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ABSTRACT

Recent modeling studies of future vegetation change suggest the potential for large-scale forest die-off in

the tropics. Taken together with observational evidence of increasing tree mortality in numerous ecosystem

types, there is clearly a need for projections of vegetation change. To that end, the authors have performed an

ensemble of climate–vegetation experiments with the National Science Foundation–DOE Community

Atmosphere Model (CAM) coupled to the Community Land Model (CAM–CLM-CN) with its dynamic

vegetation model enabled (CAM–CLM-CNDV). To overcome the limitations of using a single model, the

authors employ the sea surface temperature (SST)warming patterns simulated by eight differentmodels from

the Coupled Model Intercomparison Program phase 3 (CMIP3) as boundary conditions. Since the SST

warming pattern in part dictates how precipitation may change in the future, in this way a range of future

vegetation–climate trajectories can be produced.

On an annual average basis, this study’s CAM–CLM-CN simulations do not produce as large a spread in

projected precipitation as the original CMIP3 archive. These differences are due to the tendency of CAM–

CLM-CN to increase tropical precipitation under a global warming scenario, although this response is

modulated by the SST warming patterns imposed. However, the CAM–CLM-CN simulations reproduce the

enhanced dry season in the tropics simulated by CMIP3. These simulations show longer fire seasons and

increases in fractional area burned. In one ensemble member, extreme droughts over tropical South America

lead to fires that remove vegetation cover in the eastern Amazon, suggesting that large-scale die-offs are an

unlikely but still possible event.

1. Introduction

Terrestrial vegetation is an important component of the

climate system: vegetation alters the physical properties

of the land surface, affecting how much solar radiation is

received at the surface as well as how that energy is par-

titioned. Further, forests provide an important sink for

anthropogenic carbon dioxide (CO2) emissions in part

because of the fertilization effect in which higher levels of

atmospheric CO2 increase photosynthesis and water use

efficiency by plants (e.g., Notaro et al. 2007; Ballantyne

et al. 2012). Despite these potential beneficial effects of

increasing CO2, there is recent evidence of increasing tree

mortality around the world in numerous ecosystem types

(Allen et al. 2010). These widespread observations of

mortality events suggest that climate change is contrib-

uting to increasing forest death, which may eventually

lead to a tipping point where climate changes rapidly or

substantially enough to initiate large-scale die-offs. Warm-

ing could accelerate through the reduction of the biomass

carbon sink.

As a result of the interplay between the two effects of

CO2, the fertilization effect and climate change itself, it

is unclear how future climate and vegetation trajectories

will unfold. In the tropics, the relative importance of two
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competing climate responses to increasing greenhouse

gases1—a local (‘‘bottom up’’) response and a remote

(‘‘top down’’) response (Giannini 2010; Seth et al. 2011,

2013)—is likely an important arbiter of how climate will

change, with important implications for how vegetation

will respond. In the local response, increases in net

surface radiation lead to increases in evaporation and

low-level moist static energy, driving increased pre-

cipitation and moisture convergence. In the remote re-

sponse, the rising heat content of the ocean and higher

sea surface temperatures (SSTs) result in nearly uniform

warming in the upper troposphere (Sobel et al. 2001),

increasing stability. Precipitation is reduced over tropi-

cal land areas where there is insufficient moist static

energy to overcome this enhanced stability (Chou and

Neelin 2004; Chou et al. 2009; Giannini 2010). Sub-

sequent reductions in precipitation recycling promote

further drying. The remote mechanism can operate in

space, with precipitation decreasing on the subtropical

margins (Chou and Neelin 2004; Chou et al. 2009) but

also in time with precipitation decreasing in the winter

or dry season into the spring (Biasutti and Sobel 2009;

Seth et al. 2010, 2011, 2013).

These mechanisms can also operate over the oceans

via the spatial pattern of SST warming; this is known as

the ‘‘warm get wetter’’ pattern (Xie et al. 2010). Areas

where SSTs increase more relative to the mean tropical

warming regions can more easily sustain convection

despite warming of the free troposphere. These regions

with greater warming have greater instability and thus

become wetter in future climate projections (Xie et al.

2010). Therefore, in this warm get wetter mechanism,

the pattern of SSTwarming controls where precipitation

will increase the most (Rauscher et al. 2008, 2011; Xie

et al. 2010; Ma and Xie 2013). Additionally, these pre-

cipitation changes may affect other regions remotely

through teleconnections (Huang et al. 2013).

The influence of SST warming patterns is evident in

modeling studies of climate and vegetation change, with

perhaps the best example being simulated die-off over

the Amazon basin. In a widely cited study, Cox et al.

(2000) used the Hadley Centre Coupled Atmosphere–

Ocean Model version 3 (HadCM3) coupled to an ocean

carbon cycle model and a dynamic vegetation model to

simulate future climate and ecosystem change over the

Amazon. In their simulation, a complete die-off of the

Amazon forest begins in the middle of the twenty-first

century. This simulated die-off was the result of severe

droughts due to an El Niño–like warming over the

central-eastern Pacific that altered the atmospheric

circulation such that large-scale descent and a reduction

in precipitation occurred over the Amazon (Cox et al.

2000, 2004; Li et al. 2006). HadCM3 also simulated a

meridional gradient in the warming of the tropical At-

lantic that contributed to drying (Harris et al. 2008).

However, all model simulations of future climate do

not display this same SST warming pattern, and not all

models simulate drying over the Amazon (Li et al.

