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ABSTRACT

Demand Learning in Two Operations Models

Yunru Han

The rapid advance of information technologies largely facilitated �rms�data-driven decision mak-

ing. Particularly, in operations management practices, �rms could continuously collect information

to re�ne their demand knowledge, and integrate this process into their relevant operational decisions,

e.g. pricing, inventory, and market entry, known as demand learning. Demand learning in complex

business systems is often tangled with complex strategic interactions, thus requiring a deep under-

standing of how it a¤ects the strategic relationship among players in various business setups. This

thesis aims to contribute to the demand-learning literature by studying the strategic interactions in

two di¤erent business relationships, one vertical and the other horizontal.

First, I consider the interactions between a retailer and a supplier in a supply chain subject to

demand censorship (i.e. unobservable lost sales) when the retailer is engaging in demand learning

through dynamic inventory experimentation. I study the supplier�s optimal wholesale prices when the

retailer is in three di¤erent situations, and �nd that the retailer and the supply chain may actually

bene�t from either myopia or censorship in contrast to the existing results, due to the supplier�s di¤er-

ent collaborative or exploitative responses to the retailer�s "willingness to learn". I also identify that,

with demand censorship, the collaborative behavior between the players for information acquisition

may improve the system�s performance.

Second, I study an online retail platform�s learning process and entry policies as well as the

independent seller�s pricing distortion behavior to slow down this process, motivated by Amazon.com�s

unique dual role as both a marketplace and a merchant that allows it to use the transaction data

generated by its third-party sellers to decide if to sell the same product itself. I developed a Bayesian

statistical model for the platform�s demand learning, proposed two types of heuristic entry policies



for the platform owner. The model predicts a pattern of price distortion, and describes the product

o¤ering choices made by the independent seller. These could potentially serve as testable results for

empirical studies.
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Chapter 1

Preamble

The rapid advance of information technologies has provided �rms with a tremendous amount of data,

which can be used to improve decision making. Data-driven decision making has recently attracted

great interests from both academia and industry. An important stream of research in Operations

Management has focused on the issue of demand learning, i.e., collecting demand observations to con-

tinuously �ne tune a demand model. And this constantly improving demand model is then integrated

with an optimization algorithm to drive improvements in a wide range of operational decisions such

as pricing, inventory, and market entry decisions.

Demand learning in complex business systems is often tangled with complex strategic interactions.

For example, if a retailer invests to improve its understanding of the market demand, the supplier

may choose to join the e¤ort by e.g. lowering the wholesale price, or to exploit the retailer�s incentive

to demand-learn by raising the wholesale price. Strategic interactions in demand learning do not just

occur in supply chains, they also happen in horizontal relationships. For example, the independent

sellers doing business on an online platform may want to disrupt the platform owner�s e¤ort to discover

the hot-selling items (and start selling these items itself). Therefore, a thorough understanding of

demand learning in a business system is impossible without a careful study of the strategic interactions

among the business players in the system.
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This thesis aims to contribute to the demand-learning literature by studying the strategic interac-

tions in two di¤erent business relationships, one vertical and the other horizontal.

1.1 A supply chain subject to demand censorship

In the �rst project, I study the interactions between a retailer and a supplier in a supply chain subject

to demand censorship when the retailer is engaged in demand learning through dynamic inventory

experimentation. Unobserved lost sales due to retail stockouts, known as the demand censorship e¤ect,

could cause self-sustaining bias in demand forecasts. Researchers proposed inventory experimentation

to "learn" the real demand at the retail level, yet there is little understanding of the strategic e¤ects

of this type of demand learning in a supply chain context despite the growing trends to involve the

entire supply chain in information acquisition and business analytics.

I develop a stylized model of a Stackelberg game over two periods to study the supplier�s optimal

wholesale price decision when the retailer acts as a newsvendor in three di¤erent situations: fully

observed demand ("O"), a myopic retailer under demand censorship ("M"), and a forward-looking

retailer under demand censorship ("F").

In the existing literature without considering the supplier�s decision (i.e., a single-location model

focusing on the retailer), the main observation has been that the retailer�s performance is the best

under �O�, the second best under �F�, and the worst under �M�. But when we consider the supplier�s

wholesale pricing decision, the picture starts to change. Speci�cally, the retailer may actually bene�t

from either myopia or censorship. This happens either because 1) the supplier increases the wholesale

price to exploit the forward-looking retailer�s willingness to learn, making the myopic retailer relatively

better o¤; or 2) the supplier decreases the wholesale price to help the retailer overcome the censorship

e¤ect (for both the �M�and �F�cases), in which case the retailer bene�ts from censorship and some-

times achieves a performance that is better than that under �O�. On the other hand, the supply chain�s

performance may also bene�t from either myopia or censorship, because the double-marginalization

e¤ect (i.e., decentralization ine¢ ciency) can sometimes be mitigated due to the presence of myopia or

2



censorship. If the supplier is allowed to modify the wholesale price in response to the updated demand

information, it is possible that sometimes the retailer wants to "create censorship" so as to prevent

the supplier from choosing an unfavorable wholesale price. It is also demonstrated that buy-back

contracts can still coordinate the supply chain with demand censorship.

These results contribute to the literature on demand censorship, supply chain coordination, and

strategic information acquisition. Our �ndings shed light on the retailer-supplier interactions for

information acquisition in more general settings. For example, when the supplier has a stronger

bargaining power and enjoys a higher share of the total surplus, she is more willing to contribute

to information acquisition, whereas when the supplier is the weaker party in the relationship, she

tends to take advantage of the retailer�s e¤ort for information acquisition. Interestingly, with demand

censorship, the collaborative behavior between the players for information acquisition may improve the

system�s performance. In other words, sometimes the lack of information could provide an incentive

for supply chain integration.

1.2 An e-commerce platform

The second project is motivated by Amazon.com, a unique e-commerce platform serving both as

a marketplace and a merchant. There are a large number of third-party sellers doing business on

Amazon.com, and their transaction data (e.g., demand and price) is readily available to the platform

owner. This information enables the platform owner to decide which market to enter, which product

to sell, etc. In other words, the platform owner bene�ts both from the volume of business of the third-

party sellers (commission income) as well as from the information these businesses have generated.

How could the platform deploy its analytical and computing capabilities to manage the "learning and

entry" process in a massive scale? How would the third-party sellers respond to the threat of market

entry from the platform owner? How does this response a¤ect the platform owner�s entry decision?

To address the above questions, I consider a simple model of an online retail platform. There is

one independent seller (IS), selling a single product on the platform. The IS knows the parameters
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of the demand function for the product, but the platform owner (PO) only has a prior probability

distribution over these parameters. The study focuses on the strategic interactions between the PO

and the IS. The PO announces an entry policy. Under this entry threat, the IS chooses a retail price.

For each period, the PO observes the realized demand and updates her distribution over the demand

parameters. As soon as the entry condition is met, the PO enters the market, driving out the IS.

I developed a Bayesian statistical model for the PO�s demand learning, proposed two types of

heuristic entry policies for the PO, and studied the IS�s optimal pricing decision to manipulate the

PO�s learning process and thus postponing the PO�s entry time.

One of the key results is the characterization of the IS�s optimal pricing decision. Using the optimal

price when there is no entry threat from the PO (i.e., the PO commits to no entry) as a benchmark, we

�nd that the IS sets a higher price (than the benchmark price) when the price -sensitivity parameter

of the demand function is large, and sets a lower price if the price-sensitivity parameter is small. The

purpose of this is to slow down the PO�s learning process and delay the entry. I have also characterized

what the �best�products should look like for the IS: the maximum pro�ts from these products under

the hypothetical scenario of no entry threat from the PO should be in the mid-range. In other words,

the IS should avoid the extreme product choices. I have also found that the PO might be better o¤

forgoing the entry option, and this happens only when the PO�s prior distribution has small variances

(and the prior means alone do not support entry). On the other hand, if the prior variances are high,

signaling the PO�s "openness to learn," the PO tends to want to retain the entry option. Finally,

numerical examples show that the PO�s pro�t loss can reach 10% due to the IS�s pricing distortion

behavior (relative to the optimal price without entry threat).

The model provides a characterization of the PO�s learning ad entry process, predicts a pattern

of price distortion, and describes the product o¤ering choices made by the independent seller. These

could potentially serve as testable results for empirical studies.
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Chapter 2

On the Value of Demand Learning

in a Supply Chain with Demand

Censorship

2.1 Introduction

Unobserved lost sales due to retail stockouts, known as the demand censorship e¤ect, has attracted

considerable attention from retail practitioners and academics, for it could cause self-sustaining bias in

demand forecasts for both the retailer and the supplier. In view of the di¢ culty to accurately account

for this nearly undetectable informational loss, researchers proposed inventory experimentation to

"learn" the real demand at the retail level. However, there has been little understanding of the

strategic e¤ects of demand censorship and demand learning in retail supply chains. The growing

trends to involve the entire supply chain in information acquisition and business analytics driven

by customer demand require concrete managerial insights into the strategic interactions between the

supply chain players for this matter.
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In this paper we studied the strategic implications of demand learning under demand censorship

through dynamic inventory experimentation in a supply chain. We developed a stylized supply chain

model with one supplier and one retailer subject to demand censorship, interacting under a constant

wholesale price contract set by the supplier. We analyze the supplier�s optimal wholesale price and

the supply chain performances in three situations with di¤erent information structures and retailer�s

inventory policies: with fully observed demand ("O"), with myopic retailer under demand censorship

("M"), and with forward-looking retailer under demand censorship ("F").

Our key �ndings are summarized as two phenomena on the supply chain e¢ ciency and the retailer�s

pro�ts across the three situations, in contrast to the existing results without considering the supplier�s

strategic decisions. First, under demand censorship, the supply chain and the retailer could bene�t

from having or being a "myopic" retailer as opposed to the "forward-looking" retailer, due to the

supplier�s voluntary o¤er of lower wholesale price to induce "learning" from the myopic retailer.

Second, with demand censorship, the supply chain and the retailer could be better o¤ than in the

situation with fully observed demand, for the supplier and the retailer�s would invest to overcome

censorship through lower wholesale price or higher orders. Extensive numerical studies show that these

phenomena arising in the decentralized systems have signi�cant impact that the current studies fail to

account for by simply resorting to the two informational ine¢ ciencies of censorship and the retailer�s

myopia. These observations are also valid in general setup with continuous demand distributions.

By including the decentralization ine¢ ciency in supply chains, we attribute the two phenomena

above to the interplay between double-marginalization and the informational ine¢ ciencies. Namely,

the presence of information ine¢ ciencies (censorship and myopia) provides incentive for the supply

chain players to invest in information acquisition, which alleviates their strategic con�icts despite of

the simple contract structure. The analysis on conditions for these phenomena and their quantitative

magnitude identi�es the opportunity to improve supply chain e¢ ciency and the supply chain players�

pro�ts in practice with certain environment. Moreover, it also sheds light on the strategic concerns

for the retailer to adopt lost sales tracking system and inventory experimentation policy in practice,

as well as the supplier counter-actions to such behaviors.
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Stockouts are nearly unavoidable in retail practice for almost all product categories (grocery,

electronics, and fashion etc.), and both online and o ine channels. Persistent stockouts have multi-

fold e¤ects on retailers�bottom line. Most directly, it signi�es failure to ful�ll the potential demand

and lost sales. According to Gruen & Corsten (2007)[1] , "the worldwide average level of OOS

(out-of-stock) in the FMCG industry amounts to about 8 percent", which "translates to a 4 percent

reduction in the average retailer�s earnings per share", and "put $7 to $12 billion of sales at play in

the supermarket industry"[2]. Given the generally thin operating margin for supermarkets and alike1 ,

such losses are substantial for retailer�s pro�tability. The impact of retail stockouts also involve other

operational and strategic concerns for retailers and suppliers, such as jeopardizing brand and store

image, hampering sales and promotional e¤ort, and encouraging trial or purchases from competitors.

Yet it is often less recognized that stockouts "create a ripple e¤ect by distorting demand and leading to

inaccurate forecasts"[1], for the lost sales are usually neither reported by the customers nor recorded

by the personnel, resulting in signi�cant information loss for demand forecasts, known as "demand

censorship".

The general approach to mitigate the demand censorship e¤ect is to estimate and count in the

potential lost sales during stockouts, based on historical sales data. This means is supported by re-

search on various estimation techniques, and the retailer�s rich data storage and powerful statistical

toolkits enhance its viability. However, for new, seasonal, temporary, and fashionable products

etc., adequate data accumulation is oftentimes lacked. In these cases, practitioners admit that "cur-

rently, no techniques exist to reliably and validly estimate demand under unobserved lost sales"[1],

and they adopt "an iterative process that increases order sizes by a factor determined by the item�s

sales velocity and volatility", infused with "trial-and-error" spirit. Such inventory experimentation

spurs the research of demand learning, focusing on tactical characterization of the "exploitation vs.

exploration" trade-o¤ therein. As most such practices take place at the retail level, these studies solely

take the retailer�s perspective, without considering its impact on the suppliers and their response.

Arguably, upon stockouts of the product in need, customers more often opt for alternative brands

1The operating margin for large-scale supermarkets are generally no higher than 5%.
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(or products) rather than di¤erent stores, which somewhat compensates the retailer�s loss. Therefore,

demand censorship leading to long-term distorted orders from the suppliers could have important im-

plications on their performance. This is partly re�ected by the research sponsored by some suppliers

on retail stockouts, such as Coca-Cola and P&G. These concerns are further stressed by two industry

trends highlighting the supplier�s involvement in information acquisition. The �rst is demand-driven

supply chain integration to capture or even create the ever-changing customer needs, with the promi-

nent example of fast fashion industry[3]. The second is more diverse formats of business analytics,

inter- or intra-organization, with external or internal data sources, and centralized or decentralized

institutions[5]. These observations raise a series of research questions on the strategic e¤ects of de-

mand learning under the aforementioned demand censorship in retail supply chains. How would the

supplier respond to censorship e¤ect and learning opportunities? Would she collaborate with the

retailer to facilitate learning or exploiting the re�ned demand information owing to the retailer�s ef-

fort? How would the retailer counter-act to the supplier�s policies? Which party among the two has

a stronger incentive to invest in demand learning in various business environments? These important

issues motivate and are addressed in this paper.

The rest of the paper would be organized as follows. We �rst present a literature review in the rest

of this section. Then we introduce the model setup to formulate and solve the two players�optimal

policies, based on which we will present our major �ndings of the two counter-intuitive phenomena in

the decentralized systems in contrast to the existing results without taking account of the supplier�s

strategic decisions. We also conduct extensive numerical studies to support and complement the

analytical results, and discuss how other contractual forms a¤ect the results.

2.1.1 Literature Review

This paper contributes to and is related to the literatures on demand censorship, supply chain coor-

dination, information acquisition in distribution channels, and strategic experimentation. The above

research topics have developed mostly independent of each other, so we brie�y review each strand and

discuss how they are integrated in this paper.
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First and foremost, our work stems from the literature of demand censorship at the retail level by

modeling inventory experimentation. Here we refer to Chen & Mersereau (2013) [13]for a thorough

and up-to-date survey for this literature as well as the related empirical and computational work.

Based on a few early analytical work to recognize and understand demand censorship e¤ect, Lariviere

& Porteus (1999)[8] developed a tractable Bayesian inventory control model to account for inventory

experimentation, presenting the key insight of "ordering more than �myopic�to learn the demand".

Subsequent studies further generalize this result in di¤erent setups, with general continuos [10] and

discrete demand distribution[11], perishable and non-perishable product [11], single and multiple

products [11], and under Bayesian and non-Bayesian framework [12] etc.. Notably, among these

studies, Besbes and Muharremoglu (2013)[12] characterized and compared the impact of demand

censorship with continuous and discrete demand distribution, and pointed out that the granularity of

demand information and forecast plays a critical role on the magnitude of censorship e¤ect. Though

conducted in a non-Bayesian framework that is di¤erent from ours, it directed us to adopt the Bernoulli

demand system to emphasize the censorship e¤ect.

The literature above unexceptionally takes the retailer�s perspective to study the tactical e¤ect

of censorship and learning. So far, the only attempt to explore demand censorship and learning

problem in a supply chain setting was from Bisi et al. (2004)[14], comparing the inventory decisions

and supply chain e¢ ciency of the centralized systems (with or without information pooling from two

retailers) and the decentralized system. This manuscript didn�t include an equilibrium analysis for

the self-interested players, though it also touched on the implementation of the desired outcomes

in decentralized systems using contracts, leaving out the critical incentive issues for the proposed

dynamic contract from a game theoretical perspective. Therefore, we consider our paper as the �rst

endeavor to investigate the strategic interactions in supply chain with the demand censorship and

demand learning through inventory experimentation.

Secondly, from the perspective of supply chain management, there exists a vast literature on con-

tracting and information sharing for supply chain coordination. We refer to Cachon (2003)[20] and

Chen (2003)[19] for comprehensive surveys of this literature. Based the notion established by these
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research, our paper well recognizes the value to "integrate the evolving demand forecast into the

planning decisions" and to resolve the incentive con�icts arising from various information structure

and contract settings across supply chains. In particular, among this literature, Lariviere & Porteus

(2001) set groundwork for our study on the relationship between the optimal wholesale price selling

to the newsvendor, in particular, the associated double-marginalization e¤ect, and the customer de-

mand distribution. However, very few (if not none) of these papers explicitly consider endogenous

information acquisition of supply chain players and how it is at a play in the operational decisions

and strategic interactions.

Besides the papers discussed in the two surveys [20][19], an ensuing branch of literature on col-

laborative planning, forecasting, and replenishment (CPFR) ([21]) further delved into improving and

sharing the evolving demand forecast between the supply chain players, and we refer to Aviv (2004)

[22] for a brief survey of this literature.[24] Most notably, a recent paper by Kurtulus et al. (2012)[23]

studied the supply chain players�investment in demand forecasting resulting from the strategic interac-

tions under certain contracts. Taking such investment as a means of "costly information acquisition",

it addresses a similar strategic information acquisition problem. However in their model, the in-

formative demand signals are collected independent of the operational decisions, as opposed to via

experimentation with operational instruments. This leads to the fundamental di¤erence from the de-

mand learning literature using "Bandit problem" framework with the "exploitation vs. exploration"

trade-o¤ attached to the operations decisions. We believe that the latter is close to the real data

collection practice and helps to examine integrated business analytics policy.

In the marketing literature, there is also remarkable interest in information transmission in dis-

tribution channels. Among other work on this topic, Guo (2009)[25] considered a static model with

explicit information acquisition cost in a vertical relationship with a supplier, and presents results on

retailer�s incentive information acquisition and sharing with the supplier resonating with our results.

Finally, we like to refer to a growing body of literature in microeconomics on dynamic contracts with

information acquisition. A number of these work adopt the "Bandit problem" theoretical framework,

and we refer to Bergemann & Välimäki (2006)[27] for a brief survey of its development and applications
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in economic literature. This literature generally consider a principal-agent setup with risky projects,

and study the principal�s optimal contract to induce favorable level of experimentation from the agent

on payo¤-related information on the project. Potential incentive con�icts pertain to the agent�s e¤ort

on experimentation per se and the desirability of information. Examples include but not limit to the

relationship between venture capitalist and entrepreneur on a start-up[28], pharmaceutical company

and scientists on drug tests[29], and the regulator and bank management on the distressed assets[51].

To a certain extent, we view the current paper as an application of the economic model of Bandit

problem in an operations management context. We start with a simple setup without asymmetric

information or hidden action from the agent (retailer), and a static contract framework to catch the

�rst order e¤ect of strategic experimentation. We would study the corresponding dynamic contract

problem in a following project, and discover interesting results on dynamic incentives. Also to catch

the strategic e¤ect purely due to experimentation, we consider a simple model without general oper-

ational concerns, such as capacity constraint, production lead time, inventory carry-over, mid-period

replenishment chance, or economic concerns of complicated contract forms and asymmetric informa-

tion as other study generally do. This allows us to develop a tractable model and provide basic insights

into this issue.

2.2 The Model

We �rst present the model primitives needed to formulate the retailer�s inventory problem and the

supplier�s optimal wholesale price problem, including the demand system, the cost structure, and the

time line of events. Then we describe the information structures of di¤erent situations.

2.2.1 Model Primitives

We consider a stylized model of a supply chain with one supplier (she) and one retailer (he), selling a

single perishable product over two periods. We model the interactions between the supplier and the

retailer as a Stackelberg game of symmetric information, with the supplier as a Stackelberg leader to
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set a constant wholesale price and the retailer follows as a newsvendor.

The demand system

For tractability, we assume that the customer demandD follows a Bernoulli distribution of two possible

values:
�
DL; DH

	
(0 � DL < DH): The probability of having a low demand realization at period

t � 0 is a random variable Pt := P
�
Dt = DL

�
that follows a Beta prior known by the two players2 :

Pt � Beta(�t; �t); �t > 0; �t > 0:

At period t; the demand follows a compound Bernoulli distribution with the expected success proba-

bility

P
�
Dt = DLj�t; �t

�
=

�t
�t + �t

:= pt:

And the demand uncertainty of period t can be measured by the coe¢ cient of variation of Dt,

CV (Dtj�t; �t) =
p
pt(1� pt)
1
1�� � pt

; � :=
DL

DH
2 [0; 1);

which is higher with a lower �; representing a high demand variability, and with pt close to 1
2 ; repre-

senting a high information ambiguity.

The cost structure

The supply chain has a classic setup with the retailer as the newsvendor. The unit production cost

c, salvage value v, retail price r are exogenous and satisfy the condition 0 � v � c � r. The unit

wholesale price w 2 [c; r] is set by the supplier. Therefore, the supply chain�s critical ratio is:

s :=
r � c
r � v 2 [0; 1];

2Beta distribution is the Bayesian conjugate distribution of Bernoulli distribution.
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and the retailer�s critical ratio is:

k(w) :=
r � w
r � v 2 [0; s]: (2.1)

The supply chain�s critical ratio s (also known as the service level) determines the supply chain�s

performances. Similarly, k(w) captures the retailer�s cost structure, so we use k (w) as the "price

index" based on the one-to-one mapping between k (w) and the wholesale price w.

Event Timeline

Through the selling season of two periods, the supply chain players are �rstly informed of the prior

demand information f�1; �1g, then the supplier sets the constant wholesale price w accordingly for

the entire selling season. At each ensuing period t 2 f1; 2g, the interactions between the retailer and

the supplier unfold as follows:

1. The retailer sets the inventory level yt based on f�t; �tg and orders from the supplier, and the

production is instantly completed and delivered by the supplier at a unit cost c, then the supplier

collects a revenue of w � yt from the retailer;

2. The customer demand Dt and the sales xt = minfyt; Dtg are realized, and the retailer collects

a newsvendor revenue r � x1 + v � fyt �Dtg+;

3. The demand information updates to
�
�t+1; �t+1

	
.

The information availability and belief updating process depend on the supply chain�s information

structure that we describe next.

2.2.2 The Information Structures

Following the existing literature on demand censorship, we consider two information structures of the

supply chain: "fully observed demand" (O) and with demand censorship.
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Fully observed demand

With fully observed demand, the supplier and the retailer observe the demand realization D1 at the

�rst period. With the Bernoulli-Beta conjugate demand distribution, the posterior updates in the

second period in a Bayesian fashion:

8>><>>:
�2 = �1 + 1fD1 = DHg

�2 = �1 + 1fD1 = DLg
:

Demand censorship

With demand censorship, the two supply chain players only observe the sales realization as opposed

to the demand realization. This means that, if the demand D1 exceeds the inventory level y1 at

the �rst period (D1 � y1), the players observe the �stock-out� event 1fD1 � y1g and the sales

x1 = minfy1; D1g instead of D1. In this case the belief updating in the second period is a¤ected by

the �rst period�s inventory level with the two possible cases:

1. if y1 � DL,

8>><>>:
�2 = �1

�2 = �1

;

2. if y1 > DL,

8>><>>:
�2 = �1 + 1fD1 � y1g

�2 = �1 + 1fD1 = DLg
:

Under this belief updating rule, the �rst period�s inventory level y1 has a discontinuous e¤ect on

the posterior belief f�2; �2g. When y1 � DL, a "stock-out" always occurs regardless of the demand

realization D1, so there is no new information becoming available, and no updating. While if y1 > DL,

a �stock-out� fD1 � y1(> DL)g indicates that D1 = DH for sure as if there�s no censorship e¤ect.

Therefore any y1 > DL reveals "full information" while any y1 � DL reveals "no information", so

the retailer could achieve "nearly costless information acquisition" if he sets y1 = DL + " with an

in�nitesimal ":
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To prevent this unrealistic result and rationalize the retailer�s decision in this case, we set a

lowest inventory level for the retailer to uncover the high demand realization D1 = DH , de�ned as

DL + "; " := � �
�
DH �DL

�
; � 2 (0; 1] : � is the "cost of learning" and re�ects the reality that in

practice orders are placed in batch size instead of an arbitrary amount. In the analysis hereafter, we

focus on the case of � = 1; meaning that the retailer has to order up to DH to "learn" the demand

information3 . In this case the belief updating process boils down to the following two cases:

1. if y1 < DH ,

8>><>>:
�2 = �1

�2 = �1

;

2. if y1 � DH ,

8>><>>:
�2 = �1 + 1fD1 � y1g

�2 = �1 + 1fD1 = DLg
:

In this case, the expected success probability of the second period p2 = E(P j�2; �2) could only

take three values, corresponding to the cases of "no updating", "high demand realization", and "low

demand realization" respectively:

8>>>><>>>>:
if y1 < DH ; p1 :=

�1
�1+�1

;

if y1 = DH ; D1 = DH ; p
2
:= �1

�1+�1+1
;

if y1 = DH ; D1 = DL; �p2 :=
�1+1

�1+�1+1
;

:

We can de�ne I := �1 + �1 and re-write
n
p
2
; �p2

o
as follows:

p
2
= p1 �

�
1� 1

I + 1

�
= p1 �

p1
I + 1

(2.2)

�p2 = p1 �
�
1� 1

I + 1

�
+

1

I + 1
= p1 + (1� p1) �

1

I + 1

The Beta prior f�1; �1g
0
s information e¤ect can be fully captured by fp1; Ig ;where the expected

success rate p1 represents the prior pessimism, and the number of accurate observations I characterizes

3Clearly there�s no bene�t from ordering higher than DH for the purpose of learning:
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the prior information richness. With a �xed I;
n
p
2
; �p2

o
both increase with p1; and with �xed p1; the

di¤erence between p
2
or �p2 and p1 decrease with I. So a lower information richness I could lead

to a higher belief change over time and adds to the overall demand uncertainty besides the static

demand uncertainty captured by the coe¢ cient of variation of each period. Hereafter, for dispositional

simplicity, we omit the subscripts in f�1; �1g ; and denote it as f�; �g :

2.3 Optimization

In this section, we formulate and analyze the retailer�s inventory problem and the supplier�s wholesale

price problem to solve the Stackelberg game in a backward induction. The simple Bernoulli demand

distribution allows us to analytically solve the optimal policies and characterize the solutions using a

"case" solution system. Using this "case" solution system, we can also conduct comparative statics

studies and compare the optimal policies in three situations of di¤erent information structures and

decision pro�les to examine the impact of demand censorship and learning in a decentralized supply

chain.

2.3.1 The Retailer�s Inventory Problem

As the �rst step of the backward induction, we solve the retailer�s optimal inventory policies for

any given wholesale price w. We consider three di¤erent decision pro�les of the retailer: "fully

observed demand" (O), "myopic under demand censorship" (M), and "forward-looking under demand

censorship" (F).

The retailer�s inventory problem with a given w is a variation of the known inventory experimen-

tation problem studied in the existing literature ([8][10][11]). It is shown by [12]in a non-parameter

setting that demand censorship e¤ect is more pronounced with discrete demand distribution or coarser

information. So the Bernoulli-Beta setup also stresses the censorship e¤ect besides providing tractabil-

ity.
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Fully Observed Demand

With fully observed demand, the inventory level of earlier periods has no information value for future

decisions. As there is no inventory carry-over for the perishable product, the retailer�s inventory

problems are decoupled for each period and could be solved independently.

At t 2 f1; 2g, based on the posterior demand information f�t; �tg, the retailer sets the inventory

level yOt to optimize his newsvendor pro�t of that period:

VR;t(ytj�t; �t) = E[r �minfDt; ytg+ v � fyt �Dtg+ � w � ytj�t; �t]:

This classic newsvendor problem has the following solution:

yOt (k(w)j�t; �t) =

8>><>>:
DL pt � k (w)

DH pt < k (w)

: (2.3)

The retailer�s optimal inventory decision of each period could take two possible values coinciding the

Bernoulli demand distribution�s discrete support. The policy is determined by the relation between

the retailer�s cost structure denoted by the price index k (w) and the demand level denoted by the

posterior information f�t; �tg :

The supplier�s optimal wholesale price decision is made up-front before the belief updates, so from

the supplier�s perspective, the retailer�s inventory policy of two periods is aggregated into four cases:

Solution 1 (Retailer, "O") With fully observed demand, the retailer�s optimal inventory policy�
yO1 ; y

O
2 jk(w); �; �

	
is as follows:

Case 1 �p2 < k (w) (< 1), yO1 = DH ; yO2 = DH

Case 2 p1 < k (w) � �p2, yO1 = DH ; yO2 =

8>><>>:
DH D1 = DH

DL D1 = DL
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Case 3 p
2
< k (w) � p1, yO1 = DL; yO2 =

8>><>>:
DH D1 = DH

DL D1 = DL

Case 4 (0 <)k (w) � p
2
, yO1 = DL; yO2 = DL

This "case system" serves to characterize the retailer�s inventory policies and the supplier�s optimal

wholesale price policies in all three situations due to their common discrete structure.

Myopic Retailer with Censored Demand

We pointed out in 2.2.2 that with demand censorship, the �rst period inventory level y1 a¤ects the

ensuing belief updating process, therefore has an "information value". Depending on the retailer�s

approach to this information value, his inventory policy takes two forms. The inventory policy is

�forward-looking�(F)4 if the retailer takes account of y1�s information value to make the �rst period�s

inventory decision; and conversely the policy is �myopic�(M) if he ignores this information value and

only optimizes the payo¤ of the �rst period5 .

For the myopic retailer, his �rst period inventory decision is the same as in "O", i.e. with fully

observed demand, given the same prior information and wholesale price, since he only optimizes the

pro�t of the �rst period:

yM1 = yO1 ;8k (w) ; f�; �g:

According to the information updating processes under censorship de�ned in 2.2.2, when y1 = DL

there is no new information becoming available, i.e. no updating. In this case, at the second period,

the retailer is faced with the same demand information f�2; �2g = f�1; �1g and the same wholesale

price w as in the �rst period. This implies that for the myopic retailer, the following case is not

feasible:
4We replace the term �learning� often used in the literature with �forward looking� to characterize the retailer�s

behavior in this situation. In general, we consider "learning" as the action of exerting e¤ort for information acquisition,
so it could occur in the supplier behavior in a supply chain setting, even when the retailer is "myopic".

5The "myopic" retailer also "passively" updates his belief and correctly reckons in the censorship e¤ect.
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Case 3 p
2
< k � p1, y1 = DL; y2 =

8>><>>:
DH D1 = DH

DL D1 = DL

;

as this case is merged with

Case 4 (0 <)k � p
2
, y1 = DL; y2 = DL;

to become a new case:

Case 4� (0 <)k � p1, yM1 = DL; yM2 = DL:

This argument is formalized as the myopic retailer�s optimal inventory policy :

Solution 2 (Retailer, "M") Under demand censorship, the myopic retailer�s optimal inventory pol-

icy
�
yM1 ; y

M
2 jk(w); �; �

	
is:

Case 1 �p2 < k (w) (< 1), yM1 = DH ; yM2 = DH

Case 2 p1 < k (w) � �p2, yM1 = DH ; yM2 =

8>><>>:
DH D1 = DH

DL D1 = DL

Case 4� (0 <)k (w) � p1, yM1 = DL; yM2 = DL

With discrete demand distribution, the retailer�s optimal inventory policy in "M" is only di¤erent

from the policy in "O" under the conditions of Case 3, i.e. p
2
< k (w) � p1. And in this case the

myopic retailer makes lower orders than the retailer with fully observed demand, a result consistent

with the existing results. For ignoring y01s information value under censorship, the myopic retailer

incurs a loss of:

�VR;2 = �
�
ED1j�1;�1 [VR;2(y

O
2 j�1; �1; yO1 ; D1)]� ED1j�1;�1 [VR;2(y

M
2 j�1; �1; yM1 ; D1)]

	
= �C� � (1� �) (k(w)� p2)(1� p1) > 0�

� 2 (0; 1] is the discount factor, C� := (r � v) �DH
�
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known as y01s "information value" under censorship.

