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[1] We report pan-arctic terrestrial snowmelt trends for the
period 1979 – 2008 derived from spaceborne microwave
brightness temperature (Tb) and study the correlation
between these trends and the Arctic Oscillation (AO).
Melting is detected using a spatially and temporally
dynamic algorithm using the difference between daytime
and nighttime Tb values (Diurnal Amplitude Variations,
DAV). Results indicate statistically significant negative
trends for melt onset and end dates as well as for the length
of the melt season. On the average, over the past 30 years
melt has been starting (finishing) �0.5 days/year (�1 days/
year) earlier and the length of the melting season is
shortening by �0.6 days/year. Results indicate that the AO
index variability can explain up to 50% of the melt onset
variability over Eurasia and only 10% of that over North
America, consistent with spatial patterns of surface
temperature changes related to the AO. Citation: Tedesco,

M., M. Brodzik, R. Armstrong, M. Savoie, and J. Ramage (2009),

Pan arctic terrestrial snowmelt trends (1979 – 2008) from

spaceborne passive microwave data and correlation with the

Arctic Oscillation, Geophys. Res. Lett., 36, L21402, doi:10.1029/

2009GL039672.

1. Introduction and Rationale

[2] Melting snow can be mapped by means of spaceborne
microwave brightness temperatures (Tbs) [e.g., Mote et al.,
1993; Drobot and Anderson, 2001; Ramage, 2001; Tedesco,
2007; Takala and Pulliainen, 2008], continuously collected
at a global scale since 1979 [Knowles et al., 2002; Armstrong
et al., 1994] as the appearance of liquid water within the
dry snowpack suddenly and abruptly increases microwave
Tb [e.g., Tedesco et al., 2006]. Many of these algorithms
use daily (or multiple days) averaged Tb, which may increase
the uncertainty on the estimated melt onset dates (MODs)
and melt end dates (MEDs). One of the proposed method-
ologies, however, makes use of data collected during both
ascending and descending passes (diurnal amplitude varia-
tions, DAV) [e.g., Ramage and Isacks, 2002; Tedesco, 2007],
hence improving the temporal resolution of the derived
MODs and MEDs. In the DAV approach histograms of

Tbs (measured during both dry and wet snow conditions)
can be modeled by means of a bimodal distribution, with
the left (right) normal distribution, LND (RND), containing
Tb representative of dry (wet) snow conditions. Wet snow is
assumed to occur when measured Tb belongs to the RND
(e.g., Tb is greater than a threshold value Tc) and the DAV is
greater than a threshold value DAVc. During dry snow
conditions, the DAV is relatively low but it considerably
and abruptly increases when melting begins. To account for
those cases when both ascending and descending Tbs are
high, snow is flagged as wet when both ascending and
descending Tbs are greater than Tc [Tedesco, 2007].
[3] In this study, we use a modified version of the

original DAV-based algorithm [e.g., Ramage and Isacks,
2002] to study trends of MODs, MEDs and of the melt
season length, between 1979 and 2008 for areas at latitudes
above 60�N. Previously published studies are either focus-
ing on a specific area [Takala and Pulliainen, 2008] or on a
shorter period [Wang et al., 2008]. The major change of the
new DAV algorithm here used is that both Tc and DAVc are
dynamically computed, for each year and pixel. We have
therefore named the new algorithm Dynamic-DAV (D-
DAV) and the version previously reported in the literature
Static-DAV (S-DAV). Microwave data consists of vertically
polarized Tb at Ka band measured between 1978 and 1987
by the Scanning Multichannel Microwave Radiometer
(SMMR, 37 GHz) [Knowles et al., 2002] and by the Special
Sensor Microwave/Imager (SSM/I, 1987–2008, 36.5 GHz)
[Armstrong et al., 1994] between 1987 and 1991 (F-08
satellite), 1991 and 1995 (F-11) and 1995 – 2008 (F13).
Sensor cross-calibration is necessary and is performed
following Jezek et al. [1991] for the SMMR to SSM/I
F08 calibration, Abdalati et al. [1995] for the F11 to F08
sensors and Stroeve et al. [1998] for the F11 and F13
sensors. The gaps in the SMMR time series of Tb conse-
quent to the smaller SMMR swath with respect to that of
SSM/I are filled with values computed by linear interpola-
tion from adjacent days. The overpass times of the SSM/I
sensors are similar, with ascending (descending) equatorial
crossing time for the SSM/I sensors on the F-8 satellite at
dawn (dusk) and dusk (dawn) for the ones on the F-11 and
F-13 satellites. However the ascending (descending) equa-
torial crossing time for SMMR is local noon (midnight).
The different crossing times between the SMMR and SSM/I
sensors are a major source of uncertainty in the long-term
trends of both MOD and MED. To quantify this uncertainty
would require concurrent measurements during MODs and
MEDs. Unfortunately, the overlapping period for the
SMMR and SSM/I F-08 sensors occurs during July and
August, when melting has already started or is already over.
We can only speculate that, in view of the crossing time,
SMMR might detect earlier (later) MOD (MED) than SSM/

GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L21402, doi:10.1029/2009GL039672, 2009

1Earth and Atmospheric Sciences, City College of New York, City
University of New York, New York, New York, USA.

