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ABSTRACT 

Modeling Construction Competitive Bidding: An Agent-Based Approach 

Sadegh Asgari 

 

The construction industry is a complex, multi-level system that includes a large collection of 

independent, heterogeneous organizations and institutions and is associated with several economic 

sectors and markets. Because of its unique characteristics, the construction industry as one of the 

major economic sectors and contributors to the economic development of the nation needs its own 

specific and dedicated economics. The shortcomings of the existing methodologies call for the use 

of more sophisticated modeling tools that can capture more important aspects of the real world and 

its complexity in particular the interconnections among elements of the system, their idiosyncrasies, 

and emergent behavior. As a pioneer attempt in the exploration of a new theory of construction 

economics, this study aims to found the first building blocks of the comprehensive economic 

model of the construction industry. In this dissertation, an agent-based approach is applied to 

model the low-bid lump-sum construction competitive bidding by which most construction works 

are allocated. This model has several advantages over the previous analytical and empirical models 

including the capability of observing the bidding process dynamics, the interaction between the 

heterogeneous and learning agents, and the emergent bidding patterns arising from multiple 

scenarios of market conditions and contractors’ attributes. Then the model is used as a virtual 

laboratory for conducting a variety of experiments to answer several important research questions 

in the field of construction economics. The main research objectives of this study are to: (1) 

analyze the effectiveness of major quantitative methods in the bidding environment under a variety 



of market conditions (2) study the effect of contractors’ risk behavior, cost estimating and project 

management skills, and complexity of projects on contractors’ choice of optimal markup, long-

term financial growth and market share (3) investigate the impact of risk behavior and need for 

work on contractors’ performance. The results presented in this dissertation offer new 

understandings and insights on the construction bidding environment and recommendations for 

both owners and contractors’ competitive success, which are not available using conventional 

approaches. In particular, results suggest that (1) using Friedman model can result in considerably 

higher market share whereas using Gates model can result in higher profit per project, (2) the 

optimal policy for contractors is moderation in both dimensions of risk attitude and need for work, 

(3) the comparative performance of slightly and extremely risk averse contractors are depending 

on level of cost estimating accuracy and project execution skills of contractors as well as the level 

of project complexities.  
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CHAPTER 1. INTRODUCTION 

 

“As far as the laws of mathematics refer to reality, they are not certain; and as far as they are 

certain, they do not refer to reality.” ~ Albert Einstein 

 

1.1. Overview 

The construction industry as one of the major economic sectors in any economy plays a significant 

role in the economic development. The construction industry can be best understood and analyzed 

as system-of-systems, a complex, multi-level system that includes a large collection of 

independent, heterogeneous organizations and institutions and is associated economic sectors and 

markets. While there are numerous modeling techniques available in the field of economics 

construction needs its own specific and dedicated economics because of several reasons including 

but not limited to the facts that: (1) the size of the industry is considerable and its contribution to 

the whole economy, employment, welfare, and development of other industries is significant; (2) 

the final product of the construction process is large, immobile, capital-intensive, and often unique; 

(3) construction markets are very diverse and fragmented; (4) demand for construction services 

and products is highly interdependent with the current and future state of the economy; and (5) 

mechanism for price determination is highly complex.  

Construction bidding environment is an important component of the industry since allocation of 

contracts and consequently the price of construction services are usually determined through some 

form of competitive bidding (Myers, 2013). Competitive bidding is a mechanism universally used 

by construction clients to allocate construction work to contractors and also establish the market 

price (D. S. Drew, 2010). Construction bidding is a challenging and risky process where competing 
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contractors of different types and sizes with various short-term and long-term goals and strategies, 

seek to win the offered project at the best value. There are a number of bidding methods (including 

the lowest bid, the average bid, the second lowest bid, and the best value bid) and selection criteria 

(including price, time, and quality) that are utilized by owners to choose the best contractor and 

ensure the project is delivered in accordance with its objectives (Gordon, 1994). Although 

construction bidding may be similar to auctions of manufactured products, airport slots and online 

advertisements (as known as AdWords) in terms of rules and procedures, its dynamics vary in 

many ways due to the nature and complexities of construction works (Runeson & Skitmore, 1999). 

1.2. Problem Statement 

The construction bidding environment is a perfect example of an interactive, dynamic and complex 

system of heterogeneous and autonomous agents (contractors and owners). Complexity of the 

construction bidding environment originates from a large number of actors with uncertain, 

heterogeneous but interdependent behavior interacting with themselves and construction projects. 

Researchers have investigated different aspects of construction bidding from both contractors’ and 

owners’ perspectives using analytical and empirical approaches. Accordingly, the literature can be 

divided into two main categories: (1) statistical models that have been applied to model and predict 

behavior of the market or price fluctuations, and (2) mathematical and game theoretic models that 

are built that on strong assumptions such as rational agents and linearity. These two categories of 

models usually fail to capture complexity and dynamics of bidding environment by disregarding 

interactions among players. Due to the methodological restrictions and limited applicability of 

previous research studies to address existing research questions, there is a need for developing a 

proper methodology that captures complexity of the construction bidding environment.  
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1.3. Research Objectives 

The primary goal of this study is to develop an agent-based model of the construction bidding 

environment and utilize it as a virtual laboratory to conduct a variety of simulation experiments to 

answer the following research questions:  

 What is the impact of the choice of learning mechanisms on contractors’ financial 

performance, success rate, and market share under a variety of market scenarios?  

 How do these learning mechanisms perform in competition against each other and 

irrational players? 

 How does the interaction among risk attitude, cost estimating accuracy and project 

management skills impact contractors’ performance in low and high risk markets?  

 Is there an optimal level of risk attitude by which contractors can improve their long-

term performance? 

 Should a markup discount be considered to account for need for work? If yes, to what 

degree?  

1.4. Research Significance 

Understanding of the construction industry as a system-of-systems can lead the way for further 

research in this discipline. This dissertation, as a part of this ambitious project, is an attempt to 

create the first fundamental building blocks of this economic model of the construction industry. 

Specifically, this dissertation focuses on modeling and analyzing the most prevailing form of 

market in the construction industry, the competitive bidding environment. The main research 

development of this study contribute to the advancement of current theory and practice of 

construction bidding. The developed virtual laboratory can serve as an experimental tool that can 
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be used by any potential user (owner or contractor) to evaluate and compare different bidding 

strategies and project tendering approaches. It can also serve as an educational tool in academic 

forums and classes to teach construction management students. 

1.5. Research Methodology 

 The complexity of the construction bidding environment can be captured only through a bottom-

up modeling approach that focuses on the interactions among the components of the system. Agent 

based modeling (ABM) is used to develop the simulation model. ABM provides a platform in 

which contributions of the previous studies can be used for defining and building elements of the 

model such as project attributes and contractors’ possible goals and behaviors as well as 

establishing relationships amongst those elements. To understand and analyze the construction 

bidding dynamics, ABM offers several advantages over other modeling and simulation methods: 

 ABM takes into account the bounded rationality and learning capability of agents. As 

opposed to mathematical and game theoretic modeling.  

 ABM allows consideration of heterogeneous agents that have different goals, behaviors 

and capabilities.  

 ABM provides modelers with the ability to conduct experiments under various scenarios 

with little effort.  

 ABM can be used for performing ex-ante analysis of complex systems. Dynamic game 

theoretic analysis uses backward induction.  

 ABM has shown great potential in dealing with emergent behaviors of complex systems.  

1.6. Thesis Organization 

The organization of this dissertation and its relation to the main research tasks are shown in 

Table 1.1.  
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Table 1.1. Organization of the dissertation and list of tasks in order to accomplish the dissertation objectives  

Organization  Task # Task Description 

Chapter 1  Introduction to the dissertation  

Chapter 2 1 Overview of key concepts in the field of construction economics, 

agent-based modeling, and system-of-systems in order to form a solid 

point of departure for the present study 

Chapter 3 

 

2 A comprehensive review and categorization of scientific studies in the 

field of competitive construction bidding based on the methodological 

approach 

3 Identification of the need and proper methodology for developing a 

comprehensive model that captures the dynamics of bidding 

environment 

4 Development of an agent-based model of the construction competitive 

bidding environment 

Chapter 4 

 

5 A review of major quantitative bidding models are identified in the 

literature 

6 Implementation of the selected quantitative bidding methods in the 

model 

7 Design and conduct of experiments for comparing of the effectiveness 

of these methods in the bidding environment under a variety of 

scenarios 

Chapter 5 8 An extensive review of  the literature to identify the key parameters 

involved in the bidding process  

9 Formulation and implementation of the complex interaction among 

contractors’ risk behavior, cost estimating and project management 

skills, and complexity of projects 

10 Design and conduct of experiments for analyzing the impact of risk 

attitude, cost estimating accuracy, project management skills, and 

project complexity on contractors’ performance and the market 

Chapter 6 11 An extensive review of  descriptive studies in the literature to build a 

rule-based markup decision model that replicates behavior of a typical 

contractor 

12 Formulation and implementation of the multi-criteria bidding methods 

in the model  

13 Design and conduct of experiments for studying impact of 

consideration of risk allowance and need for work on contractor’s 

financial success in a long run 

Chapter 7 14 Verification of the agent-based models 

15 Validation of the agent-based models 

Chapter 8 16 Conclusions  

17 Recommended future works 
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CHAPTER 2. LITERATURE REVIEW  

 

“No science thrives in the atmosphere of direct practical aim. We should still be without most of 

the conveniences of modern life if physicists had been as eager for immediate applications as most 

economists are and always have been.” J. Schumpeter  

 

2.1. Introduction  

This chapter aims to overview key concepts in the field of construction economics and system-of-

systems. This provides the foundation for understanding the main purpose of the dissertation, the 

methodology used in the dissertation, and the reason for this choice. The first section provides a 

brief overview on the construction industry. The “Construction Economics” section elaborates on 

the need for developing an economic understanding of the industry with respects to its unique 

characteristics. Then, agent-based modeling (ABM) is introduced as an advanced methodology 

used for economic modeling of complex systems and compared against other methodologies. In 

the next section, system-of-systems is introduced and recommended to facilitate applying any 

methodology to an economic or managerial problem in construction. System-of-systems serves as 

a lens to look at the industry so that the problem can be best defined, abstracted, and modeled using 

a variety of methodologies.  

2.2. Construction Industry: Overview  

The construction industry is a complex, multi-level system that includes a large collection of 

independent, heterogeneous organizations and institutions and is associated economic sectors and 

markets including but not limited to public clients, private developers, financiers, contractors, 
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architects, designers, consultants, suppliers, manufacturers, subcontractors, facility managers, 

professionals societies, regulatory agencies, and labor unions. As shown in Figure 2.1, the 

constituents of this system are interconnected with each other at different levels as well as other 

sectors and industries in the economy at local, regional, national, and global levels.  

 

 

Figure 2.1. A schematic representation of the construction industry as a complex, multi-level system 

 

The construction industry as one of the major economic sectors in any economy plays a significant 

role in the economic development. According to a Price-Waterhouse-Coopers (PwC)-sponsored 

report, the construction industry accounted for more than 11 percent of the global GDP in 2011 

and this share is projected to reach 13.2 percent by 2020 (Roumeliotis, 2011). The total value of 

public investment in construction will increase to $14.5 trillion in the U.S. by 2020, with growth 

averaging 7.8 percent per year over the next five years (Roumeliotis, 2011). Although, this 

investment in most developed countries is constrained due to large public deficits, austerity 
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programs, slow population growth and limited economic expansion, the United States will be the 

exception given its growing population. Besides its significant role in the whole economy, the 

construction industry has also many extensive linkages with other industries. For example, 

residential building is among the most labor-intensive activities; the construction industry has 

critical recruitment, training, skills and safety issues; and, acquisition of a house is almost 

considered as the largest investment most individuals can make (De Valence, 2010). Despite the 

important role in the economy and the interdependency with other industries, to my best 

knowledge most of the published research studies in construction related journals and conferences 

have concentrated on different aspects of construction projects and project management. 

Construction has been and will always be a project-based industry. However, modeling and 

analyzing projects and the dynamics among involved parties at project level is necessary but not 

enough to develop an understanding of the industry. There is a need to develop a comprehensive 

economic model of the industry using a systematic approach. This model can consider strategic 

behavior of firms, various forms of project delivery and contractor selection (known as allocation 

mechanism in economics), market structure, public policies, regulatory measures, and linkages 

with other industries through supply chains of materials, money, services, and labors.  

2.3. Construction Economics: Definition and Domain  

There is still lack of a consensus on definition, domain, and content of construction economics. 

However, the two most prevalent views on construction economics are:  

1. Construction economics is the application of economics to the study of the construction 

firm, the construction process, and the construction industry (Cooke, 1996; Hillebrandt, 

2000; Raftery, 1991).  
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2. Construction economics is concerned with the allocation of scarce resources (Gruneberg, 

1997; Myers, 2013; Ofori, 1990; Robbins, 2007).  

Construction economics has not yet developed to the point where it could be acknowledged as a 

distinct branch of general economics (Ofori, 1994). However, many scholars in both the academia 

and the industry argue that construction needs its own specific and dedicated economics because 

of several reasons including but not limited to the following (De Valence, 2010):  

 The size of the industry is considerable and its contribution to the whole economy, 

employment, welfare, and development of other industries is significant.  

 The final product of the construction process has unique characteristics; it is large, 

immobile, capital-intensive, and often one-off.  

 Construction markets are very diverse and fragmented; a large number of small 

geographically dispersed firms with diverse specialties dominate the industry. According 

to the US bureau of labor statistics about 80% of construction payroll establishments had 

1 to 9 employees. 

 Demand for construction services and products is highly dependent on the current and 

future state of the economy.  

 Mechanism for price determination is highly complex. The price of the final product is 

usually determined through a number of tendering processes.  

 The construction industry tends to be stable over the long term, while it is also remarkably 

unstable in the short term, in particular during periods of economic adjustment. The 

construction industry contracts earlier and more quickly than the whole economy when the 

economy contracts. On the other hand, despite its faster growth at the time of recovery, the 
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construction industry starts its recovery later than the economy. Construction works are 

very seasonal; most layoffs in the industry occur in the fourth quarter of each year.  

Consistent with the classic categorizations of economics, construction economics can be divided 

into three main branches: construction microeconomics, construction macroeconomics, and 

construction mesoeconomics. Table 2.1 presents definition and associated topics of each branch 

of construction economics.  

 

Table 2.1. Definition and topics of the three branches of construction economics 

Field Definition Topics 

Construction 

Microeconomics  

It studies the behavior of involved 

individuals and organizations 

through lifecycle of projects at 

different levels in making decisions 

on the allocation of their limited 

resources.  

Market analysis; Competitive 

bidding; Project delivery systems; 

Project evaluations; Cost analysis and 

management; Decision under 

uncertainty; Construction labor 

economics.  

Construction 

Mesoeconomics  

It is an intermediate level between 

microeconomics and 

macroeconomics, dealing with the 

economies of the entire sector and 

focuses on the structure of the 

industry and interdependencies 

among constituents of the industry.  

A holistic approach towards the 

industry; Industrial organization; 

Complexity.  

Construction 

Macroeconomics  

It focuses on the performance of the 

industry as a whole. It studies 

aggregated indicators of the 

construction industry such as 

construction spending and price 

indexes to understand how the whole 

economy functions.  

Construction output; Aggregate 

demand and supply of construction 

services; Construction 

unemployment; Inflation and 

deflation of prices; Global 

construction market.  

 

Through life cycle of a project, there can be a number of markets: a market for architecture and 

design services, a market for construction, and a market for operation and maintenance (See 

Figure 2.1). Each market has its own specific allocation mechanism. In construction markets, 

buyers (usually public and private clients) and sellers (usually contractors) meet to agree on a price 
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and a quantity for construction goods. Therefore, the term “market” has a narrower meaning than 

the term “industry” which can be defined as a branch of trade. Construction goods be they tangible 

(structures) or intangible (services) have a special feature; they can be characterized as contract 

goods (not as exchange goods). This is because when the contract is signed, the contractor agrees 

to produce and deliver the good without deficiencies as specified in the contract and the client 

agrees to pay right away. On the other hand, exchange goods are produced before procurement 

(Brockmann, 2010). Contractors compete for construction contracts through one of these three 

ways: (1) direct negotiation (2), competition, or (3) competition followed by negotiation (D. S. 

Drew, 2010). Thus, the construction market can take on any structure, from perfect competition 

through imperfect competition (monopolistic competition and oligopoly) and up to monopoly (De 

Valence, 2010).  

2.4. Conventional Economic Modeling Approaches  

Economic models as simplified representations of the real world are being developed to understand, 

explain and predict economic phenomenon (Myers, 2013). Modeling a market, an industry or the 

whole economy is of particular interest for policy makers due to the need to evaluate the impact 

of the envisaged policies on the system as well as for players involved to adopt the best strategy 

for achieving their goals. In economics, the two most prevalent, yet flawed, decision-making tools 

for economic policy analysis are (Farmer & Foley, 2009):  

1. Econometrics or empirical statistical models,  

2. Dynamic stochastic general equilibrium / Game theoretic models.  

Statistical models use past data to predict future. They are valuable as long as the world in the 

future is similar to the world in the past and the relationship between the past and the present is 

constant. On the other hand, dynamic stochastic general equilibrium and game theoretic models 
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are built on strong assumptions such as rational agents and linearity that make the model unrealistic 

(Farmer & Foley, 2009). These two categories of models usually fail to capture complexity and 

interaction of the interconnected system constituents and are not reliable at times of radical change 

and crisis. One example is their failure to predict the financial crisis in 2008 (Buchanan, 2009) 

when a major change in one market had ripple effects on other related markets and the whole 

economy. These shortcomings of the conventional models call for the use of more sophisticated 

modeling tools that can capture more important aspects of the real world and its complexity in 

particular the interconnections among elements of the system, their idiosyncrasies, and emergent 

behavior. Complexity of the construction industry originates from a large number of actors with 

uncertain, heterogeneous but interdependent behavior interacting with themselves and other actors 

from other industries. Complexity at levels of project, firm, market, and the industry has been 

conceptualized and discussed in the literature (Baccarini, 1996; Bertelsen, 2003a, 2003b; Dubois 

& Gadde, 2002; Gidado, 1996; Wood & Gidado, 2008). However, a proper methodology to model 

complexity and systematic approach to its implementation for the construction industry have not 

been proposed yet.  

2.5. Agent-Based Modeling: A New Economic Modeling Approach 

Thanks to the advances in the field of computer science in particular object-oriented programming, 

a movement has been formed in economics with the aim of developing a new economic thinking 

and modeling. This resulted in the creation of agent-based computational economics, which is an 

attempt to explore the intersection of management science, evolutionary economics, and computer 

science.  

Agent-Based Modeling (ABM), as one of the central modeling and simulation tools in the field of 

computational economics, can offer solutions for the challenges that the conventional methods 
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have not been able to overcome. Increasing tendency to apply ABM is not only due to the 

developments in computer modeling and simulation techniques and increased computer 

capabilities but also because of a paradigm shift in understanding economic phenomenon. The 

main premise of ABM is that a system should be viewed as a group of components interacting 

with each other in a dynamic web of relationships and not just as the sum of its parts. With regard 

to this way of economic thinking, markets can be viewed as inherently dynamic rather than static 

systems.  

In ABM, the agents are computational objects interacting according to rules over space and time. 

They can represent individuals, organizations, biological entities, and/or physical systems. The 

rules are defined to model behaviors and social interactions based on incentives and information  

(Page, 2005). Agents can be designed to learn from other agents and the environment and to adapt 

to new situations. This evolutionary adaptation in one agent affects the evolution of another agent 

(known as coevolution in a system). ABM allows the modeler to make more realistic assumptions 

while the conventional approaches use mathematical proofs to model its theories. The conventional 

approaches usually fail to explain innovation and growth except as the result of random exogenous 

shocks from technology. According to (Tesfatsion, 2006), the ultimate scientific objective of ABM 

is to "test theoretical findings against real-world data in ways that permit empirically supported 

theories to cumulate over time, with each researcher’s work building appropriately on the work 

that has gone before".  

An agent-based model contains the following three ingredients (Windrum, Fagiolo, & Moneta, 

2007):  
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1. Bottom-up perspective: The properties of macro-dynamics of a system can be best 

understood as the outcome of micro-dynamics involving constituent entities (Tesfatsion, 

2002). 

2. Boundedly-rational agents: Agents should be assumed to behave as boundedly rational 

entities with adaptive expectations rather than hyper-rational entities with rational 

expectations.  

3. Networked direct interactions: Agents have direct interactions with each other since 

through adaptive expectations their current decisions directly depend on the past decisions 

and actions made by other agents in the environment.  

Due to its holistic approach and capability to deal with complex systems, ABM can be utilized for 

various research purposes including but not limited to prediction, proof, discovery, education and 

training (R. Axelrod, 1997). ABM has recently received a considerable amount of attention from 

researchers in several domains of social sciences, economics and engineering, and therefore its 

applications have largely increased over the last two decades. In particular, it has been extensively 

applied for modeling and analyzing competitive, interactive environments, and markets in several 

industries such as: 

 financial markets (S.-H. Chen & Yeh, 2001; Farmer et al., 2012; Howitt & Clower, 2000; 

Izumi & Ueda, 1998, 2001; LeBaron, 2000, 2001; X. Liu, Yang, & Tang, 2007; Palmer, 

Arthur, Holland, & LeBaron, 1999; Tay & Linn, 2001; H. Zhou, Jiang, & Zeng, 2010),  

 electricity markets (Bower & Bunn, 2001; Bunn & Oliveira, 2001; Fekete, Nikolovski, 

Puzak, Slipac, & Keko, 2008; Knežević, Fekete, & Nikolovski, 2010; Nicolaisen, Petrov, 

& Tesfatsion, 2001; Weidlich & Veit, 2008; Z. Zhou, Wang, & Botterud, 2011; Z. Zhou, 

Zhao, & Wang, 2011),  
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 trade networks of buyers and sellers (Albin & Foley, 1992; Kirman, 1997; Tesfatsion, 

1997a, 1997b; Vriend, 1995; Weisbuch, Kirman, & Herreiner, 1997, 2000; Wilhite, 2001),  

 labor networks (Neugart, 2008; Nicolaisen et al., 2001; Tassier & Menczer, 2001; 

Tesfatsion, 1998),  

 housing markets (Geanakoplos et al., 2012; Magliocca, Safirova, McConnell, & Walls, 

2011; Meen & Meen, 2003),  

 urban land markets (Filatova, Parker, & Van der Veen, 2009), and 

 online auctions (Mizuta & Steiglitz, 2000). 

A prime example of ABM application in large-scale is the Eurace@Unibi model, which has been 

under development since 2006 with the aim of building a comprehensive model of the European 

economy with integrating goods markets, labor markets, financial markets, and credit markets 

(Silvano Cincotti, Raberto, & Teglio, 2010; S Cincotti, Raberto, & Teglio, 2012; Dawid, Gemkow, 

Harting, Van der Hoog, & Neugart, 2012; Deissenberg, Van Der Hoog, & Dawid, 2008; Teglio, 

Raberto, & Cincotti, 2010).  