Forward-Looking Retailer with Censored Demand

To optimize his total discounted pro�t over two periods, the forward-looking retailer takes account of

y01s information value and solves the following dynamic program for the �rst period�s inventory level

yF1
6 :

Problem 1 (Retailer, "F�)

yF1 (k (w) j�1; �1) = argmax
y12[0;DL][[DL+";DH ]

V FR (y1j�1; �1)

V FR (y1j�1; �1) = VR;1(y1j�1; �1) + �ED1jy1 [VR;2(y
O
2 j�2; �2)]

(p
2
< k (w) � p1)

In Problem 1 the feasible set for y1 is modi�ed to be [0; DL][
�
DL + ";DH

�
as discussed in 2.2.2,

with each interval corresponding to one of the two options, "no-learning" and "learning". When

� := "
DH�DL = 1; the second interval collapse to

�
DH

	
; so the feasible set can be further modi�ed

as
�
DL; DH

	
as there is no bene�t from ordering lower than DL: In this case the forward-looking

retailer chooses from the following two options:

Case 2� yF1 = DH ; yF2 =

8>><>>:
DH D1 = DH

DL D1 = DL

(learning);

Case 4 yF1 = DL; yF2 = DL(non-learning).

The choice criterion between these two options boils down to the following threshold7 :

pF2 :=
p1 + �(1� p1) � p2
1 + �(1� p1)

2 (p
2
; p1)

6When k(w) =2 (p
2
; p1], the retailer�s inventory problem is not in�uenced by the censorship e¤ect, so the solution is the

same in all three situations. In addition, the retailer�s optimal inventory decision at the second period is yO2 (�2; �2; k (w))
as shown by backward induction.

7Under censorship, Case 3 and Case 4 merge as Case 4�, so there is no "Case 3" in this solution.
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Solution 3 (Retailer, "F") Under demand censorship, the "forward-looking" retailer�s inventory

policy fyF1 ; yF2 jk(w); �; �g is as follows:

Proposition 1 �

Case 1 �p2 < k (w) (< 1), yF1 = DH ; yF2 = DH

Case 2� pF2 < k (w) � �p2, yF1 = DH ; yF2 =

8>><>>:
DH D1 = DH

DL D1 = DL

Case 4� (0 <)k (w) � pF2 , y
F
1 = DL; yF2 = DL.

Solution 3 shows that under censorship, the forward-looking retailer�s trade-o¤ on the costly in-

formation acquisition is represented by the price index pF2 2
�
p
2
; p1

�
. Given the prior information

f�; �g and for k (w) 2
�
p
2
; p1

�
, "learning" only takes place when the wholesale price w is low enough

so that k (w) 2
�
pF2 ; p1

�
, otherwise the censorship e¤ect cannot be prevented if the wholesale price w

is so high that k (w) 2
�
p
2
; pF2

�
.

From another perspective, for a given wholesale price w, "learning" takes place if the interval�
pF2 ; p1

�
includes the price index k (w). Since the forward-looking retailer�s order quantities are already

�xed as in Case 2�, we measure her "willingness to learn" by the width of this "learning interval":

p1 � pF2 =
1

I + 1
� � (1� p1) p1
1 + � (1� p1)

:

Clearly 1
I+1 decreases with the prior information richness I and

�(1�p1)p1
1+�(1�p1) increases with � and is

concave with p1 as shown in Figure 2.1.

Therefore the retailer has a higher willingness to learn when there is scarce prior information

(i.e. I = � + � is low), the prior information is vague (i.e. p1 is in a medium region around

pAmb1 (�) = 1+��
p
1+�

� ), or the retailer is more patient (i.e. � is high).

So far we solved the retailer�s inventory problem with the Bernoulli-Beta demand system in three

situations ("O", "M", and "F"). The results are consistent with the existing literature�s ([10][8][11])

conclusion that "the forward-looking retailer orders more than the myopic retailer to learn". Yet with
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Figure 2.1: The Prior Information Ambiguity
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discrete demand distribution, the decision on information acquisition under censorship amounts to

the binary choice of "learning or not" as opposed to the continuous decision of "learning how much".

2.3.2 The Supplier�s Wholesale Price Problem

Based on the retailer�s optimal inventory policy, we proceed to examine the supplier�s optimal whole-

sale policy. We modify the "case" solution system introduced in 2.3.1 to characterize the wholesale

price problem and policies, in particular through partitions of the parameter space induced by the

optimal policies.

The Case Solution System

Based on the retailer�s optimal inventory policies in three situations, we formulate the supplier�s

optimal wholesale price problem as follows: (� 2 fO;M;Fg)

Problem 2

w�(�; �) = argmax
w2[c;r)

V �S (k(w)j�; �)

V �S (k(w)j�; �) = (w � c)[y�1(k(w)j�; �) + �ED1j�;� [y
�
2(k(w)j�; �; y�1 ; D1)]

:

Since the retailer�s inventory policies are discrete with respect to the price index k (w) in all three

situations (in particular, fy�1 ; y�2g are step functions w.r.t. k (w)), the supplier�s payo¤ functions V �S
are also discontinuous with respect to k (w). For example, with fully observed demand ("O");8k(w) 2

(p1; �p2] results in the same retailer�s decision:

fyO1 = DH ; yO2 =

8>><>>:
DL D1 = DL

DH D1 = DH

g:

So the supplier could set any w 2 [w(�p2); w (p1)) to induce the same order quantities, and clearly she

prefers the highest possible w. With slightly abuse of notations, we de�ne the "highest" wholesale
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price in this interval as w (p1)
� corresponding to a price index k (w) = p+1 though it is not achievable.

Therefore in "O", the supplier�s optimal wholesale price decision is limited to the following four cases,

each consisting of one �desirable�wholesale price wi, the induced order quantities fyO1;i; yO2;ig; and the

supplier�s pro�t V OS;i:

Case 1 k(w1) = �p+2 , y
O
1;1 = DH ; yO2;1 = DH ,

V OS;1 = C� � (1 + �)(s� p2)

Case 2 k(w2) = p+1 , y
O
1;2 = DH ; yO2;2 =

8>><>>:
DH D1 = DH

DL D1 = DL

V OS;2 = C� � [(1 + �)� �p1 (1� �)] (s� p1)

Case 3 k(w3) = p+
2
, yO1;3 = DL; yO2;3 =

8>><>>:
DH D1 = DH

DL D1 = DL

V OS;3 = C� � [�(1 + �) + �(1� p1) (1� �)] � (s� p2)

Case 4 k(w4) = 0+, yO1;4 = DL; yO2;4 = DL

V OS;4 = C� � s�(1 + �)

The supplier�s optimal wholesale price decision in "O" boils down to the choice from these four

cases, and it could be characterized by a partition of the primitive parameter space8

� := fs 2 (0; 1]; � > 0; � > 0; � 2 (0; 1]; � 2 [0; 1)g

as shown in Solution 4:

Solution 4 With fully observed demand, the supplier sets the wholesale price wO as follows:
8For expositional simplicity, we aggregate all the cost parameters c; v; r in s; for s fully represents their impact on

the retailer and supplier�s policies. The relationship between
�
DL; DH

	
is summarized by � too.
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Case 1 when � 2 �O1 , k(wO) = �p+2 , y
O
1 = DH ; yO2 = DH

Case 2 when � 2 �O2 , k(wO) = p+1 , y
O
1 = DH ; yO2 =

8>><>>:
DH D1 = DH

DL D1 = DL

Case 3 when � 2 �O3 , k(wO) = p+
2
, yO1 = DL; yO2 =

8>><>>:
DH D1 = DH

DL D1 = DL

Case 4 when � 2 �O4 , k(wO) = 0+, yO1 = DL; yO2 = DL

�Oi := f� 2 �jV OS;i(�) � V OS;j(�); j 6= ig; i = 1; :::4: 9

Similarly, we apply this approach to all three situations and express the supplier�s optimal wholesale

price decision with the corresponding partition of the parameter space
�
�Mi

	
i=1;2;40

and
�
�Fi
	
i=1;20;40

:

Solution 5 With a myopic retailer under demand censorship, the supplier sets the wholesale price

wM as follows:

Case 1 when � 2 �M1 , k(wM ) = �p+2 , y
M
1 = DH ; yM2 = DH

Case 2 when � 2 �M2 , k(wM ) = p+1 , y
M
1 = DH ; yM2 =

8>><>>:
DH D1 = DH

DL D1 = DL

Case 4� when � 2 �M40 , k(wM ) = 0+, yM1 = DL; yM2 = DL

Solution 6 With a forward-looking retailer under demand censorship, the supplier sets the wholesale

price wF as follows:

Case 1 when � 2 �F1 , k(wF ) = �p+2 , y
F
1 = DH ; yF2 = DH

Case 2� when � 2 �F2 , k(wF ) = pF+2 , yF1 = DH ; yF2 =

8>><>>:
DH D1 = DH

DL D1 = DL

Case 4� when � 2 �F40 , k(wF ) = 0+, yF1 = DL; yF2 = DL

9When there is a tie between multiple "cases", we assign � to the set �Oi with the smallest i 2 f1; :::; 4g .
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Comparative Statics and Characterization of the Wholesale Price Policies

We identi�ed the partitions of � derived from the optimal wholesale prices in three situations, yet

these expressions can not elucidate the optimal policies�properties. To describe these subsets, we �rst

characterize the optimal wholesale prices�relationship with two critical primitive parameters fs; �g,

representing the supply chain�s cost structure and demand variability respectively.

Lemma 1 8� 2 fO;M;Fg; w�(�) decreases with s and increases with �:

Similar to Lemma 1, [15] also studied the relationship between the supplier�s optimal wholesale

prices and the supply chain�s properties, with a stationary and exogenous demand distribution. It

argues that within a linear distribution family, the optimal wholesale price to sell to a newsvendor

decreases with the demand�s coe¢ cient of variation. Despite the evolving and endogenous demand

information in our setting, Lemma 1 presents a consistent result, as the coe¢ cient of variation of any

period decrease with � regardless of the retailer�s decision pro�le.

w�s monotonicity w.r.t. fs; �g enables us to project � onto the fs; �g�space, and generate the

associated partitions of s�interval and ��interval to represent the corresponding partitions of � :

De�nition 2 De�ne

S�i (��s) : = fs 2 (0; 1]j(s; �; �; �; �) 2 ��i g;��s := f�; �; �; �g

%�i (���) : = f� 2 [0; 1)j(s; �; �; �; �) 2 ��i g;��� := fs; �; �; �g

s:t: s 2 S�i (��s) () � 2 ��i () � 2 %�i (���):

For more detailed characterization of fS�i gi=1;:::4and f%�i gi=1;:::4 ; we refer to 1.1. We demonstrate

the induced partitions of fs; �g�space with f� = 6; � = 4; � = 1g in Figure 2.2:

By endogenizing the supplier�s optimal wholesale prices, we introduced double-marginalization

to the supply chain. In general, double-marginalization occurs when a wholesale price w is higher

than the unit production cost c and induces a lower inventory level from the retailer than the system
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Figure 2.2: The "Cases" of Supplier�s Optimal Wholesale Price Decisions
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optimum. In 1.1, we verify the understocking in the three situations fO;M;Fg caused by double-

marginalization by comparing to the optimal inventory levels of their respective centralized systems

fOC;MC;FCg10 .

2.4 Myopia and Censorship

With the retailer and the supplier�s optimal policies, we could explicitly measure and compare the

pro�ts of the retailer, the supplier, and the entire supply chain in the three situations. The existing

literature on demand censorship and learning ([8][10][12]) compared the retailer�s pro�ts in the three

situations under exogenous wholesale prices and identi�ed the following inequalities

V OR � V FR � VMR ; (2.4)

which are attributed to two types of informational ine¢ ciencies for the retailer:

1. Censorship: V OR � max
�
V FR ; V

M
R

	
;

10The centralized systems� inventory problems are similar to the retailers inventory problems in their respective
decentralized system with exogeneously �xed wholesale prices.
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2. Myopia: V FR � VMR :

In contrast, by incorporating the supplier�s strategic wholesale price decisions, we observe that

demand censorship and the retailer�s myopia do not necessarily cause losses to the retailer or the

supply chain. We �rst present the conditions causing these counter-intuitive phenomena. Then we

provide explanations and discuss their implications through descriptions of these conditions.

2.4.1 Impact on the Retailer�s Pro�t

By endogenizing the supplier�s wholesale price decision, we allow the supplier to respond to the two

informational ine¢ ciencies by leveraging the wholesale price. We identify the supplier�s "exploitative"

and "collaborative" behavior in response to the retailer�s willingness to learn, that lead to the retailer�s

bene�t from "myopia" and "censorship".

Two Counter-Intuitive Phenomena for the Retailer�s Pro�ts

In contrast to the inequalities in (2.4), we �nd that the retailer�s pro�t could be higher under demand

censorship or his own myopia under certain conditions, shown in the following inequalities:

Bene�t from "censorship": max
�
V FR ; V

M
R

	
> V OR (2.5)

Bene�t from "myopia": VMR > V FR :

Proposition 3 identi�es the conditions for these two counter-intuitive phenomena through the parti-

tions induced by the supplier�s optimal wholesale prices in the three situations (see 1.1):

Proposition 3 The necessary and su¢ cient conditions for the two counter-intuitive phenomena are:

Observation Condition

VMR > V FR
�
�M2 [�M1

�
\�F2 := �MF

R

max
�
VMR ; V FR

	
:= V CensorR > V OR

�
�F2 [�F1

�
\
�
�O3 [�O4

�
:= �Censor;OR
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We refer to 1.2 for the proof of Proposition 3. In a nutshell, the retailer�s pro�ts are closely tied

to his order quantities, so we prove it by comparing order quantities from di¤erent situations under

the same parameter setting � using the "case" solution system.

The supplier�s Information Acquisition and the Retailer�s Price Sensitivity

The two informational ine¢ ciencies are associated with the supply chain�s informational structures,

so they not only in�uence the retailer but also the entire supply chain�s performance. In their pres-

ence, the supplier leverages the wholesale price to respond, speci�cally to the retailer�s di¤erent price

sensitivities in the three situations.

With discrete demand distribution and discontinuous inventory policies, the retailer�s price elas-

ticities are not well-de�ned. With slight abuse of de�nition, we consider the retailer�s one-sided "price

sensitivity" at the demand curves� discontinuous points k (w) =
n
p
2
; pF2 ; p1

o
(see Figure 2.3) and

observe that:

1. For k (w) = p
2
; the retailer in "M" and "F" has a lower sensitivity to price drop (or k�s increase)

than in "O"11 ;

2. For k (w) = pF2 ; the retailer in "F" has a higher sensitivity to price drop (or k�s increase) than

in "O" (and "M");

3. For k (w) = p1; the retailer in "F" has a lower sensitivity to price increase (or k�s drop) than in

"O" (and "M"), and the retailer in "M" has a higher sensitivity to price drop (or k�s increase)

than in "O" (and "F").

The analysis above shows that there is no uniform ordering of the retailer�s price sensitivities

across the three situations. Yet we notice that the forward-looking retailer presents a "willingness

to learn" by his lower sensitivity to price increase at k (w) = p1 and higher sensitivity to price

drop at k (w) = pF2
12 . Consequently, when � 2 �MF

R ; to exploit the forward-looking retailer�s lower
11This also means that the retailer in "O" has a higher sensitivity to price increase. Similar equivalence apply to the

other observations.
12And similarly the myopic retailer presents a "information stickiness" through his lower sensitivity to price drop at

k (w) = p
2
and higher sensitivity to price drop and k (w) = p1.
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Figure 2.3: The Retailer�s Price (index)-Demand Curves in Three Situations
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sensitivity to price increase, the supplier sets higher wholesale price wF (> wM for k
�
wM

�
> p+1 ) in

"F" without causing censorship. This results in the forward-looking retailer�s relative loss compared

to the myopic retailer. Similarly, when � 2 �Censor;OR ; to accommodate the forward-looking (and

the myopic) retailer�s higher sensitivity to price drop, the supplier sets lower price wF (< wO when

k
�
wF
�
> pF2 )) and w

M (< wO when k
�
wO
�
> p1) to induce higher order quantities to overcome

censorship and thus higher retailer pro�ts in "F" and "M" than in "O".

These two phenomena capture the supplier�s di¤erent responses to the retailer�s "willingness to

learn"13 . We refer to the �rst as the supplier�s "exploitative" behavior, when the forward-looking

retailer�s "learning" cost is relatively low and the supplier takes advantage of his willingness to learn;

and the latter as the supplier�s "collaborative" behavior, when the censorship e¤ect is too costly for

the retailer to overcome independently (in either "M" or "F"), and the supplier o¤ers lower wholesale

price to assist the retailer as an information acquisition behavior. These two behaviors result in the

retailer�s bene�ts from "myopia" and "censorship" respectively.

Characterizations of the Two Phenomena�s Conditions

To characterize the conditions of the two phenomena, we project �MF
R and �Censor;OR onto the

fs; �g�space. Figure 2.4 demonstrates the conditions for these two phenomena under di¤erent prim-

itive parameter settings in the fs; �g�space. We argue that the two phenomena only occur with high

demand variability and service level. We also observe that the supplier is more powerful in a supply

chain of lower service level s, thus has the incentive and capability to collaborate in information acqui-

sition; while being less powerful in a supply chain of higher service level s, the supplier is incentivized

to exploit the retailer�s higher willingness to learn.

We de�ne three thresholds
n
s�; �MF�

R ; �Cen;O�R

o
14 as follows to illustrate the conditions for the two

13The literature in CPFR and strategic experimentation[?] also discussed similar "substitutive" and "complementary"
relationships between di¤erent players�investment in information acquisition.
14s� is the highest possible s for the two phenomena to occur.
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Figure 2.4: Condition for the Retailer�s Bene�t from Myopia or Censorship

I � (1 + �) =�p1
0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

s
Conditions f or VR

M>VR
F , Ty pe 1

ΘMF
R

sMF
R,1(0+)

sMF
R,2(0+)=1 ρMF*

R

0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conditions f or VR

Cen>VR
O, Ty pe 1

ρ

s

ΘR
Cen,O

ρCen,O*
R

sR,1
Cen,O(0+)

sR,2
Cen,O(0+)

I > (1 + �) =�p1
0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conditions f or VR

M>VR
F , Ty pe 2

ρ

s

ΘMF
R

sMF
R,2(0+)(<1)

sMF
R,1(0+)

ρMF*
R

0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conditions f or VR

Cen>VR
O, Ty pe 2

ρ

s
ΘR

Cen,O

sR,1
Cen,O(0+)

sR,2
Cen,O(0+)

ρCen,O*
R

I > (1 + �) =�p1; s
� < 1

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conditions f or VR

M>VR
F , Ty pe 3

ρ

s

ΘMF
R

s*

ρMF*
R

sMF
R,2(0+)(<1)

sMF
R,1(0+)

0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

s

Conditions f or VR
Cen>VR

O, Ty pe 3

ΘR
Cen,O

s*

sR,1
Cen,O(0+)

sR,2
Cen,O(0+)

ρCen,O*
R =ρMF*

R

32



phenomena not to occur.

s� : = min

(
�p1�p2p

F
2

�p1�p2 �
�
�p2 � pF2

�
(1 + �)

; 1

)

�MF�
R : = 1�max

8<: 1 + �

�p1 +
s�[1+�(1�p1)]

pF2

;min

(
1 + �

�p1 +
s�[1+�(1�p1)]

p1

;
�p2
s�
; 1

)9=;
�Censor;O�R : = 1�min

8<: 1 + �

�p1 +
s�[1+�(1�p1)]

pF2

;
�p2
s�
; 1

9=;
Lemma 2 1. When s � p1 or � � �MF�

R ; VMR � V FR

2. When s � pF2 or � � �Censor;O�R ; V FR � V OR

Lemma 2 shows that the two phenomena never occur when s is too low or � is too high, and�
p1; p

F
2

	
are the lowest points of the s�interval while

n
�MF�
R ; �Censor;O�R

o
are the right-most points

of the ��interval for the two phenomena to occur. One could observe these boundaries in Figure 2.4

for the highlighted regions only lie at the upper-left corners of the fs; �g space. We refer to ?? for

the proof of Lemma 2. In a nutshell, we express the lower-right boundaries of �MF
R and �Censor;OR in

the fs; �g space as � functions of s:
n
�MF
R;2 (s) ; �

Censor;O
R;2 (s)

o
15 ; and locate the two ends of these two

boundaries as the lowest/left-most and highest/right-most points of the regions.

Intuitively, the retailer has low willingness to learn when the supply chain�s demand variability

is low (corresponding to high �), and when the supply chain�s service level is low (corresponding to

low s), as in the latter case the supply is intrinsically limited and the retailer has very low bargaining

power. Therefore there is little incentive for the supplier to leverage the wholesale price for higher

pro�ts either.

In practice, we observe that there is little attention to censorship e¤ect of functional products

([18]) with stable demand corresponding to a high �. Also we notice that many �ash sale websites for

luxury fashion (e.g. Gilt and Rue La La) are often faced with signi�cant censorship e¤ect due to their

15Similarly,
n
�MF
R;1 (s) ; �

Censor;O
R;1 (s)

o
refer to the left boundaries of �MF

R and �Censor;OR ; as functions of s:
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short selling period (see [4]), however the stringent supply from luxury fashion suppliers corresponding

to low s limits the retailer�s ability and the supplier�s incentive to overcome censorship.

From Figure 2.4, one can notice a "lower-left to upper-right" trend in the highlighted regions. To

analytically characterize this pattern, we de�ne
�
sMF
R;1 (�) ; s

MF
R;2 (�)

�
and

�
sCen;OR;1 (�) ; sCensor;OR;2 (�)

i
as

follows:

For 8� 2
�
0; �MF�

R

�
; s 2

�
sMF
R;1 (�) ; s

MF
R;2 (�)

�
() wM < wF () VMR > V FR

For 8� 2
�
0; �Censor;O�R

i
; s 2

�
sCensor;OR;1 (�) ; sCensor;OR;2 (�)

i
() wF < wO () V FR > V OR

Corollary 1
n
sMF
R;1 (�) ; s

MF
R;2 (�) ; s

Censor;O
R;1 (�) ; sCensor;OR;2 (�)

o
increase with �:

Corollary 1 shows that, as the demand variability decreases, i.e. � increases, it takes higher service

levels s for the two phenomena to take place16 . [15]�s results show that demand uncertainty and the

supply chain�s service level have substitutive e¤ects on the supplier�s pro�t split. For instance, the

supplier get a higher proportion with a lower demand uncertainty, corresponding to higher �; or with

a lower service level s: So a higher service level o¤sets the increasing bargaining power of the supplier

induced by a higher �; to provide su¢ cient incentive for the supplier to leverage the wholesale price

for information acquisition.

Extreme Value Study for Prior Information�s Impact

By projecting �MF
R and �Censor;OR onto the fs; �g-space, we studied how the two counter-intuitive

phenomena of the retailer�s pro�t depend on the supply chain�s intrinsic properties. To further de-

lineate the prior informationf�; �g�s impact, we examine the conditions for the two phenomena in an

extreme case of high demand variability, i.e.�! 0+17 . We �rst explicate these conditions as follows:

Proposition 4 When �! 0+

16We also notice that the width of SMF
R (�) := sMF

R;2 (�)�sMF
R;1 (�) and S

Cen;O
R (�) := sCen;OR;2 (�)�sCen;OR;1 (�) decrease

with �;so the severity of the two phenomena of the retailer�s pro�ts decrease with �:
17 Intuitively, a higher discount factor � amplies the forward-looking behaviors of the supplier and the retailer, and

the two phenomena: So we simply assumes � is high enough in the analysis hereafter.
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1. �
sMF
R;1 (�) ; s

MF
R;2 (�)

�
:= SMF

R

�
0+
�
=

 
p1;min

(�
�p2 � pF2

�
(1 + �)

�p1
+ pF2 ; 1

)#

2. �
sCensor;OR;1 (�) ; sCensor;OR;2 (�)

i
:= SCensor;OR

�
0+
�
=
�
pF2 ; p1 [1 + � (�p2 � p1)]

�
Since the retailer�s bene�ts from censorship and myopia are proportionate to � thus negligible in

magnitude in this case, we measure the two phenomena�s impact by the width of their conditions in

the s�interval SMF
R (0+) and SCensor;OR (0+), and study the prior information�s e¤ect on them through

the information richness I and the optimism (pessimism) p118 :

Corollary 2 1. The width of SMF
R (0+) decreases in I and p1;

2. The width of SCen;OR (0+) decreases I; increases with p1 2
�
0; pCensor;O (�)

�
and decreases with

p1 2
�
pCensor;O (�) ; 1

�
19 ;

Corollary 2 shows that both exploitative and collaborative behaviors diminish as the prior infor-

mation gets richer, i.e. I increases, for the information value reduces in this case and the retailer and

the supplier�s incentive for information acquisition also decrease. Yet the prior information pessimism

p1 has di¤erent e¤ects on the two types of behaviors. The supplier�s exploitative behavior diminish as

p1 grows, i.e. the prior information gets more pessimistic, since in this case the retailer�s willingness to

learn decreases. In contrast, the supplier�s collaborative behavior is more pronounced with ambiguous

prior information, and is maximized at p1 = pCensor;O1 � 0:53: Intuitively, the retailer�s willingness

to learn is high with a more optimistic demand information and so does the supplier�s; while the

collaborative behavior occurs when both the retailer and the supplier have high willingness to learn

with ambiguous prior information corresponding to a medium value of p1:

We also have the following observations regarding the locations of SMF
R (0+) and SCensor;OR (0+):

18The di¤erence in the retailer�s pro�ts concerning the two comparisons are less measurable.
19pCensor;O (�) is the unique solution in (0; 1) for the following equation

�2�2p3 + 5� (� + 1) p2 � 4 (� + 1)2 p+ (� + 1) (� + 2) = 0:

and pCensor;O (�) 2 (0:532; 0:535) for � 2 (0:9; 0:999) :
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1.

8><>:
pF2 < p1

p1 [1 + � (�p2 � p1)] < min
�
(�p2 � pF2 )(1 + �)

�p1
+ pF2 ; 1

�
2. SMF

R (0+) = (p1; 1] ()
(�p2 � pF2 )(1 + �)

�p1
+ pF2 � 1 () I � 1+�

�p1

The observation above �rst show the supplier�s exploitative behavior requires a higher service

level s than the collaborative behavior, as the two ends of the interval SMF
R (0+) are higher than

those of SCensor;OR (0+) respectively: A higher service level s caused by a low overage cost indicates

a lower learning cost for the retailer and thus a higher willingness to learn of his. And in this case,

the supplier is less powerful and thus more incentivized to exploit the retailer�s high willingness to

learn. In contrast, a lower service level s implies a high learning cost for the retailer, and induces a

censorship e¤ect entailing a loss for the entire supply chain. In this case the supplier is more powerful,

thus and incentivized and capable to collaborate in learning, in which case she is essentially taking

the responsibility to integrate the information acquisition e¤ort of the supply chain. Moreover, even

with very low �; the two phenomena (in particular the bene�t from myopia) does not necessarily

occur with very high s. The exception occurs with I > 1+�
�p1

; and s 2
�
(�p2 � pF2 )(1 + �)

�p1
+ pF2 ; 1

�
when

� ! 0+: Intuitively, when prior information is rich and s is very high, the retailer con�dently places

high orders even under high wholesale price, so the supplier has little power to create the concern of

censorship e¤ect.

2.4.2 Impact on the Supplier�s Pro�t

Similarly, we could compare the supplier�s pro�ts in the three situations based on the optimal wholesale

price and order policy solutions, and make the following conclusion.

Lemma 3 1. VMs � V Os ; V
M
s � V Fs

2. V Fs > V Os () s 2 SFOS := SF20 \
�
SO3 \

�
0;min

�
p1 +

(1+�)�(p1�p
2
)

[1+�(1�p1)](1��) ; 1

���
Lemma 3 shows that, the supplier is always worse o¤ with a myopic retailer. However, she may

bene�t from the forward-looking retailer under censorship compared to with fully observed demand.
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Then taking account of the result on the retailer�s pro�t in Proposition 3, censorship can be Pareto-

improving for the supply chain with a forward-looking retailer when s 2 SFOS \ SCen;OR :In particular

we could specify the region with high demand variability, which is exactly the condition for the supply

chain to bene�t from censorship:

Proposition 5 When � ! 0+; Censorship could be pareto-improving with a forward-looking retailer

when

s 2 (p1; p1 [1 + � (�p2 � p1)]] = SCen;O;

whose width decreases with I;increases with p1 2
�
0; 12
�
and decreases with p1 2

�
1
2 ; 1
�
:

This result of Proposition 5 shows that the presence of censorship could pareto-improve the two

player�s pro�t (and thus the supply chain pro�t) with a forward-looking retailer. In this situation, the

retailer�s willingness to learn triggers the supplier�s collaborative behavior for information acquisition,

leading to reduction of double-marginalization that o¤sets the loss due to censorship, leading to higher

pro�ts for both players. This largely contradicts with our previous understanding of censorship as an

information ine¢ ciency. We also observe that this phenomena is mostly pronounced with scarce and

ambiguous prior information, corresponding to very high demand uncertainty.

2.4.3 Impact on the Supply Chain�s Pro�t

By incorporating the supplier�s strategic decision in response to the retailer�s inventory policies, we

also introduced decentralization ine¢ ciency of the supply chain, which takes the form of double-

marginalization under a constant wholesale price contract. In the presence of the two informational

ine¢ ciencies, the severity of double-marginalization varies across the three situations and from di¤er-

ent parameter settings. We attribute the di¤erences in the supply chain�s pro�ts in the three situations

to such interplay between double-marginalization and the two informational ine¢ ciencies.
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Two Counter-Intuitive Phenomena for the Supply Chain�s Pro�ts

Similar to studies on the retailer�s pro�ts, we identify two phenomena for the supply chain�s pro�t

summarized by the following inequalities20 :

Bene�t from "censorship": max
�
V F ; VM

	
> V O

Bene�t from "myopia": VM > V F :

Proposition 6 characterizes the conditions for these two counter-intuitive phenomena, by referring

to partitions of � induced by the supplier�s optimal wholesale prices in the three situations and the

optimal order quantities in their respective centralized systems fOC;MC;FCg :

Proposition 6 The necessary and su¢ cient conditions for the two counter-intuitive phenomena are:

Observation Condition

VM > V F �M1 \�F2 := �MF

max
�
VM ; V F

	
> V O

�
�F1 [�F2

�
\
�
�O3 [�O4

�
n
�
�F2 \�O3 \�OC3

�
:= �Censro;O

By comparing the results of Proposition 3 and Proposition 6, one may immediately notice that

�MF � �MF
R ;�Censro;O � �Censro;OR :

In a nutshell, the retailer�s bene�t from the two informational ine¢ ciencies need to high enough to

o¤set the supplier�s losses to su¢ ce a net bene�t for the entire supply chain, thus it requires stronger

conditions for the supply chain�s two phenomena.

The supplier�s information acquisition and double-marginalization

We argue that the two informational ine¢ ciencies not only a¤ect the retailer�s pro�ts but also the

entire supply chain�s performance. So we can adapt the inequalities in ?? to re�ect the centralized
20Though the inequalities in 2.4 are concerning the retailer�s pro�t.
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Table 2.1: Three Ine¢ ciencies in Supply Chains

V OC
censorshipz}|{
� V FC

myopiaz}|{
� VMC

l l l g double-
marginalization

V O ? V F ? VM

supply chains�pro�ts a¤ected by the two informational ine¢ ciencies:

V OC � V FC � VMC : (2.6)

We identi�ed the decentralization ine¢ ciency�s existence in the form of double-marginalization as

shown by 1.1. We lay out the structure of the supply chains�three ine¢ ciencies accordingly in Table

2.1:

The di¤erent ordering between
�
V O; VM ; V F

	
under various parameter settings is driven by dif-

ferent double-marginalization levels in the three situations. If we represent double-marginalization�s

severity in the three situations by the ratio V �

V �C ; � 2 fO;M;Fg ; the two phenomena�s occurrence

implies the following inequalities:

VM (�) > V F (�)) VM (�)

VMC (�)
>

V F (�)

V FC (�)
(2.7)

max
�
VM (�) ; V F (�)

	
> V O (�)) max

�
VM (�)

VMC (�)
;
V F (�)

V FC (�)

�
>

V O (�)

V OC (�)
:

The inequalities in (2.7) show that upon the two phenomena�s occurrence, the mitigated double-

marginalization e¤ect o¤sets the two informational ine¢ ciencies and results in higher supply chain

pro�ts in the presence of censorship and myopia.

The severity of double-marginalization is governed by the retailer�s order quantities, so indirectly

determined by the supplier�s wholesale price decision, which also serves as her instrument for infor-

mation acquisition21 . When the supplier lowers (or raises) the wholesale price in response to the

21The CPFR literature[23] also aknowledged similar e¤ects: "Our �ndings underline that under the non-coordination
contract, improved information as as result of CF has the added bene�t of countering the adverse e¤ects of double-
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informational ine¢ ciencies, and induces higher (or lower) order quantities from the retailer, the miti-

gation (or exacerbation) of double-marginalization o¤sets the informational ine¢ ciencies (or the lack

of them) and leads to a higher (or lower) supply chain pro�t than in other situations under the same

parameter setting.

