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Abstract

Compressive Sampling as an Enabling Solution for

Energy-Efficient and Rapid Wideband RF Spectrum Sensing in

Emerging Cognitive Radio Systems

Rabia Tugce Yazicigil

Wireless systems have become an essential part of every sector of the national and global economy.

In addition to existing commercial systems including GPS, mobile cellular, and WiFi communica-

tions, emerging systems like video over wireless, the Internet of Things, and machine-to-machine

communications are expected to increase mobile wireless data traffic by several orders of mag-

nitude over the coming decades, while natural resources like energy and radio spectrum remain

scarce. The projected growth of the number of connected nodes into the trillions in the near term

and increasing user demand for instantaneous, over-the-air access to large volumes of content will

require a 1000-fold increase in network wireless data capacity by 2020. Spectrum is the lifeblood

of these future wireless networks and the ’data storm’ driven by emerging technologies will lead

to a pressing ’artificial’ spectrum scarcity.

Cognitive radio is a paradigm proposed to overcome the existing challenge of underutilized

spectrum. Emerging cognitive radio systems employing multi-tiered, shared-spectrum access are



expected to deliver superior spectrum efficiency over existing scheduled-access systems; they have

several device categories (3 or more tiers) with different access privileges. We focus on lower tiered

’smart’ devices that evaluate the spectrum dynamically and opportunistically use the underutilized

spectrum. These ’smart’ devices require spectrum sensing for incumbent detection and interferer

avoidance. Incumbent detection will rely on database lookup or narrowband high-sensitivity sens-

ing. Integrated interferer detectors, on the other hand, need to be fast, wideband, and energy

efficient, while requiring only moderate sensitivity.

These future ’smart’ devices operating in small cell environments will need to rapidly (in 10s

of µs) detect a few (e.g. 3 to 6) strong interferers within roughly a 1GHz span and accordingly

reconfigure their hardware resources or request adjustments to their wireless connection consisting

of primary and secondary links in licensed and unlicensed spectrum.

Compressive sampling (CS), an evolutionary sensing/sampling paradigm that changes the per-

ception of sampling, has been extensively used for image reconstruction. It has been shown that a

single pixel camera that exploits CS has the ability to obtain an image with a single detection ele-

ment, while measuring the image fewer times than the number of pixels with the prior assumption

of sparsity. We exploited CS in the presented works to take a ’snapshot’ of the spectrum with low

energy consumption and high frequency resolutions.

Compressive sampling is applied to break the fixed trade-off between scan time, resolution

bandwidth, hardware complexity, and energy consumption. This contrasts with traditional spec-

trum scanning solutions, which have constant energy consumption in all architectures to first order

and a fixed trade-off between scan time and resolution bandwidth. Compressive sampling enables



energy-efficient, rapid, and wideband spectrum sensing with high frequency resolutions at the ex-

pense of degraded instantaneous dynamic range due to the noise folding.

We have developed a quadrature analog-to-information converter (QAIC), a novel CS rapid

spectrum sensing technique for band-pass signals. Our first wideband, energy-efficient, and rapid

interferer detector end-to-end system with a QAIC senses a wideband 1GHz span with a 20MHz

resolution bandwidth and successfully detects up to 3 interferers in 4.4µs. The QAIC offers 50x

faster scan time compared to traditional sweeping spectrum scanners and 6.3x the compressed

aggregate sampling rate of traditional concurrent Nyquist-rate approaches. The QAIC is estimated

to be two orders of magnitude more energy efficient than traditional spectrum scanners/sensors and

one order of magnitude more energy efficient than existing low-pass CS spectrum sensors.

We implemented a CS time-segmented quadrature analog-to-information converter (TS-QAIC)

that extends the physical hardware through time segmentation (e.g. 8 physical I/Q branches to 16

I/Q through time segmentation) and employs adaptive thresholding to react to the signal conditions

without additional silicon cost and complexity. The TS-QAIC rapidly detects up to 6 interferers in

the PCAST spectrum between 2.7 and 3.7GHz with a 10.4µs sensing time for a 20MHz RBW with

only 8 physical I/Q branches while consuming 81.2mW from a 1.2V supply.

The presented rapid sensing approaches enable system scaling in multiple dimensions such as

ADC bits, the number of samples, and the number of branches to meet user performance goals

(e.g. the number of detectable interferers, energy consumption, sensitivity and scan time).

We envision that compressive sampling opens promising avenues towards energy-efficient and



rapid sensing architectures for future cognitive radio systems utilizing multi-tiered, shared spec-

trum access.
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Chapter 1

Introduction

1.1 Motivation

Wireless systems have become an essential part of every sector of the national and global economy.

Mobile wireless data traffic is predicted to grow by several orders of magnitude over the coming

decades, driven by applications like video over wireless, the Internet of Things, and machine-to-

machine communications, while resources like energy and radio spectrum remain scarce. Due to

the nature of EM wave propagation, the available bandwidth at different carrier frequencies, and

the practical size of antennas, spectrum ranging from roughly 500MHz to 6GHz is of particular

importance for mobile wireless communications. As such, the electromagnetic spectrum is a finite

natural resource. If the consumer demand for instantaneous, over-the-air access to large volumes

of content continues to grow at its current rate in the US, a 500MHz to 1GHz spectrum deficit

is projected in the near to medium term. Responding to this ’artificial’ spectrum shortfall, the US

1
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President’s Council of Advisors on Science and Technology (PCAST) released a report in 2012 that

recommended sharing of up to 1GHz of federal government radio spectrum, ranging from roughly

2.7GHz to 3.7GHz, with non-governmental entities. Noting the spectrum usage inefficiency of

existing scheduled access cellular systems, the council further recommended that future systems

deployed in the PCAST bands deliver significantly improved spectrum utilization efficiency.

Cognitive radio is a paradigm proposed to overcome the existing challenge of underutilized

spectrum [1]. In today’s wireless communications shown in Fig. 1.1(a), particular frequency bands

are assigned once-and-forever for fixed uses. Conceptually Fig. 1.1(a) is similar to a highway

traffic scenario. While one of the lanes on the highway is overcrowded, other lanes including

the lanes assigned to emergency vehicles are underutilized for most of the time. In emerging

cognitive radio systems shown in Fig. 1.1(b), the mobile terminals will assess the spectrum usage

in their specific location at the given time and dynamically access the available spectrum with the

appropriate access technology (i.e. LTE, WiFi, etc.). This sort of dynamic and adaptive sharing

of spectrum will significantly alleviate the spectrum scarcity problem, while respecting the rights

of the spectrum incumbents. If we think about our conceptual example of the highway traffic

scenario, utilizing the free lanes on the highway is equivalent to the operation of cognitive radios

that are dynamic, adaptive, and opportunistic.

Future cognitive radio systems employing multi-tiered, shared spectrum access (MTSSA) shown

in Fig. 1.2 are expected to deliver superior efficiency over existing scheduled access systems; they

have several device categories (3 or more tiers) with different access privileges.

Tier 1 devices include those employed by federal and commercial RADAR, police and emer-
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Figure 1.1: Conceptual illustration of the spectrum usage in: (a) Today’s wireless communica-
tions; (b) Next-generation wireless communication systems with cognitive radios [Source: Nokia].

gency communication as well as classified military communication systems. Tier 1 devices are

guaranteed exclusive access to designated channels. The spectrum access rights of Tier 1 devices

are enforced by federal policy.

Tier 2 devices include those employed by commercial small cell operators that pay licensing

fees to gain access to designated channels for a limited duration in specific geographical vicinities.
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Scheduled access cellular communication schemes like UMTS/LTE are most likely to be employed

by Tier 2 systems. Tier 2 systems deployed in the PCAST bands may be used to offload cellular

networks deployed in other frequency bands. MTSSA systems are expected to maintain a database

that enumerates channels designated for Tier 1 and Tier 2 use only.

Tier 3 ’smart’ devices are likely to be employed by various emerging commercial systems

that opportunistically utilize the remaining spectrum. Tier 3 systems determine the availability

of spectrum through database lookup and spectrum sensing. Contention-based spectrum access

schemes, like CSMA in WiFi, are thought to be most suitable for Tier 3 systems. Examples of

Tier 3 applications include hotspots for home and enterprise, mobile gaming, machine-to-machine

communications, etc. The terminal labeled T3 Device 1 in Fig. 1.2 may, for example, take advan-

tage of the ’hotspot’ to download a movie (or other large volumes of content) by opportunistically

aggregating several available Tier 3 PCAST band channels in its immediate geographical vicinity.

This process may be facilitated by the cellular service provider of the Tier 3 device to offload the

cellular network.

Emerging cognitive radio (CR) or 5G/next-G technologies like LTE-License Assisted Access

(LTE-LAA) and LTE-Unlicensed (LTE-U) will employ under-utilized unlicensed spectrum in ad-

dition to designated licensed spectrum. Network operators will have the flexibility to move data

traffic to terminals over the licensed and unlicensed spectrum. Knowing the instantaneous in-

terference conditions in the unlicensed bands is key to managing the spectrum allocation of the

LTE-LAA/LTE-U terminal and ensuring harmonious coexistence with WiFi and other devices in

unlicensed spectrum. Lower-tier ’smart’ devices evaluate the spectrum usage dynamically and op-
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portunistically employ the underutilized spectrum. However, as in the highway example where

the vehicles need to rapidly and frequently check if the lane is free or not before they move over

to that lane on the highway, a key challenge for emerging cognitive radio systems is to assess the

spectrum usage with a rapid and low-power sensing approach before each data packet transfer.

They will require spectrum sensing for incumbent detection and interferer avoidance. Incumbent

detection will rely on database lookup or narrowband, high-sensitivity sensing. Integrated inter-

ferer detectors, on the other hand, need to be fast, wideband, and energy efficient, while requiring

only moderate sensitivity.

In the example shown in Fig. 1.3, the license-anchored LTE-LAA/LTE-U CR terminal peri-

odically senses the spectrum and opportunistically aggregates component carriers in unlicensed

spectrum. These future smart devices (e.g. carrier-aggregating receivers) operating in small cell

environments will need to rapidly (tsense ⇡ 10s of µs) detect a few (e.g. 3 to 6) strong interferers

within roughly a 1GHz span. The carrier-aggregating receiver can then be accordingly reconfig-

ured on a frame (lasting 10s of ms) basis or can request adjustments to its wireless connection

consisting of primary and secondary links in licensed and unlicensed spectrum.

As an example, future spectrum-aware receivers shown in Fig. 1.4 are envisioned to employ

one or more tunable notch filters [2] that are digitally assisted by the fast interferer detector to filter

out the interferers in a wideband spectrum. With novel circuit techniques in CMOS technology

like N-path filters, it is possible to design precise notch filters with high selectivity and tunable

center frequency. However, the key challenge is to determine where the interferers are located in

a wideband spectrum. Interferer detectors that offer simultaneously fast detection over a wide in-
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stantaneous bandwidth with fine frequency resolutions and low power, while requiring only modest

hardware resources, are the key enabling components of future cognitive radio systems.

1.2 Outline

Displayed in Fig. 1.5 is the ’landscape’ of spectrum scanners and sensors to show where the band-

pass compressed sampling architectures that we have introduced [3–5] fit into this landscape. The

key performance metrics of the spectrum scanners and sensors shown in Fig. 1.5 are energy con-

sumption per scan, scan time, instantaneous bandwidth, and instantaneous dynamic range.

Traditional spectrum scanner and sensor architectures and their limitations in terms of the key

performance metrics are presented in Chapter 2.
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Figure 1.5: Spectrum scanners and sensors ’landscape’.

We introduced a new cluster of spectrum sensors that rapidly detect few interferers (e.g. 3 to

6) over a wide instantaneous bandwidth with low power and lower overhead [3, 5]. Compressive

sampling (CS) [6, 7] is applied to break the traditional spectrum scanning trade-offs between fre-

quency span, RBW, scan time and energy consumption. Why compressive sampling presents a

solution to the spectrum sensing challenge in emerging cognitive radio systems and the challenges

associated with implementing CS for RF spectrum sensing are discussed in Chapter 3.

We developed Quadrature Analog-to-Information Converters (QAICs) [3–5] to rapidly sense

the spectrum of interest ranging from fmin to fmax in a band-pass fashion and an energy efficient

way compared to existing spectrum scanning and sensing solutions.

The rapid interferer detector using band-pass compressed sampling with a quadrature analog-

to-information converter is discussed in Chapter 4. The implementation of the interferer detector
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system consisting of a QAIC front end and a CS information recovery engine is presented in

Section 4.3. The measurement results of the interferer detector end-to-end system are presented in

Section 4.4, followed by a performance summary and discussion in Section 4.6.

We implemented a CS time-segmented quadrature analog-to-information converter [8] that em-

ploys adaptive thresholding to react to the signal conditions and extends the physical hardware

through time segmentation without additional silicon cost and complexity. The operation of the

time-segmented quadrature analog-to-information converter (TS-QAIC) and the advantages of-

fered by the TS-QAIC compared to existing compressed sampling approaches are discussed in

Chapter 5. The implementation of the rapid interferer detector with a time-segmented quadrature

analog-to-information converter is presented in Section 5.3. The measurement results of the time-

segmented rapid interferer detector system are presented in Section 5.4, followed by a performance

summary and discussion in Section 5.5.

The challenges and trade-offs associated with the design of compressed sampling architectures

are discussed in Chapter 6. The Pseudorandom Noise (PN) mixer, which is the key circuit block

of the interferer detector for rapidly capturing the wide instantaneous BW, is analyzed in terms of

the design choices and effects of its operation on the instantaneous dynamic range of analog-to-

information converters.

In Chapter 7, a summary of the research work on rapid interferer detectors that exploit band-

pass compressed sampling is given with a possible direction for extending the topics of study

included in this dissertation.



Chapter 2

Traditional Spectrum Scanning or Sensing
Architectures

Integrated spectrum scanners, like e.g. [9–12], [13], [14], or [15, 16], rely on traditional spectral

analysis which has an intrinsic trade-off between frequency span, RBW, scan time (Tscan) and

hardware complexity [17].

In a single-branch sweeping spectrum scanner (Fig. 2.1), each frequency bin is scanned se-

quentially by progressively sweeping the local oscillator (LO) driving the quadrature I/Q down-

converter.

The single-branch sweeping spectrum scanner architecture shown in Fig. 2.2 requires widely

tunable, high quality RF components that are difficult to implement on a chip. Identifying signals

over a 1GHz span with a 20MHz RBW requires a long scan time (> 220µs as will be demonstrated

in Section 4.6) which is proportional to the number of bins N0. There is a fixed trade-off between

the scan time and the RBW. Finer frequency resolution over a wide span results in increased scan

time. Therefore, the energy consumption is large and there is a risk of missing fast changing

interferers in the spectrum.

11
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The scan time in sweeping scanners can in principle be reduced by using a multi-branch archi-

tecture with multiple narrowband scanners operating in parallel. However, the energy requirements

do not improve but, to the first order, remain constant for a single-branch or a multi-branch real-

ization.

For a 1GHz span ranging from 2.7 to 3.7GHz and a 20MHz RBW, a 50-branch realization as

an example shown in Fig. 2.3, i.e. with a number of branches equal to N0, would have a 50 times

shorter scan time than a single-branch sweeping spectrum scanner, but at least a 50 times larger

power consumption so that the energy consumption remains the same. However, the hardware

complexity becomes impractical since the hardware consists of 50 branches and each branch re-
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quires a separate phase-locked loop (PLL) to generate the LO signal. The challenge is to generate

the 50 PLL frequencies that would need to be spaced closely with a distance equal to the RBW.

A Nyquist-rate FFT spectrum sensor shown in Fig. 2.4 captures the wideband interest spectrum

range with ADCs operating at a Nyquist rate of Span/2. Capturing the wideband interest spectrum

information is followed by FFT-based digital signal processing with an FFT size of N0 to map the

information to the desired RBW.

As shown in Fig. 2.5, a Nyquist-rate FFT spectrum sensor would require a prohibitively high

aggregate analog-to-digital (A/D) conversion rate of 2GSps after I/Q downconversion to sense a

1GHz bandwidth ranging from 2.7 to 3.7GHz. Even though the scan time is reduced, this is a power

hungry approach due to the high sampling rate required for the Nyquist-rate wideband sensing.

A hybrid approach (see e.g. [18]) for a 1GHz bandwidth would have an IF bandwidth (IFBW)

limited to hundreds of MHz that is larger than the desired RBW (e.g. 20MHz) and it would be
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required to perform an FFT to further subdivide this into the desired RBW. This approach would

not require as long a scan time as the single-branch sweeping spectrum scanner but the scan time

would be limited by the IF bandwidth and the FFT size.

The energy consumption for a scan is given by the power consumption, P, times the scan time,

Tscan, which has two contributions: front-end detector response time Tresp and recovery time Trec

(i.e. time required to complete the necessary signal processing):

E = P ·Tscan = P · [Tresp +Trec]. (2.1)

The energy consumption for a single-branch sweeping spectrum scanner is given by:

Escanner = Pscanner · [N0 · (Csettle/BWfilter)+N0 · (Ns/ fs)] = P · (N0 ·Tscan). (2.2)
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where Pscanner is the power consumption for a single-branch sweeping spectrum scanner; Tresp,scanner

is proportional to the number of bins, N0 = Span/RBW , and the filter settling time which is in-

versely proportional to its bandwidth BWfilter (BWfilter = RBW/2); Csettle is the number of filter time

constants needed for an accurate power reading1. Trec,scanner is proportional to the number of bins,

N0, the number of samples used for recovery, Ns, and inversely proportional to the ADC sampling

rate, fs.

The energy consumption for a multi-branch spectrum sensor is given by:

Emulti = Pmulti · [Tresp,multi +Trec,multi] = Pmulti · [(Csettle/BWfilter)+(Ns/ fs)] = (N0 ·P) ·Tscan. (2.3)

For a multi-branch spectrum sensor, the scan time is reduced by N0, while the power consump-

tion P is increased by N0 to the first order. So the energy consumption remains the same. Parallel

architectures only allow the user to trade hardware complexity and power consumption for faster

scan time.

The energy consumption for a Nyquist-rate FFT spectrum sensor is given by:

Enyquist = Pnyquist · [(Csettle/BWfilter)+N0 · (Ns/ fs)]⇡ (N0 ·P) ·Tscan. (2.4)

For a Nyquist-rate FFT spectrum sensor, Tresp,nyquist is proportional to the filter settling time

which is inversely proportional to its bandwidth BWfilter (BWfilter = Span/2). This architecture

subdivides the instantaneous BW into the desired RBW, Trec,nyquist is proportional to the FFT size,

1Csettle depends on the desired power reading accuracy; we estimate a Csettle value of 4 based on experiments with
the Hewlett Packard 3585A spectrum analyzer.
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N0, the number of samples used for recovery, Ns, and inversely proportional to the ADC sampling

rate, fs. Since the ADC sampling rate is N0 times higher than the sweeping spectrum scanner, the

scan time is reduced by N0.

For a Nyquist-rate FFT spectrum sensor, the ADC power is the dominant contribution to the

power consumption. Assuming that the ADC FOM is PADC/( fs · 2ENOB), to the first order, ADC

power consumption is proportional to the sampling rate, fs, (for this case fs is the Nyquist rate for

the Span/2) and the ADC resolution [19]. For a Nyquist-rate FFT spectrum sensor, the scan time is

reduced by N0 while the power consumption P is increased by N0, so, to the first order, the energy

consumption again remains the same.