As for bidding in the construction industry, an evolutionary Monte-Carlo simulation model was 

developed to examine the effects of risk attitude on a contractor’s success and on the market 

structure (Kim & Reinschmidt, 2010). While this model considers contractors as individual agents 

competing with each other in a market, learning capability of contractors from each other and the 

environment has been ignored. Because the model does not cover the three ingredients mentioned 

above, it can hardly be considered as a true application of agent-based modeling. However, in civil 

engineering domain, ABM has been employed for various purposes such as infrastructure 

management (Bernhardt & McNeil, 2008), analysis  of financial innovation policies (Mostafavi, 

Abraham, & DeLaurentis, 2013), subcontractor selection (Unsal & Taylor, 2010), dispute 
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resolution (El-Adaway & Kandil, 2009) and sustainable design and management of the built 

environment (Azar & Menassa, 2011, 2013; J. Chen, Jain, & Taylor, 2013; Said et al., 2013).  

2.6. System-of-Systems  

There is still no consensus about the definition of system-of-systems (SoS). The term system-of-

systems became more common and used in the literature after the seminal works of (Berry, 1964) 

and (Ackoff, 1971). There are at least sixteen different definitions in the literature for SoS (Lane 

& Valerdi, 2007). Each definition suggests several characteristics that differentiate systems-of-

systems from legacy systems (Boardman & Sauser, 2006; Carlock & Fenton, 2001; Daniel 

DeLaurentis, 2005a; Jamshidi, 2008; Kotov, 1997; Lewis et al., 2008; Maier, 1996; Manthorpe, 

1996; Sage & Cuppan, 2001). The most referenced traits of the constituents of a SoS are: 

 Interoperability 

 Operational independence  

 Managerial independence 

 Heterogeneity 

 Evolving nature  

 Emergence  

Transportation systems, the Internet, integrated air defense networks, and enterprise information 

networks are examples of systems that match the system-of-systems traits (Haskins & Forsberg, 

2011; Maier, 1996).  

The system-of-systems approach for decomposing complex systems has been applied in several 

domains including but not limited to transportation systems (Datu B Agusdinata, Fry, & 

Delaurentis, 2011; Daniel DeLaurentis, 2005b; E. Han & DeLaurentis, 2006; M. Han, Fan, & Guo, 

2005; J.-H. Lewe & DeLaurentis, 2004; J. Lewe, DeLaurentis, & Mavris, 2004; Mansouri, Gorod, 
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Wakeman, & Sauser, 2010; Mansouri, Gorod, Wakeman, & Sauser, 2009), emergency 

management (S. Liu, 2011), policy making for civil infrastructure systems (Mostafavi, Abraham, 

& Lee, 2012), policy making for the energy sector (Datu Buyung Agusdinata & DeLaurentis, 

2008), electrical systems (Pruyt & Thissen, 2007), medical imaging systems (Chandrashekar, 

Gautam, Srinivas, & Vijayananda, 2007), telecommunication systems (Noam, 1994), healthcare 

systems (P.-C. DeLaurentis & DeLaurentis, 2010; Grigoroudis & Phillis, 2013; Rusu, Taggart, 

Desmond, & Lopez, 2013; Wickramasinghe, Chalasani, Boppana, & Madni, 2007; 

Wickramasinghe, Chalasani, & Koritala, 2012), and financial markets (Kilicay-Ergin & Dagli, 

2008; Osmundson, Langford, & Huynh, 2009). Review of the literature indicates that the system-

of-systems approach has not been utilized to develop macroeconomic and microeconomic models 

for complex systems with economic functions.  

With identifying its characteristics as a complex system in the former sections of this chapter and 

mapping them with the generic traits of system-of-systems, the construction industry can be best 

perceived and analyzed as a system-of-systems and not as a legacy monolithic system. The 

construction industry demonstrated all the standard traits of a system-of-systems. Its components 

are heterogeneous, operationally independent, and managerially independent while they are 

working together. Its markets have shown evolving nature (Kim & Reinschmidt, 2011) and 

emergent behaviors such as the hold-up problem (Unsal & Taylor, 2010) that cannot be captured 

analytically.  

2.7. Connecting the Dots: Where this Dissertation Locates  

The complete modeling of the construction industry and its relationship with the economy will 

require the analysis of a large number of intersystem interdependencies. This needs to be achieved 

whilst adopting a holistic approach that does not neglect the fact that the whole of the system is 
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more than its parts. Modeling the actors, components, economic environment, interactions, and 

complexity of the construction industry as a system-of-systems will advance the understanding of 

the overall economic behavior of the industry and the emergent behavior of its components. Since 

ABM is a bottom-up approach that derives the aggregate behavior of a system from micro-level 

interactions, it is an effective modeling tool for the implementation phase of the system-of-systems 

approach. This approach presents the required steps for the development of a high-fidelity 

economic model that replicates the economic behavior of the construction industry in the United 

States. This research study has unique academic and practical contributions. It advances the 

knowledge in the field and provides the US policy-makers with a decision support tool that has 

never existed. This dissertation, as a part of this ambitious study, is an attempt to create the first 

fundamental building blocks of this economic model of the construction industry. Specifically, 

this dissertation focuses on modeling and analyzing the most prevailing form of market in the 

construction industry, the competitive bidding environment.  

Understanding of the construction industry as a system-of-systems can lead the way for further 

research in this discipline. In order to achieve this objective, an understanding of the theoretic 

aspects of the construction industry as related to its composition and the characteristics of its 

components is required. Construction bidding environment is an important component of the 

industry. The next chapter is dedicated to the development of an agent-based model (ABM) of 

construction bidding environment.     
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CHAPTER 3. DEVELOPMENT OF A VIRTUAL LABORATORY FOR ANALYSIS OF 

CONSTRUCTION COMPETITIVE BIDDING  

 

"A 'system' can be defined as a complex of elements standing in interaction. There are general 

principles holding for systems, irrespective of the nature of the component elements and the 

relations of forces between them. ...In modern science, dynamic interaction is the basic problem 

in all fields, and its general principles will have to be formulated in General Systems Theory." ~ 

Ludwig von Bertalanffy, Problems of Life  

 

3.1. Introduction 

In the construction industry, allocation of contracts and consequently the price of construction 

services are usually determined through some form of competitive bidding (Myers, 2013). 

Competitive bidding is a mechanism universally used by construction clients to allocate 

construction work to contractors and also establish the market price (D. S. Drew, 2010). Variations, 

such as negotiated contracts (cost-plus contract), comprise merely a small portion of the market 

because majority of the clients are more willing (and/or sometimes obliged in the case of public 

owners) to deliver their project through competition (Harris & McCaffer, 2013). It is worth 

mentioning that the two main categories of competitive bidding contracts are the lump-sum 

contract and the unit-price contract.  

Construction bidding is a challenging and risky process where competing contractors of different 

types and sizes with various short-term and long-term goals and strategies, seek to win the offered 

project at the best value. There are a number of bidding methods (including the lowest bid, the 
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average bid, the second lowest bid, and the best value bid) and selection criteria (including price, 

time, and quality) that are utilized by owners to choose the best contractor and ensure the project 

is delivered in accordance with its objectives (Gordon, 1994). Although construction bidding may 

be similar to auctions of manufactured products, airport slots and online advertisements (as known 

as AdWords) in terms of rules and procedures, its dynamics vary in many ways due to the nature 

and complexities of construction works (Runeson & Skitmore, 1999). Despite the involved risks 

and the limited available information, contractors have to make a number of simultaneous and 

interdependent decisions in a timely manner. They have to quote a price before the project starts 

when all the costs are not yet known. Therefore, the auction theory may not help analyze the 

construction bidding given that the private value is uncertain for the bidder (M. Skitmore, Runeson, 

& Chang, 2006). For owners, there is always uncertainty about whether or not the currently 

employed contractor selection method is optimal, can lead to a successful project, and can generate 

best value in the long run (Holt, 1998). Therefore, understanding the bidding environment is of 

significance for both sides of the construction market: owners as demanders and contractors as 

suppliers.  

Researchers have investigated different aspects of construction bidding from both contractors’ and 

owners’ perspectives using analytical and empirical approaches. Due to methodological 

restrictions and limited applicability of previous research studies, there is a need for developing a 

comprehensive model that helps understand the dynamics of bidding environment by considering 

interactions among players. In this chapter, agent based modeling (ABM) is used to develop such 

a model. ABM provides a platform in which contributions of the previous studies can be used for 

defining and building elements of the model such as project attributes and contractors’ possible 

goals and behaviors as well as establishing relationships amongst those elements. This chapter is 
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organized as follows: The “Construction Bidding Literature” section extensively reviews the 

literature on construction bidding by taking a new approach to categorize the previous studies. It 

also discusses their shortcomings compared to the applied methodology which is agent-based 

modeling. Next, the “Methodology” section describes the development of an agent-based model 

of construction bidding environment using a system-of-systems analysis approach that includes 

three phases of definition, abstraction, and implementation. Finally, the developed model in this 

chapter will be used for different experiments in next chapters in order to first verify the model 

and then investigate the proposed research questions in this thesis.  

3.2. Literature Review on Construction Bidding 

Based on the applied research methodologies, the literature of construction bidding can be 

classified into three main broad categories:  

 Deduction: the deriving of a conclusion by reasoning,  

 Induction: inference of a generalized conclusion from particular instances, and  

 Simulation: the imitative representation of the functioning of one system or process by 

means of another.  

3.2.1. Deduction 

A scientific inquiry based on deduction involves specifying a set of assumptions and reaching 

certain conclusions and theories in a logical and consecutive process (R. Axelrod, 1997). Under 

this category, several models (Ahmad & Minkarah, 1987; Carr, 1982; Friedman, 1956; Gates, 1967; 

King & Mercer, 1990; Morin & Clough, 1969; Park & Chapin, 1992; Wade & Harris, 1976) were 

proposed for optimal markup strategy, assuming that all contractors are seeking to maximize their 

expected profit while considering opponents’ bid history. Later, the assumption of maximizing the 
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expected monetary value as an objective function was replaced with its expected utility in order to 

incorporate the risk attitudes of contractors (Ibbs & Crandall, 1982; Willenbrock, 1973). Moreover, 

other possible determinant factors such as loss avoidance and work force continuity were taken 

into consideration for developing multi-attribute models of bidding strategy, more realistically 

reflecting contractors’ behaviors (Cagno, Caron, & Perego, 2001; Dozzi, AbouRizk, & Schroeder, 

1996; Marzouk & Moselhi, 2003; Seydel & Olson, 1990; Shen, Drew, & Zhang, 1999; M. 

Skitmore & Pemberton, 1994; Wang, Dzeng, & Lu, 2007). In order to develop appropriate bid 

compensation strategies for owners, game theory, that is based on rational choice paradigm, was 

applied to understand the impacts of bid compensation in projects with high bid preparation cost 

(Ho & Hsu, 2013; Ping Ho, 2005). It is noteworthy to mention that the developed decision models 

under this category are mostly prescriptive rather than descriptive, i.e., they provide prescriptions 

on ‘how a decision should be made rather than describing how decision is made’  (Bazerman & 

Moore, 2012) .   

3.2.2. Induction  

On the other hand, induction starts with specific observations, conducting surveys, and gathering 

empirical data. Through discovering patterns and regularities in the data, some tentative 

hypotheses are formulated for further investigation and finally some general conclusions or 

theories are developed (R. Axelrod, 1997). Under this category, there is a series of studies that 

conducted questionnaire surveys and interviews in order to reveal the underlying factors that 

characterize the bidding decision‐making process and contractor selection methods (Ahmad, 1990; 

Ahmad & Minkarah, 1988; Chua & Li, 2000; Dulaimi & Shan, 2002; Egemen & Mohamed, 2007; 

El-Mashaleh, 2012; S. H. Han & Diekmann, 2001; Hatush & Skitmore, 1997; Shash, 1993; Ye, 

Li, & Shen, 2012; Ye, Shen, Xia, & Li, 2014). Furthermore, artificial intelligence (Art 
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Chaovalitwongse, Wang, Williams, & Chaovalitwongse, 2011; Chao, 2007; Chua, Li, & Chan, 

2001; Fayek, 1998; M. Han et al., 2005; Hegazy & Moselhi, 1994; Heng Li & Love, 1999; H Li, 

Shen, & Love, 1999; M. Liu & Ling, 2003, 2005) and statistical analysis (Carr & Sandahl, 1978; 

D. Drew & Skitmore, 1997; Ngai, Drew, Lo, & Skitmore, 2002; M. Skitmore, 1991) were 

employed to use past data and develop bidding models to help contractors with the decisions of 

bid/no bid and optimal markup. 

3.2.3. Simulation  

While most previous research attempts took either inductive or deductive approaches, simulation 

has also received some attention in the construction bidding literature. According to (R. Axelrod, 

1997), simulation is the third way of conducting scientific research especially in social sciences. 

A research based on simulation begins with specifying a set of assumptions, similar to a deductive 

approach, and then analyzes the generated data using an inductive approach (R. Axelrod, 1997; R. 

M. Axelrod, 1997). Simulation provides researchers with appropriate tools for designing and 

running a wide range of controlled experiments.  

There are a number of simulation techniques that have been developed. Each one has its own 

strengths and limitations. In construction bidding literature, “live simulation” has been utilized to 

benefit from the industry practitioners’ and experts’ knowledge and experience to uncover possible 

behaviors and decisions of contractors in different situations. In one study, (de Neufville & King, 

1991) devised a bid simulation exercise to obtain valid utility functions for construction contractors. 

After conducting a statistical analysis, they concluded that the need for work and risk have 

substantial impact on contractors’ bid markups. In another study, involving experienced 

respondents in 60 simulated bidding games, (D. S. Drew & Skitmore, 2006) refuted Vickrey’s 

revenue equivalence principle (Krishna, 2010; Vickrey, 1961). They showed that in construction 
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bidding context, the amount that an owner has to pay the winning contractor in the long run will 

not be the same in the case of using second price auction instead of the conventional first price 

auction. In a series of studies involving managers of medium to large contractors from Hong Kong 

and Singapore, decision to bid and markup behaviors of contractors in different market conditions 

and firm situations were statistically analyzed using the data gathered from bidding experiments 

(Lan Oo, Lo, & Teck-Heng Lim, 2012; Oo, Drew, & Lo, 2008a, 2008b, 2010). Finally, (Unsal & 

Taylor, 2011) empirically examined the existence of hold-up problem in subcontracting process 

using an internet-based interactive bidding simulation. While live simulation appears promising, 

the need for having real people (often experienced experts) playing the role of individual decision 

makers, pressure on researchers for assuring that there are no mistakes in the experimental process, 

and limited time and resource for running a large enough number of experiments make it 

impractical in many cases.  

As explained in chapter 2, ABM has been recognized as a powerful tool for modeling and 

simulating the behaviors and interactions of autonomous agents with the intention of assessing 

their impacts on the system. To understand and analyze the construction bidding dynamics, ABM 

offers several advantages over other modeling and simulation methods:  

 ABM takes into account the bounded rationality and learning capability of agents. As 

opposed to game theoretic modeling, agents in ABM can adopt complex and adaptive 

strategies such as “exploration and exploitation” (Cyert & March, 1963; March, 1991; 

Valluri, North, & Macal, 2009) by learning from the environment and other agents. While 

game theory has been recognized as a powerful tool for modeling and analyzing conflict 

and cooperation between intelligent rational decision makers (Neumann & Morgenstern 

1947), its strong assumptions and inflexible structure make it less applicable to 
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construction problems. In order to analyze and solve a game (in particular a dynamic game 

which is more relevant to real interactions in construction than a static game), end outcomes 

of the game is needed to be known. A comprehensive review of game theory applications 

in construction management can be found in (Asgari, Afshar, & Madani, 2013). 

 ABM allows consideration of heterogeneous agents that have different goals, behaviors 

and capabilities. This is of special importance due to the heterogeneity of construction 

market players.  

 The ability of integrating contributions of the previous studies makes an ABM approach 

sufficiently robust and of great value for developing a virtual laboratory. Agent-based 

computational laboratory of financial markets (Farmer et al., 2012), housing markets 

(Geanakoplos et al., 2012; Magliocca et al., 2011), electricity markets (North et al., 2002) 

and the global energy system (Voudouris, Stasinopoulos, Rigby, & Di Maio, 2011) have 

been recently developed and have proven promising. Also, ABM can create a platform for 

incorporating other methodologies such as game theory (Unsal & Taylor, 2010) and 

benefiting from them.  

 Having a virtual laboratory of the system provides modelers with the ability to conduct 

experiments under various scenarios with little effort. Experimentation is the standard 

method of doing science particularly in management and social sciences where conducting 

experiments is impossible or undesirable (Gilbert, 2008). ABM as a scenario analysis tool 

provides owners and contractors with the ability to examine the possibilities as well as the 

probabilities of different conditions that could not be otherwise evaluated. With covering 
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a range of possibilities and examining consistency of the results across a variety of 

scenarios ABM helps ensure obtaining robust conclusions.  

 ABM can be used for performing ex-ante analysis of complex systems. Classical analysis 

tools such as statistical methods and game theoretic models have mostly failed addressing 

problems in which complexity and adaptation are core (Bankes, 2002).   

 Complex systems generally represent important phenomenon called “emergence”. In a 

complex system, agents’ behaviors may be simple, but the aggregate patterns at the system 

level arisen out of their interactions can be complex and irreducible to the system's 

constituent parts. While this property is difficult to capture through mathematical and 

analytical approaches, ABM has shown great potential in dealing with such phenomenon 

(Bonabeau, 2002). Therefore, aggregate properties of a complex system are interpreted as 

emerging due to repeated interactions among agents rather than from the consistency 

requirements of rationality and equilibrium imposed by the modeler (Dosi & Orsenigo, 

1994). 

The construction bidding environment is a perfect example of an interactive, dynamic and complex 

system of heterogeneous and autonomous agents (contractors and owners). The complexity of this 

environment can be captured through a bottom-up modeling approach that focuses on the 

interactions among the agents. In the following section, the methodology for modeling and 

analyzing construction bidding environment will be introduced and discussed.  

3.3. Methodology: A System-Of-Systems Approach  

As explained in the previous chapter, the construction industry is a multi-level complex system 

where a collection of autonomous and heterogeneous agents, including but not limited to policy 
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makers, public and private owners, developers, financiers, architects, designers, consultants, 

general contractors, subcontractors, and suppliers interact with each other at different levels. 

Construction bidding environment, where construction service suppliers meet the demanders, is a 

one of the major sub-systems of the construction industry system-of-systems.  

This sub-system also can be viewed as a system-of-systems because the traits of the construction 

bidding environment match the generic, principal traits of a system-of-systems. These traits 

include managerial independency, operational independency, geographic distribution, 

heterogeneity, multilevel network structure, evolutionary behavior, and emergent behavior (Daniel 

DeLaurentis, 2005a; D. A. DeLaurentis, Crossley, & Mane, 2011). Following a system-of-systems 

analysis approach, as introduced by (Daniel DeLaurentis, 2005a), the proposed methodology used 

in this chapter for modeling construction markets consists of three phases: (1) definition, (2) 

abstraction, and (3) implementation.  

3.3.1. Definition Phase  

This phase mainly includes identification of the domain and context of the modeling. This phase 

is basically a mental mapping activity of construction bidding environment as a system-of-systems. 

In defining the model, we intend to employ and build upon the “proto-method” initiated and 

detailed by (Dan DeLaurentis & Callaway, 2004) including the lexicon and taxonomy proposed 

therein. Table 3.1 elaborates on the three levels of the construction bidding environment in four 

dimensions of resources, operation, policy, and economics known as ROPE (Dan DeLaurentis & 

Callaway, 2004). This representation of construction bidding environment is more limited and less 

comprehensive than the one representing the construction industry. The problem that the model is 

trying to address is specific to the interaction among contractors and owners in the bidding 

environment and during execution of projects. When applying a system-of-systems framework to 
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the construction bidding environment, it is noteworthy to consider that construction project at the 

lowest level of the hierarchy is a temporary economic activity. Also, the collection of lower level 

entities (say construction projects at α level) and their connectivity determine the construct of an 

upper level network (a β-level network in this case). This is valid since construction firms are often 

called project-based organizations.  

 

Table 3.1. The ROPE of the Construction Bidding Environment 

Levels Resources Operation Policy Economics 

𝜶  Project  Money, material, 

manpower & 

machinery  

Management of 

the project 

resources  

All regulations 

and standards 

(safety, 

environmental, 

etc.) applied to the 

project  

Economics of a 

project: 

accounting, cost 

management, 

budget control 

β Organization  collection of 

resources and 

assets for 

running the 

organization  

Business / 

Project 

Portfolio 

Management  

Policies relating to 

the organization 

(ex. tax 

exemptions, 

technical/ 

managerial 

eligibility & 

bonding capacity) 

Owner: Project 

Evaluation, 

Delivery System 

Contractor: 

Bid/No Bid, Cost 

estimation, 

Pricing, Bidding 

Strategy  

γ Market Multiple 

organizations 

working together 

based on 

contractual & 

non-contractual 

relationships 

Competition/ 

Collaboration 

among 

organizations  

Policies relating to 

the construction  

sector (incentives 

for reducing GHG 

emissions) 

Economics of the 

sector 

 

The developed model for construction bidding environment covers three levels of the construction 

industry: project, organization, and market. However, the major focus is on decisions and 

behaviors of agents at β-level and their interactions at γ-level. These levels were highlighted in 

Table 3.1. The impacts of project elements (such as cost) on agents at organization level are 

considered but analyzing interactions at project and organization levels (such as interaction 
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between general contractors and subcontractors) is out of the scope of this model. The context of 

the modeling is to develop a bottom-up model of construction markets.  

3.3.2. Abstraction Phase 

The abstraction phase embraces the concept of object-oriented thinking, derived from the domain 

of computer programming. This phase facilitates transition from the definition phase to the 

implementation phase and subsequent validation and verification by encapsulating big-picture 

dynamics (Daniel DeLaurentis, 2005a). It includes identification of main classes of players, actions, 

and interrelationships within and across the levels of the model. There are basically two classes of 

players: owners (public and private) and contractors. It is assumed that contractors obtain their 

jobs from the demand available in the market by owners. According to (Rice & Heimbach, 2007), 

about 99% of the construction work by contractors is generated from owners in the industry. Table 

3.2 explains the players’ functions and goals in more details.  