2006). In fact, of all the models in the Coupled Model

Intercomparison Project phase 3 (CMIP3; Meehl et al.

2007), HadCM3 simulates the largest future decrease in

precipitation over the Amazon (Li et al. 2006). There-

fore, we must ask, how probable and how uncertain are

these HadCM3 results over tropical South America?

More generally, how probable is large-scale vegetation

change in the tropics as a whole? Since none of the

scenario simulations in the CMIP3 database (and only a

few in CMIP5) were run with fully interactive carbon

cycles or dynamic vegetation, a large fully interactive

carbon–climate multimodel ensemble is not possible.

Here we create projections of future vegetation and

climate change over the tropics using a single model, the

National Science Foundation (NSF)–DOE Community

Earth System Model (CESM1.0; Gent et al. 2011). We

mimic a multimodel atmosphere–vegetation ensemble

through the use of SST projections from eight different

coupled climate models in CMIP3 (Meehl et al. 2007) as

boundary conditions. In this way, we can produce mul-

tiple realizations of twenty-first-century climate under a

medium–high emissions scenario (SRES A2; IPCC

2000) using the interactive land and atmosphere com-

ponents of CESM. Since previous studies have reported

the potential for the die-off of theAmazon, we focus our

efforts on tropical SouthAmerica while also considering

the tropics as a whole. In contrast to recent studies that

FIG. 1. Experimental design.

1 See also Fig. 1 in Seth et al. (2013).
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have utilized offline simulations driven with bias-

corrected data from CMIP3 models (e.g., Huntingford

et al. 2013), we ran our simulations with full interaction

between the land and atmosphere. Because we are

using a single model, we focus our analysis on the effects

of the differences in the climate drivers rather than on

the effects of physiological parameterizations. Impor-

tantly, we examine the ability of our single-model en-

semble to capture the spread of the original CMIP3

multimodel ensemble.

Section 2 describes the models and experimental de-

sign. Section 3 presents an analysis of the control simu-

lation. The ability of our singlemodel ensemble to capture

the range of responses in the full CMIP3 ensemble is

discussed in section 4. The simulated changes in tropical

vegetation are discussed in section 4b. Finally, discussion

and conclusions are presented in section 5.

2. Model, data, and experimental design

a. Model

For our simulations we use the atmosphere and land

components of the NSF–DOE Community Earth Sys-

tem Model (CESM) (Gent et al. 2011), the most recent

version of the Community Climate System Model

(CCSM). The atmospheric component of CESM is the

Community Atmosphere Model (CAM); we use the fi-

nite volume (FV) dynamical core and CAM4 physics

with 26 vertical levels (Neale et al. 2010). The spatial

resolution of the model is 1.98 latitude by 2.58 longitude.
This medium horizontal resolution was chosen because

of the need to perform 16 ensemble members, including

8 members with dynamic vegetation. Exchanges of heat,

moisture, and momentum fluxes between the land and

the atmosphere are simulated by the Community Land

FIG. 2. Bias-corrected annual average SST anomalies (8C) for the end of the twenty-first century (2070–99) vs the

end of the twentieth century (1970–99) from CMIP3 simulations (a) CCSM3, (b) CNRM-CM3, (c) ECHAM5,

(d) GFDL, (e) GISS-ER, (f) HadCM3, (g) HadGEM1, and (h) MRI.
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Model (CLM), version 4.0. In CLM, vegetation cover-

age is described in each grid cell by fractional areas of

plant functional types (PFTs). There are 17 PFTs, in-

cluding bare ground, 11 tree PFTs, 3 grass PFTs, and 2

crop PFTs; however, crop types and historical transient

land-use change are not used when the dynamic vege-

tation model is enabled (Lawrence et al. 2011). CLM

includes a carbon–nitrogen (CN) biogeochemical model

that controls carbon and nitrogen dynamics (Thornton

et al. 2007) and predicts vegetation, litter, soil carbon

and nitrogen states, and vegetation phenology. We also

utilize the dynamic vegetation model (CNDV), which is

based on the Lund–Potsdam–Jena (LPJ) model (Sitch

et al. 2003). In our simulations, the interaction between

the land and atmosphere components is two way, unlike

previous studies performed to evaluate the basic per-

formance of CLM in CESM (e.g., Gotangco Castillo

et al. 2012).

We performed two ensembles: one ensemble with

CAM and CLM with CN and the dynamic vegetation

model enabled (CAM–CLM-CNDV) (Levis et al. 2004;

Gotangco Castillo et al. 2012) and one ensemble with no

dynamic vegetation (CAM–CLM-CN). Carbon cycle

dynamics are controlled by CAM–CLM-CN in both sets

of simulations. The main differences between CAM–

CLM-CN and CAM–CLM-CNDV are the biogeography

as represented by the distribution of PFTs and the

parameterization of mortality processes (Gotangco

Castillo et al. 2012). For CAM–CLM-CN, vegetation

PFTs are prescribed from satellite data and cannot

change through time. In CAM–CLM-CNDV, PFTs are

established through time, and vegetation change is rep-

resented by a change in the fractional PFT coverage of a

grid cell at the end of each simulation year (Sitch et al.