Finally, for a hybrid approach, the scan time Tscan is reduced by IFBW/RBW (< N0); while the

power consumption P is increased by IFBW/RBW to the first order compared to a single-branch

sweeping spectrum scanner so the energy consumption remains the same.

Performance summary of the traditional spectrum scanning or sensing solutions is shown in Ta-

ble 2.1. We note that to a first order, the energy consumption remains constant for all architectures.

Therefore, there is a fixed trade-off between scan time and power consumption.

The evolutionary sampling theorem ’Compressive Sampling’ discussed in Chapter 3 that breaks

the limitations of the traditional sampling is exploited for energy-efficient and rapid spectrum sens-

ing. Compressive sampling (CS) [3, 4, 20–30] and other sub-Nyquist sampling methods [31–34]

have the potential to deliver energy-efficient wideband spectrum sensors suitable for mobile ter-

minal applications. In recent years, several CS approaches have been proposed to overcome the

prohibitive energy costs associated with Nyquist-rate wideband spectrum sensing [4].
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Table 2.1: Performance summary of the traditional spectrum scanning or sensing solutions
Sweeping 
Scanner 

Multi-branch 
Sensor 

Nyquist-rate 
 FFT Sensor 

Scan Time ✗ ✓ ✓ 
Power 

Consumption 
✓ ✗ ✗ 

Energy 
Consumption 

✗ ✗# ✗#

Hardware 
Complexity 

✓ ✗ ✓ 

Branch 
Sampling Rate 

✓ ✓ ✗ 
 



Chapter 3

Exploiting Compressive Sampling for Rapid
Spectrum Sensing

3.1 Compressive Sampling to the Rescue

Compressive sampling (CS) is an evolutionary sampling paradigm that changes the perception

of traditional sampling. The traditional Shannon/Nyquist sampling theorem requires uniformly

sampling the signal at twice the maximum frequency of interest [35]. Conversely, CS is a blind

sub-Nyquist sampling approach that allows the user to sample at a rate that is defined by the

information bandwidth (a.k.a. signal bandwidth) rather than the instantaneous bandwidth with the

prior assumption of sparsity [6, 7, 22, 23, 36–38].

Compressive sampling makes it possible to recover information from fewer measurements than

the unknown signal values. Therefore, it tries to solve an ’underdetermined’ system of linear equa-

tions (a.k.a. an ill-posed problem), that would have infinitely many solutions. With the prior

assumption of sparsity, a unique solution, that is the ’sparsest solution’, can be found for the under-

determined system of linear equations. The CS measurements are nonadaptive linear projections

19
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onto an incoherent basis with the basis, where the signal could be defined as sparse with only a

few nonzero coefficients [7, 37, 39].

Shown in Fig. 3.1 is an illustration of how compressive sampling remedies the spectrum sens-

ing problem. The traditional multi-branch spectrum sensor with massively parallel branches (N0

branches), which has one branch per bin of information, is an equivalent representation of a multi-

pixel camera. The multi-branch spectrum sensor is a fast but impractical solution in terms of

hardware complexity, energy consumption, and cost.

Compressive sampling has been extensively used for image reconstruction. It has been shown

that a single-pixel camera that exploits CS has the ability to obtain an image with a single de-

tection element, while measuring the image fewer times than the number of pixels with the prior

assumption of sparsity [40, 41].

We exploited CS in the presented works to take a ’snapshot’ of the spectrum, a 1-D spectrum

image, with low energy consumption and high frequency resolutions. The compressed sampling

quadrature analog-to-information converter shown in Fig. 3.1 is the equivalent of the CS single

pixel camera [40,41]. The QAIC takes a ’snapshot’ of a 1GHz spectrum with only 8 I/Q branches,

compared to 50 I/Q employed by a traditional multi-branch spectrum sensor. Therefore, a CS

spectrum sensor with a QAIC offers more than a sixfold reduction in the number of branches.

3.2 Using Compressive Sampling for Spectrum Sensing

We apply compressive sampling [6, 7] to break the energy consumption, scan time and hardware

complexity trade-off. We are interested in detecting active interferers above a certain signal-level
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threshold, which can be represented by sparse multi-band signal model shown in Fig. 3.2 [4, 23].

Sparse multi-band signal model, that is used in modulated wideband converter (MWC) type ar-

chitectures [23, 42, 43] and in our band-pass CS architectures, QAIC [3–5] and TS-QAIC [8], is

explained in detail in Section 3.2.1.

CS spectrum sensors use incoherent measurements obtained by mixing the wideband RF input

signal with independent unique pseudorandom noise (PN) sequences that fold the wideband input

signal onto narrowband baseband channels. CS digital signal processing (DSP) techniques identify

the active bands (a.k.a. supports) from the samples. A band is considered active if it contains

energy above a certain adaptive threshold.

CS signal detection [25,44–46] is a statistical process and key metrics are the detection proba-

bility PD, and the false alarm probability PFA. PD is the probability that the detector indeed correctly

detects an interferer that is present in the RF input spectrum; PFA is the probability that the detector

reports a spectrum bin as occupied when there is no signal present in the RF input spectrum.

In a CS spectrum sensor the required number of parallel branches [4, 42], mCS, is significantly

smaller than N0 and it is determined by the maximum number of supports, K0, the length of the PN

sequence, L, and a constant, C:

mCS ⇡C ·K0 · log
✓

L
K0

◆
. (3.1)

3.2.1 Sparse Multi-band Signal Model

We consider real-valued, square-integrable signals, x(t), as our sparse multi-band signals [4, 23].

The sparse multi-band signal x(t) satisfies two properties: (i) the Fourier transform X( f ) vanishes
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0 fmax
f

fmin-fmax -fmin

iTH support

N = 2N0 total bands
K = 2K0 total supports 

Upper Band Cluster
N0 positive frequency bands
K0 positive frequency supports 

Lower Band Cluster
N0 negative frequency bands
K0 negative frequency supports 

Bi ≤RBW

Figure 3.2: Example of a sparse multi-band signal spectrum with its signal parameters.

outside of a known interval F = (� fmax,� fmin]
S

[ fmin, fmax) and (ii) the support of X( f ) is a

relatively small subset of F (i.e., X( f ) is sparse).

To formalize the second property, we assume that F has been partitioned into N = 2N0 disjoint

bands, each of width at most RBW , and that X( f ) is supported on only K = 2K0 < N = 2N0 of

these bands. Specifically, the power of 2K0 bands exceeds a predefined level (a.k.a. threshold).

We refer to these 2K0 bands as active bands or supports. If the spectral occupancy K0/N0 is small,

then the support of X( f ) has Lebesgue measure  K ·RBW Hz much smaller than the Nyquist

bandwidth, twice the maximum frequency ( fNYQ = 2 fmax Hz) of the signal x(t).

An example of a sparse multi-band signal spectrum is shown in Fig. 3.2. We let M denote the

set of such sparse multi-band signals. Our goal is to efficiently sense signals from M , even if the

spectral locations of the K supports are not known in advance.
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3.2.2 Existing Low-pass CS Architectures

Existing low-pass CS architectures [26, 28, 42, 43], such as the modulated wideband converter

(MWC) [42, 43] shown in Fig. 3.3, sense the input spectrum from DC to fmax. Since the MWC

operates on a real signal x(t), it processes 2N0 total bands with 2K0 active supports. The required

number of branches for the MWC is mMWC. The input signal x(t) is first amplified by a low noise

amplifier and then mixed with mMWC unique PN sequences and low pass filtered. These +1/-1

unique PN sequences need to have low cross-correlation for robust recovery performance.

The MWC uses ADCs operating at a rate commensurate with the desired resolution bandwidth

and the aggregate sampling rate is lower than the traditional Nyquist-rate architectures thanks to

the use of CS DSP techniques and the reduction in the number of branches. While the aggregate

sampling rate and the power consumption of the ADCs are reduced, the need to mix with high-rate

PN sequences diminishes the energy savings.

In a low-pass CS MWC architecture the clock rate, fCLK , of the PN sequences is set by the

Nyquist rate for fmax ( fCLK � 2 fmax), while the length of the sequences depends on the desired

RBW, L = fCLK/RBW . E.g., to sense a 1GHz span ranging from 2.7 to 3.7GHz with 3 active

interferers with a 20MHz RBW, fCLK is 10.22GHz for a 511-long maximal length sequence (m-

sequence) based on a linear feedback shift register (LFSR) implementation. Since an LFSR based

implementation by using n flip-flops generates m-sequences with 2n �1 length, 511 is the shortest

length to obtain 20MHz RBW and generate an m-sequence that operates at a rate, fCLK � 2 fmax.

Also the required mMWC is 29, proportional to the K0 and the logarithmic factor (L/K0) given in

(3.1). See Table 4.1 for the details. Since the mMWC is reduced to 29, the aggregate sampling
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Figure 3.3: Low-pass compressed sampling spectrum sensor employing a modulated wideband
converter architecture; for a maximum input signal frequency, fmax, of 3.7GHz and a RBW of
20MHz, the PN sequence clock frequency, fCLK, needs to be 10.22GHz and the sequence length
needs to be 511 for an LFSR implementation; to recover up to 3 interferers, 29 branches are
required.

rate is 580MSps compared to 2GSps for a traditional Nyquist-rate architectures. The low-pass

CS MWC architecture offers a 3.45 times compression in the aggregate sampling rate to sense

a 1GHz of spectrum ranging from 2.7 to 3.7GHz. In practical realizations, the generation and

distribution of the high-rate PN sequences is the most power hungry block of the low-pass CS

architectures [26, 28].

Fig. 3.4 shows how low-pass compressive sampling maps the information in the input spectrum

onto the mMWC branches. The mMWC unique PN sequences fold the wideband input RF signal

ranging from DC to fmax onto mMWC narrowband baseband channels. After A/D conversion, the CS

DSP disentangles the information and identifies the supports (i.e. the interferers). For a spectrum

sensing application where there are no signals of interest below fmin, the sensitivity is degraded due
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to the extra noise folding in from DC to fmin frequency range in the low-pass compressed sensing

approach.

Fig. 3.5 also shows the spectra of the signals at various nodes of a branch i of the low-pass CS

spectrum sensor. X( f ) is the band of interest from 2.7 to 3.7GHz with K0 active bands (interferers)

above a certain threshold level. The spectrum of Gi( f ) with a length, L, and fp = fCLK/L which

is equal to RBW, is estimated by spectral lines d with a sinc square shape with the following

relation [47]:

Gi( f ) =

2

64
•

Â
r=�•
r 6=0

d( f � r fp)

3

75
L+1

L2

✓
sinp f/ fCLK

p f/ fCLK

◆2
+

1
L2 d( f ); (3.2)

the main lobe of the sinc square shaped spectrum Gi( f ) extends from DC to twice the maximum

frequency ( fmax). The spectrum of the output signal of the PN mixer is the convolution of the

PN sequence Gi( f ) spectrum with the input spectrum as shown in Fig. 3.5. Mixing with a PN

sequence spreads the spectrum, shifts the information of each band by multiples of RBW , and

every bin contains energy from all bins. After low pass filtering, the signal xBB,i is obtained that

contains one replica of the folded spectrum which is then sampled and converted into the digital

domain. The CS signal recovery provides an index set of active interferer locations.

For an MWC based spectrum sensor, the scan time contributors are the front-end detector

response time Tresp,MWC and recovery time Trec,MWC (3.3). Energy consumption for an MWC based

spectrum sensor is given by:

EMWC = PMWC · [Tresp,MWC+Trec,MWC] = PMWC · [(Csettle/BWfilter)+(Ns/ fs)] = PMWC ·Tscan. (3.3)
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Figure 3.5: Spectra of the key signals of the low-pass compressed sampling spectrum sensor
employing a modulated wideband converter shown in Fig. 3.3.

To sense a 1GHz of span ranging from 2.7 to 3.7GHz, the MWC based spectrum sensor offers

50 times faster scan time compared to the sweeping spectrum scanners, 3 to 4 times compression

in the aggregate sampling rate compared to multi-branch spectrum sensors and Nyquist-rate FFT

spectrum scanners. The low-pass CS MWC based spectrum sensor also offers 3 to 4 times com-

pression in the number of branches compared to multi-branch spectrum sensors. However due

to the high rate and long length of the PN sequences, the power consumption of an MWC based

spectrum sensor, PMWC, is relatively high which diminishes the potential energy savings compared

to traditional approaches.

A band-pass CS architecture shown in Fig. 3.6 is proposed as an enabling solution for rapid

interferer detection over a wide span at the same time with lower power consumption, reduced
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number of branches and improved sensitivity compared to the existing low-pass CS architectures,

while breaking the limitation of the sampling in traditional Nyquist-rate architectures by employing

the CS front-end block prior to ADCs operating at a sub-Nyquist rate shown in Fig. 3.6. The band-

pass CS architecture overcomes the majority of the limitations associated with the existing low-

pass CS architectures, but it still has an intrinsic trade-off between the instantaneous bandwidth

and the instantaneous dynamic range.



Chapter 4

Energy-Efficient, Wideband and Rapid
Interferer Detectors with Compressed
Sampling Quadrature
Analog-to-Information Converters

4.1 Using the Quadrature Analog-to-Information Converter for

Spectrum Sensing

In [3–5], we introduced a quadrature analog-to-information converter (QAIC) architecture shown

in Fig. 4.1. QAIC is a band-pass architecture and only senses the spectrum from fmin to fmax

which is superior for spectral analysis applications. The required number of branches for QAIC

is mQAIC. The QAIC consists of a wideband LNA followed by a wideband RF I/Q downconverter

and baseband I/Q PN mixing branches driven by mQAIC unique PN sequences.

Thanks to the signal bandwidth reduction performed by the RF I/Q downconverter stage at the

input of the I/Q PN mixers, the fCLK for the PN sequences is now only ( fmax- fmin), while the length

of the sequences depends on the desired RBW, L = fCLK/RBW . For a 1GHz frequency span and

30
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Figure 4.1: Proposed band-pass compressed sampling spectrum sensor employing a quadra-
ture analog-to-information converter (QAIC) architecture. For an input signal frequency range
[ fmin, fmax] from 2.7 to 3.7GHz and a RBW of 20MHz the PN sequence clock frequency, fCLK
needs to be 1.26GHz and the sequence length needs to be 63 for an LFSR implementation. To
recover up to 3 interferers, 8 I/Q branches are required.

RBW of 20MHz, fCLK is 1.26GHz with a 63-long LFSR implementation. The reduced clock rate

and the reduced length of the PN sequences yield significant power savings compared to low-pass

CS architectures.

Fig. 4.2 shows how the QAIC processes the information in the input spectrum. The band-

pass compressed sampling approach folds the information onto narrowband baseband channels

from all bins ranging from 2.7 to 3.7GHz by first mixing with an I/Q LO signal and then mixing

the complex baseband signal with 8 unique +1/-1 pseudorandom noise sequences. Compressed

sampling support recovery to disentangle this mapping is performed in the information recovery

engine (IRE) with complex domain signals in this work.

Fig. 4.3 shows the spectrum at various nodes of a branch i of the band-pass CS architecture.
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Figure 4.3: Spectra of the key signals in the band-pass compressed sampling spectrum sensor
employing a QAIC shown in Fig. 4.1 [3].

X( f ) is the interest spectrum band ranging from 2.7 to 3.7GHz with K0 active bands (interferers)

above a certain threshold level. XI,i( f )+ jXQ,i( f ) shows the down converted complex baseband

signal in branch i around DC after the filtering with a 3-dB BW of ( fmax � fmin)/2. Gi( f ) is the

spectrum of the ith PN sequence with a length of 63 and a clock rate of 1.26GHz. Convolution

of the PN sequence Gi( f ) spectrum with the band-limited complex baseband spectrum and low

pass filtering with a 3-dB BW of RBW/2 in the I and Q legs yields the complex-domain baseband

output XBB,I,i( f )+ jXBB,Q,i( f ) which is then digitized.
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4.2 Frequency Domain Analysis of a QAIC

The QAIC block diagram shown in Fig. 4.4 is used to derive a set of equations that describe

the QAIC system operation. Since the key new subsystem block introduced into the QAIC is

the downconverter, its impairments are included in the frequency domain model. Only linear im-

pairments are considered in this analysis. The downconverter frequency independent impairment

model described by (4.1) is shown in Fig. 4.4.

0

BB@
x̃I,mix(t)

x̃Q,mix(t)

1

CCA=

0

BB@
k11 k12

k21 k22

1

CCA

0

BB@
xI,mix(t)

xQ,mix(t)

1

CCA (4.1)

The in-phase (I) and quadrature-phase (Q) local oscillator signals of the downconverter, LOI(t)

and LOQ(t), are modeled as (4.2) [48]. The parameters e and g specify the downconverter gain

imbalance and phase imbalance.

LOI(t) = (1+ e/2) · cos(wlot + g/2)

LOQ(t) = (1� e/2) · sin(wlot � g/2) (4.2)
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The composite parameters that models the phase and gain imbalance of the I/Q downconverter in

(4.1) are given by (4.3).

k11 = (1+ e/2) · cos(g/2)

k12 =�(1+ e/2) · sin(g/2)

k21 =�(1� e/2) · sin(g/2)

k22 = (1� e/2) · cos(g/2) (4.3)

The frequency dependent mismatch [49] between the I and Q paths introduced by the downcon-

verter and other components is modeled with low-pass filters hI(t) and hQ(t) as illustrated in Fig.

4.4. For the purpose of this analysis, frequency dependent I, Q mismatch is ignored and only

frequency independent I, Q impairments are included in the rest of the analysis.

Let x(t) 2 M be a sparse multi-band signal as defined in Section 3.2.1. xI(t) and xQ(t) are the

low-pass filtered outputs of the I/Q downconverter. Assume that pi(t) is a Tp-periodic PN sequence

of length L = 2L0 +1, where L0 2 Z+. Let fp = 1/Tp and therefore, pi(t) =
•

Â
n=�•

bi,n e j2pn fpt . The

weights bi,n are evaluated in (4.4), where bi,0 . . .bi,L�1 are the amplitudes of the ith branch PN

sequence employed by the QAIC [47]. Note that qn = (1� e� j 2p
L n)/ j2pn and yn,k = e(� j 2p

L nk) in

(4.4).

bi,n =

8
>>>>><

>>>>>:

1
L

L�1

Â
k=0

bi,k when n = 0

L�1

Â
k=0

bi,k qn yn,k when n 6= 0

(4.4)

The Fourier transform of xBB,I,i(t) = xI,PN,i(t) ⇤ h(t) and xBB,Q,i(t) = xQ,PN,i(t) ⇤ h(t) are given in
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(4.5). The inputs XI,PN,i( f ) and XQ,PN,i( f ) to the filters with impulse response h(t) are linear

combinations of the fp shifted copies of XI( f ) and XQ( f ).

XBB,I,i( f ) =
L0

Â
n=�L0

bi,n [k11XI,mix( f �n fp)+k12XQ,mix( f �n fp)]

XBB,Q,i( f ) =
L0

Â
n=�L0

bi,n [k21XI,mix( f �n fp)+k22XQ,mix( f �n fp)]

(4.5)

Since XI( f ), XQ( f ) = 0 when f is not in the range �( fmax� fmin)/2 to ( fmax� fmin)/2, the Fourier

transform in (4.5) can be expressed with a finite sum. The signals xBB,I,i(t) and xBB,Q,i(t) are

sampled at fs samples per second. The samples yI,i[n] and yQ,i[n] are combined and the output of

the complex combiner yi[n] are used to recover the support of the input signal x(t). The Fourier

transform of the signals yi[n] is given in (4.6).

