
Secure Computation Towards Practical Applications

Fernando Krell Loy

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2016

c©2016

Fernando Krell Loy

All Rights Reserved

ABSTRACT

Secure Computation Towards Practical

Applications

Fernando Krell Loy

Secure multi-party computation (MPC) is a central area of research in cryptography. Its

goal is to allow a set of players to jointly compute a function on their inputs while protecting

and preserving the privacy of each player’s input.

Motivated by the huge growth of data available and the rise of global privacy concerns

of entities using this data, we study the feasibility of using secure computation techniques

on large scale data sets to address these concerns.

An important limitation of generic secure computation protocols is that they require at

least linear time complexity. This seems to rule out applications involving big amounts of

data. On the other hand, specific applications may have particular properties that allow for

ad-hoc secure protocols overcoming the linear time barrier. In addition, in some settings the

full level of security guaranteed by MPC protocols may not be required, and some controlled

amount of privacy leakage can be acceptable.

Towards this end, we first take a theoretical point of view, and study whether sublinear

time RAM programs can be computed securely with sublinear time complexity in the two

party setting. We then take a more practical approach, and study the specific scenario of

private database querying, where both the server’s data and the client’s query need to be

protected. In this last setting we provide two private database management systems achiev-

ing different levels of efficiency, functionality, and security. These three results provide an

overview of this three-dimensional trade-off space.

For the above systems, we describe formal security definitions and establish mathemat-

ical proofs of security. We also take a practical approach providing an implementation of

the systems and experimental analysis of their efficiency.

Table of Contents

List of Figures v

List of Tables viii

1 Introduction 1

2 Technical Background 5

2.1 Bloom Filters . 5

2.2 Random Access Machines . 6

2.3 Oblivious RAM . 7

2.4 Pseudorandom Functions and Generators. 9

2.5 Semantically Secure Encryption. 9

2.6 Yao’s Garbled Circuits . 10

2.7 Private Database Search . 11

I Sublinear Secure Two-Party Computation 13

3 Secure Two-Party Computation in Sublinear Amortized Time 14

3.1 Introduction . 14

3.1.1 Contributions . 15

3.1.2 Background . 16

3.2 Overview . 17

3.3 Secure Computation for RAM machines . 19

3.4 Generic Construction . 20

i

3.5 Security of the Generic Construction . 24

3.6 An Optimized Protocol . 26

3.6.1 The Binary Tree ORAM . 26

3.6.2 High Level Protocol . 28

3.6.3 Optimizations and Implementation Choices 29

3.7 Implementation . 35

3.7.1 Performance . 36

3.7.2 Discussion . 37

3.8 Using Other ORAM Schemes . 39

3.9 Conclusion . 41

II Private Database Search 42

4 Blind Seer: A Scalable Private DBMS 43

4.1 Introduction . 43

4.1.1 Contributions . 46

4.1.2 Background . 47

4.2 Overview . 49

4.3 Basic System Design . 51

4.3.1 BF Search Tree . 51

4.3.2 Preprocessing . 52

4.3.3 Search . 53

4.4 Advanced Features . 56

4.4.1 Policy Enforcement . 56

4.4.2 One-case Indistinguishability . 59

4.4.3 Delete, Insert, and Update from the Server 63

4.5 Security Analysis . 63

4.5.1 Security of Our System . 65

4.5.2 Discussion . 67

4.6 Implementation . 68

ii

4.6.1 Additional Search functionality . 70

4.7 Evaluation . 71

4.7.1 Querying Performance . 72

4.7.2 Other Operations . 76

4.7.3 Theoretical Performance Analysis . 76

4.8 Discussion . 78

4.9 Conclusion . 79

5 Malicious Client Security on Blind Seer 80

5.1 Introduction . 80

5.1.1 Contributions . 81

5.2 Overview . 82

5.3 Semi-Private Function Evaluation . 91

5.4 System Protocol . 93

5.5 Security and Privacy Analysis . 100

5.6 Implementation . 109

5.7 Evaluation . 111

6 Low-Leakage Private Search of Boolean Queries 117

6.1 Introduction . 117

6.1.1 Contributions . 118

6.1.2 Background . 119

6.2 Cryptographic Primitives . 121

6.3 Scheme . 123

6.3.1 Building Block Techniques . 124

6.3.2 Final Scheme . 127

6.4 Security . 131

6.4.1 Protocol Correctness . 131

6.4.2 Protocol Leakage . 132

6.4.3 Security Definitions . 133

6.4.4 Proofs of Security . 135

iii

6.5 Implementation . 140

6.6 Evaluation . 141

6.7 Conclusions . 145

III Final Remarks 146

7 Related Work 147

7.1 Related Work . 147

7.1.1 RAM based Secure Computation. 147

7.1.2 Encrypted Search . 148

8 Conclusions 151

8.1 Summary of contributions . 152

8.2 Direction for future work. 155

8.3 Publications . 156

IV Bibliography 158

Bibliography 159

iv

List of Figures

3.1 Secure initialization protocol πInit. 21

3.2 Secure evaluation of a RAM program defined by next-instruction function Π. 22

3.3 Subroutine for executing one RAM instruction. 23

3.4 Overflow probability as a function of bucket size, for 65536 virtual instruc-

tions on a database of 65536 items. 31

3.5 Time for performing binary search using our protocol vs. time for performing

binary search using a standard garbled-circuit protocol as a function of the

number of database entries. Each entry is 512 bits long. 35

3.6 Single ORAM look-up times for different database sizes and item data lengths. 37

4.1 High-level overview of Blind Seer. There are three different operations de-

picted: preprocessing (step 0), database searching (step 1-4) and data mod-

ifications (step 5). 50

4.2 Index structure: Bloom-filter-based search tree. 52

4.3 High level circuit representation of a query. 54

4.4 The Ideal Functionality Fdb . 64

4.5 Comparison with MySQL for single-term queries that have a single result

(first four bar groups) and 2 to 10 results (last four bar groups). The search

terms are either strings (str) or integers (int) and the returned result is either

the id or the whole record (star). 72

v

4.6 Comparison of the scaling factor with respect to the result set size, using

single-term queries. Both MySQL and Blind Seer scale linearly, however,

Blind Seer’s constant factor is 15× worse (mostly due to increased network

communication). 73

4.7 Boolean queries having a few results (< 10). The first three are two-term

AND queries where one of the terms has a single result and the other varies

from 1 to 10K results. The fourth group includes monotonic DNF queries

with 4-9 terms, the last includes 5-term DNF queries with negations. 74

5.1 Malicious-client secure protocol overview. 89

5.2 Protocol for Yao SPF-SFE with Selector As Evaluator 92

5.3 Query Latency versus number of threads on a 107 record database. Run on

a Boolean query with individually frequent terms but with sparse aggregate

results. 110

5.4 Single-term SELECT-id performance against number of records returned for

our system and MySQL. 113

5.5 3-terms conjunction SELECT-id queries performance against number of records

returned for our system and MySQL. 113

5.7 Single-term SELECT-* performance against number of results returned for

our system and MySQL. 113

5.6 3-terms disjunction SELECT-id queries performance against number of records

returned for our system and MySQL. 114

5.8 Performance of our prototype against original Blind Seer for single-term queries.115

5.9 Performance of our prototype against original Blind Seer for 3-term boolean

queries. 115

5.10 Performance of our prototype against original Blind Seer for range queries. 116

6.1 The Two-Party Protocol OPRF . 122

6.2 The Two-Party Protocol Masked-MOPRF 123

6.3 The preprocessing procedure Setup . 127

6.4 The Protocol Search . 130

vi

6.5 Latency of conjunctions and disjunctions of sizes 1, 2, 3, 4 and 5 for 100K

records DB. 142

6.6 Query latency time for different-size DNF queries for databases of sizes 1K,

10K and 100K records. 143

vii

List of Tables

3.1 Time in seconds of a single ORAM access, with various numbers of recursion

levels in the ORAM structure. The number of items in the bottom level is

2N−4i+4 when there are i trees. 39

3.2 Gate and wires counts for different size databases with item data of length 512 40

6.1 Latency in seconds of tasks in protocol and network usage per query on a

100K records DB. 144

8.1 Comparison between the protocols . 155

viii

Acknowledgments

This work would have not been possible without the helpful guidance of my adviser

Professor Tal G. Malkin. I’m extremely grateful to her in trusting and admitting me as

one of her students at Columbia University, and for being part of her research group and

projects.

I would also like to thank

• the members of the committee Allison Bishop, Moti Yung, Vlad Kolesnikov, and Dov

Gordon for their feedback and time.

• my coauthors Steven M. Bellovin, Seung G. Choi, Gabriela Ciocarlie, Ben Fisch,

Ashish Gehani, Wesley George, Dov Gordon, Jonathan Katz, Angelos Keromytis,

Vlad Kolesnikov, Abishek Kumarasubramanian, Tal Malkin, Vasilis Pappas, Mariana

Raykova, Yevgeniy Vahlis, Binh Vo, for the hard work done in the research projects

presented in this document.

• Professors Xi Chen, Rocco Servedio, Allison Bishop and Mihalis Yannakakis for their

great courses I was lucky to take at Columbia University.

• all PhD students and friends I met during my studies. Special thanks to my office-

mates Igor Oliveira and Clément Cannone for their endless patience and unconditional

support in times of stress.

• CS department staff members Jessica Rosa and Remi Moss for their help in solving

administrative problems.

• my undergrad adviser Professor Alejandro Hevia at University of Chile for introducing

and enlightening me with the world of cryptography, and pointing me in the right

direction.

ix

• Finally, I thanks my parents Irene and Edgardo, my brothers Rodrigo and Javier, and

specially my wife Valentina and daughter Amanda for their unrestricted support and

guidance.

External Support.

The first four years of my doctoral studies were mainly supported by CONICYT-Becas

Chile, Chilean Government scholarship program.

The work of Chapters 4 and 5 was supported in part by the Intelligence Advanced

Research Project Activity (IARPA) via Department of Interior National Business Center

(DoI/NBC) contract Number D11PC20194. The U.S. Government is authorized to re-

produce and distribute reprints for Governmental purposes notwithstanding any copyright

annotation thereon. Disclaimer: The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily representing the official policies or

endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

x

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Over the last two decades, the amount of data generated, collected, and stored has been

steadily increasing. This growth is now reaching dramatic proportions and touching ev-

ery aspect of our life, including social, political, commercial, scientific, medical, and legal

contexts. With the rise in size, potential applications and utility of these data, privacy

concerns have become more acute. An example is the revelation of the U.S. Government’s

data collection programs, which rekindle the privacy debate.

The privacy issue can be mitigated by the use of standard encryption of the data gener-

ated, at the cost of hindering the applications’ functionality. The ability of searching over

encrypted data provides critical capabilities for database management systems that need

to guarantee privacy protection for data and queries: examples include information sharing

between law enforcement agencies and electronic discovery in private databases, e.g., log

files, bank records, during lawsuits; private queries to census data, police investigations

using data from automated license plate readers [LAp].

Searching over encrypted data can be thought of a special case of secure multi-party

computation protocols. A secure computation protocol allows a set of parties to evaluate a

(possibly randomized) functionality, while keeping each party’s input private from the rest

of the parties. In the case of searching over private data, one party would input its private

data, while the other party would input the token or query to be searched.

An important aspect of secure multi-party computation protocols is that their running

time must be at least linear in the size of the parties’ inputs. In particular, each party

CHAPTER 1. INTRODUCTION 2

must at least touch every single bit of its input. This lower bound is in fact necessary

for full security since otherwise a participant may infer some information about other par-

ties’ input by looking which of its inputs bits have been accessed.1 Consider, for example,

a database management system (DBMS) where a client perform queries on a server ad-

ministered database. The database nodes or records untouched by the server during the

evaluation of a query reveal, for example, that those nodes or records do not satisfy the

query, disclosing non-trivial information about the client’s query to the server.

The above linear lower bound seems to rule out many applications of interest. Indeed,

as mentioned above, today’s applications involve high volumes of data, and even a simple

linear scan on the data may be prohibitively expensive.

The purpose of this thesis is to overcome the above limitation by taking advantage of

some key points common to many applications:

• On simple problems such as binary search, graph queries, table look-ups, and many

others, the exact same operation is computed repeatedly over the same preprocessed

data.

• Data does not vary significantly after a few operations. This is the case in many

database scenarios.

• In some settings, full security is not worth the cost of expensive secure computation.

However, a somewhat weaker notion of security is still necessary. By allowing a limited

amount of privacy leakage, applications may gain significantly in terms of efficiency

and functionality.

• A third party, such as a cloud provider, is available (not necessarily considered

trusted).

Having in mind the above insights, this work aims at answering the following questions:

Is it possible to take advantage of the above mentioned assumptions and available crypto-

graphic tools in order to circumvent the linear time barrier of secure computation? How

1We are assuming that the parties are computing a non-trivial function where every input bit has non-zero

influence over the output of the function.

CHAPTER 1. INTRODUCTION 3

efficient can we be? What kind of functionalities can we support? How much do we need

to leak?

In this work we take a practical approach to address the above questions, and provide

three specific protocols that shed light on the matter. These three different approaches give

new trade-off marks by varying the level of privacy, functionality, and efficiency supported.

The strongest result (security-wise) presented in this work takes advantage of the fact

that in many client-server applications, the server’s data is mostly static, and the client

repeats similar queries on small-size inputs chosen anew each time. We present a protocol

for secure two-party computation that is sublinear (in an amortized sense) in the size of the

input for functionalities that can be computed in sublinear time (insecurely) over a Random

Access Machine. In addition to the algorithmic construction, we provide an implementation

of our approach. Our experimental results show that our asymptotic sublinear running time

outperforms the state-of-the-art generic secure two-party computation schemes for relatively

small data sizes for today’s standard. The results of the work in this direction is presented

in Chapter 3.

In spite of the novelty and theoretical interest of the above result, the protocol does not

achieve the level of efficiency needed in most practical applications. This is due to large

constants and degree of polylogarithmic factors behind the “big O” notation in terms of

computation and communication complexity. In our next result, we move towards efficiency

in the trade-off space. Our goal is to build a new scheme for the more specific application of

private search on databases that is highly efficient, rich in functionality, and at the same time

assures strong levels of query and data privacy. To this end, we adhere to the following

general approach of building large secure systems, in which full security is prohibitively

costly:

In a large problem, we identify small privacy-critical subproblems, and solve these se-

curely (their outputs must be of low privacy consequence, and are handled in plaintext).

Then we use the outputs of the subtasks (often only a small portion of them will need to be

evaluated) to complete the overall task efficiently.

The output of each privacy-critical subproblem translates in our system to leakage in

terms of access pattern to database records, and database data structures. In addition,

CHAPTER 1. INTRODUCTION 4

we work in the split-server model, in which an honest-but-curious third party maintains

an encrypted version of the database, assisting clients’ queries. Combining these two ap-

proaches allows our system to be exceptionally efficient while protecting the client’s privacy

from the server. We propose Blind Seer: A Scalable Private DBMS. We demonstrate via

an implementation of a prototype and experimental results that the query running time of

Blind Seer is within a small constant factor to plaintext solutions (MySQL). In particular,

we show that many queries can be answered within milliseconds for hundred of millions

records databases. In terms of functionality, Blind Seer allows for arbitrary boolean expres-

sion, free-text search, negation and ranges client queries. The system also provides efficient

and robust access control. Results of this work are presented in Chapters 4 and 5.

Our next and final contribution is motivated by the poor understanding of the access

pattern leakage of the schemes of Chapters 4 and 5 (and others). We ask whether a private

search scheme can be as efficient and rich in functionality as Blind Seer, without requiring

the above leakage to the third party. We build a new scheme that lies in-between the above

two constructions in the privacy/efficiency/functionality trade-off space. Our novel private

search scheme supports queries in DNF formulas on keywords and removes all important

leakage to the third party. We provide a prototype of our system, and show experimental

results. This system is presented in Chapter 6.

Organization. In Chapter 2 we present basic concepts and definition required for a clear

and self-contained presentation of each contribution. Chapter 3 is dedicated to our protocol

for sublinear secure two party computation. The following three chapters are concerned

with the Private Search scenario. In particular, the basic construction of the Blind Seer

system is presented in Chapter 4. The Blind Seer system is next augmented in Chapter 5

with a stronger security mechanism that prevents attacks from malicious database clients.

Chapter 6 presents a new scheme based on Blind Seer that prevents important privacy

leakage introduced by Blind Seer. We cover related work on Chapter 7, and conclude this

thesis in Chapter 8.

CHAPTER 2. TECHNICAL BACKGROUND 5

Chapter 2

Technical Background

2.1 Bloom Filters

A Bloom filter (BF) [Blo70] is a simple data structure that facilitates efficient set member-

ship queries. The filter B is an ℓ-bit string initialized with 0ℓ and associated with a set of h

different hash functions H = {Hi : {0, 1}∗ → [ℓ]}hi=1. For an element α ∈ {0, 1}∗, let H(α)

the sequence of the hash results of α, i.e.,

H(α) = (H1(α),H2(α), . . . ,Hh(α)).

To add an element α into the filter, we turn on the bits in the positions pointed by the hash

result H(α). To check whether an element β is in the filter, we compute the set H(β) and

check if all pointed bits are set. Bloom filters guarantee no false negatives, however they

do allow for a tunable false positive rate:

fp =
(

1−
(

1− 1

ℓ

)ht
)h

≈
(

1− e−ht
ℓ

)h

,

where t is the number of keywords in the Bloom filter.

Given a false positive rate fp and the number of elements t in the filter the optimal

length ℓ of B and the optimal number of hash functions h to use can be approximately

computed as :

CHAPTER 2. TECHNICAL BACKGROUND 6

ℓ =

⌈

t ln p

ln 1
2ln 2

⌉

(2.1)

h =

⌈

ln 2
ℓ

t

⌋

(2.2)

2.2 Random Access Machines

Let D be a memory array of n entries of size ℓ bits each. Each array element can be accessed

in constant time via a read/write instructions. An instruction I ∈ ({read,write}×N×{0, 1}ℓ)
takes the form (write, v, d) (“write data element d in location/address v”) or (read, v,⊥)

(“read the data element stored at location v”).

In the RAM model, a function f(x,D) (where x is assumed to be “small”, and it can

be read entirely in constant time) is computed by via a sequence of instructions over the

memory array D. Each instruction is given by a “next instruction” function Π that takes

as input the current state of the program and the last data read from D, and outputs an

instruction I or an special stop instruction together with the final output of the program..

The execution of a RAM program can be viewed as follows:

• Set stateΠ = (1logn, 1ℓ, start, x) and d = 0ℓ. Then until termination do:

1. Compute (I, state′Π) = Π(stateΠ, d). Set stateΠ = state′Π.

2. If I = (stop, 0, z) then terminate with output z.

3. If I = (write, v, d′) then set D[v] = d′.

4. If I = (read, v,⊥) then set d = D[v].

The memory array D can grow beyond n entries, so the RAM program may issue write

(and then read) instructions for indices greater than n. The space complexity of a RAM

program on initial inputs x,D is the maximum number of entries used by the memory

array D during the course of the execution. The program’s time complexity is the number

of instructions issued in the execution as described above. For our application in Chapter 3,

we do not want the running time of a RAM program to reveal anything about the input x.

CHAPTER 2. TECHNICAL BACKGROUND 7

Thus, we will assume that any RAM program has associated with it a polynomial t such

that the running time on x,D is exactly t(log n, ℓ, |x|).

2.3 Oblivious RAM

An oblivious-RAM (ORAM) [GO96] scheme is a mechanism that simulates a RAM read/write

access to an underlying (virtual) array D via a series of accesses to some (real) array D̃. The

key property of the scheme is obliviousness, meaning that no information about the virtual

accesses to D is leaked by observation of the real accesses to D̃. An ORAM construction can

be used to compile any RAM program into an oblivious version of that program, ensuring

that the entity holding the array D̃ learns nothing from the program, excepts its running

time.

An ORAM scheme consists of two algorithms OSetup and OAccess for initialization and

execution, respectively. OSetup initializes some state state composed by access parame-

ters param and data structure struct. The second algorithm, OAccess, is used to compile

a single read/write instruction I (on the virtual array D) into a sequence of read/write

instructions Ĩ1, Ĩ2, . . . to be executed on (the real array) D̃. The compilation of an in-

struction I into Ĩ1, Ĩ2, . . . , can be adaptive; i.e., instruction Ĩj may depend on the values

read in some prior instructions. To capture this, we define an iterative procedure called

doInstruction that makes repeated use of OAccess. Given a read/write instruction I, we

define doInstruction(stateoram, I) as follows:

• Set d = 0ℓ. Then until termination do:

1. Compute (Ĩ , state′)← OAccess(state, I, d), and set state = state′.

2. If Ĩ = (done, z) then terminate with output z.

3. If Ĩ = (write, v, d′) then set D̃[v] = d′.

4. If Ĩ = (read, v,⊥) then set d = D̃[v].

If I was a read instruction with I = (read, v,⊥), then the final output z should be the

value “written” at D[v].

CHAPTER 2. TECHNICAL BACKGROUND 8

Correctness. Let I1, . . . , Ik be any sequence of instructions with Ik = (read, v,⊥), and

Ij = (write, v, d) the last instruction that writes to address v. If we start with D̃ initialized to

empty and then run stateoram ← OSetup(1κ) followed by doInstruction(I1), . . . , doInstruction(Ik),

then the final output is d with all but negligible probability.

Security. The security requirement is that for any two equal-length sequences of RAM

instructions, the (real) access patterns generated by those instructions are indistinguishable.

We state next the standard definition from the literature, which assumes the two instruction

sequences are chosen in advance. However, it appears that existing ORAM constructions are

secure even if the adversary is allowed to adaptively choose the next instruction after observ-

ing the access pattern on D̃ caused by the previous instruction, but this has not been claimed

by any ORAM construction in the literature. Formally, let ORAM = 〈OSetup,OAccess〉
be an ORAM construction and consider the following experiment:

Experiment ExpAPHORAM,Adv(κ):

1. The adversary Adv outputs two sequences of queries (I0, I1), where I0 = {I01 , . . . , I0k}
and I1 = {I11 , . . . , I1k} for arbitrary k.

2. Sample a uniformly random bit b.

3. Run state← OSetup(1κ); initialize D̃ to empty; and then execute doInstruction(state, Ib1),

. . ., doInstruction(state, Ibk) (note that state is updated each time doInstruction is run).

The adversary is allowed to observe D̃ the entire time.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment evaluates to 1

iff b′ = b.

Definition 1. An ORAM construction ORAM = 〈OSetup,OAccess〉 is access-pattern hid-

ing if for every ppt adversary Adv the following is negligible in κ:

∣

∣

∣

∣

Pr
[

ExpAPHORAM,Adv(1
κ, b) = 1

]

− 1

2

∣

∣

∣

∣

Where the probability is taken over the internal randomness of algorithms Adv, OSetup,

and OAccess.

CHAPTER 2. TECHNICAL BACKGROUND 9

Time/Space complexity. Existing ORAM constructions have the following complexity

for an array of length s: the server’s storage is s · polylog(s); the client’s storage is O(log s);

and the (amortized) work required to read/write one entry of the array is polylog(s).

2.4 Pseudorandom Functions and Generators.

Let k be a secret parameter. Let F : {0, 1}k × {0, 1}m → {0, 1}ℓ be a keyed, polynomial

time computable function, and G : {0, 1}k → {0, 1}poly(k) be a stretching, polynomial time

computable function.

We say that F is a pseudorandom function (PRF) [GGM86] if no probabilistic poly-

nomial time algorithm can distinguish any sequence of (F (k, x1), . . . , F (k, xn)) from a uni-

formly random string of the same length when k is chosen uniformly random from {0, 1}k.

This should hold even if the algorithm can choose n and (x1, . . . , xn) as it wishes adaptively.

For notational convenience, hereafter we will use Fk(x) to mean F (k, x).

Similarly, we say that G is pseudorandom generator (PRG) [BM84] if no probabilistic

polynomial time algorithm can distinguish between a uniformly random string in {0, 1}poly(k)

from G(s) for an uniformly random string s ∈ {0, 1}k.

2.5 Semantically Secure Encryption.

Let Π = (Gen,Enc,Dec) be a symmetric encryption scheme. We define the security of an

encryption scheme against an eavesdropping adversary via following game:

GameINDΠ (A, κ):

1. Adversary A chooses equal length messages m0,m1.

2. Run Gen(κ) to derive a key sk, sample a uniformly random bit b, and sends the

ciphertext Encsk(mb) to A.

3. A outputs a decision bit b′.

4. If b′ = b, the game outputs 1, and otherwise 0.

Let AdvIND
Π (A, κ) = |Pr[GameINDΠ (A, κ) = 1]− 1

2 |.

CHAPTER 2. TECHNICAL BACKGROUND 10

We say that Π is semantically secure if and only if AdvIND
Π (A, κ) < negl(κ) [GM84].

Semantic security for a public key scheme (Gen,Enc,Dec) is defined similarly, only A is

given the public key pk. The resulting definition is equivalent to indistinguishability under

chosen-plaintext attack (IND-CPA).

2.6 Yao’s Garbled Circuits

Garbled Circuits (GC). Yao’s garbled circuits [Yao82] allow to evaluate Boolean circuits

on hidden inputs provided by another party. Let C be a Boolean circuit with n input wires,

m gates, and (assume for simplicity) one output wire; let (1, . . . , n) be the indices to the

input wires and q = n + m + 1 be the index to the output wire. To generate a garbled

circuit C̃, a pair of random keys w0
i , w

1
i are associated with each wire i in the circuit; key

w0
i corresponds to the value ‘0’ on wire i, while w1

i corresponds to the value ‘1’. Then, for

each gate g in the circuit, with its input wires i, j and its output wire k, a garbled gate

g̃ (consisting of four ciphertexts) is constructed so that given the input keys wbii and w
bj
j ,

it is possible to recover w
g(bi,bj)
k . The garbled circuit C̃ is simply the collection of all the

garbled gates. By recursively evaluating the garbled gates, one can compute the garbled

key wbq from the input the keys (wa11 , . . . , w
an
n), where b = C(a1, . . . , an). We will sometimes

call wire keys corresponding to input/output garbled input/output, and denote them by ã

and b̃, i.e., ã = (wa11 , . . . , w
an
n), b̃ = wbq. We will also use the notation of garbled evaluation

b̃ = C̃(ã).

Oblivious Transfer (OT). An oblivious transfer (OT) [EGL85; Rab81] is a two-party

protocol supporting a sender that holds values (x0, x1) and a receiver that holds an index

r ∈ {0, 1}. The receiver learns xr, but neither the sender nor the receiver learns anything

else, i.e., the receiver learns nothing about any other values held by the sender, and the

sender learns nothing about the receiver’s index. For the prototypes of systems described

in Chapters 3,4, and 5, we use the Naor-Pinkas protocol [NP01] as a basis and optimize the

performance using OT extension [IKNP03] and OT preprocessing [Bea95].

Secure Two-Party Computation. Yao’s garbled circuit can be combined with and obliv-

ious transfer protocol to build a constant-round protocol for secure two party computation

CHAPTER 2. TECHNICAL BACKGROUND 11

for any Boolean circuit. One party acts as the garbled circuit generator G and the other as

the circuit evaluator E. G builds the garbled circuit and send it to E together with the keys

corresponding to G’s input. Before E evaluates the garbles circuit, both parties engage in

a series of OT execution to transfer the keys corresponding to E’s input. The protocol can

finish in two possible ways. One possibility is that E sends the computed output keys to G

(G gets the output). The other option is to have G to send the key pairs corresponding to

every output wire (in which case E gets the output).

Note that the only party that needs to know the circuit is G, and E only needs to known

the circuit topology. Moreover, the garbled gate reveals nothing about the actual gate if

the output keys are encrypted under a semantically secure encryption scheme. Hence, the

protocol allows for a form of private function evaluation in which only G knows the function,

while E only knows its topology.

The construction can be optimized in several ways. We made extensive use of the free-

XOR technique [KS08a], that allows XOR gates to be evaluates at virtually no cost. We

also use the point-and-permute [Rog91; MNPS04] that allows to reduce of cost of evaluating

each gate by decripting only one of the four gate’s entries. In addition, we use is the row-

reduction technique, which decreases the size of the garbled gate, and hence, improving

communication bandwidth.

We refer the reader to [BHR12; LP09] for clear description and proof of security of

garbled circuits.

2.7 Private Database Search

In the second part of this Thesis we focus on the problem of private search over database.

The setting involves three main players. The database owner, whom we usually call the

server S, the client or querier C, and a third-party we call the index server whom we denote as

IS. The database owner outsources its data to the third party, and gives search capabilities

to clients, with the property that the third party learns nothing about the data nor the

client’s queries, and the client only learns the result set of its queries. This setting was

called Outsourced Symmetric Private Information Retrieval in [JJK+13], and it is defined

CHAPTER 2. TECHNICAL BACKGROUND 12

by an algorithm Setup and a procedure Search. The following formal definition allows for a

parameter fp denoting false positives in the result set of the client queries.

Definition 2. Let λ be a security parameter, let fp ∈ [0, 1] some tunable parameter, and let

DB denote a dataset corresponding to a set of documents {Di}, each associated with a set

of searchable keywords Wi. We define an OSPIR Scheme as a pair of interactive algorithms

• (params,EDB) ← Setup(1λ,DB, fp). S inputs database DB = (Di,Wi), and gets back

params. IS gets EDB.

• (records) ← Search(params,EDB, q). S inputs params, IS inputs EDB and C inputs q.

C gets records.

such that for all λ and for all DB, q, if (params,EDB) ← Setup(1λ,DB), (records) ←
Search(params,EDB, q), then DBfp(q) = records, where DBfp(q) denotes the records of DB

satisfying query q plus each DB record with probability fp.

Security for these schemes are defined via the standard ideal vs. real world paradigm.

However, we defer the security definitions to Chapter 4 and Chapter 6, since the different

protocols presented in those chapters allow for different security guarantees.

13

Part I

Sublinear Secure Two-Party

Computation

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 14

Chapter 3

Secure Two-Party Computation in

Sublinear Amortized Time

3.1 Introduction

Consider the task of searching over a sorted database of n items. Using binary search, this

can be done in time O(log n). Now consider a secure version of this task where a client

wishes to learn whether an item is in a sorted database held by a server, with neither party

learning anything more. Applying generic secure computation [Yao86; GMW87] to this

task, we would begin by expressing the computation as a (binary or arithmetic) circuit of

size at least n, resulting in a protocol of complexity Ω(n). Moreover, (at least) linear time

complexity is inherent : in any secure protocol for this problem the server must “touch”

every entry of the database; otherwise, the server learns information about the client’s

input by observing which entries of its database were never accessed.

This linear time barrer seems to eliminate the possibility of ever performing practical

secure computation over large datasets. However, one may notice two opportunities for

improvement:

• Many interesting procedures (such as searching over a sorted database) can be done

in sublinear time on a random-access machine (RAM). Thus, it might be convenient

to have protocols for generic secure computation that are based on the RAM model

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 15

of computation rather than circuits, as generic protocols do.

• The fact that linear work is inherent for secure computation of any non-trivial func-

tion f only applies when f is computed once. However, it does not rule out the

possibility of doing better, in an amortized sense, when the parties compute the same

function multiple times.

Inspired by the above, we explore scenarios where secure computation with sublinear

amortized work is possible. We focus on a setting where a client and server repeatedly

evaluate a function f , maintaining state across these executions, with the server’s (huge)

input D changing only a little between executions, and the client’s (small) input x chosen

anew each time f is evaluated. (It is useful to keep in mind the concrete application of

a client making several read/write requests to a large database D, though our results are

more general.) Our main result is:

Theorem 1. Suppose f can be computed in time t and space s in the RAM model of

computation. Then there is a secure two-party protocol for f in which the client and server

run in amortized time O(t) · polylog(s), the client uses space O(log(s)), and the server uses

space s · polylog(s).

The above holds in the semi-honest adversarial model.

3.1.1 Contributions

We show a generic protocol achieving the above bounds by applying any protocol for secure

two-party computation in a particular way to any oblivious RAM (ORAM) construction

(see section 2.3). This demonstrates the feasibility of secure computation with sublinear

amortized complexity. We then explore a concrete, optimized instantiation of our protocol

based on the tree-based ORAM construction of Shi et al. [SCSL11], and using Yao’s garbled-

circuit approach [Yao86] for the secure two-party computation. We chose the tree-based

ORAM construction of Shi et al. because of its simplicity and its poly-logarithmic worst-case

complexity (as opposed to other schemes that only achieve this in an amortized sense), it

requires small client state, and its time complexity in practice (i.e., taking constant factors

into account) is among the best known. We can also use the same techniques on the more

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 16

recent tree-based construction in [SvDS+13] achieving better efficiency. (In Section 3.8 we

briefly discuss why we expect other schemes to yield worse overall performance for our

application.) We chose Yao’s garbled-circuit approach for secure computation since several

recent results [HEKM11; Mal11] show that it is both quite efficient and can scale to handle

circuits with tens of millions of gates. When combining these two schemes, we apply a

number of optimizations to reduce the sizes of the circuits that need to be evaluated using

generic secure computation.

We implemented this optimized protocol, and evaluated it for the task of binary search.

For small datasets our protocol is slower than standard protocols for secure computation,

but our protocol outperforms the latter for databases containing more than 218 entries.

3.1.2 Background

Ostrovsky and Shoup [OS97] observed that ORAM and secure computation can be com-

bined, though in a different context and using a different approach. Specifically, they con-

sider a (stateless) client storing data on two servers that are assumed not to collude. They

focus on private storage of the data belonging to the client, rather than secure computation

of a function over inputs held by a client and server as we do here.

They describe a protocol where the user stores its data according to any ORAM mech-

anism, using one server to simulate the ORAM server, and sharing the ORAM client state

across both servers. Now a read or update can be executed by having the two servers apply

generic secure two party computation to privately execute the appropriate ORAM instruc-

tions, communicating through the user (with the result being an updated ORAM storage,

and updated shared client state).

Our generic protocol follows directly from this idea, although conceptually there are

some differences in context. In particular, their setting has three parties, and the data all

belongs to one trusted party (the user) storing it in untrusted remote locations (the two

servers). In our context, we have two parties (a client and server), and the server stores its

own data obliviously, according to the ORAM protocol, so as to allow secure computation

on both parties’ inputs.

Damg̊ard et al. [DMN11] also observe that ORAM can be used for secure computation.

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 17

In their approach, which they only briefly sketch, players share the entire (super-linear)

state of the ORAM, in contrast to our protocol where the client maintains only logarithmic

state. They make no attempt to optimize the concrete efficiency of their protocol, nor do

they offer any implementation or evaluation of their approach.

Though the above two works have a flavor similar to our own, our work is the first to

explicitly point out that ORAM can be used to achieve secure two-party computation with

sublinear complexity (for functions that can be computed in sublinear time on a RAM).

Oblivious RAM was introduced in [GO96], and in the past few years several improved

constructions have been proposed (c.f. [WS08; WSC08; PR10a; GM11; GMOT12; KLO12;

SCSL11; SSS12]). We refer the reader to [SCSL11; SSS12] for further discussion and pointers

to the sizeable literature on this topic.

3.2 Overview

Our starting point is the ORAM primitive, introduced in [GO96], which allows a client

(with a small memory) to perform RAM computations using the (large) memory of a remote

untrusted server. At a high level, the client stores encrypted entries on the server, and then

emulates a RAM computation of some function by replacing each read/write access of the

original RAM computation with a series of read/write accesses such that the actual access

pattern of the client remains hidden from the server.

The above suggests a method for computing f(x,D) for any function f defined in the

random-access model of computation, where the client holds (small) input x and the server

holds (large) input D: store the memory array used during the computation on the server,

and have the client access this array using an ORAM scheme. This requires an (expensive)

pre-processing phase during which the client and server initialize the ORAM data structure

with D; after this, however, the client and server can repeatedly evaluate f(xi,D) (on dif-

ferent inputs x1, . . . of the client’s choice) very efficiently. Specifically, if f can be evaluated

in time t and space s on a RAM, then each evaluation of f in this client/server model now

takes (amortized) time t · polylog(s).

