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ABSTRACT
Essays in Development and Environmental Economics

Jan von der Goltz

This dissertation discusses three questions of development and environmental economics.
First, it assesses the impact of mineral mining on the health and wealth of households in
local communities across 44 developing countries, using micro data. Secondly, it presents
evidence from a randomized controlled trial on the cost-shared provision of well-water tests
for arsenic. Finally, it analyzes measurement error in a satellite night light data product
widely used in development research, and investigates the scope for using the data in very

high spatial resolution.

The first chapter compiles 104 rounds of household surveys from 44 countries to study
health-wealth trade-offs arising due to mining activity. Households in mining communities
enjoy substantial economic benefits. Yet, these are counterbalanced by a health burden
specific to environmental contamination. Adult women experience a ten percentage point
increase in the incidence of anemia, and young children, a five percentage point rise in the
prevalence of stunting. Prior evidence links both of these health impacts to metal toxicity —
and in particular, exposure to high levels of lead. We show that there are health impacts only
near mines of a type where heavy metal pollution is to be expected, and find no systematic
evidence that health is affected in ways that are not specific to exposure to such pollutants.
Benefits and costs are strongly concentrated in the immediate vicinity (< 5km) of a mine.
Consistent results emerge from a range of distinct identification strategies, including fixed
effects models, an instrumental variables strategy, and two difference-in-difference tests tai-
lored to the known association of certain mine types with heavy metal pollution, and to the

pathophysiology of lead toxicity. Our results add to the nascent literature on health impacts



near industrial operations in developing countries.

The second chapter reports results from a randomized controlled trial conducted in Bi-
har, India. It assesses the scope for cost-shared provision of well-water arsenic tests, and
studies how households use the information revealed by testing. Groundwater contaminated
with arsenic of natural origin threatens the health of tens of millions of villagers across South
and Southeast Asia. Because contamination varies greatly even over small distances, wa-
ter quality tests can allow households to form agreements to share water from safe wells.
Tests have largely been provided through public blanket testing campaigns. However, these
important campaigns are conducted infrequently, and have not kept up with high growth
in the use of privately-owned tube wells. Cost-shared private provision might therefore be
a useful complement. We find that demand is substantial, and a degree of cost-sharing is
possible. However, in line with prior evidence on cost-sharing in preventive health goods,
we show that cost-sharing comes at the price of strongly reduced take-up. Even at a small
price of Rs. 10, uptake drops to 69% from the universal adoption found under free provi-
sion. It falls further, to 22% of households, over our price range (Rs. 10 to Rs. 50 — about
equivalent to daily per capita income). Repeating the sales offer after a two-year hiatus
raises overall uptake substantially, from 27% to 45%. About one-third of households with
unsafe wells switch to a safer water source. Households that bought at higher prices are no
more likely to switch, consistent with an absence of sunk cost or screening effects. Finally, we

demonstrate that households selectively forget and remove evidence of adverse test outcomes.

The final chapter assesses whether night lights data from the Defense Meteorologi-
cal Satellite Program’s Operational Linescan System (DMSP-OLS) are observed precisely
enough to measure wealth at high spatial disaggregation. Night lights are routinely used as
proxies of ground-based activity at the level of countries, sub-national regions, or metropoli-

tan areas. Given the data’s resolution (about one square kilometer at the equator), they



might also be useful in studying processes at much higher spatial disaggregation — for in-
stance, at the level of towns or villages. Yet, DMSP-OLS data are subject to several sources
of measurement error that could interfere with such uses. I assess one error component,
namely error in geolocation, in a new data set of 185 calibration sites that are small, bright,
and remote. The offset between the actual location of light sources and their recorded lo-
cation in the most commonly used yearly night lights data product is small enough to be
ignored, even in applications where the spatial scales of interest are on the order of a few
kilometers. Root mean square error is a mere (0.52km in zonal and 0.67km in meridional
direction. I then illustrate the potential and limits of very high-resolution applications by
benchmarking light data on household asset wealth in all official localities in Mexico. Night
lights are a strong proxy measure of cross-sectional wealth differences even within small ad-
ministrative units, in particular in the poorest, least populous, and most dimly lit regions.
However, the analysis of changes over time is more subtle: the relationship between changes
in brightness and changes in wealth is non-monotonic, and noise compounds when the data

is used as a panel.
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Chapter 1

Mines: the local wealth and health effects of mineral mining in

developing countries



Mines

The local wealth and health effects of mineral mining in developing countries ¥

Jan von der Goltz Prabhat Barnwal

Abstract

Do residents of mining communities face health-wealth trade-offs? We conduct
the first extensive assessment of this question using micro-data from communities near
about 800 mineral mines in 44 developing countries. Households in mining communities
enjoy a substantial medium-term gain in asset wealth (0.3 standard deviations), but
experience a ten percentage point increase in the incidence of anemia among adult
women, and a five percentage point rise in the prevalence of stunting in young children.
Prior evidence links both of these health impacts to metal toxicity — and in particular,
exposure to high levels of lead. We observe health impacts only near mines of a type
where heavy metal pollution is to be expected, and find no systematic evidence that
health is affected in ways that are not specific to exposure to such pollutants. Benefits
and costs are strongly concentrated in the immediate vicinity (< 5km) of a mine.
Consistent results emerge from a range of distinct identification strategies. Baseline
results come from a cross-sectional fixed effects model, and mine-level and mother-
level panels. An instrumental variables approach serves as a robustness check. To
demonstrate that the observed health impacts are due to pollution, we develop two
difference-in-difference tests tailored to the known association of certain mine types
with heavy metal pollution, and to the pathophysiology of lead toxicity. Our results
add to the nascent literature on health impacts near industrial operations in developing

countries.
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Matthew Neidell, Cristian Pop-Eleches, Bernard Salanié, Wolfram Schlenker, Anna Tompsett, and seminar
participants for comments. Nicole Dussault and Dheeraj Sharma provided excellent research assistance. We
gratefully acknowledge financial support from the Centre on Global Economic Governance and the Center
for International Business Education and Research at Columbia University. All errors are ours.
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1.1 Introduction

This paper studies the local wealth and health impacts of mineral mining in 44 developing
countries. We show that, while residents living close to mines enjoy greater wealth, there is

a trade-off: life near mines exacts a price in terms of specific health burdens.

In any country and at any time, the decision to live near centers of industrial activity
involves weighing the promise of economic opportunity against the risk of disamenity caused
by pollution. Nowhere is this choice starker than in developing countries. More often than
not, opportunities for making a good living are precious and few. At the same time, pollution
tends to be poorly regulated, and information on health risks and on ways to avoid them,
scarce. Poor infrastructure and inflexible housing markets commonly make commuting to
avoid pollution impracticable. Yet, while “the literature on the health effects of pollution
has advanced greatly in the last two decades, almost all of this research has been conducted

in developed country settings.” (Greenstone and Jack, 2013, p. 12)

In the following paper, we present the first systematic empirical assessment of the micro-
level trade-offs between health and wealth posed by the mining industry in developing coun-
tries. We seek to add to the very limited number of broad micro data analyses of local
health impacts near any kind of industrial operations in developing countries. For the study
of industrial pollution in poor countries, the mining and mineral processing industry is an
attractive test case in that it poses particularly sharp trade-offs. Single plants generate very
high value — in some instances, in the hundreds of millions or billions of dollars per year.
The location of ore deposits dictates where mines open, and because of transport costs, of-
ten also where smelters locate. Therefore, large operations are found in remote areas where
they dwarf any other enterprises — and the economic opportunities generated by the latter.
Mines and smelters therefore tend to play a conspicuous economic role. At the same time,

however, they are very large polluters, and precisely because they are important sources of



revenue, foreign exchange, and employment, there is a risk of weak environmental regulation

and enforcement.

The importance of mining to development is reflected in a long tradition of research on
the macroeconomic implications of mining and the optimal management of mineral resources.
However, there is little empirical evidence on the local economic impact of mining, and on
its effects on other dimensions of well-being. This particularly includes implications for the
health of local communities: although there is an important literature on pollution near
mines, and an extensive body of knowledge on the toxic properties of common pollutants,
there is scant systematic evidence linking the two. No more than a handful of case studies
have carefully assessed the actual clinical consequences of exposure to a mining environment.
This paucity of empirical evidence on the local welfare effects of mining is in stark contrast to
the strong passions that mining projects habitually evoke among the communities affected.
In some places, projects have been supported vociferously, and people have fought over the
right to work in mines. Yet, in other places, mining has been desperately opposed, as citizens
feared damage to their health and environment. Our work shows that these political passions
are grounded in a real trade-off. Across a broad range of settings, the local benefits of mining

are real, but so are the costs.

We analyze the effect of mining activity on asset wealth, on general health, and on two
specific health outcomes known to be linked to pollutants that may be present around mines
in our sample, namely anemia in adults and children, and growth in young children. To
study the interplay of health and wealth effects across the developing world, we compile
104 waves of Demographic and Health Surveys from 44 countries. The pooled data provide
us with about 1.2m household-level records and several million individual-level observations,
spanning a time period from 1986 until 2012; they also record the geo-location of each cluster
of households sampled. We overlay this household data with information on the location of
mining and smelting operations across the world. We use a large cross-sectional dataset of

mines that records the types of minerals mined, and characteristics of the local geology; as
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well as two business intelligence datasets that document annual production at individual
mines. Guided by prior evidence from the environmental sciences on the spatial extent of
pollution around mines, we define households within 5km of a mine to be in its direct vicinity,
and consider those to be treated. We regard households within 5-20km of a mine to be in
its general vicinity, and rely on those in constructing control groups. Using production data,
we create pseudo-panels that enable us to compare our treatment and control groups across

time, namely between years when the mine was operational, and when it was dormant.

We then construct a broad range of complementary statistical tests that rely on different
control groups, and offer extensive placebo tests. In our baseline models, we estimate the
effect of closeness to mines and smelters in the cross-section, and the effect of closeness and
operational status in the panel. (We prefer pooling mineral mining and processing facilities,
but show robustness to excluding smelters from the sample.) We weaken cross-sectional
identifying assumptions by defining our control group conservatively, and by allowing for a
fixed effect common to all clusters observed near the same mine, and in the same survey
year. Because of the possibility of residential sorting, we argue that our cross-sectional
estimates are best read as the long-run effect of mining on communities, much like district
or county-level studies assess impacts on those units of analysis. To assess the effect of
exposure to mining on individuals, we create two sets of pseudo-panels: a mine-level panel
compares households observed near the same mine in different years, and a mother-level
panel compares among siblings born in different years. The panels allow for common effects
shared by all households observed in the same country and survey round. An instrumental
variables (IV) approach further reassures us that our results are not due to endogenous choice
of mine location or periods of operation; to this end, we use the location of mineral deposits

and world mineral prices to instrument for the location and operational status of mines.

Beyond these standard identification frameworks, we develop two difference-in-differences
tests that are tailored to prior knowledge on the toxic properties of mining pollution. Our

purpose in designing these tests is two-fold. Firstly, they help bolster our claims to observing
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a causal impact of mining on health. In particular, we believe that they are largely immune
to residential sorting. Secondly, our tests provide evidence to suggest that the observed
health effects are due to pollution, not other mechanisms. To devise the tests, we (i) lever-
age knowledge on the association of specific mine types with lead contamination — and by
extension, health impacts specific to lead — to conduct falsification tests. We show both that
we only observe those health impacts that are expected from exposure to lead pollution,
and that we only observe them near mine types strongly associated with the release of lead.
Furthermore, we (ii) exploit detailed information on the birth history of women to describe
a pattern of impaired ability to recover from blood loss after pregnancy among women living
in mining communities, as compared to those living in the general vicinity. We argue that
this effect is consistent with a known pathophysiological pattern of lead toxicity in adults,

but not easily consistent with other mechanisms.

Our results show that, at the global mean, long-run asset wealth in mining communities
rises by about 0.1 standard deviations of an asset index computed for the country where
the community is located and the year in which the survey was taken. The medium-term
wealth of households living in the vicinity of an operating mine rises by about 0.3 standard
deviations. We illustrate that these are considerable effects, given the high variation in
asset ownership within survey rounds. Wealth effects are strongly concentrated in the direct
vicinity of the mine; there are benefits across the wealth distribution, although in the long
run, the wealthiest households benefit the most; across countries, wealth gains are greatest

near mines where the overall economic environment is poor.

We find clear evidence of two health impacts that are known consequences of exposure
to lead and other heavy metals that may be present near mines. Thus, women in mining
communities show depressed blood hemoglobin, and increases in the incidence of anemia
of three to ten percentage points. They also recover more slowly from blood loss during
pregnancy and delivery, a pattern consistent with prior toxicological research. Children in

mining communities suffer some important adverse growth outcomes from in utero exposure,
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with a five percentage point increase in the incidence of stunting — although there is very
little evidence of lower birth weight. Growth impacts are weaker among older children,
perhaps because of the greater wealth enjoyed by households in mining communities. We note
particularly that, while our data contains no good measure of cognitive ability, lead exposure
has previously been shown to cause cognitive deficits in children at exposure levels below
those associated with growth retardation, and far below those associated with overt anemia.
By way of contrast to these specific health impacts, we find no effects on health outcomes that
are not linked to heavy metal pollution, nor are mining communities differentially affected

by other known causes of anemia, or under-served by health care.

Because our paper shows reduced form impacts (that is, it allows for the effect of expo-
sure to a mining environment on health to play out through any channel, including greater
wealth), our health results should be interpreted as the compensated impact of mining. By
implication, since living in mining communities goes hand in hand with economic benefits
across the distribution, there is no indication that ill health is caused by deprivation. Rather,

health impacts arise despite wealth gains.

This paper seeks to make three contributions to the literature. It is the first to demon-
strate that residents of mining communities in developing countries face a trade-off between
real economic benefits and specific health costs. Secondly, we add to the limited evidence
on the consequences of industrial pollution in developing countries. Finally, we complement
the toxicological and epidemiological literature by showing that the health effects of mining
pollution are salient in a study of the general population near a large number of mines (rather
than in local treatment effects found in case studies), and are robust to tests that require

weak identifying assumptions.

The remainder of the paper is organized as follows. Section 1.2 describes what is known

about welfare in mining communities. Section 1.3 introduces results from environmental



science and toxicology that guide the way we develop hypotheses, measure impacts, and in-
terpret results. Section 1.4 discusses data, and Section 1.5 summarizes econometric methods.

Section 1.6 presents results; Section 1.7 concludes.

1.2 Mining, wealth, and health

This section discusses the state of knowledge on mining and wealth (Section 1.2.1), and
on health in mining communities (Section 1.2.2). Section 1.3 provides additional background
on individual links in the causal chain from mining to ultimate health impacts, namely (i)
pollution near mines, (ii) the body burden of pollutants in residents of mining communities,

and (iii) the toxic impacts of substances released near mines.

1.2.1 Mining and wealth

Economics has traditionally studied mineral mining in the context of optimal resource
management, or in a macroeconomic context of growth and public finance. For a textbook-
level overview of the former, see, e.g., Hartwick et al. (1986); for a survey of the latter,

Frankel (2010).

The economic impacts of mining at the local level have only recently received some
attention. As of the time of writing, we are aware of only two published papers that study
mining at the kind of disaggregated scale we consider. In a pioneering paper, Aragén and Rud
(2013) leverage a change in local hiring and procurement policies in a single very large gold
mine in Peru to identify local economic impacts. Incomes in communities within 100km of
the mine showed an elasticity of 0.3 to production at the mine, alongside significant increases
in the price of housing and of locally produced agricultural output, and higher local public

spending. Wilson (2012) shows that asset ownership increased among residents of copper



mining communities in Zambia during a boom in the 2000s. A second paper by Aragon
and Rud (2015) investigates the impacts of gold mining in twelve operations in Ghana on
agricultural productivity. It finds stark decreases in productivity (40%) in the general vicinity
(less than 20km) of mines, relative to control areas farther away. Productivity losses in the
general vicinity are accompanied by large increases in the poverty headcount (18 percentage
points), and decreases in consumption, all driven by dire developments for rural households.
The latter two papers and a working paper by Kotsadam and Tolonen (2013) use sub-sets of
the micro data from the Demographic and Health Surveys also used for the present study.
Kotsadam and Tolonen (2013) argue that mining activity in a comprehensive sample of
African mines fosters sectoral shifts in employment out of agriculture (among women, into
services, and among men, into skilled manual labor) and increases cash employment among

women, but is also associated with women leaving the labor force altogether.

Long-term welfare in mining communities was also brought to the attention of the research
community by Dell’s (2010) work on the mita forced labor policy in Peru, although the focus
of the paper is on institutions and development, rather than the direct welfare impacts of
mining per se. In other related work, Acemoglu et al. (2013), Dube and Vargas (2013), and
Monteiro and Ferraz (2009) have recently leveraged resource revenue at a disaggregated scale
as an instrument in the study of other objects of interest (health expenditure, conflict, and

corruption, respectively).

1.2.2 Health effects of mining

Our paper asks how significant are the ultimate health effects in the general population of
exposure to pollution from every-day mining and mineral processing operations. Few studies
have attempted this before, and to the best of our knowledge, none considers the possible
trade-off between wealth and health effects and assesses the issue across many mine sites in

a manner that allows for a causal interpretation of results.
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Prior work in economics on the issue is limited. Aragon and Rud (2013) find a significant
decrease in general health problems among adults with an expansion of production in the
Yanacocha mine, Peru, and no effect among children. In their recent working paper on
Ghana, the same authors find evidence of an adverse effect of mining activity on weight-
for-height ratios and the prevalence of cough in children living in the general vicinity of
twelve gold mines (perhaps due to air pollution around the mines studied), but no impact on
stunting and diarrhea (Aragon and Rud, 2015). Some attention has been given to behavioral
correlates of mining activity. Wilson (2012) finds that sexual risk-taking tended to decrease
in Zambian copper towns during a boom. Corno and De Walque (2012) argue that in mining
communities in southern Africa, there was increased risk taking and HIV infection among

migrant miners, but no such effect among non-migrants.

In the field of public health, some case studies directly analyze health impacts in commu-
nities near smelters. (Factor-Litvak et al., 1999, p. 14) find impacts on “intelligence, physi-
cal growth, preschool behavior problems, renal function, blood pressure and hematopoiesis,”
among children of up to 7.5 years of age living in a smelter town in Kosovo. Among school-
age children living near a lead smelter in Belgium, Roels et al. (1976) find changes in sensitive
biomarkers that indicate an incipient disruption of the process of blood formation, but not
overt anemia. Both papers show comparisons to a matched control group in addition to dose-
response relationships. Dose-response relationships alone have also been reported between
blood lead (PbB) and lower blood hemoglobin (Hgb)!, as well as reduced nerve conductiv-
ity, among children living near a lead smelter in Idaho, U.S. (Landrigan and Baker, 1981;
Schwartz et al., 1990). Baghurst et al. (1992) show a dose-response of I1Q to PbB in chil-
dren living near a lead smelter in Port Pirie, Australia. A range of papers by Hendryx and
various co-authors (see for instance Hendryx and Ahern, 2008) shows cross-sectional corre-

lations between county-level health outcomes and Appalachian coal mining, without clear

! The papers report hematocrit, not hemoglobin levels, but the two measures are closely correlated, and
are both used to define anemia.
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causal claims.

Pollution due to mining is a special case of industrial pollution, and the latter has been an-
alyzed in large and well-identified studies. Yet, most of these investigate developed countries
(see Currie et al. (2013) for a major recent contribution); studies of developing countries —
especially using large samples — remain rare. Chen et al. (2013) study reduced life expectancy
from air pollution due to power generation in China; Ebenstein (2012) assesses the effect of
water pollution on gastro-intestinal cancer rates in China; and Rau et al. (2013) show cogni-
tive losses from lead exposure near an abandoned toxic waste site in Chile. Hanna and Oliva
(2011) describe reductions in air pollution from the closure of a large refinery in Mexico city,
and an associated increase in labor demand. Studies of overall urban pollution (Arceo et al.,
2015; Greenstone and Hanna, 2011) are related, but not specific to industry, while studies
of air pollution from urban traffic (e.g. Gallego et al., 2013) are less closely related. We seek
to contribute to this nascent literature by presenting a multi-site micro-data study of the
comparative health and wealth impacts of an important industry, across many developing

countries.

1.3 Scientific background

This section first discusses environmental pollution near mines, and its relationship to the
body burden of toxicants (Section 1.3.1). We then establish that metals, and in particular
lead, are of most interest as pollutants in our sample, and discuss the toxic effects of lead

(Section 1.3.2).
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1.3.1 Environmental pollution due to mining and its relationship

to the body burden of toxicants

A voluminous literature in environmental science has catalogued the pollutants emitted
in the course of normal operations near mines and smelters of different types. We base
the following discussion on Alloway (2013), Ripley et al. (1996), and Wright and Welbourn

(2002).

Local communities can be exposed to pollution through a multitude of channels. These
include dust from mining, handling and processing; mine waste water; direct exposure to
abandoned mine spoil and tailings; metals leached from tailings into soil and water; and
particulate and gaseous emissions from roasting and smelting. Sometimes, the material
extracted is itself of concern, such as in lead, uranium, or asbestos mining. At other times,
pollutants are used in processing, such as in the case of cyanide leaching of gold, or gold and
silver extraction by mercury amalgamation. Finally, sometimes the concern is with toxicants
co-located with the mineral mined and released either in processing or weathering of mine

spoils, such as in the case of heavy metals in non-ferrous metal mining.

Two stylized facts on pollution near mines are essential to the way we analyze the health

impacts of mining.

(i) The kinds of pollutants near a given mine can be predicted well from the ore
mined.

Table 1.1 summarizes pollutants associated with common (and non-exclusively defined) mine
types in our sample. The mapping is far from exact, but serves as a useful first-order ap-
proximation. We leverage the association between target minerals and toxicants to compare
health effects across mine types, and to show that we find predicted health impacts only

near mine types where pollutants specific to the health impact in question are found.
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Of particular interest to us is the association of “non-ferrous metalliferous mining and
smelting industries ...with very high levels of heavy metal(loid) contamination of the en-
vironment.” (Alloway, 2013, p. 43) Thus, ‘polymetallic’ mines, where any combination of
copper, gold, lead, silver, and zinc are extracted, are linked with a characteristic suite of
highly toxic pollutants that includes most prominently lead, but also arsenic, cadmium, and
chromium. (We will refer to these metals and metalloids as ‘heavy metals’ — a term that is
imprecise in that it does not refer to a well-defined group of chemical elements, but has the
advantage of being in everyday semantics associated with the pollutants we have in mind.
See Section 1.4.2.1 for coding notes.) Pollution near polymetallic mines is of particular
concern both because heavy metals are important toxicants, but also because the minerals
mined are often nested in sulfide rock. When exposed to air and water, the latter will tend to
generate sulphuric acid, which in turn leaches metals from the mine’s tailings; the resulting

acid mine drainage can pose severe health and environmental concerns (Salomons, 1995).

(ii) The area in which highly polluted sites are found is typically small, and
extends to at most a few kilometers around the mine.

Thus, for lead and in the case of smelters, high exposure ranges have been associated in
the literature with distances from the point source of emissions of 0.5 to 4km. Mean blood
lead levels (PbB) among children in the highly exposed communities ranged from 13 pg/dL
to more than 40 pg/dL. (Table 1.2) All mean PbB values far exceed the reference value of
5 pg/dL (the 97.5"" percentile of blood lead levels found in the U.S.) set by the Centers
for Disease Control to “trigger lead education, environmental investigations, and additional
medical monitoring,” (CDC, 2012) as well as the laxer and more dated ‘level of concern’ of

10 pg/dL. (Roper et al., 1991)

In this paper, we do not directly observe environmental pollution or the body burden of
toxicants. Rather, we use distance to the nearest mine as a proxy. The choice of a distance

cutoff to define the treated group is therefore crucial. In line with the empirical evidence
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reviewed above, we look for health effects in a tightly defined treatment group, and consider
only households within no more than five kilometers of a mine to have been exposed. This
choice also corresponds to the extent of high-exposure buffer zones around mines in van Geen
et al. (2012). Tt is considerably tighter than in other current studies of mining in economics,
as is appropriate for our focus on health impacts.? A key benefit of working with our large
multi-country dataset is that it allows us to restrict our treatment group in this manner,

while retaining sufficient statistical power.?

1.3.2 Pathophysiological and clinical effects of lead and other

metal exposure

As noted, the mines in our sample are associated with characteristic sets of pollutants.
Because the latter are known to cause specific health effects, we can develop predictions for
expected health impacts that are well-grounded in scientific knowledge. To the degree that
we find expected health impacts, but not others, we strengthen our case that impacts are

likely due to environmental pollution, rather than any other mechanism.

In our baseline investigation of health impacts, we do not distinguish between different
types of mines. Yet, our main concern is with the health consequences of environmental
contamination with heavy metals, and in particular, with lead. We focus on heavy metal
contamination, first, because the health impacts of exposure are important and observable
in our data, and second, because a large share of mines in our sample is associated with this
type of pollution (40% of mines in the cross-section, and 70-90% in the panel, depending on

definitions). Among heavy metal pollutants, lead takes a central role, because it is known

2Wilson (2012) uses a cutoff of 10km, while Aragén and Rud (2015, 2013) and Kotsadam and Tolonen
(2013) use a baseline cutoff of 20km, with sensitivity analysis for other choices.

3With perfect data, we might define closeness even more restrictively. In the context of available data,
a tighter cut-off would risk introducing noise, both because of the practice of jittering cluster geolocations
in our socio-economic data, and because of the fact that we work with (imperfectly recorded) mine point
locations, while mining operations can measure several kilometers across.
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that the lead body burdens previously measured near smelters (reported above) are high

enough to cause health problems that we observe in our data.

1.3.2.1 Sequalae of lead exposure observed in our data

The toxic properties of lead have long been studied, and are well understood.® The
wide-ranging effects on adults include reduced blood hemoglobin (Hgb) and overt anemia,
cognitive defects, hypertension, and impaired renal function. In our data, we observe only one
of these conditions, namely low blood Hgb and anemia. We adduce two additional unspecific

health outcomes as falsification tests, namely miscarriage and general grave illness.

For children under five years of age, we analyze two health outcomes that have previously
been linked with lead exposure n utero and among young children: anemia and growth re-
tardation. We use for falsification tests some health outcomes that have not been linked
to lead (cough, fever), or linked only weakly (all-cause mortality), or at very high exposure
(gastro-intestinal problems). Regrettably, we do not have a good measure of impaired cogni-
tive performance and behavioral problems due to neurological damage in children. However,
while the health impacts we do observe — anemia and growth deficits — are known to require
high blood lead, “there is no evidence of a threshold for the adverse consequences of lead ex-
posure” for intellectual development (Lanphear et al., 2005, p. 899). Hence, demonstrating
overt anemia or growth deficits implies a strong likelihood that the affected individuals —
and presumably others with lower PbB — also suffer some cognitive and behavioral impair-
ment. (Appendix Table 1.E summarizes how the health consequences we observe affect the

well-being of those exposed, and what their economic cost might be.)

1See ATSDR (2007) for a full discussion.
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1.3.2.2 Hematologic toxicity of lead

Lead depresses blood Hgb levels both by shortening red blood cell life spans, and by
interfering with enzymes essential to the synthesis of the heme component in hemoglobin.
Enzyme activity begins to be disrupted at very low PbB, but is not measured in our data.
Effects on Hgb — which we can observe — have previously been reported at high PbB levels:
in excess of 40ug/dL in children, and 50ug/dL in adults (ATSDR, 2007, pp. 69, 71f). That

is, we expect the hurdle to finding impacts on Hgh to be quite high.