2Joint Center for Earth Systems Technology, University of Maryland,
Baltimore County, Baltimore, Maryland, USA.

3National Snow and Ice Data Center, Boulder, Colorado, USA.
4Earth and Environmental Sciences Department, Lehigh University,

Bethlehem, Pennsylvania, USA.

Copyright 2009 by the American Geophysical Union.
0094-8276/09/2009GL039672

L21402 1 of 6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161453713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I, even if the relatively smaller SMMR Tbs with respect to
SSMI (from the calibration regression formulas) could play
the opposite role.
[4] Results from D-DAV are used to study the correlation

between MODs and MEDs trends and the Arctic Oscillation
(AO), defined as the leading mode of sea level pressure
variability from an Empirical Orthogonal Function (EOF)
analysis for the Northern Hemisphere winter [Thompson
and Wallace, 1998]. Its major characteristics are a primary
center of action over the Arctic and opposing weaker
centers in the North Atlantic and North Pacific [Serreze
and Barry, 2005]. Rigor et al. [2002] suggest that spring
surface air temperature (SAT) anomalies over the Arctic
Ocean are correlated with the AO index during previous
winter. Bamzai [2003] uses maps of composite snow cover
to indicate that winter season AO and winter/spring season
snow cover are significantly correlated on seasonal time
scales. Here we study if and how this correlation translates
to the MODs and MEDs. This is not straightforward
because other components of the surface energy balance
beside SAT can affect melting.

2. D-DAVAlgorithm

[5] In S-DAV, both Tc and DAVc are spatially and
temporally fixed [e.g., Ramage and Isacks, 2002; Tedesco,
2007]. Differently, in the D-DAV approach, the threshold
DAVc is computed as DAVc = DAVJan. Feb. + 10 K, with
DAVJan. Feb. being the January-February DAV average. The
value of DAVc used in the S-DAV is 10 K [Ramage and
Isacks, 2002]. We introduced the DAVJan. Feb offset because
we observed that, for some pixels, DAV values during dry
snow conditions could be as high as 12–14 K, with
averaged January-February DAV values up to 6 K. The
threshold Tc in D-DAV is computed modeling the bimodal
distribution B describing the Tb histograms as B(p, m1, s1,
m2, s2) = p� G(m1, s1) + (1 � p) � G(m2, s2), where p is the
percentage of dry pixels, G is a Gaussian distribution and mi

and si are, respectively, the mean and standard deviation of
the ith normal distributions. For each pixel and year, the five
parameters (p, m1, s1, m2, s2) are computed through a fitting
procedure minimizing the mean square error between the
values of the Tb histogram (January through August) and
those of the bimodal distribution, using the Levenberg–
Marquardt method. The optimal threshold value is then
computed by minimizing the probability of erroneously
classifying a dry pixel as a wet pixel and vice versa) as T =
(�B ± (B2 � 4AC))/2A with A = s1

2 � s2
2, B = 2(m1 � s22 �

m2 � s12) and C = m2
2 � s12 � m1

2 � s22 + 2 s1
2 � s22 � ln(s2 � p/s1 �

(1 � p)) [Gonzalez and Wintz, 1987]. The value of T falling
between m1 and m2 is the desired threshold Tc. For those
cases when the fitting procedure does not converge, the
threshold value on Tb is set to 255 K [Tedesco et al., 2006].
Once Tc and DAVc are computed, melting is identified when
both of the following conditions are met: C1) DAVi � DAVc

and C2) Tbi
P � Tbc., with P being either Ascending or

Descending and i the day of the year. Melting is also
assumed to occur when C3) (Tbi

Asc. � TbThreshold and
Tbi

Desc. � TbThreshold), to account for melting that persist
during nighttime [Tedesco, 2007]. The date of the end of the
melt season is defined as the last day when DAVi � DAVc

and Tbi � Tc.