The above approach, however, only provides “one-sided security,” in that it ensures pri-

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 18

vacy of the client’s input against the server; it provides no security guarantees for the server

against the client! We can address this by having the parties compute the next ORAM

instruction “inside” a (standard) secure two-party computation protocol, with the interme-

diate state being shared between the client and server. The resulting ORAM instruction

is output to the server, who can then read/write the appropriate entry in the ORAM data

structure that it stores, and incorporate the result (in case of a read operation) in the shared

state. The key observations here are that (1) it is ok to output the ORAM instructions to

the server, since the ORAM itself ensures privacy for the client; thus, secure computation is

needed only to determine the next instruction that should be executed. Moreover, (2) each

computation of this “next-instruction function” is performed on small inputs whose lengths

are logarithmic in s and independent of t: specifically, the inputs are just (shares of) the

current state for the RAM computation of f (which we assume to have size O(log s), as is

typically the case) and (shares of) the current state for the ORAM itself (which has size

O(log s)). Thus, the asymptotic work for the secure computation of f remains unchanged.

For our optimized construction, we rely on the specific ORAM construction of Shi et

al. [SCSL11], and optimized versions of Yao’s garbled-circuit protocol. We develop our

concrete protocol with the aim of minimizing our reliance on garbled circuits for complex

functionalities. Instead, we perform local computations whenever we can do so without

losing security. For example, we carefully use encryption scheme where block-cipher com-

putations can be done locally, with just an XOR computed via secure computation. For

the parts of our protocol that do utilize generic secure computation, we rely on garbled-

circuit optimization techniques such as the free-XOR approach [KS08a], oblivious-transfer

extension [IKNP03], and pipelined circuit execution [HEKM11]. We also use precomputa-

tion (e.g., [Bea95]) to push expensive computations to a preprocessing stage. Our resulting

scheme only requires simple XOR operations for oblivious-transfer computations in an on-

line stage, while exponentiations and even hashing can be done as part of preprocessing.

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 19

3.3 Secure Computation for RAM machines

We focus on the setting where a server holds a (large) database D and a client wants to

repeatedly compute f(x,D) for different inputs x; moreover, f may also change the contents

of D itself. We allow the client to keep (short) state between executions, and the server will

keep state that reflects the (updated) contents of D.

For simplicity, we focus only on the two-party (client/server) setting in the semi-honest

model but it is clear that our definitions can be extended to the multi-party case with

malicious adversaries.

Definition of security. We use a standard simulation-based definition of secure compu-

tation [Gol04], comparing a real execution to that of an ideal (reactive) functionality F .

In the ideal execution, the functionality maintains the updated state of D on behalf of the

server. We also allow F to take a description of f as input (which allows us to consider a

single ideal functionality).

The real-world execution proceeds as follows. An environment Z initially gives the server

a database D = D(1), and the client and server then run protocol Πf (with the client using

input init and the server using input D) that ends with the client and server each storing

some state that they will maintain (and update) throughout the subsequent execution. In

the ith iteration (i = 1, . . .), the environment gives xi to the client; the client and server then

run protocol Πf (with the client using its state and input xi, and the server using its state)

with the client receiving output outi. The client sends outi to Z, thus allowing adaptivity in

Z’s next input selection xi+1. At some point, Z terminates execution by sending a special

end message to the players. At this time, an honest player simply terminates execution; a

corrupted player sends its entire view to Z.

For a given environment Z and some fixed value κ for the security parameter, we

let realΠf ,Z(κ) be the random variable denoting the output of Z following the specified

execution in the real world.

In the ideal world, we let F be a trusted functionality that maintains state throughout

the execution. An environment Z initially gives the server a database D = D(1), which the

server in turn sends to F . In the ith iteration (i = 1, . . .), the environment gives xi to the

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 20

client who sends this value to F . The trusted functionality then computes

(outi,D
(i+1))← f(xi,D

(i)),

and sends outi to the client. (Note the server does not learn anything from the execution,

neither about outi nor about the updated contents of D.) The client ends outi to Z. At

some point, Z terminates execution by sending a special end message to the players. The

honest player simply terminates execution; the corrupted player may send an arbitrary

function of its entire view to Z.

For a given environment Z, some fixed value κ for the security parameter, and some

algorithm S being run by the corrupted party, we let idealF,S,Z(κ) be the random variable

denoting the output of Z following the specified execution.

Definition 3. We say that protocol Πf securely computes f if there exists a probabilistic

polynomial-time ideal-world adversary S (run by the corrupted player) such that for all

non-uniform, polynomial-time environments Z there exists a negligible function negl such

that
∣

∣Pr
[

realΠf ,Z(κ) = 1
]

− Pr [idealF,S,Z(κ) = 1]
∣

∣ ≤ negl(κ).

3.4 Generic Construction

In this section we present our generic solution for achieving secure computation with sub-

linear amortized work, based on any ORAM scheme and any secure two-party computation

(2PC) protocol. While our optimized protocol (in Section 3.6) is more efficient, this generic

protocol demonstrates theoretical feasibility and provides a conceptually clean illustration

of our overall approach.

Recall from section 2.3 that the underlying ORAM is defined by two algorithms OSetup

and OAccess. The first represents the initialization algorithm, which establishes the client’s

initial state and can be viewed as also initializing an empty array that will be used as the

main ORAM data structure. This algorithm takes as input κ (a security parameter), s

(the length of the virtual array being emulated), and ℓ (the length of each entry in both

the virtual and actual arrays). The second algorithm OAccess defines the actual ORAM

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 21

Secure initialization protocol

Input: The server has an array D of length n.

Protocol:

1. Initialization. The participants run a secure computation of OSetup(1κ, 1s, 1ℓ),

which results in each party receiving a secret share of the initial ORAM state. We

denote this by [state].

2. Insertion. For v = 1, . . . , n do

(a) The server sets I = (write, v,D[v])) and secret-shares I with the client. Denote

the sharing by [I].

(b) The parties run ([state′], [⊥]) ← doInstruction([state], [I]) (see Figure 3.3), and

set [state] = [state′].

Figure 3.1: Secure initialization protocol πInit.

functionality, namely the process of mapping a virtual instruction I to a sequence of real

instructions {Îi}i. Algorithm OAccess takes as input (1) the current ORAM state state,

(2) the virtual instruction I being emulated, and (3) the last value d read from the ORAM

array, and outputs (1) an updated ORAM state state′ and (2) the next instruction Î to run.

With the above in place, we can now define our protocol for secure computation of

a function f over an input x held by the client (and assumed to be small) and an array

D ∈ ({0, 1}ℓ)n held by the server (and assumed to be large). We assume f is defined in

the RAM model of computation in terms of a next-instruction function Π which, given the

current state and value d (that will always be equal to the last-read element), outputs the

next instruction and an updated state (see section 2.2). We let s denote a bound on the

number of memory cells of length ℓ required by this computation (including storage of D

in the first n positions of memory). Our protocol proceeds as follows:

1. The parties run a secure computation of OSetup. The resulting ORAM state state is

shared between the client and server.

2. The parties run a secure computation of a sequence of (virtual) write instructions that

insert each of the n elements of D into memory. The way this is done is described

below.

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 22

Secure evaluation protocol πf

Inputs: The server has array D̃ and the client has input n, 1ℓ, and x. They also have

shares of an ORAM state, denoted [state].

Protocol:

1. The client sets stateΠ = (n, 1ℓ, start, x) and d = 0ℓ and secret-shares both values with

the server; we denote the shared values by [stateΠ] and [d], respectively.

2. Do:

(a) The parties securely compute ([state′Π], [I])← Π([stateΠ], [d]), and set [stateΠ] =

[state′Π].

(b) The parties run a secure computation to see if stateΠ = (stop, z). If so, break.

(c) The parties execute ([state′], [d′])← doInstruction([state], [I]). They set [state] =

[state′] and [d] = [d′].

3. The server sends (the appropriate portion of) its share of [stateΠ] to the client, who

recovers the output z.

Output: The client outputs z.

Figure 3.2: Secure evaluation of a RAM program defined by next-instruction function Π.

3. The parties compute f by using secure computation to evaluate the next-instruction

function Π. This generates a sequence of (virtual) instructions, shared between the

parties, each of which is computed as described below.

4. When computation of f is done, the state associated with this computation (stateΠ)

encodes the output z. The server sends the appropriate portion of its share of stateΠ

to the client, who can then recover z.

See Figures 3.1 and 3.2 (Initialization and evaluation protocols) for the secure initialization

and secure computation of the RAM next-instruction. In the figures, we let [v] denote a

secret-sharing of a value v between the two parties. It remains to describe how a single

virtual instruction I (shared between the two parties) is evaluated. This is done as follows

(also see Figure 3.3):

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 23

1. The parties use repeated secure computation of OAccess to obtain a sequence of real

instructions Î1, Each such instruction Î is revealed to the server, who executes the

instruction on the ORAM data structure that it stores. If Î was a read instruction,

then the value d that was read is secret-shared with the client.

2. After all the real instructions have been executed, emulation of instruction I is com-

plete. If I was a read instruction, then the (virtual) value d′ that was read is secret-

shared between the client and server.

The key point to notice is that each secure computation that is invoked is run only over

small inputs. This is what allows the amortized cost of the protocol to be sublinear.

The following summarizes our main theoretical result.

Theorem 2. If an ORAM construction and a 2PC protocol secure against semi-honest

The doInstruction subroutine

Inputs: The server has array D̃, and the server and client have shares of an ORAM state

(denoted [state]) and a RAM instruction (denoted [I]).

1. The server sets d = 0ℓ and secret shares this value with the client; we denote the

shared value by [d].

2. Do:

(a) The parties securely compute ([state′], [Î]) ← OAccess([state], [I], [d]), and set

[state] = [state′].

(b) The parties run a secure computation to see if Î = (done, z). If so, set [d] = [z]

and break.

(c) The client sends its share of [Î] to the server, who reconstructs [Î]. Then:

i. If Î = (write, v, d′), the server sets D̃[v] = d′ and sets d = d′.

ii. If Î = (read, v,⊥), the server sets d = D̃[v].

(d) The server secret-shares d with the client.

Output: Each player outputs its shares of state and d.

Figure 3.3: Subroutine for executing one RAM instruction.

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 24

adversaries are used, then our protocol securely computes f against semi-honest adversaries.

Furthermore, if f can be computed in time t and space s on a RAM, then our protocol runs

in amortized time O(t) ·polylog(s), the client uses space O(log(s)), and the server uses space

s · polylog(s).

We comment that if the underlying secure-computation is secure against malicious par-

ties, then a simple change to our protocol will suffice for obtaining security against malicious

parties as well. We simply change the outputs of all secure computations to include a signa-

ture on the outputs described above (using a signing key held by the other party), and we

modify the functions used in the secure-computation such that they verify the signature on

each input before continuing. We leave the proof of this informal claim to future work. We

note that we cannot make such a claim for our more efficient, concrete solution presented

in Section 3.6.2.

3.5 Security of the Generic Construction

We now prove that the construction presented in the previous section is a secure MPC

protocol according to Definition 3.

At the very high level, security against the client holds because he only manipulates the

data protected by secret sharing and MPC; the server additionally sees plaintext ORAM

instructions – but they do not reveal anything by the ORAM guarantee. (ORAM secu-

rity [GO96] is proven in the non-adaptive setting only. However, our security simulation

goes through, since the adaptive input and function selection by Z does not depend on

protocol message view (that is, Z receives the view from the adversary after the stop mes-

sage), and hence the simulators can query the ORAM functions after Z had completed the

adaptive selection.)

We start with the descriptions of the client simulator Scl, who interacts with Z. In i-th

computation, Scl receives xi and yi = f(xi,D
(i−1)), stores them, and postpones it simulation

until he receives the special end symbol from Z. At this point, Scl outputs entire simulation,

as follows:

Pre-processing. Scl simulates pre-processing by generating an appropriate number of ran-

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 25

dom ORAM state shares:

1. Scl runs the OSetup(1κ) functionality to obtain an initial state for the ORAM,

and generates a uniformly random share [state]c for the client.

2. Let I1, . . . , I|D(0)| be instructions of the form (write, v, 0̄) for 1 ≤ v ≤ |D(0)|. Scl
sequentially applies OAccess(state, Ii) for each i, updating the ORAM state and

generating a uniformly random share of it after each execution.

Computation. For each RAM f to be evaluated, Scl will simulate its execution evaluating

the same number of instructions of the form (read, 0,⊥) using OAccess. Denote by |f |
the execution length of RAM f . Then, for each functionality f :

1. Scl starts with a previously generated share [state]c of the ORAM state that was

generated during the pre-processing, or during the last computation.

2. Let I1, . . . , I|f | be instructions of the form (read, 0,⊥). As in the pre-processing

phase, Scl sequentially runs OAccess on I1, . . . , I|f |, along with the current ORAM

state. After each instruction is evaluated, OAccess returns an updated state, and

Scl generates a new uniformly random state share [state]′c.

3. The output reconstruction is simulated by opening to yi the secret sharing of the

output.

The server simulator Sserv proceeds similarly to Scl. The notable difference is that

the generated view additionally contains the instructions issued by OAccess. Specifically,

during pre-processing, OAccess is used to evaluate instructions of the form Ij = (write, v, 0̄)

for 1 ≤ v ≤ |D(i−1)|. For each such instruction, OAccess generates a sequence of subqueries

Îj, which are included in the generated view. Similarly, during the computation of each

functionality f , each instruction is converted by OAccess into a sequence of subqueries.

These subqueries are included in the generated view (in addition to the state shares).

It is not hard to see that these simulators produce views indistinguishable from real

execution. The reduction to the (non-adaptive) security of ORAM is straightforward, given

our prior observation that the simulators produce their output only after the entire sequence

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 26

of xi is specified by Z (and hence the adaptively chosen sequence of xi can be fed non-

adaptively into the ORAM security experiment).

3.6 An Optimized Protocol

In Sections 3.4 and 3.5 we showed that any ORAM protocol can be combined with any

secure two-party computation scheme to obtain a secure computation scheme with sub-

linear amortized complexity. In this section we present a far more efficient and practical

scheme, based on instantiating our generic protocol with Yao’s garbled circuits and the

ORAM construction of Shi et. al [SCSL11]. However, rather than applying the secure com-

putation primitive on the entire ORAM instruction, we deviate from the generic protocol

by performing parts of the computation locally, whenever we could do so without violating

security. This section describes our scheme, including concrete algorithmic and engineering

decisions we made when instantiating our protocol, as well as implementation choices and

complexity analysis. In Section 3.7 we present experimental performance results, demon-

strating considerable improvement over using traditional secure computation over the entire

input (i.e. without ORAM).

3.6.1 The Binary Tree ORAM

We begin with an overview of the ORAM construction of [SCSL11], which is the starting

point of our protocol. The main data storage structure used in this scheme is a binary tree

with the following properties. To store N data items in the ORAM, we construct a binary

tree of height logN , where each node has the capacity to hold logN data items. Every

item stored in the binary tree is assigned to a randomly chosen leaf node. The identifier of

this leaf node is appended to the item, and the item, along with its assignment, is encrypted

and stored somewhere on the path between the root and its assigned leaf node. To find

a data item, the client begins by retrieving the leaf node identifier associated with that

item; we will explain how this is done below. He sends the identifier of the leaf node to the

server, who then fetches and sends all items along the appropriate path, one node at a time.

The client decrypts the content of each node and searches for the item he is looking for.

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 27

When he finds it, he removes it from its current node, assigns it a new leaf identifier chosen

uniformly at random and inserts the item at the root node of the tree. He then continues

searching all nodes along the path in order to prevent the server from learning where he

found the item of interest.

Since the above look-up process will work only while there is room in the root node for

new incoming items, the authors of [SCSL11] devise the following load balancing mechanism

to prevent nodes from overflowing. After each ORAM access instruction, two nodes are

chosen at random from each level of the tree. One arbitrary item is evicted from each of

these nodes, and is inserted in the child node that lies on the path towards its assigned leaf

node. While the server will learn which nodes were chosen for this eviction, it should not

learn which children receive the evicted items. To hide this information, the client insert

encrypted data in both of the two child nodes, performing a “dummy” insertion in one node,

and a real insertion in the other. In a more recent scheme [SvDS+13], eviction is done across

the same path retrieved earlier, pushing down element as they can.

All that remains to describe is how the client recovers the leaf identifier associated with

the item of interest. The number of such identifiers is linear in the size of the database,

so storing the identifiers on the client side is not an option. The solution is to store these

assignments on the server, recursively using the same type of binary trees. A crucial property

which makes this solution possible is that an item can store more than a single mapping. If

an item stores r mappings, then the total number of recursively built trees is logrN . The

smallest tree will have very few items, and can thus be stored by the client. As an example,

let the largest tree contain items with virtual addresses v
(1)
1 , . . . , v

(1)
N that are assigned

leaf identifiers L
(1)
1 , . . . , L

(1)
N . Then the tree at level 2 has N

r
items with virtual addresses

v
(2)
1 , . . . , v

(2)
N
r

, where the item with virtual address v
(2)
j contains mappings (v

(1)
i , L

(1)
i) for

(j − 1)r < i ≤ jr. With this modification, an ORAM look-up consists of a series of look-

ups, one in each of these trees, beginning with the smallest tree. In particular, given a

virtual address v for a database query, the client derives the look-up values that he needs

to use in tree i by computing v(i) = ⌊ v
ri
⌋ for 0 ≤ i ≤ logrN . Having these values the client

starts with a look-up in the smallest tree for value v(logr N). He retrieves L(logr N) from

his local memory and finds in it the mapping (v(logr N−1), L(logr N−1)). Now he looks for

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 28

v(logr N−1) in the next smallest tree using leaf identifier L(logr N−1). This process continues

until the client retrieves the real database item at address v from the largest tree at the

top level of the recursion. In each tree, the accessed item is assigned a new leaf node at

random, and the item is inserted back in the tree’s root node. In addition, its mapping is

updated in the tree below to record its new leaf node.

The intuition for the security of this scheme can be summarized as follows. Every time

the client looks up item vi, he assigns it a new leaf node and re-inserts it at the root. It

follows that the paths taken to find vi in two different look-ups are independent of one

another, and cannot be distinguished from the look-up of any other two nodes. During

the eviction process, a node is just as likely to accept a new item as it is to lose an item.

Shi et al. prove in their work that with buckets of size O(log(MN/δ)) the probability that

a bucket will overflow after M ORAM instructions is less than δ. It follows that with a

bucket size of O(logN), the probability of overflow is negligible in the security parameter.

However, as we shall see below, the precise constant makes a big difference, both in the

resulting security and in the efficiency of the scheme.

3.6.2 High Level Protocol

As above, we assume a database of N items, and we allow each item in each recursive level

to hold r mappings between virtual addresses and leaf identifiers from the level above. The

client and a server perform the following steps to access an item at an address v:

1. The parties have shares vC and vS of the virtual address for the query in the database

v = vC ⊕ vS .

2. The client and the server run a two party computation protocol to produce shares

v
(1)
C , . . . , v

(logr N)
C and v

(1)
S , . . . , v

(logr N)
S of the virtual addresses that they will look-up

in each tree of the ORAM storage: ⌊ v
ri
⌋ = v

(i)
C ⊕ v

(i)
S for 0 ≤ i ≤ logrN .

3. The client generates random leaf identifiers

L̃(1), . . . , L̃(logr N) that will be assigned to items as they are re-inserted at the root.

4. The last tree in the ORAM storage has only a constant number of nodes, each con-

taining a constant number of items. The client and server store shares of the leaf

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 29

identifiers for these items. They execute a two party protocol that takes these shares

as inputs, as well as the shares v
(logr N)
C and v

(logr N)
S . The server’s output of the secure

computation is the leaf value L(logr N). The client has no output.

5. For each i such that logrN ≥ i ≥ 2:

(a) The server retrieves the nodes on the path between the root and the leaf L(i) in

the i-th tree.

(b) The parties execute a secure two party protocol. The server’s inputs are the

nodes recovered above, and the secret share v
(i−1)
S . The client’s input is v

(i−1)
C .

The server receives value L(i−1) as output, which is the value stored at address

v
(i−1)
C ⊕ v(i−1)

S , and which lies somewhere along the path to L(i).

(c) The parties execute a secure two party protocol to update the content of item v(i)

with the value of the new leaf identifier L̃(i−1) that will be assigned to v
(i−1)
C ⊕

v
(i−1)
S in the i− 1-th tree.

(d) The parties execute a secure two party protocol to tag item v(i) with it’s new leaf

node assignment L̃(i), and to insert v(i) in the first empty position of the root

node.

6. For the first level tree that contains the actual items for the database, the server

retrieves the nodes on the path between the root and the leaf L(1). The parties

execute a secure two party protocol to find item v = v
(1)
C ⊕ v

(1)
S . The outputs of the

protocol are secret shares of the data d = dC ⊕ dS found at virtual address v. The

server tags v with L̃(1), and the parties perform another secure protocol to insert v at

the first empty spot in the root node.

3.6.3 Optimizations and Implementation Choices

Encryption and Decryption In our protocol description so far, we have left implicit

the fact all data stored in the database at the server must be encrypted. Every time

a data item is used in the RAM computation, it must first be decrypted, and it must

be re-encrypted before it is re-inserted at the root node. In a naive application of our

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 30

generic solution, the parties would have to decrypt, and later re-encrypt the data item

completely inside a Yao circuit, which can be very time consuming. We choose the following

encryption scheme, with an eye towards minimizing the computation done inside the garbled

circuit: Enc(m; r) = (FK(r)⊕m, r), where F can be any pseudo-random function. The key

K is stored by the client, and kept secret from the server. To ensure that encryption

and decryption can be efficiently computed inside a garbled circuit, the server sends r to

the client in the clear, along with a random r′ that will be used for re-encryption. The

client computes FK(r) and FK(r′) outside the secure computation. Now the only part of

decryption or re-encryption that has to be done inside the garbled circuit is Boolean XOR,

which is very cheap.

While this greatly improves the efficiency of our scheme, we note that it has to be

done with care: sending the encryption randomness to the client could reveal information

about the access pattern of the RAM, and, consequently, about the server’s data. The issue

arises during the eviction procedure, when a data item is moved from a parent to one of its

children. During this process, it is important that neither player learn which child received

the evicted data; the construction of Shi et al. [SCSL11] has the client touch both children,

writing a dummy item to one of the two nodes, and the evicted item to the other node,

thereby hiding from the server which node received the real item. In our case, this must

be hidden from the client as well, which is ensured by performing the operation inside a

secure computation. However, the exact way in which randomness is assigned to ciphertext

has a crucial effect on security. For example, suppose the server sends randomness r1 and

r2 to be used in the re-encryption, and our operation is designed so that r1 is always used

for encrypting the dummy item and r2 is always used for the real item. The client can

then keep track of the real item by waiting to receive r2 for decryption in the future! We

must therefore design the re-encryption operation so that randomness is associated with a

node in the tree rather than the content of the ciphertext. Then, r1 is always used in the

left child, and r2 in the right, independent of which node receives the real item and which

receives the dummy item.

Although this issue is easily handled1, it demonstrates the subtlety that arises when we

1To give some intuition of security, note that as long as the assignment of the encryption randomness is

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 31

 0

 20

 40

 60

 80

 100

 18 20 22 24 26 28 30 32

F
ai

lu
re

 P
er

ce
nt

ag
e

Bucket Size

Figure 3.4: Overflow probability as a function of bucket size, for 65536 virtual instructions

on a database of 65536 items.

depart from the generic protocol in order to improve the efficiency of the scheme.

Choosing a Bucket Size At each node of the ORAM structure we have a bucket of

items, and choosing the size of each bucket can have a big impact on the efficiency of the

scheme: we have to perform searches over B logN items for buckets of size B. However,

if the buckets are too small, there is a high probability that some element will “overflow”

its bucket during the eviction process. This overflow event can leak information about the

access pattern, so it is important to choose large enough buckets. Shi et al. [SCSL11] prove

that in an ORAM containing N elements, if the buckets are of size O(log(MN/δ)), then

after M memory accesses, the probability of overflow is less than δ. It follows that to

get, say, security 2−20, it suffices to have buckets of size O(logN), but the constant in the

notation is important.

independent of the access pattern, nothing can be learned by the client during decryption. To make this

formal, we show that we can simulate his view by choosing random values for each bucket, storing them

between look-ups, and sending those same values the next time that bucket is scanned. This simulation

would fail only if the assignment of the random values to buckets were somehow dependent on the particular

content of the RAM.

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 32

In Figure 3.4 we provide our results from simulating overflow for various bucket sizes.

Notice that the value approaches 0 only as we approach 2 logN , and in fact the probability

of failure is very high for values closer to logN . Based on these simulations, we have

chosen to use buckets of size 2 logN . We ran our experiment with N = 216 and estimated

the probability of overflowing any bucket when we insert all N items, and then perform an

additional N operations on the resulting database. We used 10,000 trials in the experiment.

Note that for the specific example of binary search, we only need to perform logN operations

on the database; for 216 elements and a bucket size of 32, we determined with confidence

of 98% that the probability of overflow is less than .0001. The runtime of our protocol

(roughly) doubles when our bucket size doubles, so although we might prefer still stronger

security guarantees, increasing the bucket size to 3 logN will have a considerable impact on

performance. 2

Computing Addresses Recursively Recall that the leaf node assigned to item v(i) in

the ith tree is stored in item v(i+1) = ⌊v(i)
r
⌋ of the i + 1th tree. In Step 2, where the two

parties compute shares of v(i) for each i in 1, . . . , logrN , we observe that if r is a power of 2,

each party can compute its own shares locally from its share of v. If r = 2j and v = vC⊕vS ,

then we can obtain v(i) = ⌊ v
ri
⌋ by deleting the last i · j bits of v. Similarly v

(i)
C and v

(i)
S can

be obtained by deleting the last i · j bits from the values vC and vS . This allows us to avoid

performing another secure computation when recovering shares of the recursive addresses.

Node Storage Instantiation Shi et al. [SCSL11] point out that the data stored in each

node of the tree could itself be stored in another ORAM scheme, either using the same tree-

based scheme described above, or using any of the other existing schemes. We have chosen

to simply store the items in an array, performing a linear scan on the entire node. For the

data sets we consider, N = 106 or 107, and 20 ≤ logN ≤ 25. Replacing a linear scan with

an ORAM scheme costing O(log3N), or even O(log2N), simply does not pay off. We could

2The work of this Chapter we developed before newer versions of the tree-based ORAM were proposed

(Path-ORAM [SvDS+13]). This newer technique allows us to reduce the bucket size to a small constant.

In [GGH+13] authors shows a new eviction procedure that allow to reduce the buckets capacity to as low

as 2 elements.

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 33

consider the simpler ORAM of Goldreich and Ostrovsky [GO96] that has overhead O(
√
N),

but the cost of shuffling around data items and computing pseudorandom functions inside

garbled circuits would certainly erase any savings.

Using Client Storage When the client and server search for an item v, after they recover

the leaf node assigned to v, the server fetches the logN buckets along the path to the leaf,

each bucket containing up to logN items. The parties then perform a secure computation

over the items, looking for a match on v. We have a choice in how to carry out this

secure computation: we could compare one item at a time with v, or search as many as

log2N items in one secure computation. The advantage to searching fewer items is that

the garbled circuit will be smaller, requiring less client-side storage for the computation.

The disadvantage is that each computation will have to output secret shares of the state of

the search, indicating whether v has already been found, and, if so, what the value of its

payload is; each computation will also have to take the shares of this state as input, and

reconstruct the state before continuing with the search. The extra state information will

require additional wires and gates in the garbled circuits, as well as additional encryptions

and decryptions for preparing and evaluating the circuit. We have chosen to perform just

a single secure computation over log2N items, using the maximal client storage, and the

minimal computation. However, we note that the additional computation would have little

impact,3 and we could instead reduce the client storage at relatively little cost. To compute

the circuit that searches log2N items, the client needs to store approximately 400, 000

encryption keys, each 80 bits long.

Garbled Circuit Optimizations The most computationally expensive part of Yao’s

garbled circuit protocol is often thought to be the oblivious transfer (OT) sub-protocol

[EGL85]. The parties must employ OT once for every input wire of the party that evaluates

the circuit, and each such application (naively performed) requires expensive operations

such as exponentiations. We use the following known optimizations to reduce OT costs

and to further push its computation almost entirely to the preprocessing stage, before the

3This is because sharing the state and reconstructing the state are both done using XOR gates, which

are particularly cheap for garbled circuits, as we discuss below.

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 34

parties begin the computation (even before they have their inputs), reducing the on-line

OT computations to just simple XOR operations.

The most important technique we use is the OT extension protocol of Ishai et al. [IKNP03],

which allows to compute an arbitrary number of OT instances, given a small (security pa-

rameter) number of “base” OT instances. We implement the base instances using the

protocol of Naor and Pinkas [NP01], which requires six exponentiations in a prime order

group, three of which can be computed during pre-processing. Following [IKNP03], the

remaining OT instances will only cost us a couple of hash evaluations per instance. We

then push these hash function evaluations to the preprocessing stage, in a way that requires

only XOR during the on-line stage. Finally, Beaver’s technique [Bea95] allows us to start

computing the OT’s in the preprocessing stage as well, by running OT random inputs for

both parties; the output is then corrected by appropriately sending real input XORed with

the used random inputs in the online stage.

We rely on several other known garbled circuit optimizations. First, we use the free

XOR gates technique of Kolesnikov and Schneider [KS08a], which results in more than 60%

improvement in the evaluation time for an XOR gate, compared to other gates. Accordingly,

we aim to construct our circuits using as few non-XOR gates as possible.

Second, we utilize a wider variety of gates (as opposed to the traditional Boolean AND,

OR, XOR, NAND gates). This pays off since in the garbled circuit construction every

non-XOR gate requires performing encryption and decryption, and all gates of the same

size are equally costly in this regard. In our implementation we construct and use 10 of the

16 possible gates that have 2 input bits and one output bit. We also rely heavily on the

multiplexer gate on 3 input bits; this gate uses the first input bit to select the output from

the other two input bits. In one circuit, we use a 16-bit multiplexer, which uses 4 input bits

to select from 16 other inputs.

Finally, we utilize pipelined circuit execution, which avoids the naive traditional approach

where one party sends the garbled circuit in its entirety to the second one. This naive

approach is often impractical, as for large inputs the garbled circuits can be several gigabytes

in size, and the receiving party cannot start the evaluation until the entire garbled circuit

has been generated and transmitted and stored in his memory. To mitigate that, we follow

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 35

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 13 14 15 16 17 18 19 20 21

T
im

e
(s

)

Log2 (# entries)

Our Protocol
Basic Yao

Figure 3.5: Time for performing binary search using our protocol vs. time for performing

binary search using a standard garbled-circuit protocol as a function of the number of

database entries. Each entry is 512 bits long.

the technique introduced by Huang et al. [HEKM11], allowing the generation and evaluation

of the garbled circuit to be executed in parallel, where the sender can transmit each garbled

gate as soon as he generates it, and continue to garble the next gates while the receiver is

evaluating the received gates, thus improving the total evaluation time. This also alleviates

the memory requirements for both parties since the garbler can discards the gates he has

sent, and the receiver can discard a gate that he has evaluated.

3.7 Implementation

The goal of our experiments was to evaluate and compare execution times for two protocols

implementing binary search: one using standard optimized Yao, and the other using our

ORAM-based approach described in the previous section. In our experiments, each of the

two parties was run on a different server, each with a Intel Xeon 2.5GHz CPU, 16 GB of

RAM, two 500 GB hard disk drives, and running a 64-bit Ubuntu operating system. They

each had a 1 Gbit ethernet interface, and were connected through a 1Gbit switch.

Before running our experiments, we first populated the database structure on the server

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 36

side: in our ORAM protocol, we randomly placed the encrypted data throughout the ORAM

structure, and in the Yao protocol performing a linear scan, we simply stored the data in

a large array. We then generated and stored the necessary circuit descriptions on each

machine. Finally, the two parties interacted to pre-process the expensive part of the OT

operations, in a manner that is independent of their inputs. We did not create the garbled

gates for the circuits during pre-processing; the server begins generating these once con-

tacted by the client. However, the server sent garbled gates to the client as they were ready,

so as to minimize the impact on the total computation time. When we measured time in

our experiments, we included: 1) the online phase of the OT protocol, 2) the time it takes to

create the garbled gates and transfer the resulting ciphertexts, and 3) the processing time

of the garbled circuits.

3.7.1 Performance

In Figure 3.5, we compare the performance of our construction when computing a ORAM-

based binary search to the performance of a Yao-based linear scan. We have plotted the

x-axis on a logarithmic scale to improve readability. From the plot it can be seen that

we outperform the Yao linear scan by a factor of 3 when dealing with input of size 219,

completing the logN operations in less than 7 minutes, compared to 24 minutes for Yao. For

input of size 220, we complete our computation in 8.3 minutes, while the Yao implementation

failed to complete due to memory constrains. While we had no trouble running our ORAM-

based protocol on input of size 220, for N = 221, we ran out of memory when populating

the server’s ORAM during pre-processing.

In Figure 3.6 we demonstrate how our protocol performs when evaluating a single read

operation over N data elements of size 512 bits, for N ∈ {216, 217, 218, 219, 220}. We note

that runtime for binary search using the ORAM is almost exactly the time it takes to

run logN single look-ups; this is expected, since the circuit for computing the next RAM

instruction is very small. For 216 items and a bucket size of 32, a single operation takes 27

seconds, while for 220 items and buckets of size 40, it takes about 50 seconds. Recall that

when relying only on secure computation, computing any function, even those making a

constant number of look-ups, requires a full linear scan; in this scenario, the performance

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 37

 0

 20

 40

 60

 80

 100

 120

 140

 160

 128 256 512 1024 2048

T
im

e
(s

)

Item Data Size (bits)

65536 DB size
131072 DB size
262144 DB size
524288 DB size

Figure 3.6: Single ORAM look-up times for different database sizes and item data lengths.

gain is more than 30-fold. One example of such a function allows the client to search a large

social network, in order to fetch the neighborhood of a particular node.

3.7.2 Discussion

Memory Constraints Memory is the primary limitation on scaling the computation to

larger values of N . For the linear scan, the problem stems from the size of the circuit

description, which is more than 23 gigabytes and 850 million wires, if N = 219 and the

data elements are 512 bits. The pipe-lining technique of Huang et al. [HEKM11] prevents

the parties from storing all 23 gigabytes in RAM, but the client still stores an 80 bit secret

key for every wire in the circuit, and the server stores two; this requires 8.5 gigabytes of

memory for the client and 17 gigabytes for server. This ends up requiring far more space

than the data itself, which is only 512N = 33 megabytes.

In contrast, when N = 219 and the data size is 512, the largest circuit in our protocol is

less than 50 megabytes, and contains about 1million wires. On the other hand, each level

of the data storage has a factor of 4 logN overhead (when our bucket size is 2 logN), so

server storage for the top level alone is more than 40000N = 2.5 gigabytes. This explains

why we eventually ran into trouble when pre-processing the data; to broaden the scale of

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 38

what we can handle, we will need to improve the way we handle memory while inserting

elements into the ORAM structure.

Pre-processing We have not done any calculations regarding the time required for secure

pre-processing. As explained above, when running our experiments, we populated the

ORAM structure by randomly placing items in the trees. This is of course insecure, since

the server will know where all the items are in the ORAM: to ensure security, the insertion

of the data would have to be interactive. One naive way to ensure security is to insert

each item, one at a time, by performing the “write” protocol inside a secure computation,

precisely as we have described an ORAM look-up. If we start this process with a data

structure large enough to hold all items, we can estimate the time it will take to insert 216

elements of 512 bits each, by multiplying the 13 seconds we require for a write operation by

216. It seems this would take almost 20 days to compute! We leave the problem of finding

a more efficient method for data insertion to future work. One natural approach would be

to start with smaller structures, repeatedly doubling their size in some secure manner as

insertion progresses. We stress that the pre-processing we do in our work is fully secure in

a three-party model, where the database owner pre-processes his data, and then transfers

the encrypted data to a semi-honest third party, who performs the secure computation on

his behalf.