Therefore, we devise an additional, more sensitive test of hematotoxic effects. We build
upon the insight in Grandjean et al. (1989) that, even when lead exposure is too low to
reduce Hgb levels in adults, “increased demand on the formation of blood following blood
loss could result in a delayed blood regeneration in individuals exposed to lead” (p. 1385 -
our emphasis). Grandjean et al. demonstrate this effect by comparing Hgb recovery after
blood donation in lead factory workers and a control group. In our study, we show that
analogously, Hgb recovery is similarly impaired among women in mining communities after

another kind of blood loss, namely pregnancy and delivery

The effect of lead on children is of particular concern, since children are both more
sensitive in their reaction to body burdens of lead, and (in the case of lead ingested with
food) absorb far larger portions of lead. In the case of anemia, however, we expect effects to
be harder to demonstrate in children than in adults. This is because, by contrast to adults,
children are able to compensate for erythrocyte loss by increasing production of the hormone
erythropoietin (EPO), and thus boosting the generation of red blood cells. (Factor-Litvak
et al., 1998)

In summary, based on the state of scientific knowledge, we expect Hgb in residents
of mining communities to be measurably affected only if there is substantial exposure to
environmental lead. An effect should be detected most easily in the recovery of Hgb after

blood loss, followed by Hgb levels in adult women, and least readily in Hgb levels in children.
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1.3.2.3 Effects of lead on child growth

While there is an epidemiological link between lead and anemia, and several hematotoxic
mechanisms are known, studies are in less agreement on the effect of lead on growth in
children, and “the mechanism by which lead may reduce a newborn’s size is unknown.”

(Hernandez-Avila et al., 2002, p. 486)

Correlations have been observed — including at moderate PbB on the order of 10ug/dL
— between maternal or child blood lead and gestational age, as well as a wide range of
measures of height and weight from birth to adolescence. (ATSDR, 2007; Bellinger et al.,
1991; Hernandez-Avila et al., 2002; SanilAn et al., 2001; Zhu et al., 2010) However, other
studies have failed to show such correlations; indeed, it is common for a study to find impacts
on some dimension of growth, but not on others, with no conclusive pattern of which indices

are sensitive.

In this paper, we seek to exclude both endogeneity and small-sample variation as potential
sources of ambiguous results. However, while we are able to show that in utero exposure
affects one dimension of growth (height for age), our results mirror the existing evidence in
that we find no clear effects on another key measure of growth (birth weight). In addition, in
our study sites, growth effects are concentrated among infants, but abate in older children.
As context for this finding, we note that, while, as a stylized fact, “blood lead levels [peak]
in the age range of 1 to 3 years” (Bellinger, 2004, p. 1017), there is an important earlier
path of exposure, through transfer of lead from the mother’s body through cord blood and
breast milk. Indeed, “infants are born with a lead body burden that reflects the burden
of the mother,” (ATSDR, 2007, p. 223) with correlations as high as 0.8 between maternal
and infant PbB (Lauwerys et al., 1978, p. 280). Finding health impacts among infants is

therefore particularly plausible if there is evidence of significant maternal lead burdens.
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1.4 Data

1.4.1 Socio-economic and health data

We obtain socio-economic and health data by pooling all 104 available geo-coded De-
mographic and Health Surveys (DHS) from countries for which we have mining data. This
yields a dataset of repeated cross-sections covering 44 countries, with a total of 1.2m house-
holds, and several million individual records. About 170,000 households are within no more
than 20km of a mine recorded in our data, and enter our analysis. (Table 1.3) Their location

is shown in Figure 1.1.

The DHS data has some notable strengths: it covers a very broad range of developing
countries; surveys have been conducted for nearly 30 years; individual surveys are fairly
comparable; sampling cluster geocodes are available for many survey rounds; and there is
strong data on maternal and under-five health, including anthropometrics and specifically,
hemoglobin (Hgb). These features currently make DHS an obvious choice to study health

and development at the micro level across multiple countries.®

However, the data also has some important limitations with implications for our work.
(i) There is relatively little data on socio-economic status, no information on wages, and
little information on employment. We therefore work with an asset index, rather than more
direct measures of wealth or of income, and discuss employment outcomes only in passing.
(ii) Because the surveys have kept changing and improving, very few indicators of interest
to us were collected in all surveys. Indeed, working with the largest set of observations
for which all indicators are available is impractical, because the number of observations is

very small. On the other hand, estimating results on pair-wise common sets would lead to

5Other data with high coverage that include both health and socio-economics are either less rich (IPUMS),
or less harmonized (LSMS).
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tedious repetition. We seek to strike a balance, and present side-by-side comparisons for
core results. (iii) Finally, we stress again that the data are cross-sectional. Therefore, while
our difference-in-difference tests are designed to yield evidence of causal effects, they always

compare across different individuals.

Our core measure of wealth is a standard asset index computed over household durables
and housing characteristics. (Filmer and Pritchett (2001); see Appendix 1.B for details.)
We base it on the largest set of wealth proxies available within each survey round, but do
not include slow-moving or immutable traits of the household head, such as gender, marital

status, or education.

We obtain from the DHS detailed data on health among children below five years of age,
and among women aged 15-49 years. There is little information on older children, men of
any age, and women aged 50 years and over. Our core health indicators are blood Hgb levels
and an age-adjusted height index. Hgb is adjusted for altitude, and expressed either as a
continuous measure in units of grams of hemoglobin per deciliter of blood (g/dL), or as a
binary indicator for the clinical condition of anemia, associated with blood Hgbh below 12
g/dL in non-pregnant women and 11 g/dL in pregnant women, and in children (World Health
Organization, 2011). Following standard practice, height is expressed as the difference be-
tween a respondent’s height and the age-group median, normalized to standard deviations.
We normalize using the median and standard deviation provided by DHS (alternative nor-
malizations make no empirical difference). We consider the continuous height measure, as
well as the clinical outcome of stunting (severe stunting), defined as a height of at least two

(three) standard deviations below the median.

In addition to our core outcomes, we collect data on a range of general adult and child
health outcomes, on health care, sexual risk taking, nutrition, and employment and occupa-
tion. Finally, we construct infant and under-five mortality data for all children whose births

were recorded in any survey module.®

5Because we construct these variables from birth records of all children ever born to the women in sample,
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1.4.2 Mining data

We obtain data on the location and characteristics of mines and mineral deposits from
four data sources. These include a very large cross-sectional dataset that allows us to make
meaningful claims about the mean effect of mining across many developing countries; two
datasets of mine output that permit us to estimate mine-level panels; and an additional
dataset of mine locations that serves to ensure robustness of our findings to measurement
error in geo-location. In total, we observe communities near 838 mines in the cross-section,
and 515 mines in the panel, though the set of mines that enters our estimating samples is

generally smaller.” (Table 1.3)

1.4.2.1 Cross-sectional data on mine location and characteristics

In the cross-section, we work with the United States Geological Survey’s Mineral Resource
Database (United States Geological Survey, 2005). It contains the point locations of a very
large set of mines, legacies, deposits, and smelters (about 25,000 locations in total) across
developing countries. The data records geological information and some basic description
of the nature of the mine for a substantial subset of entries. However, there is no data on

production, and start dates and status of operation are only available for very few mines.

In our baseline cross-sectional sample, we include all active mines, legacies (that is,
former mines that are now dormant), and smelters. We include smelters because they are

often located close to mines, and it is intuitive to think of a single mineral extraction and

the mortality variables must be interpreted as being conditional on the mother’s survival until the time the
survey was taken.

"Nearly all of those mines enter into our model when we use state-level effects (see Part 4). The number
of mines near which we observe at least one community within 5km (treatment) and one within 5-20km
(control) is lower, with 226 mines in the cross-section, and 175 in the panel. These are the mines that enter
into our mine-effects models.
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processing chain from mining to smelting.® We include legacies, because the cross-sectional
data gives us little guidance in defining whether a mine was operational during a given
survey round. The resulting treatment definition should be thought of as yielding ‘the effect

of living in a location ever exposed to mineral mining or processing’.

We extensively parse information on the types of minerals present in a given location to
sort mines into larger groups that share the same expected pollutants and hence, the same
health effects. We remove from our baseline sample all quarries (see Appendix 1.A for a
definition). We do so because we seek to study the welfare impacts of mining as an industry
that generates very high value added, but is potentially severely polluting. Quarries differ
from mineral mines in both respects, at least as a matter of degrees. As we have argued
above, we are particularly interested in polymetallic mines near which we expect pollution
with heavy metals, and particularly with lead. For the purposes of the present paper, we
define a mine to be a ‘heavy metal’ mine if (i) lead is being mined or smelted, or (ii) lead,
though not targeted for extraction, is known to be present in significant amounts, or (iii)
any two of the metals copper, gold, silver, and zinc are being mined or processed. This
definition is necessarily imprecise, but gives due recognition to the special role of lead, and
seeks to exclude metal mines with different pollutant characteristics. For instance, among
gold-producing mines, it would aim to exclude alluvial gold deposits, where gold is typically
the only metal of interested, and we expect mercury contamination from processing to be

the primary concern, rather than lead pollution.

1.4.2.2 Mine-level production data

Since the USGS data provides virtually no time variation, we draw additional information

from two business intelligence firms: Infomine (2013), and IntierraRMG (2013) — for whose

8In Appendix Table 1.G, we show that our core results are nearly fully robust to excluding smelters. In
one case (panel results on women’s hemoglobin), the effect is not significant, although it is consistent in sign
and approximate size.
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product we henceforth write ‘RMD’, for ‘Raw Materials Data’. Both sources record dates of
operation and annual production, alongside diverse additional characteristics of the mines.
Most mines included in the Infomine data are also available in the RMD data, but not vice
versa. We therefore work with RMD as our basic data, and add those Infomine entries that
are not also contained in the RMD data. RMD mines are more homogenous than those in
the USGS sample: most of them are large mines, and most of those close to DHS clusters are
metal mines. While the set of mines included is far smaller than for the USGS data, coverage
of large mines is quite comprehensive, and the mines recorded in the dataset account for a
very large share of global metal production. For instance, they account for around 80% of
global gold production and 80-90% of global iron ore production in the most recent decade

for which data is available.

Because there is some question as to the precision of geolocations recorded in the RMD
data, we use mine geolocations from an additional dataset, Mining Atlas (2014), for three
purposes. First, we add geolocations for RMD mines wherever location is missing in the
original data. Secondly, we use company records and Google Earth images to investigate the
small number of cases where there are very large discrepancies in location between the two
sources; we discard a few records where location is plainly not recorded with any precision
in either dataset. Thirdly, we use the two independent but noisy measures of location to

check robustness of our results to measurement error in geolocation (see Appendix 1.D).

1.4.3 Other data

For the purpose of constructing a time-varying instrumental variable, we retrieve data on
mineral prices from various sources, summarized in Appendix 1.A. In order to describe how
the wealth effects of mining vary with the economic environment, we obtain country-level

data on GDP and governance from the World Development Indicators; data on the efforts a
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given country made toward compliance with the Extractive Industries Transparency Initia-
tive (EITI) from the Initiative’s website (www.eiti.org); and state-level data on governance,

geography, infrastructure, and education from Gennaioli et al. (2013).

1.5 Econometric Specification

1.5.1 Baseline treatment definition

We define exposure to mining as being geographically close to a mine in the cross-section,
and as closeness interacted with the mine being active in the panel. This choice is immediate
for the study of economic impacts: with transport and search cost, distance is the treatment
of interest. For the purpose of studying health impacts, distance acts as a proxy for pollution

— which we do not observe.

We define a cluster as being ‘close’, and hence, ‘treated’, when it is within five kilometers
of the nearest mine. We will also refer to this as the ‘direct vicinity’ of the mine. We define
a cluster as being in the control group when it is within 5-20km of the nearest mine. We will
refer to this as the ‘general vicinity’ of the mine. As noted above, we bound our treatment
group tightly, to enable us to detect health impacts within the region in which pollution
is likely to occur. Bounding our control group conservatively greatly eases the stringency
of identifying assumptions required for a causal interpretation of our results. The cost of
working with these definitions is that we can only achieve reasonable sample size by allowing
our panels to be unbalanced. We argue that this is a reasonable price to pay for the sake
of working with a treatment definition that is in line with prior scientific knowledge, and a

control group definition that promises to provide a credible counterfactual.’

9For the study of wealth benefits alone, a natural alternative would be to study effects of mine density
in (hopefully quite balanced) panels of administrative units. This would, however, vitiate the purpose of
studying health effects.
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In the panel, we define mining activity as a dummy variable taking value one when
the mine had non-zero output, and value zero when the mine was known to have had zero
output. (We conservatively impute inactivity — see Appendix 1.A.) That is, we consider
only extensive margin impacts of production. We do so because year-on-year variation in
output is likely to be more weakly associated with health outcomes. In this, mines differ
from sources of pollution studied elsewhere. Extracting minerals from the ground, breaking
them up, and processing them generates a flow of pollution. At the same time, however, the
stock of tailings dumped after processing will in many cases continue to pollute. The exact
time pattern of pollution is thus hard to predict, but is bound to lie somewhere between a
pure flow and a pure stock problem. We hope to do it justice by studying extensive margin

variation alongside the cross-sectional ’once on, always on’ measure.

1.5.2 Cross-sectional model

Identification in the cross-section rests on a conservative choice of control group, and
restrictive group effects. Because they cannot decisively address the possibility of residential
sorting, the correct way to read our cross-sectional results is to view them as the long-run
effect of mining on ‘mining communities’, much as a district or county-level study estimates
effects on those units. As such, we believe they can be interpreted as causal; and to the degree
that regional disparities matter, they are of policy interest. Our difference-in-differences
models then provide evidence that impacts are unlikely to be driven by sorting, and allow

us to make stronger claims about the well-being of ‘people exposed to mining’.

In our baseline specification, we consider outcomes y for individuals or households ¢ in
sampling cluster 7 within no more than 20km of a mine, conditional on whether the cluster
is close (within bkm) to a mine, and conditional on other covariates X. Because distance
is measured between mines and sampling clusters, the treatment varies at the cluster level,

not the individual level. Covariates always include an indicator for whether the cluster is in

24



an urban or rural setting, and some appropriate measure of the age of the respondent, the
respondent’s mother, or the household head. Because DHS conducts repeated cross-sections,
our model allows for repeated measurements of effects near the same mine, while accounting
for year-specific effects in each round of measurements. We therefore use common effects
7 for all observations near the same mine surveyed in the same year (mine-year effects),
and account for residual correlations by clustering error terms at the mine level (not the
mine-year level). Wherever the outcome of interest is binary, we model it using a linear

probability model.

Yi = ﬁlclosej + 52Xz + TYmine—year + € (1)

Identifying assumptions would be violated if mining towns differed from neighboring
communities in geography, institutions or other characteristics in ways that correlate with
potential outcomes. However, differences would have to arise even compared to locations
very close by, because we restrict control locations to those no more than 20km away from
the nearest mine. Identification is also only affected by such differences if they are not in
some way due to the presence of the mine in long-run equilibrium (for instance, through

infrastructure construction, or the emergence of institutions).

1.5.3 Pseudo-panel model

We have argued that our cross-sectional setup offers valid estimates of the long-run impact
of mining on communities. Still, it says less than is desirable about mechanisms of treatment
transmission, and due to the possibility of sorting, it does not allow us to make claims about
the impact of mining on individuals. An immediate way of addressing both challenges is to
construct pseudo-panels from the repeated cross-sectional DHS surveys. We construct these

in two ways. Firstly, we compare observations from households surveyed at different times,
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but near the same mine (‘mine-level panel’). Secondly, we compare children born to the
same mother at different times (‘mother-level panel’). Plainly, comparisons in each case are

across different individuals.

Equations 2 and 3 describe the mine-level and mother-level models. We analyze outcomes

for individuals ¢ in cluster j at time t.

Yir) = Biclose; + Baoperating;j—ry + Baclose; x operating;—r)

+54 t7+’7mzne+f()+€z)

Yir) = Broperating;i—ry + Baclose; * operating;—r)

+64 i(t—T) +7mothe7”+f( )_'_61 (t)

In Equation 2, we allow for time-invariant effects v,,:ne for each mine, and model outcomes
at time t as being conditional on whether the respondent lived in a community close to a mine
during the time period relevant for treatment, t — 7, and whether the mine was operating at
time t—7.1° The time periods of interest ¢t and t—7 depend on the outcome being investigated.
For instance, where we analyze height-for-age in children, the outcome is measured in the
survey year t, and may be modeled conditional on exposure to mining operations during the
survey year (7 = 0), the birth year (7 = age), or while the child was in utero (1 = age +
1). The model also includes time-specific effects f(¢). We believe country-year dummies are
sufficiently flexible and appropriate for sample size. We use these in our baseline models,

and show robustness to using different time effects. Modifications in the mother-level model

19For each respondent in our sample, we only observe current residence, and how long the household
has been resident there. We have no information on previous residence. Therefore, the panel is inherently
restricted to respondents who have lived in the location where they were surveyed for at least 7 years.
(Although they may have moved to their present location at a time before ¢ — 7.)
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are immediate (Equation 3); because of the much smaller sample sizes, we include country

linear trends f(¢) in our baseline model.!

1.5.4 Difference-in-differences tests tailored to the health

conditions studied

For some indicators, our sample is small near mines where there is production informa-
tion, so that the pseudo-panel tends to be highly unbalanced. We therefore leverage the
scientific understanding of the health conditions of interest to our study to construct ad-
ditional difference in differences tests. Like the pseudo-panel, they compare the impact of
mining across groups that are and are not expected to show effects. However, unlike the
pseudo-panel, they do not rely on the use of time-varying production data, and hence, tend
to preserve sample size better. Because they each build upon a different insight into the
likely nature of exposure and the organism’s reaction to it, they generate distinct control
groups, and hence, further “reduce the importance of biases or random variation in a single

comparison group” (Meyer, 1995, p.157).

Mine types: Firstly, we make use of the fact that, as discussed above, distinct mine
types are associated with specific pollutants and health effects. This allows us to contrast
differences across distance groups near mines where an effect is expected, and near mines
where none is expected, as in Equation 4. (The effect of heavy metal mine alone is collinear

with mine-year effects.)

y; = Piclose; + Baheavy metal mine; 4 Bsclose; x heavy metal mine; + B4X; + Vmine—year + €i
(4)

'Notice that, because we do not observe location of prior residence for migrants, no coefficient on close
can be estimated in the mother-level panel.
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Identification rests on the assumption that potential outcomes vary among those close
and not close to the mine in similar ways near mines of different types. Most obviously, if
wealth effects varied systematically among mine types, health results might be confounded.
With respect to preference-based sorting, the assumption would be violated if respondents
were aware of how mine types differ in health outcomes, and sorted accordingly. We address
the issue in two ways. Firstly, we compare DiD results on health to those on wealth, and
show that differences arise for health outcomes, but not wealth. Secondly, we show that

there are DiD effects only on specific expected health outcomes, not general health.

Maternal Hgb recovery: Secondly, we develop a DiD test based on the observation that
in lead-exposed adults, the recovery of Hgb after blood loss is even more readily affected
than the steady-state level of Hgb. As discussed above, this result was previously proven by
studying Hgb recovery after donating blood. Of course, we cannot identify blood donors in
our sample. We do, however, observe one population group that experiences dramatic drops
in Hgb: women who are pregnant, or have recently given birth. This allows us to formulate a
test that asks whether differences in Hgb between women ¢ in mining and control communities
j are particularly stark during pregnancy and postpartum. In our preferred specification,
we estimate the model with state-year effects, since the number of women we observe within
the time period of interest is borderline too small for allowing for mine-year effects. (We

discuss identifying assumptions and extensive robustness checks below, in Section 1.6.2.)

y; = PBiclose; + Bopregnant or postpartum; + Bsclose; * pregnant or postpartum; )
5)

+B4Xz + Vstate—year + €

28



1.5.5 IV models

Finally, we use both cross-sectional and panel IV strategies to study wealth effects. Our
purpose for the IV estimates is somewhat narrow: they provide reassurance against endoge-
nous choice of location (even within 20km) in the cross-section, and endogenous decisions
to produce in the panel. However, because they do not help address residential sorting, we
discuss results relatively briefly, and for wealth only — for health impacts, we instead rely on

the additional DiD tests described above.

1.5.5.1 Cross-sectional IV

In the cross-section, to instrument for whether a cluster is within 5km of a mine, we
use the dummy (Wald) instrument deposit that simply indicates whether there is a mineral
deposit within 5km of a given cluster (Equation 6).'> The sample is restricted to clusters

within no more than 20km of a deposit.

Y = 610[086]‘ + /BQXi + Vstate—year + €

(6)

ClOSGj = ¢d€p05itj + 6state—year =+ 15

Because coverage of deposit locations in the cross-sectional data is very broad, we can
think of our IV estimates as general population effects. Because there can be no mine with-
out a mineral deposit, there are neither ‘defiers’ nor ‘always-takers’, and we can interpret IV
estimates as the effect of treatment on the treated. (Imbens and Wooldridge, 2009) Unsur-
prisingly, the dummy instrument is exceedingly strong. Since the true global distribution of
mineral deposits is exogenous to human activity, the instrument is also exogenous, as long

as there is no preferential prospecting for minerals. We believe this is likely the case, since

12This is similar in spirit to the geographic instrument in Duflo and Pande (2007).
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all anecdotal evidence suggests that mining companies will seek out promising deposits in
virtually any location, regardless of geographic or political obstacles. We also believe that
the instrument satisfies the exclusion restriction. The most likely violations would be due
to topographical features such as land quality, gradient, or water availability. Because we
work at small spatial scales and across many countries, potential violations are hard to test
directly. Yet, since we strongly restrict our analysis in space, characteristics would have to

vary systematically over small scales to cause any problems.

1.5.5.2 Panel IV

Our cross-sectional IV strategy extends very naturally to the panel setting, by interacting
the presence of mineral deposits with world minerals prices. Our panel data does not have
very high coverage of mineral deposits, but it does include some deposits that are being ex-
plored or prepared for exploitation. We adjust the panel IV sample to include such deposits.
Hence, in Equation 7, we treat the variable deposit that records whether cluster j was within

5km of any deposit as exogenous.

Vi) = Brdeposit; + Byoperating;—ry + Badeposit; * operating;i—r

+ B4 Xi(t—r) + Ymine + [(t) + €
We then instrument for whether the mine was operating, and for the interaction of close-

ness and operating status, using world mineral prices price, and their interaction with deposit.

(See Appendix 1.A for a full description of the instrument.)
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1.6 Results

1.6.1 Effects on wealth

Mining towns are wealthier than neighboring communities, both in the long run
and the medium term

Households in mining communities are at the mean considerably wealthier in terms of asset
ownership than control households. The magnitude of the cross-sectional effect at the global
average is on the order of 0.11 standard deviations of the asset index. (Table 1.4, Column 1)
In the mine-level panel, the DiD coefficient on the effect of living close to a mine in a year
when it is operating is 0.26 standard deviations of the asset index in our preferred specifica-
tion. (Column 3) Since survey rounds are typically about five years apart, we interpret this

as a medium-term effect.

The effect size is appreciable, given that in the countries in our sample, there is generally
great within-country variation in asset ownership. In the linear index, the magnitude of the
cross-sectional effect is comparable to that of owning a car or motorbike in the case of Peru
in the year 2000, and to the effect of owning a radio or a watch in the case of Burkina Faso
in the year 2010. The panel effect is comparable to the impact on the index of having an
electricity connection or living in a dwelling with finished flooring in the case of Peru in the
year 2000, and to the effect of owning a motorbike or mobile phone in the case of Burkina
Faso, in the year 2010. (See Appendix 1.B for a description of the index and for examples

of factor loadings.)!'?

13Regrettably, the DHS surveys have no wage data, and limited coverage of employment. The sample of
men living near mines in our sample for whom employment data was collected is small. In consequence, an
in-depth analysis of effects on these core dimensions of welfare is not possible. In the cross-section, unem-
ployment among men is virtually unaffected, consistent with long-run general equilibrium. As is intuitive,
the sectoral share of agriculture decreases alongside ownership of agricultural land. In the panel, employment
effects tend to be adverse in sign — consistent with queuing — but we caution that the estimates are noisy
and not stable. (Results available upon request.) We refer the reader to Kotsadam and Tolonen (2013) for
a detailed discussion of effects on women and sectoral shifts in sub-Saharan Africa.
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We argue below that, because of the spatial pattern of long-run wealth effects, the cross-
sectional baseline estimate should be interpreted as a lower bound. In Appendix 1.C, we show
that our unweighted baseline estimates are smaller than estimates obtained by (i) weighting
each mine equally, or (ii) weighting by estimates of the mine-year population. In Appendix
1.D, we use two independent measures of the geolocation of mines to instrument with one
distance measure for the other, and show that our baseline results likely carry substantial
attenuation bias — in our preferred specification, some 18% of the estimate. Cross-sectional
IV estimates yield results that are close to and not statistically different from both our
baseline results, and the OLS benchmark estimated on the IV sample. Panel IV estimates

are somewhat larger than the benchmark, but not significantly different. (Table 1.5)

We have argued that, if the object of interest is the effect of mining on household welfare,
rather than on the spatial distribution of wealth, the most salient identification concern in
the cross-section is residential sorting. Panel results can be presumed to be more robust, but
with about five years between survey rounds, there is still the possibility that sufficiently
rapid sorting could influence results. We therefore separately study results for households
that report never having moved from their current location. Effects are somewhat smaller
and weaker (if not significantly different) among never-movers in both the cross-section and
the panel. (Table 1.4, Columns 2 and 4) We interpret this as limited evidence of sorting of
migrants with better potential socio-economic outcomes into mining communities, or sorting

of previous residents with better potential outcomes out of mining communities.'

Spatial extent of the wealth effect
Wealth effects decay steeply with distance to the nearest mine. In the panel, effects are

limited to those living with 5km; in the cross-section, there is a gradient in wealth up to

YFor background, we note that there is only weakly more migration in mining communities than in
neighboring communities. However, in both mining and control communities, the share of migrant households
is very high: around 60% of households migrated at some time, and about 23% migrated within the five years
preceding the survey. Sorting could therefore easily explain cross-sectional differences, if the characteristics
of migrants (including those unobserved households who left the communities) are sufficiently different.
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a distance of 15-20km. (Figures 1.2 and 1.3) That is, in the long-run, communities in the
general vicinity are economically affected to some degree, although less so than those in the
direct vicinity. Hence, the cross-sectional treatment effect in our baseline model is smaller
than the wealth effect on the direct vicinity of mines, as compared to those living outside of
the general vicinity, within 20-40km of a mine (0.40 — results not shown). Conversely, it is
larger than the average effect of living either in the direct or general vicinity of the mine, as

opposed to living at 20-40km (0.050).

