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ABSTRACT

Pivot-based Statistical Machine Translation for
Morphologically Rich Languages

Ahmed El Kholy

This thesis describes the research efforts on pivot-based statistical machine translation (SMT) for

morphologically rich languages (MRL). We provide a framework to translate to and from morpho-

logically rich languages especially in the context of having little or no parallel corpora between the

source and the target languages. We basically address three main challenges. The first one is the

sparsity of data as a result of morphological richness. The second one is maximizing the precision

and recall of the pivoting process itself. And the last one is making use of any parallel data between

the source and the target languages.

To address the challenge of data sparsity, we explored a space of tokenization schemes and

normalization options. We also examined a set of six detokenization techniques to evaluate detok-

enized and orthographically corrected (enriched) output. We provide a recipe of the best settings to

translate to one of the most challenging languages, namely Arabic. Our best model improves the

translation quality over the baseline by ≈1.3 BLEU points.

We also investigated the idea of separation between translation and morphology generation. We

compared three methods of modeling morphological features. Features can be modeled as part of

the core translation. Alternatively these features can be generated using target monolingual context.

Finally, the features can be predicted using both source and target information. In our experimental

results, we outperform the vanilla factored translation model.

In order to decide on which features to translate, generate or predict, a detailed error analysis

should be provided on the system output. As a result, we present AMEANA, an open-source tool

for error analysis of natural language processing tasks, targeting morphologically rich languages.

The second challenge we are concerned with is the pivoting process itself. We discuss several

techniques to improve the precision and recall of the pivot matching. One technique to improve the



recall works on the level of the word alignment as an optimization process for pivoting driven by

generating phrase pairs between source and target languages. Despite the fact that improving the

recall of the pivot matching improves the overall translation quality, we also need to increase the

precision of the pivot quality. To achieve this, we introduce quality constraints scores to determine

the quality of the pivot phrase pairs between source and target languages. We show positive results

for different language pairs which shows the consistency of our approaches. In one of our best

models we reach an improvement of 1.2 BLEU points.

The third challenge we are concerned with is how to make use of any parallel data between

the source and the target languages. We build on the approach of improving the precision of the

pivoting process and the methods of combination between the pivot system and the direct system

built from the parallel data.

In one of the approaches, we introduce morphology constraint scores which are added to the log

linear space of features in order to determine the quality of the pivot phrase pairs. We compare two

methods of generating the morphology constraints. One method is based on hand-crafted rules rely-

ing on our knowledge of the source and target languages; while in the other method, the morphology

constraints are induced from available parallel data between the source and target languages which

we also use to build a direct translation model. We then combine both the pivot and direct models

to achieve better coverage and overall translation quality. Using induced morphology constraints

outperformed the handcrafted rules and improved over our best model from all previous approaches

by 0.6 BLEU points (7.2/6.7 BLEU points from the direct and pivot baselines respectively). Fi-

nally, we introduce applying smart techniques to combine pivot and direct models. We show that

smart selective combination can lead to a large reduction of the pivot model without affecting the

performance and in some cases improving it.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

One of the main issues in statistical machine translation (SMT) is data sparsity which is mainly

a result of the shortage of parallel data for many language pairs. Morphologically rich languages

(MRL), in particular, are more challenging. This is due, in part, to two phenomena. The first one is

morphological richness. Words sharing the same core meaning (represented by the word lemma or

lexeme) can be said to inflect different morphological features such as gender and number. These

features can be shown by using concatenative (affixes and stems) and/or templatic (root and patterns)

morphology. The second challenge is morphological ambiguity. Words with different lemmas can

have the same inflected form. As such, a word form can have more than one morphological analysis

(represented as a lemma and a set of feature-value pairs). This is especially problematic for lan-

guages with reduced orthographies such as Arabic or Hebrew. These two phenomena lead to more

sparsity in data in comparison to a morphologically poor language given the same corpora size.

A common solution in the field is to pivot the translation through a third language (called pivot

or bridge language) for which there exists abundant parallel corpora with the source and target

languages. The literature covers many pivoting techniques. One of the best performing techniques,

phrase pivoting [Utiyama and Isahara, 2007], builds an induced new phrase table between the source

and the target. One of the problems of this technique is that the size of the newly created pivot phrase

table is very large [Utiyama and Isahara, 2007].

In this thesis, we provide a pivoting framework to translate to and from MRL especially in

the context of having little or no parallel corpora between the source and the target languages. We

basically address three main challenges. The first and main challenge is sparsity of data. The second
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one is maximizing precision and recall of the pivoting process. The last one is making use of any

parallel data between the source and the target languages.

In general, our discussed solutions can be applied to any MRL and many of our approaches are

language independent, but some still requires linguistic knowledge and the availability of morpho-

logical analyzers for a given language. However, the techniques discussed can be easily adapted to

any language. In most of our work, we target Arabic as it is one of the most challenging languages

in the field, but we work with other languages specifically Persian and Hebrew.

1.1 Approach

To address the first challenge of data sparsity, we explore a space of tokenization schemes and

normalization options with their implications on the quality of MT. Regardless of the preprocess-

ing choices, the Arabic output is detokenized and denormalized. Anything else is comparable to

producing all lower cased English or uncliticized and undiacritized French. Detokenization is not

a simple task because there are several morphological adjustments that apply in the process. We

examine different detokenization techniques for various tokenization schemes.

In another direction, we address these challenges through different modeling methods. In our

approach, morphological features can be modeled as part of the core translation process mapping

source tokens to target tokens. Alternatively, these features can be generated using target monolin-

gual context as part of a separate generation (or post-translation inflection) step. Finally, the features

can be predicted using both source and target information in a separate step before generation.

In order to help decide which features to translate, to generate or to predict, we present AMEANA

(Automatic Morphological Error Analysis), an automatic error analysis tool that is designed to iden-

tify morphological errors in the output of a given system against a gold reference. AMEANA

produces detailed statistics on morphological errors in the output. It also generates an oracularly

modified version of the output that can be used to measure the effect of these errors using any evalu-

ation metric. AMEANA is a language independent tool except that a morphological analyzer must

be provided for a given language.

The second challenge that we are concerned with is the pivoting process itself. In the standard

phrase-pivoting approach, many phrase pairs between source and target languages are not generated
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because of the bad matching of pivot phrases. However, the size of the newly created pivot phrase

table is very large. In addition, many of the produced phrase pairs are of low quality which affects

the translation choices during decoding and the overall translation quality.

We try to maximize both precision and recall of the pivoting process, and we discuss several

techniques to improve the recall of the pivot matching. One of the techniques works on the level of

the word alignment symmetrization. Like the common heuristics for symmetrization, we aim to find

a balance between the intersection and union. But unlike the state of the art heuristics, symmetriza-

tion is carried out as an optimization process driven by the effectiveness of each alignment pair with

respect to pivoting, and add or remove the word links that can maximize the pivoting process.

Despite the fact that we miss a lot of matches in pivoting and that we try to improve the recall,

we also need to consider the quality precision of phrase pivoting. One of the manifestations of

phrase pivoting is that the size of the newly created pivot phrase table is very large [Utiyama and

Isahara, 2007]. Besides, many of the produced phrase pairs are of low quality which affects the

translation choices during the decoding and the overall translation quality. We discuss different

techniques to determine the quality of the pivot phrase pairs between the source and the target. In

one of the language independent approaches, we generate different connectivity scores between the

source and target phrase pairs based on the alignment information propagated from the source-pivot

and pivot-target systems.

The third challenge we are concerned with is how to make use of any parallel data between

the source and the target languages. We discuss different approaches to improve the pivot SMT

system and methods of the combination between the pivot system and the direct system built from

the parallel data.

In one of the approaches, we introduce morphology constraint scores which are added to the log

linear space of features in order to determine the quality of the pivot phrase pairs. This morphology

constraint scores are based on the connectivity scores. We compare two methods of generating the

morphology constraint scores. One method is based on hand-crafted rules relying on our knowl-

edge of the source and target languages; while in the other method, the morphology constraints are

induced from available parallel data between the source and target languages which we also use to

build a direct translation model. We then combine both the pivot and direct models to achieve better

coverage and overall translation quality.
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We also discuss applying smart techniques to combine pivot and direct models. We aim at

having a better coverage and overall translation quality. The combination approach needs to be

optimized in order to maximize the information gain. We maximize the information gain by select-

ing the relevant portions of the pivot model that do not interfere with the direct model which is in

principal trusted more.

1.2 Contributions

In our research contribution, we are interested in improving the Pivot-based Statistical Machine

Translation for Morphologically Rich Languages with limited resources.

Our discussed efforts will work on the pivoting framework of constructing two separated SMT

systems, Source-Pivot SMT and Pivot-Target; and then perform phrase-pivoting. We discuss several

methods to improve each component separately, and also discuss methods to improve the system as

the whole targeting of the final pivot SMT system.

The first challenge we are concerned with is the sparsity of data. The following is a list of our

approaches to solve this challenge.

• Morphological Processing: Explore a space of tokenization schemes and normalization op-

tions. We also examine a set of six detokenization techniques to evaluate the detokenized and

orthographically corrected (enriched) output.

• Separation between Translation and Morphology Generation: We compare three meth-

ods of modeling morphological Features that can be modeled as part of the core translation

process generated or predicted.

• Automatic Error Analysis for Morphologically Rich Languages: We present AMEANA

an open-source tool for error analysis of natural language processing tasks targeting MRLs.

The second challenge we are concerned with is the pivoting process itself. We try to maximize

both precision and recall of the pivoting process through the following approaches.

• Pivoting Recall Maximization: We discuss techniques to improve the recall of the pivot

matching by improving the alignment symmetrization method. Symmetrization is carried out
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as an optimization process driven by the effectiveness of each alignment pair with respect to

pivoting, and add or remove the word links that can maximize the pivoting process.

• Pivoting Quality Maximization: We discuss different techniques to determine the quality

of the pivot phrase pairs between source and target. Next we generate different connectivity

scores between the source and target phrase pairs based on the alignment information propa-

gated from the source-pivot and pivot-target systems.

The third challenge we are concerned with is how to make use of any parallel data between the

source and target languages. We discuss different approaches to improve the pivot SMT system and

methods of combination between the pivot system and the direct system built from the parallel data.

• Morpho-syntactic Constraints In this approach, we discuss morpho-syntactic constraints

between the source and target languages. We compare two methods of generating the morpho-

syntactic constraints. One method is based on hand-crafted rules relying on our knowledge of

the source and target languages. In the other method, the morphology constraints are induced

from available parallel data between the source and target languages

• Combination of Pivot and Direct Models: We discuss applying smart techniques to com-

bine pivot and direct models. We maximize the information gain by selecting the relevant

portions of the pivot model that do not interfere with the direct model which is in principal

trusted more.

1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2, we give background information on the different

languages explored in this thesis; in addition to background information on phrase-based SMT in

general and phrase-based Pivot SMT in specific which is the center topic of this thesis.

In Chapter 3, we discuss our work on one of the main components of performing phrase piv-

oting which is the direct translation to a morphologically rich language (MRL). The main focus of

this chapter is to address the challenge of data sparsity due richness in morphology. Most of our

discussed and implemented approaches are focusing on Arabic as it is one of the most challenging

languages in the field. Then in Chapter 4, we present AMEANA (Automatic Morphological Error
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Analysis), AMEANA produces detailed statistics on morphological errors in the output. It also

generates an oracularly modified version of the output that can be used to measure the effect of

these errors using any evaluation metric.

In Chapter 5 we address morphology richness challenges through different modeling methods.

We show how morphological features can be generated using target monolingual context as part of a

separate generation (or post-translation inflection) step. Alternatively, the features can be predicted

using both source and target information in a separate step before generation.

Starting Chapter 6, we move to the bigger context of phrase pivoting and discuss different

approaches to improve the precision and recall of the pivot matching process. All the approaches

discussed in this chapter are language independent. In Chapter 7 we explore the space of using

linguistic information and make use of any parallel data between the source and target languages

to improve the quality of the pivot translation model. Finally, we summarize our contributions and

discuss directions for future work in Chapter 8.
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Chapter 2

Background

2.1 Linguistic Background

In this section, we discuss the linguistic aspects of three languages that we worked with through out

my dissertation (Arabic, Hebrew and Persian). These languages are considered morphologically

rich and each pair share some aspects that differ from the third. This section shows why working

with these languages is a challenge and a motivation to our approaches in the following chapters.

2.1.1 Arabic

In this thesis, we focus on Modern Standard Arabic (MSA) which is the standard language of the

media, education and formal culture in the Arab world. We present relevant aspects of Arabic

word orthography and morphology. See [Habash, 2010] for additional computational and non-

computational linguistic aspects of the Arabic language.

2.1.1.1 Arabic Orthography

There are two main challenges to Arabic orthography

Spelling Inconsistency: Certain letters in Arabic script are often spelled inconsistently which

leads to an increase in both sparsity (multiple forms of the same word) and ambiguity (same form
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corresponding to multiple words). In particular, variants of Hamzated Alif,


@ Â1 or @



Ǎ, are often

written without their Hamza (Z ’): @ A; and the Alif-Maqsura (or dotless Ya) ø ý and the regular

dotted Ya ø



y are often used interchangeably in word final position. This inconsistent variation in

raw Arabic text is typically addressed in Arabic NLP through what is called orthographic normal-

ization, a reductive process that converts all Hamzated Alif forms (including Alif Madda
�
@ Ā) to

bare Alif and dotless Ya/Alif Maqsura form to dotted Ya. This kind of normalization is referred to

as a Reduced normalization (RED). RED normalization is contrasted with Enriched normalization

(ENR), which selects the appropriate form of the Alif and Ya in context [El Kholy and Habash,

2010b]. ENR Arabic is optimally the desired form of Arabic to generate and to evaluate against.

Comparing a manually enriched (ENR) version of the Penn Arabic Treebank (PATB) [Maamouri et

al., 2004a] to its reduced (RED) version, we find that 16.2% of the words are different. However,

the raw (naturally unnormalized) version of the PATB is only different in 7.4% of the words. This

suggests a major problem in the recall of the correct ENR form in raw text. In internal experiments,

we noticed that BLEU-4 [Papineni et al., 2002a] scores drop about 10 % absolute when compar-

ing ENR to raw (as opposed to ENR) and about 5 % when comparing RED to raw (as opposed to

RED) for the same output. As such we only evaluate results against references with their matching

normalization condition (ENR or RED).

Optional Diacritics: Another orthographic issue is the optionality of diacritics in Arabic script.

In particular, the absence of the Shadda diacritic (�� ∼) which indicates a doubling of the consonant

it follows leads to a different number of letters in the tokenized and untokenized word forms (when

the tokenization happens to split the two doubled consonants). For example, the tokens sequence

ø



+ú


æ

	
�A

�
¯ qADy+y ‘my judge’ is detokenized to �ú



æ

	
�A

�
¯ qADy. Consequently, the detokenization task

for such cases is not a simple string concatenation.

2.1.1.2 Arabic Morphology

Arabic is a morphologically complex language with a large set of morphological features producing

a large number of rich word forms. While the number of (morphologically untokenized) Arabic

1 All Arabic transliterations are provided in the Habash-Soudi-Buckwalter transliteration scheme [Habash et al.,

2007].
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words in a parallel corpus is 20% less than the number of corresponding English words, the number

of unique Arabic word types is over twice the number of unique English word types over the same

corpus size.

One aspect of Arabic that contributes to this complexity is its various attachable clitics. We

define three degrees of cliticization that are applicable in a strict order to a word base [Habash and

Sadat, 2006]:

[cnj+ [prt+ [art+ BASE +pron]]] 2

At the deepest level, the BASE can have either the definite article (+È@ Al+ ‘the’) or a member

of the class of pronominal enclitics, +pron, (e.g., Ñë+ +hm ‘their/them’). Next comes the class

of particle proclitics (prt+), e.g., +È l+ ‘to/for’. At the shallowest level of attachment we find the

conjunction proclitic (cnj+), e.g., +ð w+ ‘and’. The attachment of clitics to word forms is not a

simple concatenation process. There are several orthographic and morphological adjustment rules

that are applied to the word. An almost complete list of these rules relevant to this article are

presented and exemplified in Table 2.1.

It is important to make the distinction here between simple word segmentation, which splits off

word substrings with no orthographic/morphological adjustments, and morphological tokenization,

which does. Although segmentation by itself can have important advantages, it leads to the creation

of inconsistent or ambiguous word forms: consider the words �
éJ.

�
JºÓ mktb~ ‘a library’ and Ñî

�
DJ.

�
JºÓ

mktbthm ‘their library’. A simple segmentation of the second word creates the non-word string

�
I�.

�
JºÓ mktbt; however, applying adjustment rules as part of the tokenization generates the same

form of the basic word in the two cases. See example of Ta-Marbuta rule in Table 2.1. For more

details, see [Habash, 2007; Habash, 2010].

2.1.2 Hebrew

Similar to Arabic, Hebrew poses computational processing challenges typical of Semitic languages

[Itai and Wintner, 2008; Shilon et al., 2012; Habash, 2010]. In this section we briefly present rele-

vant aspects of Hebrew word orthography and morphology. Hebrew orthography uses optional dia-

critics and its morphology uses both root-pattern and affixational mechanisms. Hebrew inflects for

2The ’+’ is a marker for the attachable clitics.
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gender, number, person, state, tense and definiteness. Furthermore, Hebrew has a set of attachable

clitics that are typically separate words in English, e.g., conjunctions (such as ו!+ w+ ‘and’),3 prepo-

sitions (such as ב!+ b+ ‘in’), the definite article ה!+) h+ ‘the’), or pronouns (such as !Mה+ +hm ‘their’).

These issues contribute to a high degree of ambiguity that is a challenge to translation from Hebrew

to English or to any other language.

2.1.3 Persian

Unlike Arabic and Hebrew, Persian comes from the Indo-European family and has a relatively

simple nominal system. There is no case system and words do not inflect with gender except for

a few animate Arabic loanwords. Unlike Arabic, Persian shows only two values for number, just

singular and plural (no dual), which are usually marked by either the suffix Aë+ +hA and sometimes
	
à@+ +An, or one of the Arabic plural markers. Persian also possess a closed set of few broken

plurals loaned from Arabic. Further, unlike Arabic which expresses definiteness, Persian expresses

indefiniteness with an enclitic article ø



+ +y ‘a/an’ which doesn’t have separate forms for singular

and plural. When a noun is modified by one or more adjective, the indefinite article is attached to the

last adjective. Persian adjectives are similar to English in expressing comparative and superlative

constructions just by adding suffixes Q
�
K+ +tar ‘+er’ and 	áK
Q

�
K+ +taryn ‘+est’ respectively. Verbal

morphology is very complex in Persian. Each verb has a past and present root and many verbs have

attached prefix that is regarded part of the root. A verb in Persian inflects for 14 different tense,

mood, aspect, person, number and voice combination values [Rasooli et al., 2013].

2.1.4 Summary

We have discussed linguistic aspects of the main three languages that we worked with throughout

my dissertation (Arabic, Hebrew and Persian). Table 2.2 summarizes and compares the different

aspect of the three languages in addition to English in a nutshell.

3The following Hebrew 1-to-1 transliteration is used (in Hebrew lexicographic order): abgdhwzxTiklmns‘pcqršt. All

examples are undiacritized and final forms are not distinguished from non-final forms.
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2.2 Overview of Statistical Machine Translation

Machine Translation (MT) is one of the challenging tasks of NLP addressing translation from one

language to another using computational modeling. We have seen recently a lot of progress in the

field of machine translation. However, there is still a big doubt about the feasibility of having “fully

automatic, high quality machine translation” [Bar-Hillel, 1964] especially when started to better

understand the limits of automatic translation [Madsen, 2009].

In recent years, machine translation has been dominated by statistical approaches. This could

be attributed on one hand to the fact that the world became more open and there is an increasing

demand for better translation services. On the other hand, the rapid development in hardware and

computing power makes it possible to benefit from the available data; for example, the UN data.

Moreover, there is a growing body of development open source SMT toolkits which facilitate the

implementation and the evaluation of translation systems.

Like many NLP tasks, translation is a process involving different factors. The typical approach

for any translation model is to tackle each factor individually, and to model their interactions. Gen-

erally, translating any body of text requires segmenting it into smaller text units, then translating

them atomically and recombining their translations afterward. Statistical approaches aim to learn

such segmentation or tokenization in our case in this dissertation, translation and recombination

decisions by learning them from a large collections of previously translated texts. The first step to

learn these factors starts by learning word alignment which extract the the hidden relations between

words from different languages.

In this chapter we give a brief introduction to the Phrase-based Statistical Machine Transla-

tion (PBSMT), in which we have performed our experiments and is considered a main component

of phrase pivoting presented in this dissertation. For more details on phrase-based SMT and for

overviews of other approaches one can refer to several references or books covering SMT [Knight

and Marcu, 2005; Lopez, 2008; Koehn, 2010]; and related fundamental research in NLP [Manning

and Schütze, 1999; Jurafsky and Martin, 2008], artificial intelligence [Russell and Norvig, 2009],

and machine learning for NLP [Smith, 2011], and formal language theory [Hopcroft et al., 2006].
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2.2.1 Phrase-Based Translation Model

Phrase-based models translate several contiguous word tokens as an atomic unit, called a phrase4.

Phrases pairs that are translation of one another are stored in a table structure referred to as the

phrase table.

The first SMT systems were word-based [Brown et al., 1993b] meaning that they used words as

the units of translation. However, shifting from words to phrases has a lot of advantages and gives a

lot of context. Typically the translation process requires word disambiguation and word reordering.

Working on the phrase level allow us to model those things in one step. For example, the Arabic

word “ A î
	
EñJ.

�
JºJ
�ð” which translates into a whole phrase in English “and they will write it”. The

word-based model will have to map one word in Arabic to five in English which is what we call

the fertility of the word. This process involve many decisions that can be avoided in a phrase-based

model which can perform the translation directly in one step. Larger context also helps in dealing

with lexical ambiguity. Moreover, along the same lines comes the idea of translating idiomatic

expressions and non-compositional phrases.

According to the phrase-based model [Zens et al., 2002; Koehn et al., 2003; Och and Ney,

2004], translation is performed in three steps that can be implemented by a cascade of finite state

transducers (FST) [Kumar et al., 2006]: a segmentation step, where the source sentence is first

split into disjoint contiguous phrases; a lexical translation step, in which each source phrase is

translated; and finally a reordering step, in which target phrases are rearranged into their final

order.

One of the open source toolkits for Phrase-based translation is Moses [Koehn et al., 2007a]5.

Most of our experiments in this thesis depend on this toolkit. Many variants of the phrase-based

4In this context, the term “phrase” has no specific linguistic meaning.

5The Moses toolkit is available at http://www.statmt.org/moses.
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model have been investigated in the literature. [Och and Ney, 2004] present an alignment tem-

plate approach that model word reordering based on their part-of-speech categories. [Mariño et al.,

2006] refer to phrase pairs as tuples and estimate the translation model as n-gram distributions over

tuples. Other phrase-based variants [Simard et al., 2005; Crego and Yvon, 2009; Galley and Man-

ning, 2010] offer the possibility for phrases to contain gaps that are filled with other phrases during

decoding.

While phrase-based models produce better results than the word-based models, they still have

issues with the modeling of reordering. Long-distance reordering is complicated, and distinguishing

correct reordering patterns is not an easy task. Incorporating syntax constraints is essential in these

cases. Hierarchical and synchronous context-free grammar models use more expressive approaches

to handle these cases which belongs to the class of context-free grammar (CFG). They are based on

linguistic representation of syntax which help them better modeling long-distance reorderings.

2.2.2 Modeling and Parameter Estimation

In most translation equivalence models and specifically phrase based models, it makes it possible to

enumerate all structural relationships between pairs of strings. However, the ambiguity of natural

language results in a very large number of possible target sentences for any input source sentence.

We will show later when we discuss pivoting that this become more severe when we pivot through

a third language. As in typical statistical decisions problems, we are given an input sentence f , and

the goal is to find the best translation e. Given different target hypotheses for a given source input,

we have to rank those hypotheses and assign a real-valued score.

