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ABSTRACT

Microstructure Analysis of Dynamic Markets:

Limit Order Books and Dynamic Matching Markets

Hua Zheng

This thesis is concerned with addressing operational issues in two types of dynamic mar-

kets where queueing plays an important role: limit order books (financial industry), and

dynamic matching markets (residential real estate).

We first study the smart order routing decisions of investors in fragmented limit order

book markets and the implications on the market dynamics. In modern equity markets,

participants have a choice of many exchanges at which to trade. Exchanges typically operate

as electronic limit order books operating under a “price-time” priority rule and, in turn, can

be modeled as multi-class FIFO queueing systems. A market with multiple exchanges can

be thought as a decentralized, parallel queueing system. Heterogeneous traders that submit

limit orders select the exchange to place their orders by trading off delays until their order

may fill against financial considerations. Simultaneously, traders that submit market orders

select the exchange to direct their orders. These market orders trigger instantaneous service

completions of queued limit orders. Taking into account the effect of investors’ order routing

decisions, we find that the equilibrium of this decentralized market exhibits a state space

collapse property. The predicted dimension reduction is the result of high-frequency order

routing decisions that essentially couple the dynamics across exchanges. Analyzing a TAQ

dataset for a sample of stocks over a one month period, we find empirical support for the

predicted state space collapse.

In the second part of this thesis, we model an electronic limit order book as a multi-class



queueing system under fluid dynamics, and formulate and solve a problem of limit and market

order placement to optimally buy a block of shares over a short, predetermined time horizon.

Using the structure of the optimal execution policy, we identify microstructure variables that

affect trading costs over short time horizons and propose a resulting microstructure-based

model of market impact costs. We use a proprietary data set to estimate this cost model,

and highlight its insightful structure and increased accuracy over conventional (macroscopic)

market impact models that estimate the cost of a trade based on its normalized size but

disregarding measurements of limit order book variables.

In the third part of this thesis, we study the residential real estate markets as dynamic

matching systems with an emphasis on their microstructure. We propose a stylized mi-

crostructure model and analyze the market dynamics and its equilibrium under the simpli-

fying approximation where buyers and sellers use linear bidding strategies. We motivate

and characterize this near closed-form approximation of the market equilibrium, and show

that it is asymptotically accurate. We also provide numerical evidence in support of this

approximation. Then with the gained tractability, we characterize steady-state properties

such as market depth, price dispersion, and anticipated delays in selling or buying a unit.

We characterize congestion and matching patterns for sellers and buyers, taking into account

market dynamics, heterogeneity, and supply and demand imbalance manifested in the com-

petition among buyers and sellers. Furthermore, we show the effects of market primitives

with comparative statics results.
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Chapter 1

Introduction

Many marketplaces of current interest are ones in which participants may (choose to) seek

for transactions over time, resulting in queue/inventory of buyers and sellers. This thesis is

concerned with operational issues that arise in dynamic markets where the queueing phe-

nomenon plays an important role in the functioning of the market and the trading decisions

therein. In the chapters to come, we explore two specific applications that are of great

economic significance within this framework:

(1) In financial markets, exchanges operate as electronic limit order books. The orders

posted by investors are prioritized for trade first based on price, and then, at a given

price, queue based on their arrival time. The choice of price and exchange at which to

post an order affect both the probability that it will trade and its anticipated delay.

(2) Another example is provided by residential real estate markets, where buyers and sellers

of houses arrive sequentially over time, and can observe only a fraction of the entire

market at any given time and might need to conduct several rounds of bidding or bar-

gaining before finding the right match. This search friction creates a tradeoff between
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the possibility of finding a better match in the future and the cost of time, e.g., explicit

carrying costs of sellers, and/or usage needs of buyers.

In these applications, the delay induced by the competitive structure of the market, and

the resulting queue/inventory of sellers and buyers, is a key ingredient in understanding the

functioning of the market as well as the optimization of trading decisions therein. This thesis

focuses on building and studying queueing models of such markets with specific bearing on

operational questions, e.g., what are the transaction costs of buying or selling a large quantity

of stock on electronic exchanges within a certain time horizon? How much faster will a house

sell if you lower the price by 5%? How can one interpret market conditions and quantify

risks/rewards from observations such as historical housing transaction data?

In the sequel, we provide some detail about our modeling approach and results that we

obtain in each chapter.

1.1. Queueing Dynamics in Limit Order Book Markets

1.1.1. Fragmented Market and State Space Collapse

In Chapter 2 of this thesis, we study the smart order routing decisions of investors in frag-

mented limit order book markets and the implications on the market dynamics. In many

financial markets, participants have a choice of many exchanges at which to trade one secu-

rity, e.g., NASDAQ, NYSE, BATS in the context of U.S. equities. A market with multiple

exchanges can be thought as a decentralized, parallel queueing system. Traders that submit

limit orders specify limits on acceptable price of their order and wait to trade in the book

according to a price-time priority rule. These limit orders can be thought as jobs waiting for

service. Traders that submit market orders are willing to accept the best available price at

the time and trigger instantaneous service completions of queued limit orders. In this way,
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both the arrival and the server in the queueing system are the aggregation of self-interested,

atomistic traders that tradeoff the delay until their order may fill against financial considera-

tions when selecting the exchange, i.e., the queue, to route their orders under heterogeneous

time-money preferences.

We find that the equilibrium of this decentralized market exhibits a state space collapse

property, whereby (a) the queue lengths at different exchanges are coupled in an intuitive

manner; (b) the behavior of the market is captured through a one-dimensional process that

can be viewed as a weighted aggregate queue length across all exchanges; and (c) the behavior

at each exchange can be inferred via a mapping of the aggregated market depth process

that takes into account the heterogeneous trader characteristics. This predicted dimension

reduction is the result of high-frequency order routing decisions that essentially couple the

dynamics across exchanges.

By analyzing a TAQ dataset for a sample of stocks over a one month period, we find

empirical support for the predicted state space collapse. This seems to be one of the first ex-

amples of a complex stochastic network model where state space collapse has been empirically

verified.

1.1.2. Optimal Execution and Market Microstructure

In Chapter 3 of this thesis, we study the problem of optimally trading a block of shares over a

short, predetermined horizon in a limit order book and propose an associated microstructure-

based market impact model. Execution of a large stock order in an electronic limit order

book can be achieved by a combination of limit and market orders that are posted at different

prices and at different times. The overall price and duration of the order depends on how

the trader allocates the shares between limit and market orders, across different price levels

as limit orders, and over time.
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We propose a microstructure-based model of market impact that directly relates trans-

action costs of stock orders to “micro-level” order book features such as queue lengths and

arrival rates of orders. These features are directly estimatable and bring the market impact

model closer to data. Using a proprietary dataset of three months of actual algorithmic

trades, we find significant increase in out-of-sample prediction accuracy of our microstruc-

ture model over market impact models in existing literature which are based on “macro-level”

features.

The microstructure-based market impact model is motivated by the structure of the

optimal execution policy that we characterize. In particular, the dynamics of a limit order

book can be thought as a double-sided multiclass queueing system with a specific priority

rule. We formulate and solve a problem to optimally buy a block of shares over a short,

predetermined time horizon with limit and market order placement as an optimal fluid control

problem, and characterize the optimal execution policy.

1.2. Dynamic Matching Markets

1.2.1. Residential Real Estate

In Chapter 4 of this thesis, we study a dynamic microstructure model of the residential real

estate market and propose a linear approximation method to tractably analyze its dynamics,

market depth, and buyer/seller bidding strategies. In the residential real estate market,

sellers arrive dynamically over time to put their units up for sale. These assets may differ in

their attributes, including location, acreage, etc., while sellers themselves differ in their own

financial constraints, such as carrying costs. Buyers arrive dynamically over time, differing

in their preferences and delay sensitivity. This market evolves sequentially, and is subject to

other frictions, such as the fact that sellers and buyers can consider only a fraction of the
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entire market at any time. Both phenomena imply sellers and buyers face search friction

and probably will experience delay, which results in inventory of sellers that incurred explicit

carrying costs and inventory of buyers whose utilities are decreased as they spend more time

searching. Their decisions, i.e., how to price, which bid to accept, and whether to wait for

better outcomes in the future, depend on the available inventory, its characteristics, potential

mismatch between buyers and sellers, and their beliefs for potential future arrivals of better

units or less patient buyers, etc., and vice versa.

We formulate a microstructure model of this market, explicitly accounting for its dynamics

and the heterogeneity of buyers, sellers, and inventory. We motivate and characterize an

almost closed-form approximation of the dynamic matching equilibrium that is asymptotically

accurate. We also provide numerical evidence in support of the approximation. We observe in

the equilibrium that delay increases with sellers’ costs and decreases with buyers’ valuations

as a power law, or exponentially in some cases. Besides insights on congestion, our results

also characterize the matching pattern between buyers and sellers when dynamics play a role,

and clarify the effect of attractiveness (meaning having a low cost as a seller or having a high

valuation as a buyer) in several aspects that would be otherwise ambiguous. Finally, if the

market is symmetric with respect to buyers’ and sellers’ primitive parameters - that is, buyers

and sellers arrive at the same rate, incur the same search cost, and have equal bargaining

power - we can establish the existence and uniqueness of equilibrium. Furthermore, we can

provide a series of comparative statics results on how the equilibrium would react to different

kinds of changes in market primitives, e.g., the meeting technology, the prevailing interest

rate, or the participation cost.
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Chapter 2

Queueing Dynamics and State

Space Collapse in Fragmented

Limit Order Book Markets

2.1. Introduction

Motivation. Modern equity markets are highly fragmented. In the United States alone there

are over a dozen exchanges and about forty alternative trading systems where investors may

choose to trade. Market participants, including institutional investors, market makers, and

opportunistic investors, interact within today’s high-frequency, fragmented marketplace with

the use of electronic algorithms that differ across participants and types of trading strategies.

At a high level, they dynamically optimize where, how often, and at what price to trade,

seeking to achieve their own best execution objectives while taking into account short term

differences or opportunities across the various exchanges. Exchanges function as electronic

limit order books, typically operating under a “price-time” priority rule: resting orders are
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prioritized for trade first based on their respective prices, and then, at a given price, according

to their time of arrival, i.e., in first-in-first-out (FIFO) order. The dynamics of an exchange

can be understood as that of a multi-class system of queues, where each queue is associated

with a price level. Job arrivals into these queues correspond to new limit orders posted at

the respective prices. Market orders trigger executions which, in queueing system parlance,

correspond to service completions.

The market, consisting of multiple exchanges, can be viewed as a stochastic network that

evolves as a collection of parallel, multi-class queueing systems. Figure 2.1 depicts one side of

the market at one price level. Heterogeneous, self-interested traders optimize where to route

their limit and market orders, coupling the dynamics of these parallel queues. Studying the

interaction effects between market fragmentation and high-frequency, optimized order routing

decisions is an important issue in understanding market behavior and trade execution, and

is the main focus of this chapter. 1

At a point in time, conditions at the exchanges may differ with respect to the best bid and

offer2 price levels, the market depth at various prices, recent trade activity, etc. Exchanges

publish real-time information for each security that allow investors to know or compute

these quantities. These, in turn, imply differences in a number of execution metrics across

exchanges, such as the probability that an order will be filled, the expected delay until such a

fill, or the adverse selection associated with a fill. Exchanges also differ with respect to their

underlying economics. Under the “make-take” pricing that is common, exchanges typically

1This chapter will adopt the terminology encountered in financial markets, both to help describe this
domain that may be of independent interest to the stochastic modeling community, and to highlight the close
connection between the model, the associated results, and the underlying application.

2The bid is the highest price level at which limit orders to buy stock of a particular security are represented
at an exchange; the offer or the ask is the lowest price level at which limit order to sell stock are represented
at the exchange; the bid price is less than the offered price. The difference between the offer and the bid is
referred to as the spread. Exchanges may differ in their bid and offer price levels, and at any point in time
the highest bid and the lowest offer among all exchanges, comprise the National Best Bid and Offer (NBBO).
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offer a rebate to liquidity providers, i.e., investors that submit limit orders that “make”

markets when their orders get filled; simultaneously, exchanges charge a fee to “takers” of

liquidity that initiate trades using marketable orders that transact against posted limit orders.

Fees range in magnitude, and are typically between −$0.0010 and $0.0030 per share traded.

Since the typical bid-offer spread in a liquid stock is $0.01, the fees and rebates are a significant

fraction of the overall trading costs, and material in optimizing over routing decisions. Most

retail investors do not have access to this information, but essentially all institutional investors

and market makers — that, taken together, account for almost all trading activity — have

access and do make use of this information. They employ so-called “smart order routers” that

take into account real-time state information and formulate an order routing problem that

considers various execution metrics in order to decide whether to place a limit order or trade

immediately with a market order, and accordingly to which venue(s) to direct their order.

Investors are heterogeneous; specifically they differ with respect to the way that they trade

off metrics such as price, rebates, and delays, primarily driven by their intrinsic patience until

they fill their order.

From a stochastic modeling viewpoint, the aforementioned system consists of parallel

multi-class queues (the exchanges) that differ in their economics and anticipated delays.

These subsystems are decentralized. Moreover, service capacity is neither centrally con-

trolled nor dedicated as is typical in production or service systems. Instead, it emerges by

aggregating individual market orders (service completions) directed to different queues while

optimizing heterogeneous trade-offs between economics and operational metrics related to

queueing effects.

Summary of results. This chapter makes three contributions. First, it offers a novel

model for order routing in fragmented markets. It proposes a queueing system that takes

into effect the atomistic limit order placement and market order (service completions) routing
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decisions. This research appears to be one of the first in financial engineering or market

microstructure to study the exchange queueing dynamics and their effect on order routing

decisions. It is also one of the first stochastic modeling studies to focus in this application

domain, and introduce some related queueing considerations. Finally, the self-interested

routing of the service completion process, may be of independent interest; e.g., one possible

application might be in modeling personnel that work in retailing that may strategize over

which customer to help next.

Second, from a methodological viewpoint, we study a deterministic and continuous fluid

model associated with the above system, that takes into account the routing decisions of

atomistic limit order placements and market orders (service completions). The key result is to

characterize the structural form of the equilibrium state of this fluid model and derive a form

of state space collapse (SSC) property.3 The market equilibrium and SSC are not the result of

the price protection mechanism4 imposed in the U.S. equities market. Rather, they arise out

of order routing decisions among exchanges that offer the same price level at different (rebate,

delay) combinations. We characterize this coupling effect that yields a strikingly simplifying

property whereby the behavior of the multi-dimensional market reduces to that of a one-

dimensional system expressed in terms of what we refer to as workload, which is an aggregate

measure of the total available liquidity. In equilibrium, the workload is a sufficient statistic

that summarizes the state of the market: queue lengths can be inferred from it, as can the

3SSC results tend to be pathwise properties, established via an asymptotic analysis after an appropriate
rescaling of time. In our system, arrival rates of limit and market orders vary stochastically over time on a
slower time scale than that of the transient fluid model dynamics. An asymptotic analysis on the slower time
scale of the event rate variations, in the spirit of the so called Pointwise-Stationary-Fluid-Models (PSFM),
would establish such a pathwise SSC property by exploiting the transient fluid model results of this chapter.
Standard machinery for establishing such results either exploit the work by Bramson (1998) or Bassamboo
et al. (2006). Our model seems to satisfy the key requirements that one would need to derive the PSFM and
as a result the sample path version of the SSC property, but we will not pursue this in this chapter.

4Regulation NMS, see http://www.sec.gov/spotlight/regnms.htm.
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routing behavior of investors. The expected delay at each exchange is proportional to the

workload, where the proportionality constant depends on exchange specific parameters. In

equilibrium, if one exchange is experiencing long delays, then the other exchanges will also be

experiencing proportionally long delays. Conversely, if (out of equilibrium) one exchange has

temporarily an atypically small associated delay relative to its cost structure, the new order

flow will quickly take advantage of that delay/cost opportunity and erase that difference.

A simpler version of this effect is the familiar picture we encounter in highway toll booths

or supermarket checkout lines, where people join the shortest queue; in our model choice

behavior is more intricate, and depends on economics, anticipated delays, as well as trader

heterogeneity. For N = 2 exchanges, we use a geometric argument to prove that the fluid

model transient starting from an arbitrary initial condition converges to the equilibrium state

in finite time. We conjecture that a similar argument carries through when there are N > 2

exchanges.

The 1-dimensional workload system seems to offer a tractable model for downstream

analysis of interesting questions that pertain to exchange competition (e.g., how to set fees

or associated volume tiers), policy questions that may affect the routing decision problem

or impose exogenous transaction costs (e.g., a transaction tax), and market design questions

(e.g., whether the co-existence of competing, differentially priced exchanges is beneficial from

a welfare perspective).

Third, we empirically verify the state space collapse property for a sample of TAQ data for

the month of 9/2011 for the 30 securities that comprise the Dow Jones Index. While all being

liquid stocks, these securities differ in their trading volumes, price, volatility, and spread.

Our methodological results suggest certain testable hypotheses, most notably regarding the

effective dimensionality of the market dynamics, the linear relation between the expected

delays across exchanges, and the relation between expected delays and market-wide workload.
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We test the implications of our model in several ways. First, we perform a principal com-

ponent analysis (PCA) to characterize the effective dimension of the joint vector of expected

delays across exchanges. In support of our theoretical prediction that this vector should be

contained in a one-dimensional set, we find that the first principal component explains around

80% of the variability of the expected delays across exchanges, and that the first two princi-

pal components explain 90%. Second, our analysis suggests that the expected delays across

exchanges are linearly related, in fact, proportional to each other. We test this prediction by

running a set of linear cross-sectional regressions over different pairs of exchanges and find

statistically significant support for a linear relationship in all cases. The R2 varies between

76% and 87%. The regression coefficients are also very close to the ones predicted by our

analysis. Similarly good fits are obtained if one were to carry through the analysis separately

for each security. The SSC result suggests that the expected delays in each exchange can be

inferred through the market-wide workload. This prediction can be tested again through a

set of linear regressions between the the workload delay estimate and the delay estimate that

uses information about the state of the exchange (queue length and trading rate). All these

regressions are again statistically significant and are accompanied with high R2 values. We

do not report on these results, instead we pursue a more detailed analysis of the residuals,

i.e., the errors between the workload and exchange-specific delay estimates, and find that the

workload estimate captures on the average 80% of the variation in exchange delays. Over-

all, the empirical analysis provides statistical support for the SSC prediction of our model,

despite the fact that many of the assumptions of our model may be not satisfied in practice.

To our knowledge, this seems to be one of the first empirical verifications of SSC in a real

and complex stochastic processing system.

This section concludes with a literature survey. Section 4.2 sets up the one-sided, top-of-

book model of the limit order book markets and then describes two order routing models:
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one for limit orders and the other for market orders. Our main results on market equilibrium

and state space collapse are given in Section 2.3. In Section 3.6, we show empirical evidence

of state space collapse.

Literature Survey. There are two strands of literature that we briefly review. The first is

on market microstructure and financial engineering, and focuses on the structure and behavior

of limit order books. Apart from the classical market microstructure models, such as those

proposed by Kyle (1985), Glosten and Milgrom (1985) and Glosten (1987), our work is related

to several strands of work. First is the set of papers that report on empirical analyses of the

dynamics of exchanges that operate as electronic limit order books, such as Bouchaud et al.

(2004), Griffiths et al. (2000), and Hollifield et al. (2004) and the review article Parlour and

Seppi (2008). Related to the above work, there is a body of literature that studies the effect

of adverse selection, which factors in order placement decisions; c.f., Keim and Madhavan

(1998), Dufour and Engle (2000), Holthausen et al. (1990), Huberman and Stanzl (2004),

Gatheral (2010), and Sofianos (1995).

Second, there are several papers that study market fragmentation, exchange competition

and their effect on market outcomes dating back to the work of Hamilton (1979), Glosten

(1994, 1998), and, more recently, Bessembinder (2003) and Barclay et al. (2003). A number

of papers, including O’Hara and Ye (2011), Jovanovic and Menkveld (2011), and Degryse

et al. (2011), empirically study the impact of exchange competition on available liquidity

and market efficiency. Biais et al. (2010) and Buti et al. (2011) consider the impact of

differences in tick-size on exchange competition, while in the markets we consider, the tick-

size is uniform. Foucault et al. (2005) describe a theoretical model to understand make-take

pricing when monitoring the market is costly. Malinova and Park (2010) empirically study

the introduction of make-take rebates and fees in a single market. Foucault and Menkveld

(2008) studies the impact of smart order routing on market behavior in a setting with two
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exchanges and focusing, however, on smart order routing decisions by traders submitting

market orders aiming to optimize their execution price (i.e., in a setting where exchanges

operate without a price protection mechanism, like Reg NMS that applies to the U.S. equities

market, that would eliminate the opportunity from such routing decisions); their paper does

not consider the routing decisions of limit orders, and disregards queueing effects. van Kervel

(2012) considers the impact of order routing in a setting where market makers place limit

orders on multiple exchanges simultaneously so as to increase execution probabilities. Their

analysis ignores economic and execution delay differences between venues. Sofianos et al.

(2011) discuss smart order placement decisions in relation to their all-in cost, introducing

similar considerations to the ones explored in this chapter, and Cont and Kukanov (2013)

formulates a smart order routing control problem.

Third, there is a growing body of work that develops models of limit order book dynamics

and studies optimal execution problems. Obizhaeva and Wang (2013), Rosu (2009), Alfonsi

et al. (2010), Parlour (1998), treat the market as one limit order book and use an aggregated

model of market impact and abstracts away queueing effects. The high-frequency behavior of

limit order books can probably be best modeled and understood as that of a queueing system.

This connection has been explored in recent work, starting with Cont et al. (2010); see also

Maglaras and Moallemi (2011), Cont and Larrard (2013), Lakner et al. (2013), Blanchet and

Chen (2013), Stoikov et al. (2011), Guo et al. (2013), and Lakner et al. (2014).

The second strand of literature related to our work is on stochastic modeling and relates

to the asymptotic analysis tools that motivate our method of analysis and the area of queue-

ing systems with strategic consumers. So-called equivalent workload formulations and the

associated idea of state space collapse arise in stochastic network theory in the context of

their approximate Brownian model formulations. This idea has been pioneered by the work

of Harrison (1988) and Harrison (2006). Workload fluid models were introduced in Harri-
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son (1995). The condition that guarantees that parallel server systems exhibit SSC down to

one-dimensional systems was introduced by Harrison and Lopez (1999), and two papers that

establish SSC results with optimized routing of order arrivals are Stolyar (2005) and Chen

et al. (2010). We model market order routing decisions via a reduced form state dependent

service rate process. Mandelbaum and Pats (1995) derive fluid and diffusion approximations

for such queues.

Optimal order placement decisions are made according to an atomistic choice model as

per Mendelson and Whang (1990). In the context of queueing models with pricing and

service competition, there are several papers including those of Luski (1976), Levhari and

Luski (1978), and Li and Lee (1994). and Lederer and Li (1997). Cachon and Harker (2002)

and So (2000) analyze customer choice models that divert from the lowest cost supplier under

M/M/1 system models. Allon and Federgruen (2007) studied the competing supplier game

in a setting where the offered services are partial substitutes. An extensive survey is provided

in Hassin and Haviv (2003).

Most of the above papers look at static rules, where consumers make decisions based on

steady-state expected delays. Chen et al. (2010) considers competing suppliers and arriving

consumers making decisions based on real-time information, like in our model, but where

each supplier has his own dedicated processing capacity; the resulting dynamics are different

and only couple through order arrivals. The nature of the service completion process that

emerges as the aggregation of infinitesimal self-interested contributions appears novel viz the

existing literature. Finally, Plambeck and Ward (2006) study an assemble-to-order system,

that involves a two-sided market fed by product requests on one side and raw materials on the

other, but such systems allow queueing on both sides and the flow of material is controlled

by the system manager.

15



2.2. Model

We propose a stylized model of a fragmented market consisting of N distinct electronic limit

order books simultaneously trading a single underlying asset. The model will take the form

of a system of parallel FIFO queues; new price and delay sensitive jobs arrive over time and

optimize their routing decisions; self-interested agents arrive over time and optimize where to

route their market order that triggers an instantaneous service completion at the respective

queue (i.e., this routing decision happens at the “end of the service time”). Our focus is to

understand the effect of optimized order routing decisions on the interaction between multiple

limit order books. We make a number of simplifying assumptions that aid the tractability of

our model studied in Sections 4.2–2.3.

One-sided market. We model one side of the market, which, without loss of generality,

choose to be the bid side, where investors post limit orders to buy the stock and wait to

execute against market orders directed by sellers.

Top-of-book only. Limit orders are distinguished by their limit price. We only consider

limit orders at each exchange posted at the national best bid price, the highest bid price

available across all exchanges – the “top-of-book.” A profit-maximizing seller would only

choose to trade at the top of book, and, in fact, in the United States, this is enforced de jure

by SEC Regulation NMS.

Fluid model. We consider a deterministic fluid model, or “mean field” model, where the

discrete and stochastic order arrival processes are replaced by continuous and deterministic

analogues, where infinitesimal orders arrive continuously over time at a rate that is equal to

the instantaneous intensity of the underlying stochastic processes. This model can be justified

as an asymptotic limit using the functional strong law of large numbers in settings where the

rates of order arrivals grow large but the size of each individual order is small relative to the
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exchange N
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market order

optimized
limit order flow
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market order flow

Figure 2.1: A one-sided, top-of-book model of multiple limit order books. Limit orders (i.e.,
jobs) arrive to each exchange (modeled by the respective queues) in a) dedicated streams and b)
optimized limit order placement decisions. Liquidity is removed through the arrival of decentral-
ized, self-interested market orders, acting as service completions.

overall order volume over any interval of time. It is well suited for characterizing transient

dynamics in such systems, which is time scale over which queue lengths drain or move from

one configuration to another; this is also the relevant time scale in order routing decisions.

For liquid securities, orders arrive on a time scale measured in milliseconds to seconds, while

queueing delays are of the order of seconds to minutes.

Constant arrival rates. Market activity exhibits strong time-of-day effects, typically over

longer time scales (e.g., minutes to hours) than what we focus on. The analysis of the next

section assumes that arrival rates are constant, and do not depend on time or the state at

the exchanges.

Our model is illustrated in Figure 2.1. For each of the N exchanges, there is a (possibly

empty) queue of resting limit orders at the national best bid price. The vector of queue

lengths at time t is denoted by Q(t) ,
(
Q1(t), Q2(t), . . . , QN (t)

)
∈ RN+ .
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2.2.1. Limit Order Routing

A continuous and deterministic flow of investors arrives to the market with the intent of

posting an infinitesimal limit order. This flow consists of two types:

Dedicated limit order flow arrives at rate λi ≥ 0 and is destined to exchange i, independent

of the state Q(t) at the various exchanges. This flow could represent, for example, investors

that may not have the ability to route orders to all exchanges, or to make real-time order

routing decisions.

Optimized limit order flow arrives at a rate Λ > 0. Each infinitesimal investor observes

the state of the market, Q(t), and optimizes over where to route the associated infinitesimal

order, or, if conditions are unfavorable, not to leave a limit order and to trade instead with

a market order at the offered (other) side of the market; this option is denoted by i = 0.

Once a limit order is posted at a particular exchange, it remains queued until it is executed

against an arriving market order. This disregards order cancellations.Cancellations occur, for

example, when time sensitive orders “deplete” their patience and cancel to cross the spread

and trade with a market order; when investors perceive an increased risk of adverse selection;

etc. This assumption simplifies the order routing decision and leads to a tractable analysis.

Expected delay. All things being equal, an investor would prefer a shorter delay until an

order gets executed. Apart from price risk considerations, this is often due to exogenous

constraints on the speed at which the order needs to get filled; in many instances, a limit

order may be a “child order” that is part of the execution plan of a larger “parent order,”

which itself needs to be filled within a limited time horizon and under some constraints on

its execution trajectory defined by its “strategy.” As will be seen in Section 3.6, the expected

delays vary in the range of 1 to 1000 seconds.
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Given Qi(t) and a market order arrival rate µi > 0, the expected delay in exchange i is

EDi(t) ,
Qi(t)
µi

. (2.1)

The µi’s are assumed to be known, and, indeed, in practice, they can be approximated by

observing recent real-time trading activity at each exchange. When the investor decides

not to place a limit order but instead trade with a market order, the order is immediately

executed and ED0 , 0.

Rebates. Exchanges provide a monetary incentive to add liquidity by providing rebates for

each limit order that is executed. Over time, these have varied by exchange from −$0.0010

(a negative liquidity rebate is, in fact, a fee charged to liquidity providers) to $0.0030 per

share traded. As mentioned earlier, they are significant in magnitude when compared to the

bid-ask spread of a typical liquid stock of $0.01 per share, and represent an important part of

the trading costs that influence the order routing decisions. All things being equal, investors

prefer higher rebates.

We denote the liquidity rebate of exchange i by ri. In the case where the investor chooses

to take liquidity (i = 0), a market order will, relative to a limit order, involve both paying

the bid-offer spread and paying a liquidity-taking fee. The sum of these payments is denoted

by r0 < 0.

In practice, order placement decisions depend on various factors in addition to the ones

described above. For example, an investor may have explicit views on the short-term move-

ment of prices (“short-term alpha”), and these can be relevant for the placement of limit

orders; be sensitive to adverse selection, or the anticipated price movement after the exe-

cution of a limit order; etc. In order to maintain tractability, we will focus on the direct

trade-off between financial benefits and delays. We will denote the financial benefit per share
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traded associated with exchange i by r̃i and refer to it as the effective rebate; this includes

the direct exchange rebate but possibly incorporates other financial considerations. All else

being equal, a higher effective rebate is preferable.

We denote the opportunity set of effective rebate and delay pairs encountered by an

investor arriving at time t by E(t) ,
{(
r̃i,EDi(t)) : 0 ≤ i ≤ N

}
. Investors are heterogeneous

with respect to their way of trading off rebate against delay. Each investor is characterized

by its type, denoted by γ ≥ 0, that is assumed to be an independent identically distributed

(i.i.d.) draw from a cumulative distribution function F (·), that is differentiable and has a

continuous density function, and selects a routing decision i∗(γ) so as to maximize his “utility”

according to the rule 5

i∗(γ) ∈ argmax
i∈{0,1,...,N}

γr̃i − EDi(t). (2.2)

In other words, γ is a trade-off coefficient between price and delay, with units of time per

dollar, that characterizes the type of the heterogeneous investors. Given the range of rebates

and expected delays, this trade-off coefficient should roughly be in the range of 1 to 104

seconds per $.01.

An equivalent formulation, which is commonly used in the economic analysis of queues, is

to convert the delay into a monetary cost by multiplying it with a delay sensitivity parameter.

Yet another alternative interpretation would assume that investors differ in terms of their

expected delay tolerance, i.e., the maximum length of time they are willing to wait for an

order to be filled. Overall, while (2.2) is a simplified criterion, it captures the fundamental

trade-off between time and money, and it will ultimately yield structural results that are

consistent with our empirical analysis.

5The criterion (2.2) is “static.” In practice, order routing decisions are “dynamic,” i.e., done and updated
over the lifetime of the order in the market.

20



2.2.2. Market Order Routing

Investors arrive to the market continuously at an aggregate rate µ > 0, seeking to sell an

infinitesimal quantity of stock instantaneously via a market order. For an investor who arrives

to the market at time t when the queue length vector is Q(t), the routing decision is restricted

to the set of exchanges {i : Qi(t) > 0}. One important factor influencing this decision is

that each exchange charges a fee for taking liquidity, and these fees vary across exchanges.

Typically the fee at an exchange is slightly higher than the rebate, and the exchange pockets

the difference as a profit. Fee and rebate data is given in Section 3.6. For the purposes of this

discussion, we assume that the fee on exchange i is equal to the rebate ri. Since a market

order executes without any delay, it is natural to route it to exchange i∗ so as to minimize

the fee paid:

i∗ ∈ argmin
i∈{1,...,N}

{ri : Qi(t) > 0}. (2.3)

In practice, routing decisions may differ from those predicted by fee minimization for

a number of reasons: (a) Real order sizes are not infinitesimal, and to trade a significant

quantity one may need to split an order across many exchanges. (b) If an investor observes

that liquidity is available at an exchange, due to latency in receiving market data information

or in transmitting the market order to the exchange, that liquidity may no longer be present

by the time the investor’s market order reaches the exchange. This is accentuated if there

are only a few limit orders posted at an exchange. Both (a) and (b) create a preference for

longer queue lengths. (c) If an exchange has very little available liquidity, “clearing” the

queue of resting limit orders is likely to result in greater price impact. (d) There maybe other

considerations involved in the order routing decision, such as different economic incentives

between the agent making the order routing decision and the end investor. All of these effects

point to a more nuanced decision process than the fee minimization suggested by (2.3), which
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we will capture through a reduced form “attraction” model that is often used in marketing to

capture consumer choice behavior. Specifically, given Q(t), the instantaneous rate at which

market orders to sell arrive at exchange i is denoted by µi(Q(t)) given by

µi(Q(t)) , µ fi(Qi(t))∑N
j=1 fj(Qj(t))

. (2.4)

Equation (2.4) specifies that the fraction of the total order flow µ that goes to exchange i

is proportional to the attraction function fi(Qi(t))., with fi(0) = 0, i.e., market orders will

not route to an exchange i with no liquidity. The discussion above suggests that fi(·) is an

increasing function of the queue length Qi, and a decreasing function of the size of the fee

charged by the exchange.

In the remainder of this chapter, we use a basic linear model of attraction that specifies

fi(Qi) , βiQi, (2.5)

where βi > 0 is a coefficient that captures the attraction of exchange i per unit of available

liquidity. We posit (but our model does not require) that the βi’s be ordered inversely to the

fees of the corresponding exchanges. We will revisit this empirically in Section 3.6.

2.2.3. Fluid Model

The deterministic fluid model equations are the following: for each exchange i,

Qi(t) = Qi(0) + λit+ Λ
∫ t

0
χi
(
Q(s)

)
ds−

∫ t

0
µi
(
Q(s)

)
ds. (2.6)
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The quantity χi
(
Q(·)

)
denotes the instantaneous fraction of arriving limit orders that are

placed into exchange i, defined as

χi
(
Q(t)

)
,
∫
Gi
(
Q(t)

) dF (γ), (2.7)

where Gi
(
Q(t)

)
denotes the set of optimizing limit order investor types γ that would prefer

exchange i, i.e., the set of all γ ≥ 0 with γr̃i − EDi(t) ≥ γr̃j − EDj(t) for all j /∈ {0, i}, and

γr̃i − EDi(t) ≥ γr̃0, given the expected delays EDj(t) = Qj(t)/µj
(
Q(t)

)
, for j = 1, . . . , N ,

implied6 by Q(t).

2.3. Equilibrium Analysis

Suppose that at some point in time a high rebate exchange has a very short expected delay

relative to other exchanges. Then, the routing logic in (2.2) will direct many arriving limit

orders towards this exchange, increasing delays and erasing its relative advantage viz the

other exchanges. This type of argument suggests that queue lengths will evolve over time

and eventually converge into some equilibrium configuration where no exchange seems to

have a relative advantage with respect to its rebate/delay trade-off taking into account the

investors’ heterogeneous preferences.

Expressing (2.6) in differential form, we have that Q̇i(t) = λi + Λχi
(
Q(t)

)
− µi

(
Q(t)

)
, for

i = 1, . . . , N . Denoting such an equilibrium queue length vector by Q∗, we have that:

λi + Λχi(Q∗) = µi(Q∗), i = 1, . . . , N. (2.8)

6Here, we employ a “snapshot” estimate of expected delays that is consistent with our definition (2.1)
and is often used in practice. This disregards the fact that Q(t) and, as a result µi(Q(t)), may change over
time, which would naturally affect the delay estimate. In what follows, we will mainly be concerned with the
behavior of the system in equilibrium, where Q(t) is constant and this distinction is not relevant.
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These equations are coupled through the market order rates µi(Q∗) and the aggregated

routing decisions given by χi(Q∗) that take into account investor heterogeneity.

2.3.1. Equilibrium Definition

For each possible price-delay trade-off coefficient γ ≥ 0, πi(γ) denotes the fraction of type γ

investors who post limit orders to an exchange if i ∈ {1, . . . , N}, or choose to use a market

order if i = 0. We require that the routing decision vector π(γ) ,
(
π0(γ), π1(γ), . . . , πN (γ)

)
satisfy

πi(γ) ≥ 0, ∀ i ∈ {0, 1, . . . , N};
N∑
i=0

πi(γ) = 1. (2.9)

Denote by π ,
(
πi(γ)

)
γ∈R+

a set of routing decisions across all investor types, and let P

denote the set of all π where π(γ) is feasible for (2.9), for all γ ≥ 0, and where each πi(·)

is a measurable function over R+. We have suppressed the dependence of π on the rate

parameters (λ,Λ, µ) and the queue length vector. We propose the following definition of

equilibrium:

Definition 1 (Equilibrium). An equilibrium (π∗, Q∗) ∈ P × RN+ is a set of routing decisions

and queue lengths that satisfies:

(i) Individual Rationality: For all γ ≥ 0, the routing decision π∗(γ) for type γ investors is

an optimal solution for

maximize
π(γ)

π0(γ) γr̃0 +
N∑
i=1

πi(γ)
(
γr̃i −

Q∗i
µi(Q∗)

)

subject to πi(γ) ≥ 0, ∀ i ∈ {0, 1, . . . , N};
N∑
i=0

πi(γ) = 1.
(2.10)

(ii) Flow Balance: For each exchange i ∈ {1, . . . , N}, the total flow of arriving market orders
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equals the flow of arriving limit orders, i.e.,

λi + Λ
∫ ∞

0
π∗i (γ) dF (γ) = µi(Q∗). (2.11)

Assuming that queue lengths are constant and given by Q∗, the expected delay on each

exchange i is given by Q∗i /µi(Q∗). The individual rationality condition (i) ensures that limit

orders are routed in a way that is consistent with (2.2). The flow balance condition, (ii),

ensures that inflows and outflows at each exchange are balanced and that the queue length

vectorQ∗ remains stationary. Definition 4 is consistent7 with the informal system of equations

(2.8) since χi(Q∗) =
∫∞

0 π∗i (γ) dF (γ).

2.3.2. State Space Collapse

Given a vector of queue lengths Q, define the workload to be the scaled sum of queue lengths

given by W ,
∑N
i=1 βiQi. The workload captures the aggregate market depth across all

exchanges, weighted by the attractiveness of each exchange. Orders queued at attractive ex-

changes (high βi, typically corresponding to low r̃i) are weighted more since these orders have

greater priority to get filled first, and, therefore, more greatly impact the delays experienced

by arriving limit orders at all exchanges. In fact, from (2.1) and (2.4), the expected delay on

exchange i is given by

EDi = W

µβi
. (2.12)

That is, the 1-dimensional workload is sufficient to determine delays at every exchange.

Theorem 1 below establishes something stronger: in equilibrium, the queue length vector Q∗,

7Strictly speaking, the informal definition (2.8) may not deal properly with situations where agents are
indifferent between multiple routing decisions, while the formal Definition 4 handles this correctly. Under
mild technical conditions we will adopt shortly (Assumption 1 and the hypothesis of Theorem 3) however, the
mass of such agents is zero and the two definitions coincide.
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which is the state of the N -dimensional system can be inferred from the equilibrium workload

W ∗. This is a notion of state space collapse.

Theorem 1 (State Space Collapse). Suppose that the pair (π∗,W ∗) ∈ P × R+ satisfy

(i) π∗ is an optimal solution for

maximize
π

∫ ∞
0

{
π0(γ) γr̃0 +

N∑
i=1

πi(γ)
(
γr̃i −

W ∗

µβi

)}
dF (γ)

subject to πi(γ) ≥ 0, ∀ i ∈ {0, 1, . . . , N}, ∀ γ ≥ 0,
N∑
i=0

πi(γ) = 1, ∀ γ ≥ 0.

