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ABSTRACT

Design and Optimization of Mobile Cloud Computing
Systems with Networked Virtual Platforms

YoungHoon Jung

A Mobile Cloud Computing (MCC) system is a cloud-based system that is accessed by the users

through their own mobile devices. MCC systems are emerging as the product of two technology

trends: 1) the migration of personal computing from desktop to mobile devices and 2) the growing

integration of large-scale computing environments into cloud systems. Designers are developing a

variety of new mobile cloud computing systems. Each of these systems is developed with different

goals and under the influence of different design constraints, such as high network latency or limited

energy supply.

The current MCC systems rely heavily on Computation Offloading, which however incurs new

problems such as scalability of the cloud, privacy concerns due to storing personal information on

the cloud, and high energy consumption on the cloud data centers. In this dissertation, I address

these problems by exploring different options in the distribution of computation across different

computing nodes in MCC systems. My thesis is that “the use of design and simulation tools op-

timized for design space exploration of the MCC systems is the key to optimize the distribution of

computation in MCC.”

For a quantitative analysis of mobile cloud computing systems through design space explo-

ration, I have developed NETSHIP, the first generation of an innovative design and simulation tool,

that offers large scalability and heterogeneity support. With this tool system designers and software

programmers can efficiently develop, optimize, and validate large-scale, heterogeneous MCC sys-

tems. I have enhanced NETSHIP to support the development of ever-evolving MCC applications

with a variety of emerging needs including the fast simulation of new devices, e.g., Internet-of-

Things devices, and accelerators, e.g., mobile GPUs.

Leveraging NETSHIP, I developed three new MCC systems where I applied three variations of a



new computation distributing technique, called Reverse Offloading. By more actively leveraging the

computational power on mobile devices, the MCC systems can reduce the total execution times, the

burden of concentrated computations on the cloud, and the privacy concerns about storing personal

information available in the cloud. This approach also creates opportunities for new services by

utilizing the information available on the mobile device instead of accessing the cloud.

Throughout my research I have enabled the design optimization of mobile applications and

cloud-computing platforms. In particular, my design tool for MCC systems becomes a vehicle to

optimize not only the performance but also the energy dissipation, an aspect of critical importance

for any computing system.
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Chapter 1

Introduction

An increasing number of computing systems rely on a set of backend services operated on cloud

computers while providing their primary user interfaces on mobile devices [30; 113; 149]. This

new class of emerging computing systems, commonly termed Mobile Cloud Computing (MCC)

systems, has gained growing popularity in many application domains such as e-commerce [205;

62], learning [248; 194], healthcare [195; 355], gaming [334; 331], social networks [335; 225], and

so on. Behind the popularity of MCCs across various domains is the blossoming of two technolo-

gies: the wide use of cloud computing and the explosive growth of mobile devices. First, cloud

computing has increasingly become the standard way to operate Internet-based services, preferred

by the service providers due to its low prices, high performance, and flexibility. These have been the

main driving forces that increased the instances of cloud servers built in data centers. The number

of data centers being built around the world is expected to continue to increase until 2017 when

it will peak at 8.6 million [150]. The estimated total space for data centers will reach 1.94 billion

square feet in 2018. Second, more and more users access cloud services through their mobile de-

vices which can provide a richer user experience, i.e., easy-to-use, intuitive, and interactive, user

interfaces than using personal computers [112].

By combining these technologies, MCCs offer many advantages and enable new services. For

instance, an MCC speech recognition application takes a segment of the user’s voice and sends it

to the cloud. The cloud processes the segment and sends the recognition result back to the mobile

user. This approach has various advantages compared to running the algorithm on the mobile. First

of all, harnessing the powerful processing cores on the cloud allows fast execution of the speech
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Figure 1.1: Computation Offloading.

recognition algorithm. Additionally, the database necessary to execute the speech recognition al-

gorithm is stored on the cloud servers, thus freeing space from the limited storage of the mobile

device. Meanwhile, the mobile user interface provides a simple yet convenient and ubiquitous way

for the users to interact with the application. Lastly, the reduced use of the processing power on the

mobile greatly contributes to saving the limited energy budget.

This particular form of task delegation from the mobile to the cloud is called Computation Off-

loading, or simply Offloading [208]. Due to its benefits, offloading is very frequently adopted in

MCC applications and frameworks. For instance, computation offloading can reduce the mobile net-

work traffic [87], decrease the cloud resource provision cost [286], or reduce the execution time and

energy consumption for running mobile applications [333]. Figure 1.1 illustrates a mobile device of-

floading two tasks (Task 1 and Task 2) to the cloud and receiving the corresponding results back from

the cloud (Result 1 and Result 2). In this figure, a circle represents a task and a triangle is the cor-

responding result. A variety of efficient offloading techniques have been studied. These techniques

are, however, mainly focused on the efficiency of the mobile. For example, some offloading tech-

niques aim to achieve faster total execution time [327], less energy consumption on the mobile [66;

111], or both [72; 111]. Eventually, the large amount of offloading translates into more frequent use

of the cloud and increased amount of computation from the cloud’s perspective. These increased

needs have started to overburden the cloud, thus creating new problems or worsen existing cloud

issues.

• The cloud computing services which operate on the data centers currently suffer from limited

scalability. It is difficult to increase the number of server computers hosted in one data center

beyond a certain level. Moreover, finding locations and funds to build new data centers is

challenging. Behind these challenges, there are some technical constraints like heat manage-

ment, network, or power supply [126; 127; 332; 65] and social issues such as concerns for the
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impact on residential environments [307].

• As a growing amount of personal data is stored on the cloud, users are increasingly concerned

about privacy issues. Although it is uncertain whether it is safer to store personal data on the

cloud or on the mobile, having the cloud as a data backup, i.e., storing the data on both the

mobile and the cloud, might increase the probability that it can be illegally accessed. The

recent leaks of celebrity photos in 2014 [305; 306] is proof that the security issue on the

cloud system can turn into a large-scale threat for personal privacy.

• The energy consumed by data centers is enormous. Data centers are the largest and fastest

growing electricity consumer. US data centers consumed approximately 91 billion kilowatt-

hours of electricity in 2013. This amount was twice as much as the power consumed by all

the households in New York City the same year. The energy consumption by data centers

is anticipated to reach 140 billion kilowatt-hours by 2020 [52]. The companies that operate

these large-scale data centers are under pressure to reduce their energy consumption from

governments and environmental organizations.

The fundamental research question behind these problems is how to optimally distribute com-

putation across different computing nodes in the systems. The question is very important partic-

ularly for MCC systems where two very distinct types of computers must cooperate. For instance,

preprocessing the data on the mobile device before transferring them to the cloud may substantially

decrease the amount of data the cloud must process as well as the network use. This is a well-known

question studied by many researchers who have proposed different solutions optimized to achieve

different objectives. Examples include offloading for execution times based on resource monitor-

ing [347], migrating tasks to the cloud for saving energy [196], distributing application binaries

automatically [146], and partitioning the application dynamically [69].

However, these approaches are not suitable for the increasing number of MCC applications due

to the following limitations:

• System optimization is application specific. Different applications benefit from different

heuristics that can largely save the total amount of computation required by the applications.

An automated analysis cannot invent a new technique to optimize the application. Instead,
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a system designer with a fast and effective design tool is more likely to come up with an

efficient optimization idea through design-space exploration.

• Existing methods cannot support heterogeneity and very large scalability, the two most dis-

tinguishing characteristics of MCC systems. MCC systems are heterogeneous because they

consist of cloud computers and mobile devices. Meanwhile, those mobile devices have vary-

ing computing processors and networks. In addition, recent large-scale MCC systems serve

more than a billion users with more than tens of millions of them accessing the cloud at the

same moment.

• Unlike mathematical optimization problems, where the optimal solution can be calculated by

problem solving algorithms, system optimization can often be solved only with a trial-and-

error approach. This is due to the different granularity of resource units and the little-known

behavior of certain resources when the degree of their use changes, e.g., congestion in the

network. A number of other elements each of which is too minor to be modeled into the

objective function are also important as the outcome can significantly vary by the collective

changes of those elements. The trial-and-error method can take too much time in system

optimization without using a well-designed tool that is optimized for the given domain.

• Computation offloading is a viable model only under the circumstance where the growth of

cloud computers exceeds the growth of mobile devices. Therefore, offloading is not applica-

ble to many MCC systems where mobile devices may outgrow the available cloud resources.

Furthermore, computation offloading is increasingly used also in other types of fast-growing

computing systems such as the Internet of Things [123] and Cloud Robotics [177]. Hence,

the computational burden on the cloud is expected to intensify further in the near future.

The thesis presented in this dissertation is “the use of design and simulation tools optimized for

design space exploration of the MCC systems is the key to optimize the distribution of computation

in MCC.” In this dissertation, I study the optimal distribution of computation in the MCC systems

by

1. developing effective and efficient design and simulation tools to support the design and opti-

mization of large-scale heterogeneous MCC systems and
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Figure 1.2: A cooperative development process of design tools and applications.

2. inventing a class of optimization patterns for computation distribution and apply them to the

new MCC systems I develop using my tools.

1.1 The Iterative Development Process

The way I investigate the distribution of computation for MCC systems in this thesis is an iterative

process of developing design tools and implementing MCC systems where distinct distributions of

computation can be applied. The development of design tools and applications can benefit each

other, accelerating the completion of both [136]. As shown in Figure 1.2, these two development

processes are iteratively connected, resulting in one cooperative process. The orange-colored verti-

cal arrow at the center of the figure indicates the time spent on the development. As the development

project progresses, the level of the development completion, or the project maturity, increases. The

project maturity can be measured by the number of features added to the developed tools and the

variety of the developed applications.

A good design tool can make the development and testing of a new application more effi-

cient [308; 158]. For instance, a design tool that supports great scalability for simulating many

nodes can effectively and efficiently assist the developers of a new type of applications that run on

a large number of distributed mobile devices, thus reducing the time for deploying and testing on

the many physical devices and decreasing time-to-market. Likewise, when the application runs on

heterogeneous cores, a tool that supports these distinct types of cores will be very useful. Without
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Figure 1.3: A comparison of offloading and three distinct reverse offloading techniques.

an appropriate design tool, application development can be slow.

On the other hand, without knowing actual applications, the tools cannot be enhanced in a mean-

ingful direction. In particular, the feedback information obtained from application development and

test usage of the tool is the key source to improving the tool [98]. Therefore, the processes of de-

veloping design tools and applications are mutually beneficial. A close collaboration between the

improvement of a design tool and the development of applications based on the tool can speedup

the process and refine the quality of the tool as well as the developed applications.

1.2 Reverse Offloading

Throughout the development of various MCC applications, I invented a series of techniques that

I group under the term Reverse Offloading. Reverse offloading distributes computation across the

cloud and the mobile devices, instead of offloading the entire tasks to the cloud. Figure 1.3(a) -

1.3(c) illustrates three different types of reverse offloading. First, Reverse Distributed Offloading

distributes the entire tasks across multiple mobile devices in the same network. This makes the

mobile independent from the cloud, as shown in Figure 1.3(a). In other words, the cluster formed

out of the mobile devices works like an alternative cloud. Second, Algorithm-Division Reverse
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Offloading splits each task into two portions. As shown in Figure 1.3(b), the application sends a

portion of the task to the cloud; then, the intermediate result for the portion of the task returns to

the mobile; finally, the mobile device runs the rest of the task taking as input the intermediate result

returned from the cloud. Third, Query-Division Reverse Offloading selectively sends only some of

the tasks to the cloud. I discuss these three techniques in the context of three MCC applications in

Chapters 7, 8, and 9, respectively.

Reverse offloading can effectively address the aforementioned challenges as follows:

• It reduces the amount of computation that the cloud must run. Reverse distributed offloading

makes the mobile devices independent from the cloud. In other words, the computational

burden on the cloud is dissolved. MCC applications that adapt algorithm-division reverse

offloading will only offload certain portions of the tasks to the cloud. In this case, the rest is

saved from offloading. Query-division reverse offloading sends only certain tasks to the cloud.

Likewise, the tasks handled by the mobile devices are saved from offloading. Particularly,

the amount of computation reduced by reverse offloading is proportional to the number of

mobile devices, which is the most rapidly growing factor in the MCC systems. The fast

improving computational power and energy efficiency of mobile devices also contribute to

the effectiveness of reverse offloading.

• Reverse offloading can effectively decrease the total execution time for some applications.This

is due to the reduced use of the network, particularly on the mobile side. The mobile network,

i.e., Wi-Fi or LTE, takes a large portion of the execution time and the energy consumption

of MCC applications. By reducing the network use, reverse offloading inherently decreases

the network latency and energy dissipation. Also, the growing processing power on mobile

devices, e.g., mobile CPUs and GPUs, contributes significantly to the feasibility of reverse

offloading.

• A certain type of reverse offloading can mitigate some privacy concerns. Instead of sending

personal information to the cloud (while also leaving it on the mobile), securing it only on the

mobile provides less chance for the personal information to be leaked.

• Reverse offloading can enable new services. For instance, in Chapter 8 I introduce an MCC

application that uses personal information in the users’ emails by extracting the information
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Figure 1.4: The co-development process of MCC applications and tools.

from the messages stored on the mobile devices. So far this type of service has been possible

only for a small group of large companies that offer their own email services, e.g., Google,

Microsoft, and Yahoo. Instead of accessing email services on the cloud, leveraging the per-

sonal information in the email stored on the mobile makes a variety of new services feasible

for many small independent companies.

1.3 Outline of the Dissertation

The rest of the thesis is organized as follows. In the first two chapters, I introduce two important

concepts. First, in Chapter 2, I describe mobile cloud computing (MCC), which is currently one

of the most popular forms of distributed computing architecture. It is a combination of of mobile

computing and cloud computing, which provides both mobility and flexibility. Chapter 3 is about

virtual platforms (VP), a simulation model that enables hardware prototyping, early software de-

velopment, easy deployment, and convenient test. Since the goal of this thesis includes developing

MCC applications using virtual platform-based design tools, these two concepts are fundamental

for the rest of the thesis.

In the rest of the thesis, I introduce the design tools and MCC applications I developed and how

each of them contributes to one another as shown in Figure 1.4. In particular, across Part I and II

each chapter describes a particular technical contribution as well as the way it becomes a stepping

stone for the next project. In Part I (through Chapter 4 to 6), I introduce the design tool I invent
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for simulating MCC systems. In Chapter 4, I present NETSHIP, a design tool for developing MCC

applications. This tool supports the large scalability and heterogeneity required by the MCC sys-

tems. NETSHIP was presented at DAC‘13 [167]. At a later stage, I enhanced NETSHIP to support

the development and simulation of MCC applications that use the mobile Graphic Processing Units

(GPUs) which are present on the mobile devices. The enhanced simulation framework multiplexes

the host GPU and estimates execution time and power consumption of the GPU code on the mo-

bile GPUs, as described in Chapter 5. This framework, including the estimation techniques, was

presented at DAC‘15 [164]. In Chapter 6, I discuss how to further augment NETSHIP to simulate

IoT-based systems and present some preliminary results on this enhancement.

In Part II (through Chapter 7 to 9), I introduce the MCC systems I developed using my design

tool. In Chapter 7, I introduce the reverse distributed offloading adapted on a cluster of embedded

systems. The material in this chapter was published at CloudCom‘12 [166]. In Chapter 8, I intro-

duce an MCC application where algorithm-division reverse offloading is applied. Specifically, this

study shows that the execution can be faster when the mobile processing core is more actively used,

mainly due to the reduced amount of network use by reverse offloading. The material in this sec-

tion was presented at WWW‘15 [169]. In Chapter 9, I describe Query-Division Reverse Offloading

and an MCC application where the Query-Division Reverse Offloading is applied. This applica-

tion is an audio stream retrieval system where the client periodically send queries to the server.

Query-Division Reverse Offloading significantly reduces the number of queries sent to the server

by caching portions of audio database on the local device and allowing the local audio retrieval from

the cached database.

In Part III (through Chapter 10 to 12), I describe the co-development process of the design tools

and the MCC applications and I conclude my dissertation by offering my perspective on the future

of MCC tools and applications.
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Chapter 2

Mobile Cloud Computing Systems

Since the advent of the first computers, computer systems have advanced pushing their boundaries

in multiple dimensions. Figure 2.1 shows three different dimensions of computing systems’ devel-

opment: computational capability, flexibility, and mobility. This figure is a simplified illustration

that captures the three most important dimensions that will be discussed in this chapter.

Computational Capability. The users’ ever-increasing needs for computations have made

computer designers seek a way to process computations more efficiently, by increasing the capabil-

ity of computing systems. The efforts for creating more efficient and powerful computing systems

have created many new technologies such as faster computing cores, multi-core and multi-processor

computers, and distributed computing systems. One of the most obvious ways to achieve a higher

efficiency in computing systems is to make more powerful processing cores with a faster computa-

tion speed. The processing power of the computing cores has dramatically increased based on the

increasing number of transistors that can be integrated on a chip. The growth rate in the number of

integrated transistors has been close to exponential, approximately following Moore’s Law [228].

Around 2005, the growth based on a single integrated computing processor reached a saturation

wall where no single further-integrated processor is expected to keep up with the law [339]. This

is due to various technical limitations that are difficult to improve within a single processing core,

such as heat management, energy efficiency, or cross-talk of the designed chips. Multi-core and

multi-processor computers overcome this issue by executing software in a parallel fashion on the

combined multiple cores in each processor and multiple processors in a system [50]. The paral-

lel use of multiple cores and processors is now considered critical for the continuation of Moore’s
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Figure 2.1: The three dimensional space in the advance of computing systems.

Law. There exist, however, some physical challenges that limit the number of processing cores

and processors added to a single computer machine. Heat and power consumption, again, limit the

number of cores that can be packed into a single processor. Although there exist some experimen-

tal computers with several thousands of computing processors, a usual and efficient way to build a

highly parallel computing system is connecting multiple distributed server computers with a com-

munication network. Therefore, forming a cluster of multiple computers is a way of providing more

computational capabilities to satisfy the growing volume of user demands.

There are some open issues that prevent current computing systems from being further improved

in terms of computational capabilities. A common issue that occurs in both multi-core and multi-

processor computers and distributed computing systems is the communication overhead. To run a

single application on these distributed computing cores, communications among them is necessary.

In some cases, the overheads, e.g., communication time or energy spent for communication, exceed

the advantages of using more computational elements. When this happens, it might be desirable

to have fewer computing elements in the system unless the distribution of computation could be

improved to reduce the communicational overhead. Meanwhile, as Amdahl’s law suggests, once

the parallelizable portion of the work is sufficiently sped-up, there is not much additional gain from
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adding even more processing cores to the system. Thus, to achieve high execution performance

on the distributed multi-core computers, it is important to devise algorithms that can be efficiently

parallelized. Improving the computational capabilities of the computing systems is one of the oldest,

but still actively studied area, in computer science.

Flexibility. The virtualization technology was originally developed to run a virtual (as opposed

to ‘physically existing’) computer on a host computer with a different machine architecture. This

technique is useful developing a new type of computer or testing software for a new computer ar-

chitecture without physically possessing the new computer at hand. Since the beginning of 21st

century, a new type of services has emerged that use virtualization in a new way. These services

offer a virtualized computing environment to their customers on an on-demand basis. Since the

provided computing environment is virtualized, computer resources are used when the customers

need them (and pay) whereas they could be returned to the service provider when the customers do

not need them (and do not pay). This flexible computing system service is called cloud computing

and the payment system for cloud computing is called pay-as-you-go as the customers incur the

service charge only when they use the service. This flexibility of cloud computing has created a

number of advantages for both the cloud providers and their customers. First, the customers are free

from buying, managing, fixing, upgrading, emergency-caring, and expanding the physical comput-

ing infrastructure they use. Cloud computing provides a very easy-to-use interface to start a new

cloud instance instantly. The repair of broken machines, physical system upgrade, or migration on

emergency cases are the responsibility of the cloud service providers, who have more expertise on

these troublesome works. The cloud customers can focus more on their own businesses without be-

ing distracted by operating their own computing servers. Second, from a business point of view, the

pay-as-you-go system saves the upfront cost when you start a new business since there is no need

to purchase the whole computing infrastructure including the server computers, power management

devices, or the network equipments. This makes it easy for many companies to adapt cloud comput-

ing for their newly launched businesses. Third, the service providers do not have to over-provision

computing instance as if all their customers access the service at the same time, since the customers

need the service from time to time. Instead, a smaller size of computing infrastructure that can sup-

port the usual usage is enough. During the peak time, computer providers can dynamically increase

the computing resources to serve the users. This greatly saves the costs for the service providers.
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On the other hand, cloud computing has been facing some newly introduced challenges. For

instance, the integrated data centers result in an intensive use of electricity. This leads to several

problems such as electric outage, increased electricity costs, and pollution from electricity genera-

tion.

Mobility. Mobile phones have been a must-have item for people living in today’s world. The

wide use of smartphones changed the way people live. Beside using the phones the way it used

be, i.e., calling and corresponding text messages, people now take pictures with their phones, find

directions to the places they visit for the first time using the map service, watch video clips, play

video games in their space time, and so on. All these activities rely on the phones’ computational

abilities as a small ‘computer’. As a new instance of modern computing, mobile devices have all the

characteristics of the computing systems, having central processing units, data buses, main memory,

storages, and I/O modules. On top of these, they have some additional requirements as a special

form of computers. They need mobility, which also requires a portable power source, e.g., batteries,

wireless network connectivity to access the services beyond the offline contents, a small size enough

to be easily carried, e.g., in a pocket, and good heat management to be contained in a relatively small

sized case.

Mobile computing is one of the most rapidly developing area of the computing system market in

both quantity and quality. The number of mobile device exceeds 8 billion in 2014 and is expected to

continue to grow over 12 billion by 2018 [258]. During the same period, the number of transistors

used in the mobile processing cores is expected to grow up by 10 times [48]. The computing

ability of the mobile devices these days has been growing so quickly that it is comparable to what

supercomputers could do two decades ago.

Since these dimensions are orthogonal, a computing system can be expanded toward one or more

dimensions at the same time. For instance, most cloud computing systems are already designed for

high-performance, consisting of a cluster of multiple distributed computers with many multi-core

processors. Also, many recent mobile devices are equipped with a multi-core processor along with

high-performing mobile GPUs. Another combination of the other two dimensions is the integration

of cloud computing and mobile computing. The new type of computing systems, called Mobile

Cloud Computing (MCC) systems, is designed to offer the mobility and rich experience of the

mobile device while the cloud computers that back up the system handle the high demands for the
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Figure 2.2: The architecture of Mobile Cloud Computing systems.

computation-heavy tasks along with the access to the infinite-sized cloud storage.

Next, I compare the different definitions of MCC and discuss the advantages of MCC. There-

after, I introduce some examples of MCC systems and applications and discuss the current issues in

the development of MCC systems.

2.1 Definitions

As shown in Figure 2.2, MCC refers to the amalgamation of mobile computing and cloud comput-

ing. The mobile users access the application services that reside in the cloud through the mobile

network to which their devices are connected along with the Internet. Given the high popularity of

the two technologies and their distinct advantages and disadvantages, the emergence of this combi-

nation is natural. Particularly, the portability and reachability of the mobile devices are two of the

most significant advances, while their limited computational ability, storage size, and energy budget

still need to be resolved. Although in its essence an MCC system can be simply explained as a

computing environment where mobile devices and clouds are integrated, there are a few different

variations to define MCC depending on their distinct perspectives.

• According to Liu et al, MCC is a model for the elastic augmentation of mobile device capabil-

ities via ubiquitous wireless access to cloud storage and computing resources, with context-
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aware dynamic adaption to changes in the operating environment [208].

• Sanaei et al. define MCC as a rich mobile computing technology that leverages unified elas-

tic resources of various clouds and network technologies toward unrestricted functionality,

storage, and mobility to serve a multitude of mobile devices anywhere, anytime through the

channel of Ethernet or Internet, regardless of heterogeneous environments and platforms,

based on the pay-as-you-use principle [272].

• Abolfazli et al. define an important concept in MCC, Mobile Computation Augmentation,

as the process of increasing, enhancing, and optimizing computing capabilities of mobile

devices by leveraging various feasible approaches, hardware and software [30; 31].

• Miluzzo et al. envision MCC systems as distributed computing architectures where mobile

devices become core computing nodes due to their rapidly growing capabilities. They ex-

pect that heterogeneous devices, such as personal computers and set-top boxes, will be also

engaged in the MCC infrastructure [221].

• Some researchers expect the emergence of a mid tier in MCC, called cloudlet [41]. A cloudlet

is a trusted, resource-rich computer, or cluster of computers, that is well connected to the In-

ternet and is available for use by nearby mobile devices. Thus, MCC becomes the seamless

integration of cloudlet and public cloud with infrastructure specialization for mobile applica-

tions.

Overall, MCC is an integrated computing system of mobile devices and cloud computers where

the users experience the advantages of mobile devices in terms of rich applications and mobility

while the limited resources of mobile devices, e.g., the limited energy budget, relatively slower

computational speed, and constraint in the storage size, are augmented by the cloud computers with

their higher computational capabilities and larger storage capacities. This augmentation which is

based on the delegating a portion of computation from mobile devices to cloud servers, is called in

different ways, including computation offloading, task migration, and remote processing.
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2.2 Advantages of MCC

Recent market surveys show that an increasing number of businesses are adopting the MCC ar-

chitecture for their service infrastructure and that it is expected to exceed 240 million businesses

by 2015 [285]. In MCC, the mobile devices are augmented by offloading heavy computations and

large file objects to the cloud. This brings many advantages and is the main reason of the success

of MCC. The major advantages of using MCC compared to non-cloud services that run only on the

mobile devices are the following:

Prolonged battery lifetime. By migrating heavy computations and complex processing to

cloud servers, mobile devices can save a significant amount of energy [280; 115].

Enhanced capabilities on mobile devices. By leveraging the stronger computational power and

the larger data storage on cloud machines, the users can benefit from fast executions of computations

and large data storage [348; 322].

High reliability and availability. By keeping data and applications in the clouds, the users

can securely store them. Those data and applications are kept in a reliable way even when the

mobile devices are broken, stolen, moved, or suffering from a low battery. The cloud service offers

high-availability through their reliable and resilient architecture [226].

Flexible and transparent scalability. Cloud service provisioning is elastic, which means it is

dynamically offered on an on-demand basis. Therefore, the mobile device users are not necessarily

aware of the computation and storage offloading to the cloud even when their use increases [54].

2.3 MCC Systems and Applications

Thanks to its distinct advantages in various aspects, MCC has been adopted in functionally diverse

areas. The application areas vary from finance to entertainment. Correspondingly, they are sup-

ported by a variety of different forms of system architecture. Many of these applications are an

extension of existing online services where mobile devices are a convenient user interface tool at

hand while keeping the wealthy computing environment offered by the cloud servers.

Mobile Commerce. Mobile commerce, or M-commerce, is the delivery of electronic com-

merce services directly into the customer’s hand, anywhere, via wireless technology [205; 62].

Mobile commerce is a very wide area that includes mobile money transfer, mobile ATM, mobile
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ticking, mobile coupons, mobile shopping, and mobile advertising. By integrating with the cloud,

mobile commerce enhances its security and achieves ubiquitous, synchronized services across the

globe. The market size of mobile commerce is $230 billion and is expected to reach $700 billion in

2017 [79].

Mobile Learning. E-learning, or online learning, has been transformed into mobile learning. At

the early stage of M-learning, the services suffered from the high cost of devices and the high system

performance requirements for playing videos. The continued growth of computational power in the

mobile devices along with the integration with the cloud services have resolved this issue [248;

194]. Nowadays, students can easily find teachers and access the learning contents by using their

mobile devices, spurring the success of mobile learning.

Mobile Healthcare. Healthcare is an application area where mobility is most appreciated.

Whenever an emergency case happens, it is easy to reach mobile devices to ask for help. Mobile

devices are also very convenient to keep close to the patients for 24-hour monitoring and checking

up their medical records [195; 355].

Mobile Gaming. Mobile game is a fast increasing market with high revenue. Multiplayer

games allow the gamers to interact among each other in the cloud, thus making the game more

dynamic and communicative. Some games offload a portion or the entire game engine that requires

heavy computations, e.g., graphic rendering, to the server in the cloud. Offloading can also save

energy and thus increase the time users can play the game [334; 331].

In Chapter 7 to 9, I introduce three distinct MCC systems that I have developed. Chapter 7 is

about a heterogeneous computing system that consists of a cluster of blade servers and a cluster of

set-top boxes. It adopts a reliable and large-scale computing framework for data processing, called

Hadoop. Using this framework, this new computing system can run very large data processing

applications and data mining applications. In Chapter 8, I show a local training application for in-

formation extraction. It uses Neural Network to train for a Natural Language Processing algorithm.

This algorithm runs on an MCC system where the parameters are first trained in the cloud and then

further trained in a mobile device. In Chapter 9, I present an MCC application for audio stream re-

trieval. In this system, the database for retrieval is cached in the mobile device to reduce the queries

sent to the cloud.
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Chapter 3

Virtual Platforms

System simulation uses a software program that models the behavior of the target system. System

simulation plays an important role in designing new systems. This has been proven in many different

areas in system designs. Specifically, the design of embedded systems can benefit largely from

using a simulation framework. There are many simulation frameworks that support the design of

embedded systems. Simulation is particularly important in the development of embedded hardware

and software. In embedded hardware development, simulation plays an important role as the method

to pre-evaluate the prototyped design. Without simulation, the hardware designers have to make a

real prototype device whenever they want to make changes to their design and test. In embedded

software development, hardware simulation allows developers to test their software even before

they have the finalized target hardware device. This allows the concurrent progress of hardware

and software development, which saves a significant amount of time from the overall development

process [29].

A virtual platform is a software model to simulate a target hardware system, in most cases

an embedded system with a different microarchitecture from the host machine. Thus, it does not

physically exist but behaves as a physical target system. Virtual platforms consist of simulated

hardware components as well as internal modules to control and analyze the simulation, as shown

in Figure 3.1. This is a full-system simulation where the entire system, or an embedded device, is

modeled as a virtual platform. This simulation environment can actually execute the target software

including embedded applications and operating systems, compiled for the target hardware architec-

ture.
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Figure 3.1: The architecture of a virtual platform.

In addition to simulating the embedded systems for their designs and application development,

an increasing number of distributed systems is designed on simulation frameworks. Particularly,

simulation frameworks that consist of multiple instances of virtual platforms are used to simulate

multiple networked embedded systems, or distributed embedded systems. Thus, the importance of

virtual platforms as a component in the design toolkit is also rising.

The scope of simulation that virtual platforms can provide varies from a single circuit, e.g., a

computing processor, to a large, complex, system, e.g., a global-scale distributed system, as shown

in Figure 3.2. In this chapter, I first introduce the use of virtual platform as a design tool for a single

embedded system and then move on to a more complex usecase of virtual platform, the design of

distributed systems using multiple virtual platform instances.

3.1 Advantages of Virtual Platform

There are many advantages of using a virtual platform (VP) for developing a new system:

• A VP enables early-stage application-software development for the target system without the

need of having physical devices at hand. During this early period, the target hardware system
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Figure 3.2: The different levels of complexity in simulation target systems.

is unlikely to be ready-to-ship. Thus, the use of a VP allows the parallel development of the

target software and the hardware, therefore leading to shorter time-to-market.

• A VP reduces some overheads in the embedded software development process, such as cross-

compilation, binary loading from the host machine to the target embedded system, or physical

system configurations. This is because the VP is a piece of software and thus easier to be

integrated with the automated development environment than physical hardware.

• A VP allows Design Space Exploration (DSE) of the target system. Therefore, while simu-

lating the target software on the VP model, the system designer can flexibly adjust and decide

the details of the target hardware modules to meet various constraints such as hardware costs,

performance requirements, or energy consumption budget.

These advantages of virtual platforms play a large role in the system design, making it easy for

the users to design a new hardware prototype, develop application software, and test the product.
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Figure 3.3: Multiple virtual platform instances connected through a network interface card.

3.2 Using Virtual Platform for System Development

Virtual platforms have been widely used in the design, development, optimization, and test of target

hardware and software. Fast prototyping of the target system before designing detailed hardware

is one of the most essential features of virtual platforms. Plug&Chip is a virtual framework for

rapid prototyping of 3D SoCs [86]. Real-time systems also can be prototyped by using virtual plat-

forms [230]. Kogel and Braun present a way to virtually prototype embedded systems for wireless

and multimedia [186].

In many cases, a virtual platform is also used to optimize the hardware design of target sys-

tems by maximizing their performance through Design Space Exploration (DSE). For instance,

Zuolo et al. propose SSDExplorer, a virtual platform-based simulator for DSE of Solid State Drives

(SSDs) [357]. Meanwhile, another virtual platform is used to optimize the design of the memory

controller in a 3D stacked wide I/O DRAM [163]. Hsu et al. present a virtual platform to optimally

design a dual DSP core [143]. The objective of the optimization can vary. Particularly, a virtual

platform can be used to optimize the power, thermal, and reliability of the target system [46].

There exist virtual platforms for other portions of the system development process. Ceng et al.

offer a virtual platform-based solution for early-stage software development [61]. Some projects

aim to support the co-development of the system platform and the software [338]. Meanwhile,

testing is one of the important aspects of the development process. Virtual platforms can be used to

stress-test the designed system [352; 91].
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3.3 Networked Virtual Platforms for Distributed System Design

The previous section explained how using virtual platforms for developing a single, standalone sys-

tem is a well-established, popular method. Recently, the use of virtual platforms is increasingly

extended toward the development of systems where multiple devices interact through a communi-

cation network. This becomes possible thanks to the multiple virtual platforms that concurrently

operate using their own model of network interface as shown in Figure 3.3. We name this collection

of multiple virtual platform instances connected to each other Networked Virtual Platform. As each

virtual platform can be extended to have peripherals, it features a network interface card module

that is written as a piece of software and works as a physical network interface module.

There are multiple emerging projects that can be categorized as networked virtual platforms.

Bakshi et al. presented MILAN, a model based extensible framework that facilitates the evaluation

of a large class of embedded systems, through the seamless integration of different simulators [42].

Frølund and Garg presented Consul, a design-time simulation for a large-scale distributed object

system [107]. They proposed a scalability analysis method to simulate distributed object systems.

One of the major challenge in simulation-based designs is that the simulation results are not accu-

rate because they rely on simulation parameters instead of measured values. They addressed this

challenge by using the proposed analysis method that leverages relative and comparative reasoning

to analyze design alternatives and compares transaction behaviors. Very recently, Sayyah et al. pre-

sented a virtual platform-based DSE for distributed embedded applications using multiple virtual

platform instances [276]. Simics is one of the most popular solution that offers multiple virtual

platform instances for the simulation of distributed systems [263].

In Chapter 4, I introduce a networked virtual platform, NETSHIP that I developed to support

distinct levels of heterogeneity and large scalability. NETSHIP is the first kind of networked virtual

platforms that supports the design, development, optimization, and test of large-scale distributed

embedded systems. Particularly, NETSHIP can be used for MCC systems as it supports the model-

ing of virtual embedded systems as well as cloud computing environments through its VP-on-VM

model [167].
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Chapter 4

A Design Tool for Heterogeneous

Large-Scale MCC Systems

From a single SoC to a network of embedded devices communicating with a backend cloud-

computing server, emerging classes of embedded systems feature an increasing number of het-

erogeneous components that operate concurrently in a distributed environment. As the scale and

complexity of these systems continues to grow, there is a critical need for scalable and efficient sim-

ulators. Together with Jihyung Park, Michele Petracca, and Luca Carloni, I developed a Networked

Virtual Platform as a scalable environment for modeling and simulation. The goal is to support

the development and optimization of embedded computing applications by handling heterogeneity

at the chip, node, and network level. To illustrate the properties of our approach, I presented two

very different case studies: the design of an Open MPI scheduler for a heterogeneous distributed

embedded system and the development of an application for crowd estimation through the analysis

of pictures uploaded from mobile phones.

4.1 Introduction

Computing systems are becoming increasingly more concurrent, heterogeneous, and interconnected.

This trend happens at all scales: from multi-core systems-on-chip (SoC), which host a variety of

processor core and specialized accelerators, to large-scale data-center systems, which feature racks

of blades with general purpose processors, graphics-processor units (GPUs) and even accelerator
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Figure 4.1: The two orthogonal scalabilities of NETSHIP.

boards based on FPGA technology. Furthermore, nowadays many embedded devices operate while

being connected to one or more networks: e.g., modern video-game consoles rely on the Ethernet

protocol [302], millions of TVs and set-top boxes are connected through DOCSIS networks [142],

and most smartphones can access a variety of networks including 3G, 4G, LTE, and WLAN [190;

156; 320].

As a consequence, a growing number of software applications involve computations that run

concurrently on embedded devices and backend servers, which communicate through heteroge-

neous wireless and/or wired networks. For example, mobile visual search is a class of applications

which leverages both the powerful computation capabilities of smart phones as well as their access

to broadband wireless networks to connect to cloud-computing systems [120; 314].

We argue that the design and programming of these systems offer many new unique opportuni-

ties for the electronic design automation (EDA) community. For instance, system and sub-system

architects need tools to model, simulate, and optimize the interaction of many heterogeneous de-

vices; hardware designers need tools to characterize the applications, software and network stack

that they must support; and software developers need early high-level modeling environments of the

underlying hardware architecture, often much before all its components are finalized.

As a step in this direction, we present NETSHIP, a networked virtual platform to develop sim-

ulatable models of large-scale heterogeneous systems and support the programming of embedded

applications running on them. Users of NETSHIP can model their target systems by combining mul-

tiple different virtual platforms with the help of an infrastructure that facilities their interconnection,

synchronization, and management across different virtual machines.

Given a target system, NETSHIP can be used to set up a simulation environment where each VP
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works as single-device simulator running a real software stack, e.g., the Linux operating system,

with drivers and applications. Thus, it makes it possible to run real applications over the entire

distributed system, without actually deploying the devices. This allows users both to jump start the

functional verification process of the software and to drive the design optimization process of the

hardware and the network.

While in certain areas the terms virtual platform (VP) and virtual machine (VM) are often used

without a clear distinction, in our research it is particularly important to distinguish them. A VP is a

simulatable model of a system that includes processors and peripherals and uses binary translation

to simulate the target binary code on top of a host instruction-set architecture (ISA). VPs enable

system-level co-simulation of the hardware and the software parts of a given system before the

actual hardware implementation is finalized. Instead, a VM is the management and provisioning of

physical resources in order to create a virtualized environment. The resources are mostly provided

by one or more server computers and the management is performed by a hypervisor. Examples of

VPs include OVP, VSP, and QEMU, while KVM, VMware, and the instances enabled by the Xen

hypervisor are examples of VMs. 1

Thanks to its novel VP-on-VM model, the NETSHIP infrastructure simplifies the difficult process

of modeling a system with multiple different VPs. In fact, the ability to support multiple VPs

interconnected through a network makes NETSHIP free from the limitation of one specific VP while

providing access to the superset of their features. For example, users who are interested in modeling

an application running in part on certain ARM-based mobile phones and in part on MIPS-based

servers can use NETSHIP to build a network of Android emulators [12] and OVP nodes.

The VP-on-VM model makes NETSHIP scalable both horizontally and vertically, as illustrated

in Figure 4.1. The users can scale the system out by adding more VM instances to the network

(horizontal scalability) and scale the system up by assigning to each VM instance more CPU cores

on which more VP instances can run (vertical scalability).

Another pivotal advantage the VP-on-VM model adds to NETSHIP is access to the features of

VMs, i.e., pausing, resuming the VM instances, duplicating instanced preconfigured for specific VP

types, or migrating them across physical machines.

1Recent efforts to run VMs on embedded cores [80; 199] remain within the VM definition as they do not adopt binary

translation.
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Figure 4.2: The architecture of NETSHIP.

Contributions. The main goal of this chapter is to understand how to build and use a Networked

Virtual Platform for the analysis of distributed heterogeneous embedded systems. To do so, we built

NETSHIP as a prototype based on the VP-over-VM model with the main objectives of supporting

heterogeneity and scalability. This is the first work that presents this type of CAD tool. To evaluate

NETSHIP we have completed a series of experiments including two complete case studies. The first

case study shows how a networked virtual platform can be used to better utilize the computational

resources that are available in the target system while guaranteeing certain performance metrics.