Yi(e j2p f Ts) =
1
Ts

L0

Â
n=�L0

L�1

Â
k=0

{

bi,k yn,k qn[k11XI,mix( f �n fp)+k12XQ,mix( f �n fp)] ⌥

j bi,k yn,k qn[k21XI,mix( f �n fp)+k22XQ,mix( f �n fp)] }

(4.6)

The QAIC operation is described by (4.7), where F̃̃F̃F2R2m⇥2L is the sensing matrix, Ỹ̃ỸY2C2L⇥2L

is the dictionary matrix and Q̃̃Q̃Q 2 C2L⇥2L is a diagonal matrix containing a set of complex weights.

YYY (e j2p f Ts) =AAA z̃̃z̃z( f ) = SF̃ỸQ̃SF̃ỸQ̃SF̃ỸQ̃KKK z̃̃z̃z( f ) (4.7)

The matrices SSS and KKK represent the complex combiner action and the downconverter impair-
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ments respectively. The complex combiner action is described by the matrix SSS 2 Cm⇥2m given in

(4.8).

SSS =

2

6666664

1 · · · 0 ⌥ j · · · 0

... . . . ...
... . . . ...

0 · · · 1 0 · · · ⌥ j

3

7777775
(4.8)

The block diagonal matrices F̃̃F̃F 2 R2m⇥2L, Ỹ̃ỸY 2 C2L⇥2L and Q̃̃Q̃Q 2 C2L⇥2L described in (4.9)

consist of the matrices FFF 2 Rm⇥L, YYY 2 CL⇥L and QQQ 2 CL⇥L respectively. The rows of the matrix

FFF contain the amplitudes of the mQAIC unique pseudo-random noise sequences employed by the

QAIC. YYY is a discrete Fourier transform matrix and QQQ is a diagonal matrix containing the complex

weights qn given in equation (4.4).

F̃̃F̃F =

2

664
FFF 0

0 FFF

3

775 ;Ỹ̃ỸY =

2

664
YYY 0

0 YYY

3

775 ;Q̃̃Q̃Q =

2

664
QQQ 0

0 QQQ

3

775 (4.9)

The action of the quadrature RF downconverter with frequency independent linear impairments

is described by the matrix KKK 2R2L⇥2L given in (4.10). The entries of the matrix KKK are those given
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in (4.1). We note that KKK is an identity matrix for an impairment free downconverter.

KKK =

2

6666666666666666664

k11 · · · 0 k1,2 · · · 0

... . . . ...
... . . . ...

0 · · · k11 0 · · · k12

k2,1 · · · 0 k22 · · · 0

... . . . ...
... . . . ...

0 · · · k2,1 0 · · · k22

3

7777777777777777775

(4.10)

The vector z̃̃z̃z( f ) 2 C2L in (4.7) includes all of the (2L0 + 1) frequency shifts of XI,mix( f ) and

XQ,mix( f ) by fp Hz. The vector z̃̃z̃z( f ) is described in (4.11).

z̃̃z̃z( f ) =

0

BBBBBBBBBBBBBBBBBBBBBB@

1
2 [X( f � flo +L0 fp)+X( f + flo +L0 fp)]

...

1
2 [X( f � flo �L0 fp)+X( f + flo �L0 fp)]

1
2 j [X( f � flo +L0 fp)�X( f + flo +L0 fp)]

...

1
2 j [X( f � flo �L0 fp)�X( f + flo �L0 fp)]

1

CCCCCCCCCCCCCCCCCCCCCCA

(4.11)

Given observations (4.7), we can attempt to recover the sparse vectors z̃̃z̃z( f ) from measurements

YYY ( f ), and hence determine the frequency support of the input signal x(t). This can be done effi-

ciently using techniques from convex optimization [6, 7, 36, 37] if the matrix AAA in (4.7) respects
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the geometry of the sparse vector z̃̃z̃z( f ). Specifically, if for a small constant d, (4.12) holds then the

sampling and reconstruction procedure will succeed.

(1�d)ksssk2
2  kAsAsAsk2

2  (1+d)ksssk2
2 8 2K0-sparse sss (4.12)

For example, if in (4.7) F̃̃F̃F is a random matrix (say with entries independent uniform ±1), the

product F̃ỸF̃ỸF̃Ỹ satisfies requirement (4.12) with high probability.

4.2.1 System Design Parameters of Band-pass and Low-pass Compressed

Sampling Architectures

Low-pass CS architectures, like the MWC [42] sample a real signal x(t) 2 M at RF. Its frequency

span extends from DC to fmax and contains N0 = d fmax/RBWe bands. The PN mixing stages

employed by the MWC processes 2N0 total bands (N0 positive, N0 negative frequency bands) and

2K0 active bands or supports [42]. In contrast, band-pass CS architectures, like the QAIC [3–5] and

the TS-QAIC sample a complex signal xI(t)+ j · xQ(t) at an intermediate frequency (IF). Span of

the band-pass CS architectures extends from fmin to fmax and contains N0 = d( fmax � fmin)/RBWe

total bands. The I and Q path PN mixing stages employed by the QAIC together process N0 total

bands and K0 active bands. We note that the number of bands 2N0 processed by the MWC is much

larger than that processed by the QAIC when fmin >> 0. The downconverter parameters flo (local

oscillator frequency) and f3dB�RF (RF low-pass filter bandwidth) afford the QAIC an additional

degree of frequency span adjustability compared to the MWC. Employing values for the parameter
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pair { flo, f3dB�RF} as shown in Table 4.1, both the lower and upper ends of the QAIC frequency

span may be adjusted. In contrast, only the upper end of the MWC span is adjustable and this has

significant sensitivity implications. Note however, that the QAIC flexibility comes at the cost of an

unwanted band cluster residual at IF caused by I, Q path gain and phase imbalances. Depending

on the level of I, Q imbalance, this can increase the false alarm probability of the QAIC.

It is assumed that both the MWC and QAIC systems employ maximal length PN sequences

generated with linear feedback shift register (LFSR) structures. The sequence length L is equal to

2n�1, where n 2 Z+ for a maximal length LFSR type PN sequence. The number of shift registers

n in the LFSR structure must be chosen such that L � 2N0 for the MWC and L � N0 for the QAIC.

The chipping frequency fCLK of the PN sequences employed by the MWC must be greater than

twice the maximum frequency fmax of the input signal. See [42] for details. In contrast, fCLK for

the QAIC must be greater than the band cluster width ( fmax � fmin) of the input signal. Note that

for an input signal with fmin >> 0 the difference between the chipping frequency and length of

the PN sequences employed by the MWC and QAIC may be quite significant. This has significant

energy consumption and sensitivity implications. Therefore, these features of the low-pass CS

architectures make it a more suitable solution for baseband applications, while the band-pass CS

architectures offer lower energy consumption and better sensitivity compared to the low-pass CS

architectures especially at RF frequencies.

The total number of branches mCS needed by the MWC, QAIC for successful signal recovery

is proportional to the number of observed supports multiplied by a logarithmic factor and constants

CMWC � 1, CQAIC � 1. mCS µ 2K0 branches are required by the MWC [42]. Due to its complex
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I, Q structure the QAIC requires mQAIC µ K0 in-phase and quadrature-phase branches. The QAIC

therefore employs mCS = 2mQAIC total branches. The required sampling rate per branch for both

systems is fs � RBW Hz. The aggregate sampling rate of each system is mCS · fs. It should be

noted that the number of branches mCS may be traded, can be reduced by a factor q, where q 2 Z+

(q > 1), for the branch sampling rate fs, while maintaining the same aggregate sampling rate as

shown in Table 4.1.

The MWC and QAIC system design parameters are summarized in Table 4.1. The required

number of branches for MWC and QAIC is provided to sense a 1GHz of spectrum ranging from 2.7

to 3.7GHz with a RBW of 20MHz. The estimated constants for MWC and QAIC are CMWC = 2.96

and CQAIC = 2 respectively [4]. Since the QAIC observes only the bins in the frequency range of

interest, it requires significantly fewer branches, 8 complex I/Q branches (16 physical branches) vs

29 branches, for a 1GHz span with a 20MHz RBW. Reduced number of branches of a QAIC thus

allows a smaller aggregate sampling rate, up to 1.8 times less than MWC and 6.3 times less than

traditional Nyquist-rate architectures [3, 4].

The effective noise bandwidth to account for the noise folding tracks the instantaneous band-

width of the QAIC and is defined by L ·RBW which scales with the span. To half the RBW for a

given span, L needs to double; the effective noise folding then remains the same; in essence the

impact of noise folding will not reduce when reducing RBW but only when reducing the span.

The smaller signal bandwidth after downconversion results in a reduced noise folding and thus an

improved sensitivity of the QAIC by 10log(511/63) or 9.1dB that is proportional to the ratio of
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Table 4.1: Design parameters for compressed-sampling spectrum sensors with a design example
for a 2.7 to 3.7GHz sensor with a 20MHz RBW

I/Q Downconverter LO Frequency flo N/A N/A (fmax+fmin)/2 3.2GHz
3-dB RF I/Q BW f3dB-RF N/A N/A (fmax-fmin)/2 500MHz

Number of branches mCS 29 16
Length of the PN Sequences L (2n-1)≥2N0 511 (2n-1)≥N0 63

PN Sequence Generator Clock 
Frequency fCLK L.RBW≥2fmax 10.22GHz L.RBW≥(fmax-fmin) 1.26GHz

Aggregate Sampling Rate mCS.fs ≥q.mCS.RBW 580MSps ≥q.mCS.RBW 320MSps
N/A = Not Applicable

MWC based spectrum sensor QAICSystem Parameters

2K0.CMWC.log(L / 4K0) / q!" #$ 2 K0.CQAIC.log(L / K0) / q!" #$

the length of the PN sequences [3, 4]. These advantages lead to significant energy efficiency and

sensitivity improvements as demonstrated in Section 4.6.

4.2.2 Key Performance Metrics of the Band-pass Compressed Sampling Spec-

trum Sensors with a QAIC

For a QAIC based spectrum sensor, the scan time is set by the front-end detector response time

Tresp,QAIC and recovery time Trec,QAIC (4.13). Energy consumption is given by:

EQAIC = PQAIC · [Tresp,QAIC +Trec,QAIC] = PQAIC · [(Csettle/BWfilter)+(Ns/ fs)] = PQAIC ·Tscan.

(4.13)

To sense a 1GHz of span ranging from 2.7 to 3.7GHz, the QAIC based spectrum sensor offers

50 times faster scan time compared to the sweeping spectrum scanners, while 6.3 times compres-

sion in the aggregate sampling rate compared to multi-branch spectrum sensors and Nyquist-rate

FFT spectrum scanners. The QAIC based spectrum sensor furthermore offers 6.3 times compres-

sion in the number of branches compared to multi-branch spectrum sensors that require 50 I/Q
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branches in parallel to sense a 1GHz span with a 20MHz RBW. While keeping the scan time

short, the power consumption of a QAIC based spectrum sensor, PQAIC, is reduced compared to an

MWC based spectrum sensor by an order of magnitude proportional to the reduction of the rate

and length of PN sequences thanks to architectural changes. With these reductions in the power

consumption and the scan time, QAIC offers potentially two orders of magnitude reduction in the

energy consumption compared to traditional spectrum scanner and sensor architectures.

The QAIC based spectrum sensor further offers a 1GHz-wide instantaneous bandwidth as a key

performance metric compared to the traditional sweeping spectrum scanners that have a smaller

instantaneous bandwidth equal to their RBW. There is a fixed trade-off between the instantaneous

bandwidth and the instantaneous dynamic range. This relationship between the instantaneous

bandwidth and the instantaneous dynamic range for analog-to-information converters (AICs) and

the system design parameters that have an impact on the instantaneous dynamic range especially

for QAIC and TS-QAIC systems are explained in detail in Chapter 6.

In addition to the high energy efficiency, short scan time and wide instantaneous bandwidth,

the QAIC is a highly scalable system. The QAIC scalability is demonstrated in terms of varying

ADC resolutions and the number of parallel branches in Section 4.4.5.
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4.3 Implementation of Rapid Interferer Detector Using a QAIC

4.3.1 Architecture of the Rapid Interferer Detector Using a QAIC

The block diagram of the band-pass CS rapid interferer detector system employing a QAIC is

shown in Fig. 4.5. The system controller configures the QAIC hardware and software resources

according to user specified system constants and performance targets such as RBW, sensitivity,

maximum and minimum frequencies of interest, fmax and fmin, PD and PFA. The implementation

details of the QAIC chip are presented in Section 4.3.2 with RF front-end circuit details and Sec-

tion 4.3.3 with baseband circuit consists of PN sequence generation details, while the CS DSP is

discussed in Section 4.3.4.

4.3.2 Circuit Implementation of the CS QAIC RF Front-End Blocks

The 2.7-3.7GHz QAIC prototype circuit implementation is shown in Fig. 4.6. It implements the

functions in the shaded box in the band-pass CS interferer detector system diagram in Fig. 4.5.

The chip has been implemented in a 65nm CMOS GP technology.

The QAIC chip uses a wideband noise-canceling low-noise amplifier (LNA) [50, 51]. A wide-

band noise-canceling LNA is preferred since impedance matching is required for a wide instan-

taneous bandwidth of 1GHz. The post-layout simulated LNA gain for typical process corner is

15.8dB to 14.6dB from 2.7 to 3.7GHz and the simulated S11 <�10dB for a wide bandwidth from

1 to 3.7GHz for typical process corner. The measured LNA power consumption is 14mW from a

1.1V supply.



45

Gold Sequence 
Generator

gm-1(t)

C
om

pl
ex

 C
om

bi
ne

r

y1

sin(ωlot)

cos(ωlot)
x(t) xI(t)

xQ(t)

xBB,I,m-1(t)

xBB,I,1(t)

xBB,Q,1(t)

xBB,Q,m-1(t)

fmin to fmax

(fmin+fmax)

(fmax-fmin)

fs=RBWf3dB-BB=RBW/2

f3dB-RF=(fmax-fmin)/2

ADC

ADC

ADC

ADC

xBB,I,m(t)

ADC

gm(t)

g1(t)

ADC

gm(t)

gm-1(t)

g1(t)

xBB,Q,m(t)

...

...

...

...

. . .

g1(t) gm-1(t) gm(t) ...
ym

Su
pp

or
t R

ec
ov

er
y 

B
lo

ck
Si

gn
al

 R
ec

on
st

ru
ct

io
n 

B
lo

ck
...

LNA

List of 
active 
bins

)(ˆ tx
Estimate of 
Input Signal

fmax, fmin
RBW
Sensitivity
PD, PFA

QAIC ASIC
System Controller & User Interface

PLL
Synthesizer

Divide-by-2(fmin+fmax)/2

Figure 4.5: Block diagram of the rapid interferer detector based on band-pass compressed sam-
pling with a QAIC.



46

LO_0°+

LO_0°-

LO_0°+b

LO_0°-b

LO_0° LO_90°

LO_0°+

g1(t)

g8(t)

I Path
Q Path

B
ia

s

B
ia

s

RCG RCS

x(t)

RF1

CF1

CF2

RF2

CF3

I1+(t)

I1-(t)

I8+(t)

I8-(t)

CF3

RF2

fCLK_IQ
6.4GHz

I Paths
Q Paths

Vdd Vdd

÷2

g1-8(t)

LO_0°-b

LO_0°+bRF Input

Buffer

BufferOTA2

OTA2

CADC=400fF

OTA1

Gm

Gm

8 I/Q PN Branches 

m-Sequence 
Generator 2

m-Sequence 
Generator 1

g8(t)
fCLK

g2(t)g1(t)

Q

QSET

CLR

DD Q

Q

QSET

CLR

DD Q

Q

QSET

CLR

DD Q

Figure 4.6: Circuit implementation details of the QAIC front end.
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The LNA is followed by current-driven passive I/Q mixers and transimpedance amplifiers

(TIAs) [52–54]. The input stage is implemented as a transconductance Gm amplifier operating at

an RF frequency range 2.7 to 3.7GHz followed by four pairs of CMOS transmission gate switches

driven by complementary clock phases at 3.2GHz. An off-chip RF clock fed to the chip is 6.4GHz

and 3.2GHz quadrature LO signals with a 50% duty cycle driving the RF I/Q downconverter mix-

ers, cos(wlot) and sin(wlot), are generated by the on-chip divide-by-2 circuit that is followed by

clock buffers and a non overlap generator that is formed by two cross-coupled NAND gates with

inverter chains to generate complementary phase clocks for transmission gate type passive mixer

switches. The downconverted current signal is converted into a voltage output by a transimpedance

amplifier that is configured as an RF I/Q filter. Single stage OTA topology [55] is chosen for RF

I/Q filter design since it was critical to achieve a wide 500MHz bandwidth while driving the 8 I/Q

PN paths and minimizing the power consumption. Measured power consumption of the RF I/Q

downconversion stage including the current-driven passive I/Q mixers, TIA based filters and I/Q

LO generation based on divide-by-2 circuitry is 20.9mW from a 1.1V supply.

4.3.3 PN Sequence Generation and CS Baseband Circuits

The RF TIAs drive eight I/Q PN paths, each with a current-driven passive mixer and TIA used as

a baseband filter loaded with 400fF, CADC in Fig. 4.6, emulating the equivalent load of an 8-bit

ADC. Measured power consumption of the 8 I/Q PN branches is 38.9mW from a 1.1V supply.

I/Q PN mixing stages are driven by 8 unique gold sequences [47, 56] generated on-chip with a

gold sequence generator. Gold sequences are preferred because a large set of periodic sequences
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with good cross-correlation and autocorrelation properties can be generated with less circuitry

compared to a shift register implementation [47]. Gold sequences generated from preferred m-

sequence pairs satisfy the following inequalities in (4.14) for cross-correlation, q [47, 56]:

|q| t = 2(n+2)/2 +1, n even

|q| t = 2(n+1)/2 +1, n odd. (4.14)

The on-chip gold sequence generator shown in Fig. 4.7 has various length options of 15, 31, 63

and 127 for programmable RBW options. The switches C0, C0b, C4, C4b, C5, C6 and C7 shown

in Fig. 4.7(a) are used to control the length of the gold sequences by changing the length of the m-

sequences. It generates 8 (2n �1) long gold sequences by XORing two m-sequences generated by

two n-flip-flop LFSRs. By keeping one m-sequence shown in Fig. 4.7(a) the same and delaying the

other one before the XOR, up to 2n �1 distinct gold sequences can be generated with sufficiently

low cross-correlation as shown in Fig. 4.7(b).

Fig. 4.8(a) shows the autocorrelation and cross-correlation properties of one of the 8 unique

gold sequences for a length of 63 which satisfy the sequence requirements i.e. q. Fig. 4.8(b)

shows the measured input referred conversion gain from 2.7 to 3.7GHz of the 8 PN I/Q mixing

stages driven by 8 unique gold sequences for a RBW of 20MHz. Some of the implemented gold

sequences are balanced while others are unbalanced. Balanced gold sequences have better spectral

properties (i.e. are more evenly distributed) [57]. Also 8 unique m-sequences that are known to

have uniform (evenly distributed) spectrum can be used in future work to overcome the conversion
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gain fluctuations over frequency. Measured power consumption of the on-chip gold sequence

generator for the nominal length of 63 is 7.04mW from a 1.1V supply.

