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Abstract

Background: In most sequenced organisms the number of known regulatory genes (e.g., transcription factors (TFs))
vastly exceeds the number of experimentally-verified regulons that could be associated with them. At present,
identification of TF regulons is mostly done through comparative genomics approaches. Such methods could miss
organism-specific regulatory interactions and often require expensive and time-consuming experimental techniques
to generate the underlying data.

Results: In this work, we present an efficient algorithm that aims to identify a given transcription factor’s regulon
through inference of its unknown binding sites, based on the discovery of its binding motif. The proposed approach
relies on computational methods that utilize gene expression data sets and knockout fitness data sets which are
available or may be straightforwardly obtained for many organisms. We computationally constructed the profiles of
putative regulons for the TFs LexA, PurR and Fur in E. coli K12 and identified their binding motifs. Comparisons with an
experimentally-verified database showed high recovery rates of the known regulon members, and indicated good
predictions for the newly found genes with high biological significance. The proposed approach is also applicable to
novel organisms for predicting unknown regulons of the transcriptional regulators. Results for the hypothetical
protein Dde0289 in D. alaskensis include the discovery of a Fis-type TF binding motif.

Conclusions: The proposed motif-based regulon inference approach can discover the organism-specific regulatory
interactions on a single genome, which may be missed by current comparative genomics techniques due to their
limitations.
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Background
In most sequenced genomes a significant proportion
(3–6 %) of all genes are known to encode transcription
factors [1], an essential DNA-binding component that
regulates target gene transcriptional activity. The pro-
moter regions where TFs specifically bind on genome are
usually located in intergenic sites. Extensive sequencing
of genomes of various organisms revealed that there is
a large conservation of intergenic regions across differ-
ent species, often occurring among moderately-distant
relatives. This is the main intuition behind comparative

*Correspondence: wangx@ee.columbia.edu
1Department of Electrical Engineering, Columbia University, 500W 120th
Street, 10027 New York, NY, USA
Full list of author information is available at the end of the article

genomics approaches where one aims to reconstruct reg-
ulatory networks by exploiting evolutionary conservation
of regulatory features. The assumption is that if a TF-
encoding gene is preserved in a set of closely-related
species, the respective target genes that are regulated via
cognate TF binding sites also tend to be preserved [2].
Such regulatory elements as TFBSs and their target genes
identified for each genome constitute the “regulon” of the
given TF.
Although most known regulators abide evolutionary

conservation, many TF-encoding genes can be organism-
specific due to various reasons and the orthologs may
not exist in closely-related species. In particular, the
discovery of horizontal gene transfer can explain the
occurrence of nonconserved regulatory members [3]. The
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intuition of “true sites occur upstream of orthologous genes,
false sites are scattered at random” [2] can thereby miss
organism-specific interactions by treating them as false
predictions. Hence, there is some limitation to the com-
parative genomics approaches, and alternative techniques
are needed to identify organism-specific regulatory inter-
actions [4].
In this work, we attack this problem from a more

general computational perspective by aiming at single-
genome TF regulon reconstruction, which makes our
approach also suitable for novel organisms. We demon-
strated our results for the TFs LexA, PurR and Fur in
model bacteria Escherichia coli K12 by comparing to
their respective regulons in manually curated RegPre-
cise database [5]. The extended predictions –which are
not captured by RegPrecise– are presented with anno-
tations provided by GO [6] and Protein Interactions
(http://www.pir.uniprot.org) databases. Putative regulon
genes reported with high biological significance have
expanded the known regulons of LexA, PurR and Fur. Fur-
thermore, the results for a novel genome Desulfovibrio
alaskensis discovered a Fis-type motif for the hypothetical
regulator Dde0289.

Motif-based inference of novel regulons of transcription
factors
The cis-acting regulatory elements of genes are usually
located in upstream regions of their coding sequences,
where gene expression is controlled by sequence-specific
binding of the TFs. Co-expressed genes that have simi-
lar TF binding patterns in their regulatory regions can be
good candidates for a putative regulon. Binding prefer-
ence (motif ) of a TF can be described by a matrix that
represents the frequency of nucleotides observed in each
position of the known binding sites. Among others, the
position weightmatrix (PWM) is a well-suited representa-
tion of motifs for statistical evaluation of the correspond-
ing binding sites [7], and it is also a more sensitive metric
for TFBS recognition [8].
Recently, more complex models are introduced when

