1215317
http://dx.doi.org/10.1126/science.1215317
http://dx.doi.org/10.1152/jn.00593.2013
http://dx.doi.org/10.1152/jn.00593.2013

Bibliography

Royal Society of London. B, Biological Sciences, 314(1165):1–340, November 1986.
PMID: 22462104.

[140] Rachel I. Wilson. Understanding the functional consequences of synaptic specializa-
tion: insight from the Drosophila antennal lobe. Current Opinion in Neurobiology,
21(2):254–260, April 2011. http://dx.doi.org/10.1016/j.conb.2011.03.002.

[141] Tanya Wolff, Nirmala A. Iyer, and Gerald M. Rubin. Neuroarchitecture and neu-
roanatomy of the Drosophila central complex: A GAL4-based dissection of protocere-
bral bridge neurons and circuits. The Journal of Comparative Neurology, 523(7):997–
1037, May 2015. http://dx.doi.org/10.1002/cne.23705.

[142] Esin Yavuz, Pascale Maul, and Thomas Nowotny. Spiking neural network model of re-
inforcement learning in the honeybee implemented on the GPU. In BMC Neuroscience
2015, volume 16, supp. 1, page 181, Prague, 2015.

[143] Esin Yavuz and Thomas Nowotny. A modelling framework for the olfactory
system of the honeybee using GeNN (GPU enhanced Neuronal Network simula-
tion environment). Flavour, 3(S1):1–1, April 2014. http://dx.doi.org/10.1186/
2044-7248-3-S1-P23.

[144] Esin Yavuz, James Turner, and Thomas Nowotny. GeNN: a code generation framework
for accelerated brain simulations. Scientific Reports, 6:18854, January 2016. http:
//www.nature.com/articles/srep18854.

[145] J.M. Young and J.D. Armstrong. Building the central complex in Drosophila: The
generation and development of distinct neural subsets. The Journal of Comparative
Neurology, 518(9):1525–1541, 2010. http://dx.doi.org/10.1002/cne.22285.

[146] J.M. Young and J.D. Armstrong. Structure of the adult central complex in Drosophila:
organization of distinct neuronal subsets. The Journal of Comparative Neurology,
518(9):1500–1524, 2010. http://dx.doi.org/10.1002/cne.22284.

145

http://dx.doi.org/10.1016/j.conb.2011.03.002
http://dx.doi.org/10.1002/cne.23705
http://dx.doi.org/10.1186/2044-7248-3-S1-P23
http://dx.doi.org/10.1186/2044-7248-3-S1-P23
http://www.nature.com/articles/srep18854
http://www.nature.com/articles/srep18854
http://dx.doi.org/10.1002/cne.22285
http://dx.doi.org/10.1002/cne.22284

Appendix

Appendix

Neurotransmitters Neuropil Cell Type References
Acetylcholine PB, FB, EB, NO ? [65]
Glutamate PB, FB, EB, NO Col, Tan [29, 65]
GABA FB, EB Tan [54]

Dopamine PB, FB, EB, NO Tan [86]
Histamine ? ? [98]
Octopamine PB, FB Asc, Tan [17]
Serotonin FB, EB, NO Tan [135]
Nitric oxide FB, EB ? [95]

Table 1: Neurotransmitters in the fruit fly CX (adapted from [112]). Columnar neurons
include those that connect PB to other neuropils or connect FB and EB, NO, LAL, or
other neuropils. Tangential neurons include PB local neurons, F neurons in FB, and BU-EB
neurons in EB. Ascending neurons connect the subesophageal ganglion to FB.

146

Appendix

Neuron Family Neurotransmitter
AL-PB ?
BU-EB Acetylcholine [88, p.1598], Glutamate, GABA
BU-LAL ?
DAL ?
EB-FB ?

EB-FB-LAL-SMP Dopamine
EB-LAL-PB Acetylcholine

EB-NO ?
F Dopamine

FB local Acetylcholine
FB-BU-LAL ?

FB-EB ?
FB-NO ?

IB-LAL-PS-PB Dopamine
PB local Acetylcholine, Glutamate
PB-EB ?

PB-EB-BU ?
PB-EB-LAL Acetylcholine
PB-EB-NO Acetylcholine
PB-FB ?

PB-FB-CRE ?
PB-FB-LAL Acetylcholine
PB-FB-NO Acetylcholine
PS-IB-PB ?
PS-PB ?

WED-PS-PB Acetylcholine

Table 2: Neurotransmitter profiles of specific neural pathways in the fruit fly CX (adapted
from [82, Fig. 7c] and [88]).

Label
1 PB/R8|R9/b-PB/R[4-8]/s
2 PB/L8|L9/b-PB/L[4-8]/s
3 PB/R7|L2/b-PB/R[1-9]|L[1-9]/s
4 PB/L7|R2/b-PB/L[1-9]|R[1-9]/s
5 PB/R6|L3/b-PB/R[1-9]|L[1-9]/s
6 PB/L6|R3/b-PB/L[1-9]|R[1-9]/s
7 PB/R5|L4/b-PB/R[1-9]|L[1-9]/s
8 PB/L5|R4/b-PB/L[1-9]|R[1-9]/s
9 PB/R8|L1|L9/b-PB/R[1-9]|L[1-9]/s
10 PB/L8|R1|R9/b-PB/L[1-9]|R[1-9]/s

Table 3: PB local neurons.