The second case study shows how a networked virtual platform can be used to develop a software

application running on a heterogeneous distributed system that consists of many personal mobile de-

vices and multiple computer servers while, at the same time, obtaining an estimation of the resource

utilization of the entire system.

4.2 Networked Virtual Platforms

A heterogeneous distributed embedded system can consists of a network connecting a variety of

different components. In our approach, we consider three main types of heterogeneity: first, we are

interested in modeling systems that combine computing nodes based on different types of processor
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cores supporting different ISAs (core-level heterogeneity); second, nodes that are based on the same

processor core may differ for the configuration of hardware accelerators, specialized coprocessors

like GPUs, and other peripherals (node-level heterogeneity); third, the network itself can be hetero-

geneous, e.g., some nodes may communicate via a particular wireless standard, like GSM or Wi-Fi,

while others may communicate through Ethernet (network-level heterogeneity.)

NETSHIP provides the infrastructure to connect multiple VPs in order to create a networked VP

that can be used to model one particular system architecture having one or more of these hetero-

geneity levels. For example, Figure 4.2 shows one particular instance of NETSHIP which is obtained

by connecting multiple instances of the QEMU machine emulator [51], the Android mobile-device

emulator [12], and the Open Virtual Platform (OVP) [19].

Each VP instance runs an operating system, e.g., Linux, with all the required device drivers for

the available peripherals and accelerators. The application software is executed on top of the operat-

ing system. Each VP typically supports the modeling of a different subset of peripherals: e.g., OVP

supports various methods to model the hardware accelerators of an SoC: users can write models in

SystemC TLM 2.0 or take advantage of the BHM (Behavioral Hardware Modeling) and PPM (Pe-

ripheral Programming Model), which are C-compatible Application Programming Interfaces (APIs)

that can be compiled using the OVP-supplied PSE tool-chain2.

In addition to the features supported by each particular VP, we equipped NETSHIP with all the

necessary instrumentation to: (1) enable multiple instance executions; (2) configure port forwarding;

and (3) measure the internal simulation time. Furthermore, any node in the network of VPs could

potentially be a real platform, instead of being a virtual one: e.g., in Figure 4.2, each of the x86

processors runs native binary code and still behaves as a node of the network.

One of the main novelty aspects of NETSHIP is the VP-on-VM model which is critical for the

scalability of modeling and simulations. We designed NETSHIP so that multiple VP instances (e.g.,

2 to 8) can be hosted by the same VM. By adding more VMs, the number of VPs in the system can

be increased with a small performance penalty, as discussed in Section 4.3. Notice that the simple

action of cloning a VM image that includes several VPs often represents a convenient way to scale

out the model of the target system.

Next, we describe the main building blocks of NETSHIP.

2PSE is Imperas Peripheral Simulation Engine [19].
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Synchronizer. VPs vary in the degree of accuracy of the timing models for the CPU perfor-

mance that they support. Some VPs do not have any timing model and simply execute the binary

code as fast as possible. This is often desirable, particularly when a VP runs in isolation. In NET-

SHIP, however, we are running multiple VPs on the same VM and, therefore, we must prevent a

VP from taking too much CPU resources and starving other VPs. QEMU provides a crude way to

keep simulation time within a few seconds of realtime. OVP, instead, controls the execution speed

so that the simulated time never surpasses the wall clock time. Multiple OVP instances, however,

still show different time developments which require a synchronization method across the VPs in

the network.

We equipped NETSHIP with a synchronizer module to support synchronization across the het-

erogeneous set of VPs in the networked platform, as shown in Figure 4.2. The synchronizer is a

single process that runs on just one particular VM and is designed in a way similar to the fixed-time

step synchronization method presented by D’Angelo et al. [82]: at each iteration, a central node in-

creases the base timestamp and the client nodes stop after reaching the given timestamp. However,

we considered two aspects in our synchronizer:

• we must synchronize VPs that might be scattered over several physically separated machines;

• we must preserve the scalability provided by the VP-on-VM model.

NETSHIP targets large-scale systems which involve deployments across physically separated

machines where millisecond-level network packet travelling is actually required to synchronize.

Hence, NETSHIP supports the modeling of applications that have running times ranging from a few

seconds to multiple hours or days, rather than simulations at nanosecond-level.

To support synchronization over the VP-on-VM model, we designed a Process Controller (PC)

that allows us to manage the VPs in a hierarchical manner. Each VM hosts one PC, which controls

all the VPs on that VM. In particular, all messages sent by a VP to the synchronizer pass through the

PC. The PC supports also running programs on a host machine: e.g., in the case of Figure 4.2, the

PCs manage the synchronization of the processes running on a x86 through the two POSIX signals

SIGSTOP and SIGCONT, in the same way as the UNIX command cpulimit limits the CPU usage

of a process.

Figure 4.3 illustrates an example of the synchronization process with two VMs, each hosting

two VP instances. The following steps happen at each given iteration i:
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Figure 4.3: Synchronization process example.

1. the synchronizer issues a future simulation time ti = ti−1 + ∆T to the VPs and wakes them

up;

2. the VPs run until they reach the appointed time ti and report to their PC;

3. as soon as a PC receives reports from all the connected VPs, it reports to the synchronizer;

4. after the synchronizer has received the reports from all the PCs, it loops back to Step 1.

The users can configure the time step ∆T to adjust the trade-off between the accuracy and the

simulation speed.

Let’s compare the complexity of this hierarchical method to the existing method. In the previ-

ously proposed synchronization algorithm [82], if the number of VP is |V P |, then the synchroniza-

tion process should receive and count |V P | reports to make sure that all the VPs have reached to

the appointed simulation time. This results in a Θ(|V P |) algorithm complexity in Synchronizer. In

contrast, the complexity of NETSHIP is Θ(
√
|V P |) because Synchronizer manages

√
|V P | PCs,

each of which controls
√
|V P | VPs.3

3It may be enough for Synchronizer to count only the number of reports from PC to know that every VP instance

is ready and advance the simulation time. However, this method is unreliable in the sense that there is no way for

Synchronizer to tolerate a PC malfunctioning. If a hash table, for example, is used to map a PC’s IP to the data structure

for checking that the PC is reporting more than once in a cycle, the average complexity of the algorithm in [82] is

O(|V P | + |V P |2/k) while for our algorithm it is O(
√
|V P | + |V P |

k
), where k is the number of buckets in the hash
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Command Database. NETSHIP was designed to support the modeling of systems with a large

scale of target networked VPs. In these cases, to manually manage many VP instances becomes

a demanding effort that involves many tasks, including: add/remove new VP instances to/from a

system, start the execution of applications in every instance, and modify the configuration files in

the local storage of each instance. In order to simplify the management of the networked VP as a

whole, we developed the Command Database that stores the script programs used by the different

NETSHIP modules. For example, the network simulation module and IP/Port forwarding module

load the corresponding scripts from the database and execute them. Table 4.1 contains a detailed

list of the commands in the database.

Name Behavior

vp ctrl pwr turns the VP on/off

net set bw sets the VP’s network bandwidth to simulate

net set delay sets the VP’s network delay to simulate

net set error sets the VP’s network error rate to simulate

net load rt loads the address/port settings to use

cmd execute executes a command in all the VPs

acc gen loads driver modules and creates a device

node for the specified accelerator

report local reports the local time in the VP

report cpu reports the cpu time in the VP

Table 4.1: List of commands in the command database.

VM and VP Management. Whereas the commands in the Command Database are dedicated

to VP configuration, we developed specialized modules to manage the VPs and the VMs (for the

latter we integrated tools provided by the VM vendor). These modules manage the disk images of

the VMs and VPs, for creating, copying, and deleting their instances. Since many VPs are still in

the early stages of development and are frequently updated by the vendors, the VP management

module checks the availability of new updates for all the installed VPs.

Network Simulation. The VP models of NETSHIP are provided with their own models of the

network interface card (NIC). These models, however, are purely behavioral and do not capture any

table and searching n times in a hash table takes n ∗O(1 + n/k).
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network performance property, such as bandwidth or latency [82]. Consequently, we developed a

Network Simulation module that enables the specification of bandwidth, latency, and error rates,

thus supporting the modeling of network-level heterogeneity in any system modeled with NETSHIP.

As shown in Figure 4.2, a Network Simulation module resides in each particular VP and uses the

traffic-shaping features based on the tc command, which manipulates the traffic control settings of

the Linux kernel.

Library Option Default Value

SSH (fixed) Port 22

Hadoop dfs.http.address 50070

(fixed) dfs.datanode.http.address 50075

mapred.job.tracker.http.address 50030

mapred.task.tracker.http.addres 50060

Open MPI oob tcp port min v4 0

(random) oob tcp port range v4 65535

btl tcp port min v4 1025

btl tcp port range v4 65525

Table 4.2: Example of library port uses.

Address Translation Table. In NETSHIP there are two points where packet forwarding plays

a critical role:

1. To allow incoming connections to the VPs through their emulated NIC model, most VPs

provide a way to redirect a port of the host to a port of the VP, so that packets that arrive

to that VM port are redirected to the corresponding VP port. We leverage this redirection

mechanism so that the applications running on the VPs can open ports to receive packets

from other VPs, even if those are located on a physically separated VM. 4

Port forwarding is the technique of redirecting the traffic incoming on one network port of the

OS running on the host VM towards a specific port of the OS running on the hosted VP. For

example, when a packet arrives to Port 10020 of the VM’s OS, the VP to which Port 10020 is

assigned intercepts the packet and forwards it to Port 22 of the VP’s OS. Hence, when users

4While certain VPs provides a network bridge feature that allows more generic network functionalities, we use port

redirection because it is commonly supported by every VP family.
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connects through SSH to the host’s IP and Port 10020 they are forwarded to Port 22 of the VP.

This is configured in the behavioral model of the VP and performed through the NIC model.

Unlike SSH, some libraries require a random port to be accessed by clients; for instance Open

MPI communicates through random ports ranging from 1025 to 65535 [124]. However, most

libraries also provide a way to change or reduce the required port range as shown in Table 4.2.

We reduced the range and mapped it to the same port range on the virtual addresses, 200.0.0.x.

One of these addresses is allocated to each of the VP instances using iptables through the Port

Management module in Figure 4.2.

2. Since certain applications require that each VP must be accessible through a unique IP address

and generally there is only one physical IP address per VM, we must map each VP to a virtual

IP address. Each VP must know such mapping for all other VPs in the system. Hence, we

used the UNIX command iptables to create a table of assignments within the kernel of

each VP. NETSHIP stores the translation information in the Address Translation Table, which

is loaded through the network commands stored in the Command Database.

4.3 Scalability Evaluation

In this section, we demonstrate the capabilities of NETSHIP from the synchronization, scalability,

performance, and network-fairness perspectives. Functional validations of NETSHIP will be covered

in each of the two case studies, in Section 4.5 and 4.6, respectively.

Simulated Time and Synchronization. Eight OVP instances and eight QEMU instances are

running in this simulation setup. The three figures in Figure 4.4 show the simulated time for each

instance. The red solid line represents the time graph of an ideal VP, with y = x, where y is the

wall-clock time and x is the simulated time. While there are multiple instances running together, in

the figure we show only the fastest and slowest instances for each VP family, in order to summarize

the range of variations within each VP family and to better compare the VP families.

Figure 4.4(a) measures the simulated time of the unloaded VPs. Each VP advances its simulated

time linearly, but differently from each other. In particular, the range of simulated time among

QEMU instances is wide: from 4% slower up to 25% faster than the wall-clock time. Instead, the

OVP instances show almost the same simulation speed (0.3% variation), which is 8% slower than
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Figure 4.4: Simulation time measurements.

the slowest QEMU instance. This reflects the fact that OVP has a better method to control the

simulation speed.

Figure 4.4(b) shows the case when a VP is subject to a heavy workload. In particular, at simu-

lated time x = 120s one OVP instance starts using a high-performance accelerator. From that point

on, that OVP instance gets slower than every other instance, as shown by the deviation among the

OVP lines in the figure. This is natural when the peripherals are modeled at a very high level of

abstraction. In a fair host VM, all VPs are granted the same amount of CPU time to be executed.

Simulating the use of a hardware accelerator on a VP typically requires the VP process on the VM

to execute a non-negligible computation. In the other words, running the functional model of the ac-

celerator uses the VM’s CPU resources and requires a certain amount of wall-clock time. From the

viewpoint of simulated time, however, this computation happens in a short period of time (due to the
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VP Type Core Model CPU use Preferred #VPs

OVP Accelerator ∼ 24% 4

OVP MIPS ∼ 6% 16

QEMU PowerPC ∼ 12% 8

VMWare x86 ∼ 5% 20

Table 4.3: Host CPU use of each VP.

accelerator’s timing model); therefore the given VP instance becomes slower than the others. The

misalignment of the simulated time among VP instances is a concern when simulating distributed

systems, because it might cause the simulated behaviors to be not representative of reality.

To address this problem, we implemented the synchronization mechanism explained in Sec-

tion 4.2. Figure 4.4(c) shows the behavior of all VP instances under the same conditions but with

the synchronization mechanism turned on (with a synchronization cycle of 300ms). The simulated

time of all VPs becomes the same as the slowest instance. The synchronization cycle can be de-

cided by the users. Our experiments show that it should not be too small (≥ 1ms) because: i) a

synchronization that is much more frequent than the OS scheduling time slice5 may disturb the

timely execution of the VPs, and ii) the synchronization is an overhead and slows down the overall

simulation.

Vertical Scalability. By vertical scalability we mean the behavior of the networked VP as

more VPs are added to a single VM. As discussed above, although the synchronizer preserves

the simultaneity of the simulation among VPs, it makes them all run at the speed of the slowest

instance , i.e., even one slow VP instance is enough to degrade the simulation performance of the

whole system. Therefore, an excessive number of VP instances on the same VM will likely cause a

simulation slowdown.

Table 4.3 shows the amount of CPU of the host VM that is used by a VP instance. For example,

when an OVP instance fully utilizes one accelerator, it takes up to 24% of the host CPU resource

in the hosting VM. This means that four is the optimal number of OVP instances, equipped with

that accelerator, which can co-exist on the same VM without performance penalty. Likewise, the

5Linux O(1) scheduler dynamically determines the time slice, ranging from milliseconds to a few hundreds millisec-

onds.
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Figure 4.5: Synchronization overheads.

CPU of a QEMU PowerPC that is fully busy, i.e., a simulated 100% utilization, uses up to 12% of

the host VM’s CPU resources: hosting up to eight QEMU PowerPC instances in the same VM is

performance optimal.

Note that even if the number of VP instances is higher than the optimal value, the synchronizer

still preserves the simultaneous simulation of all nodes. However, balancing out the number of VP

instances hosted across the VPs, or alternatively increasing the computational resources available to

the VM, helps to increase the overall simulation performance.6

Synchronization Overheads and Horizontal Scalability. Horizontal scalability describes the

behavior of the simulated VP as we scale the number of VMs. The synchronizer is the entity in the

networked VP that communicates with all VMs in order to keep all VPs aligned. Figure 4.5 shows

the overhead increase as the number of VMs grows. We measured the overhead as the time elapsed

from when the slowest VP instance reports the termination of its the execution step to the time the

same instance starts a new one. We experimented with ten VP instances insisting on each PC. In the

figure we compare a naı̈ve implementation with an optimized implementation of the synchronizer.

For both versions the principle of the synchronization is the same; however, in the optimized version

we used more advanced techniques to reduce the communication latency and overhead, using the

following methods:

Multicasting-based Wakeup. In order to reduce the serial latency of the wakeup packets de-

6The CPU resources of the VM might not be the only bottleneck. For a more generic approach, an analysis of disks,

network congestion, memory bandwidth, bus capacity, and cache interference is required. In our experiments, however,

the constraint due to the VM’s processing power was the most dominating factor that decides Vertical Scalability.
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livered from the synchronizer to the PCs, we used multicast UDP.

Atomic Operations in Shared Memory for In-Machine Reporting. The PC must check that

VPs correctly report the end of the current simulation cycle. This is done by having each VP

increase a shared counter through an atomic operation. This is possible because all VPs are on the

same machine.

Disabling Nagle’s Algorithm. Unlike the waking-up message of the synchronizer to the PCs

(1-to-N), multicast UDP cannot be used to carry reports from the PCs to the synchronizer (N-to-

1). In the Linux kernel, TCP sockets typically use by default an optimization technique, Nagle’s

algorithm, which combines a number of small outgoing packets and sends them all in one single

message [232]. This method, however, increases the latencies of these small packets (up to 30ms

in our experiments), which is a critical issue in our synchronization design, since latency is more

important than throughput. We then disabled Nagle’s algorithm by turning on the socket option

TCP NODELAY for each TCP socket.

Using POSIX Signals to Sleep and Wake up. In order to stop and wake-up a VP instance our

PC uses two signals: SIGSTOP and SIGCONT. The use of standard Linux signals provides several

advantages. First, the PC can be easily implemented in a separate user-space program, without the

knowledge of the internals of the VPs. Second, once implemented, the PC is portable across the

VPs, requiring no modifications. Third, the PC can stop all threads in the process, while sleeping

works only for the thread of the current context. Most importantly, this also enables a synchronized

execution with processes that run natively on a host VM, e.g., x86 server, outside of any VP.7

The overhead for 128 PCs is approximately 250ms, which slows down the networked VP by

about 25% if the simulation step is set to 1s.

Although the optimized implementation significantly reduces the overhead, both slopes increase

linearly with respect to the number of PCs in the network (notice that the x-axis is logarithmic). This

is because synchronization involves all PCs, each of which is located in a separate machine, and all

reports require a packet transmission across the network and linear-time computation to parse the

reports.

In summary, the synchronization across VMs limits the horizontal scalability, in the sense that

7In NETSHIP x86 binaries are executed on a VM, not a VP. Through the stop and continue signals PC synchronizes

the process without modifying the binary executables.
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Target PNI8 RTT (ms)

self VP (the loopback interface) no 0.15

local VM (a VM where the testing VP runs) no 0.17

local VP (another VP on the local VM) no 0.19

remote VM (a VM, except the local VM) yes 0.17

remote VP (a VP on the remote VM) yes 0.19

Table 4.4: Ping test from a VP.

the simulation step after which all VPs are synchronized must be (much) bigger than the time it

takes to actually perform the synchronization, which strongly depends on the characteristics of the

hosting VMs and how they are connected.

4.4 Experiments

4.4.1 Network Fairness Depending on Deployment

Based on the measurement of the latency of packet responses, through tools such as ping or tracer-

oute, it is possible to determine whether two VM instances are deployed on the same physical

machine or not [264]. Likewise, VP instances may experience variations in the network latency,

depending on how they are deployed.

However, our experimental results in Table 4.4 show that, given a VP instance, the difference

in latency to reach a local VP on the same VM, versus a remote VP on another VM, is less than

0.05ms. In particular, this value is small enough to be effectively hidden by the latencies set by the

designer to model the network-level heterogeneity configuration, as shown in Table 4.6.

4.4.2 Scalability and Detailed Configurations

In general, Horizontal Scalability is the ability to have more VP instances running in NETSHIP by

adding more VM instances. Vertical Scalability is the ability to have more VP instances running in

NETSHIP by adding more CPU cores to a VM. For example, the preferred number of OVP instances

with accelerators that can run in one VM (with one CPU core) is four, as shown in Table 4.3. If we

8Physical Network Involved.
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Figure 4.6: The system architecture for Case Study I.

add one more CPU core to the VM, we can run up to eight OVP instances with accelerators in that

VM.

The configuration of Case Study I, shown in Figure 4.6, includes: one VM that runs eight

QEMUs, two VMs that run four OVPs each, and one VM that supports x86. This is an optimal

configuration for the purpose of this case study. However, we also test Horizontal Scalability (e.g.,

by adding one VM that runs eight other QEMUs and another VM that runs four other OVPs) and

Vertical Scalability (e.g., by adding one CPU core to the VM running eight QEMUs so that it can

sustain up to 16 QEMUs.)

For Case Study II we vary the number of Android Emulator in “Android Emulator Scalability”

and the number of OVP instances in “Bottleneck Analysis” in Section 4.6. We run one to five

Android Emulators on one VM. We use two CPU cores for each VM, hosting four OVPs on each

CPU core. Thus, we use a total of four VMs for 32 OVP instances.

4.5 Case Study I - MPI Scheduler

We modeled a distributed embedded system as a networked VP that runs Open MPI (Message

Passing Interface) applications. This system features all the three kinds of heterogeneities: it has

three different models of CPUs, it has arbitrarily scattered accelerators over the VPs, and we also

vary the types of network connecting the devices. The goal of this case study is to use a networked

VP for designing a static scheduler that optimizes the execution time by better distributing the work
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Operations per Hour

Algorithm CPU Accelerator Speedup

Poisson 349 1183 3.39

2d-FFT 314 517 1.65

3DES 632 1339 2.12

Table 4.5: Case Study I: performance comparisons.

across the system in Figure 4.6.

Open MPI is an open source MPI-2 implementation, which is a standardized and portable mes-

sage passing system for various parallel computers [18]. In this case study, we used Open MPI

to establish a computation and communication model over NETSHIP. Since the mainstream im-

plementation of Open MPI does not support MIPS or ARM architectures (because it misses the

implementation of atomic operation backends) we wrote and applied patches for Open MPI to run

on these ISAs.

We simultaneously run three MPI applications over the distributed system: Poisson [235], 2d-

FFT [290], and Triple DES [44]. Each application is a standalone executable program and is con-

figured to process a small amount of data so that they act as embarrassingly parallel. The binary

code is stored in the NETSHIP Server’s shared storage, from which each VP downloads a copy when

the system starts-up. Every application is designed to either use the hardware accelerator, whenever

available on the VP, or run purely in software, otherwise. Accelerators are modeled to run basically

the same algorithm as the applications. We modeled one iteration of the algorithm to take a few

milliseconds.

According to our timing model for the accelerators and to the native timing model of the CPUs,

accelerators show 1.65× ∼ 3.39× speedup over CPUs, as summarized in Table 4.5. Note that the

speedup introduced by hardware acceleration with respect to pure software execution is not the

main point here. Instead, the comparative analysis is a demonstration of the type of analysis that

a designer can carry by using the networked VP paradigm. In fact, the speedup mentioned above

is actually conservative with respect to the literature, in order to keep the design exploration of

our case study interesting [288; 282]. The 2d-FFT accelerator’s performance improvement is not as

high as the other two accelerators because i) the size of the input and output of the 2d-FFT algorithm
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Figure 4.7: Case Study I: performance of different cores.

VP Type Network Type Bandwidth Latency

OVP MIPS DOCSIS 2.0 30.72Mbps 30ms

QEMU PowerPC Evolved EDGE 1.00Mbps 80ms

Host x86 IEEE 802.11g 54.00Mbps 45ms

Table 4.6: Case Study I: configured bandwidth & latency.

is larger than other accelerators and ii) the execution time for this algorithm is longer, according to

our timing models.

Based on such time model, Figure 4.7 shows the performance profile for different applications

on a few VPs: the OVP instances are always equipped with an accelerator, while the other VPs

are not. We also consider models for the network, whose bandwidth and latency parameters are

summarized in Table 4.6. Note that, since NETSHIP allows designers to use time models to better

simulate the characteristics of the network, those models are inputs to the networked VP and their

derivation goes beyond the scope of this thesis.

In order to improve the application performance by taking advantage of the known properties

of the system, i.e., performance profile of the nodes and network characteristics, we designed an

OpenMPI Scheduler and we used the networked VP to evaluate its effectiveness. As shown in

Table 4.7, the scheduler delivers a speedup ranging from 1.3× to over 4×, depending on the user

request. Such achievement is very encouraging since it is obtained without using any additional
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# of operations Time in ms

Poi- 2d Triple without with Speed

sson FFT DES Sched Sched Up

60 30 800 199,642 48,924 4.08

60 30 1800 344,422 117,380 2.93

50 20 40 102,293 45,210 2.26

60 30 150 103,700 46,693 2.22

250 80 140 198,927 113,383 1.75

20 100 10 161,462 122,527 1.32

Table 4.7: Case Study I: scheduler performance.

resource, but only by re-assigning tasks to the nodes that are better equipped for each of them. Note

that the design, the verification, and also an initial assessment on the effectiveness of the scheduler

have been carried out on the networked VP, without having to deploy the real system.

Scheduler Design. We designed the scheduler to run on a client machine and to follow these

steps:

1. It receives the user request, which includes the number of times each MPI application must

run, e.g., 300 Poissons, 200 2d-FFTs, and 500 3DESs.

2. It loads the performance profile of each VP in executing the given applications, e.g., V P 0

takes 3.182s to execute Poisson, while V P 1 takes 10.427s , and so on, as shown in Figure 4.7.

3. It derives the objective function to be minimized.

4. It converts the constraints (user request and performance profile) and the objective function

into a matrix, and solves it by running a linear programming algorithm.

5. It distributes the workload according to the solution.

For the sake of simplicity, the following two examples assume that there are two devices, d1 and

d2, and two applications, x1 and x2. In both examples, variables Tij denotes the amount of time that

device di spent on an application xj . For instance, a variable T12 is the time period that device d1
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T11 T12 T21 T22 t

110 0 150 0 0 400

0 250 0 100 0 320

-1 -1 0 0 1 0

0 0 -1 -1 1 0

0 0 0 0 1 0

Table 4.8: Linear programming matrix for minimizing execution time.

spent running application x2. After executing a linear programming algorithm, the solution includes

the best (the minimun or the maximun) possible value of the objective function along with the values

of the variable used for the best value of the objective function.

Minimizing the Execution Time. Let’s assume we have the following profile data:

1. application x1 runs on device d1 110 times per unit time.

2. application x2 runs on device d1 250 times per unit time.

3. application x1 runs on device d2 150 times per unit time.

4. application x2 runs on device d2 100 times per unit time.

The user’s request may be like the following:

1. Execute application x1 400 times and application x2 320 times.

Then we have two inequalities:

1. 110T11 + 150T21 >= 400

2. 250T12 + 100T22 >= 320

To account for the total execution time, we introduce a new variable t.

1. T11 + T12 <= t

2. T21 + T22 <= t

Finally, the objective function p to be minimized is equal to t. The resulted matrix is given

in Table 4.8. The optimal solution for this example is p = 52/25; T11 = 4/5, T22 = 32/25,

T21 = 52/25, T22 = 0, t = 52/25. This means that the devices can finish the user request in 52/25
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T11 T12 T21 T22

110 0 150 0 400

0 250 0 100 320

30 50 20 70 0

Table 4.9: Linear programming matrix for minimizing power dissipation.

time units when the system follows this solution. The solutions for each variable, as the definition,

stand for the execution time, e.g., T11 requires device d1 to run application x1 for 4/5 unit time or

88 times.

Minimizing the Power Dissipation. In this example, we assume the same user request and

profile data used in the execution time minimization example. In addition to these conditions, the

power dissipation profile data is required:

1. device d1 dissipates 30W per unit time when executing application x1.

2. device d1 dissipates 50W per unit time when executing application x2.

3. device d2 dissipates 20W per unit time when executing application x1.

4. device d2 dissipates 70W per unit time when executing application x2.

Then, the objective function derived is p = 30T11 +50T12 +20T21 +70T22. The corresponding

matrix to minimize this objective function subject to the constraints is given in the Table 4.9.

The execution of a linear programming algorithm for this matrix gives the solution p = 352/3;

T11 = 0, T12 = 32/25, T21 = 8/3, T22 = 0. This means that the user requests can be executed

with consuming 352/3 power units.

4.6 Case Study II - Crowd Estimation

Crowd estimation, or crowd counting, is the problem of predicting how many people are passing

by or are already in a given area [216]. A number of researches have focused on crowd estimation

based on image processing of pictures [99; 203]. The crowd estimation application we developed

in this section is based on user-taken pictures, from mobile phones, targeting relatively wide areas,

e.g., a city.
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Figure 4.8: The system architecture for Case Study II.

We built a networked VP (Figure 4.8) that is representative of the typical distributed platform

required to host this kind of application. The networked VP features Android Emulators to model

the phones and a cluster of MIPS-based servers based on the multiple OVP instances (on the right-

hand side of the figure). The Android Emulators emulate mobile phones that take pictures through

the integrated camera and upload them to the cloud. The pictures are stored on an Image Database

Server (IDS), to which both phones and servers have access. The servers emulate the cloud, and

run image processing algorithms on the pictures. Specifically, we developed a Human Recognition

application based on OpenCV [20] to count the people in each picture and store the result on the

IDS. Then, a Map Generator process running on the IDS reads the people counting from the IDS

and plots it on a map.

Given the application requirements, we used the networked VP to gain insights on the amount

of resources required to process pictures in real-time. Note that our main concern is the opportunity

to build and study the networked VP and to use it to analyze the properties of the application that

runs on it. In other words, we used this application primarily as a case study to test the capabilities

of NETSHIP, while the optimization of the quality of the crowd estimation was only a secondary

concern.

Android Emulator Scalability. We used several Android Emulators to model millions of mo-

bile phones that sporadically take pictures (instead of using millions of emulators). To validate

whether the emulators realistically reflect the actual devices’ behavior with respect to network uti-

lization, we performed multiple tests after making the following practical assumptions:

1. There are 3,000,000 mobile phone users in Manhattan and 2% of them upload 2 pictures a
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# of Emulator # of Pic Incoming Traffic (KB/s)

in the model Upload / Hour Max Min Avg.

1 13333 N/A N/A N/A

2 6666 380.4 372.5 379.3

4 3333 384.1 376.4 381.2

8 1666 377.8 361.8 374.2

16 833 389.0 367.5 381.5

Table 4.10: Case Study II: impact of varying number of Android-emulator instances.

Image Size (KB) 8 32 128 512 74(Avg)

Process Time (s) 3.48 13.42 49.7 247.1 31.5

Throughput (KB/s) 2.30 2.38 2.57 2.07 2.34

Table 4.11: Case Study II: image processing (human recognition) performance.

day.

2. The uploading of the pictures is evenly spread over the daytime (09:00∼ 18:00).

3. The average image file size is 74KB, as the image size we have in the database (DB).

Given the assumptions above, in Table 4.10 we summarize the number of pictures an emulator

must upload in an hour and the actually measured incoming traffic of the DB server. These values

are obtained based on the number of available emulators in the networked VP and accordingly con-

figured the number of pictures uploaded by each emulator per hour. For example, if the networked

VP has only one Android emulator (first row), we can achieve the desired load for the cluster when

this emulator uploads 3, 000, 000 ∗ 0.02 ∗ 2/9 ≈ 13333 pictures per hour. Since one single emula-

tor fails to upload 13333 pictures per hour, because of insufficient emulator performance, we must

increase the number of emulators to at least two. The measured incoming traffic is rather consistent

independently of how many emulators we use to split the job. This implies that we can deploy less

emulators than the number of nodes we would have in reality, i.e., 4 vs. 3 million, as long as those

emulators generate more traffic than they would in reality, i.e., 3333/hour vs. 2/day, after verifying

that they also simulate fast enough to sustain the traffic generation.

Bottleneck Analysis. The data in Table 4.11 show the average time required by one MIPS

server to run the Human Recognition application on a given picture. Based on this data and on
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the characterization of the traffic load, the application designer can attain a number of meaningful

design considerations.

1. The designer can measure the number of required MIPS servers that support the required

volume of image processing, given the input and output data rates. For example, when images

are fed to the DB at 380KB/s, then, based on the throughput for the average image size in

Table 4.11, the cluster must have more than 380KB/2.34KB/s = 162.4 MIPS servers to

guarantee real-time performance. Note that 2.34KB/s is the throughput of the average image

size in Table 4.11.

2. On the other side, if the number of available servers cannot be changed, the designer can

reason on the appropriate image size. If we assume to have 80 MIPS servers in the cluster,

then they can process only up to 80 × 2.34KB/s = 187.2KB/s. In that case, the average

image size must be less than 74KB× (187.2/380) = 36.5KB for the application to work in

real-time.

3. The network traffic through the DB server includes picture uploading from mobile phones,

picture downloading by the MIPS clusters, updating and reading of geolocation information

and people count. Based on the analysis of the network traffic and how it scales as the system

grows, the designer can evaluate the best database architecture, e.g., distributed rather than

centralized.

Application Design. The application iterates the following work flow:

1. The mobile phone users take pictures and upload then to the Image DB along with their

geolocation.

2. The cluster of MIPS servers fetches one image at the time from the DB and counts the people

in it, by means of a human recognition algorithm.

3. The number of people in each image is stored back into the DB.

4. The Map Generator creates a plotted image as the result.

Each iteration is done in parallel, in the sense that the multiple Android Emulators upload im-

ages and the MIPS servers process the images concurrently. The application consists of the follow-

ing modules.
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Android Camera App. One instance of the Android Camera App runs on each Android Emu-

lator. To simulate the smart phones that users use to take pictures, we took images publicly available

on the Picasa and Flickr’s image databases [26; 25], and we distributed them across the local storage

of the Android Emulators, before starting the simulation. For the experiment, we considered 55,831

images with the geolocation information of Manhattan9, assuming the users are taking pictures in

this area. We modeled the act of a phone user taking a picture with the App loading a picture from

the local storage.

Image Database. Every time the App takes a picture, it immediately uploads it, together with

its metadata, i.e., latitude and longitude, to the Image DB. Also, the MIPS cluster fetches images

and metadata from this database to process them, and stores back the results.

Human Recognition. The human recognition program is based on OpenCV. It is stored in the

NETSHIP Server’s storage and runs on the MIPS cluster. To detect human bodies in a given picture,

we used a head-and-shoulder detecting Haar model [273] and an upper-and-lower-body detecting

Haar model [192]. It is, however, difficult to grasp human bodies from multiple directions, in

particular from a side view [324].

Map Generator. The Map Generator program reads the people counting from the Image DB

and plots it on the map10 with a resolution 717× 944, translating latitude and longitude to the pixel

position.

Application Results. Although the quality of the developed application’s result is not the pri-

mary concern of this work, we present the resulted maps from two possible alternative variations

of the crowd estimation application: one based on counting only the number of pictures taken at a

particular location, and the other based on counting the number of people showing in those pictures.

The results of Figure 4.9 are interesting but they can be substantially improved by using NETSHIP

to analyze various possible optimizations of the application.

Figure 4.9(a) shows how many pictures are taken by users and Figure 4.9(b) shows the estimated

crowds based on such pictures. One red circle on the map corresponds to an area of approximately

2500m2 or 2990yd2. The density of the crowds is presented with the opacity, where the transparent

area indicates no people and an opaque circle indicates more than 80 people in that area.

9For the geolocation of Manhattan we used longitude -74.015 ∼ -73.928 and latitude 40.700 ∼ 40.816.

10The map is extracted from the Google Maps service.
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(a) Picture Count (b) Crowd Estimates

(c) Tile at (81,395) of (a) (d) Tile at (81,395) of (b) (e) Tile at (210,460) of (a) (f) Tile at (210,460) of (b)

Figure 4.9: Case Study II: visualization of (a) picture count and (b) estimated crowd based on the

pictures.

Figure 4.9(c) is a tile taken from Figure 4.9(a) at the pixel position < 81, 395 > and Fig-

ure 4.9(d) is a tile taken from Figure 4.9(b) at the same position. Likewise, Figure 4.9(e) is a tile

taken from Figure 4.9(a) at the pixel position < 210, 460 > and Figure 4.9(f) is from the same pixel

position of Figure 4.9(b).

Both Figure 4.9(a) and Figure 4.9(b) give an idea of which areas are more crowded than others,
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based on the opacity of the red circles on the map. However, the comparison of these two figures

shows that our crowd estimation algorithm, based on human recognition, gives a more accurate

outcome than simply counting the total number of taken pictures. For example, as shown in the

comparison of the pair of Figure 4.9(c) and Figure 4.9(d), the estimated crowds on the river was

decreased by the human recognition algorithm because the pictures taken over the river are mostly

Manhattan skyline photos taken on a boat, a helicopter, or an airplane. On the other hand, in the

case of Figure 4.9(e) and Figure 4.9(f), the actual crowds on the ground might be greater than the

number of pictures taken on the same spot.

4.7 Related Work

A number of studies have previously focused on helping system architects to better design dis-

tributed embedded systems by providing ways to optimize the process scheduling and the commu-

nication protocols [157; 253], tools to ease design space explorations [281; 173; 144], estimation

models [344], and network behavior simulations [119], or methodologies [193; 144]. Nonetheless,

these tools or systems only generate quantitative guidelines that must be then applied to the physical

devices, thereby precluding their usability without already having the physical devices in place and

the application deployed on them. There are also contributions obtained through the use of VPs [82;

328]; however, none of these works consider the three levels of heterogeneity that characterize

more and more distributed embedded systems (Section 4.2). Synchronization between the VP in-

stances, one of the key features of our networked VP, has been inspired by previous works [260;

256]. However, these works do not consider node-level or network-level heterogeneity.

4.8 Concluding Remarks

We have designed and implemented NETSHIP, a framework for building networked VPs that model

heterogeneous distributed embedded systems. Networked VPs can be utilized for various purposes,

including: i) simulation of distributed applications, ii) systems, power, and performance analysis,

and iii) costs modeling and analysis of embedded networks’ characteristics.

We also designed hardware accelerators for specific algorithms. We analyzed that accelerators

might require more resources of the CPUs that host the simulation. We quantified how this phe-
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nomenon partially limits the scalability of the entire networked VP, and provided guidelines on how

to distribute the VPs in order to counter balance this loss of simulation performance.

Finally, we used NETSHIP to develop two networked VPs. We used one VP to design a scheduler

based on MPI and to verify through simulation how the scheduler is able to optimize the execution

of many MPI jobs over a network of heterogeneous machines, by simply distributing the jobs among

the available machines on the basis of their performance-per-application profile. We used the other

VP to design and validate an application distributed among portable devices and a cloud of servers,

and also to derive potential insight about the number of servers and the image size that guarantee

the entire application to run in real-time.
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Chapter 5

Improving the Design Tool for Mobile

GPU Simulations

Despite their proliferation across many embedded platforms, GPUs present still many challenges to

embedded-system designers. In particular, GPU-optimized software actually slows down the exe-

cution of embedded applications on system simulators. This problem is worse for concurrent simu-

lations of multiple instances of embedded devices equipped with GPUs. To address this challenge,

Luca Carloni and I present ΣVP, an extension of NETSHIP, to accelerate concurrent simulations

of multiple virtual platforms by leveraging the physical GPUs present on the host machine. ΣVP

multiplexes the host GPUs to speed up the concurrent simulations without requiring any change to

the original GPU-optimized application code.

With ΣVP, GPU applications run more than 600 times faster than GPU-software emulation on

virtual platforms. We also propose Kernel Interleaving and Kernel Coalescing, two techniques that

further speed up the simulation by one order of magnitude. Finally, we show how ΣVP supports

simulation-based functional validation and performance/power estimation.

5.1 Introduction

Since their advent in 1999, Graphics Processing Units (GPUs) have progressively benefited the

performance of many computing systems with their specialized parallel architectures. Originally

designed to serve on desktop computers, nowadays GPUs play an important role in a variety of sys-



CHAPTER 5. IMPROVING THE DESIGN TOOL FOR MOBILE GPU SIMULATIONS 53

CPU GPU CPU 

Simulated 
Embedded 
System 

Host 
System 

(a) Simulation with 
      Host CPU 

(b) Simulation with 
      Host CPU and GPU (Our Approach) 

Virtual 
Platform 

Application 

GPU 
Emulation 

Virtual 
Platform 

Application 

Virtual 
GPU 

Figure 5.1: Two ways of simulating GPU applications.

tems. Since the introduction of the use of GPUs for general-purpose computing (GPGPU) a growing

number of high-performance computing systems have adopted them [242]. GPGPU has found its

way also into mobile and embedded systems for a variety of applications, including sensor-data

processing and computer vision [137; 337]. Furthermore, these systems are increasingly integrated

in large-scale networks to form distributed embedded systems and support such applications as

multi-player online gaming [133; 218].