(2.13)

(ii) π∗ satisfies
N∑
i=1

(
λi + Λ

∫ ∞
0

π∗i (γ) dF (γ)
)

= µ. (2.14)

Then, (π∗, Q∗) is an equilibrium, where for each exchange i 6= 0, Q∗ is defined by

Q∗i ,
(
λi + Λ

∫ ∞
0

π∗i (γ) dF (γ)
)
W ∗

µβi
. (2.15)

Conversely, if (π∗, Q∗) is an equilibrium, define W ∗ , β>Q∗. Then, (π∗,W ∗) satisfy

(i)–(ii).

Proof. Suppose that (π∗,W ∗) satisfy (i)–(ii). For Q∗ given by (2.15), we have that

β>Q∗ =
∑
i 6=0

W ∗

µ

(
λi + Λ

∫ ∞
0

π∗i (γ) dF (γ)
)

= W ∗.

Thus,
W ∗

µβi
= β>Q∗

µβi
= Q∗i
µi(Q∗)

. (2.16)
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Combining this with the fact that optimization problem in (i) is separable with respect to

γ (i.e., it can be optimized over each π(γ) separately), it is clear that (π∗, Q∗) satisfies the

individual rationality condition (2.10). Further, rewriting (2.15),

λi + Λ
∫ ∞

0
π∗i (γ) dF (γ) = µ

βiQ
∗
i

W ∗
= µ

βiQ
∗
i

β>Q∗
= µi(Q∗).

Thus, (π∗, Q∗) satisfies flow balance condition (2.11), and (π∗, Q∗) is an equilibrium.

For the converse, suppose that (π∗, Q∗) is an equilibrium and W ∗ , β>Q∗. Then,

W ∗

µβi
= β>Q∗

µβi
= Q∗i
µi(Q∗)

.

Given that (π∗, Q∗) satisfies (2.10), this implies that (π∗,W ∗) satisfy (i). Further, if we sum

up all N equations in (2.11), it is clear that (π∗,W ∗) satisfy (ii). �

Condition (i) of Theorem 1 implies individual rationality when faced with delays implied

by the workload W ∗, cf. (2.10) and (2.12). Condition (ii), is a market-wide flow balance equa-

tion. Given a pair (π∗,W ∗) satisfying (i) and (ii), Q∗ is determined as a function of workload

W ∗ through the lifting map (2.15) that distributes the workload across exchanges in a way

that takes into account rebates, delays, and investor heterogeneity through the distribution

F (·) of the trade-off coefficient γ. The lifting map corresponds to Little’s Law: each queue

length is equal to the corresponding aggregate arrival rate (dedicated and optimized) times

the equilibrium expected delay.

2.3.3. Equilibrium Characterization

Theorem 1 allows us to characterize the equilibrium behavior of N decentralized limit order

books through their 1-dimensional workload. The following assumption will turn out to be
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sufficient for the existence of an equilibrium:

Assumption 1. Assume that

(i) The cumulative distribution function F (·) over the price-delay trade-off coefficients γ

is non-atomic with a continuous and strictly positive density on the non-negative reals.

(ii) The arrival rates (λ,Λ, µ) satisfy
∑N
i=1 λi < µ < Λ +

∑N
i=1 λi.

(iii) Each exchange i ∈ {1, . . . , N} satisfies r̃i > r̃0.

The dedicated flow
∑N
i=1 λi is not delay sensitive. Condition (ii) ensures that the queueing

system is stable (
∑N
i=1 λi < µ) and leads to a non-trivial equilibrium where queue lengths

are non-zero (µ < Λ +
∑N
i=1 λi). Condition (iii) says that if delays are zero, then the effective

rebate of a limit order is always preferable to the cost of crossing the spread and paying a fee

to trade with a market order, r̃0. Returning to condition (ii), given that µ < Λ+
∑N
i=1 λi, one

would expect non-zero queue lengths to build up in the system to discourage some optimizing

investors from placing a limit order and instead trade with a market order. Intuitively, one

expects this to be the most impatient investors, i.e., those of type γ ≤ γ0, for some γ0, chosen

to satisfy (2.14), i.e.,

Λ
(
1− F (γ0)

)
+

N∑
i=1

λi = µ. (2.17)

Under conditions (i)–(ii) of Assumption 1, γ0 satisfying (2.17) is uniquely determined by

γ0 = F−1
(

1− µ−
∑N
i=1 λi

Λ

)
. (2.18)

In order for all types γ ≤ γ0 not to submit limit orders, the routing criterion (2.2) requires

that

max
i 6=0

γ(r̃i − r̃0)− W ∗

µβi
≤ 0, (2.19)
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for all γ ≤ γ0. Under Assumption 1(iii), the left side of (2.19) is increasing in γ. Hence,

(2.19) is satisfied if we ensure that type γ0 investors are indifferent between market orders

and limit orders.

Lemma 1. Under Assumption 1, suppose that (π∗,W ∗) is an equilibrium and define γ0 by

(2.18). Then,

max
i 6=0

γ0(r̃i − r̃0)− W ∗

µβi
= 0. (2.20)

Further, suppose that for a given W ∗, (2.20) holds, and for each exchange i, define

κi , βi(r̃i − r̃0). (2.21)

Then, an exchange i achieves the maximum in (2.20) if and only if i ∈ argmaxj 6=0 κj.

(The proof of the Lemma is provided in Appendix.) The quantity κi is related to the

desirability of exchange i from the perspective of a limit order investor; κi is high when βi

is high (resulting in low delay) or when r̃i is high (resulting in a high rebate). Lemma 1

suggests that maximizing κi characterizes the behavior of type γ0 (the marginal) investors

that are indifferent between choosing between a market order and a limit order. We refer

to exchanges that achieve this maximum as marginal exchanges. Thus, given a marginal

exchange ī ∈ argmaxj 6=0 κj , according to Lemma 1,

γ0(r̃ī − r̃0)− W ∗

µβī
= 0,

and therefore the equilibrium workload is W ∗ = γ0µκī. Theorem 2, whose proof can be found

in the Appendix, summarizes the discussion above and characterizes the equilibrium.

Theorem 2 (Equilibrium Characterization). Under Assumption 1, define γ0 by (2.18). Suppose
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that the pair (π∗,W ∗) ∈ P × R+ satisfy

W ∗ , γ0µmax
i 6=0

κi, (2.22)

and
π∗0(γ) = 1, for all γ < γ0,

π∗i (γ0) = 0, for all i /∈ A∗(γ0) ∪ {0},

π∗i (γ) = 0, for all γ > γ0, i /∈ A∗(γ),

(2.23)

where A∗(γ) , argmaxi 6=0 γr̃i − W ∗/µβi. Then, (π∗,W ∗) is an equilibrium, i.e., satisfies

(2.13)-(2.14).

Conversely, suppose that (π∗,W ∗) ∈ P×R+ is an equilibrium, i.e., satisfies (2.13)-(2.14).

Then, W ∗ must satisfy (2.22) and π∗ must satisfy (2.23), except possibly for γ in a set of

F -measure zero.

This characterization of the workload process and its dependence on model parameters

can be used as a point of departure to analyze market structure and market design issues,

and competition and welfare implications of the presence of many differentiated exchanges.

Theorem 2 implies that the equilibrium workload is unique, and that equilibrium routing

policies are unique up to ties.

2.3.4. Convergence of Fluid Model to Equilibrium Configuration

We first establish uniqueness of the equilibrium queue length vector Q∗ in the next Theorem

(its proof is available in the Appendix), under the following mild assumption:

Assumption 2. Assume that the effective rebates {r̃i, i 6= 0} are distinct, and, without loss

of generality, that the exchanges are labeled in an increasing order, i.e., r̃0 < r̃1 < · · · < r̃N .
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Theorem 3 (Uniqueness of Equilibria). Under Assumptions 1 and 2, there is a unique equi-

librium queue length vector Q∗.

Next we establish that the fluid model queue length vector Q(t) converges to the unique

equilibrium vector Q∗ as t→∞. As in Section 2.2.3, define Gi
(
W (t)

)
⊂ R+ to be the set of

optimizing limit order investor types γ that would prefer exchange i given a workload level8

of W (t), i.e., the set of all γ ≥ 0 with

γr̃i −
W (t)
µβi

≥ γr̃j −
W (t)
µβj

, for all j /∈ {0, i}; γr̃i −
W (t)
µβi

≥ γr̃0,

and the instantaneous fraction of arriving limit orders that are placed into exchange i as

χi
(
W (t)

)
,
∫
Gi
(
W (t)

) dF (γ). (2.24)

Under Assumptions 1 and 2, (2.24) can be rewritten as

χi(W ) =


F

(
WΓ+

i

µ

)
− F

(
WΓ−i
µ

)
if Γ+

i ≥ Γ−i ,

0 otherwise,
(2.25)

where the constants Γ+
i ,Γ

−
i are defined by

Γ+
i ,


min
j>i

β−1
j − β

−1
i

r̃j − r̃i
if i < N ,

∞ if i = N ,
Γ−i , max

{
β−1
i

r̃i − r̃0
, max

0<j<i

β−1
i − β

−1
j

r̃i − r̃j

}
.

8Note that in Section 2.2.3, Gi(·) and χi(·) were defined to be functions of the vector of all queue lengths.
However, since they depend on the queue length of each exchange only through the expected delay and
therefore the workload, we will abuse notation and define these as functions of workload here.
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Assumption 3. Suppose that, for all W > 0,

N∑
i=1

βi
dχi(W )
dW

< 0. (2.26)

Assumption 3 is essentially a local stability drift condition9 that is easy to verify, and

takes the form of a tail condition on F (·). Specifically, using (2.25), we have that:

N∑
i=1

βi
dχi(W )
dW

=
N∑
i=1

(
Γ+
i

µ
f

(
WΓ+

i

µ

)
− Γ−i

µ
f

(
WΓ−i
µ

))
I{Γ+

i ≥Γ−i }, (2.27)

where f is the density associated with F . A sufficient condition for Assumption 3 is that

tΓ+
i f(tΓ+

i ) < tΓ−i f(tΓ−i ), (2.28)

for all t > 0 and 1 ≤ i ≤ N such that Γ+
i > Γ−i . This expression can be easily verified in a

particular problem instance, and it is satisfied for sufficiently broad class of distributions.

Definition 2 (Elastic Distribution). The cumulative distribution function F is elastic if γf(γ)

is a strictly decreasing function over γ ≥ 0.

Examining (2.28), it is clear that elastic distributions will always satisfy Assumption 3.

As an example, note that decreasing generalized failure rate distributions; see, e.g., Lariviere

(2006), are included in the class of elastic distributions.

9The workload process evolves according to the differential equation Ẇ (t) =
∑N

i=1 βiQ̇i(t) =
∑N

i=1 βiλi +
Λ
∑N

i=1 βiχi
(
W (t)

)
−
∑N

i=1 βiµi
(
Q(t)

)
, which is itself a function of W (t). In equilibrium, where W (t) =

W ∗, we have Ẇ (t) = 0, i.e., 0 =
∑N

i=1 βiλi + Λ
∑N

i=1 βiχi
(
W ∗
)
−
∑N

i=1 βiµi
(
Q∗
)
. Now, consider a small

deviation from equilibrium of the form Q(t) = (1 + ε)Q∗ where ε is a small constant. Using the fact that
µi
(
(1 + ε)Q∗

)
= µi(Q∗), the expression for Ẇ (t), and a Taylor approximation for small ε we get that Ẇ (t) =∑N

i=1 βiλi + Λ
∑N

i=1 βiχi
(
(1 + ε)W ∗

)
−
∑N

i=1 βiµi
(
Q∗
)
≈ ΛεW ∗

∑N

i=1 βi
dχi

(
W∗
)

dW
. Assumption 3 guarantees

that Ẇ (t) < 0 when ε > 0 and that Ẇ (t) > 0 when ε < 0. That is, it is necessary condition for local stability
around W ∗. Assumption 3 extends that condition to the entire state space.
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In general, even under Assumptions 1 and 2, the queue lengths Q(t) need not converge

to the unique equilibrium Q∗ — it is easy to construct numerical counterexamples. However,

the following theorem illustrates that the additional condition of Assumption 3 is sufficient

to guarantee convergence to equilibrium when there are N = 2 exchanges:

Theorem 4. Suppose that there are N = 2 exchanges. Under Assumptions 1–3, given ar-

bitrary initial conditions Q(0) ∈ RN+ , the queue lengths converge to the unique equilibrium

Q∗.

(The proof of Theorem 4 is available in the Appendix.) For N > 2, condition (2.26)

is necessary for local stability of the equilibrium Q∗. We conjecture that, as for N = 2,

Assumption 3 is, in fact, also a sufficient condition when N > 2.

The state-space collapse result and its functional form hinge on the formulation of the

order routing models described in Sections 2.2.1 and 2.2.2. The primary drivers of the

dimension reduction are: (a) the desirability to place an order at a given queue is decreasing

in its anticipated delay, and (b) that the attractiveness of an exchange for an incoming marker

order is increasing in its queue length. Both drivers seem plausible even under different models

of order routing optimization logic on both sides of the market, and would typically lead to

some form of state space collapse: long queues would discourage new orders from joining while

attracting more service completions, thus reducing queue size; small queues would attract

more arrivals but fewer service completions, thus increasing queue size. For example, the

same rationale holds if we replace the market order routing model (2.4) with a model of the

form µi(Q) , Mi + fi(Q), for each exchange i. Here, each Mi ≥ 0 represents “dedicated”

market order flow to exchange i that does not react to the state of the system, while the

fi(Q) term captures optimized order flow. The detailed form of the equilibrium of such a

system would not coincide with the one derived here, however, at a high level, one would
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expect similar results under different modeling assumptions that satisfy (a)–(b).

2.3.5. Pointwise-Stationary-Fluid-Model

In the preceding analysis we have assumed that the event rate parameters (Λ, λ, µ) are con-

stant over time. In such a setting, our results show that the queue length configuration

converges into an equilibrium state, which is a function of the underlying rate parameters.

A quick look at the data will show that the underlying model parameters exhibit signifi-

cant variation over time. This could result from the superposition of different institutional

(parent) orders that enter and exit the market over time, or switch execution strategies and

aggression. Such changes in the underlying order flow will translate into changes in the arrival

rates of limit and market orders into the order book, which, in turn, will affect the resulting

equilibrium state. Table 2.1 studies this issues for a sample of liquid stocks that comprise the

Dow Jones Industrial Average (DJIA). Specifically, for each τ -minute interval, we compute

the trading rate µt and then test how often was µt+1 within the confidence interval µt ± kσt

for k = 2, 3, and assuming that the arrival rate of market orders is Poisson with rate µt we set

σt = √µt. The data suggests that the trading rate exhibits significant fluctuations after 5 or

10 minutes out, but that is fairly consistent over the span of 1 to 3 minutes. Similar findings

apply for the rates of limit order submissions. To interpret these results it is instructive to

recognize that the average queueing delays across liquid stocks (we will study later on the

30 stocks that comprise the DJIA) is of the order of 1 minute, as illustrated by the sum-

mary statistics in Table 2.2.Queueing delays are of the order of magnitude of the queueing

transients, so the parameters may be assumed to be constant in the time scale of the fluid

transients but exhibit fluctuations over longer time horizons.

Based on the above one would suggest an analysis over two time scales. The fast time

scale, which is is the nominal clock of the system at which orders arrive at the market, and
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% obs. in ±2σt % obs. in ±3σt % obs. outside ±3σt

1 min 63.33% 79.23% 20.77%
3 min 32.56% 50.39% 49.61%
5 min 27.27% 35.06% 64.94%
10 min 13.16% 31.58% 68.42%

Table 2.1

Mean Std. dev. 1st quantile 3rd quantile

1.0884 0.8223 0.5510 1.3756

Table 2.2: Summary statistics of expected delay across the 30 names that comprise the DJIA
and across the 6 major exchanges listed in Table 2.4. Expected delay measurement is outlined as
(2.29) in Section 2.4.1.

over which model parameters appear to be constant. And a slower time scale over which

parameters fluctuate stochastically. Consider a market where event rates are proportional to

some constant n (e.g., the number of trades per minute). Moreover assume that

µn(t) = nµ(t/an), λn(t) = nλ(t/an) and Λn(t) = nΛ(t/an)

where an → ∞ and an/n → 0 as n → ∞. So, rates grow large, and fluctuate according to

µ(·), λ(·),Λ(·), but these fluctuations occur in slower time scale. These rate processes are

themselves stochastic with sufficient continuity to allow for a tractable analysis. Let Qn(t)

denote the queue length process associated with the market of speed n. An n grows large,

an argument based on the results by Kurtz (1977/78) would establish that the queue length

process, when rescaled by n, Qn(t)/n converges to a deterministic limit that satisfies the fluid

model equations we have analyzed thus far, and over which the model primitives (µ, λ,Λ)

appear constant. If one where to study the same model on the slower time scale over which

rates fluctuate, by studying the queue length process over stretches of time proportional to
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an one would see that the queue length process seems to always be equal to the equilibrium

state that would correspond to the triple (µ(t), λ(t),Λ(t)). The resulting model is a so-called

“Pointwise-Stationary-Fluid-Model,” which is stochastic but whose queue length configura-

tion appears (on the slower time scale) to be always in its equilibrium state. In that sense,

the SSC property established earlier can be shown to be a “pathwise” property as opposed to

a point in time result. (We will empirically explore this pathwise result in the next section.)

We will not fully flush out the requisite analysis for establishing the above assertions, as this

would be lengthy and would not add to the emphasis of this chapter. Standard machinery

for establishing such results either exploit the work by Bramson (1998) or Bassamboo et al.

(2006). Our model seems to satisfy the key requirements that one would need to derive the

PSFM and as a result the sample path version of the SSC property, but we will not pursue

this in this chapter. An example can also be found in Besbes and Maglaras (2009).

2.4. Empirical Results

Motivated by our analysis and the fact that for liquid securities the markets experience high

volumes of flow per unit time, one would expect the market to behave as if it is near its

equilibrium state most of the time, which would manifest itself as a strong coupling between

the quote depths and dynamics of competing exchanges. More precisely, the expected delay

trajectories across exchanges and over time should exhibit strong linear relationships, and

behave like a lower dimensional process. Moreover, the workload process (a measure of

weighted aggregate depth) should offer accurate estimates of delays and queue depths at

different exchanges, as stated in (2.12). The precise form of these predictions is, of course,

predicated on the structure of (2.2) and (2.4)–(2.5) and the deterministic and stationary

nature of the model. The sample of market data analyzed below captures more complex and
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diverse trading behaviors, and is both stochastic and non-stationary. The statistical tests

do not rely on the simplifying modeling assumptions, and the study over time will examine

whether SSC holds in a pathwise sense; cf., footnote 3 in the introduction.

2.4.1. Overview of the Data Set

We use trade and quote (TAQ) data, which consists of sequences of quotes (price and total

available size, expressed in number of shares, at the best bid and offer on each exchange) and

trades (price and size of all market transactions, again expressed in number of shares), with

millisecond timestamps. Our trade and quote data is from the nationally consolidated data

feeds (i.e., the CTS, CQS, UTDF, and UQDF). We treat the depth at the bid or the ask at

each exchange as if it is made up of individual infinitesimal orders, and we ignore the fact

that the quantity actually arises from a collection of discrete, non-infinitesimal orders.

We consider the 30 component stocks of the Dow Jones Industrial Average over the 21

trading days in the month of September 2011. A list of the stocks and some basic descriptive

statistics are given in Table 2.3.

We restrict attention to theN = 6 most liquid U.S. equity exchanges: NASDAQ, NYSE,10

ARCA, EDGX, BATS, and EDGA. Smaller, regional exchanges were excluded as they account

for a small fraction of the composite daily volume and are often not quoting at the NBBO

level. The associated fees and rebates during the observation period of September 2011 are

given in Table 2.4.

Throughout the observation period of our data set, the exchange fees and rebates were

constant, and similarly we will assume in our subsequent analysis that the effective rebates

{r̃i} and attraction coefficients {βi} for each stock were also constant throughout.

10Note that the NASDAQ listed stocks in our sample (CSCO, INTC, MSFT) do not trade on the NYSE,
hence for these stocks only N = 5 exchanges were considered.
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Symbol Price Average
Bid-Ask
Spread

Volatility
Average
Daily

VolumeLow High
($) ($) ($) (daily) (shares, ×106)

Alcoa AA 9.56 12.88 0.010 2.2% 27.8
American Express AXP 44.87 50.53 0.014 1.9% 8.6

Boeing BA 57.53 67.73 0.017 1.8% 5.9
Bank of America BAC 6.00 8.18 0.010 3.0% 258.8

Caterpillar CAT 72.60 92.83 0.029 2.3% 11.0
Cisco CSCO 14.96 16.84 0.010 1.7% 64.5

Chevron CVX 88.56 100.58 0.018 1.7% 11.1
DuPont DD 39.94 48.86 0.011 1.7% 10.2
Disney DIS 29.05 34.33 0.010 1.6% 13.3

General Electric GE 14.72 16.45 0.010 1.9% 84.6
Home Depot HD 31.08 35.33 0.010 1.6% 13.4

Hewlett-Packard HPQ 21.50 26.46 0.010 2.2% 32.5
IBM IBM 158.76 180.91 0.060 1.5% 6.6
Intel INTC 19.16 22.98 0.010 1.5% 63.6

Johnson & Johnson JNJ 61.00 66.14 0.011 1.2% 12.6
JPMorgan JPM 28.53 37.82 0.010 2.2% 49.1

Kraft KFT 32.70 35.52 0.010 1.1% 10.9
Coca-Cola KO 66.62 71.77 0.011 1.1% 12.3
McDonalds MCD 83.65 91.09 0.014 1.2% 7.9

3M MMM 71.71 83.95 0.018 1.6% 5.5
Merck MRK 30.71 33.49 0.010 1.3% 17.6

Microsoft MSFT 24.60 27.50 0.010 1.5% 61.0
Pfizer PFE 17.30 19.15 0.010 1.5% 47.7

Procter & Gamble PG 60.30 64.70 0.011 1.0% 11.2
AT&T T 27.29 29.18 0.010 1.2% 37.6

Travelers TRV 46.64 51.54 0.013 1.6% 4.8
United Tech UTX 67.32 77.58 0.018 1.7% 6.2

Verizon VZ 34.65 37.39 0.010 1.2% 18.4
Wal-Mart WMT 49.94 53.55 0.010 1.1% 13.1

Exxon Mobil XOM 67.93 74.98 0.011 1.6% 26.2

Table 2.3: Descriptive statistics for the 30 stocks over the 21 trading days of September 2011.
The average bid-ask spread is a time average computed from our TAQ data set. The volatility is
an average of daily volatilities over Sept 2011. All the other statistics were retrieved from Yahoo
Finance.
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Exchange Code Rebate Fee
($ per share, ×10−4) ($ per share, ×10−4)

BATS Z 27.0 28.0
DirectEdge X (EDGX) K 23.0 30.0

NYSE ARCA P 21.0† 30.0
NASDAQ OMX T 20.0† 30.0

NYSE N 17.0 21.0
DirectEdge A (EDGA) J 5.0 6.0

Table 2.4: Rebates and fees of the 6 major U.S. stock exchanges during the September 2011
period, per share traded. †Rebates on NASDAQ and ARCA are subject to “tiering”: higher
rebates than the ones quoted may be available to traders that contribute significant volume to
the respective exchange.

In contrast, the arrival rates (λ,Λ, µ) are time-varying. We will estimate these rates for

each stock by averaging the event activity over one hour time intervals between 9:45am and

3:45pm (i.e., excluding the opening 15 minutes and the closing 15 minutes).11 This yields

T = 126 time slots over the 21 day horizon of our data set. For each time slot t, exchange

i, stock j, and side s ∈ {BID,ASK}, we estimated the corresponding queue length as the

average number of shares available at the NBBO, denote this by Q(s,j)
i (t). Similarly, denote

by µ(s,j)
i (t) the arrival rate of market orders to side s on exchange i for security j, in time slot

t. The rates µs,ji (t) are estimated by classifying trades to be bid or ask side of the market,

by matching trade time stamps with the prevailing quote at the same time, i.e., using a zero

time shift in the context of the well known Lee-Ready algorithm. Given these parameters,

we compute the following measure of expected delay

ED(s,j)
i (t) , Q

(s,j)
i (t)

µ
(s,j)
i (t)

. (2.29)

The above expression disregards the effect of order cancellations from the bid and ask queues,

11The time intervals should be sufficiently long so as to get reliable estimates of the event rates, and also
long when compared to the event inter-arrival times, so that one could expect that the transient dynamics of
the market due to changes in these rates settle down during these time intervals.
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as well as the non-infinitesimal nature of the order flow. It serves as a practical proxy for

expected delay that is commonly used in trading systems. For each stock and each exchange,

Figure 2.2(a) shows the expected delay, averaged across time slots and the bid and ask sides of

the market. Delays range from 5 seconds to about 5 minutes across the 30 stocks we studied,

and we observe 2x to 3x variation in the delay estimates at different exchanges for the same

security. Similarly, for each stock and each exchange, Figure 2.2(b) shows the average queue

lengths, or, the number of shares available at the NBBO, averaged across time slots and

the bid and ask sides of the market. Queue lengths range from 10 to 100,000 shares across

securities, and exhibit about a 10x variation in the queue sizes across exchanges for the same

security. Deeper queues correspond to longer delays.

Principle component analysis (PCA). The state space collapse result of our model pre-

dicts that delays are coupled across exchanges and are restricted to a 1-dimensional subspace.

Define the empirically observed expected delay vector trajectories

{
ED(s,j)(t) : t = 1, . . . , T ; s = BID,ASK

}
,

where ED(s,j)(t) was estimated in (2.29) and the trajectories consider all one hour time slots in

the 21 days of our observation period. A natural way to test the effective dimensionality of this

vector of trajectories is via PCA by examining the number of principle components necessary

to explain the variability of the expected delay trajectories across exchanges and over time.

The output of the PCA analysis is summarized in Table 2.5: the first principle component

explains around 80% of the variability of the expected delays across exchanges, and the first

two principle components explain about 90%. This is consistent with the hypothesis of low

effective dimension. In contrast, when we conduct PCA for the vector trajectories of observed

queue lengths
{
Q(s,j)(t) : t = 1, . . . , T ; s = BID,ASK

}
, we find relatively weaker evidence
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(a) Average expected delay across stocks and exchanges.
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(b) Average queue length (number of shares at the NBBO) across stocks and exchanges.

Figure 2.2: Averages of hourly estimates of the expected delays and queue lengths for the Dow
30 stocks on the 6 exchanges during September 2011. Results are averaged over the bid and ask
sides of the market for each stock. Queues do not include estimates of hidden liquidity at each
of the exchanges. 41



% of Variance Explained % of Variance Explained
One Factor Two Factors One Factor Two Factors

Alcoa 80% 88% JPMorgan 90% 94%
American Express 78% 88% Kraft 86% 92%

Boeing 81% 87% Coca-Cola 87% 93%
Bank of America 85% 93% McDonalds 81% 89%

Caterpillar 71% 83% 3M 71% 81%
Cisco 88% 93% Merck 83% 91%

Chevron 78% 87% Microsoft 87% 95%
DuPont 86% 92% Pfizer 83% 89%
Disney 87% 91% Procter & Gamble 85% 92%

General Electric 87% 94% AT&T 82% 89%
Home Depot 89% 94% Travelers 80% 88%

Hewlett-Packard 87% 92% United Tech 75% 88%
IBM 73% 84% Verizon 85% 91%
Intel 89% 93% Wal-Mart 89% 93%

Johnson & Johnson 87% 91% Exxon Mobil 86% 92%

Table 2.5: Results of PCA: how much variance in the data can the first two principle components
explain.

for a low effective dimensionality. In this test, the first principle component explains about

65% of the variability of the queue lengths across exchanges, and the first two principle

components explain less than 80%. A detailed report of the results can be found in Table A.1

in the Appendix.

Intuitively, in the high flow environment of our observation universe, i.e., where Λ and µ

are large, queue length deviations from the equilibrium configuration would be quickly erased

by optimized arriving limit and market orders. The equilibrium state itself changes over time

as the rates of events change, but the coupling across exchanges remains strong, and persists

even if we shorten the time period over which market statistics are averaged from 1 hour

down to 15 minutes.12

12For example, with 15 minute periods, the first principle component still explains 69% of the overall
variability of the vector of delay trajectories (that are themselves four times longer), while the first two
principle components explains 82% of the variability.
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2.4.2. Estimation of the Market Order Routing Model

Define µ
(s,j)
i (t) to be the total arrival rate of market orders for security j and side s ∈

{BID,ASK} in time slot t directed to exchange i, and let µ(s,j)(t) be the total arrival rate

across all exchanges for (s, j) in time t. The attraction model of Section 2.2.2 for market

orders suggests the relationship

µ
(s,j)
i (t) = µ(s,j)(t) β

(j)
i Q

(s,j)
i∑N

i′=1 β
(j)
i′ Q

(s,j)
i′

, (2.30)

where β(j)
i is the attraction coefficient for security j on exchange i. Note that our market order

routing model is invariant to scaling of the attraction coefficients, hence we normalize so that

the attraction coefficient for each stock on its listing exchange is 1. Given that {µ(s,j)
i (t)},

{µ(s,j)(t)}, and {Q(s,j)
i (t)} are observable, we estimated the β(j)

i ’s using a nonlinear regression

on (2.30). The results are given in Table 2.6. Note that all attraction coefficient estimates

are statistically significant.

2.4.3. Empirical Evidence of State Space Collapse

Our model postulates the investors make order placement decisions by trading off delay

against effective rebates, and concludes that delays across exchanges , as measured by

Q
(s,j)
i /µ

(s,j)
i are linearly related. It gives an expression for estimating delays in each exchange

in terms of an aggregate measure of market depth, which we call workload.

Verification of linear dependence of expected delays via regression analysis. Define

W (s,j)(t) to be the workload for side s of security j in time slot t, i.e.,

W (s,j)(t) ,
N∑
i=1

β
(j)
i Q

(s,j)
i (t), (2.31)
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Attraction Coefficient
ARCA NASDAQ BATS EDGX NYSE EDGA

Alcoa 0.73 0.87 0.76 0.81 1.00 1.33
American Express 1.19 1.08 0.99 0.94 1.00 0.94

Boeing 0.95 0.67 0.81 0.74 1.00 0.73
Bank of America 0.94 1.04 1.01 0.77 1.00 1.43

Caterpillar 0.82 0.78 1.13 0.70 1.00 0.58
Cisco 0.95 1.00 1.06 0.98 - 1.45

Chevron 0.70 0.93 1.17 0.65 1.00 0.75
DuPont 0.90 0.98 0.98 1.03 1.00 1.00
Disney 0.69 0.88 0.78 0.88 1.00 1.04

General Electric 0.79 1.01 0.94 0.73 1.00 1.63
Home Depot 0.76 0.98 0.79 0.84 1.00 1.02

Hewlett-Packard 1.04 1.04 1.02 0.68 1.00 0.82
IBM 1.25 1.20 1.20 1.05 1.00 0.54
Intel 0.83 1.00 0.96 0.84 - 1.04

Johnson & Johnson 0.80 0.94 0.86 0.92 1.00 0.77
JPMorgan 0.78 0.99 0.93 0.84 1.00 0.91

Kraft 0.72 0.89 0.83 0.73 1.00 1.06
Coca-Cola 0.68 0.84 0.79 0.76 1.00 0.88
McDonalds 0.90 0.86 1.03 0.82 1.00 0.82

3M 0.89 0.67 0.62 0.66 1.00 0.57
Merck 0.68 1.01 0.83 0.90 1.00 0.81

Microsoft 0.83 1.00 1.02 0.95 - 1.41
Pfizer 0.84 1.01 0.96 0.87 1.00 1.29

Procter & Gamble 0.79 0.89 0.88 0.89 1.00 0.89
AT&T 0.62 0.94 0.75 0.59 1.00 1.00

Travelers 0.80 0.69 0.69 0.84 1.00 0.80
United Tech 1.18 0.89 0.79 0.87 1.00 0.53

Verizon 0.77 0.95 0.88 0.72 1.00 0.85
Wal-Mart 0.72 0.88 0.79 0.71 1.00 0.91

Exxon Mobil 0.89 1.13 0.97 0.89 1.00 1.35

Table 2.6: Estimates of the attraction coefficients βi from nonlinear regression. Note that the
attraction coefficient of the listing exchange is normalized to be 1.
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and observe that the vector of expected delays can be written as

ED(s,j)(t) = W (s,j)(t)
µ(s,j)(t)

(
1
β

(j)
1
, . . . ,

1
β

(j)
N

)
. (2.32)

In other words, the expected delays across different exchanges are linearly related, and specif-

ically, for each security j, exchanges i, i′, and market side s,

ED(s,j)
i (t) =

β
(j)
i′

β
(j)
i

ED(s,j)
i′ (t), (2.33)

for each time slot t. To test this prediction, we perform a linear regression of the left side

of (2.33), which is the expected delay of that security on a particular exchange, as a function

of the right side of (2.33), which is the expected delay on a benchmark exchange (ARCA)

rescaled by the ratio of the attraction coefficients of the two exchanges. The regression is

performed using the expected delay measurements outlined in (2.29), i.e., by dividing the

average observed queue size in each exchange with its respective observed rate of trading,

for all time slots, both sides of the market, and all the 30 component stocks of the Dow

Jones Industrial Average. In addition, for the cross-sectional regression analysis, for each

security, we normalize the expected delay measurements by dividing them by the median

expected delay of that security on a benchmark exchange (ARCA) across all time slots and

both sides of the market. That is, we use the following measure of expected delays in the

linear regressions

EDs,j
i (t) , EDs,j

i (t)
median

τ=1,...,T ; s=BID,ASK

(
ED(s,j)

ARCA(τ)
) , (2.34)

where ED(s,j)
i (t) was estimated in (2.29).

The results of these regressions are summarized in Table 2.7. The R2 varies between

52% and 70% across the five exchanges. All of the regressions are statistically significant
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Dependent Variable: EDexchange
NASDAQ OMX BATS DirectEdge X NYSE DirectEdge A

Intercept 0.27∗∗∗ 0.28∗∗∗ 0.24∗∗∗ 0.28∗∗∗ 0.36∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.01)

Rescaled EDARCA 0.70∗∗∗ 0.72∗∗∗ 0.72∗∗∗ 0.63∗∗∗ 0.60∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.01)

R2 70% 70% 52% 60% 52%
Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 2.7: Linear regressions of the normalized expected delay on a particular exchange, versus
that of the benchmark exchange (ARCA) rescaled by the ratio of the attraction coefficients of
the two exchanges.

and we are able to reject the null hypothesis that the delay on a particular exchange has a

zero regression coefficient relative to the rescaled delay on ARCA. These results statistically

verify the linear dependence of delays across different exchanges suggested by (2.33). Note

that (2.33) further predicts that the regression should have a zero intercept and the slope of

the rescaled EDARCA term should be 1. These are not born in the regressions — the intercept

is statistically different from 0 and the slope is statistically different from 1. Nevertheless,

the intercept and slope are, respectively, quite close to 0 and 1. This is remarkable given the

stylized nature of the routing model of Section 2.4.2 and the noise in the extensive market

data sample.

While the regressions in Table 2.7 were performed cross-sectionally across all securities,

similar results hold if the analysis is performed on a security by security basis. Figure 2.3

depicts the delay relationships in the case of Bank of America. It illustrates the strong linear

relationship across all exchanges over time and across significant variations in prevailing

market conditions; the latter is manifested in the roughly two orders of magnitude variation

in estimated expected delays.

A competing hypothesis is that queue lengths across exchanges are linearly related, that
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(a) slope = 0.88, intercept = 6× 10−3, R2 = 84%
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(b) slope = 0.80, intercept = 9× 10−3, R2 = 79%
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(c) slope = 1.04, intercept = 9× 10−4, R2 = 71%
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(d) slope = 1.11, intercept = −4× 10−3, R2 = 63%

0 300 600 900 1,200
0

300

600

900

1,200

rescaled ARCA delay (seconds)

ED
G

A
de

la
y

(s
ec

on
ds

)

(e) slope = 0.90, intercept = 4× 10−3, R2 = 73%

Figure 2.3: Scatter plots of the expected delay for Bank of America (BAC) on each exchange,
versus the delay on ARCA rescaled by the ratio of the attraction coefficients of the two exchanges.
The black lines correspond to linear regressions with intercept.
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is, for each security j, exchanges i, i′, and market side s,

Qs,ji (t) = cii′Q
s,j
i′ (t), (2.35)

for each time slot t. The following test explores such an alternative hypothesis. According

to (2.35), predicated on queue length estimates obtained in 2.4.1, i.e., Qs,ji (t) as the average

number of shares available at the NBBO for time slot t, exchange i, stock j, and side s ∈

{BID,ASK}, we perform a cross-sectional linear regression of the queue length of each security

on a particular exchange, as a function of that on a benchmark exchange (ARCA). As before,

we normalize the queue lengths by dividing them by the median queue length of that security

on a benchmark exchange (ARCA) across all time slots and both sides of the market, i.e.,

we use Qs,ji (t) , Qs,ji (t)/medianτ=1,...,T ; s=BID,ASK
(
Q

(s,j)
ARCA(τ)

)
as the queue length measure

in regression. The results are provided in table 2.8. We observe that the R2 is significantly

lower than that in the previous table, varying only between 13% and 26%.

Dependent Variable: Qexchange
NASDAQ OMX BATS DirectEdge X NYSE DirectEdge A

Intercept 0.84∗∗∗ 0.39∗∗∗ 0.25∗∗∗ 0.57∗∗∗ 0.05∗∗∗
(0.02) (0.01) (0.01) (0.02) (0.01)

QARCA 0.74∗∗∗ 0.45∗∗∗ 0.29∗∗∗ 0.96∗∗∗ 0.24∗∗∗
(0.02) (0.01) (0.01) (0.02) (0.00)

R2 19% 20% 13% 26% 26%
Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 2.8: Linear regressions of the normalized queue length on a particular exchange versus
that of the benchmark exchange (ARCA).

Residual analysis and accuracy of delay estimates based on the aggregate workload.

The SSC result culminated in relationship (2.32) that makes expected delay predictions in

each exchange based on the 1-dimensional aggregated workload process. Specifically, given

the market model coefficients β(j)
i and a measurement of the queue sizes at the various
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exchanges, Q(s,j)
i (t), one can compute the workload via (2.31), and then construct estimates

for the expected delays at the various exchanges via (2.32). We denote the resulting delay

estimates by ÊD(s,j)(t), where theˆnotation denotes in this context the estimate obtained via

the one-dimensional workload process, as opposed to measuring the actual expected delay

ED(s,j)(t) via (2.29). This prediction can be tested again through a set of linear regressions

between the workload delay estimate and the delay estimate that uses information about the

state of the exchange (queue length and trading rate). All these regressions are statistically

significant and are accompanied with high R2 values. We do not report on these results,

instead we pursue a more detailed analysis of the residuals, i.e., the errors between the

workload and exchange-specific delay estimates, ED(s,j)(t)−ÊD(s,j)(t). We define the quantity

R2
∗ , 1−

Var
(∥∥∥∥ED(s,j)(t) − ÊD(s,j)(t)

∥∥∥∥)
Var

(∥∥∥ED(s,j)(t)
∥∥∥) ,

for each security j. Here, Var(·) is the sample variance, averaged over all time slots t and

both sides of the market s. The quantity R2
∗ measures the variability of the residuals un-

explained by the relationship (2.32), relative to the variability of the underlying expected

delays. By its definition, when R2
∗ is close to 1, most of the variability of expected delays

is explained by the relationship (2.32). Numerical results for R2
∗ across securities are given

in Table 2.9. Typical values for R2
∗ are around 80%, highlighting the predictive power of

the one-dimensional workload model as a means of capturing the state of the decentralized

fragmented market.