 

Table 3.2. Players of the model 

Stakeholders  Descriptions Goals 

Owner Public having a pre-determined budget to 

initiate and manage new projects; 

being required to follow the 

governmental policies & regulations 

such as using low-bid system 

meeting public needs; 

being within budget   

 Private making new investments depending 

on the market conditions; having 

flexibility to use other bidding 

systems  

profit (long term/ short 

term); client’s 

satisfactions 

Contractor  selling services to owners; managing 

resources  

profit; market share; 

job continuity; etc.  

 

Each single player of any class has its own goals, priorities, decision rules, learning capabilities, 

and other attributes. According to (Russell & Norvig, 1995) agents can be grouped into five classes 

based on their degree of perceived intelligence and capability:  
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1. simple reflex agents, 

2. model-based reflex agents, 

3. goal-based agents, 

4. utility-based agents, and  

5. learning agents. 

Depending on the purpose and level of details needed for an experiment, an agent contractor can 

be designed and placed in one of these five classes.  

Because the focus of this study is on contractors’ interaction with each other and the market, an 

abstraction of a contractor in the bidding environment is presented in Figure 1. It is worth noting 

that the agent–environment boundary represents the limit of the agent’s absolute control, not of its 

knowledge. An agent contractor makes decisions based on the short-term and long-term goals as 

well as beliefs, knowledge and information obtained from the market and opponents. After 

implementing the decisions, the agent observes the outcomes, updates the information and refines 

knowledge and beliefs for further decisions to be made. Under certain conditions, beliefs, 

knowledge and information can change a contractor’s goals. For example, expecting a decline in 

construction demand may convince a contractor to change its objective from pure profit 

maximization to a combination of profit maximization and work continuity.  
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Figure 3.1. An abstraction of a contractor in the bidding environment 

 

3.3.3. Implementation phase  

AnyLogic 6.7.0 (XJTechnologies, 2011), a Java based ABM platform, is used to implement the 

conceptual model introduced in the previous phases and create a computational laboratory. 

Following the abstraction phase, the classes of agents in the model include owner and contractor, 

each of which is simulated in the model as an active object. The model also includes another active 

object class called project which has its own Statechart and Methods but has no decision making 

and learning ability, making it a passive agent, or a pseudo-agent. Object oriented programming 

enables us to have whatever number of active objects we need by defining them as replicated 

objects. Therefore, a desired experiment can be run and repeated with different number of owners, 

contractors, and projects. In the following subsections, the components of the model are explained 

in further detail.  
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3.3.3.1. The Big Picture of the Simulation  

The simulation model aims to reproduce the bidding environment with more focus on main 

decision points of contractors at organization level. Figure 2 shows a schematic representation of 

the simulation model. The mechanism of the simulation is that a set of heterogeneous contractors 

bid on a series of projects of different types and sizes randomly generated by various owners. 

Similar to a deductive approach, a set of axioms are assumed to build the model. However, these 

assumptions are more general and more flexible than strong assumptions used in the literature. For 

example, in contrast to the deductive category of the literature, in this model a variety of goals and 

behaviors can be defined for contractors. Finally, data from the simulation is gathered and can be 

analyzed using an inductive approach.  

This section is aimed to explain the details of the virtual laboratory to the degree that is necessary 

for understanding the big picture of the simulation. Indeed, further parameters, variables, methods, 

and other components can be added to the model in order to run a specific experiment. 
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Figure 3.2. Network structure of the construction bidding environment 

 

3.3.3.2. Active object: Owner 

The main actions of an owner are to generate projects and choose their associated bidding systems. 

The experiment to be conducted in this study only considers owners who use a low bid system and 

lump-sum contracting method for delivering their projects. The number of projects generated by 

an owner in a time interval can take any distribution (e.g. Poisson Process). The rate of project 

generation can represent the current condition of construction demands; the higher the rate the 

more potential contracts.   
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3.3.3.3. Active object: Contractor 

Figure 3.3 presents agent contractor as an active object in AnyLogic platform. Each contractor has 

a number of attributes and parameters including initial bonding capacity, net worth, specialty, risk 

aversion coefficient, current work volume and the maximum number of projects a contractor can 

work on at one point in time, indicated as work in progress limit, general & administrative costs, 

etc. A contractor also has its own functions when it comes to decision or action points. Shall bid 

decision and markup decision are among the most vital decisions that a contractor has to make. 

Generally, a contractor decides whether to bid or not for a specific project depending on various 

internal and external factors. In this study, a function called “shallBid” was developed to simulate 

the decision to bid on a certain project by a contractor and which takes into account level of the 

project complexity, required specialization for the project, its current work volume, and its 

available bonding capacity. Since the project contracting method is lump-sum, the interested 

contractor uses a function for determining the estimated cost of the project. This function is called 

“costEstimation” and samples the cost estimate of a contractor from a distribution.  

One of the most important questions in construction bidding environment is how contractors 

choose their markup. As discussed in the background section, several markup decision models 

exist in the literature. The applied markup decision models in each simulation experiment will be 

explained in the related chapter. In general, the contractor’s “markup” function serves to find the 

markup that optimizes the contractor’s goal at that moment of the simulation. It can be either 

maximizing the expected utility of profit from a certain project or fulfilling some certain sub-goals 

such as need for work.  

There are other decisions that an agent contractor can make during the simulation including 

decisions for: 1) expanding the business which results in more resources for securing new projects 
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and higher indirect cost for the firm; 2) contracting which limits capability to have more projects 

at a time; 3) entering a new market; 4) quitting a market; 5) acquiring a new technology or specialty; 

and 6) changing risk attitude and organizational culture.  

Using “Collections” in AnyLogic, agent contractors can gather, update, and store data and 

feedbacks from the environment. These collections are referred in functions and Statecharts so that 

a contractor can use the latest information about other contractors and the environment. 

Different Statecharts can be defined and used for an agent contractor. With respect to the financial 

state, a contractor can be in one of the four Statecharts at any time during the simulation: 1) Normal 

State; 2) Panic State; 3) Desperate State; and 4) Bankrupt State. If a modeler finds it necessary, 

the markup function or other decision functions of contractors can be linked to their financial state 

(Mahdavi & Hastak, 2014).  

 

 

Figure 3.3. Contractor defined as an active object in AnyLogic 
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3.3.3.4. Active object: project 

Each project has a number of attributes including project type, estimated budget, estimated 

duration, and complexity level that are set once a project is generated (Figure 3.4).  

 

 

Figure 3.4. Project defined as an active object in AnyLogic 

 

Moreover, a project has a Statechart that simulates the major stages of its lifecycle. As shown in 

Figure 3.5, it consists of four states: InBidding, InProgress, Completed, and Canceled. A project 

is in the state “InBidding” once it is generated by its owner. Contractors observe the project and 

decide to bid or not based on their function “shallBid”. Then, interested contractors determine their 

bids based on their functions “costEstimation” and “markup”. If certain criteria such as minimum 

interested contractors are met, the winner is determined and the project gets started by going to the 

state “InProgress”. Otherwise, the project is canceled by the owner and goes to the state 

“Canceled”. In order to track and update the financial status of a contractor throughout the 
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simulation, we need to assign an actual cost value to any project he wins. Hence, a function was 

created under the project class, “actualCostDetermination”, which determines the actual cost of a 

project based on the project complexity and the winning contractor’s planning and managerial 

capabilities. The difference between the winning bid price and the actual project cost in addition 

to the general and administrative expenses, which is the profit/loss of the winning contractor in 

this project, gradually adds to the net worth of the contractor according to the project’s percentage 

of completion. The percent completion is determined following a rule of thumb S-curve that links 

cost expenditure with project timeline assuming one quarter of the cost spent at one third of the 

project time and three quarters of the cost incurred at two thirds of the time (Miller, 1962). Finally, 

the project goes to the state “Completed” when it is finished. 
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Figure 3.5. Statechart used to define different stages of a project 

  

3.4. Assumptions and Boundaries of the Model 

This section presents all assumptions and boundaries of the model that are applied to all 

experiments in Chapter 4, 5, and 6 as it follows:  

 The agent-base model is specifically developed to simulate the low-bid lump-sum bidding 

process although it can be used for other types of bidding (such as A+B bidding method) 

with little modifications.  

 The model does not take into account behavior of the owner. It only assumes that owners 

use the low-bid lump-sum bidding method to allocate their projects.  
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 Projects are generated one at a time for 520 time units which is equal to 10 years (520 

weeks).  

 In this study, risk is defined as the possibility that the actual cost of a project will be higher 

than the estimated cost due to internal or external factors.  

 A more risk averse contractor means a contractor that considers and adds a higher 

allowance to the markup to cover the possible loss.  

 Contractors in the market will remain the same throughout the simulation in the 

experiments conducted in Chapter 4, 5, and 6.  

 The “costEstimation” function determines the estimated cost of a project for a contractor 

given the estimating accuracy of the contractor. This study assumes the estimated cost is 

triangularly distributed around the project budget and there are two levels of estimating 

accuracy: Normal and Improved. If the estimating accuracy is normal (or improved), the 

variation of estimated cost can be up to 10% (or 5%) of the project budget.  

if (estimatingAccuracy == "Normal") 
 {estimatedCost = pert(0.90, 1.10, 1.00)*p.marketBudget; 
 }    
else if (estimatingAccuracy == "Improved") 
 {estimatedCost = pert(0.95, 1.05, 1.00)*p.marketBudget; 
 } 
return estimatedCost * (1+GAPercentage); 

 The “actualCostDetermination” function determines the actual cost of a project for a 

contractor based on the project execution skills of the contractor and level of the project 

complexity. 

 
if (complexity == 3) 
{ if (c.projectExecution == "Normal") 
 {actualCost = triangular(1.05,1.15,1.1)*c.estimatedCost*(1-c.GAPercentage); 
 } 
  else if (c.projectExecution == "Improved")  
    {actualCost = triangular(1.025,1.125,1.075)*c.estimatedCost*(1-c.GAPercentage); 
    } 
 } 
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else if (complexity == 2) 
{ if (c.projectExecution == "Normal") 
 {actualCost = triangular(1.0,1.1,1.05)*c.estimatedCost*(1-c.GAPercentage); 
 } 
  else if (c.projectExecution == "Improved")  
    {actualCost = triangular(0.975,1.075,1.025)*c.estimatedCost*(1-c.GAPercentage); 
    } 
 } 
 
else if (complexity == 1) 
{ if (c.projectExecution == "Normal") 
 {actualCost = triangular(0.95,1.05,1.0)*c.estimatedCost*(1-c.GAPercentage); 
 } 
  else if (c.projectExecution == "Improved")  
    {actualCost = triangular(0.925,1.025,0.975)*c.estimatedCost*(1-c.GAPercentage); 
    } 
 } 

return actualCost; 

 The progress of a project follows a S-curve formulated by (Miller, 1962).  

 

3.5. Chapter Summary   

This chapter presented a comprehensive literature review of major scientific studies in the field of 

competitive construction bidding and categorized them into three main classes of induction, 

deduction, and simulation according to their methodological approach. After identifying the gap 

in the literature, using a System-of-Systems approach this chapter explained development of an 

agent-based model of the construction competitive bidding process where contractors with 

different characteristics and attitudes compete against each other over projects with different 

attributes, learn about each other, and make bidding decisions accordingly. This model has several 

advantages over the previous analytical and empirical models including the capability of observing 

the bidding process dynamics, the interaction between the heterogeneous and learning agents, and 

the emergent bidding patterns arising from multiple scenarios of market conditions and contractors’ 

attributes. This model can serve as an experimental laboratory that can be used by any potential 

user (owner or contractor) to evaluate and compare different bidding strategies and project 
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tendering approaches. The model capability to replicate the construction market can be enhanced 

further through adding necessary components. The developed laboratory can also serve as an 

educational tool in academic forums and classes to teach construction management students about 

the bidding process and all its complexities and to allow them to observe interesting dynamics and 

interactions between the different market constituents from an outsider’s perspective.  
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CHAPTER 4. ANALYSIS OF QUANTITATIVE BIDDING METHODS: TOWARDS 

HETEROGENEITY IN LEARNING AND UNCERTAINTY  

 

“Information is a source of learning. But unless it is organized, processed, and available to the 

right people in a format for decision making, it is a burden, not a benefit.” ~ William Pollard 

 

4.1. Introduction  

As explained in chapter 3 (development of the virtual laboratory), one of the major components of 

the developed virtual laboratory is the markup decision function. Among all, competition has been 

identified as one of the main decision criteria for construction contractors when bidding for a 

project (Hegazy & Moselhi, 1995). Real world contractors try to learn about their competitors’ 

bidding strategy so do the simulated contractors in the virtual laboratory. In the real world bidding 

environment, learning mechanisms vary from one construction contractor to another. Some are 

more inclined to use quantitative approaches while others rely on more rule-based or judgment-

based decision making tools.  

Regardless of the type of the learning mechanism and bidding decision making tool, the underlying 

assumption in all bidding calculation is that there exists a relationship between the bid sum and 

the probability of winning the project. The bid sum is the product of the estimated costs and the 

markup percentage. Therefore, there are two extreme points when determining the markup. The 

lower the markup, the higher chance of winning (or the lower profit) is. Conversely, the higher the 

markup, the lower chance of winning (or the higher profit) is.  
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There are several quantitative methods in the literature and the next section will present a review 

of the major studies in this area. Although quantitative methods have received a lot of attention in 

the literature, the debate over their validity and effectiveness, in particular Friedman and Gates 

models, have not reach a solid conclusion. This chapter will take a new approach to compare these 

methods. First, these methods are coded in the model as the markup decision function for agent 

contractors. In other words, they are the learning mechanisms of agents in an interactive 

environment. Then, using the developed virtual laboratory, these methods can be put in a 

competition against each other. The objective of this chapter is to compare the effectiveness of 

major quantitative methods in the bidding environment under a variety of scenarios including low 

to high level of uncertainty in the estimated cost and different types of market limitations. Previous 

studies in the literature that analyzed and compared these methods mostly take a retrospective 

approach. In other words, they compare these methods one by one in a vacuum using past bid data. 

However, thanks to the virtual laboratory, the possibility of comparing these methods actively and 

in a prospective manner exists. This study tries to address the lack of practical testing due to 

unwillingness of contractors to reveal their real bid information and costs.  

This chapter is organized as follows: the “Literature on Quantitative Bidding Methods” section 

reviews the major contributions in the area of quantitative bidding models. The “Methodology & 

Description of Experiments” explains the experiments that will be conducted in this chapter. The 

“Results” section will present the main observations on the experiments and discuss their root-

causes. Finally, the “Chapter Summary” section summarizes key findings of the study.  

4.2. Literature on Quantitative Bidding Methods   

A quantitative method tries to use competitors’ past bids to determine the optimal markup. The 

optimal markup is usually defined as the one that maximizes the expected profit of a contractor 
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from a given project. In other words, a contractor is facing the following optimization problem 

where he is trying to balance a great profit and a high probability of winning:  

𝑚𝑎𝑥 𝐸[𝑃𝑟𝑜𝑓𝑖𝑡(𝑥)| 𝑥, 𝑛] = 𝑚𝑎𝑥 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑊𝑖𝑛𝑛𝑖𝑛𝑔| 𝑥, 𝑛)  × 𝑃𝑟𝑜𝑓𝑖𝑡(𝑥)      (4.1) 

Where 𝑥: 𝑚𝑎𝑟𝑘𝑢𝑝 % is the decision variable of the problem and the expected profit, is the product 

of the probability of winning and the profit given a chosen markup. It is worth noting that the bid 

(B), estimated cost (ES), markup (x), and profit have the following relationships for a given project 

k: 

𝐵𝑘 = 𝐸𝑆𝑘(1 + 𝑥𝑘)      (4.2) 

𝑃𝑟𝑜𝑓𝑖𝑡𝑘 = 𝐸𝑆𝑘. 𝑥𝑘       (4.3) 

Several quantitative methods exist in the literature. For any quantitative method there are at least 

three basic uncertain variables (estimated cost, actual cost, and the lowest competing bid) that need 

to be considered (Fuerst 1977). One of the first two (either variables estimated cost or actual cost) 

has to be fixed and selected as the reference point of modeling (Yuan 2011). The selected models 

in this chapter (Friedman, Gates and Fine) consider the estimated cost as the reference point and 

then the uncertainty of a competitor’s bidding behavior is characterized by the bid ratio. It is worth 

mentioning that transparency of the market transactions, knowing who the interested contractors 

in the bid shortlist are, level of access to the previous biddings information, and contractors’ 

willingness to collect and use the information are amongst underlying assumptions of all the three 

models. It is assumed that each interested contractor knows the other interested contractors in the 

bidding shortlist and knows their bids for those projects that both the opponent and the contractor 

previously participated in. 
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4.2.1. Friedman model 

In his seminal paper entitled “A competitive-bidding strategy”, (Friedman, 1956) proposed to use 

historical bid data and characterize a competitor’s bidding behavior with a probability distribution 

function of the bid ratio. The bid ratio (𝐵𝐶𝑘,𝑖) for a given project (k) is simply the ratio of the 

competitor i’s bid (𝐵𝑘,𝑖) to the contractor’s own estimated cost (𝐸𝑆𝑘):  

𝐵𝐶𝑘,𝑖 =
𝐵𝑘,𝑖

𝐸𝑆𝑘
      (4.4) 

If competitor i and the contractor have enough bids where they both participated and the bid 

information is available, a stable distribution function (𝐹𝑋(𝑥)) of the bid ratio can be constructed. 

By calculating the mean and variance of the distribution, the probability of beating competitor i 

(𝑃𝑖) with a given markup (x) can be simply calculated using the following equation:  

 𝑃𝑖(𝑥) = Pr(𝑋 > 𝑥) = 1 − 𝐹𝑋(𝑥)      (4.5) 

Friedman then assumed the bid ratios of competitors are independent of each other. Therefore, the 

probability of winning the contract, which means beating all competitors, can be determined using 

the following equation:  

𝑃𝑤(𝑥) = ∏ 𝑃𝑖(𝑥)

𝑖∈𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟𝑠

      (4.6) 

4.2.2. Gates model 

This model calculates the probability of beating a competitor exactly in the same way Friedman 

does. However, based on his experience as a principal estimator, (Gates, 1967) developed the 

following equation for determining the probability of winning the contract.  

𝑃𝑤(𝑥) =
1

1 + ∑ (
1 − 𝑃𝑖(𝑥)

𝑃𝑖(𝑥)
)𝑖∈𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟𝑠

      (4.7) 

Where 𝑃𝑖 is the probability of beating competitor i.  
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4.2.3. Fine model 

The main assumption of this model (also known as the low-competitor model) suggested by (Fine) 

in a series of unpublished works is that the only competitor the contractor is interested in beating 

is the lowest competitor (in other words, the winner). Therefore, this model is based on collecting 

the historical data of the lowest bid, the winner, in each competition participated.  

4.3. Methodology & Description of Experiments  

Agent-based modeling is a great tool for conducting experiments and analyzing research questions 

under a variety of scenarios. By applying the quantitative bidding methods in a series of 

consecutive bids, agent contractors in the virtual laboratory are taking a computational approach 

to learning from their interactions with others. Agent contractors are not instructed to choose a 

specific markup. Instead, they are using different learning mechanisms (here, the quantitative 

bidding methods) to choose the optimal markup. Each learning mechanism represents some 

specific learning characteristics. Comparing the performance of users of these mechanism helps 

understand their applicability and effectiveness in various situations. The virtual laboratory 

developed in the Chapter 3 is used in this chapter for investigating the following research questions: 

1- What is the impact of the choice of learning mechanisms on contractors’ financial 

performance, success rate, and market share under a variety of market scenarios?  

2- How do these learning mechanisms perform in markets with irrational, random, and 

unpredictable players? 

3- How do these learning mechanisms perform in competition against each other and 

irrational players? 

The six sets of experiments to be conducted in this chapter together address the above questions. 

Each experiment set contains several market scenarios.  
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Two main classes of objects in the simulation model are Projects and Contractors. Projects are 

passive agents and Contractors are active agents due to their ability to learn and make decisions. 

Projects are generated consecutively over a simulation period of ten years (520 simulated time 

units) and are assigned a set of characteristics such as the project budget chosen uniformly over 

the range [80, 120] M$ and the project duration also selected uniformly between 20 and 30 weeks. 

On the other hand, a set of contractors is produced in the market along with their learning 

mechanisms. Agent contractors are homogenous in all attributes except in their learning 

mechanisms. To ensure the consistency and reliability of the results each experiment has been run 

for 100 times. 

4.3.1. Experiment Set A 

The purpose of the first set of experiments is to find the impact of different learning mechanisms 

on the contractors’ performance under a variety of cost estimation and contingencies scenarios. 

There are nine contractors competing with each other in the market including three contractors 

using Friedman model, three contractor using Gates model, and three contractors using Fine model. 

Table 4.1 shows the learning mechanism assigned for each of the nine contractors. In the first set 

of experiments, projects are generated in the market one at a time unit under different scenarios. 

 

Table 4.1. Contractors' characteristics in experiment set A 

Contractor Learning Mechanism 

1, 2, and 3 Friedman 

4, 5, and 6 Gates 

7, 8, and 9 Fine (the low-competitor) 

 

Scenario A1 is a pure, non-limited competition among contractors. There is not a limitation on 

bonding; therefore, contractors can win and have as many as projects at a time they want. There 

are also no G&A costs as well as a low level of uncertainty on the estimated cost of projects (2.5% 
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inaccuracy). Contractors do not consider any contingencies in their estimated costs. Although the 

market conditions and settings seem unrealistic in this scenario, the result will be insightful and 

interesting to know.  

Everything under scenario A2 is similar to the scenario A1 except the fact that level of uncertainty 

on the estimated cost of projects will be high (5% inaccuracy).  

Scenario A3 takes the simulation one more step closer to the reality by adding contingencies to the 

process of cost estimation. It is assumed that contractors add enough contingencies for dealing 

with uncertainty in the estimated cost. Everything under this scenario is similar to the scenario A1 

except the fact that contractors consider contingencies when estimating their costs.  

Everything under scenario A4 is similar to scenario A2 except the fact that contractors consider 

contingencies when estimating their costs.  

4.3.2. Experiment Set B 

The purpose of the second set of experiments is to investigate the impact of different levels of 

bonding capacity on performance of contractors with different learning mechanisms. Setting of 

experiment set B is the same as experiment set A. In experiment set B, scenarios B1 to B7 will 

cover a range of limitations on the number of ongoing projects contractors are allowed to have at 

any time during the simulation. This limitation simulates the bonding capacity of contractors in 

the real world bidding environment. To maintain market competition, it is assumed that having a 

minimum number of two participants is required for a bid to be valid. Otherwise, it will be 

cancelled. Table 4.2 presents the number of ongoing projects allowed for contractors under 

scenarios B1 to B7.  