The difference in spatial patterns between the cross-section and the panel allows for
a number of explanations. If both patterns are well-identified, one would argue that the
discrepancy reflects the contrast between medium-term and long-run impacts, with further
diffusion of wealth effects over time. If we were not convinced of identification in the cross-
section, we might feel that the pattern suggests that mines tend to locate in places that
are already wealthier than their surroundings. We note that, even in the cross-section,
the estimated spatial extent of treatment effects is smaller than in the case study analyzed
in Aragon and Rud (2013, p. 26), who find “positive and significant [income effects| for
households located within 100km of Cajamarca city,” the community closest to the mine
studied. The discrepancy could be due to the fact that Aragon and Rud study a policy
change that can be presumed to be very favorable for local welfare; or the fact that they
consider the case of a very large mine in a region with reportedly high transport cost. In
addition, Aragén and Rud have income data available; presumably, a more sensitive measure

of well-being than our asset index.

Effects on the distribution of asset wealth
Mining is associated with wealth benefits across the distribution, though in the long run,
there are much higher gains for the top quantiles, and a mild increase in wealth inequality.

Benefits are more evenly distributed among never-movers. The distributional pattern might,
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for instance, reflect slow sorting of high-income households into mining communities, or the

gradual emergence of economic opportunities that are open only to a select few.

We obtain quantile regression estimates using the two-step procedure described in Canay
(2011). The results suggest that closeness to mines raises long-run asset wealth quite evenly
across the distribution, with effect sizes for most quantiles close to the mean effect. (Figure
1.4) That said, the top 5-10% benefit the most, with gains about three times as large as
those at the median. Gains at the top are more limited among never-movers. In the panel,
if anything, benefits are progressive, and the top quantiles gain less than others (Figure 1.5);
this pattern is comparable to the distribution of income effects found in Aragén and Rud

(2013).

Secondly, we directly consider effects on a simple measure of within-cluster inequality,
namely the absolute deviation of a household’s asset index value from the cluster mean.'® In
the cross-section, the mean absolute deviation increases moderately among all households, by
0.03 standard deviations of the asset index, or one-fourth of the cross-sectional wealth effect.
(Table 1.4, Column 5) There is no effect among never-movers, nor in the panel. (Columns

6-8)

Correlates of long-run effects across countries

Long-run wealth effects vary greatly across mining communities. Table 1.6 shows correlations
of mine-level wealth effects with measures of the larger economic, geographic and policy
environment. Gains are greatest where the economic environment is weak, across a range of
indicators — GDP, education, access to infrastructure, some dimensions of remoteness, and

(directionally only) measures of institutional quality.!® While these correlations cannot be

15This simple index seems more appropriate than more familiar inequality indices both due to the small
number of households in many clusters, and to the nature of the mean-zero standardized asset index.

16 Appendix 1.L shows the distribution of treatment effects across world regions and countries; correlations
with measures of overall development empirically supersede regional patterns.
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interpreted as causal relationships, they raise the question whether the local economic effect
of mining might be driven not by the interaction of mining with other economic activity, but
by the opportunities mining provides in areas where there is a paucity of other options.”
With the same caveat regarding causal interpretation, we also note that we do observe
stronger wealth effects in surveys conducted in countries at a time when the country had

completed a report for the Extractive Industries Transparency Initiative,'® or (weakly) when

it had participated in the EITT in any way.

1.6.2 Evidence of hematologic toxic effects

We have argued above that exposure to lead among residents of mining communities may
affect the hematopoietic system and reduce red blood cell survival. In the DHS data, we
observe only a single indicator of potential hematologic toxicity — blood Hgb concentrations.
As argued in Section 1.3.2.2, we would expect most strongly to see a reduced ability to
recover from blood loss in adults, perhaps alongside depressed Hgb levels. In children, we
might expect to see reduced blood Hgb levels, though in the age group we observe, children
are likely able to compensate for lead exposure. Our results confirm this expectation: we
find strong evidence of lower Hgb levels and slower Hgb recovery after blood loss in adult

women, and weaker evidence of lower Hgb levels in children.

Hemoglobin levels in adult women are strongly depressed in mining communities
In the cross-section, blood hemoglobin (Hgb) levels are depressed among women living in

mining communities by about 0.09 g/dL. The effect among never-movers is larger (0.13

1"We emphasize that, because we study effects purely at the local level, the correlation between local
benefits and a weak economic environment cannot be read to contradict findings from the resource curse
literature. Our findings have no implications for whether, beyond the local level, resource revenue creates
corrupt structures or drives Dutch disease.

18See www.eiti.org. The EITI describes itself as “a global coalition of governments, companies and civil
society working together to improve openness and accountable management of revenues from natural re-
sources.’
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g/dL), consistent with longer exposure to environmental lead, although (on this smaller sub-
sample) it is just below significance (t = 1.56). Considering directly the clinical outcome of
anemia, we find that prevalence is significantly elevated by three percentage points among
all households, and by five percentage points among never-movers. (Table 1.7) Appendix

1.LL shows the distribution of mine-level effects across countries.

Panel results confirm these patterns. Point estimates are larger, with DiD coefficients
of a 0.33 g/dL decrease in blood Hgb, and a ten percentage point increase in the incidence
of anemia in our preferred specification. (Table 1.7, Columns 3 and 6) A number of causes
could account for the larger point estimate in the panel; notably, the share of metal mines
associated with lead pollution is high in the panel sample (and, as we show below, the
treatment effect is concentrated near such mines). In the long-run, there might also be more

adaptation to avoid pollution.

The size of the effect on Hgb levels can be compared, for instance, to changes in Hgb on
the order of 1g/dL associated with treating anemic pregnant women with a course of iron
supplementation (Sloan et al., 2002). That is, we obtain a general population effect estimate
on the order of one-tenth to one-third of the effect of a targeted intervention in a highly
susceptible population. Another point of comparison is the drop in Hgb during pregnancy
and the first year post-partum, estimated in our sample to be on the order of 0.44 g/dL
(compared to women who gave birth two or three years ago, and among women living at
least 20km away from any mine). The increase in the incidence of anemia is a large effect
in absolute terms, though it must be seen in the context of a baseline proportion of anemic
women of 36% in control locations. That is, the cross-sectional effect amounts to an 7%

relative increase in incidence, and the panel effect, to a 27% relative increase.

We note that the single difference coefficient in distance suggests that when the mine is not
operational, residents of mining communities have higher Hgb levels than the control group.

This is perhaps surprising, given that our wealth results showed a zero or weak negative effect
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in mining communities when the mine is not operational. (Table 1.4) However, it further
reassures us against any concerns that geographic features, for instance altitude, might be

driving cross-sectional results.

We adduce two additional tests, both to further bolster identification, and to help estab-
lish that pollution, rather than other possible causes, is the likely cause of depressed blood
hemoglobin. (i) Firstly, we show that Hgb effects are only observed near mines where the
combination of minerals mined suggests that lead contamination is likely to be present. (ii)
Secondly, we provide direct evidence of reduced ability to recover Hgb after blood loss — an

effect that is hard to reconcile with any cause other than lead toxicity.

We observe effects on hemoglobin levels only near mines where we expect heavy
metal pollution

Table 1.8 shows that the effect on Hgb levels of living in mining communities are statistically
zero (and mildly negative) in women living near mines where there is less reason to expect
heavy metal contamination. However, in mines where there is a high likelihood of such
contamination, Hgb levels are strongly and significantly depressed — by about 0.22 g/dL
relative to women living farther away from the same mines, and by 0.19 g/dL compared
to women living near non-heavy metal mines. (Column 3) Correspondingly, the incidence
of anemia is five percentage points higher compared to women living near non-heavy metal
mines (compared to women living further away from the same mines, it is six percentage
points higher). (Column 4) The size of the cross-sectional effect near heavy metal mines
is far closer to the panel effect than the average effect in the cross-section.!® As noted (in
Section 1.4.2.1), our definition of heavy metal mines is best thought of as a meaningful but
far from perfect proxy of the presence of lead and other toxic metals. In consequence, DiD

estimates are likely attenuated.

19 A similar test is hard to construct for the panel, since mines that are potentially associated with heavy
metal contamination make up a large part of the sample.
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The DiD effect is robust to including interactions of the treatment dummy with region
indicators (hence allaying any concerns over geographical clustering of heavy metal mines),
as well as to including an interaction of the treatment with a pregnancy dummy. (Columns
5-6) We note that there is a significant negative effect of living near any mine in Latin
America (the base category for the region interaction), perhaps due to the imperfect nature
of our definition of heavy metal mines. The effect near any mine is statistically zero for the
other regions.? We further estimate the DiD model for the asset index, and confirm that
there is no differential wealth impact of living close to a heavy metal mine, as opposed to
any mine. (Column 7) Finally, we do not observe similar differential effects of living near
a mine associated with heavy metal contamination on two general indicators of ill health

among women, namely miscarriage, and grave sickness (Columns 8-9).

The trajectory of maternal Hgb recovery after birth in mining communities
corresponds with known pathophysiological patterns

The left panel in Figure 1.6 shows the pattern of recovery from blood loss during pregnancy
and delivery among women living close to heavy metal mines, and those living in adjacent
areas. Hgb levels conspicuously diverge during pregnancy, and stay apart during the first
one and one-half years of the child’s life. However, thereafter, they converge to an apparent
noise pattern about a common mean. (The right panel shows the same data, with effects
smoothed out for the nine months from conception to birth, and each year of the newborn’s
life, thereafter.) The pattern is characteristic of a pollution-induced decrease in the ability
to recover Hgb after blood loss, as described in Grandjean et al. (1989) and discussed above

(in Section 1.3.2.2), but not of other causes of anemia.

While the pattern is visually striking, given limited sample size, it is too strong a test

to assess the difference between coefficients for the two distance groups in each individual

20As a further robustness check, Appendix 1.L. demonstrates that the median difference between heavy
metal mines and non-heavy metal mines is always at least weakly negative in each individual country for
which sufficient mine-level estimates can be computed.
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trimester. Instead, we test for the difference in differences between the groups across two time
periods: pregnancy and the first year of the infant’s life (when there is the clear impression
of divergence), and the second and third years of the child’s life (when there is not). The
results presented in Table 1.9 show that the DiD coefficient is negative, large (0.21 g/dL),
and significant. (Column 1) That is, the difference in Hgb levels between women exposed
to mining and other women is far greater during and after blood loss due to pregnancy and
delivery, than after some time has passed since delivery. The single difference in distance is
negative, but not stable on the small sub-sample of women in the model. As expected, Hgb

is dramatically lower in all women during pregnancy and in the first year post-partum.

The pattern is similar when we estimate the model with mine-level fixed effects, as
shown in Column (2). Mine-level results do not always reach significance, but are as stable
as the state-level results when we include controls, vary the treatment definition, or conduct
placebo tests. Because of the small sample size and strong identification from the DiD setup,
we prefer the state-level model. In our baseline model, we consider a postpartum period of
three years. This seems more appropriate than shorter periods because the detailed time
pattern of Hgb recovery shown in Figure 1.6 suggests that differences even out only in the
second year of the child’s life. It seems more appropriate than longer periods because the
more we extend the time window, the stronger are the identifying assumptions required.
Results are robust to extending the post-partum control period to four or five years; they
are directionally consistent but insignificant when we shorten it to just two years. (Results

not shown.)

Alternative explanations for the pattern of Hgb recovery are harder to come by than those
for cross-sectional differences in Hgb levels. Because the test uses as a counterfactual women
whose most recent birth lies at most three years in the past, identification requires only
that the precise timing of pregnancies is ignorable within a limited time window. However,
somewhat complex behavior patterns could generate the observed effect. Perhaps most

simply, wealth could be associated with different child bearing choices in mining communities
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and control locations. For instance, it might be that wealthier women (with higher baseline
Hgb levels) tend to have fewer children or space out births more in mining communities
than in communities farther afield — perhaps because of better earnings opportunities. The
DiD effect could then be due to comparing (relatively) poorer women in mining towns to
richer controls in the pregnancy and post-partum group, and (relatively) wealthier women

in mining towns to poorer controls for the following years.

To conclusively assess this concern, we first (i) note that Column (7) shows that there
are no significant DiD effects on wealth. Secondly, (ii) the DiD effect is robust to controlling
directly for the woman’s height as a slow-moving wealth proxy, or for whether she gave birth
in an ‘improved’ setting. (Columns 3 and 4). Finally, we (iii) show a placebo regression to
test whether a similar recovery pattern emerges when we compare mothers in households in
the bottom wealth quintile (placebo treatment) to those in the top quintile (placebo control).
We generate two samples: a small sample designed to match the baseline sample particularly
tightly, and a larger sample designed to allow for more power. Both placebo samples include
women who are pregnant or have given birth within the past three years, and reside at least
20km away from the nearest mine. The small sample is restricted to observations in the same
state-year pairs as those observed in the main model, and the large sample, to observations
within the same survey rounds. As expected, Columns (5) and (6) show that women in poor
households always have lower Hgb levels than those in wealthy households — but there is no
indication of an adverse time pattern around pregnancy and postpartum, with placebo DiD

coefficients either near zero, or with an opposite sign.

In summary, we obtain two DiD tests by disaggregating effects, first among mine types,
and then with respect to recent pregnancy. The results are instructive both regarding mech-
anisms of treatment transmission and regarding identification. In terms of mechanisms, they
offer strong evidence that the observed health effect is caused by pollution, not other facets
of life near mines. For instance, if the observed effect on Hgb were due to iron deficiency

or malaria infection, then nutritional behavior and infection rates would have to vary across
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distance groups in systematically different ways near metal and non-metal mines, and among
pregnant and non-pregnant women — despite the fact that socio-economic outcomes do not
vary in such ways. The results also provide reassurance on identification, most importantly
because they are very hard to explain with sorting. Because mine types differ in health
impacts, but not in wealth and non-specific health impacts, one would have to hypothesize
that in their migration decisions, people not only take mine type into account, but also
differentially sort on their potential health and wealth outcomes. (We have discussed above

the corollary for Hgb recovery.) This would require an extraordinary level of sophistication.

Residents of mining communities are not differentially affected by causes of ane-
mia other than lead exposure, do not bear a higher burden of disease unrelated
to pollution, and are not under-served by health care

The high dimensionality of the DHS data allows for diverse falsification tests that could yield
evidence against our contention that the observed hematologic effects are due to pollution,

not other mechanisms. Across a range of tests, we find no such evidence.

Firstly, we show in Appendix 1.F that here is no conclusive pattern in mining communities
in the leading causes of anemia other than lead toxicity (nutritional iron deficiency, malaria,
and intestinal worm infections). Secondly, we test whether residents of mining communities
suffer ill health that is unlikely to be attributable to pollution. Significance patterns are
very sparse in the cross-section, and there are no significant adverse health impacts at all
in the panel (Table 1.10). Appendix Tables 1.I and 1.J show additional specifications with

similarly sparse patterns.?!

Finally, we note that residents of mining communities are at least as well off in terms of
health care as those living farther afield. As appendix 1.K demonstrates, in the long run,

women are more likely to have health insurance coverage, and to give birth with some level

2'We find no indication of greater alcohol abuse among men or women, and at most a mild indication of
increased sexual risk taking, consistent with Wilson (2012). (Results available upon request.)
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of skilled assistance. Panel results suggest that such benefits, along with access to health
care, may extend beyond the immediate vicinity of the mine. The one potential exception
to this pattern is that in our mother-level panel, we find significant decreases in the share
of women who gave birth in an improved setting in mining communities when the mine
was operational. The cross-sectional and mine-level panel evidence contradicts this finding.
However, we mention it here because it is at odds with our otherwise consistent evidence on
wealth. We note that our discussion of maternal Hgh recovery explicitly sought to exclude

the potential effect of differences in maternal health care.

Patterns of anemia among children mirror those among women, but are less
conclusive

Our data shows patterns of anemia among children in mining communities that resemble
those found among adult women. However, significant results are hard to come by. This
may be because the true treatment effect is weaker — we have noted above (Section 1.3.2.2)
that children can effectively compensate for the hematologic toxicity of lead by increasing
production of EPO and red blood cell production. It may also be due to small sample size
(for children, we only have about half the number of observations in the women’s sample). In
the cross-section, we observe insignificant decreases in Hgb on the order of 0.07 g/dL (Table
1.11, Column 1); the effect is strongly concentrated near heavy metal mines, but the DiD
coefficient is again not significant. (Column 2) The panel shows statistically insignificant
losses from current exposure to mining, but is highly sensitive to changes in the treatment

definition. (Results omitted.)

Next, we ask whether infants might be more strongly affected by pollution than older
children. There are two reasons to expect this pattern. Firstly, we have attributed anemia
among women — and particularly, pregnant women — in mining communities to lead exposure,
and it is known that children are born with a lead burden mirroring that of their mothers.

Secondly, it has been previously shown that compensatory over-production of EPO and Hgb
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in lead-exposed children does not quite start at birth, but at some point during infancy.
(Wasserman et al., 1992) When we consider impacts on infants only, we find a larger but
insignificant effect on Hgb (0.13 g/dL), relative to infants living farther away from the mine.
(Column 4) However, the differential impact on infants near heavy metal mines (Column 5)
is both significant and large. The triple-difference coefficient shows a 0.60 g/dL difference in
Hgb levels, with a nearly identical and significant difference in differences between the effect
on infants near heavy metal mines and infants near other mines. Falsification results show
that infants near these mines are not indiscriminately less healthy. (Columns 7-9) However,
we caution that infants born in the direct vicinity of heavy metal mines tend to live in poorer
households. (Column 6) As shown above, we did not find such a correlation between mine
type and wealth in our analysis of hematologic toxic effects among women living near heavy
metal mines. The fact that we do find it here makes it somewhat less compelling to interpret

the difference among mine types as evidence that the health impacts are due to pollution.

1.6.3 Evidence of adverse growth outcomes

As noted, exposure to environmental lead has previously been linked to decreased growth
early in life. However, the evidence is mixed. In the following, we consider impacts on
height for age and the incidence of stunting and severe stunting (height more than two or
three standard deviations below the age-appropriate median, respectively). We find strong
evidence of lower height among children exposed to a mining environment ¢n utero, but also
evidence of a compensatory positive growth effect of living in mining communities after birth.
Appendix 1.H reports that we observe an effect on birth weight in the mother-level panel,

but lack corroborating evidence from our other models.??

22Prior studies have observed that adverse conditions in utero can impair long-run well-being without
being reflected in birth weight. (Schulz, 2010)
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Without regard to time patterns of exposure, children in mining communities
grow taller than their peers

In the simple cross-section, we observe better outcomes for height among children of less
than five years of age in mining communities than in the controls. (Table 1.12, Column 1)
This may not be surprising: growth is strongly linked with nutrition (both the mother’s and
the child’s), and with greater wealth in mining communities, there may also be better diets.

There is also no differential impact near ‘heavy metal’ mines. (Column 3)

However, the evidence is somewhat more subtle. Firstly, as Column 2 makes obvious,
there is no indication of a positive effect among never-movers. Secondly, although infants are
not more affected than older children when we consider all types of mines (Column 4), there
is at least some indication of an adverse effect on infants of living near a ‘heavy metal’ mine.
The triple-difference effects are adverse, and significant for stunting. The DiD comparing
the treatment effect of closeness on infants near metal mines and other mines amounts to a
loss of 0.1 standard deviations in the height measure, and a four and two percentage point
increase in the incidence of stunting and severe stunting, respectively, although none of these
effects reach significance. (Columns 5-7) There are no significant differences between mine

types in the economic status of families with infants. (Column 8)

The cross-sectional evidence alone is thus not easy to read. There clearly are growth
benefits to be had for children in mining communities, and it seems obvious to connect these
to the wealth increases enjoyed by residents. However, not all children appear to benefit.
The question is whether this is because some children are simply left out from economic
gains, or whether they suffer countervailing direct health damage. The absence of a DiD
effect between mine types and of a differential effect on infants near all mines may suggest
the former. Yet, the appreciable effect on infants near mines associated with heavy metals
points toward the latter. Similarly, the difference between never-movers and the general
population is consistent with lower economic benefits among never-movers. (See Table 1.4.)

However, since the differential in wealth effects is not very large, it is reasonable to note
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that children born to never-movers are also more likely to have been exposed to pollution,
particularly in wutero, through the maternal body burden of lead. We look to the panel for

more conclusive evidence of the impacts of different exposure patterns.

Panel evidence shows that in utero exposure to mining increases the incidence
of stunting

Results from the mine-level panel suggest that there is an effect of mining activity on height,
that the effect is chiefly due to exposure in utero, and that it attenuates with age. It
also allows us to at least suggest that there are genuinely positive effects of life in mining
communities on growth in older children, so that children do not simply ‘out-grow’ in utero

effects without further exposure, as earlier reported by Shukla et al. (1991).

The DiD effect of in utero exposure among all children under five years of age shows a
loss of 0.14 standard deviations in the height index, and a five percentage point increase in
the incidence of stunting and severe stunting. (Table 1.13, Columns 1-3) The effect on the
discrete outcomes is significant; the one on the continuous measure not significant (t = 1.39),
but stable. With a baseline incidence of 23% and 8%, respectively, the impact on stunting

is appreciable, and the impact on severe stunting dramatic.

We next note that, in the case of the continuous index and of stunting, the effect of in
utero exposure is larger and stronger when we estimate it for infants only. (Columns 4-6)
This points either to a balancing effect — perhaps due to household wealth — in older children,
or a spontaneous attenuation of in utero impacts with time. We shed some further light on
this question by studying the effect of different exposure patterns. Thus, the estimated effect
of exposure during the first year of life alone is centered near zero. (Column 7) Results when
estimating in utero and birth-year effects jointly are more instructive. We find robust and
large adverse effects of in utero exposure on the continuous index (0.50), alongside beneficial

effects of birth-year exposure. (Column 8) This is at least consistent with exposure to
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maternal lead loads in utero, alongside positive effects from the socio-economic benefits of
mining, once the child is born. It points less toward a mere attenuation of impacts. While
it is attractive to allow in utero and birth-year effects to jointly enter into the model, the
sample of children born just before and just after a mine opened or closed is small (conversely,
operational status is highly serially correlated).?® To further solidify the result, we therefore
show that a similar pattern emerges when we first estimate separately the effect of the mine
operating during the survey year (Column 9), and then compare this estimate to the one
obtained when we include also the effect of the mine operating during gestation. (Column

10)

Finally, when we estimate the effects of in utero and birth-year exposure with mother-level
effects, the results match the pattern in the mine-level panel, but do not reach significance.
(Columns 11-13) This is perhaps to be expected: although we observe more than 2,000
women near mines in our sample for whom our data records child growth outcomes for at
least two children born within five years of each other, there are few mothers with recorded

births both while the mine was operational and while it was not operational.

1.7 Conclusion

We present the first systematic empirical assessment of the health-wealth trade-off facing
mining communities, using micro-data from 44 developing countries. In communities in the
vicinity of mines, we find important economic benefits, alongside serious health impacts,
namely increases in the incidence of anemia in adult women, and of stunting in young
children. These health impacts are consistent with exposure to lead contamination, and have
previously been observed at body burdens of lead that are known also to cause cognitive

deficits in children.

23The DHS surveys record only health data from children born no more than five years before the survey
time. This helps identification, but limits sample size, in particular where we use mother-level effects.
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We obtain estimates of long-run effects from a cross-sectional fixed effects model; medium-
term estimates come from mine-level and mother-level panels. We confirm our wealth results
with an IV approach that uses deposit location and world mineral prices to instrument for
mine locations and operating times. We then develop additional difference-in-difference tests
that exploit (i) the association of certain mine types with lead pollution, and (ii) known
pathological patterns of Hgb recovery in adults exposed to lead. These additional tests are
intended both to allow for weaker identifying assumptions, and to demonstrate that the

observed health impacts are due to pollution, rather than other mechanisms.

The economic benefits to mining communities in the long run are on the order of 0.1
standard deviations of a country and year-specific asset index. Medium-term benefits to
households in communities near operating mines are larger, on the order of 0.30. Benefits
are strongly concentrated within the immediate vicinity (5km) of mines, and we find no asset
wealth effects at all beyond some 15-20km. Wealth rises quite evenly across the distribution,
with modest increases in inequality in the long run. Benefits in terms of health care may
extend beyond the most direct vicinity of mines, although mining communities do at least

as well as communities farther afield.

The evidence conclusively reveals that the real economic benefits generated in mining
communities go hand in hand with increases in the incidence of anemia, by three to ten
percentage points in adult women. The ability to recover hemoglobin levels after blood
loss due to pregnancy and delivery is particularly impaired. There is weaker but consistent
evidence of hematologic toxic effects in children. Children in mining communities are not
disadvantaged in all aspects of physical growth. Yet, young children exposed to a mining
environment in utero are more likely to be stunted or severely stunted than those born in
control groups, with an increase in incidence of five percentage points. There is very limited
evidence of reduced birth weight, and increases in stunting are clearly strongest among
infants, and may not persist. By way of contrast to these specific health impacts, there is

no general pattern of ill health in mining communities.
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We conclude by highlighting some conceptual and policy implications of our results.

Firstly, the presence of adverse compensated health impacts in a generally wealthier
population poses an important question. The most straightforward explanation might be to
suggest that the cost of avoiding exposure to pollution is high, perhaps due to the structure
of settlements and the quality of public transport. We can speculate whether the decision on
living in mining towns in developing countries might resemble less the choice of an optimal
distance along a continuum, and more a discrete choice between two stark options — namely
living either in relatively unpolluted communities outside of a reasonable commuting distance
to the mine, or in a highly polluted but bustling community adjacent to the mine. The
high spatial concentration of medium-term economic benefits is certainly consistent with
such a situation, as is the fact that we observe the greatest wealth effects near mines in
environments that are economically less active. An alternative explanation might point to
limited information. Pollutant levels near mines vary greatly, even over small distances (van
Geen et al., 2012). Hence, contamination may not always be easily observed. In addition, the
health impacts of pollution may not be widely known. The fact that we find strongly raised
wealth levels, but only weakly better health care among households in the direct vicinity
of mines at least suggests that residents are not making very decisive health investments to
compensate for exposure to pollution. We also note that we find no differences in wealth
across mine types, and hence, no prima facie indication of the kind of compensating wage

differential one might expect if residents were widely aware of health risks.

Secondly, while our estimates of health cost and wealth benefits are not directly compa-
rable without strong assumptions, we can offer some observations. Thus, (i) we have argued
above that the effects of mining on asset wealth reflect meaningful differences in household
welfare. Similarly, however, (ii) the cost to affected individuals of the health consequences we
observe is very significant. The contemporaneous productivity loss due to anemia in adults
has been estimated to be on the order of 5-17% (Horton and Ross, 2003), while the persis-

tent economic impact of stunting can be dramatic (if childhood stunting persists through
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adulthood) — perhaps as large as an annual 53% loss in adult wages (Hoddinott et al., 2011).
The permanent annual productivity loss due to lead-induced cognitive deficits expected at
levels of PbB associated with overt anemia or stunting may be on the order of 1.6-13%.%
(See Appendix 1.E.) At the same time, (iii) it is also clear that the health burden imposed by
mining pollution is very unequally distributed: at least in our compensated reduced-form es-
timates, relatively small population groups are affected. In consequence, the expected cost of
health impacts is far more modest than the steep individual cost on those afflicted. However,
(iv) the cost-benefit balance tilts dramatically toward costs if economic gains are less than
permanent, or if legacy effects of pollution after operations cease outlast economic benefits.
This is because the health cost due to cognitive losses and stunting is permanent (and the
cost due to anemia may be persistent if there are adverse legacy effects of pollution after

operations cease).

