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ABSTRACT

Probabilistic forecasts of variables measured on a categorical or ordinal scale, such as precipitation
occurrence or temperatures exceeding a threshold, are typically verified by comparing the relative fre-
quency with which the target event occurs given different levels of forecast confidence. The degree to which
this conditional (on the forecast probability) relative frequency of an event corresponds with the actual
forecast probabilities is known as reliability, or calibration. Forecast reliability for binary variables can be
measured using the Murphy decomposition of the (half) Brier score, and can be presented graphically using
reliability and attributes diagrams. For forecasts of variables on continuous scales, however, an alternative
measure of reliability is required. The binned probability histogram and the reliability component of the
continuous ranked probability score have been proposed as appropriate verification procedures in this
context, but are subject to some limitations. A procedure is proposed that is applicable in the context of
forecast ensembles and is an extension of the binned probability histogram. Individual ensemble members
are treated as estimates of quantiles of the forecast distribution, and the conditional probability that the
observed precipitation, for example, exceeds the amount forecast [the conditional exceedance probability
(CEP)] is calculated. Generalized linear regression is used to estimate these conditional probabilities. A
diagram showing the CEPs for ranked ensemble members is suggested as a useful method for indicating
reliability when forecasts are on a continuous scale, and various statistical tests are suggested for quantifying
the reliability.
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1. Introduction

Because of the inability to forecast the atmosphere
with absolute certainty, the forecaster’s confidence in a
specific forecast provides useful additional information
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beyond a simple indication of what is considered the
best estimate (Murphy 1973, 1997; Murphy and Wink-
ler 1987; Wilks 2006). Confidence in the forecast can be
expressed in a number of ways, but whichever form is
used, any comprehensive forecast verification system
must consider more than just the accuracy of the fore-
casts: the appropriateness of the forecaster’s confidence
in the forecasts should also be examined (Murphy and
Winkler 1987; Murphy and Wilks 1998). [For detailed
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discussions of the various aspects of forecast quality
and how they can be measured, see Murphy (1993,
1997) and Jolliffe and Stephenson (2003).]

The appropriateness of the forecaster’s confidence is
usually measured by considering the reliability, or cali-
bration, of the forecasts. Reliability is defined as a con-
sistency between the a priori predicted probabilities of
an event and the a posteriori observed relative frequen-
cies of this event (Murphy 1973; Toth et al. 2003). The
way reliability is measured depends on how the uncer-
tainty in the forecast is indicated. Perhaps the simplest
way of indicating forecast uncertainty is to specify a
range of values between which the verification is ex-
pected to occur with a predefined level of confidence «
(Montgomery and Peck 1992; Seber and Lee 2003). For
each forecast, the level of confidence « is kept fixed,
but the width of the interval is varied to reflect the
varying uncertainty of the forecaster: decreased (in-
creased) uncertainty is indicated by a narrowing (wid-
ening) of the interval. The reliability of such prediction
intervals can be assessed by comparing the capture rate
for the respective confidence intervals (for the specified
a); a forecaster is judged to be overconfident (or un-
derconfident) if the verification falls too infrequently
(or frequently) within the range defined by the predic-
tion intervals. The forecaster’s confidence is appropri-
ate when the capture rate (the proportion of times the
verification is contained within the prediction interval)
corresponds with the confidence level.

Given problems in user interpretation of intervals
(see, e.g., Teigen and Jgrgensen 2005), an attractive
alternative method to the specification of prediction
intervals for indicating forecast uncertainty involves fix-
ing the interval and allowing the forecaster’s level of
confidence to vary instead. Examples include defining
the probability that daily precipitation will exceed a
trace amount, or that seasonally averaged maximum
temperatures will be warmer than 30°C. Forecasts that
involve assigning a variable probability to an observed
value falling within a predefined range (or taking a spe-
cific discrete value) are widely referred to as probabi-
listic forecasts. Although the measurement of reliability
in such forecasts becomes more complicated than in the
context of prediction intervals, the principle involved is
identical: Does the verification fall within the pre-
defined interval or category more or less frequently
than the forecaster anticipates? Because the forecast
confidence varies, the observed relative frequency of
the verifying event is calculated for forecast prob-
abilities within predefined ranges (e.g., >0.05, 0.05-
0.10, ...). As a result, the dimensionality of the verifi-
cation problem can become much larger than in the
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case of verification of confidence intervals (Murphy
and Wilks 1998).