Characterization of the Two Phenomena on the Supply Chain Pro�ts

We �rst characterize the conditions for the two phenomena of the supply chain by projecting �MF

and �Censor;O onto the fs; �g�space. Figure 2.522 demonstrates these observations with di¤erent

prior information:

Similarly, we again observe from Figure 2.5 that the two phenomena for thes supply chain�s pro�t

only occur (i.e. the shaded regions) with low � and high s: We formalize this observation by charac-

terizing the conditions for the two phenomena not to take place, and de�ne

�MF� : = 1�max
(
(1 + �) (�p2 � p1)
�p1 (s� � p1)

;
�p2
s�
;

1 + �

�p1 +
s�[1+�(1�p1)]

p1

)

%Censor;O� : = 1�min

8<:max
8<:min

8<: 1 + �

�p1 +
s[�(1�p1)+1]

pF2

;
�p2
s�

9=; ;
p1
s�

9=; ; 1

9=; ;

and have the following results:

Lemma 4 1. When I � 1+�
�p1

� 1; or s � (�p2�p1)(1+�)
�p1

+ p1; or � � �MF�; VM � V F

2. When s � p1; or � � �Censor;O�; V F � V O

Similar to Lemma 2, Lemma 4 shows that the two phenomena do not occur with too low demand

variability, i.e. high �, or su¢ ciently low service level s. Moreover, the supply chain�s bene�t from

myopia, aka VM > V F ; does not occur with too scarce or optimistic prior information, i.e. I � 1+�
�p1
�1.

In this case, the supplier�s lower wholesale price in "M" does not su¢ ce to induce strictly higher order

marginalization in addition to reducing the cost of supply-demand mismatch. Hence, when the ine¢ ciency arising from
double-marginalization is high, collaborative forecasting can be highly e¤ective in countering it and delivering value for
both parties."
22The upper-left corner is vacant as we show later when I � 1+�

�p1
; VM � V F ;so the condition is empty.
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Figure 2.5: Condition for Supply Chain�s Bene�t from Myopia or Censorship
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quantities from the myopic retailer than from the foreward-looking retailer (though censorship is

overcome), so the myopic retailer�s bene�t is purely o¤set by the supplier�s loss and the supply chain

has no net bene�t.

We de�ne
�
sMF
1 (�) ; sMF

2 (�)
�
and

�
sCen;O1 (�) ; sCen;O2 (�)

i
as follows:

For 8� 2
�
0; �MF�� ; s 2 �sMF

1 (�) ; sMF
2 (�)

�
() VM > V F ;

For 8� 2
�
0; �Censor;O�

�
; s 2

�
sCensor;O1 (�) ; sCensor;O2 (�)

i
() V F > V O;

and use them to characterize the trend and areas of �MF and �Censor;O :

Corollary 3
n
sMF
1 (�) ; sMF

2 (�) ; sCen;O1 (�) ; sCen;O2 (�)
o
increase with �:

Corollary 3 shows that �MF and �Censor;O also follow a lower-left to upper-right trend on the

fs; �g�space, a result similar to Corollary 1.

Extreme Value Study of Double Marginalization and Two Phenomena

Double-marginalization in supply chains takes e¤ect when understocking occurs in the decentralized

system. To examine the prior information�s impact on double-marginalization in the three situations,

we analyze the retailer�s understocking levels in the extreme case of �! 0+; and decompose it across

the two periods. We attribute di¤erence in double-marginalization between the three situations to the

mitigation of �rst period understocking in the presence of censorship and the exacerbation of second

period understocking with the forward-looking retailer�s willingness to learn.

With � ! 0+ , we �rst study conditions for double-marginalization to occur in each of the two

periods with fully observed demand (i.e. "O") by comparing the order quantities in the decentralized

and centralized systems. When � ! 0+; the conditions boil down to where s falls. Corresponding

to understocking in each period, we identify one s�interval marked by the prior and denote them as

Region 1 and 2 as shown in Table 2.2 23 :

23We ignore the double-marginalization e¤ect that does not result in loss of e¢ ciency, when the wholesale prices are
higher than the production cost (de�ned as double-marginalization) but not causing understocking in the decentralized
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Table 2.2: Understocking in "O" with High Demand Variability
Understocking Region 1: Second Period Region 2: First Period

s� interval
h
�p2;minf (�p2�p1)(1+�)�p1

+ p1; 1g
�

[p1; p1 [1 + � (�p2 � p1)])�
yOC1;2

	 �
DH ; DH

	 �
DH ;

DH

DL

�
�
yO1;2
	 �

DH ;
DH

DL

� �
DL;

DH

DL

�
Width min

n
(�p2�p1)[1+�(1�p1)]

�p1
; 1� �p2

o
�p1 (�p2 � p1)

Loss of E¢ ciency �p1(s��p2)
(1+�)(s�p1)

s�p1
(1+�)(s�p1)��p1(s��p2)

The two intervals represent conditions for understocking of the �rst or the second period. Similarly

we could identify the understocking regions in the situations of "M" and "F" as in Table 2.3.

Table 2.3: Understocking in "M" and "F" with High Demand Variability
Region 1: Second Period "M" "F"

s� interval
h
�p2;minf (�p2�p1)(1+�)�p1

+ p1; 1g
� h

�p2;minf (�p2�p
F
2 )(1+�)
�p1

+ pF2 ; 1g
�n

y
M=F;C
1;2

o �
DH ; DH

	 �
DH ; DH

	n
y
M=F
1;2

o �
DH ;

DH

DL

� �
DH ;

DH

DL

�
Width min

n
(�p2�p1)[1+�(1�p1)]

�p1
; 1� �p2

o
min

n
(�p2�pF2 )[1+�(1�p1)]

�p1
; 1� �p2

o
Loss of E¢ ciency �p1(s��p2)

(1+�)(s�p1)
�p1(s��p2)
(1+�)(s�p1)

In contrast, in the two situations with censorship, understocking only occurs at the second period.

Due to the censorship e¤ect, understocking of the �rst period would have impact on the posterior

demand information and consequently cause signi�cant loss to the entire supply chain. Therefore he

supplier works to avoid it by leveraging the wholesale price. This di¤erence between the two situations

under censorship and "O" explains the supply chain�s higher pro�ts under censorship: We also notice

the di¤erent s�intervals for understocking of the second period in "F" compared to those in "O" and

"M�that contributes to the higher pro�t in "M" than in "F".

Based on comparison of Table 2.2 and Table 2.3, we identify the conditions for two phenomena of

systems compared to the centralized system optimum. This occurs when � 2 ��i \��Ci ;
� 2 fO;M;Fg ; i 2 f1; :::; 4g :

43



the supply chain�s pro�ts when �! 0+; namely SMF (0+) and SCensor;O (0+) :

Proposition 7 When �! 0+;

1.

VM > V F ()

I >
1 + �

�p1
� 1 and s 2

 
(�p2 � p1)(1 + �)

�p1
+ p1;min

(�
�p2 � pF2

�
(1 + �)

�p1
+ pF2 ; 1

)#
:= SMF

�
0+
�

2.

max
�
V F ; VM

	
> V O ()

s 2 (p1; p1 [1 + � (�p2 � p1)]] := SCensor;O
�
0+
�

To examine the prior information�s impact on these two phenomena, we study their impact on the

two types of understocking in the three situations in Lemma 5. We measure the severity of the two

types of understocking by the width of the s�intervals24 :

Lemma 5 1. The width of Region 1 (second period) decreases with I (with �xed p1 and s); in-

creases with p1 2
�
0; 12
�
and decreases with p1 2

�
1
2 ; 1
�
(with �xed I and s);

2. The width of Region 2 (�rst period) decreases with p1(with �xed I and s); increases when I 2�
0; 1+��p1

� 1
i
in "O" and "M" and decreases with I 2

�
1+�
�p1

� 1;+1
�
, and increases with I 2�

0; 1+��p1

i
and decreases with I > 1+�

�p1
:

As an example, we illustrate how the range of the two regions and their widths change with fp1; Ig

in the situation of "O" in Figure 2.6 (� = 1):

24With �xed p1(and s), the e¢ ciency loss in these two regions 1� VO

VOC j� increases with I; with �xed I (and s), they

increase with p1 2
 
0;

�
s�

q
s(1�s)

I

�+#
and decreases with p1 2

 �
s�

q
s(1�s)

I

�+
; s

#
:
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Figure 2.6: The Understocking Regions and the Prior Information
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Lemma 5 and Figure 2.6 indicate that the two types of understocking have di¤erent relationships

with the prior information. Understocking of the �rst period is more pronounced with scarce prior

information corresponding to low I; and an ambiguous prior p1 around 1
2 : In contrast, understocking

of the second period only occurs when the �rst period�s order is high, so it diminishes when the de-

mand information grows more pessimistic corresponding to higher p1: Moreover, it reaches a maximal

width with a medium level information richness, i.e. I = 1+�
�p1

� 1 in "O" and "M" and I = 1+�
�p1
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in "F". When prior information is scarce and below this level, the retailer�s order quantity of the

second period is largely in�uenced by information updating so is prevalent; also understocking of the

second period gets more common as the prior information gets richer in this range. Yet when the prior

information richness exceeds this level, understocking of the second period is mitigated as posterior

information uncertainty is reduced. Therefore we could roughly attribute the �rst period understock-

ing to information scarcity and ambiguity and the second period understocking to prior optimism

and modest uncertainty. Due to the forward-looking retailer�s extra precaution, he accepts a higher

wholesale price to avoid censorship of the �rst period and consequently a more severe understocking

of the second period compared to in "O" and "M".

Corollary 4 The width of SMF (0+) increases with I 2
�
1+�
�p1

� 1; 1+��p1

i
; decreases with I 2

�
1+�
�p1

;1
�
;increases

with p1 2
�

1+�
�(I+1) ;min

nq
1+�
�(I+1) ;

1+�
�I

oi
; decreases with p1 > min

nq
1+�
�(I+1) ;

1+�
�I

o
.

2.5 Numerical Examples and Results

In this section, we present a series of numerical studies to support and complement the analytical

results. We �rst examine the current model, and quantify the two counter-intuitive phenomena by

characterizing the scope and scale of their occurrences. We also break down the three ine¢ ciencies,

and numerically measure their impact. Then we study a model with continuous demand distribution

and verify that the two phenomena for the retailer and the supply chain�s pro�ts still exist in these

more general settings.

2.5.1 Numerical Analysis of the Basic Model

To measure the scope and scale of the two counter-intuitive phenomena�s impact in the basic model, we

compute their occurrence frequencies and the magnitude of bene�ts over a grid of parameter settings

and. By referring to structure of ine¢ ciencies in Table 2.1, we can attribute the di¤erences between the

three centralized systems and the di¤erences between the centralized systems and their decentralized

counterparts to the two informational ine¢ ciencies and double-marginalization respectively, therefore

46



also identify and quantify the impact of each of the three ine¢ ciencies.

We �rst design a sample grid to represent a wide range of settings from the primitive parameters

space

� := f(s; �; �; �; �)js 2 (0; 1]; � > 0; � > 0; � 2 (0; 1)25 ; � 2 (0; 1]g:

Among its 5 dimensions, the discount factor � 2 (0; 1] captures the dynamic e¤ect of information

acquisition and wealth accumulation. A higher � ampli�es the supplier and the retailer�s forward-

looking behaviors, so we �x � = 1 in the numerical analysis hereafter to stress this component. Based

on the optimal wholesale prices�monotonic relationship with fs; �g; we pick samples covering their

respective supports as follows:

s 2 f0:01; 0:02; :::; 1g

� 2 f0:1; 0:3; 0:5; 0:7; 0:9g:

We pick f�; �gs to represent various levels of information richness and optimism as follows:

p1 2 f0:2; 0:4; 0:6; 0:8g ; I 2 f1; 5; 10; 50g

We denote this sample grid �N with N = 8000 di¤erent �s. To measure the frequencies of the

two phenomena�s occurrences and the induced bene�ts�relative magnitudes.

25For expositional simplicity, we rede�ne � = DL

DH 2 (0; 1):
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Table 2.4: Scope and Scale of the Two Phenomena�s Impact

Retailer Supply Chain Supplier
VMR > V FR max

�
VMR ; V FR

	
> V OR VM > V F max

�
VM ; V F

	
> V O max

�
VMS ; V FS

	
> V OS

� 13:95% 2:61% 0:71% 2:53% 15:63%
� 31:15% 72:25% 10:62% 26:24% 7:32%

The Two Phenomena�s Impact

We could derive the optimal wholesale prices and order quantities in the three situations for each

� 2 �N ; and compute the associated payo¤s for each party. Regarding each of the following inequalities

V FR < VMR ;max
�
V FR ; V

M
R

	
> V OR

V F < VM ;max
�
V F ; VM

	
> V O

we measure their occurrence frequency and the average relative di¤erence between the two sides over

the sample grid �N . Taking the case of "V F < VM" for example, we compute the following two

metrics:

�MF = NMF

N = 1
N

P
ijkn 1fV F (si; �j ; p1;k; In) < VM (si; �j ; p1;k; In)g

�MF = 1
NMF

P
ijkn 1fV F (si; �j ; p1;k; In) < VM (si; �j ; p1;k; In)g

h
1� V F (si;�j ;p1;k;In)

VM (si;�j ;p1;k;In)

i
(�ijkn =

�
si; �j ; p1;k; In

�
2 �N )

We present a summary of the numerical results in Table 2.4:

Table 2.4 shows that for the retailer, the bene�t from myopia happens in a wider range of conditions

than the bene�t from censorship, yet in a lower magnitude. While for the supply chain, the bene�t

from censorship presents an impact of both larger scope and scale than that from myopia. We also

observe that the supply chain�s bene�ts from both myopia and censorship are of lower impact than
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the retailer�s bene�ts.

In 2.4, we conducted an analytical study on the prior information�s impact on conditions for the

two phenomena in the extreme case of � ! 0+ by measuring the corresponding s�intervals�width.

By aggregating their occurrence frequency w.r.t. certain values of fp1; Ig and �; we could numerically

examine the prior information�s impact with more general value of � through the width of s-intervals.

We obtain the following numerical observations that are fully consistent with the analytical results in

the case of �! 0+ :

1. �MF
R (�) decrease with I; decrease with p1;

2. �Censor;OR (�) decrease with I; increase and decrease with p1;

3. �MF (�) increase and decrease with I; increase and decrease with p1;

4. �Censor;O (�) decrease with I;increase and decrease with p1

Similarly, we could also examine the magnitude of the bene�t from censorship and myopia as

shown in Table 6 to Table 9 in 1.5.

The Three Ine¢ ciencies�Impact and Interplay

In Table 2.1, we attribute the di¤erences between the supply chain�s pro�ts in the centralized and

decentralized systems to the three ine¢ ciencies as follows:

� Myopia: VMC < V FC

� Censorship: V FC < V OC

� Double-Marginalization: V � < V �C ; � 2 fO;M;Fg

To characterize the scope and scale of each ine¢ ciency, we measure the occurrence frequency of

these inequalities and relative di¤erence between the two sides of them. Speci�cally we consider the

following three metrics:
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Table 2.5: Comparison of Three Sources of Ine¢ ciency
Demand Censorship Myopia Double-Marginalization
V FC vs. V OC VMC vs. V FC V O vs. V OC V F vs. V FC VM vs. VMC

1� � 0.57% 0.23% 5.78% 4.84% 5.29%
� 9.01% 2.46% 51.86% 44.70% 42.4%

1� � 6.31% 9.15% 11.14% 10.83% 12.48%

� � : the average e¢ ciency level

� � : the average occurrence frequency26

� � : the average e¢ ciency level upon occurrence.

For example, for the impact of demand censorship, we calculate the three metrics by comparing

V FC to V OC over the sample grid of �N :=
�
(si; �j ; p1;k; In)ijkn

	
:

�OF;C = 1
N

P
ijkn

V FC(si;�j ;p1;k;In)

V OC(si;�j ;p1;k;In)

�OF;C = 1
N

P
ijkn 1fV FC(si; �j ; p1;k; In) < V OC(si; �j ; p1;k; In)g

�OF;C = 1
N�OF;C

P
ijkn 1fV FC(si; �j ; p1;k; In) < V OC(si; �j ; p1;k; In)g

V FC(si;�j ;p1;k;In)

V OC(si;�j ;p1;k;In)

We argue that, for any set of comparison, there exists the following relationship between these three

metrics:

1� � = � � (1� �):

Intuitively, 1 � � represents the average e¢ ciency loss over the entire sample grid, while 1 � � only

captures the average loss upon strict ine¢ ciency occurrence as it does not occur to certain samples,

therefore � < 1:

We apply similar formulas to other sets of comparisons and present the numerical results regarding

these comparisons in Table 2.5:

Table 2.5 shows that the two informational ine¢ ciencies have a much lower impact on the supply

chain performances than double-marginalization, mainly due to their lower occurrence frequencies. We
26we only take account of the occurence of the "strict inequality".
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Myopia Censorship
V F

V FC > VM

VMC
V F

V FC < VM

VMC
V O

V OC < max
n

VM

VMC ;
V F

V FC

o
V O

V OC > max
n

VM

VMC ;
V F

V FC

o
� 1.81% 3.09% 11.38% 0.0625%
� 38.71% 8.18% 10.59% 28.56%

Table 2.6: Double-Marginalization Levels w/o the Informational Ine¢ ciencies

also notice a considerable di¤erence in the double-marginalization levels across the three situations.

These two observations serve to explain why the two informational ine¢ ciencies can not fully account

for the three decentralized systems� di¤erent performances, and the necessity to consider double-

marginalization and its interplay with the informational ine¢ ciencies.

We also notice that there is no the uniform ordering of these double-marginalization levels in the

three situations across all parameter settings. Namely, for each of the two information ine¢ ciency, we

observe conditions for the double-marginalization to be either higher or lower with or without them.

To illustrate this observation, we measure the frequencies for the double-marginalization level of each

side to be higher and the di¤erences in the double-marginalization levels. For example, for censorship,

we compare the double-marginalization levels in "F" and "M", and compute the following two metrics

for each direction:

�MF�
DM = 1

N

P
ijn 1f V F

V FC (si; �j ; p1;k; In) ? VM

VMC (si; �j ; p1;k; In)g

�MF�
DM = 1

N�MF�
DM

P
ijn 1f V F

V FC (si; �j ; p1;k; In) ? VM

VMC (si; �j ; p1;k; In)g � j V
F

V FC � VM

VMC j(si; �j ; p1;k; In)
:

We present the results summarized over �N in Table 2.6:

Table 2.6 shows that for the two situations under censorship, for a wider range of conditions, the

double-marginalization is more severe in "F", yet the di¤erence is of much higher magnitude once it is

more severe in "M". Similarly, for a much wider range of conditions, the double-marginalization level

is more severe with fully observed demand; yet once it is more severe under censorship, the di¤erence

between the two levels is higher.
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2.5.2 Numerical Analysis for an Extension with Continuous Demand Dis-

tribution

[?] studied the retailer�s demand learning through inventory experimentation under censorship in a

multi-period model with a continuous "newsvendor" distribution with Bayesian conjugate. However,

we were not able to solve for the supplier�s optimal wholesale prices analytically that prevent us from

obtaining more structural results. We resort to numerical results instead to examine this more general

setting, in particular searching for evidence of the two counter-intuitive phenomena for the retailer

and the supply chain�s pro�ts therein. We found that the two counter-intuitive phenomena still exist

in this setting (Table 6 and Table 7), though of a smaller scale.

We consider [8]�s model of two periods with an Weibull demand distribution with the density

function  (�), whose shape parameter l is known and scale parameter ! follows a gamma distribution

with hyperparameters fa; Sg ; and a compound density � (�) :

 (�j!) = 1� e�!d(�); g (!ja; S) = Sa!a�1e�S!

� (a)

� (�ja; S) =
aSad0 (�)

[S + d (�)]
a+1 :

With its scale parameter being normalized as S = 1; the compound demand distribution has a density

function � (�) :

 (�j!) = 1� e�!�
l

; g (!ja) = !a�1e�!

� (a)

� (�ja) =
al�l�1�
1 + �l

�a+1
Figure 2.7 shows the Weibull distribution�s shape of di¤erent l with its scale parameter � being nor-

malized as 1: In the basic model, the demand distribution�s shape is jointly determined by f�; p1g.

Comparably, a lower l indicates a more pessimistic demand distribution, to a certain extent cor-

responding to a lower � and higher p1:The Gamma prior�s shape parameter a captures the prior
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Figure 2.7: Probability Density Function of Weibull Distribution, l: shape parameter
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information richness similar to I in the basic model. Besides, s 2 (0; 1] represents the supply chain

cost structure as in the basic model.

Based on the analytical results for the retailer�s optimal inventory policies, we could solve for the

supplier�s optimal wholesale prices in the three situations, and derive the payo¤s for each party for

comparison across the three situations. In the numerical study, we consider a sample grid consisting
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of the following combinations of fs; l; ag with 1000 samples of each parameter combination:

s 2 f0:1; 0:3; 0:5; 0:7; 0:9g

l a
�
> 1

l

�
0:5 f2:01; 2:1; 3; 5; 10; 50; 100; 500; 1000; 5000g

1 f1:01; 1:1; 1:3; 2; 5; 10; 50; 100; 500; 1000g

2 f0:501; 0:6; 1; 2; 5; 10; 50; 100; 500; 1000g

5 f0:201; 0:3; 1; 3; 5; 10; 50; 100; 500; 1000g

10 f0:101; 0:2; 1; 2; 5; 10; 50; 100; 500; 1000g

We present the numerical evidence of the two counter-intuitive phenomena over the entire sample

grid in Table 2.7:

Table 2.7: Retailer�s Pro�ts Comparison with Weibull Distribution

Retailer max
�
VMR ; V FR

	
> V OR VMR > V FR

l � 1� � � 1� �
0:5 20% 4:90� 10�7 22% 6:67� 10�6
1 16% 1:26� 10�3 12% 6:61� 10�7
2 42% 4:50� 10�3 6% 4:11� 10�7
5 52% 1:47� 10�2 10% 7:97� 10�7
10 58% 1:82� 10�2 2% 1:69� 10�6

Table 2.8: Supply Chain�s Pro�ts Comparison with Weibull Distribution

Supply Chain max
�
VM ; V F

	
> V O VM > V F

l � 1� � � 1� �
0:5 12% 2:16� 10�7 12% 2:11� 10�7
1 8% 9:03� 10�7 8% 2:80� 10�7
2 6% 2:30� 10�7 6% 8:23� 10�8
5 4% 4:97� 10�8 8% 1:39� 10�7
10 10% 7:28� 10�8 2% 1:41� 10�7

Table 2.7 and Table 2.8 show that the two phenomena for the retailer and the supply chain�s
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pro�ts do occur with the continuous demand distribution, though the di¤erences in pro�ts are of a

smaller scale. In particular we observe the retailer�s bene�t from censorship in a relatively wider

range of conditions and of a large magnitude, a result slightly di¤erent from our observation of the

basic model. And the scope and scale of this phenomena�s impact increases with a: We notice that

VMR > V FR only occurs with very large a;max
�
VMR ; V FR

	
> V OR occurs with relatively large s and

large a;while VM > V F and max
�
VM ; V F

	
> V Oonly occur with very large a:

We also noticed in our numerical studies that the observations of VMR > V FR coincide with wM <

wF ; however we always observe wM < wO; wF < wO. This may lead to future study to further

investigate this theoretical framework.

2.6 Discussions and Concluding Remarks

Our analysis of the censorship and demand learning in a decentralized supply chain is in the context

of constant wholesale price contract. The presence of censorship and learning opportunity a¤ects

the strategic interactions in a supply chain by changing the decision power allocation and incentive

alignment. The strategic interactions also complicate the implications of demand censorship and the

retailer�s myopia, which might not always cause ine¢ ciencies to the system or certain players.

The constant wholesale price contract is simple for our study and widely used in practice. Yet we

could take this approach further to examine various forms of dynamic interactions in supply chains with

information acquisition opportunities, to extend our understanding on how the information acquisition

behaviors change with strategic concerns, and how the incentive and coordination of di¤erent players

change with this decision being endogenized. In particular, to complement and contrast with our

study on constant wholesale price contract, we discuss two other contractual forms. One is dynamic

wholesale price contract, and another one buy-back contract that could potentially coordinate the

supply chain and eliminate the decentralization ine¢ ciency.

Allowing the supplier to update the wholesale price based on the demand information provides her

with a stronger decision power and strategic tension with the retailer. In the situations of "O" and
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"M", this better integrates the supply chain and reduces the decentralization ine¢ ciency. While in

"F", it gives rise to an incentive for the forward-looking retailer to create censorship and manipulate

the posterior wholesale price, and the need for the supplier to prevent it.

We argue that a constant buy-back contract could coordinate the supply chain in the presence of

censorship and the forward-looking retailer�s learning. In despite of the simple contract structure, this

result is due to the fact the bene�t from learning is proportional to the supply chain�s future pro�t

and could be allocated to the two players in a similar fashion. Therefore the incentive for information

acquisition could be coordinated through the same contract that coordinates the inventory levels.

2.6.1 Dynamic Wholesale Price Contract

In the basic model we assume that the supplier�s wholesale price is determined up-front and remains

constant throughout the two periods. The supplier has to take account of the potential information

change in the future when deciding on the wholesale price. Realistically, the supplier could update the

wholesale price over time according to the demand information. In this case, the posterior information

not only a¤ects the retailer�s inventory decision but also the supplier�s wholesale price. The supplier�s

increasing pricing power and �exibility could a¤ect the supply chain�s performances and strategic

information acquisition behaviors of the two players.

We continue with the cost structure, demand distribution and belief updating rules, and the three

decision pro�les of the retailer from the basic model. With the dynamic wholesale price policy, at

each period t 2 f1; 2g, the interactions between the retailer and the supplier unfold as follows:

1. Based on the prior demand information f�t; �tg, the supplier sets the constant wholesale priceewt
2. The retailer sets the inventory level eyt and orders from the supplier; the production is instantly

completed and delivered by the supplier at a unit cost c, then the supplier collects a revenue of

ewt � eyt from the retailer;

3. The customer demand Dt and the sales xt = minfeyt; Dtg are realized, and the retailer collects

56



a newsvendor revenue r � x1 + v � feyt �Dtg+;

4. The demand information updates to
�
�t+1; �t+1

	
.

In the situations of "O" and "M", the retailer�s inventory decisions are still decoupled over time.

The retailer takes the wholesale price of each period as exogenous and optimizes his newsvendor pro�t

of the that period, so he still follows the inventory policy in 2.3. We could solve for the supplier�s

optimal wholesale price policies
� ewOt 	t=1;2 and � ewMt 	t=1;2 in backward inductions.

Lemma 6 1. ekOt = k
� ewOt � =

8><>: p+t 0 < pt < s(1� �)

0 o:w:
; t 2 f1; 2g :

2. ekM1 = k
� ewM1 � =

8><>: p+1 0 < ~pM2 :=
p1+�(1�p1)p

2

1+�(1�p1) < s (1� �)

0 o:w:
;

ekM2 = k
� ewM2 � =

8><>: p+2 0 < p2 < s(1� �)

0 o:w:
:

Based on the results of Lemma 6, we could de�ne the following partitions of �, which yield the

same order expected quantities with the corresponding subset of � under constant wholesale price

contract27 . 8>>>>>>><>>>>>>>:

e�O1 := n
s 2

�
�p2
1�� ; 1

io
e�O2 := n

s 2
�
p1
1�� ;

�p2
1��

io
e�O3 := n

s 2
�
p
2

1�� ;
p1
1��

io
e�O4 := n

s 2
�
0;

p
2

1��

io
;

8>>>><>>>>:
e�M1 :=

n
s 2

�
�p2
1�� ; 1

io
e�M20 := n

s 2
�
~pM2
1�� ;

�p2
1��

io
e�M4 :=

n
s 2

�
0;

~pM2
1��

io ;

By comparing the supply chain�s performances under constant wholesale price and dynamic wholesale

prices with the same parameter setting � 2 � and the same demand realization of the �rst period, we

have the following observations:

Corollary 5 1. fey�t g � fy�t g ; eV � � V �; eV �R � V �R; � 2 fO;Mg
27Note that the wholesale prices and order quantities with dynamic wholesale price contract is dependent on D1:
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2. ey�t (�;D1) > y�t (�;D1) () ew�t (�;D1) < w�t (�;D1)

3. eV OS > V OS () � 2
n
�O4 \

ne�O2 [ e�O3 oo [ n�O3 \ ne�O1 [ e�O2 ooeVMS > VMS () � 2
n
�M4 \

ne�M2 [ e�M1 oo
Corollary 5 shows that the supply chain and the retailer both have higher pro�ts with dynamic

wholesale price contract due to higher order quantities. When the supplier does not need to commit

to a price for the entire two periods, she lowers the price when it could induce a higher order quantity,

therefore mitigates the understocking caused by double-marginalization. In particular, the higher of

the �rst period could also mitigates the censorship e¤ect in "M". So the price �exibility increase

the supplier�s decision power, reduces the demand uncertainty and information acquisition cost she is

exposed to, and may be pareto-improving for the supply chain.

In contrast, for the forward-looking retailer, the updated demand information could lead to poten-

tially more or less favorable wholesale price of the second period, so there arises an incentive for him

to manipulate the posterior information and consequently the second period�s wholesale price through

the �rst period�s inventory decision. Therefore the information acquisition opportunity has another

implication for the retailer than its information value for his inventory policy. Taking this into account,

we identify conditions for the forward-looking retailer to create censorship and the supplier to adjust

the �rst period�s wholesale price in response to such a strategic behavior. In this case, we consider the

two player�s optimal policies
�
wF1 ; y

F
1 ; w

F
2 jD1

; yF2 jD1

	
to constitute a sequential equilibrium/perfect

Bayesian equilibrium.

We de�ne

ekF1 : = p1

�
1 +

��p2
1� �

�+
; esF1 := p1

1� � �
1 + �p2(2��1)

1��
1� �p1

ekF2 : = p1

�
1� �� (1� p2)

1� �

�+
; esF2 := p1

1� � �
1 + �(1�p2)(1�2�)

1��
1 + � (1� p1)

and the supplier and the forward-looking retailer�s optimal policies are as follows:

Proposition 8 1. When s 2
�
p2
1�� ; 1

i
; k
�
wFt
�
= p+t ; y

F
t = DH ; t 2 f1; 2g
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2. When s 2
�
max

nesF1 ; p1
1��

o
; p2
1��

i
;

8><>: k
�
wF1
�
= ekF+1 ;

yF1 = DH
;

8><>: k
�
wF2
�
jD1=DH

= p+
2
;

yF2 jD1=DH
= DH

;

8><>: k
�
wF2
�
jD1=DL

= 0+;

yF2 jD1=DL
= DL

;

3. When s 2
�
p1
1�� ;min

nesF1 ; p2
1��

oi
;

8><>: k
�
wF1
�
= 0+;

yF1 = DL
;

8><>: k
�
wF2
�
= p+1 ;

yF2 = DH
;

4. When s 2
�
max

nesF2 ; p
2

1��

o
; p1
1��

i
;

8><>: k
�
wF1
�
= ekF+2 ;

yF1 = DH
;

8><>: k
�
wF2
�
jD1=DH = p+

2
;

yF2 jD1=DH = DH
;

8><>: k
�
wF2
�
jD1=DL

= 0+;

yF2 jD1=DL
= DL

5. When s 2
�
0;min

nesF2 ; p1
1��

oi
;

8><>: k
�
wF1
�
= 0+;

yF1 = DL
;

8><>: k
�
wF2
�
= 0+;

yF2 = DL

We refer to 1.4 for the proof, by layout the game tree and work backward for the sequential equilib-

rium. We notice that when s 2
�
p1
1�� ;min

nesF1 ; p2
1��

oi
; the forward-looking retailer deliberately devi-

ates from the optimal order of the current period DH to create censorship, so that in the second period

the supplier continues to o¤er a favorable wholesale price. And when s 2
�
max

nesF1 ; p1
1��

o
; p2
1��

i
; the

supplier has to o¤er a lower wholesale price at the �rst period28 to prevent the retailer from creating

censorship at the �rst period. This result shows that the though the supplier has a higher deci-

sion power with the dynamic wholesale price, the retailer is still directly taking control the inventory

thus the information acquisition scheme, so the incentive misalignment could create more intensive

strategic tension.

28ekF+1 > p1; so w
�ekF+1 �

= ewF+1 < w (p1)
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2.6.2 Supply Chain Coordination with Contracts

In our basic model, we consider a simple constant wholesale price that causes double-marginalization

e¤ect to interplay with the two informational ine¢ ciencies. A large body of literature discusses various

contract forms that coordinate the supply chain. A natural question is how do these contract perform

in the presence of demand censorship and the retailer�s learning through inventory experimentation.

We argue that constant buy-back contracts could coordinate the supply chain being subject to cen-

sorship. In other words, such contracts not only coordinate the pro�t split but also the information

acquisition e¤ort of the two players.