To approach this problem, we can think of a function ω : Σ∗ × Λ∗ → R that maps input

and output pairs in a real-valued score, is used to rank possible outputs. Given an appropriate pa-

rameterization, this scoring function can be interpreted as the conditional probability p(e|f) where

e = (e1, . . . , eT ) and f = (f1, . . . , fS) are represented with random variables.

In the finite state model of translation, each sentence e can be derived from f in several ways

according the alignment d established between source and target words or segments. The value of

p(e|f) is therefore obtained by summing the probabilities of all derivations d ∈ D that yield e.

p(e|f) =
∑
d∈D

p(e,d|f). (2.1)
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However, this sum involves an exponential number of terms and hence, a common practice is to

resort to directly maximizing the function p(e,d|f). The parameters of p(e,d|f) are estimated

from a parallel corpus using machine learning techniques.

2.2.2.1 Translation Models

We focus in this section on discriminative translation models. They are more suitable for translation

prediction because there is not need to model the source sentence which is always given. One of the

most popular approaches in SMT is to use a linear model [Berger et al., 1996; Och and Ney, 2002],

as in Equation (2.2):

p(e,d|f) = Z(f, λ)−1 exp

K∑
k=1

λkhk(e,d, f), (2.2)

where {λ}K1 are the scaling factors, associated to the feature functions {h}K1 , and Z(f, λ) =∑
e,d exp

∑K
k=1 λkhk(e,d, f) is a normalization factor required only to make the scoring function

a well-formed probability distribution.

2.2.2.2 Phrase Table Induction

The hypotheses translations for a given input sentence are constructed from preconstructed set of

phrase pairs, which sometime called the bilexicon. These phrase pairs set is built from a sentence-

aligned parallel corpus in one of two ways. Typically, a general phrase alignment is computed for

each sentence pair , and the extracted phrase pairs are accumulated over the entire corpus. This

method performs very well in practice and is used in most state-of-the-art translation systems.

The Phrase table is a data structure that is widely used in phrase-based systems. This structure

contains all the phrase pairs included in the bilexicon. All the features used by the model are

precomputed and stored in the phrase table as well. Basically a phrase table can be summarized

as a data structure that represents each source phrase along with each possible translation and the

associated parameter values. The pipeline used to build the phrase table is pictured in Figure 2.1.

As we mentioned, for each phrase pair in the phrase table, a set of feature functions are computed

and used to score translation hypotheses. We discuss the state of the art used feature functions in

Section 2.2.2.3.
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Src-Tgt 
Parallel Corpus 

a: Src!Tgt 

Directional 
Alignment 

a: (Src,Pvt)!{0,1} 

Symmetrization Phrase-pairs 
Extraction Phrase Table 

Src-Tgt Phrase Table 

a: Tgt!Src 

Figure 2.1: The pipeline to construct the phrase table.

2.2.2.3 Features

A feature can be any function from that maps a pair of source and target sentences to a non-negative

score value. Each feature function can typically be unraveled in terms of local evaluations at the

level of words and also the phrase level. First, we briefly describe the standard features introduced

in [Koehn et al., 2007a] and found in other approaches [Simard et al., 2005; Chiang, 2005]. Global

features are computed from the entire derivation or decoding process which includes:

• Distortion: The number of source words between two source phrases translated into consec-

utive target phrases.

• Phrase penalty: The number of phrase pairs used in the derivation |D|.

• Word penalty: The number of produced target words, which controls the length of transla-

tion.

The Other features use a limited context around the individual phrase pairs:

• Language model: The logarithm of an n-gram target language model

log p(e) = log
T∏

j=1

p(ej |ej−1 . . . ej−n), (2.3)

which requires keeping a history of n words for each position in the target sentence.
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Figure 2.2: Phrase orientations in a lexicalized reordering model

The remaining features are based on each individual phrase pairs. These features include phrase

translation probabilities, lexical weighting and lexical reordering.

• Translation probabilities: The conditional translation probability of the target phrase given

the source phrase:

log
∏

(t,s)∈d

p(t|s), (2.4)

where s is a source phrase and t is a target phrase. The equivalent phrase probability for

the same phrase pairs in the opposite direction p(s|t) is also computed. It follows the noisy

channel approach that was proved in practice to produce a performance comparable to the

direct probability p(s|t) [Och et al., 1999].

The estimation of the individual probabilities vary along with the phrase alignment model

used to build the phrase table.

p(s|t) =
count(s, t)
count(t)

(2.5)

The numerator represents the number of the joint occurrences of both phrases aligned together

(s, t), while the denominator represents the marginal counts of the phrase t. p(s|t) is defined

similarly.

• Lexical weighting: Translation probabilities that is based on relative frequency estimation

between phrase pairs are always rough to depend on due do data sparsity. We use Lexical
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weighting as a smoothing method for infrequent phrase pairs, the probabilities of which are

poorly estimated [Foster et al., 2006]. Smoothing is based on word-to-word translation prob-

abilities, for which statistics are available. The target-to-source lexical weighting is:

φ(e|f,A) = log
T∏

j=1

1

|{i : (i, j) ∈ A}|
∑

i:(i,j)∈A

p(fi|ej), (2.6)

where A refers to some underlying word alignment. The reverse lexical weighting φ(f |e,A)

is defined similarly. The word conditional probabilities p(ffi|ej) are computed in a similar

way as phrase conditional probabilities.

• Lexicalized reordering: These features are based on the orientation of a source phrase being

translated with respect to the previously translated phrase. Reordering can be represented as

the distance between these two source phrases. To avoid sparsity issues, orientation is limited

to some heuristics and categories: the most widely used are monotone, swap (s) with the

previously translated source phrase and discontinuous (d). These categories are illustrated in

Figure 2.2, borrowed from [Koehn, 2010]. The associated features are then computed:

log
∏

(orientation,t,s)∈D

p(orientation|s, t). (2.7)

As we discussed earlier, there are several ways to compute the probabilities p(orientation|s, t)

for all phrase pairs in the phrase table. A common practice is again to rely on relative frequen-

cies of such events in the parallel corpus annotated with alignment. Orientation events can be

defined either with respect to the word alignment [Tillmann, 2004a; Koehn et al., 2005] or to

the phrase alignment [Galley and Manning, 2008].

2.2.3 Summary

In this section, we have described a state-of-the-art phrase-based SMTsystem. In the following part,

we will use such a system as a base for our phrase pivoting models.

This model is a weighted linear combination of feature functions. Translation hypotheses are

constructed by concatenating phrase translations found in the phrase table of the translation system.

This phrase table is typically built from a parallel corpus which is annotated with generalized phrase

alignment. We have then discussed the standard set of features that are the state of the art and are

used in current SMTsystems.
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2.3 Statistical Machine Translation for Morphologically Rich Languages

There has been active research on incorporating morphological knowledge in SMT. Most of the

work done on studying the effects of morphological preprocessing on SMT quality focuses on

translation from morphologically rich languages. Several approaches use pre-processing schemes,

including segmentation of clitics [Lee, 2004; Habash and Sadat, 2006; Zollmann et al., 2006], com-

pound splitting [Nießen and Ney, 2004] and stemming [Goldwater and McClosky, 2005]. They

show that reducing the sparsity caused by rich morphology through some form of morphological

tokenization has a positive impact on the quality of SMT. There are also a growing number of pub-

lications that consider translation into morphologically rich languages such as Turkish [Oflazer and

Durgar El-Kahlout, 2007], Arabic [Sarikaya and Deng, 2007; Badr et al., 2008] and Persian [Kathol

and Zheng, 2008].

Most of the focus here is on the efforts that studied the impact of morphological preprocessing

on Arabic as a target language. In previous work on Arabic language modeling, OOV reduction

was accomplished using morpheme-based models [Heintz, 2008]. [Diehl et al., 2009] also used

morphological decomposition for Arabic language modeling for speech recognition. They described

an SMT approach to detokenization (or what they call morpheme-to-word conversion). Although

the implementation details are different, their solution is comparable to one of our new (but not

top performing) detokenization models (T+LM) (discussed in more details in Chapter 3. With

regard to the English-to-Arabic MT, [Sarikaya and Deng, 2007] uses joint morphological-lexical

language models to re-rank the output of the English-dialectal Arabic MT. [Badr et al., 2008] reports

results on the value of morphological tokenization of Arabic during training, and describes different

techniques for the detokenizing Arabic output.

The research discussed in Chapter 3 is most closely related to that of [Badr et al., 2008]. We

extend their contribution in two ways: (a) We present a comparison of a larger number of tokeniza-

tion schemes that yielded improved results over theirs; and (b) We discuss the technical challenges,

and present solutions for producing unnormalized Arabic output through different detokenization

techniques.

In another direction, there were efforts to enrich the source in word-based SMT, [Ueffing et

al., 2002] used POS tags, in order to deal with the verb conjugation of Spanish and Catalan. The

POS tags were used to identify the pronoun+verb sequence and splice these two words into one
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term. The adopted this approach for single-word-based SMT which is solved like a phrase-based

model. [Minkov et al., 2007] suggested a post-processing system which syntactic features, in order

to ensure grammatical agreement on the output. The method, using various grammatical source-

side features, achieved higher accuracy when applied directly to the reference translations but it

was not tested as a part of an MT system. Similarly, translating English into Turkish [Durgar El-

Kahlout and Oflazer, 2006] uses POS and morph stems in the input along with rich Turkish morph

tags on the target side, but improvement was gained only after augmenting the generation process

with morphotactical knowledge. [Habash, 2007] also investigated case determination in Arabic.

[Carpuat and Wu, 2007] approached the issue as a Word Sense Disambiguation problem.

Another method related to our approach in Section 5 is using an independent morphological

prediction component such as used by [Minkov et al., 2007] and [Toutanova et al., 2008]. They

use maximum entropy models for inflection prediction. Unlike our approach, they predict inflected

word forms directly without going into a fine grained morphological feature prediction as we do.

One of the main drawbacks of their approach is that they use stems as their base for translation

instead of lemmas. There is also work by [Clifton and Sarkar, 2011] where they do segmentation

and morpheme prediction. They also use stems as their basic word form.

2.3.1 Summary

In this section, we discussed some related work to modeling rich morphology in SMT. Many of

the models depend on morphological preprocessing either by simplifying the morphologically rich

language or enriching the morphologically poor language to match the richness of the opposite side.

Other models depend on morphological-lexical language models. In addition, other efforts used

POS, morph stems and various grammatical source-side features to ensure grammatical agreement

on the output.

2.4 MT Evaluation and Error Analysis

One way of evaluating the output of an SMTsystem relies on a comparison between the system’s

output and correct translations. The problem of evaluation is usually solved either by asking a

human expert to subjectively judge the quality of the system’s output; or by explicitly constructing
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the correct answer and conceiving an objective comparison metric.

Subjective evaluation requires the annotators to judge the quality of a translation based on sev-

eral criteria such as intelligibility, fluency, fidelity, adequacy and even informativity. This approach

is adopted in recent evaluation campaigns [Callison-Burch et al., 2008; Callison-Burch et al., 2009].

Alternatively, the judgment may be based on how helpful the system’s output was to the annotator

to complete a specific task [Blanchon and Boitet, 2007]; or how easy was post-editing the output to

obtain a correct translation [Specia, 2011].

Automatic evaluation mostly relies on a direct comparison between the system output hypothesis

and the reference translations. The underlying assumption is that the closer the hypothesis is to the

reference, the better its quality will be. In comparison with subjective evaluations, human annotator

are involved just once in the process, when the reference is generated. The difficulty of automatic

evaluation is two-fold. On the one hand, we have the difficulty of defining the correct translation.

Usually one or several human experts are asked to translate the input sentence and build the set

of references as an approximation of the space of correct translations. However, given the nature

of translation this space is huge, and few translations are likely to cover only a small fraction of

it. Recent technologies based on meaning-equivalent semantics tools [Dreyer and Marcu, 2012]

provide the annotators with efficient ways to generate a large number of reference translations,thus

resulting in a better approximation of the correct translations space.

The most widely used metric is the BLEU score [Papineni et al., 2002b]. BLEU considers not

only single word matches between the output and the reference sentence, but also n-gram matches,

up to some maximum n. This formulation permits to reward sentences where local word order

is closer to the local word order in the reference. BLEU is a precision-oriented metric; that is, it

considers the number of n-gram matches as a fraction of the number of total n-grams in the output

sentence.

There have been recent efforts in improving the quality of the evaluation and avoiding the

harsh measures that depends on exact word matches. These efforts looked at paraphrasing and

stemming of the output and the equivalent reference translation [Denkowski and Lavie, 2010;

Snover et al., 2009]. Stemming is not sufficient to capture similarity of syntactic structure or

the similarity of semantic content. Moreover, paraphrasing focuses on matching words with dif-

ferent lexical choices with same meaning rather than handling the difference in the morphological
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choices between the output and the equivalent reference. Furthermore, none of these metrics provide

detailed error analysis. Several publications defined different error classifications and typologies

for the purpose of evaluation of single systems, or comparison between systems [Flanagan, 1994;

Vilar et al., 2006; Farrus et al., 2010]. [Kirchhoff et al., 2007] developed a framework for semi-

automatically analyzing characteristics of input documents to MT systems that determine output

performance. The framework heavily depends on human annotation.

To our knowledge, there hasn’t been many efforts to build publicly available error analysis tools

for MT output with focus on rich morphology which is our focus in Chapter 4.

[Popovic and Ney, 2006] provided precision and recall measures of MT output for different

verbal inflections, but they only focus on Spanish verbs. Their word matching technique is a based

on PER which may not be sufficient to apply in more general settings (i.e., not just verbs).

[A. Cuneyd Tantug and El-Kahlout, 2008] created a tool which is closely related to our work.

They extended the BLEU and METEOR metrics to handle errors in Turkish morphology. Their

matching algorithm uses Turkish word roots and a wordnet hierarchy, and it produces oracle score

comparable to what AMEANA does.

[Stymne, 2011] presented a tool for annotation of bilingual segments intended for error analysis

of MT. It utilizes a given error typology to annotate translations from an MT system. The tool does

not provide detailed morphological error analysis.

2.4.1 Summary

In this section, we explored the different approaches to evaluate an MT system. We discussed the

draw backs of the manual evaluation and the caveats of the most widely used automatic metrics. We

also showed the lack of available detailed error analysis tools especially when targeting morpholog-

ically rich languages.

2.5 Pivoting in Statistical Machine Translation

A common solution to the data sparsity in the field is to pivot the translation through a third language

(called pivot or bridge language) for which there exists abundant parallel corpora with the source

and target languages. In this section, we review the three pivoting strategies that are our baselines.

21



CHAPTER 2. BACKGROUND

2.5.1 Pivoting Strategies

Many researchers have investigated the use of pivoting (or bridging) approaches to solve the data

scarcity issue [Utiyama and Isahara, 2007; Wu and Wang, 2009; Khalilov et al., 2008; Bertoldi

et al., 2008; Habash and Hu, 2009]. The main idea is to introduce a pivot language, for which

there exists large source-pivot and pivot-target bilingual corpora. Pivoting has been explored for

closely related languages [Hajič et al., 2000] as well as unrelated languages [Koehn et al., 2009;

Habash and Hu, 2009]. Many different pivot strategies have been presented in the literature. The

following three are the most common ones.

2.5.1.1 Sentence Pivoting

In sentence pivoting, pivot language is used as an interface between two separate phrase-based MT

systems in which we first translate the source sentence to the pivot language, and then translate the

pivot language sentence to the target language [Khalilov et al., 2008].

2.5.1.2 Synthetic Corpus

The second strategy is to create a synthetic source-target corpus by translating the pivot side of

source-pivot corpus to the target language using an existing pivot-target model [Bertoldi et al.,

2008].

2.5.1.3 Phrase Pivoting

In phrase pivoting (sometimes called triangulation or phrase table multiplication), we train a source-

pivot and an pivot-target translation models, such as those used in the sentence pivoting technique.

Based on these two models, we induce a new source-target translation model.

Translation Model Since we build our models on top of Moses phrase-based SMT [Koehn et al.,

2007b], we need to provide the same set of phrase translation probability distributions. We follow

[Utiyama and Isahara, 2007] in computing the probability distributions. The following are the set

of equations used to compute the phrase-based SMT feature which are equivalent to the features

discussed in Section 2.2.2.3. We compute the lexical probabilities (φ) and the phrase probabilities

(pw) according the following equations:
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φ(f |e) =
∑
e

φ(f |p)φ(p|e) (2.8)

φ(e|f) =
∑
e

φ(e|p)φ(p|f) (2.9)

p(f |e) =
∑
e

p(f |p)p(p|e) (2.10)

p(e|f) =
∑
e

p(e|p)p(p|f) (2.11)

where f is the source phrase. p is the pivot phrase that is common in both source-pivot transla-

tion model and pivot-target translation model. e is the target phrase.

Since the underlying word alignment A doesn’t exist, these equations are good approximation

of the original features. Figure 2.3 illustrates the phrase pivoting process.

Src$Pvt(
Parallel(Corpus(

a:(Src!Pvt(

a:(Pvt!Src(

Direc&onal+
Alignment+

Pvt$Tgt(
Parallel(Corpus(

a:(Pvt!Tgt(

a:(Tgt!Pvt(

a:((Src,Pvt)!{0,1}(

Symmetriza&on+
Phrase6pairs+
Extrac&on+

Phrase+Table+

Src$Pvt(Phrase(Table(

Pvt$Tgt(Phrase(Table(a:((Pvt,Tgt)!{0,1}(

Src$Tgt(Phrase(Table(

Phrase+Pivo&ng+

Figure 2.3: Phrase Pivoting process.
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Reordering Model Following the reordering strategy in Moses phrase-based SMT system [Till-

mann, 2004b; Koehn et al., 2007b], we generate lexical reordering weights based on [Henriquez et

al., 2010] approach. Three different moves a phrase can make related to the previous and following

phrase are considered: monotonous move, swap move and discontinuous move. There are three

consideration to have in mind to calculate the reordering weights for phrase pivoting:

• A swap move on the Source-Pivot system is dissolved if the same phrase is swapped again on

the Pivot-Target system which is then considered a monotonous move.

• A monotonous move followed by a swap means a swap from Source phrase to Target phrase.

The same applies is the same if the swap if performed first and then the monotonous move.

• A discontinuous moves always generates a final discontinuous move no matter which move

is performed before it.

Figure 2.4 shows a graphical example of the rules explained above. Following these rules, the

monotonous weights for the Source-Target system m(f |e) is calculated using this formula:

m(f |e) =
∑
p

m(f |p)m(p|e) +
∑
p

s(f |p)s(p|e) (2.12)

The swap weights s(f |e) is calculated using this formula:

s(f |e) =
∑
p

m(f |p)s(p|e) +
∑
p

s(f |p)m(p|e) (2.13)

And the discontinuous weights d(f |e) calculated using the following formula:

d(f |e) =
∑
p

m(f |p)d(p|e) +
∑
p

d(f |p)m(p|e)

+
∑
p

s(f |p)d(p|e) +
∑
p

d(f |p)s(p|e)

+
∑
p

d(f |p)d(p|e)

(2.14)

where f is the source phrase. p is the pivot phrase that is common in both source-pivot transla-

tion model and pivot-target translation model. e is the target phrase.
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Src$ Src$

Piv$ Piv$

Tgt$ Tgt$

(b) swap-swap

Src$ Src$

Piv$ Piv$

Tgt$ Tgt$

(c) monotone-swap

Src$ Src$

Piv$ Piv$

Tgt$ Tgt$

(d) swap-monotone

Src$ Src$

Piv$ Piv$

Tgt$ Tgt$

Src$

Piv$

Tgt$

(e) monotone-discontinuous

Src$ Src$

Piv$ Piv$

Tgt$ Tgt$

Src$

Piv$

Tgt$

(f) discontinuous-monotone

Src$ Src$

Piv$ Piv$

Tgt$ Tgt$

Src$

Piv$

Tgt$

(g) swap-discontinuous

Src$ Src$

Piv$ Piv$

Tgt$ Tgt$

Src$

Piv$

Tgt$

(h) discontinuous-swap

Figure 2.4: Plots of different pivot lexical reordering scenarios.
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2.5.2 Related Work

There have been some efforts on enhancing the recall and quality of pivot based SMT. In one effort

by [Kumar and Franz, 2007], they utilized a bridge language to create a word alignment system

and a procedure for combining word alignment systems from multiple bridge languages. The final

translation is obtained by consensus decoding that combines hypotheses obtained using all bridge

language word alignments.

[Paul et al., 2009] examined the the effect of pivot language in the final translation system. He

showed that in some cases if training data is small the pivot should be more similar to the source

language, and if training data is large the pivot should be more similar to the target language. In

Addition, it is more suitable to use a pivot language whose structure is similar to both of source and

target languages.

In a recent work by [Zhu et al., 2013], they focus on the problem having some useful source

target translations not generated because the corresponding source phrase and target phrase connect

to different pivot phrases. To alleviate the problem, they utilize Markov random walks to connect

possible translation phrases between source and target language.

One of the manifestations of pivoting is that the size of the newly created pivot phrase table

is very large. There has been some recent effort in improving the precision on pivoting. [Saralegi

et al., 2011] show that there is not transitive property between three languages. So many of the

translations produced in the final phrase table might be wrong. Therefore for pruning wrong and

weak phrases in the phrase table two methods have been used. One method is based on the structure

of source dictionaries and the other is based on distributional similarity.

There is another recent work that uses context vectors to build a pruning method to remove

those phrase pairs that connect to each other by a polysemous pivot phrase or by weak translations

[Tofighi Zahabi et al., 2013].

2.5.3 Summary

A common solution to the data sparsity in the field is to pivot the translation through a third language

(called pivot or bridge language) for which there exists abundant parallel corpora with the source

and target languages. In this section, we reviewed the three pivoting strategies and some related

work to our approaches to improve the precision and recall of pivot-based models. Through out this
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thesis, we build on phrase pivoting since it was shown to be the best approach for pivoting [Utiyama

and Isahara, 2007].
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Rule Name Tokenized Untokenized
Example

Tokenized Untokenized Gloss

Li+Definite Article ?È+È@+È +ÉË I.
�
JºÓ+È@+È I.

�
JºÒÊË ‘for the office’

l+Al+l? ll+ l+Al+mktb llmktb
�
é
	
Jm.
Ì+È@+È

�
é
	
Jj. ÊË ‘for the committee’

l+Al+ljn~ lljn~

Ta-Marbuta <Q�
ÖÞ
	
�>+ �

è- <Q�
ÖÞ
	
�>+ �

H- Ñë+ �
éJ.

�
JºÓ Ñî

�
DJ.

�
JºÓ ‘their library’

-~+<pron> -t+<pron> mktb~+hm mktbthm

Alif-Maqsura <Q�
ÖÞ
	
�>+ø- <Q�
ÖÞ

	
�>+ @- è+øðP è@ðP ‘he watered it’

-ý+<pron> -A+<pron> rwý+h rwAh

exceptionally <Q�
ÖÞ
	
�>+ø



- è+úÎ« éJ
Ê« ‘on him’

-y+<pron> ςlý+h ςlyh

Hamza <Q�
ÖÞ
	
�>+Z- <Q�
ÖÞ

	
�>+ 
ø- è+ZAîE. é



KAîE. ‘his glory [gen.]’

-’+<pron> -ŷ+<pron> bhA’+h bhAŷh

less frequently <Q�
ÖÞ
	
�>+ 


ð- è+ZAîE. è


ðAîE. ‘his glory [nom.]’

-ŵ+<pron> bhA’+h bhAŵh

less frequently <Q�
ÖÞ
	
�>+Z- è+ZAîE. èZAîE. ‘his glory [acc.]’