Observed relative frequencies conditional on the
forecast probability are often plotted as reliability or
attributes diagrams, which are simple and effective
methods of illustrating reliability graphically (Hsu and
Murphy 1986; Atger 2004). Various summary measures
of the reliability diagram have been proposed. The
Murphy (1973) decomposition of the (half) Brier score
provides a useful quantitative measure of forecast reli-
ability; one of the components of the decomposition
represents the sum of the squared distances between
the empirical reliability curve and the diagonal line of
perfect reliability, weighted by the frequency with
which forecasts of each probability (or in each prob-
ability bin) are issued (Hsu and Murphy 1986; Mason
2004). Alternative measures considered by Murphy and
Wilks (1998) involve fitting a weighted regression line
to the empirical reliability curve. For good reliability,
the slope of the regression line should be close to 1.0
and the intercept close to 0.0 (and should fit the em-
pirical curve well). For forecasts that contain no useful
information, the empirical reliability curve is a horizon-
tal line, indicating that the verification is independent
of the forecast.

Reliability diagrams have been criticized for their ar-
bitrary categorization of the target variable and binning
of the forecast probabilities, and for the large sampling
errors that occur given small samples and/or when ap-
plied to probabilities of rare events (Atger 2004). Ide-
ally, when forecasts are expressed, and the observations
are measured, on a continuous scale, the reliability of
the forecasts (and their verification more generally)
should be measured without discretization. One option
is the continuous ranked probability score, which is the
integral of the Brier score for all possible threshold
values of the target variable (Gneiting et al. 2005). Like
the Brier score, the continuous ranked probability
score can be decomposed to yield a reliability compo-
nent (Hersbach 2000). This reliability component is
closely related to the rank histogram (Anderson 1996;
Hamill and Colucci 1998; Hamill 2001) in that it mea-
sures whether, on average, the cumulative forecast dis-
tribution correctly indicates the probability that the ob-
served value is less than each ranked ensemble member
(Hersbach 2000). In this paper the basic concepts of the
binned histogram and the reliability component of the
continuous ranked probability score are extended with
the aim of addressing some of the limitations of these
verification techniques (Hamill 2001). Specifically, the
reliability of an ensemble forecast is examined by con-
sidering the probability that the observed value is more
than the forecast from each ensemble member. If this
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F1G. 1. Capture rates (black) and UEPs (gray) for 24 ordered ensemble member simulations
of area-averaged precipitation over eastern Africa (10°N-10°S, 30°-50°E) for (a) October—

December and (b) March-May 1951-2000.

probability is conditional upon the actual values fore-
cast, then it is argued that the forecasts from the en-
sembles are unreliable.

2. Unconditional exceedance probabilities

Given an ensemble of forecasts, errors in the central
tendency, spread, and shape of the distribution of the
ensemble members constitute possible sources of error
in their representation of the probability distribution of
possible outcomes. Consistent errors in the ensemble
distribution can be estimated using the binned prob-
ability ensemble (Anderson 1996; Talagrand et al.
1998), also known as the rank histogram (Hamill and
Colucci 1998; Hamill 2001). Given a history of en-
semble forecasts, the verification should fall between
ordered ensemble-member forecasts an equal number
of times. Histograms of these capture rates are a useful
means of determining whether there are errors in the
ensemble distribution. Since the proportion of observa-
tions in each bin should follow a uniform distribution, a
Kolmogorov-Smirnov (Wilks 2006) or Cramér—von
Mises test (Elmore 2005) could be used to test for sys-
tematic errors (Sheskin 2003).

Rank histograms often are U shaped, indicating that
the verification falls outside of the ensemble’s range too
frequently. A U shape can be indicative of an ensemble
spread that is consistently too small (Anderson 1996),
so that the probabilities that the observation will fall
within either of the outer bins is inflated for each fore-
cast. A conditional bias in the forecasts can result in
similarly shaped histograms because the probability
that the observation will fall within one of the outer
bins is inflated at each forecast (Hamill 2001). Because
some forms of conditional bias and some forms of un-

conditional bias can result in U-shaped rank histo-
grams, the histograms can be difficult to interpret. Simi-
larly, although the rank histogram is uniform when the
ensemble distribution reliably reproduces the distribu-
tion of possible outcomes, a uniform histogram is no
guarantee that this distribution is being represented by
the ensemble. Hence, if two sets of forecasts generate
similar rank histograms, it cannot automatically be con-
cluded that the sets of forecasts are equally good.