147

Appendix

Label
1 EB/([L7,R8],[P,M],[1-4])/s-EB/(L8,[P,M],[1-4])/b-LAL/LDG/b-PB/R1|L1/b
2 EB/([R7,L8],[P,M],[1-4])/s-EB/(R8,[P,M],[1-4])/b-lal/RDG/b-PB/L1|R1/b
3 EB/([R5,R7],[P,M],[1-4])/s-EB/(R6,[P,M],[1-4])/b-lal/RVG/b-PB/L2/b
4 EB/([R3,R5],[P,M],[1-4])/s-EB/(R4,[P,M],[1-4])/b-lal/RDG/b-PB/L3/b
5 EB/([R1,R3],[P,M],[1-4])/s-EB/(R2,[P,M],[1-4])/b-lal/RVG/b-PB/L4/b
6 EB/([L2,R1],[P,M],[1-4])/s-EB/(L1,[P,M],[1-4])/b-lal/RDG/b-PB/L5/b
7 EB/([L4,L2],[P,M],[1-4])/s-EB/(L3,[P,M],[1-4])/b-lal/RVG/b-PB/L6/b
8 EB/([L6,L4],[P,M],[1-4])/s-EB/(L5,[P,M],[1-4])/b-lal/RDG/b-PB/L7/b
9 EB/([L8,L6],[P,M],[1-4])/s-EB/(L7,[P,M],[1-4])/b-lal/RVG/b-PB/L8/b
10 EB/(L8,P,[1-4])/s-EB/(L8,P,[1-4])/b-lal/RDG/b-PB/L9/b
11 EB/([L5,L7],[P,M],[1-4])/s-EB/(L6,[P,M],[1-4])/b-LAL/LVG/b-PB/R2/b
12 EB/([L3,L5],[P,M],[1-4])/s-EB/(L4,[P,M],[1-4])/b-LAL/LDG/b-PB/R3/b
13 EB/([L1,L3],[P,M],[1-4])/s-EB/(L2,[P,M],[1-4])/b-LAL/LVG/b-PB/R4/b
14 EB/([R2,L1],[P,M],[1-4])/s-EB/(R1,[P,M],[1-4])/b-LAL/LDG/b-PB/R5/b
15 EB/([R4,R2],[P,M],[1-4])/s-EB/(R3,[P,M],[1-4])/b-LAL/LVG/b-PB/R6/b
16 EB/([R6,R4],[P,M],[1-4])/s-EB/(R5,[P,M],[1-4])/b-LAL/LDG/b-PB/R7/b
17 EB/([R8,R6],[P,M],[1-4])/s-EB/(R7,[P,M],[1-4])/b-LAL/LVG/b-PB/R8/b
18 EB/(R8,P,[1-4])/s-EB/(R8,P,[1-4])/b-LAL/LDG/b-PB/R9/b

Table 4: EB-LAL-PB neurons.

Label
1 FB/(3,L4)/s-FB/(3,R1)/b
2 FB/(3,L3)/s-FB/(3,R2)/b
3 FB/(3,L2)/s-FB/(3,R3)/b
4 FB/(3,L1)/s-FB/(3,R4)/b
5 FB/(3,R4)/s-FB/(3,L1)/b
6 FB/(3,R3)/s-FB/(3,L2)/b
7 FB/(3,R2)/s-FB/(3,L3)/b
8 FB/(3,R1)/s-FB/(3,L4)/b

Table 5: One identified class of FB local neurons.

148

Appendix

Label
1 IB/L/s-LAL/LHB/s-PS/L/s-PB/L[2-9]|R[2-9]/b
2 ib/R/s-lal/RHB/s-ps/R/s-PB/L[2-9]|R[2-9]/b

Table 6: IB-LAL-PS-PB neurons.

Label
1 PB/L1/s-EB/5/b-lal/RDG/b
2 PB/L2/s-EB/4/b-lal/RVG/b
3 PB/L3/s-EB/3/b-lal/RDG/b
4 PB/L4/s-EB/2/b-lal/RVG/b
5 PB/L5/s-EB/1/b-lal/RDG/b
6 PB/L6/s-EB/8/b-lal/RVG/b
7 PB/L7/s-EB/7/b-lal/RDG/b
8 PB/L8/s-EB/6/b-lal/RVG/b
9 PB/R1/s-EB/5/b-LAL/LDG/b
10 PB/R2/s-EB/4/b-LAL/LVG/b
11 PB/R3/s-EB/3/b-LAL/LDG/b
12 PB/R4/s-EB/2/b-LAL/LVG/b
13 PB/R5/s-EB/1/b-LAL/LDG/b
14 PB/R6/s-EB/8/b-LAL/LVG/b
15 PB/R7/s-EB/7/b-LAL/LDG/b
16 PB/R8/s-EB/6/b-LAL/LVG/b

Table 7: PB-EB-LAL neurons.

