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Abstract
This paper presents a novel application of Bayesian nonparametrics (BNP) for marathon

data modeling. We make use of two well-known BNP priors, the single-p dependent Dirich-

let process and the hierarchical Dirichlet process, in order to address two different prob-

lems. First, we study the impact of age, gender and environment on the runners’

performance. We derive a fair grading method that allows direct comparison of runners

regardless of their age and gender. Unlike current grading systems, our approach is based

not only on top world records, but on the performances of all runners. The presented meth-

odology for comparison of densities can be adopted in many other applications straightfor-

wardly, providing an interesting perspective to build dependent Dirichlet processes.

Second, we analyze the running patterns of the marathoners in time, obtaining information

that can be valuable for training purposes. We also show that these running patterns can be

used to predict finishing time given intermediate interval measurements. We apply our mod-

els to New York City, Boston and London marathons.

1 Introduction
Data in the real world typically involves some source of uncertainty. This uncertainty may
come from noisy measurements, incomplete information, or from the fact that we only have
access to a subset of the data from a larger population. Probabilistic models have proven to be
an effective approach for understanding such data, by incorporating our assumptions and
prior knowledge of the world. In fact, probabilistic models have become an important tool in
all areas of science as a way to develop statistical algorithms that are able to learn hidden struc-
tures from the data and make predictions [1].

Within probabilistic models, Bayesian nonparametric (BNP) models present several desir-
able properties [2]. Their most recognizable benefit is to avoid the need of specifying a closed-
form model, i.e., a parametric model with a predefined fixed number of hidden variables.
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Instead, BNP priors place probability mass on an infinite range of models and let the inference
procedure choose the one that best fits the data, in order to provide competitive predictions or
density estimations [3].

Although this flexibility makes such models attractive for experts in other fields, obtaining
interpretable results might be an even stronger requirement. Most BNP models are described
as general priors [4–7] that might not give easy-to-interpret solutions if applied blindly, even if
they provide accurate predictions. In order to additionally obtain interpretable results, we
should tailor the design of the model and include all our prior knowledge in the assumptions.
We need to take problem-specific design choices that will allow for an easy interpretation of
the results afterwards.

In this way, the first insights of the obtained results should not be foreign to us. This makes
the model trustworthy for experts in other fields that do not know about machine learning or
statistics, so other conclusions that were not common knowledge can be taken as plausible. At
this stage we are able to formulate hypotheses that can be tested with future data and can pro-
vide previously unknown insights about the given problem. Such procedure avoids the frequent
black-box flavor found in other methods, facilitating collaboration across fields. Examples of
such multi-disciplinar efforts can be found in psychiatry [8], genetics [9], biostatistics [10],
computer vision [11], econometry [12] or musicology [13].

This paper presents a novel application of BNPs to model marathon runners. We opt for
BNP models to leave room for the unexpected. In particular, we make use of the dependent
Dirichlet process (DDP) [14], which is a powerful tool that encompasses the Dirichlet process
(DP) and the hierarchical Dirichlet process (HDP). However, the DDP is very general and it
cannot be directly applied to data without additional constraints. Here, we specify a way to tie
the parameters across groups using a Gaussian process [15], thus making the DDP a practical
prior for our problem at hand.

This paper is an application of the single-p DDP and the HDP to marathon modeling. The
novelty of the paper relies not only on the application, but also on the necessary steps to trans-
form a prior that provides accurate estimates into a prior that also gives interpretable results.
Non-trivial structural assumptions and design solutions are made to find hidden properties of
the athletes while providing accurate predictions. We believe that BNP models will be more
useful in the future for experts without machine learning expertise if we can tailor the priors to
provide accurate and understandable solutions.

The rest of the paper is organized as follows. Section 2 describes the two problems addressed
in this paper. In Section 3, we review the BNP priors behind our models. We then introduce
the statistical models used in this paper. In particular, Section 4 presents the atom-dependent
Dirichlet process (ADDP), a collection of BNP mixture models based on the single-p DDP
prior coupled with a Gaussian process, while Section 5 describes an HDP over probability vec-
tors to detect latent running profiles and perform predictions. Section 6 is devoted to the exper-
iments and results. Our conclusions and further discussion can be found in Section 7.

2 Problem Overview

2.1 Age-grading problem
We first consider the age-grading problem, in which we want to compare fairly the finishing
times of runners having different age and gender. Currently, most popular marathons award
entry to participants by their best marathon in the previous 12 months. For example, in Boston
it is the only way a participant can gain entry to the race, while other paths are available in New
York, Chicago or London. The proposed methodology can be used to equalize entry require-
ments for different marathons, which vary considerably for one event to the next, as there is no
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widely accepted standard method to specify them. Furthermore, the World Master Athletics
(WMA) has an age-grading system [16] for equalizing the finishing time according to age and
sex. They lobby for this measure to be taken into consideration for selecting the winners of
each race, even though that procedure is based on world records, i.e., outliers that may not be
very representative, or even realistic, for most races. Our method also provides an alternative
way to reward runners of different ages and gender.

Our approach consists in adapting a single-p DDP [5] to cluster the finishing time for each
runner according to his/her age and sex. We propose a Gaussian process to control how the
clusters (representing marathon finishing time) change from one group to the next (different
ages or gender). We find that the means of these clusters are directly comparable to the mara-
thon entry requirements and the age-graded tables from the WMA. Additionally, direct com-
parisons for any finishing time are straightforward, since we find a full distribution for all ages
and both genders. Our single-p DDP can simultaneously deal with different races and/or the
same race on different years, providing a unified ranking for all the races that may differ on ele-
vation profile, temperature or humidity.

2.2 Running pattern problem
The second problem considered herein is the temporal analysis of running patterns. Our objec-
tive here is twofold. First, we are interested in a tool that can capture latent running profiles
that reflect the marathon difficulties along the 26.2 miles (42.195 km). This can be useful for
athletes training purposes. Second, we aim at predicting the arrival time of runners using inter-
mediate records. This problem has already been addressed in [17], where the finishing times
are imputed for the 2013 Boston marathon. One of the best approaches rely on the 100 nearest
neighbors, which has the limitation of clustering runners that are doing the same absolute
times.

