
Finding, Measuring, and Reducing Inefficiencies in
Contemporary Computer Systems

Melanie Kambadur

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2016

c©2016

Melanie Kambadur

All Rights Reserved

ABSTRACT

Finding, Measuring, and Reducing Inefficiencies in
Contemporary Computer Systems

Melanie Kambadur

Computer systems have become increasingly diverse and specialized in recent years. This

complexity supports a wide range of new computing uses and users, but is not without cost:

it has become difficult to maintain the efficiency of contemporary general purpose comput-

ing systems. Computing inefficiencies, which include nonoptimal runtimes, excessive energy

use, and limits to scalability, are a serious problem that can result in an inability to ap-

ply computing to solve the world’s most important problems. Beyond the complexity and

vast diversity of modern computing platforms and applications, a number of factors make

improving general purpose efficiency challenging, including the requirement that multiple

levels of the computer system stack be examined, that legacy hardware devices and soft-

ware may stand in the way of achieving efficiency, and the need to balance efficiency with

reusability, programmability, security, and other goals.

This dissertation presents five case studies, each demonstrating different ways in which

the measurement of emerging systems can provide actionable advice to help keep general

purpose computing efficient. The first of the five case studies is Parallel Block Vectors, a

new profiling method for understanding parallel programs with a fine-grained, code-centric

perspective aids in both future hardware design and in optimizing software to map better

to existing hardware. Second is a project that defines a new way of measuring application

interference on a datacenter’s worth of chip-multiprocessors, leading to improved schedul-

ing where applications can more effectively utilize available hardware resources. Next is

a project that uses the GT-Pin tool to define a method for accelerating the simulation of

GPGPUs, ultimately allowing for the development of future hardware with fewer inefficien-

cies. The fourth project is an experimental energy survey that compares and combines the

latest energy efficiency solutions at different levels of the stack to properly evaluate the

state of the art and to find paths forward for future energy efficiency research. The final

project presented is NRG-Loops, a language extension that allows programs to measure and

intelligently adapt their own power and energy use.

Table of Contents

List of Figures iv

List of Tables xi

1 Introduction 1

1.1 Computing Diversity . 1

1.2 Hardware-Software Mismatches Cause Efficiency Problems 3

1.3 Why Efficiency is (Still) Important . 4

1.4 Considerations Besides Efficiency . 5

1.5 Measurement’s Role in Improving Efficiency 7

1.6 Summary of Contributions . 8

1.7 Dissertation Outline . 9

2 Background: Measuring the Intersection of Hardware and Software 11

2.1 Computer Systems . 11

2.2 An Overview of Computing Analyses . 16

2.3 Dynamic Performance Analyses . 18

3 Parallel Block Vectors 23

3.1 Introduction . 24

3.2 Parallel Block Vector Profiles . 26

3.3 Harmony: Efficient Collection of PBVs . 30

3.4 Architectural Design Applications of PBVs 35

3.5 Pinpointing Software Performance Issues with PBVs 43

i

3.6 Related Work . 51

3.7 Limitations and Future Work . 52

3.8 Discussion . 54

4 Datacenter-Wide Application Interference 56

4.1 Introduction . 57

4.2 Complexities of Interference in a Datacenter 58

4.3 A Methodology for Measuring Interference in Live Datacenters 64

4.4 Applying the Measurement Methodology . 69

4.5 Performance Opportunities . 75

4.6 Related Work . 78

4.7 Limitations and Future Work . 80

4.8 Discussion . 81

5 Fast Computational GPGPU Design 83

5.1 Introduction . 84

5.2 Background . 86

5.3 Tracing GPU Programs with GT-Pin . 89

5.4 A Study of Large OpenCL Applications . 92

5.5 Selecting GPU Simulation Subsets . 96

5.6 Related Work . 106

5.7 Limitations and Future Work . 108

5.8 Discussion . 109

6 Energy Efficiency Across the Stack 110

6.1 Introduction . 111

6.2 Background on Energy Management . 114

6.3 Experimental Design and Methodology . 116

6.4 System-Level Results . 121

6.5 Application-Level Energy Management . 132

6.6 Related Work . 139

ii

6.7 Limitations and Future Work . 140

6.8 Discussion . 140

7 NRG-Loops 142

7.1 Introduction . 142

7.2 NRG-Loops . 147

7.3 NRG-RAPL . 150

7.4 Case Studies . 154

7.5 Related Work . 163

7.6 Limitations and Future Work . 164

7.7 Discussion . 165

8 Conclusions 166

8.1 Summary of Findings . 166

8.2 Looking Forward . 168

Bibliography 171

Appendix Acronyms 204

iii

List of Figures

3.1 Parallel block vector for matrix multiplication. For each basic block in an

application, top, the profile, bottom, indicates the block execution frequency at each

possible thread count (i.e., degree of parallelism). 28

3.2 Harmony instrumentation points. Profiler action is taken upon various runtime

events. Careful engineering offloads expensive work to the least frequent events, in

particular program start and finish which do not overlap with the execution of

the program itself. This results in minimal profiling work at the most frequent

events (i.e., basic block executions), reducing the profiling overhead and minimizing

perturbation. 29

3.3 Direct instrumentation example. Each basic block is augmented to record its

execution at the current degree of parallelism. The additional three instruction use

only one register and do not induce any register spills. 32

3.4 Thread library wrapper example. Here the instrumentation decrements and

increments the effective thread count upon upon entry to and exit from of a blocking

call respectively. 32

3.5 Low overhead of instrumentation. Program slowdown due to profile collection

ranges from 2% to 44% with an average overhead of 18%. 34

3.6 Parallel block vectors for Parsec. These heatmaps are a visualization of the

profiles produced by Harmony. For the given application, they show the number of

times (shading) each static block (row) was executed at each degree of parallelism

(column). 36

iv

3.7 Classifying basic blocks by parallelism. These graphs show the percentage of

blocks which execute only serially (serial), blocks which execute both serially and

in parallel (mixed), and blocks which only execute in parallel (parallel) for each

application, for both nominal and effective thread counting, and for both static and

dynamic block executions. 36

3.8 Opcode mix by class. Instruction mixes for the entire program compared with the

mixes for each basic block class (serial, parallel, and mixed). In all applications, the

instruction mixes for both purely serial and purely parallel blocks differ significantly

from whole program mixes. 37

3.9 Memory interaction by class. The proportion of memory operations for serial

and parallel basic blocks differ from the proportion in the program as a whole. . . 39

3.10 Hottest blocks are not always the most parallel blocks. Each static basic

block’s weighted average nominal thread count was calculated and then plotted

against its total number of dynamic executions. The graphs show that the hottest

blocks are primarily split between those that execute only serial and those that

execute near the max degree of parallelism. 41

3.11 Few basic blocks represent large portions of serial and parallel runtime.

For basic blocks that were determined by parallel block vectors to always execute

serially (left) or in parallel (right), percentages of runtime execution are attributed

to static basic blocks. For most applications, a small number of blocks represents a

large fraction of the total runtime. 42

3.12 ParaShares rank basic blocks to identify those with the greatest impact

on parallel execution , weighting each block by the runtime parallelism exhibited

by the application each time the block was executed. 43

3.13 ParaShare rankings identify important blocks to target for multithreaded

performance optimizations. These graphs show the ParaShare percentages (or-

dered from greatest to least share) of all the basic blocks in eight benchmark appli-

cations. 45

v

3.14 Robustness of the metrics. Runtimes and basic block execution counts can

change across program trials, but the differences are small relative to differences in

ParaShares collected across varying thread counts or input sizes. 48

3.15 ParaShares versus unweighted rankings in top 20 blocks. ParaShares do

not always highlight new ‘hot’ blocks, but can often significantly impact the relative

importance of a block versus dynamic instruction count rankings not weighted by

parallelism. 49

3.16 ParaShares pinpoint inefficiencies that lead to significant opportunities

for optimization. With the extremely targeted profiling provided by ParaShares,

we were able to improve benchmark performance by up to 92% through source code

changes less than 10 lines long. 50

4.1 Datacenter machines are filled with applications. Profiling 1000 12-core, 24

hyperthread Google servers running production workloads, we found the average

machine had more than 14 of the 24 hyperthreads in use. These results reveal the

extent of multi-way interference, which is largely un-handled by existing interference

management techniques. 60

4.2 Datacenter servers have diverse application mixes. Google server profiling

reveals that most machines run five or more unique applications at once, and some-

times as many as 20. Many past works consider only two applications running

together at a time, a scenario present only 20% of the time in to this data. 61

4.3 A methodology for measuring application interference on live production

servers is described in Section 4.3. 65

4.4 Sample sized co-runners. Timelines of two CPUs on the same machine are

shown to the left. Each segment represents a performance sample (e.g., 2 million

instructions) from an application. For example, A1 is the first sample of application

A. The table to the right shows the co-runner samples for each base application

sample. Application A1 has two co-runners because two consecutive samples of

application B run for its duration. In this contrived example, sample C1 is especially

long to illustrate the uncommon case of a sample having no co-runners. 67

vi

4.5 Median IPC is a good performance indicator for the Google data col-

lected. Each graph shows the performance variations of the specified application

when scheduled with eight of their most common co-runners. The overall median

IPCs for each base application correspond well to their performance curves. 71

4.6 Westmere Interference Classes. The profiled Intel Westmeres are dual-socket

machines, supporting 12 hyperthreads per socket. Interference relationships are par-

titioned into three classes as depicted here: shared core, shared socket, and opposite

socket. 72

4.7 Streetview’s performance variations across co–runners. Bars represent streetview’s

normalized median performance when co–located with eight common co-runner ap-

plications. Dashed horizontal lines show overall variance of all measured streetview

samples. 74

4.8 Beyond noisy interferers in the Google data. Shared core co-runner applica-

tions along the x-axis affect the performance of base applications along the y-axis.

White boxes show co-runners that positively interfere beyond the average variance

with base applications, while black boxes show co-runners that negatively interfere

beyond the average variance. 77

5.1 The GT-Pin Implementation makes multiple changes to the OpenCL runtime

and the GPU driver, and adds a new GT-Pin binary re-writer and a CPU post-

processor. From a user perspective, however, the tool is easy to use and non-

intrusive, with low overheads, no perturbation, and no source code modifications

or recompilation required. 86

5.2 The Processor Architecture of our test system, which has an Intel Core i7-3770

CPU and HD 4000 GPU. 92

5.3 Benchmark Characterization. OpenCL call breakdowns (% synchronization,

kernel, and other API calls) were measured on the CPU host using CoFluent; pro-

gram structure counts (unique kernels and static basic blocks) and dynamic work

counts (executions of kernels, basic blocks, and instructions) were measured on the

GPU device using GT-Pin. 93

vii

5.4 GPU Work. GT-Pin can also measure GPU instruction mixes, the SIMD widths

of instructions (i.e., how data-parallel an application is), and the cumulative number

of bytes read and written to memory across hardware threads. 95

5.5 Feature and Division Space Exploration. Applications vary in terms of which

of 10 different feature vector choices and 3 interval division sizes are best able to select

subsets that match full program performance. Also, the most accurate selection

configurations are not always the best at reducing the number of instructions to

simulate. 100

5.6 Optimizing Selection to Minimize Error results in individual applications

choosing different interval/feature vector configurations. Across applications, errors

average 0.3% and simulation speedups average 35X, ranging from 6X to 6509X. . . 102

5.7 Optimizing for Both Error and Selection Size means choosing the per appli-

cation configuration that has the smallest selection size with an error below a given

threshold. For example, with an error threshold of 3%, simulation speedups average

223X. 103

5.8 Timed Validation. One trial’s selection are still accurate across trials, frequencies,

and architecture generations. 104

6.1 Baseline Performance and Power. The 41 benchmark applications exhibited

more variation in runtime than in power when run at our baseline configuration of

a single thread utilizing a processor set to maximum frequency, and with compil-

er/JVM optimizations and processor idle states all enabled. 119

6.2 System frequency tuning algorithms, such as ondemand save at most 6% of

energy across applications versus the system baseline of maximum frequency with

Turbo Boost enabled (perf w/ turbo). Other frequency tuning options include dis-

abling Turbo Boost for decreased runtime but no net energy savings (perf no turbo)

or a powersave option that saves an average of 31% of the power, but with great

costs to runtime (powersave). 120

6.3 Processor idle states enable 19% energy savings relative to the mode that prevents

cores from entering these power-saving sleep modes. 124

viii

6.4 Parallelization increases energy savings for all applications tested. For our 12

core, 24 hyperthread server, running 16 application threads consumed just 45% of

the energy of the serial execution. 124

6.5 Standard compiler optimization sets save energy, but largely through runtime

reductions not power reductions. Applications without optimization take 133% more

energy and 131% more time than fully optimized applications. 127

6.6 Java compilation saves substantial energy versus interpreted code, which consumes

8X the energy, but again these savings are due to runtime, not power. 127

6.7 Energy effects of combining multiple configurations. This table shows cross-

level energy interactions of the five energy configurations discussed so far, as a per-

centage of the baseline, (i.e., baseline = 100%). Note that the matrix includes data

from only the parallel, native benchmark suites: Parsec, Splash2x. 129

6.8 Source code tuning methods from prior embedded systems research were not very

effective energy savers for for our complex and already well-optimized benchmarks

running on servers. 133

6.9 Application-specific frequency tuning, or running an application at a single

discrete frequency, allows power-performance tradeoffs to be flexibly manipulated. 135

6.10 RAPL power caps, which limit the amount of power a part of the chip is allowed to

consume over a given time window, yield a more limited power-performance tradeoff

range. 135

6.11 Application-specific strategies versus system level strategies for frequency

tuning. RAPL caps, application-specific frequency tuning, and system frequency

governors could not be combined with each other, so we compared their power

performance effects instead. All three could be combined with idle states, however,

which when enabled saved energy across all of the different frequency configurations. 137

7.1 The NRG-Loops Syntax. 146

7.2 An NRG Perforate Loop augments bodytrack to (left) drop different specified

percentages of frames to save energy, or (right) maximize quality without exceeding

various allocated energy budgets. 155

ix

7.3 NRG Adapt Loops can meet a preset power budget by adjusting application-

internal thread count, analogously to the Intel Power Governor tuning DVFS. For

the string matching application shown, NRG-Loops can set a broader range of caps

(Power Governor caps could not be used below 45 Watts), and required up to 12X

less energy to enforce them. 158

7.4 NRG Truncate Loops estimate a mathematical clustering algorithm within streamcluster

to save various amounts of whole program energy depending on the degree of ap-

proximation. 160

7.5 A minesweeper game uses NRG-Adapt Loops to prioritize game power

over third-party advertisements. Run unchecked, the ads sometimes consumes

more power than the game, but NRG-Loops can force the ads to occasionally pause,

decreasing net game+ad energy. 160

x

List of Tables

3.1 A case for fine-grained identification of performance inefficiencies. To

examine the functions that take up 90% of the parallel execution, a programmer

must examine an average of 338.5 lines per program. To examine the basic blocks

that consumed the same amount, they would need to look at an average of only 50

lines per program. 47

4.1 Profiling and Collection Statistics . 70

5.1 Benchmarks used in this study. 93

5.2 The Program Interval Space explores three different ways of dividing GPU pro-

gram traces into intervals. 98

5.3 The Program Feature Space explores ten feature vectors, with the above keys

and values that count the dynamic execution count of the respective key. 98

6.1 Experimental benchmarks, chosen to represent a range of languages, program-

ming styles, and application domains. 116

6.2 A summary of the energy efficiency techniques explored in this experi-

mental survey. 117

xi

Acknowledgments

I owe thanks to many people who have supported and enriched my experiences as a Ph.D.

student. First, I want to thank my advisor Martha Kim for helping me to generate and

refine research ideas, for meticulously reading paper drafts, for all of the long hours she

spent with me leading up to deadlines, and for helping to improve my writing, presentation,

and research skills. Martha was a great research partner!

Many professors at Columbia have given me invaluable instruction, advice, and feedback

on my work. In particular, I would like to thank Al Aho, Simha Sethumadhavan, and Luca

Carloni, who gave me the most feedback on my work and are all (not so coincidentally) serv-

ing on my thesis committee. I also want to thank Adrian Sampson for serving on my thesis

committee, and a number of wonderful internship mentors from whom I received excellent

guidance during my Ph.D., including Tipp, Rick, Nenad, C.K., Harish, Sunpyo, Matthai,

Karin, and Gagan. Several of these people are also co-authors on the work presented in this

dissertation. I had only one student co-author, Kui, who deserves my acknowledgement and

thanks for his help with the PBV work. I was very fortunate to receive financial support

from a number of companies, government agencies, professional groups, and individuals,

and I am grateful to all of them as well. I also received wonderful administrative assistance

from our department staff, in particular from Jessica, Daisy, Elias, and Cindy.

Next, I want to thank the students in the CSL and arch-reading groups who attended

my talks and gave me project feedback. I especially want to thank Lisa, John, Robert,

Kanad, Joel, Andrea, and Emilio, some of my fellow “fish bowl” inhabitants who crossed

the line from colleagues to friends. I am also thankful to all of the WICS board ladies for

helping me create lots of great memories as we planned our events, especially Arthi, Erica,

and Heba with whom I spent the most time over the years, and our faculty advisor Julia.

I have been lucky to make additional supportive friends at Columbia, including Jon, Eva,

xii

Bingyi, Anna, Sasha, Cinar, and my “study group” — Sebastian, Paul, and Barbara —

who helped me through the early years of my Ph.D.

My thanks as well to my three brothers and my parents for their support and encour-

agement, and in particular to my father for inspiring me to study computer science (and

pursue a Ph.D.) in the first place. Of course, my biggest thanks must go to my amazing

husband, Anju, who has been the most important person in my life since I met him nearly

a decade ago.

xiii

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

A proliferation of computing uses, users, and producers in recent years has resulted in a

diverse range of computing technologies at all levels of the computer system stack. While

exciting for the computing industry, this ubiquity-induced complexity of computer systems

has made it difficult to effectively match the requests of arbitrary software applications

to general purpose hardware and operating systems. This dissertation will demonstrate

the presence of resultant hardware-software mismatches and show that they cause runtime

or energy efficiency losses. It will then show that new measurement technologies can be

effective in maintaining reasonable efficiency in current systems and in achieving better

efficiency in future systems.

The remainder of this introduction explains the diversity and complexity within the

modern system stack, explains how efficiency issues arise in general purpose computing,

and discusses the importance of efficiency as well as other system design considerations.

Following this discussion is a brief overview of how measurement and analysis technologies

can identify efficiency issues and improve them, a summary of the contributions of this

dissertation, and an outline for the remainder of the document.

1.1 Computing Diversity

Computing has entered a new era of ubiquity. Over 3 billion people now purchase and

use over 2 billion personal computers, tablets, and smart phones per year [67, 163]. There

CHAPTER 1. INTRODUCTION 2

are 5 billion “things” (i.e., devices such as cars or thermostats) currently connected to the

Internet of Things (IoT) [68], and there are over 6.5 million technology workers in the

United States alone [74]. The number of computer science researchers is also growing — in

2014 the United States produced around 1800 computer science Ph.D.s per year as opposed

to 1000 per year in the 1990s and 200 per year in the late 1970s and early 1980s [237, 269].

In keeping pace with the expanding number of uses, users, and producers, computing

technology has become increasingly specialized and diverse. As recently as the late 1980s,

there were primarily two classes of computers, supercomputers and PCs, with a handful of

simple embedded devices, such as pocket calculators. Today, there are many categories of

computers. There are massive datacenters hosting cloud computing services and supplying

storage space to record as much as possible of a “big-data” obsessed world. For personal

computing, there are smartphones and a variety of of desktop servers, laptops, tablets, and

“2-in-1’s”. In addition to phones, almost every form of electronics has become “smart”

with the help of embedded computers, from watches, fitness monitors, and sports equip-

ment to televisions, thermostats, and refrigerators, to cars, trains, and airplanes, to factory

equipment and computerized “drones”. Beyond this, today’s computers live not just in

electronics, but also on and in plants and animals, from GPS microchips, to pacemakers

and cochlear implants, to nanotechnology.

To serve the myriad users and uses, and because so many different people are con-

tributing to the development of modern computing technologies, diversity has percolated

to nearly all of the components and layers of the computer system stack. On the architec-

tural side, processing logic could be a basic general purpose CPU, a specialized processor

such as a domain specific processor or micro-controller, and it could be programmable logic

(i.e., FPGAs), or a fixed–function chip (i.e., ASICs). Beyond these processing categories,

there are many different configuration options such as whether processing cores are in–

order or out–of–order, whether multiprocessing is used (either in the form of simultaneous–

multiprocessing [SMT] or chip–multiprocessing [CMP]), and whether a single chip contains

multiple heterogeneous processors. Memory technologies are equally diverse and also fre-

quently heterogeneous, utilizing SRAM, DRAM, FLASH and likely soon a variety of other

types of Non-Volatile (NV)RAM. Memory and processors may be 2.5– or 3–D stacked tech-

CHAPTER 1. INTRODUCTION 3

nologies, or utilize near-data processing (NDP), where processing units are moved adjacent

to or into data storage [13]. Languages are diverse as well, and may be objected oriented,

compiled or interpreted, domain specific, dynamic or static. As with hardware, it is com-

mon to see heterogeneous software, with one application utilizing multiple languages. The

number of higher-level languages has grown from about 200 in 1972 to 8500 in the present

day, a count that exceeds that of known human languages [79]. Handling the translation

between all of these languages and platforms has required that compilers become complex

too; and operating systems face a similar challenge in providing a secure and simple inter-

face to users on the diverse range of devices. For example, the Android operating system

must be made to work on roughly 4000 distinct hardware platforms [248].

Dealing with computing diversity presents at least one notable problem: it has be-

come difficult to effectively map arbitrary software requests to general purpose hardware

resources. When hardware–software mappings are nonoptimal, the result is inefficiency, or

the overuse of runtime, power, or both (i.e., energy).

1.2 Hardware-Software Mismatches Cause Efficiency Prob-

lems

The hardware-software matching problem is an issue where either 1) more resources are

delivered by hardware than are needed by software, 2) more resources are requested by

software than can be delivered by hardware, or 3) where both 1) and 2) occur simultaneously.

Though not always the case, the goals of programming languages and computer archi-

tecture are frequently at odds. At the kernel of each problem we want to compute, there

is some hard-to-define amount of necessary computational resources. Translating from hu-

man intent to something a machine can understand — i.e., writing a computer program

— sometimes results in resource requests beyond the essential. Similarly, making hardware

delivery too potent sometimes means more resources are delivered than strictly needed.

It is possible for software and hardware to over– or under–provision simultaneously: for

example, a program might use a higher–precision data type (e.g., a 64-bit float) when a

lower–precision data type would suffice (e.g., an 8-bit float), and hardware might supply

CHAPTER 1. INTRODUCTION 4

multiple processors when only a single processor is needed by the program. This (poten-

tially dual) mismatch in requested resources and delivered resources can result in wasted

execution cycles, wasted power, or both. Evidence of efficiency losses might include cache

misses, pipeline stalls, processors that are idle but still drawing power, TLB misses, excess

page swapping, task starvation, or tail latencies.

In a perfect world, computer programmers and their programs would make whatever

requests they desire and hardware would deliver as many resources as it could within size,

thermal, and cost constraints. Then, the compiler, the operating system, and middleware

would make adjustments between the two to eliminate mismatches. Unfortunately, this

is a job that is only partially solved by today’s compilers and operating systems, and

it is a job that is becoming increasingly difficult to automate as hardware and software

complexity increase. In order to avoid unnecessary compromises to programmability and

hardware design, and to reduce resource waste, we need to improve our understanding

of the efficiency between hardware and software, and make coordinated efforts between

applications, compilers, operating systems, and hardware to reconcile mismatched resource

requests and delivery to the greatest extent possible.

1.3 Why Efficiency is (Still) Important

Over time, advances in computer architecture have dramatically increased computational

efficiency. The 1946 Eniac computer drew 150,000 Watts of power to deliver 500 floating

point operations per second (FLOPS), while modern smartphones consume around a single

Watt to deliver a peak performance of billions of FLOPS [6, 197]. In fact, a single modern

smartphone has more computational capabilities than the computers used to get Apollo 11

to the moon [205]. Today’s fastest supercomputer, the Tianhe-2, has a processing rate of

33.86 petaFLOPS — that’s nearly 34 million–billions of operations per second [53].

With such commendable advances, the need for even more runtime and power efficiency

might not be immediately apparent, but there are a number of important reasons to care

about continued efficiency advances. Some of these are:

• To reduce computing’s ecological footprint. The IT-sector is already responsible

CHAPTER 1. INTRODUCTION 5

for around 2% of global carbon emissions, and with the expected growth in computing

use and users, this number could soon be a lot higher if energy efficiency improvements

are not made [44]. On a more local level, the energy costs of technology could become

a barrier for individual users if not kept in check — today, an iPhone already has a

higher monthly electric bill than a standard home refrigerator [253].