-’+<pron> bhA’+h bhA’h

Y-Shadda ø



+ø



- ø



- ø



+ú


æ

	
�A

�
¯ ú



æ

	
�A

�
¯ ‘my judge’

-y+y -y qADy+y qADy

N-Shadda - 	
à+ 	

à- - 	
à- A

	
K+ 	áÓ A

	
JÓ ‘from us’

-n+n- -n- mn+nA mnA

N-Assimilation -Ð+ 	áÓ -Ð+Ð AÓ+ 	áÓ AÜØ ‘from which’

mn+m- m+m- mn+mA mmA

-Ð+ 	á« -Ð+¨ AÓ+ 	á« AÔ« ‘about which’

ςn+m- ς+m ςn+mA ςmA

B+ 	
à



@ B

�

@ B+ 	

à


@ B

�

@ ‘that ... not’

Ân+lA ÂlA Ân+lA ÂlA

Table 2.1: Arabic orthographic and morphological adjustment rules. <pron>/<Q�
ÖÞ
	
�> is a short-

hand for pronominal clitic. The rules above are simplified in that they ignore short vowels which

may affect the conditions of rule application, e.g., the Shadda rules assume that there are no short

vowels intervening between the repeated letter, and the Hamza rule ambiguity is all the result of

intervening unwritten short vowels. All examples are undiacritized.
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English Persian Arabic Hebrew

Family Indo-European Indo-European Semitic Semitic

Script Roman Arabic Arabic Hebrew

Word Order SVO SOV SVO/VSO SVO

Morphology Poor Rich Rich Rich

Table 2.2: Language comparison between Arabic, Hebrew, Persian and English.
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Chapter 3

Orthographic and Morphological

Processing

In this chapter, we work on one component of performing phrase pivoting which is the direct trans-

lation to a morphologically rich language (MRL). The main focus of this section is to address the

challenge of data sparsity due to richness in morphology. Most of our discussed and implemented

approaches are focusing on Arabic as it is one of the most challenging languages in the field. We

also focus on translating from English as it is the typical pivot language due to the existence of an

abundance of resources and parallel corpora with many other languages.

We study the value of a variety of tokenization schemes and orthographic normalizations on

English-Arabic SMT. However, since our goal is to always produce correctly detokenized and or-

thographically enriched Arabic words, we also consider different detokenization techniques and

normalization settings. In this chapter, we discuss the various settings we studied for each of these

three issues. First, various morphological tokenization schemes are considered to improve the SMT

process. This is followed by detokenization techniques used to stitch the word parts back together.

Finally we discuss the issue of enriched and reduced normalization which is orthogonal to the tok-

enization/detokenization question.
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3.1 Morphological Tokenization

Morphological tokenization has been shown to be very helpful for machine translation involving

morphologically rich languages. We consider five tokenization schemes discussed in the literature,

in addition to a baseline no-tokenization scheme (D0). The D1, D2, TB and D3 schemes were first

presented by [Habash and Sadat, 2006] and the S2 scheme was presented by [Badr et al., 2008].

The D1, D2 and D3 schemes are named to indicate the degree of decliticization applied to the text.

D1 separates conjunction proclitics; D2 extends D1 by separating prepositional clitics and particles

(other than the definite article Al+); and D3 separates all clitics including the definite article and

the pronominal enclitics. The S1 scheme used by [Badr et al., 2008] is the same as [Habash and

Sadat, 2006]’s D3 scheme. S2 is the same as D3 except that all proclitics are put together in a single

proclitic cluster. TB is the Penn Arabic Treebank (PATB) [Maamouri et al., 2004a] tokenization

scheme. For more details on alternative tokenization schemes, see [Habash, 2010]. We use the

Morphological Analysis and Disambiguation for Arabic (MADA)1 toolkit [Habash and Rambow,

2005; Roth et al., 2008] to produce the various tokenization schemes.

Figure 3.1 illustrates the different tokenization schemes with an example. Table 3.1 presents

definitions and various relevant statistics for each tokenization scheme. The schemes differ widely

in terms of the increase of number of tokens and the corresponding type count reduction. The

more verbose schemes, i.e., schemes with more splitting and higher number of word tokens, have

a lower number of token types, which leads to lower out-of-vocabulary (OOV) rates and lower

perplexity; however, they are also harder to predict correctly. The increase in the number of tokens

has consequences on word alignment, translation models and language models (LM). We control

for these effects in our experiments in Section 3.4.

3.2 Detokenization

We compare the following six techniques for detokenization that vary in their degree of complexity

and dependence on training data. The data used and the experiments setup are described in Sec-

tion 3.4.1. For a baseline technique, we simply concatenate clitics to word without applying any

orthographic or morphological adjustments; this is the simple (S) technique. Second, a rule-based

1We use MADA version 2.32 in the basic experiments and MADA version 3.0 in the final scaled up experiments
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Arabic
. AJ
»Q

�
K úÍ@

�
èPAK


	QK. é
�
JËñk. ��




KQË @ úæî

	
DJ
�ð

wsynhý Alrŷys jwlth bzyAr~ Alý trkyA .

Gloss and will finish the president tour his with visit to Turkey .

English The president will finish his tour with a visit to Turkey.

Scheme

D0 wsynhy Alrŷys jwlth bzyAr~ Ǎlý trkyA .

D1 w+ synhy Alrŷys jwlth bzyAr~ Ǎlý trkyA .

D2 w+ s+ ynhy Alrŷys jwlth b+ zyAr~ Ǎlý trkyA .

TB w+ s+ ynhy Alrŷys jwl~ +h b+ zyAr~ Ǎlý trkyA .

S2 w+s+ ynhy Al+ rŷys jwl~ +h b+ zyAr~ Ǎlý trkyA .

D3 w+ s+ ynhy Al+ rŷys jwl~ +h b+ zyAr~ Ǎlý trkyA .

LEM Ânhý rŷys jwl~ zyAr~ Ǎlý trkyA .

Figure 3.1: A sentence in the various tokenization schemes. All tokenizations are in ENR normal-

ization, but the original Arabic is in raw normalization. LEM is the lemma form of each word

(discussed in Section 3.4.3.2).
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Definition

Change Relative to D0 OOV Perplexity Prediction Error Rate

Token#
ENR RED

ENR RED ENR RED ENR RED SEG
Type# Type#

D0 word 2.22 2.17 412.3 410.6 0.62 0.09 0.00

D1 cnj+ word +7.2 -17.6 -17.8 1.91 1.89 259.3 258.2 0.76 0.23 0.14

D2 cnj+ prt+ word +13.3 -32.3 -32.6 1.50 1.50 185.5 184.7 0.89 0.37 0.25

TB cnj+ prt+ word +pron +17.9 -43.9 -44.2 1.22 1.22 142.2 141.5 1.07 0.57 0.42

S2 cnj+prt+art word +pron +40.6 -53.0 -53.3 0.91 0.91 69.3 69.0 1.20 0.73 0.60

D3 cnj+ prt+ art+ word +pron +44.2 -53.0 -53.3 0.90 0.90 61.9 61.7 1.20 0.73 0.60

Table 3.1: A comparison of the different tokenization schemes studied in this article: tokenization

scheme definition; the relative change from no-tokenization (D0) in tokens (Token#) and enriched

and reduced word types (ENR Type# and RED Type#, respectively); out-of-vocabulary (OOV) rate;

perplexity; MADA’s prediction error rate for enriched tokens, reduced tokens and just segmenta-

tion (SEG). OOV rates and perplexity values are measured against the NIST MT04 test set while

prediction error rates are measured against a Penn Arabic Treebank development set.

(R) technique uses deterministic rules to handle all of the cases described in Table 2.1. We pick the

most frequent decision for ambiguous cases. The determination of frequency was done against the

language model corpus 2. We tokenized the whole corpus and for each tokenized word we counted

the frequency of each equivalent untokenized form. Then we constructed rules that leads to the

most frequent decision for the cases described in Table 2.1. The third technique is a table-based

(T) technique that uses a lookup table mapping tokenized forms to detokenized forms. The table is

based on pairs of tokenized and detokenized words from our language model data which had been

processed by MADA. We pick the most frequent decision for ambiguous cases. Words not in the

table are handled with the (S) technique. This technique essentially selects the detokenized form

with the highest conditional probability P (detokenized|tokenized). We also consider a variant of

T technique that backs off to R not S: Table+Rule (T+R) technique.

The above-mentioned four techniques are the same as those used by [Badr et al., 2008]. In

this work, we introduce two new techniques that use a 5-gram untokenized-form language model

2Language model corpus is composed of 200M words from the Arabic Gigaword Corpus (LDC2007T40)
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Figure 3.2: A comparison of the different tokenization schemes studied in this article: out-of-

vocabulary (OOV) rate; perplexity; MADA’s prediction error rate for enriched tokens, reduced to-

kens and just segmentation (SEG). OOV rates and perplexity values are measured against the NIST

MT04 test set while prediction error rates are measured against a Penn Arabic Treebank develop-

ment set.

(LM) and the disambig utility in the SRILM toolkit [Stolcke, 2002] to decide among different

alternatives. First is T+LM; here we use all the forms in the T approach. Alternatives are given

different conditional probabilities, P (detokenized|tokenized), derived from the tables. Back-off

is to the S technique. This technique essentially selects the detokenized form with the highest

P (detokenized|tokenized) × PLM (detokenized). Second is T+R+LM, a technique similar to

T+LM but with R as back-off.
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3.3 Orthographic Normalization

We consider two kinds of orthographic normalization schemes, enriched Arabic (ENR) and reduced

Arabic (RED). For tokenized enriched forms, the detokenization produces the desired output. In

case of reduced Arabic, we consider two alternatives to automatic orthographic enrichment. First,

we use the Morphological Analysis and Disambiguation for Arabic (MADA)3 toolkit [Habash and

Rambow, 2005; Roth et al., 2008] to enrich Arabic text after detokenization (MADA-ENR). MADA

can predict the correct enriched form of Arabic words at 99.4%.4 Alternatively, we jointly detok-

enize and enrich using detokenization tables that map reduced tokenized words to their enriched

detokenized form (Joint-DETOK-ENR).

In terms of evaluation, we report our results in both reduced and enriched Arabic forms. We

only compare in the matching form, i.e., reduced hypothesis to reduced reference and enriched

hypothesis to enriched reference.

3.4 Evaluation

In this section we study the value of a variety of detokenization techniques over different tokeniza-

tion schemes and orthographic normalization. We report results on naturally occurring Arabic text

in the first two subsections. Then in the last subsection, we report results on English-Arabic SMT

outputs with extended analysis.

3.4.1 Detokenization

We compare the performance of the different detokenization techniques discussed in Section 6.3.4

for the ENR and the RED normalization conditions. The performance of the different techniques

is measured against the Arabic side of the NIST MT evaluation set for 2004 and 2005 (henceforth,

MT04+MT05) which together have 2,409 sentences comprising 64,554 words. We report the re-

sults in Table 3.2 in terms of sentence-level detokenization error rate defined as the percentage of

sentences with at least one detokenization error. The best performer across all conditions is the

3We use MADA version 2.32

4Statistics are measured on a development set from the Penn Arabic Treebank [Maamouri et al., 2004a].
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T+R+LM technique. The previously reported best performer was T+R [Badr et al., 2008], which

was only compared with D3 and S2 tokenizations only.

As illustrated in the results, the more complex the tokenization scheme, the more prone it is

to detokenization errors. Moreover, RED has equal or worse results than ENR under all conditions

except for the S detokenization technique with the TB, S2 and D3 schemes. This is a result of the

S detokenization technique not performing any adjustments, which leads to the never-word-internal

Alif-Maqsura character appearing incorrectly in word-internal positions in ENR. While for RED,

the Alif-Maqsura is reductively normalized to Ya, which is the correct form in some of the cases.

The results for S2 and D3 are identical because these two schemes only superficially differ in

whether proclitics are space-separated or not. Similarly, TB results are identical to D3 for the S and

R techniques. This can be explained by the fact that the only difference between the D3 and TB

schemes is that the definite article is attached to the word (in TB and not D3), a difference that does

not produce different results under the deterministic S and R techniques.

We analyze the errors (14 cases) for the T+R+LM technique on D3 scheme and classify them

into two categories. The first category comprises 11 cases (≈ 80% of the errors) and is caused by

ambiguity resulting from the lack of diacritical marks. Seven (50% overall) of these errors involve

the selection of the correct Hamza form before a pronominal enclitic. For example, the tokenized

word Aë+ZA
�
®

�
�



@+ð w+ÂšqA’+hA ‘and+siblings+her’ can be detokenized to AëZA

�
®

�
�



@ð wÂšqA’hA or

Aî


EA

�
®

�
�



@ð wÂšqAŷhA or Aë



ðA

�
®

�
�



@ð wÂšqAŵhA depending on the grammatical case of the noun ZA

�
®

�
�



@

ÂšqA’, which is only expressible as a diacritical mark. The other four cases involve two closed class

words, 	
à@



Ǎn ‘that/indeed’ and 	áºË lkn ‘however’, each of which corresponding to two diacritized

forms that require different adjustments. For example, the tokenized word ú



	
G+ 	

à@



Ǎn+ny can be

detokenized to ú



	
G @



Ǎny (ú



	
G
�
+ 	

à@

�

Ǎin+niy → ú



��	
G @

�

Ǎin∼iy) or ú



	
æ

	
K @



Ǎnny (ú



	
G
�
+

��	
à@


�
Ǎin∼a+niy → ú




	
æ
�

��	
K @

�

Ǎin∼aniy). In many cases, the n-gram language model is able to choose the correct form, but it is

not always successful. The second category of errors compromises 3 cases (≈ 20% of the errors)

which involve automatic tokenization failures producing tokens that are impossible to map back to

the correct detokenized form.
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S R T T+R T+LM T+R+LM

ENR RED ENR RED ENR RED ENR RED ENR RED ENR RED

D1 0.17 0.17 0.17 0.17 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

D2 22.50 22.50 0.58 0.79 0.37 0.37 0.21 0.21 0.37 0.37 0.21 0.21

TB 38.36 35.53 1.41 3.03 1.33 1.49 0.75 0.91 1.16 1.25 0.58 0.66

S2 38.36 35.53 1.41 3.03 1.37 1.54 0.79 0.95 1.20 1.29 0.62 0.71

D3 38.36 35.53 1.41 3.03 1.37 1.54 0.79 0.95 1.20 1.29 0.62 0.71

Table 3.2: Detokenization results in terms of sentence-level detokenization error rate (SER).

3.4.2 Orthographic Enrichment and Detokenization

As previously mentioned, it is desirable for automatic applications generating Arabic to produce

orthographically correct Arabic. As such, reduced tokenized output should be enriched and deto-

kenized to produce proper Arabic. We compare next the two different enrichment techniques dis-

cussed in Section 6.3.4: using MADA to enrich detokenized reduced text (MADA-ENR) versus

detokenizing and enriching in one joint step (Joint-DETOK-ENR). We consider the effect of apply-

ing these two techniques together with the various detokenization techniques when possible. The

comparison is presented for D3 in Table 3.3. D3 has the highest number of tokens per word and

it’s the hardest to detokenize as shown in Table 3.2. The MADA-ENR enrichment technique can

be applied to the output of all detokenization techniques; however, the Joint-DETOK-ENR enrich-

ment technique can only be used as part of table-based detokenization techniques. The results for

basic ENR and RED detokenization are in columns two and three (same values as the last row in

Table 3.2). Columns four and five present the two approaches to enriching the tokenized reduced

text. Although the Joint-DETOK-ENR technique does not outperform MADA-ENR for T and T+R,

it significantly benefits from the use of the LM extension to these two techniques. In fact, Joint-

DETOK-ENR produces the best results overall under T+R+LM, with an error rate that is 20% lower

than the best performance by MADA-ENR. Overall, however, enriching and detokenizing RED

text yields output that has almost 10 times the error rate compared to detokenizing ENR. This is

expected since ENR is far less ambiguous than RED. The best performer across all conditions for
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Detokenization

Input Form

ENR RED

RED

Enrichment

MADA-ENR Joint-DETOK-ENR

S 38.36 35.53 39.73

R 1.41 3.03 10.59

T 1.37 1.54 8.92 9.46

T+R 0.79 0.95 8.68 9.22

T+LM 1.20 1.29 9.34 6.23

T+R+LM 0.62 0.71 7.39 5.89

Table 3.3: Detokenization and enrichment results for D3 tokenization scheme in terms of sentence-

level detokenization error rate.

detokenization and enrichment is the T+R+LM approach.

All experiments reported so far in this article start with a perfect pairing between the original

and tokenized words. The real challenge is applying the detokenization techniques on automatically

produced (noisy) text. The next section discusses the effect of detokenization on SMT output.

3.4.3 Tokenization and Detokenization for SMT

In this section we present the effect of tokenization in improving the quality of English-to-Arabic

SMT. Then, we show the performance of the different detokenization techniques on the output and

their reflections over the overall performance.

3.4.3.1 Experimental Data

All of the training data we use is available from the Linguistic Data Consortium (LDC).5 We use an

English-Arabic parallel corpus of about 142K sentences and 4.4 million words for translation model

training data. The parallel text includes Arabic News (LDC2004T17), eTIRR (LDC2004E72), En-

5http://www.ldc.upenn.edu
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glish translation of Arabic Treebank (LDC2005E46), and Ummah (LDC2004T18). Word alignment

is done using GIZA++ [Och and Ney, 2003b]. For language modeling, we use 200M words from

the Arabic Gigaword Corpus (LDC2007T40) together with the Arabic side of our training data.

Twelve LMs were built for all combinations of normalization and tokenization schemes. We used

5-grams for all LMs unlike [Badr et al., 2008], who used different n-grams sizes for tokenized and

untokenized variants. All LMs are implemented using the SRILM toolkit [Stolcke, 2002].

MADA is used to preprocess the Arabic text for translation modeling and language modeling

to produce enriched forms and tokenizations. English preprocessing simply includes down-casing,

separating punctuation and splitting off “’s”.

Standard use of GIZA++ includes filtering out sentences over a certain length (typically 100)

and sentences with high ratio of source-to-target or target-to-source length (typically 9-to-1). We

will refer to this as basic filtering. Due to the fact that the number of tokens per sentence changes

from one tokenization scheme to another, GIZA++’s basic filtering will drop more sentences from

the more verbose schemes. The percentage of sentences dropped due to the filtration process can

be up to 2.3% in D3 (versus D0) for a generic cut off of 100 tokens per sentence in Arabic. It may

seem like a small percentage; but since all dropped sentences are very long, this leads to D0 having

access to 6.6 % extra words in training over D3. To control for this issue, we filter the training data

so that all experiments are done on the same sentences. We use the D3 tokenization scheme as a

reference and set the cutoff at 100 D3 tokens. We will refer to this as sentence length bias filtering.

All experiments are conducted using the Moses phrase-based SMT system [Koehn et al., 2007b].

The decoding weight optimization was done using a set of 300 sentences from the 2004 NIST MT

evaluation test set (MT04). The tuning is based on tokenized Arabic without detokenization. We use

a max phrase length of size 8 for all tokenizations. For alignment symmetrization, we use the grow-

diag-final-and method. And for the reordering parameter, we use the monotonicity-bidirectional-fe

setting.

We report results on the 2005 NIST MT evaluation set (MT05). These test sets were created

for Arabic-English MT and have 4 English references. We use only one Arabic reference in reverse

direction for both tuning and testing. We evaluate using BLEU-4 [Papineni et al., 2002a] although

we are aware of its caveats [Callison-Burch et al., 2006].
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Align Translation Post Reference

Model Process Matching

Lemma ENR ENR 25.3

RED 25.3

RED Joint-DETOK-ENR 24.9

RED 25.0

Surface ENR ENR 24.9

RED 25.0

RED Joint-DETOK-ENR 24.6

RED 24.7

Table 3.4: Baseline SMT experiments with D0 tokenization. All results are in BLEU.

3.4.3.2 Baseline System

For our baseline system, using D0 tokenization, we compare the value of using lemmas for auto-

matic word alignment as opposed to word surface forms (ENR or RED). In both cases, the phrase

tables are built using the surface forms. We compare different combinations of settings for trans-

lation models and post-processing. For translation models, we either train on ENR or RED text.

As for post-processing, we either keep the output as is, reduce it or enrich it. The enrichment is

done using a variant of the Joint-DETOK-ENR technique discussed in Section 3.3. In this experi-

ment set, we did not use the D3-based sentence length bias filtering described above. The results

in Table 3.4 show that lemma-based alignment consistently yields superior results to surface-based

alignment for the same translation model and post-processing conditions. The rest of the experi-

ments in this article will all use lemma-based alignment in the following manner: when aligning a

verbose tokenization, the lemma form will be used instead of the base word and the separated clitics

will not be modified. Table 3.4 also shows that ENR training is better than RED training; however,

since automatic enrichment error increases with tokenization verbosity (see Table 3.1, column 10),

it is not clear which normalization settings is best to use with verbose schemes. We explore these

combinations next.

40



CHAPTER 3. ORTHOGRAPHIC AND MORPHOLOGICAL PROCESSING

Tokenization

System Output

ENR RED

ENR
Reduction Enrichment

RED
RED Joint-DETOK-ENR

D0 24.6 24.7 24.7 24.7

D1 25.9 26.0 26.1 26.1

D2 26.4 26.5 26.1 26.2

TB 26.5 26.5 26.7 26.8

S2 25.7 25.8 26.1 26.2

D3 25.7 25.8 25.0 25.1

Table 3.5: Comparing different tokenizations schemes on 4 M data sets in BLEU scores

3.4.4 Tokenization Experiments

We compare the performance of the different tokenization schemes and normalization conditions.

The results are presented in Table 3.5. The best performer across all conditions is the TB scheme.

The previously reported best performer was S2 [Badr et al., 2008], which was only compared against

D0 and D3 tokenizations. Our results are consistent with [Badr et al., 2008]’s results regarding

D0 and D3. However, our TB result outperforms S2. The differences between TB and all other

conditions are statistically significant above the 95% level. Statistical significance is computed

using paired bootstrap resampling [Koehn, 2004]. Training over RED Arabic then enriching its

output sometimes yields better results than training on ENR directly which is the case with the TB

tokenization scheme. However, sometimes the opposite is true as demonstrated in the D3 results.

This is likely due to a tradeoff between the quality of translation and the quality of detokenization.

3.4.5 Learning Curve Experiments

We also compare the value of different schemes across a learning curve where we consider smaller

sets of our data: 2M, 1M and 0.5M words. We only show results for the reduced-then-enriched

systems in Table 3.6. As expected, the increase in training data size causes an increase in BLEU
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0.5M 1M 2M 4M

D0 19.7 22.3 24.0 24.7

D1 21.0 23.2 23.7 26.1

D2 21.3 23.7 24.2 26.1

TB 21.7 23.6 25.2 26.7

S2 20.6 23.0 24.8 26.1

D3 20.5 23.0 24.5 25.0

Table 3.6: Comparing different tokenizations schemes over a learning curve using reduced-then-

enriched systems. All results are in BLEU.

scores. Both TB and S2 at the 2M level outperform D0 at the 4 M level. The TB scheme is almost

always the top performer. The S2 scheme goes from being ranked fourth in the smallest condition

to being second in the largest. Further experiments considering the same learning curve with ENR

training may be necessary to understand how different normalization settings interact with training

size.

3.4.5.1 SMT Sensitivity to Different Detokenization Techniques

We measure the performance of the different detokenization techniques discussed in Section 3.2

against the SMT output for the TB tokenization scheme. We report results in terms of BLEU

scores in Table 3.7. The results for basic ENR and RED detokenization are in columns two and

three. Column four presents the results for the Joint-DETOK-ENR approach to joint enriching and

detokenization of tokenized reduced output discussed in Section 6.3.4.

When comparing Table 3.7 (in BLEU scores) with the corresponding cells in Table 3.3 (in

sentence-level detokenization error rate), we observe that the wide range of performance in Table 3.3

is not reflected in BLEU scores in Table 3.7. This is expected given the different natures of the tasks

and metrics used. Although the various detokenization techniques do not preserve their relative

order completely, the S technique remains the worst performer and T+R+LM remains the best in

both tables. However, the R and T+LM techniques perform relatively much better with MT output

than they do with naturally occurring text. The most interesting observation is perhaps that under
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the best performing T+R+LM technique, joint detokenization and enrichment (Joint-DETOK-ENR)

outperforms ENR detokenization despite the fact that Joint-DETOK-ENR has over nine times the

error rate in Table 3.3. This shows that improved MT quality using RED training data out-weighs

the lower quality of automatic enrichment.