We propose to use an HDP [6] to model the fraction of time each runner has spent at each
intermediate interval (typically, measures are taken every 5 km and at half-marathon). In this
way, we cluster the time ratio instead of the absolute times. Runners that run at different but
constant speed will be in the same cluster, no matter if they run each mile in five, eight or
eleven minutes. Thus, this model allows estimating finishing times for slower runners that
have the same time-ratio profile than fast ones. We use an HDP model in which the likelihood
function is a Dirichlet distribution, and each DP clusters the runners by age group and sex.
When modeling the full race, it helps to understand the different trade-offs and which parts of
the race are harder.

3 Dependent Dirichlet processes
In this Section, we briefly review the stochastic processes on which our models are based. In
particular, we focus on the DDP and two of its variants. The DDP is a generalization of the DP
for groups of data [5]. The DP is a stochastic process whose realizations are random infinite
discrete probability distributions [18]. A DP is completely specified by a base distributionH,
which is the expected value of the process, and a positive real number α (usually referred to as
concentration parameter), which plays the role of an inverse variance. In general, a draw G0 *
DP(α,H) from a DP can be expressed as

G0 ¼
X1
k¼1

pkd�k ; ð1Þ

where the vector π contains the atom weights, and ϕk are the atom locations defined in the
parameter space. In this form, it can be shown that the atom locations ϕk are independent and
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identically distributed as ϕk *H, whilst the weights (also known as stick proportions) are dis-
tributed as π* GEM(α), a distribution named after Griffiths, Engen and McCloskey [19, 20].
Such representation is called stick-breaking representation [21].

Note that Eq (1) defines an infinite mixture model, i.e., a mixture model with a countably
infinite number of clusters. However, since the weights πk decrease exponentially fast, only a
finite number of clusters are used to describe any finite dataset [3]. In fact, the expected num-
ber of components grows logarithmically with the number of observations [6]. In the DP mix-
ture model, the actual number of clusters describing the data is not fixed, and can be
automatically inferred from the data using the usual Bayesian posterior inference framework,
e.g., Markov chain Monte Carlo [22] or variational [23] methods.

The Chinese restaurant process (CRP) is typically found in the literature of DPs, a standard
culinary metaphor that vividly illustrates how the DP operates [6]. In this metaphor, the atom
locations ϕk are referred to as “dishes” in a restaurant, and observations that are clustered
together are viewed as customers sitting on the same table, therefore eating from the same dish.
In this generative process, customers enter the restaurant one at a time, and they can either sit
on an existing table, with probability proportional to the number of previous customers that
are already sitting on that table, or open a new table, with probability proportional to α. In the
latter case, they also sample a new dish from the prior, i.e., ϕknew * H.

In its more general form, the DDP is a stochastic process that generalizes the DP and that
can be applied for clustering groups of data [5]. For each group j, we have an infinite mixture
model of the form

Gj ¼
X1
k¼1

pjkd�jk
; ð2Þ

where Gl is a group-specific randommeasure, and the atom weights πjk and atom locations ϕjk
follow stochastic processes on the covariate space j. We describe below the two particulariza-
tions of the DDP that we use throughout the paper: the hierarchical DP (HDP) and the single-
p DDP. Fig 1 shows a comparative sketch between both models.

3.1 Hierarchical Dirichlet process
The HDP is a particular DDP to cluster groups of data sharing mixture components [6]. It uses
a DP for each group of data, with the DPs for all groups sharing a base distribution which is

Fig 1. Comparison of two Dependent Dirichlet processes. Hierarchical DP is at the left, single-p DDP is at
the right. The first one shares atom locations, while the second one shares mixture weights.

doi:10.1371/journal.pone.0147402.g001
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itself drawn from a DP. Mathematically, we first draw a base distribution from a DP as G0 *
DP(γ, H), where G0 ¼

P1
k¼1 vkd�k , and for each group j we draw a distribution from a DP using

G0 as the base distribution, i.e., Gj * DP(α, G0). This construction ensures that all the distribu-
tions Gj share the atom locations given by G0, since G0 is itself a discrete probability distribu-
tion. Since each atom corresponds to a cluster, cluster parameters ϕk are shared across all
groups. Each Gj admits a representation as

Gj ¼
X1
k¼1

pjkd�k ; ð3Þ

where the atom locations ϕk do not depend on the group j. Furthermore, this method allows
groups to share statistical strength via the atom weights vk of the base distribution G0. Indeed,
the vector of weights for each group j can be obtained as πj * DP(α, v).

In the corresponding culinary metaphor, the HDP can be explained with a Chinese restau-
rant franchise (CRF), in which there is a collection of restaurants, and dishes are shared across
restaurants. However, the popularity of each dish, i.e., the corresponding atom weight, is differ-
ent in each of the restaurants [6].

3.2 Single-p dependent Dirichlet process
The single-p DDP is another DDP, which works in a complementary fashion to the HDP. In
this case, atom weights are shared across groups while atom locations are allowed to vary across
groups. In terms of the often used culinary metaphor for DPs [2], the HDP shares the dishes
across restaurants but allows a different dish popularity in each of the restaurants, while the
single-p DDP shares the dish popularity across restaurants but allows the dishes to vary
slightly, in order to better fit each group of customers. The latter would be a peculiar CRF in
which the popularity of tables is matched one-to-one across restaurants, with the served dish in
each linked table slightly customized in each restaurant (e.g., different ingredients, cooking
time or local taste).

In the single-p DDP, the latent measure for each group j can be expressed as

Gj ¼
X1
k¼1

pkd�jk ; ð4Þ

where the vector π* GEM(α) contains the mixture weights and ϕjk are the atom locations.
The single-p DDP does not specify how to tie the atom locations ϕjk across groups for each k.
This step is critical, as it conditions the performance of the model. We put forward in Section 4
another stochastic process for this purpose.

4 Modeling of the finishing time

4.1 Atom-dependent Dirichlet process mixture model
This section describes a BNP model based on the single-p DDP prior that allows comparing
the shape of different distributions while keeping the corresponding quantiles fixed. In the con-
text of the marathon, we use it to obtain a fair comparison between runners regardless of their
age or gender. Runners are grouped together according to their age and gender, yielding J dif-
ferent groups. In our infinite mixture model, we cluster the runners of all groups with a poten-
tially unbounded number of clusters. Each cluster k presents a fixed percentage of runners
given by πk, with a stochastic process linking the atom locations, i.e., the mean finishing time.
This construction has the potential to provide a direct comparison for the finishing time in
each group j. However, as the single-p DDP is a very general prior, we need to define the
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likelihood and the stochastic process in a way that is insightful about the marathoner’s finish-
ing time.