We consider a general continuous demand distribution with the cdf � (�) ; hyperparameters �; and

prior belief � (�j�), and continue using the cost structure parameters fc; v; r; w; bg :Then the integrated

supply chain�s pro�t of period n with order quantity yn is !n:

!n (�
0
n; yn) = (r � c)

�Z yn

0

x�0n (x) dx+

Z +1

yn

yn�
0
n (x) dx

�
� (c� v)

Z yn

0

(yn � x)�0n (x) dx; (2.8)

where �0n (x) =
R
�
f (xj�)�0n (�jxn�1) dx; �0n (�jxn�1) =

�
�n (�jxn�1) ; if xn�1 < yn�1
�cn (�jyn�1) ; if xn�1 � yn�1

: And the

belief updating rule under censorship is as follows:

�n (�jxn�1) =
f (xn�1j�)�0n�1 (�)R

�
f
�
xj�0

�
�0n�1

�
�0
�
d�0

; �cn (�jyn�1) =
R +1
yn�1

f (xj�)�0n�1 (�) dxR
�

R +1
yn�1

f
�
xj�0

�
�0n�1

�
�0
�
dxd�0

The retailer�s pro�t with the same posterior belief could be derived by replacing c with w; v

with b in (2.8):Note that the demand information �0n (x) is common knowledge for all parties and is

independent of their cost structure. So if we set

r � w
r � c =

w � b
c� v := �; (2.9)

the retailer�s pro�t of one period is proportionate to the supply chain�s with the same order
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quantity:

!Rn (�
0
n; yn) = �!n (�

0
n; yn) :

Over time, the supply chain (or the retailer)�s NPV from period n on is:

�n (�
0
n) = max

yn2R+
�n (�

0
n; yn) ; yn (�

0
n) = argmax

yn2R+

�n (�
0
n; yn)

�n (�
0
n; yn) = !n (�

0
n; yn) + �

�Z yn

0

�n+1 (�n+1 (�jx))�0n (x) dx+ �n+1
�
�cn+1 (�jyn)

�
�
0
n (yn)

�

Proposition 9 If a buy-back contract (w; b) satis�es (2.9), then for any period n 2 f1; 2; :::; Ng ; the

optimal order quantities yn (�0n) = yRn (�
0
n) :

This coordination result relies on the fact that the additional information cost due to censorship is

proportional to future pro�t, therefore if the future pro�t is split between the retailer and the supplier

proportionately, their exposure to such risk is also allocated proportionately.
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Chapter 3

Strategic Interactions on an

E-commerce Platform: Pricing,

Demand Learning, and the Threat

of Entry

3.1 Introduction

Amazon.com, known as the biggest online retailer in the US, has hybrid revenue streams. It serves

as a online retail platform (Amazon Marketplace) for "third-party" merchants to list and sell their

products on the website by charging a mix of commissions and fees. Meanwhile Amazon o¤ers its own

products as a reseller on its own marketplace to compete with other sellers. As the platform owner,

Amazon has access to all transaction records, customer browsing data, as well as services requested

by sellers, including advertising, ful�llment, and web service etc. that provide a superior advantage

against other sellers having created the information by using the platform.
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This situation was already recognized by many third-party sellers[32] until an article from the

Wall Street Journal[31] attracted wider public attention. The story captures an instance of Ama-

zon discovering a niche hot-selling item (pillow pets of NFL mascots) and taking it over from the

independent seller by o¤ering the same product with a more competitive price and prominent ad-

vertising spot. It soon sparked discussions among business commentators, blog writers, sellers, and

Amazon employee[36][33][34][35] around Amazon�s strategic trade-o¤, how sellers should react, and

how di¤erent business functions of Amazon practically operate in such situations etc.

Amazon started as an online book seller in 1995, reached a $2.8 billion revenue within the �rst

5 years, and expanded from 1 category to 16 main categories in 15 years, known as "one of the

fastest growths in the Internet�s history"[30]. Amazon�s marketplace was launched at 2000, initially

considered by experts as a mistake for the sake of cannibalization. Yet the marketplace�s growth

soon surpassed Amazon�s own sales and prompted it to o¤er advertising, ful�lment, computation, and

cloud services through the platform. In 2012, Amazon reported a sales of over $60 billion1 , of which

about $10 billion is service sales, i.e. the commission and fees from third-party sellers. This shows

that roughly 40% of the total products sold on Amazon.com are from third-party sellers[37].

As some observers point out, Je¤Bezos, the founder and CEO of Amazon, has an ideal to build an

ultimate "one-stop shop" with exhaustive selection, unbeatable prices, and great convenience to lock

in all consumer needs. Having pioneered on product o¤ering, tested pricing and inventory, and built

customer awareness, the third-party sellers very much assisted Amazon with the impressive growth and

expansion. Amazon could leverage its enormous bargaining power against suppliers, logistic facilities,

analytical capability, and customer tra¢ c to maintain favorable price and service to further attract

customers and sellers to its platform. Therefore it is critical for Amazon to centralize and capitalize

on the crowd-sourced knowledge from third-party sellers while retaining them as an indispensable

revenue source and users.

While most online retailers take on only one role among the two most common business models,

i.e. a merchant (e.g. most brick-and-mortar stores�online channel) or a platform (e.g. eBay.com and

1Amazon.com, Inc. (2012). Form 10-K 2012,
http://edgar.secdatabase.com/1562/119312513028520/�ling-main.htm
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Taobao.com) [62], Amazon is not the only one that seeks to adopt a hybrid of the two. Traditional

retailers Sears, Walmart[40], and Staples[41] among others launched their online marketplaces to

third party sellers after opening their online channel. jd.com, the second largest e-commerce website

in China that started with its proprietary business also opened its website and logistic facilities to

other B2C sellers for a commission. Yet few achieved a comparable dual-success through this path

because of lack of participation, low sales volume, and inadequate quality and service from third -party

sellers.

This contrast triggers a series of strategic questions around an online retailer�s business model

choice and execution. Under what conditions should an online retailer choose such a hybrid model,

in particular when it starts as a merchant? How could they successfully implement this strategy by

incorporating demand learning into its product o¤ering decisions? Moreover, what strategic reactions

from the third party sellers should be accounted for in designing this learning and entry policy? As two-

sided marketplaces penetrate into more business sectors along with the rising of "sharing economy",

the competitive yet collaborative relationship between the owner and the users of a platform requires

a deeper understanding. In particular, how could the platform owners leverage the vast amount of

information generated by users to improve operational e¢ ciency and consumer welfare lies at the

centre of the debates.

Jiang, Jerath, and Srinivasan�s paper in 2011[47] looked into a similar problem motivated by

Amazon�s competitive and collaborative relationship with the third party sellers, and highlighted the

platform owner�s preference over large sales volume2 and the trade-o¤ around products with medium

demand level, namely the "mid-tail". In this study, the authors assume that the independent seller

leverages the hidden service e¤ort level to prevent the platform owner from learning the product�s

true demand parameters, and the platform owner regulates the commission rate to elicit demand

information. Based on these, the authors establish a two-period signaling game theoretical model to

characterize the equilibrium behaviors of two players and argue that the platform owner sets a higher

2This might be di¤erent for merchants already selling products of high volume across many categories o ine. The
incentive for Walmart to open a marketplace might be only to enrich its online product o¤ering and increse customer
exposure.
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commission rate with prospect of higher demand to separate the product with higher demand from

those with lower demand.

Nonetheless, we notice two features in behaviors of the platform owner and the independent seller

that need to be addressed more practically. First, when faced with a large number of products and

sellers, the platform owner has a low strategic awareness and �exibility in interactions with each

individual seller. Lacking the ability to examine each seller�s motivation and set a unique commission

rate accordingly, the platform owner demands a more homogeneous analytical process and operational

instrument for her learning and entry decisions. For instance, Amazon deploys an extensive scheme

to monitor the sales records of all newly-listed product items for a period of time before selecting

the "promising" ones for buyer teams to review. Second, though technically an independent seller

may manipulate the service level to in�uence the sales observation of the platform owner, it could

e¤ectively damage his reputation and get banned by the platform owner for quality purpose. Instead,

we believe the seller�s price decision in�uences sales level to a larger extent.

With these observations, we are further concerned with the following research questions. What is a

scalable demand learning model with little assumptions on independent sellers to support the platform

owner�s ("PO" hereafter) entry decision? How would the independent seller ("IS") set his price in

response to the PO�s learning and entry threat, and can the PO�s scheme account for it reasonably?

Can we explain or predict some collective features of the marketplace based on the PO and the IS�s

behaviors?

To address these questions, we establish a Bayesian statistical model of the PO�s learning for the

IS�s private demand information. In presence of other private information of the IS (e.g. cost parame-

ter), we argue that the PO can hardly infer the demand information immediately upon observing the

IS�s pricing decision as a signal, but keep updating her belief also based on sales observations until her

posterior belief meets the entry threshold. We adopt a bivariate demand function and a continuous

prior distribution for the PO�s belief, and discuss how it e¤ectively supports the PO�s entry decision.

With this model, we discover that in general, the IS sets a higher price when the price sensitivity

is higher and lower price if the price sensitivity is lower to slow down the PO�s learning and entry.
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Consistent with the "mid-tail" observation in [47],the IS aims to avoid an exceedingly high sales

volume compared to the PO�s prior belief, so the price is adjusted based on the actual price sensitivity

level relative to the prior. We also identify the set of product characteristics that induce the highest

payo¤ for the IS under the PO�s entry threat, whose market size range from low to high but maintains

a medium pro�tability level to avoid the PO�s early entry. This provides an interpretation and

characterization of the IS�s product o¤ering choices on the marketplace, and is potentially testable for

empirical studies.

Finally, we propose two types of heuristic entry policies for the PO marked as "pro�t driven" and

"revenue driven" respectively. We evaluate the PO�s performance under various entry thresholds based

on the true demand parameters and a �xed price observation, and identify the existence of optimal

entry threshold in each situation. In particular, we discuss conditions under which the PO is better

o¤ by forgoing the entry option, and highlight the prior variance�s impact on this issue among other

model parameters. A higher variance represents the PO�s "openness to learn" for a highly unknown

market, and leads to retaining the entry option even when the demand is low according to the prior.

We also identify the PO�s loss of up to 10% due to the IS�s pricing distortion behavior, and establish

the equivalency between the two types of entry policies based on the IS�s �xed price.

The rest of this chapter is organized as follows. We �rst discuss the relevant literature in the

ensuing subsection, and establish the model setup in Section 3.2. We devote Section 3.3 to discussion

of model choice as well as the challenges for the PO�s learning and entry process. Then we establish the

IS�s pricing problem and present its properties in Section 3.4, and discuss the impact of di¤erent entry

threshold under the revenue-driven entry policy in Section 3.5. We present the observations arising

from the pro�t-driven entry policy and the comparison between the two types of policies in Section

3.6. In Section 3.7, we justify the choice of a bivariate demand model and generalize the results from

an uncorrelated bi-variate distribution to other settings. Finally we conclude with complementary

discussions of several interesting open questions.
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3.1.1 Literature Review

The literature to our study are from four major areas encompassing research in marketing, economics,

operations management, and statistics. In particular, our research motivation is related to retail chan-

nel structure and two-sides markets, while the methodology relates to pricing with demand learning

and strategic experimentation.

Retail Channel Structure Similar competitive and collaborative relationship also exists in

traditional retail channel and supply chains. The literature on "store- within-a-store"[42] and con-

signment stores[43] studied retailers renting out physical space to suppliers or independent resellers,

focusing on the trade-o¤ between loss of control and increasing customer tra¢ c and competition.

Studies of private labels[44][45] focus on retailers taking advantage of market contact to compete

with national brand suppliers. Yet online platforms di¤er from traditional channel in a few aspects.

First of all, brick-and -mortar retailers are highly limited by physical space and resources to open

marketplaces merely for the information bene�t. Second, the information brick-and-mortar retailers

obtain can hardly compete in volume and granularity with that from online platforms to facilitate

vertical expansion. Last, traditional retailers often encounter product exclusivity when competing

with suppliers so need to create new brands to complement the value proposition or to capitalize

on the supplier�s brand equity. While in e-commerce, third-party sellers rarely enjoys an exclusive

relationship with the supplier and suppliers tend to deem the relationship with marketplaces as open

and collaborative.

There is also a growing literature studying channel structures in e-commerce. Abhishek et al.

(2013)[46] examined the e-tailer�s choice between agency-selling and reselling by measuring their im-

pact on sales in the traditional o¤-line channel. We highlighted Jiang et al. (2011)[47]�s study of a

similar problem on Amazon�s entry based on demand learning through third-party sellers. We share

a view with Jiang et al. (2011) on the platform owner�s preference on o¤ering products with higher

demand volume, yet we adopt a di¤erent modeling approach by acknowledging the platform owner�s

lack of strategic awareness and �exibility when interacting with each independent seller, the indepen-
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dent seller�s pricing decision as the main operational lever, and the entry timing�s importance. This

directs us to resort to dynamic demand learning as the main research methodology instead of classical

signaling game theory.

Two-sided Markets Two-sided markets in the economics literature refer to platforms that at-

tract "buyers" and "sellers" to meet and strike deals, in particular to make pro�ts from facilitating

such interactions[64]. Examples of two-sided markets are abundant, including credit cards, playsta-

tions, ad agency, and appstore for smart devices as the more traditional ones and Airbnb, Uber to

represent online two-sided markets that drive the rapid-growing "sharing economy". Rochet & Tirole

(2006)[63], Armstrong(2006)[66] and their citations constitute a comprehensive introduction to this

strand of literature, focusing on two-sides markets�network e¤ects and growth dynamics, user behav-

ior and interaction mechanism design, and pricing structures. Notably, Rysman (2009)[61] and Hagiu

(2007)[62] pointed out Amazon�s hybrid nature of "two-sidednes" and "one-sidedness". Hagiu (2007)

discussed many issues that potentially a¤ect the choice between these two modes and the conditions

to support each as a better choice. For example, it listed high demand uncertainty, asymmetric infor-

mation from the seller, the need for seller�s ongoing investment, and consumer demand for variety as

market features that favor the platform mode, and economies of scale, strong product complementarity

to favor the merchant mode. In contrast, we focus on modeling the operational decisions supporting

system and the trade-o¤ facing a platform owner in retail practices on a product level.

Pricing with Demand Learning The Bandit problem on price experimentation originates

from stylized model by Rothschild(1974)[58], on learning from two possible demand models. Later,

McLennan(1984)[59] identi�ed an "incomplete learning" issue for this problem, and Aghion et al.(1991)[60]

further elaborate on it and discussed the conditions to successfully "learn" the true parameters

in a long run. There is an operations management literature on dynamic pricing with demand

learning[53][56][55][54]in revenue management context. Given that the basic dynamic pricing problem

is hard to solve explicitly, an extra uncertainty further complicates it. So most of these studies resorts

to asymptotic analysis or approximation for near-optimal policies. Moreover, these work mostly place
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the uncertainty on tra¢ c intensity or market size related parameters instead of price-sensitivity, the

learning for which depends largely on the existence of a time or inventory constraint.

Strategic Experimentation In addition to the literature on Bandit Problems we discuss in the

previous sections[27], we notice a body of work using similar continuous time setup as in our model.

Most Bandit problems are known to have no explicit solutions, which prohibits the understanding and

applications of them. Karatzas(1984)[48] solved a class of continuous time problems with Brownian

motion driven uncertainty and showed hope on this direction. Thereafter, many economic papers

adopt this setup to study complicated strategic issues with learning. Bolton & Harris (1999)[49]

demonstrated an example by solving the symmetric oligopoly strategies on a two-armed bandit prob-

lem. Harrison & Sunar (2013)[52] applied the similar framework to an investment problem from the

operations management perspective. Keller et al. (2005)[50] solved an example with a risky arm

yielding payo¤s after an exponential distributed time. Garfagnini (2011)[51] applied this framework

in a principal-agent setup on bank management. These work all assume a linear (or constant) learning

cost and linear (or constant) signal structure for tractability.

3.2 Model Setup

We consider a discrete time model of in�nite horizon on the dynamic interactions between the platform

owner (PO) and an independent seller (IS) on the marketplace.

At the start, the IS is present on the market to sell one product, having private information over its

demand characteristics as well as other pro�t-related factors (such as his unit variable cost). The PO

only has a prior belief over the product�s demand information, based on which she announces an entry

threshold as a function of her posterior belief (and other public information such as the IS�s potential

selling price), and commits to o¤ering the product, i.e. entering the market, once the pre-speci�ed

function of her posterior hits the threshold.

According to the PO�s entry policy, the IS sets the product�s price and starts selling the product

while paying a commission to the PO proportional to realized sales of each period. As time progresses,
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the PO engages in a dynamic statistical learning for the product�s demand parameters based on

observations of the IS�s price and demand realizations. Once the PO enters the market, she pays a

one-time setup cost, drives the IS out of the market, and retains all revenue from selling the product

thereafter.

We adopt a bi-variate linear demand function with noise, whose parameters follow a bi-variate

normal distribution to represent a wide product space and to enrich the two player�s strategy space.

We allow for other type of private information from the PO besides the demand information, e.g. the

IS�s cost structure.

3.2.1 Timeline

The PO and the IS�s interactions unfold over time as follows:

1. IS is at the market at t = 0 with the market condition ��;

2. Based on the pro�t related parameters  , PO sets the entry policy f
�
�tjpIS ;�0; 

�
and commits

to it;

3. IS sets his price pIS ;PO collects a �revenue commission from the IS�s sales, and updates her

belief �t = g
�
�t�1jDt; p

IS
�
;

4. PO enters the market at the end of � = min
�
t � 0jf

�
�tjpIS ;�0

�
� 0
	
at an entry cost C;and

sets the product price as pPO from t > � based on �t to sell it thereafter;

5. IS exists the market and the PO collects all revenue from � + 1:

3.2.2 Demand Function and Information Structure

We adopt a linear price-demand function with two parameters following a bivariate normal distribu-

tion. The demand Dt at t is determined by the price pIS ; the demand parameters �
� := fa; bg ; and

a white noise "t :

Dt = a� bpIS + "t; "t � N (0; 1) ; pIS � 0:
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The true demand parameters �� is only known to the IS, while the PO has prior information �0 :=

(�0;�0) over its distribution at t = 0:

(a; b)
T � N (�0;�0) ;

�0 = (�a; �b)
T

�0 =

0B@ �2a ��a�b

��a�b �2b

1CA
� 2 (�1; 1) ; �a; �b > 0

Afterwards, the PO updates the posterior belief over (a; b)T in a Bayesian fashion based on the

observations of
�
pIS ; Dt

	
t>0

:

Linear demand models are widely used in the existing literature. In particular in the demand

learning context, for simplicity they often take an uni-variate form, which is equivalent to making the

assumption of

a = b �K

with a �xed K: In bi-variate models, there is often a discrete support for the parameters such as

(a; b) 2 f(a1; b1) ; (a2; b2)g :

Here we consider a more general bi-variate model with a continuum support to enrich the product

space. It allows for a more general characterization of the IS�s pricing behavior to in�uence the

PO�s learning and entry decision. The normal prior for the demand parameters combined with a

normal-distributed noise term renders simple belief updating rule for the PO.
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3.2.3 Pro�t Functions and Cost Structure

Besides the demand information, the two players� pro�ts are jointly determined by another set of

parameters  :=
�
�; C; ; cPO; cIS

	
: Here � is the discount factor for the two players, C is the PO�s

entry cost,  is the revenue commission rate, and
�
cPO; cIS

	
are the unit variable costs for the two

players. We assume that
�
�; C; ; cPO

	
are public information while cIS is private information for the

IS.

The two players�expected discounted payo¤s over the entire time horizon are

V PO
�
f; pPOj�0; pIS

�
= E

264 ��t=1p
IS
�
a� bpIS

�
�t � ��C

+�+1t=�+1
�
pPO � cPO

� �
a� bpPO

�
�t
j�0

375
V IS

�
pIS jf;�0; ��

�
= E

�
��t=1

�
(1� ) pIS � cIS

� �
a� bpIS

�
�t
�

s:t: � = min
�
t � 0jf

�
�tjpIS ;�0; 

�
� 0
	
;�t = g

�
�t�1jDt; p

IS
�

For dispositional simplicity, we assume that cIS > cPO for most of this paper and normalize cPO

as 03 .

3.3 The PO�s Belief Updating and Entry Policy

The interactions between the IS and the PO take place sequentially and following a backward induc-

tion, we �rst examine and characterize the PO�s learning behavior and entry policies for given price set

by the IS. In particular, we discuss the di¤erences between "strategic learning" and "statistical learn-
3We could make the transformation of

p� cPO = p0; a� bcPO = a0; c0 = cIS � cPO

to ensure

p0
�
a0 � bp0

�
=

�
p� cPO

�
(a� bp) :

(p� c0)
�
a0 � bp0

�
= (p� cIS) (a� bp)

So this normalization does not a¤ect the pro�t parts of the two players�payo¤ functions. However the PO�s revenue-
based commission rate would be a¤ected since

p (a� bp)� p0
�
a0 � bp0

�
= cPO

�
a0 � bp0

�
6= 0:
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ing" for the PO, and explain the reason that we adopt the latter in our model of the PO�s information

acquisition behavior. We discuss the PO�s entry policy based on her statistical learning scheme, and

identify two types of heuristic policies given the di¢ culty in searching for the optimum. Namely we

focus on the revenue-driven ("RD") threshold policy and the pro�t-driven ("PD") threshold policy.

3.3.1 Strategic Learning and Statistical Learning

In the classic principal-agent model with asymmetric information, the observable action of the agent

serves as a channel for information revelation (i.e. "signaling") and/or information solicitation (i.e.

"screening"). These models involve heavy assumptions on the two players�strategic behaviors such

as forming consistent beliefs over the agent�s action and the principal�s interpretation, and we name

it as "strategic learning".

We argue that as the agent�s private information structure gets more complex, e.g. having a

continuous or multi-dimensional support, the information the principal obtains from such strategic

learning diminishes in clarity. For example, it requires very restrictive belief to support a more

informative separating equilibrium compared to the pooling or hybrid equilibrium. In this case, the

principal essentially takes the agent�s actions as exogenous and uses it in combination with other

signals to infer the agent�s private information of interest, so the principal�s information acquisition

behavior could be approximated by a statistical learning process. In the appendix, we provide a

few signaling game examples with two dimensional private information, among which the principal

is interested in learning only one. These examples demonstrate the limitation of current strategic

learning models and how it could be represented by statistical learning process.

In our model, the IS�s price decision is not only a¤ected by her private demand information

�� := fa; bg but also her private unit variable cost cIS . While the latter does not in�uence the PO�s

pro�t directly and is of no interest for her to learn. So the IS�s price pIS by itself only serves as an

ambiguous signal for the demand information, and the PO�s inference of �� is mainly driven by the

statistical learning based on observations of
�
pIS ; Dt

	
t>0
. In particular, in the PO�s interactions with

a large group of IS, each with distinctive business objective and decision criteria, it is practical for
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the PO to adopt an e¤ective learning mechanism built on little strategic assumption and knowledge

on each individual seller�s motivation. With these observations, we establish the PO�s information

acquisition process through Bayesian statistical learning and deem the strategic learning component

as negligible.

3.3.2 Belief Updating Rule

We develop the PO�s belief updating rule of �t based on statistical learning using observations of�
pISt ; Dt

	
t>0

as exogenous signals. We �rst de�ne that:

Xt =

0B@ 1 1::: 1

�pIS1 �pIS2 ::: �pISt

1CA
T

;yt = (d1; d2; :::dt)
T

di = a� bpISi + "i; i = 1; :::; t:

Upon observing fXt;ytg ; the PO�s posterior belief on fa; bg still follows a bi-variate normal distrib-

ution, whose parameters f�t;�tg are:

�t = �t

�
XT
t yt +�

�1
0 �0

�
:

= �t

0B@ �di +
�a
�2a
� ��b
�a�b

1��2

��pISi di +

�b
�2
b

� ��a
�a�b

1��2

1CA

�t =
�
XT
t Xt +�

�1
0

��1

=

0B@ 1
(1��2)�2b

+�
�
pISi
�2 �

(1��2)�a�b +�p
IS
i

�
(1��2)�a�b +�p

IS
i

1
(1��2)�2a

+ t

1CA
1

(1��2)�2a�2b
+ t�

�
pISi
�2 � ��pISi �2 + t

(1��2)�2b
+

�(pISi )
2

(1��2)�2a
� 2��pISi

(1��2)�a�b
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In this study, we assume that the IS�s price stays constant, i.e. 8i � 1; pISi = pIS ; then

�t = �t

�
XT
t yt +�

�1
0 �0

�
:

= �t

0B@ �di +
�a
�2a
� ��b
�a�b

1��2

�pIS�di +
�b
�2
b

� ��a
�a�b

1��2

1CA

�t =
�
XT
t Xt +�

�1
0

��1

=

0B@ 1
(1��2)�2b

+ t
�
pIS
�2 �

(1��2)�a�b + tp
IS

�
(1��2)�a�b + tp

IS 1
(1��2)�2a

+ t

1CA
1

(1��2)�2a�2b
+ t (t� 1) (pIS)2 + t

(1��2)�2b
+ t(pIS)2

(1��2)�2a
� 2�tpIS

(1��2)�a�b

For notational simplicity we represent these expressions as �t = g
�
�t�1jDt; p

IS
�
:

3.3.3 Entry Policy

The PO�s entry policy decision serves as the �rst strategic move of the two players�interactions, and

directly determine the IS�s best pricing response. We �rst formulate and discuss the PO�s optimal

entry policy problem, and due to the technical di¢ culty, we propose two types of heuristic threshold

entry policies.

The PO�s Optimal Entry Policy

We argue that, due to the IS�s multi-dimensional private information, the PO�s information acquisition

mainly comprises statistical learning instead of strategic learning, and assume she takes the IS�s price

decision as exogenous for the purpose of learning. Similarly, due to the complex private information

structure, the PO can hardly anticipate the IS�s pricing decision in response to her entry policy.

So we only consider the entry policies that involve in the IS�s price as an exogenous parameter
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f
�
�tjpIS ;�0;  

�
:

In this case, the optimal entry policy f�
�
�tjpIS ;�0;  

�
is derived from the optimal solution of the

following problem dynamic programing at the end of each time period t:

V PO�
�
�tjpIS ;�0;  

�
= max

(
�

1� �
�2a;t
4�b;t

� C; �
�
pIS

�
�a;t � �b;tpIS

�
+ EV PO�

�
�t+1jpIS ;�0;  

��)
(3.1)

and the state variable follows the transition rule �t = g
�
�t�1jDt; p

IS
�
: Intuitively,

�

1� �
�2a;t
4�b;t

� C = E
�
�1i=t+1p

PO
�
a� bpPO

�
�i�tj�t

�
� C

represents the expected continuation value when the PO decides to enter at the end of time t and sets

the optimal price to be

pPO =
�a;t
2�b;t

based on the posterior information of that moment;while

�
�
pIS

�
�a;t � �b;tpIS

�
+ EV PO�

�
�t+1jpIS ;�0;  

��
represents the expected continuation value when the PO decides to not enter at the end of time t and

wait until the end of period t+ 1 to collect the revenue commission �pIS
�
�a;t � �b;tpIS

�+
and the

expected continuation value from then on. By comparing these two options of "entering now" and

"waiting till next time", the PO�s entry policy f�
�
�tjpIS ;�0;  

�
entails an immediate entry when

V PO�
�
�tjpIS ;�0;  

�
=

�

1� �
�2a;t
4�b;t

� C

� �
�
pIS

�
�a;t � �b;tpIS

�
+ EV PO�

�
�t+1jpIS ;�0;  

��
;

() f�
�
�tjpIS ;�0;  

�
� 0:
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Two Types of Heuristic Entry Policies

Notably, the problem in (3.1) is intractible with a continuum and multi-dimensional state space, i.e.

su¤ering from "curse of dimensionality". We consider a simpli�cation4 by restricting the PO�s choice

to be between "entering now" and "never entering" for each period t: In this case, the PO�s entry

policy is derived as follows5 :

4 In general, we assume a minimal rationality for the PO in the interactions with the speci�c individual IS for the large
total number of independent sellers she deals with and the associated information asymmetry. While we assume that
the IS acts rationally, i.e. taking best response based on his privated information and the pricipal�s policy commitment.

5For a generic entry policy f
�
�tjpIS ;�0;  

�
; the PO�s expected payo¤ following this policy is:

V PO
�
f jpIS ;�0; 

�
= E

�
��t=1p

IS
�
a� bpIS

�+
�t � ��C +�+1t=�+1p

PO
�
a� bpPO

�
�tj�0

�
s:t: � = min

n
t � 0jf

�
�tjpIS ;�0;  

�
� 0
o
;

�t = g
�
�t�1jDt; pIS

�
:

We express the expected payo¤ as V PO
�
f jpIS ;�0; 

�
= E

�
V PO

�
� jpIS ;�0; 

��
; and �rst study the payo¤ conditional

on the entry time � :

V PO
�
� jpIS ;�0; 

�
= E

�
��t=1p

IS
�
a� bpIS

�+
�t � ��C +�+1t=�+1p

PO
�
a� bpPO

�
�tj�

�
= �+1t=1p

IS
�
�a � �bpIS

�+
�t

�E
�
��C � �+1t=�+1

�
pPO

�
a� bpPO

�
� pIS

�
a� bpIS

�+�
�tj�

�
:

The PO�s optimal price is set right after the entry decision is make and the information available at the moment is �� ;
therefore

V PO
�
f jpIS ;�0; 

�
�
pIS

�
�a � �bpIS

�+
�

1� �

= E

"
V PO

�
� jpIS ;�0; 

�
�
pIS

�
�a � �bpIS

�+
�

1� �

#

=
�

1� �
E

(
��

"
�2a;�

4�b;�
� pIS

�
�a;� � �b;�pIS

�+
� C (1� �)

�

#)

An optimal entry policy f� needs to balance the trade-o¤ between a higher incremental pro�t
�2a;�
4�b;�

�

pIS
�
�a;� � �b;�pIS

�+ � C(1��)
�

and an earlier entry time index �:If the PO discards the concerns for an optimal
entry time but enters as soon as the incremental pro�ts is positive, she essentially adopts the strategy of "entering now
or never".
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f�
�
�tjpIS ;�0;  

�
� 0 ()

V PO�
�
�tjpIS ;�0;  

�
=

�

1� �
�2a;t
4�b;t

� C

� �

1� � p
IS
�
�a;t � �b;tpIS

�
;

based on which we de�ne

fC�

:=

�2a;�
4�b;�

� pIS
�
�a;� � �b;�pIS

�+ � C (1� �)
�

:

This policy essentially entails an entry as soon as the PO�s incremental pro�t after entry is positive,

therefore we consider it "pro�t-driven" heuristic. Similarly, we consider a "revenue-driven" heuristic

under which the PO enters as soon as her incremental revenue6 after entry is positive:

fC� =
�2a;�
4�b;�

� C�:

Namely, C� and C
� are thresholds for the PO�s minimum incremental pro�t or post entry revenue

respectively.

We argue that the optimal entry policy involves in three layers of trade-o¤ as follows:

1. entry cost index C(1��)
� and post-entry revenue

�2a;�
4�b;�

;

2. post-entry net pro�t
�2a;�
4�b;�

� C(1��)
� and pre-entry net pro�t pIS

�
�a;� � �b;�pIS

�+
;

3. incremental pro�t
�2a;�
4�b;�

� pIS
�
�a;� � �b;�pIS

�+ � C(1��)
� and entry time index � :

While fC�

looks at the �rst two, and fC� focuses on the �rst one. For tractability, we assume that

the PO adopts fC� and study the IS and the PO�s behaviors and performances in this case for most of

6Here we use revenue-driven for fC� to contrast with the "net pro�t", though
�2a;�
4�b;�

is actually the PO�s pro�t post

entry as we normalize the PO�s varaible cost as 0:
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this study. We discuss the results when the PO adopts fC�

and compare the two systems in Section

3.6.

3.4 The IS�s Optimal Pricing Policy and Performance

In this section, we study the IS�s optimal pricing decision as well as the associated payo¤ functions

of the IS. Given the PO�s belief updating rule based on statistical learning and entry policy fC� ; the

IS could anticipate the PO�s belief updating trajectory and her entry time based on the true demand

parameters fa; bg : Then we could formulate the IS�s optimal pricing problem.

3.4.1 The IS�s Anticipation of the PO�s Entry

The IS�s Anticipation of the PO�s Belief Evolution

Knowing the true value of fa; bgT := ��, the PO�s posterior mean �t follows a two-dimensional

random walk from the IS�s perspective:

�t = �t

�
XT
t Xt�

� +��10 �0

�
+�tX

T
t "t

= �Dt + �
�
t;

with a deterministic trajectory �Dt = �t

�
XT
t Xt�

� +��10 �0

�
and a stochastic trajectory ��t =

�tX
T
t "t.

