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Abstract.
Background: The ability to predict the length of time to death and institutionalization has strong implications for Alzheimer’s
disease patients and caregivers, health policy, economics, and the design of intervention studies.
Objective: To develop and validate a prediction algorithm that uses data from a single visit to estimate time to important disease
endpoints for individual Alzheimer’s disease patients.
Method: Two separate study cohorts (Predictors 1, N = 252; Predictors 2, N = 254), all initially with mild Alzheimer’s disease,
were followed for 10 years at three research centers with semiannual assessments that included cognition, functional capacity, and
medical, psychiatric, and neurologic information. The prediction algorithm was based on a longitudinal Grade of Membership
model developed using the complete series of semiannually-collected Predictors 1 data. The algorithm was validated on the
Predictors 2 data using data only from the initial assessment to predict separate survival curves for three outcomes.
Results: For each of the three outcome measures, the predicted survival curves fell well within the 95% confidence intervals of the
observed survival curves. Patients were also divided into quintiles for each endpoint to assess the calibration of the algorithm for
extreme patient profiles. In all cases, the actual and predicted survival curves were statistically equivalent. Predictive accuracy was
maintained even when key baseline variables were excluded, demonstrating the high resilience of the algorithm to missing data.
Conclusion: The new prediction algorithm accurately predicts time to death, institutionalization, and need for full-time care in
individual Alzheimer’s disease patients; it can be readily adapted to predict other important disease endpoints. The algorithm
will serve an unmet clinical, research, and public health need.
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INTRODUCTION

The ability to predict the length of time from disease
onset to need for full-time care, institutionalization, or
death in individual patients with Alzheimer’s disease
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(AD) has implications for patients and their caregivers.
It also has strong implications for the design of inter-
vention studies, health policy, and economics. A new
model of the progression of AD based on data collected
semiannually for up to 10 years in 252 patients from the
Predictors of Severity in Alzheimer’s Disease Study
(Predictors 1 cohort) was presented in [1]. That model
was a longitudinal Grade of Membership (L-GoM)
model—a form which has many advantages over other
models of the progression of AD [2–6], including the
widely-used Cox-based model in [7]. Cox models rely
on data from only a single visit to model disease pro-
gression as opposed to incorporating data over all visits
as occurs in the L-GoM model. Moreover, Cox models
have the incorrect implicit assumption that covariates
used for prediction are constant over time, when in fact
5 of the 7 covariates in our original model [1] changed
significantly over time. In this paper, we develop and
validate in a separate (Predictors 2) cohort a prediction
algorithm based on the L-GoM model that uses data
from a single visit to accurately predict time to need for
full-time care, institutionalization, and death in indi-
vidual AD patients. Similar algorithms could be readily
developed for other important disease endpoints.

L-GoM modeling addresses the shortcomings of tra-
ditional AD staging [3, 8], which typically views AD
as progressing through discrete stages. For example,
Green and colleagues’ recent review [8] of current
models concluded: “It is widely acknowledged that a
single symptom, such as cognition, is not able to char-
acterize AD progression, and that AD is heterogeneous
in presentation and disease course; for example, across
the main symptom domains of cognition, function,
and behavior. Recent evidence suggests that future
modeling initiatives should incorporate a multivariable
approach, and that a latent variable analytic approach to
characterizing AD progression is a promising avenue
for advances in the statistical development of modeling
methods.”

Application of L-GoM modeling showed that the
clinical status of any AD patient at any point in time
in the Predictors 1 data was best characterized by
a combination of four latent variables that summa-
rized multiple aspects of disease status using three
dimensions [1]. Further, the L-GoM model contains
transition matrices which control how any particular
clinical status progresses from visit to visit.