3.4.5.2 SMT Detokenization Error Analysis

Since we do not have a gold detokenization reference for our MT output, we automatically identify

detokenization errors resulting in non-words (i.e., invalid words). We analyze the SMT output

for the D3 tokenization scheme and T+R+LM detokenization technique using the morphological

analyzer component in the MADA toolkit,6 which provides all possible morphological analyses for

a given word and identifies words with no analysis. We find 94 cases of words with no analysis out

of 27,151 words (0.34%), appearing in 84 sentences out of 1,056 (7.9%). Most of the errors come

from producing incompatible sequences of clitics, such as having a definite article with a pronominal

clitic. For instance, the tokenized word A
	
K+ �

é
�
¯C«+È@ Al+ςlAq~+nA ‘the+relation+our’ is detokenized

to A
	
J
�
J
�
¯CªË@ AlςlAqtnA which is grammatically incorrect. This is not a detokenization problem per se

but rather an MT error. Such errors could still be addressed with specific detokenization extensions

such as removing either the definite article or the pronominal clitic.

3.5 Improving and Scaling Up

In this section we present results demonstrating the effect of scaling up the training data and the

relative gain in the quality of English-to-Arabic SMT using an updated version of MADA. We

report results on the baseline system (D0) and our best system (TB). Then, we provide a detailed

error analysis of the different types of morphological errors in the output.

3.5.1 Experiment Setup and Results

We use the same setup used for all the previous experiments explained in Section 3.4.3.1 but we

scale up the English-Arabic parallel corpus ≈15 times. The corpus size is about 2.8m sentences

6This component uses the databases of the Buckwalter Arabic Morphological Analyzer [Buckwalter, 2004].
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Detokenization

SMT Output Form

ENR

RED

RED
Enrichment

Joint-DETOK-ENR

S 25.6 26.0 N/A

R 26.5 26.8 N/A

T 26.4 26.8 22.4

T+R 26.4 26.8 22.4

T+LM 26.5 26.8 26.7

T+R+LM 26.5 26.8 26.7

Table 3.7: BLEU scores for SMT outputs with different detokenization techniques over TB tok-

enization scheme

(≈60 million words). All data we use is available from LDC7 and GALE8 constrained data. We also

use an updated version MADA (v 3.0) instead of MADA (v 2.32), to pre-process the Arabic text for

the translation model and language model (LM). To control for the change in the MADA version and

to compare the results of the scaled up systems (D0-60m & TB-60m) to the basic systems trained

on 4 M words, we re-conducted the basic experiments for the baseline system (D0-4m) and our best

system (TB-4m) using the new version of MADA. We replicated the basic experiments once with

D3-based sentence length bias filtering in addition to the basic filtering discussed in Section 3.4.3.1

and once with just the basic filtering.

We report results in terms of BLEU scores in Table 3.8. The first two rows are the old results

of the basic systems D0 (baseline) & TB (our best system) trained on 4 M words and using the old

version of MADA (v 2.32) and applying D3-based sentence length bias filtering. The following

two rows are the results based on the same systems setup except for using the newer version of

7LDC Catalog IDs: LDC2005E83, LDC2006E24, LDC2006E34, LDC2006E85, LDC2006E92, LDC2006G05,

LDC2007E06, LDC2007E101, LDC2007E103, LDC2007E46, LDC2007E86, LDC2008E40, LDC2008E56,

LDC2008G05, LDC2009E16, LDC2009G01.

8Global Autonomous Language Exploitation, or GALE, is a DARPA-funded research project.
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Data Filtering MADA BLEU

D0-4m Basic+D3 v2.32 24.7

TB-4m Basic+D3 v2.32 26.7

D0-4m Basic+D3 v3.0 25.4

TB-4m Basic+D3 v3.0 27.1

D0-4m Basic v3.0 26.0

TB-4m Basic v3.0 27.3

Table 3.8: BLEU scores for the basic SMT systems outputs under different filtering conditions and

different MADA versions.

Data Filtering MADA BLEU METEOR TER

D0-60m Basic v3.0 31.3 48.9 48.9

TB-60m Basic v3.0 32.3 49.5 48.5

Table 3.9: BLEU, METEOR and TER scores for the scaled up SMT systems outputs.

MADA (v 3.0). The results show that the new MADA with the improved quality of tokenization

and enrichment leads to a boost in the quality of the translation by 0.7 BLEU point in D0 and 0.4

BLEU point in TB. In addition, results in rows five and six show that even without the sentence

length bias filtering, TB still outperforms D0 in the basic systems. In Table 3.9, we report results in

terms of BLEU, METEOR and TER. We show that when we scale up the training data, the relative

improvement that we get in the basic systems between D0 and TB is still maintained although

slightly reduced (from 1.3 BLEU to 1 BLEU difference). We also noted improvement with other

metrics that are not part of our optimization process like METEOR and TER. This suggests that

tokenization can still help even with a much larger data set. This result (comparing TB to D0) is

also corroborated using a much larger data set (150 M words) by [Al-Haj and Lavie, 2010].
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Data BLEU Reduced BLEU Lemmatized BLEU

D0-4m 26.0 26.0 33.6

TB-4m 27.3 27.3 34.7

D0-60m 31.3 31.5 39.3

TB-60m 32.2 32.4 40.3

Table 3.10: Three different BLEU metrics for the basic and scaled up SMT systems’ outputs with

the basic filtering.

3.5.2 BLEU Score Analysis

In order to overcome the limitations of BLEU [Callison-Burch et al., 2006], in Table 3.10 we pro-

duce three sets of numbers for the baseline (D0) and our best system (TB) across different systems’

setups; basic and scaled up. The first set of numbers are the vanilla BLEU scores that we use in all

our experiments. The second set of numbers are Reduced BLEU where the system output and the

reference are reduced (RED) during evaluation. The last set of numbers are what we call Lemma-

tized BLEU where we try to match the words in the output with words in the reference and if there

is no exact match, we try to match based on the lemma with the corresponding reference words.

This way we factor out the errors resulting from incorrect morphological generation and focus on

the lexical choice of words in the translation process.

The Reduced BLEU results are higher than the vanilla BLEU scores as we expected but not by

much. This shows the robustness of the denormalization process. The interesting results here are

the Lemmatized BLEU scores which show a potential increase of ≈8 BLEU points by improving

the output morphological form across all different systems. In the next sub-section, we investigate

the Lemmatized BLEU scores in more details.

3.5.3 Unigram Error Analysis

In computing the Lemmatized BLEU scores, we divide the output into three categories. The first

category includes words which are correct and exactly match words in the reference. The second

category includes the Lemma Match words where the words of the output are matched with words
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in the reference based on the lemma. The last category includes words which can’t be matched

automatically with any of the reference words. Table 3.11 shows the distribution of the output words

on the three different categories across different systems’ setups; basic and scaled up. Following

are the main conclusions:

• ≈57% of the output is correct in the basic systems while ≈63% of the output is correct in the

scaled up systems which is the expected effect of scaling up the data

• ≈12-13% of the output could be corrected by making better morphological choices across all

different systems

• ≈29% of the basic systems’ outputs and ≈24% of the scaled up systems’ outputs can not be

matched automatically with any of the reference word

• Drop in unmatchable words is almost 4 times the drop in Lemma Match as we scale up. This

suggest that scaling up the data helps in increasing the recall of the output but there’s still a

big margin of improvement by making better morphological choices.

Another interesting observation is that despite the fact that TB systems always produce more

Exact Match words than D0 systems, it’s not reflected in the ratio over all words. This is the result

of D0 systems producing less number of words than TB systems which in return affect the brevity

penalty values when computing the BLEU scores. The brevity penalty of the four systems D0-4m,

TB-4m, D0-60m and TB-60m are 0.9923, 1.0 , 0.9683 and 0.9807 respectively.

3.5.4 Lemma Match Errors

In the previous section, we showed that≈12-13% of the output could be corrected by making better

morphological choices. In this section, we examine the different types of morphological errors in

the Lemma Match words of our scaled up systems (TB-60m & D0-60m). In Table 3.12, we report

results in terms of the percentage of Lemma Match words affected by each morphological error.

The total doesn’t sum up to 100% because a word could have more than one error which counts for

19% of the words in TB-60m and 25% in D0-60m which shows that tokenization helps in reducing

the number of morphological errors per word. An interesting point in the results is that≈40% of the

errors come from TB clitics in both systems which shows that tokenization helps but we still need
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Data Exact Match Lemma Match Unmatchable Total

D0-4m 16092 (57.01%) 3895 (13.80%) 8242 (29.20%) 28229

TB-4m 16335 (57.23%) 3941 (13.81%) 8265 (28.96%) 28541

D0-60m 17394 (63.08%) 3498 (12.69%) 6682 (24.23%) 27574

TB-60m 17534 (62.80%) 3542 (12.69%) 6846 (24.52%) 27922

Table 3.11: Unigram error analysis for the basic and scaled up SMT systems’ outputs: # of words

which match exactly words in the reference; # of words which match words in the reference based

on the lemma; # of unmatched words with any in the reference automatically; total number of words

in the translation output.

to work more on making better morphological choices in Arabic generation. The results also show

that deleting or adding a determiner is the most common error in≈30% of the Lemma Match words

in both systems. Moreover, we noticed that gender, stem and number (in addition to stem, which

reflects number change in the form of a broken plural) count for the biggest percentage of the errors.

This could be explained by the fact that Arabic is highly inflected with these three morphological

features unlike English which leads to many errors. The rest of the morphological features do not

contribute much in the errors for many reasons. For example, case in Arabic is only marked by

diacritics except for the plural form of some nouns and since all the data are non-diacritized, the

effect of case is very small. On the contrary, person and aspect features are explicitly determined in

Arabic but it’s also explicitly determined in English which helps in the translation process.

3.5.5 Unmatchable Words Analysis

We took a sample of 50 sentences (1,224 words) from the output of the upscaled best system (TB-

60m) and conducted a manual error analysis on the Unmatchable Words. We divide the errors into

four categories. The first category compromises words which are considered a correct paraphrase

of words in the reference and hold the same meaning. The second category compromises the incor-

rectly translated words. The third category includes all punctuations errors; for example, adding or

deleting periods and commas. The last category compromises the out of vocabulary words (OOV).

Table 3.13 shows the results of the analysis. We can see from the results that punctuation errors
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Incorrect Feature
% Words Affected

TB-60m D0-60m

T
B

C
lit

ic
s Conjunction Proclitics 24.07% 21.85%

Prepositional Proclitics 18.29% 18.83%

Pronominal Enclitics 13.34% 12.15%

Determiner 29.84% 32.10%

Gender 17.52% 17.07%

Stem 12.86% 12.98%

Number 9.90% 10.07%

State 2.67% 2.94%

Aspect 2.28% 2.22%

Case 2.02% 2.19%

Person 0.83% 0.89%

Mood 0.54% 0.52%

Voice 0.11% 0.12%

Multiple Features 19% 25%

Table 3.12: Lemma Match morphological errors for TB-60m and D0-60m systems’ outputs.
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Category % of

Un-

match-

able

Words

% of all

Words

Example

Correct Paraphrase 71.12% 17.44%
ÂðAr vs. mArs ‘March’

tHdθ vs. tklm ‘speak’

Incorrect Translation 18.63% 4.57% θAlθ vs. θlθ ‘Third vs. [One] Third’

Punctuation Errors 7.76% 1.90% Adding commas, periods, etc.

OOV 2.48% 0.61% La Picota [proper name]

Table 3.13: Unmatchable Words Analysis for our best scaled up system TB-60m.

and the out of vocabulary words have the least share in the errors. The big bulk of the errors which

counts for ≈70% of the unmatchable words and ≈17% of total words are correct paraphrases of

words in the reference which could be accounted for by having multi reference. Moreover, there

are some word order errors which are not captured by these numbers. We plan to investigate these

types of errors in the future work.

3.6 Conclusions

We presented experiments studying a large number of variables for English-Arabic SMT systems

that produce correctly tokenized and enriched Arabic text. The results show that lemma based

alignment leads to a better output quality. Our best system uses the Penn Arabic Treebank (TB)

tokenization scheme and reduced Arabic word forms followed by a language-model based joint

detokenization and enrichment step.
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Chapter 4

AMEANA Error Analysis

Error analysis is a central part of the research process in natural language processing (NLP). Through

error analysis, researchers and developers can better understand the strengths and weaknesses of

their systems. The more detailed the analysis, the more specific the insights can be. Morpholog-

ically rich languages, such as Arabic, Turkish or German, are particularly challenging since there

is a large space of possible details to explore at the word morphology level. Human evaluation is

an attractive solution; however, it typically involves qualitative measures, such as fluency or ad-

equacy, which are very generic and do not capture nor quantify word-level errors. Fine-grained

human analysis suffers from low speed, high cost and low consistency due to fatigue and adapta-

tion to machine-generated language. Automating error analysis is a good solution, although simple

matching techniques can be too coarse to be helpful.

We present AMEANA (Automatic Morphological Error Analysis), AMEANA produces de-

tailed statistics on morphological errors in the output. It also generates an oracularly modified

version of the output that can be used to measure the effect of these errors using any evaluation

metric. AMEANA is a language independent tool except that a morphological analyzer must be

provided for a given language.

4.1 Motivation

Most MT automatic evaluation metrics, such as BLEU [Papineni et al., 2002a], focus on comparing

an MT output against a set of references in order to assign a similarity score. The scores are typically
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based on exact word matching, a particularly harsh measure especially for morphologically rich

languages. This is due in part to two phenomena. First is Morphological Richness: words sharing

the same core meaning (represented by the lemma or lexeme) can be said to inflect for different

morphological features, e.g., gender and number. These features can realize using concatenative

(affixes and stems) and/or templatic (root and patterns) morphology. Second is Morphological

Ambiguity: words with different lemmas can have the same inflected form. As such, a word form

can have more than one morphological analysis (represented as a lemma and a set of feature-value

pairs). This is especially problematic for languages with reduced orthographies such as Arabic or

Hebrew.

Using an abstraction of the word, such as the stem or the lemma, to match output and reference

words can address the harshness of exact form matching. Stemming has been shown to be helpful

in MT evaluation [Denkowski and Lavie, 2010]; but simple stemming is not sufficient when dealing

with morphologically rich languages as it suffers from errors of omission and errors of commission

[Krovetz, 1993]: words with the same core meaning not sharing the same stem, and words with dif-

ferent core meanings sharing the same stem. This is especially problematic for words with templatic

morphology, e.g., broken plurals in Arabic.1 Furthermore, simple stemming does not properly ad-

dress ambiguity as most shallow stemmers do not provide more than one stem for a given word. A

more sophisticated stemming approach using a morphological analyzer can address this limitation.

AMEANA can be used with stems, lemmas or even higher abstractions relating different lemmas

to each other. In the case study we present on Arabic, we use the lemma representations produced

by a morphological analyzer because of the above-mentioned limitations of stemming. We plan to

study the use of higher abstractions in the future.

Form abstraction, however, is a double edged sword since it will lead to numerous matching

points between the output and reference. To address this concern, AMEANA uses a word match-

ing (alignment) algorithm that minimizes the number of morphological differences and sentence-

relative word position.

1In broken plurals, the functional number (plural) is inconsistent with the morphological ending (singular suffix)

[Alkuhlani and Habash, 2011]. Plurality is indicated using a word template realized as a stem that is different from the

singular stem.
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Figure 4.1: Output word o2 has at least one common lemma with reference words r2 and rm−1.

Our alignment algorithm selects edges minimizing differences in features (primarily) and relative

positions (secondarily), while maximizing the number of paired output-reference words.

4.2 Alignment Algorithm

In this section, we describe the algorithm used in aligning the output words with their matching

reference words. The alignment is then used to produce detailed morphological-error diagnostics

and an oracularly modified output to use with MT evaluation metrics. A sample of these diagnostics

is shown in Section 4.6.1.2. Our approach is close to efforts by [Denkowski and Lavie, 2010].

However, we focus on morphology while the other approach is focused on paraphrase matching.

For every sentence pair of MT output and its reference translation, we apply the following

alignment algorithm (see Figure 4.1):

First: Morphological Analysis We run a morphological analyzer on all output and reference

words producing a set of lemmas and their associated analyses for each word. A morphological

disambiguator or part-of-speech (POS) tagger can be used to limit the choices given to AMEANA,

e.g., [Habash and Rambow, 2005]. This is not required and perhaps even not desirable given error

propagation resulting from running a disambiguator on automatically generated text.

Second: Graph Construction We build a graph where each word is represented by a node. We

draw an edge for each output-reference word pair if there is at least one common lemma between

them. Each edge receives a weight based on the following equation:

W = min (Dab) +

(∣∣∣Pa
Sa
−Pb

Sb

∣∣∣)
2

We define a and b as words in output and reference. For each pair of morphological analyses for a
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and b sharing the same lemma, we compute the count of features with different values. We define

Dab as the set of all feature-difference counts. Consequently, min (Dab) is the minimum feature

difference possible between words a and b. We define Pa and Pb as the position of words a and b

in their respective sentences. We also define Sa and Sb as the lengths of the sentences in which a

and b appear, respectively. The absolute difference in relative word position
∣∣∣Pa
Sa
− Pb

Sb

∣∣∣ is used as a

tie breaker. It is divided by 2 to account for the extreme case of matching words at opposite ends of

their respective sentences. The smaller the value W , the closer the two words a and b are to each

other. In this equation, we give more weight to feature differences by giving a whole point for each

mismatching feature, while word position distance is used as a tie breaker.

Third: Bipartite Matching Once the graph is constructed, the search space for the alignment

is defined as a maximum bipartite matching problem constrained on the weights of the edges. We

use a modified version of the Ford-Fulkerson algorithm [Ford and Fulkerson, 1956] to solve the

matching problem and select a number of edges that maximizes the number of aligned output-

reference words.

After alignment, each output word receives a matching category based on the reference word

it is paired with. If the output and reference words have the same form, the category is an Exact

Match, otherwise, it is a Lemma Match. Unpaired output words receive the category Unmatchable.

4.3 Morphological Diagnostics

We sum over all the feature differences in the Lemma Match category words. In cases with multiple

analyses with the same lemma and same minimum feature-difference count, we assign equal partial

error to each analysis so that they sum up to 1 instead of choosing among them. The partial errors are

aggregated for each feature difference in all analyses. We will generically refer to feature differences

as errors with respect to the reference, although some may not actually be erroneous (albeit not

directly matching).

AMEANA produces general statistics such as the number and percentage of Exact Match,

Lemma Match and Unmatchable words; the average number of errors per sentence; and the number

of sentences with a certain number of errors. Detailed statistics are produced for errors in Lemma

Match words including the number and percentage of errors for all features, feature-value pairs, and
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their combination. Additionally, AMEANA produces precision, recall and F-scores for correctly

generating the various features. See Section 4.6.1.2 for some examples of these statistics.

4.4 Use for MT Evaluation

One of the side benefits provided by AMEANA is the production of an oracularly modified MT out-

put where output words with a Lemma Match are replaced with the reference words they are aligned

to. The modified output can be run through any evaluation metric such as BLEU or METEOR

to get the upper limit of improvement the system can reach by just making better morphological

choices. AMEANA also gives the user the option of restricting the oracle generation such that

certain morphological features, in addition to the lemma, must correctly match the reference.

4.5 AMEANA Language Independence

As mentioned above, AMEANA is a language-independent error-analysis tool. To use AMEANA

for a particular language, the user must specify the following parameters in a simple and easy to use

configuration file:

• The output of a morphological analyzer run on the MT output and the reference.

• The tag marking the lemma in the morphological analyzer output and the list of morphological

features to consider in the error analysis.

• A list of prior probabilities of each value for each morphological feature. If not provided, a

uniform value is used and when there’s a conflict, the first option is always selected.

• A list of features to focus on in oracle generation, if desired.

Once these parameters are specified in the config file, the user can use AMEANA seamlessly

with any language. There are other options and configuration values that the user can work with.

They are described in the user manual provided with the tool.
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4.6 Case Studies

4.6.1 AMEANA for Arabic

In this section and the following section, we work with an English-to-Arabic Statistical MT system

as a case study to show the different error-analysis outputs of AMEANA and to verify its perfor-

mance. Since Arabic is the target language of the MT system we use, we first discuss relevant

aspects of Arabic morphology, and how we adapt AMEANA to work with Arabic.

4.6.1.1 Adapting AMEANA to work with Arabic

In order to make AMEANA work for Arabic, we have to modify the configuration file to specify

the parameters mentioned in Section 4.5. For the morphological analyzer, we use ALMORGEANA

(ALMOR) [Habash, 2007]. ALMOR is a morphological analysis and generation system for Arabic.

It provides analyses of a given word based on the lemma-and-features level of representation which

is what we want as an input for AMEANA.

4.6.1.2 Evaluation

In this section, we present two sets of results: a demonstration of the use of AMEANA for MT

error analysis and a study verifying its behavior.

Machine Translation Error Analysis We ran AMEANA on the output of three SMT systems

based on previous work on English-Arabic SMT [El Kholy and Habash, 2010a]. We present next

the experimental settings of the MT systems. Then we present four sets of results produced by

AMEANA to demonstrate its usability.

MT Experimental Settings All systems share the following settings. They use the Moses phrase-

based SMT decoder [Koehn et al., 2007b] trained on an English-Arabic parallel corpus of about

135k sentences (4 million words). Phrase-table maximum phrase length is 8. Word alignment is

done using GIZA++ [Och and Ney, 2003b] run on the lemma level of representation. Lemmatization

as well as tokenization (discussed below) is done using the MADA+TOKAN toolkit [Habash and

Rambow, 2005]. A 5-gram language model is based on 200M words from the Arabic Gigaword to-
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gether and the Arabic side of the training data [Stolcke, 2002]. Decoding weight optimization [Och,

2003a] is done using 300 sentences from the 2004 NIST MT evaluation test set (MT04). Systems

are compared on their performance on the 2005 NIST MT evaluation set (MT05). This Arabic-

English test set has four English references. We invert it by selecting the first English reference to

be our input and use the Arabic side as the only reference.

The three systems vary as follows: the D0 system uses no morphological tokenization whatso-

ever; the TB system uses the PATB tokenization scheme [Maamouri et al., 2004b]; and the LEM

system uses PATB tokenization and keeps the main word in lemma form. We have shown in Chap-

ter 3 that TB outperforms D0; and LEM is the lemmatized version of TB used in TB’s word align-

ment [El Kholy and Habash, 2010a]. We expect LEM to under perform compared to the other two

systems. The first three columns of Table 4.4 show automatic evaluation scores in three metrics for

all systems.

Overall Lemma Match Statistics Table 4.1 shows the AMEANA output of one sentence from

the TB system. The first four lines are the English input sentence, Arabic translation reference,

MT output, and the AMEANA modified MT output, respectively. Following that is word-by-word

analysis in the following format. The first row is the original MT output words in sequence and the

second row is the modified MT words. Third row is the matching category while the fourth and

fifth rows are the morphological features differences between the MT output word and its reference

translation word when the matching category is Lemma Match.

Table 4.2 shows the numbers and percentage of words in each matching category for the three

systems. Exact Match is the simplest statistics that can be obtained using any MT evaluation metric,

e.g., it is a sub-score used in BLEU. AMEANA allows us to distinguish a subset of no matches

that can be matched at the lemma level. This allows to quantify the percentage of words that

have no lexical translation problems (since they have matching lemmas) and identify the subset

that has feature problems even though the lemma is correct. Such distinction may be useful for

techniques involving post-editing or word-repair. The D0 and TB systems have similar Exact Match

percentages. In both systems about one-third of the non-Exact Match cases have matchable lemmas.

LEM has a much lower Exact Match but also a much higher Lemma Match. LEM overall has the

highest Any Match (includes Exact Match & Lemma Match), which suggests it has the highest
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lexical translation quality despite its low fluency.

Lemma Match Error Distribution Table 4.3(a) presents the percentage of matching errors among

the Lemma Match words, which are only about a seventh (D0, TB) or a third (LEM) of all words.