We denote each marathoner finishing time as xji, where j = 1, . . ., J indexes the group and i
runs over marathoners, and we assume a Gaussian likelihood for the finishing time xji:

xjijcji ¼ k; mk; yj; s
2
x � N xjijmk þ yj; s

2
x

� �
: ð5Þ

Here, μk denotes the global mean for cluster k, θj is the shift associated to group j, cji represents
the cluster assignment associated to observation xji, and s2

x is the variance of the Gaussian dis-
tributions. Hence, we use a cluster-specific parameter μk to describe cluster k, but we allow
deviations from this value due to age or gender (this effect is modeled by θj).

The key aspect that makes the single-p DDP useful for comparing different age-gender
groups is the stochastic process that governs θj. We would like this value to vary smoothly
across ages, and therefore we choose a zero-mean Gaussian process prior for it:

θ � N 0;Σyð Þ; ð6Þ

where θ = [θ1, . . ., θJ]
>, and for the covariance function we use the standard choice, i.e., the

squared exponential kernel given by

ðΣyÞ‘j ¼ s2
y � exp �ð‘� jÞ

2n2

� �2

þ kdð‘� jÞ; ð7Þ

where ℓ and j represent two different age groups, s2
y accounts for the variance, ν controls the

degree of correlation between age groups ℓ and j, and κ is a jitter factor to avoid numerical
instabilities. We use an independent Gaussian process for each gender. There are other alterna-
tives, see [15] for a comprehensive introduction for valid covariance functions. In our case, the
squared exponential kernel is a smooth kernel (infinitely differentiable) that captures the corre-
lation between the different age groups.

Finally, we place the following priors over the assignment variables cji and the cluster
weights π:

cjijπ � π; ð8Þ

and

πja � GEMðaÞ; ð9Þ

We refer to this single-p DDP prior, together with the likelihood model in Eq (5) and the
Gaussian process for θj, as the atom-dependent Dirichlet process (ADDP) mixture model. This
model is similar to the ANOVA-DDP prior in [24]. We rely on a Gaussian process to control
the dependency between the shift variables θj, while the ANOVA-DDP prior relies on indepen-
dent priors. This allows for smooth variations of the cluster means with the age. A graphical
representation for the ADDP is depicted in Fig 2.

We place a Gaussian prior over the cluster means μk and an inverse gamma prior over the
variance s2

x, i.e.,

mk � N m0; s
2
0

� �
; ð10Þ

s2
x � IG a; bð Þ; ð11Þ

where μ0, s2
0, a and b are hyperparameters of the model. The value of s2

0 is assumed to be much
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larger than s2
y, so that the first one controls the overall finishing time for the clusters (hours),

whilst s2
y controls the differences between groups due to different ages (minutes). We assume a

common variance s2
x for all the clusters, because it provides an ordering of the clusters, which

is necessary for comparing the finishing times. Allowing for different variances for each com-
ponent should provide a more accurate (in the sense of better density estimation) description
of the finishing times, but a less interpretable and less actionable representation, as runners
assigned to Gaussian components with different variances are not directly comparable. We
have not placed a joint prior for the cluster means and variances through the normal-inverse
gamma distribution, since separate priors might have better properties for density estimation
[25] and allow for faster Gibbs sampling inference.

4.2 Model extensions
Multiple races. We could apply the previous models to finishing times from different

races or years, but we might obtain unexpected results since different races can present unalike
conditions due to temperature, elevation profile, humidity, pull of runners, etc. In this section,
we present an useful extension that deals with different races all together and allows drawing
comparisons between these races. In order to deal with this, we extend the basic ADDP model
using varying weights across races. This leads to a hierarchical ADDP model, in which cluster
weights are allowed to change across races, and cluster parameters are allowed to change across
age-gender groups. We refer to this model as the hierarchical ADDP (H-ADDP) model. Fig 3
shows a graphical representation of this extended model, with the following likelihood and

Fig 2. Graphical representation of the basic ADDPmixture model.Grey circles represent observed variables, white circles are hidden random variables.
Plates refer to duplicated random variables.

doi:10.1371/journal.pone.0147402.g002
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priors:

xrjijcrji ¼ k; mk; yj; s
2
x � N xrjijmk þ yj; s

2
x

� �
;

mk � N m0; s
2
0

� �
;

θ � N 0;Σyð Þ;
s2
x � IG a; bð Þ;

crjijπr� � πr�;

πr�jv; a � DPða; vÞ;
vjg � GEMðgÞ;

ð12Þ

where r indexes the different races, γ is the upper level concentration parameter, πr� ¼ ðprkÞ1k¼1

are the mixture weights for race r, v ¼ ðvkÞ1k¼1 are the global weights for all races.
One simple way to interpret this model is by conditioning on a particular race or an age-

gender group. If we only have data from a single race, we recover our original ADDP model. If
we only have data from a single age-gender group, we recover an HDP, i.e., the cluster compo-
nents are shared, but the mixing proportions are different.

Age-gender interaction. The basic ADDP mixture model considers male and female run-
ners independently, assuming independent shift delays θj between both genders j (i.e., we use a

Fig 3. Graphical representation of the H-ADDPmixture model.Cluster weights change across races, whereas cluster means change across age-gender
groups.

doi:10.1371/journal.pone.0147402.g003
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block-diagonal covariance matrix). A natural extension of the model consists in introducing an
additional gender factor δ and some age-gender interaction factors ωj in order to capture the
correlation between male and female athletes. In such model, the shift delays θj are shared for
both men and women, and j indexes different age groups instead of age-gender groups. We
refer to this model as the age-gender interaction ADDP model. The generative model can be
written as follows:

xjijcji ¼ k; gji; mk; yj; s
2
x; d;oj � N xjijmk þ yj þ gjiðdþ ojÞ; s2

x

� �
;

mk � N m0; s
2
0

� �
;

θ � N 0;Σyð Þ;
s2
x � IG a; bð Þ;

cjijπ � π;

πja � GEMðaÞ;
d � N 0; s2

g

� �
;

ω � N 0;Σoð Þ;

ð13Þ

where the indicator variables gji differentiate male (gji = 0) and female (gji = 1) runners, δ is the
gender effect, and ω = [ω1, . . ., ωJ]

> contains the age-gender interaction factors influencing the
likelihood of female runners. Additionally, s2

g and Sω are hyperparameters of the model.