The Recursion Parameter In all of our experiments, we have chosen r = 16; that is,

every item in tree i > 1 stores the leaf nodes of 16 items from tree i−1. This is a parameter

that we could change, and it may have an impact on performance. However, one parameter

we did investigate is the choice of how far to recurse. As can be seen in Table 1, the best

performance occurs when the bottom level, which requires a linear scan, holds fewer than

212 items. Interestingly, beyond that, further recursion does not seem to make a difference.

The ith tree

Counting Gates Let N be the number of elements, let d be the length of each element,

and let B denote the bucket size of each node. We calculate the number of non-XOR gates

in the garbled circuits of our ORAM operation, and provide some relevant observations. We

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 39

DB size 2 trees 3 trees 4 trees 5 trees

220 35 14 12.5 13

219 20 11.5 12.5 -

218 12.5 9.5 9.5 -

Table 3.1: Time in seconds of a single ORAM access, with various numbers of recursion

levels in the ORAM structure. The number of items in the bottom level is 2N−4i+4 when

there are i trees.

first consider the top level tree that contains the database items. During a lookup we need to

check logN nodes along the path to the leaf associated with the searched item. Each of these

nodes contains B elements of size logN+d: a virtual address of size logN and a data element

of size d. We use approximately 1 non-XOR gates for each of these. Therefore, a single

lookup consists of B logN(logN + d) non-free gates. In the eviction process that follows,

we scan 2 logN nodes for eviction, and write to both of children of each node (one write is

dummy). Thus, the eviction circuits require 6B logN(logN+d) non-free gates, which gives

us a total of 7B logN(logN + d) non-free gates for each ORAM operation in the top level

tree. The analysis at the lower level trees is similar, but asymptotically, this dominates the

computation, since the lower level trees have only N/16i elements. We provide concrete

numbers in Table 2, taken directly from our circuits. We considere B = 2 logN and d=512.

We note that our circuits grow linearly in the size of each bucket. Also interesting is that

it grows linearly in d. Since the Yao linear scan is also linear in the data size, with dN

gates, we see that varying the length of the data element will have little impact on our

comparison.

3.8 Using Other ORAM Schemes

In our concrete protocol we instantiated (and then optimized) our generic construction using

the tree-based ORAM scheme of [SCSL11]4. However, there are several other oblivious

RAM schemes which we considered as possible instantiations for our ORAM component.

4As mentioned earlier, we could have also use the Path-ORAM scheme [SvDS+13]

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 40

DB size XOR gates Non-free gates Wires

220 19,159,883 3,730,546 44,039,222

219 16,519,818 3,166,420 37,656,448

218 14,219,281 2,700,966 30,941,947

217 12,185,264 2,302,208 27,366,108

216 10,377,527 1,954,042 23,655,368

Table 3.2: Gate and wires counts for different size databases with item data of length 512

We discovered that these schemes would entail higher complexity in the context of a two

party computation protocol5 since they involve more complicated building blocks such as

pseudorandom shuffling protocol and Cuckoo hashing.

For example, the ORAM protocol of Goldreich and Ostrovsky [GO96] introduced the ba-

sic hierarchical structure that underlies many subsequent ORAM protocols. This approach

crucially relies on two components that turn out to be quite inefficient when evaluated with

a secure two-party computation: (1) the use of a pseudorandom function (PRF) in order to

consistently generate a random mapping from virtual addresses to physical addresses; and

(2) a joint shuffling procedure for mixing the different levels in the ORAM data structure.

We direct the reader to [GO96] for the full details of the scheme.

Several more-recent ORAM solutions [PR10b; GM11; GMOT12; KLO12] rely on cuckoo

hashing (in addition to also using PRF computations). For their security, a new construction

for a cuckoo hash table is needed [GM11], which involves building the corresponding cuckoo

graph and conducting breadth-first search on the graph in order to allocate each new item

inserted into the cuckoo table. Compiling this step into a secure two-party computation

protocol seems likely to introduce a prohibitive performance hit.

5Note that a better performing ORAM protocol does not necessarily translate to a better performing

protocol when put through a generic secure computation.

CHAPTER 3. SECURE TWO-PARTY COMPUTATION IN SUBLINEAR
AMORTIZED TIME 41

3.9 Conclusion

In this work we showed efficient protocols for secure two party computation achieving only

a small polylogarithmic overhead over the running time of the insecure version of the same

functionality. This is a significant asymptotic improvement over traditional generic secure

computation techniques, which inherently impose computation overhead at least linear in

the input size. Our protocols rely on any (arbitrary) underlying oblivious RAM and generic

two party computation protocols. We further investigate the most efficient instantiation

of the protocol and demonstrated, empirically, the expected theoretical improvement. In

particular, we implemented a protocol that performs a single access to a databases of size

218 elements, outperforming an implementation of basic secure computation by a factor of

60. This translates also to a three-fold improvement in the running time of binary search.

In addition to these concrete improvements, our work sheds light on many of the details

faced when implementing ORAM and secure computation.

42

Part II

Private Database Search

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 43

Chapter 4

Blind Seer: A Scalable Private

DBMS

4.1 Introduction

As noted in the very introduction of this thesis, the amount of data generated and stored

is now reaching dramatic proportions, and it is touching every aspect of our life (social,

political, commercial, scientific, medical, and legal contexts). Personal, corporate and gov-

ernment concerns about privacy increase with the rise in size and potential applications

utilizing these data. For example, the recent revelation of the U.S. Government’s data

collection programs reignited the privacy debate.

In this and the following chapters we address the issue of privacy for database manage-

ment systems (DBMS), where the privacy of both the data and the query must be protected.

As an example, consider the scenario where a law enforcement agency needs to search air-

line manifests for specific persons or patterns. Because of the classified nature of the query

(and even of the existence of a matching record), the query cannot be revealed to the DB

administrator. With the absence of truly reliable and trusted third parties, today’s solution,

supported by legislation, is to simply require the manifests and any other permitted data

to be furnished to the agency. However, a solution that allows the agency to ask for and

receive only the data it is interested in (without revealing its interest), would serve two

important goals:

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 44

• allay the negative popular sentiment associated with large personal data collection

and management that is not publicly accounted for.

• enhance agencies’ ability to mine data, by obtaining permission to query a richer data

set that could not be legally obtained in its entirety.

In particular, we implement external policy enforcement on queries, thus preventing

many forms of abuse. Our system allows an independent oblivious controller to enforce that

queries satisfy the specificity requirement.

Other motivating scenarios are abundant, including private queries over census data,

information sharing between law enforcement agencies (especially across jurisdictional and

national boundaries) and electronic discovery in lawsuits, where parties have to turn over

relevant documents, but don’t want to share their entire corpus [Kay12; PI05]. Often in

these scenarios the (private) query should be answered only if it satisfies a certain (secret)

policy.

While achieving full privacy for these scenarios is possible by building on cryptographic

tools such as SPIR [GIKM00], FHE [Gen09], ORAM [GO96] or multiparty computation

(MPC), those solutions either run in polynomial time, or have very expensive basic steps

in the sublinear algorithms. Recall the ORAM based system of Chapter 3. Figure 3.5

show that it takes about 1000 seconds to run a binary search on 220 entries; subsequent

works [LO13a; GGH+13] remain too expensive for our setting. On the other hand, for data

sets of moderate or large sizes, even linear computation is prohibitive. This motivates the

following.

Design goals. Build a secure and usable DBMS system, rich in functionality, and with

performance very close to existing insecure implementations, so as to maintain the current

modus operandi of potential users such as government agencies and commercial organiza-

tions. At the same time, we must provide reasonable and provable privacy guarantees for

the system.

These are the hard design requirements that we achieve with Blind Seer (BLoom filter

INDex SEarch of Encrypted Results). Our work can be seen as an example of applying

cryptographic rigor to design and analysis of a large system. Privacy/efficiency trade-offs

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 45

are inherent in many large systems. We believe that the approach we take (identifying and

permitting a controlled amount of leakage, and proving that there is no additional leakage)

will be useful in future secure systems.

Significance. We solve a significant open problem in private DB: efficient sublinear

search for arbitrary Boolean queries. While private keyword-search was achieved in some

models, this did not extend to general Boolean formulas. Natural breaking of a formula

to terms and individual keyword-searching of each leaks formula structure and encrypted

results for each keyword, significantly compromising privacy of both query and data. Until

our work, and the (very different) independent and concurrent works [CJJ+13; JJK+13], it

was not known how to efficiently avoid this leakage. (See Section 4.1.2 and Chapter 7 for

extended discussion on related work.)

Setting

Traditionally, DB querying is seen as a two-player engagement: the client queries the server

operated by the data owner, although delegation of the server operation to a third player

is increasingly common.

Players. In our system, there are three main players: client C, server S, and index server

IS (there is another logical entity, query checker QC, whose task of private query compliance

checking is technically secondary, albeit practically important. For generality, we consider

QC as a separate player, although its role is normally played by either S or IS). We split

off IS from S mainly for performance reasons; having C communicating mainly with the

third party IS, allows keeping S oblivious of the client queries, and hence we can aim for

far better privacy-performance trade-offs. We note also that our system can be generalized

to handle multiple clients in several ways (presenting different trade-offs), but we focus our

presentation on the single client setting.

Allowed leakage. The best possible privacy for us would guarantee that C learns only

the result set, and IS and S learn nothing at all. However, achieving this would be quite

costly, and almost certainly far too expensive as a replacement for any existing DBMS. On

the other hand, to perform practical-efficient equality check of encrypted data, we would

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 46

likely require the use of deterministic encryption, which allows to identify and accumulate

access and search patterns. In addition, for certain conjunctive queries, sublinear search

algorithms are currently unknown, even for insecure DBMS. Thus, unless we opt for a

linear time for all conjunctive queries, the running time already inevitably reveals some

information (see Section 4.5.2 for more discussion).

As a result, we accept that certain “minimal” amount of leakage is unavoidable. In

particular, we allow players C and IS to learn certain search pattern information, such as

the pattern of returned results, and the traversal pattern of the encrypted search tree. We

stress that we still formally prove security of the resulting system – our simulators of players’

views are given the advice corresponding to the allowed leakage. We specify the allowed

leakage in more detail in Section 4.5.

In Section 4.8 we provide further motivation, examples and discussion of our setting and

choices.

4.1.1 Contributions

We design, prove secure, implement and evaluate the first scalable privacy-preserving DBMS

which simultaneously satisfies all the following features (see the following sections for a more

complete description and comparison to previous works):

• Rich functionality: we support a rich set of queries including arbitrary Boolean formu-

las, ranges, stemming, and negations, while hiding search column names and including

free keyword searches over text fields in the database. We note that there is no stan-

dard way in MySQL to obtain the latter.

• Practical scalability. Our performance (similar to MySQL) is proportional to the

number of terms in the query and to the result set size for the CNF term with the

smallest number of results.

For a DB of size 10TB containing 100M records with 70 searchable index terms per

DB row, our system executes many types of queries that return few results in well

under a second, which is comparable to MySQL.

• Provable security. We guarantee the privacy of the data from both IS and C, as well

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 47

as the privacy of C’s query from S and IS. We prove security with respect to well

defined, reasonable, and controlled leakage. In particular, while certain information

about search patterns and the size of the result set is leaked, we do provide some

privacy of the result set size, suited for the case when identifying that there is one

result as opposed to zero results is undesirable (Section 4.4.2).

• Natural integration of private policy enforcement. We represent policies as Boolean

circuits over the query, and can support any policy that depends only on the query,

with performance that depends on the policy circuit size.

• Support for DB updates, deletions and insertions.

To our knowledge the combination of performance, features and provable security of

our system has never been achieved, even without implementation, and represents a break-

through in private data management. Indeed, previous solutions either require at least

linear work, address a more limited type of queries (e.g., just keyword search), or provide

weaker privacy guarantees. The independent and concurrent work of [CJJ+13; JJK+13] is

the only system comparable to Blind Seer, in the sense that it too features a similar combi-

nation of rich functionality, practical scalability, provable security, and policy enforcement.

However, the trade offs that they achieve among these requirements and their technical

approach are quite different than ours.

Our scale captures moderate-to-large data, which encompasses datasets in the motivat-

ing scenarios above (such as the census data, on which we ran our evaluation), and represents

a major step towards privacy for truly “big data”. Our work achieves several orders of mag-

nitude performance improvement as compared to the fully secure cryptographic solution,

and much greater functionality and privacy as compared to practical single keyword search

and heuristic solutions.

4.1.2 Background

The closest to our setting/work is a OSPIR-OXT [JJK+13], a very recent extension of the

SSE solution of [CJJ+13](called OXT protocol), which additionally (to the SSE require-

ments) addresses data privacy against the client (and hence, as we do, addresses private

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 48

DB). We note that the work of [CJJ+13; JJK+13] is performed independently and concur-

rently to the development of this work. OSPIR-OXT supports the same class of functions

as OXT, that is, formulas of the type k0 ∧ φ(k1, ..., km−1). Their search time complexity is

O(m×D(k0)), where D(k0) is the number of records containing keyword k0. In the worst

case, such as when the client has little a priori information about the DB and chooses a

sub-optimal term to appear first in the query term, the complexity of OSPIR-OXT can be

linear in the DB size. In contrast, the solution for general formulas proposed here does

not depend on the client’s knowledge of data distribution or representation choice (beyond

the size of the formula). However, for typical practical applications this is not a serious

issue, as the client can represent his query as a conjunction, and moreover, can make a good

guess for which term will have low frequency in the data and is a good choice as the first

term. Thus, a large majority of practically useful queries can be evaluated by OSPIR-OXT

with asymptotic complexity similar to Blind Seer. In terms of security, our guarantees

vary: OSPIR-OXT achieves security against malicious client, which is much stronger than

our semi-honest setting, and of particular importance for the policy enforcement (this is

handled in Chapter 5). Blind Seer and OSPIR-OXT leakage profile vary and are incompa-

rable; different access pattern structures (search tree for Blind Seer and index lookups for

OSPIR-OXT). Because of the use of a more expensive basic step of SFE, the protection of

query-related data, at least in some cases, is somewhat better in Blind Seer. For example,

depending on the DB data, we may hide everything about the individual terms of the query,

while OSPIR-OXT leak to the client and (their counterpart of the) IS the support sizes for

individual terms of the disjunctive queries (individual term supports are revealed to the

client, but this is only an issue if the query does not ask for all the columns of the records).

At the same time, the concrete query performance of OSPIR-OXT is somewhat better

than ours, due to their elegant non-interactive approach. The very expensive step of DB

setup is faster for us, and the CPU load is lower, as we use mainly symmetric-key primitives.

We also note that our interactive approach allows significant flexibility. For example, the

0-1 security (cf. Section 4.4.2), is naturally and cheaply achievable in our system; it appears

harder/more expensive to achieve in a non-interactive system, and in fact is not considered

in [JJK+13]. The use of GC as the basic block similarly provides significant flexibility and

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 49

opportunities for feature expansion. A strong point of OSPIR-OXT is easy scalability due

to storing search structures on disk. This is achieved at the cost of significant additional

system complexity and setup time. Finally, OSPIR-OXT naturally support multiple clients,

while our natural extensions to multiple clients require that all clients share a secret key

not known to IS.

Because of the different trade offs presented by our work and that of [JJK+13], each

system is better suited for different applications/use cases. It is interesting to note that these

two works, the first ones to address the major open problem of truly practical, provably

secure, and very rich (including any formula) query DBMS, are based on very different

technical approaches. We believe that this adds to the value and strength of each of these

systems.

4.2 Overview

Participants. Recall, our system consists of four participants: server S, client C, index

server IS, and query checker QC. The server owns a database DB, and provides its encrypted

searchable copy to IS, who obliviously services C’s queries. QC, a logical player who can be

co-located with and may often be an agent of S, privately enforces a policy over the query.

This is needed to ensure control over hidden queries from C. Player interaction is depicted

in Figure 4.1.

Approach. We present a high-level overview of our approach and refer the reader to

Section 4.3 for technical details. We adhere to the following general approach of building

large secure systems, in which full security is prohibitively costly: in a large problem, we

identify small privacy-critical subproblems, and solve those securely (their outputs must be

of low privacy consequence, and are handled in plaintext). Then we use the outputs of the

subtasks (often only a small portion of them will need to be evaluated) to complete the

overall task efficiently.

We solve the large problem (encrypted search on large DB) by traversing an encrypted

search tree. This allows the subtasks of privately computing whether a tree node has a

child matching the (arbitrarily complex) query to be designated as security-critical. Further,

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 50

Figure 4.1: High-level overview of Blind Seer. There are three different operations depicted:

preprocessing (step 0), database searching (step 1-4) and data modifications (step 5).

unlike the protected input and the internals of this subtask, its output, obtained in plaintext

by IS and C, reveals little private information, but is critical in pruning the search tree and

achieving efficient sublinear (logarithmic for some queries) search complexity. Putting it

together, our search is performed by traversing the search tree, where each node decision is

made via very efficient secure function evaluation (SFE).

We use Bloom filters (BF) to store collections of keywords in each tree node. Bloom

filters serve this role well because they support small storage, constant time access, and

invariance of access patterns with respect to different queries and match outputs. For SFE,

we use state-of-the-art Yao’s garbled circuits.

Because of SFE’s privacy guarantee in each tree node, the overall leakage (i.e. additional

information learned by the players) essentially amounts to the traversal pattern in the

encrypted search tree.

We discuss technical details of these and other aspects of the system, such as encrypted

search tree construction, data representation, policy checking, etc., in Section 4.3. We stress

that many of these details are technically involved.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 51

Notations. Let [n] = {1, . . . , n}. For ℓ-bit strings a and b, let a ∨ b (resp., a ∧ b and

a ⊕ b) denote the bitwise-OR (resp. bitwise-AND and bitwise-XOR) of a and b. Let

S = (i1, i2, . . . , iη) be a sequence of integers. We define a projection of a ∈ {0, 1}ℓ on S

as a↓S= ai1ai2 · · · aiη ; for example, with S = (2, 4), we have 0101↓S= 11. We also define

a filtering of a = a1a2 . . . aℓ by S as a‡S = b1b2 . . . bℓ where bj = aj if j ∈ S, or bj = 0

otherwise; for example, with S = (2, 4), we have 1110‡S = 0100.

4.3 Basic System Design

In this section, we will begin by describing the basic system design supporting only simple

private query. In the next section, we will augment this basic design with additional features.

4.3.1 BF Search Tree

Our key data structure enabling sublinear search is a BF search tree for the database

records. We stress that there is only one global search tree for the entire database. Let n

be the number of database records and T be a balanced b-ary tree of height logb n
1 (we

assume n = bz from some positive integer z for simplicity). In the search tree, each leaf is

associated with each database record, and each node v is associated with a Bloom filter Bv.

The filter Bv contains all the keywords from the (leaf) records that the node v have (as itself

or as its descendants). For example, if a node contains a record that has Jeff in the fname

field, a keyword α = ‘fname:Jeff’ is inserted to Bv. The length ℓv of Bv is determined by

the upper bound of the number of possible keywords, derived from DB schema, so that two

nodes of the same level in the search tree have equal-length Bloom filters. The insertion

of keywords is performed by shrinking the output of the hash functions H(α)) to fit in the

corresponding BF length ℓv. Here, H is the set of hash functions associated with the root

node BF. See Figure 4.2.

Search using a BF search tree. Consider a simple recursive algorithm Search below.

Let α and β be keywords and r the root of the search tree. Note that Search(α ∧ β, r) will

1In our prototype implementation, b is set to 10.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 52

Let (Ri, . . . , Rn) be the overall database records. The Bloom filter BFa,b contains all the keywords

of records Ra, Ra+1, . . . , Rb.

Figure 4.2: Index structure: Bloom-filter-based search tree.

output all the leaves (i.e., record locations) containing both keywords α and β; any ancestor

of a leaf has all the keywords that the leaf has, and therefore there should be a search path

from the root to each leaf containing α and β. This algorithm can be easily extended to

searching for any monotone Boolean formula of keywords.

Search(α ∧ β, v):

If the BF Bv contains α and β, then

If v is a leaf, then output {v}.
Otherwise, output

⋃

c: children of v Search(α ∧ β, c).
Otherwise, output ∅.

4.3.2 Preprocessing

Roughly speaking, in this phase, S gives an encrypted DB to IS. To be more specific, by

executing the following protocols, the two parties encrypt and permute the records, create

a search tree for the permuted records, and prepare record decryption keys.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 53

Encrypting database index/records. In this step, the server first permutes its DB to

hide information of the order of records in the DB and then creates BF-search tree on this

permuted DB; these DB and search tree are encrypted and sent to the index server.

1. (Shuffle and encrypt the records.) The server generates a key pair (pk , sk) for a public-

key semi-homomorphic (e.g., additively homomorphic) encryption scheme (Gen,Enc,Dec).

Given a database of n records, the server S randomly shuffles the records. Let

(R1, . . . , Rn) be the shuffled records. S then chooses a random string si, and computes

s̃i ← Encpk (si) and R̃i = G(si)⊕Ri, where G is a pseudo-random function (PRG).

2. (Encrypt the BF search tree.) S constructs a BF search tree T for the permuted

records (R1, . . . , Rn). It then chooses a key k at random for a PRF F . The Bloom

filter Bv in each node v is encrypted as follows: B̃v = Bv ⊕ Fk(v).

3. (Share) Finally, the S sends the (permuted) encrypted records (pk , (s̃1, R̃1), . . . , (s̃n, R̃n))

and the encrypted search tree {B̃v : v ∈ T} to the index server. The client will re-

ceive the PRF key k, and the hash functions H = {hi}ηi=1 used in the Bloom filter

generation.

Preparing record decryption keys. To save the decryption time in the on-line phase,

the index server and the server precompute record decryption keys as follows:

(Blind the decryption keys) The index server IS chooses a random permutation ψ :

[n]→ [n]. For each i ∈ [n], it chooses ri randomly and computes s̃′
ψ(i) ← s̃i ·Encpk (ri).

Then, it sends (s̃′1, . . . , s̃
′
n) to S. Then, the server decrypts each s̃′i to obtain the

blinded key s′i. Note that it holds s′
ψ(i) = siri.

4.3.3 Search

Our system supports any SQL query that can be represented as a monotone Boolean for-

mula where each variable corresponds to one of the following search conditions: keyword

match, range, and negation. So, without loss of generality, we support non-monotone formu-

las as well, modulo possible performance overhead (see how we support negations below).

See Figure 4.3 as an example.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 54

Query: SELECT * FROM main WHERE

∧

∧∨

Logic Circuit:

(fname = JEFF OR fname = JOHN) AND zip = 34301 AND income ≤ 200

T1:fname = JEFF T3:zip = 34301

T4:income≤200

Circuit:

=⇒

T2:fname = JOHN

∧

∧∨

T1

T1 T2 T3 T4

T2 T3 T4

Figure 4.3: High level circuit representation of a query.

Traversing the search tree privately. The search procedure starts with the client

transforming the query into the corresponding Boolean circuit. Then, starting from the

root of the search tree, the client and the index server will compute this circuit Q via

secure computation. If the circuit Q outputs true, the parties visit the children of the node,

and again evaluate this circuit Q on those nodes recursively, until they reach leaf nodes;

otherwise, the traversal at the node terminates. Note that evaluation of Q outputs a single

bit denoting the search result at that node. It is fully secure, and reveals no information

about individual keywords.

In order to use secure computation, we need to specify the query circuit and the inputs

of the two parties to it. However, since the main technicalities lie in constructing circuits

for the variables corresponding to search conditions, we will describe how to construct those

sub-circuits only; the circuit for the Boolean formula on top of the variables is constructed

in a standard manner.

Keyword match condition. We first consider a case where a variable corresponds to a

keyword match condition. For example, in Figure 4.3 the variable T1 indicates whether the

Bloom filter Bv in a given node v contains the keyword α = ‘fname:JEFF’. Consider the

Bloom filter hash values for the keyword α, and let Z denote the positions to be checked.

If the Bloom filter Bv contains the keyword α, the projected bits w.r.t. Z should be all set,

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 55

that is, we need to check

Bv↓Z ?
= 1η . (4.1)

Recall that the index server has an encrypted Bloom filter B̃v = Bv ⊕Fk(v), and the client

the PRF key k and the hash functions H = {hi}ηi=1. Therefore, the circuit to be computed

should first decrypt and then check the equation (4.1). That is, the keyword match circuit

looks as follows:

KM((b1, . . . bη), (r1, . . . , rη)) =

η
∧

i=1

(bi ⊕ ri).

Here, (b1, . . . , bη) is from the encrypted BF and (r1, . . . , rη) from the pseudorandom mask.

That is, to this circuit KM, the index server will feed B̃v↓Z as the first part (b1, . . . , bη) of

the input, and the client will feed Fk(v)↓Z as the second (r1, . . . , rη). In order that the two

parties may execute secure computation, it is necessary that the client compute Z and send

it (in plaintext) to the index server.

Range/negation condition. Consider the variable T4 in Figure 4.3 for example. Using the

technique from [RVBM09], we augment the BF to support inserting a number x ∈ Z2n , say

with n = 32, and checking if the BF contains a number in a given range.

To insert an integer a in a BF, all the canonical ranges containing a are added in the

filter. A canonical range with level i is a range of size 2i that start on an even position.

That is, [x2i, (x + 1)2i) for some integer x. For each level, there is only one canonical

range containing the number a. In particular, for each i ∈ Zn, compute xi such that

a ∈ [xi2
i, (xi + 1)2i) and insert ‘r:income:i:xi’ to the Bloom filter.

Given a range query [a, b), we check whether a canonical range inside the given query

belongs to the BF. In particular, for each i ∈ Zn, find, if any, the minimum yi such that

[yi2
i, (yi+1)2i) ∈ [a, b) and the maximum zi such that [zi2

i, (zi+1)2i) ∈ [a, b); then check if

the BF contains a keyword ‘r:income:i:yi’ or ‘r:income:i:zi’. If any of the checks succeeds

for some i, then output yes; otherwise output no. Therefore, a circuit for a range query is

essentially ORs of keyword match circuits.

For example, consider a range query within Z24 . When inserting a number 9, the

following canonical ranges are inserted: [9, 10), [8, 10), [8, 12), [8, 16). Given a range query

[7, 11), the following canonical ranges are checked: [7, 8), [10, 11), [8, 10). We have a match

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 56

[8, 10).

Negation conditions can be easily changed to range conditions; for example, a condition

‘NOT work hrs = 40’ is equivalent to ‘work hrs ≤ 39 OR work hrs ≥ 41’.

Overall procedure in a node . The client and the index server execute the following in a

node v of the search tree.

1. The client constructs a query circuit corresponding to the given SQL query. Then, it

garbles the circuit and sends the garbled circuit, Yao keys for its input (corresponding

to PRFk(v)‡Z).

2. The client and the index server execute OT so that IS obtains Yao keys for its input

(i.e., encrypted BF). Then, the index server evaluates the garbled circuit and sends

the resulting output Yao key to the client.

3. The client decides whether to proceed based on the result.

Record Retrieval. When the client and the index server reach some of the leaf nodes in

the tree, the client retrieves the associated records. In particular, if computing the query

circuit on the ith leaf outputs success, the index server sends (ψ(i), ri, R̃i) to the client.

Then, the client sends ψ(i) to S, and gets back s′
ψ(i). Note that it holds s′

ψ(i) := siri. The

client C decrypts R̃i using si and obtains the output record.

4.4 Advanced Features

In this section, we discuss how our system supports advanced features such as query policies,

and one-case indistinguishability. We also overview insert/delete/update operations from

the server.

4.4.1 Policy Enforcement

The policy enforcement over a query is performed through a three-party protocol among

the query checker QC (holding the policy), the client C (holding the query), and the index

server IS. A policy is represented as a circuit that takes a query as input and outputs accept

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 57

or reject. In our system, QC garbles this policy circuit, and IS evaluates the garbled policy

circuit on the client’s query. A key idea here is to have the client and the query checker

share the information of input/output wire key pairs in this garbled policy circuit; then, the

client can later construct a garbled query circuit (used in the search tree traversal) to be

dependent on the output of the policy circuit. Assuming semi-honest security, this sharing

of information can be easily achieved by having the client choose those key pairs (instead

of QC) and send them to QC. The detailed procedure follows.

Before the tree search procedure described in the previous section begins, the client C,

the query checker QC, and the index server IS execute the following protocol.

1. Let q = (q1, . . . , qm) ∈ {0, 1}m be a string that encodes a query (we will discuss

our encoding method later in this section). The client generates Yao key pairs Wq =

((w0
1 , w

1
1), . . . , (w0

m, w
1
m)) for the input wires of the policy circuit, and a key pair Wx =

(t0, t1) for the output wire. The client sends the key pairs Wq and Wx to query checker

QC. It also sends the index server the garbled input q̃ = (wq11 , w
q2
2 , . . . , w

qm
m).

2. Let P be the policy circuit. QC generates a garbled circuit P̃ using Wq as input key

pairs, and Wx as the output key pair (QC chooses the other key pairs of P̃ at random).

Then, QC sends P̃ to the index server.

3. The index server evaluates the circuit P̃ on q̃ obtaining the output wire key x̃ = P̃ (q̃).

Note that x̃ ∈Wx.

After the execution of this protocol, the original search tree procedure starts as described

before. However, the procedure is slightly changed when evaluating a leaf node as follows:

1. Let Q′(b, r, x) = Q(b, r)∧ x be an augmented circuit, where Q is the query circuit, b

and r are the inputs from IS and C respectively, and x is a bit representing the output

from the policy circuit. The client C generates a garbled query circuit Q̃′ using wire

key pair Wx for the bit x. Then, it sends (Q̃′, r̃) to the index server, where r̃ is the

garbled input of r.

2. After obtaining the input keys b̃ for b via OT with C, the index server IS evaluates

Q̃′(b̃, r̃, x̃) and sends the resulting output key to the client. Recall that it has already

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 58

evaluated the garbled policy circuit P̃ (q̃) and obtained x̃.

3. The client checks the received key and decides to accept or reject.

Regarding privacy, the client learns nothing about the policy, since it never sees the

garbled policy circuit. The index server obtains the topology of the policy circuit (from the

garbled policy circuit).

Note that the garbled policy circuit is evaluated only once, before the search tree exe-

cution starts. Therefore, the policy checking mechanism introduces only a small overhead.

It is also worth observing that, so far, we have not assumed any restriction on the policy

to be evaluated. Since Yao-based computation can compute any function represented as a

circuit, in principle, we could enforce any policy computable in a reasonable time (as long

as it depends only on the query). We next describe in detail our own implemented policy

circuit.

Encoding a query. In our system, a query is represented as a Bloom filter. This filter

contains all the relevant columns and operations, and search terms and conditions. For

example, consider the following query:

SELECT id WHERE fname = ALICE AND dob <= 1975-1-1 AND CONTAINED IN(notes1, engineer) (4.2)

The bloom filter will contain the following:

• fname, fname:=, fname:ALICE, fname:=:ALICE

• dob, dob:<=, dob:1975-1-1, dob:<=:1975-1-1

• notes1, notes1:contained in, notes1:engineer,

notes1:contained in:engineer

Policy circuit. The current implementation provides a parser for any policy that can

be represented as a monotone DNF where each variable indicates whether some policy

condition (BF keyword) belongs to the input BF representing a query as described above;

if the formula output is true, then the client’s query is disallowed. For example, a policy

may disallow a query if it contains an equality check on fname with value ALICE and a range

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 59

in dob. In this case, the policy circuit is a simple formula V1 AND V2, where the variable V1

is true if the input BF contains fname:=:ALICE, and V2 is true if the filter contains dob:<=.

Indeed, query (4.2) above will be disallowed.

We believe that this provides a wide coverage of policies. For example, our parser also

supports a policy that allows only range operation on fname, indirectly. One technical

issue is that we do not want to allow any false approval of a query that fails the policy

(though a tunable small probability of false rejection of a good query is acceptable), but the

Bloom filters allow no false negatives. We can fix this issue by adding keywords representing

absence column, or column operators to the BF. In the example above the system adds the

following keywords:

NOT:fname:range, NOT:dob:=, NOT:notes1:stem, NOT:lname, NOT:zip,

Now, the aforementioned policy is equivalent to one that disallows queries if the cor-

responding the BF contains fname and NOT:fname:range. If the check succeeds, then the

query is disallowed. Likewise, a policy allowing only equality operation on dob will check if

the filter has dob and NOT:dob:=. In addition, the policy can now disallow queries that do

not contain an equality on dob column or that do not contain lname. More importantly,

the policy can now enforce that the query must have lname value if fname was present.

4.4.2 One-case Indistinguishability

So far, in our system the index server learns how many records the client retrieved from

the query. In many use cases, this leakage should be insignificant to the index server, in

particular, when the number of returned results is expected to be, say, more than a hundred.

However, there do exist some use cases in which this leakage is critical. For example, suppose

that a government agent queries the passenger database of an airline company looking for

persons of interest (POI). We assume that the probability that there is indeed a POI is

small, and the airline or the index server discovering that a query resulted in a match may

cause panic. Motivated from the above scenario, we consider a security notion which we

call one-case indistinguishability.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 60

Motivation. Consider a triple (q,D0, r) where q is a query, and D0 is a database with

the query q resulting in no record, but r satisfies q. Let D1 be a database that is the same

as D0 except that a record is randomly chosen and replaced with r. Let view0 (resp. view1)

denote the view of IS when the client runs a query q with the database D0 (resp., D1).

A natural start would be to require that for any such (q,D0, r), the difference between

the two distributions view0 and view1 should be small ǫ (in the computational sense), which

we call ǫ zero-one indistinguishability. However, it does not seem possible to achieve negli-

gible difference ǫ without suffering significant performance degradation (in fact, our system

satisfies this notion for a tunable small constant ǫ). Unfortunately, this definition does not

provide a good security guarantee when the difference ǫ is non-negligible, in particular, for

the scenario of finding POIs. For example, let Π be a database system with perfect privacy

and Π′ be the same as Π except that when it is 1-case (i.e., a query with one result record),

the client sends the index server the message “the 1-case occurred” with non-negligible

probability. It is easy to see that Π′ satisfies the definition with some non-negligible ǫ, but

it is clearly a bad and dangerous system.

One-case indistinguishability. Observe that in the use case of finding POIs, we don’t

particularly worry about “the 0-case”, that is, it is acceptable if the airline company some-

times knows that a query definitely resulted in no returned record. Motivated by this

observation, this definition intuitively requires that if the a-priori probability of a 1-case is

δ, then a-posteriori probability of a 1-case is at most (1+ǫ)δ. For example, for ǫ = 1, the

probability could grow from δ to 2δ, but never more than that, no matter what random

choices were made. Moreover, if the a-priori probability was tiny, the a-posteriori probabil-

ity remains tiny even if unlucky random choices were made. In particular, consider (q,D0, r)

and D1 as before. Now consider a distribution E that outputs (b, v) where b ∈ {0, 1} chosen

with Pr[b = 1] = δ, and v is the view of the index server when the query q is run on Db.

The system satisfies ǫ one-case indistinguishability if for any (q,D0, r), δ and v, it holds

Pr
E

[b = 1|v] ≤ (1 + ǫ)δ.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 61

Augmenting the design. To achieve these indistinguishability notions, we change the

design such that the client chooses a small random number of paths leading to randomly

selected leaves. In particular, let D be the probability distribution on the number of random

paths defined as follows:

Dα(x) =

1/α if 1 ≤ x ≤ α− 1

1/α · 1/2x−α+1 if x ≥ α

Here, α is a tunable parameter. The client chooses x ← D, and then it also chooses

x uniformly random indices (j1, . . . , jx) in [n]. When handling the query, the client super-

imposes the basic search procedure above with these random paths. Our system is 1/α

zero-one indistinguishable and ǫ one-case indistinguishable with ǫ = 1. Intuitively, the leak-

age to the index server is the tree traversal pattern, and these additional random paths

make the 0-case look like 1-case with a reasonably good probability.