2003). PFT types can change in CAM–CLM-CNDV be-

cause of 20-yr climate envelopes based on temperature

and precipitation limits as well as because of mortality

mechanisms. These mortality mechanisms differ between

CAM–CLM-CN and CAM–CLM-CNDV: CAM–CLM-

CNDVcalculatesmortality due to heat stress (based on an

accumulation of growing degree days), fire, and growth

efficiency, while CAM–CLM-CN uses a flat 2% mortality

rate. While PFT type cannot change in CAM–CLM-CN

simulations, vegetation characteristics such as leaf area

index can still change because of climate change or in-

terannual variability.

Because the fire module in CLM is important to the

results discussed in section 4b, it is described in more

detail here. In both CAM–CLM-CN and CAM–CLM-

CNDV, fire is a prognostic algorithm based on Thonicke

et al.’s (2001) intermediate-complexity Global Fire

Model (Glob-FIRM), which depends on surface fuel

availability and near-surface soil moisture conditions

(Oleson et al. 2010); however, ignition source

FIG. 3. Observed plant function types (% cover) used in CAM–CLM-CN simulations: (a) broadleaf evergreen trees,

(b) needleleaf evergreen trees, (c) deciduous trees, (d) shrubs, (e) grasses, and (f) bare ground.
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availability and the effects of wind speed on fire are not

considered (Li et al. 2012). As with the PFT changes, the

effects of fire are applied at the end of each simulation

year to each grid cell. The effect of fire depends on fire

season length in days, which is dependent on subhourly

fire probability. This in turn is a function of the ratio of

volumetric soil moisture in the top 0.5m of soil water to

the saturation soil water. Fire season length and fuel

control the area affected by fire. A difference between

CAM–CLM-CN and CAM–CLM-CNDV is that with

CNDV fire can affect PFT coverage by removing a

number of individuals as a function of the area burned

from the PFT population. If enough individuals are re-

moved, PFT cover is reduced to zero (i.e., the land cover

changes to bare ground).

b. Data

To evaluate the control simulation, we use gridded

land-only observations from the University of Delaware

dataset, version 3.02 (Willmott and Matsuura 1995,

2001). Monthly 2-m temperature data are available at

0.58 resolution for the 1900–2010 timeframe; here we use

an average from 1970 to 1999. For evaluation of pre-

cipitation, we use the Climate PredictionCenterMerged

Analysis of Precipitation (CMAP; Xie and Arkin 1996)

dataset and the Climate Anomaly Monitoring System

(CAMS) and OLR Precipitation Index (OPI; Janowiak

and Xie 1999). The CMAP dataset is a blended product

of global satellite and gauge data on a 2.58 3 2.58
latitude–longitude grid, approximately the same as the

CAM–CLM-CN simulations. We use the period 1979–

2008, since the dataset is available from 1979 onward.

CAMS–OPI is a precipitation estimation technique that

produces real-time monthly analyses of global pre-

cipitation. Rain gauge observations (CAMS data) are

combined with precipitation estimates from a satellite

algorithm (OPI). The analyses are on a 2.58 3 2.58
latitude–longitude grid, are updated each month, and

are available for 1979–present.

c. Experiment design

As discussed above, recent numerical experiments

suggest that future SST patterns may play an important

role in shaping how precipitation may change in a

warmer world (Rauscher et al. 2008, 2011; Xie et al.

2010; Ma and Xie 2013). For example, simulations that

show warming in the eastern tropical Pacific and a me-

ridional gradient in warming in the tropical Atlantic

tend to reduce precipitation over the Amazon. Models

that do not have a similar warming pattern do not sim-

ulate reductions in precipitation over the Amazon (Li

et al. 2006). To simulate a range of potential future

FIG. 4. Simulated plant functional types (average over 1970–99; % cover) in CAM–CLM-CNDV simulations:

(a) broadleaf evergreen trees, (b) needleleaf evergreen trees, (c) deciduous trees, (d) shrubs, (e) grasses, and (f) bare

ground.
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climates while using a single model, we used SST pro-

jections from eight different fully coupled climate

models from CMIP3 (Meehl et al. 2007) as boundary

conditions for our simulations.

The spinup procedures used for the simulation are

described in full by Jiang et al. (2013); we summarize

here for brevity. We performed a 155-yr coupled

atmosphere–land (CAM–CLM-CNDV) spinup simula-

tion. Initial conditions for this 155-yr coupled simulation

were provided by a 200-yr offline CLM-CNDV simula-

tion that cycled through the 1948–2004 observed atmo-

spheric forcing (Qian et al. 2006) and started from the

end of a twentieth-century CLM-CN transient simula-

tion. Net ecosystem exchange (NEE) was near zero by

the end of the twentieth-century control simulation.

Two ensembles were performed, each with one histori-

cal control simulation (1900–2005) and eight future sce-

nario simulations (2005–99), as illustrated in Fig. 1. The

historical control simulation in each ensemble is forced by

observed SSTs with the land model initial conditions

taken from the end of the spinup run. The results from the

end of the single historical simulation were used to ini-

tialize the eight future scenario simulations in which SST

projections from different CMIP3 models were bias cor-

rected based on observed SSTs (Hurrell et al. 2008).

These eight GCMs include the NCAR CCSM3, CNRM-

CM3,MPI ECHAM5, GFDL CM2.1, GISS-ER, UKMO

HADCM3, UKMO HadGEM1, and MRI-CGCM2.3.2a

as shown in Fig. 1 and Fig. 2. Selection of the different

models is described in Jiang et al. (2013). Throughout the

text we refer to these CMIP3 simulations as the ‘‘parent’’

CMIP3 simulations.