Given these trends, designers are increasingly interested in simulating the execution of GPU

applications on the computing systems that they are designing and that will host one or more

GPUs. Simulation with multiple instances of virtual platforms (VPs) enables many important de-

sign decisions as part of the process of exploring the design space of the target systems [168; 167;

178]. Since this process requires the simulation of complex application scenarios, the speed of the

simulator is of critical importance.

However, using GPU-optimized code in a simulation environment presents some challenges.

While it accelerates a given application on the target system, the addition of GPU-specialized soft-

ware code can slow down the simulation of the application execution. The reason is that most of

the current multi-node system simulators run the entire simulation on the host CPU. Then, in order

to run the GPU code, many simulators, and even widely adopted development tools such as the An-

droid Emulator, need to include GPU emulation capabilities (e.g., the Mesa software backend) [12;

283]. The presence of an additional software layer on top of the VP significantly deteriorates the

overall execution speed [162; 318]. Figure 5.1(a) illustrates this scenario of simulating embedded
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applications that have GPU code by using GPU emulation on top of a VP that runs on the host CPU.

In contrast, we propose to take advantage of the increasing presence of physical GPUs in many host

systems. As shown in Figure 5.1(b), the idea is to execute the GPU code from multiple virtual GPU

models on the host GPU.

To demonstrate this idea we developed Simulation using GPU-Multiplexing for Acceleration

of Virtual Platforms (ΣVP), a framework to simulate embedded devices equipped with embedded

GPUs. Our system executes separately the target CPU code on the simulated CPU and the tar-

get GPU code on the simulated GPU, thus enabling a modular integrated simulation of multiple

embedded systems.

ΣVP benefits from two novel optimization techniques, Kernel Interleaving and Kernel Coa-

lescing, that we developed thanks to the possibility of executing multiple VP instances on virtual

embedded GPUs. We show that ΣVP can be used for functional validation, timing analysis and

estimation of power dissipation. Our approach not only speeds up the simulation time by orders

of magnitude but it also enables major savings in terms of the efforts to build the models for these

timing and power analyses.

5.2 GPU Multiplexing for Simulation

ΣVP multiplexes the host GPUs to execute the request from the VPs by using separate streams

for each VP. Thanks to our methods for time-division multiplexing (interleaved invocations) and

throughput-division multiplexing (coalesced invocations), the host GPUs can be used to accelerate

the execution of the target GPU code. In this section, we present the components of ΣVP and how

they interact.

The Architecture of ΣVP. Figure 5.2 shows the structure of the prototype that we developed

to evaluate our ideas. ΣVP supports many VP instances, each consisting of three main modules: a

GPU user library, a GPU driver, and a virtual embedded GPU hardware model. We designed these

to efficiently resolve the three challenges discussed above.

The GPU User Library forms a layer that intercepts the requests from user applications by

providing the same APIs of the physical GPUs, e.g., the CUDA runtime library [9]. We designed

the user library for the virtual GPU model to support binary compatibility with existing GPU appli-
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Figure 5.2: Proposed simulation framework prototype.

cations. Hence, the application binaries that use GPU instructions do not need any change to run

on the virtual GPUs. Instead, the user library forwards the requests from those applications to the

virtual GPU device driver. This is a driver for the guest operating system that works as an interface

between the GPU user library and the virtual GPU hardware model. Finally, the Virtual Embed-

ded GPU Hardware Model pushes the requested kernels into the Job Queue in the host machine

through the IPC manager.

On the host machine, there are five modules that run on top of the physical GPU. The Inter-

Process Communication (IPC) Manager allows the virtual embedded GPUs and the host GPU to

communicate through an IPC method such as socket or shared memory. Inside the IPC manager,

there is a submodule, named VP control, that stops and resumes the VPs to support the Kernel

Interleaving optimization technique for synchronous kernel invocations, which is presented in Sec-

tion 5.3.1. The Re-scheduler has two functions. First, it reorders the asynchronous kernel jobs in

the Job Queue by keeping a partial order in the original VP. It is a non-preemptive, optimal sched-

uler augmented for job dependencies [212]. Second, it combines identical kernel requests in the

Job Queue into one single kernel job, by using Kernel Coalescing, also discussed in Section 5.3.2.

The Job Dispatcher links the requests to the GPU driver library on the host machine and invokes

the physical GPU instructions based on the requests in the Job Queue. The Time/Power Estima-

tion module estimates the execution time and the power consumption on the target GPU, while we
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Figure 5.3: Coalescing two memory chunks (left) into one (right).

actually execute the kernel on the host GPU based on the profiling information, as described in

Section 5.4. Finally, the Profiler, which is provided by the manufacturer, acquires execution infor-

mation such as the number of executed instructions (per instruction type), the elapsed clock cycles,

and the percentages of each occurred stall.

Across the modules of our prototype, it is not necessary to additionally translate the APIs and

instructions from the target GPU applications on the virtual platform into other APIs or instructions.

This is because most recent GPUs support standard APIs, like OpenGL or OpenCL, in addition to

some widely used proprietary APIs such as Microsoft’s DirectX [140] and NVIDIA’s CUDA [9].

These APIs are available across various vendors and models. Particularly, the APIs supported by

embedded GPUs are in many cases compatible with their non-embedded counterparts. For instance,

most mobile GPUs nowadays support OpenGL ES, whose APIs are a subset of the standard OpenGL

APIs. Also, ordinary GPUs fully support OpenGL.

For the development of our simulation framework prototype we addressed the three main chal-

lenges listed above as follows:

1. Multiplexing: we used CUDA Streams in the execution process to run the CUDA codes

extracted from multiple CUDA programs. By allocating a separate stream to each of the

programs’ default stream and synchronous APIs, time-division and throughput-division mul-

tiplexing become possible. CUDA Context is not a desirable solution here because using

multiple contexts introduces significant performance degradation in a process [9]. In our

prototype, the Virtual GPU Model and IPC Manager handle the serialization of the requests

while the Re-scheduler reorders and merges the requests for multiplexing.

2. Binary Compatibility: we used intact CUDA Runtime library on the virtual platforms to

convert the CUDA Runtime API requests to CUDA Driver APIs in a similar way as done
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by GVirtuS, Barra, and GPU Ocelot [262; 73; 97]. The GPU application binaries compiled

for the target architecture are linked to the CUDA Runtime library. By keeping the original

CUDA Runtime library, the given application binaries can execute on our simulation frame-

work without the need of recompilation. Only the underlying layers are changed. Thanks to

the layered architecture of the CUDA software stack, replacing the CUDA driver library can

elegantly address this challenge without incurring any side effects. By delivering extracted

PTX codes to the CUDA driver library, this also resolves the problem of extracting PTX

instructions. Thus, the Re-scheduler can easily identify or modify the kernels in the PTX

format.

3. Communication: Instead of making a clear-cut decision, we took a hybrid approach by using

both socket and shared memory for communication. For short-latency of API invocations, a

socket works as a Remote Procedure Call (RPC), while shared memory plays a key role in

memory copying triggered by the cudaMemcpyXXX() functions.

5.3 Two Optimization Techniques

Kernel Interleaving and Kernel Coalescing are two techniques that we developed to improve the

performance of simulating the execution of GPU commands from different applications on multiple

virtual-platform instances. Executing multiple virtual platform instances with GPUs simultane-

ously is obviously a challenge. In the mean time, however, there are opportunities to optimize the

executions of GPU commands from different programs. In this section, we propose optimization

techniques that efficiently execute multiple GPU kernels. Using these two novel optimization tech-

niques, we improve the execution performance of embedded GPU programs.

5.3.1 Interleaving kernels and memory instructions

GPU architectures feature two types of engines that can operate in parallel: a Compute Engine

and a Copy Engine. Many GPU applications, however, iterate over a simple pattern: a memory

copy from the host to the GPU device, a kernel execution, and a memory copy from the GPU

device to the host. Although some recent GPUs support Concurrent Kernel Execution that may

automatically interleave kernels from distinct streams, this can lead to suboptimal performance, as
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Figure 5.4: Kernel Interleaving.

shown in Figure 5.4(a). Kernel Interleaving reorders the executions to reduce the wasted cycles

across the two engines and improves the overall execution time by using the expected time for each

invocation, as shown in Figure 5.4(b).

CUDA offers two types of API invocations. Synchronous invocation executes API primitives

like cudaMemcpy() or cudaLaunch() and waits until the requested operation is finished before re-

turning to the callers context. Asynchronous invocation is possible for user-defined CUDA kernels

and some API primitives such as cudaMemcpyAsync(): this invocation adds the execution request

to a queue and returns immediately to the caller context, while the actual execution will happen in

background. Synchronous invocations are easier to program but asynchronous invocations can run

faster for some cases.

To implement Kernel Interleaving we followed two distinct approaches for the two kernel-

invocation types that are supported by GPUs: synchronous and asynchronous. To effectively in-

terleave instructions from different programs, ΣVP reorders the asynchronous requests in the Job

Queue as shown in Figure 5.5(a). For synchronous kernel invocations, instead, ΣVP cannot fetch
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Figure 5.5: Interleaving GPU instructions.

the next GPU instructions until it finishes the current one. However, since it is possible to control

the progression of the execution of each VP, we can stop one for some time to let another one run.

This property can be used to perform kernel interleaving for synchronous GPU calls, as shown in

Figure 5.5(b).

5.3.2 Coalescing Identical Kernels

Generally, the invocation of a function in a program suffers from some overhead: the program must

backup and restore the register values, deliver the function arguments, jump to the function code,

and finally return to the main program. In many cases of embedded applications, it is important to

reduce such overhead. Hence, various programming languages support inline function expansion,

which allows the compiler to implant the code of a function into the caller code. Function inlining,

however, is not available for the invocation of a GPU kernel from a CPU. In this case, the invocation

overhead is even larger because it includes the process of sending the request from the CPU to the

GPU, a separate device, through a device driver and a hardware channel.

We observed that when multiple VP instances are running in our simulation environment, it is

likely that an identical kernel is called by more than one VP at the same time [284]. This occurs, for

instance, during the simulation of multiple streaming media boxes, embedded systems which are

equipped with a GPU to decode and show video contents to the users [284]. In this case, the boxes

are likely to execute the same decoding algorithm at a specific point of time. Such simulations

can be accelerated by coalescing those common invocations from each VP into a single kernel

invocation. ΣVP makes this possible through an appropriate management of memory. When kernel

coalescing is necessary, ΣVP first coalesces the memory chunks into one bigger piece of data stored

at physically contiguous memory locations, as shown in Figure 5.3. Then, the GPU can run one
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Figure 5.6: Kernel Coalescing.

kernel instance to process the merged data set.1 After the kernel execution, the resulting data are

properly divided to be copied from the GPU device back to the host memory addresses.

Figure 5.6 illustrates this idea for the case of two kernel instances: instead of executing them as

shown in Figure 5.6(a), Kernel Coalescing allows us to execute a single kernel instance on a larger

data set as shown in Figure 5.6(b).

This technique brings another significant gain: data alignment. Due to their parallel architecture,

GPUs are designed to execute multiple concurrent threads. Hence, whenever the data size is not

aligned, the GPU must run another loop of the kernel for the rest of the data. This handicap can

be significantly reduced by coalescing memory chunks. For example, a GPU with 64 concurrent

threads can process 64 data elements simultaneously. Any data set that is a multiple of 64 requires

1 Merging memory chunks for kernel coalescing is different from global memory access coalescing [183].
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1 t e m p l a t e < i n t BLOCK SIZE> g l o b a l

vo id mat r ixMul ( f l o a t ∗C , f l o a t ∗A, f l o a t ∗B ,

3 i n t wA, i n t hA , i n t wB) {

5 i n t bx = b l o c k I d x . x ;

i n t by = b l o c k I d x . y ;

7 i n t t x = t h r e a d I d x . x ;

i n t t y = t h r e a d I d x . y ;

9

/ / O f f s e t from t h e c o a l e s c e d B m a t r i x

11 i n t i y = wA ∗ ( i n t ) ( by ∗ BLOCK SIZE / hA ) ;

13 i n t aBegin = wA ∗ BLOCK SIZE ∗ by ;

i n t aEnd = aBegin + wA − 1 ;

15 i n t a S t e p = BLOCK SIZE ;

i n t bBegin = BLOCK SIZE ∗ bx ;

17 i n t bS tep = BLOCK SIZE ∗ wB;

19 f l o a t Csub = 0 ;

21 f o r ( i n t a = aBegin , b = bBegin ;

a <= aEnd ; a += aStep , b += bStep ) {

23

s h a r e d f l o a t As [ BLOCK SIZE ] [ BLOCK SIZE ] ;

25 s h a r e d f l o a t Bs [ BLOCK SIZE ] [ BLOCK SIZE ] ;

27 As [ t y ] [ t x ] = A[ a + wA ∗ t y + t x ] ;

/ / Load B m a t r i x from t h e o f f s e t

29 Bs [ t y ] [ t x ] = B[ b + wB ∗ ( i y + t y ) + t x ] ;

31 s y n c t h r e a d s ( ) ;

# pragma u n r o l l

33 f o r ( i n t k = 0 ; k < BLOCK SIZE ; ++k ) {

Csub += As [ t y ] [ k ] ∗ Bs [ k ] [ t x ] ;

35 }

s y n c t h r e a d s ( ) ;

37 }

i n t c = wB ∗ BLOCK SIZE ∗ by + BLOCK SIZE ∗ bx ;

39 C[ c + wB ∗ t y + t x ] = Csub ;

}

Listing 5.1: Coalesceable CUDA kernel for matrix multiplication.
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as many thread iterations: e.g., to process 16 memory chunks of the same size, the threads will

iterate 3 × 16 = 48 times. On the other hand, if this GPU must process 132 data elements, a

size that is unaligned with respect to the number of kernel threads, then it has to iterate the 64

threads three times (64 + 64 + 4), the last time for just 4 elements. Coalescing memory chunks can

significantly reduce this handicap. For instance, coalescing 16 memory chunks of 132 data elements

produces a memory chunk of 16× 132 = 2112 elements, which is processed by iterating the kernel

only 2112/64 = 33 times, instead of 48 times.

Merging Memory Chunks for Kernel Coalescing. Benefiting from coalescing unaligned

memory chunks is unattainable for some exceptional kernels that behave differently as the input

size changes. Merging memory chunks for Kernel Coalescing requires that the kernel does not ac-

cess the data across different memory chunks. Matrix multiplication is an example of an application

whose memory-access patterns must be modified to make it coalesceable. Listing 5.1 shows an

implementation of the matrix multiplication that can benefit from Kernel Coalescing. With respect

to the original version provided by NVIDIA, two modifications were necessary (Lines 9 and 26).

5.4 Time and Power Estimation

To augment ΣVP with capabilities for timing and power analysis we developed Profile-Based Exe-

cution Analysis, a novel method that combines the information obtained executing the kernel on the

host GPU with the information obtained compiling it for the target GPU and with existing models

for time and power estimation [141; 197].

Figure 5.7 illustrates the main idea of this method. First, ΣVP compiles the kernel for both

the target and the host GPU architectures. Second, ΣVP executes the kernel on the host GPU and

gathers a variety of kernel-profiling information from this execution including: number of executed

instructions for each instruction types (floating point and integer arithmetic, control flow, and mem-

ory access), elapsed clock cycles, cache hit/miss counts, and stall reasons. Then, ΣVP derives

various execution profiles as if the kernel was executed on the target GPU. For instance, by com-
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Figure 5.7: Profile-based execution analysis.

bining the iteration count2 and the number of instructions of each program block3, ΣVP derives

the expected instruction count σ{K,T} for the kernel K executed on the target GPU T , as shown in

Figure 5.8. The same method can be extended to obtain σ for each instruction type i:

σ{K,T} =
∑
i

∑
b

[
λb · µ{bi,T}

]
(5.1)

where b ∈ K is a program block; i ∈ {FP32, FP64, Int, Bit, B, Ld, St} is an instruction type; µ{b,T}

is the static number of instructions from b compiled for T ; and λb is the iteration count of a block b

in the execution.

Timing Estimation. We built three increasingly refined models to estimate the number C{K,T}

of clock cycles needed to execute a kernel K on the target GPU T . The first model is simply based

on IPCH→T that is the ratio of IPCT and IPCH , which are the maximum values of the number

of Instructions Per Cycle on the target (simulated) and the host (simulating) GPU architectures,

respectively. Then, we obtain our first estimate C{K,T} simply as:

C{K,T} =
σ{K,T}

IPCH × IPCH→T
(5.2)

2The iteration count can be estimated via several probabilistic methods [83]. For more precise evaluation, we dynam-

ically inserted PTX instructions into the kernel before the execution to obtain the iteration count. This involves less than

0.5% overhead.

3The largest portion of the kernel that has a distant execution path determined by control instructions.



CHAPTER 5. IMPROVING THE DESIGN TOOL FOR MOBILE GPU SIMULATIONS 64

3 

1 4 

5 

2 

3x 

2x 

3x 

1x 

1x 

32 on Host 

5 

2 4 

6 

2 

3x 

2x 

3x 

1x 

1x 

43 on Target 

μ: #instruction 
λ: #iteration 

Figure 5.8: Instruction count derivation.

This, however, does not capture the characteristics of each GPU microarchitecture which may have

an important impact (e.g., the same instruction may take different clock cycles on different GPUs or

a smaller cache size can cause more memory access stalls). To better estimate the IPCT we can use

a probabilistic approach based on the execution latency τ of each instruction type i [197]. Since the

ideal number of clock cycles spent on the host (excluding stalls) is given by:

CP
{K,H} =

∑
i

[
σ{Ki,H} × τ{i,H}

]
(5.3)

A second estimate of C{K,T} is:

C ′{K,T} = CP
{K,T} + C{K,H} − C

P
{K,H} (5.4)

But this uses the exact stall delays occurred on H , which can lower the estimation accuracy. By

augmenting our model with a probabilistic model of the data-cache behavior for data-dependency

stalls [255], we get the third estimate:

C ′′{K,T} = C ′{K,T} −Υ
[data]
{K,H} + Υ

[data]
{K,T} (5.5)

where Υ
[data]
{K,H} are the data-dependency stalls occurred during the execution of K on H , calculated

combining the probabilistic data-cache behavior model and the details of the host GPU architecture

(e.g., the main memory size, the cache size and associativity).4

4Some GPU manufacturers provide the details of their product architectures while some studies discovered the infor-

mation by microbenchmarking [343].
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Power Estimation. Existing power models are based on the number of executed instructions per

each instruction type [141]. We use a power-estimation method based on the calculated execution

time and the expected execution profile on the target GPU. By combining the power consumption

values for each instruction type and the static power dissipation P [static]
T , which we empirically

acquired, we estimate the power consumption during the execution of K on T as

P{K,T} = P
[static]
T +

∑
i

[
σ{Ki,T}

ET{K,T}
×RP Component{i,T}

]
(5.6)

whereRP Component{i,T} denotes the runtime power consumption dissipated by the microarchi-

tecture components of T to execute the instruction of type i. The estimated execution timeET{K,T}

is calculated as the estimated clock cycles divided by the product of the number of used GPU pro-

cessors and the GPU clock frequency. We use C ′′ as the clock cycles for calculating the estimated

power consumption.

5.5 Experimental Setup

In this section, we explain the setup and configurations for the experiments. We used a 32 Intel

Xeon CPU machine with a NVIDIA Quadro 4000 GPU as the host environment and a QEMU

ARM Versatile PB model as the target simulator. For the experiments of time and power estimation,

we used also NVIDIA Grid K520 as another host GPU.

5.5.1 GPU Programming Interface

Our approach for the efficient simulation of multiple embedded systems with GPUs is general and

can be applied to environments with different acceleration devices or interfaces like OpenCL. A

portable and standard programming framework, OpenCL has significantly improved in its usability,

performance, and maturity tools [96]. Hence, it would also be a good candidate to evaluate our

methods. For the experiments, however, we chose to use NVIDIA’s CUDA as the experimental

GPU platform for three main reasons. First, NVIDIA offers a rich set of sample applications and

libraries for experiments and practical uses. Second, the popularity of CUDA as a platform for

GPGPU application is growing due to its leading performance [35]. Indeed, a fair number of algo-

rithms run faster with CUDA than OpenCL [172]. Finally, thanks to the recent release of the Kayla
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CPU

Clock 2.66GHz

Model Core2 6700

Arch. x86 64bit

# Cores 2

Cache 4MB

RAM

Size 4GB

OS

Type Linux

Distribution Ubuntu

Version 3.5.0-43

Table 5.1: Host Machine Specification.

development platform based on the ARM architecture, CUDA is expected to play an increasing role

for embedded systems.

5.5.2 Environments

This section describes the environment configurations used for the experiments in Section 5.6. Ta-

ble 5.1 shows the specification of the host machine that executes multiple virtual platform instances.

The information on the GPU and virtual platform used for our experiments are reported in Tables 5.2

and 5.3, respectively.

5.5.3 Benchmark Applications

For our main set of experiments we use the suite of benchmark applications that is available as part

of the CUDA SDK [9]. The following is a brief description of each application:

simpleGL is a user interface (UI) application that modifies vertex positions with CUDA and

uses OpenGL to render the geometry.

marchingCubes is a UI application that extracts a geometric iso-surface from a volume dataset

using the marching cubes algorithm.
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Vendor NVIDIA

Model Quadro 4000

CUDA Ver. 5.5

# MultiProc. 8

# CUDA Cores 32

Clock 0.95GHz

L2 Cache Size 512KB

Mem Size 2GB

Mem Clock 1404Mhz

Mem Bandwidth 256-bit

# Copy Engine 2

Texture Align 512

Table 5.2: Host GPU Specification.

Name QEMU

Ver. 1.0.50

Target ARM

Model VersatilPB

Memory Size 1GB

OS Linux 2.6.32-5

Table 5.3: Virtual Platform Specification.
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Mandelbrot computes the Mandelbrot set, a mathematical set of points, and stores the result to

a file; the points’ boundary is a distinctive two-dimensional fractal shape.

VolumeFilter is a UI application that demonstrates 3D Volumetric Filtering using 3D Textures

and 3D Surface Writes.

convolutionSeparable is a separable convolution filter of a 2D signal with a Gaussian kernel;

this application writes its result to a file.

dct8x8 runs the Discrete Cosine Transform (DCT) algorithm on a 8× 8 pixel frame; this is, by

definition, a naive implementation.

recursiveGaussian applies a Gaussian blur to the input image using Deriche’s recursive method;

its execution time is independent from the filter width; this application writes its result to a file.

SobelFilter is a UI application that performs the Sobel edge detection filter on 8-bit monochrome

images and shows the result on the screen.

stereoDisparity computes a stereo disparity map, particularly using CUDA’s SIMD SAD (Sum

of Absolute Difference) intrinsics, e.g., vabsdiff.

binomialOptions is a financial application that evaluates the fair call price for a given set of

European options under binomial model.

BlockScholes is a financial application that evaluates the fair call and put prices for a given set

of European options by Black-Scholes formula.

MonteCarlo is a financial application that evaluates the fair call price for a given set of European

options using the Monte Carlo method.

SobolQRNG generates the Sobol Quasi-random Sequence.

nbody performs a gravitational n-body simulation and presents the result on the screen.

smokeParicles is a UI application that renders smoke particles with volumetric shadows using

a half-angle slicing technique.

mergeSort implements a merge sort algorithm.

segmentationTreeThrust demonstrates an approach for the image segmentation tree construc-

tion based on Boruvka’s Minimum Spanning Tree algorithm; this application takes an input image

and writes an output image for each segmentation level.

To properly measure the performance of our simulation framework across the benchmark suite,

we modified the CUDA applications as follows: 1) while the original applications include a verifi-
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Language Executed by Time (ms) Ratio

CUDA GPU 170.79 1.00

CUDA Emul. on CPU 9141.51 53.52

CUDA Emul. on VP 374534.34 2192.95

CUDA This work 568.12 3.32

C CPU 8213.09 48.09

C VP 269874.03 1580.15

Table 5.4: Execution time of matrix multiplication.

cation phase to compare the outcome from GPU computation with the expected result, we excluded

the time spent in this phase during performance measurement; 2) in those cases when the execution

time of an application with the default input is too short, we either increased the size of the input or

modified the application to repeat the core execution multiple times, in order to make it comparable

to the other applications; 3) those applications that require a user screen to present graphic output

were configured to use a virtual screen provided by the virtual platform; and 4) applications that

run forever (e.g., interactive application that continuously wait for a new input from the user) were

modified to run for a few hundreds to thousands loops and then terminate.

5.6 Experimental Results

In this section we present a comprehensive set of experimental results that demonstrate the effec-

tiveness of each of the methods described in the previous section.

5.6.1 Leveraging host GPU for mobile GPU simulations

Our first experiment was a comparative evaluation of the different options to execute an embedded

GPU application. For this we used a simple program that multiplies 300 times two 320 × 320

matrices of double-precision numbers. Table 5.4 reports the results for two versions of the program:

a CUDA implementation (first 3 rows) and a C implementation (last 2 rows.) The first row, which

corresponds to the native execution of the CUDA program on a GPU, is used as the baseline for

the comparison. The execution of the CUDA program takes 53.52 times longer when running on

a GPU emulator on top of a CPU and 2200 times longer when running on an ARM CPU model
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Figure 5.9: Experiments for Kernel Interleaving.

inside a VP through binary translation. Clearly, emulating GPU code inside a virtualized emulation

model yields suboptimal results. Nevertheless, this is still a common practice in many simulation

frameworks of commercial products, which, for instance, use the MESA open-source libraries to

run OpenGL ES applications [162]. In fact, as shown by the last two rows of Table 5.4, running the

C version of this program on either the CPU or the VP is faster than running the CUDA program

on a GPU emulator inside a VP. In contrast, our proposed GPU multiplexing technique is only 3.32

times slower than native execution.

Kernel Interleaving. We consider two interleaved GPU programs, each with a loop that iterates:

a memory copy from host to device, a kernel execution, and a memory copy from device to host.

Figure 5.9(a) shows the speedups measured as varying the complexity of the kernel while keeping

the size of the input data constant. The time for memory copy is 13.44 ms, represented as a vertical

orange dotted line.

Kernel Interleaving can shorten the total execution time from 3N instructions to 2 + N in-

structions, where N is the number of programs to be interleaved, under the assumption that each

instruction takes about the same amount of time. If the kernel execution time Tk and memory copy

time 5 Tm are different, the total time is given by:

Ttotal = 2Tm +N ·Max(Tm, Tk) (5.7)

which is represented by the blue line in Figure 5.9(a). The red line shows the actually measured

5This means the time for memory copies before the kernel execution; e.g., matrix multiplication needs two input

memory copies.
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Figure 5.10: Experiments for Kernel Coalescing.

experimental values, which are quite close to the expected values. This experiment confirms that the

highest speedup through Kernel Interleaving is obtained when the kernel execution time is similar

to the memory copy time (indicated by the orange dotted line). This is a form of latency hiding.

While the previous experiment is for two interleaved programs, Figure 5.9(b) shows the speedups

as function of N interleaved programs, from 2 to 32. Since the execution time without Kernel In-

terleaving is 3T when Tk = Tm = T , the speedup is expected to grow with N as:

Speedup =
3 ·N · T

(2 +N) · T
=

3N

2 +N
(5.8)

which is represented by the blue line in Figure 5.9(b). For large number of interleaved programs the

speedup is about 3×.

Kernel Coalescing. Figure 5.10(a) shows the speed of executing vectorAdd as function of the

number of GPU programs to coalesce. The total size of the input vectors remains the same across

the different numbers of programs. In other words, the same amount of work is distributed over the

given number of programs. The solid red line indicates the total execution time of the coalesced

program and the green dashed line indicates the speedup of the same horizontal coordination, with

the result of no coalescing (one program) being the comparison base. For instance, when coalescing

16 GPU programs the time to complete the executions of the applications is 171 ms, for a 10.54X

speedup. These results confirm that Kernel Coalescing can indeed reduce the execution time. The

speedup reaches 20.48 times for the case of 64 programs. A large portion of the gain can be at-

tributed to the impact of data-size alignment given the number of concurrent threads, the unit of

computation the GPU can simultaneously hold. In CUDA the number of concurrent threads used

for a kernel is decided by the size of a block (a group of threads) and the size of a grid (a group of
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Figure 5.11: Kernel execution time as function of the grid size and block size.

blocks). A kernel is executed by a grid of thread blocks. Figure 5.10(b) shows the execution time of

one single kernel as the size of the data grows and, accordingly, the size of a grid increases from 1

to 64 (while the number of threads in a block remains 512). The resulting curve roughly resembles

a staircase, which implies that a kernel execution with an unaligned grid size wastes some portion

of its resources. For instance, the same execution time is obtained both for a grid of size 9 and a

grid of size 16 even though the data sizes to be processed are different, being 9 × 512 = 4608 and

16× 512 = 8192 data units, respectively. For a given size of a grid the expected execution time is

Texpect = To + Te × dξinput/λe (5.9)

where To is the overhead time spent for launching kernels, Te is the kernel execution time for the

alignment unit size of data, ξinput is the size of the input data, and λ is the aligned unit for the GPU’s

processing ability.

In summary, these preliminary experiments confirm the effectiveness of the two optimization

techniques that we developed in ΣVP so that they can be automatically applied to the simulation of

embedded GPU programs on VPs.

5.6.2 Impact of Alignment on Kernel Performance

Recall that the data size is the product of the size of the grid times the block size. In order to better

understand the impact of the data size on the execution we run an additional experiment to break

down the contributions of the grid size versus the block size. Fig. 5.11 shows the execution times of

a simple vector-addition kernel as function of the grid size, varying from 1 to 64, and the block size,

varying from 256 to 1024. In these figures, the blue dotted lines are the expected values, calculated

with Equation (5.9). Across the different number of threads in a block, the graphs indicate that
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the execution time is affected more by the alignment of the grid size than by the size of the data.

Common across the three graphs is the staircase pattern independently from the block size: every

time the grid size increases by eight the latency goes up.

Overall, the measured values track the expected values quite well, particularly for the results of

Fig. 5.11(c). Some irregularities can be noticed for the values of the block size equal to 256 and 512

in Fig. 5.11(a) and 5.11(b), respectively. In particular, Fig. 5.11(b) shows a performance scaling

inversion, where the execution time for a smaller data size is actually longer. The execution time

is 628.909 for data size equal to 13824 (512 × 27), while it is 546.73 for data size equal to 14336

(512 × 28). We believe that this is an effect of the particular GPU implementation that we used,

caused by hardware alignment and optimization. This sort of experimental profiling allows us to

avoid the penalty for the specific data size, e.g., by increasing the grid size to be equal to 28 when

the requested grid size is 27.

5.6.3 Performance Comparisons

Here we present a complete evaluation of our simulation framework using the suite of benchmark

GPU applications available as part of the CUDA SDK [9]. In particular, we compared the simulation

of these applications on the VPs for three scenarios: 1) GPU emulation on the VP; 2) simulation on

the host GPU with our proposed GPU multiplexing; and 3) simulation on the host GPU with our

GPU multiplexing plus the two optimization techniques: Kernel Interleaving and Kernel Coalesc-

ing.

Figure 5.12 reports the experimental results. The blue bar shows the execution time of emulating

the GPU applications concurrently on eight VP instances. For example, when each of these executes
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simpleGL, the time for completing all the executions is about 62 seconds. The green dashed line

and the red solid line indicate the speedup achieved by the host GPU multiplexing with and without

the two proposed optimization techniques, respectively. Thus, for simpleGL GPU multiplexing

provides a simulation speedup of 1428 (with respect to the blue bar), while the addition of the two

optimizations achieves a speedup equal to 4104.

The analysis of the red solid line suggests that applications that use less floating-point in-

structions, e.g., VolumeFilter, SobelFilter, stereoDisparity, and mergeSort, have relatively lower

speedups than others. Also, some non-CUDA operations (e.g., file operations or OpenGL invo-

cations) limit the speedups for Mandelbrot, bicubicTexture, recursiveGaussian, MonteCarlo, and

segmentationTreeThrust, which read from input files or write to output files, as well as simpleGL,

marchingCubes, VolumeFiltering, SobelFilter, nbody, and smokeParticles, which use OpenGL for

graphics. The reason is that these portions of the applications are not the target of the acceleration

provided by ΣVP.

The analysis of the green dashed line confirms that the effect of the two optimization techniques

varies across the applications based on their use of CUDA instructions. Some applications like

convolutionSeparable, dct8x8, SobelFilter, MonteCarlo, nbody, and smokeParticles, have kernels

that cannot be coalesced, thereby intrinsically limiting the achievable speedup. Other applications,

like simpleGL, dct8x8, BlackScholes, MonteCarlo, mergeSort, and segmentationTreeThrust copy a

memory block from host to device before the execution of a kernel, while the rest of the programs

in the experiments generate their own input or copy initial data only. In these cases, the speedup is

not as high as when both optimizations are applicable.

Overall, the experimental results are very positive. The speedup obtained with GPU multiplex-

ing varies from 622 times (mergeSort) to 2045 times (BlackScholes) compared to the emulated GPU

on the VP. The speedup with both GPU multiplexing and the two optimizations varies between 1098

times (SobelFilter) and 6304 times (BlackScholes). In the best case (mergeSort) the addition of the

two optimizations yields an additional 10X speedup.

5.6.4 Graphical Outcomes from GPU Applications

To validate the correctness of the simulation framework implementation, we compared the results

from the executions of GPU applications on the virtual platforms without using host GPUs with
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Figure 5.13: An input image and its segmentation results.

the results obtained using host GPUs. To visually present this analysis we report the outcome from

segmentationTreeThrust. Fig. 5.13 shows the resulted images from each of the ten levels determined

by the algorithm. As for all other experiments, we used eight virtual platform instances to execute

the same application. Then, we collected one or two images from each virtual platform. The results

are correct. They pass data comparison with an error rate under 0.15%.

Fig. 5.14 shows three results from Mandelbrot. First, we modified the application to distribute

its computation and image-generation across the eight virtual platforms. Second, we also modified

it to stop its kernel execution and dump its current result after the given execution time. The three

images in Fig. 5.14 show the results of executing this application for the same period of time on

the three different configurations which we used for the experiments of Fig. 5.12: GPU emulation,

GPU multiplexing, and GPU multiplexing with optimizations. Only the configuration using both

GPU multiplexing and our two proposed optimization completes the execution in the allotted time,

thus returning the complete image, as shown in Fig. 5.14(c).

5.6.5 Timing Estimation

We evaluated the accuracy of our timing estimation models as follows. The estimated time values

are calculated for the target GPU (NVIDIA Tegra K1) and normalized by the observed execution

time on an actual target GPU. We experiment with execution profile from two different host GPUs,

NVIDIA Quadro 4000 and Grid K520. Figure 5.15 shows the measured execution times on the
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Figure 5.14: Experimental results: Mandelbrot executed for the same time period.

target GPU and the host GPU, and the three expected execution times ET{K,T} based on C, C ′, and

C ′′, respectively. As expected, the execution times observed on the host GPU are much shorter than

the observed and estimated values for the target GPU. On the other hand, the results demonstrate

that the estimated execution times are close to the measured values from a real target device. The

fact that the estimates are close to 1 no matter which host GPU is used for execution profile confirms

that our models work well across the different host GPU architectures.

5.6.6 Power Estimation

The results of Figure 5.16 compare the estimated power dissipation with the one measured on the

actual device. Our estimations are within about 10% of the actual values, thus confirming that ΣVP

can be effectively used also for simulation-driven power analysis.
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Figure 5.15: Normalized execution times: two observations on target and host GPUs and three

estimates.
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Figure 5.16: Normalized power dissipation: an observation on target GPU and an estimate P{K,T}.

5.7 Related Work

A recent Android platform’s experimental patch brings the OpenGL ES 2.0 instructions from the

emulator to the host OS, converts to standard OpenGL 2.0, and runs natively on the host GPU [12].

This approach, however, works only for OpenGL in a single emulator. Many GPU simulators

are based on software models for GPUs [73]. Some timing estimation methods use these software

models to obtain execution traces [197]. These approaches run very slow, while ΣVP offers effective

ways to estimate execution time and power consumption in addition to fast simulation.
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5.8 Limitations & Future Work

Merging memory chunks for Kernel Coalescing may not work correctly for some kernels that use

global variables or access the entire memory span. This forced us to modify some applications

for our experiments. This modification has been discussed in Section 5.3.2 for the case of matrix

multiplication. The automation of this process using compilation technology is a promising avenue

of future research.

In building our simulation framework, we created a virtual embedded GPU model which can be

extended by implementing a timing model of the target GPU to support various analysis and exper-

iments like modeling of power consumption and cycle-accurate performance. Although NVIDIA

began to support the ARM platforms with CUDA 5.5 SDK, it works only on the ARM Hard Float

architecture, i.e., ARMv7 with specific floating-point hardware extension, and on Debian-affiliated

operating systems. Therefore, an interesting open question is how to build a time-accurate perfor-

mance model for CUDA integrating virtual platform models without the hard float functionality.

5.9 Concluding Remarks

We proposed a technique to efficiently simulate multiple instances of virtual platforms that run GPU

applications. Compared to the emulation of GPUs on VPs, the speed of our simulation framework

is between 1000 and 6000 times faster when running a large set of GPU applications. We achieved

this major improvement by leveraging the presence of GPUs on the host systems and by optimiz-

ing the execution of GPU kernels with two novel optimization methods: Kernel Interleaving and

Kernel Coalescing. Further, by presenting a novel estimation method that leverages the execution

of a kernel on the host GPU, we showed how our framework can be used not only for full-system

simulation but also for timing analysis and power estimation.
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Chapter 6

Extending the Design Tool for

IoT-Integrated Systems

Internet-of-Things (IoT) is a scenario where objects, including people devices, home appliances,

and animals, are identified by unique IDs and communicate over networks. Although the concept

has emerged over a decade ago, the combination of wireless networks, sensor technologies, big

data processing, and the Internet has brought the recent boom of IoT. Nowadays, many companies

invest in the IoT market, developing new IoT systems and applications. Since the size of the sys-

tems is enormous and their architectures are highly heterogeneous, design and development of IoT

systems is a complex, time-consuming work. Nonetheless, there are no appropriate design tools

that can help the designers of these large-scale heterogeneous systems and, particularly, that enable

comprehensive exploration of their design spaces.

Together with Prof. Luca Carloni, I propose SimbIoTics, an extension of NETSHIP, to support

the design and simulation of IoT systems where millions of IoT nodes interact closely. These nodes

may include unmanned aerial vehicles, embedded systems, cloud server computers, and wireless

sensors. To realize SimbIoTics, we integrated wireless sensor simulators and unmanned aerial ve-

hicle simulators into NETSHIP. We also invented a highly efficient synchronization method for

simulation scalability.
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6.1 Introduction

As an increasing number of information-technology services are expanding their markets world-

wide, many classes of computing systems reach a global scale, implemented across multiple remote

data centers [299]. These systems are also evolving in a way that incorporates a variety of hetero-

geneous components. In the design of computing systems, increased scalability and heterogeneity

typically leads to an increase in design complexity.

The number of design choices for software and hardware, such as distribution of computations,

number of computing server nodes, or adoption of hardware accelerators, becomes very large. Thus,

the engineering cost of evaluating each option can become significantly high. Recent simulation

tools that support the design of large-scale, heterogeneous distributed systems try to address this

issue by supporting some degree of Design Space Exploration (DSE) [167; 276].

The idea of Internet-of-Things (IoT) anticipates a world where everything that is electronically

operated (home appliances, sensors, or outdoor stationary devices, etc.) will be interconnected.

Indeed, IoT is expected to spread to our daily lives, allowing connections between objects and

humans [121]. Hence, the scale of the IoT-integrated systems will grow exponentially, far beyond

the scale achieved by current large-scale computing systems. Likewise, the span of heterogeneity

in IoT systems will be much larger due the variety of form factors, networks, computing cores,

or peripherals devices. In this context, there are not many simulation tools that are available for

system designers to evaluate possible design choices for heterogeneous computing systems where

cloud server instances, stationary embedded computers, smart devices, vehicles, and IoT devices

operate interactively.