If we slightly relax the definition and ignore views taking place with a tiny probability,

say 2−20, we can even achieve both 1-case and 0-case indistinguishability at the same time;

the probability of the number x of fake paths is now 1/2|x−α|+2 with a parametrized center

α, say α = 20 (except when x = 0, i.e., Pr[x = 0] = 1/2α+1).

Against the server. One-case indistinguishability against the server is easily achieved

by generating a sufficient number of dummy record decryption keys in the preprocessing

phase; the index server will let the client know the (permuted) positions of the dummy

keys. When zero records are returned from a query, the client asks for a dummy decryption

key from the server. For brevity, we omit the details here, and exclude this feature in the

security analysis.

One-case indistinguishability proof

Here, we give a formal definition of one-case indistinguishability. Since our system realizes

the ideal functionality Fdb, the definitions concern only input/output behavior and the

leakage profile L.

The distribution E discussed previously with δ is defined as follows:

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 62

Let (D0, q, r) be a database, a query and a record. Choose a record in D0

uniformly at random and replace it with r. Let D1 be the modified database.

Choose a bit b ∈ {0, 1} according to the following distribution:

Pr[b = 1] = δ, Pr[b = 0] = 1− δ.

Run Fdb, calling Init with (D0, P), and Query with q. Let v be the leakage to

the index server. Output (b, v).

We show that our system satisfies one-case indistinguishability. Note that the initial

leakage is none, and therefore, we only need to consider the query leakage which is the

query pattern and the tree search pattern. This implies that we only need to consider the

tree search pattern since the same query is considered in the experiment. Observe that

the newly introduced record r is equivalent to adding a random paths in terms of the tree

search pattern. Therefore, it suffices to focus on the number of added random paths. In

particular, let D+ be defined as follows:

x← D; output (x + 1).

Now, consider a following game X:

Choose a bit b ∈ {0, 1} such that Pr[b = 1] = δ and Pr[b = 0] = 1− δ. If b = 0,

let x← D; otherwise let x← D+. Output (b, x).

Now, we show that for any x, it holds that

Pr
X

[b = 1| x] ≤ 2δ.

We show this by using case analysis:

• When x ≤ 1, it never comes from D+, so the inequality trivially holds.

• When 2 ≤ x ≤ α− 1, it holds that

Pr[b = 1| x] =
Pr[X = (1, x)]

Pr[x]
=

δ/α

δ/α + (1− δ)/α = δ.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 63

• When x ≥ α, it holds that

Pr[b = 1| x] =
Pr[X = (1, x)]

Pr[x]

=
δ · (1/α) · 1/2x−α

δ · (1/α) · 1/2x−α + (1− δ) · (1/α) · 1/2x−α+1

=
δ

δ + (1− δ)/2 =
2δ

1 + δ
≤ 2δ.

4.4.3 Delete, Insert, and Update from the Server

Blind Seer supports a basic form of dynamic deletion, insertion, and update of a record

which is only available to the server. If it would like to delete a record Ri, then the server

sends i to the index server, which will mark the encrypted correspondent as deleted. For

newly inserted (encrypted) records, the index server keeps a separate list for them with

no permutation involved. In addition, it also keeps a temporary list of their Bloom filters.

During search, the temporary list is also scanned linearly, after the tree. When the length

of the temporary Bloom filter list reaches a certain threshold, all the current data is re-

indexed and a new Bloom filter tree is constructed. The frequency of rebuilding the tree is

of course related to the frequency of the modifications and also the threshold we choose for

the temporary list’s size. Finally, update is simply handled by atomically issuing a delete

and an insert command.

We note that updates is not our core contribution; we implement and report it here,

but don’t focus on its design and performance. A more scalable update system would use

a BF tree rather than a list; its implementation is a simple modification to our system.

4.5 Security Analysis

We consider static security against a semi-honest adversary that controls at most one par-

ticipant. We first describe an ideal functionality Fdb parameterized with a leakage profile

in Figure 4.4, and then show that our system securely realizes the functionality where the

leakage is essentially the search tree traversal pattern and the pattern of accessed BF indices.

For the sake of simplicity, we only consider security where there are no insert/delete/update

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 64

operations,2and unify the server and the query checker into one entity. We also assume that

all the records have the same length.

We use the DDH assumption (for ElGamal encryption and Naor-Pinkas OT), and our

protocols are in the random oracle model (for Naor-Pinkas OT and OT extension). We also

use PRGs and PRFs, and those primitives are implemented with AES.

Functionality Fdb

Parameter: Leakage profile.

Init: Given input (D,P) from S, do the following:

1. Store the database records D and the policy P . Let n be the number records in D.

Shuffle D and let (R1, . . . , Rn) be the shuffled records. Choose a random permutation

π : [n] → [n]. Construct a BF-search tree for (R1, . . . , Rn) using the hash functions

H.

2. To handle the client’s queries, it chooses hash functions H = {hi : {0, 1}∗ → [ℓ]}ηi=1

for Bloom filters with parameters (η, ℓ) to maintain false positive rate of 10−6.

3. Finally, return a DONEinit and the leakage to all parties.

Query: Given input q from C, do the following:

1. Check if q is allowed by P . If the check fails, then disallow the query by setting y = ∅.
Otherwise, for each i ∈ [n], let Bi ∈ {0, 1}ℓ

′

be the Bloom filter associated with the

ith leaf in the BF tree. For i = 1, . . . , n, check if the query passes according to the

filter Bi (refer to Section 4.3); if so, add (i, Ri) to the result set Y .

2. Return Y to C and return a DONEquery message and leakage to all parties.

Figure 4.4: The Ideal Functionality Fdb
2 As access patterns are revealed, additional information for inserted/deleted/updated records is leaked.

For example, C or IS may learn whether a returned record was recently inserted; they also may get advantage

in estimating whether the query matched a recently deleted record. We stress that this additional leakage

can be removed by re-running the setup of the search structure.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 65

4.5.1 Security of Our System

With empty leakage profile, the ideal functionality Fdb in Figure 4.4 captures the privacy

requirement of a database management system in which each query is handled determinis-

tically. The client obtains only the query results, and nothing more. The index server and

the server learn nothing. We show now that Blind Seer realizes the functionality Fdb with

aproppiate leakage profile.

4.5.1.1 Simulating Client’s Adversarial Behaviour

Leakage to Cin Init. The leakage to C is n, that is, the total number of records.

Leakage to C in each query. The leakage to the client is the BF-search tree traversal paths,

that is, all the nodes v in which the query passes according to the filter Bv. We denote this

leakage as SearchPattern. The protocol also leaks the permuted id’s of the retrieved records

π(id(r1)), ..., π(id(rℓ)).

Simulating Preprocessing. The simulator S stores n, runs the adversary A that will

follow the protocol description for the client. The client is suppose to receive n, (k,H)}. S
can randomly choose k,H.

Simulating Query. The simulator S works as follows:

1. Send query q to the ideal functionality, and receive back the records (r1, ..., rℓ) as well

as the leakage (π(id(r1), ..., π(id(rℓ))), SearchPattern, and cnt. The simulator S runs

the adversary A(q). S now simulates the tree traversal with adversary A starting at

the root as follows:

• If node v is not a leaf of the search tree, S checks whether v is in SearchPattern. If

so, S simulates Yao’s protocol such that the output to the client is 1. Otherwise,

simulate Yao’s protocol such that the output to the client is 0.

• If node v is a leaf of the tree then S checks if v belongs to SearchPattern (v is

π(id(rj)) for some j), S simulates Yao’s protocol so that output is 1. Simulator

now encrypts rj , and sends it to A along with additional information following

the the protocol specification.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 66

4.5.1.2 Simulating Server’s Adversarial Behaviour

Leakage to S in Init. None.

Leakage to S in each query. The server is involved only when the records are retrieved. Let

((i1, Ri1), . . . , (ij , Rij)) be the query results. Then, the leakage to the server is (π(i1), π(i2), . . . , π(ij)).

Simulating Preprocessing. Since IS has no input, the simulator can just follow IScode

to produce s̃′1, .., s̃
′
n, where each s̃′i is computed as Encpk(ri) for some random ri. Simulator

sends this values back to the adversary A.

Simulating Search. Given the permuted record indices π(id(1)), ..., π(id(n)), the simula-

tor acting as the client sends this indices to the adversary.

4.5.1.3 Simulating Index Server’s Adversarial Behaviour

Leakage to IS in Init. The number of records in the database n and the size of the records

|D1| = |D2| = · · · = |Dn|.
Leakage to IS in each query. The leakage to the index server is a little more than that

to the client. In particular, the nodes in the faked paths that the client generates due to

one-case indistinguishability are added to the tree search pattern, let’s denote this leakage

as iSearchPattern. Also, the topology of the query circuit topo(q) and of the policy circuit

topo(p) is leaked to IS as well. Finally, the BF indices (H(q)) are also revealed to IS

(although not the BF content), but assuming that the hash functions are random, those

indices reveal little information about the query. However, based on this, after observing

multiple queries, IS can infer some correlations a C’s queries’ keywords.

Simulating Preprocessing. After receiving the number of documents n and the length

of the documents len as leakage, S runs the adversary A. Simulating the server, S generates

a key pair (pk, sk) ← Gen(λ). For i ∈ [n] S samples si, then it encrypts si under pk (s̃i),

and finaly encrypts a dummy record as R̃i ← Encsi(0
len). S gives (pk, {s̃iR̃i, }) to A. Then

it receives {s̃′i} from the adversary. To build the masked Bloom filter tree, he simulator

samples a key k for a pseudorandom function F and for each node v for the tree construct

the ”Bloom” filter as B̃v = G(Fk(v)), where G is a pseudorandom generator. S sends the

Bloom filter tree to A.

Simulating Search. Run the adversart A providing it with H(q). A and S traverse the

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 67

search tree starting at the root. For each node v the S simulates Yao’s protocol as if it was

the client. If node v belongs to iSearchPattern, then S tell A that evaluation was successful,

and they visit the node’s children (if node was a leaf, S ask A to provide the encrypted

record and decryption information). Otherwise, S tell A that evaluation was unsuccessful.

4.5.2 Discussion

Leakage to the server. We could wholly remove the leakage to the server by modifying

the protocol as follows:

Remove the decryption key preparation (and blinded keys) in the preprocessing;

instead, the client receives the secret key sk from the server. The client (as the

receiver) and the index server (as the sender) execute oblivious transfer at each

leaf of the search tree. The choice bit of the client is whether the output of the

query circuit is success. The two messages of the index server is the encrypted

record and a string of zeros.

However, we believe that it is important for the server to be able to upper-bound the

number of retrieved records. Without such control, misconfiguration on the query checker

side may allow overly general queries to be executed, causing too many rows to be returned

to the client; in contrast, in our approach, S releases record decryption keys at the end,

and therefore it is easy to enforce the sanity check of the total number of returned records.

Moreover, if S has a commercial DB, it may be convenient to implement payment mechanism

in association with key release by S.

OR queries. For OR queries passing the policy, our system leaks extremely small infor-

mation. In particular, the leakage to the client is minimal, as the tree traversal pattern

can be reconstructed from the returned records. As a consequence, if the client retrieves

only document ids, the client learns nothing about the results for individual terms in his

query. The leakage to the index server is similar. We believe that the topology of the SQL

formula and the policy circuit reveals small information about the query and the policy. If

desired, we can even hide those information using universal circuits [KS08b] with a circuit

size blow-up of a logarithmic multiplicative factor.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 68

AND queries. For AND queries, the tree traversal pattern consists of two kinds of paths.

The first are, of course, the paths reaching the leaves (query results). The second stop at

some internal nodes due to our BF approach3; although the leakage from this pattern

reveals more information about which node don’t contain a given keyword, we still believe

this leakage is acceptable in many use cases.

We stress that the second leakage is related to the fact that a large linear running time

seems to be inherent for some AND queries, irrespective of privacy, but depending only on

the underlying database (see Section 4.7.3 for more detail). Therefore, if we aim at running

most AND queries in sublinear time, the running time will inherently leak information on

the underlying DB.

4.6 Implementation

We built a prototype of the proposed system to evaluate its practicality in terms of per-

formance. The prototype was developed from scratch in C++ (a more than a year effort,

almost two years including designing) and consists of about 10KLOC. In this section, we

describe several interesting parts of the implementation that are mostly related to the scal-

ability of the system.

Crypto building blocks. We developed custom implementations for the cryptographic

building blocks described in the preceding sections. More specifically, we used the GNU

Multiple Precision (GMP) library to implement oblivious transfers, garbled circuits and the

semi-homomorphic key management protocol. The choice of GMP was mostly based on

thread-safety. As for AES-based PRF, we used the OpenSSL implementation because it

takes advantage of the AES-NI hardware instructions, thus delivering better performance.

Parallelization. The implementation of Blind Seer supports parallel preprocessing and

per-query threading when searching. For all the multi-threading features we used Intel’s

3 For example, consider a query q that looks for two keywords, say, q = α ∧ β. Let v be some node and

c1, . . . , cb be the children of v in the search tree. If c1 contains only α, and c2 contains only β, then v will

contain both α and β, and so the node v will pass the query; however, neither c1 nor c2 would.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 69

Threading Building Blocks (TBB) library. To enable multi-threaded execution of the pre-

processing phase we created a 3-stage pipeline. The first stage is single-threaded and it

is responsible for reading the input data. The second stage handles record preprocessing.

This stage is executed in parallel by a pool of threads. Finally, the last stage is again

single-threaded and is responsible for handling the encrypted records. Concurrently sup-

porting multiple queries was straightforward as all the data structures are read-only. To

avoid accessing the Bloom filter tree while it is being updated by a modification command,

we added a global writer lock (which does not block reads). Since we only currently support

parallelization on a one-thread-per-query basis, it only benefits query throughput, not la-

tency. However, long-running queries involve a large amount of interaction between querier

and server that is independent and thus amenable to parallelization. The improvement we

see in throughput is a good indicator for how much we could improve latency of slow queries

by applying parallelization to these interactions.

Bloom filter tree. This is the main index structure of our system which grows by the

number of records and the supported features (e.g., range). For this reason, the space

efficiency of the Bloom filter tree is directly related to the scalability of the system. In the

current version of our system we have implemented two space optimizations: one on the

representation of the tree and another on the size of Bloom filter in each tree node.

Firstly, we avoided storing pointers for the tree representation, which would result in

wasting almost 1G of memory for 100M records. This is achieved by using a flat array with

fixed size allocations per record.

Secondly, we observed that naively calculating the number of items stored in the inner

nodes by summing the items of their children is inefficient. For example, consider the case of

storing the ‘Sex’ field in the database, which has only two possible values. Each Bloom filter

in the bottom layer of the tree (leaves) will store either the value sex:male or sex:female.

However, their parent nodes will keep space for 10 items, although the Sex field can have

only two possible values. Thus, we estimate the number of items that need to be stored

in a given level as the minimum between the cardinality of the field and the number of

leaf-nodes of the current subtree. This optimization alone reduced the total space of the

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 70

tree by more than 50% for the database we used in our evaluation.

4.6.1 Additional Search functionality

Keyword search and stemming. Although we focus on supporting database search on

structured data, our underlying system works with collections of keywords. Thus, it can

trivially handle other forms of data, like keyword search over text documents, or even key-

word search on text fields of a database. We actually do support the latter – in our system we

provide this functionality using the special operator CONTAINED IN(column, keyword). Also,

we support stemming over keyword search by using the Porter stemming algorithm [ste].

In addition to our performance and security improvements, we have extended the func-

tionality of Blind Seer to support additional types of queries.

M-of-N queries. An M-of-N threshold query contains N clauses, and returns true if and

only if at least M of the clauses return true. To support threshold queries, we construct

query circuits for each individual clause, and use a Boolean counting circuit to count the

number of positive results. The counting circuit is implemented by chaining full adders to

compute each digit of a binary representation of the sum. Finally, the result is compared

to M with a simple comparison circuit.

Ranking M-of-N queries. In addition to supporting M-of-N queries, we can return

results to the querier ordered by the number of clauses they satisfy. The circuit construction

for this is the same as for normal M-of-N queries. However, instead of receiving only the

final bit of the comparison circuit from the garbled circuit evaluation, the querier receives

all of the bits from the counting circuit output.

Ultimately, we can sort all record results by rank on the querier’s side. However, we

also would like to reach higher ranking results more quickly. For instance, in a query with

many low ranking results, it would be advantageous for the querier to see the high ranking

results quickly.

To accomplish this, we use a priority queue seeded both by the depth of the node and

the value from the counting circuit during tree traversal. We thus do a depth-first search

favoring those branches with large amounts of matching clauses early on.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 71

This a heuristic, it is not guaranteed to reach the best results first; even if a parent node

has a high number of matching clauses, it is not necessarily true that its individual children

are a high match. However, in the common case, the method can allow us to return high

ranking results quickly.

Nearness queries. Another type of query we support is a proximity query, which takes

two terms in a text segment along with a range r, and returns all records for which the two

terms coincide within a window of r words.

This is not straightforward to do with a Bloom Filter representation of terms that does

not store term locations. As such, we are only able to do this efficiently for values of r that

are known during preprocessing. We can then add into the Bloom Filter all term pairs that

fit within that range. The nearness query becomes a simple check against the Bloom Filter

for the appropriate term.

4.7 Evaluation

In this section, we evaluate our system. We first evaluate our system as a comparison with

MySQL as a baseline, to establish what the performance cost of providing private search is.

We then generalize the performance expectations of our system by performing a theoretical

analysis based on the type of queries.

Dataset. The dataset we used in all of our tests for the first part of the evaluation is

a generated dataset using learned probability distributions from the US census data and

text excerpts from “The Call of the Wild”, by Jack London. Each record in our generated

database contains personal information generated with similar distributions to the census.

It also contains a globally unique ID, four fields of random text excerpts ranging from

10 − 2000 bytes from “The Call of the Wild”, and a “fingerprint” payload of random data

ranging from 50000 to 90000 bytes. The payload is neither searchable nor compressible, and

is included to emulate reasonable data transfer costs for real-world database applications.

The census data fields are used to enable various types of single-term queries such as term

matching and range queries, and the text excerpts for keyword search queries.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 72

int−id
single

int−star
single

str−id
single

str−star
single

int−id
2−10

int−star
2−10

str−id
2−10

str−star
2−10

T
ot

al
 q

ue
ry

 ti
m

e
(s

ec
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MySQL

BlindSeer

Figure 4.5: Comparison with MySQL for single-term queries that have a single result (first

four bar groups) and 2 to 10 results (last four bar groups). The search terms are either

strings (str) or integers (int) and the returned result is either the id or the whole record

(star).

Testbed. The tests were run on a four-computer testbed that Lincoln Labs set up and

programmed for the purpose of testing our system and comparing it to MySQL. Each

server was configured with two Intel Xeon 2.66 Ghz X5650 processors, 96GB RAM (12x8

GB, 1066 MHz, Dual Ranked LV RDIMMs), and an embedded Broadcom 1GB Ethernet

NICS with TOE. Two servers were equipped with a 50TB RAID5 array, and one with a

20TB array. These were used to run the owner and index server. MySQL was configured

to build separate indices for each field. DB queries were not known in advance for MySQL

or for our system.

4.7.1 Querying Performance

Single term queries with a small result set. Figure 4.5 shows a comparison of single

term queries against MySQL. We expect the run time for both our system and MySQL to

depend primarily on the number of results returned. The first four pairs show average and

standard deviation for query time on queries with exactly one result in the entire database,

and the latter four for queries with a few (2-10) results. Queries are further grouped into

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 73

Number of results
0 1000 2000 3000 4000 5000

T
ot

al
 q

ue
ry

 ti
m

e
(s

ec
s)

0

50

100

150

200

250

300

MySQL

BlindSeer

Figure 4.6: Comparison of the scaling factor with respect to the result set size, using single-

term queries. Both MySQL and Blind Seer scale linearly, however, Blind Seer’s constant

factor is 15× worse (mostly due to increased network communication).

those which are run on integer fields (int) and string fields (str), and those which return

only record ids (id) and those which return full record content (star). For each group, we

executed 200 different queries to avoid caching effects in MySQL.

As we can see, for single result set queries, our system is very consistent. Unlike with

MySQL, the type of query has no effect on performance, since all types are stored and

queried the same way in the underlying Bloom filter representation. Also, the average time

is dominated by the average number of results, which is slightly larger for integer terms.

Unexpectedly, there is also no performance difference for returning record ids versus full

records. This is likely because for a single record, the performance is dominated by other

factors like circuit evaluation, tree traversal and key handling, rather than record transfer

time. Overall, aside from some bad-case scenarios, we are generally less than 2× slower.

Variation in performance of our system is much larger when returning a few results.

This is because the amount of tree traversal that occurs depends on how much branching

must occur. This differs from single result set queries, where each tree traversal is a single

path. With the larger result sets, we can also begin to see increased query time for full

records as opposed to record ids, although it remains a small portion of the overall run

time.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 74

and−1−1 and−1−100 and−1−10K dnf−mon dnf−neg

T
ot

al
 q

ue
ry

 ti
m

e
(s

ec
)

0

1

10

100

1000

MySQL

BlindSeer

Figure 4.7: Boolean queries having a few results (< 10). The first three are two-term AND

queries where one of the terms has a single result and the other varies from 1 to 10K results.

The fourth group includes monotonic DNF queries with 4-9 terms, the last includes 5-term

DNF queries with negations.

Scaling with result set size. Figure 4.6 expands on both systems’ performance scaling

with the number of results returned. This experiment is also run with single term queries,

but on a larger range of return result set sizes. As one would expect, the growth is fairly

linear for both systems, although our constant factor is almost 15× worse. This indicates

that for queries with a small result set, the run time is dominated by additive constant

factors like connection setup for which we are not much slower than MySQL. However,

the multiplicative constant factors involved in our interactive protocol are much larger,

and grow to dominate run time for longer running queries. This overhead is mostly due

to increased network communication because of the interactiveness of the search protocol.

Although this is inherent, we believe that there is room for implementation optimizations

that could lower this constant factor.

Boolean queries. Figure 4.7 shows our performance on various Boolean queries. The

first three groups show average query time for 2-term AND queries. In each case, one

term occurs only once in the database, resulting in the overall Boolean AND having only

one match in the database. However, the second term increases up to 10000 results in the

database. As we can see, our query performance does not suffer; as long as at least one term

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 75

in a Boolean is infrequent we will perform well. The next two groups are more complex

Boolean queries issued in disjunctive normal form, the latter including negations. The first

one includes queries with 4-9 terms, and the second one, with 5 terms. These incur a larger

cost, as the number of a results is larger and possibly a bigger part of the tree is explored.

As we can see, MySQL incurs a proportionally similar cost.

We note that the relatively large variation shown in the graph is due to the different

queries used in our test. Variation is much smaller when we run the same query multiple

times.

Parallelization. We have implemented a basic form of parallelization in our system,

which enables it to execute multiple queries concurrently. As there are no critical sec-

tions or concurrent modifications of shared data structures during querying, we saw the

expected linear speedup when issuing many queries up to a point where the CPU might

not be the bottleneck anymore. In our 16-core system, we achieved approximately factor

6x improvement due to this crude parallelization.

Discussion. We note several observations on our system, performance, bottlenecks, etc.

Firstly, we note that our experiments are run on a fast local network. A natural

question is how this would be translated into the higher-latency lower bandwidth setting.

Firstly, there will be performance degradation proportional to bandwidth reduction, with

the following exception. We could use the slightly more computationally-expensive, but

much less communication intensive GESS protocol of [Kol05] or its recent extension sliced-

GESS [KK12], instead of Yao’s GC. In reduced-bandwidth settings, where bandwidth is the

bottleneck, sliced-GESS is about 3x more efficient than most efficient Yao’s GC. Further,

we can easily scale up parallelization factor to mitigate latency increases. Looking at this

in a contrapositive manner, improving network bandwidth and latency would make CPU

the bottleneck.

All search structures in our system are RAM-resident. Only the record payloads are

stored on disk. Thus, disk should not be a bottleneck in natural scenarios.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 76

4.7.2 Other Operations

Although querying is the main operation of our system, we also include some results of other

operations. First, we start with the performance of the setup phase (preprocessing). Blind

Seer took roughly two days to index and encrypt the 10TB data. As mentioned before, this

phase is executed in parallel and is computationally efficient enough to be IO-bounded in

our testbed. We note that the corresponding setup of MySQL took even longer.

Also, we performed several measurements for the supported modification commands:

insert, update and delete. All of them execute in constant time in the order of a few

hundred microseconds. The more expensive part though is the periodic re-indexing of the

data that merges the temporary Bloom filter list in the tree (see Section 4.4.3). In our

current prototype, we estimated this procedure to take around 17 minutes, while avoiding

re-reading the entire database. This can be achieved by letting the server store some

intermediate indexing data during the initial setup and reusing it later when constructing

the Bloom filter tree.

4.7.3 Theoretical Performance Analysis

In this section, we discuss the system performance for various queries by analyzing the

number of visited nodes in the search tree. Let α1, . . . , αk be k single term queries, and for

each i ∈ [k], let ri be the number of returned records for the query αi, and n be the total

number of records.

OR queries. Our system shows great performance with OR queries. In particular, con-

sider a query α1 ∨ · · · ∨ αk. The number of visited nodes in the search tree is at most

r log10 n, where r = r1 + . . .+ rk is the number of returned records. Therefore, performance

scales with the size of the result set, just like single term queries.

AND queries. The performance depends on the best constituent term. For the AND

query α1∧· · ·∧αk, the number of visited nodes in the search tree is at most min(r1, . . . , rk) ·
log10 n. Note that the actual number of returned records may be much smaller than ris. In

the worst case, it may even be 0; consider a database where a half of the records contain α

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 77

(but not β) and the other half β (but not α). The running time for the query α∧ β in this

case will probably be linear in n. However, we stress that this seems to be inherent, even

without any security. Indeed, without setting up an index for conjunctions, every algorithm

currently known runs in linear time to process this query.

This can be partially addressed by setting up an index, in our case by using a BF.

For example, for AND queries on two columns, for each record with value a for column A,

and value b for column B, the following keywords are added: A:a, B:b, AB:a.b. With this

approach, the indexed AND queries become equivalent to single term queries. However, this

cannot be fully generalized, as space grows exponentially in the number of search columns.

Complex queries. The performance of CNF queries can be analyzed by viewing them

as AND queries where each disjunct (i.e, OR query) is treated as a single term query. In

general, any other complex Boolean query can be converted to CNF and then analyzed in

a similar manner. In other words, performance scales with the number of results returned

by the best disjunct when the query is represented in CNF. Note that we do not actually

need to convert our queries to this form (nor know anything about the data, in particular,

which are high- or low-entropy terms) in order to achieve this performance (this aspect is

even better than MySQL).

Computation and Communication. Both computational and communication resources

required for our protocol are proportional to the query complexities described above.

False Positives. As our system is built on Bloom filters, false positives are possible.

In our experiments, we set each BF false positive rate to 10−6. Assuming the worst-case

scenario for us, where the DB is such that many of the search paths do reach and query the

BFs at the leaves, this gives 10−6 false positive probability for each term of the query. Of

course, the false positive is a tunable parameter of our system.

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 78

4.8 Discussion

Semi-honest model. Semi-honest model is often reasonable in practice, especially in the

Government use scenarios. For example, C, S and ISmay be Government agencies, whose

systems are verified and trusted to execute the prescribed code. Further, regular audits will

help enforce semi-honest behavior.

Security against malicious adversaries can be added by standard techniques, but this

results in impractical performance. In Chapter 5 we show how to amend our protocols to

protect against a malicious clients at a very small cost. This is possible mainly because the

underlying GC protocols are already secure against malicious evaluator.

Impact of the allowed leakage. Formally pinning down exact privacy loss is beyond the

reach of state-of-the-art cryptography, even with no leakage beyond the output and amount

of work (the field of differential privacy is working on this problem, with very moderate

success). Therefore, understanding our leakage and its impact for specific applications

is crucial to ascertain whether it’s acceptable. We informally investigated the impact of

leakage in several natural applications, such as population DBs and call-record DBs and

query patterns (see example below); we believe that our protection is insufficient in some

scenarios, while in many others it provides strong guarantees.

Rough leakage estimation for call-records DB. Consider a call-records DB, including columns

(Phone number, Callee phone number, time of call). The client C is allowed to only

ask queries of the form select * where phone number = xxx AND callee phone number

= yyy AND time of call ∈ {interval}.
For typical call patterns (e.g.,0-10 calls/person/day), the query leakage will almost al-

ways constitute a tree with branches either going to the leafs (returned records) or truncated

one or two levels from the root. We believe that for many purposes this is acceptable leak-

age. Again, we stress that this is not a formal or detailed analysis (which is beyond the

reach of today’s state-of-the-art); it is included here to argue that Blind Seer gives good

privacy protection in many reasonable scenarios.

Reliance on the third party. While a two-party solution is of course preferable, these

state-of-the-art solutions are orders of magnitude slower than what is required for scalable

DB access. Probably the most reasonable approach would be to use ORAM, which is set up

CHAPTER 4. BLIND SEER: A SCALABLE PRIVATE DBMS 79

either by a trusted party or as a (very expensive) 2-PC between data owner and the querier.

Then the querier can query the ORAM held by the data owner. Due to privacy requirements,

each ORAM step must be done over encrypted data, which triggers performance that is

clearly unacceptable for the scale required in our application. We study this approach in

Chapter 6.

Further, in Government use cases, employing third party is often seen as reasonable.

For example, such a player can be run by a neutral agency. We emphasize that the third

party is not trusted with the data or queries, but is trusted not to share information with

the other parties.

4.9 Conclusion

Guaranteeing complete search privacy for both the client and the server is expensive with

today’s state of the art. However, a weaker level of privacy is often acceptable in practice,

especially as a trade-off for much greater efficiency. We designed, proved secure, built

and evaluated a private DBMS, named Blind Seer, capable of scaling to tens of TB’s of

data. This breakthrough performance is achieved at the expense of leaking search tree

traversal information to the players. Our performance evaluation results clearly demonstrate

the practicality of our system, especially on queries that return a few results where the

performance overhead over plaintext MySQL was from just 1.2× to 3× slowdown.

We introduced a policy checking mechanism over the queries as an extra feature of our

system. In real-life scenarios such a property is of great importance, and often mandatory

(otherwise a client can download the entire database by sending a sinfle SELECT * query, for

example). However, its security relies on semi-honest client behaviour. A malicious client

can easily circumvent the mechanism by providing different queries for the tree traversal

and for the policy procedures. We believe that this drawback is of great importance. In

the next chapter we show how to modify the Blind Seer system to enforce security against

a malicious client at virtually no cost.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 80

Chapter 5

Malicious Client Security on Blind

Seer

5.1 Introduction

In the preceding chapter we introduced Blind Seer; a highly practical, sublinear, and privacy

protected DB querying, with provable security with respect to a controlled amount of infor-

mation leakage (e.g., search patterns across multiple queries). OSPIR-OXT [JJK+13](see

Section 4.1.2) is another highly efficient private DBMS that was concurrently developted

with Blind Seer. No other system has been proposed that achieve the level of efficiency,

functionality and privacy of Blind Seer and OSPIR-OXT. These two systems offer varying

features and relative advantages, making each system better suited for different application

scenarios. In terms of privacy, the Blind Seer system offers stronger guarantees in that it is

formally ensured that the individual terms of the query formula are privacy-protected. (In

contrast, OSPIR-OXT leaks support sizes of the disjunctive formula terms.)

However, a major disadvantage of Blind Seer as compared to OSPIR-OXT is that it

is only secure against semi-honest clients, namely clients who honestly follow the protocol

specification. Even standard DBMS systems with no client privacy generally have robust

access control, which Blind Seer does not provide against actively cheating clients. In

fact, a very simple and undetectable deviation from the protocol enables a client to easily

circumvent all access control in Blind Seer. This failure to meet a standard requirement

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 81

and a common feature of database systems severely limits Blind Seer’s viability and scope

for practical deployment.

The goal of this Chapter is to lifting the Blind Seer protocol into the malicious setting.

Achieving security against malicious players can be achived by using standard techniques;

however, these are very expensive. For example, the cut-and-choose approach to malicious

MPC (cf. [MF06; LP07; Lin13]) carries the cost of at least 128-fold performance degradation

for 2−128 security. These costs can be made somewhat better using very recent amortized

garbled circuit techniques [HKK+14; LR14]. Still, state-of-the-art generic or specialized

techniques result in order(s) of magnitude cost overhead.

The main result presented in this Chapter is, surprisingly, that security against a mali-

cous client in Blind Seer can be obtained for free. That is, we show how to protect against

a malicious client at virtually no additional performance cost, as well as no privacy or

functionality degradation.

Our result applies not only to Blind Seer, but also to any setting where a potentially

malicious party needs to evaluate a private function on a semi-honest party’s private inputs.

When both parties are semi-honest (or at least the party holding the private function is semi-

honest), the Yao Garbled Circuits (Yao GC) protocol is a practical method that entirely

preserves the privacy of the inputs and reveals no more than the private function’s circuit

topology. While it is well-known how to achieve this functionality (or even stronger privacy)

for malicious players using general and expensive techniques, our technique is as efficient

and achieves the same level of privacy as Yao GC.

We still assume that the server in our setting is semi-honest. In many natural applica-

tions, both in business and government, the trust in the server (e.g., Bank) is much higher

than in the client. This is often because the server is operated by a business or an agency,

and would risk a high legal penalty for actively compromising the privacy of a client. (Note,

however, that we do not trust the server with private information).

5.1.1 Contributions

− Malicious-client security in Blind Seer: We present the first design and imple-

mentation of a DBMS that features both fully robust access control and private arbitrary

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 82

boolean querying, with performance about 2-3 times slower than (insecure and non-private)

MySQL. The access control mechanism is highly expressive, and can implement any policy

dependent on the client’s query.

− Novel SPF-SFE technique: We give an extremely simple and efficient protocol for a

semi-private function secure function evaluation which allows for secure function evaluation

of any private function of known circuit topology that is held by the party who will receive

the output.

− Formal proofs: We formally prove security against arbitrary malicious behavior of

the client. We note that full cryptographic proofs are unusual for large systems such as

ours. Our other privacy features and leakage profiles remain nearly the same as those of

the original Chapter 4 Blind Seer.

− Implementation and Performance: We implement the design of malicious-client

secure Blind Seer. We compare the performances of the new design, the original Blind Seer

design, and MySQL. We also demonstrate a greatly improved performance by implementing

batching and parallelization within query processing. Since the original design did not

support multi-threading, we ran the new system on a single thread when collecting the

comparison data. When running our system with 16 threads on a 10TB, 100M-record DB,

typical queries run in time comparable to MySQL, or up to only 3 times slower. This

is more than a 5-fold improvement over the single threaded Blind Seer (while security is

significantly better).

5.2 Overview

This section provides an overview of our solution for achieving malicious-client security in

Blind Seer. We will review the basic architecture of Blind Seer, point out how its design was

vulnerable to malicious-client cheating, and then describe how we address that vulnerability.

Preliminaries We use Bloom filters (BF), semantically secure encryption (both public

key and symmetric key), Yao Garbled Circuits (GC), and Oblivious Transfer (OT). All

these standard cryptographic primitives are described in Chapter 2.

We use Yao GC to achieve secure computation, also called secure function evaluation

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 83

(SFE), which intuitively means that the two-party function is computed so that each of the

parties learns no information except what follows from their own inputs and outputs. One

may also consider Private Function SFE (PF-SFE), where in addition the function that

is being computed is itself the input of one of the parties, and remains hidden from the

other party. A generalization of this is Semi-Private Function SFE (SPF-SFE), where the

function is known to belong to some class of functions, but beyond that remains hidden.

Here, we will consider SPF-SFE where the function is known to have a certain topology.

Explicitly, the structure of the gates in the circuit describing the function is known, but the

operation of each gate (e.g., OR or AND) remains hidden. (See more details in Section 5.3).

Yao GC is an example of a protocol that achieves this property. Yao GC involves one party

sending a “garbled circuit” to the other, and while the technique was not designed to hide

the function, it turns out to hide the values of the gates.