4.3.4 CS Digital Signal Processing

The Orthogonal Matching Pursuit (OMP) algorithm is used to identify the input bands that exceed

a user-defined threshold. The OMP is a simple greedy heuristic for sparse recovery, which forms

an estimate of the signal support one element at a time. It offers an attractive trade-off between

algorithm simplicity and recovery guarantees [58,59]. The OMP stopping criterion is derived from

the system dimension and a user-defined threshold. This threshold can be set to optimize PD or

PFA. In this work, the threshold is set close to the QAIC noise floor to maximize PD performance

of the system. Note that while the main focus of this work is support or interferer spectral location

discovery, simple signal estimation has been performed for results included in Section 4.4.2. This

is accomplished by applying the pseudo-inverse of the reduced (or indexed) measurement matrix

to the QAIC complex samples.

If a particular band of a multi-band signal does not nicely fall into a grid consisting of 10MHz

or 20MHz RBW-wide bins, for example part of it false in one bin and a part of it in the next bin,

the CS support recovery algorithm will indicate that 2 adjacent bins are occupied.

CS DSP Energy Estimation for a Complex-Domain Support Recovery: For mQAIC the num-

ber of complex branches, L the length of the gold sequence employed by the QAIC, to a first order,

mQAIC ·L complex multiplications and additions are needed to complete a single iteration of the

OMP for a complex-domain support recovery. For a single set of measurements, K0 iterations are
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required with an ADC sampling period of Ts, the time required to complete a single iteration is

Titeration = Ts/K0. Therefore, the energy consumption of a single iteration is given by (4.15), where

Padder and Pmulti are the power consumption of adders and multipliers respectively.

Eiteration = mQAIC ·L · (Padder +Pmult) ·Titeration (4.15)

If ns consecutive samples from the QAIC are used for a complex-domain support recovery to

detect K0 active bins, then the total number of complex multiplications and additions needed by

the OMP is roughly ns ·K0 ·mQAIC ·L. To a first order, the total energy consumption of the OMP

for a complex domain support recovery is given by (4.16).

EOMP = mQAIC ·L · (Padder +Pmult) ·Ts ·ns (4.16)

Assuming ns = 80, mQAIC = 8, L = 63 and K0 = 3, for real multiplications and additions, the

computational load of the OMP is found to be roughly 535nJ. Here we assume that an 16x16

multiplier and an 16-bit adder with a settling time less than 17ns consume 60µW and 5µW respec-

tively [60, 61].
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4.4 Band-pass CS QAIC Measurement Methods and Results

4.4.1 Measurement Setup of the Band-pass CS Interferer Detector Using a

QAIC

The QAIC prototype chip shown in Fig. 4.9 has an active area of 0.428mm2 in 65nm CMOS [3,5].

Measured power consumption of the QAIC chip in a 64-pin QFN package is 81mW from a 1.1V

supply with the power consumption breakdown as shown in Fig. 4.10. Fig. 4.11 shows the system

measurement setup of the band-pass CS rapid interferer detector with a QAIC. Multi-band RF input

signals are generated by upconverting band-limited noise. RF input signal combinations are fed

into the QAIC chip and the outputs are digitized by using 8-bit oscilloscopes at a rate of 20MSps

and captured for off-line CS complex-domain support recovery.

4.4.2 QAIC Instantaneous Bandwidth and Programmable Resolution Band-

width Demonstration

The wideband sensing capability of the band-pass CS interferer detector for a 1GHz wideband

spectrum ranging from 2.7 to 3.7GHz is demonstrated in Fig. 4.12. Three �37dBm/10MHz band-

limited upconverted noise signals at 2.76GHz, 3.54GHz, 3.58GHz are presented to the QAIC and

their locations are correctly recovered.

The QAIC RBW programmability is demonstrated in Fig. 4.13. The QAIC RBW is changed

from 20MHz to 10MHz by switching the length of the gold sequences from 63 to 127. The solid

curves and the dashed curves are the input three band signal spectrum and the reconstructed signal
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Figure 4.9: Die photograph of the 65nm QAIC prototype
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Figure 4.10: Measured power consumption breakdown of the QAIC chip.
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Figure 4.11: Measurement setup for the rapid interferer detector system based on band-pass
compressed sampling with a QAIC.
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Figure 4.12: QAIC 1GHz wideband sensing capability; demonstrated with the detection of three
-37dBm/10MHz bands located between 2.7 to 3.7GHz; the solid curve and the dashed curve are
the input spectrum and the reconstructed spectrum respectively.
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Figure 4.13: QAIC RBW programmability; 20MHz and 10MHz respectively by changing the gold
sequence length from 63 to 127; the solid curves and the dashed curves are the input three band
signal spectrum and the reconstructed signal spectrum respectively; (a) middle band centered at
3.32GHz is -30dBm/10MHz and side bands centered at 3.3GHz and 3.34GHz are -33dBm/10MHz;
(b) middle band centered at 3.32GHz is -37dBm/10MHz and side bands centered at 3.3GHz and
3.34GHz are -40dBm/10MHz; 10MHz spectrum gaps in between are detected.

spectrum respectively. Input signal consists of three 10MHz bands. In Fig. 4.13(a), the mid-

dle band centered at 3.32GHz is �30dBm/10MHz and the side bands centered at 3.3GHz and

3.34GHz are �33dBm/10MHz. The input signal spectrum is first recovered with a 20MHz QAIC

RBW; the three interferers are located in the adjacent bins. In Fig. 4.13(b), the middle band cen-

tered at 3.32GHz is �37dBm/10MHz and the side bands centered at 3.3GHz and 3.34GHz are

�40dBm/10MHz. The QAIC RBW is changed to 10MHz and the 10MHz spectrum gaps between

the signals are correctly detected.
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4.4.3 QAIC Time Agility Demonstration

The time agility of the QAIC is demonstrated with a measurement of Tresp,QAIC in Fig. 4.14. The

input signal is shown in the 3D plot, the top plot of Fig. 4.14, with time, frequency and power

level axes. The input signal spectrum is switched from a -42dBm single tone with a 250kHz-

offset-from-bin-center shown as the dashed curve to the same -42dBm tone with two additional

-58dBm 10MHz band-limited upconverted noise signals shown as the solid curve. The QAIC

baseband output signal is captured with a scope. The QAIC baseband output signal as shown in

the bottom plot of Fig. 4.14 changes from a single tone to noise with a tone. The band-pass CS

rapid interferer detector uses blind algorithms to locate the signals that are unknown interferers

to the detector. The signal support change command is used to trigger the input signal source

to control the input test spectrum. This trigger signal is also observed and is going from low to

high at the instant the input spectrum is changed. This measurement shows that QAIC baseband

output responds to the change in the input spectrum within 0.4µs. This response time is limited

by settling of the 10MHz anti-aliasing filter. In addition to the detector response, Tresp,QAIC, the

support recovery time, Trec,QAIC, contributes to the total scan time of the interferer detector system

as given by (4.13). Robust support recovery requires 80 samples (i.e. Ns = 80) so that a scan

time of 4.4µs can be guaranteed with 20MSps ADCs. For the same settings, traditional approaches

require 220µs scan time proportional to N0 (i.e. N0 = 50) as given by (2.2). Therefore, the QAIC

is far superior to traditional spectrum scanning approaches, allowing for energy savings and fast

tracking of dynamically changing interferers in a wideband spectrum.
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Figure 4.15: Demonstration of the QAIC sensitivity in terms of detection probability, PD, and false
alarm probability, PFA, for active supports K0=1,2 and 3 by varying signal power level per active
frequency bin based on 80 samples for recovery and 125 experiments per power level; detection
probability� 90% and false alarm probability 15% is satisfied for as small as -68dBm three
equal power supports.

4.4.4 QAIC Sensitivity Demonstration

Detection and false alarm probabilities, PD and PFA, are used to evaluate the performance of the

band-pass CS rapid interferer detector system with a QAIC. PD and PFA are reported based on the

correct detections (CD) and the false alarms (FA) from 125 experiments (number of experiments,

NE) per power level setting with:

PD =
ÂCD

NE ·K0
and PFA =

ÂFA
NE · (L�K0)

(4.17)

Fig. 4.15 demonstrates the sensitivity of the band-pass CS rapid interferer detector in terms of

PD and PFA as a function of support (a.k.a. active bin) power. The cluster of curves on the top
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correspond to PD and the cluster of curves on the bottom correspond to PFA for 3 measurements

with 1,2 and 3 equal power interferers. Three equal power interferers as small as -68dBm can be

detected with a PD better than 90%, whereas a single interferer as small as -72dBm can be detected

with the same PD. We note that 80 samples are used to achieve these sensitivity levels. Results

in Fig. 4.16(b) with 160 samples and 8 I/Q branches demonstrate that doubling the number of

samples improves the sensitivity by 3dB. The effect of number of samples on the sensitivity level

is explained in detail in Chapter 6.

The PFA is below 15% for all measurements. Note that PFA depends on two main factors: the

user-defined threshold and the stopping criterion proportional to the dimension of the measurement

matrix. The maximum PFA for the QAIC is mQAIC/L or (8/63)% in this work. When the threshold

is set close to the noise floor, PFA remains roughly constant and PD is maximized.

4.4.5 QAIC Scalability and Robustness to Support Overload Demonstration

The QAIC scalability is demonstrated along three of its axes; number of branches, samples per

branch and the number of bits employed in the ADCs in Fig. 4.16. Measured PD and PFA are used

to illustrate the QAIC performance along these axes. Below a number of examples is given on how

this flexibility can be used during the design or operation of a band-pass CS interferer detector with

a QAIC.

The QAIC can operate with varying ADC resolutions. Assuming a performance of PD > 90%

and PFA < 15% and an RF input spectrum consisting of 2 active interferers, a QAIC using 8 com-

plex I/Q branches with 8-bit ADCs can detect -72dBm supports with 160 samples while the same
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Figure 4.16: QAIC scalability is demonstrated in terms of number of branches, samples per branch
and ADC resolution in terms of detection probability, PD, and false alarm probability, PFA for K0=2
and 3 by varying signal power level per active frequency bin based on 125 experiments per power
level. To demonstrate the QAIC scalability and robustness to support overload; (a) Number of
branches are scaled from 16 = 8 x I/Q branches to 10 = 5 x I/Q branches for K0=2 with an 8-bit
ADC and 160 samples for recovery, (b) Number of branches are scaled from 16 = 8 x I/Q branches
to 10 = 5 x I/Q branches for K0=3 with an 8-bit ADC and 160 samples for recovery, (c) Number
of samples per branch is scaled from 40 to 160 samples and ADC resolution is scaled from 8-bit
to 1-bit for K0=2, (d) Number of samples per branch is scaled from 40 to 160 samples and ADC
resolution is scaled from 8-bit to 1-bit for K0=3.
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QAIC employing 1-bit ADCs can detect -68dBm with 160 samples as shown in Fig. 4.16(c). The

DSP for a 1-bit QAIC will consume significantly less energy compared to its 8-bit counterpart.

Note that the 1-bit QAIC will deliver a lower dynamic range compared to its 8-bit counterpart.

This trade-off between energy consumption and dynamic range may be useful for many real world

applications.

The QAIC robustness to support overload is also demonstrated in Fig. 4.16(a) and Fig. 4.16(b).

Due to measurement setup limitations we could not increase the number of active interferers be-

yond three during the QAIC prototype testing, but the support overload phenomenon is emulated

by keeping the number of active interferers fixed and reducing the number of branches used in the

QAIC. In the experiments reported in Fig. 4.16(b), we present the QAIC with an RF input spec-

trum with 3 active interferers. Theory predicts that 8 I/Q branches are required to deliver robust

recovery (3.1) [3, 4]. See Table 4.1 for the details. However, the results demonstrate, that even

with 6 I/Q branches the PD and PFA remain at practically usable levels. With 5 I/Q branches the

PD and PFA degrades drastically since the 5 I/Q branches are lower than the theoretical limit for the

required branches.

Since we can only commit to a fixed number of branches in silicon, adaptive configurability

and scalability is indispensable in real world applications. A possible adaptive action in response

to support overload is to relax the recovery algorithms sensitivity threshold. In essence this makes

the QAIC blind to lower power bins and effectively sparsifies the spectrum. Only interferers above

the new threshold are detected with high confidence. Next, programmable notch filters can be

deployed to filter these interferers from the detector input and a new scan can be performed with
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a lower threshold to detect more interferers if needed. To detect twice the number of interferers

compared to a QAIC with only 8 physical I/Q branches, without needing to double the amount

of hardware as needed in a QAIC, we used time segmentation to virtually extend the physical

hardware and the details of the time-segmented QAIC are discussed in Chapter 5.

It can be further noted that the QAIC architecture can be reconfigured as a Nyquist-rate re-

ceiver by disabling the PN mixing and by time-interleaving the ADCs of the 8 complex branches

operating at an aggregate sampling rate of 320MSps with higher sensitivity.

4.4.6 QAIC Instantaneous Dynamic Range Demonstration

The instantaneous dynamic range (DR) performance of the QAIC system is illustrated in Fig. 4.17

for one weak and two strong interferers that are present over the interest spectrum range of the

QAIC at the same time. The instantaneous DR of a QAIC system designed to handle K0 inter-

ferers is defined as the maximum power difference between k < K0 weak interferers and (K0 � k)

strong interferers over a wide instantaneous bandwidth (IBW) that the system can handle in the

presence of linear impairments, nonlinear distortion and noise while delivering a desired PD, PFA

performance level [3,4]. For the results presented in Fig. 4.17, only linear impairments, i.e. down-

converter gain and phase imbalance, are compensated. A calibration based compensation approach

is adopted. A single tone offset by 1MHz from the center of the weak interferer frequency bin is

used as the calibration signal. The estimated IQ imbalance level is then entered into the QAIC

system matrix defined in Section 4.2. The information recovery engine uses this updated system
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Figure 4.17: Detection probability PD of a weak signal in the presence of two strong signals is
demonstrated for various power levels based on 80 samples for recovery and 125 experiments
per power level; (a) 2 band power fixed at -47dBm per active frequency bin and 1 band with
varying power levels with/without linear impairments correction, (b) 2 band power fixed at -38dBm
per active frequency bin and 1 band with varying power levels with/without linear impairments
correction.

matrix to deliver improved DR performance as illustrated in Fig. 4.17. See Section 4.2 for details

of the QAIC system impairment model [4].

In Fig. 4.17(a), the two strong interferers are fixed at a moderate power level while the power

of the weak interferer is swept. It is seen that the QAIC system without impairment compensation

is able to detect a weak interferer at a power level as low as -58dBm with a 90% confidence level

in the presence of two strong interferers fixed at a power level of -47dBm. Therefore, the uncom-

pensated QAIC system delivers 11dB of dynamic range. Fig. 4.17(a) also demonstrates that the

QAIC system is able to deliver 18dB of dynamic range when impairment compensation is acti-

vated. Fig. 4.17(b) demonstrates the QAIC system DR performance with and without impairment

compensation for a scenario where the power of the two strong interferers is set to a higher level,

-38 dBm for this experiment.
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Figure 4.18: (a) Input referred conversion gain from 2.7 to 3.7GHz for square LO and unique gold
sequences for a RBW of 20MHz; (a) I2-Q2 pair, (b) I0-Q0 pair.

4.4.7 Conversion Gain of QAIC for Square LO and Gold Sequence

The QAIC branches are characterized for RF performance with square LOs driving the PN I/Q

mixers in a test mode. Typical QAIC chain gain is 35dB with a 14dB NF. The QAIC is also

characterized for the nominal setting of the rapid interferer detector in CS mode with 8 unique gold

sequences driving the PN I/Q mixers. Fig. 4.18 shows the conversion gain of two I/Q branches,

i.e. the I2-Q2 pair as shown in Fig. 4.18(a) and I0-Q0 pair as shown in Fig. 4.18(b), from 2.7 to

3.7GHz with a RBW of 20MHz, when the baseband PN I/Q mixers are driven by square LOs and

unique gold sequences.

The theoretical conversion loss of uniformly distributed and spectrally diverse m-sequence is

proportional to the length of the sequence [47]. For a 63-long m-sequence with a RBW of 20MHz,

the conversion loss is 17.99dB due to the spreading effect of mixing with the PN sequences. Com-

pared to mixing with a square LO that has a fundamental tone of 2/p, 14dB of conversion loss is

expected with a sinc shape frequency spectrum. Since the gold sequences are not uniformly dis-
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tributed, it is observed in Fig. 4.18 that some bins have more energy than the others depending on

the gold sequences driving the PN I/Q mixing stages and the typical maximum QAIC conversion

gain is reduced to 24dB for the I2-Q2 pair and 27dB for the I0-Q0 pair. Since the PN mixer is

the key block of AICs that allows us to capture the wide instantaneous bandwidth, the effects of

the PN sequence spectral properties on analog-to-information converter performance are discussed

more in detail in Chapter 6.

4.5 Demo System of the Rapid Interferer Detector with a QAIC

from Stimulus to Compressed Sampling Digital Signal Pro-

cessing

Fig. 4.19 shows the system demonstration setup of the band-pass CS rapid interferer detector with

a QAIC from the stimulus to the CS digital signal processing back end that consists of the support

recovery and the simple signal estimation algorithm 2. The demo system of the band-pass CS rapid

interferer detector is operating over a 1GHz span ranging from 1.5 to 2.5GHz including ISM and

some of the LTE frequency bands. The operating frequency range for the demo is shifted from

the 2.7-3.7GHz PCAST band, where all the measurements are demonstrated in Section 4.4, to the

1.5-2.5GHz band due to the operating frequency range limitation of the external I/Q modulator

modules in the custom-made signal generator box. By using the band-pass CS interferer detector
2The compressed sampling rapid interferer detector system was also demonstrated at the ISSCC 2015 live demo

session that show cases the rapid detection of up to 3 interferers over a 1GHz-wide spectrum. Demo video of paper
19.4: http://isscc.org/videos/2015 ids.html
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Figure 4.19: The band-pass CS rapid interferer detector system with a QAIC demo platform from
the stimulus to the CS digital signal processing back end.

demo platform in the 1.5-2.5GHz frequency range, we further demonstrate the flexibility of the

operating frequency range of the wideband QAIC system, when the quadrature downconverter

clock is fed into the chip as an external clock to be divided by 2 on the chip.

The middle box is the quadrature analog-to-information converter system that consists of the

QAIC chip implemented in 65nm CMOS GP technology. The QAIC system box further includes

the sub-20 SPI interface module and off-chip PLL-based clock generator modules operating at

1.26GHz for the PN clock ( fCLK) and 4GHz for the I/Q downconverter clock that is divided by 2

on the chip to generate flo of 2GHz and baseband filters for testing flexibility.

At the output side, there is an ADC board together with an FPGA VC707 board which con-
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stitute the sampling system of the band-pass CS interferer detector. The ADC board consists of

16 ADCs operating at a rate of 20MSps. We envision that the ADC sampling system with 16

20MSps-rate ADCs can be designed and integrated on a single chip with a QAIC front end. The

CS complex-domain support recovery is implemented on MATLAB and employs the OMP algo-

rithm to find the input signal frequency bins (a.k.a. supports) that exceed a pre-defined threshold.