The original L-GoM model and the derived predic-
tion algorithm made use of information that is obtained
in a standard clinical evaluation of a patient with AD.
The initial evaluation typically includes measures of
mental status (such as the modified Mini-Mental Sta-

tus used here) and function (e.g., the Blessed Dementia
Rating Scale activities of daily living items). Assess-
ment of extrapyramidal signs and psychiatric and
behavioral features are required to differentiate AD
from Lewy body dementia. These measures, along
with basic demographic information, provide the pri-
mary variables for the prediction algorithm. We also
included a measure of dependence, because of its rele-
vance to caregivers and increased use in clinical trials,
although we demonstrate that it is not required for accu-
rate prediction. Thus the variables used for prediction
should not represent an undue burden to collect in a
clinical setting.

In this paper, we develop a prediction algorithm
based on the modeled Predictors 1 cohort data. The
algorithm estimates the time to three important disease
endpoints: need for full-time care, institutionalization,
and death. We validate the prediction algorithm using
out-of-sample data from the Predictors 2 cohort.

MATERIALS AND METHODS

Data

The Predictors study was designed to investigate
the natural progression of AD in order to develop
improved prediction models [11]. All subjects were
diagnosed with probable AD based on the NINCDS-
ADRDA criteria. This diagnosis was confirmed in up
to 96% of available postmortem diagnostic evaluations
[12, 13]. All participants had relatively mild dementia
at the time of recruitment into the study, e.g., nearly
95% scored 30+ on our modified Mini-Mental Sta-
tus (mMMS) exam (roughly equivalent to 16+ on the
standard Mini-Mental Status Examination).

The study comprised two distinct cohorts, des-
ignated Predictors 1 and Predictors 2. Predictors 1
consisted of 103 men and 149 women; Predictors 2
consisted of 106 men and 148 women, all recruited in
the United States at three study sites: Columbia Univer-
sity Medical Center, Massachusetts General Hospital,
and Johns Hopkins Medical Center. In both cohorts,
patients were re-assessed every 6 months using the
same methodology.

The L-GoM model in [1] was developed from Pre-
dictors 1 based on data collected in the first 21 waves of
follow-up, and validated out-of sample on Predictors 2
based on the first 16 waves of follow-up using similar
data. In this paper, we take the Predictors 1 L-GoM
model as given, extend its estimated parameters to
cover two additional endpoints, also using Predictors 1,
and validate the out-of sample results on Predictors 2.
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The L-GoM model included 16 sets of covariates
obtained from the clinical assessments of patients with
AD and two additional sets obtained postmortem, as
follows: 1) Cognition (mMMS; 6 items plus total score
and test-completion indicator); 2) Functional capac-
ity (Part 1 of the Blessed Dementia Rating Scale; 11
items and total score); 3) Behaviors (5 items: verbal
outbursts, difficulty sleeping, amount of sleep, wander-
ing, physical treats); 4) Psychopathological symptoms
(3 items: delusions, hallucinations, illusions); 5) Motor
signs (1 item); 6) Seizures (3 items); 7) Alcohol use
(4 items); 8) Cardiovascular disease risk factors/signs
(9 items); 9) Vision impairment indicator (1 item);
10) Dependence Scale (13 items and total score);
11) Residence status (1 item with 6 levels: home,
retirement home, nursing home, hospital, rehabilita-
tion center, and other); 12) Equivalent institutional care
(1 item with 3 levels: limited home care, adult home
care, health related facility; assessed in conjunction
with the Dependence Scale); 13) Neurologist’s esti-
mation of AD duration at first examination (1 item);
14) Other durations (3 items: time since first seeking
help, since start of seizures, and since entering a nurs-
ing home); 15) Age at first examination (1 item); 16)
Socio-demographics (9 items); 17) 6-month mortality
endpoint (1 item); 18) Death indicator, cause of death,
and autopsy status (3 items; for death records only).

Because L-GoM was developed for categorical data
analysis, all covariates were recorded as discrete out-
comes [9, 14]. The 18 sets of covariates comprised 80
distinct covariate items with 248 distinct responses.