149

Appendix

Label
1 PB/L9/s-EB/6/b-no/(1,R)/b
2 PB/L8/s-EB/7/b-no/(1,R)/b
3 PB/L7/s-EB/8/b-no/(1,R)/b
4 PB/L6/s-EB/1/b-no/(1,R)/b
5 PB/L5/s-EB/2/b-no/(1,R)/b
6 PB/L4/s-EB/3/b-no/(1,R)/b
7 PB/L3/s-EB/4/b-no/(1,R)/b
8 PB/L2/s-EB/5/b-no/(1,R)/b
9 PB/R2/s-EB/5/b-NO/(1,L)/b
10 PB/R3/s-EB/6/b-NO/(1,L)/b
11 PB/R4/s-EB/7/b-NO/(1,L)/b
12 PB/R5/s-EB/8/b-NO/(1,L)/b
13 PB/R6/s-EB/1/b-NO/(1,L)/b
14 PB/R7/s-EB/2/b-NO/(1,L)/b
15 PB/R8/s-EB/3/b-NO/(1,L)/b
16 PB/R9/s-EB/4/b-NO/(1,L)/b

Table 8: PB-EB-NO neurons.

Label
1 PB/L1/s-FB/([3-4],L4)/s-CRE/LRB/b
2 PB/R1/s-FB/([3-4],L4)/s-CRE/LRB/b
3 PB/R2/s-FB/([3-4],L3)/s-CRE/LRB/b
4 PB/R3/s-FB/([3-4],L2)/s-CRE/LRB/b
5 PB/R4/s-FB/([3-4],L1)/s-CRE/LRB/b
6 PB/R4/s-FB/([3-4],R1)/s-CRE/LRB/b
7 PB/R5/s-FB/([3-4],R2)/s-CRE/LRB/b
8 PB/R6/s-FB/([3-4],R3)/s-CRE/LRB/b
9 PB/R7/s-FB/([3-4],R4)/s-CRE/LRB/b
10 PB/L7/s-FB/([3-4],L4)/s-cre/RRB/b
11 PB/L6/s-FB/([3-4],L3)/s-cre/RRB/b
12 PB/L5/s-FB/([3-4],L2)/s-cre/RRB/b
13 PB/L4/s-FB/([3-4],L1)/s-cre/RRB/b
14 PB/L4/s-FB/([3-4],R1)/s-cre/RRB/b
15 PB/L3/s-FB/([3-4],R2)/s-cre/RRB/b
16 PB/L2/s-FB/([3-4],R3)/s-cre/RRB/b
17 PB/L1/s-FB/([3-4],R4)/s-cre/RRB/b
18 PB/R1/s-FB/([3-4],R4)/s-cre/RRB/b

Table 9: PB-FB-CRE neurons.

150

Appendix

Label
1 PB/L2/s-FB/(1,R4)/b-no/(3,RP)/b
2 PB/L3/s-FB/(1,R4)/b-no/(3,RP)/b
3 PB/L4/s-FB/(1,R3)/b-no/(3,RP)/b
4 PB/L5/s-FB/(1,R2)/b-no/(3,RP)/b
5 PB/L6/s-FB/(1,R1)|(1,L1)/b-no/(3,RP)/b
6 PB/L7/s-FB/(1,L2)/b-no/(3,RP)/b
7 PB/L8/s-FB/(1,L3)/b-no/(3,RP)/b
8 PB/L9/s-FB/(1,L4)/b-no/(3,RP)/b
9 PB/R2/s-FB/(1,L4)/b-NO/(3,LP)/b
10 PB/R3/s-FB/(1,L4)/b-NO/(3,LP)/b
11 PB/R4/s-FB/(1,L3)/b-NO/(3,LP)/b
12 PB/R5/s-FB/(1,L2)/b-NO/(3,LP)/b
13 PB/R6/s-FB/(1,L1)|(1,R1)/b-NO/(3,LP)/b
14 PB/R7/s-FB/(1,R2)/b-NO/(3,LP)/b
15 PB/R8/s-FB/(1,R3)/b-NO/(3,LP)/b
16 PB/R9/s-FB/(1,R4)/b-NO/(3,LP)/b

Table 10: PB-FB-NO neurons innervating region (3,P) of NO.

151

Appendix

Label
1 PB/L2/s-FB/(1,R4)/b-no/(3,RM)/b
2 PB/L3/s-FB/(1,R4)/b-no/(3,RM)/b
3 PB/L4/s-FB/(1,R3)/b-no/(3,RM)/b
4 PB/L5/s-FB/(1,R2)/b-no/(3,RM)/b
5 PB/L6/s-FB/(1,R1)|(1,L1)/b-no/(3,RM)/b
6 PB/L7/s-FB/(1,L2)/b-no/(3,RM)/b
7 PB/L8/s-FB/(1,L3)/b-no/(3,RM)/b
8 PB/L9/s-FB/(1,L4)/b-no/(3,RM)/b
9 PB/R2/s-FB/(1,L4)/b-NO/(3,LM)/b
10 PB/R3/s-FB/(1,L4)/b-NO/(3,LM)/b
11 PB/R4/s-FB/(1,L3)/b-NO/(3,LM)/b
12 PB/R5/s-FB/(1,L2)/b-NO/(3,LM)/b
13 PB/R6/s-FB/(1,L1)|(1,R1)/b-NO/(3,LM)/b
14 PB/R7/s-FB/(1,R2)/b-NO/(3,LM)/b
15 PB/R8/s-FB/(1,R3)/b-NO/(3,LM)/b
16 PB/R9/s-FB/(1,R4)/b-NO/(3,LM)/b

Table 11: PB-FB-NO neurons innervating region (3,M) of NO.