To illustrate this problem of forecasts of notably dif-
ferent quality generating similarly shaped rank histo-
grams, examples for two sets of simulations of precipi-
tation are presented in Fig. 1. The figure shows capture
rates for a 24-member ensemble of simulations of area-
averaged precipitation over eastern Africa (10°N-10°S,
30°-50°E) for October-December (Fig. la) and
March-May (Fig. 1b) 1951-2000 using the ECHAM4.5
atmospheric general circulation model (Roeckner et al.
1996). The model was forced using observed sea surface
temperatures, and forecasts were verified against sta-
tion-based observed data (Mitchell et al. 2003) aver-
aged over the same area. After the spatial averaging,
the observed and simulated precipitation estimates
were standardized to correct for mean and variance
errors in the simulated precipitation. The examples pre-
sented in Fig. 1, and Kolmogorov—Smirnov test statis-
tics for a uniform distribution of the observations in
each bin, suggest that the ensembles are reasonably
well calibrated for both seasons (p = 0.438 for both
seasons). The rank histograms therefore provide no
clear indication that the simulations for one season are
superior to those for the other.

Capture rates can be expressed alternatively as ex-
ceedance probabilities, defining the probability that the
observed precipitation exceeds the amount forecast by
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the kth ranked ensemble member. This probability is
termed the unconditional exceedance probability
(UEP), and in a well-calibrated model the expected
value of the UEP is given by

P(X,>X)=1- (1)

m+1’

where X, is the observed precipitation, X, is the fore-
cast precipitation from the kth ensemble member
sorted in ascending order, and m is the number of en-
semble members. In a model in which the ensemble
variance is consistently too small, P(X, > X;) <1 —
1/(m + 1) and P(X, > X,,,) > 1 — m/(m + 1). The UEPs
for the eastern African precipitation simulations are
shown as the gray bars in Fig. 1. For observations uni-
formly distributed amongst the bins, the graph of the
exceedance probabilities will decrease evenly from the
top-left corner of the plot to the bottom-right corner.
Hersbach (2000) derives a measure of reliability from
a decomposition of the continuous ranked probability
score that is closely related to the UEPs, but explicitly
considers the average width of each bin. The measure is
based in part on the difference between a measure of
the relative frequency with which the observed value is
less than the central point of each bin and the cumula-
tive probability of the corresponding bin. As with the
reliability score from Murphy’s (1973) decomposition
of the Brier score, good reliability is indicated by values
close to zero. For the ECHAMA4.5 simulations, the
score for the October-December season (0.012) is simi-
lar to that for the March-May season (0.052), thus sup-
porting the results of the Kolmogorov—Smirnov test for
uniformity that reliability is good for both seasons.

3. Conditional exceedance probabilities

If there is an error in the central tendency of the
ensemble distribution, the exceedance probabilities will
be conditional upon the forecast, not just on the en-
semble shape and spread. Given only one ensemble
member, there should be a 50% probability that the
observed precipitation is more than forecast, regardless
of how much precipitation was forecast. A rank histo-
gram would indicate only the proportion of observed
values exceeding all the forecasts, but in an imperfect
forecast system, if the forecast is for anomalously wet
(dry) conditions, then the probability that conditions
that are wetter than forecast is likely to be less (more)
than 50%. More specifically, in a forecast system that
contains no useful information, the probability that
conditions are wetter than forecast is equal to the cli-
matological probability of precipitation being more
than the forecast. In such a case, because the forecasts
are varying randomly, the climatological probabilities
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of exceeding differing rainfall amounts are the only use-
ful information available. Extending the argument to
an imperfect forecast ensemble, if the wettest ensemble
member indicates relatively wet (dry) conditions the
probability that conditions are wetter than forecast is
likely to be less than (exceed) 1 — m/(m + 1). It is
therefore possible that a uniform rank histogram indi-
cates only that the model reproduces the observed cli-
matology well, but does not necessarily imply that the
model has any predictive skill (Hamill 2001). A mea-
sure of conditional forecast bias would resolve this
shortcoming.