As the algorithm inputs, the OMP uses the QAIC complex-domain output samples, the measure-

ment matrix based on the gold sequences, and the dictionary matrix. The dictionary matrix, YYY,

is a discrete Fourier transform matrix with all the possible locations of the interferers in a 1GHz

spectrum. User-specified performance targets like sensitivity are used to derive the adaptive stop-

ping criteria for the OMP. Our main focus is support recovery that provides only the locations of

the active interferers. Then we further perform a simple signal reconstruction for illustrative pur-

poses that provides an estimate of the input signal. This is done by forming a pseudoinverse of

the reduced measurement matrix (AI) and solving directly for a solution from the QAIC complex-

domain output samples y. An example test case, in which 1 active band is detected successfully

at 2120MHz, is shown in Fig. 4.20 along with the graphical user interface that we use for the

band-pass CS interferer detector with a QAIC system demo platform.

At the input side, we have a custom-made multi-band signal generator with a 1GHz-wide in-

stantaneous bandwidth operating over the 1.5-2.5GHz interest spectrum range. Multi-band RF

signals with up to 3 bands of 10MHz-wide upconverted filtered noise are generated and fed into

the band-pass CS interferer detector with a QAIC. Users can set the active band (a.k.a. interferer)

locations anywhere in between 1.5 to 2.5GHz and they can also select the desired RBW option
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Figure 4.20: The graphical user interface of the band-pass CS interferer detector with a QAIC
system demo platform: An example test case, in which 1 active band (a.k.a. interferer) is detected
successfully at 2120MHz.

(10MHz or 20MHz) by using the graphical user interface shown in Fig 4.20. The power levels

of the active bands are set manually with the step attenuators. The locations of the interferers are

unknown to the band-pass CS detector with the QAIC chip but the signal power is split into a

spectrum analyzer for the users to observe the input spectrum that emulates the interferers in the

wideband 1GHz spectrum band.

4.6 Discussion and Comparison to the State of the Art

The available spectrum scanner and sensor architectures are compared in Table 4.2 in terms of scan

time, estimated energy consumption and aggregate sampling rate for a 1GHz wideband spectrum

sensing scenario with a 20 MHz RBW and it is assumed that all architectures use the same number
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Table 4.2: Comparison of the performance of spectrum scanner and sensor architectures estimated
using first order models

Sweeping(Spectrum Nyquist(FFT MWC(Based This(Work
Scanner Spectrum(Sensor Spectrum Sensor

Scan Time [µs] 220 4 4.4 4.4
Relative Energy Consumption  [E] 50 50 10 1

Aggregate Sampling Rate  [MSps] 40 2000 580 320

of samples, Ns = 80. The proposed QAIC only requires 4.4µs of scan time given in (4.13) and it

is 50 times faster than the sweeping spectrum scanner with a scan time given in (2.2). Assuming

3 supports in 50 bins, the QAIC requires only 8 I/Q branches in contrast to the 50 I/Q branches

needed in a multi-branch traditional spectrum sensor for the same scan time. To the first order, it

is 50 times more energy efficient than traditional architectures with an energy consumption given

in (2.2). Furthermore, it is 10 times more energy efficient than a low-pass compressed sampling

architecture employing a MWC with an energy consumption given in (3.3). The band-pass CS

architecture with a QAIC only requires 320MSps aggregate sampling rate enabled by CS theory,

which is a 6.3 times compression compared to Nyquist-rate architectures which require 2GSps.

Table 4.3 shows the comparison of the measured performance and system parameters of the

QAIC [3, 5] and of state-of-the-art traditional and compressed sampling based spectrum scanners

and sensors that are reported in [9, 10, 13–15, 18, 26, 28, 62, 63]. Table 4.4 shows the performance

comparison of the QAIC [3] to the estimated performance of state-of-the-art traditional and com-

pressed sampling based spectrum scanners and sensors [9, 10, 13–15, 18, 26, 28, 62, 63], that are

scaled to sense a 1GHz span from 2.7 to 3.7GHz with a 20MHz RBW. The number of legs is

scaled for 3 active supports, i.e. 16 for this work, 4 for [9, 10, 62], 2 for [13–15, 18, 63] and 29

for [26,28]. Even though the other CS approaches use more power hungry shift-register PN genera-
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Table 4.3: Comparison of the measured performance of the QAIC interferer detector to the state
of the art in integrated spectrum sensors and scanners

[9, 10, 62] [13] [14] [15] [18, 63] [26] [28]
Architecture Cross-Correlation 

SA
Dual Up/ Down 
Conversion SA

Multi-Resolution 
Spectrum Sensing

Tunable RF Filter & 
Dynamic-Range-
Scalable Energy 

Detector

Digital & Analog 
Multi-Band Sensing 

(Hybrid SA)

Random-Modulation 
Pre-Integrator CS

Parallel 
Segmented CS

System 
Config.

Cross Correlation Low pass CS Low pass CS

Application Spectrum Analysis Spectrum Analysis Spectrum Analysis Spectrum Analysis Spectrum Analysis Sub Nyquist 
Receiver

Sub Nyquist 
Receiver

CMOS Tech. [nm] 65 130 180 90 40 90 90

Die Area [mm2]
< 0.26 (active 

area) 14.43 11.52 2.3 5 8.85 0.93

Supply 
Voltage [V] 1.2 1.8 1.8 1.2 1.1 1.5 (A), 1.2 (D) N/R

Frequency 
Range

50MHz-1.5GHz 100Hz-6GHz 600-603MHz[1]

30-334MHz (LPF) 
334-800MHz (BPF) 

800MHz-2.4GHz 
(Bypass)

500MHz-2.5GHz[2] 100MHz-2GHz 5-500MHz

Number of 
Branches 4 = 2 x I/Q 2 = 1 x I/Q 2 = 1 x I/Q 2 = 1 x I/Q 2 = 1 x I/Q 8 8

RBW 
Options  [MHz] 1 0.4-11 (step 0.5) 0.194 0.2-30 1-40 N/R 5

PN Seq. 
Clock Rate  [GHz] N/A N/A N/A N/A N/A 4 1.25

Sensitivity  [dBm] -81 / -109[4,5] -82[6] -74 -83 N/R -64[7] N/R
Power [mW] 166[9,10] 678.6[9] 180 30-44 33-99 506.4[9,11] 55[9,12]

1.96

1.1

2.7-3.7GHz

16 = 8 x I/Q

This Work [3, 5]
CS with Quadrature 

Analog-to-Information 
Converter 

Band pass CS

Sub Nyquist Interferer 
Detector

65

[1] Measurements are shown for 600-603MHz signals; [2] Demo frequency range is reported; [3] RBW of 20MHz is the nominal setting for length 63; Fig. 15 shows RBW of 10MHz (length 127) and RBW of 20MHz (length 
63); [4] Calculated the -81dBm from the -141dBm/Hz DANL for a 1MHz RBW and calculated the -109dBm from the -169dBm/Hz DANL for a 1MHz RBW; [5] After cross-correlation, the sensitivity is -109dBm for a 1MHz 
RBW; [6] Maximum gain setting; [7] For a single tone detection; [8] For a single band detection; [9] ADC off-chip; [10] Estimated DSP power consumption is 25mW; [11] Without output buffers; [12] Estimated ADC power is 
less than 1mW (neglected) and estimated PLL power is 1mW; [13] 400fF on-chip capacitors are included to emulate the ADC load.

10, 20[3]

1.26

81[9,13]
-72[8]

N/A = Not Applicable; N/R= Not Reported
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Table 4.4: Spectrum sensor and scanner performances normalized for 2.7 to 3.7GHz operation
with a RBW of 20MHz

[9, 10, 62] [13] [14] [15] [18, 63] [26] [28]
Architecture Cross-Correlation 

SA
Dual Up/ 

Down 
Conversion 

Multi-Resolution 
Spectrum Sensing

Tunable RF Filter & 
Dynamic-Range-
Scalable Energy 

Digital & Analog 
Multi-Band Sensing 

(Hybrid SA)

Random-
Modulation Pre-
Integrator CS

Parallel 
Segmented CS

Scaled PN Seq. 
Clock for LFSR [GHz] N/A N/A N/A N/A N/A 10.22 10.22

Power Est. w/ 
PLL & ADC (Est.)  [mW]

375 256 335 115 111 607 1,056

Front-End 
Response Time  [µs] 20 20 20 20 20 0.4 0.4
Scan Response 

Time (Est.)  [µs] 220 - 1,760[1] 220 220 220 220[2] 4.4 4.4
Energy (Est.) [µJ/scan] 83 - 660 56 74 25 24 2.7 4.6

Relative Energy 
per Scan (Est.) 166 - 1320x 112x 148x 50x 48x 5.4x 9.2x

[1] Cross correlation doubles the measurement time for each 1.5dB NF improvement; we assumed NF from 17dB to 12.5dB for the scan response time estimation; [2] Reported scan time is 7.6ms for a 2GHz band given the 
LO settling time and assuming 1024 samples are needed at a sampling rate of 40MSps for a RBW of 20MHz.

This Work [3, 5]
CS with Quadrature 

Analog-to-Information 
Converter 

1.26

115

0.4

4.4
0.5

1x
N/A = Not Applicable; Est. = Estimated

tors, the PN generator power has been scaled assuming an LFSR with the required length and clock

frequency. Power estimations of PLLs and ADCs included for all architectures; [13, 14, 18, 63] al-

ready includes on-chip synthesizers. ADCs are assumed to be 8-bit, 20MSps with 0.9mW power

consumption [19]. The PLL power consumption of 20mW for the gold sequence generator clock,

the quadrature downconverter fixed LO and the sweeping LO is estimated based on [64, 65].

Fig. 4.21 shows the front-end energy consumption per scan of various architectures [9, 10, 13–

15, 18, 26, 28, 62, 63] relative to that of the QAIC [3, 5] versus the scan time. We note that the per-

formance of all architectures has been normalized to sense a 1GHz span from 2.7 to 3.7GHz with

a 20MHz RBW. The performance comparison shows that a QAIC offers rapid and energy-efficient

spectrum sensing over a wide instantaneous bandwidth compared to the traditional spectrum scan-

ners/sensors and the existing low-pass CS spectrum sensors.

The presented system architecture in this chapter, QAIC, uniquely exploits band-pass com-

pressed sampling for the rapid sensing of large spectral bandwidths with high frequency resolu-

tions, while keeping the hardware and energy requirements modest. We envision that the band-pass
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Figure 4.21: Relative front-end energy consumption per scan versus scan time for various spec-
trum scanners and sensors; the energy has been normalized for operation over a frequency span
from 2.7 to 3.7GHz with a RBW of 20MHz. See Table 4.4 for the details.
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compressed sampling solution opens promising avenues towards energy-efficient and rapid sensing

architectures for future cognitive radio systems utilizing multi-tiered shared spectrum access.



Chapter 5

Compressed Sampling Time-Segmented
Quadrature Analog-to-Information
Converters with Adaptive Thresholding

Shown in the LTE-U deployment scenario example, Fig. 1.3, a cognitive radio terminal with a rapid

interferer detector periodically senses the shared spectrum before every data packet transfer and

opportunistically aggregates component carriers. As discussed in Chapter 1, such future cognitive

terminals will need to rapidly (in 10s of µs) detect a few (e.g. 4 to 6) strong interferers within

roughly a 1GHz span.

Integrated spectrum scanners, like [9, 13, 15] rely on traditional spectral analysis which has a

fixed trade-off between span, RBW and scan time. Rapidly (e.g. in 10s of µs) detecting a few

strong interferers over a 1GHz span with a 20MHz RBW and with low energy consumption is

not possible with traditional Nyquist-rate spectrum analyzers. Recent work [34] demonstrates an

under-sampling blocker detector that rapidly detects blockers with low power over a wide band-

width, however their implementation is limited to 2 interferers. Compressive sampling can break

the traditional trade-off between span, RBW and scan time by sampling at sub-Nyquist rates. Low-

75
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pass CS architectures, like [26, 28, 42] sense the spectrum from DC to fmax and are more suitable

for baseband applications. There is a need to mix with high Nyquist-rate pseudorandom noise

(PN) sequences which diminishes the energy savings offered by low-pass CS especially at RF fre-

quencies. Band-pass CS architectures, like the QAIC [3–5] discussed in Chapter 4 offer very short

scan times compared to traditional spectrum analyzers and lower power consumption for RF fre-

quencies compared to low-pass CS architectures. Increasing the number of interferers that can be

detected with the QAIC requires a proportional increase in the number of physical I/Q branches.

However, increasing the hardware complexity and silicon cost of the QAIC to accommodate 6

interferers would be overkill given the QAIC can detect 3 interferers in 4.4µs and the spectrum is

typically stationary for 10s of µs.

In this chapter, adaptive thresholding and extension of physical hardware through time seg-

mentation that enable the rapid (in 10.4µs) detection of 6 interferers without additional silicon cost

and complexity are presented.

5.1 A Rapid Adaptive Sensing Approach Exploiting Compres-

sive Sampling with Time Segmentation

A rapid adaptive sensing approach exploiting compressive sampling that employs a time-segmented

quadrature analog-to-information converter front end (TS-QAIC) and an information recovery en-

gine (IRE) back end that can detect up to 6 interferers over a 1GHz instantaneous bandwidth

between 2.7 and 3.7GHz in 10.4µs is shown in Fig. 5.1. This ’sense-and-adapt’ approach co-
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optimizes the adaptive analog-to-information converter (AIC) front end and the scalable back-end

IRE based on the user preferences and the application requirements.

Scalability dimensions of the rapid CS interferer detector system consisting of the TS-QAIC

front end and the TS-IRE back end are shown in Fig. 5.1. Through time segmentation and adaptive

thresholding, the TS-QAIC [8] extends its physical hardware that is otherwise limited by silicon

cost and complexity. This enables adaptive system scaling for user specified performance goals

(e.g. performance metrics shown in Fig. 5.1) like the number of detectable interferers, the energy

consumption of the system, and the scan time allowed for the system based on the deployment

scenario.

In implementing this adaptive system scaling, the TS-QAIC maintains advantage in power

consumption and sensitivity of band-pass CS approaches [3,5] as compared to low-pass CS archi-

tectures [26, 28, 42, 43].

5.2 Using Time Segmentation and Adaptive Thresholding to

Increase the Number of Detectable Interferers

5.2.1 Compressed Sampling Time Segmentation

Assuming the spectrum is stationary for e.g. 10.4µs, Fig. 5.2 shows how a CS TS-QAIC maps the

spectral information by employing time segmentation to detect 6 interferers in the 2.7 to 3.7GHz

range successfully with only half the number of required physical I/Q branches compared to a

QAIC (mQAIC) [3]. TS-QAIC only requires 8 physical I/Q branches rather than 16 physical I/Q
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Figure 5.1: A rapid adaptive sensing approach exploiting CS that employs a TS-QAIC front end
and a TS-IRE back end with their scalability dimensions and the system performance metrics.
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branches for K0=6 interferers in a 1GHz instantaneous bandwidth with a 20MHz RBW. Time

segmentation accomplishes extension of physical branches by creating unique measurements of the

spectrum from one branch with time-segmented gold sequences
�
gj/k(t)

�
. For each successive use

of the core physical hardware, time-segmented gold sequence generator is configured to generate a

different set of 8 unique gold sequences. By switching between the gold sequences gj(t) and gk(t),

twice the number of unique CS measurements are obtained. The CS time-segmented measurements

are equivalent to the unique measurements that can be obtained from twice the number of physical

branches for a stationary spectrum.

5.2.2 Compressed Sampling with Adaptive Thresholding

We further demonstrate adaptive thresholding in the time-segmented CS digital signal processing

(DSP). Shown in Fig. 5.3 is an example of the adaptive thresholding approach employed by the CS

TS-QAIC. Within the first sense slot shown in Fig. 5.3 and also in Fig. 1.3, the time segmentation is

disabled (TS OFF) and only 8 complex-domain measurements are collected from the TS-QAIC’s

8 physical I/Q branches. In the CS IRE (a.k.a. CS DSP), the adaptive threshold level is set to high

to make the CS signal processing algorithm blind to the signals below the threshold level. In this

example, the orthogonal matching pursuit (OMP) algorithm is employed for CS DSP complex-

domain support recovery and the OMP residual is used as the feedback mechanism to assist the

TS-QAIC hardware extension through time segmentation. The 3 strongest interferers are detected

successfully in 4.4µs with 8 physical I/Q branches when the time segmentation is disabled (TS

OFF) and the OMP residual is at a high level after 3 OMP iterations.
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Figure 5.3: An example of the ’sense-and-adapt’ approach that is enabled by the adaptive scala-
bility of the CS TS-QAIC through adaptive thresholding and time segmentation.

If the OMP residual is at a high level, adaptive thresholding adjusts the threshold for the second

sense period and time segmentation is enabled to detect more interferers and adapt to the signal

conditions in the 1GHz spectrum band. The TS-QAIC is then scaled to extend the number of

branches to 16 virtual I/Q and the adaptive threshold level is set to low to detect the remaining

interferers that were below the high threshold during the first sense slot. Six interferers are detected

successfully in 10.4µs. Since the OMP residual is low after 6 OMP iterations, interferer detection

is completed during the second sense slot and the cognitive radio terminal is ready for data transfer.

Following the data transfer, the spectrum is changed and it consists of 4 strong interferers. Based

on the OMP residual feedback from the IRE, the TS-QAIC scales its branches to 12 virtual I/Q

branches rather than 16, which reduces the scan time by 4µs and the energy consumption by 0.46µJ

with adaptive scalability.
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Figure 5.4: Circuit implementation of the compressed-sampling time-segmented quadrature
analog-to-information converter (TS-QAIC).

5.3 Implementation of the Rapid Interferer Detector with a

Time-Segmented Quadrature Analog-to-Information Con-

verter

The 2.7-3.7GHz TS-QAIC prototype circuit implementation is shown in Fig. 5.4. The chip has

been implemented in 65nm CMOS GP technology.



83

5.3.1 Circuit Implementation of the CS TS-QAIC RF Front-End Blocks

The TS-QAIC front end employs a wideband current-reuse noise-canceling low-noise amplifier

(NC LNA) [66]. The complementary current-reusing approach provides current savings since it

requires only half the gm from the complementary branches with a small penalty in input band-

width. For a typical process corner, the post-layout simulated LNA gain is 16.9 to 15dB from

2.7 to 3.7GHz while the post-layout simulated LNA noise figure is 2.4 to 2.69dB. The simulated

S11 < �15dB from 2.7 to 3.7GHz and the simulated in-band IIP3 is +6dBm. The measured LNA

power consumption is 5.7mW from a 1.2V supply.

The current-reuse NC LNA is followed by an RF I/Q downconverter consisting of current-

driven passive I/Q mixers and transimpedance amplifiers (TIAs) [52–54] with wideband pro-

grammable bandwidth settings of 125MHz, 250MHz, and 500MHz. The input stage is imple-

mented as a transconductance Gm amplifier with a source degeneration resistor. An off-chip RF

clock is fed to the chip to generate 3.2GHz quadrature LO signals with a 50% duty cycle with

on-chip divide-by-2 circuitry. Programmable capacitors are added to the TIA feedback network so

as to zoom into the span after a coarse sensing of the spectrum. The effective noise bandwidth that

accounts for the noise folding due to the mixing with pseudorandom noise (PN) sequences tracks

the instantaneous bandwidth (span) of the TS-QAIC. By programming the bandwidth of the wide-

band TIA-based filter, the user can reduce the impact of noise folding on the effective sensitivity

level. The simulated in-band IIP3 is +8.2dBm for a typical process corner. The measured power

consumption of the RF I/Q downconversion stage including the current-driven passive I/Q mixers,
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programmable wideband TIA-based filters, and I/Q LO generation based on divide-by-2 circuitry

is 18.37mW from a 1.2V supply.