The errors are classified by feature, e.g., conjunction, determiner, or gender; and by two feature-

classes: PATB clitics and other features. This table allows us to study the distribution of various

error types per system. Comparing across systems must take into account the size of the Lemma

Match set of words. For example, although LEM has a lower percentage of pronominal clitics than

TB or D0, it actually has 40% more instances of errors. Overall, these numbers show that the

determiner is the biggest single feature error across systems. Non-PATB clitic errors collectively

constitute a smaller proportion of matching errors than other word features, although the difference

between the two sets gets smaller in our best performer, TB. The PATB clitics together with deter-

miner, gender and number are biggest culprits overall. This analysis suggests targeting them may

be most beneficial. Some features have low counts because they are associated with specific POS

which are less frequent, e.g., verbal mood, voice and aspect.

Morphological Feature Correctness Table 4.3(b) presents the F-measure (balanced harmonic

mean of the precision and recall) of words matching between the output and the reference for a

variety of matching criteria of morphological features. The last two rows are for Exact Match and

Any Match. These two can be interpreted as the lowest and highest limits on matching given the

space of morphological errors. While Exact Match requires the lemma and all features to match,

Any Match only requires the lemma to match – of course, in Exact Match, the lemma matches by

definition. The rest of the rows are for matching subsets that include the lemma together with a

particular feature, such as conjunction or determiner. These numbers are not oracle scores, they

reflect the correctness of the text on different morphological features even if the final word form is

not matchable.

Across all features, TB outperforms D0. This is consistent with their overall BLEU scores;

however, it is interesting to see that the improvement in features other than PATB clitics is actually

more than in PATB clitics overall (by 1.9% compared to 1.4%). The main area LEM is suffering

compared to TB and D0 is in non-PATB clitics. This is expected given the lack of inflections in the

output of LEM. Lemma plus determiner matching yields the lowest single F-score over than Exact
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Match. That said, it is about 70% of the way between Exact Match and Any Match (for D0 and TB)

(and 40% for LEM).

Generation for MT Evaluation We evaluate the oracularly modified output using several MT

evaluation metrics. Table 4.4 shows the difference in scores between the original MT output and

the modified one. There are ≈7 and 10.5, points difference in BLEU [Papineni et al., 2002a] and

METEOR [Denkowski and Lavie, 2010] scores, respectively. These differences are the upper limits

that a system can reach by making better morphological choices on the unigram level. It is important

to keep in mind that some of these improvements are very hard to achieve and some are incorrect

linguistically although they maximize the reference matching.
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CHAPTER 4. AMEANA ERROR ANALYSIS

D0 TB LEM

Output Word Count 28,126 28,816 28,759

Exact Match (%) 58.0 59.0 38.7

Lemma Match (%) 13.9 13.3 33.8

Any Match (%) 72.0 72.3 72.6

Unmatchable (%) 28.0 27.7 27.4

Table 4.2: Unigram analysis of three English-to-Arabic SMT systems
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CHAPTER 4. AMEANA ERROR ANALYSIS

(a) (b)

Error Type % Match F-score %

D0 TB LEM D0 TB LEM

PATB Clitics 52.9 53.6 24.3 63.9 65.3 64.4

Conjunction 20.2 18.6 7.4 68.4 69.9 70.1

Particle 23.1 24.3 10.5 68.0 69.2 69.0

Pronoun 15.1 15.7 8.7 69.1 70.3 69.6

Other Features 61.1 57.8 84.6 62.8 64.7 43.9

Determiner 31.0 29.7 60.0 66.9 68.4 52.3

Gender 14.3 12.8 20.5 69.2 70.7 65.7

Number 11.8 10.8 14.0 69.6 71.0 67.9

Person 4.0 4.0 3.4 70.7 71.9 71.4

Stem 3.6 4.1 3.9 70.7 71.9 71.3

Case 3.5 3.0 2.4 70.7 72.0 71.8

Aspect 2.2 2.1 3.1 70.9 72.1 71.5

State 1.0 0.8 0.8 71.1 72.3 72.3

Mood 0.8 0.7 0.4 71.1 72.3 72.5

Voice 0.2 0.2 0.4 71.2 72.4 72.5

Exact (Lemma+Feature) Match 57.4 59.1 38.7

Any (Lemma) Match 71.2 72.4 72.6

Table 4.3: (a) Comparison between the different morphological errors in the MT output in terms

of their percentage of the total number of morphological errors and the percentage of total words

in the given document. (b) Comparison of F-scores of words matching between the output and the

reference for a list of morphological features.

Basic MT Output Oracle MT Output

D0 TB LEM D0 TB LEM

BLEU 25.5 29.5 10.2 33.4 35.6 35.7

METEOR 42.2 45.7 22.6 53.6 55.4 55.4

Table 4.4: Comparison between the original and the modified MT output in BLEU and METEOR

metrics. METEOR is used in language-independent mode.
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CHAPTER 5. LEXICAL TRANSLATION VERSUS MORPHOLOGY GENERATION

Chapter 5

Lexical Translation versus Morphology

Generation

In this chapter, we address these challenges through different modeling methods. In our approach,

morphological features can be modeled as part of the core translation process mapping source tokens

to target tokens. Alternatively these features can be generated using target monolingual context

as part of a separate generation (or post-translation inflection) step. Finally, the features can be

predicted using both source and target information in a separate step before generation. We focus

in our experiments on English-Arabic SMT and we work on three morphological features that we

found, through a manual error analysis, to be most problematic for English-Arabic SMT: gender,

number and the determiner clitic. In our approach, the process of translating English words to

Arabic words is broken into a pipeline consisting of four steps:

• Lexical Translation from English words to tokenized Arabic lemmas and any subset of Ara-

bic linguistic features.

• Morphology Prediction of linguistic features to inflect Arabic lemmas.

• Morphology Generation of inflected Arabic tokens from Arabic lemmas and any subset of

Arabic linguistic features.

• Detokenization of inflected Arabic tokens into surface Arabic words.
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CHAPTER 5. LEXICAL TRANSLATION VERSUS MORPHOLOGY GENERATION

Arabic tokenization and lemmatization are done before training the translation models. Both

lexical translation and generation are implemented as phrase-based SMT systems [Koehn et al.,

2007b]. Morphology prediction is an optional step implemented using a supervised discriminative

learning model. Generation can be done from lemmas and any subset of Arabic inflectional features.

Detokenization simply stitches the words and clitics together as a post-processing step [Badr et al.,

2008; El Kholy and Habash, 2010a].

We build on our resolutions from Chapter 3 and focus on the question of how to improve the

translation of tokenized words using deeper representations, namely lemmas and features. Within

our framework, we can model the translation of different Arabic linguistic features as part of the lex-

ical translation step, as part of the generation step, or model them using an independent morphology

prediction step. Some features, such as clitics, can be modeled well through simple tokenization

and detokenization (which can be thought of as part of lexical translation).

We use the best performing tokenization scheme (PATB) and the best detokenization technique

on the output as our baseline (discussed in Chapter 3). Consequently, in this section we focus

on the first three components of the pipeline and we keep the tokenization a constant across all

experiments. We study different options of including three morphological features (GEN, NUM and

DET) in the first three steps of the pipeline and their implications on the quality of English-to-Arabic

SMT. These three features are considered the most problematic from our error analysis in Chapter 4.

We discuss the three steps in the following subsections.

Our approach is based on an aggregate model of translation from English into Arabic. This

model consists of a pipeline of five components including pre and post processing, lexical transla-

tion, morphology prediction and generation. Figure 5.1 show the full pipeline. We will discuss each

component separately in the following sections but the main idea here is to separate between lexical

translation and morphology generation. In essence, the generation of the different morphological

features can be done in any of the components in the pipeline.

5.1 Lexical Translation

Lexical translation is the first step in our decoding pipeline. It is trained on pre-processed text: to-

kenized, lemmatized and disambiguated Arabic words and English words (with limited processing)
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Figure 5.1: Lexical Generation vs. Morphology Generation Pipeline.

and their POS tags. We use an SMT system to translate from English words (ENGWORD) and POS

tags (POS) to tokenized Arabic lemmas (ARALEM) plus zero or more morphological features. We

use an abstract representation for the morphological features so that each word is represented as a

lemma and a set of feature-value pairs. Table 5.1 shows a sample sentence in the above-mentioned

representations. This way we simplify the translation task by targeting a less complex output. The

key point here is to keep the morphological features that help the translation task and then try to

generate the rest of the morphological features and inflected forms in later steps. The output of lexi-

cal translation is input to the morphological generation step directly or is first enriched by additional

morphological features predicted in the morphology prediction step.

5.2 Morphology Prediction

Morphology prediction takes the output of lexical translation and tries to enrich it by predicting

one or more morphological features. Unlike Toutanova et al., who predict full inflected forms and

[Clifton and Sarkar, 2011] who predict morphemes, we predict morphological feature. This task is,
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Representation Example

ENGWORD saddam hussein ’s half-brother refuses to return to iraq

ENGWORD+POS saddam#NN hussein#NN ’s#POS half-brother#NN refuses#VBZ to#TO return#VB to#TO iraq#NN

ARALEM Âax γayor šaqiyq li+ Sad∼Am Husayon rafaD ςawoda~ Iilaý ςirAq

ARALEM+DET Âax#det γayor#0 šaqiyq#det li+#na Sad∼Am#0 Husayon#0 rafaD#0 ςawoda~#det Ǎilaý#na ςirAq#det

Arabic Tokenized AlÂx γyr Alšqyq l+ SdAm Hsyn yrfD Alςwd~ Ǎlý AlςrAq

Arabic Script �
�@QªË@ úÍ@

�
èXñªË@
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�
®

�
�Ë@ Q�
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B@

Table 5.1: A sample sentence showing the different representations used in our experiments.

in sense, a form of POS tagging. However, unlike typical tagging, which is done on fully inflected

word forms, this task is applied to uninflected or semi-inflected forms – lemmas with zero or more

morphology features. As such, we do not expect it to do as well as normal POS tagging/morphology

disambiguation for Arabic [Habash and Rambow, 2005].

We use a Conditional Random Field (CRF) toolkit [Lafferty et al., 2001] to train a prediction

module with a variety of learning features (not to be confused with the tagged linguistic features).

We also make use of the alignment information produced by the MT system in the lexical translation

step to get the equivalent aligned English word of each translated word. We then use this information

in addition to some syntactic information on the English side as CRF learning features.

We group the CRF learning features into two sets: Basic and Syntax. The Basic features consist

of the Arabic output from the lexical translation step (lemma plus certain features), the equivalent

aligned English word, English POS and English context (+/- two words). The Syntax features consist

of the English parent word in a dependency tree, the dependency relation and the equivalent Arabic

output word of the English parent. English is parsed using the Stanford Parser [Klein and Manning,

2003].

In training the CRF model, we use the same data used in training the lexical translation step

(Section 5.4). We create three datasets from this data. The first is the original gold data where we

train the CRF module on clean Arabic text and gold feature values that are determined using a state-

of-the-art POS tagger for Arabic [Habash and Rambow, 2005]. Although the automatic tagging

does produce errors, we still call this data set gold since the Arabic is correctly inflected naturally

occurring text. The second dataset is created by translating the whole data using the translation
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LEMMA%+%Features*%
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Dataset&1:%Original%gold%data%LEMMA%+%Gold&Features%

Dataset&2:%Translated%(MT%generated)%English%data%to%LEMMA%+%Features%

Dataset&3:%Dataset%1%+%Dataset%2%

Learning&Features%

Basic:%Arabic%word,%the%equivalent%
aligned%English%word,%English%POS%
and%English%context%(+/N%two%
words)%%

Syntax:%English%parent%word%in%a%
dependency%tree,%the%dependency%
relaPon%and%the%equivalent%Arabic%
word%of%the%English%parent%

(Values%passed%as%a%laRce)%

MORPHOLOGY&PREDICTION&
(CRF)&

Figure 5.2: Morphology Prediction.

model created by the lexical translation step. The intuition here is to model lexical translation errors

by training the CRF models on data similar in quality to its expected input. The last dataset is the

combination of gold and translated dataset.

Table 5.2 shows the accuracy of the CRF module on a test set of 1000 sentences. CRF in

general achieves a high accuracy across the different training datasets and the different training

parameters. Using translated data does not outperform using gold data; however, the accuracy of

predicting NUM and GEN seems to benefit from adding the translated data to the gold data. That

could be explained by the fact that NUM and GEN are more affected by translation adequacy unlike

DET which is more coupled with translation fluency. Overall the results are about 10-14% absolute

lower than MADA [Habash and Rambow, 2005] tagging of the same features on fully inflected text;

and are 20-30% absolute better than a degenerate baseline using the most common feature value.

The morphology prediction step produces a lattice with all possible feature values each having

an associated confidence score. The morphology generation module discussed next will decide on

the best option.
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Predicted

Prediction Training Feature Accuracy

Data Set Model GEN NUM DET

Gold Basic 84.65 88.76 88.00

Basic+Syntax 84.22 89.11 87.85

Translated Basic 84.46 86.11 85.98

Basic+Syntax 84.08 86.79 85.41

Gold Basic 85.96 89.43 87.40

+Translated Basic+Syntax 85.49 89.52 86.91

Table 5.2: Accuracy (%) of feature prediction starting from Arabic lemmas. A most-common-

tag degenerate baseline would yield 67.4%, 70.6% and 59.7% accuracy for GEN, NUM, and DET,

respectively. Reported MADA classification accuracy starting from fully inflected Arabic is as

follows: GEN 98.2% , NUM 98.8%, DET 98.3%

5.3 Morphology Generation

Morphology generation maps Arabic lemmas (ARALEM) plus morphological features to Arabic

inflected forms. This step is implemented as an SMT system that translate from a deeper linguistic

representation to a surface representation of each token. This step is conceptually similar to the

generation expansion component in Factored SMT, but it is implemented as a complete SMT system.

The main advantage of this approach is that the training data is not restricted to parallel corpora.

We can use all the monolingual data we have in building the system. We avoid the alignment and

symmetrization errors by constructing a one-to-one alignment matrix instead of building it through

an EM algorithm (provided by Moses SMT toolkit).

To evaluate the performance of this approach in generating Arabic inflected forms, we built sev-

eral SMT systems translating from ARALEMs plus zero or more morphological features to Arabic

inflected form. We use the same tools and setup as discussed in Section 5.4. Table 5.3 shows the

BLEU scores of generating the MT05 set starting from Arabic lemmas plus different morphological

features (GEN, NUM, DET), and their combinations. As expected, the more features are included
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Gold Generation Input BLEU%

ARALEM 82.2

ARALEM+DET 86.6

ARALEM+NUM 86.9

ARALEM+GEN 87.3

ARALEM+GENNUM 90.2

ARALEM+GENNUMDET 94.8

Table 5.3: Results of generation from gold ARALEM plus different sets of morphological features.

Results are in (% BLEU) on the MT05 set.

the better the results. Here comes the trade off between the lexical translation quality and morpho-

logical generation. The BLEU scores are very high because the input is golden in terms of word

order and lemma choice. These scores should be seen as the upper limit on correctness that can be

expected from this step, rather than its actual performance in an end-to-end pipeline.

The morphology generation step can take the output of lexical translation directly or after pre-

dicting certain morphological features using the morphology prediction step.

5.4 Evaluation

In this section, we present our results comparing the modeling of GEN, NUM and DET features, first

as part of lexical translation versus morphological generation, and then as part of morphological

prediction versus morphological generation. We also present results on a blind test set MT06, a

much larger training corpus, and discuss our findings.

5.4.1 Experimental Setup

All of the training data we use is available from the Linguistic Data Consortium (LDC).1 We use an

English-Arabic parallel corpus of about 142K sentences and 4.4 million words for translation model

1http://www.ldc.upenn.edu
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training data. The parallel text includes Arabic News (LDC2004T17), eTIRR (LDC2004E72), En-

glish translation of Arabic Treebank (LDC2005E46), and Ummah (LDC2004T18). Word alignment

is done using GIZA++ [Och and Ney, 2003b]. For language modeling, we use 200M words from

the Arabic Gigaword Corpus (LDC2007T40) together with the Arabic side of our training data. We

used 5-grams for all LMs implemented using the SRILM toolkit [Stolcke, 2002].

MADA is used to tokenize the Arabic text and produce lemmas and their accompanied morpho-

logical features. English preprocessing simply includes down-casing, separating punctuation and

splitting off “’s”.

All experiments are conducted using the Moses phrase-based SMT system [Koehn et al., 2007b].

The decoding weight optimization was done using a set of 300 sentences from the 2004 NIST MT

evaluation test set (MT04). The tuning is based on tokenized Arabic without detokenization. We

use a maximum phrase length of size 8. We report results on the 2005 NIST MT evaluation set

(MT05). These test sets were created for Arabic-English MT and have four English references. We

arbitrarily picked the first English reference to be source and used the Arabic source as the only

reference. We evaluate using BLEU-4 [Papineni et al., 2002a].

Our baseline replicates the work presented in Chapter 3, which concluded that tokenizing Arabic

into the PATB tokenization scheme is optimal for phrase-based SMT models. The baseline BLEU

score is 29.48% using exactly the same data sets used in the rest of the experiments.

5.4.2 Translation vs. Generation

We compare the performance of translating English and English plus POS into Arabic lemmas plus

different morphological feature combinations followed by generation of the final Arabic inflected

form using the morphology generation step directly under the same conditions. The results are

presented in Table 5.4. The best performer across all conditions is translating English words to

Arabic lemmas plus DET. This is the only setup that beats the baseline system. The difference in

BLEU scores between this setup and the baseline is statistically significant above the 95% level.

Statistical significance is computed using paired bootstrap resampling [Koehn, 2004]. This shows

the importance of DET in lexical translation. English POS oddly does not help. This is perhaps a

result of the added sparsity in how we modeled them (as ENGWORD+POS). It is possible a factored

MT model can give different results. We plan to explore this question in the future.
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Input A′ BLEU%

ENGWORD ARALEM 29.5

ENGWORD+POS ARALEM 29.3

ENGWORD ARALEM+NUM 29.0

ENGWORD+POS ARALEM+NUM 28.5

ENGWORD ARALEM+GEN 28.8

ENGWORD+POS ARALEM+GEN 28.7

ENGWORD ARALEM+DET 30.1

ENGWORD+POS ARALEM+DET 29.3

ENGWORD ARALEM+GENNUM 28.8

ENGWORD+POS ARALEM+GENNUM 28.7

ENGWORD ARALEM+GENNUMDET 29.2

ENGWORD+POS ARALEM+GENNUMDET 29.0

Table 5.4: End-to-end MT results for different settings of English input and Intermediate Arabic.

Results are in (% BLEU) on our MT05 set.

5.4.3 Prediction vs. Generation

We compare results of two translation settings and a variety of added predicted features. The results

are presented in Table 5.5. We can see from the results that using predicted GEN by itself does not

help across the board yet it could be helpful when combined with other features. It also seems that

predicting NUM when lexical translation is done with lemmas only helps the performance but that is

not the case when the lexical translation is done using Lemma plus DET. Another observation is that

combining GEN and NUM degrades the overall performance more than the GEN by itself; however,

we get the best scores when DET is combined with them. This shows that some synergies come

out when different features are combined together even if they perform badly on their own. The

only fact that seems very robust is that translating English to Lemma plus DET and then predicting

both GEN and NUM gives the highest scores. Predicting features using models trained on translated

texts seem to also consistently do better than using models that are trained on original Arabic. The
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Translation ENGWORD→ARALEM ENGWORD→ARALEM+DET

No Prediction 29.5 30.1

Prediction Predicted Morphological Features

Training GEN NUM DET GEN+NUM GEN+NUM+DET GEN NUM GEN+NUM

Gold Basic 28.6 29.5 29.7 28.4 29.8 29.9 29.9 30.4

+Syntax 28.6 29.5 29.7 28.4 29.9 29.9 29.9 30.4

Trans Basic 28.9 29.6 29.8 28.3 29.9 29.9 29.9 30.4

+Syntax 28.9 29.6 29.8 28.8 29.9 30.0 29.9 30.4

Gold+Trans Basic 29.0 29.6 29.8 28.8 30.0 30.0 30.0 30.4

+Syntax 28.9 29.6 29.8 28.8 30.0 30.0 30.0 30.4*

Table 5.5: End-to-end MT results for two translation settings and a variety of added predicted

features. Results are in (% BLEU) on our MT05 set. The best result in each column is bolded. The

best overall result is marked with *.

best result obtained is statistically significant compared with the best reported score in the previous

section (ARALEM+DET translation).

5.4.4 Blind Test

We performed a blind test using the 2006 NIST MT evaluation set (MT06) and compared the results

to (MT05). MT06 is a harder set to translate than MT05. However, the relative performance is

maintained (around 3% relative BLEU) as shown in Table 5.6. Translating through Lemma plus

DET and then predicting GEN and NUM is still the best option.

We found out that the percentage of the Exact matches increases while the Unmatched words

decreases as an inherent effect of using more data but the Lemma match percentage decreases across

the different options. This shows the applicability of our approach in predicting the morphology in

the case of absence of exact evidence in the training data.
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Model MT05 MT06

BLEU METEOR TER BLEU METEOR TER

Baseline 29.5 46.3 52.7 19.1 32.8 68.6

Factored 30.1 46.6 52.3 19.3 32.6 67.1

ENGWORD→ARALEM 29.5 46.2 53.3 18.9 31.7 67.0

ENGWORD→ARALEM+DET 30.1 46.5 52.5 19.4 32.4 67.5

ENGWORD→ARALEM+DET

with GEN+NUM Prediction 30.4 46.8 52.0 19.7 32.9 67.0

Table 5.6: Results comparing our baselines and best performing setup on MT05 and MT06 (blind).

Results are in (BLEU, METEOR and TER).

5.4.5 Scaling Up

We performed experiments using a larger amount of data (15 times the size of the original dataset;

also available from the LDC). Not surprisingly, the effect of our approach diminished. Although

the general trends remained the same, none of the alternative settings were able to beat the baseline.

We compared the percentage of the Exact Match, Lemma Match and Unmatchable words with the

reference of the basic and scaled up systems. We found out that the percentage of exact matches

increases while the percentage of unmatched words decreases. This is not a surprising result of using

more data. The lemma match percentage decreases across the different systems. This suggests that

our approach is more effective for conditions with low and medium resource size.

5.5 Conclusions

The generation of fully inflected forms from uninflected lemmas (Table 5.4) in a purely monolingual

setting such as our morphological generation step is very hard – we get only 82.2% BLEU starting

with gold lemmas. Adding different combinations of gold values of the three most problematic

morphological features improves the score by over 12% absolute BLEU to a higher performance

ceiling (94.8% BLEU).

Automatically modeling these features at a high accuracy for SMT, however, turns out to be
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rather hard. If we consider using them as part of the translation step together with lemmas, we find

that they almost always hurt the end-to-end (translation-generation) MT system except for the DET

feature which improves over an inflected tokenized baseline by about 0.6% BLEU.

Predicting the feature values using an independent supervised learning step that has access to

the English word, POS and syntax features produces accuracy scores ranging in mid to high 80s%.

Comparing the prediction accuracy of GEN, NUM and DET (Table 5.2), we find NUM is the easiest

to predict, followed by DET and then GEN. This makes sense given the information provided from

English, which is inflected for NUM, but not GEN.

The results in Table 5.5 show that DET, as a single feature, helps more when it is part of the

translation step (30.1 BLEU) compared to being predicted (29.7∼29.8). In both cases, it fares better

than simply leaving determining DET to the generation step (29.5).

Neither GEN nor NUM, as single features, help much (or at all) over the baselines when part

of the translation step or when predicted. However, when both are combined with DET they con-

sistently help only when GEN and NUM are predicted, not translated. It is possible that the lower

performance we see as part of the translation is a product of how we translate: we do not factor

these features in the translation – a direction we plan to consider in the future. We postulate that

the prediction step helps because it has access to more information than used in our translation step,

e.g., source language syntax.
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Chapter 6

Phrase Pivoting Quality and Recall

Maximization

In previous chapters, we focused on the main building block of the pivoting process which is the

translation model. In particular when targeting a morphologically rich language. In this chapter, we

look at the bigger picture and we discuss our approaches to improve the phrase pivoting process.

In the standard phrase-pivoting approach, many phrase pairs between source and target languages

are not generated because of bad matching of pivot phrases. Additionally, the size of the newly

created pivot phrase table is very large. Many of the produced phrase pairs are of low quality which

affects the translation choices during decoding and the overall translation quality. To overcome

these problems, we try to maximize both precision and recall of the pivoting process where we try

to add phrase pairs to the final translation model (more coverage) and make sure they are of good

quality (precision).