Endpoints

Date of death was determined from family report or
other sources such as the National Death Index. Date
of nursing home entry was determined from family
report. Because individuals may require full-time care
but remain in their homes, we also used the equivalent
institutional care level of full-time care (health related
facility) from the Dependence Scale assessment as an
endpoint [15]. As with nursing home entry, we dated
this as the first interval at which the subject was rated at
this level on the Dependence Scale. There were cases
where a subject who was not in a nursing home, or did
not require full-time care, subsequently missed several
follow-up visits and when he/she returned to the study
was in a nursing home or full-time care status, so the
exact interval of the transition could not be determined.
To address this issue, we created two different endpoint
covariates for nursing home and full-time care: early
transition and late transition, which were the two most

extreme possibilities for the actual reality. The final
reported results were averages of the separate results
from the two endpoint covariates.

Prediction algorithm

Figure 1 provides a geometrical illustration of the
3-dimensional L-GoM model. At all times, each AD
patient is located inside a bounded continuous 3-
dimensional latent state space, shown as an inverted
tetrahedron. The vertices of the tetrahedron represent
the four identified latent variables or pure types (PT-
1 to PT-4), which are ordered by increasing severity
of symptoms. Each patient’s proximity to each ver-
tex at each visit can be scaled to the range 0–100%,
with the four proximities constrained to sum to 100%.
The proximities constitute the “grade of membership
scores” associated with GoM models [9]. Although the
proximity measures are unobserved latent variables,
they can be estimated from the observed patient char-
acteristics using L-GoM [10]. Once the location of a
patient within the tetrahedron is determined, the L-
GoM model also predicts the change in the location
from one 6-month interval to the next. This is done
using a set of transition matrices.

Because the grade of membership for (or proximity
to) the most severe state (PT-4) is almost always zero
or close to zero at the initial visit, most patients start
at the top of the tetrahedron. Over time, the patients
move to state-space locations associated with more
severe impairment, and this movement generates for
each patient at each subsequent visit a new location
inside the tetrahedron, eventually reaching the bottom
vertex (the most severe state). The prediction algorithm
is based on the fact that once the initial position of each
patient in the tetrahedron is known, the transition matri-
ces can be used to estimate the changes in grades of
membership from one visit to the next. This makes it
possible to use the model to predict all later outcomes
using data from the initial visit.

To use L-GoM for predicting the specific endpoints
in the current paper, initial GoM scores, transition
matrices, and probability loading vectors are required.
The transition matrices and probability loading vec-
tors are the same for every subject and were obtained
from fitting the L-GoM model to the Predictors 1 study
cohort (see [1]). Therefore, for a new subject, only the
initial GoM scores need to be computed. Maximum
likelihood estimation was used to determine the initial
GoM scores using the probability loading vectors for
the initial examination (see Supplementary Material
for detailed description). The initial GoM scores, in
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Fig. 1. A representation of the longitudinal Grade of Membership model. See text for explanation. PT, pure type.

combination with the transition matrices and the prob-
ability loading vectors for each endpoint, are sufficient
to compute the probability of reaching each end-
point at each subsequent interval. The complements
of these probabilities are the survival probabilities for
not reaching the endpoint, and their product yields the
cumulative survival probability for each endpoint (i.e.,
survival curve) in each patient. The areas under each
survival curve generate the expected patient-specific
times to reach the corresponding endpoints. Thus, the
new prediction algorithm generates a subject-specific
estimate of the time to reach each endpoint.

Validation

For each endpoint, the average predicted survival
curve was compared to the observed Kaplan-Meier
(KM) survival curve along with its 95% confidence
interval. If the predicted survival curve was within the
corresponding confidence interval, then we deemed the
prediction satisfactory.

Because the L-GoM model in [1] was fitted sepa-
rately for men and women, we evaluated the prediction
accuracy for each gender separately, as well as jointly.
Furthermore, to assess the calibration of the predic-
tion algorithm for extreme patient profiles, we divided
the subjects into quintiles based on the predicted
times to each endpoint. For mortality, the first quintile
contained the patients estimated to have the shortest
survival, and the fifth quintile, the longest; we used
similar definitions for the other two endpoints. We
compared the predicted survival curves to the observed
KM survival curves within each quintile and for each
endpoint.