Cluster-dependent shifts. We now present another extension of the model concerning
the shifts θ. In the model described above, the delay θj only depends on the age and gender,
which implies that the shift is the same for all clusters k, no matter whether they are fast or
slow runners. However, we can also consider cluster-dependent shifts. This allows us to capture
different shift evolutions across age/gender depending on the speed of runners. That is, instead
of having a single delay θj for each group, we consider a different delay θjk for each cluster and
group. Each vector θ�k = [θ1k, . . ., θJk]

> follows its own Gaussian process with mean μθ and
covariance matrix Sθ:

θ�k � N μy;Σyð Þ: ð14Þ

Table 1 shows a summary of all the ADDP model proposed in this paper. The main differ-
ence between them is the way in which the atom locations vary across the covariate space, i.e.,
the age-gender space. In the case of the H-ADDP model, atom positions depend on the age
and gender of runners, and weights vary as a function of the race.

Table 1. Summary of the ADDPmixture models developed in this paper.

Model Atom weights Atom locations

Basic ADDP πk μk + θj

H-ADDP πrk μk + θj

Age-gender interaction ADDP πk μk + θj + gji(δ + ωj)

Cluster-dependent ADDP πk μk + θjk

doi:10.1371/journal.pone.0147402.t001
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5 Modeling of running patterns
In this section, we propose an HDP model as a tool that complements the analysis of the previ-
ously introduced ADDP. In particular, we address the analysis of temporal evolution of run-
ners during the race, in order to understand how the marathoners pace themselves to complete
the marathon. We aim at discovering running patterns, i.e., distinguishing those overly opti-
mistic runners, with decreasing speed along the race, from well-trained runners who tend to
keep a constant speed. It also helps to understand where the marathons are harder, so that run-
ners can know beforehand. The hidden running patterns can be used for training purposes, as
they can find out the typical shortcomings of athletes with respect to their age, which may help
runners train and run more intelligently. In addition, we also show that discovering running
patterns provides a new tool for prediction of finishing times, with results comparable to the
best reported method in [17].

The idea is to cluster the data according to the relative time spent in each interval regardless
of each runner’s total time. In this sense, we are no longer interested in the absolute times, but
in the time proportions invested for each interval. Marathons tend to record the elapsed time
every 5 kilometers, in addition to half and full-marathon times. Our input data in this case con-
sists of an N × D dimensional matrix X with the time spent for each interval, together with the
age and gender. Here, N is the number of runners and D denotes the number of available time
records.

We normalize our input data so that each runner is represented as a vector containing the
fraction of time spent for each intermediate interval. We split the data X into J groups of run-
ners having the same gender and belonging to the same age group. Here, we do not use the
actual age of the runners, but split them according to age groups (i.e., age ranks) instead. We
use the HDP [6] to cluster the running patterns for the different groups. In the HDP, clusters
are allowed to show different probabilities for each group, but the per-cluster parameters are
shared across groups. As explained in Section 3, we first draw a global base distribution from a
DP as G0 * DP(γ,H), where G0 ¼

P1
k¼1 vkd�k

, and for each group j we draw a distribution

from a DP using G0 as base distribution, i.e., Gj * DP(α, G0). In our model, the likelihood
function is a Dirichlet distribution and can be written as

xjijcji ¼ k;pk � Dirichlet tpk1; . . . ; tpkDð Þ; ð15Þ

where xji is the normalized D-dimensional vector for runner i in group j, cji represents its clus-
ter assignment, pk = [pk1, . . ., pkD] is the vector of patterns representing cluster k, and τ is the
concentration hyperparameter of the model. We place a Dirichlet prior over the per-cluster
vectors pk,

pk � Dirichlet �‘1; . . . ; �‘Dð Þ; ð16Þ

where ℓd is the length of interval d, and � is its concentration hyperparameter.

6 Experiments
In the following experiments, we apply the described models to the New York City marathon
[26] for 6 different years, between 2006 and 2011. This database consists of 249,899 runners in
total. We additionally compare the NYC marathon data to the marathons of Boston [27] and
London [28] for 2010 and 2011, including 117,255 additional runners. Data is included in S1
Marathon Database File. In order to test the resulting models, we set aside a test set with 20%
of the participants for each race and age/gender group, ensuring that the age and gender pro-
portions are the same in both train and test sets.
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PLOS ONE | DOI:10.1371/journal.pone.0147402 January 28, 2016 10 / 28



Inference and parameter estimation. Posterior inference for all simulations is based on
Gibbs sampling. Following Algorithm 8 in [29], we do not integrate out the hidden variables,
and we propose 10 new clusters at each iteration. Simulations are run in MatLab, with an
approximated running time of 2.3 seconds per iteration for the plain ADDP model using an
Intel Core i7-4700MQ. In our results in Section 6.1, we report the values of the hidden variables
(means and shift delays) averaged for the last 10,000 iterations after running the sampler for
50,000 iterations. In Section 6.2, we run 10,000 iterations of the sampler and average the results
for the last 2,000 iterations. For the per-cluster variables, we carry out the averaging procedure
to account for potential label switching. Label switching is common in Bayesian mixture mod-
els, and it occurs because the likelihood is invariant to permutation of the cluster labels [30,
31]. Such problem might occur in our case, but it is easy to detect by looking at the traceplot of
the cluster-specific parameters, and hence parameters across MCMC samples can easily be
matched and averaged. Moreover, in our plots we only report the value of the most populous
clusters after filtering out the spurious ones with few runners. These spurious clusters appear
as a consequence of the nonparametric nature of the model and the inference procedure, and
can also be easily detected by looking at the traceplot of the cluster means. Without more data
we cannot actually tell whether there is an actual phenomenon in them or they have locked in a
noisy pattern.