Table 4.2. Number of ongoing projects allowed for contractors under scenarios B1 to B7 

Scenario  B1 B2 B3 B4 B5 B6 B7 

Number of ongoing projects allowed 8 7 6 5 4 3 2 
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4.3.3. Experiment Set C  

The purpose of the third set of experiments is to examine capability of different learning 

mechanisms dealing with unpredictable competitors. In the experiment set C, a learning 

mechanism is used by only one contractor competing with 8 other contractors that are choosing 

their markup randomly from uniform distribution of [0% - 10%]. These contractors are called 

“Random Contractors” hereafter. In order to be able to compare performance of different learning 

mechanisms, project budget is set to be M$100. Level of uncertainty on the estimated cost of 

projects is low (Scenario C1) and high (Scenario C2) and all contractors consider contingencies in 

their submitted price. There is no limitation on number of ongoing projects that a contractor can 

have.  

4.3.4. Experiment Set D  

The purpose of the fourth set of experiments is to examine capability of different learning 

mechanisms competing in a mixed market comprising of both learning contractors and random 

contractors for securing project with two levels of cost estimation uncertainty. In experiment set 

D, the market includes a mix of contractors using three main learning mechanisms and random 

markup. Table 4.3 presents markup function of each contractor. Similar to the experiment set C, 

level of uncertainty on the estimated cost of projects is low (Scenario D1) and high (Scenario D2).  

 

Table 4.3. Contractors' characteristics in experiment set D 

Contractor Learning Mechanism 

1 and 2 Friedman 

3 and 4 Gates 

5 and 6 Fine (the low-competitor) 

7 and 8 Nothing (Random Markup) 
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4.3.5. Experiment Set E  

The purpose of the fifth set of experiments is to investigate the impact of different levels of bonding 

capacity on performance of both learning contractors and random contractors. Table 4.4 presents 

the number of ongoing projects allowed for contractors under scenarios E1 to E9. Market consists 

of heterogeneous contractors as Table 4.3 and the uncertainty in cost estimation is high.  

 

Table 4.4. Number of ongoing projects allowed for contractors under scenarios B1 to B7 

Scenario  E1 E2 E3 E4 E5 E6 E7 E8 E9 

Number of ongoing projects allowed 10 9 8 7 6 5 4 3 2 

 

4.3.6. Experiment Set F  

The purpose of the sixth set of experiments is to investigate the impact of requiring minimum 

number of contractors participated in bidding on performance of contractors and the market. 

Imposing minimum number of contractors required in a bid is a strategy for clients to maintain a 

desirable level of competition. However, the impact of this requirement is not explored well.  

In this experiment set, it is assumed that contractors are allowed to have only five projects in 

progress at a time. As Table 4.5 presents, different values are assigned to the minimum number of 

bid participants required by the clients. Market settings and contractors characteristics are similar 

to experiment set E.  

 

Table 4.5. Minimum number of bid participants required in scenarios F1 to F5 

Scenario  F1 F2 F3 F4 F5 

Minimum number of bid participants required  4 5 6 7 8 
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4.4. Results  

4.4.1. Results of Experiment Set A 

The results of scenario A1 are presented in Table 4.6. A significant separation is observed in the 

performance of the three groups of contractors (users of Friedman, Gates, and Fine models). One 

interesting observation is that the average of markup determined by contractors is very low (0.47%, 

0.86%, and 1.44% for Friedman users, Fine users, and Gates users respectively). This is mainly 

because of relatively high number of sophisticated, rational competitors in the market. Once a 

contractor brings down its price to win the next contract, its competitors observe this action and 

will reciprocate it with lowering their price. This tug of war will continue until the market reaches 

equilibrium. Markups of the contractors stayed almost constant after the first year of the simulated 

time (52 time units).  

Freidman users have shown higher bid success rates comparing to others, resulted in higher market 

shares. The order of contractors in terms of market share is: Friedman users > Fine users > Gates 

users. However, having a higher bid success rate did not result in a better financial performance.  

Under this scenario, all contractors have faced financial loss because of mainly two reasons: 1- 

none of the contractors had considered contingencies in their cost estimation. 2- the winner of a 

bid may not be just the most competitive one in terms of markup but also most probably the 

contractor with a very low estimated cost (in other words, the one who made the biggest mistake). 

The order of contractors in terms of working capital is: Gates users > Fine users > Friedman users. 

It is worth noting that in this scenario, the success rate was equal to the market share since all 

contractors were participated in all bids.  
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Table 4.6. Contractors' performance in scenario A1 

Contractor Working Capital (M$) Profit per Project (M$) Market Share 

1 (117) (1.33) 17% 

2 (152) (1.43) 20% 

3 (141) (1.34) 20% 

4 (14) (0.58) 5% 

5 (12) (0.71) 3% 

6 (10) (0.68) 3% 

7 (55) (1.03) 10% 

8 (62) (1.08) 11% 

9 (62) (1.11) 11% 

 

The results of scenario A2 are presented in Table 4.7. Orders and trends in the results of scenario 

#2 are similar to ones in scenario A1. However, the average markup determined by contractors in 

this scenario (0.85%, 1.51%, and 2.81% for users of Friedman, Fine, and Gates respectively) is 

higher than the ones in scenario A1. This can be because of higher uncertainty in the estimated 

costs that results in higher variance in the bid to cost ratio. Also, comparing working capital and 

profit per project in Table 4.6 and Table 4.7, one minor difference between the scenarios A1 and 

A2 is that the size of loss for all contractors is larger under scenario A2 because of the higher 

uncertainty in cost estimation.  

 

Table 4.7. Contractors' performance in scenario A2 

Contractor Working Capital (M$) Profit per Project (M$) Market Share 

#1 (264) (2.87) 18% 

#2 (322) (3.06) 20% 

#3 (293) (2.81) 20% 

#4 (31) (1.49) 4% 

#5 (23) (1.43) 3% 

#6 (28) (1.39) 4% 

#7 (136) (2.44) 11% 

#8 (150) (2.50) 12% 

#9 (101) (2.16) 9% 
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The historical volatilities of the market markup for all 10 years of the simulation under both 

scenarios (A1 and A2) were calculated and provided in Table 4.8. The historical volatility (HV) 

of a time series can be calculated by determining the average deviation from the average value of 

the variable in the given time period. HV is provided in two scales: one-week HV because the time 

unit in the simulation is one week and annualized HV because the performance of most firms are 

being evaluated on the basis of a year in the real world. One-week HV is in fact the standard 

deviation of the changes in the market markup (𝑦𝑖, 𝑖 ∈ {1, … , 52}). The change in market markup 

(y) can be calculated in the both following ways:  

𝑦𝑖 = ln (
𝑀𝑀𝑖

𝑀𝑀𝑖−1
)      (4.8) 

Or 

𝑦𝑖 = (
𝑀𝑀𝑖

𝑀𝑀𝑖−1
) − 1      (4.9) 

Where 𝑀𝑀𝑖 is the market markup in day i. The equations for calculating the annualized HV is 

simply: 

Annualized HV = (One − week HV) × √52      (4.10) 

As it can be easily seen in Table 4.8, one major difference between the scenarios #1 and #2 is the 

larger volatility of market markup under scenario #2 due to the higher uncertainty and inaccuracy 

in the estimated costs.  

Table 4.9 presents the results of the experiment set A3. As expected, the average markup 

determined by contractors in this scenario (0.85%, 1.51%, and 2.81% for users of Friedman, Fine, 

and Gates respectively) is very low (similar to scenario A1). Considering contingencies helps all 

contractors make profits from their won projects. Therefore, a higher bidding success rate and 

consequently market share can increase the working capital. However, Profit per project in this 
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scenario has still the same order as it does in scenario A1. Gates users do not win as often as 

Friedman users and Fine users but when they win, they earn a larger profit.  

 

Table 4.8. The historical volatilities of the market markup 

 Scenario A1 Scenario A2 

Year One-week HV Annualized HV One-week HV Annualized HV 

1 0.49% 3.52% 0.89% 6.41% 

2 0.54% 3.90% 0.99% 7.14% 

3 0.51% 3.66% 0.70% 5.03% 

4 0.31% 2.23% 0.60% 4.33% 

5 0.32% 2.30% 0.75% 5.38% 

6 0.52% 3.75% 0.91% 6.55% 

7 0.44% 3.14% 1.02% 7.37% 

8 0.47% 3.41% 0.96% 6.91% 

9 0.49% 3.55% 0.86% 6.21% 

10 0.48% 3.48% 0.97% 7.00% 

 

Table 4.9. Contractors' performance in scenario A3 

Contractor Working Capital (M$) Profit per Project 

(M$) 

Market Share 

1 103 1.02 19% 

2 119 1.21 19% 

3 124 1.16 21% 

4 30 2.02 3% 

5 45 1.89 5% 

6 33 1.86 4% 

7 70 1.49 9% 

8 86 1.51 11% 

9 70 1.30 10% 

 

Table 4.10 presents the results of scenario A4. Similarities and differences between this scenario 

and scenario A3 are consistent with the ones between scenarios A1 and A2. For example, the 

working capital and profit per project have increased for all contractors due to the higher 

uncertainty in cost estimating. Also, volatility of market markup is higher under scenario A4.  
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Table 4.10. Contractors' performance in scenarios A4 

Contractor Working Capital (M$) Profit per Project (M$) Market Share 

1 184 1.95 18% 

2 223 2.10 20% 

3 225 2.28 19% 

4 68 3.58 4% 

5 70 3.67 4% 

6 53 3.53 3% 

7 121 2.16 11% 

8 146 2.70 10% 

9 159 2.70 11% 

 

4.4.2. Results of Experiment Set B 

Tables and figures in this section present different information and performance indicators of 

contractors and the market. Number of contractors participating in biddings is one of the main 

factors influencing the level of competition in construction biddings. The higher the number of 

participants the more fierce the competition will be. As Table 4.11 shows the average and 

minimum number of contractors in biddings has decreased from scenario B1 to scenario B7 due 

to imposing limitation of bonding capacity. This limitation has also caused cancelation of 42 and 

182 projects under scenarios B6 and B7 (respectively) where contractors have reached their quota 

and were not able to participate in some of the biddings, resulted in the cancelation.  

 

Table 4.11. Market information of scenarios B1 to B7 

Scenario  B1 B2 B3 B4 B5 B6 B7 

Maximum number of ongoing projects allowed 8 7 6 5 4 3 2 

Average number of contractors participating in 

biddings 

8.9 8.7 8.2 7.6 6.1 3.4 2.1 

Minimum number of contractors participating in 

biddings 

7 7 6 5 3 1 1 

Number of cancelled projects  0 0 0 0 0 42 182 

 



56 

 

One interesting observation presented in Table 4.12 is that the average markup of all contractors 

and volatility of the markup market have increased from scenario B1 to scenario B7. The variance 

in the market markup basically resulted from the micro behavior of Friedman and Gates users. 

Submitted markup of Friedman and Gates users have increased partly due to the decrease in 

number of competitors in bids. However, submitted markup of Fine users is getting almost constant 

after several bids and has shown much less increase compared to the ones of Friedman and Gates. 

This is mainly due to the fact that Fine model is non-sensitive to any specific contractor’s behavior 

and number of contractors participating in the bid.  

 

Table 4.12. Average markup of contractors and volatility of the market in scenarios B1 to B7 

Scenario  B1 B2 B3 B4 B5 B6 B7 

Average Markup of 

Friedman Users 

0.81% 0.83% 0.90% 0.96% 1.26% 2.59% 4.43% 

Average Markup of Gates 

Users 

2.56% 2.74% 2.71% 2.77% 2.80% 4.07% 5.76% 

Average Markup of Fine 

Users 

1.50% 1.43% 1.63% 1.55% 1.53% 1.80% 1.91% 

Average Markup of the 

Market 

1.62% 1.66% 1.75% 1.76% 1.86% 2.82% 4.03% 

One-Week Historical 

Volatility of Market Markup 

0.82% 0.85% 0.85% 0.88% 0.90% 1.06% 1.18% 

Annualized Historical 

Volatility of Market Markup 

5.91% 6.15% 6.13% 6.35% 6.45% 7.63% 8.48% 

 

Observing Figure 4.1, the increasing trend of profit per project for all contractors in the market 

under scenarios B1 to B7 suggests that abundance of projects caused inflation in contractors’ 

submitted markup and consequently their bids. While the usual order of contractors in terms of 

profit per project is Gates users > Fine users > Friedman users, this order is changed in case of 

scenario B6 and B7. One explanation for Friedman users outperforming Fine users on this indicator 

under scenario B6 and B7 is that Friedman model is influenced by number of contractors and the 
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bid history of each competitor whereas Fine model only take the market markup into consideration 

and ignores bid history of competitors. This consideration has made Friedman users more effective 

compared to Fine users, resulting in higher profit per project. For the same reason, it can be argued 

that the gap between average profit per projects of Gates users and Fine users has increased from 

scenario B1 to B7.  

 

 

Figure 4.1. Project per profit of contractors in scenarios B1 to B7 

 

As shown in Figure 4.2, imposing the limitation of bonding capacity has decreased market share 

of Friedman users and ended their dominance to the extent that the market is divided almost equally 

among all contractors in scenario B7. The main reason for the increase in bid success rate and 

market share of Gates users is the fact that Friedman and Fine users are winning more projects in 

the beginning and once some of them reached their quota Gate users have higher chance to secure 

more projects.  
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Figure 4.2. Market Share of Contractors in scenarios B1 to B7 

 

The total value of the market in 10 years of the simulated time is almost the same in all scenarios. 

To better understand the impact of learning mechanisms, the sum of working capitals of the three 

contractors using each learning mechanism is calculated and considered in the analysis. For 

scenario B6 and B7, an adjustment is needed because there are cancelled projects so that the total 

profit comes from less number of projects. The first observation, which is aligned with the previous 

observation, is the increasing trend of adjusted profit of all contractors going from scenario B1 to 

scenario B7. The second observation on the following figure is the increase of Gates users’ 

working capital. To understand this increase and the change in order of contractors in terms of 

working capitals, profit per project and market share should be considered. While contractors have 

converged to equal division of the market through scenario B1 to B7, Gates users were able to gain 

higher profit per project. This has resulted in a new order of contractors in terms of working capital: 

Gates users > Friedman users > Fine Users, as Figure 4.3 shows.  
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Figure 4.3. Working Capital of Contractors in Scenarios B1 to B7 

  

4.4.3. Results of Experiment Set C  

Table 4.13 and Table 4.14 present the results of all experiments in this sub-section. The main 

observation is that all Friedman, Gates, and Fine users have lost market share when uncertainty in 

cost estimation has increased. This suggests that the higher complexity and uncertainty of a project 

can enhance chance of an irrational contractor winning the project. Additionally, going from low 

to high uncertainty in cost estimation, the profit per project has increased for all Friedman, Gates, 

and Fine users. However, there is no consistent trend in terms of working capital; this is mainly 

because gaining higher profit per project is balanced off the loss in market share.  

As Table 4.13 shows, Fine users have shown better performance in terms of market share when 

competing against irrational contractors compared to Friedman users. This is because Fine model 

only deals with the lowest bid-to-cost ratios while Friedman model considers the whole bid history 

of competitors. This is more obvious in scenario C1 where the uncertainty in cost estimation is 
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markup (even less than Friedman users). By this choice, the Fine user has gained the lowest 

average profit per project not only compared to Friedman and Gates users but also compared to 

the irrational competitors in its experiment. Another interesting observation is that Gates model is 

not effective when competing against irrational competitors. The market shares that Gates users 

have gained in scenarios C1 and C2 are 16% and 14%, which are not considerably higher than the 

market share expected from an irrational, homogeneous contractor in a similar market (100% / 9 

≈11%).  

 

Table 4.13. Performance of Friedman, Gates, and Fine Users in Scenarios C1 and C2 

Learning Mechanism of the Contractor: Friedman Gates Fine 

Average Markup of the Contractor in Scenario 

#1 

1.48% 2.79% 0.94% 

Average Markup of the Contractor in Scenario 

#2 

1.55% 3.62% 1.64% 

Working Capital of the Contractor in Scenario 

#1 (M$) 

477 329 515 

Working Capital of the Contractor in Scenario 

#2 (M$) 

513 369 509 

Market Share of the Contractor in Scenario #1 33% 16% 38% 

Market Share of the Contractor in Scenario #2 26% 14% 28% 

 

Table 4.14. Profit per Project for All Contractors in Scenarios C1 and C2 

Learning Mechanism of the Contractor: Friedman Gates Fine 

Average Profit per Project for the Contractor in the 

Scenario #1 (M$) 

2.80 3.92 2.28 

Average Profit per Project for Other Contractors 

in the Scenario #1 (M$) 

2.46 2.62 2.34 

Range of Profit per Project for Other Contractors 

in the Scenario #1 (M$) 

[2.04, 

2.62] 

[2.53, 

2.91] 

[2.10, 

2.69] 

Average Profit per Project for the Contractor in the 

Scenario #2 (M$) 

3.80 5.12 3.49 

Average Profit per Project for Other Contractors 

in the Scenario #2 (M$) 

3.58 4.07 3.78 

Range of Profit per Project for Other Contractors 

in the Scenario #2 (M$) 

[3.30, 

3.88] 

[3.72, 

4.60] 

[3.50, 

4.20] 
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4.4.4. Results of Experiment Set D  

Table 4.15 presents the results of scenarios D1 and D2. The order and trend in performance of 

contractors are consistent with the ones in scenarios A3 and A4 where Friedman users are more 

effective in gaining market share and working capital and Gates users are securing higher profit 

per project. Similar to experiment set C, Gates model does not perform effectively in terms of 

market share and working capital in mixed markets (markets that consist of both rational and 

irrational contractors). Another observation consistent with experiment set C is that irrational 

contractors have higher chance of securing contracts and profits in a market with more complex 

and cost-uncertain projects. However, in contrast to the results of experiment set C, Fine users are 

not outperforming others in terms of market share mainly due to existence of smart contractors 

that use learning mechanisms (Friedman and Gates users).  

 

Table 4.15. Performance of All Contractors in Scenarios D1 and D2 

Contractors 1 and 2 3 and 4 5 and 6 7 and 8 

Learning Mechanism of the Contractors Friedman Gates Fine - 

Average Markup of the Contractors in 

Scenario D1 

0.67% 1.56% 0.93% 4.92% 

Average Markup of the Contractors in 

Scenario D2 

1.09% 2.76% 1.56% 5.08% 

Working Capital of the Contractors in 

Scenario D1 (M$) 

339 180 288 50 

Working Capital of the Contractors in 

Scenario D2 (M$) 

621 263 462 158 

Average Profit per Project for the Contractors 

in the Scenario D1 (M$) 

1.44 2.16 1.73 1.44 

Average Profit per Project for the Contractors 

in the Scenario D2 (M$) 

2.70 3.78 2.85 2.62 

Market Share of the Contractors in Scenario 

D1 

45% 16% 32% 7% 

Market Share of the Contractors in Scenario 

D2 

44% 13% 31% 12% 
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4.4.5. Results of Experiment Set E  

Tables and figures in this subsection present different information and performance indicators of 

contractors and the market in scenarios E1 to E9. Trends and orders in these results are very 

consistent with the ones in the results of scenarios B1 to B7. As Table 4.16 shows, the average and 

minimum number of contractors in biddings has decreased from scenario E1 to scenario E9 due to 

imposing limitation of bonding capacity. This limitation has also caused cancelation of 85 and 219 

projects under scenarios E1 and E9 (respectively) where contractors have reached their quota and 

were not able to participate in some of the biddings, resulted in the cancelation.  

 

Table 4.16. Market information of scenarios E1 to E9 

 

As Table 4.17 shows the average markup of all contractors and volatility of the markup market 

have increased from scenario E1 to scenario E9. Submitted markup of Friedman and Gates users 

have increased partly due to the decrease in number of competitors in biddings. However, 

submitted markup of Fine users has been almost constant or has shown much less increase 

comparing to the ones of Friedman and Gates due to the fact that Fine model is non-sensitive to 

any specific contractor’s behavior and number of contractors participating in the bidding.  

 

Scenario  E1 E2 E3 E4 E5 E6 E7 E8 E9 

Maximum number of ongoing 

projects allowed 

10 9 8 7 6 5 4 3 2 

Average number of contractors 

participating in biddings 

7.96 7.92 7.79 7.62 7.22 6.25 4.57 2.84 1.88 

Minimum number of contractors 

participating in biddings 

7 7 6 6 5 3 2 1 1 

Number of cancelled project  0 0 0 0 0 0 0 85 219 
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Table 4.17. Average markup of contractors and volatility of the market in scenarios E1 to E9 

Scenario  E1 E2 E3 E4 E5 E6 E7 E8 E9 

Average Markup of 

Friedman Users 

1.10% 1.12% 1.07% 1.15% 1.20% 1.46% 2.18% 3.44% 5.10% 

Average Markup of 

Gates Users 

2.83% 2.72% 2.79% 2.81% 2.94% 2.95% 3.27% 5.40% 7.87% 

Average Markup of 

Fine Users 

1.59% 1.55% 1.60% 1.59% 1.52% 1.64% 1.67% 2.04% 1.84% 

Average Markup of 

Random Users 

5.04% 4.98% 5.19% 4.93% 5.02% 4.93% 4.85% 4.35% 4.41% 

Average Markup of 

the Market 

1.56% 1.51% 1.52% 1.51% 1.64% 1.93% 2.38% 2.86% 2.93% 

One-Week 

Historical Volatility 

of Market Markup 

1.08% 0.94% 0.95% 0.97% 1.07% 1.17% 1.55% 1.48% 1.82% 

Annualized 

Historical Volatility 

of Market Markup 

7.76% 6.80% 6.88% 7.00% 7.68% 8.43% 11.18% 10.64% 13.13% 

 

According to Figure 4.4, Limiting number of projects a contractor can have has caused inflation 

in contractors’ submitted markup and consequently their bids regardless of contractors’ bidding 

methods. In other words, this limitation restricted the competition and lowered the market 

efficiency. One interesting observation is that with the increase in the limitation, Friedman users 

increasingly acquired higher profit per project compared to others and particularly they 

outperformed Fine users on this indicator under scenario E7, E8 and E9. The explanation for this 

new order of profit per project is the same mentioned in experiment set B.  
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Figure 4.4. Profit per project of contractors in scenarios E1 to E9 

 

Similar to experiment set B, imposing the limitation of bonding capacity has reduced market share 

of Friedman users. In scenario E9, the market is divided almost equally among all contractors as 

shown in Figure 4.5. 

 

 

Figure 4.5. Market share of contractors in scenarios E1 to E9 
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In this experiment set, there are a number of cancelled projects under scenario E8 and E9. 

Therefore, the profits of all contractors should be adjusted by multiplying “520 / (520 – Number 

of Cancelled Projects)”. The first observation on Figure 4.6 is aligned with the previous 

observations in this subsection as well as in experiment set B; there exists an increasing trend of 

adjusted profit of all contractors going from scenario E1 to scenario E9. The second observation 

on the following figure is the increase of Gates users’ working capital. To understand this increase 

and the change in order of contractors in terms of working capitals, profit per project and market 

share should be considered. While contractors have converged to equal division of the market in 

scenario E9, Gates users also were able to gain higher profit per project. The third observation is 

the decline in working capital of Fine users in scenario E8 and E9 mainly due to lower profit per 

project.  