The conditional exceedance probability (CEP) is de-
fined here as the probability that the observed precipi-
tation exceeds the amount forecast, conditional on the
amount forecast. More generally, the CEP is defined as
the probability that the observed value exceeds the
forecast value, given the forecast. The CEPs can be
calculated using generalized linear models with bino-
mial errors and a logit link function (appendix A; Mc-
Cullagh and Nelder 1989). Alternative link functions,
such as the probit and complementary log—log could be
used (Mason and Mimmack 2002), but differences in
results are likely to be small (McCullagh and Nelder
1989). The logit link was selected because the param-
eters can be interpreted meaningfully, as discussed be-
low, but further research is required before any definite
recommendations can be made about the most appro-
priate link function to use." Using the logit link, the
CEP is defined as

exp(Box + BrxXi)
1+ exp(Box + BixXi)

1
1+ exp(—Box — BiaXp)’

where B, and B, ; are parameters to be estimated, and
X, is the forecast of the kth driest in an m-member
ensemble. Since B, , determines the slope (on the logit
scale) of the CEP curve while B, determines the
height, in a perfectly reliable model 3, ;, will be equal to
0, while nonzero values of 3, ;, will provide indications
of conditional model biases or poor skill.

The CEPs can be usefully plotted for any forecast
value within the range for which historical forecasts are
available. Examples are shown in Fig. 2 for the en-

P(Xy > X, 1X,) =

@

! When the observed data are normally distributed, a probit
link function may be an appropriate choice, since this would cor-
rectly reproduce the climatological cumulative distribution when
there is no useful information in the forecast. However, the probit
link does not conveniently allow for negatively sloping CEP
curves.
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F1G. 2. CEPs for ensemble median simulations of area-averaged (a) October-December and
(b) March-May precipitation over eastern Africa (10°N-10°S, 30°-50°E), 1951-2000. The thin
line indicates the climatological probabilities of exceedance.

semble medians from the simulations of October—
December, and March—-May precipitation over East Af-
rica. In a perfectly reliable model, where the exceed-
ance probability is independent of the forecast, the
CEPs will form a horizontal line. In most cases, how-
ever, where forecast skill is moderate, the CEP will
decrease as the forecast precipitation increases, and so
the CEP curve is likely to slope downward to the right
(see appendix B for further discussion of the slope of
the CEP curve). As the CEP curve approaches the line
of the observed climatological probability of exceed-
ance curve, the reliability of the forecast decreases. For
both seasons, the slope of the CEP curve is negative,
but is much more so for the simulations of March-May
precipitation, for which it is only marginally flatter than
the climatological probability of exceedance. The dif-
ferences in the slope of the CEP curves for the two
seasons are consistent with differences in the correla-
tions of the ranked ensemble members with the ob-
served precipitation (Table 1). The exceptionally high
skill in simulating October—-December precipitation
(r = 0.723 for the ensemble median) suggests much
smaller errors in the central tendency of the ensemble
distribution compared to the simulations for March—
May (r = 0.140).

The slope of the CEP curve therefore provides useful
information about the reliability of the forecasts: if the
slope is close to zero, the probability that the observed
precipitation exceeds the forecast amount is near con-
stant, and it can be assumed that the exceedance prob-
ability for a new forecast value will be equal to this
constant. A horizontal CEP curve indicates “complete
calibration” since the exceedance probabilities for sub-
sets of the forecasts will be asymptotically equal to this

same constant value (Seillier-Moiseiwitsch and Dawid
1993).

The CEPs can be calculated for each ranked en-
semble member over their respective ranges of forecast
values. As well as being horizontal, the CEP curves
should be evenly spaced at values represented by Eq.
(1). Examples of CEPs for the 24-member ensemble
simulations for eastern African precipitation are shown
in Fig. 3. The fact that many of the CEP curves cross
each other is a result of sampling errors. There are two
sources of sampling errors in estimating the regression
parameters: sampling errors arising from an insufficient
number of forecasts, and inaccuracies in estimating the
quantiles of the ensemble distribution. The first source
of error is common to all verification methods, but bet-
ter estimates of the quantiles could be obtained by in-
creasing the ensemble size or by fitting a distribution to
the ensemble members and calculating the quantiles of
the fitted distribution (provided that a distribution can
be found that estimates the quantiles well). The CEPs
are therefore likely to be estimated most accurately
given large ensemble sizes, and for those ensemble
members close to the median. As in the case of the
curves for the ensemble medians (Fig. 2), there is a
clear difference between the simulations for October—
December (Fig. 3a) and those for March-May (Fig. 3b).
For the March-May season, the curves for all the en-
semble members follow the climatological exceedance
probabilities closely, and suggest that the simulations
do not provide reliable indications of the observed vari-
ability in seasonal precipitation.