Choice of hyperparameters. In the case of the basic ADDP mixture model in Section 4, we
use: s2

y ¼ 0:05, ν = 10, κ = 10−6, a = 1, b = 1, μ0 = 5 and s2
0 ¼ 1. The value of μ0 and σ0 are set

so that 2-hour marathoners are within 3 standard deviations and 9-hour marathoners (typical
cut-off time) are not unheard of. The ratio between σθ and σ0 is approximately 1 to 4, so the for-
mer is of the order of 15 minutes, while the latter is of the order of one hour. Therefore, σ0 con-
trols the overall finishing time, while σθ controls the differences among age groups. The values
of a and b control the variance of each Gaussian component and are set so that values of less
than an hour, but not too small, are more likely. ν was defined in Eq (7) and controls the corre-
lation between the mean finishing time of runners having same gender and different ages, so
that they do not deviate significantly. The value of κmeasures the error in the recorded time
and in this case it prevents numerical instabilities. In the age-gender interaction ADDP model,
we choose the same hyperparameters as in the basic ADDP model, and the additional hyper-
parameters are set as s2

g ¼ 0:05 (which corresponds to the same prior variance as for θj) and

So ¼ 1
2
Sy.

For the HDP model in Section 5, we set � = 0.2 km−1 and τ = 5000, because the differences
between the relative time spent at each 5-km interval are typically small. Since τ plays the role
of an inverse variance, the larger its value, the more clusters we should expect. We have found
empirically that values of τ ranging in the thousands (between 2500 and 10000) provide results
that admit similar interpretations, and they only differ in the granularity of the clusters. Finally,
we place a Gamma prior with shape 1 and scale 10 over the concentration parameters α and γ,
and sample their values following [32]. These hyperpriors are chosen in order to avoid the crea-
tion of too many spurious clusters. Due to the huge amount of data, results are not very sensi-
tive to hyperparameter values, as long as they are not set to completely misleading and
unrealistic values. In our application at hand, we can actually set (and be able to explain) the
values of the hyperparameters using all our prior knowledge, as detailed above, which is impor-
tant in order to incorporate the known information and allow for the expected variances.

6.1 Modeling of the finishing time
Density estimation. We first show the performance of our basic ADDP mixture model in

terms of density estimation, compared to a standard HDP with Gaussian likelihood, see [6] for
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details. We depict in Fig 4 the empirical histogram for a particular group of runners (we choose
all forty year-old male finishers for the plot), together with the overall density estimates, using
data for the six considered NYC marathons. We obtain σx = 5.8 minutes. Both the ADDP and
HDP model perform similarly in terms of density estimation. Note that the empirical histo-
gram in Fig 4 presents one narrow peak that is not fully captured by the ADDP nor HDP
model. This peak, just under 4 hours, and the valley right afterwards are due to some runners
trying to finish (and succeeding) a sub-4-hour marathon. This is a psychological effect that has
limited interest for us, since it is not indicative of runners’ inherent performance. Using clus-
ter-specific values for the variance s2

x would yield better density estimation, even capturing this
peak, but it would fail to provide any comparison between distributions. Here, we are interested
in ordering runners into clusters for comparison, which is achieved by having a shared value of
s2
x for all clusters.
Impact of age and gender. We now use the age-gender interaction ADDP model

described in Subsection 4.2. In addition to its density estimation capacity, the ADDP has an
additional descriptive strength, since it can show the impact of age and gender on runners per-
formance straightforwardly through inference of the age delays θj, gender factor δ and age-gen-
der interaction factors ωj. Fig 5 shows the average proportion of runners in each cluster, as well
as the inferred cluster means μk, for both the ADDP and a standard HDP with Gaussian

Fig 4. Density estimation capacities for the basic ADDPmodel. The histogram corresponds to the population of forty-year-old male runners, which is the
largest age-gender group. The red curves are the probability density functions inferred by the basic ADDPmodel. The blue dotted lines represent the inferred
individual clusters.

doi:10.1371/journal.pone.0147402.g004
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likelihood [6]. Runners aged above 69 are not reported because there are too few of them. The
HDP results are not easy to interpret, except for the first three clusters that show the time deg-
radation with age, because we do not know the cumulative percentage as the finishing time is
increased.

The ADDP model is much easier to understand. The first cluster contains the “Olympic”
quality runners for all ages, if Olympics were held for each age group (less than 1% of the run-
ners). The second cluster has the competitive runners (about 13% of the runners), the third
cluster has the standard marathoners (about 33% of all runners), and so on. The x-axis in Fig 5
provides the value of μk + θj for 28 year-old male runners and the degradation for other ages
and sex is shown in Table 2. Using the plot and the table, we can know the proportion of run-
ners in each group and how much extra time they need compare to the fastest group.

Fig 6 shows the value of the inferred cluster means μk plus and minus one standard devia-
tion, shifted according to θj, δ, and ωj for both men and women. We only depict the two fastest
clusters, and compare the corresponding values of the finishing time with the entry require-
ments of different marathons and the WMA records. Best performance for females and males
is predicted, respectively, at 26 and 28 years old, which is consistent with [33]. The plateau

Fig 5. Age proportions per cluster. The HDP is at the top and the age-gender interaction ADDP is at the bottom. Male and female runners are shown
together. The colors design the age of the runners, from 18-year-old in blue to 69-year-old in dark red. For the ADDPmodel, the cluster labels correspond to
μk + θj, with the value of θj corresponding to the 28-year-old male runners, the shifts for other age or gender can be found in Table 2.

doi:10.1371/journal.pone.0147402.g005
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afterwards illustrates a stable period of performance between the 30’s and 40’s for both
genders.

All plots behave in a similar way. This is what we meant in the introduction by that the first
insights should not be foreign to us, so experts in marathon modeling can take other conclusions
as plausible. Now, we focus on what is different. The most striking difference is how the entry
levels penalize younger male runners, specially runners under 25. To be fairer to the youngest
runners, their entry time should be raised (in about 7 minutes compared to the 30 years-old).
The Boston marathon entry level is perfectly aligned with our second cluster for 40+ years old
men and almost perfectly match the female second cluster, except for the runners under 23.
There is a penalty of about 4–7 minutes for runners aged 25–39 and between 7–14 minutes for
18–24 year-old runners. The entry times slightly favor the 45–50 year-old runners.

The London marathon also penalizes excessively runners in their fifties compared to those
in their forties and sixties, which seems odd. It is also clear that over 50 (or even 45), the degra-
dation of the finishing times per year is significant enough to merit a finer scale to guarantee
entry times (this may also apply for 18–23 years-old). For example, a runner of 60 years old is
doing almost 15 minutes less than a runner of 64 (which is a very long time in any marathon).
Finally, the WMA curve for men penalizes the older male runners, while for older female run-
ners it seems to have a similar trend than the first cluster of the ADDPmodel. For younger run-
ners, the difference between the typical women in the olympic cluster and the WMA is larger
than the difference between the typical men in the olympic cluster and the WMA.