 

 

Figure 4.6. Working capital of contractors in scenarios E1 to E9 
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4.4.6. Results of Experiment Set F  

Tables and figures in this subsection present different information and performance indicators of 

contractors and the market in scenarios F1 to F5. As Table 4.18 shows there are more cancelled 

projects in the market with the increase in minimum number of bid participants required from 

scenario F1 to F5.  Also, both the average and volatility of market markup has decreased, indicating 

the fact that the requirement has made the market more competitive and efficient.  

 

Table 4.18. Market information of scenarios F1 to F5 

Scenario  F1 F2 F3 F4 F5 

Minimum number of bid participants 

required 

4 5 6 7 8 

Number of cancelled projects 0 16 47 151 250 

Average Markup of the Market 1.85% 1.77% 1.72% 1.65% 1.54% 

One-Week Historical Volatility of Market 

Markup 

1.16% 1.06% 1.08% 0.90% 0.84% 

Annualized Historical Volatility of Market 

Markup 

8.33% 7.62% 7.76% 6.49% 6.04% 

 

As Figure 4.7 shows the average profit per project has decreased for all contractors going from 

scenario F1 to F5 mainly because of the more fierce competition. This also caused the change in 

order of contractors in terms of profit per project. In particular, random contractors have suffered 

higher drop in profit per project going towards more competitive scenarios.  
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Figure 4.7. Profit per project of contractors in scenarios F1 to F5 

 

Figure 4.8 shows a very interesting phenomenon, which is the divergence in allocation of market 

among contractors. More effective learning contractors are able to secure higher market share in 

more competitive market scenarios. This results in a bigger gap between more effective and less 

effective contractors.  
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Figure 4.8. Market share of contractors in scenario F1 to F5 

 

Due to the increase in competition going from scenario F1 to F5, total profit created in the market 

has decreased and the gap between more effective and less effective contractors has increased as 

shown in Figure 4.9. The main reason Friedman users were able to maintain/increase their working 

capital is the increase in their market share. This could balance off the decrease in their profit per 

project. 

 

 

Figure 4.9. Working capital of contractors in scenarios F1 to F5 
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methods in particular models introduced by Friedman and Gates. While the emphasis of the 

previous studies (Crowley, 2000; Fuerst, 1976; Ioannou, 1988; King & Mercer, 1985, 1987; 

Rosenshine, 1972; R. M. Skitmore, Pettitt, & McVinish, 2007; Stark, 1968) was on validity and 

reliability of those methods using mathematical arguments and retrospective approaches, this study 

put these methods in various scenarios to examine their applicability and effectiveness using a 

prospective approach, agent based modeling. The main research question in the literature was 

which of two models, Friedman or Gates, gives the correct probability of winning a competitive 

bid. For example, (Mitchell, 1977) tested both Friedman and Gates models and concluded 

Friedman model provides correct probabilities when there is no uncertainty involved in the cost 

estimates whereas Gates model provides correct winning probabilities when the distributions of 

both the contractor and its competitors have the same mean and variance. However, this chapter 

was more interested in answering which models can outperform others in a long run. The 

observations and results from the experiments conducted in this study were not limited to 

answering this question. It also shed lights on some characteristics of construction bidding 

environment raised from micro-behavior of its constituents: contractors and projects. The results 

offer new understandings and insights on quantitative bidding methods and recommendations for 

both owners and contractors’ competitive success, which are not available using conventional 

approaches.  

 Using Friedman model can result in considerably higher number of won projects (higher 

market share) whereas using Gates model can result in higher profit per project. This is 

because Gates model suggests relatively high probabilities of winning at high markups and 

does not encourage contractors to place low bid markups like Friedman model.  
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 In stable markets comprising rational competitors, the volatility in price of construction 

services can be due to uncertainty in cost estimation arising from factors such as the 

complexity of projects and incomplete contract specifications and information. 

Additionally, it can be concluded that inaccuracy and variance in cost estimation is one of 

the major factors in volatility of markup in the market.  

 When market consists of heterogeneous contractors in terms of their markup decision 

model, there is larger variance in the market markup. However, when all contractors are 

using the same model (like using only Friedman model), the markup equilibrium had a 

very low variance over the time and was almost fixed.  

 In all experiments, the profit margin of the winning contractors was less than 5% which is 

aligned with rate reported in the literature (AGC, 2000; Bashford, 1996; Leitch, 2000). It 

is worth mentioning that this rate is lower than the return of risk-free treasury bonds.  

 One factor contributing to the higher variance in the market is varying set of contractors 

participating in biddings. This is important for a newcomer to understand about a market 

because such a variance in a market suggests that the competitors carefully research and 

learn about each other and they adjust their markup according to their competitors and not 

just solely on the level of market competition (which is what Fine model operates based 

on).  

 Although Fine model has shown a good prospect specifically in competition against 

unpredictable contractors, the fact that it ignores bid history of specific competitors makes 

it unfavorable and unreliable in situations where market participants change regularly. A 

reliable learning mechanism considers bid history of competitors in biddings with varying 

participants. This is aligned with the conclusion by (Carr, 1983): contractors need to adjust 
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their markup from one project to the other depending on the change in the number or 

identity of competitors.  

 Comparing results of experiment sets B and E, it can be concluded that the with the increase 

in number of rational, sophisticated contractors the benefits unpredictable contractors can 

get from higher uncertainty in cost estimating will decrease.  

 Comparing those scenarios with low and high uncertainty in cost estimation (Scenarios C1, 

C2, D1, and D2) suggests that in many occasions choosing the optimal markup may not be 

what matters most. In other words, winning a contract is likely the combined outcome of a 

low markup and underestimation of the project value relative to the competitors. Therefore, 

when analyzing its performance and trying to find causes of success/failure in securing 

contracts in different markets, a contractor should consider characteristics, complexity, and 

cost uncertainty of projects.  

 A good decision model should lead to correct decisions for the correct reasons. Each 

bidding decision model has its own strengths and weaknesses. The choice of a firm’s 

bidding decision model for a specific project depends on many factors including the firm’s 

business strategy, the project characteristics, and the client. The quantitative bidding 

methods explained in this chapter can be used as a decision support tool. If gaining higher 

market share in long-term, dominating a market and establishing relationship with clients 

are of high priorities for a contractor, Friedman model can suggest a better markup aligned 

with these goals. 

 In markets where there is limitation on number of projects a contractor can secure and the 

bid preparation cost is insignificant (therefore contractors are able to bid on as many 
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projects as they want), the choice of bidding decision model is not a major distinguishing 

factor.  

 Imposing the limitation of bonding capacity can make market less efficient; it decreases 

the gap between more effective and less effective contractors and increase average profit 

per project across the market.  

 Requiring a specific number of bid participants will make the market more efficient, lower 

the average and volatility of market markup, decrease the average profit per project, 

increase the gap between market share of more effective and less effective contractors, and 

reduce the total profit created for contractors in the market.  

 Comparing results of experiment sets B, E, and F shows the contrasting impacts of two 

different market limitations, namely limitation of bonding capacity and minimum number 

of bid participants required, on performance of contractors and the market. 

 The results of the experiments in this study have implications for clients too. Clients who 

are interested in achieving the most efficient and cost effective bids should consider 

announcing their projects when there is enough number of qualified contractors. 

Sophisticated contractors take the number of competitors into account when choosing their 

markup; therefore, they have higher a chance for winning the contract. This results in lower 

markup and then lower total cost to clients.  
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CHAPTER 5. ANALYSIS OF INTERACTION AMONG COST ESTIMATING, 

MARKUP DETERMINATION, AND PROJECT EXECUTION AND THEIR IMPACT 

ON PERFORMANCE OF CONTRACTORS  

  

“Scientific views end in awe and mystery, lost at the edge in uncertainty, but they appear to be so 

deep and so impressive that the theory that it is all arranged as a stage for God to watch man's 

struggle for good and evil seems inadequate”. ~ Richard P. Feynman 

 

5.1. Introduction  

Construction contractors are project-based organizations. Usually a department or unit in the 

organization called “Business Development & Marketing” is in charge for market research, 

establishing relationships with the clients, and identifying opportunities. After a prospective 

project is introduced to the organization, major decision/action phases in a contractor business 

model can be:  

1. Bid/No Bid  

2. Cost Estimating  

3. Pricing (or Markup Determination)  

4. Project Execution 

Different departments/units in the organization are responsible for each of the above phases. In 

cost-based competition, all competing contractors have access to a large collection of drawings 

and specifications (L. Liu & Zhu, 2007). Based on those inputs, contractors first come up with an 
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estimate of their costs for completing the project. Then, they add a markup, usually calculated as 

a percentage of the estimated cost, in order to cover profit and/or firm overhead (Hegazy & 

Moselhi, 1995). Figure 5.1 presents elements of construction project costs.  

 

Bid Price

Total Cost
Markup 

(Pretax Profit)

Subcontracted Work

Indirect Cost

(Overheads)

Project Overhead General Overhead

Direct Cost

Self-performed Work

Equipment Cost Material Cost Other CostsLabor Cost

 

Figure 5.1. Components of construction project costs adapted from Yuan (2011) 

 

Due to its vital importance to the business success of contractors, there is usually a separate 

department in the contractor organization for cost estimating. An estimate is a prediction and 

substitutes for an actual measurement that is not economical or possible (Harris & McCaffer, 2013). 

The aim of cost estimating is to provide information for a reliable bid decision-making. Therefore, 

in theory the cost that the estimating department produces is the most likely cost to the firm if they 

win the contract. While the general belief is that estimating is an experience-based process but 

technology and management systems can help estimators have a more accurate prediction. 
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Studying the literature suggests that contractors can improve their cost estimating accuracy using 

new technology or management systems.  

One key organizational element involved in the bid preparation process is risk attitude. A 

construction project involves a variety of risks and uncertainties. According to the Project 

Management Institute's PMBOK, project risk is defined as an uncertain event or condition that, if 

it occurs, has a positive or negative effect on a project’s objectives. In this study, risk is defined as 

the possibility that the actual cost of a project will be higher than the estimated cost due to internal 

or external factors. Contractors need to consider project risks, uncertainties and complexities when 

deciding to bid on a project and determining the bid price. Contractor usually manage and mitigate 

risks through subcontracting some portions of their work, enhancing their cost estimating and 

management skills, tailoring contract conditions,  sharing risks with other parties involved, and 

relying on claims after winning the project (Laryea & Hughes, 2010) because they want to limit 

inflating their bid prices and maintain their competitiveness. Nevertheless, there still remains some 

residual risk that cannot be, identified, predicted, and quantified even after applying all risk 

management strategies. A rich body of literature has been created on identification of risks at levels 

of construction projects and firms, current risk management practices in the industry, and strategies 

for improving risk management. However, the impact of risk attitude on bidding performance and 

its interaction with other bidding parameters have not been explored yet. This study is an attempt 

to address the following research questions using an agent-based approach:  

1. How does the interaction among risk attitude, cost estimating accuracy and project 

management skills affect contractors’ performance in low and high risk markets?  

2. Is there an optimal risk attitude by which contractors can improve their long-term 

performance? 
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Answering the above questions helps managers of construction firms understand the impact of 

their organizational culture on long-term performance of the firm. The approach taken in this study 

can be used for formulating and exploring impacts of an organizational element on a firm’s 

performance in a competitive environment.  

The organization of this chapter is as follows: The next section extensively reviews the literature 

on risk attitude, cost estimating, and actual cost of construction projects, in particular, in the 

bidding context. The “Methodology & Description of Experiments” section presents the main 

features of the simulation model and the features it adds to the virtual laboratory developed in 

Chapter 3. Then, this section describes the experiments to be conducted in this study. The “Results 

and Discussion” section presents and discusses main observations and results of the experiments. 

Finally, the “Conclusion” section summarizes the key insights and findings of the study.  

5.2. Literature Review on Risk, Cost Estimating, and Actual Cost Determination  

Generally, construction risks are defined as events that influence project objectives of cost, time 

and quality. The risk attitude of a contractor affects the way it perceives the inherent risk in a 

project and the impact it can have on the firm’s decisions and strategies. There are several formal 

techniques practiced in the industry (Bing, Tiong, Fan, & Chew, 1999; Kartam & Kartam, 2001; 

Lyons & Skitmore, 2004; Smith & Bohn, 1999) as well as newly developed models for risk 

management that can enhance contractors’ profit. For example, (Al-Bahar & Crandall, 1990) 

developed a systematic approach for identifying, analyzing, and managing project risks. A number 

of methods were developed specifically for managing various risks for international construction 

projects (Baloi & Price, 2003; Hastak & Shaked, 2000; Zhi, 1995). Conducting a survey of the top 

100 large U.S. contractors, (Kangari, 1995) studied the current attitude of large U.S. construction 

firms toward risk and risk management practice, compared his survey results with a risk survey 
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conducted by ASCE, and showed that contractors have been more ready to assume specific risks 

either partially or totally. Based on a questionnaire survey of general contractors to evaluate project 

management practices, (A. S. Akintoye & MacLeod, 1997) concluded that risk analysis and 

management depend largely on intuition, judgement and experience for many contractors.  

Numerous studies in the literature studied current cost estimating practices in the industry or 

proposed new methodologies for improving cost estimating process for both owners and 

contractors. (A. Akintoye, 2000) conducted a comparative study of 84 UK contractors to identify 

the factors influencing contractors' cost estimating practice. (A. Akintoye & Fitzgerald, 2000) 

documented current cost estimating practices and identified main causes of inaccuracy in cost 

estimating through a questionnaire survey of UK contractors. In another study by (Ogunlana & 

Thorpe, 1991), factors affecting estimating accuracy were identified through opinion survey of 

eight offices and empirical data from 51 road construction projects. Analyzing data from 56 

projects and from a postal questionnaire survey of 102 quantity-surveying firms, (Aibinu & Pasco, 

2008) investigated key project characteristics influencing the accuracy of cost estimates and 

recommended strategies for improving the accuracy of estimates. (An, Kim, & Kang, 2007) 

proposed a case-based reasoning model that integrates experience from previous cases in all 

processes of construction cost estimating using the analytic hierarchy process. Integrating 

experiential learning theory with feedback and self-monitoring systems, (Lowe & Skitmore, 1994) 

proposed a mechanism to improve the accuracy of pre-tender estimates.  

With respect to actual cost determination, there are many studies trying to identify key factors 

influencing the actual cost of projects. Interviewing 450 selected private residential project owners 

and developers in Kuwait, (Koushki, Al‐Rashid, & Kartam, 2005) identified contractor-related 

problems, material-related problems and, owners' financial constraints as the three main causes for 
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cost overruns private residential projects and recommended strategies for mitigating their impacts. 

(Attalla & Hegazy, 2003), also, identified 36 factors that have direct impact on the cost 

performance of reconstruction projects through a survey of construction professionals and applied 

statistical analysis and artificial neural networks to develop models for forecasting cost deviation 

in reconstruction projects. (R. M. Skitmore & Ng, 2003) analyzed 93 Australian construction 

projects in order to develop a regression model for predicting the actual construction cost. Finally, 

studying 258 projects in 20 countries worth more than US$90 billion suggested that cost escalation 

in transport infrastructure projects is a global phenomenon (Flyvbjerg, Skamris Holm, & Buhl, 

2003).  

5.3. Methodology & Description of Experiments   

As explained in the previous sections, this chapter is aims to study the interaction among key 

parameters involved in the processes of cost estimating, markup determination, and project 

execution. The main focus is on the impact of risk attitude on pricing and financial performance 

of contractors in the bidding environment. The methodology used in this investigation is agent-

based modeling.  

5.3.1. Simulation Model 

The general attributes and characteristics of contractors and projects are based on the original 

template of the virtual laboratory developed in Chapter 3. Projects are generated sequentially over 

a simulation period of ten years. Time unit of the simulation is set to be equal to a week in reality. 

Experiments in all scenarios are repeated 100 times to ensure consistency in the results.  

Specifically in this study, a contractor uses two functions when it comes to decision or action 

points. The function “costEstimation” samples the cost estimate of a contractor from a normal 

distribution with mean equal to the project’s estimated budget and a variance that is determined 



79 

 

based on the contractor’s estimation skills, previous similar experiences, the project’s complexity, 

and completeness of the project documents.  

In this chapter, a “markup” function is developed that combines utility theory and Friedman model 

(Friedman, 1956). Utility theory captures the risk attitude of contractors in the bidding process and 

Friedman model approximates the probability of winning of a contractor against its competitors. 

This combined model is aimed to find the optimal markup that maximizes profit utility of a 

contractor instead of its profit value.  

Because of the uncertainty in the actual cost, a contractor is facing a lottery with different outcomes 

given winning the project. In utility theory, a certainty equivalent value, CE[V], is the value at 

which the an individual is indifferent between receiving or facing the risk of the profit lottery, V. 

In other words, the utility of certainty equivalent is equal to the expected utility of the lottery. 

Translating this concept to the bidding context, the certainty equivalent value is the value a risk-

averse contractor would require to take on a risky project. The concept of certainty equivalent 

helps replacing the set of uncertain profit lottery outcomes with its certainty equivalent value. 

Therefore, a contractor is solving the following optimization problem that is trying maximize the 

product of the probability of winning against opponents given a certain markup x and n opponents 

and the utility of the certain equivalent (𝐶𝐸[𝑉]) of the corresponding profit lottery: 

max 𝐸[𝑈(𝑉)| 𝑥, 𝑛]  = max 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑊𝑖𝑛𝑛𝑖𝑛𝑔| 𝑥, 𝑛)  ×  𝑈[𝐶𝐸(𝑉)]      (5.1) 

To have the closed-form expression of 𝐶𝐸[𝑉] , it is assumed that a profit utility function is 

exponential and the profit outcomes follow a normal distribution. As shown in the following 

equation, an exponential utility function is used that depends solely on one parameter that is the 

contractor’s risk aversion coefficient, γ: 

𝑈(𝑉)  =  1 − 𝑒–𝛾𝑉       (5.2) 
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Where V is the expected profit realized in a certain project and 𝑈(𝑉) is the profit utility.  

Risk aversion coefficient, γ, represents risk behavior of contractors. The higher this coefficient is, 

the more risk averse a contractor will be in the process of markup determination. The risk aversion 

coefficient can be different from one contractor to another. Considering these two assumptions, 

𝐶𝐸[𝑉] can be determined using the following equation (Clemen and Reilly 2014):  

𝐶𝐸[𝑉] =  𝑀𝑉  –  0.5 𝛾. 𝑉𝑉       (5.3) 

Where 𝑀𝑉 and 𝑉𝑉 are the mean and variance of the expected profit realized at project completion, 

respectively. These two variables depend on the actual cost of the project, which will be realized 

at the end of the project. For this study, the actual cost is assumed to follow a normal distribution 

with the mean set at the estimated cost of the project as determined by the contractor’s function 

“costEstimation” and the variance chosen according to the project complexity level as perceived 

by the contractor. The following equation summarizes a contractor’s optimization problem in the 

simulation:  

max 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑊𝑖𝑛𝑛𝑖𝑛𝑔| 𝑥, 𝑛) . (1 − 𝑒−𝛾 ((𝑥−1) 𝑀𝑉– 0.5 𝛾.𝑉𝑉)))     (5.4) 

To serve the educational purpose of this dissertation, the algorithm and actual codes (in Java) of 

the function “markup” used in this chapter are provided in the appendices section of the 

dissertation. This equation helps integrate internal and external parameters involved in cost 

estimating, markup decision, project complexity, and actual cost. The following figure shows an 

abstract representation of the interaction among these parameters.  
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Figure 5.2. An abstract representation of the interaction among key parameters in bidding  

 

5.3.2. Description of Experiments  

This section describes the purpose and details of experiments conducted in this chapter. Under 

scenario A1 to A6, ten contractors have exactly the same initial attributes including bonding 

capacity, firm size, work specialty, working capital, workload limit, cost estimating accuracy and 

project execution capability, but different attitudes towards risk. Contractor 1 and Contractor 10 

are assigned the lowest and highest risk-aversion coefficients, respectively. All projects are created 

of the same type matching the already set specialty for all contractors. Table 5.1 presents the 

conditions adopted for each scenario in the experiment set A. For example, the first scenario 

assigns poor cost estimation and project management skills to all contractors at the start of the 

simulation and defines a low complexity for all generated projects. The conditions under the 

second scenario are the same as the former one but with all projects having a high complexity level.  
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The purpose of the first four scenarios is to analyze the interaction among cost estimating accuracy, 

level of uncertainty of projects, contractors’ risk attitude, and project management skills and assess 

their impact on performance of contractors and the market. The optimal markup decision of 

contractors, their financial performance over time and the markup market are among outputs of 

interest. Comparing scenario A1 and A2 with A3 and A4 helps investigate the sensitivity of the 

markup decision made by contractors with varying risk attitude to high uncertainty in project cost 

estimation and to low/high project risk levels.  

Scenario A5 and A6 are trying to replicate a more realistic version of construction markets where 

there is a mix of projects with low to high complexity levels. The purpose of scenarios A5 and A6 

is to find the level of risk attitude that optimizes a contractor’s financial success in a long run.  

 

Table 5.1. Characteristics of projects and contractors under scenarios A1 to A6 

Scenario  Project 

Complexity  

Cost Estimating Accuracy and Project 

Execution Skills of Contractors  

A1 Low Normal 

A2 Low Improved 

A3 High Normal 

A4 High Improved 

A5 Mixed Normal 

A6 Mixed Improved 

 

5.4. Results 

This section presents and discusses the results that were obtained in six experiments described in 

the previous section. As Figure 5.3 and Figure 5.4  show, market share and total working capital 

created in the market under scenario A1 and A2 are almost evenly distributed among all contractors 

since their standard deviations are insignificant. The almost equal allocation of market share and 

working capital is mainly due to low level of project complexity that results in lower variance 

between the actual cost and the estimated cost. The small variance among contractors’ working 
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capital in different runs can be attributed to the normal level of cost estimating accuracy and project 

execution skills. This variance is less in Scenario A2 because of the improved level of cost 

estimating accuracy and project execution skills. However, the distribution of market share is 

slightly skewed towards slightly risk averse contractors while the distribution of working capital 

is slightly skewed towards extremely risk averse contractors. 

Observing the working capital of scenario A1 and A2 suggests that when level of project 

uncertainty and complexity is low, risk attitude has an insignificant impact on contractor’s 

performance and it does not separate the slightly, moderately, and extremely risk averse 

contractors from each other. In addition, comparing the results of scenario A1 with scenario A2 

suggests that improving cost estimating accuracy and project execution skills causes a considerable 

increase in contractors’ working capital (total profit) although the average market markup has 

decreased by almost 33% (which is (3.3%-2.21% / 3.3%) ) as shown in Table 5.2. This table also 

shows that as the contractor’s risk aversion coefficient increases, its optimal markup increases for 

almost every tendered project over the simulated five years.  