In this chapter, we propose SimbIoTics, a simulation framework for IoT-integrated systems to

address the difficulties of designing large-scale, heterogeneous computing systems that comprise

many IoT devices. SimbIoTics efficiently simulates concurrent executions of more than hundreds

of thousands of instances of cloud server programs, embedded software for stationary systems, mo-

bile apps for smart devices, and wireless sensor applications. Our contributions include: 1) the first

simulation tool supporting the modeling of IoT systems with such a large number of heterogeneous

components, including embedded systems, wireless sensors, and cloud servers; 2) a novel synchro-

nization method based on the data-dependencies of IoT nodes; and 3) the application of SimbIoTics

to the design of a complex IoT system, a traffic management system (TMS) for metropolitan area.
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Figure 6.1: The architecture of SimbIoTics.

6.2 Design of SimbIoTics

In this section, we explain how we built SimbIoTics by combining existing simulators and develop-

ing new mechanisms for scalable synchronization among them.

6.2.1 Architecture

Figure 6.1 presents the architecture of SimbIoTics. SymbIoTics uses multiple platform (VP) in-

stances for the simulation of the target embedded systems [28]. We run VP instances and other

simulators on virtual machine (VM) instances to take advantage of the VP-on-VM model proposed

by Jung et al. [167]. SimbIoTics requires two or more VM instances, one for running the SimbI-

oTics server and other instances each of which executes up to thousands of VPs, wireless sensor

simulators, or UAV simulators. We configured some VM instances to simulate cloud servers in the

target system. The synchronization module makes these distinct simulation environments run with

synchronized simulation times using the method proposed in Section 6.2.3, thus ensuring the cor-

rectness of the simulation results. The configuration module stores and provides the setup values

for the VM instance deployment, the system simulator installation, the network configurations, and

the links for input and output. The instance deployment module scales the simulation environment

up or down according to the configuration module. The UI module is the interface for the users to
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control SimbIoTics, to adjust the configurations, and to check the results of the simulations. The

log module stores the logging information generated during the simulations. The input generation

module feeds the input data into SimbIoTics by fetching, creating, parsing, or reorganizing. The

output collection module collects the results from each simulator involved in the entire simula-

tion. The Software-in-the-Loop (SITL) test module enables the deployment of a newly developed

component within the simulation and an easy performance evaluation of the component. The ap-

plication source control module manages the application source programs that run on the different

simulators using a source control program, git, for the heterogeneous execution environments. The

development toolchains involves the toolkits for developing, cross-compiling and debugging the

distinct simulation environments, including heterogeneous processing cores and various operating

systems.

6.2.2 Heterogeneity

IoT systems are characterized by a large variety in terms of the types of the computing nodes and

their characteristics, including: form factors, processing cores, networks, computing resources, en-

ergy budgets, or peripherals. To simulate the heterogeneous IoT systems, SimbIoTics combines

several distinct simulation engines for different types of system components.

Cloud server simulation. SimbIoTics runs on the cloud leveraging the flexibility offered by

the cloud’s Infrastructure-as-a-Service (IaaS) model. IoT systems comprise cloud servers to store

and process the data collected from various sensor nodes. SimbIoTics can dynamically add VM

instances to simulate the cloud server machines in the IoT systems.

Embedded system simulation. SimbIoTics uses VPs, software models to simulate target em-

bedded hardware devices that can execute the target software program through dynamic binary

translation. These VPs vary in their processing cores and software stacks due to the different types

of stationary systems, mobile devices, and vehicles. We relieved the difficulties of integrating VPs

and SimbIoTics by designing and implementing a unified API layer that encapsulates the heteroge-

neous VPs.

Wireless sensor simulation. Although wireless sensors can be seen as embedded systems,

they have some distinct characteristics that make using a separate simulator for wireless sensors

more efficient and accurate. For example, each sensor has a low-power processor that runs a light-
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Figure 6.2: A data-dependency graph across the distributed nodes being processed for simulation

synchronization.

weight software program. Also, wireless network protocols are better simulated with simulators

that are specifically designed for wireless sensors. SimbIoTics integrates Cooja [94], a simulator

for wireless sensor networks to accurately simulate IoT systems that rely on the data from a number

of wireless sensors.

Unmanned Aerial Vehicle (UAV) simulation. Certain IoT systems, such as a TMS, can use

UAVs for images taken from the sky, enabling image processing for tracking pedestrians, vehicles,

and so on. While many parts of UAV systems can be simulated by VPs, using UAV simulators allows

us to use various existing dynamic aircraft behavior models. SimbIoTics enables the simulation of

complex IoT systems that involve UAVs by integrating the ArduPilot simulator [206], an open

source software program to simulate autopilot UAVs.

6.2.3 Scalability

The scale of IoT systems can easily exceed the scale of other types of distributed systems due to the

huge number of ‘things’ that can be integrated in an IoT system. In this section, we revisit the syn-

chronization technique that we introduced in Chapter 4 and propose a new method to significantly

reduce synchronization time, the most critical overhead in scaling the simulation of IoT systems.

Traditional Synchronization (TS). A distributed environment that integrates separate simu-

lation processes, such as NETSHIP, requires simulation time synchronization. In such a system,

there are multiple processes each of which simulates a node in the target system. These individual
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processes can advance their own simulation time differently without synchronizing their simulation

times as introduced in Section 4.2. For instance, this allows a node with a past simulation time

(running slow) and a node with a future simulation time (running fast) to communicate, which nor-

mally does not happen in the real world.1 To address this problem, NETSHIP stops the nodes whose

simulation times are faster than the slowest one until all the nodes have simulation times that are

within the pre-configured value ∆t. The simulation time Simt of each node follows:

Simt ≤ Simt(Ni) < Simt + ∆t (6.1)

where Ni is a node in the system and Simt(Ni) presents the current simulation time for Ni. When

every node reaches Simt + ∆t, Simt(N) is increased by ∆t. Although some previous efforts have

reduced the overhead for synchronization in the simulation of distributed systems [82; 167], they

are not efficient enough for the unprecedented scale of IoT system simulations.

Loosely Chasing Synchronization. To decrease the overhead in synchronization, we propose

the Loosely Chasing Synchronization (LCS) method that groups nodes and then synchronizes only:

1) nodes within each group and 2) groups that have a dependency relation. Instead of synchronizing

all the nodes in the system at each synchronizations step, LCS reduces a large portion of the efforts

and overhead as it synchronizes only an essential subset of nodes. Let an independent node A

generate some data and a dependent node B use the data. By keeping A’s simulation time more

advanced than B’s, LCS ensures that the data generated by A is always ready when B accesses it.

A, however, does not need to wait for B. 2 LCS is based on the following steps:

1. Draw a directed graph G = (V,E) of distributed nodes with data-dependency among them

as shown in Figure 6.2(a). A node represents a vertex and a dependency between two nodes

represents an edge between the two corresponding vertices. Synchronous communication

methods that affect the behavior of both sides such as socket communications are considered

as bidirectional dependencies. Asynchronous communication methods, like buffered mes-

sages or file creation, correspond to single directional dependencies.

2. Derive a graph G′ by condensation, e.g., by contracting each strongly connected component

into one vertex. In G′, some vertices (nodes) are grouped into one vertex (a node group) as

1We assume that time traveling messaging is not available in the target system.

2We avoid overwriting by timestamp the data.
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shown in Figure 6.2(b). G′ becomes a Directed Acyclic Graph (DAG) by the definition of

condensation [160].

3. Find a transitive reduction G′′ = (V ′′, E′′) of G′ as shown in Figure 6.2(c). The synchroniza-

tion overhead is reduced by the removed edge in the figure. A transitive reduction of a DAG

corresponds to the minimum equivalent graph of the DAG.

4. Simulate with synchronization. All the nodes i ∈ V that belong to the corresponding con-

densed group j ∈ V ′′ need to be synchronized to a simulation time maintained for j as

follows:

Simt(j) ≤ Simt(i) < Simt(j) + ∆tj (6.2)

∆t can vary according to the characteristics of the node group. A large synchronization time

step, e.g., 20 seconds, can work well for time-insensitive nodes such as asynchronous batch

processing servers while time sensitive nodes, such as self-driving vehicles communicating

with sensors, may need to be synchronized more frequently, e.g., every 500 ms. The simula-

tion times of two node groups, x ∈ V ′′ and y ∈ V ′′, need to be one-directionally synchronized

if there is a dependency between them as follows:

Simt(x) ≥ Simt(y), ∃(x, y) ∈ E′′ (6.3)

This ensures that the data generating nodes are simulated at a speed that is no slower than the

dependent nodes which use the data.

While still effectively preventing synchronization problems, this method significantly reduces

the overhead in synchronizing the simulated nodes compared to the existing method, i.e., synchro-

nizing all the nodes, due to the following reasons.

First, the method reduces the number of nodes that have to be kept synchronized under a single

simulation time. This exponentially decreases the probability of delaying all the nodes in the group.

For example, if the probability that a node can run slower (thus delaying other nodes) in a step is

1% in a simulation of 20 nodes, the probability that the entire simulation is delayed is 1 − 0.9920

≈ 18.2%. Meanwhile, if the simulation is divided into 2 groups each of which has 10 nodes, the

possibility that a group is delayed is 1 − 0.9910 ≈ 9.6%. The need of synchronization across

the groups depends on the data-dependencies among them. When needed, it is one-directional as
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TS LCS

TA > TB + ∆t Stop A -

TB + ∆t ≥ TA > TB −∆t - -

TA ≤ TB −∆t Stop B Stop B

Table 6.1: A comparison of necessary process stops for synchronizing nodes with different simu-

lation times when node B has a data dependency on node A. TX is the simulation time of node

X .

in Equation 6.3. This allows some groups to run within a different simulation steps at a specific

moment in the simulation. Therefore, the delays in some groups can be hidden by the delays in

other groups at different simulation steps.

Second, ∆t could be adjusted for the individual groups. This allows some groups that have less

frequent communications to be synchronized with a longer simulation step. Compared to having a

universal time step for the entire simulation, this largely reduces the overhead in synchronizing the

groups where less frequent communications occur.

Table 6.1 compares TC and LCS with respect to when stopping a process is necessary in dif-

ferent situations. There are two nodes A and B and node B has a data dependency on node A.

First, when the simulation time of node A exceeds the simulation time of node B by more than

∆t, TC stops node A while LCS does not. LCS allows node A to be simulated faster than node B

beyond ∆t because node A has already generated the data that node B will access later.3 Second,

both methods do not stop any nodes when two nodes’ simulation times are within ∆t. Last, if the

simulation of node A gets slower than node B, both methods stop node B. This stop cannot be

avoided even in LCS, as the data that node A is supposed to generate is not yet ready when node

B tries to access it. Hence, LCS stops node B until node A’s simulation time catches up node B’s

simulation time.

3This is based on the assumption that the data accesses are non-blocking and one-directional. The data access in LCS

is done through version-controlled files to handle modification or deletion of the data before the dependent node accesses

it.
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Figure 6.3: A web application for traffic simulation.

LCS is particularly efficient in the simulation of large-scale IoT systems where many sensor

devices mostly generate data (as opposed to consume data), thus asynchronously affecting the rest

of the system without the need to be synchronized with other sensors.

6.3 Case Study - A Traffic Management System

According to the World Resources Institute, the economic loss due to traffic congestion exceeds

hundreds of millions US dollars annually in large cities, e.g., Seoul or Singapore [289]. In order

to address these issues, various studies have been conducted in the emerging research fields of

smart cities [33; 346] and advanced traffic management systems [153; 311]. A promising area is

predicting and preventing traffic accidents [39]. However, accurate prediction is difficult because

there are many variables that can affect the results, thus making the simulation complex. In this

section, we apply SimbIoTics to the design of a TMS and perform various DSEs to find better

design options across the complex design space.
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Scenario. We developed an innovative TMS for a scenario based on the following assumptions:

• The target scope of this system is a metropolitan area where pedestrians and cars are in the

street.

• There are some chances of an accident when at least two cars or a car and a pedestrian get

close to each other.

• The probability of car accidents varies depending on the drivers (or the cars) and is higher in

specific locations.

• The braking distance of vehicles is significantly affected by the temperature and the weather [92].

Figure 6.3 presents a map of a portion of Manhattan where a number of pedestrians and cars move

toward their destination at their own speeds.4 The case study is devised to reduce the possibility of

traffic accidents and traffic jams by:

• alerting the pedestrians and vehicles;

• utilizing temperature sensors installed on the road to calculate braking distances for each car;

and

• operating UAVs to monitor traffic and pedestrians.

System Implementation. The top half of Figure 6.4 shows the details of the TMS we de-

signed. There are five distinct types of components in the system. The traffic management server

controls and receives data from all other components in the system. It can move UAVs to other

locations, change the length of traffic signals, and send a caution alarm to pedestrians. The cam-

eras in traffic management are used for monitoring the traffic volumes and collect information on

each vehicle. In the proposed system, a camera takes and analyzes images of passing-by vehicles to

recognize their registration numbers. Then, it sends the numbers to the traffic management server.

The UAVs monitor the vehicles and pedestrians in locations with a high risk of traffic accident using

an accident-detection algorithm [151; 179] and report to the traffic management server if accidents

occur. The car history lookup service gives the information on accident history of the requested

4We use the simulated traffic data created with a web application we developed. The application is available at

http://128.59.14.24/map.
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Figure 6.4: A traffic management system simulated on SimbIoTics.

vehicles. The android devices are smart devices carried by pedestrians: they report to the traffic

management server where their users are and when they use them while walking; they also alert

their users if the server requests them to do so. The TMS controls traffic signals, e.g., by lengthen-

ing a signal for slower pedestrians. It receives temperature data on the roads from the temperature

sensors.

Simulating the System. We simulate the system by configuring SimbIoTics as shown in the

bottom half of Figure 6.4. SimbIoTics orchestrates distinct simulated components that are synchro-

nized as explained in Section 6.2.3. The Android devices, cameras, and traffic signals are simulated

as embedded systems by using VPs. UAVs are run on ArduPilot. The network of sensors is simu-

lated by Cooja.

In the data flow, the input generation module plays an important role. First, it exports the ge-

olocation data of pedestrians and cars from the traffic generation web application in Figure 6.3.

Instead of simulating directly many smart cars or pedestrians with smart phones, the input gener-

ation module feeds the data into the traffic management server. This separates traffic generation

and management and allows the traffic data to be reused in different simulations, thus enabling a

faster simulation speed and better scalability. Second, the input generation module uses the De-

vice Analyzer dataset to simulate the behavior of the usage analysis module that catches when the
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Figure 6.5: Performance comparisons between the traditional synchronization (TS) method and

Loosely-Chasing Synchronization (LCS).

pedestrians use their phone while walking. The Device Analyzer dataset is data collected from over

23,000 Android devices, including when the users use their phones by calling, texting, or interacting

with an app [325]. Third, we use accident data from the NYC Vision Zero project [17] to adjust

the probability that a traffic accident occurs in a specific location. Additionally, SimbIoTics offers

emulated input values to the simulated environments, e.g., it can generate random road temperature

values for temperature sensors. When a new simulated vehicle is spawned, SimbIoTics randomly

assigns an accident history to it in a way that can be used by various applications, e.g. to predict the

probability of future accidents.

6.4 Experiments

In this section, we illustrate the capabilities of SimbIoTics by describing a set of experiments and

design space explorations.

Synchronization. We compare the performance of LCS to the TS method introduced in Chap-

ter 4. The TS method stops all the simulation processes whenever there are simulators whose

simulation time is out of the allowed boundary (∆t) [167; 276]. Figure 6.5 shows the temporal

overhead spent on synchronizing the VP nodes. The overhead is measured as the sum of the time

periods when all VPs in the simulation have to stop for synchronized simulation. The nodes in the
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4096 65536

Light Heavy Light Heavy

TS 184.7 2358.2 1241.4 4485.5

LCS

in-group 15.3 32.2 24.5 38.1

across-group 5.7 12.9 10.4 17.7

Sum 21.0 45.1 34.9 55.8

Table 6.2: Number of stopped process during synchronization.

LCS are grouped to form a graph as discussed in Section 6.2.3 with a maximum group size of 16.

We prepare two distinct types of loads that we input to the VPs to simulate in order to measure the

synchronization overhead. A heavy load involves simulation nodes executing repeatedly the case

study application described in Section 6.3. A light load includes approximately 80% of idle time.

The experimental results show that the increase rate of LCS becomes notably low as the number of

VPs in the simulation increases. With 4096 VPs, the overhead is more than an order of magnitude

less on LCS than TS. This confirms that LCS is much more scalable than TC, which synchronizes

all the simulated nodes at the same time, particularly when it comes to large-scale environments like

IoT systems. Table 6.2 presents the counts of how many times the synchronizer stopped a process,

which is the main cause of the overhead when simulating 4096 and 65536 nodes. The number of

stopped process is divided in two sets: 1) when the dependent process and the independent pro-

cesses are within the same group (in-group) and 2) when the two processes belong to two different

groups (across-group). Although the number of stops is not directly proportional to the overhead

(as the duration of each stop differs from one to another), the overall overhead growth tends to fol-

low the number of simulation process stops. Table 6.2 shows that the performance gain in LCS is

achieved for both in-group and across-group cases. The result also indicates that the performance

gap between TC and LCS is higher under heavy load.

Performance Evaluation on Large-Scale, Heterogeneous Simulation. Figure 6.6 presents

the time spent on simulating 4096 to 262,144 nodes. Each simulation involves a heterogeneous

set of nodes including: cloud instances (0.4%), embedded systems (6%), UAVs (3%), and sensor

devices (90.6%) for 1,000 seconds simulation time. As we increase the number of VMs used for

the simulation, the overall execution time increases very slowly after reaching about 2500 seconds.
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Figure 6.6: Execution time of large-scale simulation.

Area A Area B

Traffic 25% 50% 100% 25% 50% 100%

Paramics 0.752 0.660 0.548 0.793 0.789 0.682

VISSIM 0.722 0.734 0.719 0.794 0.788 0.761

Interpol. 0.791 0.546 0.370 0.787 0.635 0.477

Random 0.321 0.291 0.273 0.418 0.327 0.360

Table 6.3: Prediction accuracy of four vehicle models.

Extrapolating, we expect that the execution time for simulating a million nodes for 1000 seconds

still stays under 2600 seconds, yielding 38.6% as a simulation-realtime ratio. This suggests that

SimbIoTics could scale efficiently to support the simulation of over a million nodes given a sufficient

number of host VM instances.

Vehicle Prediction Model Evaluation. One of the functions SimbIoTics can perform is eval-

uating behavioral models of the simulated components. Due to the limited number of installed

sensors and limited network availability, a TMS might collect only a fraction of the information on

vehicle geolocation over time. However, many features of the TMS, such as accident prediction

or traffic signal management, rely on the modeling and prediction of this information. SimbIoTics

can be used to evaluate existing vehicle models [59; 213] and find the one that works most accu-

rately for the target application. Table 6.3 compares the accuracy of four vehicle models when the
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Figure 6.7: Normalized Accident Rates (NAR).

traffic volume changes (25% ∼ 100% of the given base volume). This experiment is based on the

Mobile Century traffic data [139]. Paramics proposes a queue-based vehicle model, called Car Fol-

lowing [59]. VISSIM offers a vehicle model using driver behavior parameters such as the distance

between cars and vehicle speed preferred by drivers [213]. We added two simple models: Interpola-

tion, which prorates the distance and the time across the shortest path between two measured spots,

and Random, which assumes the vehicle has gone through a random path reachable with a given

maximum speed, e.g., 70mph. The accuracies are measured as the ratio of incorrectly predicted

location for each time unit.5 By using SimbIoTics we can determine that VISSIM works best in

most cases while the Interpolation model works well when the traffic volume is low.

Large-Scale Accident Prediction and Prevention. Thanks to SimbIoTics scalability, we can

perform accident prediction based on a large-scale simulation. For instance, simulating a metropoli-

tan area like New York City requires to account for millions of vehicles and pedestrians that incur

hundreds of thousands accidents each year. SimbIoTics can help engineers to perform various large-

scale analyses. For example, we can use it to evaluate the effectiveness of connecting the vehicles

to the Internet in order to reduce the accident rates. Suppose that the probability P that an accident

5The correctness of location prediction is determined by a given range, e.g., 0.01 mile.
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happens between two vehicles, vi and vj is:

P (vi, vj) = min(
R

2d(vi,vi)
, δ) (6.4)

where 0 < R < 1 is a uniformly distributed random number and d(vi, vj) is the distance between

vi and vj in meters. δ is an adjustable user parameter which captures the maximum accident prob-

ability, e.g., 0.2. Another important metric is the Prevention Method Adoption Ratio (PMAR) that

counts how many vehicles have adopted the alert-based prevention method. Figure 6.7(a) shows the

accident occurrence normalized to the baseline (0% PMAR and 0.2 ∆). Through this experiment

using SimbIoTics, we can anticipate that the adoption of the accident prevention method can reduce

the vehicle accidents by approximately 60% to 80%. In addition, SimbIoTics can help the users to

build the accident probability model, for example, by adjusting the value of δ.

DSE for Cost Efficiency. The braking distance6 is critical in accident prevention and is largely

affected by the road surface temperature [92]. We can use SimbIoTics for DSE on the number of

installed sensors and the accident rate. The installation of temperature sensors on the road as part

of an augmented TMS could reduce the vehicle accident rate by providing a new tool to control the

speed of vehicles on the area where the braking distance is longer than usual. By performing a DSE

analysis with SimbIoTics, engineers can estimate to which extent the number of sensors that could

be installed on the road could reduce the accident rate. We assume a simplified accident probability

P ′ of a vehicle vi as:

P ′(vi) = 0.01R · max(1, 2λ−λav) ·
(

1 − min(1,
SCR

SDI
)
)

+
∑
n

P (vi, vn) (6.5)

where λ is the braking distance that the driver usually anticipate, e.g., 40 meters, λav is the average

of actual braking distances, Sensor Coverage Range (SCR) is 15 meters, and Sensor Distance In-

terval (SDI) denotes how far from one temperature sensor to another. Thus, as the braking distance

increases beyond the anticipated distance, the accident rate increases exponentially. Figure 6.7(b)

presents the normalized accident rates obtained on SimbIoTics. As expected, the results show that

a smaller value of SDI reduces the accident rates, which, however, incurs high costs for sensor

purchase, installation, and maintenance. Also, through this kind of DSE, the users of SimbIoTics

can achieve insights on various design trade-offs. For instance, when λ is 40 meters, installing and

6The distance that a vehicle will travel after its brakes are applied.
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managing sensor devices at an SDI of 5 meters as opposed to 20 meters leads to a slight reduction

of accident rate from 45% to 43%.

UAV Deployment. Recent traffic-signal systems adjust the duration of each signal according

to the duration of the time vehicles and pedestrians have been waiting. Therefore, the presence of

many pedestrians in a given area is more likely to cause a traffic jam. To avoid routing vehicles

to areas with many pedestrians, some TMSs use UAVs. We simulate a TMS where UAVs monitor

the pedestrians to predict the areas where they will likely gather and to route vehicles through less

condensed paths. An important constraint of current UAVs is that they can fly continuously for

only about half an hour without recharging its battery. There are multiple options to handle the

recharging issue of UAVs: (1) stop monitoring for UAVs while recharging (RECHR), (2) assign a

group of N UAVs to one area where only one drone monitors while others recharge (N-ROT)7, or

(3) recharge the UAVs in need and expand nearby UAVs’ to cover the monitoring of those areas

originally assigned to the recharging one (NEIGH). Figure 6.8 shows how many condensed pedes-

trian groups (CPGs) the UAVs detected from areas with different CPGs across different recharging

methods. For instance, the UAVs detected five CPGs out of ten in Area C. This kind of analysis

allows us to determine which recharging method is best for a given environment by considering the

costs for number of UAVs and the desired level of coverage of the CPGs.
7RECHR is a special case of N-ROT, i.e., 1-ROT.
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6.5 Related Work

Most of the existing simulation frameworks for IoT systems are focused on supporting only the sim-

ulation of sensor devices [94; 200]. These frameworks do not capture one important characteristic

of IoT systems: the integration of sensors and cloud computers. This is a critical aspect because it

enables the aggregation and analysis of the huge amount of information collected from a myriad of

sensor devices.

The performance of synchronization mechanisms in the simulation of distributed embedded

systems has been studied before [82; 167], but the scale of the systems simulated in these projects

was limited to hundreds to tens of thousands nodes.

6.6 Concluding Remarks

We have developed SimbIoTics, an innovative simulation framework to support the design and

development of many classes of IoT systems. To provide the capabilities of modeling many het-

erogeneous components we integrated within SimbIoTics multiple cloud instances together with

various virtual platforms and simulators for wireless sensor networks and UAVs. To increase the

scalability of SimbIoTics, we developed a synchronization method that leverages the dependencies

among the nodes in the system. By presenting a series of analysis for a traffic management system,

we illustrated the capabilities of SimbIoTics to support modeling and design-space exploration for

IoT.
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Chapter 7

Reverse Distributed Offloading: a

Cluster of Embedded Systems

An expanding wealth of ubiquitous, heterogeneous, and interconnected embedded devices is behind

most of the exponential growth of the “Big Data” phenomenon. Meanwhile, the same embedded

devices continue to improve in terms of computational capabilities, thus closing the gap with more

traditional computers. Motivated by these trends, together with Richard Neill and Luca Carloni, I

developed a heterogeneous computing system for MapReduce applications that couples cloud com-

puting with distributed embedded computing. Specifically, our system combines a central cluster of

Linux servers with a broadband network of embedded set-top box (STB) devices. The MapReduce

platform is based on the Hadoop software framework, which we modified and optimized for execu-

tion on the STBs. Experimental results confirm that this type of heterogeneous computing system

can offer a scalable and energy-efficient platform for the processing of large-scale data-intensive ap-

plications. This project has led to the need for design tools for large-scale, heterogeneous systems

and has been the initial motivation of developing NETSHIP.

7.1 Introduction

The growth in the amount of data created, distributed and consumed continues to expand at ex-

ponential rates: according to a recent research report from the International Data Corporation, the

amount of digital information created and replicated has exceeded the zettabyte barrier in 2010 and
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this trend is expected to continue to grow “as more and more embedded systems pump their bits

into the digital cosmos” [148]. In recent years the MapReduce framework has emerged as one of

the most widely used parallel computing platforms for processing data at very large scales [174].

While MapReduce was originally developed at Google [85], open-source implementations such as

Hadoop [3] are now gaining widespread acceptance.

The ability to manage and process data-intensive applications using MapReduce systems such

as Hadoop has spurred research in server technologies and new forms of Cloud services such as

those available from Yahoo, Google, and Amazon.

Meanwhile, the Information Technology industry is experiencing two major trends. On one

hand, computation is moving away from traditional desktop and department-level computer cen-

ters towards an infrastructural core that consists of many large and distributed data centers with

high-performance computer servers and data storage devices, virtualized and available as Cloud

services. These large-scale centers provide all sorts of computational services to a multiplicity of

peripheral clients, through various interconnection networks. On the other hand, the increasing

majority of these clients consist of a growing variety of embedded devices, such as smart phones,

tablet computers and television set-top boxes (STB), whose capabilities continue to improve while

also providing data locality associated to data-intensive application processing of interest [234;

233]. Indeed, the massive scale of today’s data creation explosion is closely aligned to the dis-

tributed computational resources of the expanding universe of distributed embedded systems and

devices. Multiple Service Operators (MSOs), such as cable providers, are an example of compa-

nies that drive both the rapid growth and evolution of large-scale computational systems, consumer

and business data, as well as the deployment of an increasing number of increasingly powerful

embedded processors.

The contributions of this chapter are motivated precisely by the idea that the ubiquitous adop-

tion of embedded devices by consumers and the combination of the technology trends in embedded

systems, data centers, and broadband networks open the way to a new class of heterogeneous Cloud

computing for processing data-intensive applications. In particular, we propose a broadband em-

bedded computing system for MapReduce utilizing Hadoop as an example of such systems. Its

potential application domains include: ubiquitous social networking computing, large-scale data

mining and analytics, and even some types of high-performance computing for scientific data analy-
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Figure 7.1: Architecture of the broadband embedded computing system for MapReduce utilizing

Hadoop.

sis. We present a heterogeneous distributed system architecture which combines a traditional cluster

of Linux blade servers with a cluster of embedded processors interconnected through a broadband

network to offer massive MapReduce data-intensive processing potential (and, potentially, energy

and cost efficiency).

Contributions. We have implemented a prototype small-scale version of our proposed system

where a Linux Cluster features nine high-end blade servers and an Embedded Cluster consists of

a network of 64 STBs. The two clusters are interconnected through the broadband network of

a complete head-end cable system, as described in Section 7.2. While the cable system remains

fully operational in terms of its original function (e.g., by distributing streaming-video content to

the STBs which render it to their displays), it is possible to simultaneously and effectively execute

other MapReduce applications by leveraging the additional computation resources that are available

in the STB multi-core processors.

Specifically, we ported the Hadoop MapReduce framework to our broadband embedded com-

puting system. As discussed in Section 7.3, this porting posed important challenges in terms of

software portability and resource management. We addressed these challenges in two ways. First,

we developed porting techniques for embedded devices that leverages back-porting of enterprise

software in order to implement the Hadoop system for embedded environments. Second, to execute

MapReduce applications on such resource-constrained embedded devices as STBs, we optimized

both memory and storage requirements by eliminating unnecessary software components of the
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Hadoop platform. The result is an embedded version of the Hadoop framework.

In Section 7.4 we present a set of experiments which confirm that our embedded system im-

plementation of the Hadoop runtime environment and related software libraries runs successfully a

variety of MapReduce benchmark applications. Also, in order to gain further insight into the relative

performance scaling of the Embedded Cluster versus the Linux Cluster while running MapReduce

applications, we varied the number of processing elements (which correspond to the number of

Hadoop nodes) and the size of the input data. Overall, the experimental results expose the Em-

bedded Cluster performance sensitivity to certain classes of MapReduce applications and indicate

avenues of future research to improve our system.

7.2 The System Architecture

Figure 7.1 provides an overview of the architecture of the system that we developed and built:

this is a heterogeneous system that leverages a broadband network of embedded devices to execute

MapReduce applications by utilizing Hadoop. It is composed of four main subsystems.

Linux Blade Cluster. The Linux Cluster consists of a traditional network of nine blade servers

and a Network Attached Storage (NAS). Each blade has two quad-core 2GHz Xeon processors

running Debian Linux with 32GB of memory and a 1Gb/s Ethernet interface. One of the nine blades

is the Hadoop master host acting both as NameNode and JobTracker for the MapReduce runtime

management [3]. Each of the other eight blades is a Hadoop slave node, acting both as DataNode

and TaskTracker [3] while leveraging the combined computational power of the eight processing

cores integrated on the blade. The blades use the Network File System (NFS) to mount the 2TB Sun

storage array which provides a remote common file-system partition to store applications for each

of the executing Hadoop MapReduce applications. For storing the Hadoop Distributed File System

(HDFS) data, the blades use their own local hard-disk drive (HDD).

Embedded STB Cluster. The Embedded Cluster consists of 64 Samsung SMT-C5320 set-top

boxes (STB) that are connected with a radiofrequency (RF) network for data delivery using MPEG

and DOCSIS transport mechanisms. The Samsung SMT-C5320 is an advanced (2010-generation)

STB featuring an SoC with a Broadcom MIPS 4000 class processor, a floating-point unit, dedicated

video and 2D/3D-graphics processors with OpenGL support, 256MB of system memory, 64MB in-
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ternal Flash memory, 32GB of external Flash memory accessible through USB, and many network

transport interfaces (DOCSIS 2.0, MPEG-2/4 and Ethernet). Indeed, an important architectural fea-

ture of modern STBs is the heterogeneous multi-core architecture design which allows the 400MHz

MIPS processor, graphics/video processors, and network processors to operate in parallel over in-

dependent buses. Hence, user-interface applications (such as the electronic programming guides)

can execute in parallel with any real-time video processing. From the viewpoint of running Hadoop

applications as a slave node, however, each STB can leverage only the MIPS processor while acting

both as DataNode and TaskTracker. 1 This is an important difference between the Embedded Clus-

ter and the Linux Cluster. Finally, in each STB, a 32GB USB memory stick is used for HDFS data

storage, while NFS is used for Java class storage.

Digital Cable Head-End. This is responsible for controlling the Embedded Cluster devices

and providing all interactive television services including: electronic program guide, user-interface,

video-on-demand (VOD), and the delivery of MPEG-2 videos. Our digital head-end supports the

current generation of STBs based on the Cablelabs Tru2way standard [27] and is a scaled-down

but complete implementation of a modern digital DOCSIS-based broadband cable system in-use at

today’s largest MSOs. As shown in Figure 7.1, its core components include: 1) the Tru2way Object

Carousel for MPEG-2 delivery of Embedded Cluster applications and Tru2way-standard STB sig-

naling; 2) two Linux hosts for TCP/IP DHCP and TFTP network services, which are required for

assigning system-wide IP addresses and DOCSIS cable-modem configuration data to all Embedded

Cluster devices; 3) an HTTP application/data server that supports interactive television services via

TCP/IP over the DOCSIS network; 4) support for MPEG-2 video sources that are multiplexed and

grouped into digital channels, including a single channel for VOD streams; and 5) a RF distribu-

tion and combining network that utilizes a Cisco QAM modulator device to translate digital input

signals from the carousel, multiplexed MPEG sources, and VOD server, into modulated QAM256

RF frequencies, which can be combined with the DOCSIS router RF output to feed the broadband

network of STBs.

DOCSIS is a standard broadband-network technology for TCP/IP over RF cable. It provides for

an inter-operable RF modem, based on TDMA protocols organized in a star topology connecting the

1In the Embedded Cluster, there is also a Linux blade which is the Hadoop master node, acting both as NameNode

and JobTracker.
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central router and the STBs. The SMT-C5320 DOCSIS 2.0 TCP/IP and MPEG-2 transport stream

interfaces use quadrature amplitude modulation (QAM) protocols for transmitting and receiving

signals on North American digital cable systems. Devices on DOCSIS share access to the network,

as arbitrated by the central router, and operate effectively at up to 27Mbps in the downstream direc-

tion (towards the STB) and 27Mbps in the upstream direction (towards the cluster). The MPEG-2

interface is primarily used for decoding video programs, but can also receive applications or data

delivered via the Tru2way Object Carousel (OC), a “broadcast file system” service on a dedicated

QAM frequency. This data is sent from the head-end at regular intervals over MPEG-2 directly

into a QAM device where it is modulated onto the RF cable plant at a specified frequency for STB

reception. Broadcast applications are STB executables or data that are simultaneously available to

all STBs connected to the broadband network. A STB device tunes to a specific channel frequency

and receives the application/data of interest according to the Tru2way protocol. The carousel may

also deliver Tru2way signaling and other forms of data over DOCSIS as multicast group messages

following the DOCSIS Set-top Gateway, or DSG protocol [8]. In our prototype system this data-

delivery mechanism is used to control the STB boot-up and user-interface applications.

Network. The system network is a managed dedicated broadband network which is divided

into three IP subnets to isolate the traffic between the DOCSIS-based broadband Embedded Cluster

network, the Linux Cluster network, and the digital cable head-end. Its implementation is based on

two Cisco 3560 1Gb/s Ethernet switches and one Cisco 7246 DOCSIS broadband router. The upper

switch in Figure 7.1 interconnects the eight blades along with the NAS and master host. The lower

switch aggregates all the components on the head-end subnetwork. The DOCSIS subnetwork is

utilized by the Embedded Cluster whose traffic exists on both the Linux Cluster and the digital head-

end network. The broadband router has 1Gb/s interfaces for interconnection to the Linux Cluster and

head-end networks as well as a broadband interface for converting between the DOCSIS network

and the Ethernet backbone. Each broadband router can support over 16,000 STBs, thus providing

large-scale fan-out from the Linux Cluster to the Embedded Cluster.

Embedded Middleware Stack. The embedded middleware stack is based on Tru2way, a stan-

dard platform deployed by major cable operators in U.S. as part of the Open Cable Application Plat-

form (OCAP) developed in conjunction with Cablelabs [8]. Various services are delivered through

the Tru2way platform including: chat, e-mails, electronic games, video on-demand (VOD), home
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Figure 7.2: Two software stacks to support Hadoop: STB vs. Linux Blade.

shopping, interactive program guides, stock tickers, and, most importantly, web browsing [27]. To

enable cable operators and other third-party developers to provide portable services, Tru2way in-

cludes middleware based on Java technology that is integrated into digital video recorders, STBs,

TVs, and other media-related devices.

Tru2way is based on Java ME (Java Micro Edition) with CDC (Connected Device Configura-

tion) designed for mobile and other embedded devices. The Tru2way standard follows FP (Foun-

dation Profile) and PBP (Personal Basis Profile) including: io, lang, net, security, text, and util

packages as well as awt, beans, and rmi packages, respectively. Additional packages include Ja-

vaTV for Xlet applications, JMF (Java Media Framework), which adds audio, video, and other

time-based media functionalities, and MHP (Multimedia Home Platform), which comprises classes

for interactive digital television applications. On top of these profiles, the OCAP API provides ap-

plications with Tru2way-specific classes related to hardware, media, and user-interface packages

unique to cable-based broadband content-delivery systems.

Remark. While this rich set of Java profiles offer additional features to the embedded Java

applications, there exists a significant gap between the Java stack provided by Tru2way and the Java

Platform Standard Edition (Java SE), which is common to enterprise-class application development.

Hence, since the standard Hadoop execution depends on the Java SE environment, we had to de-

velop a new implementation of Hadoop specialized for the embedded software environment that

characterizes devices such as STBs. We describe our effort in the next section.
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7.3 Porting Hadoop to the Cluster of Embedded Systems

There are several issues that need to be addressed in order to successfully run Hadoop on a dis-

tributed embedded systems like our broadband network of STB devices.

First, Hadoop and Hadoop third-party libraries require many bootstrap classes not supported by

the Tru2way JVM. Also, for many classes the Tru2way JVM supports only a subset of methods: e.g.,

both Tru2way and Java SE have the java.lang.System class, but the java.lang.System.get

env() method exists only in Java SE.

Second, the Tru2way JVM only supports older versions of Java class file formats while Hadoop

is developed using many Java 1.6 language features including: generics, enums, for-each loops,

annotations, and variable arguments.

Third, the task of porting Java applications to another JVM with different profiles is quite chal-

lenging and, differently from porting native codes to JVM [43; 170], it has not been actively studied

in the literature. If not an impossible task, to modify Hadoop and the Hadoop third-party libraries

at the source code level is not really practical because there are more than fifty of such libraries and,

in some cases, their source code is not available.

Finally, despite all the efforts to improve the JVM portability [250; 278], to port the Java SE

JVM to the STB environment is difficult because these embedded devices do not support key fea-

tures such as frame buffer or native implementations.

To address these challenges, we have developed a binary-level porting method for embedded

devices that imports missing class files and retro-translates all the class files so that the embedded

Tru2way JVM can execute them. Our method leverages the Java Backport package, which is the im-

plementation of JSR 166 (java.util.concurrent APIs), introduced in Java SE 5.0 and further

refined in Java SE 6.0, for older versions of Java platforms [7]. The Retrotranslator has two main

functionalities: 1) it translates newer class files into an older format for an older JVM; and, 2) it

extends the Backport package so that most Java SE 5.0 features are available for an application that

runs on the Java SE 1.4 and Java SE 1.3 JVMs [23]. The runtime classes from those two packages

can be added to the Tru2way JVM.

Figure 7.2 shows the resulting software stack to support the execution of Hadoop in the embed-

ded environment of an STB running the Tru2way JVM and contrasts it with the traditional software

stack based on the Java SE JVM running on a common Linux blade. In particular, the embedded
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Figure 7.3: Porting the Hadoop-supporting Java classes to the STB devices.

software stack includes the Imported Runtime Classes, which are the results of the backporting

technique, and the Profile Gap Filler, which collects all additional components that were developed

specifically for the embedded STB devices.