• To solve new problems or put computers in new places. Greater efficiency is

required to reach the “exascale” era of computing (where computers can compute a

billion–billion operations per second), which promises technological advances such as

fully replicating the brain and providing global climate solutions such as controlled

fusion. On the other side of computing scale, with greater efficiency, better miniatur-

ization could be achieved and an entirely different set of important problems could

be solved. For example, scientists are working on computers so small they can be

swallowed in a pill and will transmit medical readings to doctors [177].

• To make existing computing solutions more cost effective or accessible.

Efficiency is not just important for pushing the limits of the kinds of problems that

computers can solve. It is also import for increasing the availability or decreasing

the cost of existing computation. For example, partly due to increased computational

efficiency, biotechnicians were able to reduce genome sequencing costs from $10 million

in 2007 to under $1000 in 2011 [78, 180]. As another example, image recognition (i.e.,

computer vision) is performed today on powerful servers in the “cloud”, but with

better efficiency, image recognition could be performed on mobile devices to improve

privacy and latency for users, and to decrease costs for service providers.

1.4 Considerations Besides Efficiency

The systems today that are closest to optimially efficient are called application-specific

integrated circuits, or ASICs. ASICs are hrdware customized to specific, well-tuned ap-

plications to minimize inefficiencies, nearly eliminating undesirable events such as pipeline

stalls and cache misses, and saving orders of magnitude of energy. Anton is one example

of an ASIC that targets molecular biology applications, improving runtime performance by

CHAPTER 1. INTRODUCTION 6

nearly two orders of magnitude and considerably reducing power versus general-purpose

computing solutions [209]. For many applications, however, complete specialization is not

a panacea, and is instead impractical, undesirable, or both. Efficiency in computer system

design must be balanced with a multitude of competing goals, such as:

• Security at both the software and hardware level, which can sometimes compete with

efficiency by adding extra circuity or code to ensure a system is protected.

• Programmability or the ability to write programs quickly and without regard to

efficiency, perhaps in languages that tend to request more resources than necessary.

For example, object oriented programming — which helps developers reason about

program structure and arguably write more readable code — has been shown to

unnecessarily waste energy [20].

• Reusability of software functions and objects, and of instruction set architectures and

functional units in hardware. Reusability saves human resources, such as developer

time, but can be at odds with computational efficiency. For example, programs may

link an entire statistics library when they only need one of its functions.

• Accuracy and Verifiability; extra precision or additional functionality such as test

cases are often employed to ensure error-less programs, and there is value in being

able to prove that a program is correct in all circumstances (e.g., in all of the non-

deterministic runs of a multithreaded program). Both of these goals typically require

an efficiency tradeoff.

• Reasonable Area, Device Size, Durability and other similar hardware goals also

may require trading away computational efficiency.

• Cost. Many of the above are also associated with reduced expenses for computing

producers or consumers. For example, buying one very computationally-powerful

server is not typically as cost-effective as buying many wimpy servers at a lower price

per unit. Similarly, while writing code in C++ and CUDA might provide the fastest

execution time for an application, a company may find it cheaper to hire Python

developers and pay for more machine time.

CHAPTER 1. INTRODUCTION 7

Another important and related issue is the presence of legacy code and devices. Often,

it is prohibitively expensive for companies to replace obsolete devices, because efficiency is

a second class goal to cost. Later in this dissertation, there are a couple of examples of the

legacy effect. For example, in the study of application interference on Google servers (Chap-

ter 4), we note that the search giant uses a wide variety of microarchitectural platforms.

Also, we discuss a new trend in Chapter 5, where once specialized processors — Graphics

Processing Units (GPUs) — have now been put to general purpose use because of their low

price point and ubiquity.

1.5 Measurement’s Role in Improving Efficiency

The efficiency of contemporary and emerging computer systems can be improved with the

guidance of performance analysis techniques and measurement methodologies. Given the

delicate balancing act of honoring competing system design goals, rather than striving to

completely eliminate inefficiencies, the aim should be to understand them in the context of

other tradeoffs, and to reduce them only as appropriate. Additionally, we need to determine

when it is necessary to optimize or specialize applications or hardware, versus when it is

possible to reconcile the mismatches with system tools. New measurement methods and

tools can help locate potential efficiency issues, and can evaluate the potential tradeoffs of

solutions to reduce them. Measurement and program analysis are important for a number

of reasons:

• To compare alternate solutions. Measurement helps us compare different solu-

tions’ efficiency, and can determine which microarchitecture, which algorithm, which

language, or which optimization technique is best. For example, in Chapter 6, we

experimentally compare different energy efficiency techniques that span the computer

system stack.

• To account for real–time data. Efficiency is often dependent on real–time events,

such as user inputs or battery-levels. Our measurement–based methodologies in Chap-

ters 4 and 7 are able to account for both.

CHAPTER 1. INTRODUCTION 8

• To identify hotspots. It is common for efficiency issues to be localized to small

parts of the software or hardware. Measurement–based techniques are well-suited for

pinpointing such hotspots, especially when their poor efficiency is contributed by more

than one layer of the system stack. We demonstrate this in Chapter 3.

• To test future designs. When possible, proactive efficiency solutions are better

than retroactive efficiency solutions. Measurement technologies can help direct the

way towards more efficient hardware-software co-designs, as is shown in Chapter 5.

To summarize, measurement techniques are effective for addressing efficiency issues in

modern general purpose computer systems because they help us account for dynamic events,

help us understand unpredictable interactions between system layers, and because they help

us to be proactive in avoiding efficiency issues even before they occur.

1.6 Summary of Contributions

As discussed above, the novel contributions of this dissertation support our thesis that mea-

surement techniques that work at the intersection of hardware and software can improve the

efficiency of contemporary and emerging general purpose computer systems. The contribu-

tions are divided into five case studies — one per chapter — that find inefficiencies within

a variety of recent or emerging hardware and software paradigms. Most of this work has

been previously written about in nine peer-reviewed publications and a technical report,

each of which were primarily authored by the author of this dissertation [113–122].

The first contribution is Parallel Block Vectors, or PBVs, a new way of profiling pro-

gram parallelism at very fine granularity. PBVs help identify opportunities to match future

hardware to current software, or to optimize future software versions for current hardware.

The second contribution is a new method of identifying minimal but representative regions

within programs written for GPGPUs (general purpose graphics processing units). Finding

these salient regions allows for the acceleration of cycle-accurate performance simulators,

which in turn leads to GPUs with resource deliveries that are more adequately matched to

software needs. The third contribution of this dissertation is a new method of profiling the

interference between multiple applications in a datacenter that are forced to co-locate on

CHAPTER 1. INTRODUCTION 9

a single multicore for the sake of improving system efficiency. Unfortunately, co-location’s

attempt to ameliorate system throughput can sometimes negatively affect individual appli-

cations’ latency. Our new profiling method looks for opportunities to co-locate applications

that preserve both full system throughput and individual application latency.

The next contribution of this dissertation is a measurement–based language extension

called NRG-Loops. NRG-Loops allow applications to react to power and energy measure-

ments taken at runtime with on-the-fly adjustments to functionality, performance, and

accuracy. Since the adjustments are conditionally enabled, NRG-Loops have the potential

to allow a single piece of source code to match its resource requests to multiple types of

underlying architectures, without significant effort on the part of the programmer. The final

contribution is an experimental survey that quantifies the relative effectiveness of previously

uncompared energy efficiency techniques across the system stack. The survey also combines

different techniques to find whether their compound effects are negative or positive, and

whether they are additive or synergistic.

1.7 Dissertation Outline

The remainder of this dissertation is organized as follows:

• Chapter 2 provides background information on the terminology and components as-

sociated with computer systems, as well as on the measurement and analysis methods

that existed prior to this dissertation.

• Chapter 3 presents the new Parallel Block Vector profiling tool for examining pro-

gram parallelism from a fine-grained, code-centric perspective.

• Chapter 4 presents the new measurement method for quantifying (and mitigating)

application interference on Datacenter CMPs.

• Chapter 5 presents a new method for identifying minimal but representative regions

of programs in GPGPUs, with the aim of accelerating microarchitecture performance

simulators.

CHAPTER 1. INTRODUCTION 10

• Chapter 6 presents an experimental survey that compares and combines energy

efficiency solutions at different levels of the compute stack.

• Chapter 7 presents the new NRG-Loop syntax extension that allows programs to

intelligently react to their own power and energy use.

• Chapter 8 summarizes the contributions of this work and suggests ideas for the

community’s future work.

• Appendix 8.2 defines acronyms that appear throughout this dissertation.

CHAPTER 2. BACKGROUND: MEASURING THE INTERSECTION OF
HARDWARE AND SOFTWARE 11

Chapter 2

Background: Measuring the

Intersection of Hardware and

Software

Analysis tools and measurement techniques for understanding the behaviors that arise at the

intersection of computer software and computer hardware are an essential part of improving

computer systems’ efficiency. This chapter begins with a discussion of the terminology and

components associated with computer systems in Section 2.1 to give readers context for the

holistic, whole–system approach that we need to take to improve system efficiency. Next,

Section 2.2 gives a high-level overview of the main types of computing analyses available

today. There are many analysis methods one might use to study computer systems, but

only some are relevant to this dissertation’s goal of identifying and reducing system-wide

inefficiencies; Section 2.3 explores the most relevant types of analyses in more depth.

2.1 Computer Systems

When this dissertation refers to computer systems, it means all of the hardware and soft-

ware technology that come together to form a computing device and its operations. Prior

work is inconsistent in how it breaks down the layers in a computer system; we choose

to divide the system into three coarse layers: Hardware, System, and Application. The

CHAPTER 2. BACKGROUND: MEASURING THE INTERSECTION OF
HARDWARE AND SOFTWARE 12

term platform is sometimes used in this and other works to encompass both the Hardware–

and System–Layers, while the term software includes the System– and Application–Layers.

The term stack or system stack is frequently used to describe an ordered set of the system

layers, typically with the Hardware–Layer at the bottom of the stack, the System–Layer

at the middle of the stack, and the Application–Layer at the top of the stack. Below is

a description of the components or configuration options within each layer. As discussed

in the introduction, computer systems are now vastly diverse, so the following list is not

comprehensive, but it does cover all major characteristics of the computer systems explored

later in this dissertation. By convention, layer components are denoted in boldface, while

concepts and configuration options are italicized.

2.1.1 Hardware–Layer

The Hardware–Layer houses all of the tangible, physical elements of the computer system.

These include power supplies and peripherals, that allow external communication to

the computer such as monitors and other types of displays, keyboards, microphones,

and cameras. The layer also includes everything inside of a computer case, such as fans,

I/O and other buses, batteries, and the motherboard. The motherboard holds circuitry

that makes up the computer’s microarchitecture, or particular implementation of an in-

struction set architecture (ISA)’s processor, including datapaths, execution units

(EUs) such as arithmetic logic units (ALUs), floating point units (FPUs), and branch pre-

diction units, as well as on-die memory caches which today are typically implemented using

static random access memory (SRAM) technology. The next largest layer of the memory

hierarchy — the main memory — is today most frequently dynamic random-access mem-

ory (DRAM), and is also on the motherboard. New types of memory technologies are of

continual interest to the architecture research community, and recently a popular area of ex-

ploration for caches or main memory technology is non-volatile RAM (NVRAM). NVRAM

is persistent, meaning that it retains its memory state even if its power supply is cut. A

few types of NVRAM currently being explored include Phase-Change RAM (PCRAM),

Magnetoresistive RAM (MRAM) and Resistive RAM (RRAM) [193]. A particular type

of NVRAM called flash is already widely utilized for the largest the largest layer of the

CHAPTER 2. BACKGROUND: MEASURING THE INTERSECTION OF
HARDWARE AND SOFTWARE 13

memory hierarchy — storage. Alternatively, storage may be on hard disk drives (HDDs).

Processor technology long ago moved beyond the basic Von Neumann model of a sin-

gle central processing unit (CPU), and has since been undergoing continuous changes. In

particular, computers today now frequently use parallel and/or heterogeneous processing.

Parallel processing simultaneously executes multiple instructions, and may be implemented

as simultaneous multithreading (SMT), chip–multiprocessing (CMP), or often, both. In the

SMT model, one superscalar processor contains multiple independent hardware threads that

each issue their own instructions within a single cycle. CMP multiprocessing integrates at

least two (though possibly hundreds of) independent processors on a single chip. It is also

common to see server computers with more than one socket — so that one motherboard

actually contains multiple CMPs, each of which may be simultaneously multithreaded. Het-

erogeneous processing, or computer systems that use more than one kind of processor or

core, typically each with unique ISAs, is also gaining popularity. Heterogeneous processing

systems often include a CPU as well as some application specific processors such as graphics

processing units (GPUs). Cores may be implemented with custom logic (i.e., application–

specific integrated circuits [ASICs]), or with reprogrammable logic (i.e., field-programmable

gate arrays [FPGAs]). An alternative or supplement to heterogeneous processing is asym-

metric multiprocessing (AMP), where cores use the same ISA, but are of different sizes.

AMP is currently popular because it allows users to exploit different choices of power– and

runtime–efficiency tradeoffs for possible energy savings.

2.1.2 System–Layer

The System–Layer contains a piece of software called the operating system (OS) that

connects users and applications to the Hardware–Layer, manages hardware settings, and at-

tempts to ensure computer–wide security. In some computer layer taxonomies, the System–

Layer is merely an analogue for the computer’s operating system, but our classification also

includes System Virtual Machines (VMs), web browsers, the BIOS and other types

of firmware.

• System VMs are essentially platforms within an OS; a system VM abstracts the hard-

ware of a single machine into multiple virtual partitions, each of which may execute its

CHAPTER 2. BACKGROUND: MEASURING THE INTERSECTION OF
HARDWARE AND SOFTWARE 14

own operating system environment. To the overlying operating systems, the virtual

machines appear identical to real hardware.

• Browsers are software that facilitates communication with the internet. They allow

users to both post and receive information. Although browsers could be considered

a part of the Application–Layer, we include them here because with the advent of

technologies such as complex web applications and Google’s Chromebook, the line

between operating systems and browsers is blurring [254].

• A system’s BIOS or Basic Input/Output System is a type of firmware — software that

controls and monitors hardware, and is permanently stored in read–only memory. The

BIOS handles the booting (i.e., power startup) process of computer hardware.

In addition to maintaining basic hardware functionality, the System–Layer is now taking

on the relatively new role of tuning dynamically adjustable hardware configurations. An

example of this that is discussed in detail later in this dissertation is dynamic voltage and

frequency scaling (DVFS) — a process where the operating system adjusts voltage supplies

or hardware frequencies to manage power usage.

2.1.3 Application–Layer

The Application–Layer contains program source code and the tools and mechanisms

that connect that code to the platform layers. These include programming languages

of which there are many types: assembly languages, high-level languages (which may be

further divided into categories such as imperative/functional, object-oriented/procedural,

static/dynamic), scripting languages, domain specific languages, and visual languages (i.e.,

those that are not text–based). These categories are not necessarily mutually exclusive,

for example the AWK language could be considered both a scripting language and a domain

specific language because it is primarily used for text data processing. This layer also

includes the interpreters, compilers, and process or application Virtual Machines

(VMs) that implement programming languages. Each of the three differs with respect to

how this is done; for interpreters, source code is parsed and directly executed on the target

platform, or occasionally first translated into an intermediate representation. Compilers

CHAPTER 2. BACKGROUND: MEASURING THE INTERSECTION OF
HARDWARE AND SOFTWARE 15

translate the source code to a platform-specific target program, usually incorporating

both machine-independent and machine-dependent optimizations for a more efficient target

program. Application VMs translate source to a platform-independent target language, then

wrap the resultant program and their own functionality into a single process to execute.

VMs often feature just–in–time (JIT) compilation, where most compilation is conducted

at run time, in contrast to ahead–of–time (AOT) compilation. Also in this layer are the

assemblers and linkers, that respectively (1) follow up after the compiler to convert

assembly programs into object files and (2) merges the object files into a single executable

file. After linking, executables are loaded by the operating system, which involves creating

memory space for the program and starting its execution (the loaders that complete this

operation could be considered a part of the System–Layer, but we place them here for

continuity).

Finally, there are application program interfaces (APIs) and libraries. APIs spec-

ify how different computing components may interact via functions, object collections, or

protocols. APIs work as generalized connectors, for example making it easy for applications

to communicate with GPUs (e.g., OpenCL) or other hardware components (such as hard-

ware disk drives or video cards), or with databases and web browsers. APIs are frequently

implemented as libraries, which consist of a collection of functions written in a programming

language, that have well–defined behavior and invocation procedures. Libraries may con-

nect languages to system functionalities (an example being the pthreads library that allows

C and C++ programs to spawn new threads), provide hardware–specific high–efficiency im-

plementations (as do the CUDNN library for accelerating deep neural networks on GPUs

or optimized BLAS libraries for scientific computing kernels), or simply abstract broadly

used functions to aid software engineers (for example, the C++ Standard Template Library

[STL] that contains generic implementations for objects such as hash maps and heaps).

2.1.4 Distributed Computing

Distributed computing is a relatively old technology with origins in the 1970s [4], that has

much more recently become ubiquitous. Distributed computing connects multiple comput-

ers with a network, coordinating their communication and data sharing via some form of

CHAPTER 2. BACKGROUND: MEASURING THE INTERSECTION OF
HARDWARE AND SOFTWARE 16

message passing. It could be considered a part of the System–Layer, but we list distributed

computing separately here because it differs from traditional single computer systems in

three key ways. First, distributed computing systems contain multiple instances of individ-

ual computer systems, each autonomously operating and each with its own local memory.

Second, distributed systems are asynchronous — the constituent computers do not share a

global clock. Third, distributed systems can tolerate failures of entire computers and can

still continue computation; a mechanism called independent failure.

There are a couple of circumstances responsible for the current popularity of distributed

computing. The first is the need that some companies and agencies have for reliability

greater than that of a single computer, and in particular that of a single hard drive. An-

other reason is that it is frequently cheaper to purchase multiple less powerful (in terms of

operations per second, or RAM size) machines, than it is to purchase one machine with the

same operational capabilities. Additionally, even the most powerful computer can some-

times not service one organization’s data storage or I/O request bandwidth needs. Finally,

outsourced server management (i.e., to distributed computer service providers such as Ama-

zon Web Services1) is becoming a very popular business decision.

2.2 An Overview of Computing Analyses

Before getting into the specifics of the measurement and analysis techniques that this dis-

sertation will use, we need to understand the larger context of all the tools and methods

available to analyze computer systems.

To organize the available tools and methodologies, we consider the general type of

analysis conducted. The three main types of analysis are:

1. Static Program Analysis

2. Hardware Synthesis, Emulation, and Simulation

3. Dynamic Analysis and Measurement

1https://aws.amazon.com/

CHAPTER 2. BACKGROUND: MEASURING THE INTERSECTION OF
HARDWARE AND SOFTWARE 17

Static program analysis is a set of methods that examines source code or assembly

code without executing it. Analysis may be done by humans (for example, Big-O notation

for estimating runtime), or by tools (for example, compilers checking for type correctness

or optimization opportunities). Static analysis considers code alone, in isolation of the

platform and hardware, so it is difficult to extrapolate the analysis data into information

that represents whole system behavior. Due to its lack of suitability for examining complex

interactions between system layers, static analysis is not a primary focus of this dissertation.

Synthesis, emulation, and simulation are techniques used to design and optimize hard-

ware. Hardware synthesis takes an algorithmic description of a problem and implements the

behavior it describes in hardware. For the sake of optimization, the synthesis process per-

forms different types of analyses. Emulation is when one piece of hardware is imitated with

another piece of hardware, typically to analyze how a not–yet–existing piece of hardware

might perform. Simulation has a similar goal to emulation, but models in detail the inter-

nal states of the non-existing hardware. While emulation and simulation should in theory

report the same final performance numbers when analyzing a given piece of hardware, only

simulation will be able to report detailed and continuous information about the internal

processes of the hardware in question. We do not use hardware synthesis, emulation, or

simulation techniques in this dissertation, in part because they are not fully accurate when

it comes to understand hardware–software interactions [37] or, if accurate, they are pro-

hibitively complex and extremely slow Except in Chapter 5 — which uses dynamic analyses

to improve the speed of a certain type of simulation — synthesis, emulation, and simulation

are not further discussed in this dissertation.

Dynamic analyses and measurements involve recording information about software as

it runs on an existing platform. Since dynamic analysis tracks actual execution, it is the

method best suited to capture complex hardware-software interactions, and thus the general

method used throughout this dissertation. We devote the next section of this chapter to

discussing when, where, how, and for what to use dynamic performance analysis techniques.

CHAPTER 2. BACKGROUND: MEASURING THE INTERSECTION OF
HARDWARE AND SOFTWARE 18

2.3 Dynamic Performance Analyses

There are many kinds of dynamic performance analyses for studying computer systems.

Rather than try to comprehensively catalogue the many open–source, commercial, and aca-

demic measurement and analysis tools, this section’s aim is to distinguish different types of

analysis techniques based on how, when, where, and what is measured. Later, we explicitly

name relevant tools in the “Related Work” sections of individual chapters.

2.3.1 Instrumentation

One distinction that can be made to differentiate dynamic analysis techniques is in how

measurements are initiated, beginning with whether instrumentation is used or not. Instru-

mentation is the process of dictating system monitoring through code instructions inserted

directly into the program being measured. The instruction code may be inserted at many

different points, such as:

• within program source code or library code;

• within program binary code;

• within assembly or machine code;

• within a compiler; or

• within an operating system.

The code could also be inserted by different agents, such as:

• directly by the programmer (e.g., printf calls), with or without the support of pro-

gramming language–level instrumentation directives;

• by a compiler; or

• by a system driver.

The code can also be injected at different times, for example:

• during or after a program is written;

CHAPTER 2. BACKGROUND: MEASURING THE INTERSECTION OF
HARDWARE AND SOFTWARE 19

• during or after compilation, either pre- or post-linking; or

• during execution, for example via JIT re-compilation.

One possibly confusing nomenclature detail to note is that when instrumentation is in-

serted pre-compilation or at compilation or link time, it is said to be static instrumentation,

whereas if instrumentation is inserted post-compilation at execution time, it is said to be

dynamic instrumentation. However, the static– or dynamic–prefixes refer only to the time

of instrumentation, and both types of instrumentation are still dynamic analyses, because

in both cases the collection of data will occur at runtime.

Deciding when, how, and where to instrument a program is a delicate tradeoff that

must take into account the required efforts of the analysis tool developer, the efforts of the

end-user, and the collection goals. For example, instrumentation inserted via dynamic in-

strumentation directly into binaries is attractive from a user-standpoint, because it requires

neither program rewrites nor recompilation. However, dynamic instrumentation tools can

require significantly more effort on the part of the analysis tool developer — in part be-

cause dynamic instrumentation tools must be specific to the intermediate representation

(frequently an ISA) of the programs they instrument, thus requiring not only a detailed

understanding of this representation by the tool developers, but also multiple versions of

the tools for different representations.

2.3.2 Independent Measurement

When instrumentation is not used, that is, when monitoring instructions are external to the

program being monitored, we say that the program is independently monitored. Monitors

could be a standalone application that reads hardware counters (such as cache miss rates

or instructions retired) or operating system statistics (such as number of child processes

spawned or percentage of processor utilization). Independent measurement could also be

built into some part of the system, including the hardware, the operating system, or the

compiler. Finally, independent measurement may be completely external to the computer

system being measured, for example on another machine in a distributed network, or with an

external meter, such as the “Kill A Watt” electricity monitor that connects to a computer’s

CHAPTER 2. BACKGROUND: MEASURING THE INTERSECTION OF
HARDWARE AND SOFTWARE 20

power supply to account various statistics such as voltage, current, and power draw.

2.3.3 Collection and Recording Policies

Orthogonal to whether they are instigated by instrumentation or by independent moni-

toring, dynamic analyses may utilize one of two types of recording policies, continuous

monitoring or periodic sampling. Continuous monitoring, as the name suggests, continues

to collect data for the duration of an application’s execution. Periodic sampling instead

collects data only for short lengths at a time, then pauses for an interval, then collects data

again, and repeats. The sampling periods may be punctuated by random– or timer–based

intervals, or may be based on machine statistics such as processor cycles or instructions

retired. Another analysis policy decision that is orthogonal to the method of measurement

is whether data is recorded as trace or as a profile. The difference between traces and pro-

files is that traces save detailed consecutive and often time–stamped lists of events (such

as an ordered function execution log), whereas profiles summarize the data with aggregate

event counts (such as a list of function call frequency counts). While traces can potentially

provide users with more information, they may also take more resources to record, store,

and post-process.