In consequence, we can conclude that the decision to live in mining communities is a
risky choice. Whether it is rational depends on whether economic benefits are sufficiently
persistent. Furthermore, while we have shown that economic gains are quite equally dis-
tributed, the net benefits of mining look to be very unequally distributed. Thus, mining
makes winners and losers not only between communities that benefit and communities that

suffer consequences, but also within mining communities.

From a policy perspective, our evidence suggests that — on the global average — residents
of mining communities can expect wealth benefits from the industry. (This is of course
not to say that there are not instances of egregious local environmental damage and gross
wealth decline.) Still, the presence of a health externality due to normal operations at
mines in our sample that is observable in compensated health outcomes suggests that the

management of mining pollution deserves renewed scrutiny. Our results yield three leads

24While we do not find strong evidence of an effect of mining on the prevalence of other health conditions
recorded in our data, mining communities may obviously suffer health impacts — or enjoy health benefits —
that we do not observe.
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as to what effective interventions might look like. One, health concerns are most acute in
the immediate vicinity of mines. Proven but expensive engineering solutions to contain and
remediate pollution therefore might deserve a second look. Similarly, policy approaches need
not be too broad in spatial scope to allow residents to live away from the worst pollution,
while still working in or near the mine. At least for some countries in our sample, there may
be a case for experimentation with programs to improve public transport, road infrastructure,
or flexibility in local housing markets. Secondly, the highly uneven distribution of damages
may imply that there is a premium on interventions that reduce risk. We note that the uneven
distribution of costs mirrors the great spatial variation in pollution around mines described
in van Geen et al. (2012), and it is tempting to posit that it might be causally related. If
so, then testing of pollution levels in residential areas might enable residents to avoid the
most dangerous sites, at a comparatively low cost. Finally, we have pointed to evidence that
residents may not have full information on pollution and health risks; interventions could

remedy this.
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Effect of closeness to mine on asset wealth
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Figure 1.2: Effect of closeness to mine on asset wealth in the cross-section
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Figure 1.3: Marginal effect of mine operating on asset wealth in the panel
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Wealth effect of closeness to mine at different quantiles
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Figure 1.4: Cross-sectional effect of closeness to mine on asset wealth at different quantiles of the
wealth distribution
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Figure 1.5: Panel effect of mine operating on asset wealth at different quantiles of the wealth
distribution
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Table 1.2

Prior literature on blood lead levels in communities near smelters

Distance to smelter Mean PbB
Fonturbel et al., 2011 0.5-1.8km n/a
Roels et al., 1980 1-2.5km 13-30 pg/dL
Recio-Vega et al., 2012 2km 14-19 pg/dL
Factor-Litvak et al., 1999 2-4km 28-39 pg/dL
Benin et al., 1999 3km 20-40 pg/dL
Landrigan and Baker, 1981 4km > 40 ug/dL in 87% of subjects

Notes. The table summarizes prior studies of lead levels in communities near smelters. It shows the maximum
distance between the smelter and the communities considered highly exposed, alongside mean blood lead in
highly exposed communities. Ranges of mean PbB refer to means for population groups that differ in age,
gender, and other characteristics. Incidence for Landrigan and Baker summarized by the authors. In the case of
Benin et al. (1999), PbB was predicted from observed environmental pollution; in all other studies, PbB was

measured directly.
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Table 1.3
Sample size

Surveys with observations within 20km of a mine

Survey rounds 104
Countries 44
Interview years 25
Number of households

Full sample Within 5km of a mine ~ Within 5-20km of a mine
Households 1,192,492 37,608 132,797
% of total 3.2% 11.1%
Children under five years of age 1,364,156 31,964 121,519
Women aged 15 and over 2,877,024 87,234 310,096
Men aged 15 and over 2,717,928 82,973 294,723

Mines and smelters near DHS sampling clusters

USGS data RMD data Infomine data
DHS cluster within 20km 838 508 7
DHS cluster within 0-5km 339 225 4
DHS cluster within 5-20km 687 455 6
DHS cluster in both distance categories 226 172 3

Notes. Sample size based on all types of mines, smelters and legacies, excluding quarries. Not all variables used in this study are

available for the entire sample. The count of locations from Infomine includes only those mines not covered in the RMD data.
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Table 1.10
Health outcomes not specifically linked to heavy metal pollution

Panel A: Child health outcomes - cross-section

Infant mortality Under-five mortality Diarrhea Cough Fever
@ 2 (©)] @ )
HH close to mine -0.00246 -0.00305 0.0112* 0.00480 0.00191
(0.00223) (0.00270) (0.00579) (0.00963) (0.00788)
Number of children 298,373 298,373 61,567 60,305 59,494
Number of groups 1,566 1,566 1,510 1,503 1,384
R-squared 0.002 0.003 0.029 0.007 0.01

Panel B: Child health outcomes - panel

Infant mortality Under-five mortality Cough Diarrhea Fever

(©0) @ ®) ) (©)
Mine operating in exposure period * HH -0.00499 -0.00819 0.00392 -0.00260 -0.0234
close (DiD) (0.00745) (0.00864) (0.0299) (0.0282) (0.0258)
Exposure period In utero In utero Survey year Survey year Survey year
Number of observations 43,057 43,057 15,325 15,449 15,576
Number of mines 259 259 236 237 230
R-squared 0.003 0.006 0.025 0.034 0.021

Panel C: Adult health outcomes - cross-section

Ever miscarried Night blindness ~ Female respondent very Male respondent very

during pregnancy sick sick
6 @) ®) )
HH close to mine 0.00263 0.00254 0.00328 0.0120
(0.00460) (0.0104) (0.00527) (0.00977)
Number of respondents 117,118 29,317 11,022 9,808
Number of groups 1,469 1,185 151 151
R-squared 0.061 0.001 0.011 0.011

Panel D: Adult health outcomes - panel

Ever miscarried Night blindness ~ Female respondent very Male respondent very

during pregnancy sick sick

() @) ®) (€))
Mine operating in exposure period * HH -0.00236 -0.00845
close (DiD) (0.0152) (0.0119)
Exposure period Survey year /a Survey year a
Number of observations 29,666 4,111
Number of mines 202 63
R-squared 0.065 0.005

Notes. The table reports estimates of equation (1) in the rows marked 'cross-section', and estimates of equation (2) in the rows marked 'panel'. In the latter, treatment variables
are defined using the time period of exposure to pollution most appropriate to each health condition, as indicated. Only the difference in differences coefficient is reported.
Cross-sectional models use indicator variables for each mine-year pair as group fixed effects; panel models, mine fixed effects and survey round dummies. The dependent
variable in columns (1) and (2) is an indicator for whether a child died within the first year and the first five years after birth, respectively. In the other columns, it is an
indicator for whether the respondent suffered the condition indicated - over the two weeks preceding the survey (3-5); at any point during her reproductive life (6); during the
most recent pregnancy (7); or for three months or more during the year preceding the survey (8-9). Controls in columns (1-5) include an indicator for urban/rural status in all
columns, a quadratic in the mother's age at birth, an indicator for gender, birth-order indicators, as well as indicator variables for the child's age (columns 3-5 only). In columns
(6-9), they include an urban/rural indicator, and a quadratic in the respondent's age at survey time. In cells marked 'n/a’, the model could not be estimated. Standard errors are
clustered at the mine level. Significant at * 10%, ** 5%, *** 1%.
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Appendix 1.A: Notes on data sources and processing

DHS surveys in sample

Albania (2009)

Angola (2007, 2011)
Bangladesh (2000, 2004,
2007, 2011)

Bolivia (2008)

Burkina Faso (1993, 1999,
2003, 2010)

Burundi (2010)

CAR (1995)

Cambodia (2000, 2005,
2010)

Cameroon (1991, 2004,
2011)

Colombia (2010)

DR Congo (2007)

Cote d’Ivoire (1994, 1999)
Dominican Republic
(2007)

Egypt (1992, 1995, 2000,
2003, 2005, 2008)
Ethiopia (2011)

Ghana (1993, 1998, 2003,
2008)

Guinea (1999, 2005)
Guyana (2009)

Haiti (2000, 2006)
Indonesia (2003)

Jordan (2002, 2007)
Kenya (2003, 2009)
Lesotho (2004, 2009)
Liberia (1986, 2007, 2009,
2011)

Madagascar (1997, 2009,
2011)

Malawi (2000, 2004, 2010,
2012)

Mali (1996, 2001, 2006)
Moldova (2005)

Morocco (2004)
Mozambique (2009)
Namibia (2000, 2007)
Nepal (2001, 2006, 2011)
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Niger (1992, 1998)
Nigeria (1990, 2003, 2008,
2010)

Peru (2000, 2005)
Philippines (2003, 2008)
Rwanda (2005, 2008,
2010)

Senegal (1993, 1997, 2005,
2009, 2011)

Sierra Leone (2008)
Swaziland (2007)
Tanzania (1999, 2004,
2008, 2010, 2012)

Togo (1988, 1998)
Uganda (2001, 2006, 2009,
2011)

Zambia (2007)

Zimbabwe (1999, 2006,
2011)



Definition of quarries

We exclude from the analysis all mines that are best characterized as quarries. As noted,
this is because we posit that quarries are sufficiently different from mines in both their
economic importance and as a source of emissions to warrant treatment as a separate type
of entity. Because of their economic importance, we choose to include gemstone mines in

our analysis; however, we exclude mines that produce semi-precious stones.

More precisely, we define as a quarry any location where exclusively any combination of
the following materials (as defined in the USGS data) is being produced: abrasive, ball clay,
bentonite, brick clay, bromine, calcium, cement rock, clay, diatomite, dolomite, feldspar,
fire clay, flagstone, fluorine-fluorite, fullers earth, garnet, granite, gypsum-anhydrite, halite,
kaolin, kyanite, limestone, magnesite, marble, mica, mineral pigments, olivine, peat, perlite,
pumice, quartz, rock asphalt, salt, sand and gravel, semi-precious stones, silica, staurolite,

stone, talc-soapstone, vermiculite, travertine, volcanic materials, wollastonite, zeolites.

World metals and minerals price data

Where available, we obtain metal and mineral prices from the World Bank’s Global Eco-
nomic Monitor commodities data (World Bank, 2013). We add additional price series from
UNCTAD (2013) (manganese ore and tungsten), and the IMF (2013) Primary Commodity
Prices (iron ore and yellowcake uranium oxide). Not all metals and minerals are traded
in exchanges; for those where a market price is not easily observed, we obtain aggregated
transaction-level price data. We use transaction-level data for minor platinum-group metals
from Johnson Matthey, the metal traders (2013), and for all other metals and minerals not
covered in the sources listed above, from the U.S. Geological Survey (Kelly and Matos, 2013).
We omit diamond mines from our IV analysis, since it has been argued that “there are no
internationally set prices for rough diamonds ... [and]| the market prices for rough natural

diamonds are almost constantly in a state of flux.” (Natural Resources Canada, 2009) Prices
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are generally given either for units of processed metal, or units of metal content in ore. The
exceptions are coal, iron ore, phosphate rock and potash, where prices are given for the
raw product. We align price units with production units in our data accordingly. Where
necessary, we deflate price data using the U.S. CPI published by the U.S. Bureau of Labor

Statistics.

Further notes on the panel treatment definition

As noted in the main body of the paper, we do not impute mining activity in our pro-
duction data, not even tacitly, by contrasting observations before and after an opening date.
We do impute an absence of activity under the following restrictive conditions: we assume
an absence of activity for five years prior to a mine opening date, if (i) the opening date is
recorded clearly in the data, (ii) the recorded date is no more than three years earlier than
the first year in which production data is available, and (iii) it is not the case that production
data reflects an ambiguous start date. We consider the start of production to be ambiguous
if production is reported as missing during the opening year, is known to have been zero in

the year before, and is known to have been non-zero in the year after.

Further notes on the time-varying instrument

In the panel, we instrument for the current operating status of a mine using a weighted
price index. Because mines typically extract several minerals, we define the price index as
the world market price for each mineral produced in year ¢t — 7, weighted by the share of
minerals in the previous year’s production, at t — 7 — 1. To account for the large difference
in price levels across minerals, we normalize price in the year 2005 to one. For years before
the first year of production, we weight prices by the average production shares during the
mine’s subsequent production history; for years after the final year of production, we weight
by the final year; for years in between production years, we weight by production shares in

the most recent year of observed production.
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Appendix 1.B: Construction and interpretation of the asset index

To obtain a sound measure of wealth in the absence of data on consumption, expenditure,
or income, we compute a standard index of asset and housing characteristics, as in Filmer
and Pritchett (2001). Because our asset data includes many dummy variables, we follow
Sahn and Stifel (2003) in using a factor index in our main specification, rather than the

more well-known principal-component index; empirically, the differences are slight.

The index is based on the largest set of assets and housing characteristics available within
each survey round. That is, the information used in the index varies between countries and
survey years. We choose this approach because (i) the set of assets recorded varies greatly
across survey years, so that working with the largest common set would discard a great deal
of information, and because (ii) in our very heterogenous sample, defining impacts relative to
the variation in wealth within a given country and year seems more appealing than defining

them relative to global variation.

We include any asset for which data is available for 90% of those households for which
at least one woman answered the women’s questionnaire. Empirically, little changes if we

strike a different balance between data availability and richness of information.

The maximum set of variables included is the following:

Housing characteristics

— Dummy indicating whether the household has: a kitchen, a chimney.

— Dummies recording whether the dwelling uses ‘rudimentary’ or ‘finished’ building ma-
terials (as opposed to the omitted category of ‘natural’ building materials) for floors,
walls, and the roof. The categories are country-specific and intuitive. For instance,
in the 1986 Liberia survey, ‘natural’ roof materials were thatch and grass; the ‘rudi-
mentary’ material was sheet metal; and ‘finished’ materials were concrete, asphalt, or

asbestos.
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Assets

— Share of children of no more than 15 years of age in the household who have: blankets,

shoes, clothes;

— Dummy for whether the household owns any number of each of the following items:
phone landline, mobile phone; stove other than open fire, electricity connection, refrig-

erator; radio, TV; watch, bank account; bicycle, motorbike, car.

To illustrate how the index relates to ownership of individual assets, Table 1.B shows

factor loadings for those survey rounds used to illustrate results in the main body of the

paper.
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Appendix 1.C: Weighted cross-sectional results

In the main paper, we work throughout with unweighted regressions. This is (i) because
due to sample size limitations, we cannot obtain the mine-by-mine coefficients needed for
weighted estimates for all outcome variables, and (ii) because given the data structure, even

the best weighted scheme is ultimately incorrect.

To gain some insight into how our unweighted estimates should be interpreted, we com-
pare them to alternative weighting schemes in the case of the impact of mining on one
outcome, namely asset ownership. The asset index is available for nearly all households in
our sample. In the cross-section, we therefore have enough observations near many mines
to estimate the effect of closeness separately, mine by mine. This offers an opportunity to
compare our baseline unweighted estimates to estimates obtained by giving equal weight to
each mine (‘mine-weighted’ estimates), and by computing a population-weighted average of

mine-level coefficients (‘population-weighted’ estimates).

Table 1.C shows four treatment effect estimates obtained by using different weighting
approaches, alongside the baseline estimate. Column (1) replicates the unweighted baseline
estimate shown in Table 1.4, and Column (2) shows that the unweighted estimate is very
similar for the sub-sample of mines for which separate estimates can be generated. Similar
results emerge from pooled estimation using naive sampling weights — namely, the original
sampling weights given in the DHS data, re-scaled to account for population and sample size

in the different surveys that make up our pooled sample. (Column 3)

Coefficients given in Column (4) are averages of mine-wise estimates of Equation (1),
pooled with equal weights for each mine-year, and with standard errors as described in
Deaton (1997). This is nearly a consistent estimate of the mine-weighted effect, except
for the fact that each mine-level estimate is obtained from an unweighted regression over

households. Finally, Column (5) shows the average of mine-wise estimates of Equation (1),
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pooled using population weights for each mine-year. Because sampling is stratified at the
cluster level, not the mine level, we construct mine-level weights from the sum of cluster-level
weights. We then use these in pooling coefficients. The resulting coefficient is intended as
an estimate of the population-weighted treatment effect. It is, however, inconsistent both
because the mine-level regression is unweighted (as in Column 4), and also because the

population weight generated from the aggregate of cluster weights is ultimately not correct.

Both the mine-weighted and population-weighted estimates (Columns 4 and 5) are larger
than the unweighted estimates; they are highly significant despite being generated by an inef-
ficient process. Thus, while they serve as a reminder that our unweighted baseline estimates
are inherently somewhat vulnerable, the weighted results confirm that there are strong and
significant positive wealth effects in mining communities. Finally, we note that weighting by
population, rather than applying equal weight for each mine, increases the point estimate.
Prima facie, this suggests that treatment effects will tend to be larger in larger communities
— at least among the sample of mines with dense enough population in the vicinity to allow

for mine-level estimates.
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Appendix 1.D: Measurement error in geolocation

Visual inspection in high-resolution satellite images available on Google Earth of the
geolocations recorded for mines in the USGS and RMD data raises some doubts about
the precision of the marker positions. At times, the impression is that the marker is at
some distance from visible mine features. This visual quality check is far from perfect:
images available online may not have been taken at a time when the mine was operational,
underground mines and small mines may not be readily visible in satellite images at any
time; in many other instances, mines are very large complexes, and there is little intuition as
to where the correct marker location ought to be; and in a substantial number of cases, mines
are geographically clustered, and it is impossible to identify individual operations without

substantial research.

However, to assess potential measurement error concerns, we benchmark geolocations
obtained from the RMD business intelligence data against those recorded in an additional,
entirely independent dataset (Mining Atlas), for the common subset of mines. To implement
this test, we manually match mines from the two datasets on their name, the minerals mined,
and the country in which the mine is located. Where necessary, we consult additional
information, such as company records, to confirm the merge. The merge would seem to be
more reliable for large mines with unusual names producing some of the more rarely mined
minerals in countries where there are few mines (for instance, the Langer Heinrich uranium
mine in Namibia), but less accurate without substantial additional research for mines with
common names producing common metals in countries with very many mines (consider the
Santa Rosa polymetallic mine in Peru). Because of this concern, we make no attempt to

benchmark locations in the very large USGS dataset used in the cross-section.

As noted in the main body of the paper, in our baseline data, we drop a handful of mines

where RMD geolocations are obviously erroneous, or for which the RMD and Mining Atlas
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geolocations are 40km or more apart. Conditional on excluding these mines, the sampling
cluster distances to the nearest mine generated by the two datasets are strongly correlated,
with an apparent white noise error pattern. For mines that ever appear in our analysis,
the mean absolute discrepancy in distance to the nearest mine is 4.7km (with a median of

2.5km). We conclude that we should expect some attenuation bias in our results.

With two noisy, but plausibly independent measures of distance in hand, we can in the
cross-section use closeness to mines as measured by one data set to instrument for closeness to
mines in the other, and hence, correct measurement error.! Table 1.D shows results from this
approach for the asset index. Column (1) mirrors the baseline cross-sectional result shown
in Table 1.4, but obtained using using state-year fixed effects.? Columns (2) and (3) show
results using closeness as measured by RMD geolocations and Mining Atlas geolocations,
respectively, for clusters in the vicinity of those mines for which geolocation data is available
from both sources. As is evident, the point estimates are very close to the benchmark, as
well as to each other. Columns (4) and (5) show IV estimates for the sub-sample of mines
present in both datasets. As expected in the presence of measurement error, both point
estimates are larger than the fixed effect estimates in columns (2) and (3), though they are

not significantly different.

We further note that the ratio between the OLS and IV estimates is about 0.85 for the
RMD data, and 0.61 using the Mining Atlas data. Asymptotically at least, we would there-
fore conclude that distance as measured using RMD geolocations is a less noisy measure of
true distance than the measure derived from Mining Atlas geolocations (Filmer and Pritch-
ett, 2001). This reassures us in our choice of RMD as the basic data source. We conclude

that there is evidence of measurement error in mine locations, and of resulting attenuation

"We use production information only from one source of geolocation data, and hence, cannot implement
a similar approach in the panel.

2When we use mine-year effects, results are empirically very similar. However, allowing for mine-year
effects necessitates a choice in the IV models of which dataset mine-year effects should be based on, and
forcing a choice would seem to run counter to the spirit of instrumenting with one noisy measure for another.
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bias. Bias is considerable, between 18% and 65% in the two specifications we estimate. How-
ever, our preferred RMD-based estimate exhibits the lower level of bias, and in any case,
the corrected estimates are not so different from our baseline estimates as to substantially

change our interpretation of wealth patterns in mining communities.
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Table 1.F
Differential diagnosis - effect of closeness to mines on causes of anemia other than lead exposure

Iron deficiency Malaria ‘Worms
Youngest child given ~ Youngest child given  Iron pills during most Tested positive for ~ No malaria drugs during ‘Worm pills during
meat or eggs iron-rich vegetables recent pregnancy malaria most recent pregnancy recent pregnancy
@ @ ®3) (4) (©) (6)

Panel A: Cross-section - full sample

HH close to mine -0.0224* -0.0141 -0.00163 -0.0399 -0.0134 0.00848
(0.0129) (0.0161) (0.00920) (0.0274) (0.0131) (0.0251)
Number of observations 17,639 17,639 43,521 3,384 19,636 14,491

Panel B: Cross-section - women's Hgb sample

HH close to mine -0.0134 -0.0341 -0.0156 -0.00253** -0.00562 -0.0204
(0.0261) (0.0226) (0.0181) (0.000970) (0.0187) (0.0188)
Number of observations 6,223 6,223 12,678 1,615 7,125 6,478

Panel C: Mine type DiD - full sample

HH close to a 'heavy metal' mine -0.0245 -0.00362 0.0190 -0.0142 0.00118 -0.00272
(0.0307) (0.0394) (0.0273) (0.0169) (0.0271) (0.0348)
Number of observations 17,647 17,647 37,387 1,879 18,566 13,755

Panel D: Mine type DiD - women's Hgb sample

HH close to a 'heavy metal' mine -0.0131 0.0156 -0.000880 -0.00333** -0.0358 0.0461*
(0.0505) (0.0501) (0.0415) (0.000197) (0.0394) (0.0270)
Number of observations 6,223 6,223 12,678 1,615 7,125 6,478

Panel E: Panel - full sample

HH close * mine operating in -0.0533 -0.0342 0.0680 0.0104 -0.0207
treatment period (0.0747) (0.0678) (0.0490) (0.0757) (0.0497)
Number of observations 3,893 3,893 7,529 4,012 2,452

Panel F: Panel - women's Hgb sample

HH close * mine operating in -0.0238 0.0628 -0.0169 0.0498 -0.0699
treatment period (0.0851) (0.0431) (0.0696) (0.0997) (0.0768)
Number of observations 1,648 1,648 3,039 1,758 1,115

Nores. The table shows estimates of equations (1), (2), and (4), as indicated. Each equation is estimated separately for the entire sample, and for the sub-sample for which we observe womens'
Hgb levels. In each case, we report only the coefficients of interest, as indicated. Fixed effects, time effects, and covariates are as in the preferred Hgb models reported in the main body of the
paper. Standard errors are clustered at the mine level. Significant at * 10%, ** 5%, *** 1%.
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Table 1.1
Additional falsification tests - child health outcomes

Infant mortality Under-five mortality Diarrhea Cough Fever

() @ (©) “) (€)

Panel A: Cross-section

HH close to mine -0.00246 -0.00305 0.0112* 0.00480 0.00191
(0.00223) (0.00270) (0.00579) (0.00963) (0.00788)
Number of children 298,373 298,373 61,567 60,305 59,494

Panel B: Cross-section - never-movers

HH close to mine -0.00711* -0.00974** 0.00709 0.0292* 0.00898
(0.00288) (0.00369) (0.0124) (0.0159) (0.0156)
Number of children 110,764 110,764 22,732 22,192 21,272

Panel C: Cross-section - differential impact on infants

HH close to mine and child in 0.00756 -0.0143 -0.0109
infancy (0.0113) (0.0107) (0.0112)
Number of children 61,567 60,305 59,494

Panel D: Mine-type DiD

HH close to a 'heavy metal' 0.00147 0.00381 -0.00658 0.0434* 0.00128
mine (0.00426) (0.00548) (0.0123) (0.0208) (0.0186)
Number of children 298,373 298,373 61,567 60,305 59,494

Panel E: Mine-type DiD - differential impact on infants

HH close to a 'heavy metal' -0.0163 -0.0212 -0.0122
mine * child in infancy (0.0240) (0.0262) (0.0234)
Number of children 61,567 60,305 59,494

Panel F: Mine-level panel

Exposure period In utero In utero Survey year Survey year Survey year
Mine operating in exposure -0.00499 -0.00819 -0.00260 0.00392 -0.0234
period * HH close (0.00745) (0.00864) (0.0282) (0.0299) (0.0258)
Number of children 43,057 43,057 15,449 15,325 15,576

Panel G: Mother-level panel

Exposure period In utero In utero Survey year Survey year Survey year
Mine operating in exposure -0.0108 -0.00514 -0.140 -0.0965 -0.114
period * HH close (0.0214) (0.0248) (0.125) (0.0945) (0.111)
Number of children 43,057 43,057 15,989 16,113 16,370

Notes. The first panel reports results from Equation (1); the following panel reports estimates from the same equation, with the sample restricted to never-movers;
and the panel labled 'differential impact on infants' shows the coefficient on the interaction of the treatment in equation (1) with an indicator variable for
whether a child was in infancy. The panel labeled 'mine-type DiD' reports estimates of equation (4); the following panel shows estimates of the same equation,
with an additional interaction term of the DiD variable with an indicator for infancy. The mine-level and mother-level results are estimates of equations (2) and
(3), respectively. All models include fixed effects and controls as in Table 13 in the main paper. Standard errors are clustered at the mine level. Significant at *
10%, ** 5%, *** 1%.
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Appendix 1.L: Distribution of mine-level treatment effects

Regional distribution of treatment effects

Asset index Hgb

Effect on Asset index (SD)
Effect on Hgb (g/dL)

LAC SSA Rest of the world LAC SSA Rest of the world

Figure 1.L.1 - Regional distribution of treatment effects
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Distribution of mine-level coefficients by country
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Figure 1.L.2 - Distribution of mine-level coefficients by country
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Hgb effects vary between mine types across countries
Mine-level estimates - women's Hgb - heavy metal vs. non-heavy metal mines
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Figure 1.L.3 - Distribution of mine type difference-in-difference estimates across countries

Note: The sample shown is limited to the sub-set of countries where mine-level estimates can be

obtained for at least one mine where heavy metal pollution is expected, and one mine of a different

type.
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Chapter 2

Cost-sharing in environmental health products: evidence from

arsenic testing of drinking-water wells in Bihar, India
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Abstract

Groundwater contaminated with arsenic of natural origin threatens the health of
tens of millions of villagers across South and Southeast Asia. With a field experiment
conducted in Bihar, we assess the scope for cost-shared provision of well-water arsenic
tests, and study how households use the information revealed by testing. Demand is
substantial, but highly sensitive to price; uptake falls from 69% to 22% of households
over our price range (Rs. 10 to Rs. 50 — about equivalent to daily per capita income).
Repeating the sales offer after a two-year hiatus raises overall uptake substantially,
from 27% to 45%. About one-third of households with unsafe wells switch to a safer
water source. Households that bought at higher prices are no more likely to switch,
consistent with an absence of sunk cost or screening effects. Finally, we demonstrate

that households selectively forget and remove evidence of adverse test outcomes.
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2.1 Introduction

There is pronounced policy interest in assessing how fee-based provision affects the de-
mand for and use of basic preventive health products in low income countries. In particular,
much attention has been given to the question of whether charging a fee (usually selected
to share cost, rather than cover it entirely) helps or hinders sustainable access to and use of
these products (Dupas, 2014a; Kremer and Miguel, 2007; Tarozzi et al., 2014). We consider
these issues in the context of a preventive environmental health product, namely testing of
drinking water wells for arsenic in Bihar, India.