We discuss two language independent techniques. One of the techniques works on the level

of the word alignment symmetrization. Another approach to maximize the precision is based on

connectivity scores between the source and target phrase pairs based on the alignment information

propagated from the source-pivot and pivot-target systems. We start by explaining the baseline

phrase-pivot system that is the base for the rest of the dissertation discussion. We then discuss each

approach separately.
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6.1 Phrase Pivoting Baseline

In this section, we show the basic pivoting setup that we use as baseline for all the pivoting exper-

iments in this chapter and following one. We start with the linguistic preprocessing decision that

we made for different languages and then we illustrate a filtering process that we conduct before

performing phrase pivoting to overcome the massive combinatorial expansion in generating source

to target phrase pairs.

6.1.1 Linguistic Preprocessing

As we mentioned earlier, we work with four different languages; Arabic, Hebrew, Persian and En-

glish. We always target Arabic as the final output and we start with either Persian or Hebrew where

there are limited resources for those language. While we use English as the pivot language due to

the abundance of resources with all the other languages. We present our choices for preprocessing

the data of each language which is consistent across all pivoting experiments. For Arabic, we follow

our resolution from Chapter 3 and use the PATB tokenization scheme [Maamouri et al., 2004b] in

our experiments which separates all clitics except for the determiner clitic Al+. We use MADA v3.1

[Habash and Rambow, 2005; Habash et al., 2009] to tokenize the Arabic text.

We only evaluate on detokenized and orthographically correct (enriched) output as discussed in

Chapter 3. For Hebrew, we use the best preprocessing scheme for Hebrew (HTAG) identified by

[Singh and Habash, 2012] which is very close to the Arabic PATB tokenization scheme. Further-

more, for Persian, we use Perstem [Jadidinejad et al., 2010] for segmenting Persian text. Perstem

mainly focuses on verbs which inflect for 14 different features. Finally for English, it is much easier

for preprocessing because it is morphologically poor and barely inflects for number, person and

tense. English preprocessing simply includes down-casing, separating punctuation and splitting off

“’s”.

6.1.2 Phrase Pairs Filtering

As a result of phrase pivoting (discussed in more details in Chapter 2.5, the final translation model

between the source and target language is usually huge due to the combinatorial expansion from

almost multiplying two translation models. Table 6.1 illustrates how big a pivot phrase table can
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Training Corpora Phrase Table

Translation Model Size # Phrase Pairs Size

Persian-English ≈4M words 96,04,103 1.1GB

English-Arabic ≈60M words 111,702,225 14GB

Pivot_Persian-Arabic N/A 39,199,269,195 ≈2.5TB

Table 6.1: Translation Models Phrase Table comparison in terms of number of line and sizes for

Persian-Arabic SMT.

reach when we combine two relatively small models through phrase pivoting.

The main idea of the filtering process is to select the top [n] English candidate phrases for each

source phrase from the Source-English phrase table and similarly select the top [n] target phrases

for each English phrase from the English-Target phrase table and then perform the pivoting process

to create a pivoted Source-Target phrase table. To select the top candidates, we first rank all the

candidates based on the log linear scores computed from the phrase translation probabilities and

lexical weights of each system multiplied by the optimized decoding weights then we pick the top

[n] pairs.

6.1.3 Evaluation

We compare the performance of sentence pivoting against phrase pivoting with different filtering

thresholds for Persian-Arabic pivot translation model. The results are presented in Table 6.2. In gen-

eral, phrase pivoting outperforms the sentence pivoting even when we use a small filtering threshold

of size 100. Moreover, the higher the threshold is the better the performance will be but with a

diminishing gain. In all our experiments, the default filtering threshold in our baselines is 1K and it

is consistent across all settings. We use the suffix “_F1K" to indicate 1K filtering.1

1We tried to do an experiment with all the options without filtering but we couldn’t because of computational limita-

tions.
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Pivot Scheme BLEU METEOR TER

Sentence Pivoting 19.2 36.4 62.7

Phrase_Pivot_F100 19.4 37.4 61.4

Phrase_Pivot_F500 20.1 38.1 59.0

Phrase_Pivot_F1K 20.5 38.6 58.8

Table 6.2: Comparing sentence pivoting against phrase pivoting with different filtering thresholds

(100/500/1000) for Persian-Arabic SMT.

6.2 Alignment Connectivity Strength

As we mentioned in the beginning of this chapter, one of the main challenges in phrase pivoting

is the very large size of the induced phrase table. It becomes even more challenging if either the

source or target language is morphologically rich. The number of translation candidates (fanout)

increases due to ambiguity and richness which in return increases the number of combinations

between source and target phrases. Since the only criteria of matching between the source and

target phrase is through a pivot phrase, many of the induced phrase pairs are of low quality. These

phrase pairs unnecessarily increase the search space and hurt the overall quality of translation.

To solve this problem, we introduce two language-independent features which are added to the

log linear space of features in order to determine the quality of the pivot phrase pairs. We call these

features connectivity strength features.

6.2.1 Connectivity Strength Features

“Connectivity Strength Features" consists of two scores, Source Connectivity Strength (SCS) and

Target Connectivity Strength (TCS). These two scores are similar to precision and recall metrics.

They depend on the number of alignment links between words in the source phrase to words of the

target phrase. SCS and TSC are defined in equations 6.1 and 6.2 where S = {i : 1 ≤ i ≤ S} is the

set of source words in a given phrase pair in the pivot phrase table and T = {j : 1 ≤ j ≤ T} is the

set of the equivalent target words. The word alignment between S and T is defined asA = {(i, j) :

i ∈ S and j ∈ T }.
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SCS =
|A|
|S|

(6.1)

TCS =
|A|
|T |

(6.2)

We get the alignment links by projecting the alignments of source-pivot to the pivot-target phrase

pairs used in pivoting. If the source-target phrase pair are connected through more than one pivot

phrase, we take the union of the alignments. Figure 6.1 illustrates the projection process to get the

alignment links between words of source and target phrases.

Src$!$Pvt$ Pvt$!$Tgt$

Src$!$Tgt$

Figure 6.1: An illustration of the projection of alignment links from source-pivot to the pivot-target

phrase pairs used in pivoting

In contrast to the aggregated values represented in the lexical weights and the phrase proba-

bilities, connectivity strength features provide additional information by counting the actual links

between the source and target phrases. They provide an independent and direct approach to measure

how good or bad a given phrase pair are connected.
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Figure 6.2 and 6.3 are two examples (one good, one bad) of Persian-Arabic phrase pairs in a

pivot phrase table induced by pivoting through English.2 In the first example, each Persian word is

aligned to an Arabic word. The meaning is preserved in both phrases which is reflected in the SCS

and TCS scores. In the second example, only one Persian word is aligned to one Arabic word in

the equivalent phrase and the two phrases convey two different meanings. The English phrase is not

a good translation for either, which leads to this bad pairing. This is reflected in the SCS and TCS

scores which are presented in the captions of the figures.

Persian: "AςtmAd"myAn"dw"kšwr "" " ""‘ .-,ر"دو"()"ن"ا%$#"د ’"

" " " " " " " " " " " " "‘trust"between"the"two"countries’"
English: "trust"between"the"two"countries"

Arabic:" "Alθqħ"byn"Aldwltyn " "" " ""‘ ا52و2$3"34"ا012/ ’"

" " " " " " " " " " " " "‘the"trust"between"the"two"countries’"

Figure 6.2: An example of strongly connected Persian-Arabic phrase pair through English. All

Persian words are connected to one or more Arabic words. SCS=1.0 and TCS=1.0.

Persian: "AyjAd"cnd"šrkt"mštrk " "" " "‘ 0/.+ک",+*(")'&"ا$#"د ’"

" " " " " " " " " " " " "‘Establish"few"joint"companies’"

English: "joint"ventures"

Arabic:" "bςD"šrkAt"AlmqAwlAt"fy"Albld" "‘ ا<=>&";:"ا89"و6ت",+5"ت"123 ’"

" " " " " " " " " " " " "‘Some"construcBon"companies"in"the"country’"

Figure 6.3: An example of weakly connected Persian-Arabic phrase pairs through English. Only

one Persian word is connected to an Arabic word. SCS=0.25 and TCS=0.2.

6.2.2 Evaluation

In our pivoting experiments, we work on two language pairs, Persian-Arabic and Hebrew-Arabic,

pivoting through English. The English-Arabic parallel corpus is about 2.8M sentences (≈60M

2We use the Habash-Soudi-Buckwalter Arabic transliteration [Habash et al., 2007] in the figures with extensions for

Persian as suggested by [Habash, 2010].
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words) available from LDC3 and GALE4 constrained data. We use an in-house Persian-English

parallel corpus5 of about 170K sentences and 4M words. The Hebrew-English corpus is about

(≈ 1M words) and is available from sentence-aligned corpus produced by [Tsvetkov and Wintner,

2010].

Word alignment is done using GIZA++ [Och and Ney, 2003b]. For Arabic language modeling,

we use 200M words from the Arabic Gigaword Corpus [Graff, 2007] together with the Arabic side

of our training data. We use 5-grams for all language models (LMs) implemented using the SRILM

toolkit [Stolcke, 2002]. For English language modeling, we use English Gigaword Corpus with

5-gram LM using the KenLM toolkit [Heafield, 2011].

All experiments are conducted using the Moses phrase-based SMT system [Koehn et al., 2007b].

We use MERT [Och, 2003b] for decoding weight optimization. For Persian-English translation

model, weights are optimized using a set 1000 sentences randomly sampled from the parallel cor-

pus while the Hebrew-English weights are optimized using a tuning set of 517 sentences developed

by [Shilon et al., 2010]. The common English-Arabic translation model weights are optimized us-

ing a set of 500 sentences from the 2004 NIST MT evaluation test set (MT04). The optimized

weights are used for ranking and filtering.

We use a maximum phrase length of size 8 across all models. We report results on an in-house

Persian-Arabic evaluation set of 536 sentences with three references. While for Hebrew-Arabic, we

report results on an evaluation set of 300 sentences with three references developed by [Shilon et

al., 2010]. We evaluate using BLEU-4 [Papineni et al., 2002a], METEOR v1.4 [Lavie and Agarwal,

2007] and TER [Snover et al., 2006].

6.2.2.1 Connectivity Strength Features Evaluation

In this experiment, we test the performance of adding the connectivity strength features (+Conn) to

the best performing phrase pivoting model (Phrase_Pivot_F1K).

3LDC Catalog IDs: LDC2005E83, LDC2006E24, LDC2006E34, LDC2006E85, LDC2006E92, LDC2006G05,

LDC2007E06, LDC2007E101, LDC2007E103, LDC2007E46, LDC2007E86, LDC2008E40, LDC2008E56,

LDC2008G05, LDC2009E16, LDC2009G01.

4Global Autonomous Language Exploitation, or GALE, is a DARPA-funded research project.

5available from SAIC http://www.saic.com
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Model Persian-Arabic Hebrew-Arabic

BLEU METEOR TER BLEU METEOR TER

Phrase_Pivot_F1K 20.5 38.6 70.6 19.8 33.7 64.4

Phrase_Pivot_F1K+Conn 21.1 38.9 69.3 20.3 33.9 63.5

Table 6.3: Connectivity strength features experiment result for Persian-Arabic and Hebrew-Arabic

SMT.

The results in Table 6.3 show that we get a good improvement in all three metrics for both

models (Pesrian-Arabic and Hebrew-Arabic) by adding the connectivity strength features. The

differences in BLEU scores (≈0.6/0.5) between this setup and the baseline is statistically significant

above the 95% level. Statistical significance is computed using paired bootstrap resampling [Koehn,

2004].

6.2.3 Intrinsic Evaluation

In this section, we perform an intrinsic evaluation of the performance of the connectivity strength

features using external parallel data between the source and target languages. To achieve this goal,

we study the correlation between scores and phrase extracted from parallel text. We classify the

pivot phrase pairs into five different classes based on the existence of source and/or target phrases

in the direct model trained on the parallel data. The first class contains the phrase pairs where the

source and target phrases are in the direct system together. The second class is the same as the first

class except that the source and target phrases exist but not together as a phrase pair in the direct

system. The third, forth and fifth classes are for the existence of source phrase only, target phrase

only and neither in the direct system, respectively.

Figure 6.4b shows that when the source and target phrase exist in the direct model, the connec-

tivity scores are mostly high which reflects how the connectivity scores are highly correlated with

the quality of the phrase pair. Moreover, Figure 6.5 shows that when the SCS and TCS scores are

equal one,i.e. highly connected phrase pairs in both directions, the phrase pairs are mostly clas-

sified as both existing together in the direct model. This is also another strong indication that the

connectivity scores can be trusted.
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Figure 6.4: Plots of connectivity scores of the different phrase pairs classifications
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Figure 6.5: Connectivity scores across all phrase pairs categories when the SCS and TCS are equal

to one i.e. highly connected phrase pairs in both directions.

6.2.4 Conclusions

We presented an experiment showing the effect of using two language independent features, source

connectivity score and target connectivity score, to improve the quality of pivot-based SMT. We

showed that these features help to improve the overall translation quality. We also performed intrin-

sic and extrinsic evaluation to show the effectiveness of our approach.

6.3 Alignment Symmetrization Optimization

In this Section, we focus on word alignment to improve translation quality. Word alignment is an

essential step in building an SMT system. The most commonly used alignment models, such as

IBM Model serial [Brown et al., 1993a] and HMM [Och and Ney, 2003a], all assume one-to-many

alignments. However, the target is to produce a many-to-many word alignment model. A common

practice solution in most state-of-the-art MT systems is to create two sets of one-to-many word

alignments (bidirectional alignments), source-to-target and target-to-source, and then combine the

two sets to produce the final many-to-many word alignment model. This combination process is

called “Symmetrization".

We discuss a symmetrization relaxation method targeting phrase-pivot SMT. Unlike the typical

84



CHAPTER 6. PHRASE PIVOTING QUALITY AND RECALL MAXIMIZATION

symmetrization methods, the process is carried out as an optimization for phrase-pivot SMT and

eventually increase the matching on the pivot phrases. We show positive results (1.2 BLEU points)

on Hebrew-Arabic phrase-pivot SMT (pivoting through English).

6.3.1 Background

In this section, we briefly describe different symmetrization heuristics. We then explain how sym-

metrization affects phrase extraction and discuss the motivation for our approach.

6.3.2 Symmetrization Heuristics

The simplest approach is to merge the two directional alignment functions using a symmetrization

heuristic to produce a many-to-many alignment matrix [Och et al., 1999; Och and Ney, 2003a;

Koehn et al., 2003].

One of the approaches is to take the intersection (I) of the two directional alignments. Intersec-

tion alignment matrices are very sparse and express only one-to-one relationship between words.

As a result, we get a high precision in alignment due to the agreement of both models and a very

low recall.

An alternative approach is to look at the two alignments as containing complementary infor-

mation. Therefore, the union (U) of the two models can capture all complementary information.

Unlike the intersection (I), many-to-many relationship between words are covered and the resulting

matrices are dense. As a result, we get the opposite effect of intersection where we have a higher

recall of alignment points but at the cost of losing in precision.

Many mid-way solutions between intersection (I) and (U) can be achieved which aim to balance

between precision and recall. Some solutions start from high precision intersection points, and

progressively add reliable links from the union to increase recall. Other solutions start from a high

recall union points and remove unreliable links to increase precision. One of most commonly used

heuristic is Grow-diag-final-and (GDFA) [Koehn et al., 2003].

The GDFA heuristic is composed of two steps and one constraint. The first step (Grow-diag)

starts from the intersection of two directional alignments then gradually considers the neighborhood

of each alignment point between the source and target words. The considered neighbors of an

alignment point at position (i, j) span over the range of [i−1, i+1] for source words and [j−1, j+1]
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Figure 6.6: Phrase-pairs consistency constraints with word alignment (black squares are alignment

points and the shaded area is a proposed phrase pair): The first example from the left obeys the

consistency heuristic, which is violated in the second example (one alignment point in the second

column is outside the phrase pair). The third example obeys the consistency heuristic despite the

fact that it includes an unaligned word on the right.

for target words. Points in this neighborhood are progressively added to the alignment if neither the

source word nor the target word is already aligned and the corresponding point exists in the union

(U). The second step (-final) adds alignment points that are not neighbor intersection alignment

points. This is done for alignment points between words, of which at least one is currently unaligned

and exists in the union (U). Adding the constraint (-and), only allows alignment points between two

unaligned words to be added.

6.3.3 Symmetrization vs. Phrase Extraction

There is a direct relationship between the final alignment matrix after symmetrization and the phrase

extraction process. One way to look at the role of alignment points in extracting phrases is that they

act as constraints for which phrase pairs can be extracted. In the standard heuristic [Koehn et al.,

2003] for phrase pair extraction, the extracted phrase pair should be consistent and contain at least

one word-based link. In addition, no word inside the phrase pair is aligned to a word outside it.

Figure 6.6 shows examples of phrase pairs that obey or violate the consistency constraints.

The consistency constraint leads to an inverse relationship between the number of alignment

points and the number of phrase pairs extracted; the fewer alignment points, the more phrase pairs

can be extracted. This relationship is not valid in the extreme situation with no alignment points at

all; in this extreme case, no phrase pairs are extracted.

A major issue in this heuristic is its sensitivity to word alignment errors. Since the consistency

86



CHAPTER 6. PHRASE PIVOTING QUALITY AND RECALL MAXIMIZATION

Algorithm 1 Symmetrization Relaxation Algorithm (starting with union symmetrization). Symbols

used are explained in Section 6.3.4.

{ generate the list of possible pivot unigram Lp}

AU
pt =

−→
Apt ∪

←−
Apt

AF
pt = AU

pt

for (i, j) ∈ AF
pt do

if Wi /∈ Lp then

AF
pt = AF

pt − {(i, j)}

end if

end for

return AF
pt

constraint is based on the alignment, an error could prevent the extraction of many good phrase

pairs. In the context of phrase pivoting, this eventually leads to much less chances to pivot on

potential good phrases. This problem motivates our approach to relax the symmetrization process

(discussed in Section 6.3.4) and generate new pivot phrases in both systems used in pivoting. These

new pivot phrases can connect potential source to target phrase pairs.

6.3.4 Relaxation

In this section, we explain our approach in relaxing the symmetrization process to improve the

matching in phrase-pivot SMT. We then discuss our approach in combining the phrase pairs ex-

tracted from the basic pivot system and a pivot system using our relaxation approach which leads to

our best results.

6.3.5 Symmetrization Relaxation

Our approach is based on two parts. The first part is constructing a list of all possible pivot un-

igram phrases Lp that can be used in the pivoting process. This can simply be done by getting

the intersection of all the pivot unigrams extracted from both the source-pivot and the pivot-target

corpora.

In the second part, we start by building two directional alignment models: pivot-to-target
−→
Apt
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He-En En-Ar He-En-Ar

Symm. |Asp| |Asp|
|AU

sp|
|PTsp| |PTsp|

|PT I
sp|
|Apt| |Apt|

|AU
pt|
|PTpt| |PTpt|

|PT I
pt|
|PTst| |PTst|

|PT I
st|

I 0.6M 45% 15.0M 100% 0.7M 57% 11.4M 100% 1707M 100%

U 1.4M 100% 0.9M 6% 1.3M 100% 1.3M 12% 1M 0.1%

U_R 1.2M 89% 1.7M 11% 1.2M 91% 2.3M 21% 245M 14%

GDFA 1.1M 79% 3.0M 20% 1.0M 85% 3.0M 27% 267M 16%

GDFA_R 1.0M 73% 4.4M 30% 1.0M 78% 4.6M 40% 1105M 65%

Table 6.4: Comparison of symmetrization methods in terms of alignment set size, resulting phrase

tables size (in millions) for each size of SMT systems used in pivoting (He-En & En-Ar) and the

final pivot phrase table (He-En-Ar).

and target-to-pivot
←−
Apt. Following Algorithm 1, we can start with union AU

pt or grow-diag-final-and

AGDFA
pt alignment symmetrization. We then relax the symmetrization to allow the extraction of

many new pivot phrases by removing a given word link that links a target word to a pivot word

that is NOT in Lp. The final alignment matrix after all the deletions is AF
pt. To remind the reader,

alignment points deletion (a.k.a alignment symmetrization relaxation) allows the extraction of more

phrases.

We repeat the whole process in the other language pair of the pivoting, source-pivot, to get the

final alignment set AF
sp. Then, these final alignment matrices are used to extract two phrase tables

PTsp and PTpt which are used in the phrase pivoting process to produce the final pivot phrase table

PTst.

Table 6.4 shows the impact of different word alignment symmetrization methods on phrase

tables for each system used in Hebrew-Arabic phrase-pivot SMT (He-En & En-Ar) and the final

phrase table (He-En-Ar). We compare each method with and without our relaxation approach. The

first row in the table is the intersection (I). The next two are union (U) without relaxation and then

union with relaxation (U_R). The next two methods are heuristic grow-diagonal-final-and (GDFA)

without relaxation and with relaxation (GDFA_R).

For each particular symmetrization method and each system used in pivoting, we compute the

output alignment set size in first & fifth columns of table 6.4 and their percentage of the union in
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second & sixth columns. We also compute the size of the resulting phrase tables. The numbers

show the inverse relationship between the alignment set size and the phrase table sizes. The most

sparse matrix in intersection leads to huge phrase tables which consequently leads a exponentially

huge final pivot phrase table with potentially a lot of low quality phrase pairs. The union has an

opposite effect. It has a higher recall of alignment points including some bad alignment points that

can prevent the extraction of good pivoting phrase pairs.

Figure 6.7 illustrates how the symmetrization relaxation approach can lead to good and bad

English-Arabic phrase pairs.6 The English-Arabic phrase pair (B1) is extracted into the original

baseline phrase table. The word “phased" is erroneously aligned to the Arabic word �
�

	
¯ð wfq ‘ac-

cording to/under’ which prevents the extraction of smaller phrase pairs because of the consistency

constraint (discussed in Section 6.3.3). Since the word “phased" does not appear in the English side

of the Hebrew-English corpus, our relaxation method will drop all the alignment points which are

connected to the word “phased". This allows the extraction of a couple of new phrase pairs (R1a &

R1b). (R1a) is not a good phrase pair since it includes an extra word (“phased") in the English side

that is absent in the Arabic. That said, it will not be used in the pivoting. (R1b), on the other hand,

is a good phrase pair that could lead to a pivot match.

The lower half of Figure 6.7 illustrates how symmetrization relaxation does not always lead

to good phrase pairs. The English-Arabic phrase pair (B2), which appears in the original baseline

phrase table, is a perfectly good phrase pair. However, since the word “Saloniki" doesn’t appear in

the English side of the Hebrew-English corpora, deleting it leads to the creation of two bad phrase

pairs (R2a & R2b) where the English and Arabic side do not have the same meaning.

6.3.6 Model Combination

The alignment symmetrization relaxation explained in Section 6.3.5 leads to an increase in the

number of phrase pairs extracted in the translation model. Some of these phrase pairs would be

useful but many others are of low quality which affects the translation choices during decoding and

the overall translation quality as shown in Figure 6.7.