Our analysis showed that optimized order routing couples the exchange dynamics in

terms of their delay estimates as opposed to their queue depths. As mentioned earlier in

discussing Figure 2.2(b), queue lengths across exchanges exhibit significantly more variation

than their corresponding delays. One could repeat the above analysis, for example, starting
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R2
∗ R2

∗ R2
∗

Alcoa 75% Home Depot 87% Merck 78%
American Express 64% Hewlett-Packard 77% Microsoft 80%

Boeing 75% IBM 63% Pfizer 79%
Bank of America 80% Intel 82% Procter & Gamble 80%

Caterpillar 58% Johnson & Johnson 83% AT&T 77%
Cisco 87% JPMorgan 88% Travelers 67%

Chevron 67% Kraft 79% United Tech 47%
DuPont 82% Coca-Cola 81% Verizon 79%
Disney 78% McDonalds 74% Wal-Mart 85%

General Electric 82% 3M 62% Exxon Mobil 81%

Table 2.9: The measure of performance R2
∗, which given the reduction of variability in expected

delays explained by the workload relationship (2.32).

from trying to see whether the queue length processes live on a lower dimensional manifold,

similarly to what we observed in studying the respective delay estimates. Not surprisingly,

and as suggested through our analysis and the above comments, the PCA of the queue length

trajectories yields weaker results, and similarly all of the subsequent tests lead to noticeably

lower quality of fit. Our model suggests two explanations: (a) the limit order routing logic

seems to rely on delay estimates as opposed to queue lengths; and, (b) the model capturing the

routing of market orders is itself nonlinear. Both (a) and (b) hinge on some of our modeling

assumptions that build on insight from practical smart order router optimization logic, where

indeed limit order placement decisions depend crucially on delays or fill probabilities, and

market order routing follow variants of fee minimization arguments that depend nonlinearly

on the displayed quantities.

Finally, it is worth remarking that this seems to be one of the first examples of a complex

stochastic network model, where state space collapse has been empirically verified.
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2.4.4. The Effects of Fee Change: evidence from the NASDAQ fee exper-

iment

We finally illustrate how the predictions of our model match up to the observations made pos-

sible by the natural experiment of the NASDAQ exchange that made a significant reduction

of its fee and rebate schedule for a subset of 14 stocks between February and May of 2015.
13 NASDAQ lowered the fees charged to liquidity takers from $.0030/share to $.0005/share,

and correspondingly, lowered the rebates rewarded to liquidity providers from $.0029/share

to $.0004/share.

To test the impact of this significant reduction in the make-take fee on NASDAQ, we

analyze and compare trade and quote (TAQ) data of the 14 tested symbols in two separate

time periods: the pre-period of 01/12/2015 - 01/30/2015 and the post-period of 02/09/2015 -

02/27/2015, that is, 3 weeks before and after the initiation of the program at the beginning

of February 2015, respectively. Table 2.10 contains the fees charged on the 6 major exchanges

in the tested periods, during which only that of NASDAQ has been modified.

Exchange Fee
($ per share, ×10−4)

NASDAQ OMX: January 2015 30.0
February 2015 5.0

BATS 30.0
DirectEdge X (EDGX) 30.0
NYSE ARCA 30.0
NYSE 27.0
DirectEdge A (EDGA) -2.0

Table 2.10: Fees of the 6 major U.S. stock exchanges, per share traded, in January-February
2015 around the time of the NASDAQ access fee experiment. Note that the fees here are different
from previous figures in table 2.4 because they are in different time periods.

A change in the per share fee and rebate will affect the attractiveness of the exchange

13The test symbols are: AAL, BAC, FEYE, GE, GPRO, GRPN, KMI, MU, RAD, RIG, S, SIRI, TWTR,
ZNGA.
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for traders placing limit orders and traders sending aggressive market orders. There have

been a few studies published thus far Hatheway (2015a,b) and Pearson (2015) on the some of

these effects. Both studies were not predicated on a underlying model of order routing, and

primarily focused on market share and depth comparisons, before and after the fee change.

Our model of market and limit order routing yields some direct implications on market

outcomes, which we explore in the sequel.

In the sequel, we will first estimate the exchange attraction coefficients before and after the

fee change. We will propose a structural model for the attractiveness of each exchange that

explicitly incorporates it’s prevailing fee, from which one would expect that the attractiveness

of Nasdaq increased after the fee reduction. We verify this prediction. We will then study

the effect of the fee change in the routing of limit orders. In this case, our model predicts

that the equilibrium expected delay for limit orders to get filled will decrease after the fee

change. The empirical analysis will again verify this prediction.

Put together these observations suggest that the impact of the fee change is best un-

derstood through its structural impact to limit and market order routing policies, and com-

plement the findings of the analyses reported in Hatheway (2015a,b); Pearson (2015). Our

empirical findings will validate our model predictions.

Attraction coefficient βNASDAQ. The discussion in Section 2.2.2 had suggested that

the attractiveness of an exchange for market orders is a decreasing function of its fee. Our

preceding analysis focused on an observation period where fees were constant, which implied

that the attractiveness coefficients of the exchanges were themselves constant throughout that

time period. Nasdaq’s fee experiment allows us to proceed with a more nuanced analysis,

and examine what is the effect of the exchange fees on market order flow. We will postulate

52



the following structural model:

µ
(s,j)
i (t) = µ(s,j)(t) ea

(j)
i +ri,t·b(j)

Q
(s,j)
i (t)∑N

k=1 e
a

(j)
k

+rk,t·b(j)
Q

(s,j)
k (t)

. (2.36)

That is, we are postulating the attractiveness coefficient bji take the form:

bji = ea
(j)
i +ri,t·b(j)

We will estimate (2.36) using 3 weeks of data before and after the fee change. Our hypothesis

is that the coefficients bj are negative, i.e., an higher fee makes an exchange less desirable,

all other things being equal. The corresponding {µ(s,j)
i (t)}, {µ(s,j)(t)}, and {Q(s,j)

i (t)} are

estimated from the two trade and quote data samples as outlined in Section 2.4.1.

We normalize the results so that ai of the benchmark exchange NYSE ARCA is 0. Finally,

b is estimated by using nonlinear regressions on (2.36), based on the combined sample for

each security. Results are in Table 2.11. Indeed, the estimated b coefficients are negative

for all 14 tested securities, among which 12 are statistically significant. This agrees with our

hypothesis.

On a related note we estimate the βNASDAQ coefficients before and after the fee change

and compare; this estimation is non-parametric, specifically not predicated on (2.36), and

estimates via nonlinear regressions the following:

µ
(s,j)
i (t) = µ(s,j)(t) β

(j)
i Q

(s,j)
i∑N

i′=1 β
(j)
i′ Q

(s,j)
i′

, (2.37)

based on the pre-period sample and the post-period sample, respectively. Our market order

routing model is invariant to scaling of the attraction coefficients and in this section we

normalize so that the attraction coefficient for each stock on the benchmark exchange NYSE

53



b(j) a
(j)
NASDAQ a

(j)
EDGX a

(j)
BATZ a

(j)
NYSE a

(j)
EDGA 1-sided 95% test

AAL -4.91546 0.1122 -0.0179 0.26979 0.09173 NO
BAC -179.49864 0.41989 0.19534 0.25584 0.12998 0.46171 YES
FEYE -98.64992 -0.30427 -0.20065 0.0999 -0.31724 YES
GE -93.50329 0.1524 -0.03982 0.12865 -0.0113 0.26895 YES

GPRO -50.15462 -0.07134 -0.20676 0.07204 -0.06651 YES
GRPN -94.41 0.1174 -0.07473 0.2509 0.0007071 YES
KMI -113.09557 0.08852 0.06439 0.13474 -0.17634 -0.02007 YES
MU -89.01952 0.06419 -0.02114 0.13652 0.18507 YES
RAD -138.45738 -0.0452 -0.21638 0.06565 -0.29318 -0.09038 YES
RIG -76.558 -0.0187 -0.01546 0.03923 -0.14439 0.09803 YES
S -162.59365 -0.21658 -0.28509 0.03679 -0.25726 -0.37789 YES

SIRI -69.31381 0.12737 -0.1322 0.17258 0.33232 YES
TWTR -87.330238 -0.141326 -0.155197 -0.009813 -0.272932 -0.227205 YES
ZNGA -17.66407 0.14102 -0.27556 0.14014 0.40745 NO

Table 2.11: Estimates of b and ai in the attraction model (2.36) and hypothesis testing results
on whether the coefficient b is negative. For each stock, the results are based on a combined
sample that includes both the pre-period and the post-period of the fee experiment.

ARCA is 1. Table 2.12 reports and compares the estimated attraction coefficients before

and after the NASDAQ fee experiment for individual stocks. Note that β(j)
NASDAQ - post is

greater than β(j)
NASDAQ - pre for 12 names among the 14 tested securities. For all of these 12

names, the increments are statistically significant under a one-tailed test and a 95% level of

confidence. This is again with our model prediction.

Expected delay EDNASADQ. Our limit order routing model suggests that traders

tradeoff expected delay with rebate, and that in equilibrium, exchanges that offer lower

rebates will also offer lower expected delays for limit orders placed in the back of the queue

at the best bid (top of book) until they get filled.

As stated in (2.12),

EDi = W

µβi
. (2.38)

We expect the workload W to remain the same after NASDAQ reduces its make-take fee, as

the equilibrium value of W depends on the “marginal” exchange, which is likely to be the one
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β
(j)
NASDAQ - pre std. dev. β

(j)
NASDAQ - post std. dev. INCREASE? 1-sided 95% test

AAL 1.1478 0.0152 1.0787 0.0189 NO NO
BAC 1.4516 0.0297 2.5617 0.0647 YES YES
FEYE 0.6958 0.0136 0.9543 0.0156 YES YES
GE 1.1339 0.0244 1.5250 0.0386 YES YES

GPRO 0.9285 0.0196 1.0557 0.0250 YES YES
GRPN 1.1035 0.0253 1.4288 0.0258 YES YES
KMI 1.0814 0.0163 1.4780 0.0267 YES YES
MU 1.0314 0.0124 1.3862 0.0186 YES YES
RAD 0.9515 0.0302 1.3530 0.0368 YES YES
RIG 0.9775 0.0230 1.1925 0.0239 YES YES
S 0.9905 0.0453 1.0957 0.0429 YES YES

SIRI 1.1787 0.0265 1.3045 0.0347 YES YES
TWTR 0.9093 0.0235 1.0623 0.0269 YES YES
ZNGA 1.2111 0.0337 1.1939 0.0332 NO NO

Table 2.12: Estimates of the attraction coefficient of individual stocks on NASDAQ before and
after the fee experiment, and hypothesis testing results on whether the attraction coefficient
increases under the fee change.

with the lowest rebate, which is not NASDAQ; we are assuming that the remaining model

parameters remain the same. As described above, we anticipate the attraction coefficient

βNASDAQ to increase after the fee change, which would result in a lower expected delay

EDNASDAQ after NASDAQ reduced its make-take fee. An alternative justification is that

traders submitting orders into NASDAQ would expect lower expected delays given that they

are compensated with a lower rebate when their orders trade. In equilibrium, patient traders

will submit orders to higher rebate exchanges, which would result in a lower equilibrium delay

at NASDAQ after the fee change.

To test this hypothesis we will compare the normalized expected delay at NASDAQ before

and after the fee change. We first compute the measure of expected delay along the lines of

Section 2.4.1, as

ED(s,j)
i (t) , Q

(s,j)
i (t)

µ
(s,j)
i (t)

, (2.39)

for side s, security j, on exchange i, at time slot t. We then use these measures to calculate
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an aggregate, normalized estimate of the expected delay on NASDAQ, as follows:

ẼD(j)
NASADQ = 1

2T
∑

s∈{bid,ask}

T∑
t=1

ED(s,j)
NASDAQ(t)∑N

k=1 ED(s,j)
k (t)

. (2.40)

For each stock, we can obtain two estimates ẼD(j)
NASADQ - pre and ẼD(j)

NASADQ - post based

on the pre-period sample and the post-period sample, respectively. Table 2.13 reports on

these two statistics for individual securities. We observe that the normalized expected delay

on NASDAQ decreases for all 14 tested securities; in 13 of these 14 cases, the reduction is

statistically significant. This agrees with the postulation of our model.

ẼD(j)
NASADQ - pre std. err. ẼD(j)

NASADQ - post std. err. DECREASE? 1-sided 95% test

AAL 0.1978 0.0023 0.1886 0.0027 YES YES
BAC 0.1556 0.0022 0.0963 0.0020 YES YES
FEYE 0.2282 0.0037 0.1964 0.0031 YES YES
GE 0.1688 0.0026 0.1265 0.0023 YES YES

GPRO 0.2262 0.0053 0.2145 0.0057 YES NO
GRPN 0.2030 0.0034 0.1700 0.0035 YES YES
KMI 0.1646 0.0018 0.1265 0.0018 YES YES
MU 0.2062 0.0023 0.1683 0.0024 YES YES
RAD 0.1750 0.0038 0.1027 0.0030 YES YES
RIG 0.1721 0.0022 0.1401 0.0024 YES YES
S 0.1765 0.0063 0.1305 0.0034 YES YES

SIRI 0.2150 0.0072 0.1558 0.0077 YES YES
TWTR 0.1813 0.0026 0.1453 0.0035 YES YES
ZNGA 0.1831 0.0062 0.1515 0.0054 YES YES

Table 2.13: Estimates of the normalized expected delay on NASDAQ of individual stocks before
and after the fee experiment, and hypothesis testing results on whether the normalized expected
delay decreases under the fee change.

Linear relation EDNASADQ = βARCA/βNASADQ ·EDARCA. Last we examine how

the fee change affects the linear relation (2.33) in Section 2.4.3, which is one of the major
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ẼD(j)
NASADQ - pre std. err. ẼD(j)

NASADQ - post std. err. DECREASE? 1-sided 95% test

AAL 1.0029 0.0109 0.9681 0.0139 YES YES
BAC 0.9293 0.0121 0.5895 0.0137 YES YES
FEYE 1.2431 0.0202 1.0567 0.0164 YES YES
GE 1.0267 0.0160 0.7863 0.0169 YES YES

GPRO 1.1619 0.0336 1.0842 0.0360 YES NO
GRPN 1.0468 0.0191 0.8941 0.0168 YES YES
KMI 0.9938 0.0100 0.7622 0.0108 YES YES
MU 1.0318 0.0114 0.8699 0.0127 YES YES
RAD 1.1165 0.0303 0.6757 0.0195 YES YES
RIG 1.0361 0.0128 0.8614 0.0142 YES YES
S 1.2665 0.0711 0.8699 0.0218 YES YES

SIRI 1.4101 0.1685 1.4559 0.4852 NO NO
TWTR 1.1077 0.0166 0.9034 0.0260 YES YES
ZNGA 1.0337 0.0404 0.8984 0.0308 YES YES

Table 2.14: Results in parallel to those in Table 2.13 when the expected delays are normalized
by median delay instead of by sum of delays.

conclusions arising from our model,

ED(s,j)
i (t) =

β
(j)
i′

β
(j)
i

ED(s,j)
i′ (t). (2.41)

Specially, we want to test that when considering the above linear relation between NAS-

DAQ and the benchmark exchange, ARCA, the slope of that linear relation before and after

the fee change will decrease, since we expect that the attraction coefficient βNASADQ should

increase in response to that change. We perform linear regressions for each security between

the expected delays on NASDAQ against that on the benchmark exchange ARCA before and

after the fee change:

EDNASADQ = β0 + β1 · EDARCA, (2.42)

Results are in Table 2.15. We observe that the resulting slopes decrease for all 14 tested

securities, among which 8 are statistically significant under a one-sided test and a 95% con-

fidence level. In addition, cross-sectionally, in the linear regression before the fee change
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β1 = 0.78564∗∗∗(0.01571), R2 = 58%; in the linear regression after the fee change β1 =

0.66384∗∗∗(0.01221), R2 = 62%. That is, we also find a statistically significant drop in β1.

Again, this finding agrees with our model prediction.

β1 (before) std. err. β1 (after) std. err. β1 DECREASE? 1-sided 95% test

AAL 0.6742 0.0308 0.5981 0.0392 YES NO
BAC 0.6176 0.0299 0.3245 0.0269 YES YES
FEYE 0.8773 0.0761 0.7950 0.0543 YES NO
GE 0.7851 0.0384 0.4859 0.0349 YES YES

GPRO 0.3744 0.0458 0.3314 0.0624 YES NO
GRPN 0.9570 0.0418 0.8223 0.0234 YES YES
KMI 0.8764 0.0289 0.5400 0.0255 YES YES
MU 0.8313 0.0277 0.5741 0.0274 YES YES
RAD 0.9439 0.0611 0.3090 0.0482 YES YES
RIG 0.6571 0.0286 0.5360 0.0282 YES YES
S 0.5740 0.1151 0.5406 0.0395 YES NO

SIRI 1.3337 0.2686 (0.0001) 0.0135 YES YES
TWTR 0.8406 0.0679 0.7470 0.0724 YES NO
ZNGA 0.0546 0.0087 0.0425 0.0174 YES NO

Table 2.15: Linear regression results of equation (2.42) and hypothesis testing results on whether
the slope decreases after the fee change on NASDAQ.
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β1 (before) std. err. β1 (after) std. err. β1 DECREASE? 1-sided 95% test

AAL 0.7960 0.0149 0.8121 0.0188 NO NO
BAC 0.6774 0.0154 0.3789 0.0138 YES YES
FEYE 1.3292 0.0428 1.0828 0.0288 YES YES
GE 0.8285 0.0221 0.5942 0.0194 YES YES

GPRO 0.7147 0.0375 0.6852 0.0453 YES NO
GRPN 0.9706 0.0294 0.8040 0.0207 YES YES
KMI 0.9253 0.0150 0.6436 0.0123 YES YES
MU 0.9034 0.0152 0.6440 0.0140 YES YES
RAD 1.0516 0.0440 0.4285 0.0366 YES YES
RIG 0.7851 0.0199 0.6453 0.0177 YES YES
S 0.6519 0.1113 0.6650 0.0299 NO NO

SIRI 1.4071 0.2435 0.0017 0.0134 YES YES
TWTR 1.1070 0.0354 0.8970 0.0390 YES YES
ZNGA 0.0584 0.0091 0.0550 0.0178 YES NO

Table 2.16: Results in parallel to those in Table 2.15 when the linear regressions are performed
without intercept.
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Chapter 3

Optimal Execution in a Limit

Order Book and an Associated

Microstructure Market Impact

Model

3.1. Introduction

Modern equity markets have, to a large extent, become computerized technological systems.

Market participants, including institutional investors, market makers, and opportunistic in-

vestors, interact within today’s high-frequency marketplace with the use of electronic algo-

rithms. These algorithms differ across participants and trading styles. At a high level, they

dynamically optimize where, how often, and at what price to trade taking into account the

state of the exchanges and other real-time market information. Our goal in this chapter is
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to develop models based on queueing theory for the dynamics of an electronic market over

short time scales, and to understand how features of the market microstructure impact the

execution costs that market participants face.

We will focus on markets that are organized as so-called electronic limit order books

(LOBs). This is the dominant market structure among, for example, exchange-traded U.S.

equities. In an electronic limit order book, traders may provide liquidity by submitting limit

orders to buy or sell specific quantities of stock at a specified price, or remove liquidity by

sending market orders to buy or sell at the best available prices. When a market order

arrives, it will be matched by the exchange to a contra-side resting limit order. These resting

orders are first prioritized by price, and then, within each price level, prioritized by their

time of arrival. In this way, each price level can be associated with a queue of resting limit

orders that await execution according to a first-in-first-out (FIFO) service discipline, and an

electronic limit order book can be naturally modeled as a multi-class queueing system.

A simplified view of a typical portfolio manager is as an agent that makes high-level

decisions to buy or sell quantities of securities. The outcomes of these investment decisions are

then delegated to a ‘trader’ that executes them, often making use of a so called ‘algorithmic

trading’ system. These systems are developed internally by large institutional investors or,

alternatively, offered as a service by a multitude of banks or brokers. Broadly speaking, such

algorithmic trading strategies are designed hierarchically. First, they decide how to schedule

the parent order, at a high level, over the course of its execution horizon. For example,

if an investor seeks to buy a block of shares over the course of a trading day, this might

involve scheduling target quantities for purchase in 5-minute intervals. In this way, the trade

scheduling phase involves strategic decisions that consider trade-offs that are realized over

minutes or hours. Second, they consider each such sub-interval of the longer horizon, and

decide how to execute the target quantity over the sub-interval by dividing it into smaller
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child orders that are tactically directed to the market either as market or limit orders at

optimized price levels and time points. This second phase is often referred to as the micro-

trader or slicer, and involves tactical decisions that consider trade-offs on the time scale of

seconds to minutes; the queueing delay incurred by limit orders is an important consideration

in this step.

An essential input to both the portfolio selection decision as well as the algorithmic trade

execution process is the so-called market impact model. This model estimates the anticipated

cost of a trade and takes into account the adverse effect of one’s own trading activity to the

price of the security — i.e., how much will the price move against a trader that is buying or

selling a block of a specific stock over a specified time horizon. The market impact model

depends on the characteristics of the security, such as its liquidity, volatility and typical bid-

ask spread, as well as the size and timing of the trade itself. In portfolio construction, a market

impact model is often used as a penalty term to capture the trading frictions and resulting

costs associated with a portfolio transition. In trade scheduling, it is used in the context

of deciding how aggressively to trade — aggressive execution will result in high expected

execution costs over shorter trading horizons but reduce execution risk due to exposure to

fluctuating market prices. In the micro-trader, a market impact model is used in the tactical

optimization of order placement decisions.

In this chapter, we first formulate and solve a stylized version of the optimal execution

problem faced by the micro-trader described above that takes the form of optimally buying

(or selling) a pre-specified quantity of stock over a fixed short time horizon, typically in the

order of a few minutes. Then, leveraging the solution of the execution problem, we construct

a market impact model that explicitly takes into account the microstructure information

that describes the state and queueing dynamics of the limit order book. Specifically, the

key contributions of the chapter are the following: (a) We develop a model of the LOB
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as a multi-class queueing network. Using a fluid (deterministic, mean-field) model of the

queueing system, we solve the resulting optimal execution problem, that describes what

fraction of the trade quantity will be executed using limit and market orders and at what price

levels. (b) Our optimal execution problem yields an estimate for the (optimized) execution

costs, which suggests a functional form for a market impact model and identifies relevant

microstructure variables (e.g., queue lengths, arrival rates, etc.) that impact trading costs.

The microstructure market impact model seems to be novel viz the extensive literature on this

topic and to be of practical interest in estimating transaction costs and optimizing trading

decisions over short time horizons of the order of a few minutes. (c) Finally, we calibrate

the microstructure market impact model using a proprietary data set of algorithmic trades

and contemporaneous real-time measurements of limit order book variables. We compare

the quality of the statistical fit of the microstructure model to what can be achieved using

a typical macroscopic market impact model that estimates costs without consideration of

limit order book variables. We find that our microstructure impact model yields a factor

of four improvement in out-of-sample explanatory power. We further test the robustness of

our model over its specification and over the problem primitives. We find our model has

the most explanatory power for larger orders (measured as a percentage of overall volume)

and for assets with greater market depth (measured through queues sizes capturing available

liquidity). These correspond to settings where our fluid model assumptions are most realistic.

Further, we note conventional macro models are also more successful in settings with greater

market depth, a fact that seems unobserved thus far in the literature.

Literature review. This work is related to the growing literature that lies on the interface

of queueing and the study of limit order book markets. This connection was first illustrated

by Cont et al. (2010); see also Cont and Larrard (2013), Lakner et al. (2013), Blanchet and

Chen (2013), Stoikov et al. (2011), and Lakner et al. (2014). Our model builds on Cont
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et al. (2010), recognizing the multiple price levels in a limit order book can be modeled as

a multi-class queue. We work directly with the fluid model representation and do not study

the stochastic dynamics of the multi-class queue. The majority of the papers above focus

on characterizing the performance of the limit order book, in many cases involving fluid

or diffusion approximations. Our emphasis is on optimization of tactical trading decisions,

and specifically in optimizing how to execute a block of shares in a limit order book over

a predetermined time horizon that is of the same order as that of queueing delays in the

order book, and as such modeling of queueing effects becomes important. Related work

includes that of Guo et al. (2013), who study a problem of optimizing when to send limit

orders and market orders in the market, taking into account, in a stylized manner, the

limit order book dynamics but excluding a careful consideration of queueing delays and

order cancellation effects. Cont and Kukanov (2013) study the smart order routing problem,

specifically taking into account the fact that there are multiple exchanges to which one can

post a limit order, so the control decision becomes how much to post and to which exchange.

Our work considers one consolidated limit order book, like Guo et al. (2013), but models

explicitly the queueing dynamics, order cancellations, and the ability to trade aggressively

on multiple price levels with market orders. Apart from optimizing limit order placement,

we find that the optimized routing of market orders over the optimization horizon is an

important ingredient that affects the overall execution cost; in particular, it is typically not

optimal to send all market orders to trade at the end of the time horizon. The resulting

execution cost motivates the microstructure market impact model.

A separate set of papers deal with the longer horizon trade scheduling problem. Bertsimas

and Lo (1998) solved this problem when optimizing the expected cost, and Almgren and

Chriss (2001) considered the mean-variance criterion; see also Almgren (2003) and Huberman

and Stanzl (2005). These papers use a market impact model to capture the cost of the
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execution expressed as a function of the speed of trading, but do not explicitly model the

interaction in a limit order book, or the state variables of the order book. Obizhaeva and

Wang (2013), Rosu (2009), Alfonsi et al. (2010) treat the market as one limit order book and

use an aggregated and stylized model of market impact to capture how the price moves as a

function of trading intensity. These references address the trade scheduling problem, whose

longer time horizon allows one to abstract away the queueing effects that are inherent in the

limit order book.

Market impact models estimate the expected transaction cost of a trade. They take

various functional forms, and typically deconstruct the price impact into temporary and

permanent components, and further specify the decay behavior of the temporary contribution.

They depend on specific characteristics of the stock as well as the speed of trading, often

assumed to be a constant participation rate – e.g., an order executed at 10% participation

rate would aim to trade 100 shares for every 1,000 shares traded in the market across all

participants. Huberman and Stanzl (2004) showed using a no-arbitrage argument that the

permanent price impact must be a linear function of the quantity traded; see also Gatheral

(2010). The functional form and decay kernel of the temporary impact term is not as simple to

characterize analytically. The simplest assumption treats that decay as being instantaneous.

Other alternatives typically allow for exponential or power decay functions. The functional

form that specifies the magnitude of the temporary cost is itself typically assumed to be linear

or sub-linear function of the speed of trading; stylized analytical arguments and statistical

evidence suggest a sub-linear functional form. For example, Chacko et al. (2008) provide

empirical evidence that the expected price impact is proportional to the square root of the

quantity traded; see also Bouchaud et al. (2008).

We refer to the class of models described above as macroscopic (or “macro”) models in the

sense that they do not take into account microstructure variables that can be gleaned from the
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limit order book, and typically try to give cost estimates over long time durations, minutes

to hours to days. These models are typically estimated through large scale cross-sectional

regressions based on the realized costs of a proprietary set of algorithmically executed trades.

Almgren et al. (2005) describe an econometric approach for that problem, while Rashkovich

and Verma (2012) provide important insights that improve the estimation procedure, and

allow for more accurate de-trending of the trade data. Moallemi et al. (2014) extend the

above approach to include a short term alpha fixed effect associated with the identity of the

trader.

In contrast to the above mentioned papers, our analysis proposes a temporary price impact

model that explicitly depends on limit order book variables. It is best suited over short time

horizons of the order of minutes (the same order of magnitude as that of queueing delays

encountered by limit orders until they execute in the market). Recently, Cont et al. (2014)

studied a price impact model expressed as a function of the so-called order flow imbalance

that measures the difference between events (arrivals, trades and cancellations) on the two

sides of the limit order book. Imbalance should be normalized by the queue depth, which

is something that emerges in our work as well in capturing the effect of market orders;

limit orders have a different relation to depth that we also identify. Cont et al. (2014) did

not suggest a model that could be used to explain and predict trading costs, but such an

extension may be possible.

The remainder of the chapter is organized as follows. Section 3.2 models the operation of

a limit order book as a multi-class queueing system and studies its fluid dynamics. Section 3.3

states the optimal execution problem. Section 3.4 charactererizes the optimal strategy, on

which a microstructure cost function we provide in Section 3.5 is predicated. Section 3.6

reports on the empirical performance of our model and provides a comparison with some

benchmark models in the literature.
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Figure 3.1: An illustration of an electronic
limit order book.
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Figure 3.2: An illustration of the coupled,
multi-class priority queueing network associ-
ated with an electronic limit order book and
its fluid dynamics.

3.2. The Limit Order Book

An electronic limit order book (LOB) can be modeled as a multi-class queueing system. In

broad terms, we will associate queues at each price point where buy or sell limit orders can

wait until executed or canceled by the respective traders. We model and track cumulative

arrivals of limit orders into the various queues, model the arrival and execution behavior of

market orders, and subsequently discuss the dynamics of this queueing system. Figure 3.1

provides a useful schematic to visualize the various aspects of the LOB.

This chapter studies an optimal execution problem and explores how this provides the

basis of a microstructure-based transaction cost function. The specific problem that we

analyze is one of optimally buying C shares of a security at the lowest possible price over

a given time horizon T . In our setting, we typically imagine T to be of the order of a few

minutes.

This transient optimal control problem motivates the use of a deterministic fluid model

(sometimes known as a “mean field” model) for the evolution of the LOB, where the discrete
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and stochastic primitive processes (e.g., order arrivals, cancellations) are replaced by contin-

uous and deterministic analogues, where infinitesimal orders arrive continuously over time

at a rate that is equal to the instantaneous intensity of the underlying stochastic processes.

This model can be justified as an asymptotic limit using the functional strong law of large

numbers in settings where the rates of order arrivals grow large but the size of each individual

order is small relative to the overall order volume over any interval of time.1 It is well-suited

for characterizing transient dynamics in such systems, which roughly correspond to the time

scale over which queues drain or move from some initial configuration to an equilibrium

state; this is also the relevant time horizon for our optimal execution problem. Indeed, our

model is oriented towards liquid securities, where orders arrive on a time scale measured in

milliseconds to seconds, while we will consider a time horizon on the order of minutes.

3.2.1. Multiclass Queueing Network

Our multiclass queueing network model of the LOB is defined as follows:

Prices. We will consider a discrete price grid indexed by i ∈ {1, . . . , N}, refer to the

ith price point by pi, and assume that prices are labeled so that p1 < p2 < · · · < pN ; it is

natural to think that this price sequence is in uniform increments of an underlying minimum

tick-size.

Queues. At each price point pi we associate two queues for buy and sell limit orders,

respectively. Specifically, at each time t ≥ 0, denote by Qbi(t), Qsi (t) ∈ R+ the total quantity

of shares available for purchase or sale, respectively, at price level pi. We define the best-bid

1Mandelbaum and Pats (1995) provides a framework that could be adapted into this setting to justify such
a limit.
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queue bt ∈ {1, . . . , N} to be the non-empty queue of buy orders of highest price, i.e.,

bt , min
{

1 ≤ i ≤ N : Qbj(t) = 0, for all i < j ≤ N
}
,

and the best-ask queue at ∈ {1, . . . , N} to be the non-empty queue of sell orders of lowest

price, i.e.,

at , max
{

1 ≤ i ≤ N : Qsj(t) = 0, for all 1 ≤ j < i
}
.

We denote the overall state of the LOB by Q(t) , (Qb(t), Qs(t)) ∈ RN+ × RN+ , where

Qb(t) ,
(
Qb1(t), . . . , QbN (t)

)
∈ RN+ and Qs(t) ,

(
Qs1(t), . . . , QsN (t)

)
∈ RN+ .

We will require that queue length vectors satisfy bt < at, or, equivalently, that pbt < pat ,

i.e., the best-bid price is strictly less than the best-ask price. This will be made clearer

through the equations of dynamics. Further, we require that both sides of the limit order

book be non-empty, i.e., the best bid and best ask levels are well defined and Qbbt(t) 6= 0 and

Qsat(t) 6= 0. Denote by Q ⊂ RN+ × RN+ the set of such feasible queue length vectors.

Limit order arrivals. Limit orders seek to buy (resp., sell) a certain quantity of shares at

any price up to and including a limit price that is below (resp., above) the best-bid (resp.,

best-ask) price in the market.2 Limit orders cannot be filled upon their arrival, but instead

join FIFO queues associated with their limit prices and wait until they are filled or canceled.

Market order arrivals. Market orders seek to buy (resp., sell) a certain quantity of shares

at the “best” available price. Market orders trade instantaneously against posted limit orders

on the contra-side of the order book according to a price-time priority rule: when matching

2These are commonly known as non-marketable limit orders. In our setting, limit orders that do not satisfy
this price condition (i.e., marketable limit orders) are equivalent to market orders and thus considered as such.
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a market order to buy (resp., sell) against resting limit orders to sell (resp., buy), the resting

orders are first considered in increasing (resp., decreasing) order of price; within each price

level, resting limit orders are considered in a first-in-first-out (FIFO) order. The resting limit

order shares that are matched to and filled by a market order are subsequently removed from

the order book.

Limit order cancellations. Resting limit orders may be canceled at any point. When a

cancellation occurs, the canceled shares are removed from their corresponding queue in the

order book.

In queueing parlance, a limit order book corresponds to a coupled multiclass queueing

network; cf. Figure 3.2. Job arrivals correspond to the arrival of limit orders, service comple-

tions correspond to the arrival of market orders, and abandonments correspond to the arrival

of limit order cancellations. The price-time priority rule creates a service discipline where

queues are assigned priority classes based on their prices and where each queue is served in

FIFO.

3.2.2. Fluid Model Dynamics

The fluid model approximation of the LOB replaces stochastic and discrete arrival and can-

cellation processes by continuous and deterministic flows.

Limit order arrivals. At time t, we assume that buy and sell limit orders arrive at each

price level pi with rates λbi · 1(i ≤ bt) and λsi · 1(i ≥ at), respectively, given two vectors

λs, λb ∈ RN+ . In other words, limit orders arrive at price levels that are at the top-of-the-

book, i.e., at the current best-bid and best-ask, or at prices inside the book, i.e., buy orders

at prices below the best-bid and sell orders at prices higher than the best-ask.3

3The rates λbi and λsi are specified as functions of the price level pi, and and these limit order flows turn
off depending on the price level as compared to the prevailing best-bid and best-ask prices. A more complex
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Market order arrivals. Market orders to sell or to buy arrive at rates that are dependent

on the current best-bid and best-ask prices, respectively, denoted by µsbt and µbat . The two

vectors µs, µb ∈ RN+ define the market order arrival rates at different price levels for the

best-bid and best-ask, respectively.

Limit order cancellations. We assume that resting limit orders are canceled at a uniform

rate γ > 0, which implies that the cancellation rate per unit time in a queue of size Q is γQ.

Combining the above, we obtain the following ODEs for the order book state process:

Q̇bi(t) = λbi · 1(i ≤ bt)− µsi · 1(i = bt)− γQbi(t), ∀ 1 ≤ i ≤ N, (3.1)

Q̇si (t) = λsi · 1(i ≥ at)− µbi · 1(i = at)− γQsi (t), ∀ 1 ≤ i ≤ N. (3.2)

We will make the following assumption regarding the arrival rate parameters:

Assumption 4. The arrival rate of limit orders at any price level exceeds the arrival rate of

contra-side market orders associated with that price level. That is, λsi ≥ µbi and λbi ≥ µsi for

all 1 ≤ i ≤ N.

The following lemma characterizes the unique stationary point of the fluid dynamics

(3.1)–(3.2).

Lemma 2. Given an arbitrary initial condition Q(0) ∈ Q, there exists a unique solution

Q : [0,∞)→ Q to the fluid model ODEs (3.1)–(3.2). This solution satisfies:

(i) bt = b0, at = a0, for all t ≥ 0,

model would allow for the rates at pi to depend on the distances of pi from bt and at, and possibly on the
queue lengths, especially these at the best-bid and best-ask. Given our end goal of extracting a transaction
cost model which is parsimonious and easily estimable using data, we will not consider these extensions herein.
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(ii) As t→∞, Q(t)→ q∗, where q∗ , (q∗,b, q∗,s) is given by

q∗,bi ,



λbi/γ if 1 ≤ i < b0,

λbi − µsi
γ

if i = b0,

0 if b0 < i ≤ N,

q∗,si ,



0 if 1 ≤ i < a0,

λsi − µbi
γ

if i = a0,

λsi/γ if a0 < i ≤ N,

(All proofs can be found in the Appendix.) Part (i) of Lemma 2 states that starting

from any initial condition, the best-bid and best-ask prices remain constant. This is a direct

consequence of Assumption 2.4 Part (ii) of Lemma 2 identifies the long-run equilibrium

configuration of the limit order book in terms of the rate parameters and the initial condition.

3.3. The Optimal Execution Problem

We consider a trader that seeks to buy C shares over a given time interval [0, T ] by posting

limit and market orders over time and at various price levels in the limit order book. The

trader’s objective is to minimize the average buying price. We describe this problem in detail

as follows:

Limit orders. Given Lemma 2, any limit orders posted at price levels pi with i < bt

(i.e., strictly below the best-bid price) will never trade and can therefore be excluded from

consideration, without loss of generality. The following assumption also disallows limit orders

strictly above the best-bid price:

Assumption 5 (No Limit Orders Inside Spread). We restrict attention to execution policies

that, at each time t, submit no limit orders at price level i, if i > bt. In other words, no limit

4If Assumption 2 is relaxed, then there may be a short term transient that one would need to consider,
e.g., the event rates λi, µi may be imbalanced in a way that the best-bid or the best-ask would change.
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orders are submitted inside the current best-bid and best-ask prices.

We make this assumption for tractability reasons. It disallows the trader from setting a

new best-bid price. Under Assumption 5, the limit order placement decision is reduced to

selecting how much quantity to submit at the best-bid price level pbt . In our model, again

without loss of generality, we can assume that all limit orders are placed in a single block at

time t = 0.5 Thus, we will restrict attention to policies which place all limit orders (if any)

at time t = 0 at the best-bid price level b0. We denote by SL the aggregate size of this limit

order, and require that 0 ≤ SL ≤ C.

Market orders. The trader may also place market orders. We denote by S(t) the cumu-

lative number of market orders placed over the interval [0, t].

Assumption 6 (Regularity of Market Orders). The market order process S(·) must satisfy:

(i) S(·) is nondecreasing and right continuous with left limits. Denote by S(t−) the left

limit of function S(·) at t ∈ (0, T ] and define S(0−) , 0.

(ii) S(·) has finitely many jump discontinuities and is absolutely continuous on the intervals

between jumps.

Given the above assumption, the process S(·) can be rewritten as a combination of discrete

jumps or “block” trades, and continuously emitted orders or “flow” trades. Specifically, denote

the times of the jump discontinuities by 0 ≤ t1 ≤ · · · ≤ tK ≤ T. Denote by Jk the size of

the kth jump or block trade. Then, there exists a Lebesgue integrable instantaneous rate

5We will not provide a proof of that assertion. Intuitively, any policy that submits limit orders at some
time t > 0 can be weakly improved by submitting the same quantity of limit orders at t = 0, which due to
the FIFO priority rule, will now execute sooner.
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function r : [0, T ]→ R+ such that

S(t) =
K∑
k=1

1 {tk ≤ t} · Jk +
∫ t

0
r(s) ds, ∀ t ∈ [0, T ]. (3.3)

Constraints on the policy. An execution policy is specified via a quantity of limit orders

SL and a market order process S(·) that comprises of block trades {Jk} and flow trades r(·).

Definition 3 (Admissible Policy). Given an initial order book state Q(0−) ∈ Q, an execution

policy
(
SL, S(·)

)
with representation (3.3) is said to be admissible if it satisfies

(i) A total of C shares is purchased by the end of the time horizon.

(ii) For each block trade Jk occurring at time tk, with k = 1, · · · ,K, the sizes of block trade

does not exceed the available liquidity on the ask side of the order book, i.e.,

Jk ≤
N∑

i=a
t−
k

Qsi (t−k ).

Denote by P
(
Q(0−)

)
the set of admissible policies given an initial condition Q(0−) ∈ Q.

For simplicity, we will further assume that ask queues outside of the best-ask price start at

their stationary queue lengths specified in Lemma 2. Specifically:

Assumption 7 (Initial Conditions). Q(0−) ∈ Qeq, where

Qeq := {q : q ∈ RN+ , qi = λsi/γ for i = a0 + 1, · · · , N}.

Price movement and the effect on book dynamics. We need to augment the dynamics

specified in Section 3.2, to incorporate the effect of the trader’s actions:
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(a) Buy market orders submitted by the trader may empty queues on the ask side of the

LOB, which would induce a price change in the order book. We will assume that the the order

book maintains a constant bid-ask spread after a price shift, formalized in Assumption 8.