In many low-income settings, very high social benefits are associated with basic preventive
health products, such as insecticide-treated bed nets to prevent malaria infection (ITNs),
or technologies to remove microbial pathogens from drinking water (Ahuja et al., 2010;
Sachs and Malaney, 2002). Yet, it has proven difficult to chart a path — through private or
public provision — to ensure sustainability. Since willingness to pay is limited even for very
effective health interventions, market-based private provision often encounters little demand.
Conversely, it has been argued that initial subsidization may present an opportunity for
learning, and help future uptake. There is thus a case for public provision in low-income
settings. Yet, public distribution is in turn beset with difficulties that the incentives inherent
in market-based provision might help avoid — from slow and unreliable provision to poor
targeting of the free good toward intended beneficiaries, and limited innovation in products
and delivery. It has also been asked whether households may use products provided free
of charge less reliably than they might use products for which they would have paid a fee
(‘screening’ or ‘sunk cost’ effects), or whether initial subsidies may create an expectation of
future free access, and lower willingness to pay (‘anchoring’) — though empirical evidence
often does not bear out these concerns (Cohen and Dupas, 2010; Dupas, 2014b). Given
the flaws of both private and public provision, cost-sharing is often suggested as a way

to reduce dependency on public programs, without exposing consumers to the full cost of
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market provision. However, even relatively limited fees have been shown to significantly
reduce take-up (Bates et al., 2012; Dupas, 2014a; Kremer and Miguel, 2007). The question
of how to foster sustainability thus remains relevant.

Arsenic tests for drinking water wells share important product traits with other highly
efficient preventive health interventions, and their provision poses similar questions of sus-
tainability. Naturally elevated arsenic concentrations in well water were first reported in
the mid-1980s in West-Bengal and subsequently shown to extend over a much broader area
(Ahmed et al., 2006; Chakraborti et al., 2003; Fendorf et al., 2010) In areas where arsenic
contamination is prevalent, tests are essential in that they provide information that is not
substitutable. Because the distribution of arsenic incidence in groundwater is difficult to
predict, and varies greatly even over small distances, the safety of a well cannot be predicted
without a test (van Geen et al., 2002). A well that meets the WHO guidelines for arsenic in
drinking water may be found in immediate neighborhood of a very unsafe well. Nor is there
an easy way to design wells to be both safe and affordable: within shallow (< 100 m) aquifers
tapped by most private wells, there is no systematic and predictable relationship between
and arsenic and well depth. At the same time, precisely because arsenic contamination varies
greatly over small distances, well tests make available an effective way to avoid exposure,
namely by switching to nearby safe wells. In previous interventions, about one-quarter to
two-thirds of households with contaminated wells have been found to switch to safer sources
(see, e.g., Ahmed et al. (2006); Chen et al. (2007); Madajewicz et al. (2007)).

Much like other basic preventive health products, arsenic tests are also very cost efficient.
The cost of goods and services (COGS) for a test provided through our program was a
mere USD 2.26, excluding cost purely related to data collection. (There is, of course, a
potentially significant inconvenience cost to switching wells.) By stark contrast, the health
consequences of chronic arsenic exposure are dramatic. Argos et al. (2010) conducted a large
cohort study in an area of Bangladesh where arsenic contamination was representative of

the national distribution, and estimated that 21% of all-cause deaths were due to chronic
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exposure by drinking water at arsenic levels above 10ug/1 (the 60th percentile of the arsenic
distribution in our sample). Arsenic in tubewell water has also been associated with impaired
intellectual and motor function in children (Parvez et al., 2011; Wasserman et al., 2004). In
consequence, there are significant effects on income and labor supply: Pitt et al. (2015)
estimate that lowering the amount of retained arsenic among adult men in Bangladesh to
levels encountered in uncontaminated countries would increase earnings by 9%. Matching
households to arsenic exposure, Carson et al. (2011) find that overall household labor supply
is 8% smaller due to arsenic exposure.

Because of their low cost and important health benefits, arsenic well tests have been
provided free of charge at large scale. Large-scale testing campaigns have been carried
out through public provision in rural communities across the Indo-Gangetic Plain (Ahmed
et al., 2006; Fendorf et al., 2010). However, these important programs have not come close to
comprehensively covering the geographic area where arsenic is of concern — including in our
study area. Due to the explosive growth of tube well use, they may also need complementing
where they have once been carried out. Thus, after a single blanket testing covering five
million wells by the government of Bangladesh in 2000-2005, no further country-wide public
programs have been undertaken as of the time of writing. In consequence, recent estimates
suggest that more than half of currently used tube wells in Bangladesh have never been
tested for arsenic (van Geen et al., 2014). Public provision has hence not fully met the need
for testing, and a permanent network of test providers may be required to ensure coverage.
This prompts the question whether cost-shared private provision might provide a sustainable
complement to public provision, and whether there is the prospect of a market for arsenic
tests in which local entrepreneurs would have an incentive to seek out untested wells (indeed,
wells are drilled by small entrepreneurs).

In this paper, we shed light on this issue using a randomized control trial conducted in
26 villages in Bihar, India, from 2012-2015. In order to elicit demand, we offered tests at

prices between Rs. 10 to Rs. 50, randomized at the village level. The highest price level was
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approximately equal to one day of per capita income in Bihar, or one-third of the full cost
of goods and services.! We find that there is a considerable demand for arsenic testing: at
the mean across price groups, and over the duration of our intervention, 45% of households
purchase the test. However, demand drops steeply with price, in line with demand elasticities
found in other studies of highly effective preventive health care products (Cohen and Dupas,
2010; Kremer and Miguel, 2007). To our knowledge, no study has previously estimated
the demand curve for diagnostic testing of water source quality for arsenic. One related
study by George et al. (2013) considers demand for arsenic testing at a single fixed price in
Bangladesh, and shows that education and media campaigns increased adoption.

To further assess the question of sustainability, we repeat the sales offer two years after
the initial campaign, at the same (nominal) sales price. We record significant additional
demand at the time of the repeat offer, with overall coverage rising from 27% to 45%. Data
limitations do not allow us to ascertain what mechanisms lie behind additional demand
— wealth increases, learning, or the direct effect of repeating the offer (what one might
call a ‘marketing’ or ‘nudge’ effect). However, from the vantage point of policy interest
in sustainability, the reduced-form effect of making a repeat offer is highly relevant. The
observed additional demand is perhaps particularly remarkable because the opportunities for
learning are somewhat circumscribed by the fact that arsenic tests are an experience good
only in a very limited sense. Thus, once some consumers buy tests, others may observe that
neighboring wells test positive for arsenic, and may learn about opportunities to switch —
but because the health impact of arsenic are slow in onset, health benefits are not immediate
observable.

Our study further contributes to the literature by investigating how households respond
to information on the arsenic status of their well. In a follow-up survey conducted three

months after the first wave of test offers, about 31% of households whose wells had unsafe

'http://www.indiaenvironmentportal.org.in/files/file/Economic-Survey-2014-
bihar.pdf.
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levels of arsenic reported having switched to a safer tube well for their drinking and cooking
water needs. This rate is in line with previously reported switching rates, though at the lower
end of the spectrum (Ahmed et al., 2006; Bennear et al., 2013; Chen et al., 2007; George
et al., 2012; Madajewicz et al., 2007; Opar et al., 2007). We find no effect of price paid
on the probability of switching to safer water sources, in line with earlier studies rejecting a
‘screening’ or ‘sunk cost’ effect in the use of other preventive health products (Dupas, 2014a).

In a novel result, we find strong evidence of selective recall of test results. Thus, about
half of the household whose wells tested unsafe were unable to recall their well status correctly
(with no corresponding difference among owners of safe wells). Some households proactively
discarded placards attached to wells to indicate that drinking water was not safe. Stigma,
concerns over reduced property value, or obstacles to switching might explain this choice.

Two limitations arising from the study’s implementation are worth noting. A review of the
field work finds that in the first phase of test sales, enumerators did not systematically collect
data from all households approached with a sales offer. To mitigate the resulting obstacles for
demand estimation, we collected recall data on sales offers and purchases during the second
offer phase. Secondly, an attempt to create a well owner-level panel was unsuccessful, since
well tags attached during the first phase proved to be far less durable than expected, and
could not be comprehensively tracked.

The remainder of the paper is structured as follows. Section 2.2 discusses the details of

the experiment and data. Results are presented in Section 2.3, and Section 2.4 concludes.

2.2 Details on Experiment, Data and Methodology

2.2.1 Study setting and sample

Our study is set in a region in the Indo-Gangetic plains in Bihar, India, arsenic levels
are elevated in a significant proportion of drinking water wells. Chakraborti et al. (2003)

first showed that a significant proportion of wells in the region was elevated in arsenic by
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extending their testing campaign upstream along the Ganges from the state of West Bengal.
Arsenic testing is a new service in the study area: tests are not available in the private
market (nor are they elsewhere in South Asia), and while Nickson et al. (2007) report that
about 5,000 wells have been previously tested in the general area, it has not previously
been covered by any government-sponsored blanket testing of wells.? Within the general
study area, we selected Bhojpur district to conduct our intervention. Within this large
district (1,045 villages are recorded in the Census), we select a study area of four blocks
(sub-districts) adjacent to the village where arsenic was first reported in Bihar (Chakraborti
et al., 2003). We discuss external validity of our results below. Within these, we choose
26 villages of moderate size (50-400 households) for this study, based on a high probability
of arsenic incidence, as indicated by distance from the river.®> Our endline survey identifies
4,084 well-owner households in total.*

To elicit demand, we used a simple revealed preference approach — namely, making take-
it-or-leave-it offers of arsenic tests at a certain price to households in the sample villages. As
is obvious, a take-it-or-leave-it offer elicits only a bound on each household’s willingness to
pay. For instance, if a household accepts to purchase a test at Rs. 30, we can only infer that
its willingness to pay was at least Rs. 30. Similarly, rejection only suggests that willingness
to pay was less than the asking price.

We randomly assigned each village to one of five price levels at which households were

2Nickson et al. (2007) report arsenic testing of about 5,000 wells in six out of 14 sub-districts of our
study district. The sub-districts were not identified in the study, and it is hence not possible to precisely
compare the number of wells tested to the number of local wells. However, the share of wells tested was
certainly a small fraction of the 335,000 wells reported in the 2011 Census for the entire study district. 26%
of wells tested unsafe.

3The original intention was to work in a sample of 25 villages, i.e., five villages in each of our five price
groups. However, enumerators erroneously visited two villages of the same name during initial field work.
We included the additional village as the 26th for the rest of the program.

*We cross-checked the number of households recorded in our study against 2011 Census data for 21 out
of 26 villages that could be matched to the census. For these villages, the census shows 4,497 households
that own a hand pump, whereas we record 3,322 attempted sales in the same 21 villages - that is, 74% of
the census population . The discrepancy is in significant part due to the failure to include entire parts of a
few villages, because enumerators believed these to be distinct villages.
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offered arsenic tests for purchase, rising from Rs. 10 to Rs. 50, in increments of ten. It
was felt that offering different prices to households within a given village would be seen as
violating fairness norms, and would deter purchases.® We therefore chose not to randomize
our prices within villages. The highest price was chosen based on initial local focus group
discussions; it is slightly higher than the average daily per capita income of Rs. 45 in Bihar
in 2011-12. Revenue from test sales was used to partially cover the enumerators’ salaries
and travel cost. The cost of the test kits alone was about USD 0.35 (about Rs. 21 at
January 2014 exchange rates); the COGS for testing, including wages, quality control, and
test result placards amounted to USD 2.26 (Rs. 136). (Metal well tags intended purely for
data collection added an additional USD 0.48 (Rs. 29).) The highest price charged therefore
more than covered the cost of the test kits, and about one-third of the entire COGS. We did
not add a treatment arm that would have offered tests free of charge, because of a strong
expectation that take-up would be near-universal at zero cost. This expectation was based
on prior experience in arsenic testing campaigns, and was confirmed further when free tests
were offered with near-complete take-up in four pilot villages visited for the design of our
experiment. It is also in line with broader evidence from the lab (Shampanier et al., 2007)

and from field experiments (Cohen and Dupas, 2010; Kremer and Miguel, 2007).

2.2.2 Implementation — testing campaign and surveys

Testers were locally recruited from among college graduates, and trained prior to the
roll-out of the campaign. (By way of contrast to van Geen et al. (2014), where village health
workers conducted tests.) Testing then proceeded in two waves; the first conducted in 2012-
13, and the second, in 2014-15. (See Table 2.1 — henceforth, for simplicity, we refer to the

first round of testing as having taken place in 2012, and the second round, in 2014.)

5This consideration obviated the use of alternative techniques for eliciting willingness to pay, such as the
Becker-DeGroot-Marschak (BDM) mechanism and other auction-based methods. In any case, auctions would
have been unlikely to be efficient mechanisms, given the potential buyers’ uncertain and likely correlated
beliefs over the value of arsenic tests.
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2.2.2.1 First wave of testing — initial sales offer

The first wave of testing began with focus group meetings in each village. To increase
awareness of the arsenic issue, a large poster was put on display, showing a satellite image of
a pilot village along with color markers indicating the arsenic status of tested wells (Figure
2.2). The poster served the additional purpose of making tangible the great spatial variation
in arsenic contamination, and the resulting opportunities for well switching. Following the
focus group meetings, testers began to offer tests door-to-door; where a sale was made, tests
were conducted using a reliable field kit that requires approximately 15 minutes per test (van
Geen et al., 2014). The protocol foresaw that for all households approached with a test offer,
GPS locations and basic data on the household would be collected. However, in contrast with
what was intended, testers did not record data from all households that did not purchase a
test. We discuss the resulting challenges for demand estimation, and our solution approach,
at length in Appendix 2.A. During the initial wave of test offers, a total of 1,212 tests were
sold across the 26 sample villages (Table 2.A.1, Column 3). The results of each test were
posted on the pump-head of the well that was tested, with an easy-to-read metal placard,
color coded red for unsafe wells (> 50ug/1 arsenic), green for ‘borderline safe’ wells where
arsenic is of some concern (> 10-50ug/1), and blue for safe wells (< 10ug/1) (Figure 2.3). The
cut-off values were chosen to correspond with the Indian national safety standard for arsenic
of 50ug/1 that was current as of the time of the test campaign, and the WHO guideline of
10pg/1 (the government of India — unlike the government of Bangladesh — has since matched
its standard to the WHO guideline). Smaller placards with a unique well ID were also
attached to each pump-head in anticipation of a future response survey. Regrettably, well
ID tags proved to be less durable than hoped, and less than 5% of tags placed in 2012
were still attached in 2014. It was hence not possible to reliably link wells across survey
rounds. Immediately after the first wave of arsenic testing was completed, village-level maps
were exhibited in each village, showing the geo-locations of safe, borderline safe and unsafe

wells, with the goal of illustrating, where relevant, that the proximity of safe wells would

101



make well-switching feasible. (Geo-locations were jittered to preserve anonymity.) During
home visits, households were alerted to the fact that switching from unsafe or borderline
safe wells to neighboring safe wells would be an effective way to avoid arsenic exposure. The
first phase of the project concluded with a follow-up survey conducted approximately three
months after testing was completed. Enumerators visited all households with a high-arsenic
well-head and collected information on whether they now drew water from neighboring safe

wells.

2.2.2.2 Second wave of testing — sales offer repeated

In a second phase, commencing in 2014 — some two years after the initial visits — we
offered the tests again in the same set of villages, and at the same price assigned initially.
Across the 26 villages, a total of 4,084 households were approached with the intention of
making a sales offer (Table 2.4, Column 4). In the second round, data was collected sys-
tematically from every household where a respondent could be interviewed, including from
households that did not wish to buy the tests. Each house was visited at least two times
to ensure high coverage. After two visits, about 14% of households could not be surveyed
because no adult member was present or willing to answer questions; sales offers could be
completed in 3,528 households. The enumerators reported that, to avoid embarrassment,
some households who were unwilling to purchase tests at the asking price avoided being
interviewed. For a conservative demand estimate, we therefore work throughout with the
number of households approached for sales, rather than the number of households where a
sales offer could be completed. A total of 719 tests were sold in this second phase (Column
5). The household survey administered in the second round gathered socio-economic and de-
mographic information, along with GPS locations of the wells. It also collected information
on recall of tests being offered and purchased in 2012, along with recall of test results. This
recall data allows us to work around some of the constraints posed by the implementation

issues encountered during the first wave of offers.
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2.2.3 Summary statistics

Summary statistics from the 2014 survey show modestly well-off village communities
(Table 2.2). Households are of moderate size (3.9 members on average). Most (89%) own at
least one mobile phone, and most (70%) live in houses made from durable building materials
(‘pucca’). Ownership of bikes (68%) and cows (67%) is common, though fewer households
own consumer durables or have access to sanitation, and very few own cars.

Table 2.2 also shows a randomization check on observables. Here, and throughout the
paper, we analyze data using ordinary least squares regression, with straightforward speci-
fications. In all regressions, we report cluster bootstrapped standard errors to account for
randomization at the village level. As Table 2.2 shows, price category dummies are jointly
significant at the 90% level for two out of the eleven variables tested. The two instances
where there are significant differences (ownership of cars and access to sanitation) appear
isolated, and would suggest opposite signs in a relationship between price and ownership.
There is therefore no indication that the price groups in question are systematically any
more or less wealthy than the other groups.

To give a sense of the external validity of our results, Table 2.3 compares household
wealth proxies in the 2011 Census for our sample villages, the four blocks that nest them,
Bhojpur district, and the state of Bihar. As is evident, households in our sample villages are
similarly well-off as the mean household in the blocks (Panel A) and Bhojpur district (Panel
B). They are, however, better off than the average household in Bihar, with a far higher
share of houses made from durable materials, greater literacy, and ownership of household
assets up to 10pp higher for many categories (Panel C). While we show below (in Section
2.3.1.2) that asset ownership does not strongly predict willingness to pay, we might expect
demand in our sample villages to be representative of Bhojpur district, but at weakly higher

than in Bihar at large.
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2.3 Results

2.3.1 Demand for well arsenic testing

Demand for fee-based arsenic tests in the study area is substantial. Overall, after exclud-
ing 74 repeat purchases by households who had their wells tested in both 2012 and 2014, a
total of 1,857 tests were sold at randomly assigned prices across the 26 sample villages over
the entire duration of the program (2012-2015). This implies that arsenic testing covered
about 45% of households approached for sales (Table 2.4, Column 10).® An example of test
results in one village is provided in Figure 2.1; a map displaying the proportion of safe, un-
safe, and untested wells in each village is shown in Figure 2.4. Tt pools results from the first
and second test phase. In total, using the national and WHO thresholds of 50 and 10ug/1,
respectively, 50% of wells tested ‘safe’ (‘blue’), 31% tested ‘borderline safe’; and 19% tested
‘unsafe’ (‘red’). As expected, test results varied over small distances, and there is a wide
spread in the shares of unsafe wells across villages, ranging from 2% to 77%.

Demand in the first round of sales alone was 27% across price groups in our preferred
recall estimate (Column 8). Demand at the time of the second offer was 18%, after adjusting
for repeat purchases (Column 9). As noted, demand estimation for the first round of sales
is complicated by incomplete data collection. In Appendix 2.A, we discuss our solution
approach, and assess robustness. In the following, we work with recall data systematically
collected during the second test wave to determine 2012 demand, both because it is more
internally consistent, and because it yields more conservative estimates (overall demand was
30% using an alternative approach of imputing demand from 2012 sales and the 2014 sample

size).

6To estimate total coverage after two offers, we add first and second-round coverage, correcting for repeat
purchases. We define second-round purchases to have been repeat purchases in 74 instances where households
recall having bought the test in 2012, and purchased another test in 2014. Households had been advised
that, since arsenic levels in ground water are stable over time, wells need not be tested repeatedly.
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2.3.1.1 Price sensitive of demand

In line with prior research, we find that demand is highly sensitive to price (Figure 2.5,
Table 2.5). The mean elasticity across sales at different price levels in our data is -0.36 in
the first round, and -0.47 in the second round. At the lowest price of Rs. 10 (USD 0.15 at
market rates at the time of the repeat offer), 40% of households purchase the test after one
offer, and 69% after two offers (Table 2.4, Columns 7 and 10). While our experiment did not
include an arm with zero price offer, uptake of free tests can be assumed to be nearly 100%
(as discussed in Section 2.2.1). Thus, while there is significant demand at Rs. 10, charging
this small amount, rather than offering the test for free, reduces coverage after two sales
offers by about one-third. Demand further drops precipitously at higher prices, and at Rs.
50, reduces to less than one-sixth of households after one offer, and less than one-quarter
after two offers.

This pronounced sensitivity is in line with demand behavior observed in other recent
studies of preventive health products such as ITNs or rubber shoes in developing countries
(Cohen and Dupas, 2010; Dupas, 2014b; Kremer and Miguel, 2007; Meredith et al., 2013).
The fact that arsenic tests arguably were less well-known to consumers than products studied
elsewhere was not reflected in distinctly higher price elasticity.

Perhaps the most natural comparison in terms of the nature of products offered is to Berry
et al. (2012), who study willingness to pay for water filters to remove pathogens in northern
Ghana. Berry et al. report that, while 95% of respondents had non-zero willingness to pay
(an analogue of near-universal take-up at zero cost), charging a price equivalent to 116% of
daily income (or 30% of the filter’s cost) reduced demand to 21%." This is comparable to
outcomes in our experiment at a price of Rs. 50 and after one sales offer: demand of 15%
at a price equivalent to 111% of average daily income, and 30% of the full cost of goods and

services.

"Demand figures from Dupas (2014a). Figures are not directly reported in Berry et al. (2012). Share of
income based on USD 4.20 (GHS 3) price and 2010 (current) per capita GDP of USD 1,323.
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Our demand estimates compare well with results shown by George et al. (2013), who
estimate demand for arsenic tests in Bangladesh at a single price point of USD 0.28 in 2011
— the equivalent of about Rs. 10 in 2014 in our setting. George et al. find 53% uptake in
the control group, where no dedicated awareness campaign is conducted, and 93% uptake
in each of two treatment arms with an awareness campaign. Our demand estimate at Rs.
10 is in between these two values after two offers, but far below after a single offer. This is
perhaps intuitive: arsenic test were not widely known in our intervention area, while George
et al. (2013) worked in Bangladesh, where government-sponsored blanket testing and many

other interventions have significantly raised awareness of arsenic.

2.3.1.2 No buyer selection at different price levels

We next test how sales price correlates with buyer characteristics in terms of household
wealth proxies. Table 2.6 shows regression results for second-wave buyers (results for 2012
buyers are similar, and omitted for conciseness). As is evident, few asset categories are
correlated with sales price. For those that do correlate, selection was limited to the two
highest price levels. Given the large drop in demand associated with a price increase from
Rs. 10 to Rs. 20 (13pp, or 45% in relative terms), it is perhaps surprising that there is
virtually no distinction in observed asset ownership between households that buy at these
price levels. The absence of a wealth pattern suggests that, either, purchasing decisions
were driven by different valuation of the product among similar households, or marginal
utility of consumption differed in ways that do not correlate with characteristics we observe.
Investment in sanitation — i.e. having a latrine facility in the house — is correlated with
purchase decisions at high price levels (about one household in three among those who buy
at Rs. 10 owns a latrine, but two in three do among those who buy at Rs. 50). This result

might well speak to a concern over hygiene and health driving both investments.
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2.3.1.3 No residential sorting

We test whether households can predict arsenic contamination, and potentially, sort
accordingly in choosing their residence. As noted, the distribution of arsenic in groundwater
wells is hard to predict; it would be surprising if we were to observe sorting. Appendix Table
2.C.1 confirms this notion, in keeping with findings in Madajewicz et al. (2007). There is no
relationship between well characteristics (age, depth, and price) and the probability of high
contamination — that is, households do not appear to specify well design to effectively avoid
arsenic (Column 1). Nor is there a distinct relationship between asset ownership and arsenic

status of wells that would suggest residential sorting (Column 2).8

2.3.1.4 Additional demand when offer is repeated after two years

A key feature of our experiment is that in each village, the initial test offer was followed
by a repeat offer after some two years had elapsed — at the same (nominal) sales price.
Our purpose in re-offering the arsenic test was to assess whether additional demand (i.e.
from households who did not purchase in the first phase) could be elicited after a two-year
delay. We repeated the offer at the same price charged initially, as opposed to repeating it
at a uniform price as in Dupas (2014b). This allows us to study the (reduced-form) effect
of making a repeat offer at different price levels, a question of immediate policy interest.
However, we sacrifice the ability to directly test for learning as a specific mechanism driving
demand at the time of the second offer.?

We find that repeating the offer after a two-year delay did indeed generate substantial

8Given the small number of high-arsenic wells, tests are run separately for each asset category to avoid
over-fitting. Due to multiple hypothesis testing, the standard errors reported in Appendix Table 2.C.1 are
too small. We omit any adjustment because the absence of sorting emerges even when precision is overstated.

9 Appendix 2.B shows an alternative test for learning. The reason why we cannot assess learning as in
Dupas (2014b) is as follows. Our product is distinct from the ITTNs offered in Dupas (2014b) in that there is
no reason for households to repeat arsenic tests, whereas there is reason to purchase ITNs again after some
time. Still, if we had made the second sales offer at a uniform price, we might have tested for learning by
using first-round price to instrument for first-round demand, and then study the effect of first-round demand
on second-round demand through peer learning. This is not possible, however, when price levels are the
same in the first and second round: as an instrument, price would clearly violate the exclusion restriction.
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additional demand. Thus, purchases at the time of the second offer raise total coverage by
some 18 percentage points (pp), from 27% to 45% (Table 2.4, Columns 7 and 10). Demand
is more price-sensitive than at the first offer (Figure 2.5). However, we observe an effect of
repeating the sales offer on coverage at any price level, with increases ranging from 70% of
the original sales at Rs. 10 to 19% at Rs. 40.

From a policy perspective, the effect of making a repeat offer is remarkable: price matters
greatly for demand, but at any price level considered here, repeating the offer meaningfully
increases coverage (and from a business perspective, sales). Irrespective of the channels —
learning, income growth, or marketing intensity, this simple finding underscores the need for
a more careful assessment of experimental evidence generated with offers available only for
a short period.

Because we lack a household panel, and because there may be some error in recall of
first-round tests, we cannot completely rule out the concern that some of the demand at
the second offer may be driven by households that may not have been approached during
the first offer phase in 2012. However, the observable evidence offers significant reassurance.
About 70% of the new purchases in 2014 are made by households who recall being offered
the test in 2012, but did not purchase (Table 2.4, Columns 5-6). Perhaps most compellingly,
the pattern of 2014 demand is very similar among those who recall having been made an
earlier offer and the overall sample (Column 10).