Label
1 PB/L2/s-FB/(2,R4)/b-no/(3,RA)/b
2 PB/L3/s-FB/(2,R4)/b-no/(3,RA)/b
3 PB/L4/s-FB/(2,R3)/b-no/(3,RA)/b
4 PB/L5/s-FB/(2,R2)/b-no/(3,RA)/b
5 PB/L6/s-FB/(2,R1)|(1,L1)/b-no/(3,RA)/b
6 PB/L7/s-FB/(2,L2)/b-no/(3,RA)/b
7 PB/L8/s-FB/(2,L3)/b-no/(3,RA)/b
8 PB/L9/s-FB/(2,L4)/b-no/(3,RA)/b
9 PB/R2/s-FB/(2,L4)/b-NO/(3,LA)/b
10 PB/R3/s-FB/(2,L4)/b-NO/(3,LA)/b
11 PB/R4/s-FB/(2,L3)/b-NO/(3,LA)/b
12 PB/R5/s-FB/(2,L2)/b-NO/(3,LA)/b
13 PB/R6/s-FB/(2,L1)|(1,R1)/b-NO/(3,LA)/b
14 PB/R7/s-FB/(2,R2)/b-NO/(3,LA)/b
15 PB/R8/s-FB/(2,R3)/b-NO/(3,LA)/b
16 PB/R9/s-FB/(2,R4)/b-NO/(3,LA)/b

Table 12: PB-FB-NO neurons innervating region (3,A) of NO.

152

Appendix

Label
1 PB/L2/s-FB/(3,R4)/b-no/(2,RD)/b
2 PB/L3/s-FB/(3,R4)/b-no/(2,RD)/b
3 PB/L4/s-FB/(3,R3)/b-no/(2,RD)/b
4 PB/L5/s-FB/(3,R2)/b-no/(2,RD)/b
5 PB/L6/s-FB/(3,R1)|(1,L1)/b-no/(2,RD)/b
6 PB/L7/s-FB/(3,L2)/b-no/(2,RD)/b
7 PB/L8/s-FB/(3,L3)/b-no/(2,RD)/b
8 PB/L9/s-FB/(3,L4)/b-no/(2,RD)/b
9 PB/R2/s-FB/(3,L4)/b-NO/(2,LD)/b
10 PB/R3/s-FB/(3,L4)/b-NO/(2,LD)/b
11 PB/R4/s-FB/(3,L3)/b-NO/(2,LD)/b
12 PB/R5/s-FB/(3,L2)/b-NO/(2,LD)/b
13 PB/R6/s-FB/(3,L1)|(1,R1)/b-NO/(2,LD)/b
14 PB/R7/s-FB/(3,R2)/b-NO/(2,LD)/b
15 PB/R8/s-FB/(3,R3)/b-NO/(2,LD)/b
16 PB/R9/s-FB/(3,R4)/b-NO/(2,LD)/b

Table 13: PB-FB-NO neurons innervating region (2,D) of NO.

153

Appendix

Label
1 PB/L2/s-FB/(3,R4)/b-no/(2,RV)/b
2 PB/L3/s-FB/(3,R4)/b-no/(2,RV)/b
3 PB/L4/s-FB/(3,R3)/b-no/(2,RV)/b
4 PB/L5/s-FB/(3,R2)/b-no/(2,RV)/b
5 PB/L6/s-FB/(3,R1)|(1,L1)/b-no/(2,RV)/b
6 PB/L7/s-FB/(3,L2)/b-no/(2,RV)/b
7 PB/L8/s-FB/(3,L3)/b-no/(2,RV)/b
8 PB/L9/s-FB/(3,L4)/b-no/(2,RV)/b
9 PB/R2/s-FB/(3,L4)/b-NO/(2,LV)/b
10 PB/R3/s-FB/(3,L4)/b-NO/(2,LV)/b
11 PB/R4/s-FB/(3,L3)/b-NO/(2,LV)/b
12 PB/R5/s-FB/(3,L2)/b-NO/(2,LV)/b
13 PB/R6/s-FB/(3,L1)|(1,R1)/b-NO/(2,LV)/b
14 PB/R7/s-FB/(3,R2)/b-NO/(2,LV)/b
15 PB/R8/s-FB/(3,R3)/b-NO/(2,LV)/b
16 PB/R9/s-FB/(3,R4)/b-NO/(2,LV)/b

Table 14: PB-FB-NO neurons innervating region (2,V) of NO.