2.3.4 What to Collect

The options for what information dynamic analyses can be used to track are almost endless.

One major distinction that can be made about what kinds of information dynamic analyses

collect is whether that information relates to performance or correctness. Performance

information includes quantitative metrics such as runtime, energy, power, device size or

hardware area, or system financial cost. Correctness information includes data on the

reliability of systems, on program bugs such as data races, on security issues, or on testing–

related issues such as test case code–coverage. In a few cases, the two categories may

overlap; for example data that shows a program spending significant time in mutex locks

may be considered both performance–related (because of the excess runtime incurred) or

correctness–related (because of the potential underlying concurrency bug). In line with

the goal of identifying and reducing inefficiencies, the dynamic analyses in this dissertation

CHAPTER 2. BACKGROUND: MEASURING THE INTERSECTION OF
HARDWARE AND SOFTWARE 21

focus almost entirely on collecting performance information. Some examples of performance

information that may be collected include:

• processor metrics, such as processing frequencies, cycle counts, instruction execution

counts, or instruction mixes (i.e., what proportions of different types of instructions

are issued);

• memory metrics, such as cache misses, page faults, or I/O bus cycles;

• synchronization and concurrency metrics, such as number of locks, time spent waiting

at barriers, or the number of active threads or processes;

• programmatic metrics, such as function calls or basic block counts;

• scheduling metrics, such as response time, throughput, or latency;

• speed metrics, such as instructions retired per cycle (IPC), floating point operations

per second (FLOPS), processor idle time, or processor utilization rates;

• power and energy metrics, such as peak power, minimum power, TDP, or performance

per watt.

2.3.5 Dynamic Analysis Pitfalls

There are a couple of downsides or potential problems with dynamic analyses.

Overheads and Perturbation One major potential pitfall of dynamic analyses is per-

turbation, or the possibility that the overheads of the measurement process will affect the

actual data being measured. This is especially a concern of instrumentation, given that extra

instructions are added to the programs to be measured. To ensure result integrity, perturba-

tion must be carefully monitored, reigned in, and if necessary, corrected. Non-perturbative

overheads — those that do not affect the measurements — can also be problematic if they

present as significant compilation time or runtime increases. For example, Chapter 5 must

deal with the excessive (but non-perturbative) overheads involved in simulating GPUs.

CHAPTER 2. BACKGROUND: MEASURING THE INTERSECTION OF
HARDWARE AND SOFTWARE 22

Other Pitfalls There are other precautions one must take to avoid measurement inac-

curacies. Due to the nature of dynamic analyses measuring real events on real systems,

they can be unsound, that is not representative of all possible variations. Nondeterminism

in parallel programs, different user inputs, or program–external events such as operating

system interrupts, battery power levels, or processor frequency variations can result in dif-

ferent measurement results across program executions. Typically, reasonable accuracy of

measurement can be assured with repeated trials (until a statistically significant result is

achieved), a varied supply of inputs, and control over as many external events as possible

(such as disabling dynamic processor frequency tuning).

CHAPTER 3. PARALLEL BLOCK VECTORS 23

Chapter 3

Parallel Block Vectors

The advent of multi-core processing and its subsequent rise is largely a consequence of a

decline in transistor scaling. Facing limits to performance per area due to heat thresholds,

architects needed a way to deliver speed without excess power consumption. One solution

that they came up with is the multicore processor, which substitutes the previous single

large, powerful, and power–hungry processing core for multiple smaller, less powerful but

also less power–hungry cores. The multiple cores use thread level parallelism or TLP —

executing instructions simultaneously on multiple cores. There are a few reasons why mul-

tiple cores can increase net performance with lower net power consumption; one is that

the smaller cores can be run at a lower frequency than the single large core and still de-

liver faster net processing speeds due to TLP. Sometimes, opting out of the expensive wide

superscalar out–of–order (OOO) cores used in uniprocessing (because the instruction-level

parallelism (ILP) they provide is no longer needed with TLP) further helps multiprocessing

come out ahead on the performance–per–power spectrum.

Given the efficiency opportunities that multiprocessing can provide for general purpose

computing, the technology seems like a clear win. There is a major downside of multipro-

cessing, however: writing and debugging the programs that can run on multiprocessors, i.e.,

multithreaded programs, is a challenge and an ongoing area of research. There are many

hurdles, including legacy single–threaded code that must be rewritten, and added difficulty

in debugging programs that now exhibit nondeterminism (different behaviors across differ-

ent executions). Also, it is difficult for programmers to reason about parallel algorithms,

CHAPTER 3. PARALLEL BLOCK VECTORS 24

and some parts of programs simply cannot be parallelized. Finally, even when a program is

well-parallelized, overheads often arise, such as the need to share resources or communicate

between threads, that prevent full parallel scalability, meaning software threads do not fully

fill available hardware threads. When software is not as parallel as hardware, the result is

potentially massive inefficiencies leading to significant losses to runtime and energy.

To assist in the efforts of tracking down inefficiencies in the form of poor software– and

hardware–parallelism matches, this chapter presents a new form of parallel program analysis

called Parallel Block Vector (PBV) profiling.1 Existing research and industrial tools analyze

parallel performance by combing through program source or thread traces for pathologies

including communication overheads, data dependencies, and load imbalances, but this work

takes a new approach. PBV profiling ignores any underlying pathologies, and instead

records basic block execution profiles per concurrency phase (e.g., the block execution profile

of all serial regions of a program). This information provides a direct and fine-grained

mapping between an application’s runtime parallel phases and the static code that makes

up those phases, pointing users to potential inefficiencies in source code. PBVs also uncover

opportunities for improved architectural design, for example revealing information that

could help architects produce more effective serial-phase accelerators to speed through the

portions of programs that cannot be made to effectively utilize multiprocessing.

3.1 Introduction

As multi-cores have come to dominate programmable architectures from mobile to the dat-

acenter, efficiency in parallel programming has seen significant attention from both research

and industry. Parallel profilers and measurement tools have helped application paralleliza-

tion, often by exposing hard to identify parallel performance issues. Intel’s VTune [96] and

the gprof-based Kremlin [66] are examples of such tools. While these tools are certainly

useful to software engineers, they don’t capture the whole picture of a parallel program’s

execution.

1This work was introduced in a conference publication [119], and was also discussed in three other

publications [120–122].

CHAPTER 3. PARALLEL BLOCK VECTORS 25

Parallel block vectors profiles establish a mapping between static basic blocks in a mul-

tithreaded application and the degrees of parallelism exhibited by the application each time

a basic block executes. These profiles enable the discovery of two previously unseen charac-

teristics of parallel programs: they tease apart serial and parallel portions of a program for

individual analysis, and they track the changes in parallelism of fine-grained code regions. A

parallel block vector consists of an array of counters where each counter counterb,t indicates

how many times basic block b was executed when the application had t threads running.

From this profile it is easy to find blocks that executed at a particular thread count t (e.g.,

all b such that counterb,t > 0), or the thread counts each time a particular block b was

executed (counterb,t for all values of t).

This chapter shows that with careful engineering effort, parallel block vectors are neither

complex nor expensive to gather even at such fine granularity. We demonstrate Harmony, an

LLVM compiler pass that instruments a multithreaded application to gather parallel block

vectors. For eight Parsec benchmarks, instrumentation using Harmony incurs an average

of 16% application slowdown and has minimal resource overhead as measured by register

spills and cache miss rates.

The new parallel program characteristics uncovered by parallel block vectors can be

used to improve multithreaded execution in a variety of ways. For example in Section 3.4.2,

we use parallel block vectors to separate the parallel and serial code portions of several

applications, discovering that the instruction mixes for these subsets of code differ, often

significantly, from the overall program instruction mix. In the context of heterogeneous

processors, such as those analytically motivated by Marty and Hill [85], this information

can be applied to tailor heterogeneous cores to better suit their anticipated parallel and

serial workloads. This chapter will also show how PBVs can be used to improve parallel

software’s performance in Section 3.5, by identifying very tiny regions of code that take

up the majority of multithreaded execution, through the use of a PBV-descendant metric

called ParaShares.

In summary, this chapter makes the following three contributions:

• Defines parallel block vectors, a novel way of measuring parallel program performance

that can reveal previously unseen multithreaded program features.

CHAPTER 3. PARALLEL BLOCK VECTORS 26

• Describes Harmony, a tool that allows fast (only 16% slower than runtime) and ac-

curate collection of parallel block vectors via compiler inserted instrumentation and

dynamic profiling.

• Demonstrates four applications of parallel block vectors, discovering that: (1) In many

cases the black and white scenario of Amdahl’s Law, in which code is either purely

serial or purely parallel, does come to pass, with blocks displaying strong affinities

for either serial or parallel execution. However, there are also exceptions in which

substantial numbers of basic blocks run both serially and in parallel across different

executions. (2) Program features, such as instruction mix and basic block size, vary

across blocks that can be categorized into different degrees of parallelism. Notably,

features of identifiably serial blocks often differ significantly from whole program fea-

tures. (3) The frequency of execution of a block does not necessarily correlate to

parallelism or serialism. This suggests that when “hotspot” analysis is used in the

context of processor design, architects should consider parallelism as a factor in their

analysis. (4) PBV–produced ParaShare metrics can be used to pinpoint opportu-

nities for reducing software-inefficiencies, allowing users to speed benchmarks with

micro–changes that have macro impact to the tune of 14-92% runtime improvements.

The remainder of this chapter discusses these contributions in further detail. Section 3.2

defines parallel block vectors and shows a sample parallel block vector for a simple matrix

multiply application. Section 3.3 describes Harmony, a static instrumentation tool to collect

the profiles, Section 3.4 uses analysis of parallel block vectors to make our three architectural

discoveries, and Section 3.5 discusses the ParaShare metric.

3.2 Parallel Block Vector Profiles

Many profiling tools collect runtime statistics from the perspective of processes or threads

[95, 96, 101, 231], reporting the number of threads running for the duration of a process

or the breakdown of serial and parallel execution time. Parallel block vectors report on a

program’s parallel behavior from the perspective of a basic block. A parallel block vector

consists of one histogram for each basic block, indicating the degree of parallelism exhibited

CHAPTER 3. PARALLEL BLOCK VECTORS 27

by the application each time the block was executed.

Figure 3.1 shows a parallel block vector profile for a simple, unoptimized matrix multi-

plication program. The profile shown in the table is a matrix with one row for each static

basic block and one column for each possible degree of concurrency. In this example, the

program created four threads, which in addition to the initial thread, makes at most five

concurrent threads. Each cell in the profile gives the number of dynamic executions of the

given block at the given degree of parallelism. To help survey large applications, we also

use the heatmap visual representation shown by the shading in Figure 3.1.

Parallel block vectors create two new opportunities for better understanding parallel

programs. First, they allow identification of specific basic blocks that run at a particular

thread count. For example, examining the first column in Figure 3.1 reveals that fourteen

blocks make up the serial phases of matrix multiplication’s execution, with main:6 and

worker:5 dominating the dynamic mix. Second, a user can monitor regions of interest in

a program to see the phase or phases in which the code executed. For example, blocks

worker:4-6 in Figure 3.1 correspond to the inner multiplication loop, a critical region in

terms of performance. As one would hope, the profile reveals that this code is largely

executed at high thread counts.

There are multiple ways to count threads when determining the parallel phase of an

application. Nominal thread count includes all created threads regardless of whether they

are running or blocked. Effective thread count excludes blocked threads and counts only

runnable threads. Running thread count includes only the runnable threads that have

actually been granted access by the operating system to a processor. We collect profiles

for nominal and effective thread counts, but do not count running threads for two reasons.

First, running thread count is strongly dependent on the availability of hardware resources

and the behavior of the scheduler, thus revealing more about those two aspects of the system

than the application. Second, counting running threads requires polling the OS, which is

likely to substantially slow and perturb the execution of the program under measurement.

CHAPTER 3. PARALLEL BLOCK VECTORS 28

#define NDIM 1000

double a[NDIM][NDIM];

double b[NDIM][NDIM];

double c[NDIM][NDIM];

void worker(int me ,int p,int n) {

int i,j,k;

double sum;

i = me;

while (i < n) {

for (j = 0; j < n; j++) {

sum = 0.0;

for (k = 0; k < n; k++)

sum = sum+a[i][k]*b[k][j];

c[i][j] = sum;

}

i += p;

}

}

int main(int argc , char *argv []) {

// Variable declaration and

// initialization ommitted

n = // number of threads , here 4

threads = (pthread_t *)

malloc(n*sizeof(pthread_t));

pthread_attr_init (& pthread_custom_attr);

for (i = 0; i < n; i++)

pthread_create (& threads[i],

&pthread_custom_attr ,

worker , ...);

for (i = 0; i < n; i++)

pthread_join(threads[i], NULL);

free(arg);

return 0;

}

Nominal Thread Count

1 2 3 4 5

main:9 0 0 0 0 1

worker:7 0 14 14 16 956

worker:6 606 146K 12K 16K 955K

worker:5 607K 14.6M 12.8M 16.1M 955M

worker:4 607 146K 12K 16K 955K

worker:3 1 14 14 16 955

worker:2 0 1 1 1 1

worker:8 0 1 1 1 1

worker:1 1 1 1 1 0

worker:0 1 1 1 1 0

main:7 3 0 0 1 0

main:6 1M 0 0 0 0

main:5 1K 0 0 0 0

main:4 1K 0 0 0 0

main:3 1 0 0 0 0

main:2 1 0 0 0 0

main:1 1 0 0 0 0

main:0 1 0 0 0 0

Figure 3.1: Parallel block vector for matrix multiplication. For each basic block in an

application, top, the profile, bottom, indicates the block execution frequency at each possible thread

count (i.e., degree of parallelism).

CHAPTER 3. PARALLEL BLOCK VECTORS 29

In
cr

ea
si

n
g

co
st

•
P

ro
g
ra

m
st

a
rt

:
A

ll
o
ca

te
m

em
or

y
fo

r
p

ro
fi

le
,

on
e

p
er

th
re

ad
u

p
to

M
A
X
T
H
R
E
A
D
S

•
P

ro
g
ra

m
e
n

d
:

A
g
g
re

ga
te

p
er

-t
h

re
ad

p
ro

fi
le

s,
w

ri
te

re
su

lt
in

g
p

ro
fi

le
to

fi
le

•
T

h
re

a
d

c
re

a
te

:
In

cr
em

en
t

th
re

ad
co

u
n
t

(2
3

in
st

ru
ct

io
n

s)

•
T

h
re

a
d

e
x
it

:
D

ec
re

m
en

t
th

re
ad

co
u

n
t

(1
8

in
st

ru
ct

io
n

s)

•
B

lo
ck

in
g

c
a
ll

e
n
tr

y
:

S
a
m

e
as

th
re

ad
en

tr
y

(o
n

ly
w

h
en

m
ai

n
ta

in
in

g
eff

ec
ti

ve
th

re
a
d

co
u

n
t)

•
B

lo
ck

in
g

c
a
ll

e
x
it

:
S

a
m

e
as

th
re

ad
ex

it
(o

n
ly

w
h

en
m

ai
n
ta

in
in

g
eff

ec
ti

v
e

th
re

a
d

co
u

n
t)

•
B

a
si

c
b

lo
ck

e
x
e
c
u

ti
o
n

:
In

cr
em

en
t

P
B

V
ce

ll
fo

r
b

lo
ck

at
cu

rr
en

t
th

re
a
d

co
u

n
t

(3
in

st
ru

ct
io

n
s)

In
cr

ea
si

n
g

fr
eq

u
en

cy

F
ig

u
re

3.
2:

H
a
rm

o
n
y

in
st

ru
m

e
n
ta

ti
o
n

p
o
in

ts
.

P
ro

fi
le

r
a
ct

io
n

is
ta

ke
n

u
p

o
n

va
ri

o
u

s
ru

n
ti

m
e

ev
en

ts
.

C
a
re

fu
l
en

g
in

ee
ri

n
g

o
ffl

o
a
d

s
ex

p
en

si
ve

w
or

k
to

th
e

le
as

t
fr

eq
u

en
t

ev
en

ts
,

in
p

ar
ti

cu
la

r
p

ro
g
ra

m
st

a
rt

a
n

d
fi

n
is

h
w

h
ic

h
d

o
n

o
t

ov
er

la
p

w
it

h
th

e
ex

ec
u

ti
o
n

o
f

th
e

p
ro

g
ra

m
it

se
lf

.
T

h
is

re
su

lt
s

in
m

in
im

al
p

ro
fi

li
n

g
w

or
k

at
th

e
m

os
t

fr
eq

u
en

t
ev

en
ts

(i
.e

.,
b

a
si

c
b

lo
ck

ex
ec

u
ti

o
n

s)
,

re
d

u
ci

n
g

th
e

p
ro

fi
li

n
g

ov
er

h
ea

d
a
n

d
m

in
im

iz
in

g

p
er

tu
rb

at
io

n
.

CHAPTER 3. PARALLEL BLOCK VECTORS 30

3.3 Harmony: Efficient Collection of PBVs

We now describe Harmony, an instrumentation pass for LLVM [137] to generate parallel

block vectors. We selected compile-time instrumentation for Harmony for three reasons.

First, parallel block vectors require dynamic information such as basic block execution fre-

quency, thread count, and timing information which is not available via static analysis.

Second, unlike dynamic instrumentation frameworks such as Pin, compile-time instrumen-

tation adds no additional runtime overhead beyond the instrumentation code itself. It is

particularly important to keep overheads low when profiling parallel applications as shifts

in the relative timing of events can perturb the behavior of the program. Finally, with

compile-time instrumentation, portability comes for free, making it trivial to collect profiles

on any architecture or language supported by the compiler.

This section describes the architecture of Harmony and discusses the efforts undertaken

to minimize profile collection overhead thereby maintaining profile accuracy. The pass is

intended to be the last pass executed, after the program has been fully optimized and the

final program control-flow graph (CFG) has been set. Harmony is available as an open-

source tool at http://arcade.cs.columbia.edu/harmony.

3.3.1 Injecting Instrumentation

To collect parallel block vectors, Harmony must take action at several program events,

as summarized in Figure 3.2. At program start the profiler must allocate and initialize

a profile, and at program finish the profile must be written to a file. At thread creation

and exit, Harmony must inject code to increment and decrement the nominal thread count.

When tracking effective thread count, the counter must also be decremented upon entry

and incremented upon exit from any blocking call, such as a lock acquire. Lastly, each

basic block execution must be accompanied by an increment of the appropriate entry in the

profile matrix.

Harmony injects instrumentation in two different ways. For tracking basic block exe-

cutions, Harmony adds instructions directly into the body of a basic block, as illustrated

in Figure 3.3. The same goes for program entry and exit, where Harmony inserts calls to

CHAPTER 3. PARALLEL BLOCK VECTORS 31

profile initialization and cleanup routines (not shown). For the remaining events, Harmony

interposes on relevant thread library calls as illustrated in Figure 3.4. At present, the tool

supports only Pthreads library calls, and requires only that programs include harmony.h

in place of pthreads.h.

3.3.2 Strategies for Minimizing Perturbation

Adding instrumentation to a parallel program risks perturbing program behavior, poten-

tially compromising the accuracy of the profile. While some perturbation is unavoidable,

we found that careful engineering significantly reduces the overhead of profile collection.

As basic block executions are by far the most frequent event the profiler instruments,

we focused our optimization efforts there. Each time a basic block executes, the instrumen-

tation must read the current thread count and use that value along with the basic block ID to

index the profile matrix and increment one counter (i.e., profile[currentThreadCount][bbid]++).

Harmony takes the following steps to streamline this computation:

• Because bbid will be changing much more frequently than currentThreadCount, the

profile matrix is laid out in a cache-friendly, column-major fashion that places profile

entries for different basic blocks at the same degree of parallelism at adjacent addresses

in memory.

• Significant portions of the address calculation are factored out of the basic blocks

themselves. Specifically, the column address offset for the current thread count need

only be re-calculated each time the thread count changes and not for each basic block

execution. All that remains of the address calculation for each basic block is to

compute the offset within the profile column.

• Finally, because the target programs are parallel, multiple threads will be updating

the profile concurrently. Rather than guarding each counter in the profile matrix with

a lock, which would introduce substantial synchronization overhead, we allocate a

private profile matrix for each thread, and aggregate the per-thread profiles only after

the program has finished executing.

CHAPTER 3. PARALLEL BLOCK VECTORS 32

void sample(uint32_t bb_id) {

bucket_t *b = *ptr_specific_col +

bb_id*PROF_BUCKET_SIZE;

(*b)++;

}

load the pointer to pointer to my column

movl %gs:ptr_specific_col@NTPOFF, %edx

load the pointer to my column

movl (%edx), %edx

increment counter for BBL1 at specific_col+4

incl 4(%edx)

Figure 3.3: Direct instrumentation example. Each basic block is augmented to record its

execution at the current degree of parallelism. The additional three instruction use only one register

and do not induce any register spills.

// intercept potentially blocking call

#define pthread_mutex_lock(a...) \

BLOCKING_CALL(pthread_mutex_lock(a))

// effective thread count drops on entry

// and rises on upon completing

#define BLOCKING_CALL(exp) ({ \

int rv; \

__sync_sub_and_fetch(&(effectiveThreadCount), 1); \

rv = exp; \

__sync_add_and_fetch(&(effectiveThreadCount), 1); \

rv; })

Figure 3.4: Thread library wrapper example. Here the instrumentation decrements and incre-

ments the effective thread count upon upon entry to and exit from of a blocking call respectively.

CHAPTER 3. PARALLEL BLOCK VECTORS 33

Collectively, these optimizations result in the small per-basic block overhead of the three

instructions shown in Figure 3.3.

3.3.3 Mapping Profiles Back to Application Code

To ensure that profiles can be mapped back to the original application code, Harmony

annotates both the profiles and the LLVM assembly file with unique basic block IDs. In post-

processing these two files can be cross-referenced for further analysis as in our instruction

mix case study (Section 3.4.2). Though we do not implement it for these studies, this

labeling scheme could be coupled with debug symbols to link the profile all the way back

to source code.

3.3.4 Runtime Impact of Harmony

Dynamic analysis risks altering the timing, and with it the behavior, of a parallel program

in a way that may compromise the accuracy of the gathered information. For example,

slowing critical sections will increase lock contention, and, conversely, slowing non-critical

sections will reduce lock contention. It is thus important to carefully examine profiling’s

impact on the original program.

In his 1991 chapter, Event-based Performance Perturbation: A Case Study, Allen Mal-

oney [151] listed the three primary sources of program perturbation: execution of additional

instructions and their resulting execution slowdown, changes in memory references patterns,

and register pressure. As outlined in Section 3.3.2, Harmony takes a number of steps to

minimize the impact on program behavior. In this section we evaluate the profiler’s impact

on each of these three metrics.

3.3.5 Execution Time Overhead

First, we compare the execution time of applications compiled with and without Harmony’s

instrumentation. In both cases the -O3 flag is set to turn on maximal compiler optimizations.

The machine used for these experiments and those described later in Section 3.4 has 4 2.0

GHz cores, 3.3GB of RAM, and is running Linux Ubuntu version 8.04. We use Harmony

CHAPTER 3. PARALLEL BLOCK VECTORS 34

0 %

10 %

20 %

30 %

40 %

50 %

blackscholes

bodytrack

dedup

facesim

fluidanim
ate

stream
cluster

sw
aptions

x264
blackscholes

bodytrack

dedup

facesim

fluidanim
ate

stream
cluster

sw
aptions

x264

O
v
e

rh
e

a
d

Keep Thread Count
Increment Histogram

Write Profile to File

Profiling (Effective Threads)Profiling (Nominal Threads)

Figure 3.5: Low overhead of instrumentation. Program slowdown due to profile collection

ranges from 2% to 44% with an average overhead of 18%.

.

to collect parallel block vectors for eight applications from Parsec [21], a suite of non-HPC

multithreaded benchmarks.

All runtimes are the average of 20 program runs. For each application the profile col-

lection times were normalized to an uninstrumented baseline. Figure 3.5 plots the profile

collection overheads. Nominal thread count profiling added 16% on average while effec-

tive thread count profiling added slightly more overhead at 21%. The additional overhead

is expected due to the additional thread counter activity. As Figure 3.5 indicates, 3% of

these totals are attributable to time spent writing the profile to a file after the program

has finished. Thus, the effective overheads during program execution are 13% and 18%,

respectively.

Relative to similar tools, these overheads are modest. For example, ThreadScope, a tool

for tracing runtime parallel events using the Haskell GHC compiler [111], incurs 10%-25%

overhead. Quartz, a gprof like tool that uses sampling to monitor threads, increases program

run times by 70% [3]. The popular (but heavier-weight) runtime binary instrumentation

platform, Pin, incurs a 100 − 400% increase in execution time for basic block counting

alone [10].