Fig 7 shows the finishing time gap between women and men. The gap seems to be of about
30 minutes and slightly increasing with age. There are too few runners over 65 for the final
decay to be statistically significant. We can come up with two different plausible explanations,
but we do not have data to confirm whether this empirical effect is due to any of them or to
some other unknown factor. The degradation with age between women and men might be due
to physiological factors, i.e., women age differently than men for long distance running, or it

Table 2. Averaged values of θj for men (or θj + δ +ωj for women) for all age groups in minutes. The values have been shifted so that θ28 = 0 for men.
This table is useful to directly compare the finishing time of two runners of any age and gender. We only have to calculate the difference of their respective
cells in the table and we will get the time penalty that should be considered (in minutes).

age 18 19

men 8.00 6.34

women 33.60 31.89

age 20 21 22 23 24 25 26 27 28 29

men 4.88 3.62 2.53 1.66 0.98 0.49 0.18 0.04 0.00 0.10

women 30.43 29.21 28.19 27.42 26.87 26.53 26.38 26.41 26.53 26.79

age 30 31 32 33 34 35 36 37 38 39

men 0.28 0.51 0.79 1.09 1.39 1.71 2.03 2.34 2.65 2.98

women 27.13 27.50 27.87 28.27 28.65 29.03 29.39 29.74 30.08 30.46

age 40 41 42 43 44 45 46 47 48 49

men 3.30 3.66 4.11 4.61 5.25 5.99 6.85 7.90 9.09 10.47

women 30.82 31.23 31.78 32.41 33.21 34.13 35.24 36.58 38.07 39.81

age 50 51 52 53 54 55 56 57 58 59

men 12.01 13.74 15.66 17.74 20.00 22.38 24.91 27.51 30.21 32.95

women 41.73 43.88 46.23 48.75 51.47 54.29 57.26 60.27 63.36 66.44

age 60 61 62 63 64 65 66 67 68 69

men 35.70 38.44 41.16 43.80 46.35 48.77 51.06 53.17 55.09 56.81

women 69.50 72.51 75.46 78.26 80.93 83.42 85.73 87.83 89.69 91.31

doi:10.1371/journal.pone.0147402.t002
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Fig 6. Inferred cluster means and entry requirements. Comparison of the inferred cluster means, i.e., μk + θj with k 2 {1,2}, with the entry requirements
(runners below the curve can qualify) for New York City, Boston and London marathons. (Top) Men. (Bottom) Women.

doi:10.1371/journal.pone.0147402.g006
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might be due to socio-economical factors, i.e., women above 30 cannot train as much as men
do.

Comparison across multiple races. We compare the NYC marathons to the ones in Bos-
ton and London, using the H-ADDP model described in Section 4.2. We consider both the
2010 and 2011 marathons, and we split the runners into age groups instead of using their actual
age because we do not have this data available for London marathon. Fig 8 shows the inferred
values of the per-race weights πrk. The values for μk+θj in the x-axis are those of the 45–49 male
runners and the value of σx = 19 minutes. First, we notice that the values of πrk are quite differ-
ent for each place, but they show little variation between different years. We can argue that this
pattern is mainly due to the race difficulty, assuming a stationary selection of the runners.

Boston has the most striking pattern, which can easily be explained by the strict entry
requirement time. For 45–49 years old the entry time is 3h25m and the cluster with 70% of the
runners has a mean of 3h19m20s. There is a group of almost 15% of the runners that finish just
under 4 hours and about 15% of the runners that do much worse than their qualifying time.
This might be due to poor training or having some issue during the race. For the Boston mara-
thons, there are no runners in the 3h cluster and around 1% runners in the fastest cluster. The
void in the 3h group is due to the massive proportion of runners in the 3h19m group, which
makes any runner in that group to be represented by the 3h19m cluster. The runners under 3h

Fig 7. Gender effect on the final performance. Averaged inferred value for the gender coefficients δ +ωj.

doi:10.1371/journal.pone.0147402.g007
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are the runners that do much better than the needed qualifying time and cannot be represented
by the massive 3h19m group.

The proportions in NYC and London are more similar to each other, as both marathons
allow runners to enter the race in more ways than just by entry requirement. Being these two
races more accessible or democratic, we can consider the proportions in the different clusters
closer to the general population of marathon runners. The 3h group is more populous in Lon-
don than NYC, but the 3h19m and 3h53m clusters contain a larger proportion of NYC run-
ners. The 4h30m group is equally probable in both races. London seems to attract a higher
proportion of slower runners (over 5 hours). This difference might be due to the difficulty of
the marathons (profile and weather conditions) or the pull of runners. NYC race is more hilly
than London, which can explain the difference in the first cluster, but the runners in NYC are
more diverse (coming from different parts of the country and world), while London attracts
more local runners. This might also explain the pattern of the slowest athletes.

Comparison taking into account the speed. We now apply the model extension in Sec-
tion 4.2 with cluster-dependent shift delays θjk. Figs 9 and 10 show the inferred cluster means
for men and women respectively. Although the overall shape of the curves is quite similar
across clusters, which validates our previous conclusions, there are some noticeable differences
for the fastest runners and we concentrate on those.

Fig 8. Mixture weights for the H-ADDPmixture model. The figure shows the mixture weights πrk for each race r and cluster k. The legend shows the
different races, and the x-axis corresponds to different clusters.

doi:10.1371/journal.pone.0147402.g008
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The most interesting difference is the behavior of Clusters 1 and 2. At a first glance, it seems
to the naked eye that women are faster than men. Cluster 1 captures the Olympic female run-
ners that are doing under 2h45m, and its proportion is very low (less than 1%). Cluster 2 for
women covers those runners doing under 3h45m and it represents 13% of the female popula-
tion. There is a significant difference between Olympic female runners and competitive female
runners, so two clusters are needed. For men under 50, Cluster 2 represents 13% of the runners
and it captures those doing under 3h30. The model considers that the Olympic runners can be
modeled by the tail of the distribution of competitive runners, i.e., Cluster 2, without requiring
a new cluster as the Olympic women need. Male runners over 50 behave as women do, and two
clusters are needed to separate the Olympic and the competitive groups.