Label
1 PB/L1/s-FB/(2,L[3-4])/s-LAL/LHB/b
2 PB/R1|L1/s-FB/(2,L[3-4])/s-LAL/LHB/b
3 PB/R1/s-FB/(2,L[2-3])/s-LAL/LHB/b
4 PB/R2/s-FB/(2,L[1-2])/s-LAL/LHB/b
5 PB/R3/s-FB/(2,[L1,R1])/s-LAL/LHB/b
6 PB/R4/s-FB/(2,R[1-2])/s-LAL/LHB/b
7 PB/R5/s-FB/(2,R[2-3])/s-LAL/LHB/b
8 PB/R6/s-FB/(2,R[3-4])/s-LAL/LHB/b
9 PB/R7/s-FB/(2,R[3-4])/s-LAL/LHB/b
10 PB/L7/s-FB/(2,L[3-4])/s-lal/RHB/b
11 PB/L6/s-FB/(2,L[3-4])/s-lal/RHB/b
12 PB/L5/s-FB/(2,L[2-3])/s-lal/RHB/b
13 PB/L4/s-FB/(2,L[1-2])/s-lal/RHB/b
14 PB/L3/s-FB/(2,[R1,L1])/s-lal/RHB/b
15 PB/L2/s-FB/(2,R[1-2])/s-lal/RHB/b
16 PB/L1/s-FB/(2,R[2-3])/s-lal/RHB/b
17 PB/L1|R1/s-FB/(2,R[3-4])/s-lal/RHB/b
18 PB/R1/s-FB/(2,R[3-4])/s-lal/RHB/b

Table 15: PB-FB-LAL neurons.

154

Appendix

Label
1 PB/L1/s-FB/([1-4],L[3-4])/s-LAL/LHB/b
2 PB/L1|R1/s-FB/([1-4],L[2-3])/s-LAL/LHB/b
3 PB/R1/s-FB/([1-4],L[1-2])/s-LAL/LHB/b
4 PB/R2/s-FB/([1-4],[L1,R1])/s-LAL/LHB/b
5 PB/R3/s-FB/([1-4],R[1-2])/s-LAL/LHB/b
6 PB/R4/s-FB/([1-4],R[2-3])/s-LAL/LHB/b
7 PB/R5/s-FB/([1-4],R[3-4])/s-LAL/LHB/b
8 PB/R6/s-FB/([1-4],R[3-4])/s-LAL/LHB/b
9 PB/L6/s-FB/([1-4],L[3-4])/s-lal/RHB/b
10 PB/L5/s-FB/([1-4],L[3-4])/s-lal/RHB/b
11 PB/L4/s-FB/([1-4],L[2-3])/s-lal/RHB/b
12 PB/L3/s-FB/([1-4],L[1-2])/s-lal/RHB/b
13 PB/L2/s-FB/([1-4],[L1,R1])/s-lal/RHB/b
14 PB/L1/s-FB/([1-4],R[1-2])/s-lal/RHB/b
15 PB/L1|R1/s-FB/([1-4],R[2-3])/s-lal/RHB/b
16 PB/R1/s-FB/([1-4],R[3-4])/s-lal/RHB/b

Table 16: PB-FB-LAL neurons.

Label
1 PB/L3/s-FB/([1-4],L[3-4])/s-LAL/LHB/b-lal/RHB/b
2 PB/L1/s-FB/([1-4],L[1-2])/s-LAL/LHB/b-lal/RHB/b
3 PB/R1/s-FB/([1-4],R[1-2])/s-LAL/LHB/b-lal/RHB/b
4 PB/R3/s-FB/([1-4],R[3-4])/s-LAL/LHB/b-lal/RHB/b

Table 17: PB-FB-LAL neurons.

155

Appendix

Label
1 WED/L/s-PS/L/s-PB/L2|L3/b
2 WED/L/s-PS/L/s-PB/L3|L4/b
3 WED/L/s-PS/L/s-PB/L4|L5/b
4 WED/L/s-PS/L/s-PB/L5|L6/b
5 WED/L/s-PS/L/s-PB/L6|L7/b
6 WED/L/s-PS/L/s-PB/L7|L8/b
7 WED/L/s-PS/L/s-PB/L8|L9/b
8 wed/R/s-ps/R/s-PB/L2|L3/b
9 wed/R/s-ps/R/s-PB/L3|L4/b
10 wed/R/s-ps/R/s-PB/L4|L5/b
11 wed/R/s-ps/R/s-PB/L5|L6/b
12 wed/R/s-ps/R/s-PB/L6|L7/b
13 wed/R/s-ps/R/s-PB/L7|L8/b
14 wed/R/s-ps/R/s-PB/L8|L9/b
15 WED/L/s-PS/L/s-PB/R2|R3/b
16 WED/L/s-PS/L/s-PB/R3|R4/b
17 WED/L/s-PS/L/s-PB/R4|R5/b
18 WED/L/s-PS/L/s-PB/R5|R6/b
19 WED/L/s-PS/L/s-PB/R6|R7/b
20 WED/L/s-PS/L/s-PB/R7|R8/b
21 WED/L/s-PS/L/s-PB/R8|R9/b
22 wed/R/s-ps/R/s-PB/R2|R3/b
23 wed/R/s-ps/R/s-PB/R3|R4/b
24 wed/R/s-ps/R/s-PB/R4|R5/b
25 wed/R/s-ps/R/s-PB/R5|R6/b
26 wed/R/s-ps/R/s-PB/R6|R7/b
27 wed/R/s-ps/R/s-PB/R7|R8/b
28 wed/R/s-ps/R/s-PB/R8|R9/b

Table 18: WED-PS-PB neurons.