The two ensembles of one control simulation and eight

scenario simulations differ in the use of the dynamic

vegetation model. For the first ensemble, we used CAM-

CLM coupled with dynamic vegetation enabled. In the

second ensemble, the dynamic vegetation was turned off.

To be consistent with the future SST projections, green-

house gas emissions from the IPCC SRES A2 emissions

scenario are used as forcing (IPCC 2000). Aerosol con-

centrations and deposition rates in all simulations were

held constant at year-2000 levels. Prescribed transient

CO2 and nitrogen deposition rates (Lamarque et al. 2010)

were employed for the historical and future-year simula-

tions. Unless otherwise noted, averages representing the

late twenty-first century (2070–99) and the twentieth

century (1970–99) are compared to assess the future

changes relative to the present.

3. Results: Control simulations

We first examine the vegetation distribution simu-

lated in our historical control simulation with dynamic

vegetation on. Overall, our control simulation results

FIG. 5. Modeled and observed annual average temperature (1970–99; 8C) for (a) CAM–CLM-CNDV control

simulation, (b) CAM–CLM-CN control simulation, (c)WMobservations, and differences (d) CAM–CLM-CNDV2
CAM–CLM-CN, (e) CAM–CLM-CNDV 2 WM, and (f) CAM–CLM-CN 2 WM. For (d)–(f), only significant

differences are shown.
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are very similar to the results obtained in a previous

evaluation of CLM-CNDV by Gotangco Castillo

et al. (2012, their Fig. 2). The main difference be-

tween the simulations of Gotangco Castillo et al.

(2012) and those presented here is that the former

utilized a one-way forcing of CLM-CNDV by atmo-

spheric data produced using CAM, whereas our sim-

ulations are interactive between the atmosphere and

land surface.

Figures 3a–f show the observed distribution of PFTs

derived from MODIS satellite data that are used within

the model when prescribing ‘‘natural’’ vegetation cover

(i.e., the vegetation distribution that would be used in

the CAM–CLM-CN configuration when the dynamic

vegetation is turned off). Figures 4a–f show the PFTs

produced in the CAM–CLM-CNDV control simulation.

The spatial distribution of broadleaf evergreen trees

agrees fairly well with the satellite-derived PFTs over

tropical regions; that is, broadleaf evergreens are found

over central America and the Amazon, central Africa,

southern Asia, Southeast Asia, and parts of Australia

and New Zealand. Relative fractional coverage is un-

derestimated, however. This deficiency is compensated

for by increased deciduous tree coverage. For example,

while the Amazon is covered by more than 90%

broadleaf evergreen according to the satellite data, in

CAM–CLM-CNDV it has approximately 45% broad-

leaf evergreen and 45% deciduous trees. In CAM–

CLM-CNDV there is no mandatory senescence period,

so the deciduous trees are able to ‘‘compete’’ in this

region (Gotangco Castillo et al. 2012). Grass (C3 and

C4), shrub, and bare-ground PFTs are shown in

Figs. 3d,e and Figs. 4d,e. Over the SouthernHemisphere

the simulation agrees more closely with observations,

with shrub cover found over southern South America,

southern Africa, and Australia. Grasses are under-

estimated almost everywhere, whereas bare ground is

overestimated. Again, these simulations compare well

with the established performance of CNDV and its

parent DGVM, LPJ (Notaro et al. 2007).

We can compare this CAM–CLM-CNDV simulation

with our control CAM–CLM-CN simulation to deter-

mine the effect of these differences in vegetation cover

(dynamic versus prescribed, respectively) on the simula-

tion of twentieth-century climate (Figs. 5 and 6). Com-

paring averages for model years 1970–99, there are no

statistically significant differences in temperature over

most of the tropics. Precipitation differences between the

two simulations are small, less than 0.5mmday21. Al-

though the Amazon tree cover is spuriously split between

broadleaf evergreen and deciduous tree types in the

CAM–CLM-CNDV simulation as noted above, only a

FIG. 6. Modeled and observed annual average precipitation (1970–99; mmday21) for (a) CAM–CLM-CNDV

control simulation, (b) CAM–CLM-CN control simulation, (c) CMAP observations, and differences (d) CAM–

CLM-CNDV2CAM–CLM-CN, (e) CAM–CLM-CNDV2CMAP, and (f) CAM–CLM-CN2CMAP. For (d)–(f),

only significant differences are shown.
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small region over easternBrazil shows lower precipitation

in CAM–CLM-CNDV compared to CAM–CLM-CN.

4. Results: Future projections

a. Reproducibility of CMIP3 ensemble

As shown in Fig. 2, the long-term annual average of

the SST change patterns used to drive the CAM–CLM-

CN and CAM–CLM-CNDV simulations varies between

the CMIP3 models. Some models show El Niño–like
warming in the tropical eastern Pacific (e.g., GFDL,

HadCM3, CNRM) and others do not (GISS-ER,

ECHAM5). To see how our simulations responded to

these eight different SST warming patterns compared to

their parent CMIP3 simulations, we compare the pre-

cipitation changes between the end of the twenty-first

century (2070–99) to the end of the twentieth century

(1970–99) in our simulations with the parent CMIP3

simulations. Figure 7 shows the percent precipitation

differences for the CAM–CLM-CN simulations for

comparison with the parent CMIP3 simulations (Fig. 8).