Statistical significance tests for §,, = 0 provide a
more meaningful indication of the dependence of the
exceedance probability on the forecast than visual in-
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TABLE 1. Reliability and skill measures for ECHAM4.5 simulated (a) October-December and (b) March-May 1951-2000 area-
averaged precipitation over eastern Africa (10°N-10°S, 30°-50°E). The slope parameter B, of the generalized linear regression model
for conditional exceedance probabilities and the p value for 8, = 0 are given in the last column. The statistics for the ensemble median
are shown in the last row.

(a) October—December

Ranked ensemble Correlation with Probability that the
member k obs precipitation Bix p value for g, , =0

1 0.745 N/A N/A

2 0.672 —2.029 0.207

3 0.665 —0.830 0.503

4 0.720 —0.640 0.464

5 0.712 —0.355 0.597

6 0.716 -0.291 0.620

7 0.716 —0.038 0.942

8 0.719 —0.042 0.931

9 0.716 -0.102 0.829

10 0.718 —0.461 0.311

11 0.716 -0.399 0.367

12 0.720 -0.313 0.467

13 0.724 —0.168 0.696

14 0.731 0.106 0.811

15 0.747 0.272 0.529

16 0.753 0.540 0.214

17 0.752 0.481 0.271

18 0.749 0.661 0.150

19 0.735 0.658 0.156

20 0.736 0.410 0.457

21 0.715 0.122 0.845

22 0.676 -0.377 0.591

23 0.686 —0.638 0.417

24 0.635 1.459 0.176

Ensemble median 0.723 —0.300 0.486

(b) March-May

Ranked ensemble Correlation with Probability that the
member k obs precipitation Bix p value for g,, =0
1 0.005 —7.082 0.004
2 0.042 —3.851 0.001
3 0.097 —2.240 0.002
4 0.192 —1.988 <0.001
5 0.216 -2.282 <0.001
6 0.228 —2.857 <0.001
7 0.215 —1.236 0.034
8 0.216 —-1.192 0.041
9 0.204 —0.798 0.141
10 0.177 -0.639 0.208
11 0.151 —0.846 0.082
12 0.144 —0.953 0.057
13 0.134 —1.033 0.002
14 0.157 -0.982 0.050
15 0.145 —1.021 0.042
16 0.138 —0.843 0.088
17 0.154 —0.985 0.058
18 0.151 —1.153 0.033
19 0.104 -1.117 0.069
20 0.082 —1.258 0.045
21 0.074 —1.186 0.059
22 0.073 -1.189 0.059
23 0.022 —1.875 0.010
24 0.007 —1.425 0.033

Ensemble median 0.140 -0.997 0.049
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FI1G. 3. CEPs for 24 ordered ensemble member simulations of area-averaged (a) October—
December and (b) March-May precipitation over eastern Africa (10°N-10°S, 30°-50°E),
1951-2000. The thick line indicates the climatological probabilities of exceedance.

spection of the curves. Approximate significance tests
for B, , = 0 are based on the reduction in the deviance
compared to a model with no 3, , term (McCullagh and
Nelder 1989). A model with no B, term assumes that
the exceedance probability is not conditioned by the
actual forecast, and thus equivalence to the UEP can be
upheld. If D, is the deviance associated with a model
calculating the UEP for the kth ranked ensemble mem-
ber, and D, is the deviance associated with a model
calculating the CEPs, then the reduction in deviance
can be calculated over each forecast, j, using

Uy
Dyy— Dy = _22 [ij 10g<—)
7 Mo

1—u,

+ (1= yg) lOg(l — m)]’ 3)
where y,; is equal to 1 if the observation exceeds the
forecast and is equal to 0 otherwise, p,; is the CEP, and
u; is the UEP. This statistic is approximately distrib-
uted as x7. If the forecasts are reliable, the B, , term will
not substantially reduce the deviance, and so the value
of Eq. (3) will be small. Conversely, large reductions in
the deviance indicate a conditioning of the exceedance
probability, and hence poor reliability in the forecasts.