With the assumption pISi = p; we de�ne

�� (p) :=

0B@ 1
�2b
� �p

�a�b

�
�a�b

� p
�2a

1CA ;
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and get:7

�Dt � �0 =
t [(a� �a)� p (b� �b)]
1

�2a�
2
b
+ t
�
1
�2b
+ p2

�2a
� 2�p

�a�b

��� (p)
��t =

�"i
1

�2a�
2
b
+ t
�
1
�2b
+ p2

�2a
� 2�p

�a�b

��� (p) :
We have the following observations on the PO�s belief evolution trajectory from the IS�s perspective

(see Figure 3.1):

7

�Dt = 264 �a
�2a�

2
b�b

�2a�
2
b

!
+ t

0B@ a
�2
b

+ p

�
�b�b
�2
b

� �(�a+a)
�a�b

�
+ p2

h
�a
�2a
� �(�b�b)

�a�b

i
�b
�2
b

� �(�a�a)
�a�b

+ p
h
�a�a
�2a

� �(�b+b)
�a�b

i
+ bp2

�2a

1CA
375

1
�2a�

2
b

+ t

�
1
�2
b

+ p2

�2a
� 2�p

�a�b

�

��t =

�"i

 1
�2
b

� �p
�a�b

�
�a�b

� p
�2a

!
1

�2a�
2
b

+ t

�
1
�2
b

+ p2

�2a
� 2�p

�a�b

� t! +1�����!0:
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a

b

(µa,µb)

(a,b)

µD
t

µε
t

∆µ(p)

(µa,∞,µb,∞)

µ~⋅ (p,1)T

Figure 3.1: The IS�s Anticipation of PO�s Belief Evoluation

1. Stability

The stochastic trajectory ��t converges to 0 (in probability) as t grows, so asymptotically �
D
t

dominates the belief evolution. Note that when p = a��
b�� , the deterministic component of the

PO learning is eliminated, i.e. �Dt � �0 = 0; so her learning is fully driven by the random

component ��t: This is an issue well-recognized in the existing demand learning literature[56][59]
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with linear, bivariate demand models, caused by an identical expected demand level under the

prior and true demand information based on a "stalling price", here p = a��
b�� :

2. Direction

�Dt is moving along the direction of �� (p) starting from �0; �� (p) is non-zero as long as the

PO�s bi-nomial prior on the demand parameters is indegenerate � 2 (�1; 1).

3. Asymptoticity

As t! +1;

�t ! �0 +
(a� �a)� p (b� �b)

1
�2b
+ p2

�2a
� 2�p

�a�b

�� (p) := �+1

=

0B@ a

b

1CA+ e� (p) �
0B@ p

1

1CA
e� (p) =

h
�b�b
�2b

� �(�a�a)
�a�b

i
+ p

h
�a�a
�2a

� �(�b�b)
�a�b

i
1
�2b
+ p2

�2a
� 2�p

�a�b

Note that e� (p) is a scaler, and when e� (p) 6= 0, the PO�s learning is inconsistent. This informa-
tion loss is due to the insu¢ cient observation (i.e. one-dimensional variation from fDtgt) for a

two-dimensional inference. Since

j�Da;t � aj�Dt � (a; b) = pp
p2 + 1

;
j�Db;t � bj�Dt � (a; b) = 1p

p2 + 1
;

IS�s price p regulates the information acquisition e¤ort (and accuracy) devoted to a and b: The

higher p is, the more e¤ort and accuracy is allocated to b while a�s evolution is proportional to

the change in b based on the relative error; and vice versa.
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4. and it governs a0s information updating, and vice versa:

�Dt t! +1�����!

8><>:
p! 0���!

�
a; �b +

��b(a��a)
�a

�
p! +1������!

�
�a +

��a(b��b)
�b

; b
�

�Dt converge to (a; b)
T
;i.e. e� (p) = 0; only when

p =
�a
�b

�b�b
�b

� �(�a�a)
�a

�(�b�b)
�b

� �a�a
�a

:= pConsistent

or

(a) b��b
�b

= �a��a
�a

; � = �1 (learning along the right direction, regardless of p)

(b) b = �b; a = �a

5. Consistence

From the PO�s perspective, the demand Dt follows a normal distribution with known variance

and unknown mean a � bp: Based on her prior and the price observation p; the PO�s posterior

of a � bp follows N
�
�t ��!p ;�!p T�t�!p

�
; where �!p =

0B@ 1

�p

1CA ; and her learning of the demand

level is consistent.

The PO�s Entry Time under fC�

To �nd the stopping time � := min
n
t � 0j �

2
a;t

4�b;t
� C�

o
from the PO�s perspective, we write pIS = p

for simplicity and consider the change of coordinates �t = �0 + T
�1 (p)�0t (p) de�ned by

T (p) = � (p)
�1

0B@ 1
�2b
� �p

�a�b

�
�a�b

� p
�2a

�
�

�
�a�b

� p
�2a

�
1
�2b
� �p

�a�b

1CA
� (p) =

s�
1

�2b
� �p

�a�b

�2
+

�
�

�a�b
� p

�2a

�2
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In this new coordinate frame, the deterministic and random components of the PO�s learning are

�0Dt =
t [(a� �a)� p (b� �b)] � (p)
1

�2a�
2
b
+ t
�
1
�2b
+ p2

�2a
� 2�p

�a�b

�
0B@ 1

0

1CA
�0�t =

� (p) �"i
1

�2a�
2
b
+ t
�
1
�2b
+ p2

�2a
� 2�p

�a�b

�
0B@ 1

0

1CA ;

which help to solve for the PO�s entry time � through the following process:

1. De�ne ! = arctan
�

�a�b
� p

�2a
1

�2
b

� �p
�a�b

8 ;then (�0t is a scalar to solve, marking the distance the PO�s belief

moves along �� (p))

�t =

0B@ �a

�b

1CA+
0B@ cos!

sin!

1CA�0t (3.2)

2. Insert (3.2) into the entry condition boundary
�2a;�
4�b;�

= C�; and obtain9

�0� =

8>>>><>>>>:
4
p
C� cos!(�b cos!��a sin!)+C�2 sin2 !�(2�a cos!�4C� sin!)

2 cos2 ! if cos! 6= 0

�b �
�2a
4C� if cos! = 0 and sin! = �1

no solution o:w:

(3.3)

3. The stopping time for �0Dt +�0"t to hit the entry threshold at

0B@ �0�

0

1CA is equal to the stopping

8

 1
�2
b

� �p
�a�b

�
�a�b

� p
�2a

!
is the belief evolution direction

9

� =
4
q
C�� (1� �p) (1 + p) (1� �) + C�2 (�� p)2 � [2� (1� �p)� 4C� (�� p)]

2�2 (1� �p)2

� = �
�
1 + p2 � 2�p

�
�2 � (a� �) + p (b� �)
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time for the random walk �ti=1"i to hit the line � (p) + � (p) t8><>: � (p) =
�0�

�2a�
2
b�(p)

� (p) = � (p)�2a�
2
b

�
1
�2b
+ p2

�2a
� 2�p

�a�b

�
� (a� �a) + p (b� �b)

(3.4)

4. To calculate E�� , we approximate the random walk �ti=1"i with a standard Brownian motion

fB (t)gt�0 :Given the stopping time for fB (t)gt�0 to hit the line � (p) + � (p) t is T�� (please

refer to (5.5) on Page 362 of [65]); for 8� > 0;

E
�
e��T��

�
= e

��
h
�+
p
�2+2�

i
:

By replacing � ln � = �; � � T�� ; we have

E�� = Ee� ln � � e�b�(p);
b� (p) = �

�
� +

q
�2 � 2 ln �

�
: (3.5)

3.4.2 The IS�s Optimal Pricing Problem

Given the PO�s belief updating rule based on statistical learning and entry policy fC� ; the IS is

maximizing his expected NPV V IS through the decision of price pIS :

p� = argmax
p2(0;1)

V IS (3.6)

V IS =
�

1� �
�
(1� ) p� cIS

�
(a� bp)+ (1� E�� )

V IS (1� �)
� (1� ) ' (p� c) (a� bp)

h
1� e�b�(p)i ;

c : =
cIS

1�  <
a

b
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where f� (p) ; � (p)g are de�ned as in (3.4). WLOG10 , we can normalize �a = �b := �, and de�nebV IS = V IS(1��)
� for dispositional simplicity.

V IS is non-negative in the compact set p 2
�
c; ab
�
; so the optimal solution(s) p� to the IS�s problem

(3.6) do exist: Yet the IS�s complex payo¤ function V IS makes it impossible to get the close form

solution of the optimal price p�. So we resort to a combination of analytical and numerical studies to

investigate the optimal solution(s) fp� (��;�0; C�)g0s properties.

In particular, without the PO�s entry threat, the IS�s optimal price is pM := a+bc
2b that serves as

a benchmark for p�: We focus on the comparison between p� and pM or the IS�s pricing distortion

behavior; namely if the IS sets a higher or lower price to postpone the PO�s entry, and identify

the condition for each case. Moreover, based on uni-modality assumption of some special cases, we

discover the IS�s optimal product selections fa� (b) ; bg within the product space that helps to explain

the seller�s competitive behavior on the market place.

10When �a 6= �b; we de�ne

�0b = �a; b
0 = b � �a

�b
; �0b;t = �b;t �

�a
�b
; �0b = �b �

�a
�b

p0 = p � �b
�a
; c0 = c � �b

�a
; C�0 = C� � �b

�a

then the PO�s prior is

�
a; b0

	
=

�
a; b � �a

�b

�
� N

�
�00;�

0
0

�
;

�00 =
�
�a; �

0
b

�
�00 =

�
�2a ��a�0b

��a�0b �02b

�
:

and the belief updating rule follows.
The demand level and pro�t level are

�a;t � �0b;tp0 = �a;t � �b;tp;�
p0 � c0

� �
�a;t � �0b;tp0

�
= (p� c)

�
�a;t � �b;tp

�
� �b
�a
;

and the entry threshold is

�2a;t

4�b;t
� C� ()

�2a;t

4�b0;t
� �b
�a

� C0� � �b
�a

()
�2a;t

4�b0;t
� C0�:
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Multi-Modality and Ine¤ective Learning

We argue that, despite the existence of p�, V IS (p)�s multi-modality does not allow for straightforward

comparative statics of p� (��;�0; C�) based on FOC: We demonstrate the example of

8><>: �a = �b = 1; � = 3; a = 4; b = 2; � 2 [0:6; 1)

c = 0; � = 0:99; C� = 5
4

9>=>;
in Figure 3.2:

0 0.4 0.8 1 1.2 1.6 2=a/b
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p

V
IS

VIS(p)'s multiple modes as ρ>1  ,σ=1,a=4,b=2, µ=3,C *=5/4,δ=0.99

ρ=0.6
ρ=0.7
ρ=0.8
ρ=0.9
ρ=1

Figure 3.2: Multi-Modality in the IS�s Obejective Functions

It shows that in this case V IS (p; �) has more than one modes when � � 0:8; p� (�) is discontinuous.

In this example, p� 2 (0; 0:4) when � < 0:8; p� 2 (1:6; 2) ; when � 2 f0:8; 0:9g ; and p� = 1;when

�! 1�:
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In general, when �a
�b
2
�
c; ab
�
; �! 1�; p! �a

�b
; the PO�s belief evolution vector (and the bi-nomial

prior belief) becomes degenerate

�� (p) =

0B@ 1
�2b
� �p

�a�b

�
�a�b

� p
�2a

1CA! 0;

in which case the PO�s learning is ine¤ective, so �t � �0, � =1; V IS (p) = p (a� bp) ; causing a spike

in V IS (p) : In the special case of �a = �b; this amounts to a � b; p = 1:

Remark 1 Though the IS could e¤ectively deter the PO�s entry with this "ine¤ective learning price",

it is not necessarily the IS�s optimal price. We demonstrate this observation of in Figure 3.3 of the

example of
�
� = 0:3; � = 3; C� = 5

4 ; a = 3:75; b = 2:6; � 2 [0:6; 1) ; c = 0; � = 0:99
	
. This set of V IS (p)

curves show that though there is a (right) mode in V IS (p) value around "ine¤ective learning price",

the optimum lies at the left mode.
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Figure 3.3: The IS�s Optimal Price and the "Ine¤etive Learning" Price

Lacking V IS (p)0 s uni-modality property in general, we start with a special case of � = 0 for which

we observe uni-modality from extensive numerical and analytical studies, and for simplicity we assume

that �a = �b := �11 . We discuss how the observations from this special case apply to a general � in

Section 3.7.
11This assumption is for simplicity and may cause the loss of generality.
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3.4.3 The IS�s Optimal Price Policies with � = 0

In this special case of � = 0; we obtain analytical results regarding p��s properties and complement

them with numerical results. In particular, we examine the comparison between the optimal price

and the myopic price, and the optimal price�s implication on the PO�s pro�ts.

Analytical Results on Trends of Entry time and the Optimal Price Comparison

A focal question around the optimal price p� is how it is compared to pM , the optimal price without

entry threat. The metric p�

pM
� 1 characterizes the IS�s price distortion behavior subject to the PO�s

entry threat, and relates to how he practically postpones the PO�s entrance by leveraging the price.

We argue that the entry time ��s monotonicity w.r.t. p is su¢ cient to determine
�
p�

pM
� 1
�0
s sign,

and �nd su¢ cient conditions on fa; bg for ��s monotonicity. We show that the products with price

sensitivity b low (high) enough is sold at price p� lower (higher) than pM by the IS, a result consistent

with statistical learning theory.

Lemma 7 p� � (�) pM = a+bc
2b if b� (p) increases (decreases) in p 2 �c; ab � :

Please refer to 2.2 for the proof of Lemma 7. The result of Lemma 7 directs us to search for

conditions supporting � 0s monotonicity. Note that

b� : = �

�
� +

q
�2 � 2 ln �

�
b� 0b� =

�0

�
+

�0p
�2 � 2 ln �

;

so the sign of b� 0 could be determined by the signs of �0� and �0p
�2�2 ln �

. When � = 0; we know that

�0

�
=

�C�p
C�� (1 + p) + C�2p2

< 0;

so what is left is to determine the sign of �0p
�2�2 ln �

: The following result helps to characterize the

sign of �0 and consequently b� 0s monotonicity.
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Lemma 8 � (p) is convex w.r.t. p 2 [0;1) when � = 0:

Please refer to 2.2 for the proof of Lemma 8. With Lemma 8�s result, it su¢ ces to show �0 < 0

and b� 0 < 0 for 8p 2 �c; ab � ; if �0 �ab � < 0; similarly, �0 > 0 for 8p 2 �0; ab � ; if �0 (0) < 0; which helps us
to further determine the su¢ cient conditions for b� 0 < 0: We present the su¢ cient conditions for � to
be increasing or decreasing, and consequently p� being higher or lower than pM based on these two

lemma.

Proposition 10 1. If b � b (a) := � +

�
2C� �

p
C��+

r
C�

�

h�
2
p
C��� a

�2 � 2 ln �i� ; then
p� � pM :

2. If b � b := �2

4C� ; then p� � pM .

Please refer to 2.2 for the proof of Proposition 10. The rough idea is that for the IS to postpone

the PO�s entry, he needs to avoid the occurrence of exceedingly high sale observations, by minimizing

�Dt = E [Dtja; b]� E [Dtj�a; �b]

= (a� �)� (b� �) p:

Therefore if b� � is positive and very large, he will set a higher p; and vice versa. In this case, when

the actual market demand is highly price-sensitive, the IS would distort the price upward compared

to the situation without the PO�s entry threat, as a "reverse" attempt.

We established su¢ cient conditions for p�

pM
to be higher or lower than 1 by de�ning two thresholds

of b;
�
b; b (a)

	
. An example of

�
b; b (a)

	
for

�
� = 3; C� =

5

4
; � = 0:5; � = 0:99; c = 0

�

is shown in Figure 3.4:
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Figure 3.4: Two Thresholds of b for Increasing and Decreasing Entry Time

The following questions remain unanswered regarding pIS

pM

0
s value, and to address them we need

to resort to numerical studies:
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1. In the gap between
�
b; b (a)

	
; what is the sign of p�

pM
� 1?

2. Within (and between) the two regions bounded by
�
b; b (a)

	
; how does p�

pM
change with fa; bg?

Preliminary numerical results show that the IS�s objective function is unimodal with � = 0; so we

could rely on numerical solution of the unique p� in the analysis hereafter.

Numerical Study for p�

pM

A Boundary for the Sign of p�

pM
� 1 in fa; bg Space We numerically examine the sign of p�

pM
� 1

in the area between
�
b; b (a)

	
; and �nd in a broad range of parameter settings:

9bb (a) 2
�
b; b (a)

�
; s:t:

8b > bb (a) ; p�
pM

� 1 > 0;8b < bb (a) ; p�
pM

� 1 < 0:

We demonstrate bb (a) (labeled as bnum in the graphics) for the same example for Figure 3.4 in Figure
3.5.
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Numerical comparative statics of p�

pM
Besides the sign of p�

pM
� 1; we examine how p�

pM
�s value

change with fa; bg, to represent how the price distortion level being in�uenced by product character-

istics.
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Fixing b and changing a By �xing b and changing a; we observe two product types of low or

high price sensitivity presenting the opposite trends of p
�

pM
�112 ; which could be uni�ed under the same

framework by measuring j p
�

pM
�1j: In particular, when � is large enough13 and b < (>)bb (a), 9a1 (b; �) ;

s.t. p�

pM
minimizes (maximizes) at a1 (b; �);

p�

pM
decreases (increases) when a < a1 (b; �), and increases

(decreases) with a > a1 (b; �)
14 : Therefore the price distortion level j p

�

pM
�1j is maximized at a1 (b; �) for

either type. We demonstrate the cases of fb 2 f1:5; 2; 2:5g ; � = 0:5g and fb = f4:5; 5; 5:5g ; � = 0:5g

in Figure 3.6. Intuitively, a product with low market size, i.e. a < a1 (b; �) ; is not worth the PO�s

entry but grows more attractive as a increases, therefore IS needs to increase the price distortion

level to prevent the PO�s potential entry by accident. When the market size is large enough, the IS�s

price distortion becomes ine¤ective given the PO�s fast learning, so the IS reduces the e¤ort of pricing

distortion.
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Figure 3.6: The IS�s price distortion behaviors in the two regions

12One could combine these studies to come up with results about parameter changes across bb (a) :
13when � is very small, we observe p�

pM
decrease with a; therefore a1 (b) may not exist

14a1 (b; �) remains at a relatively stable level while slightly decreasing in the case of b < bb (a) :
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Table 3.1: a1�s relationship with b and the coe¢ cient of variantion

Lower b
� = 0:5 b 1.5 1.8 2 2.2 2.5

a1 (b; �) 3.74 3.74 3.74 3.74 3.74
b = 2 � 0.1 0.2 0.5 2 5

a1 (b; �) 3.855 3.69 3.74 3.74 3.74
Higher b

� = 0:5 b 4.5 4.8 5 5.2 5.5
a1 (b; �) 6.28 6.692 6.97 7.248 7.67

b = 5 � 0.1 0.2 0.5 2 5
a1 (b; �) 6.55 6.90 6.97 6.97 6.97

We also present a summary of a1 (b; �)
0
s trends w.r.t. fb; �g in Table 3.1, and notice that when

b < bb (a) ; a1 (b; �) stays relatively stable w.r.t. b; decreases and the then increases w.r.t. �15 ; when
b > bb (a) ; a1 (b; �) increases w.r.t. b; and increases w.r.t. �.
Fixing a and changing b When �xing a and changing b; we observe that p�

pM
increases then

decreases with b, converging to 0 and 1 with very low and high b respectively, and maximizing at eb (a)
(Figure 3.7). Intuitively, products of very low price sensitivity is very attractive for the PO�s entry so

the IS needs to particularly lower the price to prevent so; while products of very high price sensitivity

is not attractive so the IS does not need to deviate from pM : Based on an extensive set of numerical

studies, we observe that the price distortion
��� p�pM � 1

��� is maximized at b = 0 as
max

p�

pM
=

p�

pM
jb=eb(a) < 2:

min
p�

pM
=

p�

pM
jb!0+ = 0

15minimizes at � = 0:2
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3.4.4 The IS�s Product Selection and Payo¤s

Based on the IS�s optimal pricing decision, we could derive the IS�s payo¤ V IS� (a; b) = V IS (p�; a; b).

By comparing V IS� (a; b) across di¤erent demand characteristics fa; bg with other parameters �xed, we

identify the optimal parameter settings for the IS�s payo¤, as well as the comparison of its performance

to other settings. In particular, we discover that the optimal settings fa� (b) ; bg locate along a line

segment. Moreover, we characterize how the IS�s payo¤ diminishes as fa; bg moves away from the

optimal product selection on the line segment.

97



Optimal Product Selections

Based on an uni-modality assumption16 in the case of � = 0, we establish the following results

regarding how the IS�s optimal performance depend on the product true demand parameters.

Proposition 11 When V IS (pj� = 0) is unimodal, 9 fp�� (�0; ) ; q�� (�0; )g ; s.t. 8 fa�; b�g > 0

with the relationship

a� = q�� + b�p��

have the following properties:

1. p� (a�; b�) = p��;

2. V IS� (a�; b�) := V IS (a�; b�; p� (a�; b�)) = V IS��

3. 8 fa; bg > 0 and a > bc; V IS� (a; b) � V IS��

For example, when
n
� = 3; C� = 5; � = 0:5; c = cIS

1� = 0:3
o
; based on our computation

p�� = 0:7562

q�� = 1:2465

V IS�� = 0:4826;

so

a� (b) = 1:2465 + 0:7562b:

From the left panel of Figure 3.8, we notice that a� (b) presents a linear relationship w.r.t. b; i:e:

grows with b: And the right panel shows that the fb; a� (b)g line crosses the boundary marked by bb (a) ;
thus j p

�

pM
� 1j could take both signs along the optimal product selection fb; a� (b)g :

16We veri�ed this result with extensive numerical tests but it is exceedingly di¢ cult to show in general, due to
the complex form of the objective function involving exponential and root functions. We prove the special case of
C� = �

4
(1 + ") with deterministic approximation of � in 2.2.
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Figure 3.8: The Best Product Selections

Extreme Product Selections

Given the optimal product selection fa� (b) ; bg along the line

a = q� + bp�;

we observe that the IS�s payo¤ deteriorates as fa; bg moves away from the optimal product selections.

In particular, we de�ne

�� =
�
fa; bg jV IS� (a; b) := V IS (a; b; p� (a; b)) < �V IS��; � 2 (0; 1)

	
as the set of product characteristics that induce a lower payo¤ for the IS than a proportion, i.e.�; of

the highest optimal payo¤ V IS��: �� include product characteristics at the upper-left and lower-right

corners of the (a; b)-space and expands as � increases. We demonstrate �0:9 and �0:5 for the example
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of
n
� = 3; C� = 5

4 ; � = 0:5; c =
cIS

1� = 0:3; a 2 [2; 8] ; b 2 [1:5; 6:5]
o
in Figure :
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Figure 3.9: The IS�s Product Selections Satisfying a Minimum Pro�t Level

The following Proposition 12 characterizes the IS�s payo¤s at these extreme cases of fa; bg, and

shows the di¤erences between the two extremes.

Proposition 12 1. For 8b > 0; lim
a!bc+

V IS� (a; b) = 0; lim
a!+1

V IS� (a; b) = � ln ��(4C���)�
4+ �2

bC�
�
�2C�

> 0

2. For 8a > 0; lim
b!( ac )

�
V IS� (a; b) = 0; lim

b!0+
V IS� (a; b) = 0:

Please refer to 2.2 for the proof of Proposition 12. Though the IS�s payo¤ does not fully di-

minish as a grows very large, its limit is still very small compared to V IS��: For example, withn
� = 3; C� = 5

4 ; � = 0:5; c =
cIS

1� = 0:3
o
;

� ln ��(4C���)�
4+ �2

bC�
�
�2C�

V IS��
�

� ln ��(4C���)
4�2C�

V IS��
< 0:1:
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3.5 The PO�s Entry Threshold and Performances

In this section we study the PO�s entry threshold choice based on the IS�s best response of price.

We assume that the PO is unable to fully anticipate the IS�s pricing decision in response to the

entry threshold she set, due to the lack of complete information. To understand how the PO�s entry

threshold choice a¤ects her performance, we take the researcher�s persective by �rst assuming the PO

has some preliminary information allowing her to evaluate di¤erent entry thresold based on her prior

belief. We then characterize how this addtional information a¤ects her optimal entry threshold choice

and ensued performance.

The PO needs to take account of the IS�s pricing decision to compare the outcome from di¤erent

entry threshold. And in this current model, the extra uncertainty preventing the PO from rationally

anticipating the IS�s pricing response based on her prior belief is the IS�s private information of her

variable cost cIS : We examine two approaches by assuming the PO has preliminary information on

the IS�s price or has preliminary information on cIS respectively, and name them as "cost-based" and

"price-based" approach respectively.

Regarding the PO�s entry policy, the �rst and foremost question is if retaining the entry option

is bene�cial, corresponding to the case of C� = +1: Also one would be interested in �nding the

"optimal" entry threshold and its sensitivity to certain parameters such as the PO�s prior belief.

In both approaches, we conduct a comparison between the PO�s performance under �nite C�s and

C� = +1 and identify conditions for the PO to be better o¤ by forgoing the entry decision, and

examine how the PO�s performance change with her choice of C�. We also identify the PO�s loss due

to the IS�s pricing distortion behavior as well as the PO�s loss due to demand information asymmetry.
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3.5.1 Cost-Based Approach

The PO�s Expected Performance based on Distributional Aggregation

We �rst specify the PO�s expected payo¤ function from the researcher perspective by explicating the

IS�s private information �� = fa; bg and cIS

bV PO (C�jp� (��; C�) ;��; ) = p� (a� bp�)+ + e�b� npPO �a� bpPO�� p� (a� bp�)+ � C0o ;
where

C0 := C � 1� �
�

; bV PO := V PO � �

1� � ;

and

pPO =
�a;�
2�b;�

is the PO�s optimal pricing decision based on her posterior upon her entry decision, and p� is the IS�s

optimal pricing decision in response to an entry threshold choice C�:

Based on the analysis so far, we could compute the IS�s optimal price p� (��; C�) and the ensuing

PO�s payo¤ bV PO (C�jp�;��; ) for a �xed C� and any realization of �� = fa; bg and cIS :To evaluate
the PO�s payo¤ under di¤erent entry threshold on an aggregate level, we take the expectation ofbV PO (C�jp�;��; ) over the prior distribution �� � N (�0) for given cIS :

E
hbV PO (C�jp� (��; C�) ;��; ) jN (�0)i := bV PO (C�jp�; N (�0) ; ) ;

and compare them across di¤erent values of C�; in particular to the case of C� = +1;i.e. the PO

never entering.

Besides cIS , we also change and examine the e¤ect of C0; and the prior information f�; �g while

keeping the correlation coe¢ cient � �xed17 . In Figure 3.10, we demonstrate how bV PO (C�jp�; N (�0) ; )
change with C� for a selection of

�
cIS ; C0; �; �

	
values, and for comparison we display the value of

17� a¤ects the overall pro�tability to a very large extent as well, yet we leave the discussion to 3.7.
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bV PO (+1jp�; N (�0) ; ) towards the end of each curve.
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Figure 3.10: The PO�s Performances by Aggregating over the Prior Distribution

Figure 3.10 demonstrate the e¤ect of di¤erent factors on the PO�s expected payo¤ under di¤erent

entry threshold C�: In general, the prior distribution variance � plays a important role on the overall

attractiveness of the market and the entry cost C0 determines the entry pro�tability, while �18 and

18Under the assumption of �a = �b := �; the magnitude of � represents the revenue size according to the PO�s prior,
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the IS�s unit variable cost cIS play relatively lesser roles. In particular, we observe that with other

factors �xed, the PO is better o¤ by forgoing the entry option only when � is very low and C� is very

low. In this case, the PO is very con�dent with her prior information that does not support up-front

or early entry as �
4 < C�:

The unknown cIS�s relatively low e¤ect on the PO�s entry threshold choice shows that the PO

could e¤ectively choose a well-performing entry threshold based on the prior distribution information

and other pro�t related parameters, as long as she knows the range of the PO�s cost parameter.

However, as we observe a large variance across the IS�s optimal prices p� for di¤erent cIS with �xed

fa; bg ; p� could not e¤ectively serve as a signal for the PO to infer fa; bg :

The PO�s Loss from Incomplete Information and Price Distortion

Based on the PO�s payo¤with the IS�s optimal pricing decison, we could also examine the e¤ect of the

IS�s pricing distortion behavior on the PO�s performance and entry threshold choice. As a benchmark,

we calculate the PO�s payo¤ by replacing the IS�s optimal pricing decision p� with his optimal price

without the entry threat pM :

bV PO �C�jpM ; N (�0) ; � := E
hbV PO �C�jpM (��) ;��; � jN (�0)i :

Another benchmark is the PO�s average payo¤when she is informed of all the fa; bg realizations under

the prior distribution, so she could choose between entering up-front or never entering for each fa; bg

realization, known as the full information benchmark:

bV PO (f0;+1g jN (�0) ; ) = E
h
max

nbV PO (0j��; ) ; bV PO (1j��; )o jN (�0)i :
We compare the PO�s performance against these two benchmarks and demonstrate an example of�

� = 0:8; cIS = 0
	
in Figure 3.11 and more results for di¤erent �s in Table 3.2. These results show

though �a and �b evolve separately in the belief updating process. Generally, � could be replaced by
�2a
�b

for a similar
purpose.
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that the IS�s pricing distortion behavior leads to a signi�cant loss (up to 9.92%) to the PO, comparable

to her total loss due to demand information asymmetry (up to 13.91%). If the PO is to decide her

entry threshold based on her prior information, she would choose a larger entry threshold (by about

2%) if not accounting for the IS�s pricing behavior.
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Figure 3.11: The PO�s Loss due to the IS�s Price Distortion and Information Asymmetry
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Table 3.2: The PO�s Performances with Di¤erent Variance Parameters and Assumptions

� 0.2 0.5 0.8 1
C�� 0.875 1 1.0625 1.25
CM� 0.875 1.0625 1.1875 1.3125bV PO (C��jp�) 0.2161 0.2567 0.3550 0.3618bV PO �CM�jpM

�
0.2247 0.2750 0.3941 0.3856bV PO (0;1jp�) 0.2338 0.2866 0.4123 0.4095

1� bV PO(C��jp�)bV PO(CM�jpM ) 3.85% 6.64% 9.92% 6.18%

1� bV PO(C��jp�)bV PO(0;1jp�) 7.57% 10.44% 13.91% 11.67%

Conditions for the PO to Forego the Entry Option

In the extreme case of C� = +1;

b� = +1; p� = pM =
a

2b
+

cIS

2 (1� )

bV PO �+1jp� = pM ;��; 
�
=



4b

"
a2 �

�
bcIS

1� 

�2#
;

so the PO is better o¤ by foregoing the entry option when

bV PO (C�jp� (��; C�) ;��; ) < bV PO �+1jp� = pM ;��; 
�
:

In particular, when C� � �2a;0
4�b;0

; i.e. the PO enters up-front, this amounts to

bV PO �+1jp� = pM ;��; 
�

> bV PO (0jp�;��; ) = a2

4b
� C0

C0 >
(1� ) a2 +

�
bcIS

1�

�2


4b
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This shows that compared to entering up-front, a lower market size a, the IS�s lower unit cost cIS , as

well as a medium level of b drives the PO to opt for never entering. For a general entry threshold C�;

conditions for the PO to forego the entry option depend more speci�cally on the IS�s pricing decision,

so we resort to an extensive set of numerical tests over the following sample grid to examine these

conditions

a 2 [2; 8] ; b 2 [1:5; 6:5] ;

cIS 2 f0; 0:1; :::; 0:4g ; C� 2 f0:75; 1; 1:25; :::; 2g :

In particular, for each
�
C�; cIS

	
combination, we �nd the division of the fa; bg�space as

n
��jbV PO (C�jp� (��; C�) ;��; ) < (>) bV PO �+1jp� = pM ;��; 

�o
;

and demonstrate the boundaries between the two parts of a selection of
�
C�; cIS

	
values in Figure

3.12.
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Figure 3.12: Product Characteristics for the PO�s to Forgo the Entry Option

In general, the PO opts out of entering with lower a and larger b; and as the entry threshold C�
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increases, the region of fa; bg that supports opting for never entering expands. However, the impact of

the IS�s variable cost cIS varies across di¤erent parameter settings. In general, a higher cIS makes the

entry option more attractive for the PO, so the fa; bg�region that supports "never entering" shrinks.

3.5.2 Price-Based Approach

From the PO�s perspective, accessing the IS�s cost information allows her to form a rational expec-

tation of the IS�s pricing decision. However if she have access to certain information on the IS�s price

instead of his cost parameter, she could also evaluate the outcome of her entry threshold decision.