modeling TF-DNA binding affinities. In [9], it is shown
that DNA structural features can be calculated from the
nucleotide sequences in motif databases, and later [10]
et al. proposed that certain 3D DNA shape informa-
tion can be derived from high-throughput approaches.
In [11], epigenetic factors (methylation, histone mod-
ification etc.) are considered in TF binding, where
they investigated certain location- and cell-type spe-
cific relationships between epigenetic modifications and
binding affinities. Although these studies expand the
knowledge for modeling TF binding affinity, the pro-
posed methods may not be readily employed in every
genome. In this study, we focused on a more general
regulon recovery approach based on the discovery of

sequence motifs that could be broadly applied by only
using the genome sequence and corresponding gene
expression data sets.
We present an integrated method for motif-based infer-

ence of novel regulons of transcription factors (Fig. 1).
For a given TF (and its coding gene), the putatively co-
regulated gene set is estimated by utilizing available gene
expression and knockout fitness data sets in the pro-
posed biclustering method. The approach proceeds by
performing motif discovery in the upstream sequences
of this high-confidence gene set. For this, we devel-
oped a probabilistic algorithm BAMBI2b see Additional
file 5 that can estimate, from the supplied sequences,
the main regulatory factor’s unknown weight matrix of
unknown length and unknown intrinsic sequence sym-
metry. Once the motif is obtained the entire genome
is scanned by it for TFBS prediction, where the puta-
tive TF-DNA binding affinities are estimated by statistical
over-representation of the elucidated motif. Finally, the
candidate genes located in the downstream of the pre-
dicted TFBSs are checked and identified as members of
the putative regulon.
In Methods section, we provide an overview of the key

steps in our approach and general descriptions of the
implemented algorithms. The mathematical details are
given in the Additional file 1.
By using the proposed approaches we estimated bind-

ing motifs of the given transcription factors, and recon-
structed their putative binding sites and regulons. We
compared our results (i.e., estimated motifs, binding sites
and regulated genes) with the RegPrecise database which
is manually curated by an approach [12] most relevant
to our work. We used the well-studied transcription fac-
tor regulons, LexA, PurR, and Fur in the model organism
E. coli to validate our predictions. LexA is a repres-
sor protein that –under non-stress conditions– represses
SOS response genes which involve in repairing DNA
damages. Manually-curated LexA regulon in RegPrecise
database consists of 30 genes that are regulated by 26
operons. PurR is an important repressor for the tran-
scriptional regulation of purine metabolism. Its regu-
lon includes genes participating in the biosynthesis of
purine/pyrimidine nucleotides. FUR consists of a family
of TFs includingmetal ion-dependent regulators Fur, Mur,
Zur, and Nur which are responsible for homeostasis of
the metal ions in the organism. For each studied TF we
used relevant gene expression assays and knockout fit-
ness dataset when available. We also applied our approach
to a novel genome D. alaskensis to predict the binding
behavior of one of its hypothetical regulators Dde0289. In
fact, we discovered a rare type of binding motif which is
structurally-weak and unexposed to most sequence-based
motif finding tools. We further validated this prediction
by applying the same approach to the estimated motif ’s

http://www.pir.uniprot.org
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Fig. 1Motif-based inference of novel regulons of transcription factors

main presumed regulator (Fis) that has been annotated in
E. coli [13]. The details of the applications and results are
described as follows.

Results and discussion
Predictions in the model organism E. coli K12 validates our
approach’s sensitivity
To assess our approach’s performance we reconstructed
the regulons of LexA, PurR and Fur transcription factors
which are among the well-studied regulons in Escherichia
coli K12 strain. In literature, these transcription factor
motifs are known to have palindromic sequence sym-
metry. The informative sites in the LexA motif are con-
served in the middle of each half-site sequence, while
for PurR and Fur they are mostly scattered across the
motif and appear more informative near the motif half-
site. In Figs. 3, 4 and 5 these structures can be seen
in the estimated motifs too which are obtained by the
proposed approach.
We estimated a set of genes putatively co-regulated

with the LexA’s coding gene lexA, by using the pro-
posed biclustering method with the gene expression data
from [14] corresponding to 266 experiments and the
fitness data from [15] corresponding to growth rates
under antibiotic stress conditions, tetracycline, doxycy-
cline, andminocycline. The estimated high-confidence set
for LexA consist of 12 putatively co-regulated genes 11 of
which are members of the RegPrecise regulon. Figure 2
shows the corresponding gene expression heatmap of
the estimated bicluster consisting of 12 genes and 260
conditions.