There are general similarities between the CAM–CLM-

CN simulations and their parent CMIP3 simulations that

are typical of almost all future climate change simula-

tions. For example, drying is found in the subtropics, and

the midlatitude storm tracks shift poleward. Over the

oceans, the precipitation changes tend to follow de-

partures from the zonalmean SSTwarming (Ma andXie

2013). Where SSTs warm more than the zonal mean,

precipitation increases, and where they warm less, pre-

cipitation decreases. These differences in warming pat-

tern can be large and account for a substantial portion

(up to one-third) of intermodel spread in future pre-

cipitation projections (Ma and Xie 2013). For example,

the tropical North Atlantic shows a warming minimum

FIG. 7. Annual average precipitation change (%) for end of the twenty-first century (2070–99) vs end of the

twentieth century (1970–99) for CAM–CLM-CN simulations driven by SSTs from (a) CCSM3, (b) CNRM-CM3,

(c) ECHAM5, (d) GFDL, (e) GISS-ER, (f) HadCM3, (g) HadGEM1, and (h) MRI.
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in most CMIP3 projections of future SSTs (Fig. 2;

CCSM3 and HadCM3 show this clearly) (Leloup and

Clement 2009), which is associated with lower projected

precipitation in the region (Rauscher et al. 2011).

Over tropical South America (158S–58N, 708–458W),

the parent CMIP3 simulations indicate a range of pos-

sible changes in precipitation, from wetter conditions

(CCSM3) to drier conditions (HadCM3). While the ex-

act spatial distribution of the patterns differ, the sign of

the precipitation change (future compared to twentieth

century) between the parent CMIP3 simulations and our

CAM–CLM-CN simulations is fairly consistent and

seems to scale between the CMIP3 and CAM–CLM-CN

simulations. This is demonstrated in Fig. 9, which shows a

simple scatterplot of the CAM–CLM-CN precipitation

anomalies (annual average future minus present) aver-

aged over tropical South America compared to their

CMIP3 parent anomalies (blue circles). With one

exception, positive (negative) anomalies in the parent

CMIP3 simulation are translated to positive (negative)

anomalies in our CAM–CLM-CN simulations.However,

there is a shift such that the CAM–CLM-CN simulations

are wetter overall in the future than are their CMIP3

parents. To confirm this relationship, we also examined

another tropical region, western and central Africa

(08–128N, 158W–158E). The parent CMIP3 simulations

indicate a range of possible changes in precipitation,

from wetter conditions (CCSM3) to drier conditions

(GFDL). All of our CAM–CLM-CN simulations indi-

cate wetter conditions in the future (cf. Fig. 7 to Fig. 8).

However, the degree to which our CAM–CLM-CN

simulations become wetter in the future is modulated by

the appliedCMIP3 SSTs. This is demonstrated by the red

circles in Fig. 9, which show that a wetter future in the

CMIP3 simulations translates to a much wetter future in

the CAM–CLM-CN simulations. A drier future in the

FIG. 8. Annual average precipitation change (%) for end of the twenty-first century (2070–99) vs end of the

twentieth century (1970–99) for CMIP3 simulations (a) CCSM3, (b) CNRM-CM3, (c) ECHAM5, (d) GFDL,

(e) GISS-ER, (f) HadCM3, (g) HadGEM1, and (h) MRI.
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CMIP3 simulations translates to a wetter future in the

CAM–CLM-CN simulations, but to a lesser extent.

When considering the tropics as a whole (208S–208N),

the ensemble average of ourCAM–CLM-CNsimulations

shows increasing precipitation through the twenty-first

century in the annual average (Fig. 10a, solid black line),

whereas the parent CMIP3 ensemble indicates little trend

(Fig. 10a, solid blue line). However, there are important

seasonal variations to these tendencies. Our simulations

do capture the drying during the Southern Hemisphere

dry season (May–September) (Fig. 10b; cf. solid black

line to solid blue line), which is part of an intensification

of the annual cycle (wetter wet season and drier dry

season) in future climate projections that is stronger in

the Southern Hemisphere (Tan et al. 2008; Seth et al.

2011, 2013). Overall, these results indicate that CAM–

CLM-CN does respond to the imposed SST patterns, but

it is heavily modulated by the tendency of CAM–CLM-

CN to favor a wetter future in tropical regions. None-

theless, the wintertime drying that is critical for fire

occurrence and vegetation change in the real world (e.g.,

Marengo et al. 2008; Lewis et al. 2011) is present, and this

drying over tropical South America does prompt some

interesting vegetation responses. These are outlined in

section 4b(1). We will return to possible reasons for

CAM–CLM-CN’s wet future projections in section 4b(2).

b. Projected vegetation change

1) TROPICS

Figure 11 shows the ensemble mean changes in PFTs

for 2070–99 compared to 1970–99 in the CAM–CLM-

CNDVexperiments. In tropical regions, there aremodest

increases in the coverage of the broadleaf evergreen PFT.

FIG. 9. Scatterplot of CAM–CLM-CN precipitation anomalies

(annual average future minus present; mmday21) compared to

their CMIP3 parent anomalies. Tropical SouthAmerica is shown in

blue (158S–58N, 708–458W) and western and central Africa (08–
128N, 158W–158E) is shown in red.