This becomes possible when the PO has accumulated price observation over a long period of time or

o¤erings of the same/similar product.

Here we assume that the PO has access to the IS�s pricing decision pIS , based on which and her

prior information, she could anticipate her entry time and consequently her expected payo¤:

bV PO �C�jpIS ;��; � = p� (a� bp�)+ + e�b� npPO �a� bpPO�� pIS �a� bpIS�+ � C0o ;
and similarly we could take its expectation over the PO�s prior belief:

E
hbV PO �C�jpIS ;��; � jN (�0)i := bV PO �C�jpIS ; N (�0) ; � :

Then similar to the cost-based approach, we could compare the PO�s expected payo¤ across di¤erent

entry threshold C� based on numerical studies:We demonstrate the results of the following example

in the left panel of Figure 3.13:

�a;0 = �b;0 := � = 3; �a = �b = � = 1;

C0 = 0:7;  = 0:2; pIS 2 f0:5; 1; 1:5; 2g ; � = 0:99:
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Figure 3.13: The PO�s Price-Based Payo¤ Function w.r.t. Entry Threshold

As we notice the PO�s payo¤ function bV PO �C�jpIS ;�0; � presents a concave shape w.r.t. C� for
any �xed pIS ; we could identify the optimum C��

�
pIS
�
and the associated payo¤ bV PO �C��jpIS ;�0; �

as shown in Figure 3.14:
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Figure 3.14: The PO�s Optimal Entry Threshold and Payo¤ for Fixed Price

The "optimal" entry threshold C�� reaches its highest with a price between 0.5 and 1, and increases

with �;while the optimal payo¤ with this "optimal" entry threshold C�� reaches its highest at pIS =

0:5:

3.6 The Alternative Pro�t-Driven Entry Policy

In this section we study the two players�performances when the PO adopts the pro�t-driven entry

policy fC�

. We focus on the unique observations in this case and evaluate the PO�s performances

under the two types entry policies. In particular, we examine how the revenue commission rate 

a¤ect the IS�s optimal performances and optimal product selections, and highlight the IS�s preference

for a higher  for a delayed entry.
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3.6.1 Commission Rate 0s E¤ect on The IS�s Performance

The PO�s Entry Time under the Alternative Entry Policy

To understand the two player�s behaviors under fC�

; we �rst derive the PO�s entry time index b� that

determines the di¤erences arising from the alternative entry policy as other parts of the IS�s problem

remains the same.

The entry time index

b� := min(t � 0j �2a;t
4�b;t

� p
�
�a;t � �b;tp

�+ � C�

)

could be found following a similar procedure;by replacing 19the equation of
�2a;t
4�b;t

= C� with

�2a;t
4�b;t

� p
�
�a;t � �b;tp

�+
= C� (3.7)

to solve for �0;t, and inserting �
0
;t into the expressions of 3.4 and 3.5 for f�; �g and b� respectively.

The solution for the general case of A > 0;� � 0; �0�; �
�(�a;0��b;0p)
cos!�p sin! is

�0�; =
�B +

p
�

2A > 0; (3.8)

and in the special case of �a;0 = �b;0 := � :

A = cos2 ! � 4p sin! cos! + 4p2 sin2 ! � 0

B = 2� cos! � 4C� sin! � 4p sin!� (1� p)� 4p� (cos! � p sin!)

C = �2 [1� 4p (1� p)]� 4C��

� = B2�4AC:

Otherwise when � < 0 or �0�; <
�(�a;0��b;0p)
cos!�p sin! ; the condition 3.7 is reduced to

�2a;t
4�b;t

= C� as �a;� �

19We assume that � [1� 4p (1� p)] < 4C�
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�b;�p � 0: In this case when �0� <
�(�a;0��b;0p)
cos!�p sin!

20 , the solution is simply

�0�; = �0� :

Then similarly we could obtain b� = �
n
� +

p
�2 � 2 ln �

o
through

8><>: � (p) =
�0�;

�2a�
2
b�(p)

� (p) = � (p)�2a�
2
b

�
1
�2b
+ p2

�2a
� 2�p

�a�b

�
�
�
a� �a;0

�
+ p

�
b� �b;0

� :

The IS�s Optimal Payo¤ and Product Selection

Under the alternative entry policy fC�

; one major di¤erence arises from the complex e¤ect of the PO�s

commission rate : Under the fC� entry policy, the PO�s entry time is independent from  and 0s

e¤ect on the IS�s pricing decision could be subsumed in the factor c = cIS

1� ; so the IS�s payo¤ always

decreases in :

In contrast under fC�

, the PO�s entry time index b� increases with  even with the entry threshold

C� and other parameters being �xed, while the IS�s revenue decreases with : Therefore these two

contradicting e¤ects of  on the IS�s payo¤ leads to a potential better performance under a higher :

We demonstrate how bV IS (p�; ja; b) change with  with the numerical results of
fC� = 1; � = 3; � = 0:5g

a 2 f2:5; 3:5g ; b 2 f2; 4g

:

20 to guarantee �a;� � �b;�p � 0

112



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

γ

VIS γ

The IS's Optimal Payoffs under C *
γ

C*
γ
=1, µ=3, σ=0.5

a=2.5,b=2
a=3.5,b=2
a=2.5,b=4
a=3.5,b=4

Figure 3.15: The IS�s Optimal Payo¤s w.r.t. Commission Rate

Figure 3.15 shows that bV IS (p�; ja; b) appears to be concave in  so one could identify an "optimal"
IS from the IS�s perspective: In particular IS is lower when the entry opportunity is less attractive,

i.e. a2

b is low, since its entry time e¤ect is lessened compared to the revenue scale e¤ect. On the

contrary, IS is higher when the entry opportunity is more attractive, i.e. a
2

b is high.

Further more, we could also identify the IS�s optimal product selection set under the alternative

entry policy fC�

.

Corollary 6 9
�
p�� (�0; ) ; q

��
 (�0; )

	
; s.t. 8 fa�; b�g > 0 with the relationship

a� = q�� + b�p��

have the following properties:

1. p� (a
�; b�) = p�� ;

2. V IS� (a�; b�) := V IS
�
a�; b�; p� (a

�; b�)
�
= V IS��

3. 8 fa; bg > 0 and a > bc; V IS� (a; b) � V IS��

Based on Corollary 6, we could examine the e¤ect of  on
�
p�� ; q

��
 ; V

IS��


	
with the other parame-

ters being �xed, to characterize the IS�s performances as a result of the commission rate. In general,
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we observe that
�
V IS�� ; q��

	
have an increasing and decreasing trend w.r.t. ; while p�� increase with

: We demonstrate the example with the following set of the parameters:

�
C� = 1; � = 3; � = 0:5; a 2 [2; 8] ; b 2 [1:5; 6:5] ;  2 [0; 0:8]
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Figure 3.16: The IS�s Performances of Optimal Product Selections w.r.t. Commission Rate

From Figure 3.16 we demonstrate the optimal product selection bundles
�
a� (b) ; b

	
of di¤erent ;

and observe that the IS�s optimal payo¤ of these optimal product selections always presents a concave

pattern w.r.t. ; therefore there exists an optimal IS� across all f; a; bg values, which is around 0.6

in the case examined. Intuitively, if the PO adopts fC�

and the PO is to choose his product o¤ering

across categories with di¤erent commission rates, he could �rst settle with a category with a favorable

commission rate IS�; then choose any product among
�
a� (b) ; b

	
:

3.6.2 The PO�s Payo¤s under the Two Entry Policies

In this subsection, we examine the IS and the PO�s performances when the PO adopts the two types

of entry policies. Similar to the studies under the revenue-driven entry policies fC� ; we compare

the two policies based on the IS�s private information or the IS�s pricing decision. We observe that

on an aggregate level over the prior distribution of the IS�s private information, the PO�s payo¤ is

consistently higher under fC�

. However, if the PO could set the entry thresholds based on the IS�s

price, her payo¤s could be higher under either entry policy.
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Comparison of Cost-Based Payo¤s

We �rst examine the PO�s payo¤s under the two types entry policies when we vary the entry thresh-

old C� and C� for give prior information and cIS : We observe that bV PO (C�jp�; N (�0) ; ) andbV PO �C� jp�; N (�0) ; � both present a concave shape w.r.t. C� and C� respectively. However, the
highest possible payo¤s under fC�


is consistently higher. This means that when the PO chooses the

best performing C� ; she can achieve an average payo¤ not achievable under fC� : We present this

observation in Figure 3.17, and the relative gap in the PO�s performances in Table 3.3.
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Figure 3.17: The PO�s Average Payo¤ over Prior under Two Policies

Table 3.3: Relative Di¤erence in The PO Average Payo¤s under Two Policies

1� bV PO(C��jp�;N(�0); )bV PO(C��
 jp�;N(�0); )

 = 0:1  = 0:2  = 0:3

cIS = 0 2.39% 4.77% 6.50%
cIS = 0:2 0.8% 1.65% 2.36%
cIS = 0:4 0.78% 1.63% 2.62%

It is not a surprising result that the PO�s average expected pro�t is higher under fC�

as the policy

fC�

is explicitly seeking a higher pro�t while fC� focuses more on the post entry revenue.
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Comparison of Price-Based Payo¤s

Similar to the study under fC� , we evaluate the PO�s performance under di¤erent C� for given price

pIS and identify the best performing entry threshold and the payo¤ associated to compare with the

results under fC� :We observe that the PO can achieve the same highest payo¤ under the two types

of policies for any �xed pIS ; i.e. bV PO �C��jpIS ;�0; � = bV PO �C�� jpIS ;�0; �.
Table 3.4: The PO�s Payo¤ under Optimal Entry Threshold w.r.t. IS�s Price under Two Policies

V PO�
�
N(�)jpIS

�
under two policies

� 0:2 0:5 0:8 1
V PO�RD 0.181 0.212 0.287 0.279
V PO�PD 0.180 0.214 0.287 0.278

3.7 The Univariate Model and the Impact of �

In this section, we discuss the necessity to adopt the current bivariate demand model through the

di¤erent results from a univariate model. In particular, we observe that the IS�s optimal price is always

higher than the optimal price without entry threat, as opposed to the pricing distortion behavior in

two ways we observe in a general model.

We compare the IS and the PO�s performances under di¤erent values of the correlation coe¢ cient

�, and �nd that while the IS is better o¤ with higher values of �; the PO�s performance depend on the

true demand parameters and could be better with lower values of �. In particular, when the demand

parameters presents an attractive opportunity for entry, the PO is better o¤ with � = �1 as it assigns

higher probability to realizations of higher a and lower b; thus entails a more optimistic perspective

and earlier entry.
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3.7.1 The Uni-variate Demand Model and the IS�s Pricing Distortion Be-

havior

If the PO adopts a univariate model as follows

D = a (1� p) + ";

it is essentially a special case of our current model with the assumption of

� = 1; a = b; �a = �b; �a = �b (3.9)

We argue that in this case, the IS�s pricing distortion behavior is always along one direction.

Proposition 13 Under the assumptions in (3.9) p� � pM :

In contrast, we already observe in the bi-variate model when � = 0, the IS�s pricing distortion

behavior could be in two ways, as shown by Proposition 10. We would demonstrate that with a

general � or even in the special case of � = 1; this is still true. We believe it is very important for

the PO to develop a directionally consistent understanding of the IS�s pricing behavior by adopting a

general bi-variate demand model.

The IS�s pricing behavior with a General �

In Proposition 10, we identi�ed the su¢ cient conditions for the IS to set p� < pM when � = 0; and

similarly we argue that when � is low enough, the IS still sets p� < pM when b is low enough.

Proposition 14 When � < �+C��
p
C�(2�+C�)

� ; (0 <) b < �
2C (�� 2C) ; p

� < pM

Please refer to 2.3 for the proof of Proposition 14. We resort to numerical studies to demonstrate

that, when � is low enough, there exists a boundary bb (aj�) that divides the fa; bg-space into two parts
of "high b" and "low b", within which we observe p� > pM and p� < pM respectively. In the left panel

of Figure 3.18, we demonstrate the boundaries bb (aj�) for � � 0:6 and observe that bb (aj�) decreases
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with �. We also observe that such a division of the fa; bg�space simply along the b�axis may not

exists anymore for larger �s: For example, in the second graph of Figure 3.18, we show that when

� = 0:8; the region for p� < pM in fa; bg�space is no longer de�ned by an upper bound of b: In other

words, even when b is very low, there may still exist an fa; bg s.t. p� (a; b) > pM (a; b) :

***
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Figure 3.18: The IS price distortion behaviors with Low Correlation

With larger �; we develop the following result for the possibility of p� < pM :

Proposition 15 When a > b;9!0 (�0; ��;  ) > 0; s.t. 8� = 1� ! > 1� !0 (�0; ��;  ) ;

� (�) decreases in

"
max

(
c; 1�

�
a�b
2 � ln �

a�b
4C��b

�+
[1 +O (!)]

)
;min

�
1 +

a�b
2 � ln �

a�b
b [1�O (!)] ; ab

�#
:

In Figure 3.19, we demonstrate the regions in fa; bg�space inducing a lower optimal price p� < pM

under � = 1 and � = 0:99 for the example with21

� = 0:99; � = 0:5; � = 3

cIS = 0:2;  = 0:2; C� = 1; C0 = 0:7

21All the numerical studies in this section are based on this sample.
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Figure 3.19: The IS�s price distortion behaviors with High Correlation

3.7.2 The Two Player�s Performances with General �

In this subsection, we further examine how in general the value of � a¤ects the two player�s perfor-

mances as well as the model�s prediction of the IS�s optimal price. We �rst argue that under certain

conditions, the IS optimal price might still be lower than pM ; to contrast with the prediction of the

one-dimensional demand model. Moreover, we compare the PO and the IS�s performances under
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di¤erent values of � to demonstrate that � could be an endogenous choice by the PO to determine

her learning and entry strategy. In particular, we observe that a low � assigns higher probability to

realizations of higher a and lower b; thus might lead to an earlier entry and higher payo¤ to the PO

when the actual fa; bg presents an attractive opportunity.

The Two Players�Performances

Based on the IS�s optimal pricing decision, we could numerically compute the two players�perfor-

mances under di¤erent values of �. We �rst �x fa; bg and f ; �0g to examine how the IS�s optimal

pricing p�; entry time index b� ; and the induced payo¤s �V IS (p�) ; V PO (p�)	 change with �.
From the numerical results over a wide range of fa; bg values, we observe that while the IS�s payo¤

is consistently increasing with �; the PO�s performance could be either increasing or decreasing w.r.t.

the value of �: We consider the following two samples

fa1; b1g = f5:2; 3:7g ; fa2; b2g = f2:6; 3:9g ;
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Figure 3.20: The Two Player�s Payo¤ w.r.t r Coe¢ cient of Variation for Two Samples

The top panels of Figure 3.20 show that the PO�s payo¤ decreases with � when fa; bg presents

an attractive entry opportunity, namely when a2

b is high, and increases when fa; bg presents an
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unattractive entry opportunity. Therefore the fa; bg�space can be divided into two parts according

to bV PO (p�; �ja; b)�s relation with �; as shown in Figure 3.21.
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Figure 3.21: Division of the Product Space

Intuitively, with � = �1; the PO�s posterior belief assigns higher probability to realizations of

fa > �; b < �g or fa < �; b > �g ; while with � = 1; the PO�s posterior belief assigns higher probability

to realizations of fa > �; b > �g or fa < �; b < �g : Therefore, for an more attractive fa; bg bundle,

the PO�s posterior belief with � = �1 would more likely evolve to the area of fa > �; b < �g ; and

triggers an earlier entry compared to the case of � = 1: While for an unattractive fa; bg bundle, with

� = �1 the PO�s entry is most likely triggered by an erroneous entry with a posterior belief in the area
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of fa > �; b < �g : To con�rm this hypothesis, we decompose the PO�s payo¤ into two components

bV PO = bV POnoentry +
bV POincrebV POnoentry : = p�

�
�a;0 � �b;0p�

�+
; bV POincre := e�b� hC� � p� ��a;� � �b;�p��+ � C0i

and examine the two components�trends w.r.t. �: The lower panels of Figure 3.20 show that for the

sample of fa1; b1g = f5:2; 3:7g ; the incremental payo¤ post entry bV POincre was much higher with lower �;

mainly due to a lower entry time b� and positive post entry incremental pro�t, while the PO�s no-entry
payo¤ bV POnoentry �rst decreases with � as the IS is more pressed by the entry threat and distorts the

optimal price p� to a higher level. In contrast, the PO�s no-entry payo¤ bV POnoentry holds almost constant

for fa2; b2g = f2:6; 3:9g as the IS barely manipulates the price, and her loss from an erroneous entry

leading to negative bV POincre is reduced with more cautious entry under � = 1:

Based on results from the case of � = 0, we examine the existence of optimal product selections

fa� (bj�) ; bg from the IS�s perspective: In a wide range of �, we still observe such line segments in the

fa; bg-space de�ned by fp�� (�) ; q�� (�)g

a� (bj�) = q�� (�) + bp�� (�)

that give rise to the highest payo¤s for the IS

V IS�� (�) := V IS� (a� (bj�) ; b) :

Moreover, within a valid range of �; we observe that
n
p�� (�) ; q�� (�) ; bV IS�� (�)o all increase with �;

a result consistent with the observations from Figure 3.20:
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Figure 3.22: The IS�s Optimal Product Selections with Di¤erent Coe¢ cients of Variation

3.8 Conclusion and Discussion

Motivated by Amazon.com�s informational advantage to fuel its rapid expansion into new product

categories and accurate product o¤erings through a unique "merchant-platform" dual role, we con-
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duct this study to characterize a platform owner�s "learning-while-earning" process as well as the

independent sellers�operational reactions when faced with such threat and opportunity from selling

on a popular platform. As two-sided marketplaces become increasingly important in our economy

and consumer experiences, many facets of their operations remain novel and pose challenges to prac-

titioners�strategic moves. Our study contributes to a better understanding of the owner-and-users

relationship of a retail platform, as well as the user-generated-information as one of the most valuable

assets for the owner to capitalize.

We proposed a general demand learning and entry decision model for the platform owner faced with

a large number of products sharing some common market conditions. We analyzed the independent

seller�s di¤erent pricing distortion behaviors for two types of products with "high price sensitivity"

or "low price sensitivity". This helps to explain the price dispersion for similar products on the

marketplace in the presence of price transparency and �erce competition. We discussed the PO�s

practical "revenue-driven" and "pro�t-driven" threshold entry policies, and identi�ed their equivalence

under the IS�s �xed price.

As our model has a very rich structure, this paper only considers a few special situations and

focuses on a few operational instrument as decision variables. Below we brie�y discuss some potential

model setups as well as the current �ndings�sensitivity to some parameter changes. We believe these

questions are highly interesting and an in-depth study of them would largely contribute to the demand

learning literature.

The IS�s Dynamic Price Scheme In this paper, we assume that the IS sets a price up-front and

keeps it constant for tractability. As the current revenue-driven and pro�t-driven entry policies of the

PO do not guarantee optimality but depend on the IS�s selling price as a parameter, it does not take a

constant price from the IS to justify. If the IS could change his selling price pIS without restriction or

commitment, the PO�s entry decision would update accordingly, as if the process restarts from t = 0

for her: In this case, the IS�s changing price would add variation to the PO�s observation and expedite

her learning process. On the other hand, the IS could �exibly regulate his price distortion of each
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period according to the current "entry threat" level.

By enabling the IS to change his price each period, the problem boils down to a dynamic program-

ming with the PO�s posterior as the state variables, which again becomes intractable because of the

curse of dimensionality. One potential way to incorporate this trade-o¤ from the IS dynamic pricing

scheme is to allow for a �nite number of price changes from the IS, or a �nite set of time points for

the changes to occur. Another approach is to require the IS to announce the time-dependent pricing

scheme up-front. In both cases, the PO is informed of the IS�s higher degree of freedom in his action

space, and should take it into account. More detailed discussion is beyond the scope of this study and

remains open for future exploration.

The IS�s Variable Cost cIS In our major analysis, we assumed that cIS > cPO to highlight the

PO�s higher operational e¢ ciency to support her entry decision. However, this might not be necessary.

Also we noticed that the PO�s average performance is not monotone with cIS in Figure 3.17, and is

higher with a medium level cIS in many cases under both types of heuristic entry policies. This

indicates that a deeper understanding cIS0s e¤ect is needed for future research, as well as a study for

more general values of cIS :

The PO�s Optimal  So far, our study of the IS�s optimal pricing and the PO�s entry threshold

choice is based on the assumption of c = cIS

1� >
a
b : Yet as the PO is not informed the true demand

parameters fa; bg ; a too high  may break this assumption. Namely when c = cIS

1� > a
b ; it is not

pro�table for the IS to be present in the marketplace. So if the commission rate  is endogenous for

the PO and applies to the entire product category that shares the prior distribution of the demand

parameters, the PO needs to weigh the trade-o¤between low commission income and low participation

to set . This trade-o¤ not only applies regardless of her adopt of fC�

or fC� ; and is present even

without her learning and entry threat.

Here we assume that if c = cIS

1� �
a
b ; then V

IS
�
cIS ; ; a; b

�
= V PO

�
cIS ; ; a; b

�
; and consider

how the PO�s payo¤ aggregated over the prior distribution bV PO �jp�; N (�0) ; cIS� change with :
Intuitively, when the IS�s unit unit cost cIS is small, the "no participation" e¤ect is much lessened for
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the PO so her optimal PO would be higher, and vice versa.

We demonstrate the example of

8><>: C� = 1; � = 3; � = 0:5;  2 [0; 0:9]

cIS = f0; 0:1; :::0:4g ; C0 = 0:7

9>=>;
that shows consistent results with the intuition. And we observe little in�uence by the IS�s pricing

distortion behavior in this case.
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Figure 3.23: The PO�s Aggregated Payo¤ w.r.t. Commission Rate

The PO�s Strategic Choice of the Prior Belief The analysis above shows that how the PO�s

performance depends on values of � varies with the value of fa; bg. We examine the impact of � on
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the PO�s potential payo¤ on an aggregated level by averaging over a set of fa; bg samples. Instead

of examining an evenly distributed sample grid, we consider the two player�s performance w.r.t. the

prior � 2 [�1; 1] on two more realistic sample sets:

1. A fa; bg�;� sample of size 200 following the PO�s prior distributionN (�0; �; �) ; � 2 f0:2; 0:5; 0:8; 1g ;

2. A fa; bg0;� sample of size 200 following N (�0; �; � = 0) ; � 2 f0:2; 0:5; 0:8; 1g.

We choose these two sets of samples mainly for two reasons. One is that the PO�s prior belief might

not be consistent with the generating distribution of products in one category; another is a di¤erent

generating distribution fundamentally a¤ect the sample�s performance in our setting. Similar to the

PO�s prior belief�s impact, a generating distribution with � = �1 essentially create more pro�table

entry opportunities, which is consistent with the results of Sample 1 shown in Figure 3.24.
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Figure 3.24: The Two Player�s Aggregated Payo¤ w.r.t. the Actual Coe¢ cient of Variantion

In contrast, the results from Sample 2 distinguish the impact of the PO�s prior from the gener-

ating distribution. In particular, it shows that the PO�s prior as a whole a¤ects the PO�s average

performance in di¤erent ways. We observe that the PO�s payo¤ maximized at � = �1 when � is low,
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and as � increases, the PO�s payo¤ becomes increasing with � when it is small but all �nally drops

with large enough �:
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Figure 3.25: The Two Player�s Aggregated Payo¤ w.r.t. the PO�s perceived Coe¢ cient of Variantion

The result from Sample 2 shows that the PO�s average payo¤ is not necessarily the highest when

her prior belief is consistent with the generating distribution, namely when � = 0: In this case, the

variance in her performance is mainly due to her model selection. When the purpose of learning is

to guide her entry decision, it is not necessary to re�ne her prior belief to be as close as possible to

the actual distribution of demand characteristic. The PO�s choice of her prior belief re�ects more of

her learning and entry strategy as opposed to the actual market condition. When the PO is con�dent

about the prior mean and has lower willingness to learn, a lower � focuses her attention only to the

exceptionally attractive entry opportunities as the prior show low attraction. While when the PO is

more open to learning due to higher �; a higher � leads to higher consistency.

We repeat this study for various cIS and observe the same pattern, therefore even though the PO

cannot fully anticipate the IS�s pricing decision or infer the demand parameters upon observing the
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IS�s price due to the information asymmetry22 , she is informed of the e¤ect of her prior belief choice,

as a part of her learning and entry strategy.

We also notice that the IS�s optimal payo¤based on the optimal product selections V IS�� (�;C�; �)

drops sharply (i.e. exponentially) with a growing �; showing that the IS�s payo¤ is largely a¤ected

by the PO�s learning behavior. A higher � can be interpreted as the PO�s openness to learning and

leads to faster learning, but more possibly erroneous learning or high variation in pro�tability, so

could be perceived as riskier by the both the IS and the PO regardless of the true demand. As we

could tell from Table 3.2, the PO�s average payo¤ based on complete information bV PO (0;1jp�) is not
monotonically increasing with �: Therefore, from the PO�s perspective, there could be an "optimal

prior �" based on this trade-o¤.

22For example, when cIS vary from 0 to 0:4; the IS�s optimal price for a �xed fa; bg could vary by 90%, and the IS�s
average optimal price over the generating distribution could vary by 50%.
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Figure 3.26: The Best Optimal Payo¤�s Relationship to the Prior Coe¢ cien of Variation

Finally, we notice from Table 3.10 that the PO�s average payo¤ over the prior distribution does

not increase with the prior mean �: This might be related to the trade-o¤ between exploration and

exploitation, for a higher � would lead to more cautious decision on entry threshold and potentially

missing many pro�table entry opportunities. A more holistic sensitivity analysis of the PO�s prior is

of great interest but remain open for future exploration.
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Appendix

1 Chapter 2

1.1 Optimal Solutions

The Retailer�s Optimal Inventory Policies

Proof of Proposition 3. The result for k � p1 or k < p
2
is straightforward for the retailer, since

the second period pro�t is not a¤ected by the �rst period�s inventory decision. So we focus on the case

of k 2
�
p
2
; p1

i
: The retailer�s loss of the �rst period by ordering DH instead of the DL; optimum of

the period is C� � (k � p1) (1� �) ; and her bene�t of the second period by overcoming the censorship

e¤ect is �VR;2 = �C� � (1� �) (k � p2)(1� p1): So the retailer orders D
H when

C� � (k � p1) (1� �) + �C� � (1� �) (k(w)� p2)(1� p1) > 0

p1 + �(1� p1) � p2
1 + �(1� p1)

< k

The Supplier�s Optimal Wholesale Price Policies

Then the supplier�s optimal wholesale price in "O" could be expressed as:

Solution 7 With fully observed demand, the supplier�s optimal wholesale prices
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8>>>>>>>>>><>>>>>>>>>>:

SO1 :=

�
maxf0; (�p2�p1)(1+�)�p1(1��) + p1;

(�p2�p
2
)(1 + �)

(1��)(1+�p1) + p2;
�p2
1��g; 1

�
SO2 :=

�
maxf0; (

1+�
1����p1)p1
1+�(1�p1) ;

�
1+�
1�� � �p1

�
(p1 � p2) + p2g;minf

(�p2�p1)(1+�)
�p1(1��) + p1; 1g

�
SO3 :=

�
f (

1+�
1����p1�1)p2
�(1�p1) g+;minf (�p2 � p

2
)(1 + �)

(1+�p1)(1��) + p2;
�
1+�
1�� � �p1

�
(p1 � p2) + p2; 1g

�
SO4 :=

�
0;minf (

1+�
1����p1�1)p2
�(1�p1) ;

( 1+�1����p1)p1
1+�(1�p1) ; �p2

1��

�
:

And her optimal wholesale price in "M" is:

Solution 8

8>>>><>>>>:
SM1 := [maxf0; (�p2�p1)(1+�)�p1(1��) + p1;

�p2
1��g; 1]

SM2 := [f (
1+�
1����p1)p1
1+�(1�p1) g

+;minf (�p2�p1)(1+�)�p1(1��) + p1; 1g]

SM4 := [0;minf (
1+�
1����p1)p1
1+�(1�p1) ; �p2

1��g]

In general, with � 2 (0; 1] ; the supplier�s optimal wholesale price in "F" is:

Solution 9

8>>>>>>>>><>>>>>>>>>:

SF1 :=
h
maxf0; (�p2�p1)(1+�)�p1(1��) + p1;

[�p2 � pF2 (�)](1 + �)
(1��)(1+�p1��) + p

F
2 (�);

�p2
1��g; 1

�
SF2 :=

�
maxf0; (

1+�
1����p1)p1
1+�(1�p1) ;

( 1+�1����p1)[p1�p
F
2 (�)]

1�� + pF2 (�)g;minf
(�p2�p1)(1+�)
�p1(1��) + p1; 1g

�
SF3 :=

�
f [

1+�
1����p1+(��1)]p

F
2 (�)

�(1�p1)+� g+;minf [�p2 � pF2 (�)](1 + �)
(1+�p1��)(1��) + p

F
2 (�);

( 1+�1����p1)[p1�p
F
2 (�)]

1�� + pF2 (�); 1g
�

SF4 :=

�
0;minf [

1+�
1����p1+(��1)]�p

F
2 (�)

�(1�p1)+� ;
( 1+�1����p1)p1
1+�(1�p1) ; �p2

1��

�
;

And when � = 1; Case 2 and Case 3 merge into Case 2�in "F", so the supplier�s optimal wholesale

price in "F" is:

Solution 10

8>>>>>><>>>>>>:

SF1 :=

�
maxf0; (�p2�p1)(1+�)�p1(1��) + p1;

(�p2 � pF2 )(1 + �)

�p1(1��) + pF2 ;
�p2
1��g; 1

�
SF20 :=

�
f (

1+�
1����p1)p

F
2

�(1�p1)+1 g+;minf (�p2 � pF2 )(1 + �)

�p1(1��) + pF2 ; 1g
�

SF4 :=

�
0;minf (

1+�
1����p1)p

F
2

�(1�p1)+1 ;
( 1+�1����p1)p1
1+�(1�p1) ; �p2

1��

�
Proof of Lemma 1. This result is straight-forward by comparing the conditions for di¤erent order

quantities in the three situations, and by noting that order quantities decreases with the wholesale

prices.

Centralized Systems and Double-Marginalization

We consider the centralized supply chains with the same demand, cost, and information structures as in

the decentralized systems. In all three situations of the centralized system ("OC", "MC", and "FC"),
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the decision maker sets the inventories to optimize the system total pro�ts. It is worth noting that

the inventory problems of the centralized systems are structurally identical to the retailer�s inventory

problems in the respective decentralized systems, simply by replacing the retailer�s critical ratio k(w)

with the supply chain�s critical ratio s: So we can easily derive the optimal inventory levels of the

centralized supply chains in all three situations as follows: (here we only consider � = 1)

Solution 11 The optimal inventory policy for a centralized supply chain
�
yOC1 ; yOC2 js; �; �

	
is:

Case 1 (1 >)s > �p2, yOC1 = DH ; yOC2 = DH ;

Case 2 �p2 � s > p1, yOC1 = DH ; yOC2 =

8>><>>:
DH D1 = DH

DL D1 = DL

;

Case 3 p1 � s > p
2
, yOC1 = DL; yOC2 =

8>><>>:
DH D1 = DH

DL D1 = DL

Case 4 p
2
� s(> 0), yOC1 = DL; yOC2 = DL

Solution 12 The optimal inventory policy for a myopic supply chain under demand censorship�
yMC
1 ; yMC

2 js; �; �
	
is:

Case 1 (1 >)s > �p2, yMC
1 = DH ; yMC

2 = DH

Case 2 �p2 � s > p1, yMC
1 = DH ; yMC

2 =

8>><>>:
DH D1 = DH

DL D1 = DL

Case 4� p1 � s(> 0), yMC
1 = DL; yMC

2 = DL.

Solution 13 The optimal inventory policy for a forward-looking supply chain under demand censor-

ship
�
yFC1 ; yFC2 js; �; �

	
is:

Case 1 (1 >)s > �p2, yFC1 = DH ; yFC2 = DH
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Case 2� �p2 � s > pF2 , y
FC
1 = DH ; yFC2 =

8>><>>:
DH D1 = DH

DL D1 = DL

Case 4� pF2 � s(> 0), yFC1 = DL; yFC2 = DL.