It is intriguing to ask why there is a high level of demand when a repeat offer is made
within the relatively short time frame of two years. However, our data does not allow us
to conclusively assess this question; Appendix 2.B shows some limited evidence. (i) Strong
state-level growth in nominal income between survey rounds suggests that changes in wealth
between the first and second offer may have played a role; our survey data on asset ownership
is consistent with this mechanism, but not conclusive. The absence of a correlation between
wealth and price among buyers is at odds with this explanation (see Section 2.3.1.1). (ii)

Learning may have lead households to adjust their valuation of arsenic testing. The product’s
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characteristics were not familiar to potential customers at the time of the first offer, and the
initial wave of tests may have allowed households to change their beliefs about the possibility
of contamination, and opportunities to switch, although the health benefits of switching
cannot be observed within two years. We obtain the ‘expected’ sign in a test with a credibly
causal interpretation, but the results are not significant. (iii) In the absence of conclusive
evidence on wealth or learning effects, one could speculate about a direct effect of repeating
the offer — what one might call a ‘marketing’ or ‘nudge’ effect. We consider it a priority for

further work to assess the importance of such an effect.

2.3.2 Household response to test results

2.3.2.1 Well switching

We next consider how households use the information revealed by arsenic testing. Par-
ticular importance attaches to whether households switch from highly contaminated wells to
safe water sources. Within the context of the wider literature on preventive health products,
this can be viewed as equivalent to behavioral issues surrounding the use of products once
they have been purchased. Thus, it is the act of switching to a safe water source that brings
about health benefits after the purchase of a test — and switching imposes further inconve-
nience cost. Similarly, after the purchase of an I'TN or a drinking water filter, it is the act
of sleeping under the net or filtering water that generates health benefits, and each may be
associated with inconvenience.

Among households that purchased the test in 2012, 31% reported that they had switched
to safer water sources at the time of the follow-up survey. This is a low switching rate, but
not an atypical response. A number of similar studies in Bangladesh have reported switching
rates of 26-39% (Ahmed et al., 2006; Bennear et al., 2013; Chen et al., 2007), although others
find higher rates, in between one-half and two-thirds of affected households (George et al.,

2012; Madajewicz et al., 2007; Opar et al., 2007). In line with prior evidence (Chen et al.,
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2007; Opar et al., 2007), we find that distance to safer wells is an important predictor of
switching (Figure 2.6).

The somewhat subdued response to information could be related to the limited number
of wells identified to be safe, because of lower take-up of the for-fee service, as opposed to
blanket testing. It could also plausibly be due to restrictions on sharing water based on caste
affiliation and religion. — Among households in our survey, 90% report that they prefer to
exchange water within their own caste or group of relatives. Similarly, in Uttar Pradesh, a
state adjacent to Bihar, caste in particular has been found to be a major factor in impending
water trade within a village (Anderson, 2011).

We further find that the propensity to switch does not depend on the purchase price
(Table 2.7).1° We interpret this result to demonstrate an absence of screening or sunk cost
effects. Both effects would tend to increase usage with price, and imply that highly subsidized
provision might lead to ‘overinclusion’ of those who do not sufficiently value the product.!
Our result further bolsters recent findings that have suggested that, for preventive health care
products, there is little empirical evidence of overinclusion in subsidized provision (Cohen

and Dupas (2010); Dupas (2014a) — see Berry et al. (2012) and Ashraf et al. (2007) for

experimental evidence of screening, but not sunk cost effects).

2.3.2.2 Selective recall of test results and loss of test placards

We find strong evidence of selective recall. During follow-up, households not only avoid
reporting adverse arsenic test outcomes, but take direct action to remove markers of unwel-
come results.

Table 2.8 offers a test for selective recall. It compares the proportion of tests in each cat-

0To guard against concerns that the tests for individual price categories shown in Table 2.7 might be
under-powered, we confirm that there are no significant differences when we regress on a dummy variable
for ‘high’ price level, under any possible cutoff (results available upon request).

1n our setting, the respective arguments are as follows: ‘those who decided to buy at high price care
more about health from the outset, and will therefore be more likely to switch wells’; and ‘those who buy at
high prices have invested more in the test, and will hence more highly value the information it yields’.
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egory of arsenic contamination levels (Red/high, Green/moderate, and Blue/safe) observed
in first-round test outcomes recorded in 2012 to the proportion of tests in the same category
of outcomes recalled in 2014. We adduce three different measures of recalled arsenic status
—namely, (1) those households where the test placard was still affixed to the well; (2) those
where the placard had been removed from the well, but was still kept in the house; and
(3) those where the placard was neither on the well nor kept in house, but the respondent
reported being able to remember the arsenic contamination status. As is evident, the propor-
tion of wells respondents believe to be unsafe is consistently some nine to eleven percentage
points lower than the true proportion of red tests recorded in 2012 (Columns 1, 4, 7, and
10). It is particularly striking that such a discrepancy exists even among households where
the test placard was still attached to the well: since it is inconceivable that red tags are more
likely to be accidentally lost than others, this is clear evidence of intent either to hide the
well’s status, or to avoid being reminded of it (Column 1). The magnitude of the effect is
very substantial: 20% of wells tested ‘red’ in 2012 — and hence, a decrease of the share of
‘red” wells by about 9-11pp implies that about half of the households with wells that were
high in arsenic intentionally sought to hide the test outcome. We also note that respondents
who did not produce a placard tended to preferentially indicate that wells were tested ‘green’
— suggesting that households prefer to claim a medium arsenic level in their highly contam-
inated wells (Column 8). Conversely, as Appendix Table 2.D.1 shows, wells in households
that opted to repeat the arsenic test in 2014 were more likely to have tested ‘green’ than
those only tested once. This suggests that households who initially received ‘mixed news’
were more likely to hope for a different outcome than those who received clearly ‘good’ or
‘bad’ news.

These findings are consistent with general theoretical and experimental evidence of ‘self-
serving bias’ and ‘over-confidence’ (see, e.g., Eil and Rao (2011)). More practically, we
note that efforts to hide unsafe well status could be related to low well switching rates

in various ways. It could be that well owners hide bad news because it is (for unrelated
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reasons) impossible to take action to remedy the situation, as evidenced by the relatively
low switching rates reported above. It is also possible that both the reluctance to share
and the propensity to hide bad news speak to a social stigma or material loss (e.g., in house
value — for the United States, Boyle et al. (2010) find a temporary 1% reduction in residential
sales values associated with a 10ug/1 increment in arsenic levels) being attached to owning
an unsafe well. We note that there is some indication that wealthier households may be
more likely to hide adverse test results, potentially because of greater concerns over stigma
or material loss. To show this, we compare test results and recall as above — but distinguish
between households that owned and did not own consumer durables (the one asset ownership
indicator collected consistently in both survey rounds). (Table 2.9) As is evident, while all
households under-report, households that do own durables are about twice as likely to do

so; the difference is significant for the larger samples.

2.4 Summary and Policy Discussion

We have shown experimental evidence from Bihar, India, on the demand for and use
of a preventive environmental health product — a water quality diagnostic test for arsenic
contamination — when offered at a fee. Demand is substantial, but highly sensitive to price.
Compared to the near-universal adoption found under free provision, two-thirds of households
purchased tests at the lowest price, and about one-third at the highest price over the duration
of the project. A key finding of our study is that a repeat offer made within two years of
the original offer is met with significant demand, raising total coverage by 18pp, from 27%
to 45%.

Our results affirm that in preventive health products, subsidies remain critical in ensuring
high coverage. However, cost-shared provision might still have a useful role to play in
providing an ongoing testing service in the absence of or in between public testing campaigns.

In particular, one could imagine a business model in which independent testers generate their
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own wages, while NGOs conduct awareness campaigns, provide test kits, train testers, and
implement quality control (for instance, GIS tracking and re-testing of a subsample of wells).
Yet, market demand was not quite sufficient to cover wages. In 2012, expected daily revenue
was about Rs. 200 (revenue per offer made was highest in the Rs. 30-50 price range, at
about Rs. 8; on average, testers visited about 25 households per day). By way of contrast,
under local labor market conditions, testers might have expected a daily wage in the range
of Rs. 300-400.

Through a follow-up survey conducted after the first wave of sales, we assess how house-
holds respond to information furnished through well testing. About one-third of households
with unsafe wells switch to less perilous water sources. This is in the lower range of switching
rates found in other studies of arsenic testing. Preferences for sharing within caste groups
may have limited opportunities to draw water from safer sources — an important consider-
ation for future arsenic testing campaigns in Bihar. The probability of switching did not
depend on the price paid for the test; further evidence against the empirical importance of
a possible ‘screening’ or ‘sunk cost’ effect in preventive health products

By comparing the share of wells with safe and unsafe arsenic levels between test results
collected in 2012 and results recalled in 2014, we show that households avoid reporting
adverse test results, and indeed, remove well tags indicating arsenic contamination. This
may speak to discomfort with knowledge of well status in the context of low switching
rates, stigma, or concerns over property value. The reaction is certainly policy relevant — in
particular when allowing for the possibility that the ex ante decision to purchase a test might
be affected by any motivation to avoid bad news. In practical terms, the finding suggests
that in future testing campaigns, it may not be worth incurring the high cost associated with

durable metal placards to make test results visible.
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Figure 2.1: Example of well arsenic distribution in a village in Bhojpur district, Bihar (India)

Arsenic result (ug/L)

© <10 (WHO guideline)
© 10-50 (national standard)

o >50

D test declined
v @ community well (test free)

Note: a sample village map from the study is shown with the outcomes of arsenic testing. Red circles denote
drinking water wells that are highly contaminated with arsenic; green circles show wells with intermediate
arsenic levels; blue circles show wells that are low in arsenic and safe to drink from.

Figure 2.2: Satellite maps from nearby villages were shown in focus group meetings

— -
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=

Note: village meetings and exhibition of posters showing safe and unsafe wells from near by villages. The
geo-location of wells were jittered because of privacy concerns.
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Figure 2.3: Metal Placard showing arsenic status after testing
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Note: red (Arsenic high), green (Arsenic moderate) and blue (Arsenic low) placards were fixed on the
tubewells after arsenic testing.

Figure 2.4: Map showing village locations with the arsenic test outcomes
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Note: the map shows the location of villages, take-up and outcome of the arsenic testing in subject area.
Red (Arsenic high), Green (Arsenic moderate) and Blue (Arsenic safe) colors show the outcome of arsenic
testing. Grey color shows the proportion of untested wells.
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Figure 2.5: Demand curves after one and two sales offers

Demand after one and two sales offers

priceI::10 price‘::20

priceI::3O price‘::40 price|::50

| —=e— Demand after one offer

—=e— Demand after repeat offer |

Note: the plot shows demand patterns after one offer (2012) and after two offers. 2012 demand estimates
are obtained from recall of sales offers and purchases as measured in the 2014 survey. See Appendix A for

discussion.

Figure 2.6: Switching conditional on distance to blue/green

8

2 4 .6
1

Probability of switching from an unsafe well

0

Well switching depends on distance to safe well
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Note: the graph shows the probability that household whose wells tested ‘red’ (high arsenic) in 2012 switched

to a safer (‘blue’ or ‘green’) well, conditional on distance (in metres) to the nearest safer well.
polynomial fit with confidence interval; histogram of distances overlaid.

Local

Table 2.1: Fieldwork timeline

August 2012

November 2012 - February 2013
February 2013 - May 2013
November 2014 - January 2015

Arsenic testing in pilot villages
First round of arsenic testing
Follow-up survey of well switching
Second round of arsenic testing
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Table 2.5: Estimated demand

First-round demand (recall) Second-round demand

(1) (2)

Price = Rs. 20 -0.146 -0.134*
(0.184) (0.0723)

Price = Rs. 30 -0.132 -0.156*
(0.163) (0.0867)

Price = Rs. 40 -0.195 -0.168*
(0.164) (0.0903)
Price = Rs. 50 -0.255 -0.218%***
(0.167) (0.0725)
Mean at Rs. = 10 (constant) 0.403%+% 0.300%**
(0.151) (0.0702)

Observations 2,666 4,084

R-squared 0.034 0.037

Note: the table shows estimated demand for each individual round of test offers. Demand for 2012 is
estimated based on recall data collected in 2014. See Appendix A for an alternative estimate. Cluster
bootstrap standard errors (based on 400 replications) in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2.6: Do purchase decisions at high price levels correlate with wealth?

House Type Other Assets
‘Pucca’ Has latrine Car Cell ™V Bike Motorbike Cow
(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Linear specification
Price -0.00162  0.00747** 0.000154  0.00156  0.00180  -0.000673 0.00296***  9.18e-05

(0.00294)  (0.00302) (0.000374) (0.00164) (0.00324) (0.00197)  (0.00100)  (0.00237)

Panel B: Breakdown by price levels

Price = Rs. 20 0189 -0.0350 000346 -0.0304  0.0459  -0.0366  0.0297  -0.0546

(0.136)  (0.114) (0.0164)  (0.120)  (0.135)  (0.0705)  (0.0742)  (0.0873)

Price = Rs. 30 -0.0367  0.0171 0.00884  0.0121  0.0394  0.0425 0.0279 0.0882

(0.119)  (0.136) (0.0184)  (0.0757)  (0.143)  (0.0778)  (0.0422)  (0.0805)

Price — Rs. 40 0173 0.254%* 200121 0.107%%* 00837  -0.0805  0.115%%*  -0.0501

(0.118)  (0.116) (0.0135)  (0.0407)  (0.183)  (0.146)  (0.0428)  (0.102)

Price = Rs. 50 00112 0.334%* 0.0168  0.00559  0.0489  -0.0168  0.116%**  -0.0221
(0.0922)  (0.135) (0.0235)  (0.0733)  (0.150)  (0.0824)  (0.0417)  (0.107)

Mean at Price— Rs. 10 0.803 0.330 0.0267 0.886 0.223 0.789 0.221 0.685
N 1,301 1,366 1,365 1,366 1,366 1,366 1,366 1,365

Note: the table shows correlations between purchase price and wealth proxies among households that bought
a test during the second round of offers in 2014. Panel A shows results from a linear regression in price;
Panel B shows results from a regression on price indicators. Cluster bootstrap standard errors (obtained
from 400 replications) in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2.7: Effect of price paid on behavioral response to information

Switched to safe well Switched to safe or
moderately contaminated well
1) 2)
Mean across price groups 0.280 0.308
Price = Rs. 20 0.242 0.227
(0.275) (0.277)
Price = Rs. 30 -0.0326 0.00227
(0.216) (0.227)
Price = Rs. 40 0.0254 0.0292
(0.228) (0.226)
Price = Rs. 50 0.0424 0.0773
(0.123) (0.110)
Constant (mean at Rs. 10) 0.258%** 0.273%**
(0.0981) (0.1000)
Observations 211 211
R-squared 0.018 0.014
Joint significance
Wald Chi2 0.96 1.13
Prob > Chi2 0.916 0.889

Note: the table shows the probability that households whose wells had unsafe arsenic levels (‘red’) switched
to safer wells. Arsenic test results from 2012 data; self-reported switching data from 2013 follow-up survey.
Column (1) considers switching only to wells with safe (‘blue’) levels of arsenic; Column (2) considers
switching to safe or moderately contaminated (‘green’) wells. Cluster bootstrap standard errors (obtained
from 400 replications) in parentheses. *** p < 0.01, ** p < 0.053, * p < 0.1.
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Table 2.9: Selective recall and household assets

Placard color red

On well  Kept in house  Recalled All
(1) (2) (3) (4)
Second phase -0.0831*** -0.0688 -0.0919***  _0.0760%**
(0.0285) (0.0507) (0.0286)  (0.0256)
HH owns consumer durables 0.0423 0.0423 0.0423 0.0423
(0.0402) (0.0405) (0.0406)  (0.0397)
Second phase * HH owns consumer durables  -0.0571 -0.0661 -0.0903**  -0.0728*
(0.0495) (0.0662) (0.0409)  (0.0407)
Observations 1,497 1,350 1,730 1,808
R-squared 0.012 0.007 0.023 0.016

Note: the table shows differences in the share of ‘red’ wells in 2012 tests and 2014 recall as in Table C, but
conditional on ownership of (any) consumer durables. The coefficient on ‘HH owns consumer durables’ is
the same across all four samples by construction: it is only the composition of the 2014 recall sample that
changes, not the composition of the 2012 test sample. Cluster bootstrap standard errors (obtained from 400
replications) in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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2.A Comparison of 2012 demand estimates based on
recorded and recall sales data

As noted in the main body of the paper, during the first offer phase in 2012, enumerators
did not systematically collect data from all households - chiefly, some households that did
not want to purchase the test were omitted. (This is evident in the comparison of Columns
2-4 in Table 2.A.1.) In addition, anecdotal evidence raises a concern that enumerators may
have offered tests less systematically in parts of the villages where people showed strong
reservations against the idea of arsenic tests being offered for a fee (rather than free of
charge) during focus group meetings.

We hence face a considerable challenge in reliably assessing baseline demand, since the
number of households to whom the test was offered in 2012 cannot be completely ascertained.
We address this challenge with the following strategy. (1) We first compute demand based
on recall data collected in the 2014 follow-up survey (i) on whether households were offered
the test at baseline, and (ii) on whether they purchased the test at baseline. (Table 2.A.1,
Columns 5-6.) This estimate is correct to the degree that there is no correlation between
the decision to purchase in 2012 and recalling the offer when surveyed in 2014.

To assess whether the recall-based estimate is reasonable, we also (2) estimate demand
from the 2012 sales (Column 3), based on the assumption that as many households were
approached during the 2012 campaign as during the 2014 campaign (Column 4). This
estimate is correct to the degree that (i) sales approaches were comprehensive in 2012 (while
numerators neglected to keep records of some visits), and (ii) the number of households has
remained constant between survey rounds.

Reassuringly, as is evident from Table 2.A.1 and Figure 2.A.1, the estimates obtained by
recall and by imputing the number of sales offers are well-aligned in the aggregate (27% and
30%, respectively) and in the Rs. 10-30 groups. They diverge more at higher prices, though
never significantly so. As a corollary, there is a good match between the ratio of recalled

2012 sales to recorded 2012 sales (0.65) on the one hand, and the ratio between recalled 2012
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offers and recorded 2014 sample size on the other (0.60). This suggests that recall error is
similarly likely for offers and sales, and provides at least some reassurance that the 2012
data is affected by failure to record unsuccessful sales attempts, rather than selective sales
attempts.

Although first-round data collection did not follow protocol completely, we are hence able
to offer two sensible demand estimates, and show that they match up well with each other.
In the main body of the paper, we discuss results based on recall data — arguably, the more

internally consistent approach, as well as the more conservative demand estimate.

Figure 2.A.1: Comparison of demand estimate from first phase data and recall

2013 demand estimates

1 % M

price;:1 0 price‘::20 price‘::SO price‘::40 price‘::SO

® Basedon 2013 sales @ Based on recall ‘

Note: the plot shows demand estimates obtained by scaling recorded sales in the first round of offers (2012)
to 2014 sample size, and from offers and sales recalled in 2014.
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Table 2.A.1: Test offers, sales, and demand

Recorded 2012 offers and sales

Recalled 2012 offers and sales

Demand estimates

Price Recorded Recorded Sample Recalled Recalled 2012 demand 2012 demand
(Rs.) offers sales 2014 offers Sales (recorded sales) (recall data)
(1) (2) (3) (4) (5) (6) (7) (8)
10 431 361 960 615 249 0.38 0.40
20 423 310 1105 804 206 0.28 0.26
30 352 218 815 460 125 0.27 0.27
40 327 196 653 441 92 0.30 0.21
50 289 127 551 350 52 0.23 0.15
All 1822 1212 4084 2670 724 0.30 0.27

Note: the table summarizes data used in computing the 2012 demand estimates shown in Figure 2.A.1.
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2.B  Why is there substantial demand at the time of the
repeat offer?

This appendix summarizes evidence on what might explain demand at the time of the
repeat offer. On balance, the evidence is inconclusive. Patterns in wealth proxies are con-
sistent with a contribution of growing income and wealth. We note, however, that this is
at odds with the absence of a correlation of wealth proxies with sales price among buyers
shown above. A test for learning that allows for a sound causal interpretation is consistent

in sign, but not significant.

2.B.1 Wealth effects

There is mixed evidence on increased wealth as a driver of repeat offer demand. As
reported above, we find that observable wealth does not correlate systematically with will-
ingness to pay. Indeed, one of the two wealth proxies that does correlate — ownership of
a latrine — can be read as a marker of difference in concern over health that might affect
valuation of the arsenic test as much as it may speak to lower marginal utility of consumption.

Still, there are some good reasons to ask whether rising wealth may have to some degree
contributed to generating additional demand.

The most important piece of prima facie evidence is the rapid economic growth Bihar
experienced between sales rounds. Per capita real income rose precipitously, at a rate of
about 10% per year between 2012 and 2014.'2 In line with such a favorable development,
owership of consumer durables among households who purchased tests in the first round of
offers (the one asset category we can reliably compare among both survey rounds, and the
one group of consumers sampled in a consistent way) rose by 5pp from a baseline value of
23% between 2012 and 2014 (result not shown). Because the tests were offered at the same

nominal price in both phases, inflation further reinforced this effect. In total, nominal per

12State GDP growth for India from http://planningcommission.nic.in/data/datatable/data_
2312/
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capita income grew by some 38% between the two offers.

Secondly, patterns in asset ownership among buyers groups and across time are consistent
with a wealth effects — though they do not offer a very powerful test. Our data allows in
principle for two tests to reject wealth effects (at the mean). Most obviously, we can compare
wealth among the two groups of buyers at the time of purchase, that is, in 2012 and 2014,
respectively. This comparison could furnish some evidence against wealth effects if it were
to emerge that second-round buyers were less well-off at the time of purchase than first-
round buyers were at the time their wells were tested (with the assumption that the two
groups initially had the same valuation of the tests). We can only draw this comparison on
the ownership of (any) consumer durables; questions used to collect ownership information
for all other categories of assets differed too much between the 2012 and 2014 surveys.
For consumer durables, there is no significant difference between buyer groups, and the
coefficient is centered near zero (Panel A in Table 2.B.1). This finding is consistent with
wealth effects (new buyers catching up in wealth to original buyers), but also does not exclude
a contribution of learning.

Beyond the ownership of consumer durables, we are constrained to comparing wealth
as observed in the year 2014: among households that bought in 2012 and households that
bought in 2014. This comparison could also reject wealth effects, namely if second-round
buyers were weakly better off in 2014 than first-round buyers (and we were willing to assume
that growth in wealth among the two groups was such that the ranking was not reversed
since 2012 — which would then imply, less appealingly, that the wealthier group initially had
a lower valuation of the tests). Our data suggests quite clearly that the opposite was the
case: first-round buyers were better off than second-round buyers when surveyed in 2014
(Table 2.B.1). Difference in ownership of durables such as TV and consumer durables are
significant, second round buyers have significantly less education than first round buyers,

and there are notable differences in caste composition.!?

13We note that, strictly speaking, we are comparing between one group observed pre-treatment (2014
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2.B.2 Learning

Arsenic tests in themselves are distinctly a non-experience good: a one-off application
which does not directly affect the consumer. It is therefore most plausible to suggest that
learning might be chiefly driven by increased awareness of the probability of arsenic contam-
ination, and of opportunities to switch to safe wells.

We test in the following way for evidence of learning after the first wave of tests. Because
the distribution of arsenic in ground water varies substantially and unpredictably over small
distances, variation in the results of first-round tests is exogenous. We posit that differ-
ent distributions of first-round results at the village level may induce differential effects on
second-round demand. In particular, we speculate that, when a high share of wells tested
‘unsafe’ during the first wave, concern in the village community over arsenic contamination
might have been raised, translating into learning — namely, greater awareness of the health
risks associated with arsenic, and the benefits of testing and well-switching. Empirically,
the relationship between second-phase purchases and the share of wells tested ‘unsafe’ in the
first phase has the expected sign, across a range of specifications (Table 2.B.2). However,

results are not significant with cluster bootstrap standard errors.

buyers) and one group observed post-treatment (2012 buyers). However, since the health effects of Arsenic
are long-term, one would not expect a strong treatment effect a mere two years after the test, even conditional
on households effectively avoiding exposure. We acknowledge that in principle, Arsenic testing could have
had effects upon wealth through conduits other than health — for instance, a change in the value of houses
with wells tested safe/unsafe, or a change in social status with implications for future wealth.
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Table 2.B.1: Household characteristics of first and second phase buyers

Panel A: as observed at time of purchase

2014 buyers 2012 buyers 2014 vs. 2012
(1) (2) 1) -(2)
HH has consumer durables 0.225 0.226 -0.00135
(0.0404) (0.0276) (0.0392)

Panel B: as observed in 2014
2014 buyers 2012 recall 2014 vs. 2012 recall

(1) (2) (1)- (2)
Household characteristics
Number of HH members 4.919 4.311 0.608
(0.367) (0.325) (0.382)
Infant living in HH 0.302 0.223 0.0798**
(0.0459) (0.0246) (0.0370)
Child living in HH 0.488 0.438 0.0497
(0.0585) (0.0618) (0.0657)
Housing characteristics
House pucca 0.701 0.756 -0.0553
(0.0556) (0.0504) (0.0391)
Has latrine 0.330 0.408 -0.0778
(0.0551) (0.0496) (0.0553)
Asset ownership
HH has consumer durables 0.225 0.301 -0.0766*
(0.0404) (0.0563) (0.0405)
Has cell phone 0.912 0.861 0.0507
(0.0230) (0.0578) (0.0460)
Has TV 0.208 0.298 -0.0905**
(0.0372) (0.0573) (0.0424)
Has bicycle 0.783 0.811 -0.0285
(0.0187) (0.0402) (0.0382)
Has motorbike 0.248 0.261 -0.0131
(0.0254) (0.0243) (0.0260)
Has cow 0.680 0.680 6.24e-05
(0.0417) (0.0319) (0.0353)
Caste
Scheduled caste or tribe 0.0163 0.0386 -0.0223
(0.00852) (0.0240) (0.0226)
Other backward caste 0.227 0.127 0.0995**
(0.0518) (0.0298) (0.0411)
Kshatriya 0.0767 0.124 -0.0473
(0.0309) (0.0455) (0.0371)
Brahmin 0.251 0.388 -0.137%%*
(0.0658) (0.0646) (0.0510)
Baniya 0.297 0.203 0.0940*
(0.0670) (0.0446) (0.0537)

Note: the table shows characteristics of households that bought tests in 2014 (Column 1) and 2012 (Column
2), and the change between the two phases (Column 3). Panel A shows ownership data as observed at the
time of purchase; Panel B shows data as observed in 2014 — that is, 2014 values for those who buy in 2014 in
Column (1), and 2014 values for those who recall having purchased in 2012 in Column (2). Cluster bootstrap
standard errors (obtained from 400 replications) in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2.B.2: Do first-round test results relate to second-round demand?