FIG. 10. Mean and range of precipitation change (mmday21) for CAM–CLM-CN runs (black/gray) and CMIP3

runs (blue) for (a) annual average over tropical land areas (208S–208N) and (b) Southern Hemisphere (58–208S) dry
season (MJJAS). All differences are relative to 1970–99 means, computed for all models separately. Comparison of

the solid blue and black lines shows the overall trend of the ensemble mean of the CMIP3 simulations vs the CAM–

CLM-CN simulations, respectively.
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These mainly occur on the poleward edges of their

twentieth-century modeled distribution (e.g., over

southern Brazil and central Africa). Increases in de-

ciduous trees also occur over western Africa. These in-

creases in tropical broadleaf and deciduous trees

correspond to decreases in grasses and temperate nee-

dleleaf evergreens. The latter occurs spuriously in the

control run, and the future change is due to exceedance

of the maximum temperature limit for the temperate

needleleaf evergreen of 18.88C (Levis et al. 2004). De-

spite the use of different SST patterns, the sign and spatial

extent of the vegetation changes are consistent among the

simulations (not shown). However, a few simulations do

show small decreases in broadleaf evergreen and de-

ciduous tree cover over the tropics (208S–208N). We will

explore these decreases in section 4b(2).

As noted above, changes in mean vegetation cover

over the tropics are fairly small; the fractional coverage

of broadleaf evergreen trees and deciduous trees in-

creases slightly from about 23% to 25.5% and from

21.5% to 23% (a percentage change of 11% and 7% of

the original coverage, respectively) throughout the

twenty-first century in the ensemble average. A few

simulations show larger increases in broadleaf ever-

green trees; these are the simulations forced by

ECHAM5 andGISS. Interestingly, both of thesemodels

warm less in the eastern Pacific compared to their zonal

mean warming (Fig. 2). Another model, CCSM3, also

shows this departure but it does have more pronounced

warming on the equator in the central Pacific. Lyon and

Barnston (2005) showed that a robust relationship exists

between the spatial extent of drought in the tropics and

El Niño strength (based on Niño-3.4 SST anomalies);

patterns that lack this characteristic are probably more

likely to bewetter overall in the tropics. Indeed, theGISS-

driven simulation has the largest trend in precipitation

over land areas in the tropics [0.52mmday21 (95yr)21],

while ECHAM is tied for the third-largest increase

[0.40mmday21 (95 yr)21]. In contrast to these two sim-

ulations, in the HadCM3-driven simulation there are a

few sharp declines in broadleaf evergreen cover and

deciduous tree cover (Fig. 12, red line). Because each

event is followed by a fast recovery, the changes in

vegetation cover are not due to the slow 20-yr climate

FIG. 11. Ensemble average changes in PFTs (%) comparing the late twenty-first century (2070–99) and the

twentieth century (1970–99) in CAM–CLM-CNDV simulations for (a) broadleaf evergreen trees, (b) needleleaf

evergreen trees, (c) deciduous trees, (d) shrubs, (e) grasses, and (f) bare ground.
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envelope that can change PFT coverage in CAM–

CLM-CNDV. Instead, these temporary decreases in

tree cover result from the activation of the fire algorithm

in CLM (described above in section 2).

Figure 13a shows the fractional area burned over the

tropics (208S–208N). From 2005 to the end of the cen-

tury, fractional area burned increases by about 30% in

the ensemble mean, and several large events are no-

ticeable in a few ensemble members, including the

HadCM3-driven ensemble member, which is shown in

red. These large events are also visible in a frequency

histogram of fractional area burned (Fig. 13b), com-

paring the eight simulations in the last 40 years of the

twenty-first century to the first 40 years of the twenty-

first century. Note that we compare the late twenty-first

century to the early twenty-first century so that we can

use all eight ensemble members so as to maintain the

same number of values for each period. There is clearly

an increase in the percentage of time a grid cell expe-

riences a large fractional area burned (Fig. 13b). This

relationship is maintained even when the HadCM3 en-

semble member is removed (Fig. 13b, dashed lines).

Over the tropics as a whole, fire season increases by

about one week in the ensemble mean (7.21 days) over

the twenty-first century (Fig. 14a).

These changes in dry season length are linked to an

enhanced dry season in the future simulations, as in-

dicated by the precipitation Hovmöller diagram in

Fig. 15a. Figure 15a shows the precipitation climatology

from the control simulation averaged over land areas

over all longitudes in black contours. The annual cycle of

precipitation clearly follows the solar annual cycle,

reaching its maximum northward (southward) extension

in the Northern (Southern) Hemisphere summer. The

differences between the twenty-first and twentieth cen-

turies (shaded) show an amplification of the annual cycle

(i.e., wetter rainy seasons and drier dry seasons), a ro-

bust feature of precipitation change via the remote ef-

fect in future simulations (Tan et al. 2008; Seth et al.

2011, 2013). These decreases in winter precipitation are

also apparent in Fig. 10b. These decreases in pre-

cipitation are reflected by changes in soil moisture, a

variable which effectively integrates changes in pre-

cipitation, temperature, and evapotranspiration (Koster

et al. 2004; Steiner et al. 2009). Recall that fire season

length is controlled in part by near-surface soil moisture

conditions in the fire module in CLM (Oleson et al.

2010). As a result of decreases in precipitation and in-

creases in temperature (not shown), soil moisture de-

creases in the winter (dry) season of each hemisphere

(Fig. 15b), leading to a lengthening of the fire season as

shown in Fig. 14a.