By using 300-bp upstream sequences, the motif discov-
ery with proposed BAMBI2b algorithm yielded a 20-bp
motif (Fig. 3) with the consensus sequence identical to
that of the RegPrecise motif. Table 1 shows the simi-
larity of both motifs (BAMBI2b vs RegPrecise) with the
curated motif database (SwissRegulon [16]). It is seen that
both motifs exhibit high similarity with the known weight
matrix LexA_20-6, and the BAMBI2b estimate’s similarity
is statistically more significant. By scanning E. coli genome
with this motif we predicted 60 different putative bind-
ing sites, where 10 of them are located in the intragenic
regions (open reading frames). After downstream analyses
–assisted with MicrobesOnline prediction data for adja-
cent genes [17]– we identified a set of 90 genes as the
putative regulon (see Additional file 2).
Comparison with RegPrecise database showed that 27

genes are the members of known LexA regulon (corre-
sponding to 93 %), which are predicted through the same
binding sites. We call this group as true positives (TP).
Four novel binding sites are also found for the true posi-
tives dinB, ydjM, ruvA, and lexA (Table 2), in addition to
their RegPrecise binding sites. The remaining 63 genes are
not identified in RegPrecise, 17 of which have intragenic
binding sites.
We analyzed this putative regulon of 90 genes for bio-

logical significance by using Database for Annotation,
Visualization and Integrated Discovery (DAVID) [18, 19]
and identified certain significant genes that are novel
to RegPrecise database. A cluster of 29 genes including
alkB, dinJ, ada, yagL, and rmuC, was annotated with the
highest functional enrichment score 25.5 (see Additional

Fig. 2 Gene expression heatmap of the estimated high-confidence set: dinB, yafN, dinG, sulA, dinI, umuD, ydjM, yebG, recX, recA, lexA, recN
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Fig. 3 LexA motif estimated by the proposed approach

file 2). Notice that alkB, ada and yagL were predicted via
intragenic TFBSs that are excluded in RegPrecise regu-
lon. Protein interactions (SP-PIR) indicated high signif-
icance for the group including aklB and ada for DNA
repair and DNA damage terms. For the groups includ-
ing aklB, ada, and dinJ, Gene Ontology (GO) terms
cellular response to stress, DNA repair, and response to
DNA damage stimulus were the reported enrichment
terms. Table 3 shows the corresponding false discovery
rates (FDRs) (Benjamini). On the other hand, dinJ, yafQ,
rpod, molR, and insK are identified in the experimen-
tal database RegulonDB [20] as the genes regulated by
LexA.
We obtained a similar performance for the putative

PurR regulon. Based on the gene expression data in
[21], the proposed biclustering method estimated a high-
confidence set that consists of 5 true positive genes, i.e.,
purR, cvpA, purC, purM, and purN. From the upstream
sequences, BAMBI2b discovered a 16-bp motif (Fig. 4)
which is comparable to the RegPrecise motif (Table 4).

Table 1 The best hits of the estimated (BAMBI2b) vs true
(RegPrecise) LexA motifs in SwissRegulon database

BAMBI2b RegPrecise
motif motif

Target ID LexA_20-6 LexA_20-6

Optimal offset 2 2

p-value 2.05557e-11 2.97639e-09

e-value 1.99391e-09 2.88709e-07

q-value 3.96654e-09 5.74338e-07

Overlap 18 18

Query TACTGTATATATAAACAGTA TACTGTATATATATACAGTA
consensus

Target TATACTGTATATAAAAACAG TATACTGTATATAAAAACAG
consensus

Orientation + +

Table 2 Novel binding sites for LexA regulon

Locus Gene Position Score TFBS sequence

b0231 dinB -111 7.6 AGCTGGATAAGCAGCAGGTG

b1728 ydjM -52 10 CACTGTATAAAAATCCTATA

b1861 ruvA -51 8.6 TGCTGTATGATAAAAAAATG

b4042 lexA -88 8.7 AACTGCACAATAAACCAGAG

After TFBS prediction and subsequent regulon recon-
struction, we obtained a putative regulon consisting of 158
genes regulated via 93 non-intragenic sites (Additional
file 3). Thirty-three genes are identified in the RegPrecise
regulon which are regulated by the same binding sites.
Our approach found 3 additional binding sites for the true
positive genes, serA, yieG(purP), and yjcD (Table 5).
GO annotationss for this putative regulon suggested a