Similar to the results of the decentralized systems in ??, we could de�ne the partitions of � and

the projected partitions on S induced by the optimal order quantities in the centralize systems:8>>>>>>><>>>>>>>:

SOC1 := [�p2; 1)

SOC2 := [p1; �p2)

SOC3 :=
h
p
2
; p1

�
SOC4 :=

h
0; p

2

�
:

8>>>><>>>>:
SMC
1 := [�p2; 1)

SMC
2 := [p1; �p2)

SMC
4 := [0; p1)

8>>>><>>>>:
SFC1 := [�p2; 1)

SFC20 :=
�
pF2 ; �p2

�
SFC4 :=

�
0; pF2

�
:

Based on these results, we could easily compare the order quantities and total pro�ts of the three

situations to justify the two informational ine¢ ciencies:

Corollary 7

yOCt � yMC
t ; yFCt � yMC

t ; t = 1; 2

�OC � �FC � �MC :

Corollary 8

8� 2 �;8� 2 fO;M;Fg; fy�1(�);y�2(�)g � fy�C1 (�);y�C2 (�)g

1.2 Conditions for the Two Phenomena

Proof of Proposition 2. The proof is based on the optimal wholesale price solutions and the

respective partitions of � in the three situations as in ??. We �rst summarize the retailer, the supplier,

and the supply chain�s total pro�ts in Table 5 using the uniform "case" framework: (� 2 fO;M;Fg)
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Table 5: Pro�ts of the Players and Supply Chain
Case fy�1 ; y�2g w� V �i =C� V �S;i=C� V �R;i=C�
1 DH ; DH p+2 (1 + �) [s� (1� �) p1] (1 + �)(s� p2) (1 + �) [p2 � (1� �) p1]

2 DH ;
DH

DL p+1
(1 + �) [s� (1� �) p1]
��p1(s� p2) (1� �)

[(1 + �)� �p1 (1� �)] �
(s� p1)

(1 + �)�p1+
�p1(p2 � p1) (1� �)

20 DH ;
DH

DL pF2
+ (1 + �) [s� (1� �) p1]

��p1(s� p2) (1� �)
[(1 + �)� �p1 (1� �)] ��

s� pF2
� �(1 + �)pF2

3 DL;
DH

DL p+
2

s�(1 + �)+

�(1� p1) (1� �)
�
s� p

2

� [�(1 + �)+
�(1� p1) (1� �)]�

(s� p
2
)

�(1 + �)p
2

4 DL; DL 0+ s�(1 + �) s�(1 + �) 0

From Table 5, we observe that the supplier�s pro�ts follow23 :

V OS;i (�) = VMS;i (�) = V FS;i (�) ; i = 1; 4 (10)

V OS;i (�) = VMS;i (�) < V FS;i (�) ; i = 2;

meaning that without changing the wholesale price, the supplier makes the same pro�t from the same

order quantities across the three situations, and more pro�t with higher wholesale price in Case 2�in

"F".

And the retailer�s pro�ts follow:

V �R;1 (�) > V O;MR;2 (�) > V FR;20 (�) > V OR;3 (�) > V �R;4 (�) ; � 2 fO;M;Fg ; (11)

meaning that the retailer�s pro�t increases with order quantities across the three situations, and

slightly decreases (with no changes in order quantities) with the wholesale price in Case 2�.

The supply chain pro�t only depends on order quantities, so

8�; VMi (�) = V Oi (�) = V Fi (�) ; i = 1; :::; 4: (12)

To compare the supply chain pro�ts, we refer to the centralized system optimal outcome in 1.1. For ex-

23Note that Case 3 is only present in "O".
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ample, 8� 2 �OC3 ; V O3 (�) > V Oi (�) ; i = 1; 2; 4: The result of Proposition 8 about understocking/double-

marginalization e¤ect could be summarized in the set language: ��i � [ij=1��Cj ; � 2 fO;M;Fg ;

meaning the optimal order quantities in the respective centralized system can only be higher than (or

equal to) the order quantities in the decentralized system induced by the optimal wholesale price. This

relationship bridges the centralized and decentralized systems and enables us to conduct comparison

on supply chain pro�ts.

We prove the results of Proposition 2 based on the pair-wise comparisons of the three situations

through the following three lemmas.

Lemma 9 ( Comparison between "M" and "F")

�F1 � �M1 ;�F20 � �M2 ;�F4 � �M4

Sketchy Proof of Lemma 9.

Based on (10), 8� 2 �F1 ; VMS;1 (�) = V FS;1 (�) � V FS;20 (�) > VMS;2 (�) ; V
M
S;1 (�) = V FS;1 (�) � V FS;4 (�) =

VMS;4 (�) ; thus � 2 �M1 ;so �F1 � �M1 :Similarly we could show that �F4 � �M4 ; and �F20 � �M2 :�

The result of Lemma 9 indicates that the di¤erence between "F" and "M� could be summarized

as the expansion of Case 2�in "F". So we observe di¤erent order quantities between "M" and "F"

when � 2 �F20n�M2 =
�
�M1 n�F1

�
[
�
�M4 n�F4

�
24 , and di¤erent pro�t allocation in �M2 = �F20 \�M2 with

the same order quantities in "M" and "F".

Based on (11), the retailer�s pro�t is higher in "M" than "F" when � 2 �M1 n�F1 due to the higher

order quantities (and lower w) and in �M2 due to lower w. So

VMR (�) > V FR (�) () � 2
�
�M1 n�F1

�
[�M2 =

�
�M2 [�M1

�
\�F20 := �MF

R :

The supply chain pro�ts are only di¤erent in
�
�M1 n�F1

�
[
�
�M4 n�F4

�
with di¤erent order quantities:8� 2

�M4 n�F4 = �M4 \ �F20 � �FC20 [ �FC1 ; if VM (�) > V F (�), then VM4 (�) = V F4 (�) > V F20 (�) ) � 2
24The order quantities are higher in "F" if � 2 �M4 n�F4 and lower if � 2 �M1 n�F1 .
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�FC4 ;contradiction; so VM (�) < V F (�) 25 . Following similar logic, for 8� 2 �M1 n�F1 = �M1 \ �F20 �

�MC
1 = �FC1 ; so VM1 (�) > VM2 (�) = V F2 (�) ; V

M (�) > V F (�). To sum up,

VM (�) > V F (�) () � 2 �M1 n�F1 = �M1 \�F20 := �MF :

So far we proved the results in the �rst column of Proposition 2.

Note that �Cen;O(R) :=
n
� 2 �jmax

n
VM(R) (�) ; V

F
(R) (�)

o
> V O(R) (�)

o
= �MO

(R) [ �FO(R);where

�MO
(R) :=

n
� 2 �jVM(R) (�) > V O(R) (�)

o
;

�FO(R) :=
n
� 2 �jV F(R) (�) > V O(R) (�)

o
;so we compare "M" and "O", and "F" and "O" separately.

Lemma 10 ( Comparison between "M" and "O")

�O1 � �M1 ;�O2 � �M2 ;�O4 � �M4

Sketchy Proof of Lemma 10.

Based on (10), 8� 2 �O1 ; VMS;1 (�) = V OS;1 (�) � V OS;2 (�) = VMS;2 (�) ; V
M
S;1 (�) = V OS;1 (�) � V OS;4 (�) =

VMS;4 (�) ; so � 2 �M1 ;�O1 � �M1 :Similarly we could prove that �O2 � �M2 ;�O4 � �M4 :�

The result of Lemma 10 shows that the di¤erence in "M" compared to "O" is simply due to the

removing of Case 3. So the supplier keeps her choice of Case 1, 2, 4 in "M" if she chooses it in "O",

yet has to opt for Case 1,2,and 4 if she chooses Case 3 in "O", therefore we only observe di¤erent

outcomes between "M" and "O�in �O3 =
�
�M1 n�O1

�
[
�
�M2 n�O2

�
[
�
�M4 n�O4

�
.

Following similar logic in the comparison between "M" and "F", it is easy to verify that

VMR (�) > V OR (�) () � 2
�
�M1 n�O1

�
[
�
�M2 n�O2

�
=
�
�M1 [�M2

�
\�O3 :

And for 8� 2
�
�M1 [�M2

�
\ �O3 � �MC

1 [ �MC
2 = �OC1 [ �OC2 ; if V O3 (�) > VM2 (�) = V O2 (�)

25The system optimum are Case 1 or Case 2 in "FC", thus the double-marginalization (i.e. understocking) is more
severe in "M" and leads to lower supply chain pro�t.
Also, we ignore the case of VM (�) = V F (�) ;
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or V O3 (�) > VM1 (�) = V O1 (�) ; � 2 �OC3 ;contradiction! So 8� 2
�
�M1 [�M2

�
\ �O3 ; VM (�) >

V O (�) :Similarly we could argue that 8� 2 �M4 n�O4 ; VM (�) < V O (�) ;so

VM (�) > V O (�) () � 2
�
�M1 [�M2

�
\�O3 :

To sum up,

�MO = �MO
R =

�
�M1 [�M2

�
\�O3 :

The comparison between "F" and "O" is less straightforward, we �rst ague that:

Lemma 11 (Comparison between "F" and "O") 1. V FR (�) > V OR (�) ()
�
�F1 [�F20

�
\�

�O3 [�O4
�

2. V F (�) > V O (�) ()
�
�F1 [�F20

�
\
�
�O3 [�O4

�
n
�
�F2 \�O3 \�OC3

�

Proof of Lemma11. :

1. Following the logic of the previous comparisons, it�s easy to show that � 2
�
�F1 [�F20

�
\�

�O3 [�O4
�
) V FR (�) > V OR (�) :It su¢ ces to show that

� =2
�
�F1 [�F20

�
\
�
�O3 [�O4

�
) V FR (�) � V OR (�) : (13)

If � 2
�
�F1 [�F20

�
\
�
�O1 [�O2

�
;the retailer gets a higher pro�t in "F" than in "O" only when

� 2 �F1 \�O2 according to 11. Yet since 8s 2 SF1 (��s) ; s >
(�p2�p1)(1+�)
�p1(1��) +p1;while 8s 2 SO2 (��s)

s < (�p2�p1)(1+�)
�p1(1��) + p1;so �F1 \�O2 = ;:If � 2 �F4 ;again the retailer cannot get a higher pro�t in

"F" than in "O" according to 11.

2. Based on the �rst result of Lemma 11, it�s also easy to verify that

� =2
�
�F1 [�F20

�
\
�
�O3 [�O4

�
) V F (�) � V O (�) ;

146



and when � 2 �F20 \ �O3 \ �OC3 ; V O3 (�) > V O2 (�) = V F2 (�) ;so V F (�) < V O (�) :On the

other hand,
�
�F1 [�F2

�
\
�
�O3 [�O4

�
n
�
�F20 \�O3 \�OC3

�
=
�
�F1 \

�
�O3 [�O4

�	
[
�
�F20 \�O4

	
[�

�F20 \�O3 n�OC3
	
:Therefore when � 2 �OC3 � �FC1 = �OC1 ;so V F1 (�) = V O1 (�) > V O3;4 (�) ;when

� 2 �F20 \�O4 � �FC20 ;so V F20 (�) > V F4 (�) = V O4 (�) ;when � 2
�
�F20 \�O3

�
n�OC3 =

�
�F20 \�O3

�
\�

�OC1 [�OC2
�
;so V F20 (�) = V O2 (�) > V O3 (�) ; so in summary

� 2
�
�F1 [�F20

�
\
�
�O3 [�O4

�
n
�
�F20 \�O3 \�OC3

�
() V F (�) > V O (�) :

Based on the results of Lemma 10 and Lemma 11, it is easy to verify that

�M;O
(R) =

�
�M1 [�M2

�
\�O3 �

�
�F1 [�F20

�
\
�
�O3 [�O4

�
n
�
�F20 \�O3 \�OC3

�
= �FO � �FOR

so

�Censor;OR = �F;OR =
�
�F1 [�F20

�
\
�
�O3 [�O4

�
�Censor;O = �F;O =

�
�F1 [�F20

�
\
�
�O3 [�O4

�
n
�
�F20 \�O3 \�OC3

�
:

1.3 Characterization of the Two Phenomena and Extreme Value Studies

Study for the Retailer�s Two Phenomena

Proof of Proposition 4. Based on Proposition 3 and the projected partitions of S induced by the

optimal wholesale prices in ??, the conditions for the two phenomena could be written through the S

partitions as follows:

SMF
R : =

�
SM2 [ SM1

�
\ SF2

SCensor;OR : =
�
SF2 [ SF1

�
\
�
SO3 [ SO4

�
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We characterize these subsets through their boundaries. For example, since SM2 [ SM1 and SM1 are

both intervals, their intersection SMF
R could be de�ned as

�
SMF
R;1 (��s) ; S

MF
R;2 (��s)

�
;where

SMF
R;1 : = max

8<:minf
�
1+�
1�� � �p1

�
p1

1 + �(1� p1)
;
�p2
1� � ; 1g; f

�
1+�
1�� � �p1

�
pF2

�(1� p1) + 1
g+
9=; �! 0+�����!p1

SMF
R;2 : = min

�
(�p2 � p1)(1 + �)
�p1 (1� �)

+ p1; 1

�
�! 0+�����!minf (�p2 � p1)(1 + �)

�p1
+ p1; 1g

Similarly,

SCensor;OR;1 : = minff

�
1+�
1�� � �p1

�
pF2

�(1� p1) + 1
g+; �p2

1� �g�! 0+�����!p
F
2 ;

SCensor;OR;2 : = max

8><>:
minf (�p2 � p

2
)(1 + �)

(1+�p1)(1��) + p2;
�
1+�
1�� � �p1

�
(p1 � p2) + p2; 1g;

min

�
( 1+�1����p1�1)p2

�(1�p1) ;
( 1+�1����p1)p1
1+�(1�p1) ; �p2

1��

�
9>=>;

�! 0+�����!minfp1 [1 + � (�p2 � p1)] ; 1g:

In a similar approach, we could translate the above expressions into intervals of � :

%MF
R;1 : = 1�min

(�
�p2 � pF2

�
(1 + �)�

s� pF2
�
�p1

; 1

)

%MF
R;2 : = 1�max

8<: 1 + �

�p1 +
s[1+�(1�p1)]

pF2

;min

(
1 + �

�p1 +
s[1+�(1�p1)]

p1

;
�p2
s
; 1

)9=;

%Cen;OR;1 : = 1�max

8<:min
8<: �p2s ; 1 + �

s�(1�p1)
p
2

+ 1 + �p1

9=; ;min

8<: 1 + �

�p1 +
s[1+�(1�p1)]

p1

;
1 + �

�p1 +
s�p

2

p1�p
2

9=;
9=;

%Cen;OR;2 : = 1�min

8<: 1 + �

�p1 +
s[�(1�p1)+1]

pF2

;
�p2
s
; 1

9=;

Proof of Lemma 2 and Corollary 1.
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Clearly the boundaries of the s�intervals
n
SMF
R;1 (��s) ; S

MF
R;2 (��s) ; S

Cen;O
R;1 (��s) ; S

Cen;O
R;2 (��s)

o
all increase with �; for their dependence of the 1�� factor. So the lowest possible s points for the two

phenomena are SMF
R;1 (� = 0

+) = p1 and S
Cen;O
R;1 (� = 0+) = pF2 respectively. Similarly we could tell

that the boundaries of the ��intervals increase with s as well, so the rightmost possible � points for

the two phenomena are �MF
R;2

�
sMF�
R

�
and �Cen;OR;2

�
sCen;O�R

�
. So it su¢ ces to �nd the highest possible

sMF�
R satisfying the following conditions:

s� = max s 2 (0; 1]

s:t:min

(�
�p2 � pF2

�
(1 + �)�

s� pF2
�
�p1

; 1

)
�

max

8<: 1 + �

�p1 +
s[1+�(1�p1)]

pF2

;min

(
1 + �

�p1 +
s[1+�(1�p1)]

p1

;
�p2
s
; 1

)9=;

We could show that the inequality holds i¤.

8>>>>>><>>>>>>:

[�p2�pF2 ](1+�)
[s�pF2 ]�p1

> 1+�

�p1+
s[1+�(1�p1)]

pF2

() s � �p2

1 > 1+�

�p1+
s[1+�(1�p1)]

pF2

() s � pF2

[�p2�pF2 ](1+�)
[s�pF2 ]�p1

> min

�
1+�

�p1+
s[1+�(1�p1)]

p1

; �p2s ; 1

� ; and the

last inequality holds i¤ anyone of the following holds:

s
h
1� 1+�(1�p1)

�p21

�
�p2 � pF2

�i
� �p2

s
�
�p1�p2 �

�
�p2 � pF2

�
(1 + �)

�
� �p1�p2p

F
2

s � [�p2�pF2 ](1+�)
�p1

+ pF2

() s � max

8<: �p2

1� 1+�(1�p1)
�p21

�
�p2 � pF2

� ; �p1�p2p
F
2

�p1�p2 �
�
�p2 � pF2

�
(1 + �)

;

�
�p2 � pF2

�
(1 + �)

�p1
+ pF2

9=;
() s � �p1�p2p

F
2

�p1�p2 �
�
�p2 � pF2

�
(1 + �)

so sMF�
R = min

�
�p1 �p2p

F
2

�p1 �p2�(�p2�pF2 )(1+�)
; 1

�
:We could also show that sCen;O�R = sMF�

R := s�:

Proof of Corollary 2.
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1. The width of SMF
R (0+) is

min

�
(�p2 � pF2 )(1 + �)

�p1
+ pF2 ; 1

�
� p1 =8><>: 1� p1

(�p2 � pF2 )(1 + �)

�p1
+ pF2 > 1 () I < 1+�

�p1

1�p1
I+1

�
1 + 1+�

�p1

�
o:w:

:

So it decreases with I � 1+�
�p1

and remains constant for I < 1+�
�p1
; and decreases with p1.

2. The width of SCen;OR (0+) is

p1 [1 + � (�p2 � p1)]� pF2 =
�p1(1�p1)

I+1
2+�(1�p1)
1+�(1�p1) ; so it decreases with I:

Study for the Supply Chain�s Two Phenomena and the Supplier�s Pro�ts

Proof of Proposition 7. Similar to the studies of the retailer, based on conditions for the two

phenomena of the supply chain�s pro�ts

SMF : = SM1 \ SF2

SCensor;O : =
�
SF2 [ SF1

�
\
�
SO3 [ SO4

�
n
�
SF2 \ SO3 \ SOC3

�
;

we could characterize these subsets through their boundaries:

SMF
1 : = max

8<:
�
1+�
1�� � �p1

�
pF2

�(1� p1) + 1
;
(�p2 � p1)(1 + �)
�p1 (1� �)

+ p1;
�p2
1� �

9=;
�! 0+�����!min

�
(�p2 � p1)(1 + �)

�p1
+ p1; 1

�
;

SMF
2 : = minf

�
�p2 � pF2

�
(1 + �)

�p1 (1� �)
+ pF2 ; 1g�! 0+�����!minf

�
�p2 � pF2

�
(1 + �)

�p1
+ pF2 ; 1g
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Note that SMF
1 < SMF

2 () (�p2 � pF2 )(1 + �)

�p1
+ pF2 < 1 () I > 1+�

�p1
� 1:

SCensor;OR�;1 : = max

8<:f
�
1+�
1�� � �p1 � 1

�
p
2

�(1� p1)
g+; f

�
1+�
1�� � �p1

�
pF2

�(1� p1) + 1
g+
9=; �! 0+�����!p

F
2

SCensor;OR�;2 := p1 ;

So

SCensor;O =
�
SCensor;OR;1 (��s) ; S

Censor;O
R;2 (��s)

i
n
�
SCensor;OR�;1 (��s) ; S

Censor;O
R�;2 (��s)

i
:

We conjecture that:

Conjecture 1 when
�
SCen;OR�;1 (��s) ; S

Cen;O
R�;2 (��s)

i
6= ;; SCen;OR;1 (��s) = SCen;OR�;1 (��s) ; so

SCen;O =
�
max

n
SCen;OR;1 (��s) ; S

Cen;O
R�;2 (��s)

o
; SCen;OR;2 (��s)

i
=

0@max
8<:minff

�
1+�
1�� � �p1

�
pF2

�(1� p1) + 1
g+; �p2

1� �g; p1

9=; ; SCen;OR;2 (��s)

35
: =

�
SCen;O1 (��s) ; S

Cen;O
2 (��s)

i

is also an interval.

Similarly the intervals of the ��axis

%MF
1 : = 1�min

(�
�p2 � pF2

�
(1 + �)�

s� pF2
�
�p1

; 1

)
;

%MF
2 : = 1�max

(
(1 + �) (�p2 � p1)
�p1 (s� p1)

;
�p2
s
;

1 + �

�p1 +
s[1+�(1�p1)]

p1

)
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%Cen;O1 : = 1�max

8<:min
8<: �p2s ; 1 + �

s�(1�p1)
p
2

+ 1 + �p1

9=; ;min

8<: 1 + �

�p1 +
s[1+�(1�p1)]

p1

;
1 + �

�p1 +
s�p

2

p1�p
2

9=;
9=;

%Cen;O2 : = 1�min

8<:max
8<:min

8<: 1 + �

�p1 +
s[�(1�p1)+1]

pF2

;
�p2
s

9=; ;
p1
s

9=; ; 1

9=;

Proof of Lemma 4 and Corollary 3. Clearly the boundaries of the s�intervals
n
SMF
1 (��s) ; S

MF
2 (��s) ; S

Cen;O
1 (��s) ; S

Cen;O
2 (��s)

o
all increase with �; for their dependence of the 1�� factor. So the lowest possible s points for the two

phenomena are SMF
1 (0+) = min

n
(�p2�p1)(1+�)

�p1
+ p1; 1

o
and SCen;O1 (0+) = p1 respectively. We could

easily show that sCen;O� = sMF� := s� as �! 0+:

Proof of Lemma 5. Note that in the expressions of the width and e¢ ciency loss, the change of

prior information f�; �g impact p1 and �p2:Since

�p2 =
1

I + 1
+ p1 �

�
1� 1

I + 1

�

so we could delineate the impact of p1 and I through the following transformations:

1� �p2 = (1� p1) �
�
1� 1

I + 1

�
p1 (�p2 � p1) =

p1 (1� p1)
I + 1

(�p2 � p1) [1 + � (1� p1)]
p1

=
(1� p1) [1 + � (1� p1)]

p1 (I + 1)

p1 (s� �p2)
(s� p1)

= p1

�
1� 1� p1

(I + 1) (s� p1)

�
s� p1

(1 + �) (s� p1)� �p1 (s� �p2)
=

1

(1 + �)� �p1
h
1� 1�p1

(I+1)(s�p1)

i
1. Note that

1� �p2 <
(�p2 � p1) [1 + � (1� p1)]

�p1
() 1 + � (1� p1)

�p1
> I;

so when I < 1+�(1�p1)
�p1

; the width of Region 1 is 1 � �p2 and increases with I; and when I �
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1+�(1�p1)
�p1

;the width of Region 1 is (�p2�p1)[1+�(1�p1)]
�p1

and decreases with I: It is easy to tell

that the width of Region 2 �p1 (�p2 � p1) decreases with I; and the loss of e¢ ciency in the two

regions �p1(s��p2)
(1+�)(s�p1) and

s�p1
(1+�)(s�p1)��p1(s��p2) increases with I:

2. It is easy to tell that p1 (�p2 � p1) is concave with p1; and (�p2�p1)[1+�(1�p1)]
p1

decreases with p1:We

could also show that

d
n
p1

h
1� 1�p1

(I+1)(s�p1)

io
dp1

=
1

I + 1

"
I � s (1� s)

(s� p1)2

#

so the e¢ ciency loss in these two regions increases with p1 2
 
0;

�
s�

q
s(1�s)
I

�+#
[
�
min

�
s+

q
s(1�s)
I ; 1

�
; 1

�
and decreases with p1 2

 �
s�

q
s(1�s)
I

�+
;min

�
s+

q
s(1�s)
I ; 1

�#
:

The proof of Corollary ?? could be easily derived based on the results of Lemma 5.

Proof of Lemma 3.

1. To compare the supplier�s pro�t in "M" and "O", we �rst notice that the supply chain perfor-

mance is di¤erent in these two situations only when � 2 �O3 =
�
�M1 n�O1

�
[
�
�M2 n�O2

�
[
�
�M4 n�O4

�
as shown by Lemma 10: 8� 2 �O3 \�Mi ; i 2 f1; 2; 4g ; VMS (�) = VMS;i = V OS;i < V OS;3 = V OS (�) :Note

that the last inequality is due to the fact that the supplier chooses Case 3 in "O". So 8� 2

�; VMS (�) � V OS (�) : Similarly we could verify the result on comparison between "M" and "F".

In general, the supplier is worse o¤ in "M" compared to "O" and "F" since there are fewer

options due to the removing of Case 3.

2. To compare the supplier�s pro�ts in "F" and "O", we �rst claim that V FS (�) > V OS (�)) � 2 �F20

(a) We prove the claim above by contradiction. Note that 8i 2 f1; 4g, �Fi � �O3 [ �Oi ; o.w.

we observe that V OS;i < V OS;2 < V FS;20 ) � 2 �F20 ; or V OS;i < V OS;5�i = V FS;5�i < V FS;i = V OS;i;

contradiction! If � 2 �Fi \ �Oi ; V OS (�) = V OS;i = V FS;i = V FS (�) ; if � 2 �Fi \ �O3 ; V OS (�) =

V OS;3 > V OS;i = V FS;i = V FS (�) ; so V
O
S (�) � V FS (�) :
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(b) Then we claim that 8� 2 �F20 \ �Oi ; i 2 f1; 2; 4g ; V FS (�) > V OS (�) ; due to the fact that

V FS (�) = V FS;20 > V FS;i = V OS;i = V OS (�) : For 8� 2 �F20 \ �O3 ; V FS (�) = V FS;20 > V OS;3 =

V OS (�) ()

[(1 + �)� �p1 (1� �)] �
�
s� pF2

�
> [�(1 + �) + �(1� p1) (1� �)] � (s� p2)

() s > p1 +
(1 + �) �

�
p1 � p2

�
[1 + � (1� p1)] (1� �)

1.4 Discussion and Concluding Remarks

Proof of Proposition 1. We do not need to consider the cases of s > p2
1�� or s <

p
2

1�� ; as the

retailer�s expected pro�t of the second period is not a¤ected by the information updating. So we focus

on the cases of s 2
�
p1
1�� ;

p2
1��

i
and s 2

�
p
2

1�� ;
p1
1��

i
; and study the two players�policies to constitute

a sequential equilibrium. Note that for the second period, the two players�optimal policies remain

the same as in the other two situations:

8><>: s > p2
1�� ; k

� ewF2 � = p+2 ; eyF2 = DH

s � p2
1�� ; k

� ewF2 � = 0+; eyF2 = DL
. Then for each case,

we develop the game tree of the two players��rst period decisions.
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1. When s 2
�
p1
1�� ;

p2
1��

i
; the two players�policies and the outcomes are

k
� ewF1 � ekF+1eyF1 DL DH

eV FR;1 ekF1 � ekF1 � (1� �) p1eV FS;1 �
s� ekF1 � � s� ekF1

D1

�
DH ; DL

	
P
�
D1 = DH

�
= 1� p1 P

�
D1 = DL

�
= p1

p2 p1 p
2

p2

k
� ewF2 � p+1 p+

2
0+

eyF2 DH DH DL

eV FR;2 p1� p
2
� 0eV FS;2 s� p1 s� p
2

s�

So for the forward-looking retailer to order eyF1 = DL; it requires

eV FR �eyF1 = DL
�

> eV FR �eyF1 = DH
�

ekF1 �+ �p1� > ekF1 � (1� �) p1 + � (1� p1) p2�ekF1 < p1

�
1 +

��p2
1� �

�
:

Therefore the supplier�s wholesale price choice is between the following two options

k
� ewF2 � = p1

�
1 + ��p2

1��

�+
; eyF2 = DH

k
� ewF2 � = 0+; eyF2 = DL

;
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and she chooses k
� ewF2 � = p1

�
1 + ��p2

1��

�
when eV FS �k � ewF2 � = p1

�
1 + ��p2

1��

��
> eV FS �k � ewF2 � = 0+�

�
s� p1

�
1 +

��p2
1� �

��
+ �

h
p1s�+ (1� p1)

�
s� p

2

�i
>

�
s� p1

�
1 +

��p2
1� �

��
�+ � (s� p1)

s > esF1 := p1
1� � �

1 + �p2(2��1)
1��

1� �p1

2. When s 2
�
p
2

1��
p1
1��

i
; the two players�policies and the outcomes are

k
� ewF1 � ekF+1eyF1 DL DH

eV FR;1 ekF1 � ekF1 � (1� �) p1eV FS;1 �
s� ekF1 � � s� ekF1

D1

�
DH ; DL

	
P
�
D1 = DH

�
= 1� p1 P

�
D1 = DL

�
= p1

p2 p1 p
2

p2

k
� ewF2 � 0+ p+

2
0+

eyF2 DL DH DL

eV FR;2 0 p
2
� 0eV FS;2 s� s� p
2

s�

So for the forward-looking retailer to order eyF1 = DL; it requires

eV FR �eyF1 = DL
�

> eV FR �eyF1 = DH
�

ekF1 � > ekF1 � (1� �) p1 + � (1� p1) p2�ekF1 < p1

�
1� �� (1� p2)

1� �

�+
:
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Therefore the supplier�s wholesale price choice is between the following two options

k
� ewF2 � = p1

�n
1� ��(1�p2)

1��

o+�+
; eyF2 = DH

k
� ewF2 � = 0+; eyF2 = DL

;

and she chooses k
� ewF2 � = p1

�n
1� ��(1�p2)

1��

o+�+
when

eV FS
0@k � ewF2 � = p1

 �
1� �� (1� p2)

1� �

�+!+1A > eV FS �k � ewF2 � = 0+�

0@s� p1 �1� �� (1� p2)
1� �

�+!+1A+ � hp1s�+ (1� p1)�s� p2�i

>

0@s� p1 �1� �� (1� p2)
1� �

�+!+1A �+ �s�

s > esF2 := p1
1� � �

1 + �(1�p2)(1�2�)
1��

1 + � (1� p1)

Proof of Proposition 9. We prove the result by backward induction.

We �rst argue that when n = N and with the same prior �0N ;

�N (�
0
N ; yN ) = !N (�

0
N ; yN ) =

!RN (�
0
N ; yN )

�
=
�RN (�

0
N ; yN )

�

for any yN , so the contract (w; b) could coordinate the supply chain based on known results, yielding

yN (�
0
N ) = yRN (�

0
N ) ; �N (�

0
N ) = �RN (�

0
N ) :

If for all n > m � 1; we have yn (�0n) = yRn (�
0
n) and thus �n (�

0
n) = �Rn (�

0
n) ; then for n = m;we
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Table 6: Supply Chain E¢ ciency Comparison: "M" vs "F"

Supply Chain E¢ ciency Comparison: "M" vs "F",
n
�MF ; �MF (p1; I) j�

o
I � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:9
1 0 0 0 0 0
5 3.5%, 15.9% 1.25%,11.74% 0 0 0
10 2.5%, 14.2% 2.25%, 9.55% 1.5%, 6.71% 0 0
50 0.75%,8.13% 0.5%, 5.2% 0.75%, 3.65% 1.25%, 2.32% 0
p1 � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:9
0:2 0.5%, 7.43% 0.5%, 5.20% 0.75%, 3.65% 1.25%, 2.32% 0
0:4 3%, 13.33% 2.25%, 9.55% 1.5%, 6.71% 0 0
0:6 3%, 16.32% 1.25%, 11.74% 0 0 0
0:8 0.25%, 16.57% 0 0 0 0

know that for any ym and �0m; and 8x :

!Rm (�
0
m; ym)

!m (�0m; ym)
=
�Rm+1

�
�0m+1 (�jx)

�
�m+1

�
�0m+1 (�jx)

� = �;

therefore
�Rm(�

0
m;ym)

�m(�
0
m;ym)

= �: If ym (�0m) is the optimal order quantity for the supply chain, then it�s also

optimal for the retailer.

Note that if the retailer�s and the supply chain�s order quantities are the same through all past pe-

riods, they also hold the same (expected) posterior depending on the realized sales volume. Therefore

we proved the proposition.