It is interesting to note that two applications, dedup and fluidanimate, spend signifi-

cantly more time maintaining an effective thread count than maintaining a nominal thread

count. This differential in activity between the two counters becomes significant when we

compare the resulting profiles later in Section 3.4.1.

CHAPTER 3. PARALLEL BLOCK VECTORS 35

3.3.6 Storage Resource Contention

The last two sources of perturbation in Maloney’s list address increased resource pressure

caused by instrumentation. For Harmony we see a slight — 7.5% on average — increase

in register spills. However, for these applications, the additional spills were confined to

the profile setup and cleanup activities which occur prior to and after the execution of the

program itself. Most importantly, the instrumentation code in each basic block did not

induce spills.

As measured by Cachegrind [244], the instrumentation introduces negligible cache per-

turbation. In the L1 instruction and data caches the miss rate increased by at most 0.06%

and 0.2% respectively. There was no measurable impact on the hierarchy beyond the L1

structures (i.e., L2 miss rates were unchanged).

3.4 Architectural Design Applications of PBVs

We now carry out three novel analyses of our benchmarks, each enabled by parallel block

vectors. Figure 3.6 shows visual representations of the profile of each of the eight Parsec

benchmarks. Recall from Figure 3.1 that each row corresponds to a static basic block and

each column to a nominal thread count. For space reasons we show the full heatmaps only

for nominal thread counts, though in the following sections we will analyze both nominal

and effective thread count profiles.

From these profiles, we see that in several applications (namely bodytrack, dedup,

facesim, fluidanimate, and streamcluster) basic blocks display a strong affinity for

either serial or parallel phases. The remaining applications (blackscholes, swaptions and

x264) by contrast have significant portions which execute at mixed thread counts, during

both serial and parallel phases.

It is well known that the serial portions of an application limit parallel speedups [85],

but what exactly do those serial portions look like? Are they amenable to acceleration?

We will explore these questions in the following sections, before closing with a discussion of

other applications of parallel block vectors.

CHAPTER 3. PARALLEL BLOCK VECTORS 36

 1 2 3 4 5

B
B

L
s

Nominal TC

blackscholes
(45 BBLs)

 1 2 3 4 5 6

Nominal TC

bodytrack
(2239 BBLs)

 1 2 3 4 5 6

Nominal TC

bodytrack
(2239 BBLs)

 1 5 9 13

Nominal TC

dedup
(353 BBLs)

 1 5 9 13

Nominal TC

dedup
(353 BBLs)

 1 2 3 4

Nominal TC

facesim
(3547 BBLs)

 1 2 3 4

Nominal TC

facesim
(3547 BBLs)

 1 2 3 4 5

Nominal TC

fluidanimate
(374 BBLs)

 1 2 3 4 5

Nominal TC

fluidanimate
(374 BBLs)

 1 2 3 4 5

Nominal TC

streamcluster
(286 BBLs)

 1 2 3 4 5

Nominal TC

streamcluster
(286 BBLs)

 1 2 3 4 5

Nominal TC

swaptions
(147 BBLs)

 1 2 3 4 5

Nominal TC

swaptions
(147 BBLs)

 1 2 3 4 5

Nominal TC

x264
(3054 BBLs)

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

#
 o

f
E

x
e
c
u
ti
o
n
s

 1 2 3 4 5

Nominal TC

x264
(3054 BBLs)

Figure 3.6: Parallel block vectors for Parsec. These heatmaps are a visualization of the profiles

produced by Harmony. For the given application, they show the number of times (shading) each

static block (row) was executed at each degree of parallelism (column).

 0

 0.5

 1

blackscholes

bodytrack

dedup

facesim

fluidanim
ate

stream
cluster

sw
aptions

x264
blackscholes

bodytrack

dedup

facesim

fluidanim
ate

stream
cluster

sw
aptions

x264

%
 S

ta
ti
c
 B

B
L

s

Static Execution Count

Effective Thread CountNominal Thread Count

 0

 0.5

 1

blackscholes

bodytrack

dedup

facesim

fluidanim
ate

stream
cluster

sw
aptions

x264
blackscholes

bodytrack

dedup

facesim

fluidanim
ate

stream
cluster

sw
aptions

x264

%
 D

y
n

a
m

ic
 B

B
L

s

Dynamic Execution Count

serial
mixed

parallel

Effective Thread CountNominal Thread Count

Figure 3.7: Classifying basic blocks by parallelism. These graphs show the percentage of blocks

which execute only serially (serial), blocks which execute both serially and in parallel (mixed), and

blocks which only execute in parallel (parallel) for each application, for both nominal and effective

thread counting, and for both static and dynamic block executions.

CHAPTER 3. PARALLEL BLOCK VECTORS 37

 0

 0.2

 0.4

 0.6

 0.8

 1

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

Parallel

M
ixed

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

%
 o

f
T

o
ta

l

ld/st
lea

arith (int)
arith (fp)

stack
cmp

cond CT
uncond CT

sync

x264swaptionsstreamclusterfluidanimatefacesimdedupbodytrackblackscholes

Figure 3.8: Opcode mix by class. Instruction mixes for the entire program compared with the

mixes for each basic block class (serial, parallel, and mixed). In all applications, the instruction

mixes for both purely serial and purely parallel blocks differ significantly from whole program mixes.

3.4.1 Serial and Parallel Application Partitions

Knowing how much of a program runs in parallel and how much runs serially is useful for

many purposes. Tools such as Intel’s VTune Amplifier XE [96] identify the serial fraction

of an application’s runtime so that software engineers can improve the parallelization of

their programs. Such metrics are also useful when estimating the scalability of a particular

parallelization according to Amdahl’s Law [85].

Parallel block vectors make it possible not only to quantify the serial portion of a

program, but to map that region back to the specific basic blocks that comprise it. To

get this information we classify each basic block into one of three categories: serial (i.e.,

never executed with a thread count greater than one), parallel (i.e., always executed with

a thread count greater than one) or mixed (i.e., sometimes executed in serial regions, other

times in parallel regions).

From an architect’s perspective, the pure serial blocks make natural targets for spe-

cialized serial processors (further discussed in Section 3.4.2) or accelerators (Section 3.4.3).

The mixed blocks, which run both in parallel and serially, are likely of interest to all system

designers. They might represent areas in the application where there were communica-

tion overheads or other forms of architectural resource contention. Identifying the mixed

blocks allows their execution to be improved with better scheduling algorithms, additional

CHAPTER 3. PARALLEL BLOCK VECTORS 38

hardware resources, or code transformations.

Figure 3.7 shows the breakdown of static and dynamic basic blocks by class (serial,

mixed, or parallel). We observe that significant portions of several applications are neither

purely serial nor purely parallel, but rather belong to both regions (the mixed class). This

is true of both nominal and effective thread counts. The trends are similar but even more

pronounced when counting dynamic basic block executions. This means that when we talk

about Amdahl’s law and serial and parallel phases of a program, those phases often do not

correspond to different portions of the application. One hypothesis is that such blocks are

the result of library code which is called both from the serial and parallel phases.

Returning to the serial/mixed/parallel classifications, we can also clearly tell which ap-

plications are the most parallel. For example, from the static nominal view, bodytrack and

facesim seem to be equally parallel. However, from the dynamic effective profiles, we see

that bodytrack has more blocks actually running in parallel, whereas facesim apparently

suffered from blocking threads and its parallel blocks were less frequently executed than its

serial blocks. In the following section, we will look in more depth at the content of blocks

in each of these classes.

3.4.2 Program Features by Degree of Parallelism

Recent interest in heterogeneous multicore architectures spans not only the architecture

community but operating systems, high-performance computing, programming languages,

and others [7, 75, 98, 127, 176, 206, 268]. The principle idea behind heterogeneous processing

is specialization: different cores on a heterogeneous machine can address the varied compute

needs of modern workloads while maximizing hardware performance and efficiency. For

example, when portions of a program cannot be adequately parallelized, an aggressive, out

of order, no holds barred processor might be employed to reduce execution time.

If heterogeneous cores are meant to address the specialized needs of certain portions of

the application, it is naturally important to understand what these processors should be

specialized to. Parallel block vectors can assist by distinguishing features of parallel and

serial phases. For this analysis, we will continue to use the always serial, always parallel, or

mixed classification introduced in Section 3.4.1 in which every block belongs to exactly one

CHAPTER 3. PARALLEL BLOCK VECTORS 39

 0

 0.2

 0.4

 0.6

 0.8

 1

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

Parallel

M
ixed

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

All
Serial

M
ixed

Parallel

%
 o

f
T

o
ta

l

FP+Mem
Int+Mem
FP+Reg
Int+Reg

x264swaptionsstreamclusterfluidanimatefacesimdedupbodytrackblackscholes

Figure 3.9: Memory interaction by class. The proportion of memory operations for serial and

parallel basic blocks differ from the proportion in the program as a whole.

class.

Figure 3.8 compares the dynamic instruction mixes of each of these three categories, as

well as for the program as a whole. All of the X86 opcodes that occurred in the application

were classified into one of eight categories: loads and stores, loads of effective addresses,

integer arithmetic, floating point arithmetic, comparisons, conditional control transfers,

unconditional control transfers, and synchronization.

We observe that for most applications, serial basic blocks display significantly different

instruction mixes from the overall program. This indicates an opportunity for architects to

exploit, when designing the microarchitecture of aggressive cores for heterogeneous CMPs.

Consider the blackscholes application. Across the whole program, floating point op-

erations account for more than 20% of the dynamic instructions. If this were the only

instruction mix considered, as is currently the case, then the aggressive processor for serial

regions might waste space and expense unnecessarily on floating point units, when we can

see from the graph that the serial blocks actually require fewer floating point operations

than the program as a whole. Instead, the serial phases of blackscholes have a higher

concentration of control and integer arithmetic, suggesting that resources would be better

spent on the branch predictor, for example.

The data in Figure 3.8, shows such a pattern in each of the benchmarks. In every

case, either the serial or parallel portions (and sometimes both) have substantially different

CHAPTER 3. PARALLEL BLOCK VECTORS 40

instruction mixes than the application as a whole. However, across these applications,

there does not appear to be a consistent pattern of how the instruction mixes change. For

example, the serial portions in blackscholes had reduced need for floating point units,

while the serial portions of x264 show increased rates of unconditional control transfers. It

is not immediately obvious how hardware can or should exploit such patterns. We believe

that this direction merits further investigation, starting with a more comprehensive review

of the application space.

Just as opcodes vary, the state upon which the serial and parallel portions of a program

operate varies relative to the overall program. Figure 3.9 shows the memory interactions

of the three parallelism classes. As with opcodes, the component parts of the application

show different mixes than the application as a whole.

3.4.3 Hotspot Analysis Using Parallel Block Vectors

The previous section suggests an approach for using parallel block vectors to determine

the applicability of a specialized processor to particular code regions. An extreme form of

specialized processor, accelerators have shown great promise in reducing power, saving space

in embedded systems, and improving performance for target programs. The following case

study explores how Harmony can help architects quantify the potential performance gains

of their accelerator designs, in particular how parallel block vectors can enhance hotspot

analysis for parallel applications. Hot basic block analysis has traditionally been used for a

variety of purposes, including JIT translation [241], garbage collection optimizations [92],

simulation points analysis [192], code cache management [218], and parallel performance

debugging, for example, in Intel’s VTune Amplifier [95].

Figure 3.10 plots average degree of parallelism against dynamic basic block executions

for block in each application. The average degree of parallelism of a block is simply the

average thread count for each block weighted by the block’s execution frequency at each

count. The scatter plots reveal that the hottest blocks are not always the most parallel ones.

In streamcluster for instance, many of the hottest blocks have an average degree of par-

allelism of one. Generally, the hottest blocks seem to be split between blocks which execute

exclusively serially and blocks which execute at or near the maximum degree of parallelism.

CHAPTER 3. PARALLEL BLOCK VECTORS 41

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 2 3 4 5#
 D

y
n
a
m

ic
 B

lo
c
k
 E

x
e
c
s

blackscholes

 1 2 3 4 5 6

bodytrack

 1 5 9 13

dedup

 1 2 3 4

facesim

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 2 3 4 5#
 D

y
n
a
m

ic
 B

lo
c
k
 E

x
e
c
s

Avg. Nominal Threads

fluidanimate

 1 2 3 4 5

Avg. Nominal Threads

streamcluster

 1 2 3 4 5

Avg. Nominal Threads

swaptions

 1 2 3 4 5

Avg. Nominal Threads

x264

 1 2 3 4 5

Avg. Nominal Threads

x264

Figure 3.10: Hottest blocks are not always the most parallel blocks. Each static basic block’s

weighted average nominal thread count was calculated and then plotted against its total number of

dynamic executions. The graphs show that the hottest blocks are primarily split between those that

execute only serial and those that execute near the max degree of parallelism.

This data indicates that not only are there hotspots, possibly amenable to acceleration,

but that one should not assume anything about whether the hotspots belong to parallel or

serial phases. Some code simply cannot be parallelized. As multicore architectures scale

to larger core counts, these serial portions of runtime dominate total execution times. The

acceleration of serial sections then becomes critically important. So, as a special case of

hotspot analysis, we look more closely at the serial blocks, and ask the question, are serial

code segments amenable to targeted accelerator optimizations?

Taking the serial basic blocks identified in Section 3.4.1 (see Figure 3.7), we attribute

dynamic serial execution frequencies to different percentages of the serial blocks. Figure 3.11

(left) shows that for six of the eight applications, 75% of the serial execution is attributable

to less than 10% of the basic blocks. This data corroborates what other projects [250] have

seen, that accelerators can effectively accelerate the serial parts of a parallel application.

Processor designers might also be interested in how amenable parallel blocks are to tar-

geted hardware optimizations. Figure 3.11 (right) shows the execution coverage of parallel

phases by purely parallel basic blocks. With the exception of blackscholes and swaptions,

CHAPTER 3. PARALLEL BLOCK VECTORS 42
%

 D
y
n

a
m

ic
 B

lo
c
k
 E

x
e

c
u

ti
o

n

% Static Serial BBLs

Hot Serial Blocks

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

% Static Parallel BBLs

Hot Parallel Blocks

blackscholes
bodytrack

dedup
facesim

fluidanimate
streamcluster

swaptions
x264

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

% Static Parallel BBLs

Hot Parallel Blocks

blackscholes
bodytrack

dedup
facesim

fluidanimate
streamcluster

swaptions
x264

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100

Figure 3.11: Few basic blocks represent large portions of serial and parallel runtime. For

basic blocks that were determined by parallel block vectors to always execute serially (left) or in

parallel (right), percentages of runtime execution are attributed to static basic blocks. For most

applications, a small number of blocks represents a large fraction of the total runtime.

approximately 5% or fewer of parallel blocks are responsible for 75% of dynamic parallel

blocks. The reason that blackscholes and swaptions do not show a steep hotspot curve

is that they had very few parallel blocks to begin with; three and five, respectively. As with

serial code, we find that parallel parts of the applications exhibit pronounced hotspots.

In the above experiments, we examine hotspots in terms of basic blocks, but only because

this was the most natural first choice given that it matched our profile granularity. We note

that similar experiments can easily be run at hot function or hot instruction granularity if

we statically analyze the basic blocks and source program after running Harmony. It would

also be possible, with some additional effort, to map hot call graph or dataflow paths to

parallelism.

CHAPTER 3. PARALLEL BLOCK VECTORS 43

3.5 Pinpointing Software Performance Issues with PBVs

ParaShares identify very tiny regions of code that take up the majority of multithreaded ex-

ecution, and they are purposefully agnostic to the type or cause of underlying performance

pathologies. Their goal is to precisely point programmers to the lines in their program that

would benefit most from optimizations. A ParaShare is a rankable score that measures

each basic block’s share of a total parallel program’s execution. The rankings are similar

to hot block analyses that report the most frequently executed basic blocks and their CPU

use. However, ParaShares factor in the degree of program parallelism at each block execu-

tion, providing a more accurate reflection of a block’s contribution to execution time. The

weighting scheme downgrades the importance of blocks that execute during highly parallel

program phases. As a result, it ranks blocks that mostly run during serial phases, and

thus tend to consume a greater fraction of runtime, relatively higher in importance. As a

program executes, some blocks execute frequently and others may execute rarely or not at

all. The frequently executed blocks are called “hot” and are important optimization targets

as they constitute a large share of an application’s dynamic work.

Figure 3.12 illustrates how ParaShare ranking works. On the left, a program trace

highlights the execution patterns of two blocks of interest, A (gray) and B (black). For

simplicity, we assume that both blocks have the same number of instructions and equal

execution times, though in real ParaShares we do not assume this. Simple counting reveals

that B executes 9 times whereas A executes only 4, giving B a higher rank of importance.

However, A may consume more of the program’s execution time because its executions

Figure 3.12: ParaShares rank basic blocks to identify those with the greatest impact on

parallel execution , weighting each block by the runtime parallelism exhibited by the application

each time the block was executed.

CHAPTER 3. PARALLEL BLOCK VECTORS 44

occur during serial phases of the program. To account for this nuance, ParaShares divides

the executions by the degree of parallelism at execution time, in this example dividing B’s

9 executions by the 4 threads that ran while B executed, and dividing A’s 4 blocks by 1 for

the single running thread. As a rule, parallelism is counted at the start of a basic block’s

execution to resolve any overlaps in block executions between threads. The resulting scores

capture parallel execution shares more effectively, and in this case rank A and B in the

opposite order of importance versus traditional execution counts.

3.5.1 Collecting ParaShares

From a user’s perspective, ParaShares are straightforward to collect. They require recom-

pilation, a single program run with the usual inputs and outputs, and the execution of a

post-processing script. Here are the steps required to collect ParaShares:

Step 1. Compile the source program with Harmony.

Step 2. Execute the program once to collect a PBV.

Step 3. (Optional) Tune machine specific parameters. Optionally, ParaShares

can incorporate machine specific instruction weights to account for differences in opcode

processing or memory access times. If used, these weights should be stored in a dictionary

mapping instruction types to latency factors. Opcode-dependent latency factors are often

already available online; for example, latency factors for our machine are available in [72].

These latency factors suggest, for example, multiplying conditional operations by two, add

instructions by one, and divide instructions by 30. Due to the overwhelming significance

of total instruction count, our applications’ ParaShare rankings showed minimal sensitivity

to these latency factors. However, latency factors could have more of an effect for other

applications and architectures.

Step 4. Calculate weighted, per block static instruction counts. Next, the

total (possibly weighted) dynamic instruction count per basic block is calculated. The

instruction contents of each block are available in the annotated assembly file produced

earlier by Harmony. With weighting, a sum of the weights of each instruction in the block

produces a total block weight (Weightb). As an unweighted alternative, a simple count of

the instructions per block suffices.

CHAPTER 3. PARALLEL BLOCK VECTORS 45

0%

10%

20%

30%

40%

 0 15 30 45 60

P
a

ra
S

h
a

re
 %

Basic Blocks

blackscholes

0%

10%

20%

30%

40%

 0 100 200 300

P
a

ra
S

h
a

re
 %

Basic Blocks

streamcluster

 0 150 300 450 600

Basic Blocks

canneal

 0 250 500 750 1000

Basic Blocks

radiosity

 0 250 500 750 1000

Basic Blocks

raytrace

 0 50 100 150

Basic Blocks

swaptions

 0 150 300 450 600

Basic Blocks

volrend

 0 100 200 300

Basic Blocks

water_nsquared

Figure 3.13: ParaShare rankings identify important blocks to target for multithreaded

performance optimizations. These graphs show the ParaShare percentages (ordered from great-

est to least share) of all the basic blocks in eight benchmark applications.

Step 5. Calculate ParaShare rankings. The ParaShare for each block b is computed

using the block’s static instruction weight and dynamic thread weight. Specifically, the sum

of each block’s executions at thread count t (Execsb,t) are divided by t. This formula is

related to the runtime calculation used in Quartz [3], but we apply it here at a much smaller

granularity and for a different purpose. The ParaShare of block b is the product of this

dynamic thread weight and the static block weight:

ParaShareb =
max∑
t=1

Execsb,t
t

×Weightb

As necessary for further analysis, the absolute ParaShare for each basic block can be

normalized to the program’s total ParaShare (the sum of ParaShares across blocks).

Step 6. Use the ParaShare rankings for performance optimizations or other

analyses. Finally, ParaShares can be mapped back to the source code via compiler debug

information in the assembly code.

CHAPTER 3. PARALLEL BLOCK VECTORS 46

3.5.2 Using ParaShares

Figure 3.13 gives a first look at ParaShare block rankings for real applications—eight

programs from the Parsec Version 3.0 [21] and Splash-2 [257] benchmark suites, namely

blackscholes, canneal, radiosity, raytrace, streamcluster, swaptions, volrend, and

water nsquared. The Splash2x variant of Splash that is packaged with Parsec was used

for its provision of multiple input sets. All of the applications are written in C and C++

and parallelized using pthreads with a variety of design patterns, including a mix of data

and task parallelism. Each program was run using 24 threads and native input set sizes on

a Dell PowerEdge R420 server. The server is dual socket with Intel Sandybridge E5-243

chips, each with six cores and two-way hyper-threading for a total of 24 effective cores. The

system has 24GB of DRAM and runs Ubuntu 12.04.2 with the 3.9.11 version of the Linux

kernel. The graphs show that just a few basic blocks (on the x-axis) per program domi-

nate the ParaShare rankings (on the y-axis). The small number of important blocks is no

surprise, however ParaShare’s ability to find the correct important blocks makes it possible

to massively improve program performance with just minor code changes, as demonstrated

later in Section 3.5.2.

Benefits of Fine Granularity The well known 90-10 rule of thumb says that 90% of

program execution time resides in just 10% of code. For our benchmarks, the rule holds:

functions that consume roughly 90% of the execution represent 2.3-17.3% of the lines in the

overall programs, or an average of 7.7%. Table 3.1 shows the exact code line counts per

benchmark, as well as line counts for the functions consuming 90% of the execution based

on ParaShare computations.

The table also shows the number of lines of code contained in the basic blocks that

are responsible for 90% of the ParaShare execution. The differences in line counts, par-

ticularly for the scientific benchmarks with lengthy functions, strongly motivate the use

of basic block granularity over function granularity for examining hot spots. By examin-

ing block-granularity hotspots rather than function granularity hotspots, programmers can

save themselves from looking at an average of 289 lines per benchmark. In fact, basic block

hotspots enough that we could coin a new 90-2 rule of thumb, because 90% of the parallel

CHAPTER 3. PARALLEL BLOCK VECTORS 47

Benchmark Total 90% Exec By 90% Exec By 50% Exec By

Application Lines Func Lines Block Lines Block Lines

blackscholes 564 68 34 21

canneal 1362 204 70 6

radiosity 11836 276 42 4

raytrace 10963 431 51 8

streamcluster 2539 439 12 5

swaptions 1550 359 28 10

volrend 4227 585 133 89

water nsquared 2079 338 29 18

Table 3.1: A case for fine-grained identification of performance inefficiencies. To examine

the functions that take up 90% of the parallel execution, a programmer must examine an average of

338.5 lines per program. To examine the basic blocks that consumed the same amount, they would

need to look at an average of only 50 lines per program.

CHAPTER 3. PARALLEL BLOCK VECTORS 48

execution is taken up by just 2.4% of the program source lines according to our precise

ParaShares analysis. The top 50% of program execution could be covered by searching an

even more targeted set of code; programmers would only need to look at 20 source lines

per application, or 1% of the overall program lines. The block versus function savings is

particularly important when examining unfamiliar applications with lengthy functions and

lots of loops. For example, volrend has one function with three sets of doubly nested loops,

and we found more than a few instances where a single function contained four or more

loops.

0%

10%

20%

30%

40%

50%

60%

blackscholes

canneal

radiosity

raytrace

stream
cluster

sw
aptions

volrend

w
ater_nsq

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

Benchmark

Between Trials
Between Threads

Between Inputs

Figure 3.14: Robustness of the metrics. Runtimes and basic block execution counts can change

across program trials, but the differences are small relative to differences in ParaShares collected

across varying thread counts or input sizes.

ParaShare Robustness A program’s parallel behavior may be inconsistent across runs,

changing block execution counts or overall program runtime. Despite these variations,

a single profiling run can produce representative ParaShares, particularly if the purpose

of collection is to examine and optimize the hottest blocks with the highest ParaShares.