(b) Buy limit orders submitted by the trader to the best-bid price must be tracked sep-

arately from other limit orders at the best-bid price, so as to maintain their queue position

and priority to execute relative to other orders at the same price level. Specifically, the total

quantity of buy limit orders Qbbt(t) at the best-bid price level at time t can be decomposed

as follows

Qbbt(t) = Q0(t) +QL(t) +Q1(t),

where Q0(t) is quantity of limit orders still in the queue that were submitted at t = 0−; QL(t)

is quantity of limit orders still in the queue submitted by the trader at t = 0; and Q1(t) is

quantity of limit orders submitted by other participants after t = 0. These orders are placed

in the queue as illustrated in Figure 3.3: Q0(t) is in the front of the queue, followed by QL(t)

and then by Q1(t).

The trader’s market order policy may deplete price levels on the ask side of the book. Let

τi be time when the aggregate queue lengths up to price pi, for i = a0, . . . , N , are depleted,

i.e.,

τi := inf
{
t ∈ [0, T ] | Qsj(t) = 0, ∀ j = 0, . . . , i

}
, (3.4)

and set τi =∞ if the condition is not satisfied at any time in [0, T ].

Note that we have suppressed the dependence of these times on the initial conditions and

the execution policy in our notation. By their definition, 0 ≤ τa0 ≤ · · · ≤ τN . The best ask

process at, for t ∈ [0, T ], can be expressed in terms of these depletion times by

at = a0 +
N∑
i=a0

1 {τi ≤ t} . (3.5)
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The next assumption describes the order book behavior when an ask queue is depleted.

We assume that the bid-side queues shift to higher price points as needed to ensure that the

bid-ask spread at − bt is constant over time.

Assumption 8 (Constant Bid-Ask Spread). Denote by kt , at − at− the price jump at the ask

at a time t ∈ {τa0 , . . . , τN}. We assume that the bid-side of the book shifts up by the same

amount kt at each such time t. In other words,

Qbi(t) =


Qbi−kt(t

−) + 1{t = 0, i = b0} · SL for i = 1 + kt, . . . , bt,

λbi/γ for i = 1, · · · , kt,
(3.6)

for t ∈ {τa0 , . . . , τN}. Further, queue priority at the best-bid price level is not affected by the

price change, i.e., Q0(t) = Q0(t−), QL(t) = QL(t−), Q1(t) = Q1(t−), for t ∈ {τa0 , . . . , τN}.

System dynamics. Under Assumptions 4–8, and for an admissible policy the evolution

of buy limit orders at the best-bid price are as follows:

Q0(0) = Qbb0(0−), Q̇0(t) =


−µsbt − γQ

0(t) if Q0(t) > 0,

0 otherwise,
(3.7)

QL(0) = SL, Q̇L(t) =


−µsbt · 1{Q

0(t) = 0} if QL(t) > 0,

0 otherwise,
(3.8)

Q1(0) = 0, Q̇1(t) = λbbt − µ
s
bt · 1{Q

0(t) = QL(t) = 0} − γQ1(t). (3.9)

Specifically, the orders submitted by other participants before t = 0 or after t = 0 may get

canceled at rate γ, whereas the block of orders submitted by the trader at t = 0 will not get

canceled. At times t ∈ {τa0 , . . . , τN}, the bid-side queues will shift price levels according to
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Figure 3.3: Illustration of system dynamics.

(3.6). Further,

Q̇bi(t) = λbi · 1(i < bt)− γQbi(t) for 1 ≤ i < bt, t 6∈ {τa0 , . . . , τN}.

The ask-side queues evolve, for 1 ≤ i ≤ N as follows: for t ∈ {t1, . . . , tK},

Qsi (t) =


(
Qsi (t−)−

(
Jk −

∑i−1
j=at−

Qsj(t−)
)+
)+

if i ≥ at− ,

0 otherwise,

and for t 6∈ {t1, . . . , tK},

Q̇si (t) = λsi · 1{i ≥ at} −
(
µbi + r(t)

)
· 1{i = at} − γQsi (t) for at ≤ i ≤ N.

Objective function. The optimal execution problem is to pick an admissible policy
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(
SL, S(·)

)
to minimize the total purchase cost

P
(
SL, S(·)

)
,
∫ T

0
pbt · µsbt1

{
Q0(t) = 0, QL(t) > 0

}
dt+

∫ T

0
pat · r(t) dt

+
K∑
k=1

atk−1∑
j=a

t−
k

pjQ
s
j(t−k ) + patk

Jk − atk−1∑
j=a

t−
k

Qsj(t−k )


 , (3.10)

under Assumptions 4–8, and where the first term is the cost of the executed limit orders,

and the second and third terms are the costs due to the flow and block market order trades,

respectively.

3.4. The Optimal Execution Policy

The characterization of the optimal execution policy involves three steps: (a) We identify

the execution policy that uses only market orders and minimizes the time needed to fill a

target quantity at a given price level. (Lemma 3.) (b) We characterize the optimal execution

policy that would complete a target quantity within the specified time horizon again using

only market orders. (Lemma 4.) (c) Steps (a)–(b) will ultimately guarantee that the market

order execution path will maintain the current price level (b0, a0) for all t < T , and then

push the price at T as needed to complete the target quantity. This property allows us to

compute the maximum number of shares that can be executed via limit orders at the best

bid, b0, taking into account the queue priority of orders posted into that best-bid queue prior

to t = 0 and their respective cancellations over the execution horizon. (Lemma 5.) Jointly

these results characterize the optimal policy in Theorem 5.

We first consider the problem of executing in minimum time a target quantity Ca0 using

market orders only at pa0 , i.e., the (highest priority) best-ask queue that is non-empty at time

t = 0. In studying this problem we impose the constraint that the queue cannot be depleted
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prior to finishing the target quantity, and, specifically, that the queue length stays above

some arbitrary value ε > 0. This is imposed for mathematical tractability and to guarantee

the existence of an optimal policy; without that minimum quantity, the control will strive to

take the queue length arbitrarily close to zero, yet without actually depleting the queue that

would trigger a price change. This assumption is useful in deriving the structural insight of

the next lemma, and will be relaxed later on.

Lemma 3 (Market Orders at One Price). Without loss of generality we focus at the price level

pa0. Let Ca0 be the target number of shares to trade using market orders only at pa0 and let

Qsa0(0−) > 0 be the initial queue length. Consider the minimum time control problem:

minimize {τ : S(τ) = Ca0} , (3.11)

over admissible market order control trajectories {S(t) : t ∈ [0, τ ]} that satisfy the following

constraints

Qsa0(t) ≥ ε, t ∈ [0, τ) and S(τ)− S(τ−) ≤ Qsa0(τ−). (3.12)

The optimal control trajectory {S∗(t), t ∈ [0, τ ]} for (3.11)–(3.12) is the following:

S∗(0) =

 Qsa0(0−)− ε, if Ca0 > Qsa0(0−),

Ca0 , otherwise,
(3.13)

and

Ṡ∗(t) = r∗(t) = κa0 , S∗(t)− S∗(t−) = 0, for t ∈ (0, τ), τ =
(
Ca0 −Qsa0(0−)

)+
κa0

, (3.14)
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where κa0 := λsa0 − µ
b
a0 − γε, and

S∗(τ)− S∗(τ−) =

 ε, if Ca0 > Qsa0(0−),

Ca0 , otherwise.
(3.15)

The intuition behind the lemma is simple: we trade as much as possible without depleting

the queue at t = 0 to avoid the effect of order cancellations at the best-ask queue; if the order

is not completed, we trade with a continuous submission of market orders until we fill Ca0−ε

shares; we finish the trade with a small block trade of size ε. Note that the value of κa0 is

such that the queue length will remain constant at ε during (0, τ). The total duration of

the execution is 0 if the target quantity is less than the displayed depth, and is otherwise

determined by the length of the interval that is needed to continuously trade at rate κa0 until

the order is completed.

Based on Lemma 3, the length of the execution interval li := τi−τi−1 to execute Ci shares

at price pi, for i = a0, · · · , N , is

li = (Ci −Qsi (0−))+

λsi − µbi − γε
≈ (Ci −Qsi (0−))+

κi
, (3.16)

where we redefine κi := λsi − µbi , and the approximation occurs when ε is small; recall that

Qsi (0−) = Q̄si for i > a0. We adopt the above approximation for the remainder of this

chapter. Let Ca0 , Ca0+1, · · · , CN denote the amount of market orders to execute at prices

pa0 , pa0+1, · · · , pN , respectively. Given the relationship in equation (3.16), the optimal exe-

cution problem described in Section 3.3 can be simplified into the following control problem:

minimize
SL,Ca0 ,··· ,CN

∫ T

0
pbt · µsbt1

{
Q0(t) = 0, QL(t) > 0

}
dt+

N∑
i=a0

Ci · pi, (3.17)
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subject to

SL +
N∑
i=a0

Ci = C, SL, Ca0 , · · · , CN ≥ 0, (3.18)

∫ T

0
µsbt1

{
Q0(t) = 0

}
dt ≥ SL, (limit order time)

(3.19)

bt = b0 + min

0 ≤ j ≤ N − a0 :
a0+j∑
i=a0

li > t

 , (limit order dynamics)

(3.20)

Q0(t) satisfies (3.7), QL(t) satisfies (3.8), for t ∈ [0, T ], (limit order dynamics)

(3.21)
N∑
i=a0

li
(3.16)
≈

N∑
i=a0

(Ci −Qsi (0−))+

κi
≤ T, (market order time)

(3.22)

Ci ≥ Qsi (0−), for i < n, (market order dynamics)

(3.23)

n = min {a0 ≤ j ≤ N : Ck = 0 for all k > j} . (market order dynamics)

(3.24)

Constraint (3.19) upper bounds the number of shares that can be traded using limit orders

within time T , taking into account the execution priority of limit orders resting in book before

time t = 0. Constraint (3.22) ensures that the total time taken trading using market orders

at different price levels is upper bounded by the specified time horizon T . Condition (3.24)

identifies the highest price queue in which market orders will be executed, indexed by n, at

price pn, and (3.23) ensures the time-price priority rule that ensures that all lower priced

queues (that have higher priority) will be depleted.

82



For the remainder the chapter we make the following simplifying assumption on κi:

Assumption 9. Assume that κi = λsi − µbi = κ for all i.

κi captures the rate at which the trader can continuously execute with market orders

when the best-ask is at price pi, and without causing a price change. One would expect the

continuous trading rate κi increases as the price moves up, because more limit orders to sell

get submitted at these more favorable price levels. The solution of the optimal execution

problem is more involved in that case, and we will not consider it in this chapter, given our

ultimate interest in specifying a parsimonious microstructure market impact model.

Lemma 4 studies a subproblem of (3.17)–(3.24) that seeks to optimize over how to execute

C ′ shares over a time horizon of length T at minimum cost using only market orders, allocated

according to Ca0 , · · · , CN across price levels.

Lemma 4 (Market Orders Across Price Levels). Given initial queue lengths Qsa0(0−) > 0 and

Qsk(0−) = Q̄sk for k = a0 + 1, · · · , N as assumed in Section 3.3. Consider the problem of

minimizing the total execution cost of C ′ shares of market orders over a time horizon of

length T

min
{Ck≥0, k=a0,...,N}

N∑
k=a0

Ck · pk

s.t.
N∑

k=a0

Ck = C ′,
N∑

k=a0

lk
(3.16)=

N∑
k=a0

(Ck −Qsk(0−))+

κ
≤ T

Ci ≥ Qsi (0−), for i < n,

n = min {a0 ≤ j ≤ N : Ck = 0 for all k > j} .

(3.25)
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Then, the optimal solution to (3.25) is {C∗k , k = a0, . . . , N} given by

C∗a0 = min
{
Qsa0(0−) + κT,C ′

}
and C∗k = min

Qsk(0−),
(
C ′ −

k−1∑
m=a0

C∗m

)+ , k = a0 + 1, . . . , N.
(3.26)

Under Assumption 9, the above problem admits a simple solution where the trader only

applies this continuous submission of market orders at rate κ at the best-ask queue at price

a0, and then submits a block order (as needed) to deplete higher price level queues at T . This

is the cheapest price at which the trader can accumulate up to κT shares. A consequence

of Lemma 4 is that the best-bid and the best-ask remain equal to (b0, a0) for all t ∈ [0, T ),

which simplifies the determination of the limit order placement decision, SL ∈ [0, C].

Lemma 5 (Limit Orders). In the optimal solution of problem (3.17)–(3.24),

SL = min
{
µsb0

(
T − 1

γ
log

(
1 + γ

µb0

Q0(0)
))+

, C

}
. (3.27)

The above expression is intuitive, and crucially depends on the quantity tdrain, which is

defined as tdrain := 1
γ log

(
1 + γ

µb0
Q0(0)

)
. It is derived from a transient analysis of a fluid

queue with abandonments and is equal to the length of time required for the initial queue

length Q0(0) to get depleted either due to cancellations or trades (service completions);

this is increasing in the initial queue length and decreasing in the trading rate µb0 and the

cancellation rate γ.

The next theorem characterizes the optimal strategy.

Theorem 5 (Optimal Policy). Fix the target size C > 0, execution horizon T > 0, and consider

an arbitrary initial condition Q(0) ∈ Qeq. The optimal execution policy for (3.17)–(3.24) is

the following:
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(a) set the limit order execution quantity SL according to (3.27);

(b) for C ′ = C−SL, set the market order execution quantities Ca0 , Ca0+1, . . . , CN according

to (3.26);

(c) for i = a0 and Ca0 specified above, set the market order execution trajectory

{S(t) : t ∈ [0, τa0)} according to (3.13)–(3.15);

(d) for i = a0 + 1, · · · , N , according to Lemma 4, τi = τa0 ≤ T . That is, market order

executions at higher prices happen with block trades at t = τa0. We will refer to this

aggregate block as the “cleanup” trade.

In Part (c), the solution uses the infinitesimal ε > 0 to denote the minimum queue length

to be maintained in Qsa0 while submitting a continuous stream of market orders (i.e., service

completions) at rate κ.

3.5. A Microstructure Market Impact Cost Model

In this section, we exploit the solution of the execution problem studied thus far in order to

propose a microstructure market impact model. Such a model estimates the trading cost of

an order as a function of microstructure limit order book variables, including, for example,

real-time measurements of queue lengths and trading rates. We will propose a series of

approximations that will yield a parsimonious microstructure market impact model that can

be easily and robustly estimated through trade data.

The optimal value of the control problem studied in the previous two sections provides
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an estimate of the cost of purchasing C shares in T time units. given by

Total cost = pb0 · SL + pa0 · Ca0 +
N∑

i=a0+1
pi · Ci

= (p− s/2) · SL + (p+ s/2) · Ca0 +
N−a0∑
k=1

(p+ s/2 + kδ) · Ca0+k

= (p+ s/2) · C − s · SL +
N−a0∑
k=1

kδ · Ca0+k,

(3.28)

where p is the arrival price, i.e., the mid-price at the start time of the execution, and the

last expression accounts for the execution cost relative to the (contra side or far side) price

p+ s/2 = pa0 . The implementation shortfall, or average purchase price relative to the arrival

price, is

IS ,
Total cost

C
− p = s/2− s · SL

C
+
N−a0∑
k=1

kδ · Ca0+k
C

. (3.29)

In this formula, the first term accounts for the cost relative to the best-ask price pa0 (the far

side), which is half the spread (s/2) above the mid-price p. The second term then subtracts

the spread for the shares traded using limit orders at the lower price pb0 = pa0 − s. The final

term adds price increments (a multiple of the tick size) for the higher priced queues that

were used in the cleanup trade. In order to simplify the subsequent empirical analysis, we

will make several approximations to the final two terms:

(i) The limit order cost compensation term depends on SL = min
{
µsb0

(T − tdrain)+, C
}
.

We will disregard cancellations and approximate the draining time tdrain of the orders

posted on the near side of the market prior to t = 0 by tdrain ≈ Q0(0)/µsb0
. Subsequently,

we approximate SL as follows

SL ≈ min
{(
µsb0T −Q

b
b0(0)

)+
, C

}
.
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(ii) For the cleanup cost term, we will first assume that the stationary queue lengths Q̄si ,

a0 < i ≤ N , as defined in Assumption 7, are all equal to some value Q̄s.6 In that case,

it follows from Lemma 4 that Ca0+k = Q̄s for 0 < k < n, where

n :=
⌈

(C ′ − Ca0)+

Q̄s

⌉
=
⌈(
C − SL −Qsa0(0)− κT

)+
Q̄s

⌉
(3.30)

denotes the number of additional price levels needed in the cleanup trade. We will

further simplify the expression by dropping SL from its calculation, i.e., we set n ≈(
C −Qsa0(0)− κT

)+
/Q̄s, and subsequently approximate the average price penalty per

share due to market order executions relative to the far side to be

∑n
i=0 iδ · Q̄s

Ca0 + nQ̄s
. (3.31)

The effect of Ca0 diminishes as n increases. When n is large, the average price per share

in (3.31) can further be approximated by

n+ 1
2 δ ≈ δ

2 ·
(
C −Qsa0(0)− κT

)+
Q̄s

+ δ

2 .

Combining (i)-(ii), the resulting simplified expression of the implementation shortfall is

IS = s/2− s ·
min

{(
µsb0

T −Qbb0
(0)
)+

, C

}
C

+ δ

2 ·
(
C −Qsa0(0)− κT

)+
Q̄s

+ δ

2 . (3.32)

This expression depends on the microstructure variables such as trading rates on either side

6This is certainly an idealization. Typically, one would expect to see the limit order arrival rates λsi increase
with price levels i, which then suggests Q̄si := λsi/γ should also increase with i. Nevertheless, we find in the
empirical tests that using a uniform estimate of the stationary queue lengths performs reasonably well.

87



of the book, queue depths, spread, tick size, as well as the trade quantity and time horizon.

Specifically,

(a) Effect of limit orders: The execution cost is decreasing in SL, the volume that can be

traded using limit orders. The latter is decreasing in the queue length on the near side of

the book, Qbb0
(0) (the bid side when buying, or ask side when selling), and is increasing

in the the arrival rate of market orders to the near side (market orders to trade against

the trader’s posted limit orders), and in the execution horizon T . The expression for

SL also indicates that the execution cost will be decreasing in the cancellation rate,

although this dependence has been suppressed in the simplified cost formula. The limit

order effect is independent of the trade quantity C (assuming the latter is larger than

SL).

(b) Market order effect at the top-of-book: This depends on C − SL, the residual quantity

to be traded using market orders, and on Qsa0(0) + κT . The latter is increasing in the

displayed depth Qsa0(0), the time horizon T , and the continuous trading rate κ that, as

discussed earlier, captures the rate at which one can continuously trade with market

orders at a given price level without depleting the respective queue and moving the

price.

(c) Market orders at higher prices: the residual quantity that needs to get executed at

higher price levels is decreasing in SL (see (a)), Qsa0(0), κ, and T (see (b)). Its effect is

inversely proportional to the equilibrium depth Q̄s in each of these queues, since that

is used to compute the number of price levels n that the trader will have to deplete.
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3.6. Empirical Results

The microstructure market impact model of equation (3.32) identifies several important mi-

crostructure variables that may affect execution costs. While this model was based on a

number of simplifying assumptions, it is our belief that these variables are nevertheless im-

portant. In order to demonstrate this, in the remainder of this chapter, we will calibrate

this model using a proprietary dataset of algorithmic trades executed in the US equities

market in the third quarter of 2013. Specifically, we will calibrate weights for the different

microstructure variables identified in (3.32) via a regression analysis, and then validate that

the resulting microstructure market impact model can help to explain more of the variability

in observed trading costs.

Our data set consists of short time horizon slices of executions arising from algorithms

based on TWAP, VWAP, and POV7 policies. The execution logic used in those trades dif-

fers from the optimal policy derived in our stylized analysis in Section 3.4. Nevertheless,

our findings will indicate that the microstructure market impact model leads to improved

statistical fits, specifically in explaining the realized costs of execution in this dataset (attri-

bution), when compared with conventional “macro” market impact models. Moreover, the

coefficients of the explanatory variables postulated by our analysis are significant and have

the right signs. The microstructure market impact model also exhibits improved predictive

statistical accuracy, e.g., when used to make real-time predictions of future trading costs

based on available information at the beginning of each trade.

7See, for example, Sotiropoulos (2013) for a description of these policies.
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3.6.1. The Dataset

We use a proprietary dataset of US equities trades from July to September of 2013. This

dataset is itself a random sample of a larger set of algorithmic orders executed over that time

period. For each parent order (e.g., a full day execution according to the VWAP strategy), the

data is summarized in 1-minute intervals. For each such interval we have execution statistics

as well as measurements of various limit order book variables. The data has 980,000 active

trade records (i.e., 1-minute summaries of execution activity), and represents a sample of

1,800 different securities.

Most of the analysis is performed in rolled-up 5-minute slices. Parent orders that lasted

less than 5 minutes or parent order residuals that lasted less than 5 minutes are discarded.

Intervals over which there were no executions are also discarded. We further filter according

to the following criteria: (a) keep only slices that correspond to VWAP, TWAP, and POV

strategies;8 (b) remove orders for illiquid securities that have an average daily trading volume

lower than 300,000 shares; (c) discard the last slice of each parent order to avoid special

considerations and cleanup logic associated with the respective algorithmic strategy, apart

from POV orders; (d) discard slices in the opening 15 minutes of the trading day, 9:30am–

9:45am, and the last 15 minutes of the day, 3:45pm–4:00pm; (e) discard slices for which

the realized implementation shortfall exceeds 200 basis points, where the daily volatility

within the period exceeds 4%, or where the trade volume exceeded 5 times the volume of the

immediately preceding slice; (f) restrict attention to slices with realized participation rate9

between 1% and 30%. Table 3.1 reports monthly descriptive statistics of the filtered dataset.

8Such strategies tend to follow a fairly consistent rate of trading over short periods of time. The composition
of the sample after the various filters were applied was roughly uniform across the three strategies and across
months.

9The participation rate is the ratio of the execution quantity of the slice over the total volume traded in
the corresponding time interval by all market participants.
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JUL 2013 AUG 2013 SEP 2013
Sample Size

5min Slices 27,760 30,054 29,226
Parent Orders 3,396 3,607 3,882
Distinct Securities 988 896 885

Characteristics
Average Daily Volume (shares)

mean 3,014,000 2,595,000 2,509,000
3rd quantile 2,585,000 2,689,000 2,626,000
1st quantile 554,300 578,500 544,000

Size of 5min Slices (shares)
mean 1,294 1,043 849
3rd quantile 1,000 1,000 700
1st quantile 81 100 82

# 5min Slices in Parent Order
mean 8.2 8.3 7.5
3rd quantile 10 9.5 8
1st quantile 1 1 1

Average Queue Length
mean 10,280 21,730 17,750
3rd quantile 2,278 4,078 5,148
1st quantile 434 477 536

Realized Participation Rate
mean 9.60% 9.40% 8.39%
3rd quantile 17.70% 16.20% 14.19%
1st quantile 2.20% 2.26% 1.90%

Price ($)
mean 46.80 38.16 41.41
3rd quantile 57.41 52.23 51.64
1st quantile 15.35 13.31 13.33

Spread ($)
mean 0.031 0.025 0.025
3rd quantile 0.032 0.028 0.024
1st quantile 0.010 0.010 0.010

Daily Volatility
mean 2.23% 1.90% 1.94%
3rd quantile 2.39% 2.31% 2.34%
1st quantile 1.03% 0.97% 0.90%

Implementation Shortfall (bps)
mean 3.04 3.09 3.48
3rd quantile 7.25 7.86 7.19
1st quantile (2.62) (2.53) (1.84)

Table 3.1: Descriptive statistics of the filtered dataset, aggregated into 5-minute slices. Average
queue length represents the aggregated per side, time-averaged queue length at the best-bid or
best-ask over the 5-minute interval. Price is the average trading price. Implementation Shortfall
(bps) = (average trading price - arrival price)*side/arrival price∗104; arrival price is the mid-price
at the beginning of the respective 5-minute slice. The above are straight arithmetic averages as
opposed to volume or notional weighted. (See Section 3.6.3)
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3.6.2. Calibration of Auxiliary Model Parameters

There are three quantities in the market impact equation (3.32) that are not directly observ-

able in the data: the equilibrium queue length Q̄s, the effective tick size δ, and the rate of

continuous trading κ.

The parameter κ captures the rate at which one can execute with a continuous stream of

market orders at the best-ask without causing any price change. Motivated by Assumption 9

and the discussion after it, we will think of κ as a constant multiple of market order rate µb.

Specifically, we postulate that κ can be expressed in the form of θ ·µ, where µ is the nominal

trading rate and θ is a parameter between 0 and 1. We assume that θ is the same on the bid

side and ask side of the book, and across all securities.

Returning to our dataset, we identify the set of slices for which: (a) the average queue

length on the far side (i.e., the ask when buying and the bid when selling) was small, specif-

ically less than or equal to 1/3 of the nominal queue length for the corresponding security;

and (b) there was no price impact, i.e., the respective price level did not change. For each

such slice we know the quantity that was executed as part of that order. We also generate

a forecast for the nominal trading rate µ. We first estimate the fraction of the total daily

volume that is forecast to trade over the corresponding time interval, and then re-scale by

the average daily volume of the corresponding security.10 The trading rate estimate µ is set

equal to half the forecast volume. The ratio of the executed quantity by the slice and of the

corresponding forecast provides a point estimate for θ that is normalized relative to stock-

specific characteristics. We average these estimates for each month and report the sample

estimates together with the standard errors in Table 3.2. The estimated parameter can be

interpreted as follows: over short time durations, one could trade at a rate that is 10% of

10The forecast makes use of a cross-sectional liquidity profile depicted in Figure B.1 in the Appendix.
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JUL 2013 AUG 2013 SEP 2013
Critical ratio θmonth 0.112 (0.006) 0.104 (0.004) 0.091 (0.006)

Table 3.2: Estimates of the critical ratio of trading rate to nominal volume for July-September
2013.

the bid volume or ask volume, respectively, or, equivalently, at a 5% participation rate while

avoiding any price impact. The order of magnitude of this estimate seems plausible but its

precise value is likely to be slightly optimistic, especially for less liquid securities as well as

securities that trade with few shares at the best-bid and best-ask.

For the equilibrium queue length Q̄s and the effective tick size δ, we proceeded as follows.

Our dataset contains execution information for the trades described earlier, and we also have

access to Trade-And-Quote (TAQ) data for each of the securities included in the dataset

over the period of July to September of 2013. Our dataset does not include depth of book

information, i.e., information about the price levels and the corresponding queue lengths at

the price levels that are not at the best-bid and best-ask price levels at a given point in time.

As a result we did not have access to information that would allow us to estimate directly

the queue length Q̄s, but instead we approximated it as the average of the queue lengths at

the best-bid and best-ask, time averaged over the time interval of each 5-minute execution

slice. Similarly, the effective tick size δ is meant to capture the change in price necessary to

accumulate Q̄s shares in the limit order book. Since this was not observable, we will use the

volatility, σ∗ as a proxy for the tick size δ∗; σ∗ is the volatility estimate based on intraday data

for the time interval of the respective slice and accounts for the strong time-of-day pattern

exhibited by the intraday volatility profile.
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3.6.3. Estimation of the Microstructure and “Macro” Market Impact Mod-

els

Microstructure Market Impact Model (In-Sample Regressions). We start by estimating

the microstructure market impact model in equation (3.32) using a linear regression analysis.

Let ISk denote the implementation shortfall of the kth observation (5-minute slice) in the

trade data described in Section 3.6.1. Implementation shortfall is defined as the normalized

difference between the average execution price and the arrival price, denoted as Pk and P 0
k ,

respectively. It is expressed in basis points. The arrival price is defined as the mid-price, i.e.,

the average between the best-bid and best-ask prices at the start time of the slice. The start

and end times include millisecond timestamps. Specifically,

ISk := (Pk − P 0
k )/P 0

k · dk · 104,

where the trade direction dk = 1 for orders to buy and dk = −1 for orders to sell. Normalizing

both sides of (3.32) by the arrival price we get that

IS = 1
2 · s

∗−
min

{
C,
(
µsb0

T −Qbb0
(0)
)+
}

C
· s∗+ 1

2 ·
(C −Qsa0(0)− κT )+

Q̄s
· δ∗+ 1

2 · δ
∗, (3.33)

where s∗ := s/p · 104, δ∗ := δ/p · 104 are the normalized spread and tick size, respectively.

Define

RL :=
min

{
C,
(
µsb0

T −Qbb0
(0)
)+
}

C
, RM :=

(
C −Qsa0(0)− κT

)+
Q̄s

, (3.34)

for the price adjustments due to limit order executions and market orders at higher price

levels, respectively. Expressions (3.33)–(3.34) are written for buy orders. The corresponding

expressions for sell orders would replace in the first term µsb0
with µba0 and Qbb0

(0) with Qsa0(0),
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JUL 2013 AUG 2013 SEP 2013
(intercept)

coefficient -0.6888*** -0.6941*** -0.5832**
std. error 0.1232 0.1140 0.1076

spread (bps): s∗

coefficient 0.3187*** 0.3905*** 0.3950***
std. error 0.0069 0.0077 0.0070

limit order: RLs∗

coefficient -0.3027*** -0.3415*** -0.3658***
std. error 0.0107 0.0100 0.0099

add. tick to pay: RMσ∗

coefficients 0.0991*** 0.1480*** 0.1486***
std. error 0.0234 0.0225 0.0348

tick size: σ∗

coefficients 2.3238*** 1.8508*** 2.4290***
std. error 0.1098 0.0997 0.0996

R-squared 9.91% 10.62% 13.48%
Significance: *** p<0.001, ** p<0.01, * p<0.05

Table 3.3: Monthly linear regression results for microstructure market impact model of (3.35).

in the second term Qsa0(0) with Qbb0
(0) and Q̄s with Q̄b. We will estimate the following linear

model:

IS = β0 + β1 · s∗ + β2 · (RLs∗) + β3 · (RMδ∗) + β4 · δ∗. (3.35)

The regression results can be found in Table 3.3. We find consistently good performance

for our model, represented by the high R2 values (see discussion in next section), the fact that

the coefficients are all statistically significant, and that the signs of the coefficients are all

in line with our predictions. The month-to-month variability is partially due to the modest

sample size and variations in the set of securities and parent orders included in our data

set as well as variations in market conditions. If, instead of lower bounding the realized

participation rate by 1%, we only allowed slices whose realized participation rate was greater

than 3%, then the explanatory power of the model increased to an R2 of 12.30%, 11.94% and

15.45% for July, August and September, respectively.
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JUL 2013 AUG 2013 SEP 2013
(intercept)

coefficient 0.3204*** 0.5495*** 0.7799***
std. error 0.1238 0.1148 0.1091

(percent of market vol.)·σ∗

coefficients 10.3835*** 9.0038*** 9.5916***
std. error 0.6445 0.6067 0.6922

volatility: σ∗

coefficients 1.5498*** 1.4778*** 1.9781***
std. error 0.1127 0.1026 0.1046

R-squared 3.24% 3.02% 3.75%
Significance: *** p<0.001, ** p<0.01, * p<0.05

Table 3.4: Monthly linear regression of benchmark model in (3.36) with α = 1 (linear).

Benchmark “Macro” Market Impact Model. Most transient market impact models in

the literature express the execution cost as a function of the normalized size of the order,

expressed as a percentage of the overall volume that trades in the market in the respective

time interval, and suggest the use of functions of the form:

IS = β0 + β1 · (Percent of Market Vol.)α σ∗ + β2 · σ∗, (3.36)

where typically α = 0.5 or 1.11

Table 3.4 and 3.5 illustrate the quality of these fits. Note that, as for the microstructure

market impact model estimate, σ∗ is the volatility estimate using intraday data for the time

interval of the respective slice. A simpler model would use a static volatility estimate, again

prorated to the duration of the slice, but independent of the time-of-day. This reduces the

explanatory power of the “macro” models from around 3% to about 1%, underscoring the

11We have examined a finer grid of α = 0.1, 0.2, . . . , 1. The performance does not vary much with the
selection of α, and α = 0.5 or α = 1 oftentimes have the best performance. We focus on explaining the market
impact of short duration slices and we will disregard the decay kernel that is sometimes included in transient
market impact models.
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JUL 2013 AUG 2013 SEP 2013
(intercept)

coefficient 0.3235** 0.5480*** 0.7839***
std. error 0.1238 0.1148 0.1091

(percent of market vol.)0.5 · σ∗

coefficients 6.4110*** 5.5267*** 5.8011***
std. error 0.3913 0.3685 0.4132

volatility: σ∗

coefficients 0.7626*** 0.8033*** 1.2844***
std. error 0.1429 0.1320 0.1367

R-squared 3.27% 3.04% 3.77%
Significance: *** p<0.001, ** p<0.01, * p<0.05

Table 3.5: Monthly linear regression of benchmark model in (3.36) with α = 0.5 (square root).

importance of incorporating this effect.

Cross-Validation. Next we compare the out-of-sample performance of our model against

that of the benchmark models. We perform a 3-fold cross-validation using the three monthly

samples of data from July to September in 2013.12 We proceed as follows: in each round,

we select one monthly sample among the three as the testing data. On the data of the

other two months, our model, the linear benchmark model, and the square root benchmark

models are fit. Then, the calibrated models are applied to the test set to evaluate how

much of the variability in market impact can be explained by each model. Three rounds of

training and testing are performed by rotating through the different months as the test set.

Finally, the prediction performance of each model takes an average among the three rounds

of cross-validation.

When evaluating the out-of-sample accuracy of the different models, we compare their

12Usually a k-fold cross-validation requires dividing all data randomly into equal size subsets. Here we take
the natural monthly division of data instead. We expect the result, in particular, the comparison between the
two models, be of similar quality when we trisect randomly.
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mean squared error with that of the mean predictor to define a generalized R2 as:

generalized R2 := 1− Mean Squared Error (selected model)
Mean Squared Error (mean predictor) . (3.37)

For that purpose, there are two candidate mean predictors to use: the mean of the train set,

or the mean of the test set. Using the mean of the train set is more popular in the literature

and has the interpretation that the mean predictor itself is a model that is trained together

with other models on the train dataset in each round. In Table 3.6, we report the average

generalized R2 values based on both mean predictors.

We find that the microstructure market impact model has an average out-of-sample R2 of

around 11%, explaining a factor of 2.5 more of the out-of-sample variability in realized trading

costs relative to the “macro” models when compared to the mean predictor; the “macro”

market impact models had an average out-of-sample R2 of around 3.1%. The performance

improvement is consistent across the three separate test sets, and, as we will see below,

fairly robust to various changes to the way we construct and estimate the microstructure

market impact model. The microstructure model treats separately the limit order effect on

the execution cost and suggests that measuring trade size as a multiple of queue depth is

useful in explaining execution costs. The latter suggests a further segmentation of the data

by security characteristics, which we will explore in the next subsection.

13The above analysis could be repeated to include orders that are traded at lower participation rates, i.e.,
below 1% which we used as a filter thus far. When including slices with realized participation greater or equal
to .25%, the R2 of the microstructure market impact model drops to 9%; the “benchmark” linear and square
root models exhibit an R2 of about 3%. When we fit a model exclusively to lower participation rates, say
in the interval [.25%, 1%], the microstructure model explains 4.4% of the realized cost variability, while the
benchmark models explain 1% of the variability.
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Model eq. (3.35)
Benchmark model

eq. (3.36)
α = 1 α = 0.5

Avg. out-of-sample R2 (vs. predicted mean) 11.03% 3.11% 3.12%
relative improvement 0.00% 255% 254%

Avg. out-of-sample R2 (vs. current mean) 10.97% 3.04% 3.06%
relative improvement 0.00% 261% 258%

Table 3.6: Average out-of-sample R2 and relative improvements for a 3-fold cross-validation
comparison between our model and the linear/square root benchmark models under two mean
predictors. 13

3.6.4. Robustness Checks

Order & Security Segmentation. First, we grouped the dataset into three sets depending

on their realized participation rate. We used the following segments: [1%, 10%], (10%, 20%],

(20%, 30%]. Table 3.7 reports the out-of-sample performance14 of the microstructure model

and the linear/square root benchmark models in each of these segments. The microstructure

model continues to statistically outperform the “macro” benchmark models for all of these

trade groups, but the explanatory power of all models improves as the participation rate

increases, since, as expected, in these settings the statistical signature of the trading slice is

likely to be a key driver of the price movement.

Second, following on the observation of the previous subsection, we segmented the trade

observations according to the stock characteristics, and specifically, their average daily volume

(ADV) and average queue length. We divided the dataset according to the 33% and 66%

ADV percentiles, and further segmented according to average queue length at the 30%, 60%,

and 90% percentiles. Table 3.8 reports the out-of-sample results based on these 12 segments

of the data. For 9 out of the 12 segments we have enough observations to perform cross-

14Out-of-sample results in this section are with respect to the predicted mean unless otherwise indicated.
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Model eq. (3.35)
Benchmark model

eq. (3.36) Sample size
α = 1 α = 0.5

Percent of market vol.
[1%,10%] 8.82% 1.87% 1.89% 55,337
(10%,20%] 14.10% 5.34% 5.21% 19,974
(20%,30%] 15.08% 4.23% 4.24% 11,729

overall: [1%,30%] 11.03% 3.11% 3.12% 87,040

Table 3.7: Out-of-sample performance when clustering by market participation rate.

validation tests. Again, within each of these segments, the average out-of-sample R2 of our

model has consistently significant improvement over those of the “macro” models. Moreover,

we see (as one would expect) that model accuracy improves as queue depth increases that

correspond to settings where the queueing model used in our analysis may be more relevant.

The results are qualitatively similar if we segment with respect to queue lengths expressed

in notional dollars rather than shares.

Last, we examined the subset of the data trading in security names with low daily volumes.

We restricted attention to securities with an average daily volume between 50,000 shares

and 300,000 shares. Table 3.9 reports the out-of-sample performance of our model and the

benchmark models based on the sample of these less liquid names. The explanatory power

of all models improves. Moreover, the performance improvement of our model against the

benchmark models becomes more significant.

Effect of Nonlinearity. The structural form of the microstructure model involves two

non-linear terms that are not a concern when using the model to produce cost estimates or

in attributing trade execution performance, but they may affect computational tractability

in the context of an optimization model, either for stock selection or for scheduling how to

execute a large trade during the course of a longer time horizon. A drastic simplification of
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Model eq. (3.35)

Low depth Mid depth High depth Ultra deep
Low ADV 6.26% 10.23% 17.14% too few obs.
Mid ADV 5.38% 8.12% 12.62% too few obs.
High ADV too few obs. 5.56% 10.32% 24.84%

Model eq. (3.36)
(α = 1)

Low depth Mid depth High depth Ultra deep
Low ADV 2.37% 3.28% 5.10% too few obs.
Mid ADV 2.23% 2.64% 4.62% too few obs.
High ADV too few obs. 3.03% 3.84% 6.64%

Model eq. (3.36)
(α = 0.5)

Low depth Mid depth High depth Ultra deep
Low ADV 2.39% 3.25% 5.13% too few obs.
Mid ADV 2.27% 2.63% 4.59% too few obs.
High ADV too few obs. 3.10% 3.90% 6.68%

Sample size

Low depth Mid depth High depth Ultra deep
Low ADV 14,775 9,503 4,589 133
Mid ADV 9,712 10,617 8,083 614
High ADV 1,625 5,992 13,440 7,957

Table 3.8: Out-of-sample performance when clustering by (average daily volume, average queue
length).

101



Model eq. (3.35)
Benchmark model

eq. (3.36)
α = 1 α = 0.5

Avg. out-of-sample R2 (vs. predicted mean) 23.26% 4.72% 4.91%
relative improvement 0.00% 393% 374%

Table 3.9: Out-of-sample performance for the sample of securities with low daily volumes.

the model would remove the non-linearities, as in

IS = β0 + β1 · s∗ + β2 ·

(
µsb0

T −Qbb0
(0)
)

C
· s∗ + β3 ·

(
C −Qsa0(0)− κT

)
Q̄s

· δ∗ + β4 · δ∗. (3.38)

Using this simplified model in (3.38) in the cross-validation tests, we see that the out-of-

sample R2 of the microstructure model drops to an average of 8.19%, yet still outperforming

the “macro” models; this comparison held across segments of the data by participation rates

or security characteristics.