[6] To evaluate the performance of the D-DAV algorithm
at large spatial scales, we compared MODs and MEDs
derived from QuikSCAT [Wang et al., 2008] with those
derived from D-DAV. Figure 1 shows the mean (2000 –
2006) MODs (Figure 1a) and MEDs (Figure 1b) derived
with D-DAV and the difference between MODs derived
from QuikSCAT and SSM/I using D-DAV (Figure 1c) and
between the melt off dates from QuikSCAT and MEDs
derived from D-DAV (Figure 1d), for the period 2000 –
2006. Histograms of the differences between MODs and
MEDs obtained with QuikSCAT and D-DAV are also
reported in Figures 1e and 1f. The values of the mean and
standard deviation of the normal distributions fitting the two
histograms are, respectively, 1.74 days and 1.12 days in the
case of the MOD and �1.67 days and 2.93 days in the case
of the MED. No evident spatial pattern related to features
such as vegetation and elevation is observed. D-DAV
detects MOD (MED) earlier (later) than QuikSCAT. The
difference between the two algorithms might be due to the
different cell grid size of the two data sets, to the different
frequencies, and to the adopted threshold values.
[7] We also compared the outputs of the D-DAV algo-

rithm with estimates of MODs and MEDs derived from the
analysis of daily snow depth (SD) and SAT measured by 49
stations of the World Meteorological Organization (WMO)
for three snow seasons (2003 through 2006, http://
www.ncdc.noaa.gov). The stations used in this study and
the related data set were previously used by Tedesco and
Miller [2007], where they are fully described. Since we lack
the required information to solve the surface energy balance
equations and compute the snow temperature, we assumed
that melting occurs when SAT is exceeding 0 �C. The
correlation between MODs from D-DAV and those esti-
mated from Ts for all stations and years is R2 = 0.8 with a
mean absolute error of 4.8 days and a standard deviation
of 8.6 days. During our analysis, we noted that D-DAV can
indicate melting when SAT is still below but close to 0 �C.
Possible explanations include different spatial scales at
which the two data sets are acquired, the presence of sub-
surface melting (not identified by SAT analysis) and the
fact that WMO stations report the 2m air temperature rather
than the actual snow temperature. Following Wang et al.
[2008], we also studied the histograms of SAT one and two
days before and on the same day when melting is identified
by D-DAV. The number of SAT occurrences above 0 � C
was 10% two days before the identified melting date, 29%
one day before and 65% on the date when melting is
estimated by the D-DAV algorithm. The shift in the sta-
istical distribution of SAT from largely below freezing to
above freezing during the estimated D-DAV melt date con-
firms that the D-DAValgorithm is sensitive to the melt onset
signal. When comparing the date of the last day of melting
from D-DAVand the date of snow disappearance from snow
depth measurements, we found a correlation of R2 = 0.4,
with a mean error (over all samples) of 14 days and a standard
deviation of 12 days. We point out here that comparing the
D-DAV MEDs with the snow disappearance dates from
WMO data has intrinsic problems. As pointed out by Wang
et al. [2008], WMO stations do not report a ‘zero’ snow
depth for days when there is no snow but rather a flag value
(9999), also corresponding to missing data. Moreover, the
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MED computed by the D-DAV might differ from the actual
date of snow disappearance.

3. Results and Discussion

[8] Figure 2 shows the maps of (a) melt onset and (d) melt
end date trends together with (g) the trend of melt season
duration, expressed in days/year and derived with D-DAV
over the period 1979 – 2008. Negative values of the MOD
(MED) trends suggest that melting is starting (ending)
earlier. A negative trend of the melt season duration means
that the melt season is shortening. Not all trends are
statistically significant (p < 0.1), as observable from the
maps of p-values in Figures 2b, 2e, and 2h, where areas
with p > 0.1 are masked in black. In the case of MODs
(MEDs), the pixels with statistically significant trends at the
90% level are �78% (91%), becoming �75% in the case of
the melt season length. Elevated p-values of the melt onset
trends in east Eurasia occur over areas with high elevations,
but this is not happening for the remaining areas of Eurasia
and North America, where we did not find significant
correspondence between the distribution of p-values and
either elevation or forest cover fraction. The mean and the
standard deviation of the histograms of statistically signif-
icant trends (Figures 2c, 2f, and 2i) are fitted with Gaussian
distributions (black line). The mean and standard deviation
of the Gaussian distribution for MODs (MEDs) are, respec-
tively, �0.47 (�0.97) days/year and 0.14 (0.38) days/year.
In the case of the melt season length we obtain a mean of
�0.43 days/year and a standard deviation of 0.17 days/year.
The histograms also show that all statistically significant
MODs trends are negative. Most of the MEDs trends and
melt season length are negative, with the exception of a
small subset showing positive values.
[9] For each year, we computed the average value of melt