Figure 3.14 plots the standard deviations of program total ParaShares as a fraction of

the maximum program total ParaShare across three trials. The standard deviation across

runs with the same thread count and input was never more than 7% and averaged only

3.2%. This variation is small when compared with variations between trials given different

maximum thread counts (31% on average) or different input sizes (48%). In addition to the

magnitude of the overall program ParaShare staying consistent between trials, the ranking

CHAPTER 3. PARALLEL BLOCK VECTORS 49

-10

 0

 10

 20

 30

 40

blackscholes

canneal

radiosity

raytrace

stream
cluster

sw
aptions

volrend

w
ater_nsquared

P
a

ra
S

h
a

re
 R

a
n

k
 v

e
rs

u
s

 D
y
n

a
m

ic
 E

x
e

c
u

ti
o

n
 R

a
n

k

Benchmark

Avg. Change
Max Increase
Max Decrease

Figure 3.15: ParaShares versus unweighted rankings in top 20 blocks. ParaShares do not

always highlight new ‘hot’ blocks, but can often significantly impact the relative importance of a

block versus dynamic instruction count rankings not weighted by parallelism.

of individual basic blocks varies minimally, and only changes in lower ranked blocks with

ParaShares of 2% or less.

Impact of ParaShare Weights ParaShare’s utility is not just to locate small regions

of significant source code, but to locate significant code that other tools may not highlight.

Figure 3.15 shows differences in the top 20 blocks identified by ParaShares versus by dy-

namic instruction counting that is unweighted by parallelism. For a few of the applications

(raytrace, swaptions, and water nsquared), instruction count dominates parallelism and the

difference in rankings is negligible. For others, the difference in rankings is profound. For

example, one of the top 20 blocks in volrend moves up 40 places in ParaShare rankings

versus dynamic execution rankings. In radiosity, the average shift in rankings between the

two profiling methods is over 23 places per top 20 block.

Performance Tuning Using ParaShares to target particularly important lines of source

code, we made extremely simple and short source code changes to reduce application run-

times by 14-92%. Figure 3.16 shows the effect of optimizations to blackscholes, streamclus-

ter, and swaptions. Both optimized and unoptimized versions were compiled with LLVM’s

-O3 optimization set. The optimizations improve computation time, but do not make any

algorithmic or parallelization changes. As a result, the savings shrink as thread counts

CHAPTER 3. PARALLEL BLOCK VECTORS 50

0%

20%

40%

60%

80%

100%

1 2 4 8 16 24

M
e
a
s
u
re

d
 T

im
e
 R

e
la

ti
v
e

to
 S

e
ri
a
l
U

n
o
p
ti
m

iz
e
d

Maximum Threads

blackscholes

1 2 4 8 16 24

Maximum Threads

streamcluster

1 2 4 8 16 24

Maximum Threads

swaptions

Unoptimized Optimized

Figure 3.16: ParaShares pinpoint inefficiencies that lead to significant opportunities for

optimization. With the extremely targeted profiling provided by ParaShares, we were able to

improve benchmark performance by up to 92% through source code changes less than 10 lines long.

increase, but they remain significant (up to 82%) even at large thread counts.

In blackscholes, the top two blocks consume nearly 60% of the overall runtime given

24 threads and native input set sizes. These blocks are found in the kernel function that

calculates financial option values. By collapsing the original 20 temporary variables in the

function to 3, we alleviated register pressure resulting in a 44.6% performance improvement

at one thread and 22% at 24 threads. For streamcluster, the top blocks are found in the

dist() function, which computes the squared Euclidean distance between two Points, each

of which is a struct with pointers to arrays of float coordinates. Inspecting the line of

code in question (the body of a nested loop), we guessed that the compiler missed an

opportunity for common subexpression elimination, then modified the code to force it to

do so. This change halved the loop body’s original four array lookups and two subtractions

and reduced register pressure, saving 92% of the serial runtime and 64% of the 24 count

runtime. Finally, the top blocks in swaptions correspond to a few nested loops in the

HJM SimPath Forward Blocking.cpp file. We experimentally unrolled these loops one to

four times to find the optimum unrolling level for each. In addition to the inability of the

compiler to dynamically test a variety of unroll levels, these opportunities may have been

missed because the loops involve nested accesses to custom data structures. In total, our

CHAPTER 3. PARALLEL BLOCK VECTORS 51

loop optimizations resulted in a 15% savings for a single threaded swaptions execution, and

a 19.7% savings for 24-threaded execution.

Given the simplicity of our optimizations, these changes resulted in disproportionately

large performance savings. Across a datacenter or many nodes in a distributed system, the

savings could be even more important, and potentially financially significant as well. Best

of all, we were able to make the optimizations quickly for developers unfamiliar to these

particular applications, because ParaShares allowed us to focus our efforts on just a few

lines of code rather than thousands.

3.6 Related Work

To the best of our knowledge, Harmony is the first tool that dynamically records paral-

lelism and maps it back to basic blocks in the application. However, a number of other

tools dynamically measure program parallelism and profile thread activity, use the LLVM

compiler, or collect basic block-granularity performance data.

Parallelism Analysis Tools. Kremlin by Garcia et al. [66] reboots the classic gprof [71]

for the multicore era using hierarchical critical path analysis to help users identify applica-

tion hotspots that would benefit from parallelization. Quartz [3] is an older tool with similar

goals; it computes normalized processing times on SMPs for functions using statistical sam-

pling. TAU [215] is a flexible but complex parallel performance evaluation environment

for multi-node HPC systems. Intel’s Parallel Amplifier [95] and VTune Amplifier XE [96]

allow software engineers to examine performance and scalability of programs and to visual-

ize program hotspots and thread activity. McLaren’s QProf [161] unites fine-grained timing

measurements with estimates to provide detailed timings of multi-threaded program events.

Tallent and Mellor-Crummey use sampling to identify program overhead and identify serial-

ization in Cilk programs [234]. The Sun Studio performance tools identify lock contention,

load imbalance, and memory contention in multi-threaded programs [101]. PGPROF from

the Portland Group allows users to profile OpenMP and MPI programs and to analyze

application scalability [231]. Additional OpenMP parallel performance tools include a run-

time API for parallel profiling described by Hernandez et al. [84], and ompP [65]: a tool

CHAPTER 3. PARALLEL BLOCK VECTORS 52

modeled off of mpiP [251] that identifies inefficient regions in OpenMP through source code

instrumentation that counts OpenMP construct executions. The Pin binary instrumenta-

tion tool [202] can monitor a variety of performance metrics in parallel programs [10]. It

is best suited to applications where perturbation will not affect measurements, because it

can cause significant timing overheads. Several parallelism analysis tools have been built

on top of the Pin framework. PinPlay [188], for example, uses Pin to dynamically replay

multi-threaded programs with the goal of fixing concurrency bugs. The CilkView Scala-

bility Analyzer by He et al. [81] examines the dependencies in a program to estimate its

parallelism using Pin to collect performance metrics serially. Finally, Moseley et al. [168]

build a Pin tool that looks for loop behaviors that might indicate easy opportunities for

parallelization.

LLVM Performance Tools. We build Harmony on top of the LLVM Compiler Frame-

work. LLVM comes with several instrumentation features including block, edge and path

profiling [137]. Like us, other teams have built custom instrumentation passes. For example,

VMAD by Jimborean et al. [109] extends LLVM with a pass to support an instrumenta-

tion framework that can gather memory–access traces. Rane and Browne analyze memory

traces via LLVM instrumentation [198], and Serebryany et al. use LLVM instrumentation

for dynamic race detection [212].

Basic Block Profiling. Others have also profiled at the fine granularity of basic blocks.

For example, Sherwood et al. [217] use Basic Block Vectors to identify similar intervals of

execution in a program, and Smith’s Pixie [223] tracer identifies basic block boundaries in

MIPS code to count block executions and to monitor the number of branch instructions

taken.

3.7 Limitations and Future Work

The primary limitation of this work is that at present Harmony is usable only on pthreads

applications that LLVM can compile. With some implementation effort, the tool could be

extended to support other parallelization libraries (e.g., OpenMP), and the general architec-

CHAPTER 3. PARALLEL BLOCK VECTORS 53

ture could be readily ported to other compilers. In addition to extending the applicability

of the Harmony tool, there are a number of other potential additional applications for utiliz-

ing PBV profiles spanning software engineering, operating systems, compilers, and machine

learning.

Applications in Software Engineering. Writing parallel software is a challenging task.

One particular challenge lies in verifying that applications consistently run as the developer

expects. Harmony could assist this verification process by checking that particular parts

of the program run at the degree of parallelism intended by the developer. For example, a

language could introduce assertions to declare that a specific code region should never run

when the thread count is greater than one. This might be a critical section, or it might be

any other code region that a developer expects to execute serially. Then, Harmony could

be modified to insert runtime checks and flag them for programmer inspection.

Another concurrency check that Harmony could assist with is the identification of code

regions with anomalous parallelism. If a certain code region, say a function, is found to

run serially 99% of the time and in parallel 1% of the time, this anomaly might signify

a concurrency bug, or at least a potential mismatch in programmer intent and runtime

behavior and could also be flagged for programmer review.

Applications in Operating Systems Research. As previously observed, many ap-

plications have a significant fraction of mixed parallelism blocks. These blocks might be

indicative of poor operating system scheduling. Further examination of such mixed blocks

could lead to improvements in scheduling policy.

Applications in Compilers Research. If compilers are knowledgeable about the degree

of parallelism at which a basic block might run at, optimization selection could factor in

this information. Multi-threaded programs might initially be optimized as if they were to

be executed in serial, then run with Harmony profiling. The parallel block vectors produced

could be used by a compiler to apply different optimization strategies to parallel and serial

code. For example, if a heterogeneous CMP has in-order parallel cores, the compiler might

expend more effort on instruction scheduling.

CHAPTER 3. PARALLEL BLOCK VECTORS 54

Profile driven re-compilation could also be employed when targeting code to specialized

processors in a heterogeneous architecture. An initial run of an application with Harmony

profiling followed by instruction analysis could determine the best processing unit on which

to run a particular code region. Re-compilation could then prepare the application to run

on specialized cores, potentially with different instruction set architectures (ISAs).

Mapping measured parallelism to basic blocks might also help a compiler improve pro-

gram parallelism. Parallel classifications like always serial, always parallel, and mixed could

be mapped to control flow graphs. The attribution of parallelism to CFGs might highlight

certain graph patterns where opportunities for further parallelization exist.

Machine Learning. We chose the always serial, always parallel, mixed classifications be-

cause they are appropriate to the microarchitectural design case studies presented. However,

blocks could be classified in a multitude of ways. For example, we identified blocks which

always ran in parallel, but did not distinguish blocks which were highly parallel from blocks

which were only somewhat parallel. That is, we did not separate blocks which ran concur-

rently with five other threads active from those that ran with one other thread. Different

classifications might be useful depending on the profiling goal and the type of applica-

tion being measured. Unsupervised learning could determine useful parallel classifications,

leading to more interesting analyses and to further insights for a variety multi-threaded

applications.

3.8 Discussion

Like puzzles turned sideways, sometimes new perspectives can yield new insights. Unlike

existing profiles which examine parallel programs from the perspective of a thread or process,

parallel block vectors collect runtime statistics by basic block laterally by parallelism phase.

Parallel block vectors show which parts of a program belong to the serial and parallel phases

of execution and in what proportion. Collection of parallel block vectors is fast. This

chapter demonstrated Harmony, a compile-time instrumentation pass to collect runtime

profiles with just 16-21% overhead. No manual code modification is required by the user,

and profiles are architecture independent.

CHAPTER 3. PARALLEL BLOCK VECTORS 55

Fast collection coupled with detailed dynamic information about program behavior

makes parallel block vectors broadly useful. This chapter examined four ways in which

parallel block vectors contribute to this dissertation’s goal of finding and minimizing system-

wide inefficiencies. First, it identified basic blocks which do not fit the mold of Amdahl’s

pure parallelism and serialism and instead exhibit a mix of the two. Second, it demon-

strated how parallel block vectors can uncover differences in program features at different

degrees of parallelism. Third, it revealed that parallelism does not necessarily correlate with

basic block execution frequencies. Finally, it showed how PBVs can be used to construct

ParaShares, fine-grained scores that localize the bulk of parallel software runtime to a few

important lines of code.

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 56

Chapter 4

Datacenter-Wide Application

Interference

Distributed computing is another area in which inefficiencies can easily, and do frequently,

occur. One specific type of inefficiency that arises in distributed datacenters that use com-

puters with CMPs or SMTs is application interference. Application interference transpires

when multiple applications contend for shared resources such as processor time, cache space,

or I/O pins. In datacenters, where it is common to find many applications assigned to a

server, this is a prevalent phenomenon. It is also a particularly undesirable one, as the

increased running times and operating costs that result from application interference are

multiplied across many machines.

Unfortunately, understanding interference in live datacenters is more difficult than in

controlled environments or on simpler architectures. Most approaches to mitigating inter-

ference rely on data that cannot be collected efficiently in a production environment. This

chapter1 exposes eight specific complexities of live datacenters that constrain measurement

of interference. It then introduces new, generic measurement techniques for analyzing inter-

ference in the face of these challenges and restrictions. We use the measurement techniques

to conduct the first large-scale study of application interference in live production datacen-

ter workloads. Data is measured across 1000 12-core Google servers observed to be running

1This work was previously introduced in a conference publication [118].

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 57

1102 unique applications. Finally, we identify several opportunities to improve performance

that use only the available data; these opportunities are applicable to any datacenter.

4.1 Introduction

The complex characteristics of datacenter workloads and architectures make application

interference difficult to reason about. High heterogeneity of applications and high core

utilization targets mean that datacenters’ CMPs are filled with a wide variety of multi-

threaded applications. Because these applications are diverse in their performance objec-

tives, resource requirements, and inputs, and because datacenters put severe limitations

on performance monitoring, it is a challenge to even measure application interference, let

alone manage it. Yet, as more applications migrate to datacenters, it has become critically

important to keep negative application interference under control.

Many current approaches to monitor and combat interference work well on solitary

machines, but fall short in a datacenter environment. Some techniques involve predict-

ing application performance at a high level of detail, which is feasible in controlled settings

with simple benchmarks and architectures, but becomes much more complex in datacenters.

While it is possible to guess application performance at a high level and reduce interference

to some degree, it is impossible to accurately predict performance to the level of precision

required to eliminate it entirely. Other approaches use gladiator–style match-ups between

applications to measure interference and find optimal scheduling solutions. This is not prac-

tical in a datacenter, mainly because of financial restrictions on how data can be measured.

A third approach observes benchmark application performance (sometimes via simulation),

then attempts to apply the observations to live applications. Some of these techniques

rely on statistics that are not measurable in datacenters, while others are generous in their

assumptions that noiseless and controlled offline measurements are later applicable in live,

chaotic settings.

To measure live datacenter application interference, a new methodology is needed. Such

a methodology should ideally be able to capture the interference effects of thousands of

applications, running with real user inputs, on production servers with diverse architectural

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 58

platforms. Furthermore, the methodology should be financially reasonable, not requiring

hundreds or thousands of machines for simulations and not disturbing the performance of

production services.

In this chapter, we use our experience and exclusive access to live datacenter applications

to expose the realities of measuring and analyzing interference in a datacenter. Then, we

develop a methodology to measure live datacenter interference, and test the methodology

on production servers at Google. Specifically:

• We identify eight sources of complexity in interference measurement and analysis

that are either unique to datacenters or frequently not handled by previous works

(Section 4.2).

• We introduce a generally applicable methodology for measuring application interfer-

ence in the restrictive environment of a datacenter (Section 4.3).

• As a proof-of-concept, the methodology is implemented and used in the first large–

scale study of measured application interference in a live datacenter. We collect data

from 1102 unique applications across 1000 Google servers, each running on 12 core,

24 hyper–thread Intel Westmeres. These measurements capture the performance of

production workloads, live schedules, and real user interaction (Section 4.4).

• Given the information that can be measured in live datacenters, we outline two op-

portunities to control negative application interference in datacenters (Section 4.5).

4.2 Complexities of Interference in a Datacenter

Application interference in a datacenter is much more challenging to reason about, mea-

sure, or predict than in a controlled environment or on a solitary machine. It is important

for scheduling experts and datacenter systems specialists to understand what performance

analysts are up against. This section describes eight specific complexities that are unique

to datacenters or largely unaccounted for in past work, in some cases preventing the use of

established methodologies for combating application interference. For example, many past

works run an application on an isolated machine to determine its baseline performance,

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 59

and then run the application with a single application co-runner to measure interference

effects([27, 38, 83, 107, 128, 156, 157, 172, 235, 236, 264, 265, 267]). The pairwise impacts

are then incorporated into scheduling policies or used to fairly allocate resources between

applications. Such techniques rely on well-defined, discrete applications and isolated mea-

surements, neither of which is available in a datacenter. There are thousands of applications

to test, user inputs vary in non-obvious ways (such that they cannot be simulated off-line),

and applications are frequently re-written and updated.

Other approaches estimate the resource usage of applications and attempt to schedule

applications with complementary needs together ([5, 19, 24, 34, 36, 58, 106, 108, 129, 166,

170, 195, 261]). While some general predictions can be made about application performance,

it is challenging to make such predictions precise in the complex environment of a datacenter.

The eight complexities below are common to most datacenters; to show that they are

realistic, we use experiences and data from our measurement study of production servers

at Google described in Section 4.4.

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 60

Figure 4.1: Datacenter machines are filled with applications. Profiling 1000 12-core, 24

hyperthread Google servers running production workloads, we found the average machine had more

than 14 of the 24 hyperthreads in use. These results reveal the extent of multi-way interference,

which is largely un-handled by existing interference management techniques.

4.2.1 Large Chips with High Core Utilizations

When slow page loads translate into lost revenue, the pressure to deliver web content quickly

is high. Datacenters are driving the demand for increasingly high-core-count chips. CMPs

with as many as 100 cores already exist [238], with datacenters today using CMPs with tens

of cores. The 1000 Google machines profiled in Section 4.4 are 12-core machines supporting

up to 24 hyperthreads. These core-crowded chips mean more applications are sharing

resources, such as cache, that they otherwise would not share. Despite this, a survey of

recent work in application interference shows that many researchers validate their solutions

on chips with only two or four cores ([5, 9, 34, 38, 50, 83, 102, 106, 128, 156, 235, 236, 261,

265, 267]).

In the early days of CMPs, resource contention was not the issue it is today: core

counts per chip were low, and datacenters once struggled to use all cores on a chip (see

the “bin-packing” problem discussed in [86]). Because it leads to power savings and better

parallel performance, high core utilization is desirable, and it has been increasing along

with per-chip core counts [125]. Today, core utilization is already high: in profiling the 24-

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 61

hyperthread machines, we found that an average of about 14 hyperthreads were occupied.

Figure 4.1 shows the full distribution of observed hyperthread occupancies.

Figure 4.2: Datacenter servers have diverse application mixes. Google server profiling reveals

that most machines run five or more unique applications at once, and sometimes as many as 20.

Many past works consider only two applications running together at a time, a scenario present only

20% of the time in to this data.

4.2.2 Heterogeneous Application Mixes

Datacenter servers not only support many application threads at once, but frequently also

execute a diverse mix of applications on each machine. This is not surprising considering

the massive number of different applications that run in datacenters today. For example,

our profiling of the Google servers revealed 1102 unique applications. While a couple of

these were system support applications and thus constantly or periodically running on all

machines, the vast majority could be flexibly scheduled among servers in the fleet. Our

measurements also showed that a machine runs at least five applications half of the time,

and sometimes runs as many as 20 (see Figure 4.2). Characterizing interference is much

simpler if only a couple of unique applications are scheduled together, so much prior work

assumes only two applications running on a machine at a time. According to Figure 4.2,

such methodologies would apply only about 20% of the time.

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 62

4.2.3 Fuzzy Application Delineations

Sometimes, even trivial issues become complex in datacenter settings. To measure appli-

cation interference, one needs to define an application. Applications might be defined as

narrowly as on a per process basis, or they can be delineated by user, input, or code seg-

ment. The division of applications is tricky though; define them too narrowly, and there will

be insufficient data to get useful interference information. Define them too coarsely, and

performance variations unrelated to application interference may inadvertently be captured.

There is no clear right choice for how applications should be delineated. In the Section 4.4

study and in Figure 4.2, each unique binary is considered to be an application, which is a

fairly coarse-grained classification.

4.2.4 Varying and Sometimes Unpredictable Inputs

Unlike in controlled environments, applications in a datacenter are added or updated fre-

quently. Many applications accept user inputs and can experience significant performance

swings based on usage, sometimes with predictable periodicity, and sometimes without. It

is intuitive that input could affect how an application interferes or is interfered with (Jiang

and Shen [106] show this formally), but most prior studies use just single–input benchmarks.

4.2.5 Varying Micro-architectural Platforms

Performance changes depend on the micro-architectural platform as well as inputs. In a

large datacenter, it is uncommon for all servers to use the same micro-architecture. As

new chips become available, datacenters will incrementally update their servers, resulting

in an evolving, heterogeneous mix of platforms. Most past work does not consider this, but

interference measurement and mitigation techniques should ideally be micro-architecture

independent.

4.2.6 Unknown Optimal Performance

Many existing interference solutions rely on knowing an application’s optimal performance

without interference. For static input benchmarks, this is as simple as running the appli-

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 63

cation on a dedicated machine. At a datacenter, isolating a production application on a

dedicated machine is a prohibitively expensive way to find baseline performance, especially

given the number of applications to evaluate and the need for frequent re-evaluation as

inputs, architectures, or even the applications themselves change. When we conducted our

measurement study, Google would not allow us to measure the baseline performance of

applications on isolated machines due to the cost.

4.2.7 Limited Measurement Capabilities

Performance analysts at datacenters are restricted in other ways as well. For example, an

extremely limiting restriction that we had to work around in developing our methodology

for the Google study was that we had to keep our profiling overhead as low as possible, and

preferably well under one percent. Google’s rationale, which is likely to be echoed by other

datacenter companies, is that excessive overhead in measuring is not always a worthwhile

investment. The financial losses caused by too much measurement perturbation in the

present may outweigh future performance gains that are discoverable with the additional

measurements.

4.2.8 Corporate Policy and Structure

Other difficulties relate to corporate policy and the often large size of datacenter companies.

For example, performance analysts and scheduling policy makers might work in completely

separate teams. That means performance analysis results must be sufficiently flexible to

be fed into completely independent scheduling tools. A large company might also delay

the deployment of new performance monitoring tools for strategic or accounting reasons.

As a result, new solutions might not be testable or applicable for months. Performance

objectives of an individual application may also compete with system-wide goals. Even if it

were easy to identify and quantify every instance of negative interference, it is not always

clear how each instance should be resolved. For example, in most cases a latency-sensitive

application’s performance is prioritized over less important applications, but performance

must also be balanced with cost-efficiency. Thus, even latency-sensitive applications are

likely to be co-scheduled with other applications to keep utilization up.

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 64

4.3 A Methodology for Measuring Interference in Live Dat-

acenters

Put together, all of the complications outlined in the previous section make for intricate

interference scenarios with restricted means to collect data about interference. Here we

outline a series of techniques that form the first complete methodology for measuring appli-

cation interference in the restrictive environment of a live production datacenter. Figure 4.3

shows an overview of this methodology. First, performance data is measured in small sam-

ples on live production servers using a small number of remote collection machines. Next,

the data is examined to find per-application baseline performance comparators and to iden-

tify interference relationships between applications. These relationships are then made to

be architecture independent so that performance data can be aggregated across all of the

machines monitored. Afterwards, the aggregated performance data and the baseline per-

formance indicators can be used together to analyze system-wide application interference.

4.3.1 Collecting Low-Overhead Performance Metrics

The most accurate way of capturing interference relationships in a datacenter is to measure

them live. Since it is critical not to degrade performance, all measurements taken must have

as little overhead as possible. Past work shows that sampling-based performance monitoring

minimally perturbs applications. For example, the Google-Wide Profiling (GWP) tool [203],

from which we borrow some measurement ideas, profiles live applications with less than

0.01% overhead using sampling-based monitoring. GWP samples performance data using

perf [1], a Linux performance monitoring tool. Perf not only has low overhead, but it also

provides abstractions over hardware capabilities, meaning the same monitoring commands

can be issued on many different hardware platforms in a datacenter. The tool samples a

number of measurable events including software events that interface with the kernel (such

as page faults) and hardware events reported from the processor (such as CPU-cycles and

various types of cache misses).

To further limit overheads, performance information can be reported to a small number

of remote, non-production machines for later analysis. Also, sampling periods and frequen-

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 65

Figure 4.3: A methodology for measuring application interference on live production

servers is described in Section 4.3.

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 66

cies — the number of occurrences of an event per sample, and the average rate of samples

per second, respectively — and collection duration per machine can be tuned so that they

are high enough to record useful information, but not so high that performance monitoring

is overly intrusive.

4.3.2 Statistical Performance Indicators

One challenge of assessing interference relationships in datacenters is that the optimal per-

formance of applications is usually unknown. Since user inputs have a big effect on measured

performance, and because the cost of isolating an application on a machine is high, it is

rarely possible to find out how an application would perform with no application inter-

ference. Performance measurements of an application in the wild are usually clouded by

several co-running applications. So, instead of using optimal performance as a baseline, we

use a statistical performance indicator.