Figure 7.3 illustrates the procedure that we developed to port Hadoop and all the Java pack-

ages necessary for running Hadoop to the STB devices. While it was developed and tested for

our broadband embedded system, for the most part this procedure is a contribution of general

applicability to port Java applications originally developed for the Java SE JVM to other em-

bedded systems which have different and more limited JVMs: e.g., this procedure can be fol-

lowed also for porting any Java applications to other JVM such as BD-J or Android’s Dalvik [128;

220]. The procedure consists of a sequence of eight main steps:

1) Class Aggregation. Here all the input classes are simply copied into a single directory and

the priorities among the duplicated or collided classes are determined.

2) Dependency Analysis. For this step, which is key to implementing efficiently a large Java

application like Hadoop on resource-constrained embedded devices, we developed a novel depen-

dency analysis technique called Class Weaving. This starts by analyzing the class dependencies

within a Java package as well as across the packages and then changes the dependency to reuse as

much as possible those classes which are available in the embedded Java ME environment. The

goal is to generate all the information on class dependencies that is necessary at later steps to min-

imize the number of classes which will be imported from the various open-source Java SE runtime

libraries (and to strip out all unnecessary classes from the original packages.) Figure 7.4 illustrates

how Class Weaving works: a class dependency tree is generated by analyzing each class while min-

imizing the number of classes to be imported. For example, Hadoop’s TaskTracker class uses

the Pattern class, which in turn uses the Matcher class: both these classes exist in Java SE but

not in the STB Java ME environment and, therefore, need to be imported. On the other hand, the
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Figure 7.4: Example of applying the proposed Class Weaving method.

Pattern class uses the Character class, which exists also in Java ME and, therefore, it will not

be imported from Java SE: instead, the Pattern class will be woven to use Java ME’s Character

class.

3) Import List Generation. Based on the information collected at the previous step, the list of

classes to be imported is generated. At this step, the list can be refined through additional cus-

tomizations. Unlike most JVMs, some embedded JVMs have their bootstrap classes embedded in

a way that are not accessible to the application developers and provide only stub classes to them.

For instance, packages like xerces or log4j do exist in the actual bootstrap classes for internal

purposes but are not included in the stub classes.

4) Backport List Generation. The Java class loaders check if the package name of the target class

begins with the ‘java.’ prefix when the class file location is not in the bootstrap classpaths and, if

so, returns an error. To avoid this, the prefix needs to be changed: e.g., in the case of our system with

the ‘edu.columbia.cs.sld.backport.ocap.java.’ prefix. A list of the mappings between

the original and the new prefix is generated for all the imported classes with package names that

begin with ‘java.’ to be used later in the retro-translation step.

5) Class Stripping Optimization. Since many embedded systems have limited memory and stor-

age resources, only the necessary Java classes should be stored in the embedded device. This is

achieved by collecting dependency trees that begin with the seed classes, which include the entry
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Hadoop & JavaSE

3rd-party libs Bootstrap

Before 14490 10110

After 4141 5978

Table 7.1: Class count before & after class stripping optimization.

point Xlet class that launches Hadoop DataNode and TaskTracker, various classes that are dynam-

ically loaded from configuration files or from the source code, and the patched classes. In our case,

this step results in a 60% reduction of the number of classes that must be deployed in the STBs, as

shown in Table 7.1.

6) Retro-translation. Since the Tru2way JVM recognizes classes up to Major Version Number

48, all the class files with Major Version Number 49 or higher need to be retro-translated. Most

packages, including Hadoop, provide classes with major version number 50, which corresponds to

Java 1.6. At the binary level, the class file formats and package names of Hadoop, Java SE, and the

application libraries need to be properly modified.

7) Patch Application. While a number of classes were imported from open-source Java SE

runtime libraries through the Class Weaving technique described above, we had to newly develop

a number of missing classes and methods which needed to be optimized before being added to

the Java stack of the STBs. The same was necessary for classes that could not be imported from

the open-source Java SE runtime library due to the native implementations. Also, patches were

necessary to fix some defects found in the Tru2way implementations.

8) Package Generation. This final step generates the packages that will be launched on the

Tru2way JVM from the stripped classes, links a custom class loader that will loads user-defined

Mapper and Reducer classes, and binds an entry point Xlet that will execute Hadoop DataNode

and TaskTracker.

7.3.1 Challenges in Porting Hadoop to STB Devices

The number of JVM processes supported in the system is one of the biggest differences between

the STB Java environment and a Linux blade server utilizing Java SE. While the users of the latter

can launch multiple instances of JVM, only one JVM instance can be launched during boot time
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within an STB. On the other hand, there are two important behaviors in Hadoop that rely on the

capability of multiple JVM executions: first, TaskTracker and DataNode are running two different

JVM processes; second, for each task processed in a TaskTracker node, a new JVM instance is

launched unless there is an idle JVM which can be reused for the task.

To support these behaviors while coping with the STB limitation of running only one JVM in-

stance, we implemented a new ProcessBuilder class that creates a thread group whenever the

launch of a new JVM process is requested. Each thread group provides a distinct set of Hadoop

environmental variables which are managed within the threads belonging to a given thread group

without interfering with other threads groups. The ProcessBuilder class implementation also en-

ables optimizations such as replacing IPC (Inter-Process Call) with method invocations in the same

process, and the elimination of local data transfers through sockets with local file-copy operations.

A number of other middleware issues related to porting Hadoop to an embedded device like

the STB were discovered and resolved. For example, certain Java classes have bugs that make the

application behave improperly, halt, or sometimes fail. In these cases the classes were replaced

with better implementations or patched to align with the Hadoop Java class requirements. Also,

some configuration changes were made to the system: e.g., the Socket timeout constant had to be

slightly extended to account for variations in network response times or delays. Finally, to relieve

memory constraints, we reduced the number of threads associated to unimportant services such as

the metrics service which profiles the statistics of performance or the web service that provides

status information.

7.4 Experiments

In order to evaluate our embedded Hadoop system for its scalability characteristics and execution

performance, we executed a number of MapReduce experimental tests across the Linux Cluster and

Embedded Cluster. All the experiments were performed while varying the degree of parallelism,

i.e., by iteratively doubling the number of Hadoop nodes, of each cluster: specifically, from 1

to 8 Linux blades for the Linux Cluster (where each blade contains eight 2GHz processor cores)

and from 8 through 64 STBs for the Embedded Cluster (where each STB contains one 400MHz

processor core). The results can be organized in four groups which are presented in the following
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subsection. We report the average results after executing all tests multiple times.

7.4.1 The WordCount Application

WordCount is a typical MapReduce application that counts the occurrences of each word in a large

collection of documents. The results reported in Figure 7.5 and 7.6 show that this application

scales consistently for both the Embedded Cluster and Linux Cluster. As the size of the input data

increases, the Embedded Cluster clearly benefits from the availability of a larger number of STB

nodes to process larger data sets. The Linux Cluster execution time remains approximately constant

for data sizes growing from 128MB to 512MB since these are relatively small, but then it begins to

double as the data sizes grow from 1GB to 32GB. In fact, above the 1GB threshold the amount of

data that needs to be shuffled in the Reduce task begins to exceed the space available within the heap

memory of each node. A similar transition from in-memory shuffling to in-disk shuffling occurs in
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# of Nodes STB / Blade

Size 8 / 1 64 / 8

1G 49.2 49.4

2G 52.9 41.5

4G 63.9 39.6

8G (64.5) (48.8)

16G (64.5) (42.1)

32G (61.3) (38.3)

Table 7.2: WordCount Execution-time ratio.

the Embedded Cluster for smaller data sets due to the smaller memory available in the STB nodes:

specifically, it occurs somewhere between 64MB and 512MB, depending on the particular number

of nodes of each Embedded Cluster configuration.

Table 7.2 reports the ratios between the execution times of two Embedded Cluster configurations

over two corresponding equivalent Linux Cluster configurations, for large input data sets. 2 The

first column reports the ratio of the configuration with eight STBs over one single blade with eight

processor cores; the second column reports the ratio of the Embedded Cluster configuration (with

64 STBs) over the Linux Cluster configuration (with eight blades for a total of 64 cores.) Across

the different data sizes, the performance gap of the Embedded Cluster relative to the corresponding

Linux Cluster with the same number of Hadoop nodes remain approximately constant: it is about

60 times slower for the configuration with 8 nodes and about 40 times slower for the one with 64

nodes. Notice that these values are the actual measured execution times; they are not modified to

account for the important differences among the two systems such as the 5X gap in the processor’s

clock frequency between the Linux blades and the STBs. A comprehensive discussion of the reasons

behind the performance gap between the two systems and how this may be reduced in the future is

given in Section 7.4.5.

2The values in parenthesis are computed by extrapolating the execution times on the Embedded Cluster.
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7.4.2 HDFS & MapReduce Benchmarks

The second group of experiments involve the execution of a suite of standard Hadoop benchmarks.

The goal is to compare how the performance of the Embedded Cluster and Linux Cluster scales for

different MapReduce applications. The execution times of these applications expressed in seconds

and measured for different configurations of the two clusters are reported in Table 7.3. The numbers

next to the application names in the first column denote input parameters, which are specific to each

application: e.g., “RandomTextWriter 8” denotes that the RandomTextWriter application is running

eight mappers, while the “Pi-Estimator 1k” means that Pi-estimator runs with a 1k sample size.

Sleep is a program that simply keeps the processor in an idle state for one second, whenever

a Map or a Reduce task should be executed. Hence, this allows us to estimate the performance

overhead of running the Hadoop framework. For the representative case of running Sleep with 128

mappers and 16 reducers, the Embedded Cluster and the Linux Cluster performance is basically the

same.

RandomTextWriter is an application that writes random text data to HDFS and, for instance, it

can be configured to generate a total of 8GB of data uniformly distributed across all the Hadoop

nodes. When it is running, eight mappers are launched on each Linux blade, i.e., one per processor

core, while only one mapper is launched on each STB node. Since the I/O write operations dominate

the execution time of this application, scaling up the number of processor cores while maintaining

the size of the random text data constant does not really improve the overall execution time.

Pi-Estimator is a MapReduce program that estimates the value of the π constant using the

Monte-Carlo method [36]. For the Linux Cluster, the growth of the input size does not really impact

the execution time for a given system configuration, while moving from a configuration with one

blade to one with eight blades yields a 4x speedup. For the Embedded Cluster, in most cases scaling

up the number of nodes causes higher execution times because this program requires that during

the initialization phase the STBs receive a set of large class files which are not originally present

in the Embedded Java Stack. This file transfer, which uses the pipelined mechanism explained in

Section 7.4.4, takes a long time that more than cancel out any benefits of increasing the number of

Hadoop nodes.
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8 STBs 64 STBs 1 Blades 8 Blades

Benchmarks (8 cores) (64 cores) (8 cores) (64 cores)

Sleep 1285.1 119.6 1223.6 114.5

RandomTextWriter 8 799.6 743.9 177.6 172.0

PiEstimator 1k 461.1 163.5 212.1 52.5

PiEstimator 16k 463.4 474.0 213.7 52.5

PiEstimator 256k 603.6 783.2 214.6 52.4

PiEstimator 4M 1240.9 2048.2 213.9 52.5

PiEstimator 64M 7373.0 10482.5 314.8 58.4

K-Means 1G 3679.2 1149.3 794.7 245.0

Classification 1G 3009.0 784.9 864.7 254.5

Table 7.3: Execution times (in seconds) for various Hadoop benchmarks.

7.4.3 Data Mining Applications

To evaluate the feasibility of utilizing the Embedded Cluster system for data mining applications, we

performed two experiments based on MapReduce versions of two common algorithms. K-Means is

a popular data mining algorithm to cluster input data into K clusters: it iterates until the change in

the centroids is below a threshold to successively improve the clustering result [131]. Classification

is a MapReduce version of a classic machine learning algorithm: it classifies the input data into one

of K pre-determined clusters [229]. Unlike K-Means, Classification does not run iteratively, and,

therefore, does not produce intermediate data.

The last two rows in Table 7.3 report the results of running these two applications, each with an

input data set of size 1GB. For both applications the results are similar: the execution time when

running on the Embedded Cluster with eight STBs is about four times longer than running in the

Linux Cluster with one 8-core blade; furthermore, when both systems are scaled up by a factor

of eight, the performance gap grows from four to forty times. The growing gap is mainly due to

the fact that scaling up the system parallelism while keeping the input data size constant leads to

shuffling a large number of small data sets across the Hadoop nodes. This requires peer-to-peer

communication among the nodes, an operation that the DOCSIS network of the Embedded Cluster

does not support as well as the gigabit Ethernet network of the Linux Cluster does. To better evaluate

the difference in transfer time between the two networks we completed the following experiment
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Figure 7.7: HDFS data-replication mechanism (R=3) and replication time.

focused on the HDFS data replication, which requires similar peer-to-peer communication among

the Hadoop nodes.

7.4.4 Data Replication in HDFS

The Hadoop Distributed File System (HDFS) replicates data blocks through pipelining of DataN-

odes based on the scheme illustrated in Figure 7.7(a): for a given replication number R, a pipeline

of R DataNodes is created whenever a new block is copied to a DataNode and the data are trans-

ferred to the next DataNode in the pipeline until the last one receives it. This mechanism causes a

large transfer-time penalty for the Embedded Cluster due to DOCSIS-network overhead associated

with the transfer of data between pairs of Hadoop nodes. Specifically, a DOCSIS network does

not support direct point-to-point communications among STBs. Instead, all communications occur

between a given STB and the DOCSIS router located in the cable-system head-end: this acts as a

forwarding agent on behalf of the two communicating STBs. Due to this architecture, as we in-

crease the number of STBs in the system (each STB corresponding to one Hadoop node) more slow

communications between pairs of STBs occur, thus impacting negatively the overall data-replication

time. In contrast, the data replication time spent in the Linux Cluster remains constant as we grow

the number of nodes thanks to: (i) the fast communication channels among cores on the same blade

and (ii) the gigabit Ethernet network connecting cores across different blades.
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Figure 7.8: Experimental results with lmbench benchmark suite: comparison of the execution times

of running each instruction type on the STB vs. Blade processors.

7.4.5 Discussion

The performance of executing Hadoop MapReduce applications is influenced by various system

properties including: the processor speed, memory, I/O, and networking capabilities of each node.

Further, the relative impact of each factor depends on the computation and communication proper-

ties of the specific MapReduce application in a way that may vary considerably with the given input

problem size and the total number of nodes comprising the Hadoop system. Next, we discuss how

the system properties of the Embedded Cluster compare to those of the Linux Cluster and outline

how the technology trends may reduce the gap between the two systems.

Processor performance. In our experimental setup, there is a 5X gap in processor clock fre-

quency between the Embedded Cluster and Linux Cluster nodes. Further, we empirically noticed

another factor of 2X in processing speed which we attributed to the different computer architectures

of the 2GHz Xeon and 400MHz MIPS processors. To quantitatively analyze the performance dif-

ferences between the processors on the two clusters, we completed a set of experiments with the

lmbench benchmark suite [219; 293], on both a STB and a blade. Fig. 7.8 shows the execution times

(measured in nanoseconds) to run the different instruction types of the lmbench suite on one pro-

cessor core of a STB and of a Blade, respectively. The dotted line over the bars indicates the value

of the ratio ExecT ime(STB)
ExecT ime(Blade) . The Blade processor core is always faster but the relative performance
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may vary: e.g., a Blade processor core is 1.98X faster than an STB processor core when they run the

integer mod instructions, while it is 18.36X faster when they run a 64-bit unsigned integer addition.

Besides the integer mod instruction, the other instructions can be categorized into two main groups:

one leading to a 5-8X performance difference and another leading to a 15-18X. The performance

gap is partially due to the more sophisticated architecture of the Blade processor and partially to the

clock frequency which is 5X slower for the STB processor. This part of the gap is expected to de-

crease considerably in the near future as next-generation STB devices will incorporate commodity

1GHz+ multi-core processors, similar to those found already in consumer electronic devices such

as smartphone and tablets, while it is unlikely that the clock frequency of the Blade processor will

increase considerably.

I/O Operations. The RandomTextWriter benchmark represents many MapReduce applications

which execute numerous data-block storage operations. In fact, the Hadoop system itself can be

very I/O intensive when performing data replication. We run the TestDFSIO test to evaluate the I/O

performance of HDFS by reading/writing files in parallel through a MapReduce job. This program

reads/writes each file in a separate map task, and the output of the map is used for collecting statistics

relating to the file just processed; then, the statistics are aggregated in the reduce task to produce

a summary. The results of running TestDFSIO reveal that an STB has 0.115MB/s reading and

1.061MB/s writing speed while the corresponding values for a Linux blade are 68.526MB/s and
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99.581MB/s. 3 We also run a simple native C program that executes read/write operations using

large files on the two clusters with four different interfaces: USB, FLASH, NFS, and HDD. The

results are reported in Figure 7.9. We note that the network performance of STB NFS reads/writes

is significantly less, by a factor of nearly 100, than the network performance of the Linux blade

server. This gap is primarily due to the DOCSIS network, whose effective transfer rate is limited

to 4MB/s compared to 1Gb/s Ethernet network, whose effective maximum transfer rate is closer

to 125MB/s. On the other hand, the measured performance of the USB and external hard-drive

interfaces on both the STB and Linux blade server is comparable. This is due to the common

commodity SoC for USB and disk interfaces used in the design of both the STBs and blades. In our

experiments, the Linux blades use an internal hard-drive disk (HDD) while the STBs, which do not

contain an internal hard-drive, rely on a USB memory stick whose read performance is six times

slower (and write performance is 24 times slower) than the HDD when providing HDFS storage.

This gap can be reduced by having the STBs use a better file system for the USB sticks than FAT32

such as SFS [222]. Also, as shown in Figure 7.9, an external USB HDD could provide a 1.5-

4.2 speed-up for reading/writing over the USB memory stick. Here, the technology trends should

provide next-generation STB devices with HDD and USB 3.0.

Networking. The lack of support for peer-to-peer communication among STBs in the DOCSIS

network limits considerably the HDFS replication mechanism (as discussed in Section 7.4.4), the

Hadoop shuffling operations (as seen for the K-Means, Classification and WordCount programs),

and the transfer of large class files during the initialization phase (as in the PI-Estimator). In particu-

lar, shuffling generates an implicit all-to-all communication pattern among nodes that is application

specific: each node sends its corresponding Map results to other nodes through HTTP, generating

|Node|2 communication exchanges, which for the DOCSIS network results in inefficient upstream

communication requests as the nodes attempt to transfer data blocks from Mappers to Reducers. A

similar performance impact occurs during Hadoop replication: for a given replication factor R and

a total number of blocksM , the number of DOCSIS upstream communication transfers to complete

replication is M × (R−1). As the input size increases the number of blocks increases in direct pro-

portion, thus increasing the replication time. The scalability in Embedded Cluster largely depends

3The STB shows significant difference between upload and download speed due to the inherently asymmetric and

lower transfer rate characteristics of the DOCSIS network.
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on the amount of data to be shuffled generated by the Map tasks and the replication communication

overhead. This problem may be addressed in part with the deployment of the higher performance

DOCSIS 3.0 standard [114], which supports up to 300 Mb/s upstream bandwidth. Then, oppor-

tunities for further improvements include: optimization of the Hadoop scheduling policy, network

topology optimization, and leveraging the inherent multi-casting capabilities of DOCSIS to reorder

the movement of data blocks among nodes and reduce network contention.

7.5 Related Work

The Hadoop platform for executing MapReduce applications has received great interest in recent

years as problems in large-scale data analysis and Big Data have increased in importance. Work in

the area of heterogeneous MapReduce computation, however, remains rather limited, notwithstand-

ing the growth of embedded devices interconnected through broadband networking to distributed

data centers. Our work is aligned with efforts in the Mobile Space to bridge MapReduce execution

to embedded systems and devices. For example, the Misco system implements a novel framework

for integrating smartphone devices for MapReduce computation [88]. Similarly, Elespuro et al.

developed a system for executing MapReduce using smartphones under the coordination of a Web-

based service framework [90]. Besides the fact that our system uses a wired network of embedded

stationary devices instead of a mobile network, the main difference with these systems is that we

ported the Hadoop framework, including the HDFS, based on the Java programming model. Other

related work includes utilizing GPU processors to execute MapReduce [134]. While most related

work in adapting MapReduce execution to embedded devices has focused on leveraging service-

side infrastructure, our work is closer to current research under way for large scale execution of

MapReduce applications on the Hadoop platform across Linux blades and PC clusters [304].

7.6 Concluding Remarks

We developed, implemented, and tested a heterogeneous system to execute MapReduce applications

by leveraging a broadband network of embedded STB devices. In doing so, we addressed various

general challenges to successfully port the Hadoop framework to the embedded JVM environment.

We completed a comprehensive set of experiments to evaluate our work by comparing various con-
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figurations of the prototype Embedded Cluster with a more traditional Linux Cluster. First, the

results validate the feasibility of our idea as the Embedded Cluster successfully executes a variety

of Hadoop applications. From a performance viewpoint, the Embedded Cluster typically trails the

Linux Cluster, which can leverage more powerful resources in terms of processor, memory, I/O,

and networking. On the other hand, for many applications both clusters demonstrate good perfor-

mance scalability as we grow the number of Hadoop nodes. But a number of problems remain to be

solved to raise the performance of executing MapReduce applications in the Embedded Cluster: in

particular, critical areas of improvement include the STB I/O performance and the communication

overhead among pairs of STBs in the DOCSIS broadband network. Still, the gap between embed-

ded processors and blade processors in terms of speed, memory, and storage continues to decrease,

while higher performance broadband networks are expected to integrate embedded devices into the

Cloud. These technology trends hold the promise that future versions of our MapReduce computing

system can help to leverage embedded devices for Internet-scale data mining and analysis.
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Chapter 8

Algorithm-Division Reverse Offloading:

Locally Customized Training

Personal mobile devices offer a growing variety of personalized services that enrich considerably

the user experience. This is made possible by increased access to personal information, which to

a large extent is extracted from user email messages and archives. There are, however, two main

issues. First, currently these services can be offered only by large web-service companies that can

also deploy email services. Second, keeping a large amount of structured personal information on

the cloud raises privacy concerns. To address these problems, together with Karl Stratos and Luca

Carloni, I developed LN-Annote, a new method to extract personal information from the email

that is locally available on mobile devices (without remote access to the cloud). LN-Annote en-

ables third-party service providers to build a question-answering system on top of the local personal

information without having to own the user data. In addition, LN-Annote mitigates the privacy con-

cerns by keeping the structured personal information directly on the personal device. Our method is

based on a named-entity recognizer trained in two separate steps: first using a common dataset on

the cloud and then using a personal dataset in the mobile device at hand. We optimized LN-Annote

by implementing an OpenCL version of the custom-training algorithm to leverage the Graphic Pro-

cessing Unit (GPU) available on the mobile device. We also show how we developed the MCC

applications in the LN-Annote system, including the Android app for local training, and assessed

the optimization technique by testing its scalability and performance based on the tool NETSHIP.
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Figure 8.1: Parsing email to collect personal information.

8.1 Introduction

Recent advancements in personalized web-based services have enriched our daily lives. Intelligent

personal assistant services such as Google Now [13] or Apple’s Siri [5] can give “directions to

home” or alert that “it’s time to leave for your next meeting”. Meanwhile, personal search services

can answer queries based on the user’s personal information. Googling “my flights”, for instance,

produces the upcoming flight reservations that the user has made. Personalized advertisement is

another important (and most profitable) instance of personalized web services. The advertisement

systems of Amazon, Facebook and Google [2; 10; 11] are known to utilize viewers’ personal infor-

mation such as previous purchase history.

What makes all these personalized services possible? The personal information collected by the

service providers. Since its quality determines the quality of the personalized services, web service

providers put in significant efforts to improve and extend its collection. One vast source of personal

information is found in users’ emails. Large web-service companies that provide also email services

(like Google, Microsoft, and Yahoo) have the means to offer rich personalized services precisely

thanks to the personal information they extract from the users’ emails. The example of Figure 8.1

illustrates this process. A notification email of a message posted on a Social Network Service (SNS)

account by one of the user’s friend is parsed through a sequence of steps to build structured data,
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including: 1) a knowledge graph indicating the subject, the object, a type of the action, and the

contents of the comment; 2) the parsing tree of the comment; 3) various grammatical tags such as

part-of-speech (e.g., Verbal Phrase and Noun Phrase) and Named-Entity Recognition (NER) labels

(e.g., Person, Location, and Time). This kind of structured personal information is stored and used

later in various ways: e.g., to improve personal search services by retrieving results that are relevant

to the named-entities related to the user.

Thanks to the growing amount of personal data that are available to be collected, it is easy to

predict that personalized services will continue to evolve and expand. There are, however, limi-

tations and concerns. First, the current methods of information extraction are not feasible for any

small company that doesn’t have its own email service because they are based on accessing large

data sets collected with proprietary email services. Second, keeping large amount of structured

personal information on centralized remote cloud servers raises privacy and security concerns [64;

275].

To address these problems, we present LN-Annote (Locally customized NER-based Annota-

tion), a novel information-extraction subsystem that is designed and optimized to process the email

data available locally on each personal mobile device. Our contributions include:

• a distributed learning model based on two phases: universal training to generate a common

parameter set on the cloud and custom training to refine and optimize the shared common

parameter set by using the email data locally available on each mobile device;

• a discussion on how to extend the architecture of a personal search system to integrate the

LN-Annote subsystem;

• an implementation of LN-Annote using locally available information and optimization meth-

ods leveraging the GPU on the mobile device; and

• an extensive set of experimental results to prove the feasibility, effectiveness, and efficiency

of our approach.

In Section 8.2 we describe a personal search service as an example of a personal information

system where LN-Annote is employed as a subsystem. In particular, we compare two different

approaches for information extraction, on the cloud and on the mobile. Also, we illustrate the work-

flow of LN-Annote to extract personal information from emails stored on smart devices, which can
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then be available for many personalized service providers. In section 8.3 we show how LN-Annote

is designed on the NETSHIP framework. In Sections 8.4 and 8.5 we present how we implemented

and optimized our system. In Section 8.6 we present a comprehensive set of experiment results to

show the efficiency and the effectiveness of our approach. In particular, we show the advantages

provided by the addition of custom training on top of universal training.

8.2 LN-Annote System Design

In this section we present the design of LN-Annote, its main components, and how these interact

with other modules as part of a bigger system. LN-Annote is an NER-based system optimized to

extract information from email messages, in particular those sent via SNSs. The focus on email

is motivated by two observations: 1) email messages convey scads of personal information and 2)

many web services send notification emails with very useful data such as reservations or recom-

mendations.

8.2.1 Information Extraction and NER

Nowadays many companies send emails to their customers for various purposes such as discount

offers, purchase history, appointment reminders, or activity updates on SNSs. As more compa-

nies integrate their services with email systems, these email messages contain a growing amount of

personal information. Meanwhile, more and more people use their email to manage personal infor-

mation [341]. Hence, the ability to extract personal information from emails becomes increasingly

important. Nonetheless, existing extraction techniques have various limitations. One approach is

to write vendor-specific parsing scripts; this, however, requires a large amount of manual labor to

update the scripts whenever the vendor changes the email format. Another approach is to use Mi-

crodata embedded in the emails containing structured information [135]; this, however, is currently

not very effective because the number of email messages that contain Microdata is very limited.

To overcome these problems, Natural Language Processing (NLP) techniques have been pro-

posed to assist service providers in extracting useful information [243; 316]. Named-Entity Recog-

nition (NER) is a popular NLP technique to classify given vocabularies into predefined categories [38;

240]. A wide variety of systems use NER for different text types such as queries, SNS posts, or
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Figure 8.2: An architectural comparison between two personal search systems.

résumés [129; 201; 247].

The performance of a NER system can be evaluated using various metrics. One of the most

widely used metric is the F1 score which is defined as the harmonic mean of Precision and Recall:

F1 = 2 · Precision ·Recall
Precision+Recall

(8.1)

Precision, or Positive Predictive Value, is the correctness of the predicted classification and Recall,

or True Positive Rate, is the coverage of the positive cases.

8.2.2 A Use Case: Personal Search Service

The service infrastructure that we present here is an example of a system where LN-Annote works

as a key component subsystem in collaboration with other components.

A personalized search service provides answers based on the personal information that it has

collected from the emails of the user who requested the query. The personal information of each

user is collected periodically from the email database and stored into a structured database to sim-

plify its retrieval. The diagrams of Figure 8.2 illustrate two different approaches to implement this

service. Each shaped object represents a processing component or a document database and each

arrow indicates a direction of data flow. The users access the services through their smart devices,

searching personal information through a Personal Search App and receiving emails through an

Email App.

Figure 8.2(a) shows an approach where the extraction happens in the cloud. Periodically, e.g.,

once a day, the extraction system accesses directly the email database to update the Structured Per-
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sonal Information Database. When a user issues a personal query with the Personal Search App,

the query is passed to the personal search where it is handled by the Query Processor to disam-

biguate it and augment it. The processed query is then passed to the Personal Information Search

Engine which retrieves relevant documents from the Structured Personal Information Database. The

retrieved documents are ranked by the Search Result Ranking system and returned to the particular

app running on the mobile device, e.g., the Personal Search App, so that the user can see the results.

This approach, however, has several disadvantages. First, it is feasible only for a very small group

of service providers that own email services with a sufficient number of users. Hence, many service

providers that do not have access to email services miss a major source of personal information.

Second, it raises privacy and security concerns over the extraction, storage, and processing of very

large amount of personal information in centralized remote cloud servers [185].

To address these challenges we propose the approach illustrated in Figure 8.2(b). In this ap-

proach, the personal information extraction becomes a task that runs locally on the personal device

of each user, where recently fetched emails are stored by the email app.1 Our proposed LN-Annote

in Local Personal Information Service is similar to the Parser & Test Annotator of Figure 8.2(a) but

uses NER and creates Personal Information Database on the local device. As shown in Fig 8.2(b)

the local extraction of personal information resolves the dependency between the personalized ser-

vice and the email service, thus allowing personalized service providers without their own emails

services to access the local personal information database. Also, since the information remains local

in the mobile device, privacy concerns and security issues are effectively alleviated [312]. Finally,

the introduction of LN-Annote, a distributed NER subsystem, improves considerably the extraction

accuracy while reducing the computation burden on the cloud servers (as discussed in more detail

in Section 8.7). On the other hand, our approach requires that the mobile devices perform some

additional amount of computation and this may have a negative impact on their overall performance

and energy consumption. To minimize this impact, we have developed a method for custom train-

ing based on feature templates (as described in Section 8.5.1) and we have parallelized the key

1Accessing other app’s database is not trivial on smart platforms where each app runs in its own sandbox environment,

but it is still possible through a couple of options. We have implemented email apps that share email data with other al-

lowed apps through inter-app communication methods allowed on each platform, e.g., ContentProvider on Android [12].

The users can control which apps are allowed to access the emails.
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Figure 8.3: The flowchart of LN-Annote.

algorithms to run on the GPU present in each modern mobile device (Section 8.5.2).

8.2.3 The LN-Annote System Workflow

In this section, we describe the LN-Annote subsystem that we built to implement the approach

shown in Figure 8.2(b). To achieve more accurate prediction, we conceived a novel method that

performs training for NER in two separate main steps, as illustrated in Figure 8.3 (in this flowchart,

a solid arrow represents a flow of data and a dashed arrow represents a sampling activity.) The first

step, shown in the blue box (left), is universal training: this is essentially identical to traditional

learning and returns learning parameters that will be shared among all users. The second step,

shown in the red boxes (right), is custom training: it runs on each personal device, takes the learn-

ing parameters from the universal training, and enhances them by further training with the locally

accessible dataset which is specific to each user. The main goal of our method is to produce lo-

cally customized learning parameters that work well for the particular local environment. However,

the parameters need to perform well also on the global texts, by preserving the knowledge from

universal training.

As shown later, LN-Annote achieves extraction performance comparable to training for a combi-

nation of the global dataset and the personal dataset, while requiring a significantly smaller amount

of computation. Next, we provide more details on the two main steps.
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1. Universal Training in the Cloud. This step consists of two substeps:

1-a. Data sampling and NER labeling is a preparation activity that takes samples from a univer-

sal text database and creates labels for the sampled data to feed the supervised training of Substep 1-

b. Choosing a representative dataset with an appropriate amount is an important task for the quality

of the training [236]. The sampled data can be labeled using different methods: a) manual labeling,

b) manual labeling and running semi-supervised learning, and c) running unsupervised learning [93;

317]. For the experiments of this research, we used the CoNLL03 dataset provided with manually

labeled NER tags [309], while semi-supervised learning is commonly used for large datasets.

1-b. NER universal training uses supervised learning to process the labeled data produced by

Substep 1-a. In traditional machine learning, the learning parameters created by this kind of algo-

rithm are directly used to test the prediction of NER labels for the actual dataset. In our approach,

instead, these learning parameters are shared with the multiple mobile devices for custom training.

2. Custom Training & Testing on the Mobile Device. This step consists of three substeps:

2-a. Data sampling & semi-supervised NER labeling works similarly to Substep 1-a to produce

labeled data for Substep 2-b. Here, the inputs are text samples selected from the local email database

used by the email app running on the mobile device. Also, in this case the manual labeling cannot be

applied because it is infeasible to ask the user of the personal device to do it. Instead, we obtained

local gazetteers, a list of named-entities from a reliable source [231]. This substep is performed

automatically by using a semi-supervised learning algorithm based on the labels from the gazetteers.

How to obtain gazetteers is explained in Section 8.4.3.

2-b. NER Custom Training updates the NER parameters by learning from the labeled dataset

generated by the emails on the mobile device. The use of updated parameters is expected to keep

the same performance as the use of universally trained parameters on the global dataset, while

delivering better performance on the local emails.

2-c. NLP Parser & Annotator using NER, the final substep of LN-Annote processes the emails

on the mobile device. This is done using NER based on the parameters created in the Substep 2-b.

The outcome is stored in the Structured Personal Information Database where it can be used by any

personal services running on the mobile device, as long as this is allowed by the user.

Notice that each substep of LN-Annote occurs with a different frequency: universal training

(Substeps 1-a and 1-b) is done only once on the cloud servers; custom training (Substeps 2-a and
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Figure 8.4: Simulating the LN-Annote system using NETSHIP.

2-b), i.e., obtaining gazetteers, takes place periodically, e.g., once a week or a month; and finally,

the actual information extraction (Substep 2-c) runs rather frequently, e.g., everyday.

8.3 Designing LN-Annote on NETSHIP

We develop LN-Annote using the tool NETSHIP introduced in Chapter 4. Figure 8.4 presents the

configurations of simulating the LN-Annote system using NETSHIP. The LN-Annote system can

be optimized by leveraging the mobile GPU present in the mobile devices as studied in Chapter 8.

Thus, there are two sets of simulation instance configurations: one for the simulation of the system

before the optimization technique is applied (as shown in the top half of the figure) and another for

the simulation of the system when the proposed optimization technique is adopted (as shown in the

bottom half of the figure).

In each simulation configuration set, there are three types of virtual machine instances that are
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used to implement the system on top of the NETSHIP server instance, which manages the simulation

including the synchronization. The first type of virtual machine instances execute multiple Android

emulators (the left-most part of the figure). Each of these virtual machine instances can incorporate

up to four Android emulator instances. In the non-optimized system simulation case, these Android

emulators run an Android app that runs only the personal search client service (the top-left boxes).

In the optimized system simulation, the app also executes local training and information extraction

functions utilizing the virtual GPU models that multiplex the host GPU (the bottom-left boxes).

Second, the personal search server instance is where the universal NER trainer runs (the middle part

of the figure). The personal information database resides in the non-optimized case (the top-middle

box). As a result of local training and information extraction, it keeps only the universal NER trainer

when optimized (the bottom-middle box). This instance does not necessarily have to be scalable for

the experiments in this Chapter. However, the large-scalability feature offered by NETSHIP allows

also this instance to easily scale up in case the size of the database outgrows the provided virtual

machine instance, which might be needed for the higher scalability as the number of users grows

in the future. Third, the email service server instance behaves as an external email service provider

where the email database is stored (the right-most part of the figure). This virtual machine provides

the email content to the universal NER annotator on the personal search server when the system is

not optimized (the top-right box) and to the client app when the system is optimized (the bottom-

right box).

We use NETSHIP to develop the client-side information extraction app for Android and to test the

scalability of the system. Throughout the simulation of the LN-Annote system based-on NETSHIP,

We are able to perform the following experiments:

• Developing the Android app before having a physical device at hand.

• Testing the scalability of the server for the app beyond the number of physical devices we

possess and therefore saving the budget for the tests.

• Comparing the performance of the non-optimized configurations and the optimized configu-

rations and thus efficiently finding the best optimization technique.

• Calculating the estimated power consumption of each implementation.
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8.4 NER System Implementation

We designed the LN-Annote system to work with different types of incremental learning algo-

rithms [181]. For instance, it can work as a framework running the universal training in the cloud

and the custom training on the mobile while sharing the learning parameters between the two. In

this section, we introduce as a showcase our Neural Network model for NER.

8.4.1 NER Algorithm Selection

NER systems may adopt a linguistic grammar-based model or a statistical learning model. We

developed a system using a window-based neural network model for NER [75; 102]. Neural net-

work learning algorithms learn the representation of multiple layers with increasing complexity and

abstraction. A neural network works iteratively through feed-forwarding, a process to obtain the

hypothesis and the cost objective (error), and back-propagation, a process to adjust the parameters

according to the error.

Compared to various alternatives, neural network models are known to be difficult to understand

with respect to the internals of the parameter optimization process. For this reasons, in many state-

of-the-art NER systems programmers use other machine learning algorithms such as Conditional

Random Fields [102; 319], Maximum-Entropy Markov Model [105], or Perceptron [74], which

in many cases achieve pretty high F1 score (over 90). Still, we chose to build a neural network

model for NER for the following reasons. First, a neural network automatically chooses feature

values through feed-forwarding and back-propagation. This makes the system free from the need

of using carefully hand-crafted features that are required by other learning techniques. In particular,

in our system it enables the automation of the preparation and training for the customized learning

step. Second, neural network algorithms make heavy use of linear algebra and, particular, matrix

operations: these can be easily parallelized and executed on the GPU of the mobile device, thereby

reducing the time and energy spent on the computation in the custom training. The idea of using

the mobile GPU for acceleration translated into the needs for simulation tools that can support

simulations of mobile GPUs and motivated the development of ΣVP, which we discuss in Chapter 5.

Neural network models are prone to catastrophic forgetting (or catastrophic interference), an

extensive loss of previously learned information that may occur while learning new training data.

This problem has its main causes in the representational overlap within the learning system and



CHAPTER 8. ALGORITHM-DIVISION REVERSE OFFLOADING: LOCALLY CUSTOMIZED
TRAINING 131

U (L×H) 

W (H×NK) 

F (K×D) 

Feed 
Forward 

Back 
Propagate 

Hidden Layer 

Input Layer 

Classification Layer 

Figure 8.5: The designed neural network architecture.
in the side-effects of the training methods used (rather than in the lack of sufficient computing

resources in the system) [77]. In our system, catastrophic forgetting could manifest in a particular

way: the customized NER parameters can recognize entities learned during custom training while

losing the ability of identifying entities previously learned during universal training. There are

several known solutions to mitigate catastrophic forgetting, including: conservative training and

support vector rehearsal [34], multi-objective learning [159], sweep rehearsal [267], unsupervised

neuron selection [122], fixed expansion layer [76], and ensemble of classifiers [252]. In our neural

network model we avoid catastrophic forgetting by designing an incremental neural network model

that introduces a scale factor to the weight adjustment [108; 329]. This leads to excellent results, as

discussed in Section 8.6.

8.4.2 A Neural Network Model for NER

Both universal training and custom training are based on supervised learning and use the same

neural network model. In fact, the two training algorithms are essentially the same for consistency

and compatibility of network parameters. The only differences are the number of iterations and the

learning rate. We use a window-based network model with a fixed window size. This means that,

while labeling a given word, a few nearby words are also processed to provide a local context that

helps capturing the characteristics of the target word.