RESULTS

Demographics

The average age (standard deviation) at intake exam-
ination was 71.4 (9.4) years for men and 74.5 (9.0)
years for women in Predictors 1; and 75.4 (7.5) years
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Fig. 2. Comparison of the predicted and observed survival curve a) for all subject, b) for male subjects, c) for female subjects, and d–h) for five
quintiles ordered by predicted life expectancy.

and 77.3 (8.2) years, respectively, in Predictors 2. The
estimated average duration of AD at intake was 4.8
(2.7) years for men and 4.3 (2.4) years for women in
Predictors 1; and 4.6 (2.3) years and 4.3 (2.3) years,
respectively, in Predictors 2. On average, the Predictors
2 cohort was 3–4 years older at intake. The average esti-
mated duration of AD in the two cohorts was 4.3–4.8
years at intake.

Validation

Figure 2a shows the predicted and observed survival
curves for mortality for males and females jointly;
Figs. 2b and 2c show the same results separately.
The model-predicted curves were closely fitted to
the observed data and the deviations were all within
the confidence intervals. Figures 2d to 2h show the
predicted and actual survival curves for mortality quin-
tiles, from shortest to longest predicted survival. Again,
the model-predicted curves were closely fitted to the
observed data, except the fourth quintile.

Figure 3 shows similar predicted and observed sur-
vival curves for nursing home admissions, and Fig. 4
shows similar survival curves for the onset of need
for full-time care. There were very limited occasions

where the predicted survival probabilities were not
within the confidence intervals of the observed proba-
bilities.

To test the robustness of the algorithm to missing
data, we removed the Dependence Scale (13 items
and total score), and re-evaluated the accuracy of the
predictions in their absence. The results showed neg-
ligible change in the accuracy and calibration of the
predictions.

DISCUSSION

We developed an algorithm to predict the time to
need for full-time care, institutionalization, and death
in AD patients. This algorithm was based on an L-GoM
model of AD progression using data from a cohort
of 252 patients followed semiannually for 10 years
(Predictors 1). We tested the algorithm on a separate,
similar validation population of 254 patients followed
for similar amounts of time (Predictors 2). The results
demonstrated that the algorithm-predicted times-to-
outcome closely matched the actual observed times,
and hence, that the algorithm produced highly accu-
rate out-of-sample predictions using data from only
the initial visit—a testament to the power of the under-
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Fig. 3. Comparison of the predicted and observed survival curve for entering nursing home a) for all subjects, b) for male subjects, c) for female
subjects, and d–h) for five quintiles ordered by predicted time to nursing home admission.

Fig. 4. Comparison of the predicted and observed survival curve for need for full-time care a) for all subjects, b) for male subjects, c) for female
subjects, and d–h) for five quintiles ordered by predicted time to need for full time care.
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lying L-GoM model. We know of no other prediction
algorithm that approaches this level of performance.

The underlying L-GoM model for prediction uses
information such as mental status, some measures of
cognition and function, presence of extrapyramidal and
motor signs, psychiatric and behavioral features, and
basic demographic information. This information is
typically collected in an initial visit when evaluating
patients with AD in a standard clinical setting. Thus
this implementation of the algorithm is feasible despite
the number of data points that it uses.

The algorithm was designed to use data acquired at
a patient’s first visit. This is the most common situa-
tion for treating physicians: follow-up data do not yet
exist but the physician needs some basis for prognosis.
Similarly, when selecting patients for a clinical trial or
simply modeling a trial, one would typically work with
data acquired on a single visit. We found that includ-
ing 1–2 additional visits did not appreciably increase
prediction accuracy.

The algorithm employs a rigorous and parsimonious
L-GoM model of AD progression that incorporated all
of the data collected at all patient visits in Predictors
1 and used those data to generate a robust model of
disease progression. Although the number of distinct
patients was modest, the combination of 80 covariates
and 21 visits yielded a large comprehensive data set
comprising 166,223 distinct data points. The “effective
sample sizes” for this design ranged from 1,623–1,879
depending on the dimension of the model [1].