cluster of genes with significant functional enrichment.
Among the genes, nudB, cadA, cadB, cysZ, gltF, gltS, rhtC,
and ygeW were members of this cluster which are anno-
tated by the GO term nitrogen compound biosynthetic
process (see Additional file 3).
The reconstruction of Fur regulon also indicated novel

predictions. We employed the gene expression data in
[22], and the fitness data [15] with growth rates under
antibiotic stress conditions. The proposed biclustering
approach estimated a high-confidence set containing 56
genes of which 19 are members of the Fur regulon in
RegPrecise database. From the upstream sequences of
these 56 genes BAMBI2b discovered a 19-bp motif (Fig. 5,
Table 6). Although it slightly differs from the RegPrecise’s
Fur motif (i.e., the binding sites align with a 3-bp shift
and have the same consensus sequence), the motif still
conforms the same palindromic symmetry and is able to
recover the same RegPrecise binding sites (see Additional
file 4).
After screening the E. coli genome, we obtained a puta-

tive regulon consisting of 236 genes that covers all identi-
fied Fur operons in the RegPrecise database. Among them
32 genes have the intragenic binding sites. The annotation
analysis identified a group of 71 genes with the highest
enrichment score (10.6) and associated them to the metal
ion/iron related functional terms, in particular, the pro-
tein interaction terms iron, iron transport, transport, and

Table 3 Functional enrichment in reconstructed LexA regulon

Terms aklB, ada aklB, ada, dinJ

DNA repair (SP-PIR) 5.1E-28

DNA damage (SP-PIR) 6.2E-28

Cellular response to stress (GO) 7.5E-23

DNA repair (GO) 1.6E-21

Response to DNA damage stimulus (GO) 1.6E-21
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Fig. 4 PurR motif estimated by the proposed approach

ion transport (see Additional file 4). Among this group
we pinpointed two genes fes and fhuE (Table 7) that are
novel to RegPrecise database. In literature, fes and fhuE
are notable for making iron available for metabolic use
[23] and regulating ferrum uptake (Fe3+) via coprogen
[24], respectively. Both are identified in RegulonDB as the
members of Fur regulon.
To evaluate the reconstruction accuracy in terms of

specificity/sensitivity performance we implemented our
approach in different datasets, i.e., LexA, PurR, Fur, Crp,
and Fnr, and assessed the impact of our estimated motifs
(BAMBI2b) vs true (RegPrecise) motifs in the recon-
struction results. Figure 6 shows the corresponding ROC
curves, where each data point represents a putative reg-
ulon with corresponding true positive (TPR) and false
positive rate (FPR) in respect to the (true) regulon in
RegPrecise database, i.e., TPR = TP

TP+FN , FPR = FP
FP+TN .

These measures depend on the predefined site score
threshold, i.e., the recovery rate (TPR) increases from left
to right as the site score threshold is lowered and more
true binding sites are recovered.

Table 4 The best hits of the estimated (BAMBI2b) vs true
(RegPrecise) PurR motifs in SwissRegulon database

BAMBI2b motif RegPrecise motif

Target ID PurR_17-3 PurR_17-3

Optimal offset 0 0

p-value 4.59804e-10 3.53226e-12

e-value 4.4601e-08 3.4263e-10

q-value 8.82639e-08 6.74503e-10

Overlap 16 16

Query consensus ACGCAAACGTTTACCT ACGCAAACGTTTGCGT

Target consensus ACGCAAACGTTTTCCTT ACGCAAACGTTTTCCTT

Orientation + +

Table 5 Novel binding sites for PurR regulon

Locus Gene Position Score TFBS sequence

b2913 serA -95 8.1 ATATGAACGTTTGCGT

b3714 yieG -115 8.4 ACGGCAACGATTGCGT

b4064 yjcD -76 7.6 AAGATAACGTTTCGCT

Since the performance of our approach depends on the
complexity of the TF’s regulatory network, we expect bet-
ter performance for relatively smaller regulons. It can be
seen from Fig. 6 that the recovery rates are less signifi-
cant for the larger regulons Crp and Fnr. This is in accord
with our expectations since the Crp and Fnr family TFs
are among the 7 global regulators that control 50 % of all
regulated genes in E. coli [25].