1.5 Complementary Numerical Results

Basic Model

2 Chapter 3

2.1 Variation of the Spence�s Signaling Game and Strategic Learning

We discuss a variation of the classic "Spence�s job market signaling" game[67], in which the agent

faces several sources of uncertainty that jointly in�uence the cost of signaling, while the principal�s
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Table 7: Supply Chain E¢ ciency Comparison: Censored vs. "O"
Supply Chain E¢ ciency Comparison: Censored vs. "O", �Censor;O (p1; I) j�

I � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:9
1 13.5%, 22.52% 12.25%, 24.83% 8.25%, 24.41% 4.75%, 19.07% 0
5 2.25%, 43.76% 2.25%, 40.56% 2%, 31.93% 1.25%, 22.01% 0
10 1%, 49.33% 0.75%, 40.7% 1.25%, 31.62% 0.75%, 21.87% 0
50 0 0 0.25%, 32.31% 0 0
p1 � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:9
0:2 3.5%, 25.43% 4.25%, 22.19% 5.25%, 23.46% 6.75%, 19.92% 0
0:4 5%, 27.43% 6.5%, 24.94% 6.5%, 29.18% 0 0
0:6 5.75%, 27.57% 4.5%, 37.68% 0 0 0
0:8 2.5%, 26.88% 0 0 0 0

Table 8: Retailer�s Pro�t Comparison: "M" vs "F"
Retailer�s Pro�t Comparison: "M" vs "F", �MF

R (p1; I) j�
I � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:9
1 42.5%, 65.61% 28.5%, 43.94% 17.25%, 34.25% 7.25%, 28.36% 0
5 39.25%, 40.07% 28.75%, 19.04% 17.25%, 12.8% 7.25%, 9.98% 0
10 29.25%, 28.2% 24.25%, 13.18% 17.25%, 8.76% 7.25%, 5.51% 0
50 4.75%, 12.05% 3.75%, 5.15% 3%, 4.81% 1.5%, 9.25% 0
p1 � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:9
0:2 62.75%, 44.94% 57%, 24.75% 46.5%, 17.71% 23.25%, 14.27% 0
0:4 35.75%, 46.69% 26%, 25.36% 8.25%, 18.64$ 0 0
0:6 15.5%, 44.59% 2.25%, 30.5% 0 0 0
0:8 1.75%, 36.01% 0 0 0 0

Table 9: Retailer�s Pro�t Comparison: Censored vs "O"
Retailer�s Pro�t Comparison: Censored vs "O", �Censor;OR (p1; I) j�

I � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:9
1 15.25%, 58.75% 2.25%, 61.62% 8.25%, 71.82% 4.75%, 82.58% 0
5 2.25%, 84.21% 2.25%, 100% 2%, 100% 1.25%, 100% 0
10 1%, 100% 0.75%, 100% 1.25%, 100% 0.75%, 100% 0
50 0 0 0.25%, 100% 0 0
p1 � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:9
0:2 4.25%, 64.33% 4.25%, 59.49% 5.25%, 68.65% 6.75%, 87.74% 0
0:4 5.75%, 68.42% 6.5%, 60.20% 6.5%, 89.55% 0 0
0:6 6%, 65.83% 4.5%, 91.27% 0 0 0
0:8 2.5%, 49.47% 0 0 0 0
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payo¤ only depends on one dimension of the private information. This setup is related but di¤erent

from "noisy signaling game"[70]. In the latter case, the signal observed by the principal besides

the deterministic component a¤ected by the agent�s action, also adding complexity to the principal�s

inference. We demonstrate that as the information structure gets more complex, the equilibrium belief

contains little information. The principal�s ability to infer the only "valuable" private information

amid other uncertainty is limited.

The classic Spence�s job market game considers an agent (student, he) of two possible types

("quality") t 2 f1; 2g : The agent�s type is valuable for the principal (employer, she), who only has

a prior distribution over the agent�s type P (t = 1) := p:The agent could exert an observable e¤ort

("education") e 2 [0;+1) as a signal of his type that is less costly for the agent of high type. And

the principal o¤ers a monetary compensation w (�) 2 [0;+1) depending on the observed e:The utility

functions of the players are as follows, and both have a zero reserved-value for participation.

UP = t� w (e)

UA = w (e)� e

t
:

Among the multiple sequential equilibria for this game, the Riley equilibrium[68] is the known

as the "least costly separating equilibrium" and the unique equilibrium that survives the Intuitive

Criteria [69] among other re�ne schemes26 .

ep = P (t = 1je) =

8><>: 0 e = 1

1 o:w:

e =

8><>: 0 t = 1

1 t = 2
; w =

8><>: 1 e = 0

2 e = 1
:27

26Equilibrium selection/re�nement is beyond the scope of this report, since we aim to argue that in our setup, there
does not exist any equilibrium that fully separate the types of agents along the dimension of the valuable information
for the principal.
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Spence�s Job Market Game, Variation 1

In this variation, we assume that the agent�s private information is two dimensional, t = (t1; t2) ;

t1 2 f1; 2g ; t2 2 f�0:5; 0:5g ;both unknown to the principal yet only t1 a¤ecting her payo¤ as in the

classic setting. The principal has a prior over the agent�s type:

P (t1 = 1) := p 2 (0; 1) ; P (t2 = �0:5) :=
1

2
2 (0; 1) ;

the two dimensions are independent28 :The agent�s cost for education e 2 [0;+1) is jointly determined

by ft1; t2g. Speci�cally, the two players�utility functions are:

UP = t1 � w (e)

UA = w (e)� e

t1 + t2
:

We present the equilibria that survive the Intuitive Criterion (IC) for this variation as follows,

among which the second is not a separating equilibrium w.r.t. t1. Since education is equally costly for

the agent of two sub-types: f1; 0:5g and f2;�0:5g, they may choose the same action in the equilibrium

with a contract based on the observable education level and remain unseparated. In this case, the

equilibrium is a "separating equilibrium" w.r.t. t = t1 + t2: So for this example, the existence of

multiple equilibria and hybrid equilibrium largely a¤ect the principal�s information acquisition.

Example 1 (Equilibrium 1)

t = (t1; t2) e w Ua�
1;� 1

2

�
0 1 1

�
2;� 1

2

�
3
2 2

8><>: 1 t2 = � 1
2

7
5 t2 = � 1

2

;

28Here the independence and correlation between the two dimensions are not essential on our argument and results, as
long as E [tjt1] increase with t1. Alternatively, we could assume that P (t2 = �0:5jt1 = 1) := q1; P (t2 = �0:5jt1 = 2) :=
q2; qi 2 (0; 1)
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ep = P (t1 = 1je) =

8><>: 1 e 2
�
0; 32
�

0 e 2
�
3
2 ;+1

�

Example 2 (Equilibrium 2)

t = (t1; t2) e w Ua�
1;� 1

2

�
0 1 1�

1; 12
�
;
�
2;� 1

2

�
1�p
2 2� p 5�2p

3�
2; 12
�

1+2p
2 2 9�2p

2

;

ep = P (t1 = 1je) =

8>>>><>>>>:
1 e 2

�
0; 1�p2

�
p e 2

�
1�p
2 ; 1+2p2

�
0 e 2

�
1+2p
2 ;+1

�
Spence�s Job Market Game, Variation 2

Similarly, we consider another variation in which the agent�s private information is t = (t1; t2) ; t1 2

f1; 2g ; t2 2 (0;+1) : And the principal�s prior distribution is P (t1 = 1) = p; t2jt1 � Exp f1g : The

two players�payo¤s are

UP = t1 � w

UA = w � e

t1 � t2
:

We consider the following equilibrium: (ta = t1 � t2 2 (0;+1))

P [t1 = 1jta (e)] =
pe�ta

pe�ta + 1
2 (1� p) e�

ta
2

=
2p

2p+ (1� p) e ta2
2
�
0;

2p

1 + p

�
w(ta) = E[t1jta (e)] = 1 +

(1� p)
2pe�

ta
2 + (1� p)

e(ta) =

Z ta

0

w0(s)sds:

This equilibrium is "separating" w.r.t. ta = t1 � t2 2 (0;+1) ; yet the principal�s belief over t1
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remains ambiguous. As the extra uncertainties like t2 in these variations get more complex, the extra

information obtained from such signaling quickly diminishes.

Sketch Proof of Variation 1. Given any belief updating rule of the principal, w = E [t1je] is the

best response;

1. It�s easy to show that the agent�s utility function satis�es single-crossing property for both

ta = t1+ t2; and each dimension ti; i 2 f1; 2g ; thus the equilibrium e¤ort e (t) is non-decreasing

w.r.t. ti; i 2 f1; 2; ag ;therefore w is also non-decreasing w.r.t. e:

2. (Contradiction) Suppose in one equilibrium, e2 < e3;then w2 � w3;since e1 � e2; e3 � e4;the

principal could rationally assign ep (e1) = ep (e2) = 1; ep (e3) = ep (e4) = 0;and separate the agents
w.r.t. t1 :

w1 = w2 = 1 = E [t1je1 or e2]

w3 = w4 = 2 = E [t1je3 or e4]

Then by equilibrium de�nition, if (0 �) e1 < e2; type 2 agent for sure has an incentive to send

e1 instead of e2; so e1 = e2 (= 0) : Similarly, if (0 �) e3 < e4;then type 4 agent for sure has the

incentive to send e3 as opposed to e4; so e3 = e4 := e: For type 2 and type 3 to be indi¤erent

between mimicking each other and maintaining the status quo, we need

w3 � e3=1:5 = w1 � e1=2:5 = 1

e3 = 1:5
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2.2 The IS�s Pricing Policy with � = 0; �a = �b

Solution 14 (fa; �g with � = 0; �a = �b)

8>>>>>>>>>><>>>>>>>>>>:

� =
2
p
C��(1+p)+C�2p2�(�+2C�p)

�2 > 0

� =
�
1 + p2

� h
2
p
C�� (1 + p) + C�2p2 � (�+ 2C�p)

i
� (a� �) + p (b� �)

�0 =
h
2
p
C�� (1 + p) + C�2p2 � (�+ 2C�p)

i �
2p� C�(1+p2)p

C��(1+p)+C�2p2

�
+ (b� �)

= (�+ 2C�p) 2p
hq
1 + �(4C���)

(�+2C�p)2
� 1
i241� 1

p
+p

�
2C� +p

4

r
1+

�(4C���)
(�+2C�p)2

35+ (b� �)
;

Proof of Lemma 7. Note that 1� e��(p) increases(decreases) in p if � (p) increases(decreases) in p:

Also (p� c) (a� bp) increases in
�
c; a+bc2b

�
; and decreases in

�
a+bc
2b ; ab

�
:Therefore if � (p) increases in

p; then V IS = (p� c) (a� bp)
�
1� e��(p)

�
increases in

�
c; a+bc2b

�
; and p� 2

�
a+bc
2b ; ab

�
� pM :Similarly

we argue that if � (p) decreases in p; p� 2
�
c; a+bc2b

�
� pM :

Proof of Lemma 8.

We aim to show �
00
� 0 in the feasible set so that � is convex.

De�ne x :=
q
p2 + �(1+p)

C� 2 (p; p+ 2) ;then �
C� =

x2�p2
1+p ; and

� (x; p) =
2
p
C�� (1 + p) + C�2p2 � (�+ 2C�p)

x
> 0

�
00

= � (x; p)f�00 (x; p) ;
so it su¢ ces to prove

f�00 (x; p) = x+
1 + p2

2x
+
p (p+ 2)

�
1 + p2

�
4 (1 + p)x2

+
1 + p2

4 (1 + p)
� 2p � 0: (14)

If 1+p2

4(1+p) � 2p = �
7p2+8p�1
4(1+p) � 0; then the argument is proved; otherwise it su¢ ces to show that

8x 2 (p; p+ 2)

x+
1 + p2

2x
� 7p2 + 8p� 1

4 (1 + p)
:

164



If 9x 2 (p; p+ 2) ; s.t. x+ 1+p2

2x < 7p2+8p�1
4(1+p) ()

4 (1 + p)x2 �
�
7p2 + 8p� 1

�
x+ 2

�
1 + p2

�
(1 + p) < 0:

Note that � =
�
7p2 + 8p� 1

�2 � 32 (1 + p)2 �1 + p2� < 0 for 80 < p � 1:3: So f�00 (x; p) > 0 when

p � 1:3: Otherwise we aim to prove the result by showing that

� f�00 (x; p) minimizes at ex (p) 2 (p; p+ 2)
� f�00 (ex (p) ; p) > 0:
Consider

@f�00 (x; p)
@x

=
1

x3

"
x3 � 1 + p

2

2
x�

p (p+ 2)
�
1 + p2

�
2 (1 + p)

#
(15)

Since@
f
�
00
(x;p)
@x x3jx=p < 0; @

f
�
00
(x;p)
@x x3jx=p+2 > 0;9ex (p) 2 (p; p+ 2) s:t:@f�00 (ex;p)@x = 0: We solve for this

unique ex (p) in Solution 15, and @
f
�
00
(ex;p)
@x < (>) 0 () x < (>) ex: So f�00 (x; p) decreases in x 2

(p; ex (p)) ; and increases in x 2 (ex; p+ 2) ; minimizing at x = ex (p) :
To show that f�00 (ex; p) � 0; we notice that �ex2 � 1+p2

2

� ex = p(p+2)(1+p2)
2(1+p) ; thenf�00 (ex; p) = 3ex

2 +
1+p2

4ex � 7p2+8p�1
4(1+p) > 0 () 6 (1 + p) ex2 � �7p2 + 8p� 1� ex+ �1 + p2� (1 + p) > 0

() ex > (7p2+8p�1)+
p
(7p2+8p�1)2�24(1+p)2(1+p2)

12(1+p) = ex (p) 29 :ex (p) � p when p � 2:4; so we only

need to consider the case when ex (p) > p > 2:4; in this case we use the base of p = 1
q ; q < 1; in this

case

(7p2+8p�1)+
p
(7p2+8p�1)2�24(1+p)2(1+p2)

12(1+p) � p
�
1 + 1

5p �
76

125p2 + o
�
1
p2

��
and ex � p

�
1 + 1

5p +
19

125p2 + o
�
1
p2

��
; so ex > (7p2+8p�1)+

p
(7p2+8p�1)2�24(1+p)2(1+p2)

12(1+p) :

29when p > 1:3;
�
7p2 + 8p� 1

�2 � 24 (1 + p)2 �1 + p2� > 0
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Solution 15 Solving ex for @
f
�
00
(x;p)
@x = 0 :

a = 1; b = 0; c = �1 + p
2

2
; d = �

p (p+ 2)
�
p2 + 1

�
2 (p+ 1)

A =
3
�
p2 + 1

�
2

; B =
9p (p+ 2)

�
p2 + 1

�
2 (p+ 1)

; C =

�
p2 + 1

�2
4

� =
3
�
p2 + 1

�2
4 (p+ 1)

2

h
27p2 (p+ 2)

2 � 2
�
p2 + 1

�
(p+ 1)

2
i

e� : = 27p2 (p+ 2)
2 � 2

�
p2 + 1

�
(p+ 1)

2

We argue that when p � 0:2; e� > 0;since

e�(0:2) = 2:232 > 0; e�0 (0:2) = 50:88 > 0; e�(2) (0:2) = 344:8 > 0;
e�(3) (0:2) = 744 > 0; e�(4) = 600 > 0:

In this case Y1;2 = Ab+ 3a
�
�B�

p
B2�4AC
2

�
;the unique real solution is ex = �b�( 3

p
Y1+

3
p
Y2)

3a :

Conjecture 2 If � 0 (0) � 0; then � 0 (p) � 0 for all p 2
�
0; ab

�
:

Sketch Proof of Conjecture 2. � 0

� =
�0

� +
�0p

�2�2 ln �
, �

0

� =
�C�p

C��(1+p)+C�2p2
< 0 and increases in

p: If � 0 (0) � 0; then �0 (0) > 0 and �0 (p) � 0 for all p 2
�
c; ab
�
as � is convex in p; also � increases in�

c; ab
�
and positive.

If � (0) < 0; then 9ep 2 �c; ab � ; s:t:8p � ep; � (p) � 0: Then �2 � 2 ln � decreases for p 2 [0; ep] and
�0p

�2�2 ln �
increases, so � 0

� increases in [0; ep] and is positive.
When � (0) � 0 or p 2

�ep; ab � ; �0p
�2�2 ln �

may not increase anymore.

Taylor expansion30 shows that

� 0

�
� 2

p2

"
�2

2C�

�
1� �

4C�

�
+ (a� �)

b� �2

4C�

+
�

4C�

#
+O

�
1

p3

�

decreases in p and approaches 0+: so � 0 � 0 when � � 0:
30This approach is not fully rigorous so the conjecture is not completely proved.
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Proof of Proposition 10. Based on Conjecture 2, it�s su¢ cient if � 0 (0) � 0 () � 0

� (0) � 0

� 0

�
jp=0 =

�0

�
jp=0 +

�0p
�2 � 2 ln �

jp=0

= �1
2

s
C�

�
+

p
C��
2 � C�

2 + (b� �)q�p
C��� a

�2 � 2 ln � � 0

Then b � b (a) := �+ 1
2

�
C� �

p
C��+

r
C�

�

h�p
C��� a

�2 � 2 ln �i� :
Since �0

� < 0; it su¢ ces for � to decrease if �0 < 0: As � is convex, it su¢ ces for �0 (p) � 0 for

8p 2
�
0; ab

�
if �0

�
a
b

�
< 0 or lim

p!+1
�0 (p) := �0 (1) < 0:

lim
p!+1

�0 (p) : = �0 (1) = b� �2

4C�
< 0

() b � �2

4C�
:= b

Proof of V IS0s Unimodality in One Special Case. When C� = �
4 (1 + ") ; we consider the

deterministic approximation of the function b� ; where b� is �nite only when � < 0 and b� � �
�� : In this

case, F (p) =
[(a�bp)��(1�p)]

h
2
p
C��(1+p)+C�2p2+(�+2C�p)

i
�(4C���) �

�
1 + p2

�
� [(a� bp)� � (1� p)]

h
2
p
C��(1+p)+C�2p2+(�+2C�p)

i
�(4C���) �

�
1 + p2

�
h
2
p
C��(1+p)+C�2p2+(�+2C�p)

i
�(4C���) �

p
4(1+p)(1+")+p2(1+")2+[2+(1+")p]

2�" � p+2+p"+ "
p+2

�"b� � � ln ��"
�2

1

(p+2+p"+ "
p+2 )[(a�bp)��(1�p)]��(1+p2)"

� � ln ��"
�2

1
(p+2)[(a�bp)��(1�p)]

1� e�b� � b� � � ln ��"
�2

1
(p+2)[(a�bp)��(1�p)]

V IS (p) � (a�bp)(p�c)
(p+2)[(a�bp)��(1�p)]

� ln ��"
�2

A = b2 (c+ 2)� � (a+ b+ bc) ; B = � (4b+ 2ac)� 4ab� 2abc;

C = a2 (c+ 2)� � (2a� ac+ 2bc) ;� � 4� (a� b) (a+ 2b) (c+ 2) [(a� bc)� � (1� c)] :

1. if a < b and (a� bc) > � (1� c) () � < bc+ � (1� c) < a < b

(a� bp)� � (1� p) = (a� �)� (b� �) p > 0 () c < p < a��
b�� <

a
b
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V IS
0
(c) � (c+ 2) (a� bc) [(a� bc)� � (1� c)] > 0

V IS
0 �a

b

�
� �� (a� b) (a+ 2b) (a� bc) > 0

V IS
0
�
a��
b��

�
� ��(a�b)(a+2b�3�)[a�bc��(1�c)]

(b��)2 > 0

V IS increase in
h
c; a��b��

i
(a) if a��b�� >

a+bc
2b () a > b(2�+bc�c�)

b+� ; p� = a��
b�� > pM ; V IS (p) � (b�a)�[(a�bc)��(1�c)]

b��

(b) if a��b�� <
a+bc
2b () a < b(2�+bc�c�)

b+� ; p� = a+bc
2b ;b� = +1; V IS (p) = (a� bp) (p� c)

2. a > b and (a� bc) < � (1� c) () b < �; b < a < bc+ � (1� c) < �

(a� bp)� � (1� p) = (a� �)� (b� �) p > 0 () ��a
��b < p < a

b

V IS
0
�
a��
b��

�
� ��(a�b)(a+2b�3�)[a�bc��(1�c)]

(b��)2 < 0

V IS
0 �a

b

�
� �� (a� b) (a+ 2b) (a� bc) < 0

� < 0; V IS decrease in
h
��a
��b ;

a
b

i
(a) if ��a��b <

a+bc
2b () a < b(2�+bc�c�)

b+� ; p� = ��a
��b < pM ; V IS (p) � (a�b)�[(a�bc)��(1�c)]

��b

(b) if ��a��b >
a+bc
2b () a > b(2�+bc�c�)

b+� ; p� = a+bc
2b = pM ; V IS (p) = (a� bp) (p� c)

3. a < b < bc+ � (1� c) < �; (a� bp)� � (1� p) < 0; p� = pM ; V IS (p) = (a� bp) (p� c)

as (a� bp)� � (1� p) < 0, 8p 2
�
c; ab
�

4. a > bc+ � (1� c) > b; b < �; (a� bp)� � (1� p) > 0 () a
b > p > ��a

��b ;

if ��a��b <
a+bc
2b () b < bc+ � (1� c) < a < b(2�+bc�c�)

b+� < �;

V IS
0
�
a��
b��

�
� ��(a�b)(a+2b�3�)[a�bc��(1�c)]

(b��)2 < 0

since a + 2b � 3� < b(2�+bc�c�)
b+� + 2b � 3� = 1

b+�

�
(c+ 2) b2 + (1� c)�b� 3�2

�
< 0 as b < � =

V IS
0 �a

b

�
� �� (a� b) (a+ 2b) (a� bc) < 0

so V IS decrease in
h
��a
��b ;

a
b

i
and increase in

h
c; ��a��b

i
; p� = ��a

��b < pM ;

if ��a��b >
a+bc
2b () a > b(2�+bc�c�)

b+�
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V IS
0
�
a��
b��

�
� ��(a�b)(a+2b�3�)[a�bc��(1�c)]

(b��)2

V IS
0 �a

b

�
� �� (a� b) (a+ 2b) (a� bc) < 0

a > b > bc+ � (1� c) > �;

a < bc+ � (1� c) < b; b > �

V IS
0
(c) � (c+ 2) (a� bc) [(a� bc)� � (1� c)] > 0

V IS
0 �a

b

�
� �� (a� b) (a+ 2b) (a� bc) < 0

so if V IS
0 �a

b

�
> 0; � < 0, V IS

0 �a
b

�
always positive

therefore at most one optimum

Proof of Proposition 11. We �rst assume that V IS (p) is unimodal w.r.t. p 2
�
c; ab
�
thus we could

refer to the FOC for the optimal price p� (a; b) :

dV IS

dp
jp = p� = 0 ()

2bp� � (a+ bc)
(p� � c) (a� bp�) =

� 0 (p�)

e�(p�) � 1 : (16)

We consider the function V IS� (a; b) = V IS (a; b; p� (a; b)) ; and take its derivative w.r.t. a:

dV IS� (a; b)

da
=

dV IS (a; b; p� (a; b))

da

=
@V IS (a; b)

@a
+
@V IS (a; b)

@p

dp

da
jp=p�

=
@V IS (a; b)

@a
jp=p� ;
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therefore if 9a� (b) s.t. V IS� (a� (b) ; b) = max
a
V IS� (a; b) ; then

@V IS (a; b)

@a
jp=p�;a=a� = 0)

1

a� � bp� (a�; b) =
� (p�; a�)

e�(p�;a�) � 1
1q

� (p�; a�)
2 � 2 ln �

: (17)

De�ne q� (b) = a� (b)� bp� (a� (b) ; b) ; then fp� (b) ; q� (b)g satisfy the conditions set by (17)

1

q�
� � (p�; q�)

e�(p�;q�) � 1
1q

� (p�; q�)
2 � 2 ln �

(18)

: = F1 (p; qj�0; ) = 0 (19)

By inserting (17), (16) can be re-written as

2bp� � (a+ bc)
(p� � c) q =

� 0 (p�)

e�(p�) � 1

b� q�

p� � c =

d�
dp (p

�)

�

q
� (p�; q�)

2 � 2 ln �

b =
q�

p� � c +
�
�0

�

q
� (p�; q�)

2 � 2 ln � + �0
�

or

q�

p� � c + (�+ 2C
�p) 2p

"s
1 +

� (4C� � �)
(�+ 2C�p)

2 � 1
#241�

1
p+p
�

2C�+p

4
q
1 + �(4C���)

(�+2C�p)2

35 (20)

�
C�
q
� (p�; q�)

2 � 2 ln �p
C�� (1 + p�) + C�2p�2

� �

: = F2 (p; qj�0; ) = 0 (21)

Since (18) and (20) could be written as functions of (p; q) with parameters of (�0; ), and are inde-
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pendent, we could solve for the unique fp�� (�0; ) ; q�� (�0; )g that satisfy

�
F1 (p; qj�0; ) = 0
F2 (p; qj�0; ) = 0

:

This means for 8 fb; a� (b)g ;9 fp��; q��g s.t.

a� (b) = q�� + bp��;

therefore fb; a� (b)g form a line segment. Moreover, 8 fb; a� (b)g

V IS� (a� (b) ; b) = V IS (p��; q��)

= (p�� � c) q��
h
1� e��(p

��;q��)
i

: = V IS��:

Proof of Proposition 12. When a! bc+;since p� 2
�
c; ab
�
; so p� ! bc+; (p� � c) (a� bp�)! 0+;

1. so V IS� (a; b) = (p� � c) (a� bp�)
�
1� e��(a;b;p

2)
�
! 0+;as 1� e�� � 1:

Similarly we could prove that V IS� (a; b)! 0+ as b!
�
a
c

��
:

2. For a ! +1; we show that V IS� (a; b) does not fully diminish but remains above a positive

level. By de�nition

V IS� (a; b) = V IS (a; b; p�) � V IS
�
a; b; pM

�
V IS

�
a; b; pM

�
=

�
pM � c

�
(a� bp)

�
1� e��(a;b;p

M)
�

Note that pM = a+bc
2b � a

2b (1 + o (a)) ; so
�
pM � c

�
(a� bp) � a2

4b

�
1 + o

�
1
a

��
:

Consider 1� e��(a;b;p
M); and note that � = �

�
� +

p
�2 � 2 ln �

�
� = �(4C���)

�2
h
2
p
C��(1+p)+C�2p2+(�+2C�p)

i � �(4C���)
�24C�p(1+o( 1p ))

� b�(4C���)
2�2C�a

�
1 + o

�
1
a

��
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� =
�(4C���)(1+p2)

2
p
C��(1+p)+C�2p2+(�+2C�p)

� (a� �) + p (b� �)

�
h
�(4C���)

4C�

�
1 + o

�
1
p

��
+ b� �

i
p� (a� �) � � a

2b

�
�2

4C� + b
� �
1 + o

�
1
a

��
� +

p
�2 � 2 ln � = � + j�j

q
1� 2 ln �

�2
� � � �

�
1� ln �

�2
+ o

�
1
�2

��
� ln �

�

�
1 + o

�
1
�

��
� �2b ln �

a
�

�2

4C�+b
� �1 + o � 1a��

� = �
�
� +

p
�2 � 2 ln �

�
� �b2 ln ��(4C���)

a2
�

�2

4C�+b
�
�2C�

�
1 + o

�
1
a

��
So 1� e��(a;b;p

M) � 1� [1 + (��) + o (�)] � � (1 + o (�)) � �b2 ln ��(4C���)
a2
�

�2

4C�+b
�
�2C�

�
1 + o

�
1
a

��
V IS

�
a; b; pM

�
� � ln ��(4C���)

4
�
1+ �2

4bC�
�
�2C�

�
1 + o

�
1
a

��
:

So lim
a!+1

V IS� (a; b) � � ln ��(4C���)
4
�
1+ �2

4bC�
�
�2C�

> 0:

3. Similarly we could prove that lim
b!0+

V IS� (a; b) � � ln �(4C���)a"
��2 (1 + o ("))! 0:

Note that pM � a
2b (1 + o (")) ; so

�
pM � c

�
(a� bp) � a2

4b (1 + o (")) :

� � 2"�(C���)
�2C� (1 + o (")) ; � � � a�2

2bC� (1 + o ("))

� +
p
�2 � 2 ln � � �8 ln �C�"

�2 (1 + o ("))

� � �4 ln �(4C���)"2
��2 (1 + o (")) ; 1� e��(a;b;p

M) � �4 ln �(4C���)"2
��2 (1 + o ("))

V IS
�
a; b; pM

�
� � ln �(4C���)a"

��2 (1 + o ("))

2.3 Analytical Results of Alternative Entry Policy and General �

Proof. Consider � :=
n
fa; bg ja24b � 1p (a� bp) � C�

o
; then �1 � �2 :

�2a;t
4�b;t

� 1p
�
�a;t � �b;tp

�+ � C�

�2a;t
4�b;t

� C�
p
�
�a;t � �b;tp

�+ � 1 < 2

so �1 < �2:
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Proof of Proposition 13. when a � b; p � a
b � 1;so � =

(4C���)
�2(1�p) ; � = (4C

� � b) (1� p) + (b� a)

since � 0

� =
�0

� +
�0p

�2�2 ln �
�0

� =
1
1�p > 0; �

0 = b� 4C�; � 0� =
b�4C�p
�2�2 ln �

+ 1
1�p > 0

so � increase in pIS ; and p� > pM :

Lemma 12 When � = 1; a > b;

1. b� increases with p when p 2  c; 1� � a�b
2 � ln �

a�b
4C��b

�+!
[
�
1 +

a�b
2 � ln �

a�b
b ; ab

�
;

2. b� decreases with p when p 2 "max(c; 1� � a�b
2 � ln �

a�b
4C��b

�+)
;min

�
1 +

a�b
2 � ln �

a�b
b ; ab

�#
:

Proof of Lemma 12. Again when p < 1

� = (4C���)
�2(1�p) ; � = (4C

� � b) (1� p) + (b� a)
�0

� =
1
1�p > 0; �

0 = b� 4C�; � 0� =
b�4C�p
�2�2 ln �

+ 1
1�p < 0

when b < 4C� �
p
�2 ln �; a 2 4C� � b�

q
(4C� � b)2 + 2 ln �

when p < 1�
a�b
2 � ln �

a�b
4C��b

� 0

� =
b�4C�p
�2�2 ln �

+ 1
1�p > 0 when p > 1�

a�b
2 � ln �

a�b
4C��b

when p > 1

� = �
�2(p�1) ; � = � (a� bp)

�0

� = �
1
p�1 < 0; �

0 = b > 0;

� 0

� =
�0

� +
�0p

�2�2 ln �
= bp

�2�2 ln �
� 1

p�1

or � 0

� < 0 when p � 1 +
p
�2 ln �
b < 1 +

(a�b)� 2 ln �
a�b

2b

� 0

� > 0 when p > 1 +
a�b
2 � ln �

a�b
b

so � 0 < 0 when p 2
�
1�

a�b
2 � ln �

a�b
4C��b ; 1 +

a�b
2 � ln �

a�b
b

�
Proof of Corollary 15. We could argue that for � = 1 � " ! 1�, we have the following approxi-

mation

F (�; p) �

8><>: � [(1� p) + " (1 + 2p)] p < 1

(4C� � �) (p� 1 + ") p > 1

� = �
�
1 + p2 � 2�p

�
�2 � (a� �) + p (b� �)
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�

8><>: (4C� � a)� (4C� � b) p+ (4C���)(1+p)(2p�1)"
1�p p < 1

� (a� bp) + �(1+p)"
p�1 p > 1

�0

� �

8><>:
1� 3"

1�p
1�p p < 1

1� "
p�1

1�p p > 1
; �0 �

8><>: b� 4C� � 2(4C���)p(p�2)"
(1�p)2 p < 1

b� 2�"
(p�1)2 p > 1

So the results of Claim remains true for " small enough.

Proof of Proposition 14. � =
4
p
CT�(1��p)(1+p)(1��)+C2

T (��p)
2�[2�(1��p)�4CT (��p)]

2�2(1��p)2

= (4C���)�
�2
n
2
p
CT�(1��p)(1+p)(1��)+C2

T (��p)
2+[�(1��p)�2CT (��p)]

o = (4C���)�
�2

1
F (�;p)

� =
(4C���)�(1+p2�2�p)

F (�;p) � (a� �) + p (b� �)

F (�; p) = 2
q
CT� (1� �p) (1 + p) (1� �) + C2T (�� p)

2
+ [� (1� �p)� 2CT (�� p)] > 0

�0

� =
�F 0

F ; �0 = (4C� � �)�
�
2(p��)
F (�;p) �

(1+p2�2�p)F 0(p)

F 2(�;p)

�
+ (b� �)

� 0

� =
�0

� +
�0p

�2�2 ln �

= �F 0

F +
(4C���)�

"
2(p��)
F (�;p)

� (
1+p2�2�p)F 0(p)

F2(�;p)

#
+(b��)

p
�2�2 ln �

= �F 0

F

�
1 +

(4C���)�(1+p2�2�p)
F
p
�2�2 ln �

�
+

2(4C���)�(p��)
F (�;p)

+(b��)p
�2�2 ln �

� 0

� < 0 if F 0 > 0; 2(4C
���)�(p��)
F (�;p) + (b� �) < 0 for all p:

F 0 = CT�(1��)(1���2�p)�2C2(��p)p
CT�(1��p)(1+p)(1��)+C2

T (��p)
2
+ (2C � ��) > 0

when � <
�+C��

p
C�(2�+C�)

� < 2C
�

and 0 < � < p < 1
� or � < 0 (p > �; 1 > �p)

p��
F (�;p) =

p��
2
p
CT�(1��p)(1+p)(1��)+C2

T (��p)
2+[�(1��p)+2CT (p��)]

< 1
4C

b < �� 2 (4C� � �)� p��
F (�;p)

2 (4C� � �)� p��
F (�;p) <

2(4C���)�
4C

�� 2 (4C� � �)� p��
F (�;p) >

�
2C (�� 2C)

su¢ cient if b < �
2C (�� 2C)

so � decrease in p; and �F 0

F < 0:
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