In the neural network we have three layers, as shown in Figure 8.5: the input layer, the hidden

layer, and the classification (output) layer. The input layer consists of feature vectors, or word

representations, obtained from the unsupervised pre-training [145]. Each feature vector consists of

K float values to represent a vocabulary in the dictionary of D vocabularies. The hidden layer, with
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a dimension of H , is used to derive hidden features by computing the input layer and the weight

vectors. The dimension of weight vectors W for the hidden layer is H ×NK where N is the size

of window. On top of the hidden layer, there is the output layer for softmax regression to predict

named-entities [89]. The weight vectors U for the output layer is of size L × H , where L is the

number of possible output classes.

Feed-Forwarding. Feed-forwarding in neural networks is a process to compute prediction

values. We first calculate zi = Wxi + b1 where xi is the feature vectors of the words in the i-th

window and b1 is a bias vector. Then, we obtain ai = f(zi) by applying a nonlinearity function f .

Finally, we compute the hypothesis hi = g(UTai+b2), where b2 is a bias for the softmax regression;

the sigmoid function g makes the regression result fit smoothly into a classification result. The final

prediction, hi, is the probability that xi is a named-entity of each class. Here, along with the feature

vectors used as the input layer, the weight vectors and the bias vectors are considered as the NER

parameters of Figure 8.3.

Algorithm Configuration. We use the hyperbolic tangent function tanh as the nonlinearity

function f . Note that its derivative can be expressed with the tanh function itself, i.e., f ′(x) =

d
dx tanhx = 1−tanh2 x. This greatly simplifies the back-propagation, thereby reducing the amount

of computation for training and testing on the mobile side. The sigmoid function we use is g(z) =

1
1−e−z .

Training Objective. In both the universal training and the local training we minimize the same

cost (objective) function which is the following cross-entropy error with a regularization factor:

J(θ) =− 1

m

m∑
i=1

L∑
j=1

[
1{y(i) = j} log (h

(i)
θ )
]

+
λ

2

k∑
i=1

n∑
j=0

θ2
ij

where the model parameter θ includes the input values extracted by the current window, λ is a

weight decay term (for any λ > 0) introduced for regularization, and 1{condition} is a function

that returns 1 when condition is true and 0 otherwise. During back-propagation, we minimize this

objective function using stochastic gradient descent, a first-order optimization method widely used

for training a variety of models in machine learning.
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Platform API

Android ContactsContract.Contacts.CONTENT URI

iOS ABAddressBookCopyArrayOfAllPeople

Windows Phone Microsoft.Phone.UserData.Contact.SearchAsync

Table 8.1: Mobile APIs for PER entities.

Provider REST API (PER)

(Base URI) (ORG/LOC/MISC)

Facebook /v2.1/me/friendlists

http://graph.facebook.com /v2.1/me/feed?with=location

Google+ /v1/people/me/people/connected

https://www.googleapis.com/plus /v1/people/me/activities/public

Twitter /1.1/followers/ids.json

https://api.twitter.com /1.1/statuses/user timeline.json

Table 8.2: SNS open APIs for various entities.

8.4.3 Local Gazetteer from Mobile

Differently from universal training, which can benefit from the manually tagged corpus, the custom

training on mobile devices cannot rely on any human effort to label the dataset. To automate the

custom training while obtaining a high-quality training dataset, we used the idea of gazetteers [231]

and developed a method to acquire gazetteers from local and external sources. Gazetteers are a

named-entity list obtained from an external, reliable source. Our gazetteer-induction method uses

the contact list, checked-in locations, and liked pages through the mobile platform and SNS open

APIs. The available APIs for collecting this gazetteer information from mobile and SNS platforms

are listed in Table 8.1 and Table 8.2, respectively. The labeled dataset is then fed into the semi-

supervised learning algorithm to create a training set for the custom training.
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Figure 8.6: The index of grouped feature templates.

8.5 Optimization

The execution of custom training on the personal mobile device poses some challenges in terms of

increased energy consumption and the possible slowdown of the overall device. To address these

challenges we performed two major optimizations.

8.5.1 Feature Templates

Our neural network model for custom training is designed for enhancing accuracy by using the

information available on the local device. Hence, it is important to capture the peculiar vocabu-

laries observed during the custom training on the device. For example, non-standard words (fre-

quently used on the web or in text messages as shown in Figure 8.1) or abbreviated words (such

as ‘CROACC’ 2) are less likely to be part of a general dictionary and, therefore, less likely to have

occurred during universal training. They, however, may occur frequently in the custom training

with the database of a particular user. If so, for this user these words may be named-entities or

may be useful to determine nearby named-entities.3 Thus, we capture the newly discovered words

and add them to our vocabulary list, while also creating feature vectors for these new words. A

performance concern, however, arises if we initialize the new feature vectors with random val-

ues. We keep the learning rate low in the custom training because it is additional training on top

of the universal training and the scale factor of incremental back-propagation limits the learning

rate to prevent catastrophic forgetting. Starting from parameters with the random values require

more learning iterations, which slows down the training. To address this challenge, we developed

2Cannot Rule Out Anything, Correlate Clinically.

3Notice that this is different from the case in universal training when newly discovered training vocabularies that have

no corresponding feature vectors are discarded because they appear rarely.
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a new technique to assign initial values to the feature vectors for the newly discovered words in

the custom training. This technique copies template feature vectors from a group to which a new

word belongs. Then, further training can converge with less learning iterations while keeping the

learning rate low. As shown in Figure 8.6, we use local features for grouping each word [202;

310]. The Ending Pattern is a boolean value representing if the word ends with one of the pre-

defined postfixes, such as “ie”, “son”, “ng”, or “a”. These local features are then encoded to calcu-

late the template group index for feature vectors, with a maximum index of 210 − 1 = 1023. For

instance, the group index of a new word (YoungHoon) is 488. Then, the feature vectors for the word

are copied from the template at index 488.

8.5.2 Hardware Acceleration

While feature templates can reduce the number of iterations to learn new vocabularies, the largest

performance bottleneck still lies in the training algorithm. This leads into problems including: high

energy consumption, CPU occupation, and delay in using the training results. In previous works,

NER algorithms were accelerated by using some hardware units available on computer servers [95;

239]. Our goal, however, is to remove the performance bottleneck during the custom training on the

mobile devices.4 Furthermore, mobile devices are particularly prone to these problems due to their

relatively slower CPUs and more limited energy budget. To accelerate the NER custom training and

testing algorithm we exploit the GPU on the mobile device. Besides performance gains, GPU-based

acceleration can also lower energy consumption due to the decreased execution time compared to

the execution on the device CPU.

The implemented OpenCL kernel executes the entire training algorithm, e.g., window index

extraction, hypothesis computation, and gradients calculation. Listing 8.1 shows an OpenCL kernel

that computes the hypothesis of the softmax regression (the top layer in Figure 8.5) for a NER

class.5

4In most cases, training requires more computation than testing for the same size of dataset.

5This implementation is from our second version where each kernel computes a small portion of the algorithm.
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/∗ Put p r o d u c t o f g l o b a l v a l u e s t o l o c a l mem ∗ /

2 i f ( g i d ∗ 4 < h i d d e n S i z e ) {

p a r t i a l d o t [ l i d ] = U[ g i d ] ∗ a [ g i d ] ;

4 }

e l s e {

6 p a r t i a l d o t [ l i d ] = 0 ;

}

8 b a r r i e r (CLK LOCAL MEM FENCE) ;

10 /∗ R e p e a t e d l y add v a l u e s i n l o c a l memory ∗ /

i n t nElem = g r o u p s i z e ;

12 i n t i = ( nElem + 1) / 2 ;

14 do {

i f ( l i d < i && l i d + i < nElem ) {

16 p a r t i a l d o t [ l i d ] += p a r t i a l d o t [ l i d + i ] ;

}

18 b a r r i e r (CLK LOCAL MEM FENCE) ;

20 nElem = i ;

i = ( i + 1 ) / 2 ;

22 } w h i l e ( i != nElem ) ;

24 /∗ T r a n s f e r f i n a l r e s u l t t o g l o b a l memory ∗ /

i f ( l i d == 0) {

26 h [ g e t g r o u p i d ( 0 ) ]

= d o t ( p a r t i a l d o t [ 0 ] , ( f l o a t 4 ) ( 1 . 0 f ) ) ;

28 }

30 b a r r i e r (CLK GLOBAL MEM FENCE) ;

32 i f ( g i d == 0) {

f o r ( i n t i = 1 ; i < g e t n u m g r o u p s ( 0 ) ; i ++) {

34 h [ 0 ] += h [ i ] ;

}

36

h [ 0 ] += b2 ;

38 h [ 0 ] = 1 . 0 + pow ( ( f l o a t ) M E F , −h [ 0 ] ) ;

h [ 0 ] = 1 . 0 / h [ 0 ] ;

40 }

Listing 8.1: A portion of OpenCL kernel that computes the hypothesis.
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This kernel implementation uses a technique that first calculates the dot products of sub-matrices

on the local memory storage shared among GPU thread blocks and then it sums up these partial dot

products to quickly compute the dot product of the entire matrix. This exploitation of the local

memory speeds up the summation process because for a GPU core accessing the local memory is

faster than the global memory [349].

8.6 Experiments

In the following experiments, we used the CoNLL03 shared task [309] in the universal training

while we leveraged emails dataset in the custom training. CoNLL03 provides an English training

dataset (CoNLL03 train) and two English test datasets (CoNLL03 testa and CoNLL03 testb). The

actual email datasets used in the experiments were created with SNS notification emails, such as the

example presented in Figure 8.1(a), chosen from personally donated emails for research purposes.

We created a training dataset and a testing dataset for each user and used these in Substeps 2-b and 2-

c of Figure 8.3, respectively. Let email traina denote the training dataset from usera and email testa

denote the testing dataset from the same user. While a semi-supervised learning and gazetteers were

used with the email datasets for training as explained in Section 8.2.3, the email datasets for testing

were labeled following the CoNLL03 guidelines [309] for the experiments in this section. Each

email dataset for custom training consists of 128,000 words out of which approximately 8,000 to

21,000 words are unique within that dataset. The used email dataset for testing contains around

64,000 words. Each measured value that has a possibility of variation, such as execution time and

power consumption, was executed ten times and averaged excluding the largest observation and the

smallest observation.

8.6.1 Learning NER Feature Vectors

In this section, we compare how the feature vectors, the main learning parameter in our NER neural

network model, change as we execute universal training and custom training.

One of the difficulties in using a neural network model is understanding its internal behavior.

In many cases, visualizing how the learning iterations progress can help developers understand and

improve the system. t-Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear method



CHAPTER 8. ALGORITHM-DIVISION REVERSE OFFLOADING: LOCALLY CUSTOMIZED
TRAINING 138

(a) Random (b) Universal train on CoNLL03

(c) Custom train on email traina (d) Custom train on email trainb

Figure 8.7: t-SNE plots of feature vectors.
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Training Testing

Prec. Recall Fβ=1 Prec. Recall Fβ=1

LOC 84.28% 80.02% 82.10 83.15% 75.87% 79.34

MISC 79.24% 72.45% 75.69 73.86% 72.34% 73.10

ORG 85.58% 84.56% 85.07 78.64% 75.24% 76.91

PER 89.44% 86.43% 87.91 87.78% 83.44% 85.56

Overall 85.46% 81.88% 83.63 82.06% 77.54% 79.74

Table 8.3: CoNLL03 evaluation of universal training.

to transform data with multiple dimensions into data with reduced dimensions. This technique is

particularly popular for visualizing high-dimensional data on a two- or three-dimension plot. The

idea of t-SNE is to minimize the difference between the two distance matrices across each point on

the original space and the reduced space.

The diagrams in Figure 8.7 visualize the feature vectors to investigate how they change through

the universal training and the custom training. In these diagrams, each dot represents a word. A

black dot is a word that was present in the initial vocabulary set. A red dot is a word newly en-

countered during custom training. Figure 8.7(a) shows the randomly initialized values in the feature

vectors before the pre-training. The values are mostly scattered in the two dimensional space with-

out forming any specific patterns, with a few areas which are denser. The values in Figure 8.7(b) are

generated from the feature vectors which were originally copied from the pre-trained feature vectors

and then universally trained on CoNLL train. Here, the dots are spread around more than in the case

of the random initial vector. We believe that across the many iterations of the training the values in

each word representation have moved to establish a uniform distance from one another. Meanwhile,

we can observe a new pattern: a few dots form short lines. This linear pattern can be also spotted

in the following two figures. Figure 8.7(c) shows the feature vectors obtained by copying the uni-

versally trained feature vectors in Figure 8.7(b) and updating them by training on email traina. The

feature vectors in Figure 8.7(d) are generated in the same way but trained with email trainb. While

these two figures maintain the forms and patterns of Figure 8.7(b), the newly introduced red dots

tend to stand close to some other red dots, thus forming a group. These groups likely incorporate

named-entities that never existed in the initial vocabularies and that are very relevant to a particular
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Training Testing

Prec. Recall Fβ=1 Prec. Recall Fβ=1

LOC 83.83% 80.58% 82.17 83.00% 77.27% 80.03

MISC 79.14% 72.02% 75.41 72.31% 69.96% 71.11

ORG 85.56% 84.41% 84.98 78.08% 75.17% 76.60

PER 89.28% 86.32% 87.77 87.21% 82.90% 85.00

Overall 85.25% 81.91% 83.55 81.48% 77.41% 79.39

Table 8.4: CoNLL03 evaluation of custom training.

user, such as the name of a friend or a local restaurant.

8.6.2 NER Performance Comparison

In LN-Annote, the universal training is done with supervised learning on the CoNLL03 training

(or the dev) dataset. Table 8.3 shows the general NER performance of universal training. In par-

ticular, the left half of the table is tested with CoNLL03 train and the right half is tested with

CoNLL03 testa. The results show that in general Precision is higher than Recall for every entity

type and, based on Equation 8.1, the F1 scores remain in the range [70, 90]. Obviously, all the NER

performance results are a bit lower on the testing dataset than on the training dataset because the

parameters currently used in this experiment are originally learned from the training dataset.

Meanwhile, Table 8.4 presents the NER performance of custom training. As described in Sec-

tion 8.2.3, the parameters used in this experiment are the outcome of custom training, which takes

as input the learning parameters from universal training. Then, the custom training further learns

from a local email dataset (email traina), updating the parameters. Like for Table 8.3, the results of

Table 8.4 were tested on the CoNLL03 training (left) and testing dataset (right). Therefore, compar-

ing the tables shows how much (negative) impact, such as catastrophic forgetting, was introduced

in learning by custom training.

The results show that most values remain the same, with a slight decrease compared to the

values in Table 8.3. Hence, catastrophic forgetting is avoided. Note that on both the training and

testing datasets the recall value of Location (LOC) is higher (80.58 and 77.27) than before (80.02

and 75.87). This possibly means that the custom training with the local email dataset improves the
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Figure 8.8: F1 scores of universal and custom training.

parameters so that the algorithm can better recognize Location entities. For instance, there is no

sentence that contains the two consecutive words “on Moscow” in the training dataset while the

testing dataset has it. The NER algorithm with the universally trained parameters tagged “Moscow”

in that sentence in the CoNLL03 test dataset as O (non-entity). On the other hand, customized

parameters which learned from a local email dataset made the NER algorithm tag “Moscow” in that

sentence as I-LOC (Location). This implies that the custom training can improve the performance

not only on the specific dataset for which it is trained but also on the general dataset.

8.6.3 Cross Evaluation of Learning

In this experiment, we use five parameter sets including: the one universal-trained with CoNLL train

and four parameter sets custom-trained with email train[a-d]. The bars in Figure 8.8 indicate evalu-

ated values with different training and testing datasets. The evaluations are grouped by the six testing

datasets: CoNLL test[ab] and email test[a-d]. For example, the leftmost bar indicates the F1 score

obtained from testing CoNLL03 testa with the parameters learned from CoNLL03 train. Likewise,

the rightmost bar is obtained by testing email testd on the parameters trained with email traind.

The first two groups present similar F1 scores, ranging from 74 to 81. This shows that all these

parameters can stably recognize entities in CoNLL train even after custom training. In the next

four groups, the customized parameters show a strong F1 on the test datasets from the same user’s

emails on which the customized parameters were trained. In fact, a parameter set trained on a user’s

emails will never be used on a different user’s emails in real systems. However, these evaluations

across different custom datasets are conducted to analyze how custom training affects the perfor-
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Platform API

Model Moto G

Chipset Qualcomm MSM8226 Snapdragon 400

CPU Quad-core 1.2GHz Cortex-A7 (Krait)

GPU Adreno305 400Mhz

Main Memory 1GB

GPU Memory 441MB

Flash Storage 16GB

LCD Resolution 720 x 1280

Base OS Linux-3.4.42 (LTS)

Platform Android 4.4.4

OpenCL Embedded Profile v1.1

Table 8.5: Device Specification.

mance of NER on different personal datasets. An interesting point is that the two bars, email testc

on email traind and email testd on email trainc, have higher F1 scores than other cross evaluation,

e.g., email testb on email trainc. We speculate that this can happen when the two users share many

named-entities, e.g., by having common friends or living close to one another. Similarly, the cross

evaluation tends to have a certain level of correlation between the two customized parameter sets.

This, however, does not mean that the relationship is always symmetric. For instance, evaluation

of email testb with a parameter set from email trainc has a low F1 of 43.73 while email testc with

email trainb has 61.5, close to the average cross evaluation score.

8.6.4 OpenCL Performance Speedup

In this section, we evaluate our efforts on executing the NER training algorithm to relieve the in-

creased CPU occupation and power consumption caused from having more computations on the

mobile devices. The experiments are done on a low-end Android phone. The detailed specification

of the tested phone is listed in Table 8.5.

Figure 8.9—8.11 compare the execution time of custom training by using the CPU and the

GPU on the mobile device. The white bars represent the execution time of the CPU implementa-

tion written in Java. The red bars show the execution time of the GPU implementation written in
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Figure 8.9: Execution time comparison (H=64).
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Figure 8.10: Execution time comparison (H=128).

OpenCL and embedded in the Java application through the Java Native Interface (JNI). The green

curves indicate the speedup achieved by the OpenCL implementation (ran on the GPU) over the

Java implementation (ran on the CPU).

Figure 8.9 shows the execution time of the training algorithm when the hidden layer size H is

set to 64. The execution times of both Java and OpenCL implementations grow proportional to the

input size, or the number of vocabularies in the training data set. In most cases, the speedup is close

to 6, while the speedup is 4.5 and 5.5 for train dataset sized 1k and 2k, respectively. This interesting

phenomenon occurs because for a small dataset the overhead from the OpenCL kernel invocation

takes a large portion of the total execution time. This overhead includes times for initializing the
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Figure 8.11: Execution time comparison (H=256).

OpenCL context, compiling the OpenCL kernel, and copying kernel arguments.

Figure 8.10 is the execution time whenH is set to 128. While increasingH improves prediction

performance, it takes more time to complete the computations. Compared to Figure 8.9 the execu-

tion times are almost doubled. This means that the size of the hidden layer impacts the amount of

computations proportionally. The lower points on the left end of the green curve are observed also

in this figure. The bending slops is more gradual than in Figure 8.9. The overall speedup from the

previous figure is increased because the OpenCL performance gets better as H increases. This is

because our OpenCL implementation exploits the benefit of the concurrent hardware threads, which

execute the matrix operations parallelly.

Figure 8.11 presents the execution time when H is 256. Since the amount of computations

required in each iteration has increased because of the larger H value, the lower speedups observed

in the previous figures do not appear in these experiments. The overall speedup remains the same

without a large improvement with respect to the previous experiment.

8.6.5 OpenCL Energy Saving

Our next set of experiments is about energy consumption. Since we have achieved a good speedup

by utilizing the mobile GPU, we also expect to see some reduction in energy consumption. To mea-

sure the power consumption of each application and component, we used an open source software

called PowerTutor [353] and a profiling tool, called Trepn, provided by the chipset vendor [257].
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Figure 8.12: Energy consumption comparison (H=64).
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Figure 8.13: Energy consumption comparison (H=128).

Figure 8.12 shows the energy consumed by the Java implementation executed on the CPU and

by the OpenCL implementation run on the GPU. The red portion of the energy consumption of the

OpenCL implementation is spent by the CPU while the rest is spent by the GPU. These experiments

confirm that the energy consumed on the training for the same amount of input dataset could be

reduced to one fourth by using the mobile GPU. This reduced energy consumption mostly came

from the decreased execution time by the GPU. In fact, the power dissipation is even higher while

the algorithm runs on the GPU. For instance, when the algorithm runs on the CPU the average

power consumption by the CPU is approximately 0.682 Watt. On the other hand, the average power

consumptions by the GPU and the CPU when the algorithm is executed on the GPU are around
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Figure 8.14: Energy consumption comparison (H=256).

1.02 Watt and 0.108 Watt, respectively. Another interesting point is that the power dissipation on

the CPU, while the GPU is in use, is very low. This is because our OpenCL implementation is one

consolidated kernel, thus not relying on the CPU during the entire iteration.6 We speculate that the

0.108 Watt is mostly spent on the static power dissipation and on the maintenance of the Android

app main thread, including event handling of the user interface.

Both Figure 8.12 and Figure 8.13 show lower energy savings for small datasets, i.e., 1k and 2k.

Compared to the green curves in Figure 8.9 and Figure 8.10, the green curves in Figure 8.12 and

Figure 8.13 stagger slightly. We presume that this is due to small errors introduced by the power

measurement tools we used.

8.7 Impact on Mobile Cloud System Design

One of the advantages of our approach is to decrease the computational burden in the cloud. Al-

though the server computers in the cloud are faster than mobile devices by at least one order of

magnitude, in some cases the large number of mobile devices hides the gap in computational power.

This is important for the design of MCC systems where many users access the cloud service with

their own mobile devices. In this section, we discuss the design aspect of our extraction system by

comparing two different approaches: 1) having the universal training and all the custom trainings on

6There exist some GPUs that consume CPU resources even inside the GPU kernel, although the GPU we used in the

experiments does not.
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the cloud and 2) having the universal training on the cloud and the custom trainings on the mobile

devices.

Let’s assume that our system delivers a personalized service to ten million users who access

it through their mobile devices. In general, the required number of computers depends largely on

the characteristics of the service. The average number of users one server computer can handle

for our service could fall in a range between 1,000 and 10,000. The lower bound, 1,000 users, is

calculated as follows: according to the Amazon Web Services (AWS)’s Total Cost of Ownership

(TCO) calculator, the cost for using 10,000 servers (thus making each server handle 1,000 users) is

$9,224,460.7 This would take a large portion, if not most, of the revenues that a service provider

with ten million service users can make.8 On the other hand, there are various factors that limit

the processing scale of a server computer to stay under 10,000 concurrent users. One factor is the

challenge imposed by the network connection capacity [251; 207].

Despite this considerable number of computers, performing all the custom training tasks only on

the cloud will likely incur a large delay in the service preparation cycle. For instance, the previous

experiment on custom training of 128,000 words with H=128 took 23301.93 seconds on the mobile

CPU but only 3523.09 seconds on the mobile GPU, as shown in Figure 8.10. The execution of the

same training task on a server computer with an Intel Xeon E5-2690 CPU takes 2527.19 seconds.

When each of 10,000 servers has 32 CPU cores, this will allow each CPU core to execute the custom

training for 31.25 users. Suppose that we have a synchronous batch system (such as Hadoop) for the

custom training where each CPU executes one custom training task for one user. Each user requests

custom training everyday. The requests, however, arrive at a random time of the day. There are

32 synchronized execution time slots a day, thus making each slot be 2700 seconds. Note that this

time slot is large enough for custom training on a cloud machine (2527.19 seconds) and 32 slots can

sufficiently handle 31.25 users. When we assume that the user requests follow normal distribution

across the 32 time slots, we get an average number of requests in each slot equal to 1.812. By

applying Little’s law [271], the average response time is derived as 1.812 ∗ 2527.19 = 4579.27

seconds. This is slower than the response time of 3523.09 seconds that is achieved with the training

7This cost includes 32 computing cores, 128 GB memory, and 16 TB storage space [6].

8The Average Revenue Per User (ARPU) varies across the companies, ranging from $1.21 (Facebook) to $12

(eBay) [227].
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on the mobile devices, where there is no delay in response time for processing requests from other

users. In other words, the training on the mobile devices may also lead to better performance.

Finally, this approach will also reduce the computational burden on the cloud, thereby reducing the

cloud cost.

8.8 Related Work

LN-Annote is related to some existing studies that focus on enhancing the model parameters for

distinct cases. For instance, domain adaptation is an approach to transfer the feature vectors obtained

on the source domain to the target domain [68]. In speech recognition, speaker adaptation is used

to to improve the recognition performance by adapting the parameters of the acoustic models to

better match the specific speaker’s voice [274]. LN-Annote can be roughly categorized as distance

supervision because the custom training uses the local contacts and SNS accounts to label the email

datasets [265]. One of the characteristic differences between these approaches and LN-Annote is

that LN-Annote uses information and computational capacity available on the local device. This

addresses some privacy concerns and reduces the computational burden on the cloud as shown in

Section 8.6 and 8.7.

8.9 Concluding Remarks

We proposed and implemented Locally customized NER-based Annotation (LN-Annote), a new

method to extract personal information from emails stored locally on personal mobile devices. Our

implementation is based on a newly designed neural network model that works well for the two

main phases of learning that characterize LN-Annote: universal training (performed in the cloud)

and custom training & testing (performed on the mobile devices). We also developed two methods

for optimizing the training of the neural network: one is based on the use of feature templates and

the other on leveraging the GPUs that are present on the mobile devices. The experimental results

show the feasibility and effectiveness of LN-Annote. In particular, they demonstrate how the use

of custom trained parameters actually improves the performance of NER on the local email data

without reducing its performance on the dataset used for universal training.
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Chapter 9

Query-Division Reverse Offloading: a

Ranking Model for ASR

Audio Stream Retrieval (ASR) is an emerging class of applications in the area of audio retrieval.

ASR clients periodically query an audio database with an audio segment taken from the input audio

stream to keep track of the original content sources in the stream or to compare two differently

edited audio streams. Together with Jaehwan Koo, Karl Stratos, and Luca Carloni, I recently devel-

oped a series of ASR applications such as broadcast monitoring systems, automatic caption fetching

systems, and automatic media edit tracking systems. In these automated systems, ranking is partic-

ularly important because the systems take the most likely result (top-ranked) for their purposes.

In this chapter, we propose a probabilistic ranking model that utilizes the distance between

the query and the results along with two ASR-specific observations: 1) the transitions from one

content source to another content source within the input stream have a probabilistic pattern across

the content sources and 2) the two adjunct queries from a stream are likely from the same content

source. Meanwhile, we also introduce a query optimization technique and a simpler version of

the ranking model for the systems where the technique is applied. In order to train and test the

model, we create a new set of audio streams and make it publicly available. Using these open audio

streams as well as commercial audio streams, we evaluate the proposed model with an extensive set

of experiments. Our experimental results confirm that the proposed ranking model effectively sorts

the retrieved results, thus reducing the errors when used in various applications. Finally, We show
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how we used NETSHIP to develop the client-side search and rank app for Android and to measure

the performance difference brought by the optimization technique.

9.1 Introduction

Audio segment retrieval, i.e., searching information about the original audio content with a query

of an audio segment, is a technology that is increasingly used in the area of audio retrieval [103;

323]. This can be viewed as a special type of information retrieval, called Query by Example

(QbE), which searches results identical or similar to the example provided in the query from the

user instead of searching with the constraints or keyword terms in the query [356; 303]. Likewise,

in audio segment retrieval the user’s query contains an audio segment as an example and then the

retrieval server returns information about identical or similar audio sources. One of the most widely

used applications of audio segment retrieval hitherto is music identification [204; 14; 326; 70]. This

application takes a segment of music to search information on the original music from the database

server. While the input query in audio segment retrieval is mostly a piece of audio, a typical output

result can be comprised of a combination of the following: 1) metadata such as the creator, the date

of creation, the ID, or the title of the content [53]; 2) an access to the whole content (or similar

content [58]); 3) derivative works like a subtitle, a caption, or a lyric file [101]; and 4) the relation

between the input segment and the original content, i.e., the position of the input segment in the

searched content [138].

We present a new class of audio retrieval applications that we developed. In these applicaations,

which are already used in production by tens of broadcast stations worldwide [16], the action of

audio retrieval is repeatedly performed online with queries taken from an audio stream. First, we

developed a realtime broadcast monitoring system. In this system, the client periodically (e.g.,

every second) queries the database with an audio segment taken from an on-air video channel and

logs the response that contains information on which content sources have been broadcasted. This

system is used by broadcast stations that want to monitor the stability of the actual broadcast and by

advertisers who want to count how many times their commercials are exposed on air. The second

type of application is an automatic caption-fetching system. In this system, while the user watches

a video stream, the client video player extracts an audio segment from the video, queries the ID and
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the position of the video currently played, and fetches the corresponding caption from the database

to display it on the screen along with the video. This system significantly simplifies the process of

caption matching and editing. For instance, the caption is automatically displayed no matter if the

video stream is edited (scene cutting or speed adjusting) or the video content that has been played

in the stream ends and a new one starts, as long as the audio segment of the current video content is

found in the database.

We call this new class of applications Audio Stream Retrieval (ASR) as it has certain character-

istics distinct from traditional audio retrieval. In ASR the result usually consists of a pair of items:

a content ID and the position of the audio in the query within the retrieved result. For example, the

result can be (‘Hotel California’, 105000ms) when the query is made from the part of the song that

goes “Welcome to the Hotel California”. This allows ASR applications to track the sequential pro-

gression of the input stream. Second, it consists of multiple, periodic, and online retrieval actions

over the sequential audio stream. More importantly, the results of audio stream retrieval are used

as part of automated systems in many applications. For example, the automatic caption-fetching

system uses the highest ranked result for caption matching. Performing this requires the applica-

tion of a very effective ranking model on top of the retrieved results. It also needs a high recall,

which ensures that almost always the relevant result from the database is included in the result set.

Another characteristic is that in many cases there is a probabilistic relation between the previous

content source and the next one.

In this chapter, we propose a probabilistic ranking model using these characteristics in addition

to the similarity of the results and the query, which has been used also in traditional audio retrieval.

Particularly, our contributions include:

• reviewing fingerprint-based ASR systems,

• developing a probabilistic ranking model for ASR,

• inventing an optimization technique for ASR systems,

• creating and opening a public audio stream suite for training and testing, and

• evaluating the proposed ranking model with an extensive set of experiments.

In the next section, we provide background information on fingerprint-based ASR systems. In
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Figure 9.1: Two examples of audio streams: an edited stream for a TV channel with commercials

(top) and a stream with a user occasionally changing the content source (bottom).

Section 9.3 we present the probabilistic ranking model for ASR and show how we train it. Next, we

introduce an optimization technique that reduces the number of queries in ASR, thus helping the

scalability of the retrieval servers, and an appropriately modified ranking model (Section 9.4). In

Section 9.5, we show how we developed and optimized the ASR system using NETSHIP. Last, in

Section 9.6 we describe the used datasets and evaluate the ranking model.

9.2 Audio Stream Retrieval

In this section, we explain some concepts and background information necessary to understand the

development of the ranking model for ASR.

9.2.1 Audio Streams

A content source or simply content is the original audio or video file from which the fingerprints

for database is generated. An audio or video stream is a sequence of excerpts from various content

sources. ASR clients create fingerprints from the streams, combine them into a query with the

fingerprints, and send the query to the retrieval server.

Figure 9.1 shows two examples on how streams are made of multiple contents. The figure

presents also queries qk and the ideal results rk corresponding to qk. The top example is a typical

stream that can be observed on TV channels. During a TV show (Content 0) some commercials
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Figure 9.2: Buffer excerption.

(Content 1 and 2) are played intermittently in the middle of the show. The other example presents a

user who watches different content sources back-to-back. The user may watch the content from the

beginning (or any arbitrary position) to the end (or any other arbitrary position). Across these two

examples, the goal of ASR is to find out the original content sources and the positions from which

the excerpts came.

Another important concept is content transition or simply transition. A transition is a change

of the content source in a stream. In Fig. 9.1 the transitions of the streams are indicated as black

arrows denoting changes of content sources.

9.2.2 Retrieving Audio Fingerprint

Our proposed ranking model is built for audio stream retrieval systems that store and retrieve au-

dio data using audio fingerprints. The audio fingerprints, or simply fingerprints, are designed to

represent certain amount of audio data. The fingerprints are represented with data types that have

a limited size, usually much smaller than the original audio data. Fingerprint creation is a non re-

versible transformation; restoration of the original audio from the fingerprints is impossible. The

design of fingerprint is robust when the same contents constantly produces (almost) the same fin-

gerprints regardless of the different encoding methods used for each content source, the volume

of the content, or even some (unintended) noise. Likewise, distinct audio sources are required to

produce distinct fingerprints. There are a number of well-known features that can be extracted from

an audio source to be used in the fingerprints [224; 60]. The fingerprints in our systems are created

from the original audio by splitting it into several overlapping frames and applying the Short-time

Fourier transform on them [47; 176]. The values are grouped by the audio frequency ranges and

then composed into a multidimensional vector, used as a fingerprint to represent the original audio

frame.
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The size of a fingerprint can be determined by the length of the total audio content sources

hosted in the retrieval system and the desired level of possible duplication of two fingerprints from

different audio frames. The fingerprint duplication probability can be modeled as in the case of the

Birthday Problem and efficiently computed using the Taylor Series approximation method [110]:

p(n, d) ≈ 1− e
−n(n−1)

2d (9.1)

where n is the number of total fingerprints from the existing content sources and d is the number of

all possible fingerprints allowed in the given multidimensional vector space.

For example, in one of our production systems we wanted to keep the probability of fingerprint

duplication under 0.2% while supporting 3 distinct trillion fingerprints.1 Hence, we used a 296

possible fingerprint space, which can be encoded in a 12-bytes value and gives a 0.16% duplication

possibility, and we mapped the audio frequency values into 12 dimensions with one byte for each.

9.2.3 The Query

In ASR, the client makes a query after every query interval ∆t = tk+1− tk, as shown in Figure 9.2.

The k-th query takes an audio segment from tk to tk+1 of the audio stream. The time notation does

not necessarily mean realtime but the content time. The query interval is realtime in the automatic

caption-fetching system because it also plays the video or audio. Instead, in the automatic media-

edit tracking system that compares two audio streams without playing them, the client sends another

query as soon as the results from the previous query return.

The query length λ of a query is the length of the audio segment used to make the query as

presented in Figure 9.2. The query length is an independent concept from the query interval. In

Fig. 9.2, for example, the query length is 4∆t. A longer query length may allow the retrieval

server to pick up more precise results out of a large number of similar content sources, but it also

may cause confusion for the same server if the content in the input stream changes very frequently

(shorter than the query length). Meanwhile, a shorter query interval may lead to a faster discovery

of content changes but it can burden the retrieval server with too many requests, thus limiting its

1This amount is equal to all the video contents YouTube currently hosts and is based on the number of fingerprints

produced, e.g., ≈5.38 in our case, for each second of audio.
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Figure 9.3: Overlapping Fingerprint Sets in a Query.

scalability. Therefore, the independence of these two concepts, query length and query interval,

allows more flexibility of configuration in the ASR systems.

Some of our fingerprint systems use a concept called overlaps. Figure 9.3 shows how a query

consists of multiple overlapping fingerprint sets with different offsets represented as a thick red bar

in front of each set. The search engine chooses one of these overlapping sets based on the distance

of the fingerprints between the set and the results. This chosen set is then used for the rest of the

process. In order to keep the necessary (memory) resources low, these overlaps exist only in the

query, not the database.

Even if it is excerpted from one audio stream, an ASR query may contain more than one content

source. In other words, a query can be created from a segment that includes one or more content

transitions. Consequently, ASR systems have to handle this type of queries.

9.2.4 The ASR Workflow

Figure 9.4 shows the flowchart of the proposed audio stream retrieval. It is an iterative process in

which the client and the retrieval server interact repeatedly. The client decodes the audio or video

content stream, extracts an audio buffer, and generates fingerprints. Then, it creates a query that

includes the generated fingerprints. If it is not the very first query in the stream and the client has

previous results, then these previous results are also included in the query to be used in the retrieval

process, e.g., result ranking.

There are two ways to use information from the previous retrieval results. First, the server can

maintain the previous results in a session-based retrieval system. Second, the client can keep the
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Figure 9.4: Flowchart of the proposed ASR.

previous results and send a query with the previous results in a session-less system. In our products,

we use the latter type for the design of queries as illustrated in the flowchart.

The server searches its database with the last fingerprint in the query and gives a ranking score

for each retrieved result. These results are sent back to the client. Many text-based information

retrieval systems use the ranking model not only to rank the documents but also to retrieve doc-

uments from the database. Differently from these text-based retrieval systems, the ASR systems

use separate models for retrieval and ranking. In this chapter we focus on the ranking of the ASR

systems.

9.3 The Proposed Ranking Model

Ranking in information retrieval is a way to provide the user with the relevance of documents re-

garding the required information expressed as a query. It plays a significant role in information

retrieval as it suggests the most relevant documents. It is often the case that the users cannot possi-

bly check all the retrieved documents or they want to see the most relevant document [161]. Ranking

the results is important in audio stream retrieval for the same reason. In addition, the results of ASR

are used as a part of automated systems in many applications.2 For example, the broadcast monitor-

ing system uses only the highest ranked result and the automatic caption-display system employs a

client-side heuristic-based module that picks one result from the top-k ones.

2There are also a few applications, e.g., a copyright monitoring system, where the users want to identify all the streams

that use a certain portion of their work. In this case, high recall is more important than ranking.
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One approach used in ranking audio retrieval can be used also as a basic method to rank audio

stream retrieval results: i.e., to use the distance between the fingerprints in the query and the finger-

prints in the retrieved content sources. This allows high recall and precision thanks to the design of

fingerprints as described in Section 9.2.2. The rank achieved by the distance works well as long as

there are no content sources that have similar portions. If there exist, however, some content sources

that have similar portions, then it is important to distinguish the results because their distances to

the query will be too short to be excluded. The more relevant result should be the actual content

and position of the audio the user is feeding whose truth value, however, cannot be known. The less

relevant results should be the content sources and the positions of audio segments that are different

from the truth value but have a similar portion to what the user is feeding. This is a problem almost

impossible to solve only with fingerprint distances because there are content sources that contain

precisely identical audio parts, e.g., a same song (or a sound effect) used in two different movies.

Wherever the truth values of the relevance property of each result is unknown to an information

system, we assume that the information available for ranking in the system is at best probabilistic.

This is motivated precisely by the Probability Ranking Principle [161] that states:

If retrieved documents are ordered by decreasing probability of

relevance on the data available, then the system’s effectiveness

is the best that can be obtained for the data.

Next, we present a probabilistic ranking model for audio stream retrieval based on the given

information in the database and the query. In audio stream retrieval, we can probabilistically an-

ticipate the current results based on the knowledge of the previous results. The analysis of our

applications in production makes us observe the presence of a probabilistic relation that character-

izes the transition between content sources. This is due to the following reasons: 1) today’s video

content hosting services provide their users with recommendations which often lead to a high cor-

relation in the transitions between similar videos; 2) the users have a particular interest that may

affect their watch patterns, e.g., watching all the soccer games a team has played during a league or

watching a sequence of episodes of a TV show; and 3) a publicly available video stream (or channel)

is watched by many users, i.e., many users will watch the same sequence of video content sources

such as TV commercials and shows, which the video stream (or channel) contains.
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9.3.1 Notation

In this section, we recall and extend some important notation from the Probabilistic Relevance

Framework [266] for the development of an ASR ranking model.

First, we assume that the property of relevance between the query and the result is binary. The

relevance status is represented as either rel (relevant) or rel (not relevant).

Two monotonic functions f1 and f2 are equivalent as ranking functions when the ranked orders

of any results by the two functions are identical:

rank equivalence: ∝q e.g., f1() ∝q f2()

A result r in audio stream retrieval is a pair of values: a content ID c and a position in the content

p. A query thus corresponds to a content source c from p to p+ λ, where λ is the query length,

r = (c, p) where c ∈ C, and 0 ≤ p.