Effect of Time Horizon. The microstructure variables fluctuate over time, and one

could expect that the model accuracy depends on the time horizon of the trade slices. Queue

length measurements are likely to be more representative over shorter time intervals, but

trading rate measurements will be more noisy over short time intervals. Table 3.10 summa-

rizes our statistical results when instead of using 5-minute trade slices we organize the data

sample in 1-minute slices, and illustrate that the statistical significance (out-of-sample) of

the microstructure model improves in shorter horizons that may be relevant in the context

of dynamic execution algorithms used to optimize over tactical order placement decisions.

Tables 3.11–3.12 report the out-of-sample performance in segmented data samples of the

1-minute slices, and should be contrasted to Tables 3.7–3.8.

The explanatory power of these models improves if one adds lagged residuals of the past
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Model eq. (3.35)
Benchmark model

eq. (3.36)
α = 1 α = 0.5

Avg. out-of-sample R2 (vs. predicted mean) 16.57% 2.67% 2.81%
relative improvement 0.00% 521% 490%

Avg. out-of-sample R2 (vs. current mean) 16.52% 2.61% 2.75%
relative improvement 0.00% 533% 501%

Table 3.10: Out-of-sample performance for the sample of 1-min trade slices.

Model eq. (3.35)
Benchmark model

eq. (3.36) Sample size
α = 1 α = 0.5

Percent of market vol.
[1%,10%] 13.53% 0.94% 0.96% 73,166
(10%,20%] 19.24% 2.26% 2.26% 40,631
(20%,30%] 21.51% 3.59% 3.59% 19,830

overall: [1%,30%] 16.57% 2.67% 2.81% 133,627

Table 3.11: Out-of-sample performance when clustering by market participation rate (1-min
trade slices).

two periods (where each residual is the difference between the realized cost and the predicted

cost). Their respective coefficients are positive and statistically significant, and they seem to

capture short-term price momentum. The explanatory power improves by about 2% when

explaining realized costs of 1-minute trading slices, and by about 0.6% for 5-minute slices. The

“macro” model also improves by about 1% in terms of its explanatory power if one includes

the lagged residual variables. One expects that similar improvements may be realized if one

included short-term price signals that essentially added a short-term drift component in the

regression models.

Cost prediction versus attribution. Market impact models are often used to compute

pre-trade cost estimates that may be used as part of a portfolio selection process, or as part
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Model eq. (3.35)

Low depth Mid depth High depth Ultra deep Overall
Low ADV 12.18% 13.81% 23.12% too few obs.

16.57%Mid ADV 9.41% 10.84% 18.78% too few obs.
High ADV too few obs. 3.91% 20.74% 28.98%

Table 3.12: Out-of-sample performance when clustering by (average daily volume, average queue
length) (1-min trade slices).

of a dynamic trade execution algorithm. In such settings, the models are used to make cost

predictions, e.g., at the beginning of a trading slice, and they use information available at

that time, as opposed to contemporaneous information that is available in explaining realized

costs. This includes snapshots of the queue lengths as well as trailing averages of the queue

lengths and the bid side and ask side volume. Specifically, when making a prediction for

a trading slice that commences at some time t, we will use exponentially smoothed trailing

averages of the relevant limit order book variables computed over the duration of the previous

5-minute (or 1-minute) trading slice. We discard the first slice of each parent order in our

dataset when we study the predictive accuracy of the market impact model, since itself was

missing prior information needed for the above estimation; this removes 6.5% of the sample

of 5-minute trade slices and 5.6% of the sample of 1-minute slices.

Table 3.13 reports the resulting average out-of-sample R2 in comparison with the at-

tributive models in Section 3.6.3. The drop in explanatory power is more significant in the

microstructure model as opposed to the macro models, given that the former is using real-

time information in a more nuanced way. However, in absolute terms, the microstructure

model continues to significantly outperform the two benchmark models.

A similar comparison is reported in Table 3.14 where the various microstructure variables

are replaced with historical forecasts, which may be practical in settings where real-time

information is not readily available. We use the average monthly queue depth and spread for
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Model eq. (3.35) Model eq. (3.36) (α = 1) Model eq. (3.36) (α = 0.5)
predictive attributive predictive attributive predictive attributive

5min 8.20% 11.07% 2.26% 2.82% 2.25% 2.84%
1min 11.93% 16.80% 1.99% 2.62% 2.27% 2.76%

Table 3.13: Out-of-sample performance using predictive estimates of average queue length,
market volumes, and spread, based on the sample of 5-minute trade slices and the sample of
1-minute trade slices. “Predictive” refers to the model that is using information available at the
beginning of each trade slice to estimate its cost. “Attributive” is the model that uses information
over the slice, such as the realized participation rate, or the realized bid-side and ask-side volume.
The attributive results differ from those in Tables 3.6–3.10 due to the additional filtering of the
first trading slice of each parent order; similarly in Table 3.14.

Model eq. (3.35) Model eq. (3.36) (α = 1) Model eq. (3.36) (α = 0.5)
historical attributive historical attributive historical attributive

5min 7.35% 11.03% 2.44% 3.11% 2.56% 3.12%
1min 9.54% 16.57% 1.61% 2.67% 1.73% 2.81%

Table 3.14: Out-of-sample performance using monthly estimates of average queue length, market
volumes, and spread, based on the sample of 5-minute trade slices and the sample of 1-minute
trade slices.

the bid and ask side queues and the spreads, and we use 1/2 of the forecast interval volume

for the bid and ask side rate of market orders. We continue to use the volatility forecast that

corresponds to the time interval of each trading slice in our data set.
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Chapter 4

Dynamic Matching Markets and an

Application to Residential Real

Estate

4.1. Introduction

In the residential real estate market, sellers arrive dynamically over time to put their units up

for sale. These assets may differ in their attributes, including location, size, style, acreage,

etc. Sellers themselves differ in their own financial constraints, carrying costs, and their

delay tolerances, i.e., how long they are willing to wait until they sell their unit. Buyers

arrive dynamically over time, differing in their preferences of house attributes, their budgets,

and their delay tolerances. This market evolves sequentially, and is subject to other frictions,

such as the fact that sellers and buyers can consider only a fraction of the entire market at

any time, e.g., buyers cannot be simultaneously bidding for too many units. Both phenomena

imply sellers and buyers face search friction and probably will experience delay, which results
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in inventory of sellers that are incurred explicit carrying costs and inventory of buyers whose

utilities are decreased as they spend more time searching. Buyer and seller decisions, i.e., how

to price, which bid to accept, and whether to wait for better outcomes in the future, depend

on the available inventory, its characteristics, the heterogeneity of buyers and sellers, the

potential mismatch between buyers and sellers, and their beliefs for potential future arrivals

of better units or less patient buyers, etc., and vice versa.

This chapter studies a microstructure model of this market, explicitly accounting its dy-

namics and the heterogeneity of buyers, sellers, and inventory. It investigates the tactical

pricing/bidding decisions of the sellers and buyers in a dynamic, heterogeneous, and decen-

tralized marketplace, with specific bearing on operational questions. It strives to answer

systemic questions such as what explains the fact that similar units sell for different prices;

how does the depth of the market and the time spent on the market by sellers and buyers

depend on the supply and demand imbalance, the financial constraints, and the search fric-

tion; and tactical questions such as how much faster will a house sell if you lower the price

by 5%; how should a seller or buyer interpret market conditions and quantify risks/rewards

from observations, e.g., transaction history.

Specifically, we propose a stylized microstructure model of the residential real estate

market. We analyze the market dynamics and its equilibrium under the simplifying approxi-

mation where buyers and sellers use linear bidding strategies. We motivate and characterize

this near closed-form approximation of the market equilibrium, and show that it is asymptot-

ically accurate. We provide numerical evidence in support of this approximation. Then with

the gained tractability, we characterize steady-state properties such as market depth, price

dispersion, and anticipated delays in selling or buying a unit. We characterize congestion and

matching patterns for sellers and buyers, taking into account market dynamics, heterogeneity,

and supply and demand imbalance manifested in the competition among buyers and sellers.
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Furthermore, we show the effects of market primitives with comparative statics results.

In the sequel, we provide some detail about our modeling approach and results that we

obtain.

We propose a sequential meeting, Nash bargaining microstructure model of the dynamic,

heterogeneous, and decentralized market. The model evolves in discrete time over an infinite

horizon. In each period, a new batch of random size of buyers and sellers arrive to the market,

and consider whether to enter the market on the demand or supply side, respectively, as a

function of the state of the market upon their arrival. Active buyers and sellers also make a

decision whether to continue and stay in the market or leave (abandon). In our setting, the

matching of buyers and sellers and the price formation occurs as follows: in each period, after

buyers and sellers make entry/exit decisions, they contact potential matches under market

frictions such as limited monitoring capability. The number of meetings between a buyer and

a seller taking place in each period is determined by an aggregate matching function, which

is an often used modeling tool in the economics literature, and is based on inventory of the

two sides of the market. Under the standard assumptions of linear searching technology and

random meeting mechanism, each active agent meets one potential match from the pool of

active agents on the other side of the market in each period with a probability determined

by the ratio of active buyers to active sellers in the current period. Then, when a meeting

is formed, buyer and seller decides whether to trade and at what transaction price by Nash

bargaining based on their dynamic valuations. These not only incorporate their heterogeneity

in the nominal valuation of the good/service, but also their dynamic opportunity cost or

continuation value of market participation in the future. After transacted buyers and sellers

exit the market, all remaining agents suffer a delay penalty because of their failure to transact

in the current period, and then carry over to the next period. Both buyers and sellers are

trying to maximize discounted surplus.
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With the aforementioned microstructure model, we obtain the equilibrium steady-state

characteristics of market depth, price dispersion, and the optimal strategies for buyers and

sellers in such dynamic matching markets. Specifically,

Linear strategies. We show that when the range of the valuations for buyers and sellers

is small, bidding strategies are linear. Motivated by this result we study a market under an

assumption that buyers and sellers always employ linear strategies. This assumption leads

to a more tractable model, and is motivated by markets with "almost homogeneous" goods

and agents, e.g., market of apartments in the same neighborhood. Numerical tests show

the approximation is close to the true market equilibrium when the range of valuations is

moderate.

Equilibrium characterization. Given the arrival features on the supply and demand sides

and the market primitives, the strategies of buyers and sellers and the distribution of their

types within the market’s steady state is endogenous. Under linear strategies, we solve for

the steady state equilibrium. For uniformly distributed valuation distributions, we obtain

near closed-form characterization of the market equilibrium, in which delay increases with

sellers’ costs and decreases with buyers’ valuations as a power law, or exponentially in some

cases.

Besides insights on congestion, our results also characterize the matching pattern be-

tween buyers and sellers in settings where dynamics play a role, and clarify the effect of

attractiveness (meaning having a low cost as a seller or having a high valuation as a buyer)

in several aspects that would be otherwise ambiguous. The resulting assortativeness in dy-

namic matching patterns and surplus under the aligned preference structure add to the search

and matching literature in economics.

Symmetric market. If the market is “symmetric” with respect to buyers’ and sellers’

primitive parameters, we can characterize the steady state equilibrium in closed form, as well
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as establish its existence and uniqueness. As a result, we can provide a series of comparative

statics results on how the equilibrium would react to different kinds of changes in market

primitives. For example, how would the meeting technology, the prevailing interest rate,

or the participation cost affect depth, price dispersion, and distribution over types in the

inventory.

To conclude, this chapter makes the following key contributions: (a) We provide a stylized

microstructure formulation of the residential real estate market that leads to tractable analy-

sis of such a stochastic and dynamic matching market. It integrates the heterogeneity in the

market, the dynamic entry/exit of the sellers and buyers, and their transaction behavior - that

is, their mechanism of fragmented meeting, price formation, and self-interested decision mak-

ing. (b) We propose a linear approximation method that yields tractable equilibrium analysis

and in some cases near closed-form characterization of the market’s steady state equilibrium.

We justify this approximation by demonstrating that it is asymptotically accurate and is also

numerically close to the true market equilibrium when the market is “almost homogeneous”.

For downstream analysis, the modeling and analytical insights described above provide the

essential ingredients for formulating and solving optimal search/pricing problems for buyers

and sellers in such dynamic matching markets. (c) We gain several insights into how such

dynamic matching markets operate. Most importantly, we answer the questions of who would

join/exit the market, what are the determinants of the depth of market, who would wait for

how long in the market, and what is the distribution of valuations for buyers and sellers in

the market. More subtly, we also investigate into the matching pattern between sellers and

buyers when dynamics play a role. Finally, from a marketwise perspective we provide a series

of comparative statics results in the symmetric case to shed light on how primitives such

as meeting technology, interest rate, or participation cost, etc., would affect the operational

metrics in the market’s equilibrium.
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Literature review. The modeling and analysis of a dynamic matching market lies in the

interface of the economics literature on market design, the CS/OR literature on matching,

the finance/OR literature on market microstructure, and the stochastic networks literature.

This chapter leverages modeling approaches and tools from each of these areas, as well as the

area of quantitative pricing and revenue management.

The matching and assignment literature is originated by the classical paper on marriage

and college admission by Gale and Shapley (1962). This chapter relates to one strand of

the matching literature that is pioneered by Becker (1973) and followed by Diamond (1982),

Mortensen (1982), Shimer and Smith (2000), and others. These studies focus on matching

models with structured preferences, e.g., aligned preferences. With such modeling advantage,

important questions such as market efficiency (Hosios (1990), Shimer and Smith (2001a)),

mechanism design (Shi (2001)), matching patterns (Shimer and Smith (2001b)), and compar-

ative statics results on the effect of various market factors can be studied. See Rogerson et al.

(2004) for a survey. In comparison, papers in the other strand of matching literature model

preference in matching in more general ways, and mainly study the design of mechanisms to

ensure stability and strategyproofness, for example, Roth (1985), Bogomolnaia and Moulin

(2004), Abdulkadiroğluand et al. (2005), Pathak and Sethuraman (2011), etc.

There is an extensive body of modern developments that studies stylized dynamic match-

ing and is closer to this work. First, there is a literature on the effect of search friction

on matching markets that are particularly relevant to this paper, including for example,

Mortensen and Pissarides (1994), Atakan (2010), Shimer and Smith (2000). They study

models of markets with random matchings that are similar to the model studied in this chap-

ter. In particular, Genesove and Han (2012) examines search and matching in the housing

market. Again, Rogerson et al. (2004) provides an oversight of work until 2004. Second, Ru-

binstein and Wolinsky (1985), Gale (2000), and Satterthwaite and Shneyerov (2007) study
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dynamic matching and bargaining in a general equilibrium framework. Finally, also rele-

vant to the dynamic matching problem that we are looking at is the literature on dynamic

auctions. See Bergemann and Said (2011) for a survey. In contrast to the economics liter-

ature mentioned here and above, the analysis of dynamic matching markets in this chapter

focuses more on the operational issues, concerning for example the depth of market, delay in

transaction, congestion pattern across types, etc., instead of on the economic issues such as

efficiency, stability, or convergence to general equilibrium.

With this emphasis, our modeling and methodological work in this chapter adds some

of the operational/tactical context to the previous dynamic matching models, guided by the

following areas of studies in operations research/management.

This work is related to the growing literature on market microstructure studies of dynamic

markets, which have aggravated toward the limit order book markets in the financial industry

so far. The first example in operations research is Bertsimas and Lo (1998). Together with

later developments by Almgren and Chriss (2001), Obizhaeva and Wang (2013), etc., this

noticeable set of papers explicitly model the dynamics of the limit order book markets and

address the problem of how to optimally execute a trade by dividing it into smaller child

orders that are tactically directed to the market at optimized price levels and time points.

More detailed reference can be found in the literature reviews from the other two chapters.

When dealing with the markets we look at in this chapter where dynamics and delay

considerations play a role, we in broad terms see such markets as queueing systems with

economics and service rules determined by the decentralized transaction behavior of buyers

and sellers therein. Cont et al. (2010) first made the connection of queueing and limit order

book markets. Maglaras et al. (2014) (chapter 2) and Maglaras et al. (2015a) (chapter 3)

have developed models of the limit order books as queueing networks and have shown that

the analytical tools from queueing theory can be utilized to study in such markets optimal
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execution decisions, determinants of price impact of trades, and marketwise liquidity fluctua-

tions across platforms. As such this work borrows tools and insights from the broad literature

on economics of queues. See Mendelson and Whang (1990), Afeche (2013), Maglaras et al.

(2015b), and Hassin and Haviv (2003) for a survey. Finally, for other examples of matching

problems in operations management, see Garnett and Mandelbaum (2000), Whitt (2006),

Ostrovsky (2008), and René et al. (2009).

The remainder of this chapter is organized as follows. Section 4.2 describes our microstruc-

ture model of sequential meeting and Nash bargaining. We define the mean-field steady state

equilibrium and provide solution to a system of ordinary differential equations characterizing

the flow balance conditions in Section 4.3. We solve for the equilibrium by linearization of

the dynamic value function and prove its asymptotic accuracy in Section 4.4. In Section 5,

focusing on the simpler case of symmetric markets, we illustrate the effects of various market

primitives; moreover, numerical experiments under the symmetric case suggest that the linear

approximation is close to the true market equilibrium when valuation range is moderate.

4.2. The Dynamic Matching Market

We propose a sequential meeting, Nash bargaining microstructure model of a dynamic match-

ing market, e.g., the residential real estate market. We first discuss our modeling of the

heterogeneity in the market and assign buyers and sellers into different type-based groups.

We then model and track the cumulative arrivals of various types (§4.2.1), model their trans-

action behavior as a combination of sequential meetings between potential matches and price

formation upon meeting according to Nash bargaining between the two parties (§4.2.2), and

subsequently describe the market dynamics. Based on these we, in broad terms, see such a

market as a queueing system and use a deterministic fluid model (a “mean field” model) to
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analyze it. Moreover, we focus on steady states and discuss this assumption later on (§4.2.3).

Heterogeneity in nominal valuations. We consider a market where buyers and sellers

have heterogeneous (nominal) willingness to buy or sell an indivisible unit of a homogeneous

good, and are penalized for delay at rates that are common on either side when they fail

to transact. In the market time progresses in discrete periods of length δ, over an infinite

horizon.

Specifically, we assign buyers and sellers into different type-based groups according to

their nominal valuations. We consider a continuum of valuation types indexed by VB, VS ∈

[L,U ] ⊂ R+ on the buying side and the selling side, respectively. In every period, active

buyers and sellers each pay a side-specific participation fee of cS , cB > 0, charged on the

selling side and the buying side, respectively. Furthermore, the time value of money is

common for every one with a discount factor β > 0.

Such a model can be seen as representative of a situation in which preferences are aligned

on both sides and participation is not significantly discriminated among agents on the same

side.

One comment concerning this setup is on the dimensions of heterogeneity to consider in

the model. Buyers and sellers can prefer one match over another for various reasons. For

example, sellers can be arriving at the market endowed with heterogeneous supplies, buyers

can form idiosyncratic preferences and desires over different units, buyers and sellers can

vary in time sensitivity in terms of carrying cost or search patience, etc. When dynamics

play a role in the matching of heterogeneous buyers and sellers in the market, they tactically

decide on whether to transact with a match now or to wait for a more preferred match in the

future. It is the purpose of this model to capture the tension in this tradeoff while generating

tractable analysis. We therefore only incorporate one dimension of heterogeneity in matching

- that in the nominal valuation of the good/service in the market, as a starting point. In
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this setup, a buyer in general prefers to match with a seller having low cost, and similarly,

a seller prefers to match with a buyer having high valuation, and these nominal preferences

are incorporated into their dynamic valuations on top of their dynamic opportunity cost or

continuation value of market participation in the future. We leave it for later research to

introduce into the model other interesting dimensions of heterogeneity, or to explore more

involved preference structures.

4.2.1. Dynamic Arrival, Entry, and Exit

Arrivals: There are sequential arrivals of sellers and buyers, each supplying or demanding

one unit of good/service. Each seller or buyer is exogenously given her valuation type VS , VB ∈

[L,U ] ⊂ R+, which is an independent identically distributed (i.i.d.) draw from a population

wise type distribution GS , GB : [L,U ] 7→ [0, 1] for the sellers and the buyers, respectively.

For sellers seeking to sell at a price at least higher than their willingness to sell, the higher is

their type of valuation, the less room of profit there will be toward a certain buyer. Similarly,

for buyers seeking to buy at a price at most as high as their willingness to buy, the lower

is their type of valuation, the less profit they can present for the other side. Therefore, the

sellers having low cost and the buyers having high valuation are the relatively more attractive

participants of the market.

Besides the draws of valuation types, the interarrival times are also stochastic. We model

the arrivals of sellers and buyers as Poisson processes with rates λ and αλ, respectively, where

α, λ > 0.

Upon arrival each seller or buyer can decide either to join the market or to take an outside

alternative with a normalized zero payoff according to her own interest. These join/exit

decisions are based on the tradeoff between the potential profit from finding a match in the

market and the uncertain cost of search given the frictions therein. Therefore such decisions
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are type dependent. The joining populations will be different from the arriving populations

on both sides.

Entry/exit: We consider a model with free entry/exit in which each agent in the

market can decide either to stay or to exit in their own interests. We assume agents are

infinitely-lived and do not leave for exogenous reasons.

At the beginning of periods, a newly arrived agent decides to join, and an agent that

has already been participating for at least one period decides to stay, if and only if her

continuation value of participating in the market exceeds the zero payoff of an alternative

outside option. Each agent incurs a side-specific participation fee cS or cB for each period she

decides to join/stay. Such agents form the population of active agents in the period. Again

the active populations on the two sides will be different from either the arriving populations

or the joining populations.

4.2.2. Sequential Meeting, Nash Bargaining

In our setting, the matching of buyers and sellers and the price formation occurs as follows:

Meeting: In each period, after buyers and sellers make entry/exit decisions, they

contact potential matches. We assume that there exist certain market frictions in meeting,

e.g., imperfect information about potential trading partners, slow mobility, large markets

with limited monitoring capacities, etc. So, though under perfect condition the number of

total meetings should be the product of the numbers of active agents on two sides, the truth

is the actual chance of meeting will be far more limited. That is, meeting is fragmented and

each agent can only see a small fraction of the other side within one period.

A usual modeling tool in economics literature used to capture the influence of such frictions

without explicit reference to the complex sources is an aggregate matching function (see

Petrongolo and Pissarides (2001) for a survey). It determines the number of meetings of
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buyer and seller happening in one period based on inventory of the two sides of the market.

In particular, we assume agents meet with potential matches from the other side in a se-

quential, one-to-one manner. Each period will see a certain number of meetings formed, each

between a different pair of one seller and one buyer. The number of meetings is determined

by a matching function M = m(TS , TB) where TS , TB are the number of active sellers and

buyers, respectively, at the beginning of the period.

Furthermore, we assume a random meeting mechanism. The chance of meeting will be

randomly allocated among agents on either side, so each seller in one period has a meeting

probability of q(TS , TB) := M/TS = m(TS , TB)/TS while each buyer in one period has a

meeting probability of h(TS , TB) := M/TB = m(TS , TB)/TB.

Finally, with the standard assumption of a linear searching technology, the matching

function m(TS , TB) would be homogeneous of degree 1 or featuring constant return to scale.

In this case, each active agent meets one potential match from the pool of active agents on

the other side of the market in one period with a probability determined by the ratio of active

buyers to active sellers θ := TB/TS in the current period. Hence, we have q(θ) := m(1, θ) =

q(TS , TB) and h(θ) := m(1/θ, 1) = h(TS , TB). Moreover, the total number of meetings in one

period should be consistent regardless of the side counted from, so the following relationships

hold

m(TS , TB) = TSq(θ) = TBh(θ), q(θ) = θh(θ). (4.1)

In the economic literature on search equilibrium analysis, the search intensities are strate-

gic decisions made by the self-interested agents and are thus endogenous. However, here we

focus on the matching and dynamic interactions between heterogeneous agents while sim-

plifying the search aspect. In general we assume q(θ) : R+ 7→ [0, 1], is nondecreasing and

q(0) = 0, q(∞) = 1.
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Besides the assumption that agents on either side are randomly selected to participate

in meetings, we also assume that the one-to-one pairings between these sellers and buyers to

be random. These two assumptions determine that the type of agent that one meets, if any,

is random and has a distribution consistent with that of the stocks on the other side of the

market when the period starts.

In summary, in one period each seller (buyer) has a probability of q(θ) (h(θ)) to meet with

one buyer (seller) whose type has a probability distribution as that of the initial population

of active buyers (sellers).

Bargaining: Then, when a meeting is formed, buyer and seller decides whether to

match and at what transaction price by Nash bargaining based on their dynamic valuations,

i.e., their nominal valuation and their continuation value that takes into account future trade

opportunities and costs.

Specifically, upon meetings the pair of seller and buyer first sees whether there exists a

surplus of transaction between them, then bargains on how to split that surplus to form price,

and last compares the surplus of trading now with the expected future payoff of holding off.

Most importantly, the bargaining of seller and buyer should be based on their dynamic

valuations. These not only incorporate their heterogeneity in the nominal valuation of the

good/service, but also their dynamic opportunity cost or continuation value of market par-

ticipation in the future. We denote the dynamic valuations, of type VS sellers and type VB

buyers, that adjust for future opportunities as

ṼS(VS) = VS + e−βδWS(VS), ṼB(VB) = VB − e−βδWB(VB), (4.2)

where WS(VS),WB(VB) are their dynamic continuation values. The dynamic continuation

values are type dependent since heterogeneous agents expect to see different gains from poten-
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tial future matches; and are stationary when we consider steady state in our infinite horizon

model. The dynamic valuations ṼS(VS), ṼB(VB) of each type can be seen as representing

the ‘true’ valuation/type of the agents, which for a seller sums up her nominal cost plus the

discounted continuation value or opportunity cost, while for a buyer it is the nominal valua-

tion of the unit to buy minus the value of her lost future capacities. They reflect the actual

willingness to sell/pay of the sellers and buyers during their dynamic interactions. Therefore

the paired up sellers and buyers should calculate surplus of transactions and make matching

decisions based on these future adjusted dynamic valuations instead of their nominal types.

Suppose within a meeting the seller has a dynamic valuation ṼS(VS) less than that of the

paired buyer ṼB(VB). The difference ṼS(VS) − ṼB(VB) is the potential surplus. We assume

non-symmetric Nash bargaining between the seller and buyer on how to split the surplus,

which is a classical axiomatic solution approach for the bargaining problem, characterized

by desirable properties including Pareto optimality and independence of equivalent utility

representation. These requirements on the bargaining solution is captured in the maximiza-

tion of the Nash product (p− ṼS(VS))γ(ṼB(VB)− p)(1−γ) (see Jr (1950), Roth (1979)) where

γ ∈ (0, 1) depicts asymmetries in bargaining procedure, bargaining ability, desire to maxi-

mize utility, etc (see Binmore et al. (1986) for detail). Note that the asymmetry in payoffs of

alternatives outside transaction and thus in bargaining power has already been modeled and

incorporated in the dynamic valuations ṼS(VS), ṼB(VB). The resulting bargaining solution

forms price

p = ṼS(VS) + γ
(
ṼB(VB)− ṼS(VS)

)
, (4.3)

at which the seller obtains γ of the surplus while the buyer gathers 1− γ of it. In addition,

the asymmetry parameter γ ∈ (0, 1) is assumed to be common in every meeting and reflects

a marketwise imbalance in bargaining sophistication between sellers and buyers.
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Figure 4.1

Then, after transacted buyers and sellers exit the market, all remaining agents suffer a

delay penalty because of their failure to transact in the current period, and then carry over to

the next period. Both buyers and sellers are trying to maximize discounted surplus. Figure

4.1 provides a schematic to visualize some aspects of the sequential meeting, Nash bargaining

dynamics in the microstructure model.

4.2.3. Remarks

Two aspects need further remarks concerning the model before we move on to its analysis,

first on the strategy game between buyers and sellers, and second on the mean-filed (fluid

model) approximation of the market dynamics under the buyer/seller strategies.

Dynamic cooperative game. In dynamic matching markets, under the sequential

meeting, Nash bargaining model as laid out, agents’ strategies consist of (1) whether to enter

or to exit the market (2) which ones on the opposite side to accept (match) upon meeting.

We assume agents have perfect information in this dynamic cooperative game and do not

strategize on type reporting.

We argue that the second component of the strategies, i.e., matching decisions, can be

suppressed in the dynamic setting, as a result of the assumption of Nash bargaining based on

dynamic valuations. For each meeting with positive surplus ṼS(VS)− ṼB(VB) > 0, according

to Nash bargaining, the price formed as in (4.3) will be higher than the dynamic cost of the

seller and lower than the dynamic value of the buyer. Therefore, the set of equilibria in which
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agents bilaterally decide to match in a meeting as long as there is a positive surplus strictly

dominate others. We focus on such equilibria and hence suppress the matching decisions as

they can be derived from the dynamic valuations. Specifically, there are two situations of lost

profitable matches that are ruled out: first, the seller and buyer lack coordination and believe

the other would not decide to match; second, the seller or buyer mix between matching and

declining.

In the remainder of the chapter, we define and characterize the decentralized steady state

equilibrium, which will be a profile of individually rational, time-invariant entry/exit strate-

gies. The assumption of steady state is not unreasonable when characterizing decentralized

equilibrium, where the objective is to find fixed point of the best response correspondence,

and the best response to time-invariant strategies of others should contain a time-invariant

strategy as well. However, when solving the social planner’s problem in centralized settings,

examples such as Shimer and Smith (2001b) have shown that the optimal dynamic match-

ing policy may feature nontrivial limit cycles when the social planner manipulates meeting

chances and matching decisions.

Fluid (mean-field) model. We consider the dynamics of such marketplaces where

sellers and buyers stochastically and dynamically arrive, meet, and match as a double-sided

multiclass queueing network with economics and service rules as modeled above. We approxi-

mate the complicated queueing operations by its deterministic fluid limit to obtain first-order

insights on the operational performance of the dynamic matching markets and its interaction

with the economics. The use of fluid model can be motivated by the consumer-to-consumer

market applications of dynamic matching, which feature large volumes of arrivals of infinites-

imal agents on both the selling side and the buying side. In the remainder of the chapter we

will define and characterize the market equilibrium that is not only economically rational in

the individual decisions, but also operationally balanced in the population flows.
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4.3. The Mean-Field Steady State Equilibrium

In this section we define the mean-field steady state equilibrium of the sequential meeting,

Nash bargaining model of dynamic matching markets. As aforementioned, we focus on steady

state equilibria that are free from the matching coordination problem. We characterize an

equilibrium by 3 sets of conditions: (1) First, while the agents dynamically decide to en-

ter/exit and trade/hold, their decision making and the dynamic continuation values should

be characterized by recursive Bellman equations corresponding to each type. (2) Moreover,

the equilibrium strategy of each type of agent should be utility maximizing and thus individ-

ually rational. (3) Finally, given agents’ entry/exit and trading decisions in the equilibrium,

together with the dynamics of the exogenous arrivals of new agents, the inflow and outflow of

each type should be balanced so that the population of active agents of each type is in steady

state. In the following sections we will talk about each of these equilibrium conditions.

4.3.1. Dynamic Value Functions

Recall that in Section 4.2.2 we denote WS(·) and WB(·) as the dynamic continuation values,

i.e., the expected values of future payoffs of certain types of sellers and buyers, respectively.

These dynamic continuation values are lost when any pair of agents decides to trade and exit

the market. Therefore, the true cost of selling and the true value of buying of an agent should

take into consideration the dynamic opportunity cost in addition to her nominal valuation,

i.e., her type. We denote ṼS(·), ṼB(·) : [L,U ] 7→ R as the dynamic value functions which

map the agents’ types to their dynamic valuations that account for the opportunity costs of

trading, defined by,

ṼS(VS) := VS + e−βδWS(VS), ∀VS ∈ [L,U ], (4.4)
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ṼB(VB) := VB − e−βδWB(VB), ∀VB ∈ [L,U ]. (4.5)

The true cost of selling is the current cost plus the lost dynamic value, while the true value

of buying is the current value minus the lost dynamic value.

We characterize the dynamic continuation values WS(·),WB(·) recursively by steady state

Bellman equations. We first introduce some notations. Denote by TS , TB the steady state

volume of active sellers and buyers in the market at the beginning of each period, respec-

tively, which include both the newly arrived sellers/buyers who decide to join and those who

have already participated for at least one period and decided to stay. In §4.2.2 we have

assumed that both the selection and the pairing of the agents that meet in each period are

random. Under these two assumptions the type of agent that one meets in a period, if any,

is random and has a distribution consistent with that of the stock on the other side. We

denote the steady state distributions of the dynamic valuations of active sellers and buyers

at the beginning of each period as FS(·), FB(·), respectively. In addition, define FB(·) as

the tail distribution of the dynamic valuations of active buyers, FB(ṼB) := 1 − FB(ṼB),

∀ṼB ∈ {x ∈ R : x = ṼB(VB), VB ∈ [L,U ]}.

For the sellers, recall from §4.2.2 that within each period any seller has probability q(θ)

to meet with one buyer, where θ = TB/TS is the steady state ratio of buyers to sellers in the

market. The type of buyer that a seller meets, if any, has distribution FB(·) as aforementioned.

Upon meeting, say between a type VS seller and a type VB buyer, trade takes place and the

seller collects her Nash bargaining revenue of

p− VS = ṼS(VS) + γ(ṼB(VB)− ṼS(VS))− VS

= e−βδWS(VS) + γ(ṼB(VB)− ṼS(VS)),
(4.6)

if and only if ṼB(VB) > ṼS(VS), which occurs with probability FB(ṼS(VS)) given that the
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type VS seller participates in a meeting in the period. Otherwise, either the seller meets no

one or fails to trade in meeting. Her steady state strategy would be to stay in the market

following the current period, since she would face the same market status as when she decided

to join at the first place. In this case she would again expect a future payoff of WS(VS). At

the same time, whether a seller meets, trades, or not in one period, she pays a fee of cS for

market participation, as discussed at the beginning of Section 4.2. Therefore, in steady state,

for any VS ∈ [L,U ],

WS(VS) =q(θ)
∫ ∞
ṼS(VS)

(
e−βδWS(VS) + γ

(
s− ṼS(VS)

))
dFB(s)

+
(
1− q(θ)FB(ṼS(VS)

)
e−βδWS(VS)− cS

=q(θ)γ
∫ ∞
ṼS(VS)

(
s− ṼS(VS)

)
dFB(s) + e−βδWS(VS)− cS .

(4.7)

Similarly, the dynamic continuation values of buyers in the steady state can also be

characterized by Bellman equations. For any VB ∈ [L,U ],

WB(VB) = h(θ)(1− γ)
∫ ṼB(VB)

−∞

(
ṼB(VB)− t

)
dFS(t) + e−βδWB(VB)− cB. (4.8)

The above Bellman equations characterize the dynamic continuation values that sellers

and buyers face at the beginning of each period in steady state. Sellers and buyers then decide

whether to participate (enter or stay) by comparing them to the normalized zero benefit of

the outside options. As a result, the seller types AS := {VS ∈ [L,U ] : WS(VS) ≥ 0} and

the buyer types AB := {VB ∈ [L,U ] : WB(VB) ≥ 0} are active in the marketplace. 1 The

1We assume for simplicity of exposition that when agents are indifferent between market participation and
the outside option they would decide to participate, which do not alter much of the nature of our analysis as
we consider continuum of traders.
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dynamic valuations of the active agents should then satisfy

ṼS(VS) = VS + e−βδWS(VS) ≥ VS ≥ L, ∀VS ∈ AS , (4.9)

ṼB(VB) = VB − e−βδWB(VB) ≤ VB ≤ U, ∀VB ∈ AB. (4.10)

Therefore, the steady state distributions FS(·), FB(·) are constrained by the boundary con-

ditions FS(L) = FB(U) = 0. In this case, the infinite upper limit and lower limit of the

integrals in (4.7) and (4.8) can be replaced by U and L, respectively.

In view of the relationship between the dynamic continuation values and the dynamic

valuations in equations (4.4) and (4.5), we can rewrite the Bellman equations in (4.7) and

(4.8) with respect to ṼS , ṼB alone, and obtain the following implicit characterization equations

of the dynamic value functions,

ṼS(VS) = VS + e−βδ

1− e−βδ

(
q(θ)γ

∫ U

ṼS(VS)

(
s− ṼS(VS)

)
dFB(s)− cS

)
, ∀VS ∈ [L,U ], (4.11)

ṼB(VB) = VB −
e−βδ

1− e−βδ

(
h(θ)(1− γ)

∫ ṼB(VB)

L

(
ṼB(VB)− t

)
dFS(t)− cB

)
, ∀VB ∈ [L,U ].

(4.12)

Results in the following proposition are derived from the analysis of these characterization

equations. In it we establish some properties of the dynamic value functions that will later

simplify analysis. As will be discussed, the result also helps clarify the effect of attractiveness

(meaning having low cost as a seller or having high valuation as a buyer) when dynamics

play a role in matching.

Proposition 1 (Monotonicity and Convexity/Concavity of Dynamic Value Functions). The dy-

namic value function ṼS(·) (ṼB(·)) is monotonically increasing (decreasing) and convex (con-
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cave) in valuation types VS (VB). In particular, for any VS , VB ∈ [L,U ],

(i) Ṽ ′S(VS) =
(
1 + e−βδ

1−e−βδ q(θ)γFB(ṼS(VS))
)−1
∈ (0, 1),

Ṽ ′B(VB) =
(
1 + e−βδ

1−e−βδ h(θ)(1− γ)FS(ṼB(VB))
)−1
∈ (0, 1);

(ii) Ṽ ′′S (VS) ≥ 0, ṼB
′′(VB) ≤ 0.

That is, the dynamic value functions preserve the order of nominal valuations, and the

dynamic valuations change more quickly with the nominal valuations when sellers’ costs

are high or when buyers’ values are low. The proof of Proposition 1 can be found in the

appendix. These results simplify the characterization of agents’ strategies in the steady state

equilibrium, which will be discussed in the next section.

The monotonicity and convexity/concavity properties of the dynamic value functions pro-

vide insights into the outcome of dynamic interactions of heterogeneous sellers and buyers.

(1) Attractiveness sustains under dynamic interactions. This conclusion is not so direct be-

cause though the low cost sellers and high value buyers tend to contribute more to the surplus

of any pairing, they also have higher opportunity costs to compensate in bargaining and leave

less room of gain to the other party. However, (2) the marginal effect of attractiveness on the

expected future payoff is diminishing. Improvement in nominal valuation has more impact on

expected future payoff when an agent is less attractive. (3) Heterogeneity is modulated when

dynamics play a role. In particular, in comparison with their static nominal counterparts, the

dynamic valuations have the following features: a) the dynamic valuations are more modest,

since for any v ∈ AS (v ∈ AB), ṼS(v) > v (ṼB(v) < v); b) the dynamic valuations differ

less, since dṼS(VS)/dVS , dṼB(VB)/dVB ∈ (0, 1); (c) and last, attractiveness has diminishing

marginal effect under dynamic interactions, c.f., (2) above. Dynamics shade the differences

between heterogeneous agents as they shift agents’ valuations by opportunity costs. Such

cost increases with attractiveness, and thus reduces the difference in it.
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4.3.2. Decentralized Decision Making

In this section we study how sellers and buyers make self-interested decisions in the steady

state equilibrium. We base the analysis on the characterization of their dynamic continuation

values WS(·),WB(·), and correspondingly their dynamic value functions ṼS(·), ṼB(·), from the

previous section.

As discussed near the end of §4.2, in the steady state equilibrium free from coordination

problems, strategies of sellers and buyers are suppressed and consist of only time-invariant

entry/exit decisions. At the beginning of a period, sellers and buyers expect WS(·) and

WB(·) payoffs from market participation, respectively, which take into account all future

opportunities including those in the current period. These dynamic continuation values

are determined recursively by Bellman equations in the previous section. By individual

rationality, sellers and buyers should become and remain active in the market if and only if

WS(·) ≥ 0 (Recall that we have assumed indifferent agents join). That is, the decentralized

strategies of agents in the steady state equilibrium are characterized by the active sets of

types AS ,AB.