2) TROPICAL SOUTH AMERICA

Over tropical South America, fires with sufficient

fractional area burned to remove vegetation (Fig. 16a,

where the HadCM3-driven simulation is shown in red)

occur in some of the simulations. Why do these changes

happen in the simulations? First, large droughts that

exceed observed z scores emerge in the twenty-first

century in several of the simulations. Figure 17a shows the

area-averaged precipitation over tropical South America

FIG. 12. Time series of vegetation cover (%) in the tropics from 2006–2100 in CAM–CLM-CNDV simulations for

(a) broadleaf evergreen trees and (b) deciduous trees. The twenty-first-century ensemble mean is shown in dark gray

and individual ensemble members are shown in light gray. The HadCM3-driven CAM–CLM-CNDV ensemble

member is in red.
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for the twentieth and twenty-first centuries. All are cal-

culated relative to the twentieth-century simulation (ex-

cept observations). Noticeable observed droughts occur

over tropical SouthAmerica, with precipitation anomalies

that exceed21 standard deviation. Severe droughts occur

in the HadCM3-forced simulation (red line) that exceed

22 standard deviations from the mean.

These HadCM3 droughts are associated with positive

SST anomalies over the tropical North Atlantic, less

warm anomalies over the tropical South Atlantic, and

El Niño–like conditions in the tropical Pacific, as shown

by the instantaneous correlation between area-averaged

precipitation over tropical South America and observ-

ed SSTs (Figs. 18a,b) for the CAMS–OPI observa-

tions and CAM–CLM-CN control run, respectively.

Note that these droughts occur in the HadCM3-driven

CAM–CLM-CN and CAM–CLM-CNDV simulations

in the same years (2065, 2097, and 2098; Figs. 18c–e),

FIG. 13. (a) Fractional area burned (fraction) over the tropics (208S–208N) for CAM–CLM-CNDV twentieth-

century control run (black), twenty-firs- century ensemblemean (dark gray), and individual ensemblemembers (light

gray). The HadCM3-driven CAM–CLM-CNDV ensemble member is in red. (b) Frequency histogram of fractional

area burned (fraction) for 2010–49 (blue) vs 2060–99 (yellow) considering all land grid points from 208S–208N for all

ensemble members (solid lines) and excluding the HadCM3 forced ensemble member (dashed lines).

FIG. 14. Length of fire season (days) in the twentieth-century control run (black), twenty-first-century ensemble

mean (dark gray), and individual ensemble members (light gray) in CAM–CLM-CNDV simulations over (a) the

tropics (208S–208N) and (b) tropical South America (158S–58N, 708–458W). In both panels, the HadCM3-driven

CAM–CLM-CNDV ensemble member is shown in red.
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confirming that the SST anomalies are driving these

events. Decreases in soil moisture contribute to the se-

verity of these droughts. Despite an overall positive

trend in annual average precipitation in the ensemble

mean, soil moisture does not increase over the twentieth

century over tropical South America (Fig. 17b). Con-

sequently, fire season length increases in length by

2 weeks in the ensemble mean over the 95-yr simulation

period (Fig. 14b). These changes are particularly notable

in the HadCM3-driven CAM–CLM-CNDV ensemble

member, shown in red, which shows the large droughts

(Fig. 17a), large decreases in soil moisture (Fig. 17b),

and marked decreases in evapotranspiration (Fig. 17c).

Returning to why annual average precipitation in-

creases in the future in our simulations—and why our

simulations produce wetter futures than their CMIP3

parents—recall the local and remote effects discussed in

the introduction. In the remote response, the rising heat

content of the ocean and higher SSTs result in nearly

uniform warming in the upper troposphere (Sobel et al.

2001), increasing stability. Precipitation is reduced over

tropical land areas where there is insufficientmoist static

energy to overcome this enhanced stability (Chou and

Neelin 2004; Chou et al. 2009; Giannini 2010). In the

local response, increases in net surface radiation lead to

increases in evaporation and low-level moist static en-

ergy, driving increased precipitation and moisture con-

vergence. In our simulations, the local effect appears to

dominate since precipitation, net surface radiation, and

evapotranspiration all increase on an annual average

basis over tropical South America in nearly all ensemble

members (Figs. 17a,c,d). Whether the remote or local

effect ismore important is likely linked to the strength of

land surface–atmosphere interactions and therefore to

the formulation of the land surface model, boundary

layer, and convection parameterizations and deserves

further exploration.

5. Discussion and conclusions

We have performed a series of experiments with

CAM–CLM-CN and CAM–CLM-CNDV with SST

warming patterns provided by eight of the CMIP3 pro-

jections under amedium–high emissions scenario. These

experiments were designed to simulate a range of future

climate–vegetation trajectories over the tropics. Be-

cause of the tendency of CAM–CLM-CN to favor the

FIG. 16. Fractional area burned (fraction) over tropical South

America (58S–58N, 708–458W) for CAM–CLM-CNDV twentieth-

century control run (black), twenty-first-century ensemble mean

(dark gray), individual twenty-first century ensemble members

(light gray), and HadCM3-driven ensemble member (red).

FIG. 15. (a) Hovmöller diagram of precipitation for the control

simulation (black line; mmday21) and differences between the late

twenty-first century (2070–99) and the twentieth century (1970–99)

(shaded) in the CAM–CLM-CNDV simulations over land areas.

(b) As in (a), but for the top 0.5m soil moisture (m3m23).
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local response to climate change—that is, changes in net

radiation at the surface are translated to increased

evaporation, net surface radiation, and precipitation—

overall we did not see as large a spread in our projected

future precipitation on an annual average basis as in the

original CMIP3 archive that provided the SST boundary

conditions. In other words, the different SST warming

patterns do have an impact, but this effect is modu-

lated by CAM–CLM-CN. However, our simulations did

faithfully reproduce the drier dry season present in the

CMIP3 simulations, which has important implications

for vegetation change.