156

Appendix

Ring Neuron
Name

Microglomerulus
Range

Label

BU/Lx/s-EB/(LR[1-8],[M,A],1)/bR1 1..16 bu/Rx/s-EB/(LR[1-8],[M,A],1)/b
BU/Lx/s-EB/(LR[1-8],A,[3,4])/bR2 33..48 bu/Rx/s-EB/(LR[1-8],A,[3,4])/b
BU/Lx/s-EB/(LR[1-8],A,[1,2])/bR3 17..32 bu/Rx/s-EB/(LR[1-8],A,[1,2])/b
BU/Lx/s-EB/(LR[1-8],A,4)/bR4m 49..64 bu/Rx/s-EB/(LR[1-8],A,4)/b
BU/Lx/s-EB/(LR[1-8],M,4)/bR4d 65..80 bu/Rx/s-EB/(LR[1-8],M,4)/b

Table 19: Hypothesized arborizations of BU-EB neurons. Each microglomerulus corre-
sponds to a single neuron, where the “x” character in the neuron label is replaced with the
microglomerulus number.

157

Appendix

Label
1 FB/(1,L4)/s-FB/(1,R1)/b
2 FB/(1,L3)/s-FB/(1,R2)/b
3 FB/(1,L2)/s-FB/(1,R3)/b
4 FB/(1,L1)/s-FB/(1,R4)/b
5 FB/(1,R4)/s-FB/(1,L1)/b
6 FB/(1,R3)/s-FB/(1,L2)/b
7 FB/(1,R2)/s-FB/(1,L3)/b
8 FB/(1,R1)/s-FB/(1,L4)/b
9 FB/(2,L4)/s-FB/(2,R1)/b
10 FB/(2,L3)/s-FB/(2,R2)/b
11 FB/(2,L2)/s-FB/(2,R3)/b
12 FB/(2,L1)/s-FB/(2,R4)/b
13 FB/(2,R4)/s-FB/(2,L1)/b
14 FB/(2,R3)/s-FB/(2,L2)/b
15 FB/(2,R2)/s-FB/(2,L3)/b
16 FB/(2,R1)/s-FB/(2,L4)/b
17 FB/(4,L4)/s-FB/(4,R1)/b
18 FB/(4,L3)/s-FB/(4,R2)/b
19 FB/(4,L2)/s-FB/(4,R3)/b
20 FB/(4,L1)/s-FB/(4,R4)/b
21 FB/(4,R4)/s-FB/(4,L1)/b
22 FB/(4,R3)/s-FB/(4,L2)/b
23 FB/(4,R2)/s-FB/(4,L3)/b
24 FB/(4,R1)/s-FB/(4,L4)/b
25 FB/(5,L4)/s-FB/(5,R1)/b
26 FB/(5,L3)/s-FB/(5,R2)/b
27 FB/(5,L2)/s-FB/(5,R3)/b
28 FB/(5,L1)/s-FB/(5,R4)/b
29 FB/(5,R4)/s-FB/(5,L1)/b
30 FB/(5,R3)/s-FB/(5,L2)/b
31 FB/(5,R2)/s-FB/(5,L3)/b
32 FB/(5,R1)/s-FB/(5,L4)/b

Table 20: Hypothesized FB local neurons linking segments in layers 1, 2, 4, and 5, respec-
tively.

158

Appendix

Label
1 FB/(1,L4)/s-FB/(1,L3)/b
2 FB/(1,L3)/s-FB/(1,L2)/b
3 FB/(1,L2)/s-FB/(1,L1)/b
4 FB/(1,L1)/s-FB/(1,R1)/b
5 FB/(1,R1)/s-FB/(1,R2)/b
6 FB/(1,R2)/s-FB/(1,R3)/b
7 FB/(1,R3)/s-FB/(1,R4)/b
8 FB/(2,L4)/s-FB/(2,L3)/b
9 FB/(2,L3)/s-FB/(2,L2)/b
10 FB/(2,L2)/s-FB/(2,L1)/b
11 FB/(2,L1)/s-FB/(2,R1)/b
12 FB/(2,R1)/s-FB/(2,R2)/b
13 FB/(2,R2)/s-FB/(2,R3)/b
14 FB/(2,R3)/s-FB/(2,R4)/b
15 FB/(3,L4)/s-FB/(3,L3)/b
16 FB/(3,L3)/s-FB/(3,L2)/b
17 FB/(3,L2)/s-FB/(3,L1)/b
18 FB/(3,L1)/s-FB/(3,R1)/b
19 FB/(3,R1)/s-FB/(3,R2)/b
20 FB/(3,R2)/s-FB/(3,R3)/b
21 FB/(3,R3)/s-FB/(3,R4)/b
22 FB/(4,L4)/s-FB/(4,L3)/b
23 FB/(4,L3)/s-FB/(4,L2)/b
24 FB/(4,L2)/s-FB/(4,L1)/b
25 FB/(4,L1)/s-FB/(4,R1)/b
26 FB/(4,R1)/s-FB/(4,R2)/b
27 FB/(4,R2)/s-FB/(4,R3)/b
28 FB/(4,R3)/s-FB/(4,R4)/b
29 FB/(5,L4)/s-FB/(5,L3)/b
30 FB/(5,L3)/s-FB/(5,L2)/b
31 FB/(5,L2)/s-FB/(5,L1)/b
32 FB/(5,L1)/s-FB/(5,R1)/b
33 FB/(5,R1)/s-FB/(5,R2)/b
34 FB/(5,R2)/s-FB/(5,R3)/b
35 FB/(5,R3)/s-FB/(5,R4)/b