Results for the hypothetical proteins indicates good
predictions for non-generic TF bindingmotifs
We used our approach to predict the motifs of hypothet-
ical proteins of the novel organism Desulfovibrio alasken-
sis [26]. It is an anaerobic sulfate-reducing bacteria that
is notable for its ability to produce hydrogen sulfide, a
chemically reactive product toxic to plants, animals and
humans.Dde0289 is one of the hypothetical DNA-binding
proteins in D. alaskensis, which is annotated as a Sigma-
54-dependent transcriptional activator. It is presumed to
belong to Fis-type helix-turn-helix motifs in literature.
For this regulator, we used all available gene expres-

sions and fitness data sets from MicrobesOnline
database [27] in the proposed biclustering method.
The estimated high-confidence set consisted of 11
co-expressed genes, i.e., Dde0289, Dde0312, Dde2767,
Dde2741, Dde2343, Dde1987, Dde1148, Dde2317,
Dde0481, Dde2075, and Dde1935. From the upstream
sequences, BAMBI2b discovered the instances containing
A-tracts, significantly appearing in the middle of the
motif (Fig. 7).

Fig. 5 Fur motif estimated by the proposed approach
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Table 6 The best hits of the estimated (BAMBI2b) vs true
(RegPrecise) Fur motifs in SwissRegulon database

BAMBI2b RegPrecise
motif motif

Target ID Fur_21-4 Fur_21-4

Optimal offset 4 1

p-value 3.01028e-07 2.00946e-10

e-value 2.91997e-05 1.94918e-08

q-value 5.77853e-05 3.00056e-08

Overlap 17 19

Query AATGATTATCATTATCATT GATAATGATTATCATTATC
consensus

Target TGATAATGATAATAATTATCA TGATAATGATTATCATTATCA
consensus

Orientation - +

Although such structure is not generic in TF motifs, it
is known that the intrinsic sequence-dependent protein-
DNA conformations can result in high-affinity binding
events. A recent study proposes that A-tracts are the
preferred Fis-binding sites in E. coli, and in particular, A6-
tracts provide the strongest binding signals [13]. A6-tracts
are known to induce intrinsic curvature to segments of
DNA [28], whereby it enhances the local region’s exposure
to transcription machinery.
To validate our approach’s sensitivity for recovering

such rare binding motifs, we reconstructed E. coli’s Fis
motif, and compared our results with those that are
deduced by the ChIP-chip binding data in [13]. We used
the gene expression data set in [29], and estimated a high-
confidence set of 100 genes by using the proposed biclus-
tering method and Algorithm 1 (see Additional file 1).
BAMBI2b found several motif estimates that consist of
variably conserved A-tracts flanked by the G residues. In
particular, the estimates partially recovered the Fis motif ’s
consensus sequence GCTGAAAAAA, with the highest
information content conserved at GCTGAAAA (Fig. 8)
which corresponds to the consensus half-site sequence of
the Fis motif.
This is in accord with the findings in [13], where the

different Fis motif subtypes (non-palindromic and palin-

Table 7 Functional enrichment in reconstructed Fur regulon

Terms fes, fhuE

Iron (SP-PIR) 1.5E-16

Iron transport (SP-PIR) 2.3E-16

Transport (SP-PIR) 6.8E-15

Ion transport (SP-PIR) 1.9E-13

Fig. 6 ROC of reconstruction results based on BAMBI2b-estimated
motifs (above) vs RegPrecise motifs (below)

dromic) share the most common bases in their consensus
half-site. In fact, motif comparison of our estimate with
the SwissRegulon database resulted in a significant hit to
one of the Fis weight matrices, i.e., Fis_26–32 (Table 8).
In contrast, we used the true Fis weight matrix obtained
from RegulonDB, and the motif comparison assigned this
motif to the same weight matrix Fis_260–32 with a similar
score.

Fig. 7 Hypothetical Dde0289motif estimated by the proposed
approach



Elmas et al. BMC Bioinformatics  (2015) 16:299 Page 7 of 10

Fig. 8 Fis motif estimated by the proposed approach

Refining the methods
We applied certain constraints to refine our predictions.
Knockout fitness data sets are integrated to refine high-
confidence gene set estimation by giving more biologi-
cal relevance. Integrating appropriately-selected growth
conditions often showed a positive effect for eliminating
false positive genes. In motif discovery, we imposed the
two-block motif structure to account for palindromic or
inverted/direct-repeat symmetry patterns of the TFBSs.
We also used a heuristic to define an optimal data
feeding order to motif discovery problem based on the
co-expression of local genes.
Further constraints can be imposed in the recon-

struction program to limit the extent of predictions,
such as searching genes only in the downstream direc-
tion by the strand which TF putatively binds. On the
other hand, some restrictions could be relaxed to refine
the results in particular cases. For instance, one can
obtain different estimates by performing multiple runs of
BAMBI2b with scrambled data order, in particular, when
the co-expression patterns are not very determinative.