The monotonicity results established in Proposition 1 can help us simplify the character-

ization of sets AS ,AB. We first need to translate these analytical properties of the dynamic

value functions into those of the dynamic continuation values. By their relationship in (4.4)

and (4.5), for any VS , VB ∈ [L,U ],

W ′S(VS) = deβδ(ṼS(VS)− VS)
dVS

= eβδ
(
dṼS
dVS
− 1

)
< 0; analogously, W ′B(VB) > 0. (4.13)

That is, monotonicity transfers from the dynamic value functions to the dynamic continuation

values. Attractive agents (low cost sellers and high value buyers) expect higher future payoffs,

which is intuitive since they would expected to transact sooner and also would reap more
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benefit from any transaction.

WS(·),WB(·) change signs at most once in [L,U ]. We first claim that WS(U),WB(L) < 0.

If not, take the selling side as example,

ṼS(U) = U + e−βδWS(U) ≥ U ≥ VB − e−βδWB(VB) = ṼB(VB), ∀VB ∈ AB.

There is no buyer type that can produce positive surplus with type U sellers, while they still

need to pay cS > 0 in each period if they participate. Hence their expected future payoff

of market participation should be negative. We then rule out the null equilibrium where

WS(L) < 0 or WB(U) < 0, in which case at least one side of the market collectively decide

not to join and no trading activity occurs in the marketplace. The rest of the paper focuses

on the characterization of nontrivial steady state equilibrium. Given the above two sets

of boundary conditions, since WS(·) is strictly decreasing and WB(·) is strictly increasing,

there must exist a pair of unique ‘indifferent’ seller type and buyer type, which we denote as

V S , V B, such that WS(V S) = WB(V B) = 0, V S ∈ [L,U), V B ∈ (L,U ]. Therefore, because

of monotonicity,

AS = [L, V S ], AB = [V B, U ], (4.14)

are intervals contained in [L,U ] with thresholds V S , V B, which will then be determined in

the characterization of the steady state equilibrium.

4.3.3. Flow Balances

The third dimension of the steady state equilibrium characterization is flow balancing. As

shown in the previous two sections, the composition of the stocks of active sellers and buyers

affect the payoffs and decision makings of the agents, and subsequently the market dynamics.

In turn, agents’ strategies and the resulting entry/exit and trade actions in the equilibrium
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should reversely stabilize the composition of active sellers and buyers on the two sides of the

market so that it can remain in steady state and the market can equilibrate.

The inflow into the market in each period consist of those who decide to join among

the new arrivals of sellers and buyers. Recall from §4.2 that these newly arrived agents are

exogenously given valuation types that are i.i.d. draws from distributions GS , GB : [L,U ] 7→

[0, 1], and arrive at rate λ, and αλ, respectively, on the selling side and the buying side.

According to result in §4.3.2, the new arrivals who decide to join are sellers with types below

V S and buyers with types above V B.

The outflow of the market in each period results from transactions that take place after

meetings of sellers and buyers who have surpluses between their dynamic valuations. We have

assumed in Section 4.2 that agents do not leave the market for other reasons, but apparently

such an assumption can be easily released by formulating additional exogenous outflows.

While arrivals (inflows) are indexed by agents’ nominal types, transactions (outflows) are

determined by dynamic valuations. To bridge the gap, we need to translate the arrivals of

different nominal types, VS , VB, into those of dynamic valuation types, ṼS , ṼB, based on their

characterization in Section 4.3.1. Denote the arrival distributions of sellers and buyers in

terms of their dynamic valuations as G̃S(·), G̃B(·).

The remaining results in this paper are predicated on the following simplifying assump-

tion:

Assumption 10. GS(·), GB(·) are uniformly distributed over [L,U ].

In this case, G̃S(·), G̃B(·) can be easily determined using results from Section 4.3.1. In

particular, take the selling side as example, by strict monotonicity of the dynamic value

functions ṼS(·), ṼB(·), they are invertible, and

G̃S(x) = P
(
ṼS(VS) ≤ x

)
= P

(
VS ≤ Ṽ −1

S (x)
)

= GS(Ṽ −1
S (x)).
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In addition, given the derivative of the dynamic value function provided in Proposition 1, the

derivative of its inverse Ṽ −1
S (·) should be

dṼ −1
S (x)
dx

=
(
dṼS(Ṽ −1

S (x))
dṼ −1

S (x)

)−1

= 1 + e−βδ

1− e−βδ q(θ)γFB(x).

Furthermore, because of Assumption 10, G′S(x) = 1/(U − L). Hence, by chain rule,

G̃′S(x) =
1 + e−βδ

1−e−βδ q(θ)γFB(x)
U − L

; analogously, G̃′B(x) =
1 + e−βδ

1−e−βδ h(θ)(1− γ)FS(x)
U − L

.

(4.15)

Recall that seller types lower than V S and buyer types higher than V B would decide to join.

And the thresholds V S , V B are types that are indifferent between market participation and

the outside option, so for them ṼS(V S) = V S , ṼB(V B) = V B. As a result, the transformed

arrival distributions should satisfy boundary conditions G̃S(V S) = 1, G̃B(V B) = 0. Together

with the derivatives in (4.15), they determine the inflows into the market in each period in

terms of agents’ dynamic valuations.

To ensure that the composition of the inventory on both sides of the market remain

stationary, flows into and out of each type need to be balanced in every period, so that not

only the total volumes, TS , TB, but also the type distributions, FS(·), FB(·), of active sellers

and buyers are in steady state. That is, the steady state equilibrium requires flow balance for

any subset of seller or buyer types. Take the selling side as example, one equivalent condition

is that for any ṼS ∈ [ṼS(L), V S ], i.e., any dynamic valuation that corresponds to an active

seller type, flows are balanced for the set of sellers with types within [ṼS(L), ṼS ]. In each

period, the inflow into the set is arrival of sellers with types lower than ṼS and thus is at rate

λG̃S(ṼS). On the other hand, for each seller in this set with type t < ṼS , there is a probability

of q(θ)FB(t) to transact in the current period. The outflow of the set is their potential
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transactions following random meeting and matching with the other side, and is expected to

take place at rate TS
∫ ṼS
ṼS(L) q(θ)FB(t)dFS(t). Hence, including the buying side in parallel,

flow balance conditions can be written as: for any ṼS ∈ [ṼS(L), V S ], ṼB ∈ [V B, ṼB(U)],

λG̃S(ṼS) = TS

∫ ṼS

ṼS(L)
q(θ)FB(t)dFS(t), (4.16)

λG̃B(ṼB) = TB

∫ ṼB

V B

h(θ)FS(s)dFB(s). (4.17)

Characterizing the equilibrium inventory distributions FS(·), FB(·) is key to the study

of the steady state equilibrium. To facilitate the analysis, we make the following technical

assumption:

Assumption 11. FS(·), FB(·) has probability density functions, which we denote as fS(·), fB(·).

That is, in the steady state equilibrium, distributions over the dynamic valuations of

active sellers and buyers are assumed to be atomless.

With Assumption 11, together with the previous discussion on the transformed arrival

distributions, we can take derivative on both sides of equations (4.16) and (4.17), and obtain

λ ·
1 + e−βδ

1−e−βδ q(θ)γFB(ṼS)
U − L

= TSq(θ)FB(ṼS)fS(ṼS), (4.18)

for any ṼS ∈ [ṼS(L), V S ], and

αλ ·
1 + e−βδ

1−e−βδ h(θ)(1− γ)FS(ṼB)
U − L

= TBh(θ)FS(ṼB)fB(ṼB), (4.19)

for any ṼB ∈ [V B, ṼB(U)]. The above system of equations warrants flow balances and thus

characterizes the equilibrium inventory distributions.

To study its solution, we segment the dynamic valuations of the active population. We

132



first claim that ṼS(L) ≤ V B, V S ≤ ṼB(U). The reason is that the threshold types, if not being

able to trade with the most competitive type from the other side of the market, would expect

a strictly negative payoff from market participation, which contradicts with their definition.

We segment the dynamic valuations of the active population into two categories. First we call

sellers with types lower than V B and buyers with types higher than V S the non-overlapping

population. These agents trade as soon as they meet. The distributions over the non-

overlapping types are easy to derive. Because meeting is random, they should be proportional

to the arrivals. In particular, for the non-overlapping sellers with ṼS ∈ [ṼS(L), V B] and buyers

with ṼB ∈ [V S , ṼB(U)], FS(ṼB) = FB(ṼS) = 1, so for the non-overlapping types,

fS(ṼS) =
λ
(
1 + e−βδ

1−e−βδ q(θ)γ
)

(U − L)TSq(θ)
, fB(ṼB) =

αλ
(
1 + e−βδ

1−e−βδ h(θ)(1− γ)
)

(U − L)TBh(θ) . (4.20)

Second, we call sellers and buyers of types above buyers’ threshold V B and below sellers’

threshold V S , if any, the overlapping population. In addition, we call steady state equilibria

in which the set of overlapping population is nonempty as non full trade equilibria. In a full

trade equilibria, all types are non-overlapping and agents trade as soon as they meet with

anyone from the other side of the market. The probability to trade in each period is then

degenerate and should equal their chance of meeting, q(θ), for the selling side, or h(θ), for

the buying side. Full trade equilibria can be simply characterized by combining (4.20) with

results in the previous two sections.

The remainder of the paper concerns characterization of non full trade equilibria, i.e.,

equilibria in which V B < V S and there exists overlapping population. For them, given that

fS(·) = F ′S(·), fB(·) = −F ′B(·), the system of characterizing equations of the equilibrium

inventory distributions is actually a system of ordinary differential equations (ODEs), and
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can be rewritten as


fS(t) = λ

U − L

(
1

TSq(θ)FB(t)
+ e−βδ

1− e−βδ
γ

TS

)
,

fB(t) = αλ

U − L

(
1

TBh(θ)FS(t) + e−βδ

1− e−βδ
1− γ
TB

)
,

(4.21)

with t ∈ [V B, V S ] and boundary conditions FS(V S) = FB(V B) = 1.

The following proposition provides a solution to this system of ODEs, whose proof can

be found in the appendix.

Proposition 2 (Characterization of Equilibrium Inventory Distributions). Distributions FS(·), FB(·)

satisfying

C2 −
e−βδ

1− e−βδ ·
αλ(1− γ)
(U − L)TB

· t =
∫ FB(t)

FB(V̄S)

W

(
C1u

− 1
α e
− 1
α

e−βδ

1−e−βδ
q(θ)γu

)

1 +W

(
C1u

− 1
α e
− 1
α

e−βδ
1−e−βδ

q(θ)γu
)du, (4.22)

FS(t) = 1
e−βδ

1−e−βδ h(θ)(1− γ)
W

(
C1FB(t)−

1
α e
− 1
α

e−βδ

1−e−βδ
q(θ)γFB(t)

)
, (4.23)

for t ∈ [V B, V S ] with constants C1, C2, where W (·) is the Lambert W function, 2 solves the

system of ODEs in (4.21).

Throughout §4.3.1-4.3.3, we have recursively determined the monotonic and convex/concave

mapping from nominal types to dynamic valuations, have characterized that the equilibrium

strategy profile features participating thresholds on both sides of the market, and have writ-

ten flow balancing conditions as a system of ordinary differential equations in terms of market

participants’ dynamic valuations. Based on these results we propose the following definition

2Lambert W function is the inverse of the function f(W ) = WeW .
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of equilibrium for the dynamic matching market:

Definition 4 (Mean-Field Steady State Equilibrium). A steady state equilibrium

(V S , ṼS , FS , V B, ṼB, FB, TS , θ) ∈ [L,U ]× C[L,U ]× C[L,U ]× [L,U ]× C[L,U ]× C[L,U ]

is a pair of sets of participating threshold, dynamic value function, and distribution over

dynamic valuations that satisfies

(i) Dynamic Valuation: For any VS ∈ [L, V S ], VB ∈ [V B, U ], the corresponding dy-

namic valuations ṼS(VS), ṼB(VB) solve, respectively,

ṼS(VS) = VS + e−βδ

1− e−βδ

(
q(θ)γ

∫ U

ṼS(VS)

(
s− ṼS(VS)

)
dFB(s)− cS

)
, (4.24)

ṼB(VB) = VB −
e−βδ

1− e−βδ

(
h(θ)(1− γ)

∫ ṼB(VB)

L

(
ṼB(VB)− t

)
dFS(t)− cB

)
. (4.25)

(ii) Marginal Indifference: Type V S sellers and type V B buyers are indifferent in par-

ticipating and have zero continuation values

ṼS(V S) = V S , ṼB(V B) = V B. (4.26)

(iii) Flow Balance: For any t ∈ [V S , V B], the distribution functions FS(VS), FB(VB) and

their densities solve the system of ordinary differential equations


fS(t) = λ

U − L

(
1

TSq(θ)FB(t)
+ e−βδ

1− e−βδ
γ

TS

)
,

fB(t) = αλ

U − L

(
1

TBh(θ)FS(t) + e−βδ

1− e−βδ
1− γ
TB

)
,

(4.27)
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with boundary conditions FS(V S) = 1 − FB(V B) = 1. For the non-overlapping sellers

with ṼS ∈ [ṼS(L), V B] and buyers with ṼB ∈ [V S , ṼB(U)],

fS(ṼS) =
λ
(
1 + e−βδ

1−e−βδ q(θ)γ
)

(U − L)TSq(θ)
, fB(ṼB) =

αλ
(
1 + e−βδ

1−e−βδ h(θ)(1− γ)
)

(U − L)TBh(θ) . (4.28)

(iv) Buyer/Seller Ratio: TB = θTS.

To summarize, the mean-filed steady state equilibrium takes inputs of arrival imbalance α,

discount β, bargaining imbalance γ, period length δ, arrival rate λ, participation costs cS , cB,

and valuation range L,U (market primitives), and yields outputs of market depth TS , TB,

S/D imbalance θ, distribution of waiting agents FS(·), FB(·), participation thresholds V S , V B,

and value functions ṼS(·), ṼB(·) (depth, dispersion). The equilibrium integrates individual

rationality, flow balance, boundary conditions, and endogenous dynamic value functions

4.4. Equilibrium Characterization by Linearization

Exact analysis of the equilibrium in Definition 4, in which both the dynamic valuations

ṼS , ṼB and the inventory distributions FS , FB are determined implicitly, c.f., (4.11) - (4.12)

and Proposition 2, is theoretically intractable and computationally expensive.

In this section, we show that when the range of the valuations for buyers and sellers is

small, bidding strategies are linear (§4.4.1). Motivated by this result we study a market under

an assumption that buyers and sellers always employ linear strategies. This assumption leads

to a more tractable model, and is motivated by markets with "almost homogeneous" goods

and agents, e.g., market of apartments in the same neighborhood. In particular, for uniformly

distributed valuation distributions, we obtain characterization of the market equilibrium, in

which delay increases with sellers’ costs and decreases with buyers’ valuations as power law,
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or exponentially in some cases (§4.4.2). We solve for the steady state equilibrium under

linear strategies and answer the questions of who would join/exit the market, what are the

determinants of the depth of market, who would wait for how long in the market, and what

is the distribution of valuations for buyers and sellers in the market (§4.4.3). Later on, we

shall also show via numerical tests that such an approximation is close to the true market

equilibrium when valuation range is moderate (§4.5.2).

4.4.1. Linear Approximations of Dynamic Value Functions

We propose to approximate the recursively determined equilibrium dynamic value functions

ṼS(·), ṼB(·) by their first order Taylor expansions (linear) at the thresholds V S , V B on the

selling side and the buying side, respectively. We provide in this subsection a theoretical

justification: this linear approximation is asymptotically accurate when the extent of hetero-

geneity represented as the width of the valuation range U − L diminishes.

We denote the linearly approximated dynamic value functions, of types VS ∈ [L, V S ], VB ∈

[V B, U ] on the selling side and the buying side, respectively, as follows

Ṽ
(L)
S (VS) := V S + aS(VS − V S), (4.29)

Ṽ
(L)
B (VB) := V B + aB(VB − V B), (4.30)

where aS is the left derivative of the function ṼS(·) at V S , and similarly, aB is the right

derivative of the function ṼB(·) at V B. From Proposition 1, we have that

aS =
(

1 + e−βδ

1− e−βδ q(θ)γFB(V S)
)−1

, (4.31)
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aB =
(

1 + e−βδ

1− e−βδ h(θ)(1− γ)FS(V B)
)−1

. (4.32)

Also, recall that the exact dynamic valuations ṼS , ṼB can be characterized by equations (4.11)

- (4.12).

The following theorem shows that when the valuation range diminishes, i.e., U − L→ 0,

the difference between these two Ṽ characterizations vanishes at a faster speed, and therefore

the former can be used to approximate the latter when agents’ valuations are similar.

Theorem 6. (Linearization Justification) Under Assumption 11, if, in addition, the dynamic

value functions ṼS , ṼB are continuous, then

sup
t∈[0,1]

∣∣∣∣∣ ṼS(V S − t(V S − L))− Ṽ (L)
S (V S − t(V S − L))

V S − L

∣∣∣∣∣→ 0 as U − L→ 0, (4.33)

sup
t∈[0,1]

∣∣∣∣∣ ṼB(V B + t(U − V B))− Ṽ (L)
B (V B + t(U − V B))

U − V B

∣∣∣∣∣→ 0 as U − L→ 0. (4.34)

Proof. Take the selling side as example, for an active seller with nominal valuation VS ∈

[L, V S ], its type can be rewritten as

VS = V S − t(V S − L) ∈ [L, V S ] ⊆ [L,U ], ∀t ∈ [0, 1].

According to Proposition 1, we have

Ṽ ′S(VS) =
(

1 + e−βδ

1− e−βδ q(θ)γFB(ṼS(VS))
)−1

∈ (0, 1), Ṽ ′′S (VS) > 0.

That is, the dynamic value function ṼS(·) is increasing and convex in VS . As a result, we
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have the following inequality

V S − ṼS(VS) =
∫ V S

VS

Ṽ ′S(x)dx <
∫ V S

VS

(
1 + e−βδ

1− e−βδ q(θ)γFB(V S)
)−1

dx = aS(V S − VS).

(4.35)

By rearranging the terms on the two sides of inequality (4.35), we can show that ṼS is greater

than its linear approximation Ṽ
(L)
S for active types. In particular, for any VS ∈ [L, V S ], we

have that

ṼS(VS)− Ṽ (L)
S (VS) = ṼS(VS)− (V S + aS(VS − V S)) > 0. (4.36)

Then, we explicitly write out the left hand side of (4.36), i.e., the difference between the

dynamic value function ṼS and its linear approximation Ṽ (L)
S , arriving at

0 < ṼS(VS)− Ṽ (L)
S (VS)

= VS + e−βδ

1− e−βδ

(
q(θ)γ

∫ U

ṼS(VS)

(
s− ṼS(VS)

)
dFB(s)− cS

)
− V S − aS(VS − V S)

= (1− aS)(VS − V S) + e−βδ

1− e−βδ

(
q(θ)γ

∫ U

ṼS(VS)

(
s− ṼS(VS)

)
dFB(s)− cS

)
,

(4.37)

for any VS ∈ [L, V S ]. Because the marginal sellers of the threshold type V S should be

indifferent between market participation and the outside option of zero payoff and have zero

continuation values, c.f., (4.26), we have that

cS = q(θ)γ
∫ U

V S

(
s− V S

)
dFB(s).
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As a result, we can substitute the cS and obtain

0 < ṼS(VS)− Ṽ (L)
S (VS)

=(1− aS)(VS − V S)

+ e−βδ

1− e−βδ

(
q(θ)γ

∫ U

ṼS(VS)

(
s− ṼS(VS)

)
dFB(s)− q(θ)γ

∫ U

V S

(
s− V S

)
dFB(s)

)

=(1− aS)(VS − V S)+

e−βδ

1− e−βδ q(θ)γ
(∫ V S

ṼS(VS)

(
s− ṼS(VS)

)
dFB(s) + FB(V S)(V S − ṼS(V S))

)
.

Note that we have ṼS(VS) ≤ V S from VS ≤ V S and the monotonicity of ṼS(·). We then

progress to provide an upper bound of the right hand side,

0 < ṼS(VS)− Ṽ (L)
S (VS)

≤ (1− aS)(VS − V S)

+ e−βδ

1− e−βδ q(θ)γ
(
(FB(ṼS(VS))− FB(V S))(V S − ṼS(VS)) + FB(V S)(V S − ṼS(V S))

)
= (1− aS)(VS − V S) + e−βδ

1− e−βδ q(θ)γFB(ṼS(VS))(V S − VS)

< (1− aS)(VS − V S) + e−βδ

1− e−βδ q(θ)γFB(ṼS(VS))aS(V S − VS).

The last inequality is from (4.35). Now we have established the following bounds on ṼS(VS)−
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Ṽ
(L)
S (VS):

0 < ṼS(VS)− Ṽ (L)
S (VS)

< (V S − VS)
(
aS

(
1 + e−βδ

1− e−βδ q(θ)γFB(ṼS(VS))
)
− 1

)

= (V S − VS)
e−βδ

1−e−βδ q(θ)γ(FB(ṼS(VS))− FB(V S))
1 + e−βδ

1−e−βδ q(θ)γFB(V S)

≤ (V S − L)
e−βδ

1−e−βδ q(θ)γ(FB(ṼS(VS))− FB(V S))
1 + e−βδ

1−e−βδ q(θ)γFB(V S)

Because of continuity of FB(·), ṼS(·) and the boundedness of q(θ), γ, FB(V S),

lim
VS→V S

FB(ṼS(VS))− FB(V S) = 0. (4.38)

Therefore,

lim
U−L→0

sup
VS=U−t(U−L),t∈[0,1]

∣∣∣∣∣ ṼS(VS)− Ṽ (L)
S (VS)

V S − L

∣∣∣∣∣→ 0

Analysis of the buying side is analogous. �

4.4.2. Inventory Distributions: Derivation of the Functional Form

In this subsection, we derive the functional form of the equilibrium distribution of buyer and

seller types in the waiting populations FS(·), FB(·), assuming uniform arrival distributions

and linear dynamic value functions.

Recall from §4.3.3 that we denote the arrival distributions of sellers and buyers in terms

of their dynamic valuations as G̃S(·), G̃B(·). Now we assume that the dynamic valuations of

different types of agents are linear perturbations around the the cutoffs V S and V B, as in

(4.29) - (4.30). Then, denoting g(·) := G′(·), gS(·) := G̃′S(·), gB(·) := G̃′B(·), we have that for
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any ṼS ∈ [ṼS(L), V S ], ṼB ∈ [V B, ṼB(U)],

gS(ṼS) = g

(
V S + ṼS − V

aS

)
· 1
aS

= 1
aS(U − L) (4.39)

gB(ṼB) = g

(
V B + ṼB − V B

aB

)
· 1
aB

= 1
aB(U − L) . (4.40)

In this case, taking derivatives on both sides of the flow balance equations in (4.16) - (4.17),

the system of ODEs that characterize the equilibrium distribution of the waiting populations

now simplifies to: 
fS(t) = λ

aS(U − L)TSq(θ)FB(t)
,

fB(t) = αλ

aB(U − L)TBh(θ)FS(t) .
(4.41)

As before, the distribution over non-overlapping population can be easily derived. In partic-

ular, for ṼS ∈ [ṼS(L), V B], ṼB ∈ [V S , ṼB(U)], we can derive from the flow balance conditions

that

fS(ṼS) = λ

(U − L)aSTSq(θ)
, fB(ṼB) = αλ

(U − L)aBTBh(θ) . (4.42)

The distribution over the overlapping population, however, is more complicated and the result

is provided in the following proposition.

Proposition 3. (Functional Forms of FS(·), FB(·)) When aB 6= αaS,


FS(t) = C1

(
aB − αaS
C1aB

t+ C2

) aB
aB−αaS

,

FB(t) = λ

aS(U − L)TSq(θ)

(
aB − αaS
C1aB

t+ C2

)− αaS
aB−αaS

,

(4.43)
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solves the system of ODEs in (4.41); or when aB = αaS


FS(t) = C2e

λt
C1aS(U−L)TSq(θ) ,

FB(t) = C1
C2
e
− λt
C1aS(U−L)TSq(θ) ,

(4.44)

solves the system of ODEs in (4.41).

The proof of Proposition 3 can be found in the Appendix.

4.4.3. Equilibrium Characterization

In this section, we first update the definition of the mean-field steady state equilibrium under

the linear strategies. We then discuss about how to characterize a non full trade equilibrium.

In particular, for uniformly distributed valuation distributions, we obtain near closed-form

characterization that can be leveraged to answer the questions of who would join/exit the

market, what are the determinants of the depth of market, who would wait for how long in

the market, and what is the distribution of valuations for buyers and sellers in the market.

Definition 5 (Linearized Mean-Field Steady State Equilibrium). A linearized mean-field steady

state equilibrium

(TS , TB, θ, FS(·), FB(·), V S , V B, aS , aB),

given a set of market primitives (U,L, cS , cB, λ, α, γ, β, δ), is a vector satisfying the following

conditions:

(1) Flow Balance:

λ

aS(U − L) = TSfS(t)q(θ)FB(t), ∀t ∈ [ṼS(L), ṼB(U)], (4.45)
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αλ

aB(U − L) = TBfB(ṼB)h(θ)FS(ṼB), ∀t ∈ [ṼS(L), ṼB(U)]. (4.46)

(2) Marginal Indifference:

q(θ)γ
(∫ ṼB(U)

V S

fB(u) · udu− V S

∫ ṼB(U)

V S

fB(u)du
)

= cS , (4.47)

h(θ)(1− γ)
(
V B

∫ V B

ṼS(L)
fS(u)du−

∫ V B

ṼS(L)
fS(u) · udu

)
= cB. (4.48)

(3) Boundary Conditions:

FS(V S) = 1, FB(V B) = 1. (4.49)

(4) Taylor Approximation Based at the Bounds:

aS = 1
1 + e−βδ

1−e−βδ q(θ)γFB(V S)
, (4.50)

aB = 1
1 + e−βδ

1−e−βδ h(θ)(1− γ)FS(V B)
. (4.51)

In the following we discuss about how to characterize a non full trade equilibrium, i.e.,

an equilibrium with V S > V B. We start with a lemma characterizing the bounds and the

corresponding boundary conditions.

Lemma 6. (Characterization of the Bounds) Under Assumptions 10 - 11, if in the equilibrium
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V S > V B, i.e., in non full trade equilibrium, then the bounds should take values

V S = 1
aB + aS − aBaS

×
(

(1− aB)
√

2(U − L)aSTBcB
λ(1− γ) −

√
2(U − L)aBTScS

αλγ
+ aS(1− aB)L+ aBU

)
,

(4.52)

V B = 1
aB + aS − aBaS

×
(√

2(U − L)aSTBcB
λ(1− γ) − (1− aS)

√
2(U − L)aBTScS

αλγ
+ aSL+ aB(1− aS)U

)
.

(4.53)

Furthermore, the following boundary conditions should be satisfied,

FS(V B) =
√

2λcB
(U − L)aSTSq(θ)h(θ)(1− γ) , (4.54)

FB(V S) =
√

2αλcS
(U − L)aBTBh(θ)q(θ)γ . (4.55)

The proof of Lemma 6 can be found in the Appendix. Given this proposition, the marginal

agent types V S , V B on the selling and buying side, respectively, are provided as functions of

the other characteristics of the equilibrium. Note that the functional form of the equilibrium

inventory distributions has also been characterized in §4.4.2 by Proposition 3. The following

proposition gives a characterization of the remaining parameters - TS , TB, θ, aS , and aB - of

the equilibrium in Definition 5.

Proposition 4. (Non Full Trade Equilibrium Characterization) Under Assumptions 10 - 11,

if in the equilibrium V S > V B, i.e., in non full trade equilibrium, then the equilibrium
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(TS , TB, θ, FS(·), FB(·), V S , V B, aS , aB) should satisfy the following system of equations:

TS =
(

aS
1− aS

)2
(

e−βδ

1− e−βδ

)2 2αλcSγ
(U − L)aB

, (4.56)

TB =
(

aB
1− aB

)2
(

e−βδ

1− e−βδ

)2 2λcB(1− γ)
(U − L)aS

, (4.57)

θ = TB/TS =
a3
B

(1−aB)2 cB(1− γ)
a3
S

(1−aS)2αcSγ
, (4.58)

( 2αλcS
aB(U − L)TBh(θ)q(θ)γ

)aB
=
( 2λcB
aS(U − L)TSq(θ)h(θ)(1− γ)

)αaS
, (4.59)

when aB 6= αaS,

aB − αaS
aB + aS − aBaS

(
2cB

aB
1− aB

e−βδ

1− e−βδ − 2cSaS
e−βδ

1− e−βδ + aSL+ aB(1− aS)U
)

+ αaS
aB
· 2cS

aS
1− aS

e−βδ

1− e−βδ

= aB − αaS
aB + aS − aBaS

(
2cBaB

e−βδ

1− e−βδ − 2cS
aS

1− aS
e−βδ

1− e−βδ + aS(1− aB)L+ aBU

)

+ 2cB
aB

1− aB
e−βδ

1− e−βδ ,

(4.60)

when aB = αaS,

TS = (U − L)λγaSα2

2cS(1 + α− αaS)2

W
 q

(
cS(1−γ)
cBγ

)
γ

2cS · αaS(U−L)
1+α−αaS · e

1+α
1+α−αaS

2 . (4.61)

The proof of Proposition 4 can be found in the Appendix. As a result, we can solve for the

characteristics TS , TB, θ, aS , and aB of the equilibrium in Definition 5 by solving the system

of equations (4.56) - (4.61). In particular, the depth of market on either side is characterized
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as TS , TB, while θ captures the demand-supply ratio in the equilibrium.

Afterwards, the marginal agent type V S , V B on the selling and buying side, respectively,

can be determined by Lemma 6 as in equations (4.52) - (4.53). These cutoff values will

determine who will join/exit in the mean-field steady state equilibrium of the market: sellers

with valuations higher than V S and buyers with valuations lower than V B do not join.

Finally, when the above parameters are solved for, taking the boundary conditions of

the inventory distributions FS(·), FB(·) characterized by Lemma 6 as in equations (4.54) -

(C.26) into its functional form in Proposition 3, the constants in the ODE solution therein

can then be determined and thus the steady state equilibrium would be fully characterized.

The resulting inventory distributions FS(·), FB(·), as seen in Proposition 3, is of power law,

or in some cases, exponential forms. In contrast with the uniform exogenous arrivals, the

equilibrium waiting population has more of the unattractive types of the agents and thus

presents a less amenable market condition, due to the effect of dynamics.

Moreover, by applying Little’s Law, the characterization of the equilibrium inventory dis-

tributions FS(·), FB(·) also leads to insights on the time-money tradeoff in dynamic matching

markets. In particular, under the assumptions of uniform arrivals and linear strategies, it

has been discussed at the beginning of §4.4.2 that the arriving distributions in terms of the

dynamic valuations G̃S , G̃B are also uniform. Therefore, the delay suffered by the various

types, as their mass, will follow a power law, or exponential form, on either side. Sellers

that want to set higher price (and similarly, buyers that want to set lower bid) wait longer.

For downstream analysis, this characterization of the function that maps one’s price/bid to

her delay in transaction would offer important insight on the tactical decisions of buyers and

sellers in dynamic matching markets.
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4.5. Symmetric Case

Assume the selling side and buying side of the market are symmetric. That is, we assume

that in the market primitives: α = 1, cS = cB = c, and γ = 1/2, and we try to characterize

a non full trade equilibrium in this setup. In this case, we can obtain a near closed-form

characterization of the market equilibrium as shown in the following theorem.

Theorem 7. (Symmetric Case Non Full Trade Equilibrium Characterization) Under Assump-

tions 10 - 11, together with the symmetry assumptions α = 1, cS = cB = c, and γ = 1/2, if

the common cost of waiting satisfies

c <
(U − L)q(1)

4
(

e−βδ

1−e−βδ + 2
q(1)

) , (4.62)

and the marketwise discount rate satisfies

e−βδ <
e6

e6 + q(1) , (4.63)

then there exists a unique non full trade equilibrium (TS , TB, θ, FS(·), FB(·), V S , V B, aS , aB)

that can be characterized as follows:

aB = aS := a, (4.64)

TB = TS = a

(1− a)2

(
e−βδ

1− e−βδ

)2
λc

(U − L) , θ = 1, (4.65)

FS(t) = C2e
λt

C1a(U−L)TSq(1) , FB(t) = C1
C2
e
− λt
C1a(U−L)TSq(1) , (4.66)
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where C1 = 2
q(1) a

1−a
e−βδ

1−e−βδ
, C2 = e

−
−2c a

1−a
e−βδ

1−e−βδ
+(1−a)L+U

(2−a)C1cq(1)
(

a
1−a

e−βδ
1−e−βδ

)2

,

V S =
(
−2c a

1− a
e−βδ

1− e−βδ + (1− a)L+ U

)
/(2− a), (4.67)

V B =
(

2c a

1− a
e−βδ

1− e−βδ + L+ (1− a)U
)
/(2− a), (4.68)

with a ∈ (0, 1) solving the equation

e

2− (1−a)(U−L)

2c e−βδ
1−e−βδ =

 2(1− a)
aq(1) e−βδ

1−e−βδ

2−a

. (4.69)

The proof of Theorem 7 can be found in the Appendix. Once the linear coefficient a is

determined from equation (4.69), all the other characteristics of the market equilibrium can

be obtained by equations (4.64) - (4.68). That is, based on a, all the other entities can be

determined explicitly. Theorem 7 connects the important measures in the market outcome

to the market primitives more directly. The dynamic valuations ṼS , ṼB and the inventory

distributions FS , FB can now be solved for without endogeneity or recursion.

4.5.1. Comparative Statics

Theorem 7 presents a near closed-form result and allows illustration on the effects of various

market primitives - for example, meeting technology (q(1)), heterogeneity (U − L), search

cost (c), and interest rate (β) - on the depth of market, price dispersion, delay in transaction,

and join/exit behavior in the market outcome.

Specifically, we obtain a list of comparative statics results in the following proposition,

by an analysis of equations (4.64) - (4.69). Its proof can be found in the Appendix.
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Proposition 5 (Comparative Statics). Under the assumptions of Theorem 7, in the unique non

full trade equilibrium shown to exist there, the following comparative statics results hold:

(i) If q(1) increases: a decreases, T decreases, FS(·), FB are steeper (have larger expo-

nents), V S increases, and V B decreases.

(ii) If U − L decreases: a decreases, FS(·), FB(·) are steeper (have larger exponents), V S

decreases, V B increases, and FS(·), FB increases for active types.

(iii) If c increases: a decreases, FS(·), FB are flatter (have smaller exponents), V S decreases,

and V B increases.

(iv) If e−βδ increases: a decreases.

Results in Proposition 5 provides the following insights into the operation of dynamic

matching markets:

First, improved meeting technology allows more participation and faster trades but with

lower benefits. Specifically, if the meeting technology becomes better, the probability to

meet in a period - q(1) in the symmetric case - should increase. In this case, the depth of the

market decreases. Moreover, among the decreased liquidity, its distribution over valuation

types FS , FB become steeper exponential functions, i.e., the selling distribution increases

faster with cost and the buying distribution decreases faster with value. The proportion

of unattractive types of agents in the equilibrium inventory distributions becomes relatively

higher. At the same time, since V S increases and V B decreases, the bounds of participation

become wider, admitting more agents. As for delay, since the total arrival increases while the

market depth decreases, we expect delays to decrease. As for expected revenue from trade,

since the distributions are steeper, they distribute more at the low value or high cost area,

therefore their expected revenue decreases.
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Second, decreased heterogeneity motivates faster trades but with lower benefits. Specif-

ically, if the primitive valuation range U − L decreases, the inventory distributions FS , FB

become steeper exponential functions, i.e., the selling distribution increases faster with cost

and the buying distribution decreases faster with value. The proportion of unattractive types

of agents in the equilibrium inventory distributions becomes relatively higher. At the same

time, since V S decreases and V B increases, the bounds for participation become tighter. As

for delay, the probability to trade can be shown to increase for active types, and thus the

expected delay generally decreases. As for revenue from trade, since the distributions are

steeper, they distribute more at the low value or high cost area, therefore their expected

revenue decreases.

Third, increased search cost deviates some unattractive sellers and buyers from market

participation and thus benefits those who still join. Specifically, if participation becomes more

expensive for each period, for example, the sellers suffer higher carrying cost or the buyers

pay more rent, the common cost of delay c increases. In this case, the inventory distributions

FS , FB become flatter exponential functions, i.e., the selling distribution increases slower with

cost and the buying distribution decreases slower with value. The proportion of attractive

types of agents in the equilibrium inventory distributions becomes relatively higher. At

the same time, since V S decreases and V B increases, the bounds for participation become

tighter. As for delay, now that the bounds for participation becomes tighter and the inventory

distributions become flatter, the overlapping agents should expect higher probability to trade

as now they are closer to the bounds where probability to trade is 1 and the probability to

trade decays slower at the same time.

Fourth, if the level of interest rate in the market decreases, i.e., when the discount coeffi-

cient e−βδ becomes closer to 1, we can find that the symmetric linear coefficient a decreases.
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4.5.2. Numerical Tests

In this section, we numerically illustrate that the linearly approximated equilibrium is close to

the true market equilibrium when valuation range is moderate. The objective is to compare

the non full trade equilibria as characterized in Definition 4 under the symmetric case and

its linear approximation in Theorem 7.

We consider a symmetric case (α = 1, cS = cB, γ = 1/2) with an arrival rate of λ =

10 units and buyers per week on the selling and buying side, respectively. The meeting

technology is such that q(1) = 0.1, i.e., one meeting can be formed per week for every ten

active sellers or buyers. Their utilities are discounted at weekly rate e−βδ = .98. Furthermore,

for each week of participation, active sellers and buyers pay a search cost of cS = cB = c = 300

dollars for their failure to transact. Note that the above selection of parameters satisfy the

conditions on c, β as specified in (4.62) - (4.63) in Theorem 7. Under this setup, we consider

three different ranges of valuation U−L/median price = ±20%,±10%,±5% around a median

price of $500K, respectively.

We first compute the true market equilibrium in Definition 4 without the linearization

technique. Under the symmetric case, we want to find a tuple

(V S , ṼS , FS , V B, ṼB, FB, TS , θ) ∈ [L,U ]× C[L,U ]× C[L,U ]× [L,U ]× C[L,U ]× C[L,U ],

so that it satisfies the boundary conditions of the ODEs, the marginal indifference equations,

and also flow balance conditions in Definition 4. 3 See footnote 3 for a detailed description

of the computation scheme.

3Among several computation schemes, the following is chosen because it is feasible and often converges:
1.initialize VB , θ, FB(V S) by the corresponding linearization result; 2.infer VS from overall flow balance; 3.de-
rive TS , C1, C2, FS(V B) according to the solution to the ODEs; 4.integrate via ODE solver for later cal-
culation of expectations; 5.find ES(ṼS),EB(ṼB), ṼS(L), ṼB(U) using the above integral; 6.solve for updated
VB , θ, FB(V S) by marginal indifference conditions and the remaining overall flow balance condition.
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Computation of the true market equilibrium is hard. This computation complexity price

is paid for the lack of analytical tractability. In comparison with the computation in the

linearization case later on, not only the computation here takes more cycles, within each

cycle the computation is more complex, involving not only solution of systems of nonlinear

equations, but also lambert function and integrations. It takes much longer time: linearization

computations take at most 1-2 seconds, while general computations take at least minutes.

When solving for the true market equilibrium, we need to solve for the true market equilibrium

by nailing down a system of ODEs by boundary conditions while parameters in the ODEs

themselves, the boundaries, and the boundary conditions are all variable. In the linearization

case, the main challenge in computation is the solution of a system of nonlinear equations.

That challenge is more of a technical problem. But in here, we search in a much larger space,

and we solve a system of ODEs with almost nothing in closed form.

Also, we solve for the linearized symmetric equilibrium in Theorem 7 by solving the

system of equations (4.64) - (4.69). We recursively find the value of a in equation (4.69).