Comparing performance of contractors in markets with low risk projects (scenarios A1 and A2) 

with markets with high risk projects (scenarios A3 and A4) suggests that as the project uncertainty 

and inherent risk increases, the risk attitude of the contractor exerts a higher impact on its optimal 

markup decision. Another interesting observation on this comparison is the considerable increase 

in working capital of all contractors and higher dispersion of market share among contractors.  

Comparing the results of scenario A3 with scenario A4 suggests that improving cost estimating 

accuracy and project execution skills causes a considerable increase in contractors’ working capital 

of most contractors. The only exception is the decline in working capital of extremely risk averse 
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contractors in markets with high-risk projects compared to their working capital in markets with 

low-risk projects due to the considerable drop in their market share.   

 

 

Figure 5.3. Market share of contractors under scenarios A1-A4 

 

 

Figure 5.4. Working capital of contractors under scenarios A1-A4 
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Table 5.2. Average markup of contractors under scenarios A1-A4 

 Scenario 

 A1 A2 A3 A4 

Average Markup of Slightly Risk Averse 

Contractors (1, 2 & 3) 

2.99% 1.84% 13.27% 12.61% 

Average Markup of Moderately Risk Averse 

Contractors (4, 5, 6 & 7) 

3.51% 2.35% 21.53% 20.36% 

Average Markup of Extremely Risk Averse 

Contractors (8, 9 & 10) 

3.79% 2.87% 30.12% 29.04% 

Average Market Markup 3.30% 2.21% 16.79% 15.79% 

 

Figure 5.5 presents the market share of contractors for scenarios A5 and A6. The first observation 

is the fact that risk attitude has direct impact on market share. The less risk averse a contractor acts 

when bidding, the higher share of the market they can secure in a long run. In other words, slightly 

risk averse contractors have obtained larger market share in both scenarios. The main reason for 

this order of market share distribution is the impact of risk attitude on markup determination. The 

second observation is the considerable impact of improving cost estimating accuracy and project 

execution skills on the market share of contractors. With this improvement, slightly risk averse 

contractors increased their market share compared to the scenario under which all contractors have 

normal cost estimating accuracy and project execution skills. Under scenario 2, moderately risk 

averse contractors have almost managed to keep their market shares in scenario 1. However 

extremely risk averse contractors have lost around 25% (which is (7.3% - 5.5%) / 7.3%).   

Figure 5.6 presents the working capital of contractors, which is the accumulated gross profit over 

the simulation period. Moderately risk averse contractors have outperformed others in both 

scenarios A5 and A6 although they have not obtained the highest market shares in the market. This 

is mainly due to the facts that moderately risk averse contractors have better adjusted their markup 

so that they can make more profit per project compared to slightly risk averse contractors and that 

they can have much higher market share compared to extremely risk averse contractors. Another 
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important observation is the change in order of contractors’ financial performance from scenario 

A5 to scenario A6. Under scenario A5, the extremely risk averse contractors have been more 

successful than slightly risk averse contractors. However, this is not the case under scenario A6. 

The slightly risk averse contractors have gained more working capital compared to the extremely 

risk averse contractors. This suggests that a contractor can take more risk when determining the 

markup if its cost estimating accuracy and project execution skills are well improved.  

 

 

Figure 5.5. Market share distribution under scenarios A5 & A6 
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Figure 5.6. Working capital under scenarios A5 & A6 

 

5.5. Chapter Summary  

In this chapter, six simulation experiments were designed and conducted to study the effect of 

contractors’ risk behavior, cost estimating and project management skills, and complexity of 

projects on contractors’ choice of optimal markup, long-term financial growth and market share. 

The results of this study show: 

 There is a significant impact of a contractor’s risk behavior on its optimal markup and this 

impact is most in markets where projects are of high complexity and uncertainty. In other 

words, when project complexity is low, the markup is usually hardly influenced by risk 

attitude.  

 This study shows that moderately risk averse contractors can financially outperform others 

in a long run. Also, the comparative performance of slightly and extremely risk averse 

contractors depends on level of cost estimating accuracy and project execution skills of 

contractors. This hypothesis was also confirmed in a study conducted by (Kim & 
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Reinschmidt, 2010, 2011) which used Monte Carlo simulation to model the decision of 

bid/no bid for contractors with varying risk attitude and concluded that risk tolerant 

contractors tend to bid more often and at lower prices than risk averse ones. 

 The contractor’s good financial performance and market survival depends on his own 

characteristics, the market conditions and projects’ attributes. In particular, risk attitude in 

markets with medium to high risk projects has considerable impact on contractors’ survival 

and financial status. Results strongly suggests that moderately risk averse contractors tend 

to perform better and generate more profit than other contractors. Also, results indicate a 

better accuracy in the cost estimation of projects and more controlled management of the 

construction process generate higher profits for most contractors even when their markups 

decrease.  

 The inherent risk level of a project is at the core of the markup decision and may result in 

significant inflation of bid prices in the market. All conducted experiments showed an 

average observed increase of 10 percent in markups moving from low to high risk projects 

for a given scenario with all other parameters being equal. This matches the 5-10 % margin 

for risk allowance in bids confirmed in the review study conducted by (Laryea & Hughes, 

2010) about analytical risk models and actual contractors’ risk allocation practices. 
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CHAPTER 6. ANALYSIS OF INTERACTION AMONG COMPETITION, RISK, AND 

WORK CONTINUITY IN A DESCRIPTIVE BIDDING METHOD 

 

“Human beings, viewed as behaving systems, are quite simple. The apparent complexity of our 

behavior over time is largely a reflection of the complexity of the environment in which we find 

ourselves.” ~ Herbert Simon 

 

6.1. Introduction 

Descriptive (positive) and prescriptive (normative) decision theories are two schools of thought in 

decision sciences. Descriptive decision models mainly explain how decision is made whereas 

prescriptive decision models recommend how a decision should be made (Bazerman & Moore, 

2012). According to Simon’s Nobel Prize winning works (March & Simon, 1958; Simon, 1965) 

decision making can be better understood by describing and explaining actual decisions, rather 

than by focusing solely on prescriptive decision analysis. In the previous chapters, profit was the 

only objective a contractor was trying to maximize in the simulation and prescriptive decision 

models such as models introduced by (Friedman, 1956) and (Gates, 1967) were used in the markup 

function of agent contractors. Although profit maximization in a competitive context is recognized 

as the most frequently used bidding objective (Boughton, 1987), many researchers argue that it is 

not always and should not be considered the sole criterion in markup decision making process. 

There are several deductive studies in the construction bidding literature that reveal the underlying 

factors characterizing the bidding decision making behavior of contractors through conducting 

questionnaire surveys and interviews. Findings of those deductive studies can be used to build a 
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descriptive decision model that replicates decision-making behavior of a typical contractor in the 

construction competitive bidding. With identifying major decision criteria in construction bidding 

for a typical contractor, behavioral rules of agents can be defined in a simple and reasonable 

manner (Metcalfe & Foster, 2007). The significance of agent-based modeling is in its ability to 

capture the complexity that arises from the interaction of agents even-though their behaviors seem 

simple. This study aims to understand the interaction among major markup components and their 

influence on the contractors’ performance. In particular, two main objectives of this chapter are:  

1. observing the impact of a contractor’s risk attitude on his markup decision taking into 

account its need for work and the market competition,  

2. assessing if and to what extent considering need for work in the markup decision affects 

the financial growth of a contractor and its market share.  

To address these questions, this chapter is organized as follows: The “Background” section 

reviews main works in the literature of construction bidding that have taken a descriptive approach 

through the study. Using findings of those studies, a multi-attribute markup decision model is 

conceptualized and developed. The “Methodology & Description of Experiments” section 

describes implementation of the multi-attribute markup decision model as the markup function of 

contractors in the virtual laboratory. Then, several simulation experiments are conducted to 

address research questions outlined in the “Introduction” section. The “Results and Discussion” 

section presents results of the experiments and discuss major observations. Finally, the 

“Conclusion and Future Works” section summarizes key findings and insights and outlines 

directions for future research in this area. 
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6.2. Literature Review on Descriptive Studies of Construction Biddings  

As explained in Chapter 3, the literature of construction bidding can be classified into three 

categories based on the methodological approaches: Induction, deduction, and simulation. The 

following table presents major deductive studies in the literature. All these studies that aimed to 

identify key factors that contractors consider when making bidding decisions stressed the multi-

attribute nature of markup decision making  and the fact that a contractor’s internal conditions 

(including need for work, risk behavior, current workload, financial capacity, firm size and others) 

are equally and sometimes even more important than project attributes and market characteristics.  

To define the behavioral rules, this chapter focuses on three of the most influential bidding factors 

identified in the literature namely, the market competition, the risk behavior and the need for work. 

This choice is supported by the literature. (Ahmad & Minkarah, 1988; Chua & Li, 2000; Shash, 

1993) identified need for work was as one of the most influential factor in making a contractor 

take any measures to win the job. Based on their internal characteristics, organizational culture, 

and risk attitude, contractors have varying perceptions about market conditions and projects’ 

uncertainties (Oo et al., 2010). At the time of bidding, a construction project can be seen as a lottery 

with different profit outcomes and with a level of uncertainty resulting from the expected variance 

in the final cost of the project. Depending on their risk attitudes, the value of this lottery and its 

appeal varies from one contractor to another. In an empirical study, (de Neufville & King, 1991) 

showed that each of the two components, risk and need for work, causes independently and 

additively a rough increase of 3% in the bid price of a contracting firm. Besides competition, risk, 

and work continuity, there are some other less important factors affecting the optimal markup 

decision identified in the literature such as type of project and inherent complexity, client character 

and record of payment, reliability of subcontractors, and degree of uncertainty in cost estimates. 
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While the former studies identified the major markup defining components, they failed to consider 

and discuss the interaction among them and the relative dominance of one on the other within a 

market of heterogeneous contractors exhibiting different bidding behavior and strategies. This 

study aims to address this gap.  

 

Table 6.1. Review of Major Descriptive Studies in the Literature Construction Bidding 

Author(s)/Year Description of the study Contribution of the study 

Ahmad and 

Minkara (1988) 

A survey for identifying main 

factors for US contractors when 

making bid/no bid and markup 

decisions 

Need for work, type of job, degree of 

hazard, economic conditions, competition, 

degree of uncertainty in cost estimate, and 

reliability of subcontractors are key factors 

in determining the markup.  

DeNeufville 

and King (1991)  

An empirical investigation on 

the bidding decisions of 30 

selected contractors in Boston, 

USA 

Risk and need for work were identified as 

two influential factors in a contractor’s 

bidding behavior. Different profit markup 

utility functions were developed for 

different possible combinations of these two 

factors.  

Shash (1993)  A survey to find the most 

significant factors influencing 

the markup decision for 85 top 

UK contractors   

Degree of difficulty, risk involved, current 

workload and need for work were identified 

are the most influential factors.  

Hegazy and 

Moselhi (1995)  

A survey condocted among 78 

general contractors in Canada 

and the US to identify key 

factors influencing a 

contractor’ bidding decisions  

23 factors were grouped into four 

categories: 1- job uncertainty (owner 

attitude and project location), 2- job 

complexity (project size and the level of 

technology needed), 3- market condition 

(economic growth and expected 

competition), and 4- the firm’s ability and 

need for work (expertise in similar projects 

and how desperately the work was needed). 

Chua and Li 

(2000) 

Interviews with competitive 

bidding experts and top 

contractors in Singapore for 

identifying key considerations 

in bidding decisions  

The potential level of competition, the 

inherent project risk, the contract type, the 

company’s bidding position and its need for 

the job are key factors.  

Dulaimi and 

Shan (2002) 

A survey to find factors that 

medium and large size 

contractors in Singapore 

consider when making their bid 

markup decision  

40 factors were identified and classified into 

project characteristics, company’s 

attributes, bidding situation, economic 

environment, and project documentation.   
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Ye et al. (2013)  A survey to find key factors 

contractors in China consider 

when determining bid prices 

for public projects 

Major factors were identified, ranked, and 

classified into different categories including 

construction cost, contractor heterogeneity, 

payment terms, potential competitors, client 

requirements, market conditions, and third-

party stakeholders.  

 

6.3. Methodology & Description of Experiments 

Similar to the experiments in the previous chapters, two main classes of objects are Projects and 

Contractors. Projects are generated sequentially over a simulation period of ten years and are 

assigned a set of characteristics such as the project budget chosen uniformly over the range [$80M, 

$120M], the project duration also selected uniformly between 20 and 30 weeks, the project 

complexity (low or high), and its actual cost based on the inherent uncertainty. On the other hand, 

a set of contractors is created in the market along with their attributes including their attitude 

towards risk, expertise, cost estimation skills, bidding competitiveness, financial status, work 

backlog and need for work, in addition to their decision making rules with respect to bidding on 

projects and markup choice. It is assumed that all contractors can estimate a project cost with the 

same level of accuracy and have the same level of management capability and expertise although 

there are uncertainties over the actual cost at which a project is completed given different level of 

project complexities. Note that the actual cost is set to follow a triangular distribution with a mean 

equal to the project’s market budget. Figure 1 shows a schematic representation of the bidding 

process simulation and reflects the interaction among the different agents over time within one 

competitive environment. It is worth noting that the agent–environment boundary represents the 

limit of the agent’s absolute control, not of its knowledge.  
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Figure 6.1. An abstraction of a contractor in the bidding environment and the network structure of the market 

 

6.3.1. Multi-Attribute Markup Function 

This study assumes that a typical contractor considers three independent criteria when trying to 

determine the markup for a certain project, which are the market competition, the inherent risk, 

and the need for work. Based on the descriptive studies in the literature, and to maintain behavioral 

rules simple and rule of thumb-like, an additive markup function was developed in this study 

consisting of three components described in the following subsections: 

6.3.1.1. Competition Component 

Competition has been identified as one of the main decision criteria for construction contractors 

when determining their bid price for a project (Hegazy & Moselhi, 1995; Smith & Bohn, 1999). 

To increase their chance of winning a contract, a contractor needs to adjust its markup with respect 

to the quality and quantity of competition demonstrated by their competitors (Carr, 1983). Bid 



95 

 

competitiveness ratio expression introduced by (Oo et al., 2010) is used in this study to measure 

competitors’ competitiveness.  

𝐵𝐶𝑅𝑖𝑝 =
𝐵𝑖𝑝 − 𝐵𝑙𝑝

𝐵𝑙𝑝
      (6.1) 

Where BCRip is the bid competitiveness ratio for opponent i on project p, Bip is the bid price 

submitted by opponent i for project p, and Blp is the lowest submitted bid for project p. This ratio 

calculates the gap between an opponent’s bid and the lowest bid submitted for a project divided 

by the lowest bid. This ratio reflects how close a competitor’s bid was to the lowest bid for a 

previous project and therefore the smaller this ratio is, the more competitive a competitor is. During 

each bidding cycle, a contractor determines the average bid competitiveness ratios for his potential 

opponents over the last ten projects tendered in the market using the following code excerpt from 

the developed model: 

//This piece of code shows how the BCRip of each contractor i is computed and archived after 

determining the winning bid for every past project p// 

 

for (Contractor c : get_Main().allContractors) 

{  

 c.bidCompetitivenessRatio = (c.bidPrice / winningPrice) - 1 ; 

 c.bidCompetitivenessDataset.add(this.projectID,c.bidCompetitivenessRatio); 

} 

 

//This piece of code shows how the average BCRip over the last ten projects, named 

bidCompetitivenessTen, is computed for each potential opponent i on the current project p// 

 

for (Contractor c : Opponents) 

{ 

sum=0; 

 for(int n = 0; n < c.bidCompetitivenessDataset.size() ; n++) 

{sum += c.bidCompetitivenessDataset.getY(n);}  

 c.bidCompetitivenessTen = sum / c.bidCompetitivenessDataset.size(); 

 } 

Then, once the average bid competitiveness ratios of potential opponents are determined, the 

contractor will be able to compare and rank himself among his competitors and hence evaluate the 
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percentage of opponents who have been more competitive than him in the recent past projects. The 

lower this percentage is, the higher markup a contractor can afford to use in his bid price for the 

current project and thus the higher the competition component will be assigned in the developed 

additive markup function.  

At the time of bid preparation, each contractor considers the past ten projects tendered in the 

market, determines the corresponding average competitiveness ratios for potential competitors and 

decides on the competition component of its markup value accordingly. The reason for limiting to 

just the past ten project is to consider the most recent behavior of competitors rather than their 

whole bid history.  

6.3.1.2. Risk Component 

As explained in the previous chapter, one key organizational element involved in the bid 

preparation process is risk attitude. Contractors consider a risk allowance in the bid price that is 

usually added to the markup as a percentage of total cost. The range for residual risk allowance 

percentage in bids is in the order of [0-3] % which is also adopted in this simulation (de Neufville 

& King, 1991; Laryea & Hughes, 2010; Smith & Bohn, 1999). The risk attitude of a contractor 

affects the way it perceives the inherent risk in a project and the impact it can have on the firm’s 

bid price. In this chapter, there are three types of contractors with respect to risk attitude (Slightly 

Risk Averse, Moderately Risk Averse, Extremely Risk Averse) and two degrees of project risk 

(low and high) which are the main two factors defining the risk allowance component in the 

markup function:  

if (riskAversion == mild) 

{ 

 if (project.riskLevel == low) 

 riskcontingency = 0.00; 

 if (project.riskLevel == high) 

 riskcontingency = 0.01; 
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 } 

else if (riskAversion == moderate) 

{ 

 if (project.riskLevel == low) 

 riskcontingency = 0.01; 

 if (project.riskLevel == high) 

 riskcontingency = 0.02; 

 } 

else  (riskAversion == extreme) 

{ 

 if (project.riskLevel == low) 

 riskcontingency = 0.02; 

 if (project.riskLevel == high) 

 riskcontingency = 0.03; 

 } 

6.3.1.3. Need for Work Component 

Contractors need to maintain a certain work backlog so that they can cover their general and 

administrative costs and retain skilled personnel. In this simulation, the parameter Work-in-

Progress Limit is defined as the average annual workload a contractor can have during a year given 

its size and capabilities. Accordingly, the need for work ratio (NWR) for a contractor i is 

determined through the following equation:  

𝑁𝑊𝑅𝑖 = 1 − (
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑊𝑜𝑟𝑘 𝑉𝑜𝑙𝑢𝑚𝑒

𝑊𝑜𝑟𝑘 − 𝑖𝑛 − 𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 𝐿𝑖𝑚𝑖𝑡
)      (6.2) 

The closer this ratio is to 1, the higher the need for work and the lower the markup is expected to 

be; and the closer this ratio is to 0, the lower is the contractor’s need for work and the higher 

markup it can afford. Through surveying contractors in the market, (de Neufville & King, 1991) 

showed that a high need for work could roughly decrease the bid price by 3%. The need for work 

component in this study is selected within the range [0-4] % and its specific value is chosen based 

on two variables namely the financial status of the contractor and the previously defined need for 

work ratio. The financial situation of a contractor is assessed through the positive or negative 

change to its initial working capital.  
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6.3.2. Description of the Experiments  

This subsection explains the details of three sets of simulation experiments conducted in this study. 

Nine contractors are defined in the market and are set to have the same value for initial working 

capital, work limit, cost estimation and project management skills. Each contractor can 

simultaneously work on four projects at most. Given the number of contractors in the market and 

their work limit, the market is considered very competitive in all sets of experiments. Each 

experiment set has been run for 100 times in order to ensure the consistency of the results. Table 6.2 

presents a summary of the experiments sets and their purposes. 

The purpose of the first set of experiments (A) is to examine what level of risk attitude results in 

the contractor’s best financial performance on the long run. The result will be compared with 

findings in the literature in order to check and verify capability of the simulation model. There are 

nine contractors competing with each other in the market including three slightly risk averse 

contractors, three moderately risk averse contractors, and three extremely risk averse contractors. 

Table 6.3 shows the risk attitude assigned for each of the nine contractors. In the first set of 

experiments, projects are generated in the market one at a time unit under three different scenarios. 

Under scenario A.1, all projects have low level of complexity and uncertainty. Under scenario A.2, 

the market comprises a mix of projects with low and high level of complexity and uncertainty. In 

this case, always the next project has high (or low) level of complexity and uncertainty with a 

probability of 50%. As for scenario A.3, all projects have high level of complexity and uncertainty. 

These three scenarios are considered only in the first set of experiments in order to analyze the 

impact of project uncertainties on the results.  
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Table 6.2. Summary of the experiment set A, B, and C 

Experiment Set Purpose  Experiment Conditions  

A Finding the optimal level of 

risk attitude for contractors  

Scenario 1: the market comprises only projects 

with low level of complexity.  

Scenario 2: the market comprises a mix of 

projects with low and high level of complexity. 

Scenario 3: the market comprises only projects 

with high level of complexity. 

B Finding whether 

considering “Need for 

Work” impacts business 

success of contractors 

The market comprises a mix of projects with 

low and high level of complexity.  

All contractors are moderately risk averse.  

C Finding to what degree a 

markup discount should be 

considered to account for 

need for work 

The market comprises a mix of projects with 

low and high level of complexity.  

All contractors are moderately risk averse. 

 

The second set of simulation experiments (B) investigates the importance of the component “Need 

for Work”. It aims at assessing whether considering “Need for Work” impacts business success of 

contractors on the long-term or not. If the answer is yes, the purpose of the third set of simulation 

experiments (C) is to find to what degree a markup discount should be considered to account for 

need for work.  

In experiment set B, there are two types of contractors with ten contractors in total. As Table 6.3 

shows there are five contractors who do not consider “Need for Work” and five other contractors 

who consider it and accordingly discount their markup up to 2%. Financial performance of the two 

sets of contractors is observed and compared in order to evaluate the effect of considering “Need 

for Work” in markup decision.  

In experiment set C, there are five types of contractors with ten contractors in total, and these five 

types differ by the discount level at which they take the component “Need for Work” into 

consideration when determining their markup. Table 6.3 shows the varying levels of “Need for 
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Work” consideration in the markup function of the ten defined contractors. It is worth mentioning 

that the second and third sets of experiments were conducted under three levels of risk attitude 

separately in order to ensure that results are consistent regardless of the risk attitude of contractors. 

Also, the market consisted of a mix of low and high risk projects (similar to the scenario A2 under 

the first set of experiments) in both sets.  