In our setting, OT preprocessing [Bea95] and OT extension [IKNP03] dramatically im-

prove performance. We use the Naor-Pinkas protocol [NP01] for the “base” OTs that seed

OT extension. We then use a version of the IKNP protocol for OT extension suggested by

Nielsen [Nie07] that is robust against a malicious receiver with small additional cost.

Blind Seer’s Design and Vulnerabilities

We review here the basic features of the Blind Seer DBMS. We refer the reader to Chapter 4

for details, as well as discussion and motivation for the setting and design choices (some of

which are also discussed in [CJJ+13; JJK+13]). However, we stress that further details of

the Blind Seer design beyond what is described here and in Section 5.4 are not necessary for

understanding the malicious-client vulnerability of the original design and the contributions

of the present chapter.

Participants. The Blind Seer system consists of three main parties: a server S, a client

C, and a third party server called the index server IS. The server S owns a database DB.

The client C submits queries and retrieves records satisfying those queries. IS holds an

encryption of DB as well as an encrypted index to DB, and facilitates the private and

efficient evaluation of the client’s queries (without learning either the query or the data).

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 84

A fourth logical entity, called the query checker QC, is responsible for enforcing policy

restrictions on the client’s queries. For instance, a policy restriction might prohibit queries

that ask for records associated with an important political figure. QC may be run by the

server S or index server IS, but we will view it as a separate logical entity for sake of

generality. This way, we also demonstrate that we can keep the policy hidden from S and

IS in addition to the client C. As long as the separate parties do not collude, C only learns

the results of queries that pass the policy, C’s query is kept private from all other parties,

the policy is kept private from C, and the results of the policy check are unknown to any

party.

Architecture. The basic architecture of Blind Seer is depicted in Figure 4.1, Chapter 4.

The server S, who holds the DB, will hand an encrypted copy of the DB to the third party

server IS. In addition, S builds an encrypted Bloom filter (BF) tree index to the DB and

sends it to IS.

The BF tree index is constructed as follows. The records of the DB are randomly

permuted, and a b-ary tree is initialized with a one-to-one correspondence of tree leaves to

records in the DB. A BF is placed at every node in the tree. Each leaf-node BF holds all

the (indexed) keywords of its corresponding DB record. Each internal-node BF contains

the union of all the keywords inserted into its children BFs. Keywords are inserted into a

BF using k cryptographic hash functions. Finally, each BF in the tree is encrypted with a

one time pad generated from a keyed pseudorandom function, which (via the PRF key) is

given to the client C.

The client evaluates all its queries with IS only. A query is expressed as a boolean

formula over keyword terms (e.g., fname:Jeffery ∧ lname:Smith). Each keyword terms

tests the presence of a keyword in a Bloom filter, and so expands into a conjunction of k

predicates, each testing a single bit in the input BF. The query is interactively evaluated

on each node down the BF tree. The query processing proceeds to children nodes only if

it returns true on their parent node. When a query returns true on a leaf-node BF, the

associated record is returned to the client. A Yao garbled circuit protocol variant is used to

evaluate the query at each BF node. To avoid garbling a circuit that takes an entire Bloom

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 85

filter as input, C reveals to IS the relevant BF indices that the query circuit examines (k for

each individual keyword term). Note that IS does not know the value of the BF at those

indices because the BF is encrypted.

QC and C also separately engage in a computation of the policy circuit via the Yao GC

technique, and with the help of IS. Specifically, C chooses key pairs for the input and output

wires of the policy circuit, sends these pairs to QC, and sends only the keys corresponding

to its query input to IS. In turn, QC garbles the secret policy circuit using the client’s key

pairs, and sends this garbled circuit to IS for oblivious evaluation on the client’s inputs.

The output of the policy circuit is integrated into the query circuit evaluation so that C

learns only the AND of the two circuit outputs.

Finally, if the query evaluation (and policy approval) on any leaf record outputs suc-

cess, IS sends the record and decryption information to C. C obtains any final decryption

information from S.

Privacy and Leakage. Ideally, the client C would learn nothing except the result sets

of its authorized queries, and the servers S and IS (as well as the query checker QC) would

learn nothing at all. Blind Seer achieves privacy up to a controlled amount of leakage of

search patterns. IS may correlate repeated queries, and both C and IS may observe traversal

patterns through the tree index across multiple queries, possibly obtaining some correlation

information between different queries. Additionally, since Yao’s GC technique is used, IS

does learn certain structural information about C’s query and QC’s policy, namely their

circuit topologies. However, the individual search terms (i.e., keywords) and logical gates

are hidden (as Yao GC provides SPF-SFE, leaking only the circuit’s topology).

The privacy guarantees of Blind Seer have been formally proven with respect to semi-

honest adversaries using the simulation paradigm. Semi-honest adversaries will not deviate

from the prescribed protocol, but may attempt to learn arbitrary information from their

view of the protocol. The controlled leakage was formally captured by including a leakage

oracle in the ideal world functionality definition.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 86

Malicious-Client Vulnerabilities in Blind Seer

The Blind Seer policy enforcement collapses with a malicious client because there is no

mechanism for evaluating an authorization policy directly on the client’s private query.

The client submits one query (represented as a garbled circuit) to be evaluated privately

in the DB search protocol, and a second query (represented as input wires to the policy

circuit) to be evaluated privately in the authorization policy protocol. An honest client

will submit the same query to both protocols, but a malicious client could submit entirely

separate query inputs to the search protocol and policy protocol, making the access control

mechanism completely ineffective. Crucially, there is no risk of detection for C.

The Solution

Our solution simultaneously cryptographically binds the client’s inputs to both the query

evaluation and policy check circuits, and encrypts the DB record results under a key that can

only be obtained when both the outputs of the query and the policy are positive. Of course,

this could be accomplished using any number of off-the-shelf expensive techniques, such as

zero-knowledge or fully malicious-secure SFE, but our goal is to maintain the efficiency of

Blind Seer.

Blind Seer uses Yao Garbled Circuits (GC) in both the search protocol and the policy

protocol. In the Yao GC protocol, the two parties are distinguished as generator and

evaluator. The generator selects the function to evaluate and “garbles” the function. The

evaluator is able to obliviously evaluate the garbled function using both his own inputs and

secret inputs that the generator supplies. While Yao GC satisfies only semi-honest security

against the generator, it offers malicious security against the evaluator. Furthermore, Yao’s

GC is a special case of SPF-SFE in that it leaks only the boolean circuit topology (i.e.,

structure) of the function to the evaluator. The garbled circuit generator can even choose

to cryptographically bind any of the evaluator’s inputs by synchronizing the decryption key

pairs on the corresponding input wires. The evaluator receives only one of the two keys

through a single oblivious transfer, and is forced to reuse the same key for both wires.

The difficulty in using standard Yao GC to achieve malicious-client security in Blind

Seer arises since the client is the generator, rather than the evaluator, of the query circuit

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 87

in the search protocol.

The crux of our solution is a low-cost way of converting the client’s query from a

circuit to a circuit input, thereby swapping the role of the client from generator to evaluator.

There are several challenges that we need to overcome in order to achieve this without

sacrificing either efficiency or privacy:

1. How does IS play the role of garbled circuit generator without knowing the query

circuit (that should remain hidden from IS)?

2. How do we link inputs to the query and policy that are related but formatted dif-

ferently? For instance, where the query circuit takes a keyword field : value, the

policy circuit might take only the field name field.

3. Recall how each DB index Bloom filter is encrypted with a randomly generated one-

time pad. C and IS receive random shares of each BF from S, and both parties submit

these bits as inputs to the query circuit. How do we prevent a cheating client from

faking positive query results by flipping some of its BF input bits?

Universal query circuit. IS can play the role of generator in the query evaluation pro-

tocol without knowing the query by using a universal circuit. A universal circuit UCF is a

well-known construction that can simulate any circuit C in the family F . Specifically, it is

a circuit that will take as input the description of any circuit C ∈ F , any input x, and will

output C(x). There are many constructions of universal circuits UCk that can simulate any

circuit of size k [Val76; KS08b]. This is a very powerful tool for PF-SFE since it can be used

to hide everything about the private function except its size. Indeed, a universal circuit

provides exactly what we need in terms of swapping the role of the circuit generator to be

input provider, while maintaining circuit privacy. Unfortunately, however, constructing a

general universal circuit UCk results in a significant increase in circuit size, and thus a very

high overhead in performance when evaluating it through the Yao GC technique.

Instead, we take advantage of the fact that we do not need full function privacy for

PF-SFE, since the topology of the circuit is already leaked to the IS even in the previous

solution. We construct a much simpler universal circuit UCT that simulates any monotone

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 88

circuit with topology T , with virtually no overhead in its secure computation. We stress

that considering only monotone circuits is not a limitation, since Blind Seer’s tree traversal

(and any natural DB tree index traversal, for that matter) only works for monotone query

circuits (i.e., containing only AND and OR gates) over keyword terms, where negations are

pushed to the variable level (something which can always be done efficiently). Also note

that the keyword terms are computed by conjunctions of k XOR gates, each taking one

input from each party. However, since these circuits computing the keyword terms are fixed

and known to both parties, they are not included in the universal query circuit.

Our construction of UCT from T increases the number of gates by a factor two, but

the extra gates are all XOR gates. Thus, when using the free-XOR technique [KS08a], the

cost of securely computing UCT with Yao GC has practically the same cost as securely

computing any monotone circuit C with topology T .

In our new protocol, C sends the topology of its query circuit Q to IS, and IS generates

the corresponding universal query circuit UQ. IS garbles UQ and sends it back to C for

evaluation. Note that sending the topology of Q does not increase leakage to IS because

running Yao GC directly on Q (with C as generator and IS as evaluator) also reveals its

topology.

Policy circuit. QC garbles a policy circuit PC and sends it to C for evaluation. The

circuit outputs a key that reveals no information on its own, but is used to evaluate a

garbled conjunction of the policy and query: UQ ∧ PC. The key difference from the

previous design mechanism is that C will not submit any separate input to QC. Instead,

the client commits to its query only once, and receives from IS all the keys it needs to

evaluate both UQ and PC.

QC and IS exchange information on the keys used in the garbling of UQ and PC in

order to synchronize the keys used for common inputs to both circuits and so that IS can

respond to the client’s query with the appropriate keys. The new protocol also requires C

to separately submit cryptographic hashes of all the field names and keywords used in its

query. Keywords are inserted into the Bloom filter index in a way that binds each keyword

hash to its corresponding field hash.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 89

Figure 5.1: Malicious-client secure protocol overview.

While the query circuit must be evaluated on every BF node encountered during the

index tree traversal, it is only necessary to evaluate PC once per query. The only inputs to

UQ that change as the BF node changes are the BF input bits to the keyword terms. The

policy circuit is a fixed function of the query, and its output should be unaffected by the

BF input. Thus, as long as the same query is executed on every node of the BF tree, the

PC input should remain the same at every node. By reusing the same keys for all invariant

inputs, we guarantee this property. Likewise, the PC is evaluated once, and its output key

can be reused for every subsequent query-policy conjunction gate.

QC does not learn anything about the query except its topology, which it uses for

constructing the policy circuit. We may also avoid this leakage at some cost of efficiency

by using universal circuits for the policy. In fact, since the policy circuit is only computed

once per query, its size is not a critical point for performance.

Supported policies. The system supports a rich class of policies. The policy can be any

function of the keywords, field names, and syntax (structure) of the query. An example of

such a policy is: any conjunctive query that includes the keyword lname = Obama cannot

include any keyword on the field income. While our design essentially supports any policy

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 90

that is dependent on the query, it doesn’t support policies that might depend on the data

as well. For instance, we would not support a policy that prohibits queries that have fewer

than 20 matching records.

Bloom filter false positives. The final question posed was how to prevent C from faking

positive query results by flipping input bits from its BF shares. C’s share is a pseudorandom

mask, and reveals no information on which bits in the BF are 1 or 0. In order to fake positive

results, C must set k specific bits to 1. C can only do this by flipping bits, and it does not

know if any given bit is initially a 0 or a 1. By setting parameters appropriately, we can

choose a false positive rate (FPR) that makes these events equally likely. This way C only

succeeds in setting any given bit with probability 1/2.

DB security and policy privacy. For each leaf node reached in the tree traversal, IS

sends C a final garbled gate that computes the AND of the policy and universal query circuit

outputs. IS sends the record R associated with this leaf node to C, but encrypted under the

output key out1R of this final gate. Concretely, C needs to obtain the 1-key output of both

the garbled PC and UQ in order to obtain out1R and decrypt the record received.

While policy failure prevents the client from feasibly obtaining any records of the

database, the tree traversal pattern still leaks partial information about the database. Alter-

natively, evaluating the conjunction of PC and UQ at the root of the search index prevents

such leakage, but arguably affords less privacy to the policy. In fact, the policy conjunction

can be evaluated anywhere inside the tree traversal, and this design decision is left open.

We formalize and prove security properties of the solution in Section 5.5. These proper-

ties are proved with respect to a malicious client adversary and a semi-honest index server

adversary. The definitions are general enough so that open ended design decisions do not

invalidate any of the proofs (e.g. where to evaluate the PC), and are intended to elucidate

the tradeoffs of such decisions.

Optimizations. To optimize performance, the universal query circuit protocol is only

run on leaf nodes of the Bloom filter tree index, where it matters the most. As a further

optimization, the policy circuit will only be evaluated once, and its output key will be reused

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 91

for each leaf node.

5.3 Semi-Private Function Evaluation

Private Function Secure Function Evaluation (PF-SFE) is a two-party functionality in

which a private function known only to one party (the selector) is evaluated on private

inputs of both parties, and nothing but the outputs and function size is revealed. Semi-

private function SFE (SPF-SFE) [PSS09] is a generalization of PF-SFE in which the private

function is chosen from any restricted class of functions known to both parties.

Since Yao’s GC protocol reveals only the circuit topology to the evaluator, it can be

viewed as a special case of SPF-SFE, where both parties may learn the topology T of

the private function, but only the selector knows the identity of each gate in the circuit

(AND, OR, XOR, etc). This requires the function selector to be the garbled circuit generator.

Here, our goal is to construct such a protocol where the function selector is the garbled

circuit evaluator. While it is known that this (and even PF-SFE) can be accomplished

using universal circuits (UC), applying a general UC transformation would be expensive.

Instead, in this section we present a simple protocol which is as efficient as the standard Yao

GC protocol, as long as the circuit topology is monotone, with all negations pushed to the

input level (any circuit can be easily and efficiently converted to this form). To achieve this,

we capitalize on the fact that the topology T is known to both parties, and take advantage

of the free-XOR technique for Yao’s GC protocol.

UCT construction. First, a fan-in two (i.e. two wires per gate) circuit with topology

T is constructed out of universal gates, or “blank gates” that do not have any pre-defined

functionality. A third input wire is added to each universal gate, and represents the value

of the gate (either and or or). Equivalently, each universal gate is a function G(b, x, y) of

three bits so that G(0, x, y) = or(x, y), and G(1, x, y) = and(x, y). Next, each fan-in three

universal gate is replaced by the fan-in two cluster:

b⊕ ((x⊕ b) ∨ (y ⊕ b))

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 92

Yao Semi-Private Function SFE with Selector As Evaluator

Party P1 selects a monotone boolean circuit C. P1 has input x and P2 has input y. The

topology T = topo(C) is known to both parties.

1. P2 constructs the universal circuit UCT and generates its corresponding garbled cir-

cuit ˜UCT according to the free-XOR GC protocol. P2 sends the tables of ˜UCT to P1

along with the keys corresponding to the input bits y.

2. P1 runs OT with P2 to receive the keys corresponding to its input bits x and its gate

value bits b.

3. P1 evaluates the garbled circuit ˜UCT and obtains the output.

Figure 5.2: Protocol for Yao SPF-SFE with Selector As Evaluator

Efficiency. Each gate of the original circuit is replaced with a cluster of 3 XOR gates and

1 OR gate. Thus, the number of non-XOR gates remains constant. The cost of applying

the free-XOR GC protocol to UCT is roughly the same as applying it to the original

circuit, since no communication and no expensive cryptographic hash function are needed

to generate/evaluate XOR gates.

Applications. The capabilities of the generator and evaluator in Yao GC are not sym-

metric, particularly when dealing with malicious adversaries. For instance, Protocol 5.2

is useful for repeated SPF-SFE, where the same private function is to be evaluated more

than once on different inputs, or possibly given as input to other functions. The selector

could cheat as the garbler by using different functions for each set of inputs. But when the

selector is the evaluator, the garbler can enforce consistency of the function. A special case

is the problem that we address in Blind Seer, where the private function (client’s query)

must be evaluated on the DB index and also supplied as input to the policy check. A second

capability of the generator is to encrypt a message under an output key from the garbled

circuit so that the evaluator can only decrypt the message contingent on the output of the

function.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 93

5.4 System Protocol

This section details our new system protocol for Blind Seer. We describe the protocol for a

single client C, a server S (data owner), and an index server IS. The outline of the protocol

is as follows:

Stage 1: Preprocessing. S encrypts the database, builds an encrypted Bloom filter

tree index, and sends these encrypted objects to IS.

Stage 2: Client queries. C builds a logical circuit Q representing its query, sends Q’s

topology to IS, together with hashes of all the field names and field values used in Q. IS

uses Q’s topology to construct a universal query circuit UQ (Section 5.2) equivalent to Q

with output keys out
UQ
u , u ∈ {0, 1}.

Stage 3: Policy evaluation. The query checker QC generates and sends C a garbled

policy circuit (PC), C obtains the keys for evaluating PC from IS, and C computes the

output key of the policy evaluation outPCp , p ∈ {0, 1}.
Stage 4: Tree traversal. C and IS begin a multi-threaded traversal of the Bloom

filter tree index, evaluating the query Q on each node processed using Yao GC with C as

generator and IS as evaluator. Upon reaching a leaf node, the protocol proceeds to Stage 5.

Stage 5: Leaf (record) nodes. When a leaf node is reached, IS and C use the

universal circuit UQ constructed in Stage 2 and the SPF-SFE protocol (Protocol 3.1) to

evaluate Q on that node, and outputs out
UQ
u , u ∈ {0, 1}. In addition, IS sends C a garbled

AND gate that takes out
UQ
u and outPCp as input, and gives a final output key outu·p. IS sends

to C the encrypted record R̃ at this leaf node doubly encrypted as Encout1(R̃).

Stage 6: Record retrieval. When a query is successful in satisfying both UQ and

PC, C uses the output keys out
UQ
1 and outPC1 to obtain out1, and decrypts Encout1(R̃).

Finally, C uses the decryption keys obtained from the server S to decrypt R̃. Note that C

always asks for the decryption information from S and always receives an encrypted record

from IS, however, it only is able to successfully decrypt the record if both UQ and PC

evaluated to true.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 94

Stage 1: Preprocessing

Shuffle and Encrypt Records. Let (Gen,Enc,Dec) be a semantically secure homomor-

phic public key encryption, (Gen,Enc,Dec) a semantically secure symmetric key scheme.

S randomly permutes the database records, and encrypts each record Ri as:

(pk , sk)← Gen(1λ), si ← {0, 1}λ, s̃i ← Encpk (si), R̃i ← Encsi(Ri).

S sends (pk , {(s̃i, R̃i)}ni=1) to IS.

Generate Encrypted Index. S builds a balanced b-ary tree index T of Bloom filters.

Each leaf of the tree is associated with a unique database record, and a Bloom filter holding

all of that record’s indexed keywords. Each internal node filter Bv holds all of the keywords

of its children.

We introduce a subtle but significant change to the format of keyword insertions. For

the purpose of efficient policy checking, C will separately submit hashes of both the field

names and keywords in its query. In order to bind corresponding keyword hashes and field

hashes, S inserts the concatenation of these hashes into the Bloom filters.

Hash function generation. S chooses random keys kc, ks ← {0, 1}λ. S sends kc to C and

QC, and sends ks to IS. S then generates hash functions H = {hi : {0, 1}∗ → [ℓ]}ηi=1. S can

choose H1, H2 independently and set hi(x) = H1(x) + i · H2(x) [KM08]. (ℓ is chosen to

satisfy the desired false positive rate). We use the notation H(x) = {hi(x) : hi ∈ H}. Keyed

hashes are derived naturally as Hk(x) = H(k||x).

Inserting keywords. To insert the keyword field : value in a filter Bv of length ℓv:

• Derive the set I of BF index values by computing

I = Hks(Hkc(field)||Hkc(field : value))

• ∀i ∈ I, set Bv[i mod ℓv] = 1

BF mask: Let F denote a pseudorandom function (PRF). S chooses a new key key ← {0, 1}λ

for the PRF. Let T denote the BF tree. The filter Bv is masked as: B̃v := Bv ⊕ Fkey(v).

S sends {B̃v}v∈T to IS and (key,H, F) to C.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 95

Prepare Decryption Keys. To reduce online query latency, the index server and the

server precompute decryption keys. S holds the decryption keys s1, ..., sn that it used to

symmetrically encrypt the records. It also holds s̃i = Encpk (si) for all i. S sends to IS

these values s̃1, ..., s̃n. IS chooses a random permutation ψ, and random values r1, ..., rn.

IS homomorphically computes s̃i + Enc(ri) = Enc(si + ri) = s̃′
ψ(i) for all i, and sends these

value back to S. S decrypts and stores s′
ψ(1), ..., s

′
ψ(n).

Multiple clients. Although the description of the system protocol is for a single client,

we can easily support multiple clients without compromising security as long as the clients

do not collude. Under this assumption, we can actually use the same keys for all clients.

However, if all clients use the same key kc to encrypt their query keywords, then IS may

correlate the queries of different clients. To prevent this, the server S can distribute separate

keys kc to each client, and insert each keyword into the BF separately for each client

encrypted under that client’s key. The disadvantage of this additional security measure is

that the size of the BF will scale not only with the size of the data but also with the number

of clients.

Stage 2: Client Queries

Every query in the Blind Seer DBMS can be represented as a monotone boolean logical

formula over atomic search terms. There are three types of atomic search terms: keywords,

ranges, and negations. However, in Blind Seer, any range query from a field with value range

r is translated into a disjunction of O(log r) keywords queries. A negation of a keyword

α is translated into a disjunction of two range queries (i.e. x < α OR x > α), which is

again converted into disjunctions of keyword queries. Thus, the final representation of a

query is a monotone logical formula over solely keyword terms (see range/negation condition

paragraph in Section 4.3.3 for details).

Query circuits. Queries are computed by query circuits. A query circuit transforms each

atomic keyword term α into a small circuit computing the presence of α in an input Bloom

filter. This is simply a conjunction of the bits at the η BF hash indices of α, but since C

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 96

and IS hold separate shares of the input Bloom filter, it is actually a conjunction of η XOR

gates.

Committing to Q. For the purpose of malicious-security, we force C to effectively commit

to its query circuit Q as follows.

1. C sends topo(Q) to IS.

2. For each keyword of the form field : value, C sends to IS the hashes: Hkc(field)||Hkc(field :

value).

3. IS generates a garbled universal circuit UQ from topo(Q) as described in Section 5.2.

Each gate in the query formula layer of Q is associated with a pair of keys in UQ. OR

maps to a 0-key, and AND maps to a 1-key.

4. C does OT with IS to receive the keys corresponding to the gate values (i.e. AND/OR)

of UQ.

5. IS computes the set of indices:

Hks(Hkc(field)||Hkc(field : value))

for each keyword field : value, and sends these back to C.

Stage 3: Policy evaluation

At the end of Stage 2, IS has received topo(Q) and hashes of the formHkc(field)||Hkc(field :

value) for each keyword, and has generated UQ. We denote by GQ = (g1, . . . , gn) the gate

value inputs to the garbled UQ, and by KQ = (α1, . . . , αt) the query’s keywords. Each

keyword αi is associated with a field fi. We use the following notations: FQ = (f1, . . . , ft),

Hkc(KQ) = (Hkc(α1), . . . ,Hkc(αt)), and Hkc(FQ) = (Hkc(f1), . . . ,Hkc(ft)). Recall that QC

receives kc from S during preprocessing.

Policy functions. A query policy is any function p: Q → {0, 1}, where Q is the space of

queries. Our system can implement as a policy any boolean function of the query keywords,

fields, and syntax (with a tunable probability of error). More precisely, we can implement

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 97

any function of (Q,Hkc(KQ),Hkc(FQ)), and so the error probability of simulating p is

proportional to the collision probability of H.

Policy circuit structure. There are three types of inputs to policy circuits: gate values

GQ, keyword hashes Hkc(KQ), and field hashes Hkc(FQ). A policy circuit consists of an

upper logical layer built over a bottom layer of keyword check gates and field check gates.

A keyword check gate is associated with a blacklist/whitelist set of keywords, and evaluates

whether its input hashed keyword Hkc(α) is in the set. Likewise, each field check gate is

associated with a subset of the database fields, and indicates whether its input hashed field

Hkc(f) is a member of that set. The inputs GQ are fed directly into the logical layer along

with the outputs of the keyword check gates and field check gates.

Keyword check gates. Let L denote the blacklist/whitelist of the gate, and let α denote

the keyword submitted by the client. QC initializes a Bloom filter, and inserts into it Hkc(w)

for all w ∈ L. QC generates a mask for this filter and sends it to IS. Recall that IS holds

Hkc(α). QC and IS build a garbled circuit evaluating the presence of Hkc(α) in the filter,

and send both the garbled circuit and its input keys to C for evaluation.

Field check gates. Let F = {f1, . . . , fm} denote the fields of the database schema. Let

π : [m] → [m] be a random permutation. A field check gate consists of the following

elements.

− Field function. A boolean function b : F → {0, 1}.
− Permuted key table. A table of keys [kπ(1), . . . , kπ(m)]

− Output keys. A pair of output keys kout0 , kout1 .

− Garbled table. A table of encrypted output keys:

[enckπ(1)
(kout
b(fπ(1))

), . . . , enckπ(m)
(kout
b(fπ(m))

)]

Evaluation: The private evaluation of a field check gate on a field field between QC, IS,

and C is very simple. IS receives Hkc(field) from C. QC sends the permuted key table along

with the mapping of field hashes into the table so that IS may locate the key corresponding

to Hkc(field), and send it to C. QC sends the garbled table to C, who locates and decrypts

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 98

the appropriate output key using the input key received from IS, exactly as in Yao.

Policy False Positives and Negatives. The use of Bloom filters for evaluating the

keyword gates introduces a tunable false positive rate in the outcome of the gate. This

contributes to either a false positive rate FPRp or false negative rate FNRp of the overall

policy, depending on how the keyword gates are used in the logical layer of the policy

circuit (e.g. keyword blacklists may cause false rejects, and keyword whitelists may cause

false approvals). Since the protocol only requires storing one relatively small policy circuit

in RAM, we can afford to make the false positive rates of the keyword gate Bloom filters

sufficiently small. For example, a policy that has 10 keyword gates, 10 keywords per gate

filter, and overall error rate 2−256 would only require approximately 4.6 GB of space at

most.

Policy protocol. IS initiates the policy evaluation.

1. IS sends topo(Q) to C along with key pairs for the gate value wires of the garbled UQ

(i.e. the key pairs for the inputs GQ).

2. Given topo(Q), QC generates the policy circuit PC. The input to PC is (GQ,Hkc(KQ),Hkc(FQ)).

3. QC generates a garbled circuit from PC. It sets the key pairs for the inputs GQ using

the key pairs received from IS, and it generates all other key pairs randomly (as in

the usual Yao garbled circuit construction). It sends the garbled tables of PC to C,

and sends the key pairs for all the input wires to IS. Additionally, it sends the key

pair {outPC0 ,outPC1 } for the policy output wire to IS.

4. Using the table of keys received from QC, IS identifies the input keys to PC corre-

sponding to inputs Hkc(KQ) and Hkc(FQ). IS sends these keys to the client. Note

that the client has already received the keys for the inputs GQ via OT in Stage 2

(these are the same input keys that C will use for evaluating UQ in Stage 5).

5. Finally, C uses the keys received from IS in (4) and the garbled tables received from

QC in (3) to evaluate PC, and obtains the output policy key out
PC
p , p ∈ {0, 1}.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 99

Stage 4: Tree traversal

C and IS begin a multi-threaded breadth first traversal of the Bloom filter index tree. They

do not process leaf nodes at this stage. At any non-leaf node v visited, C and IS evaluate Q

on the Bloom filter Bv (IS’s input bits are derived from B̃v and C’s input bits are derived

from the mask Fk(v) at the hash indices computed in Stage 2). They use the following Yao

GC variant:

1. C garbles Q and sends the garbled circuit to IS. C also sends keys for its own input

bits.

2. IS executes OT with C to obtain Yao keys for its input bits, evaluates the garbled

circuit, and sends the output key back to C.

3. C learns the output value from the output key.

When the output value of Q is 1, C visits all of v’s children nodes. Otherwise, C

terminates the path at v.

Stage 5: Leaf nodes

When C and IS reach a leaf node v corresponding to record index i in the search procedure

of Stage 4, IS selects keys (out0, out1), encrypts R̃i as Encout1(R̃i), and sends to C the tuple

(ψ(i), ri, Encout1(R̃i)). In addition, IS sends to C the garbled AND table:

[Enc
out

UQ
i

(EncoutPC
j

(outi∧j||i ∧ j))]
IS constructed UQ in Stage 2 and C has already obtained the keys corresponding to its

gate value inputs via OT. Additionally, both IS and C already have the sets of Bloom filter

indices Iα for each keyword term α in the query. IS has a masked Bloom filter B̃v. C has a

mask Fk(v). Now:

1. IS generates a new garbled UC using fresh key pairs for all wires except the gate value

input wires.

2. IS sends to C the keys corresponding to its input bits {B̃v[i]}i∈Iα for each α.

3. C performs OT with IS to receive the keys corresponding to its input bits {Fk(v)[i]}i∈Iα
for each α.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 100

4. Finally, C evaluates the garbled UC and obtains an output key outUCu , u ∈ {0, 1}.

C has already obtained an output key outPCp , p ∈ {0, 1}, from PC in Stage 3. If

p = u = 1, then C can successfully obtain out1 and decrypt Encout1(R̃i). Otherwise, C

cannot feasibly deduce any information about R̃i other than its size.

Stage 6: Record retrieval

When C reaches a record Ri, IS will send it ψ(i), ri, and Encout1(R̃i). C then sends ψ(i) to

S, who sends back s′ψ(i). C obtains si = s′
ψ(i)−ri. If C successfully decrypted Encout1(R̃i) to

obtain R̃i in Stage 5, then C now decrypts R̃i using si, and obtains the record Ri. Otherwise,

C cannot feasibly deduce any information about Ri other than its size.

5.5 Security and Privacy Analysis

Privacy and security in the Blind Seer system was previously achieved with respect to semi-

honest static adversaries. An ideal functionality Fdb was defined, and included a leakage

profile describing the precise information that is leaked to each of the parties C, S, and

IS. A standard simulation argument in the semi-honest static adversary model attests that

Blind Seer securely realizes Fdb (Figure 4.4).

The main contribution of the present work is a mechanism that strengthens the security

of Blind Seer against a malicious client adversary in numerous respects including privacy,

data protection, and access-control. The preceding sections presented the security benefits

of the new mechanism in conceptual terms, and with a focus on how they address the

vulnerabilities of Blind Seer’s previous design. The goal of this section is to characterize

these security properties more precisely in formal definitions, and to prove that our new

Blind Seer protocol realizes these properties.

Security properties. We distinguish and analyze four properties of the system.

Query indistinguishability captures the inability of the server (or index server) to dis-

tinguish between queries that the client may submit. Blind Seer does not achieve perfect

query indistinguishability. The query security of the original Blind Seer was analyzed using

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 101

the simulation paradigm. It was shown that the client’s queries reveal nothing to the semi-

honest server and index server beyond a specified leakage profile. Essentially, the leakage

profile for the server included record retrieval patterns, and the leakage profile for the in-

dex server included the search tree traversal pattern and deterministic hashes of the query

keywords (i.e. BF indices). In terms of indistinguishability, this simulation security implies

that the server (resp. index server) cannot distinguish between two queries that have the

same (or indistinguishable) leakage profiles. The new system mostly preserves the privacy

of the client’s query that the original Blind Seer offered, but with some additions to the

query leakage profiles.

The modified leakage to IS is precisely the pairs of hashes Hkc(field)||Hkc(field :

value). The additional leakage allows IS to correlate common fields of different keywords

in the queries. In the original Blind Seer, IS learned the BF hash indices of the keywords, i.e.

H(field : value), but could not correlated common field patterns. The modified leakage

to QC is the topology of the query. We note that it is straightforward to make the above

modifications to the leakage profile in the simulation argument.

Policy compliance indistinguishability expresses that compliant queries with zero results

and non-compliant queries are indistinguishable provided that they have identical index

traversal patterns. Policy soundness is the extent to which the system prevents the release

of information on non-compliant queries. Query soundness is the extent to which the

system prevents the release of information from records that do not satisfy the query. We

show that non-compliant queries reveal no information about the DB payload—the non-

indexed primary data contained in the records of the DB. Similarly, we show that queries

reveal no information from the payload of records outside their result set.

The strongest notions of policy and query soundness would require that the amount of

information revealed is negligible. However, as previously discussed, Blind Seer’s search

mechanism may reveal some partial information about the indexed DB data, especially to

a malicious client. Thus, the client may learn some meta information even on records that

are not ultimately returned. The only way to prevent all leakage on non-compliant queries

is to prevent the client from evaluating non-compliant queries on any part of the DB index.

This would create an inherent asymmetry in the processing of compliant and non-compliant

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 102

queries, detracting from policy privacy. We made a conscious design decision to compromise

full policy security for policy privacy.

Multiple clients. Our analysis assumes a single client. However, the proofs naturally

extend to multiple client parties as long as there is no collusion among the parties. If there

is collusion between parties, then the proofs still apply to the combination of those parties

as a single entity. We note that collusion between a client and the index server would

compromise security for everyone.

Indistinguishability vs. simulation. Our analysis will use indistinguishability games

rather than the simulation paradigm. Some of the primitives we implemented are not

simulatable in malicious and/or concurrent settings, specifically Naor-Pinkas OT, which

we use during the multi-threaded traversal of the Bloom filter. This technical issue could

be resolved by implementing a UC-secure OT primitive such as PVW [PVW08] instead

of Naor-Pinkas [NP01] and using simulatable UC-secure OT extension protocols1, or the

server S could actually distribute random OTs during the preprocessing phase.

OT Extension Security. As previously mentioned, our OT extension protocol does

not satisfy a simulation-based definition of security in our setting, which involves both

concurrency and a malicious receiver party (the client).

Nonetheless, we can prove that it is sufficiently secure for the malicious-client security

properties that we ultimately want to prove. Informally, the property we need is that no

malicious receiver can feasibly output both messages in any individual
(1
2

)

-OT when the

messages are independent and random.

Let OT-EXT
p(k)
m denote an instance of our OT extension protocol producing p(k) pre-

processed
(1
2

)

-OTs of length m strings, where k is a security parameter and p is a polynomial.

OT-EXT
p(k)
m outputs {(e0i , e1i), (erii)}p(k)i=0 , where (e0i , e

1
i) is Sender’s output, erii is Receiver’s

output, All (e0i , e
1
i) are independent and random, and r← {0, 1}p(k) is uniformly distributed.

1There are various OT extension protocols offering full simulation security in the malicious adversary

model that also have constant amortized cost [HIKN08; NNOB12], but these protocols still have constant

factor overheads that are relatively expensive.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 103

Lemma 1. No adversary corrupting Receiver in a polynomial number of concurrent and

independent OT-EXT
p(k)
m sessions can output both e0i and e1i from any individual session

with probability greater than negl(k).

Proof. Note that the protocol OT-EXT
p(k)
m is a randomized functionality that does not take

any external input. Internally, the Receiver samples r ← {0, 1}p(k) and T ← {0, 1}k×k,
and Sender samples s ← {0, 1}k. An adversary A can therefore simulate any session of

OT-EXT
p(k)
m , producing a view that is statistically indistinguishable from its view of the

real session. If A is active and substitutes arbitrary input (r′,T′) in place of the Receiver’s

randomly sampled input, it can still produce a statistically indistinguishable view of the

session by using the same r′,T′ and randomly sampling s for Sender’s input.2

By the hypothesis that the Sender behaves independently in all sessions, A cannot

distinguish between an experiment in which it engages with all real sessions versus an

experiment where it only engages with one real session and simulates all others. Therefore,

we restrict our attention to the security of a single session sid.