Table 21: Hypothesized FB local neurons linking adjacent segments within the same layer
in layers 1-5.

159

Appendix

Label
1 FB/(5,L1)/s-FB/(4,L1)/b
2 FB/(4,L1)/s-FB/(3,L1)/b
3 FB/(3,L1)/s-FB/(2,L1)/b
4 FB/(2,L1)/s-FB/(1,L1)/b
5 FB/(5,L2)/s-FB/(4,L2)/b
6 FB/(4,L2)/s-FB/(3,L2)/b
7 FB/(3,L2)/s-FB/(2,L2)/b
8 FB/(2,L2)/s-FB/(1,L2)/b
9 FB/(5,L3)/s-FB/(4,L3)/b
10 FB/(4,L3)/s-FB/(3,L3)/b
11 FB/(3,L3)/s-FB/(2,L3)/b
12 FB/(2,L3)/s-FB/(1,L3)/b
13 FB/(5,L4)/s-FB/(4,L4)/b
14 FB/(4,L4)/s-FB/(3,L4)/b
15 FB/(3,L4)/s-FB/(2,L4)/b
16 FB/(2,L4)/s-FB/(1,L4)/b
17 FB/(5,R1)/s-FB/(4,R1)/b
18 FB/(4,R1)/s-FB/(3,R1)/b
19 FB/(3,R1)/s-FB/(2,R1)/b
20 FB/(2,R1)/s-FB/(1,R1)/b
21 FB/(5,R2)/s-FB/(4,R2)/b
22 FB/(4,R2)/s-FB/(3,R2)/b
23 FB/(3,R2)/s-FB/(2,R2)/b
24 FB/(2,R2)/s-FB/(1,R2)/b
25 FB/(5,R3)/s-FB/(4,R3)/b
26 FB/(4,R3)/s-FB/(3,R3)/b
27 FB/(3,R3)/s-FB/(2,R3)/b
28 FB/(2,R3)/s-FB/(1,R3)/b
29 FB/(5,R4)/s-FB/(4,R4)/b
30 FB/(4,R4)/s-FB/(3,R4)/b
31 FB/(3,R4)/s-FB/(2,R4)/b
32 FB/(2,R4)/s-FB/(1,R4)/b

Table 22: Hypothesized FB local neurons linking adjacent layers within the same segment
for layers 1-5.

160

Appendix

Label
1 FB/(1,L1)/sb-FB/(8,L1)/sb
2 FB/(1,L2)/sb-FB/(8,L2)/sb
3 FB/(1,L3)/sb-FB/(8,L3)/sb
4 FB/(1,L4)/sb-FB/(8,L4)/sb
5 FB/(1,R1)/sb-FB/(8,R1)/sb
6 FB/(1,R2)/sb-FB/(8,R2)/sb
7 FB/(1,R3)/sb-FB/(8,R3)/sb
8 FB/(1,R4)/sb-FB/(8,R4)/sb
9 FB/(2,L1)/sb-FB/(7,L1)/sb
10 FB/(2,L2)/sb-FB/(7,L2)/sb
11 FB/(2,L3)/sb-FB/(7,L3)/sb
12 FB/(2,L4)/sb-FB/(7,L4)/sb
13 FB/(2,R1)/sb-FB/(7,R1)/sb
14 FB/(2,R2)/sb-FB/(7,R2)/sb
15 FB/(2,R3)/sb-FB/(7,R3)/sb
16 FB/(2,R4)/sb-FB/(7,R4)/sb

Table 23: Hypothesized FB local neurons linking nonadjacent layers within the same seg-
ment.