 

Table 6.3. Contractors' characteristics in the experiment set A, B, and C 

Contractor Risk Attitude  

in the experiment set A 

Need For Work 

in the experiment set B 

Need For Work 

in the experiment set C 

#1 Slightly Risk Averse Ignored Ignored 

#2 Slightly Risk Averse Ignored Ignored 

#3 Slightly Risk Averse Ignored Discounted up to 1% 

#4 Moderately Risk Averse Ignored Discounted up to 1% 

#5 Moderately Risk Averse Ignored Discounted up to 2% 

#6 Moderately Risk Averse Discounted up to 2% Discounted up to 2% 

#7 Extremely Risk Averse Discounted up to 2% Discounted up to 3% 

#8 Extremely Risk Averse Discounted up to 2% Discounted up to 3% 

#9 Extremely Risk Averse Discounted up to 2% Discounted up to 4% 

#10 N.A.  Discounted up to 2% Discounted up to 4% 

 

6.4. Results  

This section presents and discusses the results that were obtained in the three sets of experiments 

described in the previous section.  

6.4.1. Results of Experiment Set A  

Table 6.4, Table 6.5, Figures 6.2 to 6.5 present the results obtained for the first experiment set. To 

be more specific, Figures 6.2 to 6.4 show the progress of the average working capital for the three 

levels of risk aversion versus the project ID under the three different described scenarios which 

exhibit varying degrees of project risk. As shown in each of these figures, moderately risk averse 

contractors financially outperform others in highly competitive markets in the long run. This result 

is consistent across all scenarios and is aligned with the result obtained in the literature and in 
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Chapter 5 of this dissertation (Kim & Reinschmidt, 2010, 2011). Also, slightly risk averse 

outperform extremely risk averse contractors in all scenarios. One of the methods for validating 

simulation models is comparing obtained results with real-world observations or findings from 

literature. In this case, results of this experiment set can be considered as a validation tool of the 

simulation model.  

Comparing Figures 6.2, 6.3, and 6.4, it is observed that slightly risk averse contractors can do 

better in riskier markets. Slightly risk averse contractors, on average, have the highest difference 

with moderately risk averse contractors in terms of working capital when the market comprises 

low risk projects (Scenario A1). This difference decreases when moving from low risk to high risk 

market; namely, from scenario A1 to scenario A2 and then scenario A3. This can be due to the fact 

that when facing high uncertainty in projects, the more risk averse a contractor is, the higher the 

allocated contingency (risk allowance) in his bid which reduces his competitiveness. This gives a 

winning edge to slightly risk averse contractors over moderate ones, and thus the gap between the 

growing working capitals for both decreases from scenario A1 to scenario A3. Another observation 

about Figures 6.2, 6.3, and 6.4 is that, given a certain risk aversion level, the generated working 

capital representing an accumulation of actual project profits over time has increased from low to 

high risk market because all contractors will consider higher risk allowance in their markup to 

hedge against high level of risk in projects.  
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Figure 6.2. Financial performance of contractors in the experiment set A under scenario A1 

 

Figure 6.3. Financial performance of contractors in the experiment set A under scenario A2 
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Figure 6.4. Financial performance of contractors in the experiment set A under scenario A3 

 

Table 6.4 presents the working capital of contractors in the three scenarios. It also compares each 

contractor’s performance with the best performance in the market in terms of working capital. As 

Table 6.4 suggests, the average working capital of contractors have increased from Scenario 1 to 

3. In other words, in riskier markets, contractors increased their markup to cover the risk and thus 

could manage a higher profit. It is also observed that moderate risk averse contractors had the 

smallest average gap (Δ%) with the best performer in the market in all scenarios which again 

indicates that moderation in risk attitude is the optimal strategy regardless of the project risk level. 

Note contractors #5 and #6 exhibited the best financial performance in all three scenarios (Δ=0%). 

Another important observation that was emphasized earlier is that slightly risk averse contractors 

performed significantly better under scenario 3 where the average Δ% dropped from -41% in 

scenario 2 to -24% in scenario 3. 
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Table 6.4. Contractors' working capital in the experiment set A under scenarios A1, A2, and A3 

 Working Capital ($M) 

  Scenario 

A1 

Δ% with the 

best 

performance 

Scenario 

A2 

Δ% with the 

best 

performance 

Scenario 

A3 

Δ% with the 

best 

performance 

Contractor 1 237 -25% 170 -54% 294 -28% 

Contractor 2 90 -72% 292 -22% 299 -27% 

Contractor 3 155 -51% 198 -47% 345 -16% 

Average of 

Contractor 1, 2, 3 

161 -49% 220 -41% 313 -24% 

Contractor 4 260 -18% 346 -7% 321 -21% 

Contractor 5 318 0% 271 -27% 382 -6% 

Contractor 6 269 -15% 372 0% 408 0% 

Average of 

Contractor 4, 5, 6 

283 -11% 330 -11% 371 -9% 

Contractor 7 163 -49% 207 -44% 202 -50% 

Contractor 8 167 -47% 158 -58% 234 -43% 

Contractor 9 112 -65% 194 -48% 224 -45% 

Average of 

Contractor 7, 8, 9 

147 -54% 186 -50% 220 -46% 

 

Table 6.5 presents market share of the nine contractors under the three different scenarios. Please 

note that the market share of each contractor is defined to be the number of won projects over the 

number of tendered projects in the market: 

𝑀𝑎𝑟𝑘𝑒𝑡 𝑠ℎ𝑎𝑟𝑒 𝑖 =
# 𝑜𝑓 𝑤𝑜𝑛 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑏𝑦 𝑖

# 𝑜𝑓 𝑡𝑒𝑛𝑑𝑒𝑟𝑒𝑑 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑟𝑘𝑒𝑡
∗ 100      (6.3) 

This table supports again the conclusion that moderately risk averse contractors, on average, have 

a better performance under all market scenarios through having the highest share of projects among 

the three types of contractors.  
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Table 6.5. Contractors' market share in the experiment set A under scenarios A1, A2, and A3 

 Market Share 

 Scenario A1 Scenario A2 Scenario A3 

Contractor 1 12.3% 10.6% 10.9% 

Contractor 2 9.0% 11.9% 10.9% 

Contractor 3 10.9% 10.9% 12.3% 

Average of Contractor 1, 2, 3 10.7% 11.1% 11.4% 

Contractor 4 12.9% 12.3% 11.9% 

Contractor 5 13.1% 12.1% 13.1% 

Contractor 6 12.9% 13.4% 12.3% 

Average of Contractor 4, 5, 6 13.0% 12.6% 12.4% 

Contractor 7 9.6% 9.8% 9.6% 

Contractor 8 10.2% 9.2% 9.4% 

Contractor 9 9.0% 9.6% 9.4% 

Average of Contractor 7, 8, 9 9.6% 9.5% 9.5% 

 

Figure 6.5 shows the success rate of contractors throughout the simulation period. The success rate 

of a contractor is defined to be the number of won projects over the total number of projects the 

contractor has bid on:  

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒𝑖 =  
# of won projects by 𝑖

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑖 ℎ𝑎𝑠 𝑏𝑖𝑑 𝑜𝑛
      (6.4) 

This figure confirms that moderately risk averse contractors, on average, outperform other 

contractors. Moreover, it show that contractors tend to converge to a somehow constant success 

rate after 2-3 years (in the simulation time scale). It is worth noting that the result in Figure 6.5 is 

from several simulation runs of experiment set A under scenario A2.  
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Figure 6.5. Contractors' success rate under scenario A2 
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competition is intense. It is worth noting that this experiment set is conducted with the same risk 

aversion degree for all contractors in order to isolate the “Need for Work” effect on contractors’ 

growing capital. Figure 6.6 shows the results obtained for moderate risk aversion level, however, 

the simulation was repeated another two times, once with mild risk aversion condition for all 

contractors and the other with extreme risk attitude. Both scenarios showed similar results.  

 

 

Figure 6.6. Working capital of moderately risk averse contractors in experiment set B 
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6.4.3. Experiment Set C 

While considering “Need for Work” is a reasonable strategy for contractors, the extent to which 

this consideration should be accounted for in the markup percentage has not been studied in the 

literature. The experiment set presented in this section addresses this gap through having five 

different groups of contractors in the market who perceive the importance of “Need for Work” 

consideration differently and thus allocate different boundaries to this criterion in their markup 

functions. Figure 6.7 shows the experiment results where the growing capitals for the five groups 

of contractors are presented versus the project ID. It is observed that contractors 1 and 2 who do 

not take their need for work into consideration in their markup decisions are performing the worst, 

whereas, contractors 7 and 8 who are adopting a need for work upper margin of 3 % have the best 

financial performance. Contractors 5 and 6 come in the second rank with using an upper limit of 

2%. As for contractors 9 and 10, who are discounting up to 4%, they are increasing their chance 

of winning the project while decreasing the profit margin radically. On the other hand, contractors 

3 and 4 who are discounting up to 1% are not able to immediately secure a contract when they 

need it. Based on the aforementioned, it can be concluded that considering “Need for Work” 

strategically and discounting the markup up to 2-3% is the optimal policy for contractors in a 

competitive market on the long run. All contractors whose working capitals are shown in 

Figure 6.7 were assigned a moderate risk aversion degree. It should be noted again that this 

experiment was conducted under different contractors’ risk behavior (slightly and extremely risk 

averse) and the results were consistent regardless of the risk attitude.   
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Figure 6.7. Working capital of moderately risk averse contractors in experiment set C 
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discount to account for “Need for Work” component in the markup selection led to higher 

contractors’ chance of financial growth. Therefore, the optimal policy can be concluded to be 

moderation in both dimensions of risk attitude and need for work. At the limit, not considering 

need for work and being extremely risk averse appeared to be the least effective strategy a 

contractor can adopt.  

Another main finding of this study is that that the higher the projects’ risk and uncertainty within 

the market, the more competitive slightly risk averse contractors are compared to moderately risk 

averse contractors. This emergent behavior is not intuitive. Finally, the results obtained from all 

sets of experiments converge towards the conclusion that construction market reaches equilibrium 

where all contractors have gained enough information about their competitors.  
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CHAPTER 7. VERIFICATION AND VALIDATION OF THE MODELS 

 

“Knowledge is an unending adventure at the edge of uncertainty”. ~ Jacob Bronowski 

 

7.1. Introduction  

This chapter explains all the steps taken for verifying and validating the models and results 

presented in Chapter 3, Chapter 4, Chapter 5, and Chapter 6. Verification is the process of 

determining whether the programming implementation of the abstract model is correct whereas 

validation is the process of determining whether the conceptual model is a reasonably true 

representation of the real world for the purpose of answering the research questions (Sargent, 2013). 

In other words, verification is concerned with solving the problem right while validation is 

concerned with solving the right problem (Xiang, Kennedy, Madey, & Cabaniss, 2005).  

7.2. Verification 

The agent-based simulation platform used in this study, AnyLogic, allows the user to breakdown 

the model into several computation steps and verify the programming component of each step due 

to its capability of collecting information on any parameter or process at any time through the 

simulation. For some specific bidding cycles in several simulation runs, the corresponding 

calculations of all the process steps were computed manually, compared and verified with the 

model calculation.  

7.3. Validation 

The validation task is one of the key challenges in the development of agent-based models where 

emergent patterns at the aggregate level might not be directly traceable to the individual agents’ 



112 

 

micro behavior at the bottom level (Crooks, Castle, & Batty, 2008). There are numerous methods 

with different level of rigor for verification and validation of simulation models, particularly agent-

based models. Depending on the type of the model and available data, a method may be applicable 

for verification and validation; a model should be verified and validated to the degree needed for 

the model’s intended purpose or application (Sargent, 2013).   

One of the most prevalent validation methods is “model-to-model comparison” where the results 

of the simulation are compared with previous studies on the subject. For this purpose, results of 

the experiments conducted in the previous chapters were compared with the previous studies in 

the literature.  As mentioned previously, one main result of experiments conducted in Chapter 5 

and Chapter 6 were aligned with the literature; moderately risk averse contractors outperform other 

contractors in competitive markets in a long run. 

Another validation method used in this study was parameter variability (sensitivity analysis) where 

we closely examined how uncertainty in the values of the key input parameters can impact the 

model output and whether the outcomes are within a reasonable and expected range (Grimm et al., 

2010). Considering the capability of the virtual laboratory, different distributions were used for 

project budget, estimated duration, actual cost, and actual duration in addition to the fact that all 

experiments are conducted under different scenarios in order to make sure results are consistent. 

For example, experiment sets B and C in Chapter 6 were conducted with three different contractors’ 

risk attitudes and the result remained consistent.  

Robustness analysis or extreme condition test can be performed in order to observe the response 

of the model to drastic changes such as complete failure in securing a project for a long period of 

the simulation or unexpected success in early bids.  
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Structural or conceptual validation ensures that the conceptual model the 

mathematical/logical/verbal representation (mimic) of the problem entity developed for a 

particular study (Sargent, 2013). In this study, the bidding process used in the simulation model 

imitates the actual bidding process happening in reality. For example, one main feature of price-

based competitive bidding in the construction industry is that there exists a large input (in the form 

of requirements, details, drawings and specifications) provided equally for all contractors. 

Therefore, all contractors bid on the same information as it is in the simulation model.  

One important assumption was that contractors have access to other contractors’ bidding history. 

With respect to validation of model assumptions, it is worth mentioning that many contractors 

have a specific unit in their business development or R&D department that is in charge of 

collecting market information, tracking and analyzing their competitors. On the other hand, it was 

assumed that all contractors have the same size, initial working capital, cost estimation accuracy, 

construction management skills, expertise, and G&A costs in the purpose of removing any possible 

impact of these factors on the results. With respect to structural validation of the simulation, the 

bidding process used in the simulation model imitates the actual bidding process happening in 

reality. 

In addition to the above validation techniques, validation of the model through expert judgment is 

still crucial (Bonabeau, 2002). As part of future work, the simulation models presented in this 

dissertation can be validated by comparing their results with real case studies or by presenting it 

to and getting feedback from practitioners and professionals in the field of construction bidding. 

This is a difficult task especially in the construction business where contractors are most of the 

time reluctant to reveal their bidding strategies and financial gains or losses.  
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CHAPTER 8. CONCLUSION 

 

“I can live with doubt and uncertainty and not knowing. I think it is much more interesting to live 

not knowing than to have answers that might be wrong. If we will only allow that, as we progress, 

we remain unsure, we will leave opportunities for alternatives. We will not become enthusiastic 

for the fact, the knowledge, the absolute truth of the day, but remain always uncertain … In order 

to make progress, one must leave the door to the unknown ajar.” ~ Richard Feynman 

 

8.1. Conclusions 

This dissertation focused on modeling and analyzing the low-bid lump-sum competitive bidding 

in the construction industry. The important subject of competitive bidding in construction has 

attracted research, analysis, and surveys by both the construction academia and industry. A virtual 

laboratory was developed using agent-based modeling and then it was used in the following 

chapters:  

 to analyze the effectiveness of major quantitative methods in the bidding environment 

under a variety of scenarios,  

 to study the effect of contractors’ risk behavior, cost estimating and project management 

skills, and complexity of projects on contractors’ choice of optimal markup, long-term 

financial growth and market share, and  

 to investigate the impact of risk behavior and need for work on contractors’ performance.  

First, Chapter 3 conducted an extensive review of scientific studies in the field of competitive 

construction bidding and then categorized the literature into three classes of induction, deduction, 
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and simulation according to their methodological approach. Although previous studies have 

investigated different aspects of construction bidding from both contractors’ and owners’ 

perspectives using analytical and empirical approaches, they failed to understand the dynamics of 

bidding environment by considering interactions among players. The need for developing a 

comprehensive model that addresses methodological restrictions and limited applicability of 

previous research studies was identified. Using a System-of-Systems approach, an agent-based 

model of the low-bid lump-sum competitive bidding process was developed on a Java-based 

platform. The model has several advantages over the previous analytical and empirical models 

including the capability of observing the bidding process dynamics, the interaction between the 

heterogeneous and learning agents, and the emergent bidding patterns arising from multiple 

scenarios of market conditions and contractors’ attributes. This model can serve as an experimental 

laboratory that can be used by any potential user (owner or contractor) to evaluate and compare 

different bidding strategies and project tendering approaches. It can also serve as an educational 

tool in academic forums and classes to teach construction management students about the bidding 

process and all its complexities and to allow them to observe interesting dynamics and interactions 

between the different market constituents from an outsider’s perspective.  

Second, Chapter 4 introduced a new approach for evaluating the effectiveness of quantitative 

bidding methods in particular Friedman model and Gates model. While the emphasis of the 

previous studies was on validity and reliability of those methods using mathematical arguments 

and retrospective approaches, this study examine their applicability and effectiveness under 

various scenarios using a prospective approach, agent based modeling. The observations and 

results from the experiments conducted in this study were not limited to the above question. It also 

shed some light on the main characteristics of construction bidding environments as observed from 
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micro-behavior of its constituents: contractors and projects. The key conclusions of Chapter 4 are 

the following: 

 Using Friedman model can result in considerably higher number of won projects (higher 

market share) whereas using Gates model can result in higher profit per project. 

 In stable markets comprising rational competitors, the volatility in price of construction 

services can be due to uncertainty in cost estimating arising from factors such as the 

complexity of projects and incomplete contract specifications and information. 

 One factor contributing to the higher variance in the market is varying set of contractors 

participating in biddings. 

 Although the Fine model has shown a good prospect specifically in competition against 

unpredictable contractors, the fact that it ignores bid history of specific competitors makes 

it unfavorable and unreliable in situations where market participants change regularly. 

 With the increase in number of rational, sophisticated contractors the benefits 

unpredictable contractors can get from higher uncertainty in cost estimating will decrease. 

 In markets where there is limitation on number of projects a contractor can secure and the 

bid preparation cost is insignificant (therefore contractors are able to bid on as many 

projects as they want), the choice of bidding decision model is not a major distinguishing 

factor. 

 Imposing the limitation on bonding capacity can make the market less efficient; it decreases 

the gap between more effective and less effective contractors and increase average profit 

per project across the market.  

 Requiring a specific number of bid participants will make the market more efficient, lower 

the average and volatility of market markup, decrease the average profit per project, 



117 

 

increase the gap between market share of more effective and less effective contractors, and 

reduce the total profit created for contractors in the market. 

Third, Chapter 5 formulated the complex interaction among contractors’ risk behavior, cost 

estimating and project management skills, and complexity of projects and then investigated their 

impact on contractors’ choice of optimal markup, long-term financial growth and market share. 

The results of this study show: 

 There is a significant impact of a contractor’s risk behavior on its optimal markup and this 

impact is most significant in markets where projects are of high complexity and uncertainty.  

 The inherent risk level of a project is at the core of the markup decision and may result in 

significant inflation of bid prices in the market.  

 Moderately risk averse contractors can financially outperform others in a long run.  

 The comparative performance of slightly and extremely risk averse contractors depend on 

level of cost estimating accuracy and project execution skills of contractors. 

 The contractor’s good financial performance and market survival depends on his own 

characteristics, the market conditions and project attributes.  

 A better accuracy in the cost estimating of projects and more controlled management of 

the construction process generate higher profits for most contractors even when their 

markups decrease.  

 Fourth, Chapter 6 conducted an extensive literature review in order to build a rule-based and 

descriptive markup decision model that replicates behavior of contractors. Then, different 

experiments were designed and implemented under a variety of scenarios. Obtained results suggest 

that:  
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 Consideration of risk allowance and need for work has significant impact on contractor’s 

financial success in competitive bidding environments.  

 Moderately risk averse contractors consistently outperform other contractors in all market 

conditions including all levels of project risk.  

 Considering up to 2% to 3% discount to account for “Need for Work” component in the 

markup selection led to higher contractors’ chance of financial growth.  

 The optimal policy can be concluded to be moderation in both dimensions of risk attitude 

and need for work.  

 At the limit, not considering need for work and being extremely risk averse appeared to be 

the least effective strategy a contractor can adopt.  

 The higher the projects’ risk and uncertainty within the market, the more competitive 

slightly risk averse contractors are compared to moderately risk averse contractors.  

 Construction market reaches equilibrium where all contractors have gained enough 

information about their competitors. 

The results presented in this dissertation offer new understandings and insights on the construction 

bidding environment and recommendations for both owners and contractors’ competitive success, 

which are not available using conventional approaches. 

8.2. Future works 

Although the current research study was able to fully accomplish its research objectives, a number 

of additional research directions have been identified. The first four suggested future studies are 

in continuation of the developed agent-based models in this dissertation. The last two suggested 

future studies are research problems that I found and formulated when taking a system-of-systems 

approach to understand construction industry.  
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8.2.1. Applying Other Markup Models  

One of main assumptions of the simulation experiments in this study is that contractors are 

interested in the long-term expected profit. Although many characteristics of the simulated market 

is close to the reality of construction markets (for example, markup rates of agent contractors that 

determined by the quantitative methods are very close to the reported markup rate in the real 

construction market), the assumption of the long-term expected profit may not apply to all 

contractors in all situations. Future works can expand on this direction with considering other 

major quantitative methods including (Carr, 1982, 1987; M. Skitmore & Pemberton, 1994) models. 

This needs some considerations because Carr and Skitmore-Pemberton models take the true 

project cost as the reference point and calculate the uncertainties in cost estimation and competitors’ 

bids separately. Components other than mere competition such as opportunity costs (Carr, 1987) 

can be also taken into consideration.  

8.2.2. Adaptive Risk Attitude  

In this dissertation, I conclude that moderately risk averse contractors can outperform others in the 

long run. This is mainly due to their capability in creating a balance between two conflicting 

paradigms: pursuit of market share and profitability. This study assumes that risk attitude of 

contractors are fixed regardless of their financial status or market conditions. While the assumption 

is relevant and valid for investigating the long-term impact of risk attitude on contractors’ 

performance, future studies can relax this assumption. In particular, future works can focus on 

adaptive risk attitude in two main directions. The first step is to study contractors’ organizational 

culture and risk behavior in order to find out whether and when contractors change their risk 

attitude. This would help identifying what information and signals contractors look for in the 

market or their organization in order to act more or less risk averse. Second, new methodologies 
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such as reinforcement learning can be used to help contractors design the optimal dynamic strategy 

according to their organization, competition, and market conditions. This strategy can be later 

experimented and compared against other strategies in the virtual laboratory designed and 

developed in chapter 3. 

8.2.3. Dynamic Market  

The simulation model developed for the study assumed that the demand for construction works is 

constant and there is a constant stream of projects. By formulating and developing a market where 

the demand for construction works is fluctuating, future studies can investigate the following 

research questions. (1) What would be the optimal risk attitude for a contractor in a market where 

the demand is fluctuating? (2) Do contractors revise and modify their attitude towards risk? What 

are their key criteria for this decision? How often do they usually go through this process? (3) Do 

risk adaptive contractors perform better in constant and fluctuating market conditions? 

8.2.4. New Features for Contractors  

In all experiments conducted in this study, the number of contractors in the market was kept fixed 

and there was no newcomer or quitter from the market. Also, the size of a contracting firm was 

considered constant throughout the simulation while it is not always the case in reality. In future 

studies, new behaviors for contractors such as entry, exit, expansion, contraction, alliance, and 

merging can be defined and added to the model if they are aligned with the purpose of the research.  