As a solution, we construct a combined phrase table using phrase pairs from the best baseline

pivoting system without relaxation and then add any additional phrase pairs extracted after relax-

6We use the Habash-Soudi-Buckwalter Arabic transliteration [Habash et al., 2007].
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English: "aboli(on"of"poli(cal"sectarianism"under"a"phased"plan"

"
Arabic: "AlγA'"AlTAŷfyħ"AlsyAsyħ"wfq"xTħ"mrHlyħ "�إلغاء"الطائفية"السياسية"وفق"خطة"مرحلية�""

-

English: "aboli(on"of"poli(cal"sectarianism"under"a"phased*"plan"

Arabic: "AlγA‘"AlTAŷfyħ"AlsyAsyħ"wfq"xTħ" " """" "�"إلغاء"الطائفية"السياسية"وفق"خطة�"""""""""
" " " " " " ""

English: "aboli(on"of"poli(cal"sectarianism"under"

Arabic: "AlγA'"AlTAŷfyħ"AlsyAsyħ"wfq " " " "" "�"إلغاء"الطائفية"السياسية"وفق�""""""
" " " " " " " " " """

"

B1 

R1a 

R1b 

English: "a"newspaper"interview"in"Saloniki"

"
Arabic: "mqAblħ"SHAfyp"fy"sAlwnyk " "" " "�مقابلة"صحفية"في"سالونيك�"""""""""""""""

-

English: "a"newspaper"interview"in"Saloniki*"

Arabic: "mqAblħ"SHAfyp"fy " " " " """" "�مقابلة"صحفية"في�"""""""""""""""""""""""
"

English: "a"newspaper"interview"in"

Arabic: "mqAblħ"SHAfyp"fy"sAlwnyk* " " "�مقابلة"صحفية"في"سالونيك�""""""""""""""""""""""

"

B2 

R2a 

R2b 

Figure 6.7: Two examples of baseline (GDFA) phrase pairs (B1 & B2) together with two pairs of

phrases that are generated after symmetrization relaxation (R1a, R1b, R2a &R2b). The alignment

links that are deleted as part of symmetrization relaxation are colored in red. The words marked

with an asterisk do not have an equivalent in the opposite language in the phrase pair they appear

in. The examples are discussed in detail in Section 6.3.5.

ation. We add a binary feature fs,t to the log linear space of features in order to mark the source of

the pivot phrase pairs as follows:7

f(s,t) =

 2.718 if (s, t) from the baseline system

1 otherwise
(6.3)

The aim from the added binary feature is to bias the translation model after tuning to favor

phrase pairs from the baseline system over the complementary phrase pairs from the relaxed model.

7The log values of 2.718 and 1 will lead to a binary representation in the log linear space.
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6.3.7 Evaluation

Next, we present a set of experiments on symmetrization relaxation for phrase-pivot SMT and on

model combination.

Experimental Setup In our pivoting experiments, we build two SMT models; one model to trans-

late from Hebrew to English and another model to translate from English to Arabic. For both mod-

els, we use the same size of parallel corpus(≈ 1M words) despite the fact that more English-Arabic

data are available. The English-Arabic parallel corpus is a subset of available data from LDC.8

The Hebrew-English corpus is available from sentence-aligned corpus produced by [Tsvetkov and

Wintner, 2010].

Word alignment is done using GIZA++ [Och and Ney, 2003a]. For Arabic language modeling,

we use 200M words from the Arabic Gigaword Corpus [Graff, 2007] together with the Arabic side

of our training data. We use 5-grams for all language models (LMs) implemented using the SRILM

toolkit [Stolcke, 2002].

All experiments are conducted using the Moses phrase-based SMT system [Koehn et al., 2007b].

We use MERT [Och, 2003b] for decoding weight optimization. Weights are optimized using a set

of 517 sentences (single reference) developed by [Shilon et al., 2010].

We use a maximum phrase length of size 8 across all models. We report results on a Hebrew-

Arabic evaluation set of 300 sentences with three references developed by [Shilon et al., 2010]. We

evaluate using BLEU-4 [Papineni et al., 2002a], METEOR v1.4 [Lavie and Agarwal, 2007] and

TER [Snover et al., 2006].

Symmetrization Relaxation We compare the performance of symmetrization relaxation in con-

trast with different symmetrization methods. The results are presented in Table 6.5. In general,

as expected grow-diag-final-and (GDFA) outperforms all other symmetrization methods and it is

considered our baseline. Thus, the performance improves with the symmetrization relaxation for

both union (U_R) and grow-diag-final-and (GDFA_R). The best performer is the relaxed grow-diag-

final-and (GDFA_R). While (I) leads to comparable results to (GDFA_R), BLEU score against the

8LDC Catalog IDs: LDC2004T17, LDC2004E72, LDC2005E46, LDC2004T18
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Symm. BLEU METEOR TER

GDFA 20.4 33.4 62.7

GDFA_R 20.8 34.0 62.4

U 20.1 33.5 62.7

U_R 20.7 34.0 62.5

I 20.8 34.0 63.6

Table 6.5: Symmetrization relaxation results for different symmetrization methods for He-Ar SMT.

The best performer is the relaxed grow-diag-final-and (GDFA_R). (GDFA_R) BLEU score is sta-

tistically significant over the baseline (GDFA) with p-value = 0.12. All other results are not statis-

tically significant.

Symm. BLEU METEOR TER

GDFA 20.4 33.4 62.7

GDFA_R 20.8 34.0 62.4

GDFA+GDFA_R 21.6 34.4 61.6

Table 6.6: Model combination experiment result. (GDFA+GDFA_R) shows a big improvement in

BLEU score which is statistically significant with p-value < 0.01.

baseline (GDFA) is not statistically significant and TER is the worst across all methods.9

Since (GDFA_R) is the best performing model, we use (GDFA) and (GDFA_R) in our model

combination experiments, next.

Model Combination We test the performance of combining the baseline (GDFA) phrase table

with the relaxed (GDFA_R) phrase table as explained in Section 6.3.6.

The results in Table 6.6 show that we get a nice improvement of 1.2/1/0.8 (BLEU/METEOR/TER)

9Statistical significance is done using MultEval (https://github.com/jhclark/multeval) which implements statistical

significance testing between systems based on multiple optimizer runs and approximate randomization [Resampling,

1989; Clark et al., 2011]
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points by combing the two models (GDFA) and (GDFA_R). The difference in BLEU score is sta-

tistically significant with p-value < 0.01. This result shows that our relaxation approach helps in

combination with a baseline system to improve the overall translation quality. Moreover, since

(GDFA_R) is a proper super-set of (GDFA) by design then the big jump in performance is due to

the additional binary feature added to the log linear model. As we hoped, the binary feature bi-

ases the combined model towards the more trusted phrase pairs from (GDFA) and complement the

translation model with the additional phrase pairs from symmetrization relaxation.

6.3.8 Conclusions

In this section, we discussed a symmetrization relaxation method targeting phrase-pivot SMT. The

symmetrization is carried out as an optimization process to increase the matching on the pivot

phrases. We show positive results (1.2 BLEU points) on Hebrew-Arabic phrase-pivot SMT. In the

future, we plan to work on symmetrization based on our conclusions from this section and Chapter 7

to improve symmetrization using morpho-syntactic information.
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Chapter 7

Leveraging Parallel Data in Pivoting

In the previous chapter, we discussed how to maximize both precision and recall of the pivoting

process using several language independent techniques. In this chapter, we consider the case where

we have parallel source-target data. In Section 7.1, we introduce different approaches to improve

pivot-based SMT and discuss methods of doing system combinations. While in Section 7.2, we

introduce morphology constraint scores which are added to the log linear space of features in order

to determine the quality of the pivot phrase pairs. This morphology constraint scores are based

on the connectivity scores. We compare two methods of generating the morphology constraint

scores. One method is based on hand-crafted rules relying on our knowledge of the source and target

languages. In the other method, the morphology constraints are induced from available parallel data

between the source and target languages which we also use to build a direct translation model. We

then combine both the pivot and direct models to achieve better coverage and overall translation

quality.

7.1 Combination of Pivot and Direct SMT

In this section, we discuss a selective combination approach to effectively combine both a pivot and

a direct model built from a given parallel corpora to achieve better coverage and overall translation

quality. We maximize the information gain by selecting the relevant portions of the pivot model that

do not interfere with the more trusted direct model.
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7.1.1 Selective Combination

Our goal is to perform a smart combination between the direct and pivot models to maximize the

information gain. To achieve this, we investigate the idea of classifying the pivot phrase pairs into

five different classes based on the existence of source and/or target phrases in the direct model. The

first class contains the phrase pairs where the source and target phrases are in the direct system

together. The second class is the same as the first class except that the source and target phrases

exist but not together as a phrase pair in the direct system. The third, forth and fifth classes are for

the existence of source phrase only, target phrase only and neither in the direct system. Table 7.1

shows the different classifications of the portions extracted from the pivot phrase table with their

labels which are used later in our results tables. The question is how to improve the quality by doing

a smart selection of only relevant portion of the pivot phrase table.

Pivot Src Tgt Src & Tgt

phrase-pairs exists exists exist

classification in direct in direct in direct

SRC : TGT 3 3 3

SRC , TGT 3 3 5

SRC ONLY 3 5 5

TGT ONLY 5 3 5

NEITHER 5 5 5

Table 7.1: Phrase pairs classification of the portions extracted from the pivot phrase table.

7.1.2 Evaluation

In this section, we present our results for the selective combination approach between direct and

pivoting models. In our pivoting experiments, we build two SMT models. One model to translate

from Persian to English and another model to translate from English to Arabic. The English-Arabic

95



CHAPTER 7. LEVERAGING PARALLEL DATA IN PIVOTING

parallel corpus is about 2.8M sentences (≈60M words) available from LDC1 and GALE2 con-

strained data. We use an in-house Persian-English parallel corpus of about 170K sentences and 4M

words. For the direct Persian-Arabic SMT model, we use an inhouse parallel corpus of about 165k

sentences and 4 million words.3

Word alignment is done using GIZA++ [Och and Ney, 2003b]. For Arabic language modeling,

we use 200M words from the Arabic Gigaword Corpus [Graff, 2007] together with the Arabic side

of our training data. We use 5-grams for all language models (LMs) implemented using the SRILM

toolkit [Stolcke, 2002]. For English language modeling, we use the English Gigaword Corpus with

5-gram LM using the KenLM toolkit [Heafield, 2011].

All experiments are conducted using Moses phrase-based SMT system [Koehn et al., 2007b].

We use MERT [Och, 2003b] for decoding weights optimization. For Persian-English translation

model, weights are optimized using a set 1000 sentences randomly sampled from the parallel corpus

while the English-Arabic translation model weights are optimized using a set of 500 sentences from

the 2004 NIST MT evaluation test set (MT04).

We use a maximum phrase length of size 8 across all models. We report results on an in-house

Persian-Arabic evaluation set of 536 sentences with three references. We evaluate using BLEU-4

[Papineni et al., 2002a], METEOR v1.4 [Lavie and Agarwal, 2007] and TER [Snover et al., 2006].

For the combination experiments, Moses allows the use of multiple translation tables [Koehn

and Schroeder, 2007]. Different combination techniques are available. We use the “Either" com-

bination technique where the translation options are collected from one table, and additional op-

tions are collected from the other tables. If the same translation option (identical source and target

phrases) is found in multiple tables, separate translation options are created for each occurrence, but

with different scores.

1LDC Catalog IDs: LDC2005E83, LDC2006E24, LDC2006E34, LDC2006E85, LDC2006E92, LDC2006G05,

LDC2007E06, LDC2007E101, LDC2007E103, LDC2007E46, LDC2007E86, LDC2008E40, LDC2008E56,

LDC2008G05, LDC2009E16, LDC2009G01.

2Global Autonomous Language Exploitation, or GALE, is a DARPA-funded research project.

3Available from SAIC http://www.saic.com/
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7.1.2.1 Baseline Combination

Table 7.2 shows the results of the basic combination in comparison to the best pivot translation

model and the best direct model. The results shows that combining both models leads to a gain in

performance. The question is how to improve the quality by doing a smart selection of only relevant

portion of the pivot phrase table which is discussed next.

Model BLEU METEOR TER

Phrase_Pivot_F1K 20.5 38.6 70.6

Direct 23.4 40.1 67.5

Direct+Phrase_Pivot_F1K 23.7 40.5 67.2

Table 7.2: Baseline combination experiments between best pivot baseline and best direct model for

Persian-Arabic.

7.1.2.2 Selective Combination

In this section, we explore the idea of dividing the pivot phrase pairs into five different classes based

on the existence of source and/or target phrases in the direct system as discussed in Section 6.3.4.

We discuss our results and show the trade off between the quality of translation and the size of the

different classes extracted from the pivot phrase table.

Table 7.3 shows the results of the selective combination experiments on a learning curve of

100% (4M words), 25% (1M words) and 6.25% (250K words) of the parallel Persian-Arabic corpus.

The results show that pivoting is a robust technique when there is no or limited amount of

parallel corpora. In our case study on Persian-Arabic SMT, the direct translation systems built from

parallel corpora starts to be better than the pivot translation system when trained on 1M words or

more.

The base combination between the direct translation models and the pivot translation model

leads to a boost in the translation quality across the learning curve. As expected, the smaller the

parallel corpus used in training the more gain we get from the combination.

The results also show that some of pivot the classes provides more information gain than others.
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Model Parallel data set size

4M 1M 250K

Direct 23.4 21.0 16.8

Phrase_Pivot_F1K 20.5

Base Combination 23.7 * 22.1 * 21.7 *

SRC : TGT 22.9 21.2 17.3 *

SRC , TGT 23.0 21.3 18.5 *

SRC ONLY 23.5 20.1 17.5 *

TGT ONLY 23.8* 21.4 * 18.3 *

NEITHER 23.4 21.6 * 19.9 *

Table 7.3: Selective Combination experiments results on a learning curve for Persian-Arabic mod-

els. The first row shows the results of the direct system. The second row shows the result of the

best pivot system. The third row shows the results of the baseline combination experiments with the

whole pivot phrase table. Then the next set of rows show the results of the selective combination

experiments based on the different classifications. All scores are in BLEU. (*) marks a statistically

significant result against the direct baseline.

In fact some of the classes hurt the overall quality; for example, (SRC : TGT) and (SRC , TGT) both

hurt the quality of translation when combined with direct model trained on 100% of the parallel data

(4M words).

An interesting observation from the results is that by building a translation system with only

6.25% of the parallel data (≈ 250K words) combined with the pivot translation model, we can

achieve a better performance (21.7 BLEU) than a model trained on four times the amount of data

(Size: 1M words; Score: 21.0 BLEU).

It is also shown across the learning curve that the best gains are achieved when the source phrase

in the pivot phrase table doesn’t exist in the direct model. This is expected due to the fact that by

adding unknown source phrases, we decrease the overall OOVs.

Pruning the pivot phrase table is an additional benefit from the selective combination approach.
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Model Parallel data set size

4M 1M 250K

SRC : TGT 0.2% 0.1% 0.1%

SRC , TGT 35.2% 29.0% 16.0%

SRC ONLY 59.9% 63.3% 64.1%

TGT ONLY 2.3% 3.4% 6.1%

NEITHER 2.3% 4.3% 13.7%

Table 7.4: Percentage of phrase pairs extracted from the original pivot phrase table for each pivot

class across the learning curve.

Table 7.4 shows that percentage of phrase pairs extracted from of the original pivot phrase table

for each pivot class across the learning curve. The bulk of the phrase pairs are extracted in the

classes where the source phrases exist in the direct model which add the least and sometimes hurt

the overall combination performance.

For the large parallel data (4M words), selective combination with (TGT ONLY) class gives a

slightly better result in BLEU while hugely reducing the size of the pivot phrase table used (2.3% of

the original pivot phrase table). For smaller parallel data, the advantage is reduced but here comes

the trade off between the quality of the translation and the size of the model.

7.1.3 Conclusions

We discussed a selective combination approach between pivot and direct models to improve the

translation quality. We showed that the selective combination can lead to a large reduction of the

pivot model without affecting the performance if not improving it. The results show that some of

pivot the classes provides more information gain than others. In fact some of the classes hurt the

overall quality; for example, (SRC : TGT) and (SRC , TGT) both hurt the quality of translation when

combined with direct model trained on 100% of the parallel data (4M words).

We also showed that across the learning curve that the best gains are achieved when the source

phrase in the pivot phrase table doesn’t exist in the direct model. This is expected due to the fact

that by adding unknown source phrases, we decrease the overall OOVs. However, these results only
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hold for medium size pivot models. When we increase the data ( 60M words) used for building

English-Arabic model used in phrase pivoting. These benefits disappear and the basic combination

lead to the best performance. We also tried on a different language pair (Hebrew-Arabic) using the

big English-Arabic model and we reached the same conclusion.

7.2 Synchronous Morpho-syntactic Constraints

In this section, we leverage the idea of extracting useful information between any language pair

to help in the pivoting process. We introduce morphology constraints which are added to the log

linear space of features in order to determine the quality of the pivot phrase pairs. We compare

two methods of generating these constraints. One method is based on hand-crafted rules relying

on our knowledge of the source and target languages; while in the other method, the morphology

constraints are induced from available parallel data between the source and target languages which

we also use to build a direct translation model. We then combine both the pivot and direct models

to achieve better coverage and overall translation quality. We show positive results on Hebrew-

Arabic SMT. We get 1.5 BLEU points over phrase pivot baseline and 0.8 BLEU points over system

combination baseline with direct model built from given parallel data.

We showed before how ambiguity and richness of source and target languages increase the

number of combinations between source and target phrases. A basic solution to the combinatorial

expansion is to filter the phrase pairs used in pivoting based on log-linear scores as discussed in

Section 6.1.2. However, this doesn’t solve the low quality problem.

Similar to factored translation models [Koehn and Hoang, 2007] where linguistic (morphology)

features are augmented to the translation model to improve the translation quality, our approach to

address the quality problem is based on constructing a list of synchronous morphology constraints

between the source and target languages. These constraints are used to generate scores to determine

the quality of pivot phrase pairs. However, unlike factored models, we do not use the morphology in

generation and the morphology information comes completely from external resources. In addition,

since we work in the pivoting space, we only apply the morphology constraints to the connected

words between the source and target languages through the pivot language. This guarantees a fun-

damental level of semantic equivalence before applying the morphology constraints especially if
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there is distortion between source and target phrases.

We build on our approach in Chapter 6.2 where we introduced connectivity strength features

between the source and target phrase pairs in the pivot phrase table. We again utilize the alignment

links that are generated by projecting the alignments of the source-pivot phrase pairs and the pivot-

target phrase pairs used in pivoting. This time instead of using the lexical mapping between source

and target words, we compute quality scores based on the morphological compatibility between the

connected source and target words.

To choose which morphological features to work with, we performed an automatic error analysis

on the output of the phrase-pivot baseline system. We did the analysis using AMEANA [El Kholy

and Habash, 2011], an open-source error analysis tool for natural language processing tasks target-

ing morphologically rich languages (explained in details in Chapter 4). Again, we found that the

most problematic morphological features in the Arabic output are gender (GEN), number (NUM)

and determiner (DET). We focus on those features in our experiments. Next, we present our ap-

proach to generating the morphology constraint features using hand-crafted rules and compare this

approach with inducing these constraints from Hebrew-Arabic parallel data. We didn’t show results

for Persian-Arabic due to the lack of a morphological analyzer for Persian which is required to build

the morphology constraints.

7.2.1 Rule-based Morphology Constraints

Our rule-based morphology constraint features are basically a list of hand-crafted mappings of the

different morphological features between Hebrew and Arabic. Since both languages are morpholog-

ically rich, it is straightforward to produce these mappings for GEN, NUM and DET. Note, however,

that we also account for ambiguous cases; e.g., feminine gender in Arabic can map to words with

ambiguous gender in Hebrew. We additionally use different POS tag sets for Arabic (47 tags) and

Hebrew (25 tags) and in many cases one Hebrew tag can map to more than one Arabic tag; for

example, three Arabic noun tags abbrev, noun and noun_prop map to two Hebrew tags feminine,

masculine noun.4 Table 7.5 shows a sample of the morphological mappings between Arabic and

Hebrew.

4Please refer to [Habash et al., 2009] for a complete set of Arabic POS tag set and [Adler, 2007] for Hebrew POS tag

set.

101



CHAPTER 7. LEVERAGING PARALLEL DATA IN PIVOTING

Features Arabic Hebrew

GEN Feminine Feminine / Both

Masculine Masculine / Both

NUM Singluar Singluar / Singluar-Plural

Dual Dual / Dual-Plural

Plural Plural / Dual-Plural / Singular-Plural

DET No Determiner No Determiner

Determiner Determiner

Table 7.5: Rule-based mapping between Arabic and Hebrew morphological features. Each feature

value in Arabic can map to more than one feature value in Hebrew.

After building the morphological features mappings, we use them to judge the quality of a

given phrase pair in the phrase pivot model. We add two scores Ws and Wt to the log linear

space. Given a source-target phrase pair s̄, t̄ and a word projected alignment a between the source

word positions i = 1, ..., n and the target word positions j = 1, ...,m, Ws and Wt are defined in

equations 7.1 and 7.2. F is the set of morphological features (we focus on GEN, NUM, DET and

POS). Mf is the hand-crafted rules mapping between Arabic and Hebrew feature values of feature

f ∈ F . In case of ambiguity for a given feature; for example, a word’s gender being masculine or

feminine, we use the maximum likelihood value of this feature given the word. MLEf (i) is the

maximum likelihood feature value of feature f for the source word at position i, and MLEf (j) is

the maximum likelihood feature value of feature f for the target word at position j. The maximum

likelihood feature values for Hebrew were computed from the Hebrew side of the training data.

As for Arabic, the maximum likelihood feature values were computed from the Arabic side of the

training data in addition to Arabic Gigaword corpus, which was used in creating the language model

(more details in Section 7.2.4.1).

Ws =
1

|F |
∑
∀f∈F

∑
∀(i,j)∈a

1

n
[(MLEf (i),MLEf (j)) ∈Mf ] (7.1)
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Wt =
1

|F |
∑
∀f∈F

∑
∀(i,j)∈a

1

m
[(MLEf (i),MLEf (j)) ∈Mf ] (7.2)

7.2.2 Induced Morphology Constraints

In this section, we explain our approach in generating morphology constraint features from a given

parallel data between source and target languages. Unlike the rule-based approach we build a trans-

lation model between the source and target morphological features and we use the morphology

translation probabilities as metric to judge a given phrase pair in the pivot phrase table. For the

automatically induced constraints, we jointly model mapping between conjunctions of features at-

tached to aligned words rather than tallying each feature match independently. Writing good manual

rules for such feature conjunction mappings would be more difficult. Table 7.6 shows some exam-

ples of mapping (GEN), number (NUM) and determiner (DET) in Hebrew to their equivalent in

Arabic and their respective bi-directional scores.

Hebrew (H) Arabic (A) PFC(A|H) PFC(H|A)

[Fem+Dual+Det] [Fem+Dual] 0.0006 0.0833

[Fem+Dual+Det] [Fem+Dual+Det] 0.0148 0.3333

[Fem+Dual+Det] [Fem+Singular] [Fem+Dual] 0.0052 0.0833

[Fem+Dual+Det] [Masc+Dual+Det] 0.0047 0.5000

Table 7.6: Examples of induced morphology constraints for (GEN), number (NUM) and determiner

(DET) and their respective scores.

As in rule-based approach, we add two scores Ws and Wt to the log linear space which are

defined in equations 7.3 and 7.4. PFC is the conditional morphology probability of a given feature

combination (FC) value. Similar to rule-based morphology constraints, we resort to the maximum

likelihood value of a feature combination when the values are ambiguous. MLEFC(i) is the maxi-

mum likelihood feature combination (FC) value for the source word at position iwhileMLEFC(j)

is the maximum likelihood feature combination (FC) value for the target word at position j.
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Ws =
1

n

∑
∀(i,j)∈a

PFC(MLEFC(i)|MLEFC(j)) (7.3)

Wt =
1

m

∑
∀(i,j)∈a

PFC(MLEFC(j)|MLEFC(i)) (7.4)

7.2.3 Model Combinations

Since we use parallel data to induce the morphology constraints, it would make sense to measure the

effect of combining (a) the pivot model with added morphology constraints, and (b) the direct model

trained on the parallel data used to induce the morphology constraints. We perform the combination

using Moses’ phrase table combination techniques. Translation options are collected from one table,

and additional options are collected from the other tables. If the same translation option (in terms

of identical input phrase and output phrase) is found in multiple tables, separate translation options

are created for each occurrence, but with different scores [Koehn and Schroeder, 2007]. We show

results over a learning curve in Section 7.2.4.5.

In this section, we present a set of experiments comparing the use of rule-based versus in-

duced morphology constraint features in phrase-pivot SMT as well as model combination to im-

prove Hebrew-Arabic pivot translation quality.