In our simulations with dynamic vegetation enabled,

the fractional coverage of broadleaf evergreen trees and

deciduous trees over the tropics increases from about

23% to 25.5% (a percentage difference of 11%) and

from 21.5% to 23% (7% increase), respectively, through-

out the twenty-first century in the ensemble average. An

exception is the HadCM3-driven experiment, which

experiences several sharp declines and recoveries in tree

cover over the tropics. As a result of the enhanced dry

season, longer fire seasons and increases in fractional

area burned are found over the tropics as a whole and in

particular over tropical South America. These changes

are evident even when the HadCM3-forced ensemble

member is excluded. Our results echo many other

studies of vegetation change over the region. Enhanced

fire risk was also found in a study using the vegetation–

global–atmosphere–soil (VEGAS) model driven by

output from 24 CMIP3 models (Cook et al. 2012).

Similar to our results, Cook et al. (2012) found that a

drier dry season (May–September) projected by the

FIG. 17. Time series of surface climatic variables over tropical South America (158S–58N, 708–458W).

(a) Precipitation z scores (distance from mean in standard deviation units) for CAMS–OPI observations

(black solid line), twentieth-century CAM–CLM-CNDV control run (black dashed line), twenty-first-cen-

tury CAM–CLM-CNDV ensemble mean (dark gray), twenty-first-century individual ensemble members

(light gray), and CAM–CLM-CNDV HadCM3 ensemble member (red). (b) Top 0.5-m soil moisture

(m3 m23), (c) evapotranspiration (mmday21), (d) surface net radiation (Wm22). (b)–(d) coloring as in (a), except

no observations are shown.
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future scenario simulations leads to lower soil moisture

and heightened fire risk in the Amazon. A recent study

by Galbraith et al. (2010) suggests that DGVMs may in

fact be underestimating the effects of soil moisture

stress on vegetation based on field experiments where

throughfall reaching the soil was reduced, leading to

reduced biomass.

In the HadCM3-forced ensemble member, extreme

drought occurrences over tropical South America as-

sociated with El Niño–like warming patterns in the Pa-

cific and a meridional gradient in tropical Atlantic SSTs

lead to fires that remove all vegetation cover over the

eastern Amazon. While the other ensemble members

show droughts and fire pulses as well, the HadCM3-

forced result appears to be unique in its extreme re-

sponse. Modeling studies that use HadCM3 climate

forcing typically find decreases in biomass due to the

HadCM3 projected decrease in precipitation. For ex-

ample, Sitch et al. (2008) found that five different dy-

namic vegetationmodels [hybrid land terrestrial ecosystem

(HyLand), ORCHIDEE, Sheffield-DVGM (SHE),

TRIFFID, and LPJ] simulate decreases in vegetation

carbon over Amazonia when the models are forced

with the HadCM3 data. Huntingford et al. (2013) in-

vestigated how biomass stocks would change using the

MOSES–TRIFFID land surface model forced with cli-

mate data from 22 of the CMIP3 models. Only in the

HadCM3-forced simulation did biomass decrease over

the tropical Americas. Malhi et al. (2009) calculated

accumulated water stress from CMIP3 output for the

twentieth and twenty-first centuries and found that there

is a high probability of a more intense dry season in the

future. Water stress increases over eastern Amazonia to

the point where the region crosses a threshold to tran-

sition to savanna when the output from HadCM3 is

used. Overall, their study predicts a climate over the

eastern Amazon more suitable to seasonal forest, with

the potential for enhanced fire risk.

The relative importance of the climate forcing and

the physiological response is still uncertain. The

FIG. 18. Correlation between annual average observed SSTs (8C) and precipitation

(mm day21) over tropical South America (158S–58N, 708–458W) showing (a) the correlation

with CAMS–OPI observations and (b) the correlation with the CAM–CLM-CN control run

precipitation from 1980 to 2004. Annual average SST anomalies (8C) for (c) 2065, (d) 2097,
and (e) 2098 from the HadCM3 coupled simulation compared to the 1970–99 HadCM3

average.
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similarities in responses across multiple DGVMs to

the HadCM3 forcing suggest that the climate forcing is

the most important factor when determining future

trajectories of vegetation. However, if the fertilization

response to CO2 is strong, biomass could increase de-

spite precipitation decreases (Rammig et al. 2010).

Substantial structural uncertainties remain in both our

understanding of vegetation processes such as mor-

tality events (McDowell et al. 2013) and how to model

them (Adams et al. 2013). Our results and existing

studies suggest that a large-scale reduction in forest

cover is an unlikely but still possible event given the

resemblance of recent droughts to CMIP3 HadCM3

projection (Marengo et al. 2008; Lewis et al. 2011).

Similar to Malhi et al. (2009), we find that the risk is

likely greatest in seasonally dry forests given the am-

plification of the precipitation annual cycle and drier

springs simulated here in agreement with both CMIP3

(Seth et al. 2011) and CMIP5 (Seth et al. 2013) pro-

jections. This is in contrast to our results for the mid-

latitudes, where heat stress was the primary factor

behind vegetation change (Jiang et al. 2013) in partial

agreement with observed relationships (Williams

et al. 2013).
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