The values of B, , and the probabilities that 8, , = 0
for the individual ranked ensemble members are pro-
vided in Table 1. For October-December (Table 1a),
the observed rainfall exceeded the forecast from the
driest ensemble member for every year, and so the CEP
for this member is one for all forecast values. Although
the CEP is thus independent of the forecast value, in
this case good reliability cannot be claimed because the

unconditional exceedance probability should be equal
tol — 1/(m + 1) [96%, Eq. (1)]. The slope of the CEP
curve does not provide a complete indication of reli-
ability: it reflects only the conditional bias in the fore-
casts, but there is an unconditional bias in the example,
which could be diagnosed by considering the intercept
term By .

Apart from the driest ensemble member for Octo-
ber-December, the slopes of the CEP curves for this
season are reasonably close to zero for all ensemble
members (as indicated in the last two columns of Table
la). However, there is some suggestion that reliability
weakens toward the tails of the forecast distribution,
which would be a natural result of the increase in sam-
pling errors in the percentiles of the distribution here.
The larger sampling errors in the tails are reflected by
the weakening of the correlations with the observed
precipitation for the highest and lowest ranked en-
semble members.

The conditioning of the exceedence probabilities on
the simulated precipitation for March-May is strong
(Table 1b). The CEPs follow the climatological exceed-
ance probability curve much more closely than for Oc-
tober—-December, and are indicative of the much
weaker skill in simulating boreal spring rainfall over
eastern Africa (Mason and Graham 1999). All but two
of the ensemble members have CEPs with slope param-
eters that differ significantly from zero at a 10% level of
significance (Table 1b). The poor reliability indicated
by the CEPs is consistent with the weak level of skill as
measured by the correlations with the observed precipi-
tation, both for individual ensemble members and for
the ensemble median.
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The differences in skill of the model in simulating
rainfall for the two seasons is a reflection of differences
in the potential predictability: the October—December
period has a higher potential predictability than
March-May (Indeje et al. 2000). Ideally, the model
should be able to identify the poor potential predict-
ability of the March—May season, but the model’s signal
is strong for both seasons, as discussed below. The
CEPs for cases of low potential predictability should be
evenly spaced, but should have very short horizontal
extents since if the ensemble distribution is consistently
reproducing the climatological distribution there will be
minimal variance in the quantiles of the ensemble dis-
tribution. In the limiting case of no signal, for such
climatological forecasts, although perfectly reliable
(Jolliffe and Stephenson 2003; Wilks 2006), the CEP
curves would be representable only by a single point
because the variance of the percentiles of the climato-
logical distribution would be zero. Even in a very large
ensemble forecast system, however, sampling errors in-
evitably generate some differences from forecast to
forecast, including situations where there is no signal. It
is therefore informative to consider the sampling distri-
bution of the CEPs in the context of no signal. Given m
ensemble members and no signal in the model, the CEP
for the kth ordered member will be the same as for
randomly generated order statistics:

m m ) )

Px = X | Xy) = 2( ( ; )[F(x)]‘[l - FI™, @)
where F(x) is the climatological probability of observ-
ing (or, more strictly, of forecasting) x or more (Bala-
krishnan and Cohen 1991; Arnold et al. 1992). Equa-
tion (4) represents the right-tail area of the binomial
distribution with m trials, and F(x) is probability of
success.

Although the joint distribution of the ensemble
members could be used to test for a signal in the model,
a simpler approach can be used by considering the
numbers of ensemble members forecasting above-
median conditions [applying Eq. (4) only to the case of
the median ensemble member]. If the ensemble mem-
bers are independent, these numbers should follow a
binomial distribution with parameters m and 0.5. The
Kolmogorov—Smirnov statistic (Wilks 2006) can be
used to test whether the proportions follow this distri-
bution, and thus acts as an alternative to mean interen-
semble correlations (Dix and Hunt 1995) or analysis of
variance (Rowell 1998) for detecting model signals.
Based on this test, the ECHAMA4.5 ensemble distribu-
tions differ significantly from the binomial distribution,
indicating that the model has a strong signal for both
seasons.
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4. Summary