7.2.4 Evaluation

7.2.4.1 Experimental Setup

In our pivoting experiments, we build two SMT models; one model to translate from Hebrew to

English, and another model to translate from English to Arabic. The English-Arabic parallel corpus

is about (≈ 60M words) and is available from LDC5 and GALE6 constrained data. The Hebrew-

English corpus is about (≈ 1M words) and is available from sentence-aligned corpus produced by

5LDC Catalog IDs: LDC2005E83, LDC2006E24, LDC2006E34, LDC2006E85, LDC2006E92, LDC2006G05,

LDC2007E06, LDC2007E101, LDC2007E103, LDC2007E46, LDC2007E86, LDC2008E40, LDC2008E56,

LDC2008G05, LDC2009E16, LDC2009G01.

6Global Autonomous Language Exploitation, or GALE, was a DARPA-funded research project.
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[Tsvetkov and Wintner, 2010]. For the direct Hebrew-Arabic SMT model, we use a TED parallel

corpus of about (≈ 2M words) [Cettolo et al., 2012].

Word alignment is done using GIZA++ [Och and Ney, 2003b]. For Arabic language modeling,

we use 200M words from the Arabic Gigaword Corpus [Graff, 2007] together with the Arabic side

of our training data. We use 5-grams for all language models (LMs) implemented using the SRILM

toolkit [Stolcke, 2002].

All experiments are conducted using the Moses phrase-based SMT system [Koehn et al., 2007b].

We use MERT [Och, 2003b] for decoding weight optimization. Weights are optimized using a tun-

ing set of 517 sentences developed by [Shilon et al., 2010].

We use a maximum phrase length of size 8 across all models. We report results on a Hebrew-

Arabic development set (Dev) of 500 sentence with a single reference and an evaluation set (Test) of

300 sentences with three references developed by [Shilon et al., 2010]. We evaluate using BLEU-4

[Papineni et al., 2002a], METEOR v1.4 [Lavie and Agarwal, 2007] and TER [Snover et al., 2006].

7.2.4.2 Baseline

We compare the performance of adding the connectivity strength features (+Conn) to the phrase

pivoting SMT model (Phrase_Pivot) and building a direct SMT model using all parallel He-Ar

corpus available. The results are presented in Table 7.7. Consistently with our previous results in

Chapter 6.2, the performance of the phrase-pivot model improves with the connectivity strength

features. While the direct system is worse than the phrase pivot model in general, the combination

of both models leads to a high performance gain of 1.5/5.3 BLEU points in Dev/Test over the best

performers of both the direct and phrase-pivot models.

7.2.4.3 Rule-based Morphology Constraints

In this experiment, we show the performance of adding hand-crafted morphology constraints

(+Morph_Rules) to determine the quality of a given phrase pair in the phrase-pivot translation

model. The forth row in Table 7.8 shows that although the rules are based on a one-to-one mapping

between the different morphological features, the translation quality is improved over the baseline

phrase-pivot model by 0.2/0.5 BLEU points in Dev/Test sets.

As expected, the system combination of the pivot model with the direct model improves the
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Model Dev Test

BLEU METEOR TER BLEU METEOR TER

Direct 9.7 23.1 79.3 20.3 33.9 63.5

Phrase_Pivot 9.9 23.6 79.5 20.8 33.4 64.2

Phrase_Pivot+Conn 10.2 23.7 79.0 21.6 34.2 62.3

Direct+Phrase_Pivot+Conn 11.7 27.0 76.0 26.9 39.4 59.7

Table 7.7: Comparing phrase pivoting SMT with connectivity strength features, direct SMT and the

model combination. The results show that the best performer is the model combination in Dev and

Test sets.

overall performance. By adding the hand-crafted morphology constraints, we get a nice gain of

0.7/0.1 BLEU points in Dev/Test sets.

7.2.4.4 Induced Morphology Constraints

In this experiment, we measure the effect of using induced morphology constraints (+Morph_Auto)

on MT quality. The fifth row in Table 7.8 shows that the induced morphology constraints improve

the results over the baseline phrase-pivot model by 0.2/1.7 BLEU points in Dev/Test sets and over

the Rule-based morphology constraints by 1.2 BLEU points in the Test set.

The system combination of the pivot model with the direct model improves the overall perfor-

mance. The model using induced morphological features is the best performer with an increase

in the performance gain by 1.5/0.6 BLEU points in Dev/Test sets. This shows that the benefit we

get from the induced morphology constraints were not diluted when we do the model combination

given the fact that the constraints were induced from the parallel data to start with.

It is important to note here that the induced morphology constraints outperformed the rule-based

constraints across all settings. This shows that the complex morphology constraints extracted from

the parallel data provide knowledge that can not be covered by simple linguistic rules. However,

the simple rule-based approach comes in handy when there is no data between the source and target

languages.
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Model Dev Test

BLEU METEOR TER BLEU METEOR TER

Direct 9.7 23.1 79.3 20.3 33.9 63.5

Phrase_Pivot 9.9 23.6 79.5 20.8 33.4 64.2

Phrase_Pivot+Conn 10.2 23.7 79.0 21.6 34.2 62.3

Phrase_Pivot+Conn+Morph_Rules 10.4 23.7 78.7 22.1 34.7 62.1

Phrase_Pivot+Conn+Morph_Auto 10.4 23.8 78.6 23.3 35.2 61.9

Direct+Phrase_Pivot+Conn 11.7 27.0 76.0 26.9 39.4 59.7

Direct+Phrase_Pivot+Conn+Morph_Rules 12.4 27.4 75.0 27.0 39.6 59.6

Direct+Phrase_Pivot+Conn+Morph_Auto 13.2* 28.7* 73.6* 27.5* 39.9* 58.1*

Table 7.8: Morphology constraints results. The first row is the direct model. From second to

fourth rows are the pivot SMT models with additional morphological constraints features. The last

three rows are the results of system combination between the direct model and the different phrase

pivoting models. (*) marks a statistically significant result against both the direct and phrase-pivot

baseline.

7.2.4.5 Learning Curve

In this experiment, we examine the effect of using less data in inducing morphology constraints

rules and the overall performance when we combine systems. Table 7.9 shows the results on a

learning curve of 100% (2M words), 25% (500K words) and 6.25% (125K words) of the parallel

Hebrew-Arabic corpus.

As expected, The system combination between the direct translation models and the phrase-

pivot translation model leads to an improvement in the translation quality across the learning curve

even when there is small amount of parallel corpora. Despite the weak performance (2.7 BLEU)

of the direct system built on 6.25% of the parallel Hebrew-Arabic corpus, the system combination

leads to 1.4 BLEU points gain.

An interesting observation from the results is that we always get a performance gain from the

induced morphology constrains across all settings. This shows that the system combination helps in
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Parallel Model Dev Test

Data Size Single Combined Single Combined

125K Direct 2.7 n/a 8.4 n/a

Phrase_Pivot+Conn 9.1 10.4 20.1 20.9

Phrase_Pivot+Conn+Morph_Auto 9.2 10.6 20.6 21.3

500K Direct 5.9 n/a 15.1 n/a

Phrase_Pivot+Conn 9.1 10.7 20.1 22.5

Phrase_Pivot+Conn+Morph_Auto 9.7 11.2 20.8 22.8

2M Direct 9.7 n/a 20.3 n/a

Phrase_Pivot+Conn 10.2 11.7 21.6 26.9

Phrase_Pivot+Conn+Morph_Auto 10.4 13.2 23.3 27.5

Table 7.9: Learning curve results of 100% (2M words), 25% (500K words) and 6.25% (125K words)

of the parallel Hebrew-Arabic corpus.

adding more lexical translation choices while the constraints help in a different dimension, which is

selecting the best phrase pairs from the pivot system.

7.2.5 Case Study

In this section we consider an example from our Dev set that captures many of the patterns and

themes in the evaluation. Table 7.10 shows a Hebrew source sentence and its Arabic reference. This

is followed by the output from the pivot system, the direct system, the Phrase_Pivot+Conn+Morph_Auto

system and the combined system.

Two particular aspects should be noted. First is the complementary lexical coverage of the

direct and pivot systems. This is seen in how one of each covers half of the phrase middlemen

and traders. The combined system captures both. Second, the gender, number and tense of the

main verb prove challenging in many ways (and this is an issue for a majority of the sentences

in the Dev set). The Hebrew verb in the present tense is masculine and plural; and naturally fol-

lows the subject. The Arabic reference verb appears at the beginning of the sentence, in which

location it only agrees with the subject in gender (while number is singular). Arabic Verbs in
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Hebrew Source .!Mהמחירי על בפומבי לדבר Mמסרבי Mוהסוחרי Mהמתווכי

the+middlemen and+the+traders refuse[m.p.] to+speak publicly about the+prices

Arabic Reference PAª�B@ 	á« A
	
JÊ«

�
IK
YmÌ'@ PAj.

�
JË @ð ZA¢�ñË@

	
�

	
Q̄K


refuse[m.s.] the+middlemen and+the+traders the+speaking publicly about the+prices

Phrase_Pivot+Conn PAª�B@ 	á« A
	
JÊ«

�
HYj

�
JË @

	
�

	
Q̄K
 !Mוהסוחרי ZA¢�ð

middlemen !Mוהסוחרי refuse[m.s.] the+speaking publicly about the+prices

Direct PAª�B@ úÎ«


CÖÏ @ úÎ«

�
IK
YmÌ'@ @ñ

	
�

	
P̄ PAj.

�
JË @ð !Mהמתווכי

!Mהמתווכי and+the+traders refused[m.p.] the+speaking upon the+public about the+prices

Phrase_Pivot+Conn+ PAª�B@ 	á« A
	
JÊ«

�
HYj

�
JË @

	
àñ

	
�

	
Q̄K
 !Mוהסוחרי ZA¢�ñË@

Morph_Auto the+middlemen !Mוהסוחרי refuse[m.p.] the+speaking publicly about the+prices

Direct+Phrase_Pivot+ PAª�B@ 	á« A
	
JÊ«

�
HYj

�
JË @ @ñ

	
�

	
P̄ PAj.

�
JË @ð ZA¢�ð

Conn+Morph_Auto middlemen and+the+traders refused[m.p.] the+speaking publicly about the+prices

Table 7.10: Translation examples.

SVO order agree in gender and number. All the MT systems we compare leave the verb after the

subject. The direct, Phrase_Pivot+Conn+Morph_Auto, and combination systems get the number

and gender correctly; however, the direct and combined system make the verb tense past. The

Phrase_Pivot+Conn+Morph_Auto example highlights the value of morphology constraints; but the

example points out that they sometimes are hard to evaluate automatically, since there are mor-

phosyntactically allowable forms that do not match the translation references.

7.2.6 Phrase Pivoting Best Setup

To have a complete picture of the best setup for phrase pivoting, we combined the approaches dis-

cussed in Chapter 6 and Chapter 7 to get the maximum gain in translation quality. Approaches

in both chapters complement each other. In Chapter 6, all approaches are language independent

while in Chapter 7, we use linguistic information to improve the quality of the model. We use

the best alignment symmetrization technique in Section 6.3 “GDFA+GDFA_R" in our experiment.

Table 7.11 shows the results of combining all the approaches on Hebrew-Arabic phrase-pivot trans-

lation model. The first row is the direct system output built from parallel data between Hebrew and

Arabic. The second row is the phrase pivoting model output with connectivity scores added to the

model. The last two rows are the results of combining direct model with the phrase-pivot model
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and showing the effect of the induced morphology constraints in the third row and the finally using

the best alignment symmetrization technique in the last row. Unfortunately, we didn’t get a lot of

improvement using alignment symmetrization relaxation and that could be because of the saturation

of the phrase pivot model given the Dev and Test sets.

Model Dev Test

BLEU METEOR TER BLEU METEOR TER

Direct 9.7 23.1 79.3 20.3 33.9 63.5

Phrase_Pivot+Conn 10.2 23.7 79.0 21.6 34.2 62.3

Direct+Phrase_Pivot+Conn+Morph_Auto 13.2 28.7 73.6 27.5 39.9 58.1

Direct+Phrase_Pivot+Conn+Morph_Auto 13.2 28.8 73.4 27.7 40.1 58.1 *

+Align_Symm

Table 7.11: Phrase Pivoting Best Setup on Hebrew-Arabic phrase-pivot translation model.

7.2.7 Conclusions

We presented the use of synchronous morphology constraint features based on hand-crafted rules

compared to rules induced from parallel data to improve the quality of phrase-pivot based SMT.

We show that the two approaches lead to an improvement in the translation quality. The induced

morphology constraints approach is a better performer, however, it relies on the fact there is a paral-

lel corpus between source and target languages. We show positive results on Hebrew-Arabic SMT.

We get 1.5 BLEU points over phrase-pivot baseline and 0.8 BLEU points over system combination

baseline with direct model built from given parallel data.
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Chapter 8

Conclusions

In our research, we worked on improving Pivot-based Statistical Machine Translation for Morpho-

logically Rich Languages with limited resources. We developed a pivoting framework which is

based on constructing two separated SMT systems, Source-Pivot SMT and Pivot-Target; and then

perform phrase-pivoting. We developed several methods to improve each component separately,

and also developed methods to improve the system as the whole targeting of the final pivot SMT

system. Following is a summary of contributions followed by an overall discussion of the thesis.

8.1 Summary of Contributions

The first challenge we targeted in our approaches is data sparsity. The following is a list of our

contributions to solve this challenge.

• Morphological Processing: We explored a space of tokenization schemes and normalization

options. We also examined a set of six detokenization techniques to evaluate the detokenized

and orthographically corrected (enriched) output. Our best setup lead to a significant increase

of BLEU score by 1.3 points for medium models and 1 point for large models.

• Separation between Translation and Morphology Generation: We developed three meth-

ods of modeling morphological Features that can be modeled as part of the core translation

process generated or predicted. Our results suggested that depending on the language, some

morphological features better be part of the core translation process and then predict the most
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problematic feature and then finally do a generation step. Our results outperform the state of

the art factored models and we showed an improvement of 0.9 BLEU point compared to the

baseline.

• Automatic Error Analysis for Morphologically Rich Languages: We developed AMEANA

an open-source tool for error analysis of natural language processing tasks targeting MRLs.

AMEANA produces detailed statistics on morphological errors in the output. It also gen-

erates an oracularly modified version of the output that can be used to measure the effect of

these errors using any evaluation metric. AMEANA is a language independent tool except

that a morphological analyzer must be provided for a given language.

The second challenge we were concerned with is the pivoting process itself. We try to maximize

both precision and recall of the pivoting process through the following approaches.

• Pivoting Recall Maximization: We implemented a language independent technique to im-

prove the recall of the pivot matching by improving the alignment symmetrization method.

Symmetrization is carried out as an optimization process driven by the effectiveness of each

alignment pair with respect to pivoting, and add or remove the word links that can maximize

the pivoting process.

• Pivoting Quality Maximization: We presented two language independent features, source

connectivity score and target connectivity score, to improve the quality of pivot-based SMT.

We showed that these features help improving the overall translation quality and we got an

nice improvements over the baselines for different language pairs.

The third challenge we are concerned with is how to make use of any parallel data between

the source and target languages. We implemented different approaches to improve the pivot SMT

system and methods of combination between the pivot system and the direct system built from the

parallel data.

• Combination of Pivot and Direct Models: We developed a smart technique to combine

pivot and direct models. We maximize the information gain by selecting the relevant portions

of the pivot model that do not interfere with the direct model which is in principal trusted
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more. We showed that the selective combination can lead to a large reduction of the pivot

model without affecting the performance if not improving it.

• Morpho-syntactic Constraints We applied morpho-syntactic constraints between the source

and target languages to improve the translation quality. We compared two methods of gener-

ating the morpho-syntactic constraints. One method is based on hand-crafted rules relying on

our knowledge of the source and target languages; while in the other method, the morphology

constraints are induced from available parallel data between the source and target languages.

Using induced morphology constraints outperformed the handcrafted rules and improved over

our best model from all previous approaches by 0.6 BLEU points (7.2/6.7 BLEU points from

the direct and pivot baselines respectively).

8.2 Discussion

In this thesis, we provided a pivoting framework to translate to and from morphologically rich

languages (MRL) especially in the context of having limited or no parallel corpora between the

source and the target languages. We addressed three main challenges. The first challenge is the

sparsity of data as a result of morphological richness. The second one is maximizing precision and

recall of the pivoting process itself. The last one is making use of any seed data between the source

and the target languages.

In general, our discussed solutions can be applied to any MRL since most of our approaches

are language independent. The few techniques requiring linguistic knowledge or the availability

of morphological analyzers can be easily adapted to any language. In most of our work, we target

Arabic as it is one of the most challenging languages in the field, but we work with other languages;

specifically, Persian and Hebrew.

To address the first challenge of data sparsity, we presented experiments studying a large num-

ber of variables for English-Arabic SMT systems that produce correctly tokenized and enriched

Arabic text. The results show that lemma based alignment leads to a better output quality. Our best

system uses the Penn Arabic Treebank (PATB) tokenization scheme and reduced Arabic word forms

followed by a language-model based joint detokenization and enrichment step.

In another direction, we address these challenges through different modeling methods. In our
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approach, morphological features can be modeled as part of the core translation process mapping

source tokens to target tokens. Alternatively, these features can be generated using target monolin-

gual context as part of a separate generation (or post-translation inflection) step. Finally, the features

can be predicted using both source and target information in a separate step before generation. Our

results show that the generation of fully inflected forms from uninflected lemmas in a purely mono-

lingual setting such as our morphological generation step is very hard – we get only 82.2% BLEU

starting with gold lemmas. Adding different combinations of gold values of the three most problem-

atic morphological features improves the score by over 12% absolute BLEU to a higher performance

ceiling (94.8% BLEU).

Automatically modeling these features at a high accuracy for SMT, however, turns out to be

rather hard. If we consider using them as part of the translation step together with lemmas, we find

that they almost always hurt the end-to-end (translation-generation) MT system except for the DET

feature which improves over an inflected tokenized baseline by about 0.6% BLEU.

Predicting the feature values using an independent supervised learning step that has access to

the English word, POS and syntax features produces accuracy scores ranging in mid to high 80s%.

Comparing the prediction accuracy of GEN, NUM and DET, we find NUM is the easiest to predict,

followed by DET and then GEN. This makes sense given the information provided from English,

which is inflected for NUM, but not GEN.

The results also show that DET, as a single feature, helps more when it is part of the translation

step (30.1 BLEU) compared to being predicted (29.7∼29.8). In both cases, it fares better than

simply leaving determining DET to the generation step (29.5).

Neither GEN nor NUM, as single features, help much (or at all) over the baselines when part

of the translation step or when predicted. However, when both are combined with DET they con-

sistently help only when GEN and NUM are predicted, not translated. It is possible that the lower

performance we see as part of the translation is a product of how we translate: we do not factor

these features in the translation – a direction we plan to consider in the future. We postulate that

the prediction step helps because it has access to more information than used in our translation step,

e.g., source language syntax.

In order to help decide which features to translate, to generate or to predict, we present AMEANA

(Automatic Morphological Error Analysis), an automatic error analysis tool that is designed to iden-
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tify morphological errors in the output of a given system against a gold reference. AMEANA

produces detailed statistics on morphological errors in the output. It also generates an oracularly

modified version of the output that can be used to measure the effect of these errors using any evalu-

ation metric. AMEANA is a language independent tool except that a morphological analyzer must

be provided for a given language.

The second problem that we are concerned with in this thesis is the pivoting process itself. In

the standard phrase-pivoting approach, many phrase pairs between source and target languages are

not generated because of bad matching of pivot phrases. On the other hand, the size of the newly

created pivot phrase table is very large. Moreover, many of the produced phrase pairs are of low

quality which affects the translation choices during decoding and the overall translation quality.

We try to maximize both precision and recall of the pivoting process, and we discuss several

techniques to improve the recall of the pivot matching. One of the techniques works on the level of

the word alignment symmetrization, like the common heuristics for symmetrization. We aim to find

a balance between the intersection and union. But unlike the state of the art heuristics, symmetriza-

tion is carried out as an optimization process driven by the effectiveness of each alignment pair with

respect to pivoting, and add or remove the word links that can maximize the pivoting process. We

showed big jump in BLEU scores on Hebrew-Arabic and Persian-Arabic phrase-pivot SMT. In one

of our best models we reach an improvement of 1.2 BLEU points.

Despite the fact that we miss a lot of matches in pivoting and that we try to improve the recall, we

also need to consider the quality precision of phrase pivoting. One of the manifestations of phrase

pivoting is that the size of the newly created pivot phrase table is very large. Moreover, many of the

produced phrase pairs are of low quality which affects the translation choices during the decoding

and the overall translation quality. We discuss different techniques to determine the quality of the

pivot phrase pairs between the source and the target. In one of the language independent approaches,

we generate different connectivity scores between the source and target phrase pairs based on the

alignment information propagated from the source-pivot and pivot-target systems. These features

were shown to be very effective and consistently improved the translation quality across all systems.

The results show that we get a nice improvement of≈0.6/0.5 BLEU points for both models (Pesrian-

Arabic and Hebrew-Arabic).

The third challenge we are concerned with is how to make use of any parallel data between
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the source and the target languages. We discuss different approaches to improve the pivot SMT

system and methods of the combination between the pivot system and the direct system built from

the parallel data.

In one of the approaches, we introduce morphology constraint scores which are added to the log

linear space of features in order to determine the quality of the pivot phrase pairs. This morphology

constraint scores are based on the connectivity scores. We compare two methods of generating the

morphology constraints. One method is based on hand-crafted rules relying on our knowledge of the

source and target languages; while in the other method, the morphology constraints are induced from

available parallel data between the source and target languages which we also use to build a direct

translation model. We then combine both the pivot and direct models to achieve better coverage

and overall translation quality. We show that the two approaches lead to an improvement in the

translation quality. The induced morphology constraints approach is a better performer, however, it

relies on the fact there is a parallel corpus between source and target languages. We show positive

results on Hebrew-Arabic SMT. We get 1.5 BLEU points over phrase-pivot baseline and 0.8 BLEU

points over system combination baseline with direct model built from given parallel data.

We also discussed applying smart techniques to combine pivot and direct models. We aim

at having a better coverage and overall translation quality. The combination approach needs to

be optimized in order to maximize the information gain. We maximize the information gain by

selecting the relevant portions of the pivot model that do not interfere with the direct model which

is in principal trusted more. The results show that the selective combination can lead to a large

reduction of the pivot model without affecting the performance if not improving it.

8.3 Future Work

There are two directions where we see a space of improvements. One direction is targeting the

main building block which is SMT for morphologically rich languages and the other direction is the

pivoting process itself.

Regarding SMT for morphologically rich languages, we would like to work more of the idea of

separation between translation and generation. We want to investigate the use of system combina-

tion techniques and language modeling approaches that target complex morphology such as factored
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LMs [Bilmes and Kirchhoff, 2003]. We also would like to work on improving the morphological

feature choices for generation. Moreover, we want to explore the idea of retargeting our framework

to post-editing any generic MT system.

Along the same lines of post-editing, we would like to work more on AMEANA. We plan to

convert the tool from just an error analysis to tool into a machine translation metric when the target

language is a morphologically rich language. This may require a lot of tuning for each language

separately but it could a better sense of fluency than the current harsh metrics.

The other direction that we see a big potential for improvement is our work on pivoting. We

would like to explore other features to determine the quality of the produced phrase pairs between

source and target languages, e.g., the number of the pivot phrases used in connecting the source

and target phrase pair and the similarity between these pivot phrases. We also plan to work on

reranking experiments as a post-translation step based on morphosyntactic information between

source and target languages. Another idea with good potential is to work on word reordering be-

tween morphologically rich languages to maintain the relationship between the word order and the

morphosyntactic agreement in the context of phrase pivoting.

In another direction to prune the pivot phrase table, we discuss training a binary classifier on any

available parallel corpus between source and target languages to prune pivot phrase pairs in a way

that is directly related to the translation quality, and can take advantage of several feature functions

that account for different aspects of phrase pair quality.

Taking the problem one level deeper by targeting the alignment models, we aim of using the

alignment framework by [Ganchev et al., 2008; Graça et al., 2010] to incorporate agreement con-

straints to EM training using Posterior Regularization (PR) that aims to incorporate linguistic infor-

mation extracted from the seed data into unsupervised estimation in the form of constraints on the

model’s posteriors.
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