If a reference motif is available, e.g., when reconstruct-
ing/expanding known regulons, this allows one to directly
use it as the prior PWM (θ ) in the proposed motif discov-
ery algorithm BAMBI2b (see Additional file 1 for more
detail.) Such procedures will likely reduce the negative
effect of the false positive sequences which can diminish
the high-confidence set.

Conclusions
In this paper, we proposed a computational method to
predict TF regulons of a single organism without relying
on phylogenetic footprinting techniques. The proposed
approach requires gene expression (and knockout fitness)
experiments for the organism of interest, and thereby can
be suitable for predicting novel TF regulons. In particu-
lar, we aimed at bacterial transcription factors by using
a two-block motif model to represent the binding sites
and minimizing an information-theoretic dissimilarity
measure between the TFBS cores. The presented results
for LexA, PurR and Fur TFs in the model organism E.
coli showed high recovery rates for their experimentally-
verified regulons. Possible extensions as additional TFBSs
for the known regulon genes and new putatively regu-
lated genes showing high biological significance are noted.
Experiments with a novel organism D. alaskensis also
showed intuitive predictions for the hypothetical regu-
lators. In particular, we observed that our approach is
sensitive enough to discover rare TF binding events by
recovering structurally low-probability motifs. In the light
of results reported, we conclude that a motif-based regu-
lon inference approach can discover the organism-specific
regulatory interactions on a single organism, which may
be missed by current comparative genomics techniques
due to their limitations.

Methods
Co-regulated gene set estimation
For a given TF, we first estimate a group of putatively
co-regulated genes in which we seek coherent expres-
sion patterns with the given TF’s coding gene. The gene

Table 8 The best hits of the estimated (BAMBI2b) vs true (RegulonDB) Fis motifs in SwissRegulon database

BAMBI2b motif RegulonDB motif

Target ID Fis_26-32 Fis_26-32

Optimal offset 7 3

p-value 6.29038e-06 3.21289e-08

e-value 0.000610167 3.1165e-06

q-value 0.00121382 6.16615e-06

Overlap 10 15

Query consensus CGCTGAAAAA GCTTATTTTTTAAGC

Target consensus GTTCTGTTGCTGAAAAAATAACCAAA TTTGGCTATTTTTTCAGCAACAGAAC

Orientation + -
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expression data sets basically serve as the problem input.
This computational problem has been addressed by
numerous clustering algorithms [30, 31]. Recently, biclus-
tering methods have gained more attention for their supe-
riority in representing co-regulation in high-dimensional
data sets by grouping the genes simultaneously with
appropriate set of conditions. Since the generic clustering
algorithms classify genes into different functional groups
by considering all data points (conditions) at once they
often fail to capture true interactions, if the genes exhibit
similar behavior under only some but not all conditions.
In this work, we use a biclustering algorithm to select an

optimal group among the annotated genes by simultane-
ously choosing a subset of experiments that best captures
the group’s co-expression. The optimization algorithm
looks for linear coherency of the data points (i.e., genes’
expressions) with the given TF’s coding gene. This model
assumes linear dependency of expression between the
co-regulated gene pairs. Although such simplifications
may not reflect the real underlying relationships, they
often yield effective results by capturing the zero-th
and first order interactions [32]. When the coherency
in high-dimensional expression data becomes indiscrim-
inate we employ the genome wide “knockout fitness”
data as further biological evidence. The latter monitors
the organism-level responses (fitness, survival rate) by
exposing knockout/knockdown mutant strain libraries
of genes to various experimental stress conditions [33],
whereby providing the biclustering algorithm a systems-
level insight.