The performance collection technique described above results in sampled performance

metrics. After collection, a statistical estimator that aggregates these fine grained measurements—

e.g., the mean cycles per instruction (CPI) of a large number of samples—can be used as a

comparator for future observed samples. Although some dimensionality is lost in aggrega-

tion, a statistical performance indicator works well for a couple of reasons. First, only one

hardware counter needs to be monitored, so the necessary information can be safely col-

lected without perturbing live applications. Second, the indicator can be compactly stored

and updated for large numbers of samples and applications.

4.3.3 Identifying Sample-Sized Interference Relationships

In a controlled experiment, two applications can be run simultaneously on a machine, with

applications’ performance interactions monitored for the duration of their execution. As

Section 4.2 explained, such co-scheduling cannot be forced in a datacenter. Another compli-

cating factor is that applications run for extremely varying amounts of time. One application

may run for a week, for example, during which time many different sets of other applica-

tions may alternately share the same machine. Thus, it is difficult to attribute the original

application’s performance to any one (or even any one set of) co-running applications. To

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 67

Figure 4.4: Sample sized co-runners. Timelines of two CPUs on the same machine are shown

to the left. Each segment represents a performance sample (e.g., 2 million instructions) from an

application. For example, A1 is the first sample of application A. The table to the right shows the

co-runner samples for each base application sample. Application A1 has two co-runners because

two consecutive samples of application B run for its duration. In this contrived example, sample C1

is especially long to illustrate the uncommon case of a sample having no co-runners.

learn specific interference relationships, live data must be carefully filtered.

Each performance sample includes a time-stamp, which can be used to identify which

samples overlap in runtime, and eventually reveal interference relationships. Specifically,

for a given base sample, we compile a list of the given sample’s co-runners. A co-runner is a

sample that ran for the entire duration of the base sample. We use an algorithm similar to

liveness analysis in compilers to identify co-runners. The input is the starting time of each

base sample, from which we work backwards to find other samples that were “live” for the

duration of the base sample.

Figure 4.4 shows an example of samples from two CPUs and the corresponding co-runner

relationships between those samples. Each segment in the figure is a different sample, and

letter labels are application names so that A1 is the first sample of an application A. Since

by definition, co-running samples must run for the same amount of time or longer than

the base sample, it may not be possible to identify co-runners for long samples. This can

be mitigated by combining successive samples when we are looking for co-runners of a

base sample. In Figure 4.4, sample A1 has two co-runners because two successive samples

of application B run for its duration. Some samples still may not have co-runners (as

illustrated by the long sample C1). When applying this methodology (Section 4.4), we

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 68

found that this is the case for just 0.6% of the samples. This number can be kept low if

the number of samples per context-switch is relatively high; if many samples in a row are

of the same application, it is more likely that co-runner relationships can be identified.

Extrapolating application-level interference relationships from a collection of sample-

sized relationships is straightforward. First, all of the base samples for the base application

are identified. Those samples are then sorted by their identified co-runners. Any base

samples with the same sets of co-runners can be aggregated to determine the interference

relationship between the base application and a set of co-running applications. With enough

samples, this technique becomes schedule-independent. Depending on the schedule, more

samples may be collected that represent a certain interference relationship, but with pro-

longed sampling, all interference relationships that occur can eventually be identified. Thus,

interference relationships can be determined without any prior knowledge of the scheduling

policy. This is extremely useful in a datacenter, because scheduling policies may be very

complex, and may even be unknown to those trying to understand interference.

4.3.4 Interference Classes

Interference depends on the resources that two applications are contending for. Depending

on the topology of the architectural platform, all applications sharing a chip may not have

equal influence on one another. Consider, for example, two applications which share all of

their cache versus two applications that share only interfaces to peripheral devices (like an

I/O hub). Our analysis distinguishes between such types of interference using architecture

independent interference classes. An interference class defines the closest relationship (in

terms of resource sharing) that two applications running on the same chip might have.

The closest interference relationship is between two applications running on different hy-

perthreads of a single core. Such applications contend for everything from execution slots

to cache to memory control and I/O resources. A more distant relationship would be be-

tween applications which share the same last level cache and resources beyond. The loosest

interference class is between two applications which are on the same chip, but which do not

share any resources except their interface to peripheral devices.

Others have used interference classes to estimate the potential amount of interference in

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 69

various assignments of applications to a machine (see contention groups in [90] for example).

We see a few additional reasons that defining interference classes can be beneficial. First,

it allows for data to be aggregated simply across samples on many-core machines — all

shared core co-runners, for example, can be considered equivalent. Next, it allows for the

aggregation of data across machines with different (but similarly symmetric) architectural

platforms. Finally, interference classes help reduce the complexity when considering the

range of possible co-schedules of multiple applications at a time.

4.4 Applying the Measurement Methodology

We now apply the general application interference measurement techniques established in

the previous section to conduct the first large-scale study of interference on production

Google servers running workloads with live user interaction. Unlike past work, this study

does not rely on benchmarks or simulation. The study illustrates the noisiness of production

interference that any datacenter interference analyst must negotiate. It also reveals that

some interference patterns are visible above the noise, leading to exploitable performance

opportunities, which are discussed in Section 4.5.

4.4.1 Collecting Performance Metrics

We used the perf tool and remote collection methodology described in Section 4.3 to col-

lect samples across 1000, 12-core production servers at Google. As described, the basic

methodology allows for a choice between a number of different performance events to mon-

itor. Unfortunately, there is no single perfect hardware-counter that accurately indicates

performance across a variety of applications. With such a large number of applications to

compare, it is nearly impossible to use application-specific metrics (like time per transac-

tion) for this study. Application run time is out because it is not necessarily related to

performance in datacenters (think an ads server that runs continually until stopped for an

update). Some have suggested that last level cache (LLC) miss rates are the best indica-

tors for interference studies [27], while others note that LLC will not accurately monitor

all workloads, especially those that are memory bound [235]. Other work suggests that

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 70

contention for memory bandwidth and buses might be a good indicator [129, 170, 173]. To

capture the effects of cache and memory contention, we use instructions per cycle (IPC) to

indicate performance in this study. Although it has been widely used in past interference

studies (e.g., [24, 61, 156, 166, 167, 195]), there is debate about IPC too. In particular,

Alameldeen and Wood found that architectural enhancements can cause IPC to improve

even as application performance worsens, or vice versa — especially for multi-threaded ap-

plications [2]. To avoid such unexpected discrepancies, we ensured that the profiled servers

were identical in all respects, including chip type, clock speed, RAM, and operating system.

If future studies are conducted across multiple architectural platforms, it may be necessary

to consider metrics other than IPC.

Application IPC was sampled every 2.5 million instructions. After 2.5 million instruc-

tions executed on a production server’s core, the remote profiler recorded the time-stamp,

the location of the core on its machine, and the application executing. In post-processing,

we connect the elapsed time per sample with the machines’ clock speed to get the IPC of

each sample. Over the course of the study, the remote profiler encountered 1102 unique

binaries and collected nearly 350 million samples. See Table 4.1 for a summary of the

collection statistics.

Table 4.1: Profiling and Collection Statistics

Performance Sample Size 2.5 × 106 instructions

Monitored Indicator Instructions per cycle (IPC)

Number of Machines* 1000

*Machines identical in all respects (e.g., clock speed, RAM, O/S)

Threads / Core 2

Cores / Socket 6

Sockets / Machine 2

Threads / Machine 24

Unique Binaries Encountered 1102

Samples Collected (all 1102 applications) 3.45 × 108

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 71

Figure 4.5: Median IPC is a good performance indicator for the Google data collected.

Each graph shows the performance variations of the specified application when scheduled with eight

of their most common co-runners. The overall median IPCs for each base application correspond

well to their performance curves.

4.4.2 Statistical Performance Indicators

From the raw samples we calculated a statistical performance indicator to estimate a base-

line performance for each application. Because the collected IPCs did not form a normal

distribution, we use medians rather than mean as an indicator. For each application and for

each sample, we calculated and recorded the median IPC. Note that this aggregated metric

is scheduling dependent, and we did not examine the schedule in our calculations. There are

two reasons for this. First, provided our samples are representative of the system as a whole,

a scheduling dependent performance indicator tells us what the normal performance of an

application is in the datacenter overall. We believe the samples were representative, as our

collections spanned 1000 international machines and a period of twelve hours. Second, it

did not make sense for us to try to account for the scheduling system, because the policies

in place at Google are not only highly complex, but also highly secretive. If scheduling

policies change in the future, the methodology does not need to be revised. To evaluate

the choice of medians, medians were compared to the performance curves of the data col-

lected. Figure 4.5 shows the distributions of performance samples for four common Google

applications (streetview, bigtable, video transcoder, and scientific). The y-axes

on the graph show the percentage of samples that range from the minimum to maximum

IPC of each application on the x-axes. The graphs reveal that medians are a representative

aggregate indicator. All absolute and relative IPC values have been anonymized at Google’s

request.

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 72

Shared Core Opposite SocketShared Socket

24 Hyperthreads

12 Cores

12 MB L3

QPI and IOH

Identical
chip

in second
socket

Figure 4.6: Westmere Interference Classes. The profiled Intel Westmeres are dual-socket ma-

chines, supporting 12 hyperthreads per socket. Interference relationships are partitioned into three

classes as depicted here: shared core, shared socket, and opposite socket.

4.4.3 Identifying Sample-Sized Interference Relationships

Returning to the raw, unaggregrated performance samples, the next step was to find co-

runners among application samples. As explained in Section 4.3.3, by definition co-running

samples must be longer running than or equal length to the base application sample. Be-

cause of this, we were concerned that the samples dropped due to lack of co-runner might

be biased towards the slower samples. However, the effects were not significant in the data

collected. Across the most frequently occurring eight applications only 0.6% of the samples

were dropped, with the peak being 3.47% for search. The impact on median IPC was

negligible; dropping samples reduced it by just 0.23% on average.

4.4.4 Defining Interference Classes

The machines used for collection in this study all have the same chip, so only one set of

interference classes needs to be identified. The chips are Intel Westmeres, which have two

hyperthreads per core and six cores sharing an L3 cache for a total of 12 hyperthreads

per socket as pictured in Figure 4.6. With two sockets connected by an Intel Quick Path

Interconnect (QPI) and to an I/O hub (IOH), each Westmere supports a total of 24 hyper-

threads. Given this topology, there are three discernible interference classes, also depicted

in Figure 4.6. The closest is between two applications on hyperthreads which share a core

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 73

(shared core); then between two application threads on different cores but sharing a socket

and thus an L3 cache (shared socket); and finally between two threads on the same machine

but on different sockets (opposite sockets) which share only the QPI and IOH.

For each of the sample co-runners previously identified, we looked at the relative core

locations of the applications. Using these core locations, we assigned each pair of co-runners

the appropriate interference class label. Between eight of the most commonly running

applications we encountered, the average number of shared core samples ranged from 2000

to 45 million, with about 1 million samples on average. Between the same applications, the

number of shared socket samples ranged from 12000 to 400 million per application and 9.5

million on average. The opposite socket relationships ranged from to 14000 to 500 million

samples with 11 million on average.

4.4.5 Analyzing Interference

A primary question in past work is how does a base application’s performance change with

a particular co-runner? This is a very challenging question to answer in a datacenter. One

approach is to examine the performance effects of one application on another by aggregating

all of the performance metrics from the sample-sized relationships of a particular base

application and a particular co-running application. However, up to 22 other hyperthreads

may be occupied with various unrelated applications during each of the samples, so this

must be taken into account. It was rare to find only two applications running together on a

machine, which is not surprising considering our earlier observation that Google maintains

a high thread occupation rate (Figure 4.1) and runs diverse applications together on a single

machine (Figure 4.2). The shared core interference relationship is especially important to

understand as it is likely the strongest. Finding two applications running in isolation on the

same core with the remaining threads empty was an extremely rare occurrence; probably

due to intentional scheduling decisions to distribute resources.

Regardless of the reasons, it is clear that noiseless data is hard to come by in a datacenter.

Thus, pairwise comparisons can never fully capture all the causes of interference. Still, we

wanted to attempt to see if shared core influences were strong enough to be apparent over the

noise of applications scheduled on the rest of the machine. Though necessarily incomplete,

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 74

Figure 4.7: Streetview’s performance variations across co–runners. Bars represent

streetview’s normalized median performance when co–located with eight common co-runner ap-

plications. Dashed horizontal lines show overall variance of all measured streetview samples.

if pairwise comparisons can yield any information, they are attractive for two reasons. First,

reducing the comparison space makes the resulting information easier to collect, understand,

and analyze. Also, some schedulers — including Google’s — are already prepared to accept

pairwise scheduling information but not more complex inputs.

To find shared-core influences, we aggregated the previously identified pairwise relation-

ships of eight commonly running applications, filtering the samples to use only those that

were labelled as shared core. To reduce random performance variations, we required that

a minimum of 1000 samples be present for each aggregated metric to be significant; all 64

cross-pairings satisfied this minimum.

Figure 4.7 shows streetview as it shares a core with eight other applications. Other

applications exhibit similar performance effects in their shared core co-runner graphs. In

Figure 4.7, bars along the x-axis show the shared core co-runner of streetview, and the y-

axis gives the normalized median IPC across each of the aggregated streetview and shared

core co-runner samples. The dotted horizontal lines show the average variance across all

of the measured (co-runner independent) streetview samples. We note that while it is

difficult to tell an exact ordering of streetview’s best to worst co-runners given the large

variance of the samples, it is clear that a few shared core co-runners interfere beyond the

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 75

noise.

We collected data on shared socket and opposite socket pairwise interference using the

same technique as before. The additional data is not included here because it does not add

much insight. In part, this is because the pairwise influence of sharing a socket or machine

can be weaker than when sharing a core. Consider, for example, a co-runner sharing a

socket with a base application. The base application has one shared core co-runner and ten

shared socket co-runners on a Westmere (recall Figure 4.6). So, if we try to examine the

effects of a single shared socket co-runner on the base application, we are also capturing

the effects of at least ten other co-runners sharing as many or more resources with the base

application. To fully understand shared socket and shared machine influences, it would be

useful to examine more than just pairwise interference, and to consider larger groups of

co-running applications.

4.5 Performance Opportunities

Given a total ordering of interference relationships, some past works are able to find opti-

mal schedules and sometimes nearly eliminate negative interference. An important goal of

this work was to show that such solutions cannot be immediately successful when applied

to datacenters, primarily because the precision required to determine a total ordering of

relationships is not available. The measurement techniques in Section 4.3 outline a path

towards better understanding application interference in datacenters, where the measurable

information is necessarily more limited. Although it is disappointing that many insightful

techniques cannot be immediately applied in datacenters, the good news is that in a dat-

acenter even small reductions in application interference can be valuable. In this section,

we outline two techniques that are immediately applicable in a datacenter once the data

outlined earlier in this chapter has been collected.

4.5.1 Restricting Beyond Noisy Interferers

With many applications running on live machines, it is difficult to observe isolated (noise-

free) interactions. Moreover, measurement restrictions make the discovery of a full ordering

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 76

of co-runner preferences difficult. Despite the noise, the data still allow us to recognize that

some applications interfere. We define beyond noisy interferers (BNIs) as applications that

can be clearly seen to hamper another application’s performance despite the noisy data. To

identify BNIs, we find the average variance from the mean performance of a base application

that incorporates all possible co-schedules. This metric indicates the average expected

performance fluctuation of an application across diverse scheduling scenarios. Next, the

measured samples of a particular co-scheduling relationship can be compared to the overall

variance. If a co-schedule affects an application beyond its normal variance, it is classified

as a BNI.

We applied this procedure to the Google data to see if any shared-core co-runners

could be classified as BNIs. Figure 4.8 shows the performance of eight common Google

applications when they were observed to be sharing a core with one of the other eight

applications. Boxes in the matrix show the difference from the average variance (across all

1102 applications encountered in the study) of each base application (on the y-axis) for each

co-runner (on the x-axis). A white box indicates that the shared-core co-runner positively

interferes with the base application beyond the average variance, while a black box indicates

negative interference beyond the average variance. Several negative BNIs (6 of 64 possible,

or nearly 10%) emerge despite the fact that most of the observed data includes noise from

other applications interfering outside of the shared core.

Such observed BNIs do not yield a complete ordering of application co-schedule prefer-

ences, and thus do not allow allow the compilation of an optimal schedule. Negative BNIs

can, however, indicate specific applications that should not run together. A simple schedul-

ing policy change to restrict negative BNIs from running alongside the base application

could result in significant performance gains. Similarly, positive BNIs might be purposely

scheduled with a base application to improve its average performance.

In some cases, even eliminating one or two bad co-runners could result in significant

performance improvements for an application. In this data for example, the bigtable

application is a negative BNI for streetview. If we eliminate all instances of bigtable

running with streetview and assume that streetview will then perform at its median,

then streetview’s overall performance will have improved by about 1.3%. If we also ex-

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 77

Figure 4.8: Beyond noisy interferers in the Google data. Shared core co-runner applications

along the x-axis affect the performance of base applications along the y-axis. White boxes show

co-runners that positively interfere beyond the average variance with base applications, while black

boxes show co-runners that negatively interfere beyond the average variance.

clude search from running with streetview and make the same assumption, streetview’s

performance could jump as much as 2.2%. Though these effects may seem small, when

multiplied across weeks or months of application execution on thousands of servers, such

improvements could result in sizable monetary savings.

4.5.2 Isolating Sensitive Applications and Exiling Antagonists

It is interesting to know how sensitive an application is to performance changes. Several

previous studies have looked at application sensitivities in the context of resource contention

([108, 129, 154, 155, 235]), some of them using datacenter workload benchmarks. In these

studies, sensitivity is defined in terms of an application’s optimal performance. As explained

in Section 4.2, it is difficult to ascertain a datacenter application’s optimal performance, but

we can extend the earlier work to comply with the available data. Specifically, the variance

data used to determine BNI application relationships in Figure 4.8 can also be used to

determine an application’s overall sensitivity. Base applications with large performance

variations across co-runners can be identified as sensitive to performance changes. For

example, in Figure 4.8 the scientific and streetview applications have shared core co-

runners that cause their performance to swing both above and below one average variance.

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 78

If the performance of these two applications (or any sensitive application) is important to

the datacenter, systems managers can decide to isolate the applications on their own core,

or even their own machine.

Antagonistic applications can be identified in a similar manner. A co-running application

is antagonistic if it frequently causes base applications to exhibit negative performance

swings beyond their average variances. In the figure, bigtable is a negative BNI for three

applications, so it can be classified as antagonistic. Again, depending on the performance

goals of the datacenter, it might make sense to exile such antagonistic applications to

their own core or machine so that they do not negatively interfere with other applications’

performance.

4.6 Related Work

Several papers and textbook chapters highlight challenges associated with CMPs in data-

centers. Ranganathan and Jouppi discuss challenges related to general trends in changing

infrastructures at large datacenters [201]. Kas writes about problems that must be solved as

datacenters adopt CMPs, but does not specifically address the difficulties involved in mea-

suring application interference [125]. One relevant description of the challenges of resource

interference between applications can be found in Illikkal et al.’s work which discusses po-

tential performance problems due to shared resource interference but does not detail the

challenges of measuring interference [93].

While this work is the first to conduct a datacenter scale application interference study

on live production workloads, a number of other researchers have conducted application

interference studies geared towards datacenters. Rather than measuring live applications

with user interaction, the following studies use benchmarks, simulations, and offline anal-

ysis of server workloads. While a benchmark runs, Mars et al. use performance counters

to detect cache miss changes and identify contention so that schedules can be adaptively

updated [157]. Another paper by Mars et al. measures changes in instruction rate to de-

tect cross-core interference and adapt schedules accordingly [156]. Tang et al. try different

thread-to-core mappings of benchmarks to methodically find the best co-schedules [236].

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 79

Another large scale study models resource interference of server consolidation workloads,

finding core and cache contention [5]. This methodology requires estimates of cache usage

and considers only two jobs co-scheduled at a time. Bilgir et al. simulate Facebook work-

loads to look for energy and performance benefits in assigning the correct number of cores

and mapping applications effectively across CMPs [23]. The works by Carter et al. [33]

and Levesque et al. [143] evaluate whether increasing core counts on Cray macines will

improve scientific applications’ performance by esimating their memory bandwidth con-

tention. Finally, Hood et al. [90] and Jin et al. [110] break down expected contention by

class for different arhcitectural platforms using microbenchmarks. They then estimate how

real applications will perform on different architectural configurations.

A number of other works have measured the use of shared resources on single machines.

Moseley measured resource sharing between threads in simultaneous multithreading (SMT)

processors using hardware performance monitoring [167]. Snavely and Tullsen conduct an

impressively thorough study of application co-scheduling on SMT architectures [224]. Like

us, they use sample-based performance monitoring, but their work uses simulation and

benchmarks rather than live workloads and relies on testing a significant number of per-

mutations of all jobs co-scheduled together. Azimi et al. also use hardware sampling of

benchmarks to study how threads share resources so that they can optimize cache locality

and determine how caches should be partitioned on SMT machines [9]. Zhang et al. per-

form an extensive examination of cache contention between applications on varying CMP

platforms [264], while Zhao et al. took a more detailed approach, monitoring not just cache

sharing but occupancy and interference as well [267].

There is no dearth of related previous research proposing operating systems or hardware

solutions to mitigate application interference. Unfortunately, many of the proposed ideas

cannot accommodate the complexities outlined in Section 4.2. It is difficult to give credit

to everyone who has contributed to such a well studied area. We have already discussed a

number of works in this area that use measured performance monitoring as input; another

relevant body of work estimates applications’ resource usage to improve scheduling ([19, 34,

36, 58, 107, 108, 129, 133, 170, 195]). There is also a series of work that adjusts access to

computing resources like CPU processing speed and cache partitioning size to make resource

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 80

sharing more fair ([54, 61, 83, 93, 102, 128, 159, 166, 172, 261, 265]).

4.7 Limitations and Future Work

Using the data collected in the Google study, it is possible to identify BNIs and to find

sensitive and antagonistic applications that can be isolated or exiled, respectively. With

extensions to the methodology outlined here, there are further opportunities to minimize

interference and improve performance, that can help reduce some of the possible limitations

of this work.

Performance Indicators. It is possible that the performance indicators used in finding

beyond noisy interferers may not be correctly pinpointing poor application co-location, and

instead may simply be application phase changes. A workaround is to collect data on mul-

tiple events across separate trials to compare for a fuller picture of application performance

and interference. Correlating IPC with metrics such as LLC misses and I/O contention,

could lead to more insight than examining than any one metric on its own. The challenge of

correlating multiple performance events is that application co-schedules have to be matched

across trials. When we analyzed the Google data, we were able to greatly reduce the aggre-

gation complexity by combining sample data across same shared-core co-runners without

filtering based on the rest of the applications co-scheduled on the machine. This method

is a starting point for correlating multiple events, but it would be more precise to match

the full machine co-schedules instead of just matching shared-core co-runners. Additionally,

it is possible that our use of medians was not a perfect summary of the application data

collected. In the future, it might be helpful to experiment with other statistical summaries,

such as means.

Multi-dimensional Scheduling Constraints. This initial study focuses on pairwise

interference effects, for simplicity and because Google’s scheduler was already ready to

accept pairwise scheduling inputs. There may also be significant trios or even larger sets of

application co-schedules with relevant interference patterns. For example, some application

A might not perform poorly with either B or C as a co-runner, but may perform poorly

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 81

when B and C are both co-runners. One could identify triplet (or larger) BNIs using the

same techniques as for pairwise BNIs. Once identified, larger groups of BNIs could be

employed in all the same ways as pairwise BNIs. As discussed in Section 4.4.5, this would

be particularly useful when examining the effects of interference beyond shared core.

More Fine-grained Application Definitions. It is well known that some applications

exhibit distinct phases with different performance characteristics. Such phases might ob-

fuscate the process of identifying performance effects. In our Google study, we were able to

observe fairly stable performance (Figure 4.5) by limiting our measurement study to twelve

hours because most of the applications had diurnal phases based on the peak and off-peak

usage of users. For important applications, it may be worth the additional complexity to

identify distinct phases more precisely. Then, each phase of the applications could be con-

sidered as separate “applications” when analyzing co-runner relationships. Similarly, if a

given application’s performance is known to vary widely based on input, the application

could be broken apart according to its usage pattern.

4.8 Discussion

Researchers need to develop scalable application interference solutions, and this work made

a few contributions towards that goal. First, it identified the challenges of measuring and

analyzing application interference at datacenter scale, exposing eight specific challenges

that are unique to datacenters or that remain largely un-addressed in past research. These

factors combine to make interference effects in a datacenter exceedingly difficult to predict,

measure, and correct. To assist in the efforts of understanding interference between data-

center applications, we suggested a collection of measurement techniques to work around

the complexities. The new techniques are generically applicable for any datacenter, but

as a proof-of-concept, we implemented them to conduct an application interference study

on production Google servers. The study, which is the first large-scale measurement study

of application interference, revealed application interference “in the wild” on 1000 12-core

machines running live commercial datacenter workloads. Using just data that is feasible to

collect in the restrictive environment of a datacenter, we outlined several opportunities to

CHAPTER 4. DATACENTER-WIDE APPLICATION INTERFERENCE 82

improve performance and improve overall system efficiency by reducing negative application

interference.