Because the underlying model was fitted to the com-
plete series of longitudinal data in Predictors 1, it
provided transition matrices that allow one to predict
progression in new data using covariate information
from only the initial visit. We empirically demon-
strated here that the initial GoM scores, in combination
with the transition matrices and the probability loading
vectors for each endpoint, were sufficient to accurately
represent the heterogeneous nature of the disease pro-
gression; thus, even when we estimated the initial GoM
scores from only the initial visit data the results were
accurate. Incorporating the data from the first 2 or 3
consecutive intervals did not significantly improve pre-
dictions. From a practical standpoint, requiring data
from multiple visits would diminish the utility of a
prediction algorithm.

Previous approaches have typically relied on much
more limited data for calibration and prediction. For
example, a widely-used prediction algorithm [7] based
on the Cox model relied on data from only a single visit
in combination with subsequent observation of times
to full-time care and/or death to model disease pro-

gression and conduct subsequent predictions for new
patients.

A related limitation of the Cox model in [7] is the
incorrect implicit assumption that covariates used for
prediction were constant over time, when in fact 5
of the 7 covariates changed significantly. An alterna-
tive form of the Cox model allows for time-dependent
covariates, but this form has limited use in prediction
because the future values of the covariates are unknown
and are not modeled [16]. This differs from L-GoM
where the future values of the covariates are explicitly
modeled.

Other progression models based on Markov pro-
cesses are not adequate for AD progression because
they incorrectly assume that each patient is always
in one of a small number of discrete health states.
In fact, health states in AD are continuous and mul-
tidimensional [8]. L-GoM captures this continuous
multidimensional aspect of patient status.

The new algorithm generates a specific time to end-
point for each subject, easily calculated as the area
under the survival curve. It was not feasible to com-
pare actual to predicted survival times because not all
patients reached the study endpoints during the Predic-
tors 2 follow-up period. Restricting such comparisons
to only the available endpoint times would introduce
a censoring bias because patients with better survival
would be systematically underrepresented. Therefore,
we presented comparisons only of observed verus pre-
dicted survival curves. By subdividing the patients into
quintiles, we were able to demonstrate that the predic-
tions remain calibrated and accurate for patients across
a broad range of conditions.

Further refinement of the algorithm will be useful.
Notably, ApoE genotype is associated with rate of AD
progression [17] but was not included in the L-GoM
model/algorithm because this information was not uni-
versally available in Predictors 1.

Although the 16 sets of covariates in the algorithm
may initially seem to be incompatible with stan-
dard clinical practice, most variables are derived from
instruments that are typically collected at a patient’s
initial visit, including assessments of cognition, func-
tion, behavior, and motor signs. The algorithm is robust
to missing data and thus can be readily applied to
any data set that has a reasonably broad subset of
the covariates. For example, here we demonstrated
that predictions showed negligible change in accuracy
and calibration when the entire Dependence Scale was
treated as missing data.

We focused here on need for full-time care, insti-
tutionalization, and mortality for initial validation,
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because they are most often used as endpoints in
prediction models. However, L-GoM describes the
progression of all covariates over time, so that the
algorithm could also generate predictions about reach-
ing specific levels of impairment in activities of daily
living, specific dependence scores, etc.

The complexity of the model and the optimiza-
tion process for computing initial GoM scores for any
new subject preclude utilizing a simple equation for
prediction; however, a computerized calculator that
provides estimated times to any measured endpoint
based on data collected in a single visit can easily be
implemented.

Criteria for institutionalization might vary in dif-
ferent countries or across different cultures. All of the
participants in the Predictors 1 and 2 study cohort were
recruited in the United States, so forward application
of the algorithm to data collected in other countries
might need to be adjusted. However, need for full-time
care should be equivalent across different cultures and
countries.

In summary, we developed a new prediction algo-
rithm based on the L-GoM model of AD progression
[1]. This algorithm was validated in a separate data set
and shown to make accurate predictions of mortality
and need for full-time or nursing home care using data
from only a single patient visit. The algorithm shows
great promise for use in clinical practice, research, and
pharmaceutical trials.
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