Filtering out uninformative genes
After a high-confidence gene set is found we supply their
upstream sequences for motif discovery. It is known that
the adjacent genes are often co-regulated in local com-
plexes (i.e., operons) and their expressions are controlled
through only a few sites, hence the occurrence of bind-
ing sites in the upstream of such genes could be very
sparse. So, the great majority of genes in an estimated
high-confidence set may in fact belong to a few oper-
ons depending on the TF. In such cases, the upstream
sequences not containing a cognate binding site will likely
deteriorate the discovery of the true motif. We used
a correlation-based filtering algorithm to detect those
sequences that more likely contain a regulatory site of the
underlying motif. Given a set of genes, by comparing each
genes’ expression coherency with the TF’s coding gene
the algorithm iteratively selects those that strictly follow
its adjacent (preceding) gene’s co-expression pattern. (The
details –i.e., Algorithm 1– are given in Additional file 1).

Motif discovery
For the motif finding problem, we employ a Bayesian algo-
rithm (BAMBI) [34] for discovering motifs of an unknown

length and unknown number of instances in a given set
of sequences. Estimating such unknown quantities as the
number, length, and locations of the motif instances in
each sequence is cast as a probabilistic inference prob-
lem through the use of hidden Markov model (HMM)
framework. A computationally efficient sequential Monte
Carlo algorithm is employed with a sampling procedure
for constructing the posterior distributions of the hidden
variables [35].
We modified this algorithm to capture particularly

the TF motifs, i.e., by exploiting the intrinsic sequence
properties such as base conservation and spatial similar-
ity observed in the transcription factor binding sites. We
called the newly proposed algorithm “BAMBI2b”. Since
in most TF binding sites the bases variably contribute
to the affinity of TF-DNA binding complex, defining a
suitable model tailored for TFs is crucial for motif dis-
covery [36]. We employ a “two-block” motif model [37]
to represent the TFBS’s conserved (core) segments by a
pair of “blocks” where the information content is mostly
concentrated. The length and location of such segments
within the motif are not known a priori and they are esti-
mated within the Bayesian framework. On the other hand,
most TF binding sites are known to have certain sequence
similarities where the half sites (mostly cores) occur to
be (i) Watson-Crick complements (palindromic symme-
try), (ii) identical sequences (direct-repeat symmetry), or
(iii) reversed sequences (inverted-repeat symmetry). We
use an information-theoretic measure in order to esti-
mate the correct symmetry type from the TFBS cores.
The algorithm looks to find such motif instances that will
minimize the sequence dissimilarity between the PWM’s
corresponding blocks, whereby maximizing the intrinsic
symmetry conformation. (We represent the core dissimi-
larity as an averaged cross-entropy distance between the
base probabilities of the motif blocks – see Additional
file 1 for more detail).

Regulon reconstruction
Once the motif is established, we scan the entire genome
by it for TFBS prediction. For each query sequence a bind-
ing score is calculated by a statistical significance metric
using the motif ’s PWM and the background nucleotide
distribution. For this, we used the site recognition method
presented in [7] which evaluates a possible binding site by
two metrics, i.e., a likelihood-ratio (raw) score that quan-
tifies the degree of motif ’s preference in the respective
site, and p-value that indicates the probability of obtain-
ing this score (or a greater score) merely by chance. After
setting a sufficient P-value threshold (0.001) and defining
an intuitive log-likelihood ratio score threshold (e.g. such
that the algorithm will recover the majority of the known
TFBSs) we eliminate the structurally weak binding sites
in our putative TFBS list, and check the remaining sites
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for a nearby gene appearance. Binding sequences that are
located in the upstream of a gene’s 5′ start site are paired
with those genes, and they together constitute the putative
operons of the TF.
We allow bi-directional search to identify target genes

on both the forward and complementary strands. For
example, if a TFBS is predicted to bind on the posi-
tive strand, we look for target genes via (i) the site’s
5’–3’ direction on the positive strand and (ii) the com-
plementary site’s 5’–3’ direction on the negative strand.
Each time a gene is found, the program checks –as an
option– if the adjacent genes are predicted to be in the
same operon by using the operon prediction database
[17], and if so the program includes them in the putative
regulon.
TFBSs falling within the intragenic regions are

often ignored in comparative genomics approaches
due to ortholog-dependent reconstruction. Here, we
allow the algorithm to look for such binding sites
within the coding regions or open reading frames. As
a result, this significantly improves the recovery of
experimentally-verified binding sites and increases novel
predictions.

Motif comparison
We used Tomtom [38] to quantify the similarity between
TF motifs. It calculates statistical measures between the
given query motifs and a database of known motifs. In
this study, we used the SwissRegulon’s motif database
[16] for E. coli TFs. For each motif, we displayed the
results for the best hit obtained by Tomtom in its default
settings.
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