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 83

Chapter 5

Fast Computational GPGPU

Design

In this chapter, we take a proactive approach to improving efficiency by addressing it at

the time of hardware design.1 We target a type of hardware for which it was previously

very difficult to measure the behavior of software on potential future designs. Specifically,

this work facilitates the process of designing graphics processing units that can efficiently

run computational applications, i.e., general purpose graphics processing units (GPGPUs).

Today, graphics processing units are increasingly used to execute computational workloads,

a task for which they were not originally designed. To design new GPUs that can efficiently

meet the unique needs of these workloads, architects need the help of performance simu-

lation. Unfortunately, computational GPU programs are so large that simulating them in

detail in their entirety is prohibitively slow.

This chapter addresses the need to understand very large computational GPU programs

in three ways. First, it introduces a fast tracing tool that uses binary instrumentation for

in-depth analyses of native executions on existing architectures. Second, it characterizes

25 commercial and benchmark OpenCL applications, which average 308 billion GPU in-

structions apiece and are by far the largest benchmarks that have been natively profiled at

this level of detail. Third, it accelerates simulation of future-hardware by pinpointing small

1This work was previously introduced in a conference publication [113].

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 84

subsets of OpenCL applications that can be simulated as representative surrogates in lieu

of full-length programs. The fast selection method presented here requires no simulation

itself and allows the user to navigate the accuracy/simulation speed tradeoff space, from

extremely accurate with reasonable speedups (35X increase in simulation speed for 0.3%

error) to reasonably accurate with extreme speedups (223X simulation speedup for 3.0%

error).

5.1 Introduction

“Graphics processing unit” is now an inadequate term to describe a piece of hardware

with a domain extending well beyond graphics applications. As programmers realize the

unique advantages of GPUs (e.g., wide availability on commodity machines, extremely high

throughput on parallel tasks, fast memory accesses), many non-graphics applications are

being ported from their original CPU implementations to GPU versions. Such compu-

tational GPU applications are now commonplace in a range of fields including scientific

computing [194], computer vision [64], finance [225], and data mining [150].

GPU architects must deliver improved hardware designs to meet the computational

needs of these varied applications. A major barrier in achieving this is the massive overheads

associated with detailed micro-architectural performance simulations. Simulators execute

a program up to 2 million times slower than native execution [42, 141], depending on

the simulator and the level of detail in the information recorded. These slowdowns are

further compounded when hardware designers need to repeatedly re-run applications to

test thousands of design space choices.

These prohibitively large simulation times force architects to focus their evaluation on

graphics kernels (potentially neglecting important computational workloads) or to evaluate

computational workloads using only kernels rather than full applications. Thus, there is a

great need in the computer architecture community for detailed analyses of commercially-

sized computational GPU applications without the overheads of full-program simulation.

This work addresses that need in three ways.

• First, it provides a fast profiling tool that measures performance statistics

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 85

as applications run natively on existing hardware (Section 5.3). This new,

industrial-grade tool, called GT-Pin, can collect a variety of instruction-level data to

inform hardware design. Profiling with GT-Pin typically takes 2-10 times as long as

normal execution, does not perturb program execution, and requires no source code

modifications or recompilation.

• Second, we use GT-Pin to conduct a characterization study of very large OpenCL

programs, averaging 308 billion dynamic GPU instructions apiece (Sec-

tion 5.4). The commercial and benchmark applications studied are substantially

larger than any OpenCL programs that have been characterized publicly. The statis-

tics reported include dynamic instruction counts, breakdowns of memory, control,

computation, and logic instructions, kernel and basic block execution counts, SIMD

lengths, and memory access information. This characterization reveals a breadth of

computational GPU workloads that indicates an even greater need for comprehensive

simulation when evaluating future GPU designs.

• Finally, we demonstrate how to select small, representative subsets of OpenCL

programs to accelerate the simulation of future GPU architectures (Sec-

tion 5.5). These small subsets can be simulated in lieu of full programs in a fraction

of the time, while still providing an accurate evaluation of the applications’ perfor-

mance on future hardware. The selection process uses GT-Pin profiling and a little

post-processing, but itself requires no simulation. This is a key contrast to prior work

in CPU subset selection [32, 216] that allows us to make selections even for applica-

tions that are prohibitively expensive to simulate in full a single time. Developing this

methodology required several innovations including how best to break GPU execu-

tion into intervals, how best to characterize those intervals, and how to rapidly find

the best combination of interval and characterization for any given application. The

resulting methodology offers an exploitable tradeoff between simulation accuracy and

speed, for example speeding simulation by 35X for 0.3% error or speeding simulation

by 223X for 3% error.

These new means of exploring large computational applications enable computer archi-

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 86

Application

OpenCL
Runtime

GPU
Driver

JIT

Machine
Specific
Binary GPU

API Calls

Kernel Calls

Original Program Execution Program Execution with GT-Pin

GT-Pin
Binary

Rewriter
Instrumented
Binary

Application

OpenCL
Runtime

GPU
Driver

JIT

Machine
Specific
Binary

GPU

API Calls

Kernel calls

GT-Pin Implementation Additions

OpenCL
Runtime

GPU
Driver

GT-Pin
Binary

Rewriter

CPU Post-
processing

Set up trace buffer,
initialize GT-Pin, notify
driver to use GT-Pin

Call GT-Pin Binary
Rewriter

Insert profiling
instructions into
program binary.

Collect profiling data
from trace buffer and
produce report for user

Figure 5.1: The GT-Pin Implementation makes multiple changes to the OpenCL runtime and

the GPU driver, and adds a new GT-Pin binary re-writer and a CPU post-processor. From a user

perspective, however, the tool is easy to use and non-intrusive, with low overheads, no perturbation,

and no source code modifications or recompilation required.

tects to rethink and optimize GPU designs for the burgeoning diversity of workloads now

being targeted to GPUs.

5.2 Background

This section provides readers with a brief history of simulation acceleration, and discusses

the relevant terminology and concepts of OpenCL that are needed to understand this work.

5.2.1 Simulation Acceleration

Microarchitectural performance simulation is an important tool for the early (pre-fabrication)

design of computer architectures. Unfortunately, microarchitectural simulation can be pro-

hibitively slow, particularly when one wishes to study the performance of a range of ap-

plications on a large design–space’s worth of architectures. As a result, one of the biggest

research challenges related to simulation in recent years has been how to make it faster.

This section provides a brief history of the work in this area of simulation acceleration; a

more thorough discussion can be found in Eeckhout’s Synthesis Lecture on computer ar-

chitecture performance evaluation [55], and a comparison of the background work to this

present work will come later in Section 5.6.

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 87

A variety of methods have been explored to accelerate simulation. One method is

to collect only a carefully selected set of program and architecture performance metrics

rather than all kinds of metrics and then synthetically generate a complete simulation trace

(e.g., [18, 31]). Another method is to reduce the set of applications to simulate, choosing

ahead of time those that will exercise the architecture in the most diverse ways (e.g., [112,

179]). Parallelizing the simulation process in different ways is another effective means

of acceleration (e.g., [139, 175]). A potentially complementary method of accelerating

simulation is called sampled simulation. Sampled simulation involves simulating subsets of

applications to estimate performance in lieu of simulating full programs. Subsets may be

selected randomly, as Laha et al. did for evaluating cache performance [135], or as Conte et

al. did for full processor performance [43]. Subsets may also be selected periodically, that is,

at fixed intervals within the full program’s execution. Two works that use periodic sampling

are SMARTS [259] and Flexus [256]. An advantage of periodic sampling over random

sampling is that a confidence interval can be constructed via the central limit theorem

to account for how accurate a selection may be; a disadvantage is that periodic sampling

may inadvertently coincide with periodic behavior in the program (for example, with the

subsets always occurring at low performance periods), leading to a skewed estimate of whole

program execution. To prevent skewed subset selection, a new methodology for sampled

simulation was introduced, called representative sampling. Representative sampling chooses

subsets based on statistical performance indicators, aiming to select a those that combine

to replicate full program performance. The first representative sampling work by Skadron

et al. [221] chooses only one subset to represent the whole program, but later works selected

multiple program subsets (e.g, [134, 186, 216]).

Perhaps the most famous of the representative sampling methodologies is SimPoint, by

Sherwood et al. [216]. The work introduces a procedure that has now become an indus-

try standard to select simulation subsets. The procedure works as follows: (1) Profile the

program. (2) Divide the program trace into intervals that serve the dual purpose of en-

capsulating periodic program behavior and marking the starting and stopping points of the

simulation subsets (that will be selected in future steps). (3) For each interval, construct a

unique feature vector that reflects the interval’s architectural features. The feature vector’s

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 88

entries count the dynamic occurrences of select runtime events such as the execution of a

particular basic block or procedure. (4) Group similar feature vectors into a small number

of clusters (e.g., 10) using machine learning. (5) Choose a representative feature vector

per cluster, typically the centroid. Additionally, compute a representation ratio per cluster,

by dividing the number of total dynamic instructions across intervals in the cluster by the

number of total dynamic instructions in the whole program. This metric gauges the impact

a given cluster has on overall program performance. (6) The small number of intervals to

which the chosen feature vectors belong make up the selected simulation subset. Simulate

this subset of program intervals in detail, while ignoring the remainder of the program

by fast-forwarding or check pointing. (7) Extrapolate the full-program performance from

the results of simulating the representative subset. To do this, simply take the average

of each interval’s simulated performance, weighted by the representation ratio. Later, in

Section 5.5, we adapt this standard procedure for selecting representative subsets originally

designed to accelerate CPU simulation to something more suitable for GPUs.

5.2.2 OpenCL

The GT-Pin tool, the benchmark analyses, and the simulation speedup methodology are

all based on OpenCL programs and programming concepts. Unlike other GPU languages,

such as CUDA which is specific to NVIDIA, OpenCL programs can run on any hetero-

geneous architecture from any vendor. This chapter uses a number of OpenCL keywords

which we briefly introduce here; a more comprehensive discussion of OpenCL can be found

elsewhere [169].

OpenCL programs consist of two parts. A host, which uses API calls to manage the

program’s execution, and kernels, which are procedures that define computational work for

OpenCL devices. OpenCL devices can be any mix of processing units, for example multiple

GPUs and CPUs, but in this chapter the device is always a GPU. To manage OpenCL

kernels, the host must determine the available devices, set up device-specific memory, create

kernels on the host, pass arguments to and run kernels on target devices, and organize any

results returned by the kernels. Each of these tasks is completed via built-in OpenCL API

calls. For example, one named clSetKernelArg, as its name implies, sets an argument to

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 89

an upcoming kernel.

The API call clEnqueueNDKernelRange is particularly important in this work. This

call dispatches a kernel to a device, signaling that GPU computation is commencing. Also

relevant to this project are a set of API calls that manage synchronization. Synchroniza-

tion calls constrain the order of other API calls, enforcing the desired sequences of events.

Until a synchronization call forces coordination, for example to make a memory transfer,

kernels execute on the devices asynchronously to the host program. OpenCL has seven syn-

chronization calls: clFinish, clEnqueueCopyImageToBuffer, clWaitForEvents, clFlush,

clEnqueueReadImage, clEnqueueCopyBuffer, and clEnqueueReadBuffer. Because these

calls are the only points where host and device work are guaranteed to align, they consti-

tute a natural and necessary point to start and stop device (in our case, GPU) simulation.

Thus, in Section 5.5.2, we will use synchronization calls as one potential means to divide a

program’s execution into intervals.

Another OpenCL concept relevant to this work is the notion of global work size. Supplied

as an argument to clEnqueueNDKernelRange calls, the global work size defines the total

amount of work to be done on a given device, so that larger global work sizes take more

execution time.

5.3 Tracing GPU Programs with GT-Pin

GT-Pin serves a community need for a fast, accurate, flexible, and detailed tool to profile

commercial-scale native OpenCL GPU applications. This section describes how GT-Pin

collects profiles within OpenCL execution environment and discusses the kinds of profiling

data it can collect.

5.3.1 Instrumenting within the OpenCL Runtime

GT-Pin, which was inspired by the CPU tool, Pin [148], collects profiling data via dynamic

binary instrumentation. Instrumentation, which involves injecting profiling instructions

into program code, allows for much faster profiling than simulation. GT-Pin uses binary

instrumentation, which while harder to implement than static compiler instrumentation

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 90

(because it necessitates GPU driver modifications), has the additional benefit of not requir-

ing program recompilation. At a high level, GT-Pin’s instrumentation injects instructions

into binaries’ assembly code as the they are just-in-time (JIT) compiled. These insertions

later output profiling results as the program executes natively on the GPU.

To describe how GT-Pin inserts profiling code into OpenCL programs, we first describe

how a normal OpenCL execution works. The left side of Figure 5.1 illustrates an unin-

strumented OpenCL application’s execution. First, the application communicates with the

OpenCL Runtime by making API calls. Then, when clEnqueueNDKernelRange calls are

made, the OpenCL Runtime passes the associated kernel source and arguments to the

appropriate device driver, in our case a GPU driver. The GPU driver JIT-compiles the ker-

nel source, typically when a clBuildProgram() API call is issued. Finally, the compiled,

machine-specific binary code is passed along to the GPU for execution.

GT-Pin modifies this process at two points, as shown in the middle and right sides of

Figure 5.1. First, when the OpenCL runtime is initially called upon by the application,

GT-Pin intercepts the call and inserts a GT-Pin initialization routine, which notifies the

GPU driver that GT-Pin has been invoked. At this time, a memory space called a trace

buffer is allocated using malloc. The trace buffer is accessible by both the CPU and GPU

and will be used to hold profiling data.

The GPU driver is the second point where GT-Pin must make modifications. After the

driver compiles the kernel source code into machine-specific assembly, rather than allowing

the driver to send the binary directly to the GPU for execution, the binary is diverted

to a GT-Pin binary re-writer. The binary re-writer inserts profiling instructions into the

program’s assembly code. The injected instrumentation differs depending on the profiling

data GT-Pin’s users wish to collect. For example, to track dynamic basic block counts, GT-

Pin adds instructions to initialize a basic block counter at the program’s start, to update

a counter at each block, and to write the final counter value to the trace buffer at the

program’s end. Once the re-writer finishes inserting profiling instructions, the GPU driver

passes the instrumented binary to the GPU. Then, as the program executes, profiling data

is sent to the trace buffer.

Finally, when GPU execution concludes, GT-Pin has the CPU read the profiling results

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 91

from the trace buffer to post-process the data and generate a user report.

5.3.2 Types of information that GT-Pin can collect

GT-Pin can observe everything that is happening at the level of both the kernel source and

machine-specific binary, so it is able to capture many kinds of profiling data, including:

• static and dynamic instruction execution counts for the source and assembly;

• static and dynamic distributions of opcodes;

• static and dynamic SIMD width counts;

• static and dynamic basic block counts;

• thread cycles in kernel and non-inlined functions;

• latency for memory instructions per thread;

• cache simulation through the use of memory traces;

• memory bytes read and written per instruction; and

• utilization rates of per execution unit SIMD channels.

To reduce overheads, users may collect only the desired subset of these statistics by writing

custom profiling tools. For example, for the simulation subset selection in Section 5.5, we

wrote a custom GT-Pin tool that collected only instruction counts and opcodes, basic block

counts, and memory bytes read and written per instruction.

5.3.3 Overheads

Like Pin, GT-Pin guarantees that the side-effects of inserting instructions do not perturb

program execution. During instrumentation, GT-Pin minimizes the number of inserted

instructions. For example, when counting dynamic instructions, GT-Pin inserts counter

increments only once per basic block rather than per instruction. To profile timing events

(e.g., thread cycles spent in kernels), GT-Pin inserts a simple timer call, which reads the

event timer register. For this type of tracking, we observed a less than 10 cycle per timer

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 92

read overhead. From a user perspective, GT-Pin profiling runs take only a little longer than

uninstrumented executions. While collecting data for the benchmark characterization study

of Section 5.4, we observed 2-10X overheads. These overheads are very small when compared

to the up to 2,000,000X greater slowdowns required to collect the same information through

simulation.

5.4 A Study of Large OpenCL Applications

This section presents performance data relevant to GPU design for 25 commercial and

benchmark applications shown in Table 5.1. All of the programs are written in OpenCL,

and come from three sources. First, there are 15 applications from the CompuBench CL

1.2 desktop and mobile suites [132]. These applications include domains such as computer

vision, physics, image processing, throughput, and graphics. Next, there are three applica-

tions from the SiSoftware Sandra 2014 suite [220], including two cryptography benchmarks

and a GPU performance benchmark. Finally, there are seven video rendering benchmarks

from the Sony Vegas Pro Test Project [228]. Sony Vegas Pro 2013 is a video editing

tool [227], and the seven benchmarks are pieces of a press release project, each demonstrat-

ing different kinds of video attributes such as crossfades and Gaussian blurs.

5.4.1 Experimental system

All applications and benchmarks were run on a machine with an Intel Core i7-3770 CPU and

an Intel HD 4000 GPU, both of the “Ivy Bridge” generation. As depicted in Figure 5.2,

the HD 4000 has 16 execution units (EUs) organized into two subslices. The EUs are

Slice	
 =	
 16	
 EUs	
 (Two	
 subslices)	

CPU	

Core	

LLC	
 $	

Slice	

CPU	

Core	

LLC	
 $	

Slice	

System	

Agent	

Display	

Controller	

Memory	

Controller	

SoC	
 Ring	
 	

Interconnect	

EU	

EU	

EU	

EU	

EU	

EU	

EU	

EU	

EU	

EU	

EU	

EU	

EU	

EU	

EU	

EU	

Figure 5.2: The Processor Architecture of our test system, which has an Intel Core i7-3770 CPU

and HD 4000 GPU.

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 93

Source Applications

CompuBench CL 1.2 Desktop [132] Graphics T-Rex, Physics Ocean Surf, Physics Part Sim 64K, Throughput

Bitcoin, Vision Facedetect, Vision Tv-l1-of

CompuBench CL 1.2 Mobile [132] Graphics Provence, Gaussian Buffer, Gaussian Image, Histogram Buffer,

Histogram Image, Physics Part Sim 32K, Throughput Ao, Throughput

Juliaset, Vision Face Detect

SiSoftware Sandra 2014 [220] Crypto Aes128, Crypto Aes256, Processor GPU

Sony Vegas Pro 2013 [227] Press Project Region 1, Region 2, Region 3, Region 4, Region 5, Region

6, Region 7

Table 5.1: Benchmarks used in this study.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

AVERAGE

cb-graphics-t-rex

cb-physics-ocean-surf

cb-throughput-bitcoin

cb-vision-facedetect

cb-vision-tv-l1-of

cb-physics-part-sim-64k

cb-graphics-provence

cb-gaussian-buffer

cb-gaussian-image

cb-histogram-buffer

cb-histogram-image

cb-physics-part-sim-32k

cb-throughput-ao

cb-throughput-juliaset

cb-vision-facedetect

sandra-crypt-aes128

sandra-crypt-aes256

sandra-proc-gpu

sonyvegas-proj-r1

sonyvegas-proj-r2

sonyvegas-proj-r3

sonyvegas-proj-r4

sonyvegas-proj-r5

sonyvegas-proj-r6

sonyvegas-proj-r7

D
y
n

a
m

ic
 E

x
e

c
s

(c) Dynamic GPU Work

Kernel Count
Basic Blk Count

Instr. Count

 1

 10

 100

 1000

 10000

S
ta

ti
c
 O

c
c
u

re
n

c
e

s

(b) GPU Program Structures

Unique Kernels
Unique Basic Blks

0 %

20 %

40 %

60 %

80 %

100 %

%
 A

P
I

C
a

lls

(a) OpenCL API Call Breakdown

Other
Synchronization

Kernel

Figure 5.3: Benchmark Characterization. OpenCL call breakdowns (% synchronization, kernel,

and other API calls) were measured on the CPU host using CoFluent; program structure counts

(unique kernels and static basic blocks) and dynamic work counts (executions of kernels, basic blocks,

and instructions) were measured on the GPU device using GT-Pin.

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 94

simultaneous multi-threaded (SMT) processor units, which are highly optimized for floating

point and integer computations. Each EU has 8 hardware threads per core for a total of 128

simultaneously executing hardware threads. The GPU can perform at a peak rate of 332.8

GFLOPS, and has a maximum frequency of 1150 MHz. The system has 16 GB RAM and

runs the Windows 7 64-bit operating system. OpenCL Version 1.2 is used for the runtime,

and the GPU driver version is 15.33.30.64.3958.

5.4.2 Profiling results

At program execution time, the CPU was specified as the OpenCL host, and the GPU was

specified as the device. As a convention, data reported at granularities smaller than a kernel

invocation (i.e., one execution of a clEnqueueNDRangeKernel) are aggregate counts across

hardware threads.

Calls between the CPU and GPU (Figure 5.3a.) First, we examine how the CPU

and GPU communicate through the OpenCL API. GT-Pin tracks only GPU instructions,

so we used the Intel CoFluent CPR API tracing tool [41] to count and categorize OpenCL

API calls made by the CPU. To collect the name and arguments of every runtime API call,

CoFluent intercepts the calls at execution time just before they application passes them

to the OpenCL driver. Application performance is unaffected by this capture. Figure 5.3a

divides the API calls made by our 25 applications into three types: kernel invocations

(i.e., clEnqueueNDKernelRange calls), synchronization calls (those previously listed in Sec-

tion 5.2), and other API calls, which include program setup, post-processing, and cleanup

and supply arguments to kernels. Since the results are reported as percentages, the figure

does not show that the 25 applications vary significantly in terms of the total number of

OpenCL API calls, from just over 700 calls to over 160,000 calls. The applications are

somewhat more consistent in terms of their usage of synchronization and kernel calls. Most

applications initiate GPU work through kernel calls with about 15% of the total API calls,

though in the case of throughput bitcoin and physics part-sim 32K, use as few or as

many as 4.5% and 76.5%, respectively. Synchronization calls unsurprisingly tend to com-

prise only a small percentage of the total calls, on average 6.8%, and for the majority of

applications less than 3%. The application that uses the highest proportion of synchroniza-

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 95

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

AVERAGE

cb-graphics-t-rex

cb-physics-ocean-surf

cb-throughput-bitcoin

cb-vision-facedetect

cb-vision-tv-l1-of

cb-physics-part-sim-64k

cb-graphics-provence

cb-gaussian-buffer

cb-gaussian-image

cb-histogram-buffer

cb-histogram-image

cb-physics-part-sim-32k

cb-throughput-ao

cb-throughput-juliaset

cb-vision-facedetect

sandra-crypt-aes128

sandra-crypt-aes256

sandra-proc-gpu

sonyvegas-proj-r1

sonyvegas-proj-r2

sonyvegas-proj-r3

sonyvegas-proj-r4

sonyvegas-proj-r5

sonyvegas-proj-r6

sonyvegas-proj-r7

D
a

ta
 B

y
te

s

(c) GPU Memory Activity

Bytes Read
Bytes Written

0 %

20 %

40 %

60 %

80 %

100 %

%
 D

y
n

a
m

ic

In
s
tr

u
c
ti
o

n
s

(b) SIMD Widths

SIMD Width = 1
SIMD Width = 2
SIMD Width = 4
SIMD Width = 8
SIMD Width = 16

0 %

20 %

40 %

60 %

80 %

100 %

%
 D

y
n

a
m

ic

In
s
tr

u
c
ti
o

n
s

(a) Instruction Mixes

Sends
Computation

Control
Logic

Moves

Figure 5.4: GPU Work. GT-Pin can also measure GPU instruction mixes, the SIMD widths of

instructions (i.e., how data-parallel an application is), and the cumulative number of bytes read and

written to memory across hardware threads.

tion calls (throughput juliaset at 25.7%) has the fewest total API calls of any program

at 703.

GPU program structures (Figure 5.3b.) Using GT-Pin, we next profiled the static

program structures created within the kernels. The unique kernels counted in the first set

of bars in Figure 5.3b are the GPU’s analogue of CPU procedures. Applications vary widely

in the number of unique kernel programs they contain, ranging from 1 to 50 kernels, with

a mean of 10.2. Looking at a smaller granularity, we found that each program has at least

7 and at most 11,500 unique basic blocks within these kernels, with a mean of 1139.