After that, the other entities in the tuple (TS , TB, θ, FS(·), FB(·), V S , V B, aS , aB) can then

be determined explicitly.

We focus on two aspects in the market outcome: 1) agent’s participation behavior; as

discussed in §4.2.2, it captures the strategies of the sellers and buyers in dynamic matching

markets under our setting. 2) depth of market. Table 4.1 highlights the accuracy in these

measures of the linearized symmetric equilibrium as an approximation to the true market

equilibrium. We see that the difference between the true market equilibrium and its linear

approximation is in general small when agents’ valuations do not vary dramatically from

the median price. For example, a variation of ±20% around the market median can be

deemed practical when considering the house search among a few neighboring zip codes.

That difference further diminishes when the valuation range gets smaller. And, in this specific
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U − L/median ∆participation rate ∆depth(L)/depth
±20% 3.8% 25%
±10% 0.3% 2%
±5% 0.0% 0%

*weekly: median price=$500K, CS = CB =$300, γ = 0.5, discount= 0.98, q(1) = 0.1, arrival rate=10.

Table 4.1: Numerical comparison of the true market equilibrium and the linearized equilibrium
in the symmetric case. Tests with different primitive valuation ranges show that the linearly
approximated results are close to true market equilibrium when valuation range is moderate.

numerical experiment, the two equilibria are identical when the agents’ idiosyncratic valuation

differ by at most 10% of the market median price.
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Appendix A

Appendix to Chapter 2

A.1. Proofs: Equilibrium Characterization

Proof of Lemma 1. For γ ≥ 0, define L(γ) , maxi 6=0 γ(r̃i − r̃0) − W ∗

µβi
. Clearly L is a

continuous function, and under Assumption 1(iii), it is also increasing. We wish to show that
L(γ0) = 0.

Suppose that L(γ0) < 0. Then, there exists γ̄ > γ0 with L(γ) < 0 for all γ ∈ [0, γ̄].
Thus, in equilibrium, investors with types γ ∈ [0, γ̄] strictly prefer placing market orders, i.e.,
π∗i (γ) = 0 for i 6= 0. Then,

N∑
i=1

(
λi + Λ

∫ ∞
0

π∗i (γ) dF (γ)
)

=
N∑
i=1

λi+Λ
∫ ∞
γ̄0

(
N∑
i=1

π∗i (γ)
)
dF (γ) ≤

N∑
i=1

λi+Λ
(
1−F (γ̄)

)
< µ,

where the last inequality follows from (2.17) and Assumption 1(i). This contradicts the flow
balance equation (2.14).

Alternatively, suppose that L(γ0) > 0. Then, there exists γ̄ < γ0 with L(γ) > 0 for all
γ ∈ [γ̄,∞). Thus, in equilibrium, investors with types γ ∈ [γ̄,∞) strictly prefer not placing
market orders, i.e., π∗0(γ) = 0. Then,

N∑
i=1

(
λi + Λ

∫ ∞
0

π∗i (γ) dF (γ)
)

=
N∑
i=1

λi + Λ
∫ ∞

0
(1− π∗0(γ)) dF (γ)

≥
N∑
i=1

λi + Λ
(
1− F (γ̄)

)
> µ,
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where the last inequality follows from (2.17) and Assumption 1(i). This contradicts the flow
balance equation (2.14). Thus, we must have L(γ0) = 0 and (2.20) holds.

Now, suppose exchange i achieves the maximum in (2.20). Then, from the right side of
(2.20), it follows that κi = βi(r̃i− r̃0) = W ∗

µγ0
. Further, for any exchange j, (2.20) implies that

κj = βj(r̃j − r̃0) ≤ W ∗

µγ0
= κi. For the converse, if

κi = max
j 6=0

κj , (A.1)

and there exists an exchange j satisfying

0 = γ0(r̃j − r̃0)− W ∗

µβj
> γ0(r̃i − r̃0)− W ∗

µβi
,

then
κj = βj(r̃j − r̃0) = W ∗

µγ0
> βi(r̃i − r̃0) = κi,

which contradicts with (A.1). �

Proof of Theorem 2. Suppose (π∗,W ∗) satisfies (2.22)–(2.23). We want to show that (π∗,W ∗)
is an equilibrium, i.e., it must satisfy (2.13)–(2.14).

We first establish (2.13). In particular, we will establish that for any π ∈ P and all γ,

π0(γ)γr̃0 +
N∑
i=1

πi(γ)
(
γr̃i −

W ∗

µβi

)
≤ π∗0(γ)γr̃0 +

N∑
i=1

π∗i (γ)
(
γr̃i −

W ∗

µβi

)
.

Equivalently,

N∑
i=1

πi(γ)
(
γ (r̃i − r̃0)− W ∗

µβi

)
≤

N∑
i=1

π∗i (γ)
(
γ (r̃i − r̃0)− W ∗

µβi

)
. (A.2)

If γ ≤ γ0 and i 6= 0, using (2.22) and Assumption 1(iii), we have that

γ (r̃i − r̃0)− W ∗

µβi
= γβiκi − γ0 maxj 6=0 κj

βi
≤ γ0βiκi − γ0 maxj 6=0 κj

βi
≤ 0 (A.3)

Since, by (2.23), π∗i (γ) = 0 for i 6= 0, we have that (A.2) holds for all γ < γ0. For γ = γ0,
note that equality holds in (A.3) iff κi = maxj 6=0 κj , i.e., i ∈ A∗(γ0). Thus, (A.2) also holds
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for γ = γ0. Finally, if γ > γ0 and i 6= 0,

γ (r̃i − r̃0)− W ∗

µβi
= γκi − γ0 maxj 6=0 κj

βi
≥ γκi − γmaxj 6=0 κj

βi
≥ 0. (A.4)

Thus, (A.2) continues to hold.
Next, we establish (2.14). By (2.23), 1− π∗0(γ) = 0 when γ < γ0 and 1− π∗0(γ) = 1 when

γ > γ0. Thus, ∫ ∞
0

(
1− π∗0(γ)

)
dF (γ) =

∫ ∞
γ0

dF (γ) = 1− F (γ0).

Using this and (2.17),

µ =
N∑
i=1

λi + Λ
∫ ∞

0

(
1− π∗0(γ)

)
dF (γ)

=
N∑
i=1

λi + Λ
∫ ∞

0

(
N∑
i=1

π∗i (γ)
)
dF (γ)

=
N∑
i=1

(
λi + Λ

∫ ∞
0

π∗i (γ) dF (γ)
)
.

Thus, (π∗,W ∗) satisfies (2.14) as well and is an equilibrium.
Now suppose (π∗,W ∗) is an equilibrium. We would like to show that (π∗,W ∗) must

satisfy (2.22)–(2.23), except possibly for γ in a set of F -measure zero.
First, by Lemma 1, we have that

γ0r̃0 = max
i 6=0

γ0r̃i −
W ∗

µβi
= γ0r̃ī −

W ∗

µβī
,

where ī ∈ argmaxj 6=0 κj . By solving for W ∗, (2.22) follows immediately.
Next, we verify (2.23). Define M to be the set of γ ≥ 0 such that π∗(γ) does not satisfy

(2.23). Define π̄ ∈ P to be a set of routing decisions such that (π̄,W ∗) satisfies (2.23), such
a p̄i can easily be constructed by solving the optimization problem for A∗(γ) for each γ ≥ 0.
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Define

∆(γ) , π∗0(γ)r̃0 +
N∑
i=1

π∗i (γ)
(
γr̃i −

W ∗

µβi

)
− π̄0(γ)r̃0 −

N∑
i=1

π̄i(γ)
(
γr̃i −

W ∗

µβi

)

=
N∑
i=1

π∗i (γ)
(
γ (r̃i − r̃0)− W ∗

µβi

)
−

N∑
i=1

π̄i(γ)
(
γ (r̃i − r̃0)− W ∗

µβi

)
,

for γ ≥ 0. Following the same arguments as in (A.3)–(A.4), it is easy to see that

∆(γ) = 0 if γ /∈M,
∆(γ)< 0 if γ ∈M and γ 6= γ0.

(A.5)

On the other hand, Since π∗ is optimal for the program (2.13), we have that

0 ≤
∫ ∞

0
∆(γ) dF (γ) =

∫
M

∆(γ) dF (γ) =
∫
M∩[0,γ0)

∆(γ) dF (γ) +
∫
M∩(γ0,∞)

∆(γ) dF (γ),

(A.6)
where, for the final equality, we use the fact that the point {γ0} has F -measure zero under
Assumption 1(i). Together, (A.5)–(A.6) imply that M has F -measure 0. �

A.2. Proofs: Equilibrium Convergence

In this appendix, we prove the convergence of the queue length process Q(t) to the unique
equilibrium vector Q∗ at t→∞, in the two-dimensional case.

We first provide the proof of Theorem 3, which establishes uniqueness of the equilibrium
queue length vector Q∗.

Proof of Theorem 3. Suppose
(
π(1), Q(1)) and

(
π(2), Q(2)) are both equilibria. DefineW (`) ,

β>Q(`), for ` ∈ {1, 2}. By Theorem 1, both
(
π(1),W (1)) and

(
π(2),W (2)) satisfy (2.13)-(2.14).

By Theorem 2, we have that

W (1) = W (2) = W ∗ , γ0µmax
i 6=0

κi. (A.7)

Now, suppose that γ < γ0. Theorem 2 states that π(1)
i (γ) = π

(2)
i (γ) = 0 for i 6= 0, except

possibly on a set of γ of F -measure zero. On the other hand, if γ > γ0, by Theorem 2, π(1)(γ)
and π(2)(γ) can only differ when A∗(γ) contains at least two exchanges (ignoring a set of γ
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of at most F -measure zero). Suppose {i, j} are two exchanges such that {i, j} ⊂ A∗(γ), i.e.,
a type-γ investor is indifferent between exchanges i and j. Then,

γ(r̃i − r̃j) = W ∗

µβi
− W ∗

µβj
. (A.8)

The right hand side of (A.8) is independent of γ, and r̃i − r̃j 6= 0, by the assumption that
the effective rebates are distinct. Then, {i, j} ⊂ A∗(γ) for at most a single value of γ. As
there are only finitely many pairs of exchanges, we have that |A∗(γ)| = 1 except for possibly
finitely many γ > γ0. Then, under Assumption 1(i), π(1)(γ) and π(2)(γ) differ on a set of γ
of at most F -measure zero.

Combining these facts with the flow balance condition (2.11), we have that

Q
(1)
i = Q

(1)
i ×

µβi
µβi
× W ∗

β>Q(1) = µi
(
Q(1))W ∗

µβi

=
(
λi + Λ

∫ ∞
0

π
(1)
i (γ) dF (γ)

)
W ∗

µβi

=
(
λi + Λ

∫ ∞
0

π
(2)
i (γ) dF (γ)

)
W ∗

µβi

= Q
(2)
i ,

for i = 1, . . . , N , i.e., the equilibrium queue lengths are unique. �

Next we prove the convergence of the queue length process Q(t) to the unique equilibrium
vector Q∗ at t→∞, in the two-dimensional case.

As in Section 2.3, define χi(W (t)) to be the instantaneous fraction of arriving limit or-
ders that are placed into exchange i. The evolution of the queue length process Q(t) is
characterized by the following system of ordinary differential equations,

Q̇i(t) = λi + Λχi(W (t))− µi(Q(t)), i = 1, · · · , N. (A.9)

In the remainder of this appendix, we focus on the two dimensional cases, i.e., N = 2. Also,
without loss of generality, we assume λi = 0, for i = 1, 2.1

The fact that the equilibrium queue length vector exhibits state space collapse and leads

1The proof that follows can be easily adapted to all other cases where λ1, λ2 > 0 and, λ1 + λ2 < µ.
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us to consider a new coordinate system in which workload W , β>Q is one of the new coor-
dinates. In the two dimensional case, the workload W together with the sum of queue lengths
S , 1>Q characterize the individual queue lengths and vice versa. Thus, the convergence of
(W (t), S(t)) to (W ∗, S∗) where W ∗ , β>Q∗ and S∗ , 1>Q∗, is equivalent to the convergence
of the queue length process Q(t) to the unique equilibrium vector Q∗. We perform the change
of coordinates and rewrite the original ordinary differential equations in terms of W and S

as follows:
Ẇ (t) = Λβ>χ(W (t))− µ(β1 + β2) · I{W (t) 6=0} + µ

β1β2S(t)
W (t) · I{W (t)6=0},

˙S(t) = Λ1>χ(W (t))− µ · I{S(t)6=0}.

(A.10)

We will restrict attention to this new (W,S) coordinate system for the remainder of this
appendix.

Overview of the Proof for (W (t), S(t)) Convergence

In the following we prove that under Assumptions 1–3, given arbitrary initial conditions
(W (0), S(0)) ∈ R2

+, the process (W (t), S(t)) converges to the unique equilibrium (W ∗, S∗) at
t→∞.

Define the set W+ , {(W,S) : W = W ∗, S > S∗}, i.e., the upper half of the vertical
line W = W ∗ in R2. We will show that (W (t), S(t)) either hits the set W+ or enters a local
stability region within a finite time, starting from any initial point. This will imply that
(W (t), S(t)) returns to set W+ with finite inter-arrival times, if it has not entered the local
stability region. Each recurrence corresponds to a point on the upper half of the vertical line
W = W ∗ in R2, i.e., to a value of S ≥ S∗. We then show that each recurrence has a smaller
(closer to S∗) S value than the previous appearance in set W+. Moreover, the step size is
bounded away from zero as long as the trajectory is outside the local stability region. This
ensures there are finite iterations until (W (t), S(t)) enters the local stability region, and thus
has to converge.

Accordingly, the proof will be organized around the following main steps, each of which
corresponds to one of Lemmas 8-10 in the following subsection:

1. Lemma 8 (Local Stability). There exists ε > 0, such that if (W (0), S(0)) is in the set

Wlocal , {(W,S) : |W −W ∗| < ε, |S − S∗| < ε},
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then (W (t), S(t)) converges to (W ∗, S∗).

2. Lemma 9 (Finite Inter-arrival Time). Starting from any initial point, a sample path
either enters the local stability region Wlocal or hits the set W+ in finite time; in the
latter case, starting from any point in W+ the sample path must, in finite time, either

(i) reach the set Wlocal,

(ii) return to the set W+.

3. Lemma 10 (Guaranteed Decay). There exists ϕ > 0, such that if τ1 < τ2 are times
where

(W (τ1), S(τ1)), (W (τ2), S(τ2)) ∈W+ and (W (t), S(t)) 6∈Wlocal for t ∈ [τ1, τ2],

then S(τ2) ≤ S(τ1)− ϕ.

This method of proving (W (t), S(t)) convergence shows that each sample path is a de-
caying spiral in R2 centered around the unique equilibrium point (W ∗, S∗). Analyzing the
spiral, we show that each rotation takes finite time, and has a guaranteed decay towards the
equilibrium along the S coordinate at times when the set W+ is hit.

Therefore, the spiral enters the local stability region after finite iterations and within
finite time, at which point it much converge to the unique equilibrium.

Proving (W (t), S(t)) Convergence

We begin with a lemma that provides a series of bounds on the trajectory. First, we postulate
that (W (t), S(t)) should be within the first quadrant R2

+, since both components are positive
weighted sum of the queue lengths. Second, the ratio S(t)/W (t) is bounded by the largest and
smallest of {1/βi}i=1,2. Recall that we assume attraction coefficients are distinct. Without
loss of generality, assume that β1 > β2 and define C , {(W,S) : S/W ∈ [1/β1, 1/β2]}. The
trajectory should be confined within this cone. Third, we provide a lower bound W and an
upper bound W on the workload W (t) and argue that after finite time the workload will be
restricted within that range. As a result, after finite time an inequality with respect to the
vector of routing fractions χ(W (t)) holds, which will be useful in proving convergence later
on.
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Lemma 7 (Bounded Trajectory). There exists ζ ∈ (0, µβ2) and W,W ∈ [0,+∞) with W < W ,
such that given initial conditions S(0) = 1>Q(0) and W (0) = β>Q(0) where Q(0) ∈ R2

+, there
exists finite time Tb ∈ [0,+∞) such that at any time t > Tb,

(1) the trajectory is contained within R2
+
⋂
C
⋂
B where B , {(W,S) : W ∈ [W,W ]};

(2) Λβ>χ(W (t))− µ(β1 + β2) ≤ −ζ.

Proof. Since Q(t) ∈ R2
+, it is obvious that (S(t),W (t)) ∈ R2

+. Moreover, for all Q = Q(t) ∈
R2

+,

1>Q ≤ β1
β2
Q1 +Q2 = 1

β2

(
β>Q

)
,

1>Q ≥ Q1 + β2
β1
Q2 = 1

β1

(
β>Q

)
.

(A.11)

Therefore 1/β1 ≤ S(t)/W (t) ≤ 1/β2.
For the third bound, we will use the following definitions of W and W : Pick an arbitrary

0 < ζ < µβ2. Because of the monotonicity assumption, and that Λβ>χ(0) − µβ2 ≥ Λβ2 −
µβ2 > 0, Λβ>χ(W ) − µβ2 → −µβ2 as W → ∞, there will be a unique workload value
satisfying Λβ>χ(W )− µβ2 = −ζ, which we denote as W . Also because of the monotonicity
assumption, and the fact that Λβ>χ(W )−µ(β1+β2)→ −µ(β1+β2) as W →∞, if Λβ>χ(0)−
µ(β1+β2) ≥ −ζ, there will be a unique workload value satisfying Λβ>χ(W )−µ(β1+β2) = −ζ,
which we denote as W . Otherwise, we define W = 0. In both cases, Λβ>χ(W )−µ(β1 +β2) ≤
−ζ.

For W ≥W ,
Ẇ = Λβ>χ(W )− µ(β1 + β2) + µβ1β2

S

W

≤ −ζ − µβ1 + µβ1β2
1
β2

= −ζ.
(A.12)

So if the trajectory starts with W (0) > W , it decreases and goes under W within finite time
(W (0)−W )/ζ. And since at W = W , Ẇ ≤ −ζ, as soon as the trajectory goes below W , it
will stay below W .

If W = 0, then we always have W ≥W . If W > 0, for W ≤W ,

Ẇ = Λβ>χ(W )− µ(β1 + β2) + µ
β1β2S

W

≥ ζ + µβ1β2
1
β1

= ζ + µβ2.
(A.13)
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So if the trajectory starts with W (0) < W , it increases and goes above W within finite time
(W − W (0))/(ζ + µβ2). And since at W = W , Ẇ ≥ ζ + µβ2, as soon as the trajectory
goes above W , it will stay above W . Therefore, (W (t), S(t)) ∈ B after finite time Tb =
max{0, (W (0)−W )/ζ, (W −W (0))/(ζ + µβ2)}.

When (W (t), S(t)) ∈ B, W (t) ≥W . Because of the monotonicity assumption,

Λβ>χ(W (t))− µ(β1 + β2) ≤ Λβ>χ(W )− µ(β1 + β2) ≤ −ζ. (A.14)

�

The bounded region of R2
+
⋂
C
⋂
B is divided into four quadrants according to the signs

of Ẇ and Ṡ as follows:
First, the vertical line W = W ∗ divides the space into two half-spaces in which S is

monotonically changing. This is because

1>χ(W ) = χ1(W ) + χ2(W )

= P
(

max
i=1,2

γr̃i −
W

µβi
> γr̃0

)
,

(A.15)

is strictly decreasing in W , and, at the equilibrium,

Ṡ = Q̇1 + Q̇2 = Λ1>χ(W ∗)− µ = 0. (A.16)

Thus,
Ṡ > 0, when W < W ∗,

Ṡ = 0, when W = W ∗,

Ṡ < 0, when W > W ∗.

Second, denote by S̄(W ) for which Ẇ = 0 at a given workload W , in other words,

S̄(W ) , W

µβ1β2

(
µ(β1 + β2)− Λβ>χ(W )

)
. (A.17)

Because of the monotonicity assumption, S̄(W ) > 0 for all W > W . We can rewrite Ẇ in
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terms of S̄(W ) as

Ẇ = Λβ>χ(W )− µ(β1 + β2) + µ
β1β2S̄(W )

W
+ µ

β1β2(S − S̄(W ))
W

= µ
β1β2(S − S̄(W ))

W
.

(A.18)

Thus,
Ẇ > 0, when S > S̄(W ),

Ẇ = 0, when S = S̄(W ),

Ẇ < 0, when S < S̄(W ).

For later reference, we clockwise index the four quadrants by even numbers and the
bordering regions in between by odd numbers, as listed below and illustrated in the following
figure. These nine regions are mutually exclusive and collectively exhaustive:

• Region 1: W = W ∗, S > S̄(W ),

• Region 2: W > W ∗, S > S̄(W ),

• Region 3: W > W ∗, S = S̄(W ),

• Region 4: W > W ∗, S < S̄(W ),

• Region 5: W = W ∗, S < S̄(W ),

• Region 6: W < W ∗, S < S̄(W ),

• Region 7: W < W ∗, S = S̄(W ),

• Region 8: W < W ∗, S > S̄(W ),

• Region 9: W = W ∗, S = S̄(W ).

As indicated by the following lemma, the system of ordinary differential equations in
(A.10) is locally asymptotically stable. So there exists a local stability region around the
equilibrium such that all points inside the region converge.

Lemma 8 (Local Stability). There exists ε > 0, such that if (W (0), S(0)) is in the set

Wlocal , {(W,S) : |W −W ∗| < ε, |S − S∗| < ε},

then (W (t), S(t)) converges to (W ∗, S∗).
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Proof. For W > 0, S > 0, the Jacobian matrix corresponding to the system of ordinary
differential equations in (A.10) is

J(W,S) =
[
Λβ> ∂χ(W )

∂W − µβ1β2
S
W 2 µβ1β2

1
W

Λ1> ∂χ(W )
∂W 0

]

Denote λ1, λ2 as its two eigenvalues, then

λ1 + λ2 = tr(J(W,S)) = Λβ>∂χ(W )
∂W

− µβ1β2
S

W 2 < 0. (A.19)

λ1 · λ2 = det(J(W,S)) = −Λµβ1β21>∂χ(W )
∂W

> 0. (A.20)

So both of the eigenvalues have negative real parts and the system is locally asymptotically
stable (Zak, 2003). �

Now we are ready to set out the argument for convergence. As laid out in the overview
of Section A.2, the next step is to show that the trajectory returns to the set W+ and thus
to region 1 with finite inter-arrival time as long as it does not enter the local stability region.

Lemma 9 (Finite Interarrival Time). There exists finite time Tr ∈ (0,+∞), such that for
any (W (0), S(0)) ∈ R2

+
⋂
C
⋂
B, there exists time 0 < t < Tr where (W (t), S(t)) ∈ W+ or

(W (t), S(t)) ∈Wlocal.

Proof. To prove that the trajectory starting from time t and with any initial point will reach
region 1 after finite time, we will show that, starting from any point in any of the nine
regions, unless the trajectory enters the local stability region, it will reach the next numbered
region within finite time, and thus the trajectory has to return to region 1 within finite time.
Therefore the trajectory will keep returning to region 1 with a finite interval of time (unless
it enters the local stability region). In the following we discuss the cases region by region:

• Region 1: W = W ∗, S > S̄(W ), then Ẇ > 0, Ṡ = 0. So the trajectory instantly
exits region 1 and reaches region 2.

• Region 2: W > W ∗, S > S̄(W ), then Ẇ > 0, Ṡ < 0. So the trajectory can only
reach region 3 if the trajectory leaves region 2.

Since S̄(W ) is continuous and S̄(W ∗) = S∗, for ε− ∈ (0, ε), there exists a small δε− > 0
such that for W ∈ (W ∗,W ∗+δε−), |S̄(W )−S∗| < ε−. For W ∈ (W ∗,W ∗+min{δε− , ε}),
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if S − S∗ < ε, then the trajectory converges because of local stability. Otherwise,
without entering the local stability region, for these W values, Ẇ = µβ1β2

S−S̄(W )
W >

µβ1β2
ε−ε−
W ∗+ε . So the trajectory will exceed W ∗ + min{δε− , ε} within finite time.

For W > W ∗ + min{δε− , ε}, denote

Sδ(S,W ) , S − S̄(W ). (A.21)

Since W > W ,

S̄′(W ) = 1
µβ1β2

(
µ(β1 + β2)− Λβ>χ(W )

)
− W

µβ1β2
Λβ>∂χ(W )

∂W
> 0. (A.22)

Then,

Ṡδ = Ṡ − S̄′(W ) · Ẇ < Λ1>χ(W )− Λ1>χ(W ∗), W > W ∗ + min{δε− , ε}. (A.23)

We know 1>χ(W ) is strictly decreasing and W is bounded away from W ∗, therefore Sδ
will decrease to 0, i.e., the trajectory will reach region 3, within finite time.

• Region 3: W > W ∗, S = S̄(W ), then Ẇ = 0, Ṡ < 0. So the trajectory instantly
exits region 3 and reaches region 4.

• Region 4: W > W ∗, S < S̄(W ), then Ẇ < 0, Ṡ < 0. So the trajectory can can only
reach regions 3, 5, or 9 if the it leaves region 4.

For W ∈ (W ∗,W ∗ + min{δε− , ε}), if −ε < S − S∗ < ε−, then the trajectory con-
verges because of local stability. Otherwise for these W values, Ẇ = µβ1β2

S−S̄(W )
W <

−µβ1β2
ε−ε−
W ∗+ε . The trajectory will go to W = W ∗ and reach region 5 within finite time.

For W > W ∗ + min{δε− , ε},

Ṡ = Λ1>χ(W )− Λ1>χ(W ∗), W > W ∗ + min{δε− , ε}. (A.24)

Since 1>χ(W ) is strictly decreasing, W is bounded away from W ∗, and S is bounded
below by the line S = 1

β1
W ∗, the trajectory will leave this region within finite time.

• Region 5: W = W ∗, S < S̄(W ), then Ẇ < 0, Ṡ = 0. So the trajectory instantly
exists region 5 and reaches region 6.
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• Region 6: W < W ∗, S < S̄(W ), then Ẇ < 0, Ṡ > 0. Thus, the trajectory can only
reach region 7 if it leaves region 6.

Since S̄(W ) is continuous and S̄(W ∗) = S∗, for ε− ∈ (0, ε), there exists a small δ′ε− > 0
such that for W ∈ (W ∗−δ′ε− ,W

∗), |S̄(W )−S∗| < ε−. For W ∈ (W ∗−min{δ′ε− , ε},W
∗),

if 0 > S−S∗ > −ε, then the trajectory converges because of local stability. Otherwise,
without entering the local stability region, for these W values, Ẇ = µβ1β2

S−S̄(W )
W <

−µβ1β2
ε−ε−
W ∗ . So the trajectory will go below W ∗ −min{δ′ε− , ε} within finite time.

For W < W ∗ −min{δ′ε− , ε},

Ṡδ = Ṡ − S̄′(W ) · Ẇ > Λ1>χ(W )− Λ1>χ(W ∗), W < W ∗ −min{δ′ε− , ε}. (A.25)

Since 1>χ(W ) is strictly decreasing and W is bounded away from W ∗, Sδ will increase
to 0, i.e., the trajectory will reach region 7, within finite time.

• Region 7: W < W ∗, S = S̄(W ), then Ẇ = 0, Ṡ > 0. So the trajectory instantly
exists region 7 and reaches region 8.

• Region 8: W < W ∗, S > S̄(W ), then Ẇ > 0, Ṡ > 0. The trajectory can only reach
regions 1, 7, or 9 if it leaves region 8.

ForW ∈ (W ∗−min{δ′ε− , ε}), if −ε− < S−S∗ < ε, then the trajectory converges because
of local stability. Otherwise for these W values, Ẇ = µβ1β2

S−S̄(W )
W > µβ1β2

ε
W ∗ . The

trajectory will exceed W ∗ within finite time.

For W < W ∗ −min{δ′ε− , ε},

Ṡ = Λ1>χ(W )− Λ1>χ(W ∗), W < W ∗ −min{δ′ε− , ε}. (A.26)

Since 1>χ(W ) is strictly decreasing, W is bounded away from W ∗, and S is bounded
above by the line S = 1

β2
W ∗, the trajectory will leave this region within finite time.

• Region 9: If (W (t), S(t)) is in region 9, then the trajectory has already converged.

�

The final step is to show that between two successive times when the trajectory returns
to region 1, the S coordinate gets closer to the equilibrium value S∗. Furthermore, the step
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size is bounded away from zero as long as the trajectory does not enter the local stability
region.

Lemma 10 (Guaranteed Decay). There exists ϕ > 0, such that for any (W (0), S(0)) ∈
W+⋂R2

+
⋂
C
⋂
B, If t1 > 0 is a time with (W (t1), S(t1)) ∈W+/Wlocal, then S(0)−S(t1) > ϕ.

Proof. If (W (t1), S(t1)) ∈ W+/Wlocal, the trajectory has cycled back to region 1 without
entering the local stability region. Along its path, trajectory will first reaches the lower half
of the vertical line W = W ∗, i.e., region 5, and then return to region 1. We denote the time
that the trajectory hits region 5 as t5 , inf{s > t : W = W ∗, S < S̄(W )}.

The idea of the proof is to first show that the trajectory gets closer to the equilibrium
when it reaches region 5, i.e., (S(0)−S∗)−(S∗−S(t5)) > ϕr for some ϕr > 0; and then make
an analogous claim about the other half of the journey; and thus prove that the trajectory,
when keeping returning to region 1, always moves closer to the equilibrium with a positive
step size.

Denote t3 , inf{s > t : S = S̄(W )}, i.e., the time that the trajectory reaches region 3.
For any W ∈ [0,W (t3)], since W is first strictly increasing in region 2 and then strictly
decreasing in region 4, it should be passed by the trajectory twice, once in region 2 and once
in region 4. We denote

t4(W (τ)) , inf{s > t3 : W (s) = W (t)}, τ ∈ [0, t3]. (A.27)

Since W (τ) = W (t4(W (τ))),

Ẇ (τ) = Ẇ (t4(W (τ))) · t′4(W (τ)) · Ẇ (τ), τ ∈ [0, t3]. (A.28)

t′4(W (τ)) = 1
Ẇt4(W (τ))

, τ ∈ [0, t3). (A.29)

We define the following function,

F (τ) , S(τ) + S(t4(W (τ)))− 2S̄(W )(τ), τ ∈ [0, t3]. (A.30)

We are about to show for any τ ∈ (0, t3), there exists a time ν ∈ [τ, t3) such that F (ν) > 0,
i.e., there exists arbitrarily close point to (W (t3), S(t3)) such that the trajectory is closer
to line S = S̄(W ) in region 4 than in region 2. By contradiction, for any τ ∈ (0, t3), if
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F (ν) ≤ 0, ∀ν ∈ [τ, t3), then,

Ḟ (ν) = Ṡ(ν) + Ṡ(t4(Wν)) · t′4(W (ν)) · Ẇ (ν)− 2S̄′(W (ν)) · Ẇ (ν)

= Ṡ(W (ν)) + Ṡ(W (ν)) · 1
Ẇ (t4(Wν))

· Ẇ (ν)− 2S̄′(W (ν)) · Ẇ (ν)

= Ṡ(Wτ ) · Ẇτ ·
(

Wτ

µβ1β2(Sτ − S̄(Wτ ))
+ Wτ

µβ1β2(St4(Wτ ) − S̄(Wτ ))

)
− S̄′(Wτ ) · Ẇτ

= Ṡ(W (ν)) · Ẇ (ν) ·W (ν)
µβ1β2

· F (ν)
(S(ν)− S̄(W (ν))) · (S(t4(W (ν)))− S̄(W (ν)))

− S̄′(W (ν)) · Ẇ (ν) < 0.
(A.31)

Then,
F (t3)− F (τ) =

∫ t3

τ
Ḟ (ν)dν < 0, (A.32)

which contradicts with the fact that F (t3) = 0 and F (τ) ≤ 0.
Now we are about to show (S(0)−S∗)−(S∗−S(t5)) > 0, i.e., F (0) > 0. By contradiction,

if F (0) ≤ 0, and choose τ as a point that is close to (W (t3), S(t3)) with F (τ) > 0. By
continuity of F (·), it has to be zero at some points between region 3 and region 5. Denote
tequal , sup{0 < s < τ : W (s) = W (t4(W (s))} as the closest to (W (τ), S(τ)) among such
points. At tequal, F (tequal) = 0 and

Ḟ (tequal) = −S̄′(W (tequal)) · Ẇ (tequal) < 0 (A.33)

so there has to be some time between tequal and τ such that the two distances equate, which
contradicts with the fact that tequal is the closest to (W (τ), S(τ)) among such points. In fact,
with such argument we can make a stronger claim: F (τ) > 0 for all τ ∈ [0, t3).

We still need to show that not only F (0) > 0, but also there exists a ϕr > 0 such that
F (0) > ϕr as long as the trajectory does not enter the local stability region, i.e., either
|W (t)−W ∗| > ε or |S(t)− S̄(W (t))| > ε for any (W (t), S(t)).

Recall from equation (A.31) that

Ḟ (τ) = Ṡ(τ) · Ẇ (τ) ·W (τ)
µβ1β2

· F (τ)
(S(τ)− S̄(W (τ))) · (S(t4(W (τ)))− S̄(W (τ)))

− S̄′(W (τ)) · Ẇ (τ).
(A.34)
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Define

G(τ) , Ṡ(τ) · Ẇ (τ) ·W (τ)
µβ1β2(S(τ)− S̄(W (τ))) · (S(t4(W (τ)))− S̄(W (τ)))

, τ ∈ [0, t3]. (A.35)

Then,
Ḟ (τ) = G(τ) · F (τ)− S̄′(W (τ)) · Ẇ (τ). (A.36)

Note that G(0) = 0, and because of continuity of G(·), for a small εG such that

0 < εG <
β2ζ(ε− ε−)
W ∗(W ∗ + ε) −

β2∆
W ∗

(A.37)

where 0 < ∆ < ζ(ε−ε−)
W ∗+ε , there exists tG > 0 such that for t ∈ [0, tG), |G(t)| < εG.

Recall that for W ∈ [W ∗,W ∗ + min{δε, ε}), Ẇ > µβ1β2(ε−ε−)
W ∗+ε . At the same time, the

starting position in region 1 satisfies S(0) ≤W ∗/β2. S(τ) ≤ S(0) ≤W ∗/β2 for all τ ∈ [0, t1],
because the trajectory first decreases until it reaches region 5 and then increases to return
to region 1 at a lower level. Therefore, we also have Ẇ < µβ1β2(W ∗/β2+ε−)

W ∗ . Then for time
τ ∈ [0, (W ∗+min{δ,ε})W ∗

µβ1β2(W ∗/β2+ε−)), W ∈ [W ∗,W ∗ + min{δ, ε}).
F (τ) < S(τ) ≤ W ∗/β2 is bounded. So is S̄′(W (τ)) > 1

µβ1β2

(
µ(β1 + β2)− Λβ>χ(W )

)
≥

ζ/µβ1β2.
For τ ∈ [0,min{tG, (W ∗+min{δ,ε})W ∗

µβ1β2(W ∗/β2+ε−)}),

Ḟ (τ) < εGF (τ)− ζ∗
µβ1β2

µβ1β2(ε− ε−)
W ∗ + ε

<

(
β2ζ(ε− ε−)
W ∗(W ∗ + ε) −

β2∆
W ∗

)
· W

∗

β2
− ζ(ε− ε−)

W ∗ + ε

= −∆.

(A.38)

Therefore,

F (0) > F (0)− F
(

min
{
tG,

(W ∗ + min{δ, ε})W ∗

µβ1β2ε

})
> ∆ ·min

{
tG,

(W ∗ + min{δ, ε})W ∗

µβ1β2ε

}
.

(A.39)
We can make analogous claims on (S∗−S(t5))− (S(t1)−S∗), i.e., on the other half of the

trajectory from region 5 back to region 1, and thus prove that in each cycle the trajectory
gets closer to the equilibrium with a positive step size as long as it does not enter the local
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stability region and therefore has to converge. �

A.3. Auxiliary empirical results

% of Variance Explained % of Variance Explained
One Factor Two Factors One Factor Two Factors

Alcoa 62% 77% JPMorgan 68% 82%
American Express 68% 80% Kraft 74% 84%

Boeing 52% 66% Coca-Cola 71% 82%
Bank of America 73% 84% McDonalds 64% 76%

Caterpillar 31% 51% 3M 31% 51%
Cisco 76% 87% Merck 76% 86%

Chevron 38% 59% Microsoft 74% 90%
DuPont 59% 74% Pfizer 76% 84%
Disney 74% 83% Procter & Gamble 72% 81%

General Electric 80% 91% AT&T 69% 81%
Home Depot 85% 92% Travelers 75% 85%

Hewlett-Packard 71% 84% United Tech 39% 55%
IBM 27% 53% Verizon 76% 87%
Intel 74% 86% Wal-Mart 77% 85%

Johnson & Johnson 71% 82% Exxon Mobil 54% 69%

Table A.1: Results of PCA for queue lengths trajectories: how much variance in the data can
the first two principle components explain.
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Appendix B

Appendix to Chapter 3

B.1. Proofs

Proof of Lemma 2. Without loss of generality, we consider the evolution of the buy limit
order queues Qb(t) =

(
Qb1(t), . . . , QbN (t)

)
.

For an arbitrary initial condition Q(0) ∈ Q, the fluid model ODEs in (3.1) are initialized
at Qb(0) ∈ RN+ , satisfying

Qbb0(0) > 0; Qbi(0) = 0 for all b0 < i ≤ N.

Starting with best-bid b0 at time t = 0, at least for small t, the fluid model ODEs in (3.1)
can be specified as follows:

∀1 ≤ i < b0 : Q̇bi(t) = λbi − γQbi(t),

i = b0 : Q̇bb0(t) = λbb0 − µ
s
b0 − γQ

b
b0(t),

∀b0 < i ≤ N : Q̇bi(t) = 0,

(B.1)
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which has unique solution

∀1 ≤ i < b0 : Qbi(t) = λbi
γ

(
1− e−γt

)
+Qbi(0)e−γt,

i = b0 : Qbb0(t) =
λbb0
− µsb0

γ

(
1− e−γt

)
+Qbb0(0)e−γt,

∀b0 < i ≤ N : Qbi(t) = 0.

(B.2)

From (B.2), for b0 < i ≤ N , Qbi(t) will stay at 0. Moreover, since λbb0
> µsb0

from
Assumption 4, Qbb0

(t) will stay positive and never hit the border Qbb0
(t) = 0. Therefore,

bt = b0 for all t ≥ 0. Analogously, at = a0 for all t ≥ 0.

As a result, (B.1) holds for all t ≥ 0. Subsequently, (B.2) is the unique solution to the
fluid model ODEs in (3.1) for all t ≥ 0.

Since Q(0) ∈ Q, bt = b0 < a0 = at for all t ≥ 0 . And we have shown that Qbb0
(t) > 0,

and analogously Qsa0(t) > 0, for all t ≥ 0. Hence, Q(t) ∈ Q for all t ≥ 0.

Finally, as t → ∞, e−γt → 0. From (B.2), we have Qb(t) → q∗,b, with q∗,b as given
in (ii). �

Proof of Lemma 3. If Ca0 ≤ Qsa0(0−), we have that {S∗(t), t ∈ [0, τ ]} = {S∗(0) = Ca0} and
it satisfies the constraints in (3.11) - (3.12). Executing immediately with one block trade is
feasible and thus is the optimal solution to the minimum time problem.

If Ca0 > Qsa0(0−), we start with the feasibility of the proposed control trajectory. From
(3.13),

S∗(0) = Qsa0(0−)− ε,

and then Qsa0(0) = ε. From (3.14), Q̇sa0(t) = 0 for all t ∈ (0, τ), which guarantees the queue
length stays at Qsa0(t) = ε. Furthermore, Ṡ∗(t) = κa0 for the length of the execution interval,
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which is determined as τ =
(
Ca0 −Qsa0(0−)

)
/κa0 . As a result,

S∗(τ−) = S∗(0) +
∫ τ

0
r∗(t)dt = Ca0 − ε.

Finally, from (3.15), we have that S∗(τ)− S∗(τ−) = ε = Qsa0(τ−) and S∗(τ) = Ca0 .