Demand in Second Phase

(1) (2) (3) (4) (5)

Share of wells in village tested 0.0384  0.0699  0.0437 0.0933 0.117
arsenic high (red) in first round (0.112) (0.125) (0.107)  (0.114) (0.130)
[0.0301] [0.0384] [0.0301] [0.0326] [0.0404]

Controls

Price Yes Yes Yes Yes Yes
First-round demand No No Linear Quadratic Quadratic
Wealth proxies No Yes No No Yes

N 4,084 3,002 4,084 4,084 3,002
R-squared 0.037 0.060 0.051 0.059 0.082

Note: the table summarizes the correlation between arsenic test outcomes in the first phase and the demand
in second phase. In each column, the dependent variable is demand for well tests in the second phase of
offers, and the coefficient of interest is the share of wells that tested ‘red’ (high arsenic) among wells tested
in the first offer phase. All models include price controls; Columns 3-5 control for first-round demand, and
Column 5 controls for wealth proxies. We consider Column 4 to show the preferred specification. Cluster
bootstrap standard errors (400 replications) in parentheses, classical standard errors in square brackets. ***
p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2.C.1: Sorting on well status

High arsenic well (‘red’)

Well characteristics Wealth proxies
(1) (2)

Well age -0.00234
(0.00297)

Well depth 0.00114
(0.00129)

Well cost 1.48e-06
(8.68e-06)

Coefficients from univariate regressions

Has car 0.172

(0.132)

Has cellphone -0.0148

(0.0875)

Has more than one cellphone -0.0558
(0.0840)
Has TV -0.00610

(0.0615)

Has bicycle 0.0626*

(0.0345)

Has motorbike -0.0285

(0.0426)

Has cow 0.102**

(0.0407)

Has more than one cow 0.0529
(0.0480)

Has consumer durables 0.0377
(0.0657)

‘Pucca’ house -0.0255

(0.0572)

Has latrine 0.0981

(0.0668)
Adult household members -0.00480
(0.00913)

Infants in household 0.0125
(0.0202)
Children in household -0.00866
(0.0242)

Observations 677 719
R-squared 0.007 n/a

Note: the table shows correlations among wells tested in 2014, between the probability of a well having
high arsenic status (at least 50ug/1) with characteristics of the well (Column 1) and the household (Column
2). To avoid evident overfitting problems, regression coefficients show in Column 2 were obtained by per-
forming univariate regressions for each characteristic. Cluster bootstrap standard errors (obtained from 400
replications) in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.L.
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Table 2.D.1: Decision to re-test depends on contamination status

Well contamination status
Red Green Blue

(1) (2) (3)

Test purchased in both 2012 and 2014 -0.0411  0.172***  -0.130*
(0.0582)  (0.0598) (0.0792)

Share among wells tested once only — 0.257 0.274 0.468

Observations 719 719 719
R-squared  0.001 0.013 0.006

Note: the table compares the proportion of ‘red’ (unsafe), ‘green’ (moderately contaminated) and ‘blue’
(safe) wells in the recorded results of tests conducted in 2014, among households that recalled preciously
purchasing a test, and households that recalled a prior offer, but no purchase. Arsenic levels are stable over
time, so test results obtained in 2012 can be assumed to have been identical to those measured in 2014.
Cluster bootstrap standard errors (obtained from 400 replications) in parentheses. *** p < 0.01, ** p <
0.05, * p < 0.1.
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Chapter 3

Geolocation error and the use of DMSP-OLS night lights as

high resolution wealth proxies
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Geolocation error and the use of DMSP-OLS night
lights as high resolution wealth proxies

Jan von der Goltz

Abstract

Is night lights data from the Defense Meteorological Satellite Program’s Operational
Linescan System (DMSP-OLS) observed precisely enough to measure human activity at
high spatial disaggregation? Night lights are routinely used as proxies of ground-based
activity at the level of countries, sub-national regions, or metropolitan areas. Due to
the data’s resolution (30 arc seconds), they might also be useful in studying processes at
much higher geographic disaggregation — for instance, at the level of towns or villages.
Yet, DMSP-OLS data are recorded with geolocation error that could interfere with such
uses. | use a new data set of 185 calibration sites that are small, bright, and remote,
to assess the offset between the actual location of light sources and their recorded
location in the most commonly used yearly night lights data product. The error is
small enough to be ignored, even in applications where the spatial scales of interest are
on the order of a few kilometers. Root mean square error is a mere 0.52km in zonal
and 0.67km in meridional direction. I illustrate the potential and limits of very high-
resolution applications by benchmarking light data on household asset wealth in all
official localities in Mexico. Night lights are a strong proxy measure of cross-sectional
wealth differences even within small administrative units, in particular in the poorest,
least populous, and most dimly lit regions. However, the analysis of changes over time

is more subtle.

*I thank Chris Small for guidance and advice, and seminar participants at Columbia University for useful
feedback. Dheeraj Sharma and Liwei Mao provided excellent research assistance.

tSchool of International and Public Affairs, Columbia University
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3.1 Introduction

It is known that satellite observations of night-time luminosity (henceforth, ‘night lights’)
from the Defense Meteorological Satellite Program’s Operational Linescan System (‘DMSP-
OLS’) are subject to several sources of measurement error: overglow, saturation, imperfect
alignment of measurements over time, and error in geolocation registration. One would ex-
pect such measurement error to matter particularly when the data is used to study processes
at small spatial scales At the same time, due to the relatively high resolution of the gridded
data products (30 arc seconds — about 1km at the equator), there is increasing interest in
using the data precisely as a proxy for human activity at high spatial disaggregation — an
immediate extension of their routine use as proxies of socio-economic phenomena at the level
of countries, sub-national units, or metropolitan areas.

Understanding the characteristics and impact of measurement error is therefore highly
relevant to the future development of the night lights research agenda. In this paper, I
assess the magnitude of one such source of error, namely error in geolocation registration.
Secondly, I conduct an extensive benchmarking exercise to test the limits of the viability of
night lights as a welfare proxy at very high spatial disaggregation — namely at the level of
individual towns and villages in Mexico, 2000-2005.

Previous work by Elvidge et al. (2004) (henceforth, ‘Elvidge et al.’, without publication
year) demonstrated that there is error in the geospatial registration of night lights data
(‘geolocation error’) — that is, objects known to have a certain true location are sometimes
observed in the gridded nightlights data in a grid cell that does not contain the true location.
This misalignment is often visible to the naked eye when night light images are overlaid, for
instance, with coast lines. I extend the analysis in Elvidige et al. by assessing geolocation
error (i) in a large set of calibration sites spread across the world that allows me to check
for variation in error with location, and (ii) in the annual ‘stable lights’ composites data
commonly used in social science research, rather than in individual orbit data. I confirm

that there is error, but report that it is quite small — indeed, even smaller than measured for
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individual orbits at the set of test sites in Elvidge et al. In consequence, geopositional error
interferes only mildly with the measurement of brightness at my calibration sites.

Based on this assessment, I then conduct a benchmarking exercise to investigate whether
lights are a meaningful proxy of welfare at a very high level of spatial disaggregation, namely
the level of all villages and towns in Mexico. This application is intended to test an extreme
example of how one might think to use night lights at small spatial scales.

Night light data has long been used to study socio-economic phenomena such as urban
extent or population density. More recently, in the wake of seminal work by Chen and
Nordhaus (2011) and Henderson et al. (2012), it has been applied to estimating output
at the national level and at the second and third-tier administrative level, as well as for
geographic areas not defined by administrative boundaries (Alesina et al. (forthcoming);
Doll et al. (2006); Ghosh et al. (2009); Michalopoulos and Papaioannou (2013)).

Some work has also studied the structure of lights within large cities in developing coun-
tries, to assess city development in China (Baum-Snow et al., 2012), and the impact of US
military strategy in Baghdad (Agnew et al., 2008). Most similar to the application assessed
here is a forthcoming paper by Storeygard (forthcoming) tracking city lights in 15 African
countries, and a working paper by Abrahams (2015), who shows that production in the towns
of Palestine correlates strongly with lights, as well as work by Min et al. (2013) and Min and
Gaba (2014) tracking the signature of electrification for a sample of villages in Senegal and
Mali, and in Vietnam, respectively.

However, relative even to the objects considered in these studies, many of the localities
studied here are small, with a median population of less than one hundred. What is more,
they are not necessarily remote from brighter objects, so that it is not possible to take the
standard approach of employing an algorithm to bound the lit area associated with a town
and measuring an aggregate of lights. The challenge is hence to identify with sufficient
precision the light emitted by small and dim objects that may be in the vicinity of brighter

objects. I show that even in such a highly challenging application, night lights can provide
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some information on welfare differences in space — even within small administrative units —
and over time. I also demonstrate, however, that the relationship is substantially noisy, and
in the case of changes over time, not easily modeled.

In the remainder of the paper, Section 3.2 summarizes methods and describes the data
used, in particular the calibration sites collected for the assessment of geoposition accuracy.
Results in Section 3.3 provide an assessment (a) of the extent of geospatial error in the
annual gridded DMSP-OLS data product, and (b) resulting measurement error in brightness.
Section 3.4 tests the viability of night lights data as a proxy of human activity at the level
of towns and villages, by assessing their performance in tracking wealth differences. Section

3.5 concludes.

3.2 Data and methods

Lights data

I use yearly composites of DMSP-OLS data publicly available from NOAA-NGDC, and de-
scribed, for instance, in Elvidge et al. (2009). (Image and Data processing by NOAA’s Na-
tional Geophysical Data Center. DMSP data collected by the US Air Force Weather Agency.)
The composites aggregate lights that are ‘stable’, rather than ephemeral, in cloud-free over-
flights. Brightness measurements are expressed as 6-bit digital numbers (DN), ranging from
zero to 63. The sensor saturates, e.g., over bright city centers. Noise has been filtered out
of the data by using low-end luminosity thresholds set according to values observed in pix-
els known to be unlit. Noise filtering has obvious downsides in the detection of dimly lit

locations, but seems indispensable in extracting a viable signal.

Calibration sites
To assess geolocation error in the night lights data, I use a purpose-built dataset of 185
calibration sites selected to be small, bright, and remote sources of light. The location of

these sites is shown in Figure 3.1; they are listed in Appendix 3.A. Night light and high-
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resolution images of two calibration sites (randomly drawn from the sample) are shown in
Figure 3.2. I select the calibration sites in a three-step process.

First, I collect a set of 519 objects that one might expect to fit three key criteria for
viability as a calibration site, namely: (1) high peak brightness, (2) small spatial extent,
and (3) remoteness from other sources of light. This set of candidate sites includes oil and
gas wells on-shore and off-shore; refineries; mines; small islands with military bases, tourist
facilities, or other installations; lighthouses; and Arctic and Antarctic research stations and
settlements. I also include the calibration sites used in Elvidge et al. (2004), to be able to
compare error in the individual orbit data assessed in their study to error in the annual
composites used here. I obtain the geolocation of each candidate site from high-resolution
imagery in Google Earth (precisely, I visually estimate the center point of the light-emitting
installations at each calibration site, and record the geolocation of the center point).

Secondly, I obtain night light images of each of these candidate sites for the years 1992,
2003, and 2009. The image is centered on the grid cell containing the true position of the
site, and extends ten grid cells in each cardinal direction. An algorithm selects the brightest
pixel within a four-grid cell box around the center grid cell, as follows. (1) When there is a
unique pixel with peak brightness, it selects this pixel. (2) When there are several equally
bright pixels, it selects the pixel with the highest average brightness in the directly adjacent
grid cells. (3) When several pixels have the same average surrounding brightness, it chooses
randomly.

I visually screen these images, and select a sub-set of 185 calibration sites that meet the
following criteria in at least one year: (1) the object is clearly visible; (2) it is compact; (3)
there are no other objects close by that might be confounded with the calibration site; (4)
its center is well-articulated — in particular, it either (i) has higher brightness than all of
the adjoining grid cells, or (ii) while several pixels share the same peak brightness, the light
structure is visually centered on a certain grid cell. This excludes sites that either present

as a fuzzy area of low brightness, or as a very large source of light with a saturated center.
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Thirdly, for the resulting 185 calibration sites, I obtain night light images for each mission-
year from the 1992 F-10 data to the 2009 F-16 data. I use both visual inspection and
automated evaluation to construct a baseline sample, and two differently defined auxiliary
samples for robustness checks, as follows. (Images of all calibration sites from each mission-
year are available in the supporting online materials, as is a table recording whether they

were included in the sample.)

1. T select the baseline sample for calibration by (i) excluding observations where the
grid cell with peak brightness had to be selected randomly, and (ii) visually assessing
whether the image fits the criteria set out above for a given each mission-year. This
is the case for 2,165 observations (i.e., unique combinations of calibration site and

mission-year).

2. The first auxiliary sample consists of a sub-set of 1,137 observations within the baseline
sample that, when inspected, provide a particularly crisp image of the calibration sites,

and where there was a single grid cell with peak brightness.

3. The second auxiliary sample adds to the baseline sample an additional 1,718 obser-
vations in which the object is clearly visible and can be uniquely identified, but the
centroid is less well-defined, and the grid cell with peak brightness may have been

randomly chosen.

For each observation in the baseline and auxiliary samples, I take the following measure-
ments. [ assume that the grid cell with peak brightness within four grid cells of the centroid
(obtained from the algorithm described above) records brightness at the calibration site.
This assumption would appear to be natural, as long as (i) there are no other sources of
light nearby, and (ii) overglow falls off monotonically away from the true source. Based on
this assumption, I then record (1) the distance in terms of grid cell count in meridional and
zonal direction between the grid cell where the calibration site should be recorded if there

were no geolocation error, and the grid cell in which it is observed in the night lights data;
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(2) the great circle distance (on the WSG84 spheroid) between the calibration site’s true
geolocation, and the centroid of the grid cell where the site is recorded in the night lights
data; and (3) brightness in the grid cell in which the site is observed, as well as in the grid
cell where it should be observed if there were no geolocation error. To compare to Elvidge
et al.’s results, I also (4) calculate root mean square error (RMSE) in meridional and zonal
direction: I square the great circle distance in meridional and zonal direction, take its mean

across all observations in sample, and then take the square root of the mean.

Welfare data

For the purpose of assessing whether geolocation error interferes with the use of night lights
as a wealth proxy for small localities, I use a ‘marginality index’ for each official locality in
Mexico, recorded in 2000 and 2005 (Consejo Nacional de Poblacion, México (CONAPO),
2000). The index processes Census information on eight population and housing charac-
teristics, namely: the share of adults (1) who are analphabets, and (2) without primary
education; the share of residences (3) with dirt floors, and without access to (4) sanitation,
(5) electricity, (6) piped water, and (7) refrigeration; and (8) the natural logarithm of the
average number of residents per room among residences in the locality. It is computed using
principal component analysis, as is standard in the literature. Indices based on asset own-
ership, education, and housing characteristics have been shown to correlate well with core
measures of welfare such as consumption or income, and are widely used to assess welfare
in a data-poor environment. (See, e.g., Filmer and Pritchett (2001).) The dataset covers
more than 100,000 localities, from hamlets of three inhabitants to Mexico City. Many of
these settlements are very small: the median population is 87, and the mean population,
903. In addition, I use data on household expenditure from one round of a panel survey con-
ducted for the Progresa-Oportunidades cash transfer program in the year 2000 (Secretaria

de Desarollo Social (SEDESOL), 2000). It covers 506 villages, and some 25,000 households.
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3.3 Results

3.3.1 Error in geolocation

Error is small, and lower than in the individual orbit data considered in Elvidge
et al.
Error in recorded geolocations is very modest in the annual composite data. Geolocation
is correctly registered in 30-39% of observations across the different missions. (Figure 3.3)
Perhaps more impressively, in between 90-97% of observations, the error is no more than one
grid cell. This corresponds to an RMSE across the missions of 0.51km in zonal direction,
and 0.66km in meridional direction. (Table 3.1) Precision is very slightly higher when I use
only the crispest calibration sites; it is somewhat lower if I include sites where the structure
of lights is less clear (0.60km and 0.74km in zonal and meridional direction, respectively).!
The RMSE observed in the yearly composites is hence similar to the values of 0.74-1.13km
found in Elvidge et al. (p. 288), if slightly lower. This holds when I measure error only at
the test sites studied in Elvidge et al.: observed RMSE for these sites in the yearly composite
data is 0.66 (0.61) in zonal (meridional) direction (Table 3.2). (Limiting the sample further
to the years of data included in Elvidge et al. does not change the finding. It is worth
noting that, in the yearly composites data, the sample for this set of calibration sites is small
(90 observations across all years, and 47 for the common years), and differences cannot be
interpreted with confidence.) Figure 3.3 shows that the direction of bias in the yearly data
is also less distinct than in the earlier assessment, while the two sets of measurements agree
in showing lower error in zonal direction than in meridional direction.

While I cannot conclusively assess what explains the higher apparent precision observed

!The relatively mild difference between the datasets is reassuring for the following (somewhat subtle)
reason. When I limit the baseline set of calibration sites to those with the crispest structure of night lights, 1
reduce measurement error from including sites where my algorithm would perform poorly (for instance, those
with diffuse dim lights). However, true error in the accuracy of recorded geolocation might be correlated
with these visual characteristics of the calibration sites. This might lead me to underestimate the error in
geolocation. The welcome implication of the relatively small differences between the baseline data and the
restricted /expanded datasets is that any such error, if present, would appear likely to be small.
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in my sample, one would expect geoposition error to mechanically decrease in the yearly
composites, because each observation in the yearly data can be seen as a sample mean of
individual orbit data. Other possible explanations seem less likely: sample composition is
unlikely to be a driver, since, as mentioned, precision is quite similar whether measured in
the full sample or at the Elvidge et al. sites.

Secondly, while I do employ a different search algorithm than was used in the earlier
study, results are (as mentioned) not very sensitive to considering the auxiliary samples
based on variations in the algorithm. Thirdly, although to avoid misattribution, I limit the
search for the brightest pixel to locations no more than four grid cells away from the true
location (as opposed to a maximum of five grid cells in Elvidge et al.), Elvidge et al. report
very few instances of offsets greater than four grid cells; and even within four grid cells, my

data (Figure 3.3) shows higher concentration near the true position than the earlier study.

Error changes with location only at high latitude

I leverage the geographic dispersion of my calibration sites to test whether precision and
direction of bias varies systematically with location. Among most groups of sites, there are
no conspicuous differences. (Table 3.2) The one clear pattern to emerge is an effect of high
latitude on the direction of the mean zonal offset.

As is to be expected, because the grid cell width of 30 arc seconds corresponds to smaller
zonal distances at high-latitude calibration sites than at lower latitudes, the average absolute
offset in terms of gridcells is mechanically higher in zonal direction, but not in meridional
direction. RMSEx is higher for Antarctic sites, but since there is no difference among the
Arctic sites, this might be due to small-sample variation. However, in terms of the direction
of the offset, for both groups of high-latitude calibration sites, the offset tends to be toward
the West of the true position. This is robust to removing the mean offset for each mission-
year, and to removing the predicted offset for a fifth-order polynomial in longitude (hence,

flexibly controlling for any possible effect of longitude). Figure 3.4 shows the mean zonal
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offset in terms of grid cells for each group of calibration sites, ordered in sequence of rising
mean latitude. A similar pattern is evident when I graph the relationship between offset and
latitude for individual observations (removing the effect of mission year and longitude in the
same manner). There is no comparably obvious relationship between the zonal offset and

longitude, or between region and the meridional offset. (Results available upon request.)

The direction and magnitude of offset varies with mission-years, but without an
obvious pattern

Both the magnitude and direction of the offset vary between missions, and over time within
missions. Average offset distance over the lifetime of each mission ranges from a minimum in
zonal (meridional) direction of 0.36km (0.46km) for F12 to a maximum of 0.43km (0.58km)
for F15 (F10). (Figure 3.5) In terms of the direction of the offset, bias in zonal direction
is relatively small (or statistically zero), with the exception of F15. Bias is somewhat more
pronounced in meridional direction for all missions, without a clear pattern. Year-on-year
variation is much more substantial both in mean offset distance (ranging between 0.29-
0.55km in zonal and 0.35-0.88km in meridional direction), and in the mean direction of the
offset (between -0.44 and 0.51 grid cells in zonal direction, and -0.54 and 0.85 in meridional
direction). With sample sizes of 60-80 observations per mission-year (as compared to 200-600

per mission), this greater observed variation in performance is unsurprising.

3.3.2 Error in the measurement of luminosity

The results shown so far suggest that error in geolocation is small in the annual composite
lights data. However, the decisive question for the possible use of night lights as proxies for
human activity at high spatial resolution is whether brightness at the recorded centroid
performs well as a measure of actual brightness.

Reassuringly, this appears to be the case in measuring levels of brightness, and with
somewhat more noise, also in the measurement of changes in brightness. In the baseline

sample, digital numbers obtained at the true location and the maximum digital number
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observed within four grid cells surrounding the true location correspond closely, with a
bivariate R-squared of 0.97, and a median (mean) difference of 1 DN (1.8 DN). Similarly,
the yearly aggregate data at the true location performs well, if somewhat less strongly, in
proxying changes in peak brightness. The correlation for year-on-years changes in brightness
as measured by the same mission is 0.85 (with a bivariate R-squared of 0.73).

The magnitude of the expected error depends on the brightness of the light source ob-
served. As Figure 3.6 shows, levels of brightness are measured without error in just under
60% of observations at low peak brightness, and in just under 40% of observations at high
peak brightness. (Notice that brightness may be recorded without error even when peak
brightness is not observed in the grid cell that contains the calibration site. This is the case
when the center grid cell and the grid cell with peak brightness have the same DN, but
mean brightness is higher in the pixels surrounding the ‘peak brightness’ grid cell than in
the pixels surrounding the center grid cell.) Error is virtually always less than 3 DN at low
peak brightness, and in excess of 70% of observations at high peak brightness. It is very
rarely larger than 8 DN at any peak brightness level. For changes in brightness, the right
panel in Figure 3.6 shows similar non-exceedance patterns, shifted in correspondence with
higher overall error. To remove any potential effect of the known discrepancies in sensor per-
formance between missions, I compare only among observations taken by the same mission
in different years of observation.

Two points are worth making. One, while absolute error is lowest for dimly lit sites, error
relative to peak brightness is highest among them (consider, e.g., the level of noise implied
by a roughly 50% probability of any error at a true brightness of 3-4 DN). Two, expected
absolute error initially rises little in brightness, up to about 12 DN — and conversely, error
relative to peak brightness declines steeply. These observations may help explain behavior
encountered in using very low brightness thresholds in applications. For instance, Small et al.
(2011) describe how spatial patterns in urban extent change profoundly when thresholds

below around 8 DN are used. High noise levels at low true brightness may be a key driver
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of this behavior.

Thus, the data perform notably well in measuring brightness in the presence of geolo-
cation error. However, some perspective is needed. My calibration sites are remote from
other sources of light, and I have shown above that geolocation error is not very large.
Hence, perhaps counterintuitively, the known phenomenon of overglow in the present setting
works to reduce measurement error in brightness: geolocation error is such that the recorded
brightness in most cases is the brightness within about one grid cell of the true location;
even where there is an error of one grid cell, overglow from the single adjacent source of
light ensures that brightness in the two grid cells will be highly correlated. This raises the
question how well the uncorrected data will perform in proxying differences in welfare among
small locations that may not be remote from other sources of light — and where overglow will
therefore tend to attenuate differences in brightness. T address this question in the following

application.

3.4 Application: using night lights to measure welfare in
small, dimly lit locations

The cross-sectional relationship between brightness and welfare in small locations
is strong

Figure 3.7 shows non-parametric and linear fits of the relationship between observed digital
number and the marginality index for all 107,218 official localities in Mexico, in the year
2000. (Because the welfare level is expressed as marginality, higher index values indicate
lower wealth.) T use F14 data for the year 2000, and use brightness observed in the grid cell
containing the true location of each town (that is, I make no attempt to correct for geolocation
error). As is evident, the relationship is strong. It is also non-linear, and marginality drops
most steeply with brightness among the most dimly-lit localities. Conversely, the relationship
between marginality and the natural logarithm of brightness is nearly linear, as shown in

the subplot on the right hand side. Table 3.3 shows that R-squared for the linear fit over the
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entire range is about 0.15; it is 0.23 for a more fitted model including an indicator variable for
unlit observations, and a linear term in the log of non-zero brightness. — This is a meaningful
correlation, though below R-squared in regressions of GDP on average brightness in lower-
resolution applications.

More importantly, there is a meaningful relationship between brightness and marginality
even when I consider only the way localities differ within small neighborhoods. Specifically,
I study deviations between values measured for each locality from the mean value in each
municipality (municipio), the second-level administrative unit in Mexico. This is a demand-
ing level of geographic disaggregation: there are 2,442 municipalities in my data, and with a
median population of 32,224, these are not large administrative units. Figure 3.8 shows that
there is a relationship between deviations in marginality from the municipality mean and
deviations in brightness from the municipality mean. The (within) R-squared for the linear
specification suggests that variation in night lights within municipalities accounts for some
6% of the variation in marginality. (Table 3.3, Column 2) The relationship is again non-
linear in digital numbers; it is approximately linear in the log of brightness, with a within
R-squared of 0.12 (allowing for an indicator for unlit observations, as above). Fit varies over
the range of observed brightness — specifically, as I discuss below, night lights perform best
as a measure of deviations in wealth in municipalities that are on average dimly lit.

Figure 3.9 compares the relationship between marginality and brightness as measured in
F14 and F15 data. It also compares results using brightness at the true location or peak
brightness within one grid cell of the true location (as shown above, the target site is very
likely to be observed within this buffer). As is evident, there are slight differences in levels
in the relationships; however, the shape is very similar (and while I omit confidence intervals
for readability, so is the amount of noise). Regression results show somewhat steeper rela-
tionships between marginality and brightness at the true location than between marginality
and brightness within one grid cell. The linear coefficient differs little between missions,

though the fit is slightly better for F15 (results available upon request). Because there is
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little apparent difference in the measurements yielded by the two missions and selection al-
gorithms, in the remainder of the paper, I report results from a baseline specification using

F'14 data and brightness at the uncorrected true position.

Night lights perform best as a measure of local wealth in marginal and dimly-lit
areas

Since municipalities in Mexico vary enormously in population, wealth, and brightness, it is
worthwhile asking where the relationship between brightness and wealth is most pronounced.
Figure 3.10 shows the distribution of coefficients from regressions of marginality index values
on night lights, computed separately for the localities in each municipality, over the mean
brightness among the localities in the municipality. (Figure 3.10 shows coefficients only for
municipalities with at least 20 localities, that is, those with reasonable sample size. With
the exception of the most brightly lit municipalities, results are very similar when I graph all
coefficients.) As is evident, the relationship is steepest (and t-statistics are highest) for the
dimmest municipalities: it is most powerful for an average brightness of up to perhaps 15-20
DN, and viable up to at least 40 DN. This echoes, of course, the non-linear shape in the
relationship between night lights and marginality in the cross-section, shown in Figure 3.6.
Similar patterns emerge when I graph the steepness of the relationship between marginality
and brightness over mean marginality (Figure 3.11), or over population size (not shown).
While there are meaningful relationships at all levels, they are steepest among the poorest

and smallest communities.

Changes in brightness track changes in welfare, but the relationship is subtle

For the purpose of tracking the evolution of localities over time, I compare changes in night
lights to changes the marginality index between the years 2000 and 2005 for each locality. I
discuss results obtained without inter-calibrating the night light data from the two mission-
years; inter-calibration would clearly be appropriate (see Elvidge et al. (2009)), but does not

materially change the results discussed here, while significantly complicating the exposition.
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Simple regression results suggest that increases in brightness are associated with reduc-
tions in marginality — but the effect is extremely weak (Table 3.3, Column 3). However,
closer analysis shows that this is due to the fact that the relationship between changes in
brightness and changes in marginality is non-monotonic. This non-monotonicity arises due
to the structure of the data studied here, in the following way. In two-thirds of localities,
brightness decreases; in more than one-fourth, there is no change. Only 7% of localities
increase in brightness. Of the non-negative changes, 91% are observed in localities that were
unlit in the base year. That is, to the first order, the relationship between non-negative
changes in brightness and marginality reflects how brightness relates to wealth in localities
that had no visible lights in 2000. The relationship between decreases in brightness and
marginality reflects mostly processes in localities that were moderately bright in 2000 (80%
of the sample comes from localities with DN < 15, and 90% from localities with DN < 27).
At the same time, localities with zero brightness in 2000 saw on average a 0.040 increase in
marginality, while localities with baseline brightness up to DN 15 saw a 0.070 decrease.