Recall that our OT-EXT
p(k)
m is Nielsen’s OT extension protocol for malicious receivers

[Nie07], using Naor-Pinkas to instantiate the base OT protocol. Nielsen gave a concrete

analysis showing that A cannot output both e0i and e1i for any i with probability greater

than negl(k) when the base OT is instantiated with an ideal OT box. However, the starting

point of Nielsen’s analysis only assumes that the output of the base OT is correct, and that

s remains uniformly random in the view of A. s is the choice vector of the Sender acting as

receiver in the base OT protocol. Sequential or parallel Naor-Pinkas OT guarantees both

correctness and the property that A’s views of the protocol (as sender) executed with dif-

ferent choice vectors of the receiver are statistically indistinguishable [NP01]. Equivalently,

conditioned on A’s view, s remains statistically indistinguishable from a uniformly random

vector. It follows that the adversary cannot gain a non-negligible advantage when the ideal

OT box is replaced with Naor-Pinkas in Nielsen’s OT extension (as otherwise this protocol

could be used to distinguish s from random).

2Note that this is different than simulatability, where the simulator in an ideal world secure execution

of the protocol is required to simulate the attacks of any adversary in the real world with the same results.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 104

In what follows we will refer to the new system protocol as mBS, for malicious Blind

Seer.

Client query privacy

We describe the client query leakage profiles for the server S, the index server IS, and the

query checker QC. Only the leakage to IS and QC has changed from the original Blind Seer

design. The new leakage to IS amounts to patterns in the keyword fields (e.g., columns)

used in the query, and the new leakage to QC is the query topology. We note that it is

straightforward to update the formal analysis of the original Blind Seer design to incorporate

these new leakage profiles, but we will not include here the updated analysis.

Leakage to S in each query. Let R1, ..., Rn denote the records of the database and

let ((i1, Ri1), . . . , (ij , Rij)) denote the query results. Let π : [n] → [n] denote a ran-

dom permutation (unknown to S, but fixed for all queries). The leakage to the server

is (π(i1), π(i2), . . . , π(ij)).

Leakage to IS in each query. The leakage to IS includes the BF-search tree traversal

paths, the topology of the query topo(Q), and the pairs of hashes Hkc(field)||Hkc(field :

value) for each of the client’s keywords field : value included in the query. This leakage

reveals to IS when two different keywords in the query share the same field. (In contrast,

the previous design only leaked hashes of the keywords in the query, and so IS only learned

when full keywords repeated).

These leakage profiles imply that S cannot distinguish any two queries that access the

same number of records and IS cannot distinguish any two queries that have the same num-

ber of repeated keywords/fields, indistinguishable traversal paths, and identical topologies.

However, both S and IS may respectively accumulate record retrieval and query pattern

information over many queries.

There we consider the views of both parties, or a third environment party observing the system, while here

we are only concerned with a single party’s view.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 105

Policy and query soundness

We first define the notion of payload indistinguishability. Assume that each record R of the

DB has a payload L, the main data associated with the record, and separate metadata M,

or the keywords that index the data. We write R = (L,M). Queries are evaluated on the

metadata, so for any boolean query q we can write q(M) ∈ {0, 1}.

Definition 4. Let Σ(D,λ) denote a DBMS mechanism executed on input database D with

security parameter λ. We define the following game GamePAYINDΣ (A, λ) played with an ad-

versary A.

GamePAYINDΣ (A, λ):

− A chooses D0 = (R1
0, ..., R

n
0) and D1 = (R1

1, ..., R
n
1) where Rib = (Lib,Mi

b)

and Mi
0 =Mi

1 ∀i.

− Sample b ∈ {0, 1} uniformly at random.

− The protocol Σ(Db, λ) is executed with A in the querier’s role. A outputs a

decision bit b′.

− If b′ = b, output 1. If b′ 6= b, output 0.

Define AdvPAYIND
Σ (A, λ) = |Pr[GamePAYINDΣ (A, λ) = 1]− 1

2 |. If AdvPAYIND
Σ (A, λ) < negl(λ)

for any poly time adversary A, then the mechanism Σ is payload indistinguishable.

More generally, we define f -payload indistinguishability by modifying the game so

that Li0 = Li1 for all i where f(Mi
b) = 0, i.e. the payloads are only indistinguishable on

records for which f(Mi
b) = 1.

Theorem 3. An execution of mBS on any policy p and query q such that p(q) = 0 is

payload indistinguishable.

Proof. We prove the claim by reduction to the semantically secure encryption scheme Π =

(Gen,Enc,Dec) used by mBS.

Let us first unfold the meaning of executing mBS on policy p and query q. The policy

p is defined by an input to the semi-honest party QC. However, since C is now a malicious

adversary A, the query q defined by the actions of A may be unrelated to anything on C’s

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 106

initial input tape. A commits to the query circuit Q that is ultimately evaluated on the DB

records when it sends the circuit topology, sends the keyword and field hashes, and receives

keys in {0, 1}k representing the gate values of Q using OTs generated by the subprotocol

OT-EXT
p(k)
k . If A submits ill-formatted messages, then the protocol is aborted, and the

query is considered empty. Thus, Q is uniquely determined unless A is able to obtain more

than one valid key for each OT, the probability of which is negligible in k by Lemma 1.

The garbled policy circuit PC and evaluation keys in {0, 1}k that A receives are derived

from the same information that determines Q. As long as Q is uniquely determined, the

following hold except with probability negligible in k: A only obtains the keys that allow it

to compute the output policy key outPC
p(Q), and the security of Yao GC evaluation guarantees

that A cannot obtain the key outPC1−p(Q).

Any record payload L that A receives is encrypted using Enc with the key outPC1 =

Gen(1k). We have seen that A cannot compute outPC1 when p(Q) = 0 except with some

negligible probability ǫ(k). Thus, it is easy to see that AdvPAYIND
Σ (A, λ) ≤ AdvIND

Π (A, λ) +

ǫ(k) < negl(k) by semantic security of Π (cf. Appendix 2.5).

Theorem 4. For any query q, let q̄ denote its negation so that q̄(D) is the set of records

that fail q. An execution of mBS on any query q is q̄-payload indistinguishable.

Proof. For any record R = (M,L) that A receives, L is encrypted using Enc with a key

out
UQ
1 that is output by the garbled UQ circuit evaluated on M . As noted in the analysis

of policy soundness (Theorem 1), the query q is uniquely determined by A’s messages to

IS except with probability negligible in k, the security parameter of Π = (Gen,Enc,Dec).

We show that if q(M) = 0, i.e. q̄(M) = 1, then A cannot obtain out
UQ
1 with probability

greater than negl(λ) where λ is the minimum of k and the Bloom filter FPR used at the

leaf nodes of the tree index. In the q̄-payload indistinguishability game, the payloads Li0
and Li1 of records Ri0 and Ri1 are identical unless q̄(Mi

0) = q̄(Mi
1) = 1. Once we establish

that A’s probability of obtaining outUC1 when q̄(M) = 0 is negligible in λ, q̄-payload

indistinguishability reduces to the semantic security of Π, as in Theorem 1.

Consider A’s evaluation of UQ on record R. As with the policy, A can only obtain one

valid set of input keys, and can only compute one valid output key, except with probability

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 107

negl(k). However, unlike the policy evaluation keys, the keys that A obtains to evaluate

UQ are not solely determined from the information that defines the query circuit Q. The

reason is that A has some control over the DB inputs to UQ. Recall that for each BF node

Bv, the client C holds a mask string mv = Fk(v) and IS holds B̃v = Bv ⊕mv. The circuit

UQ computes XORs of bits taken from m and Bv. Nothing prevents A from flipping bits in

mv when evaluating UQ.

We investigate A’s success probability in flipping the output of UQ from 0 to 1. Because

Q is monotone over its keyword predicates, A must succeed in flipping the output of at least

one keyword predicate Pα from 0 to 1 in order to succeed. Suppose A receives η indices

α1, ..., αη for a keyword α that has not been inserted into the filter Bv, i.e. Pα(Bv) = 0.

There is a unique vector of bits zα = (zα1 , ..., zαη) such that B̃v[αi]⊕ zv[αi] = 1 for each i.

A must guess zα to succeed.

zα is actually a random variable over the randomness in the initialization of Bv. The

bits of Bv were set via insertions of keywords (distinct from α) using Hks , where ks is secret

from A, and H is a family of random oracles by assumption. Therefore, zα is distributed

independently from A’s view of the protocol. Recall that the BF parameters are set so

that the FPR is 2−η . Together with the simplifying assumption that the bits zαi
are η-wise

independent, the FPR implies that Pr[zαi
= 1] = 1/2 for each i, and that the min entropy

zα is 2−η.3

False positives. The above theorems (policy soundness and query soundness) do not

account for false positives in the result set q(D) due to false positive hits in the Bloom

filters representing the indexed records. This threat becomes negligible when the FPR of

the Bloom filter is made negligible. Even a malicious client who has learned some bits of

the Bloom filter (e.g. from previous queries) and attempts to deliberately choose a query

3It is inaccurate to assume that all BF bits are mutually independent. However, η-wise independence of

the {zαi
}ηi=1 is easily obtained. With an FPR of 2−η, the fraction of 1s in the BF cannot be more than 1/2

after all word insertions. If smaller, we can randomly set BF bits until exactly 1/2 are 1. The distribution

of the final subset of 1s is uniform, independent of H(α). Thus, the {zαi
}ηi=1 are independent if η < ℓ/2,

where ℓ is the BF length.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 108

that incurs a false positive has negligible advantage over the FPR because our Bloom filters

use non-invertible (cryptographic) hash functions.

Policy compliance indistinguishability

There are three possibilities when a query returns no results: the query was noncompliant,

the query actually had an empty result set, or both. The client cannot ever tell with

certainty which one of these is true. However, the search pattern may give the client

heuristic reasons to believe one possibility over the other. For instance, if the policy is

evaluated at the leaves and a query traversal reaches many leaf nodes in the DB index

before failing on all, the client may reasonably infer that the query is failing the policy.

Thus, a definition that requires complete indistinguishability regardless of the database

and query would be too strong for mBS to satisfy. Instead, we use a definition that incorpo-

rates a database equivalence relation Eq parametrized by the query q. Similar to a leakage

profile, Eq factors out instances where the adversary may defeat the indistinguishability

game, for reasons either related or unrelated to distinguishing query non-compliance from

empty results.

Definition 5. We define the policy compliance indistinguishability game GamePCINDΣ (A,Eq, λ)

as follows.

GamePCINDΣ (A,Eq, λ):

− A chooses a query q, databases (D0,D1) ∈ Eq, and policies p0, p1 such

that p0(q) = 1, q(D0) = 0, and p1(q) = 0.

− A bit b is sampled uniformly at random.

− The protocol Σ(Db,q,pb, λ) is executed with A in the querier’s role. A
outputs a decision bit b′.

− If b′ = b, output 1. If b′ 6= b, output 0.

AdvPCIND
Σ (A,Eq, λ) = |Pr[GamePCINDΣ (A,Eq, λ) = 1] − 1

2 |. If AdvPCIND
Σ (A,Eq, λ) <

negl(λ) for any poly time adversary A, then Σ satisfies policy compliance indistin-

guishability with respect to Eq.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 109

We formally define an equivalence relation ≡q for mBS. First, the relation must express

traversal pattern equivalence. Otherwise, A could distinguish executions of q on D0 and

D1 whenever the traversal patterns differ. In certain instances the traversal pattern may

actually reveal policy failure (e.g., a search for a single name that returns true at the root

and fails on every single record must be non-compliant). This instance is eliminated from

the game by requiring that the traversal patterns are identical for both the compliant and

non-compliant scenarios. Formally, let Iπ(·) denote the DB index construction function of

mBS using the record permutation π. Let TP (q, Iπ,D) denote the distribution of traversal

patterns induced by q on Iπ(D) for randomly sampled π. If D0 ≡q D1, then TP (q, Iπ,D0) ≈
TP (q, Iπ,D1). Further, since the client generates the query circuit for the internal nodes, a

malicious client can compute an arbitrary single bit of the BF inputs at each node. Thus,

≡q must express the stronger condition that corresponding Bloom filter nodes in the two

databases must be identical on all indices the query touches. This does not include the last

layer, where policy and UQ circuits are evaluated.

Theorem 5. mBS satisfies policy compliance indistinguishability with respect to ≡q.

Proof. Given the strict definition of ≡q, A’s views of the executions mBS(D0,q,p0, λ) and

mBS(D0,q,p0, λ) are identical up until the failure nodes where UQ∧PC is evaluated with

Yao GC. If A can distinguish the intermediary outputs of UQ and PC, it would contradict

the security of Yao.

5.6 Implementation

We implemented a prototype of our design in C++. In this section, we describe some in-

teresting choices we made during the development of the prototype, and show experimental

results.

OT pool. One important component of our system is the OT pool. This pool contains

preprocessed Oblivious Transfers that are used in garbled circuit evaluations. The OT

pool is filled regularly using the OT extension protocol of [IKNP03; Nie07]. We use the

Naor-Pinkas [NP01] OT protocol as a base for OT extension.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 110

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Number of Threads

Query Latency

Figure 5.3: Query Latency versus number of threads on a 107 record database. Run on a

Boolean query with individually frequent terms but with sparse aggregate results.

Parallelism within queries. The most important efficiency improvement comes from

query parallelization. While the original Blind Seer implementation supported paralleliza-

tion between queries to improve throughput (Parallelization paragraph Section 4.6), the

new system supports multi-threaded evaluation of the tree structures within a single query

to improve latency. Instead of having one global OT pool for all threads, each thread has

its own OT pool. This significantly decreases the standby time of filling a single OT pool,

as well as bypassing synchronization issues. We used the Intel Threading Building Block

library to implement most of the parallelization used in the system.

Figure 5.3 shows query latency time plotted against the number of threads for the query

first:DIANE AND last:CASTRO

This query traverses a large fraction of the DB index, and hence, clearly illustrates the

benefits from parallelization. We see full utilization and improvement all the way up to 15

threads.

Cryptographic Tools. Our system requires pseudorandom bits, used primarily for gar-

bling circuits. We avoid expensive system calls to /dev/urandom by implementing a PRG

using AES as a building block. All AES operations were performed using 128-bit key length.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 111

We used SHA256 for hashing, and implemented the keyed hash for keyword ingestion as an

HMAC using SHA256 as the underlying hash function. Since OpenSSL uses the AES-NI

instruction, we used this library to implement our basic cryptographic primitives. Our sys-

tem also depends on operation on a group to which DDH intractability applies. We used

the standard quadratic residues subgroup of Zp, where p is a 2048-bit strong prime4. The

group operations were implemented using the GNU Multiple Precision library.

Tree Traversal. During tree traversal, each internal node evaluation requires 4 rounds of

communication. The client first submits the node identifier to be evaluated and the garbled

circuit to be evaluated, then OT is performed (2 rounds), and finally the index server sends

back the output key. The roles are reversed at the leaf nodes. Since these rounds involve

small packets, network latency becomes the bottleneck. In order to reduce standby time,

we batched the evaluation of all sibling nodes. This reduced the number of rounds by 10

rounds. This batching technique is mostly helpful for queries with low branching traversal

patterns, e.g., a single root to record path in the tree index.

5.7 Evaluation

Our system was tested in a similar way to the original Blind Seer. A synthetic 100-million

record database mimicking the US census data was constructed. Each database record

contained global unique ID, personal information taken from randomized census, text fields

for free-text search, XML data, and a payload of 100KB of random bytes used to simulate

the cost of transferring data in real-life practical applications.

Our system was compared against MySQL (having separate indexes for each field) using

a special-purpose testbed implemented by Lincoln Labs specifically for this purpose. Each

party ran on a separate machine equipped with two Intel Xeon X5650 processors of 2.66Ghz

and 12M cache, 96GB RAM5at 1066 MHz, and Broadcom 1GB Ethernet NICS with TOE

each. Index Server and Server each had a 20TB raid array attached also. All machines ran

64-bit Ubuntu 12.04LTS as base OS.

4p = 2 · q + 1 where q is also prime

5Although we ran the client on a machine with 96GB RAM, the client’s actual memory consumption in

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 112

We show next the efficiency of our system (running using 16 threads on full 100-million

record DB) in terms of query latency time for a number of representative queries: single-

term and size-3 conjunctive and disjunctive SELECT-id queries. We also show that when

using SELECT-* queries on 100KB records, and thus incorporating a payload with our

interactions, the associated overhead which is constant for all systems begins to dominate

the costs of our system.

Boolean SELECT-id Queries. We compare the performance of our system against

MySQL. Figures 5.4, 5.5, and 5.6 show the query latency for single-term, 3-term conjunc-

tions (with two low-entropy terms and one medium-entropy term), and 3-term disjunctions

as SELECT-id queries plotted against the number of records satisfying them. While origi-

nal Blind Seer was 15 times slower than MySQL, our implementation manages to be only

2-3 times slower than MySQL for the case of single terms queries and 3-6 times slower for

conjunctive and disjunctive queries on 3 terms. This saving is due to parallelization and

low overhead of our new construction. Note that these queries are SELECT-id, and thus

delivering a small payload. The relative overhead of our system would decrease with larger

payloads since this cost is constant for both systems.

Single-term SELECT-* Queries. We measured query latency of our system and MySQL

for queries returning 100KB records. Our system, as well as original Blind Seer, performs

better (compared to MySQL) when the records retrieved are bigger. In this case, the

standby time required to submit records’ data dominate the network usage. We can ob-

serve from the results shown in Figure 5.7 that our system is only 10% slower than MySQL

in this setting.

our system is insignificant. The client only needs to store a key and pre-processed OTs. In our experiments,

the client used approximately 200MB of RAM.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 113

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000

T
im

e
(s

ec
s)

Number of Records Returned

16T-Our
MySQL

Figure 5.4: Single-term SELECT-id performance against number of records returned for

our system and MySQL.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500

T
im

e
(s

ec
s)

Number of Records Returned

16T-Our
MySQL

Figure 5.5: 3-terms conjunction SELECT-id queries performance against number of records

returned for our system and MySQL.

 0

 50

 100

 150

 200

 250

 300

 350

 400

T
im

e
(s

ec
s)

16T-Our
MySQL

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 114

 0

 2

 4

 6

 8

 10

 12

 115 120 125 130 135 140 145 150 155 160 165

T
im

e
(s

ec
s)

Number of Records Returned

16T-Our
MySQL

Figure 5.6: 3-terms disjunction SELECT-id queries performance against number of records

returned for our system and MySQL.

Overhead of malicious-client security. As a validation of the costs of our malicious-

client algorithms, we also compare the performance of our malicious-client secure Blind

Seer to that of the original Blind Seer. To eliminate extraneous implementation perfor-

mance variables, we compare the two designs by running our current implementation of

Blind Seer with and without the design changes introduced in this work. In particular, the

design differences potentially affecting performance include two additional hash function

calls per keyword, the new semi-private SFE using a universal circuit, an additional Obliv-

ious Transfer per gate of the query circuit, and one additional symmetric encryption and

decryption per record returned to C. The experiment consisted of running single-threaded

SELECT-id queries for single-term, 3-term boolean queries containing a conjunction and a

disjunction, and range queries (which are each translated to a 5-7 term disjunction) over a

1-million record database. The results are shown in figures 5.8, 5.9, 5.10. As expected, the

design changes for achieving malicious-client security incur no significant overhead. The

costs of the design changes for malicious-client security are proportional to the query size

and number of leaf nodes reached in the Bloom filter tree index traversal, and not the

total number of tree nodes processed. Thus, the performance gap will be even smaller on

large databases when the number of leaf nodes reached is small compared to the number of

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 115

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(s

ec
s)

Number of Records Returned

New Blind Seer
Original Blind Seer

Figure 5.8: Performance of our prototype against original Blind Seer for single-term queries.

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(s

ec
s)

Number of Records Returned

New Blind Seer
Original Blind Seer

Figure 5.9: Performance of our prototype against original Blind Seer for 3-term boolean

queries.

internal nodes processed, which we expect to often be the case in practice.

Caching. We did not run experiments on repeated queries. On repeated queries, MySQL

benefits from server-side caching of query results. In our system, the client caches result

sets (database record indices) locally.

CHAPTER 5. MALICIOUS CLIENT SECURITY ON BLIND SEER 116

 0

 100

 200

 300

 400

 500

 600

 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(s

ec
s)

Number of Records Returned

New Blind Seer
Original Blind Seer

Figure 5.10: Performance of our prototype against original Blind Seer for range queries.

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 117

Chapter 6

Low-Leakage Private Search of

Boolean Queries

6.1 Introduction

In the previous two chapters we presented a private search system called Blind Seer. We have

seen that Blind Seer manages to be very efficient and allows for powerful queries. However,

to acomplish high efficiency the scheme accepts some privacy loss on the client’s queries

and server’s data. In this Chapter we are mainly concern in how much the storage server

(a third party) learns about the client’s queries and the database. While the encryption of

records and the index’s data helped by hidding the content stored on the server, the client

privacy is still vulnerable since its access pattern to index and data is revealed to the server.

A recent work [IKK12] has demonstrated that this leakage can be substantial even in the

simplest search scenario of exact match such as keyword search. For more complex types of

queries, such as Boolean queries (as supported by Blind Seer), this leakage can have even

more serious security implications.

This chapter is motivated by the lack of a good grasp on analyzing the above privacy

leakage in the Boolean search protocols such as Blind Seer and OSPIR-OXT [JJK+13].

Here we propose a new construction that adopts the general approach of combining access

pattern hiding properties of ORAM together with small secure computation steps, as done

in the general-purpose secure two-party computation scheme of section 3. This approach

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 118

was also taken by Gentry et al. [GHJR15] to construct a single keyword search scheme. We

go further and focus on Boolean queries, and we develop tailored and optimized solutions

for that. Our solution for secure search enables the same functionality for Boolean queries

as Blind Seer, and it diminishes the access pattern leakage, while preserving the sublinear

efficiency overhead for queries that are executed in sublinear time in these protocols. As

expected, the concrete efficiency overhead for our protocol increases compared with these

solutions that reveal complete access patterns.

Although direct comparison with the work of Gentry et al.[GHJR15] is hard, since their

work implements much simpler queries compared to our protocols, our protocols achieve

much better efficiency for comparable functionality.

Setting. As in Chapters 4 and 5 we are interested in the Outsourced Symmetric Private

Information Retrieval (OSPIR) setting [JJK+13]. It captures the scenario in which the data

owner outsources the data to a server, and gives search capabilities to clients. Recall that

such a setting involve three main actors: S, IS, and C. The server S owns the database

(Di,Wi)
d
i=1, builds an index and outsources the list of documents (Di) and the index to the

index server IS. The client C has a query φ(W) composed by a Boolean formula φ(·) over a

set of keywords W . C gets the set of documents Di, whose associated searchable keywords

Wi satisfy the query.

In a Setup phase, the server (or data owner S) on input DB, does some preliminary

computation on the data and produces an encrypted database EDB and access parameters

params. EDB is then given to the index server (IS). In the Search phase, a client (C) inputs a

query q, S inputs params, and IS inputs EDB. After protocol execution, C obtains database

records satisfying its query. Such a scheme was formally defined in section 2.7.

6.1.1 Contributions

In this chapter we provide a new Private Database Search mechanism supporing Boolean

queries, that avoids the main leakage introduced by Blind Seer and OSPIR-OXT systems.

We introduce new cryptographic primitives we called Mul-OPRF and Masked MOPRF.

We use this primive together with Oblivious RAM holding a Bloom filter tree to obliviously

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 119

evaluate queries on each index node.

We provide a prototype implementation of the system, and give analysis of performance.

Our experimental results shows that for simple queries, records can be returned within a

few seconds.

To our knowledge, and despite generic protocols, this is the first Private Database Search

scheme that uses ORAM techniques, and also allows for Boolean queries. The use of ORAM

diminishes the leakage to the server holding the database and its index.

6.1.2 Background

Between the range of Private DB search schemes available (see Section 7), the HE-over-

ORAM approach [GHJR15], and the Blind Seer and OXT-OSPIR[JJK+13] are of particular

interest. First, these schemes focus on the delegated query scenario, that is, the client is not

the owner of the data. Secondly, while HE-over-ORAM aims for a secure asymptotically

sublinear solution for single keyword search, the Blind Seer and OXT-OSPIR systems focus

on practicality: they both support a rich set of queries and their efficiency is close to the

plaintext database case. Our goal is to build a system that lies in-between these systems in

terms of the privacy vs. efficiency trade-off.

OSPIR-OXT and Blind Seer. The first solutions for the OSPIR setting was proposed by

Jarecki et al. [JJK+13](OSPIR-OXT) and Pappas et al. [PKV+14] (Blind Seer). Although

they solve the same problem, they provide very different approaches. OSPIR-OXT is an

extension of the OXT searchable encryption scheme [CJJ+13]. This solution allows for

Boolean queries in Searchable Normal Form (t1∧φ(t2, ..., tn)), and runs in time proportional

to the number of records satisfying the term t1. The solution is based on an inverted index

approach, which is used to search information about the leading term t1. This information

is used then to search for the records satisfying the sub-queries t1∧ti. A completely different

approach was taken in Blind Seer. Instead of using an inverted index, Blind Seer builds a

Search Tree on the searchable keywords of the database. Each leaf of the tree is associated

with a record in the database, and each internal node holds to a masked Bloom filter

containing the searchable keywords of the records in its subtree. Hence, a Boolean formula

is answered by following paths root-to-leaves where the nodes’ Bloom filter satisfy the query.

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 120

The above two systems are incomparable in terms of leakage since their underlying data

structures are completely different. Blind Seer, though, has the advantage that the search

procedure does not reveal partial evaluation results.

HE-over-ORAM Database Search. Gentry et al. [GHJR15] proposed a private DB

system with no leakage based on ORAM and Somewhat Homomorphic Encryption. ORAM

is used to protect the client’s access patterns and the owner’s data from the server. To

protect the database information from the client, data is also encrypted using a variation of

a Somewhat Homomorphic Encryption Scheme that enables Equal-to-Zero and Comparison

operations. These operation enable the client to blindly perform ORAM operations until the

requested value is found. Although this work shows the feasibility of the HE-over-ORAM

approach, it has significant limitations in efficiency and functionality. In terms of efficiency,

their experimental results shows that it requires 30 minutes to execute a single keyword

query on a 222 record database. In terms of functionality, the system only allows single

keyword queries, and conjunction may be enable by a trivial addition of the keywords into

the database index.

Approach. We use the Bloom filter Search Tree of Blind Seer as our search structure,

but storing the encrypted data and its index in ORAM structures at the server. Then, we

give the ORAM access parameters to the client, as done in the HE-over-ORAM scheme. To

avoid the case where the client learns more information than strictly necessary, the actual

data in ORAM should be encrypted in a special way. While this is done using Somewhat

Homomorphic Encryption by Gentry et al. [GHJR15], we provide a new encoding scheme

that allows parties to securely evaluate an index node, revealing to the client only the

necessary information to continue the search procedure. We accomplish this by using a

novel protocol for conjunctive query evaluation on specially encrypted Bloom filters. This

protocol is then extended to handle queries in Disjunctive Normal Form.

The use of ORAM eliminates all important leakage to the index server of Blind Seer.

ORAM protocols, however, do leak the number of queries performed by the client; hence,

our solution reveals the amount of work done by the client (which is unavoidable if we

require sublinear time). In particular, the server can infer the number of records retrieved

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 121

by the client. It also learns the relation between the amount of work in the index and the

amount of records retrieved. Nevertheless, the server is unable to link the work done in the

index and the specific record retrieved.

Notation.

We use λ to denote a security parameter, and fp a false positive rate. The set {1, 2, ..., i} will

be denoted as [i]. Let G be a group of generator g and prime order q, where the Decisional

Diffie-Hellman (DDH) assumption holds. We will use multiplicative notation for the group

operations. Let H : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a keyed hash function (or MAC) having

keys in {0, 1}λ, in which H(s,w) is denoted as Hs(w). Similarly, let F : {0, 1}λ×{0, 1}λ → G
be a pseudo random function (PRF) indexed by keys in {0, 1}λ, having domain in {0, 1}λ,

and image in G. We denote F (k, r) as Fk(r). Let E = 〈Gen,Enc,Dec〉 be semantically secure

encryption scheme. For a query q correspoding to a DNF formula φ(·) we let topo(q) (or

topo(φ)) be the number of clauses in φ and the number of variables in each clause. We

denote by x
$← S the process of sampling a uniformly random element x from set S. For a

tree node v we let Children(v) be the set of children nodes of v. We let BFBuild(S, fp) denote

the proccess of building a Bloom fiter for set S with false positive rate fp. BFMatch(BF, w)

denoted the proccess of matching keyword w in Bloom filter BF. For a set of hash functions

H, we let H(w) = {h(w) : h ∈ H}. Finally, we abuse ORAM notation and let Di ←
ORead(i, struct) denote a read ORAM access on address i at ORAM structure struct held

by the server. That is, we ommit in the notation the client’s parameters and the updated

struct given to the server.

6.2 Cryptographic Primitives

In this section, we describe some cryptographic primitives we use in the construction of

our private search scheme. These primitive are presented in a modular way, and can be of

independent interest.

Oblivious PRF. First, our solution uses an Oblivioius Pseudorandom Function (OPRF).

It involves two parties, C having input m and S having input k, who jointly evaluate a pseu-

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 122

dorandom function Fk(m), while keeping their input private. A simple construction pro-

posed by Jarecki and Liu [JL10] uses the Hashed Diffie-Hellman PRF (Fk(m) = Hash(m)k).

The protocol is described in Figure 6.1. C starts by sampling a uniformly random invert-

ible exponent α and sends X = Hash(m)α to S. S replies with Y = Xk, and C outputs

Z = Y α−1
= Hash(m)k.

Two-party Protocol OPRF

Parameter: A random hash function Hash : {0, 1}∗ → G.

Input C: w ∈ {0, 1}∗. S: k.

1. C samples a uniformly random α ∈ Z
∗
q , and sends back X = Hash(w)α.

2. S replies with Y = Xk.

3. C outputs Z = Y α−1

.

Figure 6.1: The Two-Party Protocol OPRF
MUL-OPRF. In a simple variation of the above primitive, C inputs a set {m1, ...,mn},
S inputs the secret key k, and C receives as output

∏

Fk(mi). We call this new primitive

MUL-OPRF. We obtain a secure protocol for this primitive by using
∏

Hash(mi), as the

random hash function in the protocol of Figure 6.1.

Masked MOPRF. For the purpose of the construction in Section 6.3, we require a slight

modification on the above MUL-OPRF functionality. We call this new primitive a Masked

MOPRF. In this primitive, C gets the result of the MUL-OPRF protocol masked with a

random value R, while S obtains the mask R. This simple modification is achieved by

adding one extra message in the protocol (Figure 6.2). The server starts by sampling

a uniformly random exponent β, and sending W = gβ back to C. C responds with X =

(W ·∏Hash(mi))
α for the uniformly random invertible exponent α. S replies with Y = Xk,

and outputs R = gβ·k. C outputs Z = Y α−1
= R ·∏Hash(mi)

k.

Security. The security of the MUL-OPRF protocol follows directly form the security of the

Hashed DH Oblivious PRF protocol [JL10] by using
∏

Hash(·) as the random function in

the random oracle model. The security and correctness of the Masked MUL-OPRF protocol

follows directly from DDH assumption since it implies that the value gβ·k ×∏Fk(mi) is

pseudo-random even given gβ (and even if the adversary somehow knows
∏

Fk(mi)).

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 123

Two-party Protocol Masked-MOPRF

Parameter: A random hash function Hash : {0, 1}∗ → G.

Input C: {mi}i∈[n]. S: k.

1. S samples random β in Zq and sends W = gβ.

2. C samples a uniformly random α ∈ Z
∗
q , and sends back X = (W ·∏n

i=1(Hash(mi))
α.

3. S replies with Y = Xk.

4. C outputs Z = Y α−1

.

5. S outputs R = gβ·k.

Figure 6.2: The Two-Party Protocol Masked-MOPRF

6.3 Scheme

In this section, we present our private search scheme. Our ultimate goal is a secure search

functionality that enables oblivious delegated queries on outsourced data to a party we call

index sever (IS), where the data owner (S) can obliviously issue a search token to a client

(C) for a query that remains hidden from the owner. Given this search token, C should only

learn the data matching the query, while minimizing the information that IS learns about

the issued queries (we analyze what IS learns formally in Section 6.4).

Recall that our search structure is a Bloom filter tree in which documents are associated

with the leaves of the tree and each node contains a Bloom filter holding the searchable

keywords of the documents associates with the leaves of its subtree. In the simple two-party

setting, where S is the querier (or client), S can build a plaintext Bloom filter tree storing

it as an ORAM at the index server. Then, for each query, S traverses the Bloom filter tree

(via ORAM accesses), to find the documents that satisfying its query (which it retrieves

and decrypts also via ORAM accesses).

In the delegated queries scenario (i.e., where C is not the database owner), allowing

complete ORAM access to C reveals information beyond what is strictly necessary. First,

since each ORAM access may retrieve several elements, C gets bits of the index that do not

correspond to its query. Equally important, C learns partial evaluation information, such

as which keywords of the formula are satisfied at each node, and which Bloom filter bits

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 124

are set. Ideally, C should only learn if the complete query is satisfied by the index node

being evaluated. These two problems are addressed by specially encrypting the index bits

and introducing an oblivious protocol that allows C to only learn whether the formula is

satisfied by an index node, but nothing more.

In Section 6.3.1, we introduce techniques that allow for secure delegated queries lever-

aging Bloom filter tree and ORAM approaches. We first show how to generate query tokens

without reveling the client’s query to either party. We then describe how to securely eval-

uate single term queries, conjunctions and DNF queries on each Bloom filter, allowing C

to traverse the tree and find the documents satisfying its query. Finally, we describe how

C can decrypt the retrieved documents without any party knowing the identifiers of these

documents.

In Section 6.3.2, we present the complete construction of our private search scheme.

6.3.1 Building Block Techniques

Obliviously Generating Search Tokens. Before C can evaluate its query, it needs to

be able to compute Bloom filter indices corresponding to the terms in the query for each

Bloom filter in the tree. For security reasons, these indices are derived from a PRF, whose

key is held by the database owner: each term is mapped through the use of this PRF to a

search token, which is then hashed to get the Bloom filter indices. Similarly to Jarecki et

al. [JJK+13], we use the Hashed Diffie-Hellman PRF Hsbf (m) = Hash(m)sbf as our PRF to

compute search tokens for each term. This PRF is computed via the oblivious protocol in

Figure 6.1, hiding the key from the client, and the keyword from the server.

Single Term Queries. For single keyword queries, φ(w) = w, the client needs to learn

if all the bits queried in a Bloom filter are set. For this purpose, we leverage the Masked-

MOPRF protocol making use of the underlying PRF to encrypt each bit. We encode a bit to

an arbitrary element in the range group of the PRF F , and use F to encrypt the bit. Let g be

a uniformly random group generator that we keep secret to the client (and given to the index

server); we map a bit b to gb and encrypt it as ri ← {0, 1}λ, 〈gb·Fk(ri), ri〉 for position i in the

Bloom filter1. The client and the index server use the Masked-MOPRF primitive described

1The values ri accross different Bloom filters are sampled independently.

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 125

in Section 6.2 to evaluate a Bloom filter query that reveal no additional information to the

client as follows. They execute the Masked-MOPRF protocol with inputs a set of {ri}i∈S ,

for the client, and a PRF key k for the index server, where S is the set of BF indices

corresponding to the query. The client obtains as output R ·∏i∈S Fk(ri), while the index

server obtains the random value R. Next, the client computes
∏

i∈S

(

gbi · Fk(ri)
)

, and using

its output from the Masked-MOPRF protocol obtains

∏

i∈S

(

gbi · Fk(ri)
)

(

R ·
∏

i∈S

Fk(ri)

)−1

= R−1 ·
∏

i∈S

gbi

= R−1 · g
∑

i∈S bi .