For men under 50, Cluster 1 sits in between the two populous clusters, becoming irrelevant
in terms of density estimation. It appears because the model forces the same proportion for all
clusters across age and gender groups. In order to support this conclusion we have depicted the
histogram of the 28-year-old runners together with the inferred density in logarithm scale in
Figs 11 and 12. In those plots, we can see that the Olympic male runners just doing over 2
hours can be modeled by the same cluster as the competitive male runners, while the finishing
time for the Olympic female runners could not be explained by the competitive female ones,

Fig 9. Inferred cluster means μk + θjk for men.We have used the extended model with speed-dependent clusters. The legend shows the inferred value of
the proportions πk for each cluster.

doi:10.1371/journal.pone.0147402.g009
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and hence a specific cluster is needed. In previous sections, θj was not allowed to vary with k.
The cluster for the Olympic males was then visible, but this is an effect of forcing the same
value of θj for all clusters, since women and older male runners need such cluster. This is the
only significant difference when we replace θj with θjk. In short, Cluster 1 (with low weight) is
describing a different local feature for men under 50 than for men over 50 and women of all
ages, and the Olympic male runners below 50 are found in the tail of Cluster 2 instead of Clus-
ter 1 as in the other age/gender groups.

There may be several explanations for this effect. Here we present some hypothesis that
should be confirmed with further studies. First, in the NYC marathon the Olympic women run
by themselves in an early wave, while the Olympic men start at the same time as everyone else,
so competitive men can try to follow them. However, this does not explain the need for a clus-
ter for fast male runners over 50. Second, we can also hypothesize that female Olympic runners
have a training that is significantly different from competitive female runners, while for male
runners there is a continuum in the training between Olympic and competitive runners. This
could also apply for male over 50, in which there are not that many doing Olympic finishing
times and competitive runners are not as strong. Finally, another plausible hypothesis is that
younger male runners are more risky than female and older male runners. Those that succeed

Fig 10. Inferred cluster means μk + θjk for women.We have used the extended model with speed-dependent clusters. The legend shows the inferred
value of the proportions πk for each cluster.

doi:10.1371/journal.pone.0147402.g010
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do a better time and close the gap between the Olympic and competitive runners. Older males
and female competitive runners do not follow such a risky approach and therefore they do not
close the gap with the Olympic runners. There is some evidence on this risky hypothesis in Sec-
tion 6.2, in which we see that the clusters with reckless running patterns are mainly populated
by younger males.

6.2 Modeling latent running patterns
Here, we consider temporal sequences of time measurements every 5 km, and at half and full
marathon, as explained in Section 5.

Running patterns. In this section, we use the data from 2007–2011 NYC marathons, with
194,778 runners. We discarded data from the 2006 marathon because we observed that inter-
mediate measurements were not fully synchronized with the half and full marathon times.
After applying our HDP model, we found a modal value of 46 clusters. In Fig 13 we show the
twelve most populated clusters, which account for around 90% of the population on average.
The remaining clusters do not behave significantly different than the ones we show in this sec-
tion. For clarity, we do not directly plot the time proportion spent at each interval, but instead

Fig 11. Density estimation for 28-year-old male runners.We have used the cluster-dependent ADDPmodel, where cluster positions are speed-
dependent. The blue solid line represents the inferred distribution and the green dash-dotted line is the normalized histogram with 6-minute bins. Black and
red lines correspond to the individual Gaussian components that define the inferred density, weighted by their averaged weight.

doi:10.1371/journal.pone.0147402.g011
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show the speed at each 5-km leg, assuming a value of 11 km/h for the speed during the first 5
kilometers. We have removed the half-marathon record for clarity in the plot. The total net
time, assuming this value for the initial speed, is shown in the legend for each cluster. We also
plot the approximate elevation profile of the marathon with a thin grey line.

Before the half marathon mark, we can roughly see three different types of clusters: those
corresponding to athletes running at approximately constant speed (clusters 0, 1, 1− and 1−−),
those that are already showing a decreased pace (clusters 2A, 2A−, 2A−−, 2B, and 2B−), and
those for which the decreased pace is significantly more relevant (clusters 3, 3−, and 3−−). Just
before the 25-km mark, there is an overall drop in performance that can be explained by the
Queensborough bridge and, after that, the twelve clusters become clearly different from one
another, giving their labels an obvious meaning.

People in Cluster 1 (the most populated cluster, one in every four runner) are well trained
runners that run at almost constant speed and the changes can be explained by the hills in each
5-Km interval and they speed up to finish a strong race in the last kilometer, while Clusters 1−

and 1−− suffered the effect of the Manhattan hills and bridges in and out of the Bronx, besides
the natural weariness after running for 35 km. Cluster 1−− correspond to the runners that out-
paced themselves and finished the marathon at a very low speed, compared with what they

Fig 12. Density estimation for 28-year-old female runners.We have used the cluster-dependent ADDPmodel, where cluster positions are speed-
dependent. The blue solid line represents the inferred distribution and the green dash-dotted line is the normalized histogram with 6-minute bins. Black and
red lines correspond to the individual Gaussian components that define the inferred density, weighted by their averaged weight.

doi:10.1371/journal.pone.0147402.g012
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could have done. Cluster 0 corresponds to runners who could have done a better race if they
had run faster from the beginning and not only after half the race. The rest of the clusters corre-
spond to those overly optimistic runners who could not run as fast as they thought at the begin-
ning. These are the runners who suffered the most. For all the clusters, we can observe an
increased speed in the last 2 km, which can be explained by the proximity to the finishing line
and the effect of trying to finish under some target time.