5.3.2 Time-Segmented PN Sequence Generation and CS Time-Segmented

Baseband Circuits

The RF I/Q downconverter is followed by 8 I/Q baseband time-segmented PN mixing branches that

are driven by two sets of 8 unique time-segmented PN sequences. The baseband transconductance

Gm amplifier employs a source degeneration resistor and an individual common mode feedback

(CMFB) control. Baseband low-pass filtering is performed with a TIA that is implemented as a

two-stage OTA with Miller compensation. Since AC coupling capacitors with a tolerable size can

not be employed in the baseband, two individual CMFB control circuits are preferred to control

the DC voltages on the source and drain terminals of the mixer switches to prevent DC current

through the switches for flicker noise concerns. When the 8 I/Q baseband PN mixing branches are

driven by a square LO for RF characterization, for a typical process corner, the simulated in-band

IIP3 is +4.3dBm. The measured total power consumption of the 8 I/Q baseband time-segmented

PN mixing branches is 36.88mW from a 1.2V supply.

The 8 I/Q baseband time-segmented PN mixing branches are driven by two sets of 8 unique

time-segmented PN sequences generated by the on-chip time-segmented gold sequence generator.

The on-chip time-segmented gold sequence generator block has a programmable set/reset option

for two 6 flip-flop LFSRs to generate unique sequences by setting the initial word. When the

external gold trigger signal goes from high to low, the initial word of the two m-sequences will be
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set and the gold sequences will start switching in a synchronous manner with respect to each other.

For a 20MHz RBW and a 1GHz instantaneous bandwidth, the 8 I/Q time-segmented PN mixing

stages are driven by 6 time-segmented 63-long gold sequences and 2 time-segmented 63-long m-

sequences with sufficiently low cross correlation and low mutual coherence in the CS sensing

matrix [6, 47, 56]. Mutual coherence properties of an optimal sensing matrix f1 and a sub-optimal

sensing matrix f2 constructed from two time-segmented gold sequence sets are shown in Fig. 5.8

for all the sensing matrix column combinations. Fig. 5.8 shows that the optimal sensing matrix

f1 has a lower average and a lower maximum mutual coherence which is needed for successful

CS support recovery. The measured power consumption of the time-segmented gold sequence

generator is 6.68mW from a 1.2V supply.

5.3.3 CS Digital Signal Processing for Time-Segmented Rapid Sensing

Fig. 5.5 shows the time-segmented rapid sensing approach in terms of the CS problem ’y = fyx’,

where y are samples from the TS-QAIC chip, x is the interferer spectrum that remains stationary

during slot boundaries or portions of sub-frames (e.g. 10.4µs), y is the dictionary matrix, and f

is the sensing matrix constructed from two sets of unique gold sequences generated by the time-

segmented gold sequence generator on the TS-QAIC chip. This CS problem ’y = fyx’ is solved

in the information recovery engine from the TS-QAIC complex samples to successfully locate up

to 6 interferers in a 1GHz spectrum.

The CS digital signal processing details of the rapid interferer detector with a TS-QAIC are

shown in Fig. 5.6 for m I/Q physical branches extended to mj and mk branches through time seg-
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Figure 5.5: Time-segmented rapid sensing approach is illustrated in terms of compressed sampling
’y = fyx’ problem with physical waveforms collected from the TS-QAIC chip.



87

],[ ,,12,,11,,1,1
I

nj
I
j

I
j

I
j yyyY !=

!! I
k

I
j YY ,1,1 ,

!! I
km

I
jm YY ,, ,

!! Q
k

Q
j YY ,1,1 ,

!! Q
km

Q
jm YY ,, ,

!! kj YY ,1,1 ,

!! kmjm YY ,, ,

!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$

%

&

km

k

jm

j

Y

Y

Y

Y

,

,1

,

,1

"

"

M
ea

su
re

m
en

t V
ec

to
r 

C
on

st
ru

ct
io

n

O
rth

og
on

al
 M

at
ch

in
g 

Pu
rs

ui
t (

O
M

P)

!
"

#
$
%

&
=

k

j

φ

φ
φ

Pa
ir-

w
is

e 
C

om
pl

ex
 

C
om

bi
ne

r

ksetsequencegoldjsetsequencegold kj :,: φφ
Sensing 

Matrix

m: number of complex branches 
n: number of samples used for recovery

TS
-Q

AI
C

 c
hi

p 
ou

tp
ut

s ...

...

...

Figure 5.6: CS time-segmented digital signal processing algorithm details.

mentation. The time-segmented sensing matrix is constructed from two sets of m unique PN se-

quences indexed as j and k, while the orthogonal matching pursuit (OMP) algorithm [58, 59] is

used to identify the input bands that exceed an adaptive threshold by using the time-segmented

complex measurements from the TS-QAIC chip.

CS Time-Segmented DSP Energy Estimation for a Complex-Domain Support Recovery:

For the successful detection of 6 interferers (K0=6), 16 time-segmented I/Q branches (mj,k=8 phys-

ical I/Q branches and 8 virtual I/Q branches) with 63-long gold sequences (L=63) and 100 samples

(ns=100) are employed to maximize the detection probability. The total number of complex mul-

tiplications and additions needed by the OMP is roughly ns ·K0 ·mj,k ·L. The computational load

of the OMP given in (4.16) is found to be roughly 2673nJ for real additions and multiplications,

assuming that an 16x16 multiplier and an 16-bit adder with a settling time less than 17ns consume

60µW and 5µW respectively [60, 61].
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Figure 5.7: Die photograph of the 65nm TS-QAIC prototype.

5.4 Band-pass CS TS-QAIC with Adaptive Thresholding Mea-

surement Methods and Results

Shown in Fig. 5.7, the TS-QAIC prototype active area consists of the RF I/Q front end, 8 I/Q

baseband time-segmented PN mixing stages, and the time-segmented gold sequence generator.

The active area of the TS-QAIC prototype chip is 0.517mm2 in 65nm CMOS GP technology. The

measured power consumption of the TS-QAIC is 81.2mW from a 1.2V supply.

For experimental validation of the TS-QAIC, multi-band RF signals with up to 6 bands of

10MHz-wide upconverted filtered noise are generated and are fed into the chip. Time-segmented

gold sequence sets with low mutual coherence are selected. The time-segmented I/Q outputs from

the TS-QAIC chip are digitized by using 8 bit oscilloscopes at a rate of 20MSps and stored for

off-line CS DSP complex-domain support recovery with adaptive thresholding.
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Figure 5.8: Mutual coherence properties of an optimal sensing matrix (f1) and a sub-optimal
sensing matrix (f2).

5.4.1 Time-segmented Gold Sequence Set Selection Criteria

Fig. 5.8 and Fig. 5.9 illustrate how to select time-segmented gold sequence sets for optimal detec-

tion probability (PD) and false alarm probability (PFA) performance of the TS-QAIC. The measured

PD and PFA for varying power levels per band for 6 interferers is shown in Fig. 5.9. Two sensing

matrices, an optimal sensing matrix f1 and a sub-optimal sensing matrix f2, each constructed from

two time-segmented gold sequence sets but with different properties, i.e. mutual coherence shown

in Fig. 5.8, are employed for these measurements. The measured PD is � 90% for signals with a

power level ��70dBm/10MHz when the optimal sensing matrix f1 is selected since the optimal

sensing matrix has a lower average and a lower maximum mutual coherence, while the sub-optimal

sensing matrix f2 cannot deliver a PD � 90%.
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Figure 5.9: TS-QAIC probability of detection and false alarm performance with sensing matrix f1
(optimal) and f2 (sub-optimal).

5.4.2 Compressed Sampling Time-Segmented Digital Signal Processing Op-

timization

Fig. 5.10 shows the measured PD and PFA for varying power levels per band for K0 = 6 interferers

with a different number of OMP iterations employed in the information recovery engine. This

measurement demonstrates an example of how to co-optimize the information recovery engine and

the TS-QAIC system performance by choosing the optimum number of OMP iterations. Shown

in Fig. 5.10, with 12 OMP iterations, the target PD is � 90%, while keeping the PFA well below

15%. However, increasing the OMP iterations to 14 does not significantly increase PD but rather

inflates PFA (PFA � 15%). In the information recovery engine, the OMP threshold is chosen first

for the best detection probability performance and the false alarm probability is then controlled
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Figure 5.10: Rapid interferer detector with a TS-QAIC measured system co-optimization illustra-
tion for minimum DSP energy consumption.

by employing the appropriate OMP stopping criteria. Fewer OMP iterations lead to reduced DSP

energy consumption.

5.4.3 TS-QAIC Time Segmentation Demonstration

The measured PD and PFA for varying power levels per band for K0 = 6 interferers with and without

enabling time segmentation are demonstrated in Fig. 5.11. When the time segmentation is disabled

(TS OFF), the measured PD degrades drastically and stays around a maximum value of 50% for 6

strong interferers since 8 I/Q branches is lower than the theoretical limit for the required number of

branches [3, 4]. When the time segmentation is enabled (TS ON), the measured PD performance

improves significantly for the 16 virtual I/Q branches and the PD remains � 90% for 6 interferers



92

-80 -70 -60 -50 -40 -30
Power per Active Frequency Bin (dBm)

0

10

20

30

40

50

60

70

80

90

100

De
te

ct
io

n 
Pr

ob
ab

ilit
y 

& 
Fa

lse
 A

la
rm

 P
ro

ba
bi

lity
 (%

)

PD, K0 = 6, m = 16
PFA, K0 = 6, m = 16
PD, K0 = 6, m = 8
PFA, K0 = 6, m = 8

Time Segmentation (TS) ON

Time Segmentation (TS) OFF

Figure 5.11: Measured TS-QAIC probability of detection and false alarm for K0 =6 interferers
with 100 samples from 8 I/Q branches when the time segmentation is disabled (TS OFF), from
16 virtual I/Q branches when the time segmentation is enabled (TS ON) to extend the physical
branches.

with a power level per active band �-70dBm/10MHz. Enabling time segmentation thus allows the

detection of twice the number of interferers without doubling the amount of hardware.

5.4.4 TS-QAIC Sensitivity with Time Segmentation

The measured PD and PFA for varying power levels per band for K0 = 4, 5 and 6 interferers when

the time segmentation is enabled (TS ON) and the optimal sensing matrix f1, consisting of two

sets of time-segmented 8 unique gold sequences, is selected for the successful CS support recovery

are shown in Fig. 5.12. For the measured PD of � 90%, six interferers as small as -70dBm/10MHz

can be detected in 10.4µs by using 100 samples from 8 physical I/Q TS-QAIC branches extended
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Figure 5.12: Measured TS-QAIC probability of detection and false alarm with the optimal sensing
matrix f1 for K0 =4,5 and 6 interferers with 100 samples from 8 physical I/Q branches extended
to 16 virtual I/Q through time segmentation.

to 16 through time segmentation for CS complex-domain support recovery, while keeping the PFA

below 15%.

5.4.5 TS-QAIC Adaptive Thresholding Demonstration

TS-QAIC adaptive system scaling through adaptive thresholding when time segmentation is dis-

abled and enabled is demonstrated in Fig. 5.13. In this measurement, the TS-QAIC system consist-

ing of the analog-to-information converter (AIC) hardware and information recovery engine (IRE)

is scaled through time segmentation by extending the physical AIC hardware and through adaptive

thresholding in the IRE. Six interferers with a 10dB power difference between each of the 3 strong

interferers with �44.77dBm/10MHz and the 3 weak interferers with �54.77dBm/10MHz are fed
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Figure 5.13: TS-QAIC adaptive system scaling demonstration through the adaptive thresholding
when the time segmentation is disabled and through the extension of the physical hardware when
the time segmentation is enabled.
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into the TS-QAIC to demonstrate adaptive system scaling. For illustrative purposes, simple signal

reconstruction was done in addition to the support recovery.

During the first sense period, the time segmentation is disabled (TS OFF) and the threshold is

set to the high setting (�66dBm/300kHz) that makes the TS-QAIC blind to the interferers below

the threshold, such that the TS-QAIC can successfully detect only the 3 strongest interferers in

4.4µs with only 8 physical I/Q branches without needing to extend the hardware through time

segmentation. Adaptive thresholding adjusts the threshold for the second sense period based on

the feedback from the CS information recovery engine that monitors the OMP residual. During the

second sense period, the threshold is lowered (�88dBm/300kHz) through adaptive thresholding

and TS-QAIC branches are extended to 16 virtual I/Q branches through time segmentation (TS

ON). Then, all 6 weak and strong interferers are detected successfully in 10.4µs.

5.4.6 TS-QAIC Instantaneous Bandwidth and Hardware Scalability Demon-

stration

For illustrative purposes, simple signal reconstruction was also done for the results presented here

in addition to the support recovery. Fig. 5.14 demonstrates the TS-QAIC wide sensing capability

with a 1GHz instantaneous bandwidth. The 1GHz instantaneous bandwidth capability is demon-

strated in Fig. 5.14 by reconstructing 4 interferers located at 2.7GHz, 2.72GHz, 2.74GHz, and

3.68GHz. Shown in Fig. 5.15 is an example of the successful detection of 5 interferers located at

2.96GHz, 3GHz, 3.32GHz, 3.34GHz, and 3.36GHz with a 6dB power difference between each of
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Figure 5.14: TS-QAIC 1GHz instantaneous bandwidth demonstration with 12 virtual I/Q branches
enabled through time segmentation.

the strong and weak interferers (a 10.5dB difference in the power of weak interferer with respect

to the total power of the interferers) enabled by time segmentation.

These measurements also demonstrate TS-QAIC hardware scalability. For the signal recon-

struction shown in Fig. 5.14, the 8 physical I/Q branches are extended to 12 virtual through time

segmentation and only 80 samples are used to detect 4 interferers over a 1GHz span in 6.4µs, while

for the signal reconstruction shown in Fig. 5.15, the 8 physical I/Q branches are extended to 16

virtual through time segmentation and 100 samples are used to detect 5 interferers in 10.4µs.



97

2600 2800 3000 3200 3400 3600 3800
−100

−95

−90

−85

−80

−75

−70

−65

−60

−55

−50

Frequency (MHz)

Si
gn

al
 S

pe
ct

ru
m

 (d
Bm

 / 
30

0k
H

z)

 

 

Input Signal Spectrum (Spectrum Analyzer Output)
Recovered Signal (TS−QAIC Output)

1GHz 

2900 3000 3100 3200 3300 3400
−100

−95

−90

−85

−80

−75

−70

−65

−60

−55

−50

Frequency (MHz)

Si
gn

al
 S

pe
ct

ru
m

 (d
Bm

 / 
30

0k
H

z)

 

 

Input Signal Spectrum (Spectrum Analyzer Output)
Recovered Signal (TS−QAIC Output)

6dB 

Total Power 
10.5dB 

Figure 5.15: Successful detection of 5 interferers with a 6dB power difference between each of the
strong and weak interferers (a 10.5dB difference in the power of weak interferer with respect to the
total power of the interferers) with 16 virtual I/Q branches enabled through time segmentation.

5.5 Performance Summary and Discussion

Shown in Table 5.1 is the measured performance summary of the TS-QAIC [8] compared to that

of the QAIC reported in [3,5]. TS-QAIC can rapidly detect 6 interferers in 10.4µs by extending the

8 physical to 16 virtual (effective) I/Q branches through time segmentation, while maintaining the

advantages in power consumption and sensitivity that is offered by band-pass CS approaches [3]

compared to existing low-pass CS approaches [26, 28].

Currently proposed sub-Nyquist interferer detectors, like the QAIC [3, 5] do not report detect-

ing 6 interferers and it is not possible to detect more interferers by simply increasing the number

of samples (i.e. scan time). The QAIC [3] with 8 physical I/Q branches is not able to detect 6
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Table 5.1: TS-QAIC performance summary and comparison

CMOS Tech. [nm]
Active Area [mm2]

Supply Voltage [V]
Frequency Range [GHz]

RBW Options [MHz] 10, 20
PN Seq. Clock Rate  [GHz]

Sensitivity  [dBm]
Adaptive Thresholding Demonstration No

Time Segmentation Demonstration No
Max Number of Detectable Interferers 3

Number of Physical Branches
Number of Effective Branches
Measured Power Consumption [mW]

Power Est. (w/ PLL & ADC) [mW] 115
Scan Time  [µs]

Energy per Scan [µJ/scan] 0.5
Energy per Active Bin [µJ/active bin] 0.168

Rel. Energy per Active Bin 1x

8 I/Q

[3, 5]
65

81[3]

4.4

 [1] Power per active frequency bin for 3 band detection; 

[2] Power per active frequency bin for 6 band detection; [3] ADC off-chip

0.428
1.1

2.7-3.7

1.26
-68[1]

8 I/Q

TS OFF TS ON
3 6

8 I/Q 8 I/Q
8 I/Q 16 I/Q
81.2[3] 81.2[3]

115 115
4.4 10.4
0.5 1.2

0.168 0.2
1x 1.2x

This Work [8]
65

0.517

 [1] Power per active frequency bin for 3 band detection; 

[2] Power per active frequency bin for 6 band detection; [3] ADC off-chip

1.2
2.7-3.7

1.26
-70[2]

10, 20

Yes
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interferers with a target PD � 90 and PFA < 15%, while the TS-QAIC can successfully detect 6

interferers with only 8 physical I/Q branches through time segmentation.

The presented system architecture in this chapter, CS TS-QAIC [8], introduces system scalabil-

ity by using adaptive thresholding and extension of physical hardware through time segmentation.

This enables the rapid detection of 6 interferers in a 1GHz span in 10.4µs, while limiting silicon

cost and complexity. These features of the TS-QAIC make it an enabling technology for emerging

cognitive radio terminals.

5.6 Performance Summary of the Band-pass Compressed Sam-

pling Interferer Detectors and Comparison

Shown in Table. 5.2 is the detailed comparison of the measured performance of the CS QAIC [3,5]

and the CS TS-QAIC [8] to the state of the art in integrated compressed sampling spectrum sensors

reported in [26, 28]. Shown in Table. 5.3 is the measured performance comparison of the QAIC

[3] and the TS-QAIC to the estimated performance of the state-of-the-art compressed sampling

spectrum sensors [26, 28], that are scaled to sense a 1GHz span from 2.7 to 3.7GHz with 20MHz

RBW with the same assumptions discussed in Section 4.6. The performance comparison shows

that band-pass compressed sampling architectures like the QAIC [3, 5] and the TS-QAIC [8] offer

energy-efficient spectrum sensing over a wide instantaneous bandwidth compared to the existing

low-pass CS spectrum sensors.
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Table 5.2: Comparison of the measured performance of the CS QAIC and the CS TS-QAIC inter-
ferer detectors to the state of the art in integrated compressed sampling spectrum sensors

[26] [28]
Application Sub-Nyquist CS 

Receiver
Sub-Nyquist CS 

Receiver 

Architecture Random-Modulation 
Pre-Integrator CS

Parallel 
Segmented CS

System Config. Low-pass CS Low-pass CS
Signal Type Multi tone Multi tone Multi band
CMOS Tech. [nm] 90 90

Die Area [mm2] 8.85 0.93
Supply Voltage [V] 1.5 (A), 1.2 (D) N/R

Frequency Range 100MHz-2GHz 5-500MHz
Instantaneous BW 1.9GHz 495MHz 1GHz

Adaptive Thresholding Demonstration No No No
Number of Physical Branches 8 8

Number of Effective Branches (m) 8 8 8I/Q
RBW Options  [MHz] N/R 5

PN Seq. Clock Rate  [GHz] 4 1.25
Sensitivity  [dBm] -64[1] N/R

Power [mW] 506.4[4,5] 55[4,6]

[1] For a single tone detection; [2] Power per active frequency bin for 3 band detection; [3] Power per active frequency bin for 6 band detection; 

1.1
2.7-3.7GHz

16 = 8 x I/Q

10, 20

[3, 5]

CS with Quadrature Analog-to-
Information Converter 

Band-pass CS

Sub-Nyquist CS Interferer 
Detector 

65

 N/R: Not Reported;

[4] ADC off-chip; [5] Without output buffers; [6] Estimated ADC power is less than1mW and estimated PLL power is 1mW.