We prove the optimality of the proposed trajectory by contradiction. Under control
trajectory {S∗(t), t ∈ [0, τ ]}, we have that τ =

(
Ca0 −Qsa0(0−)

)
/κa0 . Suppose there exists

another feasible trajectory that executes Ca0 shares within time τ ′ < τ .

Within time [0, τ ′], the total amount of newly arriving sell limit orders into price level pa0

is λsa0τ
′. From the first constraint in (3.12), Qsa0(t) ≥ ε for all t ∈ [0, τ ′). The total amount

of departed sell limit orders from price level pa0 is greater than or equal to

µba0τ
′ + γετ ′.

From the constraints in (3.12), any feasible trajectory can only submit market orders at price
level pa0 . Accordingly, the completed number of shares Ca0 is constrained by the available
liquidity at price level pa0 in the interval [0, τ ′], and thus is upper bounded as follows,

Ca0 ≤ Qsa0(0−) + λsa0τ
′ − µba0τ

′ − γετ ′. (B.3)

As a result, τ ′ ≥
(
Ca0 −Qsa0(0−)

)
/κa0 = τ , which contradicts with the fact that τ ′ < τ . �

Proof of Lemma 4. If C ′ ≤ Qsa0(0−) + κT , we have that

C∗a0 = C ′, C∗i = 0 for i = a0 + 1, · · · , N.

It is easy to verify that C∗a0 , · · · , C
∗
N is feasible. Furthermore, the resulting total price satisfies

N∑
i=a0

C∗i · pi = C ′ · pa0 ≤
N∑
i=a0

Ci · pi,

for any feasible Ca0 , · · · , CN , as pi ≥ pa0 for i = a0, · · · , N .
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If C ′ > Qsa0(0−) + κT , we have that

C∗a0 = Qsa0(0−) + κT, C∗i = Qsi (0−) for i = a0 + 1, · · · , n∗ − 1,

where n∗ is defined as n∗ := min
{
a0 ≤ j ≤ N : κT +

∑j
k=a0

Qsk(0−) ≥ C ′
}
, and

C∗n∗ = C ′ − κT −
n∗−1∑
i=a0

Qsi (0−), C∗i = 0 for i > n∗.

In this execution policy, price pn∗ will be the highest price at which the trader should submit
market orders. It is easy to verify that C∗a0 , · · · , C

∗
N is feasible.

Furthermore, we prove by contradiction that there does not exist an optimal solution
with lower total price. Suppose Ca0 , · · · , CN is such an optimal solution, in which pn is the
highest price to be used by the trader, i.e.,

Ci ≥ Qsi (0−) for i < n, Cn > 0, Ci = 0 for i > n.

We first show that n = n∗. On one hand, if n < n∗, from the definition of n∗, we will
have

κT < C ′ −
n∑

i=a0

Qsi (0−) =
n∑

i=a0

(
Ci −Qsi (0−)

)
≤

n∑
i=a0

(
Ci −Qsi (0−)

)+
,

which contradicts with the time constraint. Hence, n ≥ n∗. On the other hand, if n > n∗,
and at the same time

∑n
i=a0 li < T , then there exists η > 0 that simultaneously satisfies

Cn − η > 0,
n∑

i=a0

li + η

κ
≤ T, and η · (pn − pa0) > 0. (B.4)

In contrast to the original policy, let the trader submit η less market orders at price pn, and
continuously submit market orders for η/κ time more at price pa0 . The latter policy is still
feasible yet has strictly lower price, which contradicts with the fact that Ca0 , · · · , CN is an
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optimal solution. Therefore, in this case we should have

n∑
i=a0

κli =
n−1∑
i=a0

(
Ci −Qsi (0−)

)
+
(
Cn −Qsn(0−)

)+ = κT,

Subsequently, since n > n∗, we have that

n−1∑
i=a0

Ci +
(
Cn −Qsn(0−)

)+ = κT +
n−1∑
i=a0

Qsi (0−) ≥ κT +
n∗∑
i=a0

Qsi (0−) ≥ C ′.

However, since (Cn −Qsn(0−))+
< Cn, the left hand side of the above inequality is strictly

less than C ′, which results in contradiction. Therefore, n = n∗.

For the policy Ca0 , · · · , CN , when n = n∗, the resulting total price satisfies

N∑
i=a0

Ci · pi =
n∗−1∑
i=a0

(
Qsi (0−) + κli

)
pi +

C ′ − n∗−1∑
i=a0

(
Qsi (0−) + κli

) · pn∗
= C ′ · pn∗ −

n∗−1∑
i=a0

Qsi (0−) · (pn∗ − pi)− κ
n∗−1∑
i=a0

li · (pn∗ − pi)

≥ C ′ · pn∗ −
n∗−1∑
i=a0

Qsi (0−) · (pn∗ − pi)− κT · (pn∗ − pa0)

=
N∑
i=a0

C∗i · pi,

which contradicts with the fact that it is an optimal solution with lower total price than that
of the solution C∗a0 , · · · , C

∗
N . �

Proof of Lemma 5. Recall that Q0(t) denotes the quantity of limit orders at the best-bid
with higher priority than the trader’s order. Its dynamics have been given in (3.7). Under
the assumptions in Section 3.4, from Lemma 4, we have that bt = b0 for all t ∈ [0, T ]. As a
result, until it gets depleted, the dynamics of Q0(t) can be simplified to

Q̇0(t) = −µsb0 − γQ
0(t).
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This ODE has a unique solution for t ≥ 0 given by

Q0(t) = −
µsb0

γ
·
(
1− e−γt

)
+Q0(0) · e−γt.

Thus, the draining time of Q0(0) is

tdrain = 1
γ

log
(

1 + γ

µsb0

Q0(0)
)
.

If T ≤ tdrain, no limit orders submitted by the trader can be executed before the higher
priority limit orders get depleted. In this event, SL = 0.

If T > tdrain, for t ∈ (tdrain, T ], we have that Q0(0) = 0. Recall that QL denote the
number of shares left in the trader’s limit order. Its dynamics have been given in (3.8). For
t ∈ (tdrain, T ], Q̇L(t) = µbt if QL(t) > 0. Therefore, the maximum size of limit order SL the
trader can execute within time t ∈ (tdrain, T ] is µsbt · (T − tdrain).

Moreover, since SL ≤ C,

SL = min
{
µsbt · (T − tdrain)+ , C

}
.

�
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Figure B.1: S&P500 cross-sectional, smoothed intraday trading volume profile (min-by-min).
Averaged across 5 consecutive trading days. A trading day in the US equities market starts at
9:30am and closes at 4:00pm, i.e., it has 390 minutes. This profile is indicative of “typical” days
and it should be adjusted for special occasions such as option expirations, end of month, end of
quarter, index rebalancing, Fed announcements, etc.; we do not include that level of granularity
in our forecasts but instead apply the typical profile throughout the period of our sample and for
all securities, including the ones that are not in the S&P500 and ETFs.
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Figure B.2: Simulated costs as microstructure variables are varied. Order size = 3 × nominal
queue length. Microstructure variables including queue lengths and market order arrival rates
vary by a random multiplier in (1/3, 1) w.p. .5 and (1, 3) w.p. .5.

188



Appendix C

Appendix to Chapter 4

C.1. Proofs

Proof of Proposition 1. Rewrite the characterization equations of the dynamic value func-
tions in (4.11) (4.12) and denote the differences between the two sides as

ES(VS , ṼS(VS)) := −ṼS(VS) + VS + e−βδ

1− e−βδ

(
q(θ)γ

∫ U

ṼS(VS)

(
s− ṼS(VS)

)
dFB(s)− cS

)
,

EB(VB, ṼB(VB)) :=− ṼB(VB) + VB

− e−βδ

1− e−βδ

(
h(θ)(1− γ)

∫ ṼB(VB)

L

(
ṼB(VB)− t

)
dFS(t)− cB

)
.

For the sellers, by integration by parts,

ES(VS , ṼS(VS)) =− ṼS(VS) + VS

+ e−βδ

1− e−βδ

(
q(θ)γ

(
(U − ṼS(VS))FB(U)− 0−

∫ U

ṼS(VS)
FB(s)ds

)
− cS

)
=− ṼS(VS) + VS

+ e−βδ

1− e−βδ

(
q(θ)γ

(
U − ṼS(VS)−

∫ U

ṼS(VS)
FB(s)ds

)
− cS

)
.

By chain rule, when conditions of implicit function theorem are satisfied, the derivative of
the dynamic value functions can be derived from their characterization equations todo:check
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implicit function theorem conditions

dṼS(VS)
dVS

= − ∂ES/∂VS

∂ES/∂ṼS(VS)

= − 1
−1 + e−βδ

1−e−βδ q(θ)γ
(
−1− (−FB(ṼS(VS)))

)
= 1

1 + e−βδ

1−e−βδ q(θ)γFB(ṼS(VS))
∈ (0, 1).

(C.1)

Analogously for the buying side,

dṼB(VB)
dVB

= − ∂EB/∂VB

∂EB/∂ṼB(VB)
= 1

1 + e−βδ

1−e−βδ h(θ)(1− γ)FS(ṼB(VB))
∈ (0, 1). (C.2)

Now given the first derivatives of dynamic value functions dṼS(VS)/dVS , dṼB(VB)/dVB
and their signs, we examine the second derivatives,

d2ṼS(VS)
dV 2

S

= −
e−βδ

1−e−βδ q(θ)γ
dFB(ṼS(VS))
dṼS(VS)

dṼS(VS)
dVS(

1 + e−βδ

1−e−βδ q(θ)γFB(ṼS(VS))
)2 ≥ 0, (C.3)

as dFB(ṼS(VS))/dṼS(VS) ≤ 0 and,

d2ṼB(VB)
dV 2

B

= −
e−βδ

1−e−βδ h(θ)(1− γ)dFS(ṼB(VB))
dṼB(VB)

dṼB(VB)
dVB(

1 + e−βδ

1−e−βδ h(θ)(1− γ)FS(ṼB(VB))
)2 ≤ 0. (C.4)

as dFS(ṼB(VB))/dṼB(VB) ≥ 0.
Therefore, ṼS(·) is increasing and convex in VS , and ṼB(·) is increasing and concave in

VB. �

Proof of Proposition 2. For simplicity of notation, let us denote x(t) := FS(t), y(t) :=
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FB(t). Rewrite the ODEs as


x(t)′ = λ

U − L

(
1

TSq(θ)y(t) + e−βδ

1− e−βδ
γ

TS

)
,

y(t)′ = − αλ

U − L

(
1

TBh(θ)x(t) + e−βδ

1− e−βδ
1− γ
TB

)
.

(C.5)

We prove that (x(t), y(t)) as given solves the system of ODEs in (C.5) by verification.
First, according to (4.23) and the definition of the Lambert function,

e−βδ

1− e−βδ h(θ)(1− γ)x(t)e
e−βδ

1−e−βδ
h(θ)(1−γ)x(t) = C1y(t)−

1
α e
− 1
α

e−βδ

1−e−βδ
q(θ)γy(t)

. (C.6)

Divide e−βδ

1−e−βδ h(θ)(1− γ) and take logarithm on both sides of the above equation, we obtain

log x(t) + e−βδ

1− e−βδ h(θ)(1− γ)x(t) = log

 C1
e−βδ

1−e−βδ h(θ)(1− γ)

− 1
α

log y(t)

− 1
α

e−βδ

1− e−βδ q(θ)γy(t).

(C.7)

Take derivative on both sides of the above equation and reorganize, we can get

x(t)′
(

1
x(t) + e−βδ

1− e−βδ h(θ)(1− γ)
)

= y(t)′
(
− 1
αy(t) −

1
α

e−βδ

1− e−βδ q(θ)γ
)
. (C.8)

Hence, by multiplying −αλ
(U−L)TBh(θ) = −αλ

(U−L)TSq(θ) to the two sides of the above equation
respectively,

x(t)′ · − αλ

U − L

(
1

TBh(θ)x(t) + e−βδ

1− e−βδ
1− γ
TB

)
= y(t)′ · λ

U − L

(
1

TSq(θ)y(t) + e−βδ

1− e−βδ
γ

TS

)
(C.9)

As a result, now we only need to show any one of the two ODEs is satisfied.
We want to show that the second ODE is satisfied. Take x(t) as given in the proposition
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into the second ODE, we can get a first order nonlinear ODE

y′(t) = − e−βδ

1− e−βδ ·
αλ(1− γ)
(U − L)TB

·

 1

W

(
C1y(t)−

1
α e
− 1
α

e−βδ
1−e−βδ

q(θ)γy(t)
) + 1

 . (C.10)

Take y(t) as given in the proposition into (C.10), we can check that (C.10) is also satisfied.
Therefore, x(t), y(t) as given in the proposition solves the system of ODEs in (C.5), and thus
solves the system of ODEs in (4.21). �

Proof of Proposition 3. We prove that the given functional forms of FS(·), FB(·) solve the
system of ODEs in (4.41) by verification.

First, when aB 6= aS ,

fS(t) = dFS(t)/dt = C1
aB

aB − αaS

(
aB − αaS
C1aB

t+ C2

) αaS
aB−αaS aB − αaS

C1aB

=
(
aB − αaS
C1aB

t+ C2

) αaS
aB−αaS = λ

aS(U − L)TSq(θ)FB(t)
.

(C.11)

Thus the first ODE is satisfied. At the same time,

fB(t) = −dFB(t)/dt

= − λ

aS(U − L)TSq(θ)
−αaS

aB − αaS

(
aB − αaS
C1aB

t+ C2

)− aB
aB−αaS aB − αaS

C1aB

= αλ

aB(U − L)TBh(θ)C1
(
aB−αaS
C1aB

t+ C2
) aB
aB−αaS

= αλ

aB(U − L)TBh(θ)FS(t) .

(C.12)

Therefore the send ODE is satisfied as well.
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Second, when aB = αaS ,

fS(t) = dFS(t)/dt = C2e
λt

C1aS(U−L)TSq(θ)
λ

C1aS(U − L)TSq(θ)

= λ

aS(U − L)TSq(θ)
C2
C1
e

λt
C1aS(U−L)TSq(θ) = λ

aS(U − L)TSq(θ)FB(t)
.

(C.13)
Thus the first ODE is satisfied. At the same time,

fB(t) = −dFB(t)/dt = C1
C2
e
− λt
C1aS(U−L)TSq(θ) − λ

C1aS(U − L)TSq(θ)

= λ

aS(U − L)TSq(θ)FS(t) = αλ

aB(U − L)TBh(θ)FS(t) .
(C.14)

Therefore the send ODE is satisfied as well. �

Proof of Lemma 6. First, directly derive ṼS(L) and ṼB(U) from the linear relations,

ṼS(L) = (1− aS)V S + aSL, (C.15)

ṼB(U) = (1− aB)V B + aBU. (C.16)

When V S > V B, for the marginal sellers, indifference yields

q(θ)γ
(∫ ṼB(U)

V S

fB(u) · udu− V S

∫ ṼB(U)

V S

fB(u)du
)

= cS

q(θ)γ αλ

(U − L)aBTBh(θ)

∫ ṼB(U)

V S

(u− V S)du = cS .

(C.17)

Therefore

ṼB(U)− V S = (1− aB)V B + aBU − V S =
√

2(U − L)aBTScS
αλγ

. (C.18)

Similarly, for the marginal buyers,

h(θ)(1− γ)
(
V B

∫ V B

ṼS(L)
fS(u)du−

∫ V B

ṼS(L)
fS(u) · udu

)
= cB

h(θ)(1− γ) λ

(U − L)aSTSq(θ)

∫ V B

ṼS(L)
(V B − u)du = cB.

(C.19)
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Therefore

V B − ṼS(L) = V B − (1− aS)V S − aSL =
√

2(U − L)aSTBcB
λ(1− γ) . (C.20)

Combining equation (C.18) and equation (C.20), we get

V S = 1
aB + aS − aBaS

×(
(1− aB)

√
2(U − L)aSTBcB

λ(1− γ) −
√

2(U − L)aBTScS
αλγ

+ aS(1− aB)L+ aBU

)
,

(C.21)

V B = 1
aB + aS − aBaS

×(√
2(U − L)aSTBcB

λ(1− γ) − (1− aS)
√

2(U − L)aBTScS
αλγ

+ aSL+ aB(1− aS)U
)
.

(C.22)

Furthermore, for agents ṼB > V S or ṼS < V B, their densities are easy to get

fS(ṼS) = λ

(U − L)aSTSq(θ)
, ∀ṼS ∈ [ṼS(L), V B], (C.23)

fB(ṼB) = αλ

(U − L)aBTBh(θ) , ∀ṼB ∈ [V S , ṼB(U)]. (C.24)

Therefore,

FS(V B) = λ

(U − L)aSTSq(θ)
(V B − ṼS(L)) =

√
2λcB

(U − L)aSTSq(θ)h(θ)(1− γ) , (C.25)

FB(V S) = αλ

(U − L)aBTBh(θ)(ṼB(U)− V S) =
√

2αλcS
(U − L)aBTBh(θ)q(θ)γ . (C.26)

�

Proof of Proposition 4. From Lemma 6,

FB(V S) =
√

2αλcS
(U − L)aBTBh(θ)q(θ)γ , (C.27)

FS(V B) =
√

2λcB
(U − L)aSTSq(θ)h(θ)(1− γ) . (C.28)
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Take these into the charactering equations of aB and aS (4.50) and (4.51), we can get

TS =
(

aS
1− aS

)2
(

e−βδ

1− e−βδ

)2 2αλcSγ
(U − L)aB

, (C.29)

TB =
(

aB
1− aB

)2
(

e−βδ

1− e−βδ

)2 2λcB(1− γ)
(U − L)aS

, (C.30)

and therefore,

θ = TB/TS =
a3
B

(1−aB)2 cB(1− γ)
a3
S

(1−aS)2αcSγ
. (C.31)

When aB = αaS , in this case from previous analysis,

FS(t) = C2e
λt

C1aS(U−L)TSq(θ) , (C.32)

FB(t) = C1
C2
e
− λt
C1aS(U−L)TSq(θ) . (C.33)

The bounds are now

V S = 1
aS(1 + α− αaS)×(

(1− αaS)
√

2(U − L)aSTBcB
λ(1− γ) −

√
2(U − L)aSTScS

λγ
+ aS(1− αaS)L+ αaSU

)
,

(C.34)
V B = 1

aS(1 + α− αaS)×(√
2(U − L)aSTBcB

λ(1− γ) − (1− aS)
√

2(U − L)aSTScS
λγ

+ aSL+ αaS(1− aS)U
)
.

(C.35)
By overall flow balance,

V S + αV B = 1
aS

(√
2(U − L)aSTBcB

λ(1− γ) −
√

2(U − L)aSTScS
λγ

+ aSL+ αaSU

)
= L+ αU,

(C.36)

θ = TB
TS

= cS(1− γ)
cBγ

. (C.37)
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Therefore, the bounds can be further simplified to

V S = 1
1 + α− αaS

(
−α
√

2(U − L)aSTScS
λγ

+ (1− αaS)L+ αU

)
, (C.38)

V B = 1
1 + α− αaS

(√
2(U − L)aSTScS

λγ
+ L+ α(1− aS)U

)
. (C.39)

To solve for C1,

FS(V S) · FB(V S) = FS(V B) · FB(V B) = C1

=
√

2λcS
(U − L)aSTSq(θ)h(θ)θγ =

√
2λcB

(U − L)aSTSq(θ)h(θ)(1− γ) .
(C.40)

Therefore,( 2αλcS
aB(U − L)TBh(θ)q(θ)γ

)aB
=
( 2λcB
aS(U − L)TSq(θ)h(θ)(1− γ)

)αaS
. (C.41)

To solve for C2,

FS(V S) = C2e
λV S

C1aS(U−L)TSq(θ) = 1, (C.42)

C2 = e
− λV S
C1aS(U−L)TSq(θ) = e

− V S√
2(U−L)aSTScS

λγ = e

α
1+α−αaS

− (1−αaS)L+αU
1+α−αaS

· 1√
2(U−L)aSTScS

λγ . (C.43)

To solve for TS , TB,

FS(V B) =
√

2λcB
(U − L)aSTSq(θ)h(θ)(1− γ) = C2e

λV B
C1aS(U−L)TSq(θ) , (C.44)

therefore,

TS = (U − L)λγaSα2

2cS(1 + α− αaS)2

W
 q

(
cS(1−γ)
cBγ

)
γ

2cS · αaS(U−L)
1+α−αaS · e

1+α
1+α−αaS

2 . (C.45)
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When aB 6= αaS , from previous analysis

FS(t) = C1

(
aB − αaS
C1aB

t+ C2

) aB
aB−αaS

, (C.46)

FB(t) = λ

aS(U − L)TSq(θ)

(
aB − αaS
C1aB

t+ C2

)− αaS
aB−αaS

. (C.47)

First, to solve for C1,

FS(V S)
αaS
aB · FB(V S) = C

αaS
aB

1 λ

(U − L)aSTSq(θ)
=
√

2αλcS
(U − L)aBTBh(θ)q(θ)γ , (C.48)

C1 =
(
αaS
aB

√
2(U − L)aBTScS

αλγ

) aB
αaS

. (C.49)

Then, to solve for C2,

FS(V S) · FB(V S) = C1λ

(U − L)aSTSq(θ)

(
aB − αaS
C1aB

V S + C2

)

=
√

2αλcS
(U − L)aBTBh(θ)q(θ)γ ,

(C.50)

and

C2 = 1
C1

(
αaS
aB

√
2(U − L)aBTScS

αλγ
− aB − αaS

aB
V S

)
. (C.51)

For any given θ, to solve for TS , TB,

FB(V B)
aB
αaS · FS(V B) = C1 ·

(
λ

(U − L)aSTSq(θ)

) aB
αaS =

√
2λcB

(U − L)aSTSq(θ)h(θ)(1− γ) ,

(C.52)( 2αλcS
(U − L)aBTBh(θ)q(θ)γ

)aB
=
( 2λcB

(U − L)aSTSq(θ)h(θ)(1− γ)

)αaS
. (C.53)

Thus given θ,

TS = 2λ
(U − L)h(θ)q(θ) ·

(
αcS
aBγθ

) aB
aB−αaS ·

(
aS(1− γ)

cB

) αaS
aB−αaS

, TB = θTS . (C.54)
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From the above equation we can also derive the following

q(θ) =

(
αaScS(1−γ)
aBcBγθ

) αaS
2(aB−αaS)

aS
1−aS

e−βδ

1−e−βδ γ
=

(
cS
cB

αaS
aB

aS
1−aS
aB

1−aB

) αaS
aB−αaS

aS
1−aS

e−βδ

1−e−βδ γ
. (C.55)

In parallel,

h(θ) =

(
cS
cB

αaS
aB

aS
1−aS
aB

1−aB

) αaB
aB−αaS

aB
1−aB

e−βδ

1−e−βδ (1− γ)
. (C.56)

Combine (C.31) and (C.55), given a functional form of q(θ), we can get one equation of
aB, aS .

To solve for aB, aS , the other equation of them comes from

FS(V B) · FB(V B) =
√

2λcB
(U − L)aSTSq(θ)h(θ)(1− γ) , (C.57)

which results in the following equation

aB − αaS
aB + aS − aBaS

(
2cB

aB
1− aB

e−βδ

1− e−βδ − 2cSaS
e−βδ

1− e−βδ + aSL+ aB(1− aS)U
)

+ αaS
aB
· 2cS

aS
1− aS

e−βδ

1− e−βδ

= aB − αaS
aB + aS − aBaS

(
2cBaB

e−βδ

1− e−βδ − 2cS
aS

1− aS
e−βδ

1− e−βδ + aS(1− aB)L+ aBU

)

+ 2cB
aB

1− aB
e−βδ

1− e−βδ .

(C.58)

�

Proof of Theorem 7. First, we want to show necessity. We start with showing that in the
symmetric case aB = aS has to be true. According to Lemma 6, by marginal indifference
conditions,

FS(V B) =
√

2λc
(U − L)aSTSq(θ)h(θ)(1− γ) = 2√

q(θ)h(θ) aS
1−aS

e−βδ

1−e−βδ

√
aB
aS
, (C.59)
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By the characterizing equation of aB,

aB = 1
1 + e−βδ

1−e−βδ q(θ)γFS(V B)
= 1

1 +
√
θ

aS
1−aS

√
aB
aS

, (C.60)

therefore,

θ =
a3
S

(1−aS)2

a3
B

(1−aB)2

= 1
θ
, θ = 1, aB = aS , (C.61)

From now on denote a := aB = aS . In this case aB = αaS ,

FS(x) = C2e
λx

C1a(U−L)TSq(1) = C2e

x

C1cq(1)
(

a
1−a

e−βδ
1−e−βδ

)2

, (C.62)

FB(x) = C1
C2
e
− λx
C1a(U−L)TSq(θ) = C1

C2
e

− x

C1cq(1)
(

a
1−a

e−βδ
1−e−βδ

)2

. (C.63)

By marginal indifference conditions, the bounds are now

V S =
(
−2c a

1− a
e−βδ

1− e−βδ + (1− a)L+ U

)
/(2− a), (C.64)

V B =
(

2c a

1− a
e−βδ

1− e−βδ + L+ (1− a)U
)
/(2− a). (C.65)

Also because of marginal indifference,

FS(V B) = FB(V S) = 2
q(1) a

1−a
e−βδ

1−e−βδ
. (C.66)

By boundary conditions,

FS(V S) = C2e

V S

C1cq(1)
(

a
1−a

e−βδ
1−e−βδ

)2

= 1, C2 = e

− V S

C1cq(1)
(

a
1−a

e−βδ
1−e−βδ

)2

, (C.67)

FB(V S) = C1
C2
e

− V S

C1cq(1)
(

a
1−a

e−βδ
1−e−βδ

)2

= C1 = 2
q(1) a

1−a
eβδ

1−e−βδ
, (C.68)
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FS(V B) = C2e

V B

C1cq(1)
(

a
1−a

e−βδ
1−e−βδ

)2

= e

V B−V S

C1cq(1)
(

a
1−a

e−βδ
1−e−βδ

)2

= 2
q(1) a

1−a
e−βδ

1−e−βδ
. (C.69)

So the value of a would be determined by the following equation

e

V B−V S
2c a

1−a
e−βδ

1−e−βδ = e

4c a
1−a

e−βδ
1−e−βδ

−a(U−L)

2c(2−a) a
1−a

e−βδ
1−e−βδ = 2

q(1) a
1−a

e−βδ

1−e−βδ
, (C.70)

e

2− (1−a)(U−L)

2c e−βδ
1−e−βδ =

 2(1− a)
aq(1) e−βδ

1−e−βδ

2−a

. (C.71)

Second, we want to show existence and uniqueness. In equation (C.71), denote the LHS
and RHS as follows

EL(a) := e

2− (1−a)(U−L)

2c e−βδ
1−e−βδ , ER(a) :=

 2
q(1) a

1−a
e−βδ

1−e−βδ

2−a

, (C.72)

and E(a) := EL(a)− ER(a). EL(a) is monotonically increasing in a with derivative

EL(a)′ = U − L
2c e−βδ1−eβδ

e

2− U−L

2c e−βδ
1−e−βδ

+ U−L

2c e
−βδ

1−eβδ
a

> 0. (C.73)

When e−βδ < e6

q(1)+e6 , ER(a) is monotonically decreasing in a with derivative

ER(a)′ = −e
(2−a)

(
log 2

q(1) e−βδ
1−e−βδ

+log (1−a)−log a

)

×

log 2
q(1) e−βδ

1−e−βδ
+ log (1− a)− log a+ 2− a

a(1− a)


= −

 2
q(1) a

1−a
e−βδ

1−e−βδ

2−alog 2
q(1) e−βδ

1−e−βδ
+ log (1− a)− log a+ 2− a

a(1− a)

 < 0,

(C.74)
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because the function of a within the second bracket is convex and

min
a∈(0,1)

log 2
q(1) e−βδ

1−e−βδ
+ log (1− a)− log a+ 2− a

a(1− a)

 = 6− log
(
q(1) e−βδ

1− e−βδ

)
> 0,

(C.75)
which is taken at a = 2/3, because e−βδ < e6

q(1)+e6 , q(1) e−βδ

1−e−βδ < e6.
At a = 0 and a = 1 respectively,

EL(0) = e

2− U−L

2c e−βδ
1−e−βδ < lim

a→0
ER(0) =∞, EL(1) = e2 > ER(1) = 0. (C.76)

Therefore a ∈ (0, 1) satisfying E(a) = 0 exists and is unique.
Third, we want to show sufficiency. We start with showing V S > V B. When the bounds

are as given,

V S − V B =
−4c a

1−a
e−βδ

1−e−βδ + a(U − L)
2− a . (C.77)

Since e
2− (1−a)(U−L)

2c e−βδ
1−e−βδ =

(
2(1−a)

aq(1) e−βδ
1−e−βδ

)2−a

, take orders of 1/(2− a) on both sides we can get

e

4c a
1−a

e−βδ
1−e−βδ

−a(U−L)

2c(2−a) a
1−a

e−βδ
1−e−βδ = e

V B−V S
2c a

1−a
e−βδ

1−e−βδ = 2
q(1) a

1−a
e−βδ

1−e−βδ
. (C.78)

When c < (U−L)q(1)

4
(

e−βδ
1−e−βδ

+ 2
q(1)

) , given that a
1−a

e−βδ

1−e−βδ is monotonically increasing in a, denote the

solution to the equation a
1−a

e−βδ

1−e−βδ = 2
q(1) as ã, then ã = 2

q(1)
(

e−βδ
1−e−βδ

+ 2
q(1)

) and

E(ã) = e2− ã(U−L)q(1)
4c − 1

= e

2

1− U−L

4c
(

e−βδ
1−e−βδ

+ 2
q(1)

)
− 1 < 0.

(C.79)

Since E(·) in monotonically increasing in a, the equilibrium a value is to the right of ã, i.e.,
a > ã. Because a

1−a
e−βδ

1−e−βδ is also monotonically increasing in a, we have a
1−a

e−βδ

1−e−βδ >
2
q(1) ,
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therefore e

V B−V S
2c a

1−a
e−βδ

1−e−βδ = 2
q(1) a

1−a
e−βδ

1−e−βδ
< 1, and thus V B < V S .

Now we proceed to show that all the requirements in Definition 4 are satisfied. According
to Proposition 3, flow balances are satisfied by FS(·), FB(·) as given. When the bounds are
as given,

ṼB(U)− V S = V B − ṼS(L))

= V B − V S − a(L− V S)

= V B − (1− a)V S − aL

= 2c a

1− a
e−βδ

1− e−βδ .

(C.80)

Since V S > V B,

∫ ṼB(U)

V S

fB(u) · udu− V S

∫ ṼB(U)

V S

fB(u)du = λ

a(U − L)Tq(1)
(ṼB(U)− V S)2

2

= λ

a(u− L) a
(1−a)2

(
e−βδ

1−e−βδ
)2

λc
(U−L)q(1)

4c2
(

a
1−a

)2 (
e−βδ

1−e−βδ
)2

2

= c

q(1)1
2

= c

q(θ)γ ,

(C.81)

so the marginal indifference condition holds for the marginal seller. We can make an analogous
argument for the marginal buyer. When the distributions are as given,

FS(V S) = C2e
λV S

C1a(U−L)Tq(1)

= e

−
−2c a

1−a
e−βδ

1−e−βδ
+(1−a)L+U

(2−a)C1cq(1)
(

a
1−a

e−βδ
1−e−βδ

)
· e

λ

(
−2c a

1−a
e−βδ

1−e−βδ
+(1−a)L+U

)
(2−a)C1a(U−L) a

(1−a)2

(
e−βδ

1−e−βδ

)2
λc

(U−L) q(1)
= 1,

(C.82)

so the boundary condition holds for the selling distribution. We can make an analogous
argument for the buying distribution. Also when the bounds are as given,

FB(V S) = λ

a(U − L)Tq(1)(ṼB(U)− V S) = 2
q(1) a

1−a
e−βδ

1−e−βδ
, (C.83)

1
1 + e−βδ

1−e−βδ q(1)1
2FB(V S)

= 1
1 + 1−a

a

= a, (C.84)
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so the characterizing equation of aS holds. We can make an analogous argument for the
characterizing equation of aB.

�

Proof of Proposition 5. Recall that EL(a) = e

2− (1−a)(U−L)

2c e−βδ
1−e−βδ is monotonically increasing in a

with derivative

EL(a)′ = U − L
2c e−βδ1−eβδ

e

2− U−L

2c e−βδ
1−e−βδ

+ U−L

2c e
−βδ

1−eβδ
a

> 0. (C.85)

When e−βδ < e6

q(1)+e6 , ER(a) =
(

2(1−a)
aq(1) e−βδ

1−e−βδ

)2−a

is monotonically decreasing in a with

derivative

ER(a)′ = −e
(2−a)

(
log 2

q(1) e−βδ
1−e−βδ

+log (1−a)−log a

)

×

log 2
q(1) e−βδ

1−e−βδ
+ log (1− a)− log a+ 2− a

a(1− a)


= −

 2
q(1) a

1−a
e−βδ

1−e−βδ

2−alog 2
q(1) e−βδ

1−e−βδ
+ log (1− a)− log a+ 2− a

a(1− a)

 < 0.

(C.86)
And at a = 0 and a = 1 respectively,

EL(0) = e

2− U−L

2c e−βδ
1−e−βδ < lim

a→0
ER(0) =∞, EL(1) = e2 > ER(1) = 0. (C.87)

(i) When q(1) increases, at each value of a ∈ (0, 1), ER(a) decreases. As such, at the
original a, E(a) = EL(a) − ER(a) > 0 now. Since E(a) is monotonically increasing, a
should decrease to make E(a) = 0 again. At the same time, since EL(·) is monotonically
increasing, EL(a) = ER(a) decreases.

As for market depth,

T = a

(1− a)2

(
e−βδ

1− e−βδ

)2
λc

(U − L) , (C.88)

which decreases as a decreases.
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As for the distributions,

FS(t) =C2e
λt

C1a(U−L)Tq(1) = C2e

λt

2
q(1) a

1−a
e−βδ

1−e−βδ

a(U−L) a
(1−a)2

(
e−βδ

1−e−βδ

)2
λc

(U−L) q(1)

=C2e

t

2c a
1−a

e−βδ
1−e−βδ ,

(C.89)

and

FB(t) = C1
C2
e

− t

2c a
1−a

e−βδ
1−e−βδ , (C.90)

where 1
2c a

1−a
e−βδ

1−e−βδ
should increase as a decreases. Therefore, the distributions become

steeper, i.e., the selling distribution increases faster with high cost while the buying
distribution decreases faster with high value. The market has more ‘incompetetive’
population waiting.

As for the bounds, since ER(a) decreases while a decreases, 2
q(1) a

1−a
e−βδ

1−e−βδ
decreases.

Thus,

e
−V S+V B

2c =

 2
q(1) a

1−a
e−βδ

1−e−βδ

 a
1−a

e−βδ

1−e−βδ

, (C.91)

which is easy to see to be decreasing. At the same time, by overall flow balance, in the
symmetric case V S − L = U − V B, or V B + V S = U + L, thus

V S = (V S −V B +V S +V B)/2 increases, V S = (V B +V S − (V S −V B))/2 decreases.
(C.92)

So the bounds become wider, admitting more agents.

As for expected delay, since the total arrival increases while the market depth decreases,
we expect delays to decrease.

As for expected revenue from trade, since the distributions are steeper, they distribute
more at the low value or high cost area, therefore their expected revenue decreases.

(ii) When U − L decreases, at each value of a ∈ (0, 1), EL(a) = e

2− (1−a)(U−L)

2c e−βδ
1−e−βδ increases. As

such, at the original a, E(a) = EL(a) − ER(a) > 0 now. Since E(a) is monotonically
increasing, a should decrease to make E(a) = 0 again. At the same time, since ER(a)
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is monotonically decreasing, EL(a) = ER(a) increases when a decreases.

As for the distributions,

FS(t) =C2e
λt

C1a(U−L)Tq(1) = C2e

λt

2
q(1) a

1−a
e−βδ

1−e−βδ

a(U−L) a
(1−a)2

(
e−βδ

1−e−βδ

)2
λc

(U−L) q(1)

=C2e

t

2c a
1−a

e−βδ
1−e−βδ ,

(C.93)

and

FB(t) = C1
C2
e

− t

2c a
1−a

e−βδ
1−e−βδ , (C.94)

where 1
2c a

1−a
e−βδ

1−e−βδ
should increase as a decreases. Therefore, the distributions become

steeper, i.e., the selling distribution increases faster with high cost while the buying
distribution decreases faster with high value. The market has more ‘incompetetive’
population waiting.

As for the bounds, since EL(a) increases, (1− a)(U − L) decreases. Thus,

V S − V B =
(
−4c a

1− a
e−βδ

1− e−βδ + a(U − L)
)
/(2− a)

= a

(1− a)(2− a)

(
−4c e−βδ

1− e−βδ + (1− a)(U − L)
)
,

(C.95)

which is easy to see to be decreasing when both a and U − L are decreasing. At
the same time, by overall flow balance, in the symmetric case V S − L = U − V B, or
V B + V S = U + L, thus

V S = (V S −V B +V S +V B)/2 decreases, V S = (V B +V S − (V S −V B))/2 increases.
(C.96)

So the bounds become narrower.

As for the probability to trade, since V S decreases and 1
2c a

1−a
e−βδ

1−e−βδ
increases, C2 =
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e

− V S

2c a
1−a

e−βδ
1−e−βδ should increase. Therefore, for each t ∈ [V B, V S ],

FS(t) = C2e

t

2c a
1−a

e−βδ
1−e−βδ , (C.97)

should increase, while for the non overlapping agents it remains 1. Therefore, expected
delay generally decreases.

As for expected revenue from trade, since the distributions are steeper, they distribute
more at the low value or high cost area, therefore their expected revenue decreases.

(iii) When c increases, at each value of a ∈ (0, 1), EL(a) = e

2− (1−a)(U−L)

2c e−βδ
1−e−βδ increases. As

such, at the original a, E(a) = EL(a) − ER(a) > 0 now. Since E(a) is monotonically
increasing, a should decrease to make E(a) = 0 again.

As for the distributions, since a decreases, 2
q(1) a

1−a
e−βδ

1−e−βδ
increases. Since EL(a) = ER(a)

and the base of ER(a) becomes closer to e, we expect the difference in the exponent to
be decreasing as well, and thus c

U−L
a

1−a
e−βδ

1−e−βδ increases. Therefore,

FS(t) =C2e
λt

C1a(U−L)Tq(1) = C2e

λt

2
q(1) a

1−a
e−βδ

1−e−βδ

a(U−L) a
(1−a)2

(
e−βδ

1−e−βδ

)2
λc

(U−L) q(1)

=C2e

t

2c a
1−a

e−βδ
1−e−βδ ,

(C.98)

and

FB(t) = C1
C2
e

− t

2c a
1−a

e−βδ
1−e−βδ , (C.99)

where 1
2c a

1−a
e−βδ

1−e−βδ
should decrease. Therefore, the distributions become flatter, i.e.,

the selling distribution increases slower with high cost while the buying distribution de-
creases slower with high value. The market has more ‘competetive’ population waiting.
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As for the bounds,

V S − V B =
(
−4c a

1− a
e−βδ

1− e−βδ + a(U − L)
)
/(2− a)

= a

(1− a)(2− a)

(
−4c e−βδ

1− e−βδ + (1− a)(U − L)
)
,

(C.100)

which is easy to see to be decreasing. At the same time, by overall flow balance, in the
symmetric case V S − L = U − V B, or V B + V S = U + L, thus

V S = (V S −V B +V S +V B)/2 decreases, V S = (V B +V S − (V S −V B))/2 increases.
(C.101)

So the bounds become narrower.

As for expected delay, now that the bounds becomes closer and the distributions become
flatter, the overlapping agents should expect higher probability to trade as now they
are closer to the bounds where probability to trade is 1 and the probability to trade
decays slower at the same time.

(iv) When e−βδ increases, at each value of a ∈ (0, 1), EL(a) increases and ER(a) decreases.
As such, at the original a, E(a) = EL(a)−ER(a) > 0 now. Since E(a) is monotonically
increasing, a should decrease to make E(a) = 0 again.

�
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