
Reply

SIMON J. MASON AND MICHAEL K. TIPPETT

International Research Institute for Climate and Society, The Earth Institute of Columbia University, Palisades, New York

ANDREAS P. WEIGEL

Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich, Switzerland

LISA GODDARD

International Research Institute for Climate and Society, The Earth Institute of Columbia University, Palisades, New York

BALAKANAPATHY RAJARATNAM

Department of Statistics, Department of Environmental Earth System Science, The Woods Institute for the Environment, Stanford

University, Stanford, California

(Manuscript received and in final form 23 February 2011)

The rank histogram (Anderson et al. 1996) is a widely

used procedure for evaluating the reliability of an en-

semble forecast system (Jolliffe and Stephenson 2003).

It indicates the probability that the observed value ex-

ceeds the kth of the K-ordered ensemble members, and

is less than the k 1 1th-ordered ensemble member, with

additional bins to indicate the probabilities that the ob-

served value is less than the smallest and greater than

the largest ensemble member values, respectively. If the

forecasts are reliable, then a graph of these probabilities

will show equal values for all bins. The probability integral

transform (Dawid 1984) is a similar procedure suitable for

situations in which the forecast is presented as a continu-

ous probability distribution function. A similar histogram

is drawn, but the bins are based on quantiles of the dis-

tribution rather than on the ordered ensemble members.

Both the ranked histogram and the probability integral

transform can be presented equivalently in terms of ex-

ceedance probabilities [i.e., the probability that an obser-

vation exceeds the kth of K-ordered ensemble members

(or quantile, in the case of the probability integral trans-

form)]. In a reliable forecast system the observed values

should exceed the kth of K-ordered ensemble members

[1 2 k/(K 1 1)] 3 100% of the time. A graph of these

exceedance probabilities will step downward evenly to the

right.

It is generally recognized that, a uniform rank histo-

gram or probability integral transform, provides no guar-

antee that the ensemble system being tested indicates a

conditionally unbiased forecasting system (Hamill 2001;

Gneiting et al. 2007). For example, imagine a forecast

system whose ensemble mean is negatively correlated

with a normally distributed random variable. These fore-

casts are conditionally biased, but if the ensemble has

the ‘‘right’’ spread they will, on average, seem as if they

have come from the same distribution as the observa-

tions and will have a uniform rank histogram Specifi-

cally, if the observed values have a variance of a, the

ensemble mean has a variance of b and the covariance

between the observations and the ensemble mean is c,

then with an ensemble variance of a 1 b 2 2c the ranked

histogram will be approximately uniform. Conditional

exceedance probabilities (CEPs) were suggested by

Mason et al. (2007) as a procedure for identifying those

cases when a uniform ranked histogram was obtained

from a conditionally biased forecast system. Bröcker

et al. (2011) point out a problem with this test, and our

purpose in responding is twofold: first, to emphasize that

regardless of this problem CEPs remain valuable di-

agnostics of cases in which uniform rank histograms may

be derived from conditionally biased forecast systems;

and second, to propose a simple correction to the way in
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which the CEPs are calculated, which eliminates the

problem anyway.

One of the aims in calculating CEPs is to test for

‘‘complete calibration’’ (or ‘‘complete reliability’’)—

do subsets of the forecasts asymptote to uniform rank

histograms (Seillier-Moiseiwitsch and Dawid 1993)?

Complete calibration requires that the forecast system

is both conditionally and unconditionally unbiased. In

an incompletely calibrated (or ‘‘incompletely reliable’’)

forecast system it can be expected that the probability

of exceeding the highest-ranked ensemble member, for

example, increases as the value of that forecast de-

creases and decreases as the value increases. As a result,

rank histograms calculated only for forecasts when the

central tendency of the ensemble is above the climato-

logical median are likely to slope downward to the left,

or slope downward to the right when the central ten-

dency is below the median. While there are unquestion-

ably multiple reasons for verifying forecasts (Jolliffe and

Stephenson 2003), one of the most important reasons is

to tell us something about how to interpret the current

forecast. If a forecast system demonstrates reliability on

average, but cannot be assumed to be well calibrated for

the current forecast, its reliability would seem to be of

limited interest. Knowledge about its complete calibration

would be more helpful (Held et al. 2010). For example,

in a nine-member ensemble system, if the rank histogram

indicates that the probability of exceeding the highest-

ranked ensemble member is 10%, can we then assume that

the probability of exceeding the current highest-ranked

ensemble member is also 10%? The concepts of complete

calibration and of CEPs are designed to answer questions

like this one.