1.26

81[4]
-68[2]

1.96

TS OFF - 8I/Q TS ON - 16I/Q

This Work [8]
Time-Segmented Sub-Nyquist CS Rapid 

Interferer Detector 
Time-Segmented (TS) CS with a TS-QAIC

Time-Segmented Band-pass CS

65
Multi band

 N/R: Not Reported;

[4] ADC off-chip; [5] Without output buffers; [6] Estimated ADC power is less than1mW and estimated PLL power is 1mW.

0.517 (active area)

10, 20

1.2
2.7-3.7GHz

1GHz

16 = 8 x I/Q
Yes

1.26
-70[3]

81.2[4]

Table 5.3: Compressed sampling spectrum sensor performances normalized for a 1GHz span from
2.7 to 3.7GHz with a RBW of 20MHz

[26] [28] [3, 5]

Scaled PN Seq. Clock for LFSR [GHz] 10.22 10.22 1.26 1.26 1.26 1.26 1.26
Max Number of Detectable Signals 3 3 3 3 4 5 6

# of CS Measurements 29 29 8 complex 8 complex 12 complex 16 complex 16 complex
Branch Sampling Rate [MSps] 20 180 20 20 20 20 20

Power Est. (w/ PLL & ADC) [mW] 607 1,056 115 115 115 115 115
Scan Time  [µs] 4.4 4.4[1] 4.4 4.4 6.4 10.4 10.4

Energy per Scan [µJ/scan] 2.7 4.6 0.5 0.5 0.74 1.2 1.2
Energy per Active Bin [µJ/active bin] 0.9 1.54 0.168 0.168 0.185 0.24 0.2

Rel. Energy per Active Bin 5.4x 9.2x 1x 1x 1.1x 1.43x 1.2x

Normalized for 2.7-3.7GHz operation with 20MHz RBW
This Work [8]

[1] Parallel segmented CS architecture is used and 9 samples collected from each path.



Chapter 6

Challenges and Trade-offs Associated with
the Design of Compressed Sampling Rapid
Interferer Detectors

In this chapter, the challenges and trade-offs associated with the design of compressed sampling

architectures are discussed. The pseudorandom noise (PN) mixer, which is the key circuit block

of the interferer detector for rapidly capturing the wide instantaneous BW, is analyzed in terms of

the design choices and effects of its operation on the instantaneous dynamic range of analog-to-

information converters.

6.1 Instantaneous Bandwidth versus Instantaneous Dynamic

Range Trade-off of Analog-to-Information Converters

Analog-to-information converters consisting of low-pass and band-pass compressed sampling ar-

chitectures, shown in Fig. 6.1 and discussed in greater detail in Chapter 3 and Chapter 4 respec-

tively, are well-suited for capturing a wide instantaneous bandwidth by ADCs operating at a sub-

101
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Figure 6.1: Compressed sampling analog-to-information converter architectures; (a) Low-pass
[23, 42, 43], (b) Band-pass [3–5].

Nyquist aggregate sampling rate. The sub-Nyquist aggregate sampling rate is proportional to the

information bandwidth (a.k.a. signal bandwidth) by breaking the main limitation of the tradi-

tional Nyquist-rate sampling approaches. As discussed in Chapter 3, the information bandwidth,

K0 ·RBW, is much smaller than the instantaneous signal bandwidth, N0 ·RBW.

Compressed sampling rapid interferer detectors employing analog-to-information converters

(AICs) have an intrinsic trade-off between instantaneous dynamic range and instantaneous band-

width. The instantaneous bandwidth of an AIC is defined its Span, over which few signals (K0

signals) can be successfully and rapidly detected, while meeting the target detection and false

alarm probabilities (e.g. PD � 90% and PFA < 15% for a QAIC [3, 5] and a TS-QAIC [8]). The

instantaneous dynamic range of an AIC is defined as the ability to detect a weak signal in the pres-

ence of a strong signal or strong signals over a wide instantaneous bandwidth (a.k.a. Span), while

meeting the target PD and PFA. While CS AICs offer short scan times on the order of 10s of µs with

low energy-consumption over a wide instantaneous bandwidth equal to the Span, their instanta-

neous dynamic range is limited compared to traditional spectrum scanning or sensing solutions.
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Traditional sweeping spectrum scanners offer a large dynamic range over a small instantaneous

bandwidth as shown in Fig. 1.5, where the instantaneous bandwidth for sweeping spectrum scan-

ners is equal to the RBW.

The instantaneous dynamic range of an AIC is limited mainly by noise, nonlinear distortion,

and linear impairments. On the high end, it is limited by the strongest signal that can be detected

without degrading the performance due to intermodulation distortion (IMD) products or compres-

sion. On the low end, it is limited by the sensitivity which is set by noise folding due to the PN

mixing to instantaneously capture a wide 1GHz bandwidth.

For band-pass compressed sampling architectures, like a QAIC [3, 4] and a TS-QAIC [8], the

instantaneous dynamic range might also be limited by linear circuit impairments such as I/Q phase

and gain imbalance. The linear impairments are modeled and discussed for compressed sampling

QAIC complex-domain support recovery in Chapter 4 [4]. The instantaneous dynamic range of

a QAIC is evaluated with the detection and the false alarm probabilities of a weak signal in the

presence of two strong signals. The QAIC system without impairment compensation delivers an

11dB instantaneous dynamic range, while it is able to deliver an 18dB instantaneous dynamic range

with linear impairment compensation as demonstrated by Fig. 4.17 in Chapter 4 [3].

In the presence of a weak and a strong signal, the instantaneous dynamic range calculation of a

TS-QAIC operating over a 1GHz span with an NF of 18dB mapped to an 8-bit A/D range is shown

as an example in Fig. 6.2.

The effect of PN mixing on the instantaneous dynamic range of AICs is investigated and dis-
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12dB
-77.92dBm

A/D converter quantization noise level

10log(kTBW)+ NF=-66dBm

15dB SNRout required for 
successful support recovery

-51dBm weak interferer power

-38dBm total multi-band signal power at 
A/D input

-28dBm
A/D converter full scale input (0dBFS)

10dB for peak to average ratio

13dB instantaneous DR

Figure 6.2: The instantaneous dynamic range calculation of a TS-QAIC operating over a 1GHz
span with an NF of 18dB mapped to an 8-bit A/D range.

cussed in this chapter. We mainly focus on the following first order factors after defining the design

parameters of PN mixers:

• Noise analysis of PN mixers including the impact of noise folding and the number of samples

on the sensitivity level of AICs

• Linearity analysis of PN mixers including intra-bin and inter-bin spectrum test cases

We note that there are also the following second order factors that have an impact on the instanta-

neous dynamic range of AICs:

• Effect of automatic gain control (AGC)

• Unique spectral properties of the PN sequences that change from bin-to-bin and/or from

branch-to-branch
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x(t) y(t)

pi(t)
f3dB

PN Sequence
Generator

t
+1
-1

c(t)

Figure 6.3: Block diagram of a PN mixer followed by a low-pass filter in AICs.

6.2 Analysis of Pseudorandom Noise Mixers in Analog-to-Information

Converters

A PN mixer followed by a low-pass filter employed in AICs is shown in Fig. 6.3. Even though the

low-pass filter is used as an anti-aliasing filter before the sampling, it is considered as a part of the

PN mixer for the analysis in this chapter. We note that PN mixing analysis is mainly presented in

contrast to mixing with a square LO as a benchmark.

6.2.1 PN Mixer Design Parameters for Analog-to-Information Converters

Design parameters of the PN mixers such as chip duration and sequence period are defined in this

chapter in relation to compressed sampling spectrum sensor parameters like RBW and instanta-

neous bandwidth. A PN sequence consists of a deterministic sequence of pulses that repeats itself

after its period. The period of a PN sequence Tp is the repetition window of the sequence bits. The

relation between the AIC sensing parameter RBW and the period of a PN sequence Tp is given by

(6.1), where fCLK is the PN sequence generator clock frequency and L is the length of a PN se-

quence [47]. The chip duration Tc of a PN sequence pi(t) shown in Fig. 6.4(a) is the smallest pulse

width of the sequence that represents only one bit in the repetition window. The chip duration Tc
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pi(t)

t

+1

-1

Tc=1/fCLK

Tp=L/f CLK

(a)

Spi(f) L.fp

fCLK=1/Tc0
f

2fCLK-fCLK-2fCLK
fp=1/(LTc)

(b)

Figure 6.4: A PN sequence driving the mixer with its design parameters; (a) PN sequence time-
domain waveform, (b) PN sequence spectrum.

is defined in terms of the PN sequence generator clock frequency as 1/ fCLK .

Tp = L ·Tc = L/ fCLK = 1/RBW (6.1)

Each path of the AIC is driven by a unique PN sequence pi(t) for incoherent measurements. The

Fourier expansion of a Tp-periodic real pi(t) is given in (6.2), where fp is equal to 1/Tp and also

the RBW for CS spectrum sensors.

pi(t) =
•

Â
n=�•

bi,n e j2pn fpt (6.2)

With the assumption of an maximal-length sequence (m-sequence) as the PN sequence driving the

mixer, the coefficients bi,n are calculated by evaluating the integral in (6.3) [4, 42, 47].

bi,n =
1
Tp

Z Tp

0
pi(t) · e

�j 2p
Tp nt ·dt

bi,�n =
1
Tp

Z Tp

0
pi(t) · e

j 2p
Tp nt ·dt = b⇤i,n (6.3)



107

x(t) y(t)

pi(t)
f3dB

PN Sequence
Generator

t
+1
-1

c(t)

(a)

x(t)

ri,1(t)

ri,2(t)

ri,3(t)

ri,L(t)

ri,L-1(t)

y(t)f3dB

bi1

bi2

bi3

biL-1

biL

PN Mixer + LPF 
Equivalent Model

c(t)

(b)

Figure 6.5: (a) Block diagram of a PN mixer followed by a low-pass filter in AICs. (b) The
equivalent multi-path mixers model of a PN mixer derived from its Fourier series followed by a
low-pass filter. The multi-path mixers model also illustrates the wide instantaneous bandwidth
capturing capability of the AICs.

Based on its Fourier series, the equivalent multi-path mixers model of a PN mixer followed by a

low-pass filter is shown in Fig. 6.5(b). The PN mixer block shown in Fig. 6.5(a) of the analog-

to-information converters’s ith branch is represented as the summation of the outputs of the L

individual I/Q mixers driven by L harmonically related complex sinusoids ri,n(t) where n runs

from 0 to L-1, followed by weighted gain stages (bi,n). The output sum of the multi-path mixers

(c(t)) is filtered by a low-pass filter with an impulse response of h(t). For the signal path analysis,

the complex-domain LO signal driving each mixer path is ri,n(t) = e j2p( n
L·Tc )t . The equivalent

multi-path mixers model further illustrates the wide instantaneous bandwidth capturing capability

of compressed sampling spectrum sensors. Weighted gain stages bi,n represent the weights of an m-
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sequence with a spectrum Spi( f ) with a length L and fp = fCLK/L which is equal to the RBW [47]

given in (6.4).

Spi( f ) =

2

64
•

Â
k=�•

r 6=0

d( f � k fp)

3

75
L+1

L2

✓
sinp f/ fCLK

p f/ fCLK

◆2
+

1
L2 d( f ); (6.4)

Output y(t) and its Fourier transform Y ( f ) is given in (6.5). Mixing the input x(t) with each of the

harmonically related complex sinusoids followed by weighted gain stages and then summing the

outputs of the multi-path mixers represents the PN mixing that generates a linear combination of

copies of the input spectrum X( f ) shifted by multiples of fp =RBW . The signal power in each copy

of the input spectrum is reduced by a factor proportional to (L+1)/L2, while the total signal power

which is integrated over the entire spread spectrum stays the same. To demonstrate the PN mixing

effect on the input spectrum, spectra of the key signals is shown for an AIC in Fig. 6.6. The multi-

path mixing operation spreads the spectrum and captures the wideband spectrum instantaneously

by folding into each bin the signal information from all bins.

y(t) =

 
L�1

Â
n=0

bi,n [x(t) · ri,n(t)]

!
⇤h(t)

y(t) F�! Y(f ) =

 
L�1

Â
n=0

bi,n [X( f )⇤Ri,n( f )]

!
·H( f ) (6.5)

A low-pass filter with a 3-dB cut-off frequency of f3dB = 1/2(L ·Tc) following the PN mixer in

AICs is used to limit the bandwidth to the RBW/2 before sampling. After low pass filtering, the
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Figure 6.6: Spectra of the key signals in the compressed sampling spectrum sensor employing an
AIC; (a) The input signal spectrum, X( f ), and the PN sequence spectrum, Spi( f ), (b) The output
of the PN mixer, C( f ), (c) The output of the low pass filter following the PN mixer, Y ( f ).
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baseband signal is obtained that contains one replica of the folded spectrum which is then sampled

and converted into the digital domain for CS support recovery [3, 42].

6.2.2 PN Mixer Noise Analysis for Analog-to-Information Converters

Noise folding: The effect of noise folding in PN mixers [67] on the effective sensitivity level is

discussed in this section. SNR degradation with respect to mixing with a square LO is illustrated

in Fig. 6.7. At the output of the low pass filter following the PN mixer, the total signal power is

reduced by an amount that is proportional to the length of the PN sequence due to spreading the

spectrum, while the noise power stays the same due to the noise folding factor proportional to the

length of the PN sequence.

The effective sensitivity level, ESL, is given in (6.6), where NBWCS is the effective noise band-

width of compressed sampling AICs that takes into account the noise folding effect, NFsq is the

noise figure of the AIC if the LO port of the PN mixer is driven by a square wave at a rate of

fCLKsq = ki.RBW , and SNRout is the required signal to noise ratio at the output for successful

support recovery that satisfies a target PD and PFA based on the deployment scenario requirements.

ESL = 10log(NBWCS)+NFsq +SNRout (6.6)

The effective noise bandwidth to account for the noise folding, NBWCS, tracks the instantaneous

bandwidth of the AICs and is defined by L ·RBW which scales with the span. For a given span, if

the RBW is halved, L needs to be doubled. Therefore, the NBWCS remains the same. In essence, the

impact of noise folding will not reduce when reducing RBW but will reduce only when reducing
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Figure 6.7: Conceptual illustration of the noise folding and SNR degradation due to PN mixing
in AICs compared to mixing with a square LO. Spectra of the key signals; (a) The input signal
spectrum, X( f ), and the PN sequence spectrum, Spi( f ), (b) The input signal spectrum, X( f ), and
the square LO spectrum, Ssquare( f ), (c) The output of the PN mixer, C( f ), (c) The output of the
square LO mixer, Csquare( f ), (d) The output of the low pass filter following the PN mixer, Y ( f ), (c)
The output of the low pass filter following the square LO mixer, Ysquare( f ).
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the span. The band-pass CS architectures have a smaller signal bandwidth after downconversion

that results in reduced noise folding. Limiting the signal bandwidth with downconversion thus

allows improved sensitivity and better instantaneous dynamic range performance compared to low-

pass CS architectures.

Effect of the number of samples on the sensitivity: Doubling the number of samples should

improve the sensitivity level of an AIC by 3dB. There is a fixed trade-off between the number of

samples used for support recovery and the scan time. The effect of the number of samples on the

sensitivity can be demonstrated with the PD and PFA measurements for varying power levels per

band for K0 interferers by doubling the number of samples ns to be used in the support recovery.

With the assumption of at least 2K0 samples needed to satisfy the target PD and PFA at the

effective sensitivity level, the number of samples required to improve the sensitivity level by the

noise folding factor at the expense of increased scan time is ns = 2K0 ·2k, where k � (10logL)/3

for k 2 Z+.

As an example scenario, the calculated number of samples ns for K0 = 1 required to improve

the effective sensitivity level by an amount sufficient to offset the m-sequence noise folding factor

of 17.99dB is 128. Shown in Fig. 6.2, the calculated effective sensitivity level is -51dBm/10MHz,

and if 128 samples are used for support recovery then the expected sensitivity level is around

-69dBm/10MHz for a target PD and PFA.
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Table 6.1: System parameters of a PN mixer linearity characterization in a TS-QAIC
Linearity Test System Parameters

Tone Spacing 
# of Tones

Bin Locations Same bin
Tone Locations k iRBW+δ1, k iRBW+δ2

Sequence Type
Number of Effective Branches

Maximal-length/Gold sequence
TS ON - 16 I/Q

Intra-bin
2

Adjacent bins Nonadjacent bins
k iRBW+δ1, k i+1RBW+δ2 k iRBW+δ1, k rRBW+δ2

Maximal-length/Gold sequence
TS ON - 16 I/Q

Inter-bin
2

6.2.3 PN Mixer Linearity Analysis for Analog-to-Information Converters

We analyze the linearity of a PN mixer with two kinds of two-tone test cases for AICs called intra-

bin and inter-bin spectrum test cases. Table 6.1 shows an example of the system parameters to

characterize the linearity of a PN mixer in a TS-QAIC.

Intra-bin spectrum test: The intra-bin spectrum test shown in Fig. 6.8 characterizes the nar-

rowband linearity of the AIC that offers a wide instantaneous bandwidth. Two equal-power tones

are located at ki ·RBW + d1 and ki ·RBW + d2 respectively, where 1  ki  N0, in the same spec-

trum bin out of N0 bins in the span. Two tones are mixed with the specific PN sequence spectrum

component located at the ki ·RBW and downconverted to baseband locations of d1 and d2. These

two tones are also spread into all the N0 spectrum bins by mixing with all the L PN sequence spec-

trum components. The low-pass filter following the mixing stage has a 3-dB equal to the RBW/2,

which filters out the copies of the two tones in the other bins of the interest spectrum range. The

two tones are located at the input of the PN mixer in one of the narrowband RBW -wide bins out of

all possible bins in a span of N0 ·RBW . After mixing with the PN sequence and low pass filtering,

the two tones and their IMD products, at the output, are also located in the baseband narrowband
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RBW -wide bin. The intra-bin spectrum linearity test case demonstrates the narrowband input to

narrowband output mapping of the PN mixing that is similar to a traditional square LO mixing.

Inter-bin spectrum test: The inter-bin spectrum test shown in Fig. 6.9 and Fig. 6.10 character-

izes the wideband linearity of the AIC with a wide instantaneous bandwidth. Two equal-power

tones are located in any of the two bins out of N0 locations over the span. Two tones located in two

different spectrum bins over the wide span are mixed with their specific PN sequence spectrum

components and downconverted to baseband. The two tones are also spread over into all the N0

spectrum bins by mixing with all the L PN sequence spectrum components. The low-pass filter

following the mixing stage has a 3-dB equal to the RBW/2, which filters out the copies of the two

tones in the other bins of the spectrum range of interest.