C is a set of IDs of all the possible content sources in the system. Querying the database returns a set

R of results ordered by their ranking scores. As mentioned in Section 9.2.4, an audio stream retrieval

query comprises also the results of the last query. Hence, we define a query q as a combination of a

list of fingerprints and a previous top-ranked result. We denote the k-th query as:

qk = ({FP[i] — 0 ≤ i < n and FP[i] ∈ z},Rk−1.r0)

where Rk denotes the retrieved results for qk and z denotes the set of all possible fingerprints in the

feature space. The feature space is an imaginary 12-dimensional space where each axis corresponds

to each feature value in the fingerprint. In our previous example of 12 bytes fingerprints, there are

296 possible fingerprints in z.

9.3.2 Ranking Model Development

In this section we derive a probabilistic ranking model for ASR. Instead of using the cosine simi-

larity between tf-idf3 vectors as in vector space models for text-based information retrieval [269],

we estimate the relevance between a query and a result using three factors: 1 the history (or the

3term +frequency-inverse document frequency.



CHAPTER 9. QUERY-DIVISION REVERSE OFFLOADING: A RANKING MODEL FOR ASR159

FP[4] 

S4 

δ4 

FP[3] 

S3 

δ3 

FP[2] 

S2 

δ2 

FP[1] 

S1 

δ1 

Fingerprints 
 

in a query 

Observations 

Hidden states 
 

(content) S0 

δ0 

FP[0] 

f f f f f 

B B B B B 

A A A A 

Figure 9.5: Content Probability based on HMM.

previous result) of how the content sources in the input stream are changing (Section 9.3.2.1); 2

the distance between the fingerprints in the query and the ones the result indicates (Section 9.3.2.2);

and 3 the heuristics that in many retrieval cases the duration of the excerpted content portions in

the streams is usually longer than the query interval (Section 9.3.2.3). In particular, 2 is what can

be used also for audio retrieval whereas 1 and 3 are information available only in ASR.

We evaluate each result r in Rk retrieved from the database with the last fingerprint in the query

qk as shown in Figure 9.4. The relevance of a result r, a pair of content c and position p to a query

q can be written as P (rel|c, p,q). We use the relevance probability as the ranking score so that the

results are sorted by this score in descending order. We transform the relevance probability with the

following steps:

P (rel|c, p,q) ∝q
P (rel|c, p,q)

P (rel|c, p,q)
(9.2)

=
P (c, p|rel,q)

P (c, p|rel,q)

P (rel|q)

P (rel|q)
(9.3)

∝q
P (c, p|rel,q)

P (c, p|rel,q)
(9.4)

=
P (c|rel,q) · P (p|rel, c,q)

P (c, p|rel,q)
(9.5)

First, the relevance probability is transformed by odds-ratio in Equation (9.2). We get Equation (9.3)

by applying Bayesian inversion. In Equation (9.4) we drop the terms that are not related to the results

(c and p), while preserving the ranking. Finally, the probabilities of content and the position are split

in Equation (9.5). The remaining three terms are expanded sequentially in the following sections.
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9.3.2.1 Content Probability

The term P (c|rel,q) is the probability of c given the query q and a relevance rel of a result r (c, p)

with respect to q. To estimate this probability we apply the Hidden Markov Model (HMM) [49]

to ASR by treating the content sources as the hidden states and the fingerprints as the observable

outputs. Figure 9.5 illustrates this more in detail. Using this model, we can compute the probability

that c is the current content given the fingerprint sequence in the query. We assume that the proba-

bility of a change between content sources is affected only by the current content, not the previous

ones. This allows us to use HMM for estimating the content probability.

On top of HMM, we use the Forward algorithm [296] to calculate a ‘belief state’, the probability

of a state at a certain time, given the history of observations. For instance, in Figure 9.5, we can

get the probability of each content source in the retrieved results being the current content c in the

stream, i.e., S4 = c. Thus, the result of the Forward algorithm for c on the last hidden state is the

probability of c being the current content from which the last fingerprint FP[4] has been generated.

One of the advantages of HMM is that the observation and state sequence length can vary. The

number of fingerprints in the query can also vary due to the different offsets and the frequencies of

the query interval and the audio stream. For instance, one query may have 40 fingerprints while the

next query has 42 fingerprints, although their buffer lengths are set to be the same. Thus, HMM is

a good method to compute the content probability using the fingerprint sequence.

There are two unknown probabilities sets in HMM. The state transition probabilityA = P (ci|ci−1)

denotes the likelihood that the content is changed from ci−1 to ci. The emission probability B =

P (δi|ci) denotes the likelihood that δi can be observed when the content is ci. In ASR, A implies

the probabilities of transition between content sources and B implies the probabilities of a finger-

print being observed at a state. These HMM probability parameters are learned as described later in

Section 9.3.3.

If the size of the states and the observation space are large the amount of computation required

for training the HMM parameters becomes high. For this reason, we reduce the number of states and

the observation space in our production systems, e.g., by clustering the content sources and picking

the top-k content sources. Also, since the fingerprint space z is too large to efficiently compute the

parameters, we reduce it so that it maps into the smaller observation space by using a dimension-

reduction algorithm such as Vector Quantization [125]. An observation value δ is obtained from a
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fingerprint by a dimension-reduction function f :

δi = f(FP [i]). (9.6)

where i is the index of the fingerprints in the query.

Thus, for a given query q, the probability that content c is relevant to q is calculated by the

Forward algorithm which computes the probability αt(x) that the t-th hidden state is x:

P (ci|rel, q) ∝q αi(ci)

= P (ci, δ1:i)

=
∑
ci−1

P (δi|ci, ci−1, δ1:i−1) · P (ci|ci−1, δ1:i−1)

× P (ci−1, δ1:i−1)

= P (δi|ci)
∑
ci−1

P (ci|ci−1) · αi−1(ci−1)

(9.7)

where ci is the content, or the hidden state, from which the i-th fingerprint in the query has been

created.

Therefore, we get an expanded ranking formula:

P (rel|c, p,q) ∝q
α(c) · P (p|rel, c,q)

P (c, p|rel,q)
(9.8)

by replacing the content probability with α(c), the probability that the last hidden state is the content

c given the query q.

9.3.2.2 Result Probability

The probability of the position p, given the content c, the query q, and the relevance rel between

the result and the query can be computed by the distance of the fingerprints. In other words, if the

distance between the two fingerprints from the result and the query is big, it is unlikely that the

result is relevant to the query. While the fingerprint sequence in the query is known, the fingerprint

sequence from the database is uncertain. This is because the results are retrieved with only the last

fingerprint in the query. The other fingerprints in the query could possibly come from different

content sources if there were transitions within the query buffer.

There are four different approaches to decide which content source should be used in the com-

parison against the query to compute the distance between them.
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Figure 9.6: Credibility weights as function of k.

1. Using the Viterbi algorithm to determine the most likely sequence of the states (content

sources) [104]. This approach, however, gives only the information on the content sources,

not the positions. Thus, this requires additional efforts to decide the positions from each

content source to compare with the query.

2. Retrieving results with not only the last fingerprint but also all other fingerprints in the query.

This gets the most likely sequence of content sources and positions. This could incur, how-

ever, too many retrieval requests to the database server, therefore lowering its scalability.

3. Taking a fingerprint sequence linearly from the database by assuming that the sequence in the

query is from one continuous content source. This assumption can lead to a miscalculation in

the distance value, when the content is changed in the query.

4. Using a hybrid approach of 2 and 3. This assumes that the fingerprints in the query are from

the same content until one of the fingerprint distances between the query and the content

exceeds a certain threshold.

We used the hybrid approach to obtain a fingerprint sequence for each result retrieved by the last

fingerprint from the query and match them against the query.

The average distance between two fingerprint sequences X and Y over the k last fingerprints is:

d(X,Y, k) =

n−1∑
i=n−k−1

||Xi − Yi||

k
(9.9)

where ||x − y|| denotes the Euclidean distance between two fingerprints x and y and k ∈ [2, n) is
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Figure 9.7: U and a normal distribution N.

the number of compared fingerprints in the sequence. A weighted and inverted distance is:

dI(X,Y ) = max
k

{
1

1 + d(X,Y, k)
· Γ(bk + 1c, 4)

bkc!

}
(9.10)

where Γ(bk+1c,4)
bkc! is the weight term based on a cumulative distribution function of the Poisson

distribution, as shown in Figure 9.6. This function gives more credibility to the distance values

obtained from longer sequences while it reaches a plateau at a certain length of the sequences. For

instance, the credibility is only 0.238 for a length of the sequences equal to 2 while 0.949 for a

length 7. As the length increases beyond 7, the return value slowly grows up to 1.

The probability of the position p given c, rel, and q from the distance function is:

P (p|rel, c,q) ∝q dI(q.FP,FPr) (9.11)

where q.FP is the fingerprint sequence in the query and FPr is the sequence obtained with the last

fingerprint in the result r using the hybrid approach.

The expanded ranking formula is:

P (rel|c, p,q) ∝q
α(c) · dI(q.FP,FPr)

P (c, p|rel,q)
(9.12)

9.3.2.3 Irrelevant Result Probability

Let qk−1 and qk be two adjacent queries with a query interval ∆t and rk−1 be the top-ranked result

retrieved by qk−1. If one result rk retrieved by qk has the same content as rk−1 and its position

is ∆t behind the position of rk−1, then, it is likely that there were no content transitions between

the two queries in the stream and therefore this result is less likely to be irrelevant. For example, if

Rk.r0 = (0, 2000) and Rk+1.r0 = (0, 3000) while the predefined source interval time ∆t is 1000,
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we know that Rk+1.r0 would be the correct result with a high probability. Then, these results Rk.r0

and Rk+1.r0 are said to be contiguous. We use this heuristic information to model the probability U

of a result when the query and the result are irrelevant for a given q.

U =


0, if r.c = q.c and q.p+ ∆t = r.p

1
|R| , otherwise

∝q (U +
1

|R|
) · |R|

2

=


0.5, if r.c = q.c and q.p+ ∆t = r.p

1.0, otherwise

(9.13)

Due to the various different sampling and fingerprinting intervals, the position within the content al-

ways contains some small errors, thus making the comparison impractical. As shown in Figure 9.7,

we revise this function with a probabilistic normal distribution function:

U ≈ 1− [r.c = q.c] · 1.25 · N (x, µ, σ2) (9.14)

where [P] is an Iverson bracket which returns 1 if P is true, x = 4 r.p∆t , µ = 4 q.p∆t , and σ2 = 1.0. This

results in the final ranking formula:

P (rel|c, p,q) ∝q
α(c) · dI(q.FP,FPr)

U
(9.15)

This ranking model is used to calculate a ranking score for each result. Then the retrieval server

sorts the results with their ranking scores in descending order.

9.3.3 Learning Parameter Values

The two HMM parameters we used in the proposed ranking model are one of the key factors to make

it successful. The ideal values for these parameters are different for various applications. Even

with the same applications, different composition of content sources in the database or different

user-transition patterns observed in the input streams require different parameter values for the best

ranking performance. For this reason, many recent ranking systems learn the parameter values used

in the ranking model to achieve more appropriate parameter values, thus satisfying its users better.

This is called Learning to Rank [209]. By applying machine learning algorithms the ranking model

can work more closely to the user patterns.
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Figure 9.8: Querying optimization.

When applying machine learning, it is difficult under certain circumstances to obtain the training

dataset for the learning model. We collect training datasets from the ASR applications that include

the input (a query) and labeled output (a result) for the ranking model. We extracted from the ranking

model datasets the input (dimension-reduced fingerprints and the previous content) and output (a

content source) to train and test the embedded HMM. This allows us to train the HMM parameters

separately from the ranking model. We obtain the initial emission probabilities from the fingerprint

database for each content source by counting the frequencies of fingerprint observations. This

accelerates the learning of the emission probabilities based on the actual occurrence of fingerprints

within the input stream.

We use two different methods to learn the HMM parameters for systems under different cir-

cumstances, particularly regarding the availability of the label (truth value) of the current content

in the stream for training. First, in the systems where the label of the content in the given training

stream is available (supervised training), we calculate the transition probabilities and the emission

probabilities online by using the content label and the observations generated from the fingerprints

in the query. Second, in the system where the content label is unavailable (unsupervised training),

we use the Baum-Welch algorithm to learn the HMM parameters. The Baum-Welch algorithm is

based on an expectation-maximization algorithm to find the maximum likelihood estimate of the

parameters of a HMM given a set of observed feature vectors [254].
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9.4 Optimized Querying and Ranking

We invented an optimization technique for ASR to reduce the number of queries. This technique

relies on two facts. First, the input content stream is from a continuous source for a certain amount

of time that, in many cases, exceeds the interval of queries. Second, the fingerprint from one source

content is stored serially, e.g., as a file, in the database server (before being loaded into the main

memory for retrieval using a specific data structure such as trees). Hence, data locality can be used

in ASR for reducing the number of queries from the clients, thus allowing a better scalability to the

servers.

Figure 9.8(a) illustrates the iterative process of ASR without optimization. The client queries the

retrieval server. The server has various features such as query processing, retrieval from database,

and ranking, collectively represented as a yellow box. This process can be improved by letting the

client have a certain amount of fingerprints from a continuous content source and query itself. In

Figure 9.8(b), the client has a ‘light’ version of search functions (a yellow box). First, the client

sends a query to the server. When the retrieval server finds some results for the query, it returns

to the client a fingerprint sequence file along with the results. After a query interval, the client

queries its own local search engine instead of querying the server. It can decide if the next result

is still in the local database by comparing the score of the top-ranked result from the local search

to a configurable threshold ε. If a good result is found within the local database, it simply returns

it. Otherwise, it forwards the query to the server and lets the server retrieve the queried fingerprint

from the entire database. This approach significantly reduces the number of queries made to the

servers.

While the ranking model remains unchanged in the server after the optimization technique is

applied, another ranking model still has to be implemented on the client. This is because searching

from the local database can return multiple results due to the presence of similar fingerprints at

different positions within the content. The ranking model on the client is simpler than the server’s

ranking model. The reason is that the local search cares only for the cases without content transi-

tions. If a content transition is suspected in the stream because there is no result whose distance to

the query is less than ε, then the local search stops and forwards the query to the server. Therefore,

the client side ranking model can assume that all the subsequential results have the same content.

Specifically, the content probability and the Iverson bracket from the irrelevant result probability
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Figure 9.9: Simulating the audio retrieval system using NETSHIP.

are removed, thus leaving the client-side ranking model as:

dI(q.FP,FPr)

1− 1.25N (x, µ, σ2)
(9.16)

This client-side ranking model is used to sort the results retrieved from the client search engine.

It is used also in the comparison to the threshold to decide when the client needs to stop local

searching and forward the query to the server.

9.5 Designing the ASR system on NETSHIP

The ranking system for fingerprint-based audio stream retrieval is a new type of MCC system, where

the mobile devices send queries to the server periodically. Hence, the communication between the

server and the mobile clients is very frequent, in many cases resulting in delays and insufficient

performance. The proposed optimization technique moves a contiguous portion of the database

to the mobile client and searches locally until the audio source in the input stream on the client

changes.

Figure 9.9 shows the simulation of the ranking system. The set of configurations on the left

corresponds to virtual machine instances used in the non-optimized system simulation. Each of

these virtual machines executes up to four Android emulators. The Android emulators run the audio

retrieval app which send audio retrieval queries to the audio retrieval server. The audio retrieval
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server is a virtual machine instance which has the search and rank capabilities while storing the

audio fingerprint database. This audio retrieval server instance is shared with the two simulation

configurations: the non-optimized system simulation and the optimized system simulation. Alter-

natively, the set of configurations on the right corresponds to virtual machine instances used in the

optimized system simulation. The Android app executed in the optimized simulation contains the

local search and rank capability along with a portion of the database from which an audio chunk

can be searched.

We use NETSHIP to develop the client-side search and rank app for Android and to measure the

performance difference brought by the optimization technique. Particularly, we are able to achieve

the following experimental results using NETSHIP:

• The scalability of the designed system including the maximum number of clients a server

instance can support.

• The execution time speedup achieved by the optimization technique.

• The best possible values of the threshold ε for the lower power consumption and the faster

execution speed.

• The power consumption estimates of each implementation.

9.6 Experiments

For the evaluation of our ranking model, we created a set of open audio streams 4 that present dis-

tinct characteristics in terms of content transitions. Along with the open streams, we also evaluate

our model with a dataset from our commercial database. This commercial dataset is, however, in-

accessible for the public. The streams consist of excerpts from some audio field recording archives

named freefield1010 [295]. In the streams we created, transitions are biased in the sense that the

transitions from a content source tend to converge to a few content sources rather than being evenly

spread across many content sources. The stream group names bias0 and bias100 mean unbiased

(completely random) streams and completely biased streams, respectively. More detailed informa-

tion is available on the website.

4Our Open Audio Stream suite is available at http://openaudiostream.org
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(a) Freefield1010 (b) Music and Voice

Figure 9.10: Fingerprint stream visualization.

The experiments on the Open Audio Stream discussed from Section 9.6.2 to 9.6.4 are tested

with the server that has loaded all the fingerprints created from the 7,690 freefield1010 wave files.

The production dataset used in the same experiments includes over 300,000 hours of audio with

an average length of approximately 1.12 hours. We denote each term of the ranking model as

follows: D for the distance-based result probability, H for the history-based (using previous results)

irrelevant result probability, and C for the HMM-based content probability. Particularly, we denote

the combinations of these terms as D+H and D+H+C to evaluate the additional impact of each term

as opposed to D as the baseline method.

9.6.1 Fingerprint Stream Visualization

A well-designed fingerprinting method is an essential prerequisite for an effective ASR system. If

the fingerprints for different content sources are not very distinct from each other, the ranking model

based on the fingerprint distance cannot work accurately. To demonstrate how our fingerprinting

method works for distinct audio sources, we visually compare fingerprints from different audio

streams. We used an algorithm called t-SNE, which reduces multidimensional values into lower
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Figure 9.11: Precision of top-ranked result (Open Audio Stream).

dimensions, e.g., 12 to 2 [321]. This is the first approach to visualize audio fingerprints with the

t-SNE algorithm.

In Figure 9.10 we mark each fingerprint in an audio stream with a small cross and connect

them with lines in the sequence as they appear in the stream. Therefore, each separate contiguous

line represents a separate audio stream, starting with a black dot and ending with a green dot.

Figure 9.10(a) shows four different audio samples taken from: a shallow stream [102071] (blue), a

waterfall [102089] (red), chirping birds [102724] (purple), and a male voice [102864] (gray), where

[ID] is the ID of the audio source taken from freefield1010. Figure 9.10(b) compares two sounds

from a production database: the song Gangnam Style (blue) and the first spoken Wikipedia page

called Interstate 15 in Arizona (red). We can see that sounds that come from the same source,

and therefore are similar to each other, yield similar fingerprints, thus drawn closely in the figure.

Contrastingly, different sounds from different content sources are positioned further apart. This

confirms that this fingerprint system can be effectively used for distance-based ranking in audio

stream retrieval.

9.6.2 Ranking Model Evaluation

In this section we evaluate the precision of our ASR system expressed as the average percent of

correct top-ranked results out of the total number of queries. We included ten sets of streams from

the bias50 directory of the open audio stream (shown in Figure 9.11) and eight sets of streams

from one of our production databases (shown in Figure 9.12). For each set of streams we ranked

the retrieved results with D (the distance-based result term only), D+H (D and the irrelevant result



CHAPTER 9. QUERY-DIVISION REVERSE OFFLOADING: A RANKING MODEL FOR ASR171

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

D D+H D+H+C

precision (%) 

Streams (ProductionX) 

X 

Figure 9.12: Precision of top-ranked result (Production Stream).

term using previous results), and D+H+C (D, H, and the content term). In each set of streams,

the more elaborate rank model gives more precise ranking results. Particularly, H improves the

precision from 10% points to more than 30% points. The introduction of H has more impact on

the production database due to the longer average excerpt duration of each content source within

the streams, i.e., 34 minutes vs. 5.7 seconds. Thanks to the additional improvement brought by C,

the complete ranking model (D+H+C) results in over 95% of precision across all eight evaluated

streams. In Figure 9.12, the precision obtained by D is quite low (below 50%). This is because in

production there are many factors that make the audio fingerprints vary from the precisely desired

value such as: significant speed modulations, transcoding with a high loss rate, or noises recorded in

the audio. Hence, the ranking based only on the distance is inappropriate to be used in production.

9.6.3 Evaluation Breakdown By Examples

By delving into some examples gathered during the experiments in Section 9.6.2, this section

demonstrates how the precision improvement presented in the previous section is actually achieved.

Table 9.1 shows two queries from the stream biased10/07/0019. The portion of the stream from

which the two queries are taken is originally made from content source with id 110917 and posi-

tions from 7800 ms to 7900 ms and from 7900 ms to 8000ms, respectively. Retrieving with these

queries and ranking should bring the results with the same content and positions as top-ranked ones.

For instance, with the D ranking model, the first query (110917@7800) brings two results where

the top-ranked one is (110917@7811), which is correct (because the system allows positions within
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Query D D+H

c p c p Score c p Score

110917 7800 110917 7811 0.34 110917 7811 0.75

110917 3014 0.07 110917 3014 0.07

110917 7900 169249 9230 0.19 110917 7904 0.33

110917 7904 0.17 169249 9230 0.19

168490 3014 0.15 168490 3014 0.15

Table 9.1: Ranking Score Example: D vs. DH.

Query D+H D+H+C

c p c p Score c p Score

170470 9200 170470 9230 0.49 170470 9230 0.374

159171 3955 0.34 159171 3955 0.012

17077 600 42200 7911 0.35 17077 598 0.054

162452 5462 0.33 42200 7911 0.011

17077 598 0.32 162452 5462 0.009

69965 3955 0.15 69965 3955 0.004

Table 9.2: Ranking Score Example: DH vs. DHC.

± 250 ms in this example). The second query, however, brings three results where the supposedly-

correct one is ranked second. This incorrect behavior may happen whenever there are very similar

parts in the content database. The D+H model, on the other hand, ranks (110917@7904) as the top

for the second query while keeping the rank of the first query also correct. As the two queries are

adjacent, having one query interval ∆t = 1 second in-between, the irrelevant result term boosts the

score of the result of the second query up to 2 times. This is one of the most powerful factors of

the ranking model as points that can benefit from this score boosting are very frequently observed

in the user streams.

Table 9.2 shows two queries from the stream bias60/03/0012 and their retrieval results ranked

by two models: D+H and D+H+C. The portion of the stream from which the two queries are taken

is composed of two different sources: from 9200 ms to 10000 ms for 170470 and from 400 ms to
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Figure 9.13: Content Prediction Accuracy (Open Audio Stream).
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Figure 9.14: Content Prediction Accuracy (Production Stream).

1400 ms for 17077. In other words, there is a transition in this part of the stream, changing from

170470 to 17077. The dataset we used for training and testing the ranking model, particularly the

HMM-based content probability, is bias60 of the open audio stream. With D+H, the first query

gets a correct top-ranked result (170470@9230). The second query, however, results in the correct

result (17077@598) being ranked as third. This also happens when there are similar sounds in other

content sources. The D+H+C model, on the other hand, fixes this problem by multiplying the score

with the probability of the content source 17077 being the content of the second query. This is

computed with the HMM Forward algorithm using parameters trained on the bias60 streams and

the fingerprints in the query.
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Figure 9.15: Evaluating Optimization on Mobile.

9.6.4 HMM Evaluation

This section shows the accuracy of content prediction, calculated by the number of correctly es-

timated most-likely content sources. Figure 9.13 and 9.14 show the values obtained with sets of

streams from the open audio streams and a production dataset, respectively. The ranking model is

trained with the ten streams randomly selected from each set and is tested against all the streams in

the group. Some interesting observations can be made. First, in the case of the open audio stream

datasets (bias30 - bias90), the accuracy increases as the streams are more biased. This is because

the state-transition probabilities learned from some streams in a dataset are likely to work well with

other streams in the same dataset if the transitions in that dataset are more biased. Second, compar-

ing the accuracy measurements shows that the production dataset has a bias level similar to some

sets of the open audio streams, ranging from bias50 to bias90. In many cases supervised training

results in a better performance by around 5% points to 20% points.

9.6.5 Optimization Configuration

In these experiments we show how we can configure the threshold ε introduced for the optimization

technique in Section 9.4 to achieve different effects on the various aspects, e.g., mobile energy

budget, cloud costs, or network latencies. The value of the threshold ε can vary from zero (usually

non-inclusive) to two (inclusive). If ε is zero, every query except the first one is processed on the
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client. If ε is two, the optimization technique will never be used and every query is made to the

server. As ε decreases, fewer queries are sent to the server and more queries are processed on

the client. The user of this ranking model may want to find the sweet spot that maximizes some

particular aspects. For instance, ε can be set between one and two whenever the rank precision

is the only important requirement. If the system is struggling under the deficient resources on the

server while a slight rank precision decrease is permitted, then setting ε to a value between 0.25 to

0.5 can be a good choice.

Figure 9.15 shows the experimental results when the optimization technique is applied to an

ASR client running on a mobile device. The specification of the tested device is described in Ta-

ble 9.3. In order to measure the power dissipation of each configuration during the executions of

the client application, we used open source software called PowerTutor [354] and a profiling tool,

called Trepn, provided by the chipset vendor [257]. The power dissipation increases as more compu-

tational resources are needed with a smaller ε. This increase, however, is kept under 5% by limiting

the use of network resources, e.g., the Wi-Fi module or the TCP/IP stack running on the CPU, re-

quired to query the server. The query latency remains somewhat comparable across the different

ε values. This phenomenon along with the slight variations on the measured values is due to the

network, which at times incurs randomly varying latencies. The observed rank precision remains at

a comparable level until we reduce ε from 2 to 0.25. As we further decrease ε the rank precision

starts to drop.

It is interesting to notice that performing the search on the mobile device has a fairly negligible

impact on both execution latency and power dissipation. Since the in-memory database is less

loaded, the search task on the mobile device requires a much smaller computation than executing

the same task on the server. For example, while the mobile database may contain 200k fingerprints,

the server database may be loaded with 60 million fingerprints.

9.7 Concluding Remarks

We introduced audio stream retrieval that has distinct characteristics such as periodic querying,

content excerpt length usually longer than the query interval, and the content transitions in the input

streams. For ASR, we proposed a probabilistic ranking model that uses a distance of fingerprints
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Platform API

Model Moto G

Chipset Qualcomm MSM8226 Snapdragon 400

CPU Quad-core 1.2GHz Cortex-A7 (Krait)

Main Memory 1GB

Flash Storage 16GB

LCD Resolution 720 x 1280

Network Wi-Fi 802.11 n

Base OS Linux-3.4.42 (LTS)

Platform Android 4.4.4

Table 9.3: Device Specification.

between the query and the retrieved results. The ranking model uses ASR-specific information

to improve the ranking results. We also introduced an optimization technique that can reduce the

number of queries made to the servers. We developed a suite of audio streams for training and

testing purposes that we made publicly available online. The experimental results show that our

ranking model achieves high precision and that the proposed optimization technique obtains 40%

reduction of queries sent to the servers without affecting the precision (and with only 5% more

power dissipation in the case when the client is a mobile device).
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Conclusions
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Chapter 10

Co-Development Process of MCC

Applications and Tools

As the size of software projects is increasingly growing and the complexity of the developed soft-

ware is also rising [56], an increasing number of software development methods have been adopted.

Particularly, the iterative development process is a popular method based on a cyclic procedure for

software designs [40]. It is known for cost-efficiency [223], ease of prediction [32], and effective-

ness regardless the size of development team [279]. As shown in Figure 10.1, each step of the

iterative process is repeated in sequence as the software is developed and improved. It consists of

five steps:

• Requirement Gathering. In this step, the requirements of the desired software are extracted

and investigated. While customers probably believe that they already know what they want

the software to do, in many cases it still requires skill and experience in software engineering

to recognize incomplete, ambiguous or contradictory requirements.

• Analysis & Design. This is a step where the given problems are analyzed to be solved and the

algorithms, tools, software architectures, techniques, and interfaces to be used are decided.

Particularly, this step includes prototyping which gives the guidelines to the developers who

will implement the software and to the users who will use the software product.

• Implementation. In this step, the design turns to writing the actual software code which

actually executes following the desired behavior. In each iteration of the implementation step,
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Figure 10.1: The iterative process of a software development project.

a subset of the whole software requirements, i.e., the portion of the requirements gathered in

the requirement gathering and analysis step in the same iteration, is implemented. The whole

software is iteratively enhanced until the full system is implemented. At each iteration, the

software design is modified and the corresponding functions are added.

• Test. Software testing is the task of finding possible bugs in the software by executing or

validating the software code. Testing is becoming increasingly important in the software

development process, as the variety of the requirements grows and the complexity of the

software implementation is increasing. In testing, there are two types: static testing (e.g., code

reviewing, walkthrough, or inspection) and dynamic testing (e.g., unit testing, integration

testing, or system testing).

• Deployment & Evaluation. Deployment step is where the software becomes available to

its users. Generally, deployment involves software release, installation, activation, update,

and version tracking. After software deployment, users can use and evaluate the software.

The evaluation of the software is a significant piece of the software development process as

it contributes in the form of feedbacks to determining the software requirements for the next

iteration.

Each individual project presented in this thesis across Chapter 4 to 9 is developed under an

iterative development process. The design tools for MCC (Chapter 4 to 6) and the MCC applica-

tions (Chapter 7 to 9) are alternatively developed in a way where one project helps another advance.
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Figure 10.2: The combined, iterative development process of design tools and applications.

Figure 10.2 shows the combined parallel process of two software development projects, the develop-

ment of a design tool and an application. This iterative development process progresses step-by-step

inside one development project, i.e., either in the left or right side of the figure, as done in the single

iterative software development project. However, two projects in each side of the combined devel-

opment process can concurrently progress, contributing to one another. For example, a deployed

tool can be used for the analysis & design step by offering a target system prototype and information

that can be used for the new application design. The tool can also provide a virtualized environment

on which the application can be implemented and tested. The users of the tool, i.e., the application

designers and developers, will provide some error/bug-reports and feedback information during

each single step in the application development process using the tool. This information from using

the tool augments the set of requirements to be implemented during the tool development process.

Meanwhile, while developing the tool, an already developed, deployed application can be used as a

test case for reliability, back-compatibility, and scalability.
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Figure 10.3: The design of the crowd estimation system using NETSHIP.

In this chapter, I show how the two lines of software projects I developed for this discussion

actually helped one another across the different steps in the iterative development process.

10.1 Tool-Based Design and Development

One of the strategies to reliably develop software that is increasingly getting complex is using a good

tool that supports the design and development of software. Many software development tools have

been released for software architects and developers [106; 308; 188; 63]. However, as the computing

systems keep evolving and new types of computing systems reach the market, the system designers

and developers need new types of system design tools. Through Chapter 4 to 6 I introduced a new

class of design tools that support heterogeneous computing nodes, i.e., cloud computers, embedded

devices, and sensor motes. These tools also offer large-scalability that can cover the emerging MCC

systems up to a very large scale, with hundreds of millions of devices. The NETSHIP simulation

environment presented in Chapter 4 targets the design and testing of MCC systems that execute

applications which can access cloud services. In particular, it simplifies performance and scalability

analysis by making it possible to simulate the execution of the actual applications and software

stacks onto virtual models of the hardware and the network.

Figure 10.3 shows an example of an MCC application introduced as Case Study II in Chap-

ter 4 from a design tool’s perspective. This system consists of smartphones, a cluster of embedded

devices, and a cloud-based server. In this scenario, smartphone users take some pictures (Image

Source) with geolocation information using the camera module (Image Collecting Interface) on the
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Figure 10.4: Developing MCC applications by using design tools.

phone (User Smartphones) and then upload these pictures to the database server in the cloud. There

is a cluster of MIPS processors (Image Processing Cluster) that downloads the pictures from the DB

server, runs an image processing application to count the number of people in the picture, and adds

up the number to the geolocational sum in the DB server. In the implementation, several parts of

the design are replaced by virtual counterparts. For instance, instead of physically deploying mul-

tiple Android phones, I used Android Emulators running an application that simulates the behavior

of smartphone users. Due to the lack of the camera module in the emulator, images downloaded

from cloud image services, such as Picasa and Flickr, through their public cloud APIs served as the

user-taken pictures. Lastly, OVP MIPS instances form a cluster to run an image processing appli-

cation. The Android Emulators and the OVP instances in Figure 10.3 are virtual platforms. Using

NETSHIP, I built a networked VP that simulates the designed system. Given the application require-

ments, I used NETSHIP to gain insights on the amount of resources required for real-time processing

of the pictures taken by a large crowd in a particular geographic area, Manhattan. This case study

application represents an interesting example where the simulation-based design tool can be used

for both the development of the application and the design of the system, allowing the observation

of the system optimization, scalability, and deployment.

Likewise, I also developed the MCC applications introduced in Chapter 7 to 9 using the design

tools I developed and introduced in Chapter 4 to 6. The relationship between the MCC applications
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Figure 10.5: Distinct distributions of computation in MCC systems.

and the design tools used for them is shown in Figure 10.4. The design tools were used to: develop

the application programs that run on the smart devices, design the overall system architectures, and

measure the performance improvement introduced by the optimization techniques. In this section,

I explain how the tools have contributed to the design and development of two MCC applications:

the LN-Annote system and the Audio Retrieval system.

10.1.1 Distributions of Computations

While developing the MCC applications by using the design tools, I performed design space explo-

ration of the applications and systems we developed, inventing new optimization techniques that can

increase the execution performance, decrease the cloud costs, or reduce the energy consumption. In

particular, I focus on the distribution of computation across mobile devices and cloud since it funda-

mentally affects the design of MCC systems including system architectures, implementations, and

financial aspects of system designs, i.e., the costs of mobile devices, cloud instances, and networks.

While the details of measured values in performance and energy consumption is offered in Chap-
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ter 7 to 9, they are not directly comparable due to the different application programs, measurement

units, platforms. Instead, in this section, I show an abstracted projection of distributions of compu-

tation in each MCC system. Figure 10.5 presents four main types of distribution of computation in

MCC systems, varied by adoption of an offloading or reverse offloading technique. Figure 10.5(a)

corresponds to an MCC system where the computational offloading technique is applied. In this

figure, the computation is concentrated on the cloud because the mobile devices have offloaded

most of the computation they need to the cloud, thus leaving little work to be processed locally.

Figure 10.5(b) shows the amount of computation in an MCC system with Reverse Distributed Of-

floading. In this system, the computational task originated from a mobile device is distributed across

multiple mobile devices instead of offloading it to the cloud. As a result, the computation is concen-

trated only on the mobile devices. Figure 10.5(c) presents the distribution of computation achieved

by Algorithm-Division Reverse Offloading. Since the first half of the computation needed by the

main algorithm is executed on the cloud and the rest runs on the mobile devices, the amount of com-

putation is evenly split into the two sides. Last, Figure 10.5(d) shows the distribution of computation

obtained by Query-Division Reverse Offloading. Since it optimizes a subset of the queries, there are

two lines: the solid line shows the computation in the optimized case while the dashed line presents

the case when the query cannot be optimized. In the non-optimization case, the graphs is identical

to Figure 10.5(a) because the mobile sends the query to the server, which is offloading. Meanwhile,

the optimization method proposed in Chapter 9 reduces the amount of computation needed to be

retrieved due to the smaller size of the database from which the query is retrieved. Thus, the amount

of computation processed in the mobile device is smaller than the offloaded case.

10.2 Application-Driven Development of Design Tools

Not only a design and simulation tool can play a significant role in the development of new software

and hardware systems, but also the development of the design tool is largely driven by the new

systems developed using the tools. Once a new tool is developed and released to its users, the users

will evaluate it and give feedback. Without this information, it would be impossible for the tool

developers to know which features need to be added or improved.

Figure 10.6 shows how the MCC applications helped finding the necessary features for the
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Figure 10.6: Improving design tools according to the needs from the applications.

design tool, NETSHIP. The broadband embedded computing system where reverse distributed of-

floading is applied is a heterogeneous and large-scale system as introduced in Chapter 7. This

system consists of blade server computers as well as multiple embedded devices. I expect that the

number of the embedded devices in this system can grow over millions in the future. Developing

this system, I invented a novel method to port a huge-sized software framework into an embedded

environment, most parts of which are automated for rapid software migration into the embedded de-

vices. Nonetheless, there are a few points that slow down the overall development process such as

deploying the ported software onto the physical devices, debugging the software across the multiple,

distributed devices, and managing the physical devices (e.g., manually turning on/off the devices).

These problems could be avoided by using a simulator that supports such a system, which however

did not exist. Motivated by this point, I started developing the system simulator introduced in Chap-

ter 4 that supports heterogeneity and scalability as required by the previous developed application.

The requirements for the design tool development project that were derived from the broadband

embedded computing system project are as:

• Scalability. The system could scale up over millions of devices. The scalability of the de-

signed tool has to be large and efficient.

• Heterogeneity. The target system is comprised of different types of components. In par-
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ticular, the network and the computing nodes that form the target system can significantly

vary.

The next application project that induced an additional set of requirements for design tools was

the LN-Annote system introduced in Chapter 8. Since the optimization technique used in the system,

algorithm-division reverse offloading, leverages the mobile GPU present in each mobile devices, the

design tool needs to support the simulation of mobile GPUs for accurate execution time measure-

ment and efficient power-consumption estimation. The mobile GPU simulation project described

in Chapter 5 was built to enhance NETSHIP by providing efficient simulation of the MCC systems

where the mobile GPUs are used. Particularly, the requirements for the mobile GPU simulation

project include:

• GPU Functionalities. The designed simulation system should be able to execute the GPU

kernels without modifying the target code.

• Execution Time Estimation. The developed simulation tool is required to provide the esti-

mated execution time of the target kernel.

• Power Consumption Estimation. The developed simulation tool is required to provide the

power consumed on the mobile GPU to execute the target kernel.
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Chapter 11

Future of MCC Systems and Design

Tools

MCC systems have gained an increasing popularity in the market. The combination of ubiquitous

mobile devices and powerful cloud computers has shown various advantages over traditional com-

puting service architectures. As a result, there is an increasing number of emerging MCC systems

and their users. Meanwhile, the efforts to design the new MCC systems in a more efficient and op-

timized way has led to the invention of new design tools optimized for them. It is still a beginning

stage where only a small number of tools have been developed. However, both the MCC systems

and their design tools are expected to grow rapidly in the near future. In this chapter, I present my

vision for the future of the MCC systems and design tools.

11.1 Future MCC Systems

Due to the wide spread of smart devices, the importance of scalability in the MCC systems has been

rapidly growing. A popular MCC service has a usage spike with hundreds of thousands of users ac-

cessing the service concurrently, thus relying heavily on the implemented system’s scalability [180;

215; 118]. The heterogeneity of the MCC systems has become an important issue as well. The di-

versity in available choices in mobile manufacturers, mobile network service providers, and mobile

software platforms have made today’s mobile devices vastly heterogeneous [292; 198].

In future MCC systems, both scalability and heterogeneity are expected to keep increasing. A
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variety of new computing devices and sensors enter our lives every day: second screens [116],

IoT sensors [287], smart cars [277], and robots [84]. These new types of computing nodes will

be extending the scope and boundaries of MCC systems, thus demanding higher scalability and

widening their heterogeneity. Cloud-Robotics, for instance, is a new form of computing systems

where robots leverage the better computational power and storage capability of cloud back-end

servers [261; 177].

In this section, I describe two possible directions for the future of MCC systems. The first is

Internet-of-Things, a fast-growing research area. The second is Altocumulus, a proposed interme-

diate cloud system.

11.1.1 Internet-of-Things

IoT systems are very similar to MCC systems in the sense that the data collected from the IoT

devices is process in the central cloud. In the near future, the IoT systems can either be a part of or

absorb MCC systems. The two types of systems might be merged into a newly emerging type of

systems. There will be many systems that collectively gather information from user devices, e.g.,

smartphones, as well as from the IoT devices, e.g., sensor motes.

Although there have been many new projects in the area of IoT, including the design tool for

IoT-integrated systems I proposed in Chapter 6, we are still in an early stage of the IoT technology.