What the CEP curves, as described by Mason et al.

(2007), will do successfully, is to diagnose cases in which

an unreliable forecast system generates a uniform-

ranked histogram or probability transform integral. In

a forecast system in which variability in the median has

no association with variability in the observed values,

the CEPs will closely follow the climatological exceed-

ance probabilities. Furthermore, in a forecast system in

which the ensemble median is negatively associated with

the observed values, the slope of the CEP curves will

exceed that of the climatological exceedance probability

curve. While the curves flatten as conditional biases

are reduced, as Bröcker et al. (2011) demonstrate, the

problem is that the curves do not become flat if complete

reliability is achieved. We agree with their results, and

confirm that not only will CEPs fitted following Mason

et al. (2007) not be constant (and hence the curves will

not be flat) when calculated on ranked ensemble mem-

bers, but they will also not even be constant on quantiles

from a distribution fitted to the ensemble members.

Thus, even in a system that is completely reliable by

design, the CEP curves will still slope downward. How-

ever, even if this problem could not be addressed, CEP

curves would still be very useful for comparison of im-

provements, or deteriorations, of forecast systems.

Bröcker et al. (2011) explain that a positive sampling

error in estimating a quantile of the forecast distribution

will decrease the exceedance probability, while any neg-

ative sampling error will increase the exceedance prob-

ability. Because the exceedance probability is a function

of the sampling error, the curves are therefore not flat

even in a completely calibrated forecast system. How-

ever, if the CEPs could be calculated so that they are

independent of the sampling errors in the quantiles, then

the curves can become flat. Following the notation of

Bröcker et al. (2011), Mason et al. (2007) define the CEP

for the kth quantile as

P(Y . jkjjk) 5
exp(b0,k 1 b1,kjk)

1 1 exp(b0,k 1 b1,kjk)
, (1)

where b0,k and b1,k are parameters to be estimated, and

jk is the kth quantile estimate (whether obtained from

the values of the ranked ensemble members or from

a fitted distribution). If the ensemble is divided ran-

domly into two halves, A and B, and then independent

quantile estimates are obtained from these two halves,

the CEP can then be calculated as

P(Y . jk/2,Ajjk/2,B) 5
exp(b0,k/2 1 b1,k/2jk/2,B)

11 exp(b0,k/2 1 b1,k/2jk/2,B)
, (2)

where jk/2,A is the quantile estimate from the first di-

vision, while jk/2,B is the corresponding estimate from

the second division. Since it is arbitrary which of the two

divisions is A and which is B, separate parameter

estimates of the CEP curves could be made. Repeated

random divisions of the ensemble could also be con-

ducted to obtain additional estimates as a check for

sampling uncertainty. The reduction of the size of the

ensemble by half is clearly undesirable, and will result in

an increase in the sampling errors in the quantile esti-

mates. It may be possible to offset this effect, at least

partially, by repeating the data so that for each of the

original observed values there are two quantile esti-

mates and definitions of an exceedance event. Discus-

sion of what the resulting sample size would be is beyond

the scope of this short reply, as are more detailed dis-

cussions of the best way to minimize the additional

sampling errors introduced by dividing the ensemble.

Instead, we illustrate in Fig. 1 that the CEP curves defined
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using Eq. (2) for the completely calibrated forecast sys-

tem described by Bröcker et al. (2011) do become flat.

The definition of the CEP provided in Eq. (2) raises

questions about whether flat curves indicate completely

calibrated forecasts, or only forecasts that would be

completely calibrated if there were no sampling uncer-

tainty in estimating the quantiles. However, our conclusion

is that it is possible to obtain independent estimates of

the quantiles and the exceedance events, so that the CEP

test for reliability can be applied.
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FIG. 1. CEP curves for all 12 of the perfect Monte Carlo ensem-

bles, after division of the ensembles, when the curves are calculated

using independent estimates of the quantile and the exceedance

events. The bold line indicates the climatological probability of

exceedance. The dashed lines indicate the CEPs if ensemble di-

vision A and B are swapped. The solid lines indicate the CEPs if

the data are repeated and the ensemble divisions are swapped for

the repeat.
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