The index server now provides H(R−1 ·gh) so that the client can do the matching evaluating

H(R−1 · g
∑

i∈S bi) and doing the comparison. The random element R prevents the client

from learning the value g
∑
bi . The hash over the server-side matching key R−1 · gh, impede

canceling out R−1, and hence computing gh−
∑
bi . Note that if the generator g was known

to the client, he could multiply R−1 · g
∑

i bi with gj for j ∈ [h] and compare it against

H(R · gh), hence learning
∑

bi exactly, hence we require the generator to be secret to the

client. We will prove in section 6.4.4 the security of this Bloom filter matching procedure.

Conjunction Queries The method described above can be trivially extended to conjunc-

tions since the single term case is in fact a conjunction on the corresponding Bloom filter

bits. We can treat a conjunction as a bigger-size single term query. Let C be a conjunction,

then the number of bits to be checked is h× |C|.
Disjunctive Normal Form Queries. In the case of single term queries (and conjunc-

tions), a match requires that all the bits at the query indices of the Bloom filter be set to

one. Therefore, it suffices that the server provide the hash of a single “randomized matching

key” H(R · gh) to the client. In contrast, a disjunction allows many satisfying assignments

for the bit values for the query BF indices, hence, there are many possible matching keys.

In fact, there can be as many as |C| · 2h·(|C|−1) different satisfying assignments for the BF

query indices. However, in our construction we only need to consider the expression g
∑

i∈S bi

for each term in the conjunction, which has only h different possible values. Hence, there

are only |C| · h|C|−1 possible matching evaluation values for the client formula. With this

observation in mind we construct the following protocol:

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 126

• For each conjunctive clause C the client and the index server execute the protocol

for the single query matching (without the final stage where index server reveals the

hashed matching key), and the client learns the value

RC · g
∑

i∈SC
bi

where SC denotes the set of Bloom filter positions to be checked for clause C.

• Each of the resulting values is blinded by public a random exponent LC , and the final

matching evaluation key is computed as

∏

C∈φ

(RC · g
∑

i∈SC
bi)LC

.

• The index server computes the set Matching of all the possible matching values, and

the client obliviously does the matching. There are several ways to do the matching.

One possibility is to hash and permute all the matching keys, before sending them to

the client. Another approach is through a Bloom filter.

The purpose of the exponent LC is to separate the space of possible values of each clause

evaluation, so that there are no overlaps (with high probability) that could make a set of

unsatisfying clauses evaluate to a matching key.

Record Retrieval. After finding the list of identifiers of records satisfying the query, C

can actually retrieve them by querying the ORAM that contains the records. However, as

mentioned earlier, in the case of the index ORAM, each ORAM access can potentially reveal

records that do not satisfy C’s query. Hence, each document should be encrypted under a

key unknown to C. However, the client should be allowed to decrypt the satisfying records.

To support this feature, during the preprocessing phase, S samples a secret key sr and,

using again the Hashed Diffie-Hellman PRF, it derives for each document Di a document

encryption key ki ← H(i)sr . Them, in the online phase, S and C execute the OPRFprotocol

in Figure 6.1 to derive the decryption keys: C inputs the document identifiers, and S inputs

sr.

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 127

Procedure Setup

Public: Group G of prime order q and public generator g′.

Parameters: A security parameter λ, false positive rate fp, the tree degree d.

Input: Database {Di,Wi}Di=1.

1. Sample sk ← {0, 1}λ, and compute sets {W̃i = {Hsk(w)|w ∈ Wi}}.

2. Sample sr ← {0, 1}λ, and compute ki ← Fsr (i), D̃i ← Encki
(Di).

3. 〈H,BFT〉 ← BFTBuild({W̃i}, fp, d).

4. 〈EBFT, sbf , g〉 ← BFTEncrypt(BFT, 1λ).

5. 〈paramI , structI〉 ← OSetup(EBFT, 1λ).

6. 〈paramD, structD〉 ← OSetup({D̃i}, 1λ).

Output:

S : 〈sk, sr〉
C : 〈paramI , paramD〉
IS : 〈sbf , structI , structD〉.

Figure 6.3: The preprocessing procedure Setup

6.3.2 Final Scheme

Preprocessing. The procedure is parametrized by a false positive rate fp, a security

parameter λ, and the Bloom filter tree degree d. The database owner starts by choosing

keys sk, sr for the keyed hash function H. It then proceeds by building a Bloom filter

Search Tree with false positive rate fp for the database DB = (Di,Wi)
D
i=1, where each

keyword w ∈ Wi is mapped to Hsk(w) forming set W̃i. Each record Di is encrypted using

the derived key ki ← Hsr(i),D̃i = Encki(Di). Given the public generator g′, the owner

sample a random exponent y to get a new random generator g = g′y . The Bloom filter tree

is then encrypted by first sampling a key sbf , then encoding each Bloom filter bit b as gb, and

encrypting it as bEncsbf (g
b) = 〈gb · Fsbf (r), r〉, where r is sampled uniformly random from

{0, 1}λ. The owner continues by preparing an ORAM structure (paramI , structI) holding

the encrypted index, and the ORAM structure (paramD, structD) holding the records. In

principle, each encrypted Bloom filter bit can be an ORAM block. However, this can be

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 128

optimized to pack several bits in the same ORAM block to reduce the number of ORAM

lookups. We can choose, for example, to hold an entire Bloom filter in one ORAM block,

or to pack together bits in the same position across sibling Bloom filters.

The setup phase is formally described by procedure Setup in Figure 6.3. We describe

next the basic procedures used by Setup:

• BFTBuild({W̃i}Di=1, fp, d). Let BFT be a balanced d-ary tree of D leafs. Let L =

⌈logdD⌉ be the height of the tree. We build the tree level by level, starting from

the bottom level L. We then proceed recursively until reaching the root of the tree.

Let NL = max |Wi|. Using NL and fp, compute Bloom filters length nL and number

of Bloom filter hash function hL . Then, we sample hL independent hash function

HL = {H1, ...,HhL} with image {0, 1, ..., nL − 1}. For each i ∈ [D], we build a Bloom

filter Bi (using HL) inserting the elements of W̃i. We maintain each Bloom filter in

a unique leaf of BFT. The internal nodes of the tree are built recursively as follows:

we associate each node at level ℓ with the keywords held in its children. That is, for

each internal node, we build a Bloom filter that contains the elements from all its d

children. Return H = {H1,H2, ...,HL} and tree BFT. To avoid revealing the level of

the nodes being evaluates, we force the set of hash functions to be of the same size

h = hL = |HL| ≈ log(1/fp).

• BFTEncrypt(BFT, 1λ). Sample a random generator group generator g and a uniformly

random key sbf for PRF F . Build a tree EBFT by: a) encoding each bit b of BFT as

gb, b) encrypting gb as bEncsbf (g
b) = 〈gb · Fsbf (r), r〉, where r is uniformly random in

{0, 1}λ. Return the generator g, the key sbf and tree EBFT.

Search. C inputs a DNF formula φ(W) = C1∨C2∨ · · · ∨Cq on keywords in W. The client

reveals the query topology (number of clauses and size of each clause) to IS. C and S then

execute the protocol in Figure 6.1 to obtain search tokens for each keyword in each clause .

For each clause C in the query, C (or IS) uniformly samples LC from [q] and sends it to IS

(C). C and IS then start the tree traversal protocol. For each node being evaluated, both

parties proceed as follows:

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 129

• For each clause C of the query, the client computes the Bloom filter positions of

the clause’s hashed keywords for the node being evaluated, and performs the ORAM

queries to get the corresponding encrypted bits 〈gbi · Fsbf (ri), ri〉.

• To get each clause evaluation key, C and IS engage in the Masked-MOPRF protocol,

where C inputs the encryption randomness ri of each encrypted bit, and IS inputs the

PRF secret key sbf . C obtains πC = RC ·
∏

i∈SC
Fsbf (ri), and IS obtains the random

mask RC . C computes each clause C evaluation key as
∏

i∈SC
(gbi · Fsbf (ri)) · (πC)−1.

The key obtained is ζC = R−1 · g
∑
bi .

• The client computes each clause evaluation key as KC = ζLC

C , and multiplies all keys

together to obtain the final evaluation key FinalKey:

∏

C∈φ

KC =
∏

C∈φ

(R−1
C · g

∑
i∈SC

bi)LC

• The index server, which is given the generator g, computes all possible matching keys.

That is, for each clause C, IS computes the set

MatchingC =

(RC · g|C|·h)LC ·
∏

C′ 6=C

(RC′ · gνC′)LC

where for each C ′, νC′ ranges in {0, . . . , |C ′| · h}.

• Each node evaluation finishes by checking if C’s FinalKey belongs to the set Matching =
⋃

C MatchingC . This can be done securely by computing a Bloom filter with all match-

ing keys and sending the filter to the client, or by sending a permutation of all hashed

keys.

After the tree traversal, C gets the indices of all documents satisfying the query. It can

obtain the documents by querying the documents ORAM structure. To obtain the document

decryption keys, C and S execute protocol OPRF, where S inputs key sr and C inputs the

document identifiers. A formal description of the search protocol is presented in Figure 6.4.

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 130

Protocol Search

Public: Group G of prime order q.

Inputs.

C: DNF query φ(W), and ORAMs’ parameters paramI , paramD.

IS: Key sbf , group generator g, and structures structI , structD.

S: Keys sk and sr.

I. Tree Traversal

1. C. Set OUTI = ∅. ∀ clause C ∈ φ(·), LC
$← [q]. Send (topo(φ), {LC}C∈φ(·) to IS.

2. C-S. ∀C ∈ φ(·), ∀w ∈ C (w̃,⊥)←OPRF(w, sk).

3. C-IS start the tree traversal. C set queue Q = {(0, 0)}.

(a) if Q is empty go to Document Retrieval, otherwise v ← Q.pop().

(b) For each clause C derive from v and from Bloom filter bits positions Hv.level(w̃)

the set of addresses {i} of the Bloom fiter bits in the index, and do:

i. {(ei, ri)← ORead(i, structI)}.

ii.〈πC , RC〉 ← Masked-MOPRF({ri}, sbf).

iii. C computes ζC = π−1
C ·

∏

i ei.

(c) C. Set FinalKey =
∏

C ζ
LC

C .

(d) IS. Compute set Matching, and corresponding Bloom filter BF ←
BFBuild(Matching, 2−λ). Send BF to client.

(e) C. If BFMatch(BF,FinalKey) do:

if v.level = L then OUTI = OUTI ∪ {v},

else Q = Q ∪ Children(v).

(f) Go to 3a

II. Document Retrieval. C sets OUTD = ∅. For each index i ∈ OUTI do:

1. C-IS. D̃i ← ORead(i,ORead〉, structD).

2. C-S. (ki,⊥)←OPRF(i, sr)

3. C. Di ← Decki
(D̃i). OUTD ← OUTD ∪Di

Output: Client output set OUTD.

Figure 6.4: The Protocol Search

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 131

6.4 Security

Our protocol guarantee security in the semi-honest case against the client, server and data

owner. We discuss next the correctness for our protocols, define the leakage to each party

during the execution of the protocol. We then provide formal security definitions and proofs

of security.

6.4.1 Protocol Correctness

Without considering false positives, the correctness of our protocol follows from the cor-

rectness of ORAM, Bloom filter Search tree, and node evaluation. Note that if a clause C

is satisfied by the keywords held in the node, then the FinalKey obtained by the client is

(RC · g|C|·h)LC ·∏C′ 6=C(RC′ · gνC′)LC′ for ν ′C ∈ {0, ..., |C ′| ·h} for every C ′. This key belongs

to set matchingC , and hence the node evaluation is correct.

We now consider sources of false positives. In our protocol there are three posibilities

for false positives: the false positive rate of the BF instances that we use in the search tree,

collisions between node evaluation values that correspond to satisfying and unsatisfying

assignments, and false positive in the final matching of the FinalKey against set matching.

Note that false positives that occur in Bloom filters look-ups at intermediate levels of the

search tree may result in longer search time for the query; however, only the false positives

at the tree leaves may result in the client obtaining a document that does not match its

query.

We analyze the probability of each of the three independent events that cause a false

positive Bloom filter match. If we use Bloom filters with the false positive rate fp at the

leaves of the search tree, then for a DNF query of n clauses that consist of |C1|, . . . , |Cn|
terms (or keywords), the probability for a false positive match coming from a false positive

on the underlying terms is
∑n

i=1 fp
|Ci|.

The second event that causes an incorrect match on a Bloom filter DNF query is a

collision on the node evaluation final keys. For each clause Ci, let rCi
such that grCi = RCi

,

then we can look at the evaluation key as g
∑n

i=1 LCi
(rCi

+νCi
) where νCi

ranges between 0

and |Ci| · h. In a matching evaluation key, at least for some i νCi
equals |Ci| · h, whereas in

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 132

a mismatching key, none of the νCi
equals |Ci| · h. Let {νCi

}i be the number of bits set for

each clause Ci in a satisfying assignment (that is, for some i νCi
= |Ci| · h), and let {ν ′Ci

}
the numer of bits set for each clause in an unsatisfying one. Then, the probability that the

corresponding keys collide is the probability that
∑

i(νCi
− ν ′Ci

)LCi
= 0, which is negligible

in |Zq| = negl(λ) by the Schwartz-Zippel lemma [Sch80; Zip79].

The third source of false positives is the final key matching procedure. In Figure 6.4

we use a negligible false positive rate of 2−λ, we note however, that this can be set as a

tunnable parameter of the system.

Therefore, the false positive rate is bounded by
∑n

i=1 fp
|Ci| + negl(λ)

6.4.2 Protocol Leakage

In this section, we describe the leakage to each party in the setup and search phases of the

protocol.

Leakage During Setup. After Setup procedure is called by S, IS gets the encrypted

database, and PRF key sbf . The encrypted database consists of ORAM structures structI

and structD. The structures reveal the number of elements contained in the ORAMs, and

the size of the elements in them. Hence, the leakage to the server after the setup phase is

the Bloom filter tree total size |BFT|, the size of the database records |D1|, and the number

of records in the database D = |DB|. We call this leakage Lsetup,is.
Before each query search starts the client needs to know the structure of the Bloom

filter tree, and the number of records in the database D. We call this leakage Lsetup,c.
The data owner leakage Lsetup,o is empty since C and IS have no input.

Leakage During Search. During the search procedure, there is leakage to all parties. We

describe them individually next:

• IS starts by learning the query topology topo(q) (number of keywords in each con-

junctive clause). During the tree traversal, it learns the number of Bloom filter tree

node evaluations N . Finally, index server learns the number of records retrieved by

the client |DBfp(q)|. We call this leakage Lsearch,is.

• S learns the number of terms in the query |q|terms, and the number of records retrieved

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 133

by C |DBfp(q)|. We call this leakage Lsearch,o.

• C learns the tree traversal pattern TraversalPattern, composed by the identifiers of

the evaluated nodes and the result of each evaluation. We call this leakage Lsearch,c.

6.4.3 Security Definitions

We define security in the standard ideal vs. real world paradigm assuming semi-honest

adversarial behavior. In both worlds we let an adversary to choose the protocol inputs (the

database and the set of queries). In the real world the participant follows the prescribed

protocol, but we let the adversary to see the view (i.e. incoming messages and internal

randomness) of a single party. In the ideal world the adversary interacts with a simulator of

the protocol which doesn’t know the information we are protecting from the adversary. If

the view of the adversary in the real world is indistinguishable from the view produced by

the simulator we say that the protocol is secure, since whatever the adversary learns about

the private information in the real execution of the protocol can also be learned from the

simulator which have no information about the private information.

In our construction, however, we do allow for some limited privacy leakage. For example,

the index server knows how many nodes of the Bloom filter search tree the client evaluates.

To formally capture this leakage, we give the simulator access this leakage. Therefore,

security in this setting implies that an adversary cannot learn anything beyond the specified

leakage and output of the queries. In what follows we define the real and ideal procedures

of an adversary attacking a participant P :

real
Π
A,P (λ). Run A(1λ) to obtain database DB = {Di,Wi}Di=1. Execute Π with honest

parties allowing A to adaptively select queries at his choice. After each query give the view

of party P to A. When A halts, output the entire view given to A. We denote the output

as real
Π
A,P (λ).

ideal
Π,Lsetup,Lquery

A,SP
(λ). RunA(1λ) to obtain database DB = {Di,Wi}Di=1. Run SP (1λ, setup,Lsetup(|DB|))

to produce output to A. Have A repeatedly select queries q and run SP (1λ, query,Lquery(q))

and give output to A. We denote the output as ideal
Π,Lsetup,Lquery

A,SP
(λ).

Definition 6. We say that an OSPIR protocol Π is (Lsetup,Lsearch)-adaptively secure against

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 134

semi-honest party P if for every polynomial time stateful algorithm A there exists a poly-

nomial time stateful algorithm SP such that the random variables ideal
Π,Lsetup,Lsearch

A,SP
(λ) and

real
Π
A,P (λ) are computationally indistinguishable, for all sufficiently large λs.

We also consider a weaker selective security definition, in which the adversary can adap-

tively select queries traversing the database index, but can only request the satisfying docu-

ments once all the queries have been executed. The real and ideal procedures are redefined

in this setting next.

real
Π
A,P (λ). Run A(1λ) to obtain database DB = {Di,Wi}Di=1. Execute Π.Setup with hon-

est parties. Then, for each adversary’s query, execute Π.Search.TreeTraversal giving the view

of party P to A. When A finishes its queries, parties execute Π.Search.DocumentRetrieval

for each of the document satisfying the client’s queries, giving the view of party P to A.

Output the entire view given to A. We denote the output as real
Π,selective
A,P (λ).

ideal
Π,Lsetup,Lquery

A,SP
(λ). RunA(1λ) to obtain database DB = {Di,Wi}Di=1. Run SP (1λ, setup,

Lsetup(DB)) to produce output to A. Have A repeatedly select queries qi and run SP (1λ,

traversal,Lsearch(qi)) and give output to A. Then, execute SP (1λ, Document Retrieval,

{DBfp(qi)}i) We denote the output as ideal
Π,Lsetup,Lquery,selective

A,SP
(λ).

Definition 7. We say that an OSPIR protocol Π is (Lsetup,Lsearch)-selectively secure against

semi-honest party P if for every polynomial time stateful algorithm A there exists a polyno-

mial time stateful algorithm SP such that the random variables ideal
Π,Lsetup,Lsearch,selective

A,SP
(λ)

and real
Π,selective
A,P (λ) are computationally indistinguishable for all sufficiently large λs.

We will prove next that our system is adaptively secure against semi-honest owner and

server (separately) behaviors, and selectively secure against semi-honest client behavior.

We are not able to prove adaptive security for the semi-honest client case for the following

reason. On each ORAM access the client sees several encrypted records (in addition to

the one being queried); if these records are never requested by the client, the encryption

can be easily simulated by encrypting a dummy element. On the other hand, if some of

these records are requested later, the client should see the actual encrypted records, since

at some point it will be able to decrypt them. Hence, we allow the simulator to “build” the

ORAM containing the records, and simulate the queries after it knows which records are

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 135

being satisfied by the queries (including false positives).

6.4.4 Proofs of Security

Let Π be the protocol described in Figures 6.3 and 6.4. Let (Lsetup,is, Lsearch,is), (Lsetup,o,
Lsearch,o) (Lsetup,c, Lsearch,c) as described in section 6.4.2.

Theorem 6. Π is (Lsetup,is,Lsearch,is)-secure against semi-honest adaptive index servers.

The security of the scheme against semi-honest adaptive index servers follows almost

directly from the security of the underlying ORAM scheme used, and the security of the

Masked-MOPRF protocol. In fact, all incoming messages that are not ORAM are inde-

pendent and uniformly random elements of G; hence, they are perfectly simulatable. For

ORAM accesses, we use the security of the ORAM scheme. In particular, we assume the

existence of simulators SOSetup, SOAccess that simulates the OSetup procedure, and OAccess

procedure given only access to the number of elements in the ORAM and the size of the

elements. 2

Proof. We show that the index server’s view given to A in the real world experiment is

computationally indistinguishable from the one produced by the following algorithm S in

the ideal world experiment.

S(1λ, setup,Lsearch,is(DB)): Given index size ℓ = |BFT|, use the simulator SOSetup to build

an ORAM structure for ℓ elements of size len + λ, where len = poly(λ) is the bit-length

of elements in G. Given the number of records D and size of the records, use the ORAM

simulator SOSetup to build parameters and structure of another ORAM. Give both ORAM

structures and a uniformly random key sk to the adversary. Finally, derive number of

Bloom Filter hash functions.

S(1λ, query,Lsearch,is(DB, q)): Given query topology topo(q), the number of nodes traversed

N , and the number of records returned |DBfp(q)|, simulate each node evaluation as:

• Derive number of ORAM lookups from topo(q) and number of hash functions used.

Then use ORAM access simulator to perform the ORAM lookups.

2For the Path-ORAM, for example, the SOSetup can create an ORAM structure out of dummy elements,

and SOAccess can be simulated by requesting random paths root to leaf.

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 136

• Simulate Masked-MOPRF protocol by sampling uniformly random element in G.

The index server’s view is composed by ORAM lookups and incoming messages from

the Masked-MOPRF protocol. The view’s of this two procedures are independent since

the element received in each the Masked-MOPRF protocol execution (W ·∏H(mi))
α, for

uniformly random α, is a uniformly random element in the group (assumed to be of prime

order). Hence, the security of the scheme relies on the simulators SOSetup and SOAccess. We

conclude that the adversary cannot distinguish between the execution of the real protocol

from the execution of the ideal world.

Theorem 7. Π is (Lsetup,o,Lsearch,o)-secure against semi-honest adaptive owners.

Proof. The owner S is involved only in OPRF computations at query token generation,

and the computation of records decryption keys. The view of S is hi ← H(xi)
ri for many

uniformly and independent random ri ∈ Z
∗
q. Since H is onto G\{1}, and G is of prime order,

for every x ∈ {0, 1}∗, H(xi)
ri is uniformly and independently distributed in G. Hence, the

each invocation to the OPRF protocol can be perfectly simulated. The simulator only needs

the number of terms in the query |q|terms, and the number of satisfying records |DBfp(q)|.

Theorem 8. Π is (Lsetup,c,Lsearch,c)-selectively secure against semi-honest clients.

Proof. The leakage Lsetup,c is composed by the number of documents in the database D =

|DB|, the size of the documents |D1|, and the size of the index structure. The leakage

Lsearch,c is the tree traversal pattern for the query q. We next present the ideal world

simulator S.

S(1λ, setup,Lsetup,c(DB)): Create an ORAM for the index using random elements {(e, r)},
where e is a uniformly random element of G, and r is uniformly random in {0, 1}λ. Sample

uniform exponents sk and sbf to be used as key for the token generation PRF and ORAM

element encryption PRF respectively. Give ORAM parameter to the adversary and save

the ORAM structure, and keys.

S(1λ, Tree Traversal,Lsearch,c, q): 1)Token generation: For each term ti in the query sam-

ple a random invertible exponent r, and produce H(ti)
r·sk as the incoming message. 2)Tree

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 137

traversal: From tokens derive the address of the elements in the ORAM, and honestly per-

form lookups on the saved ORAM structure holding the simulated index. Let (ei, ri) be the

random elements gotten in the lookup. For each clause Cj , simulate the Masked-MOPRF pro-

tocol, by sampling random element gβ , exponent α, and computing gβ·α·sbf ·∏H(ri)
α·sbf as

the incoming message from the index server. The final step corresponds to the key match-

ing procedure, in which the client’s evaluation key is matched against the set of all possible

matching keys. When the tree traversal pattern indicates that the node satisfies the query,

compute the matching key as
∏

j(
∏

ei · g−β·sbf ·
∏

H(ri)
−sbf)LC and sample uniformly ran-

dom elements for the rest of the possible matching keys. Otherwise, all possible “matching

keys” are sampled at random from the group. The keys are then inserted in a Bloom filter

of false positive rate 2−λ.

S(1λ, Document Retrieval, {DBfp(qi)}i). Sample a random exponent sr, and encrypt each

document in
⋃

i DBfp(qi) using H(i)sr as the respective key. Then, create an ORAM simu-

lating the records’ ORAM, in which we maintain the encrypted elements of
⋃

iDBfp(qi), as

well encryptions of dummy records simulating the elements not requested by client. Give

the ORAM parameters to the adversary, and then honestly perform ORAM queries for ele-

ments in
⋃

i DBfp(qi), giving the client’s view to the adversary. To decrypt each record Di,

we simulate the OPRF protocol by sampling a random exponent r, and computing H(i)sr·r.

We now argue that the view simulated by the above algorithm is computationally in-

distinguishable from the client’s view in a real execution of the protocol. Let’s divide the

client’s view in the following groups:

1. ORAM access parameters.

2. OPRF messages for token generation and decryption keys.

3. ORAM elements gotten in lookups at tree traversal.

4. Masked MOPRF messages.

5. Hashed matching evaluation keys.

6. ORAM elements gotten in lookups for document retrieval.

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 138

7. Decrypted documents.

We first note that messages in groups 1, 2, 6, and 7 are independent from messages in

groups 3, 4 and 5 corresponding to node evaluation procedures. Also it is easy to see that

these first messages in the real world experiment are indistinguishable from the correspond-

ing view produced by S in the ideal world. In fact, since ORAM access parameters only

depend on the size of the data, S perfectly simulates them from the leakage profile. OPRF

messages are perfectly simulated by sampling a random keys sk, sr and following the pre-

scribed protocol. The document retrieval procedure is also correctly simulated by S since it

generates the document’s ORAM knowing which elements the client gets. Hence, security

reduce to the security of the underlying encryption scheme for the records not retrieved by

the client.

We now prove the messages in groups 3, 4, and 5 are correctly simulated by S. Assume

without loss of generality that query correspond to a single term. In the following analysis,

we do not include the encrypted bits gotten during ORAM lookup that do not correspond

the Bloom filter bits we are evaluating. We can safely do so because these encryptions are

independent from the rest of the messages, and the encryption scheme protects their values.

Hence, we focus on the set I corresponding to addresses of Bloom filter bits derived from

the query tokens.

The client’s view on each node evaluation correspond to:

ViewReal = {gbi · Fsbf (ri), ri}i∈I , gβ , gβ·sk ·
∏

i∈I

Fsbf (ri),H(g−β·sk · gh)

The simulator produce the following view:

ViewIdeal = {ei, ri}i∈I , gβ , gβ·sk ·
∏

i∈I

Fsbf (ri), T

Where eis are independent and uniformly random elements, and T is H(g−β·sk ·
(
∏

i∈I Fsbf (ri))
∏

ei) if evaluation is a match, and T is uniformly random if evaluation is a

missmatch. Note that gh = (
∏

i∈I g
bi) · gh−

∑
i∈I bi , and let’s make the change of variables

e′i = gbi · Fsbf in ViewReal:

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 139

ViewReal = {e′i, ri}i∈I , gβ , gβ·sk ·
∏

i∈I

Fsbf (ri),H(g−β·sk ·
∏

i∈I

(e′i · Fsbf (ri)−1) · gh−
∑

i∈I bi)

Let’s assume for now that e′i is uniformly random. Them, if h =
∑

bi, then evaluation

correspond to a match, and ViewReal is identically distributed to ViewIdeal. We next

prove that if e′i is uniformly random and h >
∑

bi, then there is no PPT distinguisher for

ViewReal vs. ViewIdeal. In fact, a distinguisher would need to tell H(g−β·sk ·∏i∈I(e
′
i ·

Fsbf (ri)
−1) · gh−

∑
i∈I bi) from uniformly random T . However, since H is random function,

the distinguisher can only win if he is able to compute the input g−β·sk ·∏i∈I(e
′
i ·Fsbf (ri)−1) ·

gh−
∑

i∈I bi . It is not hard to see that this is equivalent to computing gh−
∑

i∈I bi . Nevertheless,

since g is a uniformly random generator of a prime-order group that is hidden from the client,

the distinguisher cannot compute gc with noticeable probability for any c > 0. Hence, the

views are indistinguishable.

We show now that {e′i}i∈I is a pseudorandom element, and hence, the above argument

holds.

We use an hybrid argument to get to ViewReal in which e′i are uniformly random

elements. We first use DDH assumption to change gβ·sbf with a random element R. Indeed,

given public generator g′, and g′α, g′β , and the challenge C, a distinguisher can simulate one

of hybrids by sampling a private random exponent x to create a secret generator g = g′x

and simulating the hybrid as {gbi · Fsbf (ri), ri}i∈I , gα, C ·
∏

i∈I Fsbf (ri),H(C · gh) and call a

distinguisher for ViewReal vs. ViewIdeal, where Fsbf (r) is implemented as gβ·hash(r), and

hash : {0, 1}λ → Zp is a random oracle. Hence, we can change ViewReal to

ViewReal′ = {e′i, ri}, gβ , R ·
∏

i∈I

Fsbf (ri),H(R−1 ·
∏

(e′i · Fsbf (ri)−1) · gh−
∑
bi)

Let Q = R ·∏Fsbf (ri). Then we can rewrite the above as

ViewReal′ = {e′i, ri}, gβ , Q,H(Q−1 ·
∏

e′i · gh−
∑
bi)

where Q is uniformly random. We now use the security of F to change e′i = gbi ·Fsbf (ri)
for a uniformly random elements ei. In fact, a successful distinguisher D for ViewReal

with e′i and uniformly random ei can be used to distinguish F from a uniformly random

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 140

function. The distinguisher D
O(·)
PRF for F is as follows: Sample uniformly random {ri}, Q, gβ ,

and computing ei = gbi · O(ri), then output b← D({ei, ri}, gβ , Q,H(Q−1 ·∏ ei · gh−
∑
bi)).

Note that if oracle is Fsbf (ri), then the input produced to D is identically distributed to

ViewReal’. On the other hand, if oracle is a random function f , then eis are random as

long as ri does not repeat, but this happens only with negligible probability.

We conclude that if F is a PRF, DDH holds in the prime-order group, H is random func-

tion, and g is kept secret to the client, then ViewReal is computationally indistinguishable

from the view produced by the PPT simulator S.

6.5 Implementation

We implemented a prototype of our system in Java that consisted of approximately 4K lines

of code. We next list some choices we made during the development of our prototype.

Cryptographic Primitives. We used Java Cryptography Architecture to implement the

required symmetric key operation in our system. We used SHA-256 as the underlying

hash function. ORAM elements where symmetrically encrypted using AES-128. The group

operations were instantiated using the subgroup of quadratic residues modulo p = 2q + 1,

where p, q are both prime. The bit-length of p was chosen to be 1024. Large integers and

operations were instantiated using java.math.BigInteger class.

Optimization. A common Bloom-filter-based index optimization packs together bits

stored at the same position across different Bloom filters. In our case, whenever we visit a

node, we need to check all its siblings Bloom filters at the exact same positions. With this

consideration we packed the encrypted bits at the same position of all siblings nodes in a

single ORAM block, reducing the number of ORAM read operations.

ORAM. We implemented the simple and efficient Path ORAM of [SvDS+13]. Each ORAM

bucket (nodes in the ORAM tree) contained four elements. The ORAM stash was main-

tained entirely on the client. The lowest-level position map was set to maintain 1000 indices

at the client side. Each element was between 1-2KB, containing “siblings” encrypted bits

as explained above.

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 141

Private Set Membership Queries. At the end of each node evaluation, C and IS engage

in a private set membership query, where IS inputs a set of all possible matching keys for

the node, and C inputs the key computed. We implemented this protocol by having the

server hash all the keys, randomly permute them, and send them to the client.

6.6 Evaluation

In this section, we quantify the performance of the encrypted index traversal of our OSPIR

protocol by both showing the results of running our prototype on datasets of 1K, 10K, and

100K records, and providing an asymptotic analysis of performance.

Experimental Setup Motivated by the audit logs application on cloud services, we col-

lected provenance data from an Ubuntu 14.04 system running Apache. From this data, we

built a single table database containing on each row a node from the provenance graph and

its annotation. We set up two Intel Xeon E5-2430 2.2Ghz (2 cores of 12 threads), 100GB

RAM machines with Broadcom 1GB Ethernet. IS and S run together on the same machine.

Our system parameters were set so that the index for the 100K records database fits in

100GB of RAM. Specifically, we fixed the degree of the tree to 10, the Bloom filter false

positive to 10−5, and the number of searchable keywords per record to 4.

Queries. We ran SELECT-id queries that match a single record. The performance of

queries that return one result provides the worst-case latency per record, since queries

returning several records do not need to inspect already-evaluated nodes. Additionally, by

returning just the record identifier, we can evaluate exactly the cost of the search procedure.

The types of queries covered were single term, conjunctions, disjunctions and 3-DNFs.

Conjunctions vs. Disjunctions. Figure 6.5 shows, in log10 scale, the latency time

for conjunctions and disjunctions of sizes 1, 2, 3, 4, and 5 on a 100 K record database.

We observe that while conjunctive queries run in a few seconds, disjunctive queries are

exponentially more expensive. It is interesting to note that the number of ORAM queries

performed by both types of queries is exactly the same; hence, the latency time is dominated

by cryptographic operations and data transfer of the matching keys set. In the case of

disjunctive queries, we also note that the use of multiple cores does not reduce the latency

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 142

significantly (at most a factor of two for 24 cores). In the case of conjunctions, the evaluation

is entirely sequential and the use of multiple cores has no effect.

 10

 100

 1000

 10000

 0 1 2 3 4 5 6

T
im

e
(s

ec
s)

Query Size

Conjunction
Conjunction-Multithreaded

Disjunction
Disjunction-Multithreaded

Figure 6.5: Latency of conjunctions and disjunctions of sizes 1, 2, 3, 4 and 5 for 100K

records DB.

Varying Database Size. Figure 6.6 shows the latency for different DNF queries across

databases of sizes 1K, 10K, and 100K. The difference between running a query on databases

of varying sizes is captured in the number of nodes to be evaluated and the potentially larger

ORAM size for larger databases. We observe the sub-linearity of our system’s running time;

increasing the database size by a factor of 10, increases the running time by a comparatively

small amount, which is due to a single extra evaluation node and a larger ORAM structure.

ORAM vs. node evaluation. In table 6.1, the second and third columns illustrate the

time our prototype spent in ORAM read queries and node evaluation, once ORAM queries

have been performed. Since same-size queries require the same number of ORAM operation,

the ORAM time is identical for same-size queries. Disjunctive queries, however, exhibit

a much more expensive node evaluation execution, since they involve an exponentially

large number of possible matching keys, which IS has to compute and hash individually.

Moreover, the fourth column indicates that the network usage increases significantly with

bigger disjunctions. The reason is that IS also needs to send the set of possible matching

keys to C. In particular, for size-4 3-DNF, the network usage raises to 1GB, and we can

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 143

 0

 10

 20

 30

 40

 50

 60

 70

 80

Single term

3 Conjunction

3 Disjunction

3-DNF 2

3-DNF 3

T
im

e
(s

ec
s)

103

104

105

Figure 6.6: Query latency time for different-size DNF queries for databases of sizes 1K, 10K

and 100K records.

infer that for these queries the index traversal will dominate the running time, considering

queries that also return the records’ payload.

Index Size. One of the drawbacks of our solution is the space utilization of the index.

Each bit of a plaintext version of our index is encoded using 140 bytes. Moreover, the

index is stored as is in an ORAM structure, which multiplies the space by a non-small

constant factor. In our evaluation, each record was associated with 4 searchable keywords.

Consequently, for our 100K records dataset, the encrypted index uses 75GB of RAM.