Fig 14 shows the averaged inferred proportion of runners πjk in each of the twelve most pop-
ulated clusters for both men and women, broken down by age groups (blue represents the
youngest runners). Clusters 1−, 1−−, 2A−, 2A−− and 2B− are mostly populated by men (e.g.,
19.4% of men and only 6.7% of women are in Cluster 1−, and 5% of men and 0.9% of women
are in cluster 1−−). In other words, the clusters of overconfident runners are mostly populated
by men. Clusters 2A− and 2A−− present a constant proportion across ages for both genders.
The proportion of women in Clusters 0 and 2A is higher than for men (e.g., 7.5% of men and
24.1% of women are in Cluster 2A). These clusters represent the conservative runners that
have some doubts about how fast they can finish a 42.2-km race. In Cluster 0 there is a larger
proportion of 18–19 year-old runners for both genders. These are probably first timers, which
is consistent with the inexperienced behavior of runners in that cluster. In contrast, Cluster 1
(well-trained athletes) is mostly populated by runners in their thirties, forties and fifties. Custer
2A becomes more popular for older runners. In this cluster, the runner speed slightly decreases
in the first part of the race, but it remains constant in the second half-marathon, which might

Fig 13. Inferred running patterns. (Thick lines) Inferred running patterns or speed for the twelve most populated clusters, assuming an initial speed of 11
km/h. The legend additionally shows the average proportion of runners in each cluster, as well as the net time for that value of the initial speed. (Thin grey
line) Elevation profile of the race.

doi:10.1371/journal.pone.0147402.g013
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indicate that after the initial 10 km, the runners slow down to make sure that they can continue
at a somewhat constant pace.

In Fig 15, we show the averaged proportion of runners in each of the twelve most populated
clusters, broken down by their net time, up to 7 hours. As expected, Clusters 0, 1 and 1− com-
prise a high proportion of the fastest runners, i.e., those that can complete the marathon below
4 hours. In contrast, Clusters 3, 3− and 3−− are mostly populated by the slowest runners, with a
net time above 5.5 hours. Clusters 2A, 2A−, 2A−−, 2B and 2B− have the highest proportion of
runners with net time between 4.5 and 5.5 hours. These results are consistent with the descrip-
tion of the clusters provided above.

Prediction of final performance. We can also apply our model to predict the arrival time
of athletes. In this case, observations correspond to time proportions at each interval, up to the
last available record. We train our model with the subjects in both the test and the training set,
assuming that observations up to interval D are known for all of them. Note that we apply our
inference procedure independently for each value of D. Regarding the prediction task, we apply
a Bayesian approach in which we take into account the weights from the posterior probabilities
of being in each cluster. At each iteration of the sampler and for each runner in the test set, we
first compute the posterior probability of being in each of the clusters found using the training
set. Second, we project forward his last available time record to obtain the predicted finishing
time for each cluster. Third, our prediction is computed as the weighted average of the

Fig 14. Age proportions for each running pattern. (Top) Men. (Bottom) Women. The legend shows the different age groups considered.

doi:10.1371/journal.pone.0147402.g014
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predictions for each cluster (weighted by the posterior probabilities of belonging to each clus-
ter). In order to project forward the last available time record for each cluster, we multiply by a
factor the time up to interval D of the considered runner, i.e., our prediction is obtained as pre-
dictionji = q × (xji)D. The factor q is computed as the median of the quotient of the finishing
time and the time up to interval D for those runners in the training set and in the correspond-
ing cluster. Using the median instead of the mean makes predictions more robust against out-
lier runners. Finally, we average our predictions for the last iterations of the sampler.

In Fig 16, we show the empirical density of the prediction error for all subjects in the test set
of the 2011 NYC marathon. As the number of available records D increases, the curves tend to
shrink around zero.

Tables 3 and 4 report the average prediction errors, as well as the root of the mean square
error, compared with the results obtained following the 100-NN method with forward projec-
tion described in [17], for 2010 and 2011 NYC marathons. We do not outperform the discrimi-
native method, but our proposal has the advantage of dealing with time proportions instead of
absolute times, which allows predictions for slower runners based on the arrival time of faster
ones. Although our model only uses relative times (it has one less degree of freedom) it does
equally well, the differences being negligible. Both methods are basically unbiased, as the bias
only explains less than 2% of the root of the mean square error, but this bias seems to be always
positive, which means that the estimations are optimistic on average.

7 Conclusions
This paper presents a novel application of BNPs to model marathon runners. By including con-
straints over two well-known BNP priors, we have provided insightful solutions to the prob-
lems of age-grading and performance estimation in marathon races.

Fig 15. Proportion of runners for each running pattern broken down by net time. The x-axis indexes the clusters found by the HDPmodel. The legend
shows time intervals for the marathon finishing time.

doi:10.1371/journal.pone.0147402.g015
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For the age-grading problem, the ADDP model informs us of the impact of age and gender
on runners’ performance. Statistical age-grading curves have been inferred, which allows us to
rank and reward athletes fairly in official events. A model extension lets us capture the impact
of meteorological conditions or even topology on runners. We infer the latent difficulty for
each competition at different years, allowing robust comparison across different marathon
events.

We have also applied the HDP mixture model to identify different running patterns (con-
sidering 5 km intervals) and their distribution across ages and gender. This information can
help runners to train and run more intelligently. This method is also able to provide accurate
predictions for the final arrival time from intermediate time records, which are comparable to
state-of-the-art approaches.

Regarding the applicability of our approach, we remark that the idea of comparing group
density distributions fairly within a single model is an attractive research path, that could result

Fig 16. Prediction error. Density of the prediction error for different values of D (number of available
intermediate records).

doi:10.1371/journal.pone.0147402.g016

Table 3. Test prediction errors for year 2010.

100-NN HDP

avg rmse avg rmse

D = 1 2.819 19.033 3.778 19.533

D = 2 2.554 16.586 3.226 17.224

D = 3 1.842 13.408 2.207 14.290

D = 4 1.717 12.620 2.000 13.436

D = 5 1.264 9.748 1.255 10.536

D = 6 0.733 6.913 0.705 7.448

D = 7 0.221 3.921 0.212 4.195

D = 8 0.031 1.355 0.037 1.434

We show the average error for both 100-NN and HDP methods (“avg”), as well as the square root of the

mean square error (“rmse”). Results are all expressed in minutes. Rows represent number of available time

records.

doi:10.1371/journal.pone.0147402.t003
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in a huge and broad number of applications. It can be applied to many problems involving
stratified data and a certain control variable (e.g., age, gender, nationality). In problems con-
cerning group data or any competitive human activity, sharing the mixture weights across
groups is a sensible assumption. Some application examples can be found in pediatrics (e.g.,
comparison of children population according to weight and height), social sciences (e.g., analy-
sis of gender impact on actual salary income across countries), or pharmaceutics (e.g., monitor-
ing certain drug responses according to some patient covariates).

Supporting Information
S1 Marathon Database File. Data used in this study as a.mat file. Further descriptions are
found in the README files inside.
(MAT)
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