Only a few companies have achieved a business success based on IoT. An example is Nest, a com-

pany that builds smart sensors and various other products for home automation.1 For example, Nest

builds thermostats, embedded devices that are attached to walls at home to monitor various environ-

mental variables including room temperature, humidity, gas levels and illumination. This collected

information is then processed in the cloud to analyze the users behavioral patterns - when they go

to work, when they come back, what is the room temperature they like, how often they ventilate the

room, and so on. The analyzed user patterns are an integral part of making a smart home with more

convenient interfaces and more energy-efficient home management.

Amazon is a rising player in the IoT market. They have a variety of ‘thing’ product lineups

including the customer front-end devices, such as Kindle TV, Amazon Echo, and Amazon Dash.

Users can speak to the device or just press a button in their living room to place orders, play music,

1They were recently acquired by Google, consequently changing their name to Google’s Nest Labs.
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or search interesting information. AWS can be used as the IoT backbone service. Their computing

frameworks including Kinesis, Lambda, DynamoDB, ML, EMR and Redshift on the elastic EC2

cloud computing infrastructure can serve the needs for data ingestion, data processing, data storage,

machine learning, and analytics.

In academia, a number of research projects related to IoT have started recently. Filho et al. pro-

pose an integrated distributed system consisting of an Internet of Things (IoT) and a cloud comput-

ing infrastructure [100]. This system is used to understand the natural environment interdependen-

cies (e.g., animals might affect water quality) to manage the environment through interventions (e.g.,

a catchment). It also supports high-level system specifications in the environmental science context

to represent environmental science concepts. Ma et al. present a distribute database framework

for IoT systems [214], with an efficient update and query index based on HBase, a key-value stor-

age. This can support high insert throughput and provide efficient multi-dimensional simultaneous

queries. There is a way to compose a new IoT service from existing services, called mashup [152]:

it allows things to expose web service functionalities based on the legacy web mashup technol-

ogy. The researchers also propose a cloud-based IoT mashup service model called IoT Mashup

as a Service (IoTMaaS). This method can handle the heterogeneity of devices based on the model

driven architecture principles and the cloud computing’s computational scalability. In a recent re-

search project, Hassan et al. develop a cloud-assisted IoT framework for healthcare in the smart

city environment [132]. This framework aims to address the challenges in integrating IoTs and

cloud computing in the healthcare domain, such as reliable transmission of vital sign data to cloud,

dynamic resource allocation to facilitate seamless access and processing of IoT data, and effective

data mining techniques.

The progress of IoT systems will impact various new areas. In the business area, IoT can help

consumers making decisions through the augmented intelligence collected by the IoT sensors and

devices. The Internet of Business Things (IoBT) will help companies achieve enhanced process op-

timization and efficiencies based on the data collected from the business environment. An increas-

ing number of businesses will add sensors to people, places, processes and products for information

collection and analysis, thus helping the businesses make better decisions.

Another trend involves the scale of IoT-based smart places that gets increasingly large. The

vision of the smart home will be realized through new devices such as new generations of smart
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home-appliances, entertainment devices, smartphones, and tablets. At the next level, smart build-

ings efficiently manage temperature, resources, and emergency cases using the information col-

lected from the building. Nowadays, many companies and government departments are striving to

make their cities smarter by more efficiently managing energy consumption, traffic, and healthcare.

As the available power of the cloud computers keeps growing, the impact of IoT will also grow. In

the end, a global-level of management for energy and resource will become available.

11.1.2 Altocumulus: An Intermediate Cloud System

The utilization of smart devices located at the edge of the cloud networks continues to accelerate,

leading to new forms of heterogeneous cloud computing models. This trend has been influenced by

two factors. First, the number of intelligent embedded devices in the cloud, such as smartphones and

set-top boxes, has significantly increased. Second, cloud application executions like data processing

and analytics are becoming more delegated from the clouds to the edge, thus making the transactions

and communications in the cloud more local.

Together with Marcin Szczodrak, Richard Neill, and Luca Carloni, I envision that a new form of

computing systems will emerge as one of the future MCC systems [165]. We call it Altocumulus, a

new class of heterogeneous cloud computing which occurs at the edge of the cloud where it harvests

the resources of edge devices, typically embedded systems, to enhance application capabilities and

performance. By reporting on a number of prior studies, we claim that Altocumulus is well po-

sitioned to support all main cloud-computing service models: IaaS, PaaS, and SaaS. We present

our vision on how Altocumulus could develop in the context of other cloud computing technolo-

gies by discussing different models of computation delegation. We conclude by presenting possible

use-case scenarios and open areas of research.

11.1.2.1 Evolution of MCC

Due to the explosive proliferation of embedded devices, particularly mobile devices, three ma-

jor factors have been introduced into the world of cloud systems. First, the number of nodes

that send and receive data packets in the network has increased significantly [342; 246]. In par-

ticular, the number of smartphones in use has passed 1 billion in 2012 and is expected to reach

2 billion in 2015 [24]. This factor caused the change of the shape of data transmission in the
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Figure 11.1: A cloud network topology with the intermediate layer introduced by Altocumulus.

cloud network from transactional computations to one with more interactive communications [78].

Second, the processing power of embedded devices continues to increase. In 2013, many set-top

boxes (STBs) [187], smartphones [189], and TVs [211] have processors running with frequencies

above 1GHz along with larger than 1GB main memory, equipped with hardware accelerators [336;

67]. Finally, the number of computation requests from each mobile devices stays often constant, or

less intensive at times, while requiring instead shorter response times [154; 330; 238; 259].

Keeping pace with this trend, the cloud continues to adapt and evolve: more devices on the

‘edge’ of the cloud now spontaneously contribute to the computation the cloud solely used to pro-

cess. As illustrated in Figure 11.1, the edge of the cloud is where the cloud network is connected

to end users. We call edge devices the devices that are located in this area. Without physically relo-

cating edge devices, their processing powers and networks can be used to form small clouds. From

the network topology point of view, this newly formed small cloud is viewed as ‘intermediate’ to

an edge device which accesses it, being located on the path from the cloud layer to that user device

on the edge layer. In this network, computations required for cloud application execution can be

partially delegated to these intermediate clouds, which consist primarily of edge devices. We argue

that the formation of this intermediate cloud layer is emerging across a variety of systems. The edge

devices located within intermediate clouds include mobile devices, mostly being smartphones and

tablets, home appliances like smart TVs and STBs, and all other types of embedded devices such as

routers and sensor motes.

We call the new type of cloud computing that has this phenomenon Altocumulus. Altocumulus
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(a) Conventional cloud computing (b) Cloud computing with Altocumuli

Figure 11.2: The comparison of transaction flows in cloud computing.

means a cloud at an intermediate position2. We use the term ‘cloud’ to indicate the large, remote,

and public cloud with powerful server machines in the data center. In contrast, Altocumulus may be

described as a small-sized, and local private cloud powered by a network consisting of edge devices

that are part of a large distributed embedded system. Due to the benefits of the embedded devices,

Altocumulus in general has the following advantages over cloud computing.

1. Network Traffic. In cloud computing, shown in Figure 11.2(a), all the processing requests

from the edge devices are converged to the cloud. Instead in Altocumulus, as illustrated in

Figure 11.2(b) the edge devices send requests to their local clouds, or Altocumulus, and, if

necessary, Altocumuli transfer these requests to the cloud in pre-processed or filtered forms.

As a results, the total number of transactions (represented by the lines in the figure) is sig-

nificantly reduced because Altocumulus serves as a local cloud using the resources from

the embedded devices that exist physically close to the edges. This also results in shorter

network-response time to the client devices.

2. Cloud Costs. Altocumulus is a local cloud voluntarily formed across the edge devices, which

can partially, or often entirely, fill in the needs for the cloud services, including storage and

computation services. Since Altocumulus is a newly emerging type of cloud computing and

has not been used commercially, it has no cost model developed so far. Considering that

currently available cloud services provided by cloud vendors usually adopt pay-as-you-go

2The definition of Altocumulus in the dictionary is “a globular cloud at an intermediate height of about 2400 to 6000

metres (8000 to 20,000 feet)” [130].



CHAPTER 11. FUTURE OF MCC SYSTEMS AND DESIGN TOOLS 193

payment models, Altocumulus may take a similar cost model in the future [191]. Altocumulus

can be, however, a more affordable solution that complements the cloud in the future because

it leverages existing resources and the users also share their own resources.

3. Resource Utilization. To support a new generation of cloud applications, the cloud may

require additional hardware system upgrades. In Altocumulus, however, the edge devices

are periodically upgraded by their users, resulting in an automatic evolution in the hardware

aspect. The fact that Altocumulus uses the existing embedded devices to provision compu-

tational power and storage spaces leads to better resource utilization overall. For example,

wireless sensor mote devices generate many sensor data measurements that must be pro-

cessed before higher level operations may be performed to interpret the data. A mechanism

can be implemented on Altocumulus for filtering and pre-processing data to minimize net-

work capacity and storage requirements at the cloud, thus optimizing resources for other

cloud applications.

4. Energy Efficiency. Embedded systems, particularly mobile devices, are designed to be more

energy efficient for using their resources than the server machines in the cloud [313; 245;

217]. Thus, it is likely that using embedded systems brings less energy consumption, as

confirmed by a number of prior studies [244; 175; 241]. This may lead to interesting new

research to address the following problems; (1) how efficient a cluster of embedded systems

like Altocumulus is? and (2) how to optimally balance the loads across the conventional cloud

and Altocumulus? [345]

In the following sections, we examine how Altocumulus fits in with various evolving technolo-

gies closely related to cloud computing. In Section 11.1.2.3, we shed a light on Altocumulus as

the base system to support the three main cloud service models. Then, multiple combinations of

computational delegation are presented in Section 11.1.2.4. Finally, in Section 11.1.2.5 we outline

our vision for the future of Altocumulus.
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Figure 11.3: Taxonomy of cloud computing technologies.

11.1.2.2 Cloud Computing Classification

There have been diverse technologies related to cloud computing. A few important types are shown

in Figure 11.3. This Euler diagram3 describes the most significant intersections across the technol-

ogy classes. Thus, it may not include a few newly emerging combinations among these classes, e.g.,

HPC applications on SaaS [71].

Among these technology areas, what gains ample attention is the combination of cloud com-

puting and mobile computing, called Mobile Cloud Computing (MCC). In MCC, mobile devices

usually send requests to the cloud to process certain computational problems or store the users’

information. The user devices in MCC delegate heavy computations to the cloud due to mobile

devices’ limited resources in terms of computational power and battery capacity.

This heavy computation requirement of the cloud servers relates cloud computing to High Per-

formance Computing (HPC). Certain cloud service vendors prepare server machines that are strong

enough to support HPC applications and provide HPC cloud services, allowing their users to lever-

age the benefits of cloud computing: easy management, low cost, and elasticity [15].

Broadband Embedded Computing (BEC) is an emerging area of research to develop a com-

puting platform that leverages both a collection of embedded devices and a broadband network

3Note that Figure 11.3 has no intersections among certain components and thus it is not a Venn diagram. A Venn

diagram must present 2n zones for n components while an Euler diagram may not.
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connecting them. Our prior work in this area led us to envision the evolution of Altocumulus to sup-

port all main service models of cloud computing: IaaS, PaaS and SaaS. Specifically, as discussed

next, we developed a processor virtualization technique, two distinct computational frameworks, a

distributed file systems and various distributed applications.

Wireless Sensor Network (WSN) are combined to cloud computing, for instance by processing

sensor data with Hadoop and HBase [351; 350]. The processing power of cloud computing opens

new possibility for WSN applications.

The intersection of BEC and WSN is the area in which the base technologies for realizing the

concept of Smart Cities are arising [268; 270]. The broadband network provides the accessibility to

each household and the sensors collect the data necessary for building a smart city. On top of this

groundwork, the processing power offers in-time analysis of the collected data by executing data

mining and machine learning applications.

Finally, as shown in Figure 11.3 Altocumulus overlaps all the discussed computing technologies.

Altocumulus also supports the full coverage of the three main service models of cloud computing,

IaaS, PaaS, and SaaS, as discussed in the next section.

11.1.2.3 Altocumulus Service Models

Although there have been a multitude of efforts to extend cloud computing service models, Infrastructure-

as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) are still recog-

nized as the most fundamental ones.4 Figure 11.4 shows the system stacks from both hardware and

software perspectives and exemplary components of Altocumulus with regard to the three cloud ser-

vice models. In this section, we delve into how Altocumulus supports each of these service models,

based on our own experimental efforts on all of the models along with other closely related projects.

IaaS: Virtualization. IaaS is the most basic cloud service model where users buy virtual ma-

chine instances from the service providers instead of purchasing physical machines, which require

installations, operations, and management. Virtualization and virtual machine management are the

core features which enable the IaaS model and, as shown in Figure 11.4, virtualization is the layer

4In 2012, Network-as-a-Service (NaaS) and Communication-as-a-Service (CaaS) were officially added by Interna-

tional Telecommunication Union (ITU). There has been no platform running on the edge devices for these new service

models, since the platforms that belong to Altocumulus so far have been focused more on computational models.
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directly exposed to IaaS users.

A variety of efforts, including our experiments, have been made to provide virtualized resources

from edge devices to the users. Our work on virtualizing edge devices’ processors and providing

them to a server machine is a heterogeneous approach to give an easy access to the edge devices’

processing power [233]. Some view this as a distinct type of service model, such as Hardware as

a Service (HaaS) since it offers an abstract interface to access hardware [294]. There is also a

custom type of Virtual Machine Manager (VMM) that runs on the ARM processors [155]. This

shows the possibility of the virtualization on the most popular embedded processor architectures,

such as ARM.

Some foundations for the IaaS model in Altocumulus are provided by recent studies on the vir-

tualization of the edge devices with ARM processors based on the two main hypervisors, KVM and

Xen [81; 147]. Also, one of the industry’s leading companies, VMWare, has created a platform to

leverage the opportunities on mobile devices [45]. Meanwhile, processors for mobile computers,

i.e., laptops, like Intel Atom processors are often used also for embedded systems and studies fo-

cusing on the virtualization of these mobile processors are expanding the virtualization aspect of

IaaS [298; 297].

Based on virtualization techniques developed on edge devices, the on-going and future efforts

for developing custom-design IaaS platforms and porting existing ones such as OpenStack, Open-

Nebula, or Eucalyptus [22; 21; 237] will pave the way to Altocumulus’ IaaS service. Although

virtualization and IaaS frameworks for edge devices are at their early stage, there is high potential

for Altocumulus to serve as a new IaaS infrastructure, as the technology matures and new business

models are developed.

PaaS: Computing and Storage Frameworks. PaaS offers a basic software stack and ser-

vices to build customized applications based on the PaaS APIs. A PaaS service can be implemented

based on three components: a web service engine, a data storage solution, and a computing frame-

work [249]. Among these, we first concentrate on the computing framework for two reasons. First,

in many platforms it supports the PaaS model as the most integral part of the backend implementa-

tion. Second, the computing framework itself can be viewed as a PaaS service, providing computing

services through their own APIs.

There are a few custom computing frameworks available [37]. However, PaaS is to provide
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Figure 11.4: System stacks and example components for Altocumulus’ service models. Work-in-

progress and planned projects are written in gray and our own prior projects are underlined.

APIs for applications. It is important to support widely used APIs to gain wide acceptance from

various PaaS users. This fact led us to focus on providing Altocumulus with the two most popular

computing frameworks: MapReduce and Message Passing Interface (MPI).

MapReduce is one of the popular PaaS services which many scientists, researchers, and ana-

lysts use for big data analysis. Many cloud providers offer MapReduce as one of their core PaaS

services [1]. We have ported Hadoop, an open source implementation of the MapReduce framework

and a distributed file system, to a cluster of STBs, as discussed in Chapter 7. This work demonstrates

the possibility that Altocumulus serves PaaS through the MapReduce framework and Hadoop Dis-

tributed File System (HDFS).5 Another study implemented a custom MapReduce framework on a

cluster of smartphones [171]. It is easy to predict that in the near future, we will see more experi-

mental platforms that heterogeneously combine these edge devices.

MPI is a standardized message passing interface designed to be efficient, simple, and portable.

While MPI has been a major framework for the HPC systems, there are also certain needs to have

the same framework supported by cloud services as a PaaS model. For instance, a cloud service

provider may want to offer a service over a variety of programming models [291]. Altocumulus

5Here, we use the three main cloud service models but some distinguish Storage-as-a-Service (STaaS) from PaaS.
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can address these needs by leveraging recent MPI porting efforts to a variety of embedded devices:

AppleTVs [109], PlayStation [300] and STBs [234].

Aside from computing frameworks, Altocumulus can also provide storage services. Our Hadoop

porting to the STB cluster also provides HDFS as presented in Chapter 7. Continuous research on

executing HBase over the edge devices is promising due to its linear scalability, consistency, and

automatic failover, which are common requirements of many cloud-based service applications [4].

These frameworks are the deliverables to PaaS users in the Altocumulus service models as

shown in Figure 11.4. Thanks to these efforts in harvesting the computational power of the edge

devices, Altocumulus is well positioned to provide a new PaaS infrastructure.

SaaS: On-Demand Applications. In recent years many different applications have been ported

to networks of embedded devices following an approach like Altocumulus. Figure 11.4 shows some

of the applications we describe in this section.

Multiple Sequence Alignment (MSA) is a fundamental problem in bioinformatics that requires

to arrange three or more sequences of DNA, RNA, or protein to identify regions of similarity [55].

We ported a MPI-based MSA application to a heterogeneous cluster of STBs and Blades [234]. We

also ported and analyzed a Ray-Tracing application which runs a computation-intensive 3D graphics

algorithm on the same cluster [233]. The MSA and Ray-Tracing examples follow the Altocumulus

model, providing enhanced computational services based on the resource utilization of embedded

devices at the edge network in conjunction with centralized server-cluster computation.

We also provided MapReduce-based applications that solve two key data mining algorithms,

K-Means clustering and Classification [166]. These applications scale well across the Hadoop en-

vironment over a BEC system.

Certain research has focused on executing applications on a game console. A cone-beam CT

image reconstruction application [184] and a Neuromorphic application [300] are developed to run

on the Sony’s PlayStation 3.

The number of SaaS applications has significantly increased based on the IaaS and PaaS services

with the emergence of cloud computing. Similarly SaaS is also likely to thrive in Altocumulus once

the development of IaaS and PaaS has made sufficient progress in this environment. In fact, the

growth of SaaS for Altocumulus can be even more accelerated by taking advantage of recently

proposed methodologies for the development of these applications [210; 301; 315].
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Figure 11.5: Computational delegation graphs.

11.1.2.4 Delegation of Computation

As Altocumulus takes part in cloud computing, particularly in the middle of the paths between the

cloud and the edge devices, it is designed to serve both parts in-between. In this section, we discuss

how Altocumulus can contribute to the distribution of the computation in the network.

Figure 11.5 shows four possible types of computation delegation models on an Altocumulus

network. In each graph, the X axis denotes the topological distance from the edge device and the

Y axis indicates the amount of computation processed by the nodes at the X distance for cloud or

Altocumulus services.

Figure 11.5(a) illustrates the case when most of the computation is handled only by the cloud.

This is the case of many currently existing MCC systems, where an increasing number of requests

from thin clients on the edge are processed entirely by the cloud relying on the elasticity of its

service provider.

In Figure 11.5(b) the edge devices resolve the computational needs without requesting for dele-

gation. As the computational power of an edge device keeps growing, it becomes possible to process

certain amount of computations in the device. An example is graphic-intensive offline-based game

for mobile devices.

Figure 11.5(c) shows that the major amount of computation that happens in the network is
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processed by Altocumulus, i.e., by the nodes in the middle of the path from the edge device to the

cloud. In this configuration, Altocumulus serves as a local cloud which may reduce the cloud costs,

network latency, and energy consumption [117].

Figure 11.5(d) indicates that the amounts of computation delegated to each Altocumulus and the

cloud are approximately comparable. The uniform distribution of computation tasks across Altocu-

mulus and the cloud has advantages for some applications, e.g., when the cloud is suffering from

heavy workloads and balancing the loads between the cloud and Altocumulus draws the optimal

performance in time, costs, or Quality of Service (QoS). The distribution of workloads, however,

differs from the load balancing among the server nodes. Instead, Altocumulus could contribute to

the cloud in a particular way as it filters, reduces, caches, or reproduces the information moving

from the edge to the cloud. There is ample potential for this type of computational distribution and

more specific examples on how Altocumulus can contribute are given in Section 11.1.2.5.

While Figure 11.5 provides a high-level abstraction of the main possible computation delegation

models, there is a rich variety of possible combinations. Moreover, the suitability of each model

is application specific and differs largely according to the configurations or status of the base in-

frastructures; i.e., the devices and networks. Therefore, no single form of delegation model can

be vastly superior to all others or fit into diverse environments. To find the optimal proportion for

computational delegation between the cloud and Altocumulus is one of the pivotal areas of future

research.

11.1.2.5 Use-Case Scenarios of Altocumulus

The future success of the Altocumulus model is tied to the implementation of new mobile and

wireless sensor network applications. For instance, we expect that a major focus activity will in-

volve how to use emerging edge devices to enhance the processing performance of large-scale data

analytics applications.

We discuss two use-case scenarios that fit to Altocumulus in terms of their layered, hierarchical

designs. While each of these applications could be implemented also in other ways, designing

them to run partially on Altocumulus facilitates the use of resources from the edge devices, thereby

alleviating the computation and communication load for the cloud.

Each of these use-cases can be implemented also without Altocumulus, but designing to run
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(a) Weather Data Analysis (b) Smart Buildings

Figure 11.6: Two Altocumulus use-case scenarios.

those applications on a cloud with Altocumulus will help the cloud to alleviate the overall stress

from computation and communication, facilitating the use of resources from the edge devices.

Weather Data Analysis. This is an Altocumulus-suited version of the Weather Data Analysis

example introduced in [340], which analyzes the National Climatic Data Center (NCDC) weather

dataset. This centralized application processes the weather data, including sky ceiling heights, vis-

ibility distances, temperature, and atmospheric pressure, gathered from across the globe. The cen-

tralized data processing burdens the cloud with a large amount of work that comes from tens of

thousands of weather stations. With Altocumulus, this application can be implemented in a hi-

erarchical fashion as illustrated in Figure 11.6(a). Each Altocumulus collects data from nearby

sensors. Then, only the summarized information necessary to analyze country-wide or worldwide

weather statistics is transferred from Altocumulus to the cloud. For example, the MaxTemperature

command that finds the highest temperature can be processed easily with Altocumulus. Each Al-

tocumulus processes the weather data from local sensors and reports summarized information that

includes the local maximum temperature to the cloud. Then, the cloud finds the highest temperature

among the reports from Altocumuli. This hierarchical approach offers lesser burdens on the cloud
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and shorter processing time due to its parallelized analysis of the data.

Smart Buildings. The goal of this application is twofold. First, each building manages the use

of its resources such as electricity, water, and gas, in a smart way. Second, a central control system

monitors the resources in each building for the city-level management, e.g., forecasting power out-

ages, improving resource distribution planning, and saving the energy. We address this problem by

mapping Altocumulus to a building and the cloud to the city. Figure 11.6(b) shows Altocumulus

configured for each building having a STB and sensors placed in every house. The information gath-

ered from the sensors is stored in Altocumulus and analyzed for understanding the users’ behavior

patterns by executing machine learning algorithms. Using the analyzed user behavior patterns, Al-

tocumulus manages the light and temperature control systems to reduce energy consumption of the

houses in the building. For energy-consumption tracking and planning at the city-level, the Altocu-

mulus of each building reports to the cloud statistical information about consumed resources and

observed patterns. The collected building data is processed to extract the information necessary to

the city management.

11.1.2.6 Related Work

A study on the clustering devices on Field Area Network called Fog Computing [57] embraces the

ideas of heterogeneity and mobility. Carmen [182] is a system that manages the mobile connectivity,

focusing on the transitions between networks and devices, to improve the mobile user experience.

These studies, however, do not focus on leveraging the computational power of these devices. In-

stead, Altocumulus is based precisely on the idea that edge devices actively engage in the heavy

computations of the cloud, taking parts, or often the whole, of the computational tasks.

11.1.2.7 Concluding Remarks

The evolution of cloud systems is toward greater heterogeneity and distribution of computation

between a cloud data-center and embedded devices at the network edge. The computational distri-

bution may be delegated dynamically based on the application domain to optimize computation and

resource utilization. To support this ongoing evolution of cloud computing and applications, we pro-

posed Altocumulus as an intermediate cloud computing infrastructure that simplifies this dynamic

distribution and delegation of computation. We illustrated the Altocumulus concept by presenting a
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Figure 11.7: A content delivery network based on caching proxy mesh.

number of experimental systems that have been developed recently, including systems based on the

MapReduce and MPI programming models. Finally, we have sketched some ongoing and planned

Altocumulus projects.

11.2 Future Design Tools for MCC

The development of emerging generations of MCC systems will need adequate design tools. So far,

the design tools have evolved according to the MCC systems’ transformation. Future design tools

for MCC systems will continue to expand their features in consonance with the characteristics of the

future MCC systems. As the future generation of MCC systems are expected to grow toward even

larger scalability and greater heterogeneity, the design tools to simulate these systems will have to

support such a unprecedented level of scalability and heterogeneity. Additionally, some emerging

systems have a different system architecture or new types of networks that the current design tools

cannot support. Figure 11.7 illustrates the architecture of an example Content Delivery Network

(CDN). A CDN could be used as part of new MCC systems that will have to be supported by future

design tools. Likewise, supporting a new system architecture, e.g., high-speed instance launching

for Altocumulus where a large number of embedded devices can dynamically join and leave the

network.

Among the expected requirements of new design tools for future MCC systems, there are:
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• Larger Scalability. Some future systems will comprise hundreds of millions of computing

nodes, e.g., IoT devices and sensors. One way to support this level of scalability will be

simulating some groups of nodes at a more abstracted level. For instance, after learning the

scaling behavior of outgoing network packets from a particular device group, scaling up could

be represented by generating emulated packets as if they come from the added devices.

• Higher Heterogeneity. Future MCC systems have a variety of different computing nodes

including smart devices, home alliances, smart vehicles, outdoor stationary devices, wear-

able equipments, sensors, and home controlling systems. These computing nodes have dis-

tinct processing cores, different network characteristics (e.g., bandwidths, latencies, and error

rates), and different peripherals configured in each node.

• New Architectures. Future MCC systems can comprise new network and system architec-

tures, e.g., Altocumulus, CDN, or Software-Defined Network (SDN), as one of the compo-

nents for the entire system. The future design tools for such systems will need to support these

new architectures, dealing with the details of each element. For instance, a future design tool

can incorporate a SDN simulator.

• Hardware-in-the-loop Simulation. In addition to the complex design of the future MCC

systems, the design tools have to support the smooth, incremental migrations of the devel-

oped software from the simulation environment to the physical hardware devices. Hardware-

in-the-loop (HIL) simulation is a technique to develop and test systems by emulating certain

portions of the system, e.g., input modules. HIL simulation could be applied to the MCC

design tools, e.g., by replacing a node with a physical hardware device inside a simulated

MCC environment. For those future MCC systems that have large-scale, heterogeneous com-

ponents and a distributed network, HIL simulation can enhance the quality of testing, speed

up the debugging process, and ease the migration from simulation to deployment on physical

hardware.

• Analytical Features. Many virtual platform-based design tools offer some analytical func-

tions which calculate the values of some useful information, e.g., execution times, power con-

sumption, or heat dissipation, expected in a single hardware device. This information from

one device can also be used to estimate the information associated to the entire distributed



CHAPTER 11. FUTURE OF MCC SYSTEMS AND DESIGN TOOLS 205

system. For instance, the sum of each device’s power consumption corresponds to the overall

power consumed by the whole system. Moreover, future design tools can obtain more so-

phisticated information such as the installation and deployment costs or system availability

estimations. For instance, a tool can calculate the cost for buying, installing, and maintaining

the computing and network nodes in the system as the scale of the system changes. Likewise,

a tool can anticipate the availability of the system by utilizing the probability-based reliability

of each computing and network node and the replication plan of the system.
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Chapter 12

Conclusions

Thanks to the success of the cloud computing and mobile computing technologies, MCC is be-

coming increasingly popular. To keep its success in the future computation world which requires

an ever-increasing system scale and exceeding heterogeneity, we need tools well suited to help the

design, development, and test of the newly designed MCC systems. In this thesis, I have presented

NETSHIP, and its subsequent improvements to support the simulation of mobile GPUs and IoT sys-

tems. NETSHIP is a scalable networked virtual platform that effectively supports the specification,

design, and testing of MCC systems with many heterogeneous components.

Using NETSHIP, I have developed three unique MCC application systems. First, I have pre-

sented a broadband embedded computing system. It is a distributed computing system that runs the

Hadoop computing framework. It is heterogeneous because it combines a cluster of blade servers

and a cluster of embedded devices. Next, I developed the LN-Annote system that enables the per-

sonal information service on the mobile devices by extracting and keeping personal information

locally. Finally, I developed an audio stream retrieval system where the users find the information

on the original media content by sending a segment of the input audio stream they have. Each of

these application systems is based on the general MCC architecture, where the client devices access

the cloud server to use its higher computational power, larger storage capacity, and more affordable

energy budget. I used NETSHIP to develop the MCC client applications and perform design-space

exploration and optimization.

As a result, I have invented three distinct types of optimization techniques for the distribution

of computations in MCC systems. First, reverse distributed offloading is where the client devices
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take the bulk of the computation. Second, algorithm-division offloading is a method to divide the

core algorithm into two halves so that one half can run on the cloud while the other half can run

on each device. Third, query-division offloading sends only certain queries to the cloud servers

while processing the rest locally. This spectrum of optimization techniques for distinct distribution

of computations can be applied also to many other types of systems, thus increasing execution

performance, energy efficiency, and resource utilization.

Throughout the development of the design tools and the applications, I have presented the itera-

tive co-development process. By showing how each project contributes to another, I gave a guidance

for the users who develop both design tools and applications. In particular, this co-development pro-

cess can help the users organize the requirements for the new design tools based on their feedbacks

from developing applications with previous versions of the tool. On the other hand, I have shown

that development of new applications can be expedited by using the design tools and how the tools

can play a key role in developing and optimizing MCC applications.

In general, I believe that this line of studies on MCC has opened a new avenue of research. The

insights from designing and developing new MCC application systems can help the development

of large-scale, heterogeneous systems in the future. Particularly, the invention of the optimization

techniques not only can help new systems perform in a more optimized way but it can also become

a new research area in itself. I expect the development of many new optimization techniques of this

sort to continue in the future.
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Appendix: Prototype Tools

This appendix describes the following four prototype tools that I developed as part of my disserta-

tion:

• NETSHIP: the networked virtual platform presented in Chapter 4 and 5. It includes manage-

ment scripts, the synchronizer, and case study applications.

• A Java Porting Tool: a tool used in Chapter 7 that can be used to port Java applications to a

different Java runtime stack. The tool includes the porting script and the class dependency

analyzer.

• LN-Annote: a training algorithm for NER that can learn in two separated steps, first one in

the cloud and another in the local device.

• Slime: a light-weighted management tool for distribute computing nodes. Slime is used in the

audio stream retrieval system presented in Chapter 9.

Throughout the appendix, a tutorial example is provided for each tool.

1 NETSHIP

There are three tar balls released with NETSHIP. netShip.bz2 is the main archive file that includes

the main features of NETSHIP such as a synchronizer, scripts for management, and two case studies.

OVP.bz2 is the archive that includes ready-to-go OVP instances of virtual platforms with ARM

processors while QMEU.bz2 comprises QEMU instances of virtual platforms with PPC processors.

Originally, there existed four OVP instances and eight QEMU instances in each configuration, but

only one instance in each archive is preserved to reduce the size of archives.
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1.1 Software Requirements

The following software and libraries are required for the execution of NETSHIP. The version number

enclosed by the parentheses denotes the software/library version that has been tested with NETSHIP.

• Linux: Linux kernel [https://www.kernel.org] (2.6.38-13)

• gcc: GNU Compiler Collection [https://gcc.gnu.org] (4.5.2)

• tc: Traffic Control [https://www.kernel.org/pub/linux/utils/net/iproute2] (20100519-3)

• OVP: Open Virtual Platform [http://imperas.com] (20111125)

• QEMU: Quick Emulator [http://www.qemu.org] (0.14.1)

• Java: Java SDK [http://www.java.com] (1.6.0 Update 22)

• Eclipse: Eclipse Java IDE [https://eclipse.org] (4.2)

• Android: Android SDK [https://developer.android.com] (r20.0.3)

• CUDA SDK: NVIDIA CUDA SDK [https://developer.nvidia.com/cuda-downloads] (5.5)

1.2 File Structure

The netShip.bz2 file includes the following directories.

• cs1/ directory for Case Study I.

• cs1/mpi/ OpenMPI ported to the ARM and PPC processors.

• cs1/scheduler/ OpenMPI scheduler based on the Simplex algorithm.

• cs1/simplex/ a library to solve Simplex problems.

• cs2/ directory for Case Study II.

• cs2/CamSimCloudImgFetcher/ an Android app that fetches geo-tagged images from Flickr

and Picassa as if they were taken through the camera installed to the Android device.

• cs2/mappaint/ a tool to draw dots to a map using geo-location data tagged in the images.
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• cs2/opencv/ OpenCV library ported to PPC processors.

• gpumulti/ a module that multiplexes the host GPU for the simulation of mobile GPUs.

• guests/ drivers installed the virtual platform and applications that run on the guest virtual

platform instances.

• host/ configurations and applications that run on the host virtual machine instances.

• host/synchronizer/ the synchronizer module that ensures the all the virtual platform instances

proceed on the same simulation time with an adjustable time step granularity.

• scripts/ scripts for the network and VP instance management.

OVP.bz2 and QMEU.bz2 have the virtual platform instance configurations and the virtual hard

disk images.

1.3 Tutorial

To setup NETSHIP, you need at least two virtual machine instances. One instance will be used as

the main NETSHIP server while the rest will be the host virtual machines for the virtual platform

instances. In NETSHIP, a host machine instance executes a same type of virtual platforms multiple

times simultaneously to form a heterogeneous system.

1.3.1 Server Configuration and Setup

To configure the server instance, follow the instructions below:

1. Untar the netShip.bz2 on a server computer that will serve as the main NETSHIP server where

the synchronizer runs.

2. Launch host/syncmaster.

1.3.2 Setting Up a Host

To configure a host machine instance, follow the instructions below.
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1. Create your own virtual machine instance using the virtual machine solution of your choice,

e.g., VMWare for Desktop, VSphere, or AWS EC2.

2. Change the NETSHIP server’s IP address in synchronizer/include/comm.h and launch a VP

Controller process (synchronizer/vpctrl) on the host machine instance (not inside the virtual

platform).

3. Install the virtual platform instances on the host machine instance. You can decompress one

of the given virtual platform instances, i.e., OVP.bz2 or QEMU.bz2. Note that OVP requires

an update of their license periodically.

4. Execute a VP Control Client process (synchronizer/vpclient) for each VP.

2 A Java Porting Tool

There are two tar balls released with this porting tool. java port.bz2 consists of the essential scripts

and executables to port a Java program. java port workspace.bz2 contains the entire workspace for

porting Hadoop to an embedded Java stack.

2.1 Software Requirements

The following software and libraries are required for the execution of the porting tool. The version

number enclosed by the parentheses denotes the software/library version that has been tested with

the tool.

• Linux: Linux kernel [https://www.kernel.org] (2.6.32-5)

• Java: Java SDK [http://www.java.com] (1.6.0 Update 26-b03)

2.2 File Structure

The java port.bz2 includes the following directories.

• port/ the main directory for the porting tool.
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• port/Retrotranslator/ the modified retrotranslator library that backports the input class files

into older versions.

• port/JavaProfileGapFiller/ implementation for the Java class files that are missing in the

embedded Java stack, including java.nio, java.nio.channels, I/O stream classes, process man-

agement classes, and so on.

• port/jdepend-2.9.1 an extended tool to analyze dependencies among Java class files.

• port/run.sh the main script that runs the entire porting process.

The java port workspace.bz2 includes the following directories.

• dependency/ the porting workspace.

• usb/ the directory for files to be stored in a usb thumb drive. The files in this directory are

used to boot the embedded devices and launch the start applet on the device.

2.3 Tutorial

The workspace archive file contains all the necessary files to port Hadoop 1.0.3 to an OCAP Java

stack.

2.3.1 Porting Hadoop to the OCAP Stack

1. Untar java port workspace.bz2.

2. Go into the directory dependency/converting/hadoop1 stb

3. Edit the path variables in run.sh.

4. Execute the run.sh file.

3 LN-Annote

3.1 Software Requirements

The following software and libraries are required for the execution of LN-Annote. The version

number enclosed by the parentheses denotes the software/library version that has been tested with
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LN-Annote.

• Linux: Linux kernel [https://www.kernel.org] (3.2.0-77)

• Java: Java SDK [http://www.java.com] (1.6.0 Update 35)

• Eclipse: Eclipse Java IDE [https://eclipse.org] (4.2)

• Android: Android SDK [https://developer.android.com] (r21.0.1)

• Android NDK: Android Native Development Kit [https://developer.android.com/ndk] (r10c)

• CUDA SDK: NVIDIA CUDA SDK [https://developer.nvidia.com/cuda-downloads] (5.5)

3.2 File Structure

The bzip2 archive includes the following directories.

• AndroidLnAnnote/ an Android container app that executes local training.

• asset/ the OpenCL accelerated implementation for the training method.

• c/ the Java Native Interface implementation that glues the OpenCL and Java code.

• data/ the universal training and test data.

• java/ the original Java implementation of the training method.

• tsne/ a tool that reduces dimensions of input data and plots on a 2D space.

3.3 Tutorial

3.3.1 Executing the Java implementation

Executing the Java implementation is quite simple. This program will show the results of the train-

ing as well as the execution times.

1. Build the project by typing ant.

2. Execute the program by typing ant run.
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3.3.2 Executing the OpenCL as an Android app

We use Eclipse to launch the Android app on the Android Emulator or on a real Android device.

This program will show the results of the training as well as the execution times.

1. Create an Eclipse project using the directory AndroidLnAnnote.

2. Build the project using Eclipse.

3. Launch the built program on the Android Emulator or a connected Android device. If no

debugging is necessary, you can just copy the apk file created to the device, install the file,

and launch the program.

4 Slime

While most of the software used in the Audio Stream Retrieval system is proprietary, a portion of

the system is released as an open source project. Slime is a light-weighted distribute computing

framework that eases developing, deploying, and scaling of distributed computing nodes as well as

event handling.

4.1 Software Requirements

The following software and libraries are required for the execution of Slime. The version number

enclosed by the parentheses denotes the software/library version that has been tested with Slime.

• Java: Java SDK [http://www.java.com] (1.6.0 Update 35)

4.2 File Structure

The repository includes the following directories.

• conf/ main configuration.

• docs/ build restriction rules.

• env/ configurations of libraries used, e.g., log4j.
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• lib/ libraries used by Slime.

• src/ a source code directory.

• tools/ build tools.

4.3 Tutorial

Slime can run either a stand alone program or be linked as a library.

4.3.1 Standalone Execution

Slime supports the plug-in architecture that loads plug-ins dynamically and runs their services. At

this time this feature is still experimental. The way to launch Slime as a standalone process is as

follows:

• java -cp dist/slime-1.0-20150225.jar:lib/commons-logging-1.1.1.jar:lib/grizzly-framework-2.3.5.jar:

lib/grizzly-http-all-2.3.5.jar:lib/jersey-container-grizzly2-http-2.2.jar:lib/jsch-0.1.50.jar:

lib/log4j-1.2.15.jar edu.columbia.slime.Slime

4.3.2 Using Slime as a Library

edu/columbia/slime/example/Example1.java is an example source code that runs as a process. It

creates a Slime service and registers it to Slime. The Slime core logic dispatches the events its

services requested. The following command will launch the example.

• java -cp dist/slime-1.0-20150225.jar:lib/commons-logging-1.1.1.jar:lib/grizzly-framework-2.3.5.jar:

lib/grizzly-http-all-2.3.5.jar:lib/jersey-container-grizzly2-http-2.2.jar:lib/jsch-0.1.50.jar:

lib/log4j-1.2.15.jar edu.columbia.slime.example.Example1
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