161

Appendix

Label
1 PB/R8|R9/b-PB/R[4-8]/s
2 PB/L8|L9/b-PB/L[4-8]/s
3 PB/L2/b-PB/L[1-9]/s
4 PB/R7/b-PB/R[1-9]/s
5 PB/L7/b-PB/L[1-9]/s
6 PB/R2/b-PB/R[1-9]/s
7 PB/L3/b-PB/L[1-9]/s
8 PB/R6/b-PB/R[1-9]/s
9 PB/L6/b-PB/L[1-9]/s
10 PB/R3/b-PB/R[1-9]/s
11 PB/L4/b-PB/L[1-9]/s
12 PB/R5/b-PB/R[1-9]/s
13 PB/L5/b-PB/L[1-9]/s
14 PB/R4/b-PB/R[1-9]/s
15 PB/R8/b-PB/R[1-9]/s
16 PB/L1|L9/b-PB/L[1-9]/s
17 PB/L8/b-PB/L[1-9]/s
18 PB/R1|R9/b-PB/R[1-9]/s

Table 24: Hypothesized PB local neurons in the no bridge mutant.

162

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Approach and Contributions

	2 Neurokernel: a Framework for Integration of Executable Fruit Fly Brain Models
	2.1 Introduction
	2.2 Framework Design and Features
	2.2.1 Modeling the Fruit Fly Brain
	2.2.2 Architecture of the Neurokernel
	2.2.3 Neurokernel Programming Model
	2.2.4 Application Programming Interface
	2.2.5 Using the Neurokernel API
	2.2.6 Neurodriver - a Configurable LPU Implementation

	2.3 Results
	2.3.1 Integration of Independently Developed LPU Models
	2.3.2 Module Communication Performance
	2.3.3 Neurodriver Performance

	2.4 Related Work
	2.4.1 General Purpose Neuronal Network Simulators
	2.4.2 GPU-based Neuronal Network Simulators
	2.4.3 Neuromorphic Simulation Platforms
	2.4.4 Simulator Interfacing Packages
	2.4.5 Whole Brain Simulation Projects

	2.5 Summary

	3 NeuroArch: a Graph dB for Representation of Executable Fly Brain Circuits
	3.1 Introduction
	3.2 Data Representation Requirements
	3.2.1 Represented Information
	3.2.2 Biological Circuit Query Requirements
	3.2.3 Executable Circuits Query Requirements

	3.3 Data Model
	3.3.1 Biological Circuit Data and Its Subdivisions
	3.3.2 Naming Scheme for Biological Data
	3.3.3 Data and Abstractions for Executable Circuits
	3.3.4 Combined Hierarchy of Biological and Executable Circuit Entities

	3.4 Mapping the Data Model into an Object Graph Database
	3.4.1 Supported Relationships
	3.4.2 Storage of Biological Data Objects
	3.4.3 Storage of Executable Circuit Data Objects
	3.4.4 Naming and Storage of Multiple Model Versions
	3.4.5 An Example - Representation of the Lamina and Retina

	3.5 NeuroArch Application Programming Interface
	3.5.1 Object Graph Mapping
	3.5.2 Supported Queries
	3.5.3 Support for Operations on Query Results
	3.5.4 Multimodal Views
	3.5.5 Interface to Neurokernel

	3.6 Testing Neuroarch's Functionality
	3.7 Related Work
	3.7.1 Open Biological Data Repositories
	3.7.2 Model Representation Technologies
	3.7.3 Model Sharing Resources

	3.8 Summary

	4 Generating an Executable Model of the Central Complex
	4.1 Introduction
	4.2 Terminology
	4.2.1 Neuropil Nomenclature
	4.2.2 Neuron Labeling

	4.3 Structure of Neuropils in and Associated with the Central Complex
	4.3.1 Protocerebral Bridge (PB)
	4.3.2 Fan-Shaped Body (FB)
	4.3.3 Ellipsoid Body (EB)
	4.3.4 Noduli (NO)
	4.3.5 Bulb (BU)
	4.3.6 Lateral Accessory Lobe (LAL)
	4.3.7 Crepine (CRE)
	4.3.8 Other Neuropils (IB, PS, SMP, WED)

	4.4 Central Complex Input Pathways and Neuron Responses
	4.5 Identified Neurons in the Central Complex
	4.5.1 Index of Identified Neurons
	4.5.2 Neurotransmitter Profiles
	4.5.3 Local Neurons
	4.5.4 Projection Neurons

	4.6 Generating an Executable Circuit Model
	4.6.1 Neuron Organization
	4.6.2 Executable Circuit Generation
	4.6.3 Executing the Circuit
	4.6.4 Use Cases

	4.7 Related Work
	4.8 Summary

	5 Conclusions and Future Research Directions
	5.1 Conclusions
	5.1.1 When to Use the Pipeline
	5.1.2 Summary

	5.2 Neurokernel - Future Development
	5.2.1 Automating Computational Resource Allocation
	5.2.2 Accelerated Neural Model Execution Engine
	5.2.3 In Vivo Model Validation

	5.3 NeuroArch - Future Development
	5.3.1 Model Construction Using Composition Operations
	5.3.2 Using NeuroArch Data for Neurokernel Resource Allocation
	5.3.3 Support for Input/Output File Formats
	5.3.4 Online Data Sharing
	5.3.5 Performance Assessment
	5.3.6 Graphical Visualization of Circuit Data
	5.3.7 Support for Dynamic Models
	5.3.8 Storing Model States

	5.4 Generating a Modeling of the Central Complex - Future Development

	Bibliography
	Appendix