onset, melt end dates and melt season duration for areas
where statistically significant trends are obtained and for
subset areas including North America or Eurasia and
studied the correlation with AO during the period 1979 –
2008. The standardized anomalies (1979 – 2008 as a
baseline) of the spatially averaged values are reported in
Figure 3. Here black bars refer to the spatial average over
the entire study area, 50% gray bars to North America (NA)
and 25% gray bars to Eurasia (EU). The January through
March averaged AO index (http://www.cdc.noaa.gov/data/
correlation/ao.data) is also reported in Figure 3a (black line
with circles). The trends derived from linear regression
analysis for the spatially averaged MODs (MEDs) are
�0.47 days/year (�0.97 days/year) for the whole area,
�0.46 days/year (�0.94 days/year) for Eurasia and �0.43
days/year (�0.94 days/year). The trends in the case of the
spatially averaged melt season length are �0.52 days/year
for the whole area, �0.49 days/year for Eurasia and �0.55
days/year for North America.
[10] From Figure 3 we observe that positive melting-

related anomalies in 1979 and the beginning of the 1990’s
appear to be associated with the persistent negative phase of
AO during the same period. MOD anomalies become
generally negative after the 1990s, when the AO went from
a strongly negative to a positive state. The correlation
between MODs and JFM AO indices (1979 – 2008) is
R = �0.62, hence explaining about 36% of the melt onset

Figure 1. Maps of average (2000–2006) (a) melt onset
and (b) refreeze dates derived with the D-DAV and
differences between (c) MODs derived from QuikSCAT
and SSM/I using D-DAV [Days] and (d) melt off dates from
QuikSCAT and melt end date from SSM/I and D-DAV,
averaged for the seasons 2000 through 2006. (e–f) The
histograms of the differences are also reported together with
the mean and standard deviation values of the normal
distributions fitting the histograms.
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variability over the whole study area. The AO variability,
however, explains �50% (R = �0.7) of melt onset
variance over Eurasia but less than 10% (R = �0.25) of
the North America MOD variability. Results are 99%
statistically significant for the whole area and Eurasia,
but not for North America (with a p-value of 0.16). The
anti-correlation between AO and MOD trends is consistent
with the correlation between spring SAT anomalies and
AO index over the Arctic Ocean [Rigor et al., 2002] and
with the results reported by Kryjov [2002], suggesting that
more than 50% of the 30 year (1968–97) trends in both
winter and spring SAT for northwestern Russia and more
than 40% for northwestern Siberia are linearly correlated
with the winter AO. The poor correlation between AO and
North America melt onset variability is consistent with the
spatial patterns of the SAT anomalies related to AO: strong
positive changes in January through March surface temper-
atures congruent with AO extend across Northern Eurasia,

smaller response are observed over eastern United States
and negative responses are found over eastern Canada and
southern Greenland [van Loon and Rogers, 1978; Serreze
and Barry, 2005]. The correlation between MED trends
and AO was not found to be statistically significant over
the whole region and Eurasia, but it was statistically
significant over North America (at 95% level), though
poor, with R = �0.34. This suggests that the effect of AO
on snowmelt does not propagate through the length of the
melting season so that it can affect the MED trends.

4. Conclusions

[11] Applying the D-DAV algorithm to spaceborne
microwave Tbs collected between 1979 and 2008 we found
that statistically significant negative trends exist for the
MODs, MEDs and for the length of the melting season.
Our results indicate that, on the average, for the past 30 years

Figure 2. Maps of D-DAV derived (a) melt onset, (d) melt end date trends, and (g) melt season duration [Days/year] for
the period 1979–2008 together with the maps of p-values for the (b) melt onset, (c) melt end date, and (h) melt season
length. The histograms of statistically significant (at 90% level) trend values in the case of melt onset (Figure 2c), melt end
dates (Figure 2f) and melt season duration (Figure 2i) are also reported together with the Gaussian distributions (black line)
fitting the histograms.
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melting for areas above 60�N has been starting and ending
sooner and that the length of the melting season has
shortened. The trends of MOD (MED) range between
�0.2 (�2.4) days/year and �1.8 (0.8) days/year, with a
spatially averaged trend of ��0.47 days/year (�0.97 days/
year). Results also indicate that the melting season has been
shortening by �0.57 days/year, consistently with recently
observed warming in the Arctic region. The AO index
variability explains up to 50% of the melt onset variability
over Eurasia but only 10% of that over North America,

consistently with spatial patterns of surface temperature
anomalies correlated with the AO index. Over the whole
region under study, the AO index could explain �36% of
the MODs variability. Not statistically significant or poor
correlation values were found when considering the AO
index with MEDs and melt season duration. The MED and
MOD trends not explained by the AO might be linked to
other factors such as changes in long-term snow albedo, in
the surface energy balance terms (related to changes in
clouds) or to SAT warming trends not correlated to AO,
Recent years have seen a shift of AO toward a more neutral
state. If a new negative regime develops, it will be crucial to
monitor if this will lead to cooling or will be superimposed
on a more general warming trend.
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