The inter-bin spectrum linearity test has two possible scenarios. One of the possible scenarios

is that the two tones at the input can be placed in adjacent bins (Fig. 6.9) and the tone locations

will be ki · RBW + d1 and ki+1 · RBW + d2 respectively. Another possible scenario is that they

can be placed in nonadjacent bins (Fig. 6.10) with N0 possible locations and their locations will

be ki ·RBW + d1 and kr ·RBW + d2 respectively. These two tones are located at the input of the

PN mixer in a wideband configuration in any of the two RBW -wide bins, and at the baseband

output, after mixing with the PN sequence followed by low-pass filtering, the two tones and their

IMD products are folded into the same narrow-band RBW -wide bin. The two fundamental tones

are located at baseband locations, d1 and d2, while the two IM3 products are located at baseband

locations, (2d1 �d2) and (2d2 �d1).

The inter-bin spectrum linearity test demonstrates the wideband input to narrowband output



115

X(f) & Spi(f) 

fCLK=1/Tc0
f

2fCLK-fCLK-2fCLK
RBW

δ1

δ2

kiRBW ki+1RBW

f

(a)

C(f)

0
f

2fCLK-2fCLK fCLK=1/Tc-fCLK δ1δ2-δ1-δ2

(b)

RBW/2

Y(f)

0
f

2fCLK-2fCLK fCLK=1/Tc-fCLK δ1δ2-δ1-δ2

(c)

Figure 6.8: Spectra of the key signals for the intra-bin spectrum linearity test of a PN mixer in
an AIC (Fig. 6.3); (a) The input signal spectrum, X( f ), and the PN sequence spectrum, Spi( f ),
(b) The output of the PN mixer, C( f ), (c) The output of the low pass filter following the PN mixer,
Y ( f ).
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Figure 6.9: Spectra of the key signals for the inter-bin spectrum linearity test of a PN mixer in an
AIC (Fig. 6.3), two input tones are located in adjacent bins; (a) The input signal spectrum, X( f ),
and the PN sequence spectrum, Spi( f ), (b) The output of the PN mixer, C( f ), (c) The output of the
low pass filter following the PN mixer, Y ( f ).
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Figure 6.10: Spectra of the key signals for the inter-bin spectrum linearity test of a PN mixer in
an AIC (Fig. 6.3), two input tones are located in nonadjacent bins; (a) The input signal spectrum,
X( f ), and the PN sequence spectrum, Spi( f ), (b) The output of the PN mixer, C( f ), (c) The output
of the low pass filter following the PN mixer, Y ( f ).
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mapping of the PN mixing that comes from the multi-LO type spectral properties of the PN se-

quences. This unique feature of the PN mixer makes it a key feature of AICs, enabling them to

rapidly capture a wide instantaneous bandwidth.

6.3 Measurement Results

To demonstrate some of the challenges and trade-offs associated with CS rapid interferer detectors

including the impact of PN mixing on the instantaneous dynamic range performance of AICs, the

TS-QAIC chip is used as an example benchmark for the measurements. For the sake of compari-

son, the TS-QAIC branches are characterized for RF performance with square LOs driving the PN

mixers.

6.3.1 TS-QAIC Instantaneous Dynamic Range versus Instantaneous Band-

width Trade-Off

The intrinsic trade-off of compressed sampling spectrum sensors between the instantaneous dy-

namic range and instantaneous bandwidth is discussed in Section 6.1. In Chapter 5, the TS-QAIC

measurement shown in Fig 5.14 demonstrates the 1GHz-wide instantaneous bandwidth capability

of the CS interferer detector.

The instantaneous dynamic range of a TS-QAIC system is defined as the ability to detect a

weaker interferer in the presence of a stronger interferer over a 1GHz-wide instantaneous band-

width. The instantaneous dynamic range calculation of the TS-QAIC mapped to an 8-bit A/D
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Figure 6.11: Measured 2-band instantaneous dynamic range of the TS-QAIC with the 8-bit A/D
sampling system.

range used for measurements is shown in Fig. 6.2. The measured 2-band signal reconstruction

with a 13dB instantaneous dynamic range is demonstrated in Fig. 6.11 and this measurement con-

firms the calculation shown in Fig. 6.2 3.

6.3.2 Effect of Number of Samples on the TS-QAIC Sensitivity Level

Fig. 6.12 demonstrates the effect of the number of samples ns on the TS-QAIC sensitivity level.

Shown in Fig. 6.12 when time segmentation is disabled (TS OFF), each of the measured PD and PFA

curves for varying power levels per band for K0 = 1 interferer are obtained by doubling the number

of samples for ns=64, 128, 256, and 512. To report the measured PD and PFA, 80 experiments

are performed for each power level per band for a different number of samples. The effective
3We note that if the measurement system is migrated to an 11-bit A/D sampling system, it would be possible to

demonstrate a 25dB instantaneous dynamic range of TS-QAIC over a 1GHz instantaneous bandwidth as calculated
based on the sensitivity and the strongest signal that can be detected by the CS TS-QAIC prototype.
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Figure 6.12: The effect of number of samples on the TS-QAIC sensitivity level is demonstrated
with the measured PD and PFA.

sensitivity level (ESL) calculated in Section 6.2.2 and shown in Fig. 6.2 is -51dBm/10MHz for

the PN sequence noise folding factor of 17.99dB and the required SNRout of 15dB for successful

support recovery. As shown in Fig. 6.12, when 128 samples are used for complex-domain support

recovery, the sensitivity level is -69dBm/10MHz with an improvement of 18dB compared to the

effective sensitivity level for a PD of 95%.

Measured sensitivity levels that correspond to the measured detection probability PD with 2s

(⇡ 95%) and 3s (⇡ 99.7%) as well as the number of samples required to obtain those measured

sensitivity levels at the expense of the scan time are reported in Table. 6.2.
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Table 6.2: The measured sensitivity levels and scan times reported for ns=64, 128, 256, and 512
for the measured PD with 2s (⇡ 95%) and 3s (⇡ 99.7%)

PD with 2σ (PD of 95%) PD with 3σ (PD of 99.7%) TS OFF
Number of 
Samples

Sensitivity Level 
(dBm/10MHz)

Sensitivity Level 
(dBm/10MHz) Scan Time (µs)

64 -66 -63 3.6
128 -69 -66 6.8
256 -73 -72 13.2
512 -74 -72 26

6.3.3 TS-QAIC PN Mixing Noise Measurements

The noise folding impact of PN mixing on the TS-QAIC performance is demonstrated in terms of

the SNR degradation compared to a traditional square LO mixing. Each measurement is performed

for I1, I6, and I7 branches of the TS-QAIC to illustrate the effect of the spectral properties of an

m-sequence and two unique gold sequences compared to a square LO.

TS-QAIC conversion gain for a square LO, an m-sequence and two unique gold sequences:

The TS-QAIC conversion gain is measured and shown as referred to the input frequency range

of 2.7-3.7GHz in Fig. 6.13 for the three different branches I1, I6, and I7. Measurement results

shown in Fig. 6.13(a) and Fig. 6.13(b) are for the two sets of unique PN sequences, gj(t) and gk(t)

respectively, that form the optimal sensing matrix f1. The PN mixer of the I1 branch is driven by

a square LO as the comparison reference point and then switched to an m-sequence, while the PN

mixers of the I6 and I7 branches are driven by two unique gold sequences with different spectral

properties. For the m-sequence and the two unique gold sequences operating at a 1.26GHz rate

with a length of 63 for a 20MHz RBW, the conversion gain is measured with an RF tone sweeping

the 2.7 to 3.7GHz range with 20MHz steps, while the fLO and fCLK are set to 3.2GHz and 1.26GHz

respectively. To illustrate the same 20MHz RBW effect for the PN mixer driven by a square LO,
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the conversion gain is measured with an RF tone sweeping the 2.7 to 3.7GHz range with 20MHz

steps, while the fLO is set to 3.2GHz and fCLK is swept from ±20MHz to ±500MHz with 20MHz

steps to cover the 1GHz spectrum range of interest.

As shown in Fig. 6.13, the measured typical gain of a TS-QAIC I1 branch driven by a square

LO is 32dB with an 18.3dB NF, whereas the measured typical gain of a TS-QAIC I1 branch driven

by an m-sequence is 18.2dB with a 13.8dB degradation in SNR due to the noise folding (13.8dB

conversion loss due to the spectrum spreading). For I6 and I7 branches that are driven by two

unique gold sequences, the conversion gain from bin-to-bin differs significantly due to the spectral

properties of the gold sequences. On the other hand, for the I1 branch that is driven by an m-

sequence, there are not any significant fluctuations in the conversion gain from bin-to-bin since

m-sequences typically have uniform spectrum.

TS-QAIC SNR degradation due to PN mixing The SNR degradation is demonstrated with a

measurement that shows the output spectrum of the I1, I6, and I7 branches with a baseband tone

at 2.5MHz. For this measurement, the RF input tone at 3.3425GHz is mixed with a square LO

and then with an m-sequence at the PN mixer of the I1 branch and two unique gold sequences at

PN mixers of I6 and I7 branches. The RF input tone is downconverted to baseband with a square

LO and a spectral component of the m-sequence or gold sequences that corresponds to 140MHz

following a 3.2GHz I/Q downconversion stage. The measured baseband output spectrum is shown

for this single tone RF input for a square LO and all three of the mixing sequences with a length

of 63 from the time-segmented PN sequence set k respectively in Fig. 6.14. The output SNR of

the I1 branch is degraded by 13.8dB for the m-sequence, showing a close correspondence with
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Figure 6.13: Input referred TS-QAIC conversion gain for I1, I6, and I7 branches. The PN mixer
of the I1 branch is driven by a square LO or an m-sequence, while PN mixers of the I6 and I7
branches are driven by two unique gold sequences. Results are reported for the two sets of unique
PN sequences (gj/k(t)) that form the optimal sensing matrix f1; (a) Time-segmented PN sequence
set j, gj(t), (b) Time-segmented PN sequence set k, gk(t).

the theoretical analysis in Section 6.2.2, 10.2dB for the I7 gold sequence, and 26dB for the I6

gold sequence compared to mixing with a 140MHz square LO. The measurement result shown in

Fig. 6.14 further demonstrates the concept of noise folding in PN mixers illustrated in Fig. 6.7.

The signal power is reduced by an amount that is proportional to the length of the PN sequence

due to spreading the spectrum, while the noise power stays the same due to the noise folding factor

proportional to the length of the PN sequence.

The measured SNR degradation at the baseband output of the I1 branch driven by an m-

sequence and of the I6 and I7 branches driven by two unique gold sequences compared to mixing

with a square LO corresponding to that specific bin is shown in Fig. 6.15 for the 2.7-3.7GHz input

frequency range. The I1 branch driven by the m-sequence demonstrates a uniform SNR degrada-

tion that corresponds closely with its spectral properties as given in (6.4) (shown in Fig. 6.15 with
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Figure 6.16: (a) TS-QAIC I1 branch in-band IIP3 for a square LO, (b) TS-QAIC I1 branch P1dB
for a square LO.

blue square data points) compared to the I6 and I7 branches driven by two unique gold sequences

due to their nonuniform spectral properties.

6.3.4 TS-QAIC Linearity Characterization with a Square LO

TS-QAIC branches are characterized in terms of the RF performance by driving the second stage

mixer with a square LO as the comparative reference point in addition their characterization by

driving the same mixer with a PN sequence. The measured in-band IIP3 of a TS-QAIC branch
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driven by a square LO is -6.24dBm, as shown in Fig. 6.16(a) tested with two RF tones located at

3.342GHz and 3.343GHz. The measured P1dB of a TS-QAIC branch driven by a square LO is

-18dBm, as shown in Fig. 6.16(b) tested with an RF tone located at 3.342GHz.

6.4 Discussion

In this chapter, the noise analysis of a PN mixer and the effect of number of samples on the

sensitivity of an AIC are discussed. The TS-QAIC SNR degradation and sensitivity measurement

results conform well to the predicted performance based on the analysis. Furthermore, the linearity

analysis of a PN mixer with intra-bin and inter-bin spectrum test cases is discussed. As a first

step towards the future directions of this research, the TS-QAIC linearity measurements for the

following spectrum scenarios; intra-bin and inter-bin with adjacent and nonadjacent bin locations,

will be collected and analyzed to demonstrate which building blocks of an AIC are contributing to

the nonlinearities for these test cases.



Chapter 7

Conclusions

7.1 Band-pass Compressive Sampling as an Enabling Solution

for Energy-Efficient and Rapid Wideband RF Spectrum

Sensing in Future Cognitive Radio Systems

The ’landscape’ of spectrum scanners and sensors is shown in Fig. 7.1, which classifies them

based on their applications and shows where the band-pass CS interferer detectors presented in

this dissertation, the QAIC and the TS-QAIC, fit into this ’landscape.’ Key performance metrics

for comparison are energy consumption per scan, where E is the energy consumption of a QAIC,

scan time, instantaneous dynamic range, and instantaneous bandwidth. The number of detectable

interferers is another key performance metric for compressed sampling detectors. The ’landscape’

of Fig. 7.1 is derived from the estimated performance of state-of-the-art traditional and compressed

127
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Figure 7.1: Spectrum scanners and sensors ”landscape”.

sampling based spectrum scanners and sensors that are scaled to sense a 1GHz span from 2.7 to

3.7GHz with a 20MHz RBW [3].

Traditional sweeping spectrum scanners [13,14,16,18] and cross-correlation spectrum analyz-

ers [9,11,12] are located at the corner where the scan time is the longest and the energy consump-

tion is the highest. They offer a high dynamic range but at the expense of long scan time and a

small instantaneous bandwidth equal to their RBW. For this example spectrum scenario, sweeping

spectrum scanners require 220µs scan time with a 20MHz instantaneous bandwidth in a 1GHz

span that results in high energy consumption and the risk of missing the changes in a dynamic

spectrum. Cross-correlation spectrum analyzers are preferred to increase the dynamic range by

improving the sensitivity at the expense of increased scan time. It is demonstrated in [9] that re-
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ducing the NF by 1.5dB doubles measurement time. Both of these architectures are specialized for

spectrum analyzers.

Nyquist-rate FFT spectrum sensors offer 50 times faster sensing compared to traditional sweep-

ing spectrum scanners. However, the energy consumption stays the same to first order, as it is a

power-hungry approach owing to the high Nyquist-rate ADCs (e.g. 2GSps).

Interferer detectors that offer simultaneously fast detection over a wide instantaneous band-

width with fine frequency resolutions and low power, while requiring only modest hardware re-

sources, are the key enabling components of future cognitive radio systems. We exploited com-

pressive sampling in the presented works to take a ’snapshot’ of the spectrum with low energy

consumption and high frequency resolutions. Compressive sampling (CS), an evolutionary sens-

ing/sampling paradigm that changes the perception of sampling, can break the traditional trade-off

between span, RBW, and scan time by sampling at sub-Nyquist rates. CS detectors shown in

Fig. 7.1 are specialized for rapid detection of signals in a wide instantaneous bandwidth with mod-

erate dynamic range. Low-pass CS architectures, like [26, 28] sense the spectrum from DC to

fmax and are more suitable for baseband applications. There is, however, a need to mix with high

Nyquist-rate pseudorandom noise sequences, thereby diminishing the energy savings offered by

low-pass CS especially at RF frequencies.

Band-pass CS architectures are a technology proposed to enable energy-efficient and rapid

RF spectrum sensing over a wide instantaneous bandwidth in emerging cognitive radio terminals.

Band-pass CS architectures offer very short scan time compared to traditional spectrum analyzers

and lower power consumption for RF frequencies compared to low-pass CS architectures.
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A quadrature analog-to-information converter (QAIC) [3–5] that uniquely exploits band-pass

compressed sampling is presented for the rapid sensing of large spectral bandwidths with high

frequency resolutions. The QAIC senses a frequency span of 1GHz ranging from 2.7 to 3.7GHz

with a resolution bandwidth of 20MHz in 4.4µs, an interferer detection 50 times faster than that

of traditional spectrum scanner architectures. The QAIC front end consumes 81mW from a 1.1V

supply. The QAIC is estimated to be two orders of magnitude more energy efficient than traditional

spectrum scanner/sensors and one order of magnitude more energy efficient than existing low-

pass CS spectrum sensors. The aggregate sampling rate in the QAIC is compressed by 6.3 times

compared to traditional Nyquist-rate approaches.

Increasing the number of interferers that can be detected with the QAIC requires a proportional

increase in the number of physical I/Q branches. However, increasing the hardware complexity and

silicon cost of the QAIC to accommodate 6 interferers would be overkill given that the QAIC can

detect 3 interferers in 4.4µs and spectrum is typically stationary for 10s of µs. A time-segmented

quadrature analog-to-information converter (TS-QAIC) [8] that introduces system scalability in

multiple dimensions by adaptive thresholding in the information recovery engine and by virtually

extending physical hardware through time segmentation is presented in order to meet different

performance goals like the number of detectable interferers, energy consumption, and scan time,

while limiting silicon cost and complexity. Enabling time segmentation thus allows the detection of

twice the number of interferers without doubling the amount of hardware, while taking advantage

of spectrum stationary for 10s of µs. The TS-QAIC rapidly detects 6 interferers in the PCAST
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spectrum between 2.7 and 3.7GHz with a 10.4µs sensing time for a 20MHz RBW with only 8

physical I/Q branches, while consuming 81.2mW from a 1.2V supply.

7.2 Future Research Directions: ’What to Explore Next?’

Band-pass CS architectures enable low energy consumption and rapid spectrum sensing by break-

ing the fixed trade-off in scan time versus RBW of traditional sweeping spectrum scanners, but

have a trade-off in instantaneous bandwidth versus instantaneous dynamic range. Some of the

challenges associated with the design of compressed sampling analog-to-information converters

including noise folding and the effect of spectral properties of PN sequences are discussed in

Chapter 6. These challenges lead to open questions for the field. One of these might be the new

type of sequences that would be optimal for capturing the wide instantaneous bandwidth, while

maintaining ’good’ sensing matrix properties like RIP and low mutual coherence for successful

CS support recovery, and at the same time improving the instantaneous dynamic range that could

be offered by analog-to-information converters (AICs).

The presented interdisciplinary research project offers novel solutions for multi-tiered, shared

spectrum access terminals. One of the cross-layer questions that is a promising avenue for future

interdisciplinary research directions is the co-optimization of circuits and signal processing algo-

rithms to address circuit impairments such as nonlinearities and noise. We further note that a first

step towards co-optimization of circuits and signal processing algorithms is investigating and mod-

eling the nonlinearities of band-pass CS architectures, like the QAIC [3] and the TS-QAIC [8]. A

specific example, mentioned briefly in Chapter 6, is analyzing the effect of unique spectral prop-
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erties of PN sequences on the nonlinearity of a band-pass CS QAIC or TS-QAIC and integrating

the model of the nonlinearities derived from the contributions of AIC building blocks into the CS

support recovery problem.

Compressive sampling is an emerging research area that has been exploited in variety of inter-

disciplinary research fields like neuroscience [68, 69], machine learning [70], astronomy [71, 72],

optics [73,74], sensing [3,21,26,28,42], communications [75,76], and also extensively in medical

imaging [77–79]. The research work presented here is only one example of how to leverage new

evolutions in sampling for RF spectrum sensing. Using compressive sampling in novel interferer

detector architectures like the band-pass CS QAIC [3] and TS-QAIC [8] thus enables energy-

efficient and rapid sensing over a wide span.
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