As Figure 3.12 shows, this leads to a break in the relationship between changes in bright-
ness and changes in marginality at zero — and hence, to a fallacy of composition when
estimating a linear relationship on the full sample. (The upper panel shows the relationship
in the full same, and the lower panel, for those values of changes in brightness where there
were at least 100 observations — or about 0.1% of the sample.) Once I split the sample into
observations that were unlit in the base year (Table 3.3, Column 4) and those that were lit
(Column 5), a far more meaningful relationship emerges: for instance, localities that were
unlit in the base year and recorded a low brightness of 4 DN in 2005 are expected to have

experienced a decrease in the marginality index of one-fourth of a standard deviation.

Cross-sectional relationships between brightness and welfare hold across a broad
range of measures

To ascertain whether the relationship between local brightness and welfare is specific to the
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particular welfare metric used thus far — the marginality index — I also assess the relationship
between brightness and mean household expenditure, as well as brightness and the individual
measures of wealth used in the marginality index.

For the purpose of studying expenditure, my sample consists of the 505 villages initially
tracked in the evaluation of the Progresa-Oportunidades social welfare program. As is evi-
dent from Figure 3.13, the cross-sectional relationship in the expenditure data for the year
2000 is strong and approximately linear in the range of brightness values where nearly all
villages are observed, up to perhaps a value of 10 DN. An increase in brightness of 1 DN is
associated with an increase in expenditure of about 2.6%. (There is no relationship when I
remove municipality means, as done above for the marginality index. This is an unsurprising
limitation, given that the 506 villages are scattered across 191 municipalities.)

Secondly, Figure 3.14 shows the relationship between night lights and the individual
components of the marginality index. While the relationship is strong and intuitive in each
case, its shape differs across components. It is enticing to speculate about possible uses of
these differences, and in particular, the near-discrete jump in electrification levels between

unlit and lit localities. I leave further investigation for future work.

3.5 Conclusion

This paper has assessed the magnitude and characteristics of error in geospatial registra-
tion in the annual stable composite DMSP-OLS night lights data, and has illustrated how it
impacts the use of night lights data for the purpose of tracking welfare at very high spatial
resolution.

While my measurements confirm that there is error in recorded geolocations, error is small
in the yearly composite data. In the overwhelming majority of cases, the calibration site is
either recorded in the correct grid cell, or within no more than one grid cell of the correct
location. With the exception of high latitudes, the error also does not vary systematically

with location or mission. In consequence, at the calibration sites studied here, brightness at
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the true location closely tracks brightness at the observed location, without any correction
applied to the data.

These results raise the prospect that, despite geolocation error, night lights might be
successfully used without geographic adjustments to measure human activity — and in par-
ticular, wealth — at high spatial disaggregation. However, my calibration sites were selected
to be remote from other sources of light; hence, the overglow phenomenon tends to abate
geospatial measurement error. By way of contrast, in using night lights to study small
localities that are not remote from other sources of light, one would expect geoposition er-
ror to compound measurement error induced by overglow. I therefore assess the suitability
of the yearly composite night lights as a wealth proxy at very high resolution in a large
benchmarking exercise, using data on all official localities in Mexico.

I find that there is a meaningful relationship between brightness and a standard marginal-
ity index even at this extreme level of disaggregation. A clear relationship also emerges
between brightness and expenditure in a smaller sample of villages. Of particular practical
importance is the observation that there is a stable relationship at the level of deviations
from municipality means — and most strongly so in the poorest, least populated, and most
dimly lit municipalities. Night lights may hence have a useful role to play in studying well-
being in small locations, even when survey or administrative information is available at the
level of quite fine-grained administrative units — such as for instance in poverty mapping.

An intuitive relationship can also be found between changes in brightness and changes
in wealth over time. However, in the data analyzed here, the relationship is subtle in its
dependence on brightness in the base year. It must be modeled carefully. This is of some
concern for the use of nightlights as a proxy for changes in wealth in small localities. Local
patterns in brightness and in the relationship between growth and baseline wealth will be
important for how changes in brightness should be interpreted. Based on the data analyzed in
this study, one would suggest that attempts to use night lights to proxy changes in wealth at

very high spatial disaggregation should involve some benchmarking of the night lights signal
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on local welfare data. Results from a ‘hands-free’ approach, in which changes in brightness
might be used without any validation as a pure proxy measure of changes in wealth, might
be quite prone to misinterpretation.

In summary, an extensive calibration and benchmarking exercise suggests that DMSP-
OLS data can provide some insight into wealth at extremely high spatial resolution — in a set
of localities with a median population below one hundred, and among a set of villages with
a mean expenditure per adult equivalent of a mere US$1.27 (2005 PPP). At the same time,
it is clear that the application considered here pushes the night lights data to the limits of
its usefulness. While the observed relationships are steep and intuitive, there is considerable
variance, and the fit is loose. I leave for further investigation the question whether recently
proposed corrections for overglow (Abrahams et al., 2015) might further add to the usefulness

of night lights data at high resolution.
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Figure 3.3. Distribution of pixels
with peak brightness around the
pixel in which the calibration site
should be contained. The numbers
in the grid cells reflect the
percentage of observations in which
peak brightness occurred in the
respective grid cell. Darker shades
of red indicate grid cells in which
peak  brightness is  observed
increasingly often. (Pixels shaded
green are those where peak
brightness is never observed.) The
pixel that should contain the
calibration site is shown at the
center of each sub-plot, bounded in
bold. The first sub-plot shows
results ~ when  pooling  all
observations; the remaining sub-
plots show results for each

individual mission, as indicated.



Zonal offset varies with latitude
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Figure 3.4. Zonal offset direction varies with latitude. The top panel shows mean offset (in terms of grid cells)
for groups of calibration sites, ordered by increasing mean latitude. The lower panel shows the relationship
between offset and latitude at the level of individual observations. The scatter plot shows the relationship for
each observation. The solid black line shows a quadratic fit of the data, with its confidence interval shaded in
gray. The dashed gray line shows a local polynomial fit. Offset estimates shown in the left-hand subplots
remove potential mission-year effects by plotting deviations from mission-year means; estimates in the right-
hand subplots additionally remove effects of longitude by plotting deviations from a fifth-order polynomial fit

in site longitude.
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Figure 3.5. Offset distance and direction varies by DMSP mission. The figure shows mean offset (and confidence
intervals) in zonal (left-hand side) and meridional direction (right-hand side) for the missions F10-F16. The top

panel measures offset distance in kilometers; the bottom panel shows offset direction in terms of grid cell count.
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Deviation in brightness at center vs. peak brightness
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Figure 3.6. Probability that error in brightness measurement does not exceed certain thresholds, at different
levels of peak brightness. The left-hand subplot shows error in the measurement of levels of brightness, and the
right-hand subplot, in the measurement of changes in brightness over time. Error in the measurement of levels
of brightness is defined as the deviation between peak brightness within four grid cells of the ‘center’ grid cell
that should contain the calibration site, and brightness measured in the center grid cell. Error in the
measurement of changes is defined as the difference between the change in peak brightness within four grid
cells and the change in the center grid cell. The solid and dashed lines show the share of observations in which
error does not exceed 0-8 DN. Note that brightness may be recorded without error even where geolocation is
not accurately recorded. This is the case where there is no difference in brightness between the center grid cell
and the peak brightness grid cell, but mean brightness in the surrounding pixels is higher for the peak
brightness grid cell — which is therefore selected by the algorithm used in this paper.
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Local brightness predicts marginality index
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Figure 3.7. There is a strong relationship between brightness and marginality in the cross-section. Each subplot
shows a scatterplot of locality-levels values, along with a linear and local polynomial fit, and their confidence
intervals. Marginality is shown in units of standard deviations; brightness is expressed in digital numbers in the
subplot on the left hand side, and as the natural logarithm of digital numbers in the subplot on the right hand

side.

160



Local brightness predicts marginality index
Deviations from municipality mean
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Figure 3.8. The relationship between brightness and marginality persists when considering deviations from
municipality means. The figure plots deviations in marginality from the mean value in a municipality (in units
of standard deviations) over deviations in brightness from the municipality mean — expressed in digital numbers
in the subplot on the left hand side, and expressed as the natural logarithm of digital numbers in the subplot on
the right hand side. Each subplot shows a scatterplot of locality-levels values, along with a linear and local

polynomial fit, and their confidence intervals.
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Local brightness-marginality relationship
using different missions and algorithms

Marginality index

0 20 40 60
Digital number
F14 within one grid cell ————- F14 at true location
F15 within one grid cell ————- F15 at true location

Figure 3.9. The relationship between brightness and marginality is robust to variations in data and data
processing. The figure plots local polynomial fits of the relationship between brightness (in DN) and
marginality (in standard deviations) for data obtained for all localities in the year 2000 from the F14 and F15
missions. It also shows the relationship when the measurement is taken in the grid cell containing the true

location of the calibration site, and when I use peak brightness within one grid cell of the center, instead.
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Night lights proxy wealth most closely in dimly lit municipalities
Municipality-level linear regression results over mean brightness
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Figure 3.10. Locality-level marginality and brightness are most closely associated in municipalities that are
dimly lit on average. The figure shows coefficients from linear regressions of marginality on brightness
computed separately for each municipality in the sample. The subplot on the right shows a scatter plot of
regression coefficients over mean brightness among the localities within the municipality for which the
coefficient was computed. The subplot on the left shows a local polynomial fit of the data, with its confidence

interval.
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Night lights proxy wealth most closely in poor municipalities
Municipality-level linear regression results over mean marginality index
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Figure 3.11. Locality-level marginality and brightness are most closely associated in municipalities where
marginality is high on average. The figure shows coefficients from linear regressions of marginality on
brightness computed separately for each municipality in the sample. The subplot on the right shows a scatter
plot of regression coefficients over the mean of the marginality index among the localities within the
municipality for which the coefficient was computed. The subplot on the left shows a local polynomial fit of

the data, with its confidence interval.
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Relationship between changes in brightness and marginality
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Figure 3.12. There is a strong relationship between locality-level changes in marginality and brightness, but in
the data used here, it exhibits a subtle non-monotonic pattern. The figure shows local polynomial fits (and
confidence intervals) of the relationship between changes in brightness (expressed in DN) and changes in the
marginality index (expressed in standard deviations) at the locality level between the years 2000 and 2005. The
histogram shows the distribution of changes in brightness. The subplot on top shows the relationship over the
full range of observed changes; the subplot on the bottom shows in greater detail the relationship over the

range of changes where there are at least 100 observations for each value.
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Relationship between brightness and expenditure

Full range of brightness levels
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Figure 3.13. Cross-sectional relationship between brightness and expenditure at the village level in the year
2000 for villages surveyed for the Progresa/Oportunidades program. The subplots on the right show a village-
level scatter plot of mean log expenditure per equivalent adult (in 2005 Pesos) over brightness (in DN), along
with a linear fit of the data (and its confidence interval). The subplots on the left show a local polynomial fit of
the same relationship, along with its confidence interval. The top panel shows the entire range of observed
brightness values; the bottom panel shows in greater detail the relationship for brightness values not exceeding
10 DN.
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Components of the marginality index and night lights
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Figure 3.14. The individual indicators used in computing the marginality index exhibit different cross-sectional
relationships with brightness. The figure shows local polynomial fits (with their confidence intervals) of
locality-level values of the individual welfare indicators used in computing the marginality index to brightness,
expressed in DN. The marginality index is expressed in standard deviations; analphabetism, lack of primary
education, lack of access to piped water, sanitation, electricity, and refrigeration, as well as the presence of dirt
floors in residences are given as percentages of the locality’s population; the number of occupants per room is

the locality average.
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3.A Appendix — Calibration sites

Antarctic and sub-Antarctic

32
42
43
63

RAF Mount Pleasant Falklands

Bellinghausen and Estrellas station (Russia, Chile)
Palmer station (US)

King Sejong Station (Korea)

Arctic and sub-Arctic

148
149
150
151
152
153
154
155
156
157
158
159
160
161

Voisey Bay camp

Beaver Brook mine, Newfoundland
Ivujivik, Nunavut

Umiujaq, Nunavut

Fort Severn, Ontario

Arviat, Nunavut

Whale Cove, Nunavut

Chesterfield Inlet, Nunavut
Repulse Bay, Nunavut

Kugluktuk, Nunavut

Pipe Lake mine, Manitoba

Black Lake mine settlement, Saskatchewan
Paint lake mine, Manitoba

Cluff lake mine, Saskatchewan

Australia

103
104
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

Roxby Downs mining town
Jabiru mine

Murray Basin mine
Mine, Darling Range
Mine, Hamersley Range
Mine, Hamersley Range
Mine, Kalgoorlie area
Mine, Kalgoorlie area
Plant, Kalgoorlie area
Mine, Kalgoorlie area
Mine, NT

Mine, NT

Mine, W Australia
Mine, W Australia
Mine, W Australia
Huntly Bauxite mine
Mine, W Australia
Mount Magnet mine
Weld Range mine
Mine, W Australia

Mt Keith mine

Tom Price mine

West Angelas mine

Mt Whaleback mine

58°27°36.00"W
58°57'43.63"W
64°3’10.31"W

58°47°17.34"W

62°4’47.25"W

55°46’15.67"W
77°54’41.70"W
76°32°59.53"W
87°37°54.56"W
94°3’39.49"W

92°34’44.69"W
90°42°15.43"W
86°14’12.03"W
115°5°52.42"W
98°9’39.84"W

105°36’12.71"W

98°9’40.00"W

109°35’45.43"W

136°53’59.49"E
132°55’27.59"E
116°27'27.12"E
116°21°30.95"E
118°40°25.50"E
122°11’45.17"E
121°36’53.80"E
121°34'42.75"EE
121°27'23.65"E
121°21’3.73"E

133°49’18.71"E
131°47°5.33"E

116°4’11.27"E

116°18'21.89"E
115°54’53.14"E
116°9’38.09"E

117°9’36.19"E

117°48’55.28"E
117°38’59.69"E
118°25’52.58"E
120°33’6.38"E

117°46'21.35"E
118°45’58.39"E
119°41°’20.21"E

51°49’37.71"S
62°11°58.82"S
64°46’27.14"S
62°1323.14"S

56°24'40.12"N
49°50736.83"N
62°24’58.30"N
56°33’8.42"N

55°59727.42"N
61°6’29.61"N

62°10'23.14"N
63°20726.74"N
66°31°21.62"N
67°49'31.77"N
55°29743.39"N
59°7°45.41"N

55°29’44.44"N
58°21°25.38"N

30°33742.75"S
12°40°57.58"S
32°56'24.17"S
32°44'24.68"S
21°10°55.74"S
21°44°16.53"S
31°2°20.02"S

30°36712.93"S
30°35721.58"S
30°29°19.37"S
19°26°40.44"S
13°43'2.80"S

33°14’18.78"S
33°26748.53"S
32°55°0.44"S

32°33736.45"S
29°45717.33"S
28°1’47.15"S

27°19°1.52"S

26°42°49.50"S
27°12750.63"S
22°44’50.22"S
23°10°10.13"S
23°22’5.11"S
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147

Brazil

o8

99

112
113
114
115
116

Pannawonica mine settlement

Mine, Minas Gerais
Mine, Minas Gerais
Smelter, Minas Gerais
Plant, Minas Gerais
Mining town, Para
Mine, Para

Mine, Para

Elvidge (2004) replication

18  Gaviota 1

19  Channel Island 3

20  Gaviota 2 West

21  Gaviota 2 East

22 Structure East of CA City
23 Gaviota Plant

Latin America

16  Large mine, Peru

34  Industrial complex, Anzoategui, Venezuela
38  Mine, Tacna, Peru

39  Mine, Moquegua, Peru
40  Mine, Parinacota, Chile
46  Mine, Arequipa, Peru
51  Mine, Pasco, Peru

52 Mine, Tacna, Peru

55  Mine, Chile

56 Mine, Calama, Chile
57  Mine, Chanaral, Chile
62  Mine, Jujuy, Argentina
95  Port facilities, Ica, Peru
109 Chile evaporation plant
110  Chile evaporation plant
111 Mine, Atacama, Chile
Maldives

28  Gulhi Falhu harbor

29  Bandos resort island

64  Kanduhulhudhoo

65  Gemanafushi

66  Buruni

67  Thimarafushi

68  Bandidhoo

69  Velavaru Island

70  Kolhufushi

71 Resort-Alimatha Island
72 Resort-Dhiggiri

116°19’30.62"E

43°52’39.05"W
46°50’51.20"W
43°45'36.86"W
43°57’58.00"W
50°4’4.93"W
50°18’4.37"W
50°34’44.31"W

120°16742.25"W

119°24’3.60"W
120°10°’1.41"W
120°7'13.43"W

117°51’31.79"W
120°12°10.13"W

75°7'33.39"W
62°50733.45"W
70°37°33.35W
70°43°22.77TW
69°16’37.93W
71°35729.38"W
70°46’18.02"W
71°18’46.59"W
70°27°12.03"W
70°3’46.31"W
69°28748.38"W
65°40’53.40"W
75°14’11.98"W
68°20°12.57"W
68°23’30.81"W
69°15’55.12"W

73°26'46.21E
73°29°29.36E
73°32'21.40"E
73°34’7.08"E
73°6’27.63"E
73°8’36.06"E
72°59°26.79"E
73°0’58.54"E
73°25°27.83"E
73°29°52.27"E
73°29’14.74"E

21°38715.40"S

20°25’9.50"S
19°50740.77"S
20°32°50.96"S
20°34°59.90"S
6°4’13.46"S
6°6’50.90"S
6°1'53.61"S

34°21°5.69"N
34°7°31.20N"
34°22°40.41"N
34°23°29.53"N
35°9’11.38"N
34°28'26.23"N

15°12’14.89"S
8°21'23.71"N
17°1625.14S
17°227.90S
18°19’33.92S
16°31'4.38"S
17°353.13"S
14°5320.71"S
34°5°54.81"S
23°26721.18"S
26°26718.69"S
23°12°47.86"S
15°15’33.03"S
23°29°17.16"S
23°33751.82"S
26°4944.22"S

4°10°57.87TN
4°16’8.06N
0°21’4.21"N
0°26’33.18"N
2°33’32.03"N
2°12720.23"N
2°56’12.06"N
2°58’47.66"N
2°46’37.76"N
3°35’37.46"N
3°38’42.41"N
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73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
100

Mirihi Island Resort

Hotel Lily Beach Resort

Diamonds Thudufushi Island Resort
Madhibadhoo

Constance Moofushi Resort
Madoogali Resort

Havaveli Resort

Maayafushi Resort

Fihaalhohi Island Resort

Adaaran Club Rannalhi

Kurendhoo

Thulhaadhoo

Holhudhoo

Manadhoo

Hilton Mildives - Iru Fushi Resort and Spa
Maduvvari

Foakaidhoo

Feydhoo

Huvashen Fushi Resort

Middle East and North Africa

123
124
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

Oil platform, Gulf of Suez

Oil platform, Gulf of Suez
On-shore installation, Gulf of Suez
On-shore installation, Gulf of Suez
Oil installations, Das Island, Persian Gulf
Arzanah Island, Persian Gulf
Persian Gulf Island

Oil camp Algeria

Oil installations Algeria

Oil installations Algeria

Oil installations Algeria

Oil installations Algeria

Oil installations Algeria

Oil installations Algeria

Oil installations Libya

Oil installations Libya

Oil installations Saudi Arabia

Oil installations Saudi Arabia

Oil installations Saudi Arabia

Oil installations Saudi Arabia

Oil installations Saudi Arabia

Oil installations Saudi Arabia

Oil installations Saudi Arabia

Oil installations Saudi Arabia

Oil installations Saudi Arabia

Oil installations Saudi Arabia

Mexico, Central America, and Southern U.S.

72°46’50.30"E
72°57°13.88"E
72°43'51.44"E
72°58’7.36"E

72°43’40.62"E
72°45’12.38"E
72°55’10.17"E
72°53’15.69"E
73°22°2.28"E

73°21'27.29"E
73°2751.93"E
72°50°25.17"E
73°15’45.77"E
73°24’48.03"E
73°19°25.19"E
72°53’45.41"E
73°8’54.19"E

73°2’50.94"E

73°22’13.60"E

33°4’18.40"E
33°7°4743"E
33°13’25.38"E
32°56’2.34"E
52°52’29.03"E
52°33’36.86"LE
51°43’35.97"E
5°45’8.24"E
5°30'21.23"E
8°2714.22"E
8°15’56.77"E
7°54’21.70"E
6°56’16.66"E
6°47°33.26"E
19°46’11.68"E
18°55’5.03"E
49°31°2.96"E
49°15'39.05"E
49°12’38.14"E
49°15’8.00"E
49°13’55.39"E
49°14’56.63"E
49°20°35.69"E
49°13’'1.56"E
49°14’38.90"E
49°13’55.12"E

3°37°10.56"N
3°39’12.93"N
3°479.87T"N
3°45’26.15"N
3°53’5.30"N
4°5’43.89"N
4°2°17.72"N
4°4°25.52"N
3°52’37.20"N
3°54’11.01"N
5°20’1.30"N
5°1°22.40"N
5°45’18.66"N
5°46’0.72"N
5°44’38.60"N
5°29’10.21"N
6°19’33.30"N
6°21’35.71"N
4°22°5.36"N

28°51’3.17"N
28°58710.19"N
28°43’48.74"N
29°21°55.78"N
25°9’8.99"N
24°47'1.67"N
24°34’44.23"N
30°58740.56"N
30°46°59.62"N
30°50°2.46"N
30°36738.45"N
30°23’9.48"N
31°23’29.41"N
31°11'29.47"N
28°54’51.19"N
28°34’54.56"N
25°40°48.80"N
25°38737.41"N
25°31°50.09"N
25°25724.38"N
25°21’41.15"N
25°15’47.11"N
25°18743.98"N
25°872.66"N
25°52746.62"N
25°58718.90"N
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O 1 O O Wb+

Nej

10
11
12
13
14
15
17
33
35
36
37
54
91
92
93
94
96
97
98
121
122

Oil/gas installation, PetAIn, Mexico
Oil/gas installation, Texas, U.S.
Oil/gas installation, Veracruz, Mexico
Oil/gas installation, Guatemala
Oil/gas installation, Guatemala
Oil/gas installation, Chiapas, Mexico
Oil/gas installation, Chiapas, Mexico
Oil/gas installation, Chiapas, Mexico
Oil/gas installation, Tabasco, Mexico
Oil/gas installation, Mexico

Oil/gas installation, Tabasco, Mexico
Oil/gas installation, Texas, U.S.
Mine, Cuba

Oil/gas installation, Cuba

Mine, Mexico

Mine, Mexico

Airport, Matanzas, Cuba

Coastal installation, Campeche, Mexico
Chemical plant, Campeche, Mexico
El Naranjo airport, Peten, Guatemala
Mine, Sonora, Mexico

Oil/gas installation, Tamaulipas, Mexico
Plant, Tabasco, Mexico

Mine, Texas, U.S.

Oil/gas installation, Oklahoma, U.S.
Mine, Sonora, Mexico

Mine, Jalisco, Mexico

Mine, California, U.S.

Oil platform Gulf of Mexico

Oil platform Gulf of Mexico

Other sites

30
31
41
101
102

Cocos Islands airport
Ascension Island RAF

Olympic corrections center, Washington, U.S.

Cocos Islands village
Christmas Island detention center

Pacific islands

24
25
26
27
99

Tuvalu

Mururoa

Kwajalein airfield
Kwajalein airfield
Ebeye island, Kwajalein

Southern Africa

44
45
47

Mine, South Africa
Mine, Eastern Cape, South Africa
Mine, Phalaborwa, South Africa

90°47°4.03"W
98°4’17.61"W
94°12’8.49"W
90°11°56.89"W
90°20°6.95"W
93°21’51.60"W
93°22’49.91"W
93°17°57.34"W
93°21°42.70"W
93°3074.14"W
92°37'23.48"W
101°59’34.58"W
82°40°53.09"W
81°37°16.77"W
107.585W
105°48’49.90"W
81°25’45.94W
92°9'53.61W
92°15749.52W
90°48’36.8TW
109°32’56.68"W
97°58’4.48"W
92°26°38.04"W
102°19’2.87"W
99°18’3.14"W
109°1’12.21"W
103°50’6.61"W
117°41°58.83"W
92°45’41.92"W
93°17°2.16"W

96°49’47.97"E
14°24’9.84"W
124°8’8.80W
96°53’43.54"E
105°34’31.35"E

179°11°55.98E
138°47°3.91W
167°44’'21.16E
167°28°29.62E
167°44’14.30"E

27°36’59.51"E
22°59°27.90"E
31°71.30"E

17°31'52.48"N
26°48740.08"N
18°7'43.28"N
16°0°44.25"N
16°7'1.66"N
17°28'48.59"N
17°33’53.74"N
17°35'26.67"N
17°39'24.98"N
17°51'52.06"N
17°53'33.96"N
35°21’9.75"N
22°47°59.80"N
23°9°0.41"N
31.2327N
28°36’17.09"N
23°2'28.61N
18°38°24.38N
18°36735.77TN
17°13°41.47N
30°19°41.02"N
22°34°40.63"N
17°39'2.80"N
35°24’31.92"N
35°18736.22"N
27°9’39.86"N
20°35’16.57"N
35°2’5.56"N
29°31°53.97"N
29°40°54.91"N

12°11°20.98"S
7°58’5.76"S
47°42°59.96N
12°7°2.56"S
10°2817.80"S

8°31°14.49S
21°49°36.77S
8°43’40.01N
9°23’45.86N
8°46’56.62"N

25°41°33.27"S
27°23°21.27"S
23°59’6.84"S
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48
49
50
93
60
61
105
106
107
108
117
118
119
120

Mine, Eastern Cape, South Africa
Mine, South Africa

Mine, South Africa

Mine, Rossing, Namibia

Mine, Botswana

Mine, Botswana

Oryx mine, South Africa

Mine, Northern Cape, South Africa
Mine, South Africa

Mine, South Africa

Mine, Botswana

Mine, Botswana

Mine, Botswana

Maparangwane airbase, Botswana

22°58’29.78"E
27°35’46.47"E
28°39’46.37"E
15°2'52.97"E

25°41°25.58"E
25°22’56.53"E
26°43’18.77T"E
23°26°47.29"E
27°39°40.78"E
27°18’16.35"E
26°3’39.27"E

29°18’59.45"E
24°42°30.44"E
25°19’56.40"E

27°51°40.49"S
26°24°29.84"S
24°28°46.73"S
22°28721.57"S
21°30°45.74"S
21°18739.56"S
28°11’6.70"S

28°22747.78"S
26°25’5.86"S

26°28°0.02"S

20°31°30.23"S
22°26°49.74"S
24°32’5.39"S

24°14°28.00"S
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