8.2.5. Assessment of the Impact of Public Spending on Macroeconomics of the American 

Construction Industry 

Using advance econometric methods, this study aims to assess the impact of public spending, 

perceived as a policy tool, on different macroeconomic indicators of the American construction 

industry including but not limited to construction cost, construction employment, and private 
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investment in construction. To better capture the dynamics of construction economics at macro 

level, multi-equation time series models such as VAR and VEC will be constructed among more 

than two variables. Impact assessment of public spending using econometric methods has been 

received attention from researchers in various disciplines such as economics (Fatás & Mihov, 2001; 

Ghali, 1998; Mittnik & Neumann, 2001; Mountford & Uhlig, 2009; Pang & Herrera, 2005; 

Primiceri, 2005), public health (Filmer & Pritchett, 1999), and education (Mandl, Dierx, & 

Ilzkovitz, 2008; Poterba, 1996). While public spending in construction, mostly on infrastructures, 

has been perceived as an effective means for policy makers to regulate or enhance the overall 

economy or specific sectors (Aschauer, 1989; Munnell, 1992), its impact on macroeconomics of 

the construction industry both in short-term and long-term is not well understood. For example, it 

is not clear yet how construction public spending encourages or discourages private investments 

and whether the government plays a role of a competitor for private developers. Using econometric 

analysis and based on empirical evidences, those scenarios under which construction public 

spending influences the construction industry both positively and negatively will be determined. 

Furthermore, by a closer look at the effects of different types and timing of construction public 

spending, the criteria for the optimal policy will be developed.  

8.2.6. Understanding Complex Interdependencies between the Construction Industry and 

Commodity Markets 

Construction materials constitute a considerable portion of a construction project value and have 

impact on the overall performance of the construction industry. Although there is a rich literature 

on the importance of construction materials management and its impact on construction projects 

and project stakeholders (Gallagher & Riggs, 2006; Thomas, Sanvido, & Sanders, 1989; Wambeke, 

Hsiang, & Liu, 2011), their interdependencies with their production cost components and 
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macroeconomics of the construction industry have been disregarded. It is believed that there is 

dynamic linkages between the construction industry and associated manufacturing industries and 

commodity markets. When most construction materials like concrete and structural steel have 

significant commodity and energy components, understanding the above mentioned 

interdependencies becomes more vital considering the possibility of global impacts through 

commodity markets. Robust econometric methods can be utilized to discern the different types of 

interdependencies (linearity or non-linearity, one-way or two-way linkage, and correlation or 

causality) between construction materials and markets of their commodity and energy components. 

Along with investigating these bilateral relations, one step further can be taken with analyzing how 

macroeconomics of construction industry impacts and/or get impacted by commodity markets such 

as steel and energy.  
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APPENDICES 

Appendix 1 - Algorithm of Friedman markup function in Chapter 4 

1- Find competitors of a contractor for a given project 

Place the related codes here!  

2- Find common projects of the contractor and each of the competitors  

3- Calculate the bid-to-cost ratio for all common projects  

4- Determining the mean and variance of bid-to-cost ratios of the common projects for each 

contractor 

5- Add those means and variances to the collection of “Means” and “Variances” 

6- Find the probability of winning using Friedman model  

7- Find the optimal markup; the one that maximizes the expected profit.   

 

Appendix 2 - Java codes of Friedman markup function in Chapter 4 

int learning = 5; 
double sum=0; 
competitors.clear(); 
means.clear(); 
variances.clear(); 
 
if( inBiddingHistory.size() > learning ){ 
 
 for(Contractor c: get_Main().allContractors){ 
  
  if( get_Main().projects.get(i).interestedContractors.contains(c) == true 
&& c != this )  
  competitors.add(c); 
 } 
 
 // Determining Mean & Variance of previous bid prices   
 for( Contractor c: competitors ){ 
 commonBiddingHistory.clear(); 
 sum=0; 
 mean=0; 
 variance=0; 
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  for(int n = 0; n < biddingHistory.size() -1 ; n++){ 
  
   if( this.estimatedCostHistory.get(n) != infinity && 
c.bidPriceHistory.get(n) != infinity ){ 
   this.commonBiddingHistory.add( n ); 
   sum += c.bidPriceHistory.get(n)/this.estimatedCostHistory.get(n); 
   } 
  } 
   
  if( this.commonBiddingHistory.size() < 1 ) 
  mean = 1.1; 
  else 
  mean = sum/this.commonBiddingHistory.size(); 
   
  sum=0; 
  for(int n = 0; n < biddingHistory.size() -1 ; n++){ 
   
   if( this.estimatedCostHistory.get(n) != infinity && 
c.bidPriceHistory.get(n) != infinity ){ 
   sum += 
sqr( (c.bidPriceHistory.get(n)/this.estimatedCostHistory.get(n)) - mean ); 
   } 
  } 
   
  if( this.commonBiddingHistory.size() < 1 ) 
  variance = 0.04;   
  else 
  variance = sum / (this.commonBiddingHistory.size() - 1); 
  
 this.means.add(mean); 
 this.variances.add(variance); 
 } 
 
 double factor=1; 
 double expectedProfit = 1; 
 double optimalProfit = 0; 
 
 // Determining the optimalMarkUp when there is enough historical data  
 while ( factor <= 1.3 ){ 
 double probOfWin = 1; 
  
  for( int m=0; m < competitors.size(); m++ ){ 
  double x = 0; 
  x = (factor - means.get(m)) / ( sqrt(variances.get(m)) ) ;  
  probOfWin = ( 1 - get_Main().Q(x) ) * probOfWin ;  
  } 
   
  expectedProfit = probOfWin * (factor-1) * estimatedCost; 
  
  if(expectedProfit >= optimalProfit){ 
  optimalProfit = expectedProfit; 
  optimalMarkup = factor; 
  } 
    
 factor = factor + 0.0001; 
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 } 
 
return optimalMarkup;  
} 
 
// Determining the markUp randomly because there is NOT enough historical data about 
competitors  
else  
return uniform(1.02,1.05); 

 

Appendix 3 - Algorithm of Fine (the lowest-bid) markup function in Chapter 4 

1- Find the lowest bid in all previous projects of the contractor  

Place the related codes here!  

2- Calculate the bid-to-cost ratio for all the previous projects  

3- Determining the mean and variance of bid-to-cost ratios of the previous projects  

4- Find the probability of winning   

5- Find the optimal markup; the one that maximizes the expected profit. 

 

Appendix 4 - Java codes of Fine (the lowest-bid) markup function used in Chapter 4 

int learning = 5; 
double sum=0; 
competitors.clear(); 
means.clear(); 
variances.clear(); 
 
if( inBiddingHistory.size() > learning ){ 
 
 // Determining Mean & Variance of previous bid prices   
 commonBiddingHistory.clear(); 
 sum=0; 
 mean=0; 
 variance=0; 
  
  for(int n = 0; n < biddingHistory.size() -1 ; n++){ 
  
   if( this.estimatedCostHistory.get(n) != infinity ){ 
     
    sum += 
this.lowestPrice.get(n)/this.estimatedCostHistory.get(n); 
   } 
  } 
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  if( this.inBiddingHistory.size() < 2 ) 
  mean = 1.05; 
  else 
  mean = sum/this.inBiddingHistory.size(); 
   
  sum=0; 
  for(int n = 0; n < biddingHistory.size() -1 ; n++){ 
   
   if( this.estimatedCostHistory.get(n) != infinity && 
this.bidPriceHistory.get(n) != infinity ){ 
   sum += 
sqr( ( this.lowestPrice.get(n)/this.estimatedCostHistory.get(n) ) - mean ); 
   } 
  } 
   
  if( this.inBiddingHistory.size() < 2 ) 
  variance = 0.02;   
  else 
  variance = sum / (this.inBiddingHistory.size() - 1); 
  
  
 
 double factor=1; 
 double expectedProfit = 1; 
 double optimalProfit = 0; 
 
 // Determining the optimalMarkUp when there is enough historical data  
 while ( factor <= 1.3 ){ 
 double probOfWin = 1; 
  
  double x = (factor - mean) / ( sqrt(variance) ) ;  
  probOfWin = ( 1 - get_Main().Q(x) ) * probOfWin ;  
   
   
  expectedProfit = probOfWin * (factor-1) * estimatedCost; 
  
  if(expectedProfit >= optimalProfit){ 
  optimalProfit = expectedProfit; 
  optimalMarkup = factor; 
  } 
    
 factor = factor + 0.0001; 
 } 
 
return optimalMarkup; 
} 
 
// Determining the markUp randomly because there is NOT enough historical data about 
competitors  
else  
return uniform(1.02,1.05); 
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Appendix 5 - Java codes of Friedman-Utility markup function used in Chapter 5 

int learning = 1; 
double sum=0; 
competitors.clear(); 
means.clear(); 
variances.clear(); 
 
if (get_Main().projects.get(i).complexity == 1) 
 estimatedCostCV = 0.05; 
else if (get_Main().projects.get(i).complexity == 2) 
 estimatedCostCV = 0.1; 
else 
 estimatedCostCV = 0.2; 
 
if( inBiddingHistory.size() > learning ){ 
 
 for(Contractor c: get_Main().allContractors){ 
  
  if( get_Main().projects.get(i).interestedContractors.contains(c) == true 
&& c != this )  
  competitors.add(c); 
 } 
 
 // Determining Mean & Variance of previous bid prices   
 for( Contractor c: competitors ){ 
 commonBiddingHistory.clear(); 
 sum=0; 
 mean=0; 
 variance=0; 
  
  for(int n = 0; n < biddingHistory.size() - 1 ; n++){ 
  
   if( this.estimatedCostHistory.get(n) != infinity && 
c.bidPriceHistory.get(n) != infinity ){ 
   this.commonBiddingHistory.add( n ); 
   sum += c.bidPriceHistory.get(n)/this.estimatedCostHistory.get(n); 
   } 
  } 
   
  if( this.commonBiddingHistory.size() < 1 ) 
  mean = 1.1; 
  else 
  mean = sum/this.commonBiddingHistory.size(); 
   
  sum=0; 
  for(int n = 0; n < biddingHistory.size() -1 ; n++){ 
   
   if( this.estimatedCostHistory.get(n) != infinity && 
c.bidPriceHistory.get(n) != infinity ){ 
   sum += 
sqr( (c.bidPriceHistory.get(n)/this.estimatedCostHistory.get(n)) - mean ); 
   } 
  } 
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  if( this.commonBiddingHistory.size() < 1 ) 
  variance = 0.04;   
  else 
  variance = sum / (this.commonBiddingHistory.size() - 1); 
  
 this.means.add(mean); 
 this.variances.add(variance); 
 } 
 
 double factor=1; 
 double expectedUtility = 1; 
 double optimalUtility = 0; 
 
 // Determining the optimalMarkUp when there is enough historical data  
 while ( factor <= 1.5 ){ 
 double probOfWin = 1; 
  
  for( int m=0; m < competitors.size(); m++ ){ 
  double x = 0; 
  x = (factor - means.get(m)) / ( sqrt(variances.get(m)) ) ;  
  probOfWin = ( 1 - get_Main().Q(x) ) * probOfWin ;  
  } 
   
  expectedUtility = probOfWin*(1 -exp( -riskav* ((factor-1)*estimatedCost 
- 0.5*riskav* sqr(estimatedCostCV*estimatedCost) ) ) ); 
  
  if(expectedUtility >= optimalUtility){ 
  optimalUtility = expectedUtility; 
  optimalMarkup = factor; 
  } 
    
 factor = factor + 0.0001; 
 } 
 
return optimalMarkup; 
} 
 
// Determining the markUp randomly because there is NOT enough historical data about 
competitors  
else  
return uniform(1.02,1.05); 

 

Appendix 6 - Java codes of multi-attribute markup function used in Chapter 6 

int learning = 0;  
competitors.clear(); 
double sum = 0; 
double average = 0; 
 
if( inBiddingHistory.size() > learning ){ 
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// Markup Decision: Three Additive Components 
 
 // 1- Competition Effect:  [5, 9] % 
 
 for(Contractor c: get_Main().allContractors){  
  if( get_Main().projects.get(i).interestedContractors.contains(c) == true 
&& c != this )  
  competitors.add(c); 
 } 
 
biddingCompetitivenessRank = 1 ;  
 
 for( Contractor c: competitors ){  
  if( biddingCompetitivenessTen > c.biddingCompetitivenessTen ){  
  sum += 1 ; 
  biddingCompetitivenessRank += 1 ; } 
 }   
  
 average = sum / competitors.size() ; 
 
 
 if (average < 0.2) 
 component1 = 0.09; 
 else if (average >= 0.2 && average < 0.4) 
 component1 = 0.08; 
 else if (average >= 0.4 && average < 0.6) 
 component1 = 0.07; 
 else if (average >= 0.6 && average < 0.8) 
 component1 = 0.06; 
 else if (average >= 0.8) 
 component1 = 0.05; 
 
 // 2- Need for work : [-4, 0] % 
  
 if (consideringNeedForWork == 0){ 
 component2 = 0; 
 } 
 
 
 else if (consideringNeedForWork == 1){ 
  
 financialStatus = workingCapital - initialWorkingCapital; 
 needForWork = 1 - currentWorkVolume/workInProgressLimit ; 
  
 if (financialStatus > 0){ 
  
 if (needForWork < 0) 
 component2 = 0.00; 
 else if (needForWork >= 0 && needForWork < 0.3) 
 component2 = -0.00125; 
 else if (needForWork >= 0.3 && needForWork < 0.6) 
 component2 = -0.0025; 
 else if (needForWork > 0.6) 
 component2 = -0.005; 
 } 
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 else { 
  
 if (needForWork < 0) 
 component2 = 0.00; 
 else if (needForWork >= 0 && needForWork < 0.3) 
 component2 = -0.0025; 
 else if (needForWork >= 0.3 && needForWork < 0.6) 
 component2 = -0.005; 
 else if (needForWork > 0.6) 
 component2 = -0.01; 
 } 
 } 
  
  
 else if (consideringNeedForWork == 2){ 
  
 financialStatus = workingCapital - initialWorkingCapital; 
 needForWork = 1 - currentWorkVolume/workInProgressLimit ; 
  
 if (financialStatus > 0){ 
  
 if (needForWork < 0) 
 component2 = 0.00; 
 else if (needForWork >= 0 && needForWork < 0.3) 
 component2 = -0.0025; 
 else if (needForWork >= 0.3 && needForWork < 0.6) 
 component2 = -0.005; 
 else if (needForWork > 0.6) 
 component2 = -0.01; 
 } 
  
 else { 
  
 if (needForWork < 0) 
 component2 = 0.00; 
 else if (needForWork >= 0 && needForWork < 0.3) 
 component2 = -0.005; 
 else if (needForWork >= 0.3 && needForWork < 0.6) 
 component2 = -0.01; 
 else if (needForWork > 0.6) 
 component2 = -0.02; 
 } 
 } 
  
  
 else if (consideringNeedForWork == 3){ 
  
 financialStatus = workingCapital - initialWorkingCapital; 
 needForWork = 1 - currentWorkVolume/workInProgressLimit ; 
  
 if (financialStatus > 0){ 
  
 if (needForWork < 0) 
 component2 = 0.00; 
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 else if (needForWork >= 0 && needForWork < 0.3) 
 component2 = -0.00375; 
 else if (needForWork >= 0.3 && needForWork < 0.6) 
 component2 = -0.0075; 
 else if (needForWork > 0.6) 
 component2 = -0.015; 
 } 
  
 else { 
  
 if (needForWork < 0) 
 component2 = 0.00; 
 else if (needForWork >= 0 && needForWork < 0.3) 
 component2 = -0.0075; 
 else if (needForWork >= 0.3 && needForWork < 0.6) 
 component2 = -0.015; 
 else if (needForWork > 0.6) 
 component2 = -0.03; 
 } 
 } 
  
  
 else if (consideringNeedForWork == 4){ 
  
 financialStatus = workingCapital - initialWorkingCapital; 
 needForWork = 1 - currentWorkVolume/workInProgressLimit ; 
  
 if (financialStatus > 0){ 
  
 if (needForWork < 0) 
 component2 = 0.00; 
 else if (needForWork >= 0 && needForWork < 0.3) 
 component2 = -0.005; 
 else if (needForWork >= 0.3 && needForWork < 0.6) 
 component2 = -0.01; 
 else if (needForWork > 0.6) 
 component2 = -0.02; 
 } 
  
 else { 
  
 if (needForWork < 0) 
 component2 = 0.00; 
 else if (needForWork >= 0 && needForWork < 0.3) 
 component2 = -0.01; 
 else if (needForWork >= 0.3 && needForWork < 0.6) 
 component2 = -0.02; 
 else if (needForWork > 0.6) 
 component2 = -0.04; 
 } 
 } 
   
  
   
 // 3- Risk Allowance : [0, 7] % 
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 // 0 means Slightly risk averse  
 // 1 means Moderately Risk Averse  
 // 2 means Extremely risk Averse  
  
 if (riskAttitude == 0){ 
 if (get_Main().projects.get(i).riskLevel == 0) 
 component3 = 0.00; 
 if (get_Main().projects.get(i).riskLevel == 1) 
 component3 = 0.02; 
 } 
  
 else if (riskAttitude == 1){ 
 if (get_Main().projects.get(i).riskLevel == 0) 
 component3 = 0.01; 
 if (get_Main().projects.get(i).riskLevel == 1) 
 component3 = 0.03; 
 } 
  
 else if (riskAttitude == 2){ 
 if (get_Main().projects.get(i).riskLevel == 0) 
 component3 = 0.02; 
 if (get_Main().projects.get(i).riskLevel == 1) 
 component3 = 0.04; 
 } 
    
return 1 + component1 + component2 + component3 + uniform(0,0.00100); 
} 
 
else  
return uniform(1.05,1.1); 

 

Appendix 7 - Computation  

This appendix briefly explains the way the developed agent-based model performs computations 

in consecutive steps. Because the sheer amount of computations is very high, only one time unit 

of the simulation is broken down and interaction of computational components of the model is 

described. This appendix presents the time unit #10 of the simulation experiment in Chapter 5. In 

the experiment, there are nine contractors with different risk attitude (in other words, with different 

risk coefficient for the equation 5.4). The estimating accuracy and project management skills of 

all contractors are “Normal”. Project complexity is chosen randomly from low to high. The 

following are the steps the model takes to simulate the 11th bidding situation: 
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1- The 11th project (Project ID = 10) is generated. The estimated budget of the project is $100M. 

The estimated duration is 29 weeks. The complexity level of the project is low.  

2- The contractors observe the project and its attributes. They enter the bidding process.  

3- The contractors estimate the cost of the project using the following function: 

if (estimatingAccuracy == "Normal") 
 {estimatedCost = pert(0.90, 1.10, 1.00)*p.marketBudget; 
 }    
else if (estimatingAccuracy == "Improved") 
 {estimatedCost = pert(0.95, 1.05, 1.00)*p.marketBudget; 
 } 

 

The table below presents the estimated cost of the project for each contractor: 

Contractor  The Estimated Cost for Project #11 (M$) 

1 96.073 

2 95.003 

3 108.957 

4 102.822 

5 98.522 

6 99.558 

7 99.223 

8 97.252 

9 103.848 

 

4- The contractors determine their optimal markup using the equation 5.4 that combines Friedman 

Model and Utility Theory. First, a contractor, let’s say contractor 5, calculates the bid-cost estimate 

ratio for all common past project of the competitors. Let’s do this for one of the competitors of 

contractor 5, contractor 3. The table below presents the past cost estimates of contractor 5 and the 

past bid prices of contractor 3. Then it calculates the bid-cost ratio:  

Project # Cost Estimate of Contractor 5 Bid Price of Contractor 3 Bid-Cost Ratio 

1 105.507 96.846 0.918 

2 93.07 105.037 1.129 

3 102.435 111.757 1.091 

4 103.417 105.584 1.021 

5 97.878 116.626 1.192 

6 102.88 106.443 1.035 

7 103.116 101.397 0.983 
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8 104.563 111.323 1.065 

9 94.015 104.178 1.108 

10 97.507 114.65 1.176 

 

The table below presents the mean and variance of the bid-cost estimate ratio for contractor 5’s 

competitors: 

Competitor of Contractor 5 Mean of Bid-Cost Estimate Ratio Variance of Bid-Cost Estimate Ratio 

Contractor 1 1.118 0.025 

Contractor 2 1.08 0.003 

Contractor 3 1.072 0.007 

Contractor 4 1.103 0.016 

Contractor 6 1.142 0.038 

Contractor 7 1.143 0.018 

Contractor 8 1.2 0.049 

Contractor 9 1.178 0.039 

 

Using the above means and variances, contractor 5 generates a normal distribution of the bid-cost 

estimate ratio that characterizes the behavior of each competitor. The next step is to solve the 

optimization problem formulated as the equation 5.4 and find the optimal markup. The table below 

presents the optimal markup and bid price of all contractors: 

Contractor Optimal Markup Bid Price (M$) 

1 1.032 99.109 

2 1.036 98.471 

3 1.044 113.773 

4 1.038 106.719 

5 1.042 102.64 

6 1.045 104.008 

7 1.041 103.261 

8 1.042 101.347 

9 1.05 109.082 
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As the above table shows, the winner of the bidding is contractor 2. The interesting observation is 

the fact that the lowest markup has not won the bidding. The next step is to determine the actual 

cost and duration of the project for contractor 2.  

5- The actual cost of the project turns out to be $92.228M. Contractor 2 uses the following function 

to determine the actual cost given the complexity level of the project and its project management 

skill: 

if (complexity == 3) 
{ if (c.projectExecution == "Normal") 
 {actualCost = triangular(1.05,1.15,1.1)*c.estimatedCost*(1-c.GAPercentage); 
 } 
  else if (c.projectExecution == "Improved")  
    {actualCost = triangular(1.025,1.125,1.075)*c.estimatedCost*(1-c.GAPercentage); 
    } 
 } 
 
else if (complexity == 2) 
{ if (c.projectExecution == "Normal") 
 {actualCost = triangular(1.0,1.1,1.05)*c.estimatedCost*(1-c.GAPercentage); 
 } 
  else if (c.projectExecution == "Improved")  
    {actualCost = triangular(0.975,1.075,1.025)*c.estimatedCost*(1-c.GAPercentage); 
    } 
 } 
 
else if (complexity == 1) 
{ if (c.projectExecution == "Normal") 
 {actualCost = triangular(0.95,1.05,1.0)*c.estimatedCost*(1-c.GAPercentage); 
 } 
  else if (c.projectExecution == "Improved")  
    {actualCost = triangular(0.925,1.025,0.975)*c.estimatedCost*(1-c.GAPercentage); 
    } 
 } 

 

6- The actual duration of the project turns out to be 34 weeks (time units).  

The following is a screenshot of the model that presents the attributes and results related to the 

project 11 (ID = 10).  
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