The reliability, or calibration, of probabilistic fore-
casts is an important component of forecast skill. The
most commonly used procedures for indicating reliabil-
ity require an arbitrary categorization when the target
variable is measured on a continuous scale. The rank
histogram has been proposed for use when a continu-
ous scale is preferred, but interpretation of the histo-
grams, and hence of the reliability component of the
continuous ranked probability score, requires caution
(Hamill 2001). It has been argued in this paper that the
binned probability histogram is of restricted value in
verification because it is based on the assumption that
the probability of the observed value falling in each of
the bins is constant, irrespective of the forecasts. A test
has been proposed to assess, in effect, whether this
probability is conditional upon the forecast. The test is
based on calculating the probability that the observed
value will exceed the value forecast by a ranked en-
semble member. If a model generates reliable forecast
distributions, the exceedance probability will not de-
pend on the forecast.

The conditional exceedance probabilities can be es-
timated using generalized linear models with binomial
errors. The models can be used to diagnose conditional
and unconditional biases in the forecasts. The slope
term indicates conditional bias by indicating whether
the exceedance probability is conditional upon the fore-
cast, while the intercept term can be used to indicate
unconditional bias.
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APPENDIX A

Generalized Linear Models

A CEP curve is designed to compare values of fore-
casts with the probabilities that the observations exceed
these values. Given a set of forecasts from a single
ranked ensemble member, together with a set of obser-
vations that are represented as 1s if the observation
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exceeds the forecast, and Os otherwise, the aim is to fit
a model with the forecasts as the independent variable,
and the observations as the dependent variable y.
Rather than fitting a standard regression model to the
data, it is more appropriate to fit an S-shaped curve that
is bounded by 0 and 1, and which can represent the
probability that the observed value will exceed the fore-
cast (Wilks 2006). Certain forms of generalized linear
regression models (McCullagh and Nelder 1989) are
ideally suited to modeling of probabilities. Generalized
linear regression involves a model that is linear in its
parameters, but introduces a link function to transform
the values of the predictand, and allows for model er-
rors that are not normally distributed. The generalized
linear model used to represent the CEPs [Eq. (2)] has
two parameters, both of which are analogous to the
parameters of a linear regression model: By, is a re-
gression constant that defines the height of the curve
for the kth ranked ensemble member, and thus the ex-
ceedance probability when the forecast value is zero;
B1. defines the slope of the curve, and indicates wheth-
er the exceedance probability is conditional upon the
forecast.

APPENDIX B

Interpretation of the CEP Curve

Some idealized CEP curves are indicated in Fig. B1.
A curve is shown only for the ensemble median. For a
completely reliable set of forecasts the CEP curve for
the ensemble median should be horizontal and should
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indicate an exceedance probability of 0.5, as shown in
Fig. Bla. In Fig. Blb there is a similarly horizontal
curve showing that the exceedance probability does not
depend on the forecast, but the shorter length of the
curve indicates a model with a weaker signal, and the
horizontal displacement of the curve indicates an un-
conditional bias. Specifically, if the curves are for fore-
casts of precipitation, the forecast is consistently too
dry.

Positively sloping CEP curves (Fig. Blc) occur when
the model has positive skill but a signal that is consis-
tently too weak. In this case, when an ensemble mem-
ber indicates anomalously wet (dry) conditions, wet
(dry) conditions are more likely to occur, but their
probability will be underestimated, and so the probabil-
ity of exceeding the forecast rainfall will be increased
(decreased). However, if the signal is consistently too
strong (but the model still has positive skill), the CEP
curve will tend to slope negatively (Fig. B1d): the prob-
ability of exceeding the forecast if it is for anomalously
wet (dry) conditions will be lower (higher) than indi-
cated.

If the model has negative skill (Fig. Ble), then when
an ensemble member indicates anomalously wet (dry)
conditions, the opposite is more likely to occur, and so
the exceedance probability will be larger (smaller) than
indicated by the climatological exceedance probability.
The CEP curve will thus be steeper than the climato-
logical exceedance probability curve. When the model
has no skill (Fig. B1f) the CEP curve will follow the
climatological exceedance probability curve.
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FiG. Bl. Idealized CEPs for an ensemble median forecast with (a) perfect reliability and a
strong signal; (b) no conditional bias, but an unconditional bias and a weak signal; (c) positive
skill, but a signal that is too weak; (d) positive skill, but a signal that is too strong; (e) negative

skill; and (f) no skill.
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