Asymptotic Performance Analysis. The cost of our search procedure is proportional

to the number of Bloom filter node visited. Each node evaluation consists of a stage of

ORAM lookups and stage of matching keys calculation. Consider a general DNF formula

consisting of k clauses, each of ti terms. The number of ORAM lookups is
∑k

i=1 ti · h each

having polylog(D) index server-side lookups of size polylog(λ) each (by using Path-ORAM

the polylog(D) term is of degree 2). At the same time, the number of possible matching

keys to be computed is
∑k

i=1

∏i−1
j=1 tj ·h ·

∏k
j=i+1(tj ·h+1) (< k · (max(ti) ·h+1)k−1), where

each key can be computed by 2k exponentiations on the group 3. Summarizing, the cost of

3Since keys have common terms, it is not necessary to compute 2k exponentiations for every key, and a

much faster algorithm can be used.

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 144

Query ORAM Eval Network

Single Term 4 6 26 MB

2-Conjunction 9 6 52 MB

2-Disjunction 9 10 52 MB

3-Conjunction 14 6 78 MB

3-Disjunction 14 20 80 MB

4-Conjunction 18 6 105 MB

4-Disjunction 18 90 140 MB

5-Conjunction 18 6 131 MB

5-Disjunction 18 90 932 MB

Size 2 3-DNF 25 11 158 MB

Size 3 3-DNF 35 35 249 MB

Size 4 3-DNF 50 680 1173 MB

Table 6.1: Latency in seconds of tasks in protocol and network usage per query on a 100K

records DB.

each node evaluation is

Cnode = polylog(λ)(polylog(D) ·
k
∑

i=1

ti +

k
∑

i=1

i−1
∏

j=1

tj · h ·
k
∏

j=i+1

(tj · h+ 1))

The number of nodes visited varies from query to query. For disjunctions, if a node

matches the query, there must be at least a record in its subtree that matched the query.

In this case, the worst case per record returned is when there is a single matching record,

and hence the procedure needs to evaluate an entire path root-to-leaf to reach the record.

Therefore, the worst-case per record cost H ·Cnode, where H = logd(D) is height of the tree.

On the other hand, it is specialy hard to analyse conjunctions since in the worst case, we

can visit the entire tree, without finding a single matching record. For example, imagine a

AND query of 2 terms, where the first term is present in half the records and the second

term in the other half. However, as noted first in Chapter 4, the performance of AND

queries is proportional to the least frequent term of the query in the database, which is

optimal without an specialized index for conjunctions.

CHAPTER 6. LOW-LEAKAGE PRIVATE SEARCH OF BOOLEAN QUERIES 145

6.7 Conclusions

We proposed an encrypted search scheme that supports Boolean queries and enables del-

egated queries. Our system diminishes the leakage of existent solutions, preserving the

sublinear search efficiency. Our construction integrates ORAM techniques with efficient

search index structures leaking to the index server only the number of nodes visited in the

search tree during the execution of a query. We also proposed a new protocol for oblivious

product of pseudorandom function we called Masked-MOPRFthat allow us to securely eval-

uate Bloom filters. This protocol enables the delegated-query feature by disclosing only the

match result. Finally, to hide the details of delegated queries from the data owner, we also

used an oblivious search token generation.

We implemented our system prototype and ran it on a 100,000-record database. We showed

that our system can handle conjunctive queries and small DNF formulas in 10-30 seconds.

The sublinearity of our solution, also experimentally illustrated in Figure 6.6, allows us to

extrapolate that queries on much larger databases (106, 107, and 108 records) will run in a

few minutes. The cost of eliminating leakage is substantial; the Blind Seer and OXT-OSPIR

systems manage to return records in less than a second for databases of size 108 records with

a much larger number of searchable keywords. On the other hand, our system outperforms

the secure single-keyword search of the HE-over-ORAM solution whose experimental results

showed that their system answers a query in 30 minutes for 4 × 106 record databases.

Therefore, our scheme provides a new tradeoff mark between privacy and efficiency.

To the best of our knowledge, our system is the first to apply ORAM techniques in pri-

vate database search to reduce the leakage exhibited by other systems that allow Boolean

queries. Our experimental results show that the use of ORAM is not the bottleneck for com-

plex queries; hence, possible future work may focus on reducing the overhead of disjunction

evaluation at each index node. In addition, we note that reducing the memory required to

maintain our index is crucial for practical applications. This can be achieved by providing

a better encoding scheme for the Bloom filter bits and optimizing the ORAM parame-

ters. Another future direction is to augment our system with a private query authorization

mechanism.

146

Part III

Final Remarks

CHAPTER 7. RELATED WORK 147

Chapter 7

Related Work

7.1 Related Work

7.1.1 RAM based Secure Computation.

The first part of this thesis proposed a scheme for secure two-party computation that achieve

sublinear time complexity, in an amortized sense. The main idea was to combine an ORAM

scheme together with small generic secure computation steps.

This idea was first explored by Ostrovsky and Shoup [OS97] for the purpose of private

storage. In their construction, there are three playes, a database owner and two non-

colluding servers. One server simulates the ORAM server, and the ORAM state is shared

between the two servers. An access to the data is done by having both servers execute an

ORAM instruction using a secure computation protocol as we do. Although the construction

of Chapter 3 follows the same paradigm of “ORAM + 2PC”, the scenarios are quite different.

Another approach to using ORAM for secure computation was observed by Damg̊ard

et al. [DMN11], where the players share the the entire ORAM structure. Hence, all players

require superlinear storage. In our construction, the client maintains only a polylogarithmic

number of bits.

After the publication of our techniques [GKK+12], RAM based secure computation has

continued been estudied in [LO13b; LO13a; GGH+13; GHL+14]. In addition, the work

of [KS14] implements several data structured using ORAM and uses them for secure com-

CHAPTER 7. RELATED WORK 148

puation of specific functionalities. While all these schemes assumed semi-honest adversaries,

the recent work of Afshar et al. [AHMR15] achieve malicious security in this model.

7.1.2 Encrypted Search

In the second part of this thesis we focused on the specific scenario of private DB querying.

The problem of private DBMS can be solved by general purpose secure computation

schemes [GMW87; BGW88; Yao82; Yao86; LP09]. These solutions, however, involve at

least linear (often much more) work in the database size, hence cannot be used for practical

applications with large data.

Private Information Retrieval protocols (PIR) [CGKS98] consider a scenario where the

client wishes to retrieve the ith record of the server’s data, keeping the server oblivious

of the index i. Symmetric PIR protocols [GIKM00] additionally require that client should

not learn anything more than the requested record. While most PIR and SPIR protocols

support record retrieval by index selection, Chor et al. [CGN97] considered PIR by keyword.

Although these protocols have sublinear communication complexity, their computation is

polynomial in the number of records, and inefficient for practical uses.

Another approach would be to use fully homomorphic encryption (FHE). In 2009, Gen-

try [Gen09] showed that FHE is theoretically possible. Despite this breakthrough and many

follow up works, current constructions are too slow for practical use. For example, [GHS12]

showed an implementation that homomorphically compute 720 AES blocks in two and a

half days.

Little work has appeared on practical, private search on a large data. In order to

achieve efficiency, weaker security (some small amount leakage) has been considered. The

work of [PRV+11; RVBM09] supports single keyword search and conjunctions. However,

the solution does not scale well to databases with a large number of records (say millions);

its running time is linear in the number of DB records. A more efficient solution towards

this end was proposed in [CLT11]. However, they only considered single keyword search.

Any single keyword search solution can be used to solve (insecurely) arbitrarily Boolean

formulas; solve each keyword in the formula separately and then combine (insecurely).

Obviously, however, this leaks much more information to the parties (and also has work

CHAPTER 7. RELATED WORK 149

proportional to the sum of the work for each term). Our systems, in contrast, provides

privacy of the overall query (and work proportional to just the smallest term).

There has been a long line of research on searchable symmetric encryption (SSE)

[SWP00; Goh03; CM05; CGKO06; MS13; CJJ+13; CK10]. Note that, although many

of the techniques used in SSE schemes can be used in our scenario, the SSE setting fo-

cuses just on data outsourcing, and does not considering delegating search capabilities.

That is, in SSE the data owner is the client, and so no privacy against the client is re-

quired. Additionally, SSE solutions often offer either a linear time search over the number of

database records [SWP00; CM05; MS13], or a restricted type of client’s queries [CGKO06;

KP13], namely single keyword search or conjunctions. One exception is the recent SSE

scheme of [CJJ+13], which extended the approach of [CGKO06] to allow for any Boolean

formula of the form k0 ∧ φ(k1, ..., km−1), where φ(·) is an arbitrarily Boolean formula.

Their search time complexity is O(m × D(k0)), where D(k0) is the number of records

containing keyword k0. Note that an arbitrary formula could be represented this way,

as k0 can always be set to true, but then the complexity will be linear in the number

of records. On the other hand, if the client can format the query so that k0 is a term

with very few matches, the complexity will go down accordingly. In contrast, all of the

solutions presented here addresses arbitrary Boolean formulas, with complexity propor-

tional to the best term in the CNF representation of the formula. Searchable encryp-

tion has also been studied in the public key setting [ABC+08; BBO07; BW07; BCOP04;

SBC+07]. Here, many users can use the server public key to encrypt their own data and

send it to the server.

The CryptDB system [PRZB12] addresses the problem of DB encryption from a com-

pletely different angle, and as such is largely incomparable to our work. CryptDB does

not aim to address the issue of the privacy of the query (but it does achieve query privacy

similar to the single-keyword search solution described above). Their threat scenario fo-

cuses on DB data confidentiality against the curious DB administrator, and they achieve

this by using a non-private DBMS over what they call SQL-aware encrypted data. That

is, the SQL query is pre-processed by a fully trusted proxy that encrypts the search terms

of the query. The query is then executed by standard SQL, which combines the results of

CHAPTER 7. RELATED WORK 150

individual-term encrypted searches. Additionally, for free-text search, CryptDB uses the

linear solution of [SWP00].

The closest to our setting is an extension of the OXT scheme [CJJ+13], called OSPIR-

OXT [JJK+13], supporting the class of functions as OXT. A comparison between our work

and OSPIR-OXT was described in Chapter 4, Section 4.1.2 and Chapter 6, Section 6.1.2.

CHAPTER 8. CONCLUSIONS 151

Chapter 8

Conclusions

This thesis focused on achieving efficiency in secure computation protocols for the use in

application involving high volumes of data. Hence, the primary goal was to overcome the

linear time lower bound explained in the introducing chapter of this work.

By taking advantage of key properties in specific scenarios, and making use of modern

cryptographic techniques we provided ad-hoc protocols achieving various level of security,

efficiency and functionality.

We noted first that in many scenarios the function to be computed applies repeatedly

over same or slightly modified data. This allowed us to preprocess the data so that future

function evaluations over it can be computed securely, achieving sublinearity in an amortized

sense. We gain further efficiency in some settings by making use of the help of a semi-honest

third party. Furthermore, in some settings allowing some controlled privacy leakage is worth

the extra efficiency that the protocol can achieve.

In addition to several novel techniques, we made extensive use of Oblivious RAM pro-

tocols and Yao’s Garbled Circuits. ORAM was used to hide the access pattern to the data

(hence protecting the data as well as the queries from the server holding it). To additionally

protect data from a client, we evaluated privacy critical small subroutines using state-of-

the-art Yao’s Garbled Circuit construction. ORAM was used in Chapters 3 and 6, and

Yao’s Garbled Circuit technique was used in the protocols of Chapters 3, 4, and 5.

CHAPTER 8. CONCLUSIONS 152

8.1 Summary of contributions

Part I . In the first part of this work we studied the problem from a theoretical perspec-

tive. We asked whether a two player functionality that can be computed insecurely over

a Random Access Machine in sublinear time, can also be computed efficiently, hence over-

coming the linear time complexity lower bound. We answered this positively in Chapter 3

by composing an Oblivious RAM (ORAM) protocol with small generic secure computation

steps. The construction compiles a RAM program on virtual addresses into an ORAM pro-

gram on physical, server-side addresses in which the “next instruction” of the program is

computed securely via some generic Secure Computation protocol. Since the “next instruc-

tion” is usually a small program, and Oblivious RAM incurs a polylogarithmic overhead,

the solution guarantees that if the original RAM program uses space s and requires t steps,

then the compiled program runs in time t · polylogs, and uses poly(s) space.

We went further and provided an optimized protocol that takes advantage of an specific

construction of ORAM, and uses Yao’s’ GC technique for the small secure computation

steps. We provided a prototype of such scheme and showed its efficiency experimentally.

We compared our protocol executing a binary search against a linear time secure search

using Yao’s protocol, and showed that our solution outperforms the trivial scan for dataset

of 219 elements. We note that since the development of Chapter 3 there have been many

improvements over the ORAM scheme used. Since the same techniques we use can be

applied to these newer schemes, we can infer that the construction would outperforms the

linear scan for even smaller datasets.

Part II . In the second part of this theses we focused on the specific application of Private

Database Search. In this setting, we aimed at protecting the client’s query as well the

server’s data set. However, instead of looking at the problem from a theoretical perspective

like in Part I, we searched for practical systems that still achieve strong security guarantees.

We proposed 2 systems achieving different levels of efficiency and privacy.

The first system, called Blind Seer, was studied in Chapters 4 and 5. Blind Seer achieves

extremely high efficiency while still protecting the query and data by making use of a third

party assumed not to collude with server or client. In terms of functionality Blind Seer

CHAPTER 8. CONCLUSIONS 153

allows for:

• Arbitrary Boolean queries over the terms, where the only requisite is that negations

are pushed down to the input level of the formula.

• Ranges queries.

• Stemming and free-text search.

• Ranking of results.

• Private access control over the queries.

• Indistinguishability of small result sets queries.

A prototype of the system was developed and tested with anonymized census data. The

data set consisted of 100,000,000 records each composed by 70 searchable keywords and a

payload of 100 KB. We compared the system against plaintext MySQL database system.

Experimental results shows a performance multiplicative overhead of 1.2-3 over MySQL for

many interesting SELECT id queries.

In addition, we formally showed that the system protects the client’s query, the access

control policy, and the server’s data up to some limited specified leakage to the players.

The privacy leakage primary correspond to access patterns to the database records and the

traversed index, as well as query circuit and access control policy topology.

In Chapter 4 we showed the basic architecture and construction of Blind Seer, assuming

that all players follows the protocol specification. However, we noted a weakness in the pro-

tocol that would allow a malicious client to easily circumvent the access control mechanism

with no possible detection. In Chapter 5 we solved this issue by cryptographically binding

the query to the access control mechanism and the traversal of the database index. In

addition, our solution involve virtually no overhead by using a novel protocol that allow to

securely evaluate a topology-aware universal circuit with no additional cost over evaluating

the original circuit.

We presented a new prototype of Blind Seer that implemented the protection against

malicious client behavior. We compared this new prototype against MySQL and the original

CHAPTER 8. CONCLUSIONS 154

Blind Seer. The new Blind Seer manage to be only 2-3 times slower than MySQL when

using multiple cores on both systems. Against the original Blind Seer, we showed that the

system in fact introduce no significant overhead. The new implementation also allows for

parallel traversal of the index, achieving up to ×15 improvement when using 15 cores.

In the next and final chapter we asked whether we can avoid the leakage to the index

server and still achieve the level of efficiency reached with Blind Seer. The Blind Seer leakage

mainly correspond to access pattern to the database records and index structure, as well

search pattern in the query. We proposed a new scheme that stores the index and the records

using ORAM structures to hide access and search patterns to the index server. Instead of

secretly sharing the state of the ORAM between the players (as done in Chapter 3), we

gave the client the entire ORAM parameters. However, we encrypt the ORAM data from

the client in a special way and developed a novel protocol we called Masked-MOPRF, that

we use to obliviously evaluate Bloom filter evaluation. Therefore, a client can traverse the

index knowing only the result of the query in each index node, and nothing more. The

new system allows for Boolean queries represented as DNF formulas over keywords. To our

knowledge this is the first work that uses ORAM in the specific scenario of Boolean Private

Search.

Our experimental analysis showed that the cost incurred is significant, both in terms

of space required to hold the index and query search time. While Blind Seer can return a

single records in a few milliseconds, the new system takes seconds on much smaller dataset.

Although a straight forward comparison against the sublinear secure computation construc-

tion of Chapter 3 is not fair (since different ORAM schemes and dataset were used), we can

infer that using that such a solution would be much more inefficient, since several look-ups

would need to be performed to return records satisfying the Boolean formula, and the “next

instruction” would require a complex circuit to compute.

We also noted that for DNF queries the bottleneck of the scheme is not the use of

ORAM, but the oblivious Bloom filter evaluation protocol, whose complexity increases

exponentially with the number of disjunctions in the query. Hence, future work may focus

on a more efficient oblivious Bloom Filter evaluation procedure.

In Table 8.1 we summarize the trade-off space position of the schemes presented in this

CHAPTER 8. CONCLUSIONS 155

System Functionality Efficiency Leakage

Sublinear 2PC General Seconds per look-up Amount of work

Blind Seer Boolean Practical access pattern

DB Search Milliseconds per record to index and records

Low-Leakage DNF Practical work on index

Secure Search DB Search for small formulas # records returned

Seconds per record tree traversal to client

Table 8.1: Comparison between the protocols

Thesis. The first scheme for sublinear secure two-party computation potentially allow for

any two party functionality, however every look-up perform in each evaluation runs in several

seconds. The leakage is minimal and only reveals the running time of the computation.

The Blind Seer system is the most efficient scheme presented here, and its also rich in

functionality. Records satisfying a Boolean query can be returned within a Milliseconds.

However, the leakage incurred include access pattern, search patterns, and index traversal

pattern. The last scheme, allows for Boolean queries given as DNF. Is practical for small

queries since records satisfying a small query can be returned in a few seconds. The leakage

of such scheme is reduces only to the traversal pattern to the client, while the server learns

only the amount of work performed.

8.2 Direction for future work.

Each of the system presented in this work can be improved in several ways. The use of

better and simpler ORAM schemes would be of direct improvement over the solution of

Chapters 3 and 6. In the same way, new secure two-party computation techniques can be

used to improve efficiency in the schemes of Chapter 3 and Blind Seer. The Blind Seer

system can be improved in terms of functionality by supporting more complex queries,

and stronger query policies. Also, many real application make use relational multi-table

database that Blind Seer can only supports naively (by adding keywords joining the tables).

The last low-leakage version of Blind Seer can be enhanced by supporting access control,

CHAPTER 8. CONCLUSIONS 156

and multiple clients. As mentioned earlier, for large DNF formulas the ORAM running

time stops being the bottle-neck of the search mechanism, and hence future work would

concentrate in reducing the complexity of the oblivious Boom filter evaluation mechanism.

This last scheme could potentially be modified to a two party setting (as in Chapter 3). This

would require a much more expensive preprocessing step that result in the database owner

holding its data in an ORAM structure for which he does not know the key. An important

line of work is to develop efficient algorithms for such preprocessing, since otherwise a

trusted third party is needed in any practical application.

We note that the range from complete privacy to best performance and functionality

is wide, and this work only targets specific points within it. We see it as a step towards

exploring several other trade-offs in this space. For example, it would be very interesting

to develop an ORAM-like scheme that is specially designed for an application. A line of

work in this direction is [WNL+14] were the authors take advantage of a-priori known

access pattern to the data structure to design a more efficient ORAM that leaks this access

pattern. Another work is [GGH+13] in which a single binary search is performed with one

ORAM look-up.

An additional interesting line of research for future work is to develop a highly tunable

system which will be able to be configured and match many practical scenarios with different

privacy and performance requirements.

8.3 Publications

• The work of Chapter 3 paper has been presented at the ACM Conference of Computer

Security (CCS) in 2012, and published in the corresponding proceedings [GKK+12].

The paper was in joint effort with Dov Gordon, Jonathan Katz, Vladimir Kolesnikov,

Tal Malkin, Mariana Raykova, and Yevgeniy Vahlis.

• The first version of the Blind Seer system described in Chapter 4 is product of a 2

years of work together Vasilis Pappas, Binh Vo, Seung G. Choi, Vladimir Kolesnikov,

Tal Malkin, Wesley George, Steve M. Bellovin, and Angelos Keromytis. A research

paper presenting the contributions was presented at the IEEE Symposium on Security

CHAPTER 8. CONCLUSIONS 157

and Privacy 2014 (S&P) and published in the corresponding proceedings [PKV+14].

• The techniques of Chapter 5 that augment Blind Seer security against malicious-client

behavior is product of work with Ben Fisch, Binh Vo, Abishek Kumarasubramanian,

Vladimir Kolesnikov, Tal Malkin, and Steve M. Bellovin. A research paper presenting

the contributions was presented at the IEEE Symposium on Security and Privacy

2015 (S&P) and published in the corresponding proceedings [FVK+15].

158

Part IV

Bibliography

BIBLIOGRAPHY 159

Bibliography

[ABC+08] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno,

Tanja Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi.

Searchable encryption revisited: Consistency properties, relation to anonymous

ibe, and extensions. J. Cryptology, 21(3):350–391, 2008.

[AHMR15] Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. How

to efficiently evaluate RAM programs with malicious security. In Advances

in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference

on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,

April 26-30, 2015, Proceedings, Part I, pages 702–729, 2015.

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and

efficiently searchable encryption. In Advances in Cryptology - CRYPTO 2007,

27th Annual International Cryptology Conference, Santa Barbara, CA, USA,

August 19-23, 2007, Proceedings, pages 535–552, 2007.

[BCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.

Public key encryption with keyword search. In Advances in Cryptology - EU-

ROCRYPT 2004, International Conference on the Theory and Applications of

Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings,

pages 506–522, 2004.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Advances in Cryptology -

CRYPTO ’95, 15th Annual International Cryptology Conference, Santa Bar-

bara, California, USA, August 27-31, 1995, Proceedings, pages 97–109, 1995.

BIBLIOGRAPHY 160

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-

rems for non-cryptographic fault-tolerant distributed computation (extended

abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of

Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 1–10, 1988.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled

circuits. In the ACM Conference on Computer and Communications Security,

CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 784–796, 2012.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.

[BM84] Manuel Blum and Silvio Micali. How to Generate Cryptographically Strong

Sequences of Pseudo-Random Bits. SIAM J. Comput., 13(4):850–864, 1984.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on en-

crypted data. In Theory of Cryptography, 4th Theory of Cryptography Con-

ference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Pro-

ceedings, pages 535–554, 2007.

[CGKO06] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Search-

able symmetric encryption: improved definitions and efficient constructions.

In Proceedings of the 13th ACM conference on Computer and communications

security, CCS ’06, pages 79–88, New York, NY, USA, 2006.

[CGKS98] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private

information retrieval. Journal of the ACM, 45(6):965–981, 1998.

[CGN97] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by

keywords. Technical Report TR-CS0917, Dept. of Computer Science, Technion,

1997.

[CJJ+13] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-

Catalin Roşu, and Michael Steiner. Highly-scalable searchable symmetric

encryption with support for boolean queries. In Advances in Cryptology -

BIBLIOGRAPHY 161

CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,

USA, August 18-22, 2013. Proceedings, Part I, pages 353–373, 2013.

[CK10] Melissa Chase and Seny Kamara. Structured encryption and controlled dis-

closure. In Advances in Cryptology - ASIACRYPT 2010 - 16th International

Conference on the Theory and Application of Cryptology and Information Se-

curity, Singapore, December 5-9, 2010. Proceedings, pages 577–594, 2010.

[CLT11] Emiliano De Cristofaro, Yanbin Lu, and Gene Tsudik. Efficient techniques for

privacy-preserving sharing of sensitive information. In Proceedings of Trust and

Trustworthy Computing - 4th International Conference, TRUST 2011, Pitts-

burgh, PA, USA, June 22-24, 2011., pages 239–253, 2011.

[CM05] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword

searches on remote encrypted data. In Applied Cryptography and Network Se-

curity, Third International Conference, ACNS 2005, New York, NY, USA, June

7-10, 2005, Proceedings, pages 442–455, 2005.

[DMN11] Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure

oblivious RAM without random oracles. In Theory of Cryptography - 8th Theory

of Cryptography Conference, TCC 2011, Providence, RI, USA, March 28-30,

2011. Proceedings, pages 144–163, 2011.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol

for signing contracts. Commun. ACM, 28(6):637–647, 1985.

[FVK+15] Ben Fisch, Binh Vo, Fernando Krell, Vladimir Kolesnikov, Tal Malkin,

Steven M. Bellovim, and Abishek Kumarasubramanian. Malicious-client secu-

rity in blind seer: A private scalable DBMS. In IEEE Symposium on Security

and Privacy, 2015.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings

of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,

Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178, 2009.

BIBLIOGRAPHY 162

[GGH+13] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana

Raykova, and Daniel Wichs. Optimizing ORAM and using it efficiently for

secure computation. In Privacy Enhancing Technologies - 13th International

Symposium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings,

pages 1–18, 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct Ran-

dom Functions. Journal of the ACM, 33(4):792–807, August 1986.

[GHJR15] Craig Gentry, Shai Halevi, Charanjit Jutla, and Mariana Raykova. Private

database access with he-over-oram architecture. In Proceedings of the 13th In-

ternational Conference on Applied Cryptography and Network Security (ACNS),

New York, June 2-5, 2015.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and

Daniel Wichs. Garbled RAM revisited. In Advances in Cryptology - EURO-

CRYPT 2014 - 33rd Annual International Conference on the Theory and Appli-

cations of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.

Proceedings, pages 405–422, 2014.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the

AES circuit. In Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryp-

tology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,

pages 850–867, 2012.

[GIKM00] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy

in private information retrieval schemes. Journal of Computer and System

Sciences, 60(3):592–629, 2000.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal

Malkin, Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation

in sublinear (amortized) time. In Proceedings of the 19th ACM Conference on

Computer and Communications Security, CCS’12, Raleigh, NC, USA, October

16-18, 2012, pages 513–524, 2012.

BIBLIOGRAPHY 163

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.

Sci., 28(2):270–299, 1984.

[GM11] Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of

outsourced data via oblivious RAM simulation. In Automata, Languages and

Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzer-

land, July 4-8, 2011, Proceedings, Part II, pages 576–587, 2011.

[GMOT12] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto

Tamassia. Privacy-preserving group data access via stateless oblivious RAM

simulation. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages

157–167, 2012.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental

game or A completeness theorem for protocols with honest majority. In Pro-

ceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,

New York, New York, USA, pages 218–229, 1987.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on

oblivious rams. Journal of the ACM, 43(3):431–473, 1996.

[Goh03] Eu-Jin Goh. Secure indexes. IACR Cryptology ePrint Archive, 2003:216, 2003.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applica-

tions. Cambridge University Press, 2004.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure

two-party computation using garbled circuits. In Proceedings of the 20th

USENIX Conference on Security, SEC’11, pages 35–35, Berkeley, CA, USA,

2011. USENIX Association.

[HIKN08] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. Ot-

combiners via secure computation. In Theory of Cryptography, Fifth Theory

BIBLIOGRAPHY 164

of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008.,

pages 393–411, 2008.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and

Alex J. Malozemoff. Amortizing garbled circuits. In Advances in Cryptology

- CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,

USA, August 17-21, 2014, Proceedings, Part II, pages 458–475, 2014.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pat-

tern disclosure on searchable encryption: Ramification, attack and mitigation.

In 19th Annual Network and Distributed System Security Symposium, NDSS

2012, San Diego, California, USA, February 5-8, 2012, 2012.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious

transfers efficiently. In Advances in Cryptology - CRYPTO 2003, 23rd Annual

International Cryptology Conference, Santa Barbara, California, USA, August

17-21, 2003, Proceedings, pages 145–161, 2003.

[JJK+13] Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu, and Michael

Steiner. Outsourced symmetric private information retrieval. In Proceedings of

the 2013 ACM SIGSAC Conference on Computer and Communications Secu-

rity, CCS ’13, pages 875–888, 2013.

[JL10] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection.

In Security and Cryptography for Networks, 7th International Conference, SCN

2010, Amalfi, Italy, September 13-15, 2010. Proceedings, pages 418–435, 2010.

[Kay12] Danielle M. Kays. Reasons to “friend” electronic discovery law. Franchise Law

Journal, 32(1), 2012.

[KK12] Vladimir Kolesnikov and Ranjit Kumaresan. Improved secure two-party com-

putation via information-theoretic garbled circuits. In Security and Cryptog-

raphy for Networks - 8th International Conference, SCN 2012, Amalfi, Italy,

September 5-7, 2012. Proceedings, pages 205–221, 2012.

BIBLIOGRAPHY 165

[KLO12] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-

based oblivious RAM and a new balancing scheme. In Proceedings of the

Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2012, Kyoto, Japan, January 17-19, 2012, pages 143–156, 2012.

[KM08] Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance:

Building a better bloom filter. Random Struct. Algorithms, 33(2):187–218, 2008.

[Kol05] Vladimir Kolesnikov. Gate evaluation secret sharing and secure one-round two-

party computation. In Advances in Cryptology - ASIACRYPT 2005, 11th In-

ternational Conference on the Theory and Application of Cryptology and In-

formation Security, Chennai, India, December 4-8, 2005, Proceedings, pages

136–155, 2005.

[KP13] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable

symmetric encryption. In Financial Cryptography and Data Security - 17th

International Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised

Selected Papers, pages 258–274, 2013.

[KS08a] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free

XOR gates and applications. In Automata, Languages and Programming, 35th

International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008,

Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming

& Track C: Security and Cryptography Foundations, pages 486–498, 2008.

[KS08b] Vladimir Kolesnikov and Thomas Schneider. A practical universal circuit con-

struction and secure evaluation of private functions. In Financial Cryptography

and Data Security, 12th International Conference, FC 2008, Cozumel, Mexico,

January 28-31, 2008, Revised Selected Papers, pages 83–97, 2008.

[KS14] Marcel Keller and Peter Scholl. Efficient, oblivious data structures for MPC. In

Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on

the Theory and Application of Cryptology and Information Security, Kaoshiung,

BIBLIOGRAPHY 166

Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II, pages 506–525,

2014.

[LAp] Privacy groups file lawsuit over license plate scanners. http://www.

therepublic.com/view/story/210d27e7585543a3941f5e577cf7f627/

CA--License-Plate-Suit.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert

adversaries. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryp-

tology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,

Part II, pages 1–17, 2013.

[LO13a] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-party

computation. In TCC, pages 377–396, 2013.

[LO13b] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Advances

in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Athens, Greece, May

26-30, 2013. Proceedings, pages 719–734, 2013.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party

computation in the presence of malicious adversaries. In Advances in Cryptology

- EUROCRYPT 2007, 26th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007,

Proceedings, pages 52–78, 2007.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for

two-party computation. Journal of Cryptology, 22(2):161–188, 2009.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose yao-based secure computation

in the online/offline and batch settings. In Advances in Cryptology - CRYPTO

2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August

17-21, 2014, Proceedings, Part II, pages 476–494, 2014.

BIBLIOGRAPHY 167

[Mal11] Lior Malka. Vmcrypt: Modular software architecture for scalable secure com-

putation. In Proceedings of the 18th ACM Conference on Computer and Com-

munications Security, CCS ’11, pages 715–724, New York, NY, USA, 2011.

ACM.

[MF06] Payman Mohassel and Matthew K. Franklin. Efficiency tradeoffs for malicious

two-party computation. In Public Key Cryptography - PKC 2006, 9th Inter-

national Conference on Theory and Practice of Public-Key Cryptography, New

York, NY, USA, April 24-26, 2006, Proceedings, pages 458–473, 2006.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure

two-party computation system. In USENIX Security Symposium, pages 287–

302, 2004.

[MS13] Tarik Moataz and Abdullatif Shikfa. Boolean symmetric searchable encryp-

tion. In ASIACCS 2013: 8th ACM Symposium on Information, Computer and

Communications Security, 2013.

[Nie07] Jesper Buus Nielsen. Extending oblivious transfers efficiently - how to get

robustness almost for free. IACR Cryptology ePrint Archive, 2007:215, 2007.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai She-

shank Burra. A new approach to practical active-secure two-party computa-

tion. In Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology

Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, pages

681–700, 2012.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceed-

ings of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9,

2001, Washington, DC, USA., pages 448–457, 2001.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended

abstract). In Proceedings of the Twenty-Ninth Annual ACM Symposium on the

Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 294–303,

1997.

BIBLIOGRAPHY 168

[PI05] Jack E. Pace III. Testing the security blanket: An analysis of recent challenges

to stipulated blanket protective orders. Antitrust Magazine, 19(3), 2005.

[PKV+14] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin,

Seung Geol Choi, Wesley George, Steven Bellovin, and Angelos Keromytis.

Blind seer: A private scalable DBMS. In IEEE Symposium on Security and

Privacy, 2014.

[PR10a] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In Advances

in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa

Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 502–519, 2010.

[PR10b] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In Advances

in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa

Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 502–519, 2010.

[PRV+11] Vasilis Pappas, Mariana Raykova, Binh Vo, Steven M. Bellovin, and Tal Malkin.

Private search in the real world. In ACSAC ’11, pages 83–92, 2011.

[PRZB12] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-

akrishnan. Cryptdb: processing queries on an encrypted database. Commun.

ACM, 55(9):103–111, 2012.

[PSS09] Annika Paus, Ahmad-Reza Sadeghi, and Thomas Schneider. Practical secure

evaluation of semi-private functions. In Applied Cryptography and Network Se-

curity, 7th International Conference, ACNS 2009, Paris-Rocquencourt, France,

June 2-5, 2009. Proceedings, pages 89–106, 2009.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for effi-

cient and composable oblivious transfer. In Advances in Cryptology - CRYPTO

2008, 28th Annual International Cryptology Conference, Santa Barbara, CA,

USA, August 17-21, 2008. Proceedings, pages 554–571, 2008.

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. In Technical

Report TR-81. Aiken Computation Laboratory, Harvard University, 1981.

BIBLIOGRAPHY 169

[Rog91] Phillip Rogaway. The round complexity of secure protocols. PhD thesis, Mas-

sachusetts Institute of Technology, 1991.

[RVBM09] Mariana Raykova, Binh Vo, Steven Bellovin, and Tal Malkin. Secure anonymous

database search. In CCSW 2009., 2009.

[SBC+07] Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song, and

Adrian Perrig. Multi-dimensional range query over encrypted data. In 2007

IEEE Symposium on Security and Privacy (S&P 2007), 20-23 May 2007, Oak-

land, California, USA, pages 350–364, 2007.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial

identities. J. ACM, 27(4), October 1980.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM

with o((logn)3) worst-case cost. In Advances in Cryptology - ASIACRYPT 2011

- 17th International Conference on the Theory and Application of Cryptology

and Information Security, Seoul, South Korea, December 4-8, 2011. Proceed-

ings, pages 197–214, 2011.

[SSS12] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. Towards practical oblivi-

ous RAM. In 19th Annual Network and Distributed System Security Symposium,

NDSS 2012, San Diego, California, USA, February 5-8, 2012, 2012.

[ste] The porter stemming algorithm. http://tartarus.org/martin/

PorterStemmer/.

[SvDS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling

Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely sim-

ple oblivious RAM protocol. In 2013 ACM SIGSAC Conference on Computer

and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,

pages 299–310, 2013.

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques

for searches on encrypted data. In Proceedings of the 2000 IEEE Symposium on

BIBLIOGRAPHY 170

Security and Privacy, SP ’00, pages 44–, Washington, DC, USA, 2000. IEEE

Computer Society.

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In STOC, pages

196–203, 1976.

[WNL+14] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi,

Emil Stefanov, and Yan Huang. Oblivious Data Structures. In Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Security,

Scottsdale, AZ, USA, November 3-7, 2014, pages 215–226, 2014.

[WS08] Peter Williams and Radu Sion. Usable PIR. In Proceedings of the Network and

Distributed System Security Symposium, NDSS 2008, San Diego, California,

USA, 10th February - 13th February 2008, 2008.

[WSC08] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of

mud: practical access pattern privacy and correctness on untrusted storage. In

Proceedings of the 2008 ACM Conference on Computer and Communications

Security, CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008, pages

139–148, 2008.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).

In 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illi-

nois, USA, 3-5 November 1982, pages 160–164, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended ab-

stract). In 27th Annual Symposium on Foundations of Computer Science,

Toronto, Canada, 27-29 October 1986, pages 162–167, 1986.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings

of the International Symposium on on Symbolic and Algebraic Computation,

EUROSAM ’79, pages 216–226, 1979.