Dynamic GPU work (Figure 5.3c.) The number of unique kernels has little corre-

lation with the number of kernel invocations (initiated by clEnqueueNDKernelRange calls),

which range from 55 to over 18,000, with a mean of 4764. Inside the kernels, 3.7 billion

to 2.9 trillion GPU instructions were executed depending on the application (with a mean

of 227 billion), within 44 million to 180 billion total basic block executions (on average, 13

billion).

Dynamic instruction mixes (Figure 5.4a.) Figure 5.4a shows the percentage of op-

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 96

codes in five categories including logic, control, computation, send, and move instructions.

The logic instructions, which include and, or, xor, shift, and compare instructions among

others, are heavily used, as are the mov instructions. This is to support vector operations,

such as loading vectors and arithmetic operations within vectors. The control instructions

account for a smaller overall proportion, at an average of 7.3% of total instructions, and

computation instructions account for 36.2% of the total instructions. The proc gpu ap-

plication stands out with a relatively large proportion of computation instructions (91%),

because it is designed to stress-test GPU performance. In GEN ISA, Intel GPU’s instruc-

tion set architecture [94], send instructions make up all of the memory communications

between hardware threads and execution units. In our applications they account for 5.1%

of the overall instructions across applications.

SIMD vector lengths (Figure 5.4b.) In general, the applications take reasonable

advantage of data-parallelism. All use a large proportion of 16- and 8-wide SIMD vectors:

they comprise 52% and 45% of the instructions, respectively, across applications. Single-

width instructions are just 4% of the instructions on average, 4-wide instructions are much

less common (<0.1% across all applications, and 0.3% of the 6 applications that do use

them), and 2-wide instructions are never used.

Memory operations (Figure 5.4c.) Finally, we tracked the cumulative bytes read

and written to memory across all GPU hardware threads. The two cryptography applica-

tions read the most, at 624 and 2174 GB apiece. The seven Sony video rendering applications

were on the high end of writes, and tended to write many more bytes (up to 525X more

for proj-r5) than they read. On average across all applications, however, the opposite was

true: an average of 105 GB were written and 1110 GB were read.

5.5 Selecting GPU Simulation Subsets

As we just saw, computational GPU benchmarks can be extremely large. Simulating such

large computational benchmarks to determine their performance on future architectures is

a problem that until now has been unaddressed. GT-Pin profiling can be used to speed

simulation by providing the information necessary to choose small, representative program

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 97

subsets to simulate from within the large benchmarks. Unlike prior work in simulation

subset selection [32, 216], the selection process itself does not require simulation, allowing

us to target extremely large applications that may be prohibitively long to simulate in full

even a single time.

This section describes our GT-Pin-enabled GPU simulation subset selection methodol-

ogy. GPUs pose a number of unique challenges to address versus existing CPU selection

methodologies (Section 5.5.1). In the experiments that follow, we explore how computa-

tional GPU programs can be represented as temporal intervals and architectural features

(Section 5.5.2), how to rapidly identify the best interval and feature set for a given applica-

tion (Section 5.5.3), and how to trade simulation time for accuracy (Section 5.5.4). Finally,

we validate that the selections made based on one profiled execution are accurate across

multiple execution trials on different processor architecture generations (Section 5.5.5).

5.5.1 Adapting CPU Simulation Acceleration to GPUs

To adapt the procedure of CPU simulation acceleartion via representative sampling to

GPUs, we had to answer several open-ended questions. First, how to build a GPU selection

methodology that is architecturally independent and not tied to a specific GPU platform or

ISA. To achieve architectural independence, we based our methodology around OpenCL

programming units and concepts. The next challenging decision was how to divide the

program into intervals. Interval division 1) must not pose synchronization problems, 2)

must strike a balance between being large enough to capture periodic behaviors but not so

large as to capture multiple types of behaviors, and 3) must have appropriate boundaries

for later simulation, since intervals mark the start and stop points of the selected subsets.

According to GPU hardware designers we spoke with, it is a strict limitation that any GPU

simulation subset selections be at least a full kernel call in length and that they do not span

multiple OpenCL synchronization calls. Another open question was what feature vectors

will accurately summarize the behavior of a GPU execution interval.

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 98

Intervals per Program

Interval Bound Relative Size Min Avg Max

Synchronization calls large 56 545 2115

~100M instructions medium 55 916 3121

Single kernel boundaries small 55 4749 18157

Table 5.2: The Program Interval Space explores three different ways of dividing GPU program

traces into intervals.

Feature Key Identifier

Kernel KN

Kernel, Argument Values KN-ARGS

Kernel, Global Work Size KN-GWS

Kernel, Argument Values, Global Work Size KN-ARGS-GWS

Kernel, # Bytes Read, # Bytes Written KN-RW

Basic Block BB

Basic Block, # Bytes Read BB-R

Basic Block, # Bytes Written BB-W

Basic Block, # Bytes Read, # Bytes Written BB-R-W

Basic Block, # Bytes Read + # Bytes Written BB-(R+W)

Table 5.3: The Program Feature Space explores ten feature vectors, with the above keys and

values that count the dynamic execution count of the respective key.

~

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 99

5.5.2 GPU interval and feature exploration

To answer these questions, we ran experiments using three types of interval divisions and

ten types of feature vectors. In each of these experiments we used the profiling information

from GT-Pin and CoFluent to divide the execution into intervals and populate the feature

vectors.

Interval space. Previous CPU work divides program traces into uniform intervals of a

given number of dynamic instructions, for example 100M instructions [216]. However, such

rigid divisions will not work on a GPU as they violate the constraint that GPU intervals

should not span kernel boundaries or synchronization calls. Instead, we experiment with

three variable length interval sizes summarized in Table 5.2. Synchronization intervals are

the largest division, splitting traces at each OpenCL synchronization call. The next smallest

intervals further subdivide these into roughly 100M dynamic instruction segments. In order

not to split an interval across kernels or a kernel across intervals, this results in some

intervals that are slightly larger or smaller than exactly 100M instructions, so we call the

division “Approximately 100M instructions”. Finally, we consider each kernel invocation its

own interval. While some kernels are larger than 100M instructions, most are not, resulting

in the smallest average interval size.

Feature space. Having broken a program into intervals, the second question is which

program features to use to characterize that interval for clustering. We experiment with

the ten types of feature vectors summarized in Table 5.3. Each feature vector is essentially

a set of (key,value) pairs, where the key is a distinct program event such as “calls to kernel

foo” or “calls to kernel foo with argument 256”, and the values are counts of the number

of times this event occurred in a given interval. As Table 5.3 shows, our experiments

explore whether there is value in increasing the specificity of events to include not only

computational information such as kernel or basic block ID, but also data interaction such

as the kernel arguments or the number of bytes read or written.

To ensure that these vectors place appropriate value on differently sized kernels and

basic blocks, we weight each vector entry by instruction count. For example, if an interval

executes block A 10 times and block B 5 times, these counts alone would suggest that A is a

more important feature of this interval. However, if A were 3 instructions long and B were

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 100

0 %

0.5 %

1 %

1.5 %

2 %

2.5 %

K
N

K
N

-A
R

G
S

K
N

-G
W

S

K
N

-A
R

G
S

-G
W

S

K
N

-R
W

B
B

B
B

-R

B
B

-W

B
B

-R
-W

B
B

-(R
+

W
)

K
N

K
N

-A
R

G
S

K
N

-G
W

S

K
N

-A
R

G
S

-G
W

S

K
N

-R
W

B
B

B
B

-R

B
B

-W

B
B

-R
-W

B
B

-(R
+

W
)

K
N

K
N

-A
R

G
S

K
N

-G
W

S

K
N

-A
R

G
S

-G
W

S

K
N

-R
W

B
B

B
B

-R

B
B

-W

B
B

-R
-W

B
B

-(R
+

W
)

%
 F

u
ll

P
ro

g
ra

m

D
y
n

a
m

ic
 I

n
s
tr

s Selection Size

0 %

5 %

10 %

15 %

20 %

E
rr

o
r

v
s
.

F
u

ll
P

ro
g

ra
m

Performance Error

Synchronization
 Intervals

Approx. 100M Instr
 Intervals

Single Kernel
 Intervals

physics-ocean-surf crypt-aes128 press-proj-r3

Figure 5.5: Feature and Division Space Exploration. Applications vary in terms of which of

10 different feature vector choices and 3 interval division sizes are best able to select subsets that

match full program performance. Also, the most accurate selection configurations are not always

the best at reducing the number of instructions to simulate.

20, then the weighted score of 5× 20 = 100 for B versus 10× 3 = 30 for A will better reflect

their actual importance. Note that this weighting will also impact the cluster representation

ratios that are computed in the next section.

Quantifying simulation error. Once intervals have been divided and feature vectors

constructed, any tool can be used to cluster and score them. We used the standard tool

from prior CPU work, SimPoint. Specifically, we used SimPoint version 3.0 which can

handle variable-sized intervals [77]. SimPoint takes program feature vectors as input, and

uses the k-means clustering algorithm to group similar feature vectors. It then computes

the centroid of each cluster, based on the total element count of each vector and returns

these centroids. We trace these reported feature vector centroids back to their associated

intervals to get our simulation subset selections. Along with the cluster centroids, SimPoint

also returns representation ratios for each of the selected feature vectors. SimPoint allows

users to specify the maximum number of clusters and thus selections, but may return fewer

than this maximum if its machine learning algorithm judges it appropriate to do so. The

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 101

maximum clustering and therefore selection subset count is set to 10 in all the experiments

that follow.

Traditionally, detailed simulation of a full program is used to evaluate the representative-

ness of the selected subsets. However, since we needed to evaluate 30 interval size/feature

vector configurations for our 25 large applications, detailed full-program simulation was out

of the question. Instead, we developed a heuristic for validating individual selections based

on per-kernel timing data, which we collected with the CoFluent CPR tool. The valida-

tion heuristic is an error percentage of the measured whole program seconds per instruction

(SPI) versus the projected whole program SPI, extrapolated from the selections’ timings

and weights:

Error =
abs(Measured SPI − Projected SPI)

Measured SPI
∗ 100% (5.1)

To get the measured seconds per instruction of the whole program, we divide the com-

bined time in seconds taken by all of the kernel invocations by the total number of dynamic

instructions executed by all of the kernel invocations. To get projected SPI, we first find

the SPI per selected interval, dividing the sum of CoFluent reported time in seconds of the

kernels in the selected interval by the sum of dynamic instruction execution counts reported

by GT-Pin for the kernels in the interval. Then, we multiply each selected interval’s SPI

by its SimPoint ratio, and add these products together to get the projected whole program

SPI.

Interval and feature exploration results. Figure 5.5 shows how the 30 types of

interval/feature vector combinations fared in terms of selecting representative program sub-

sets. The figure presents error and selection size results of just 3 sample applications, but

we tested all 30 combinations on all 25 applications. The results of the remaining 22 appli-

cations lead to the same conclusion as the 3 shown: no single combination of interval size

and feature vector is “best” in terms of error or selection size across all applications. There

are, however, several trends across applications. For example, basic block based features

tend to outperform kernel based features, and features with memory access counts improve

basic block based features for most applications. The applications with the fewest unique

kernels tend to have high error rates when kernel-only features are used.

As for interval size, synchronization-bounded intervals tend to produce the smallest

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 102

0.001 %

0.01 %

0.1 %

1 %

1X 10X 100X 1000X 10000X

P
e

rf
o

rm
a

n
c
e

 E
rr

o
r

Simulation Speedup

Sync-KN*
Sync-BB*
100M-KN*
100M-BB*
Single-KN*
Single-BB*

Figure 5.6: Optimizing Selection to Minimize Error results in individual applications choos-

ing different interval/feature vector configurations. Across applications, errors average 0.3% and

simulation speedups average 35X, ranging from 6X to 6509X.

errors, but since they are also the largest division, they produce the largest selection sizes.

For basic block based features, interval size tended to have less of an effect on error rate

than the effect of interval size on kernel based features. If we were to choose the best average

interval size/feature vector combination of the 30 tested, the combination with the smallest

error rate would be basic block intervals with no memory features (BB), and synchronization

bounded intervals. This combination averages 1.5% error across all 25 applications, and

selects subsets that are 1.9% of the total program instructions (corresponding to a 53X

simulation speedup). In the worst case, one individual application has an error of 8.8% and

another application has a selection containing 24.0% of the total program instructions.

5.5.3 Identifying application specific intervals and features

To improve these error and selection size numbers, we can leverage the fact that the com-

bination that works best for one application is not always what works best for another.

Rather than choosing one universal interval and set of features, we can choose the best

interval and features for each individual application. Somewhat counter-intuitively, there is

almost no additional overhead for doing so, as we need to profile (natively) each application

just once to characterize the error and selection sizes for all 30 interval and feature vector

combinations.

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 103

0 %

2 %

4 %

6 %

8 %

10 %

0X 25X
50X

75X
100X

125X
150X

175X
200X

225X

P
e

rf
o

rm
a

n
c
e

 E
rr

o
r

Simulation Speedup

Threshold Cross-App Average

Figure 5.7: Optimizing for Both Error and Selection Size means choosing the per application

configuration that has the smallest selection size with an error below a given threshold. For example,

with an error threshold of 3%, simulation speedups average 223X.

Picking the error-minimizing interval and feature combination for each individual ap-

plication achieves an average error rate of just 0.3%, with the worst case error being 2.1%

for the histogram buffer application. Figure 5.6 shows the error-minimal configuration

for each of the 25 applications. Of the 25 applications, only 5 chose kernel-based features

while the remainder chose basic block features.

As for interval sizes, 3 applications chose single kernel long slices, 11 chose synchro-

nization bounded slices, and 11 chose 100M instruction slices. Memory-based features were

chosen by 20 of the 25 applications. These diverse choices in best configuration support our

previous observation that no single configuration is suitable for all applications.

5.5.4 Co-optimization of simulation time and error

Minimizing the error without regard to simulation speedup may still result in subsets that

are too large for certain simulation needs. Across applications, this policy resulted in

an average simulation speedup of 35X, but just 6X in the worst case. To improve these

numbers, we tried jointly-optimizing for error and selection size. By setting an acceptable

error threshold rather than aiming to minimize error, we can greatly accelerate simulation.

Specifically, we choose the per-application configuration with the smallest selection size that

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 104

0 %

2 %

4 %

6 %

8 %

10 %

cb-graphics-t-rex

cb-physics-ocean-surf

cb-throughput-bitcoin

cb-vision-facedetect

cb-vision-tv-l1-of

cb-physics-part-sim-64k

cb-graphics-provence

cb-gaussian-buffer

cb-gaussian-image

cb-histogram-buffer

cb-histogram-image

cb-physics-part-sim-32k

cb-throughput-ao

cb-throughput-juliaset

cb-vision-facedetect

sandra-crypt-aes128

sandra-crypt-aes256

sandra-proc-gpu

sonyvegas-proj-r1

sonyvegas-proj-r2

sonyvegas-proj-r3

sonyvegas-proj-r4

sonyvegas-proj-r5

sonyvegas-proj-r6

sonyvegas-proj-r7

E
rr

o
r

U
s
in

g

Iv
y
 B

ri
d
g
e
 S

e
le

c
ti
o
n
s Haswell

0 %

2 %

4 %

6 %

8 %

10 %

E
rr

o
r

U
s
in

g

1
1
5
0
M

H
z
 S

e
le

c
ti
o
n
s 1000MHz

850MHz
700MHz
550MHz
350MHz

0 %

2 %

4 %

6 %

8 %

10 %

E
rr

o
r

U
s
in

g

T
ri
a
l
1
 S

e
le

c
ti
o
n
s Trials 2-10

Figure 5.8: Timed Validation. One trial’s selection are still accurate across trials, frequencies,

and architecture generations.

also has an error below a series of given thresholds. If no configuration had an error below

the specified threshold, we choose the configuration with the smallest error, regardless of

selection size. Figure 5.7 shows the results of this experiment. The furthest left point on

the plot shows the cross-application average error and simulation speedup when selection

configurations are chosen to minimize error. The remaining points show error thresholds

of 0.5% and 1% to 10% at steps of 1%. As error thresholds are relaxed to higher values,

the speedups monotonically increase. At the far right end of the graph, when we set the

error threshold to 10%, we get an average error across applications of 3.0% and an average

simulation speedup of 223X.

5.5.5 Validating the selections for future architectures

We have already seen that the selected subsets can accurately predict the performance of

full-programs executed on the same hardware. Here, we test whether the selections built

from one set of profiling data can predict full program execution across multiple trials run

on different architectures.

Quantifying cross-trial and cross-architecture accuracy. To test a single set of

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 105

selections across trials and architectures, we first need to guarantee that the kernel calls

contained in the selected intervals will be present and findable in future executions. Thanks

to non-determinism, this is not automatically the case, but we can force it to be so with

a record and replay feature of the previously discussed CoFluent tool. CoFluent’s record

mechanism captures API call data as it passes between the application and the OpenCL

runtime. In addition to call names, the recorder captures configuration parameters, memory

buffers and images, and OpenCL kernel code and binaries. This recorded information can

later be replayed and runs just as a normal executable on native hardware would, with the

only difference being a consistent and repeatable ordering of API calls.

We generate just one original set of selections and representation ratios per application

using a CoFluent recording. We next verify this selection against measured SPIs computed

from new replayed trials’ timing and instruction data. Then, we compute the error of the

original selection on the new trial.

Cross trial accuracy. Our first experiments tested the selection of one trial against

multiple future trials on the same machine. The top plot of Figure 5.8 shows the resulting

error rates for the new Trials 2-9 versus the original Trial 1, for each of the 25 benchmark

applications. Most of the error rates are below 3% (with many below 1%), indicating that a

single trial’s selections can be successfully used to predict the whole program performance

of other trials.

Cross frequency accuracy. To see how the selections hold up for future architectures

with different processing rates, we next validated the original set of selections against timing

data for new trials executed at varying GPU frequencies. All of the data previously reported

in this chapter use the GPU’s maximum frequency of 1150MHz, so the new frequency tests

use lower frequencies, specifically at 1000, 850, 700, 550, and 350MHz. The middle plot of

Figure 5.8 shows the resulting error rates. Again, most are less than 3%, indicating that

the selections of a single frequency can be used to predict the whole program performance

of executions at other frequencies.

Cross architecture generation accuracy. As a final experiment, we tested whether

our selections could predict whole program performance across different GPU architecture

generations. Specifically we used selections collected on our Ivy Bridge HD4000 GPU to

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 106

predict program performance on a newer Intel GPU, the HD4600 Haswell processor. The

primary difference between the two processors is the number of execution units (EUs)

within each GPU: the HD4000 has 16 EUs whereas the HD4600 has 20 EUs. To compare

the two processors’ raw performance, we ran LuxMark [149] on both machines. LuxMark is

a popular cross-platform benchmarking tool, which scores GPUs on their ability to render

different test scenes of varying complexity. The results (higher scores are better) were

269 for the HD4000 and 351 for HD4600, demonstrating the performance increases due to

parallelism on the HD4600.

The bottom plot of Figure 5.8 shows the error rates of using HD4000 selections to

predict HD4600 performance. Once again, most of the error rates are less than 3%, and the

worst case application (gaussian-image, one of the shortest benchmarks in terms of kernel

invocations) has 11% error. These results show that a single set of selections can predict

the performance even on architectures with very different performance characteristics.

5.6 Related Work

This is the first work to characterize large OpenCL programs, and one of the first works to

explore accelerating GPU simulation through the selection of representative subsets.

GPU application analysis. There are two related profiling tools from the Georgia

Institute of Technology: Ocelot [51, 126] and Lynx [60]. Ocelot is a GPU compiler that

instruments programs at compile time to measure various performance statistics. Unlike our

work, Ocelot emulates programs rather than running them on native hardware, it also does

not yet fully support OpenCL compilation. Lynx, a binary instrumentation tool that stems

from Ocelot does support OpenCL execution on native hardware, but unlike GT-Pin, Lynx

has only been demonstrated to work on small programs (their tested applications averaged

2 million times fewer dynamic GPU instructions than ours). Lynx also instruments the

NVIDIA PTX instruction set rather than the GEN ISA, and does not offer any solutions

for selecting simulation subsets as we do.

Several additional works also characterize GPU programs, although most study much

smaller applications and focus on CUDA workloads, which are NVIDIA specific, as opposed

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 107

to architecture-independent OpenCL workloads. Zhang et al. [266] model the instruction

pipeline, shared memory access, and global memory accesses of GPUs to accurately pre-

dict — and eventually improve — the performance of overlying applications. Their tested

application has 6500 times fewer instructions than the average application studied in this

work. Mistry et al. use built-in OpenCL API calls rather than an external profiler to

analyze a computer vision algorithm [165] for kernel call durations, average and variations

in time spent processing video frames, and GPU command queue activity. Their API-

based profiling is much more limited in terms of the types of data it can collect versus

GT-Pin’s instrumentation-based profiling. Goswani et al. use an instrumented version of

the GPGPU-Sim simulator [12] to collect a variety of data including instruction mixes,

memory and branching statistics, and parallel execution activity for a large collection of

benchmarks, but unlike GT-Pin their tool has hefty overheads, on the order of a million

times the original program execution time.

Finally, there are a commercial tools that monitor program performance (e.g., [178]),

but they do not measuring instruction-level metrics as we do.

CPU simulation acceleration. Since the simulation acceleration works discussed in

this chapter’s background section, dozens of papers have been published that extend the

area. Here we address only those most relevant to this chapter, such as the PinPoints

paper by Patil et al. [186]. Like our work, PinPoints uses dynamic instrumentation to

find representative simulation subsets, but it does so only for CPU programs. Follow-up

works by the same authors address a repeatability problem that arose between profiling

and tracing runs [187] (we avoid this through the use of CoFluent recordings), and a toolkit

for finding representative subsets deterministically and check-pointing them for Pin-based

simulation of x86 programs [189]. As we do for GPUs, Lau et al. explore a variety of

appropriate feature vectors for CPU simulation, finding that basic blocks, loop frequency

counts, and register reuse counts work best to encapsulate interval behavior [138]. Finally,

the recent BarrierPoint work by Carlson et al. [32] finds representative subsets in parallel

OpenMP programs by aligning their interval divisions with synchronization points, much

as we do by restricting our GPU programs to kernel invocation boundaries or greater.

GPU simulation acceleration. There are just two other works in the area of GPU

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 108

simulation subset selection. The first, by Huang et al. [91], finds representative GPU simu-

lation subsets using a similar overall methodology to our work, with single kernel invocation

intervals and compound feature vectors that include a metric analogous to our global work

size, a memory request count, and measures of intra-kernel parallelism. Besides the dif-

ferences in feature vector construction, the work differs from ours in two significant ways.

First, they only demonstrate that their feature vector construction works for 12 very small

applications, with an average of just 34 kernels invoked per application (versus our appli-

cations that average 4749 kernel invocations a piece). Second, while our simulation time

savings come entirely from skipping whole kernel invocations, their savings come primarily

from skipping parts of kernel invocations. The second GPU subset selection paper is a work

by Yu et al. [262]. This work also reduces simulation sizes by choosing partial kernel invoca-

tions, but rather than having the simulator execute intra-kernel samples, they reconstruct

reduced-loop count micro-kernels that can be simulated in full. It is possible that such an

partial selection method could be combined with our method of skipping whole invocations

for improved simulation speedups.

5.7 Limitations and Future Work

There are a couple of potential limitations to this work that lead to opportunities for future

work.

Applicability of GT-Pin. The current version of GT-Pin works only on Intel architec-

tures and for OpenCL programs, although the design concepts could be applied to GPU

architectures from other vendors. This would require a new driver implementation and a

new ISA specific binary re-writer per architecture type.

Cross-Generation Simulation Regions In our evaluation, we only compared the Ivy

Bridge generated selections to the next generation of GPU architecture, Haswell. In the

future, it would be prudent to compare the selections to further generations of GPU architec-

tures, such as Broadwell, or to GPU architectures outside of the Intel family of processors.

CHAPTER 5. FAST COMPUTATIONAL GPGPU DESIGN 109

5.8 Discussion

This chapter took three steps towards speeding up the design of GPUs for computational

workloads and avoiding inefficiencies at hardware design time. First, it introduced a new,

fast GPU profiling tool called GT-Pin, which measures a variety of instruction-level perfor-

mance factors of applications as they run natively on existing GPUs. Next, it used GT-Pin

to characterize 25 very large OpenCL benchmarks, exploring several features relevant to

GPU design. Finally, it demonstrated that representative subset selection can successfully

accelerate GPU design, by finding small but representative program subsets for GPU de-

velopers to simulate in lieu of full programs. These advances enable designers to optimize

for the diverse set of computational workloads that are currently being developed for use

on GPUs.

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 110

Chapter 6

Energy Efficiency Across the Stack

Modern demand for energy-efficient computation has spurred research at all levels of the

stack, from devices to microarchitecture, operating systems, compilers, and languages. Un-

fortunately, this breadth has resulted in a disjointed space, with technologies at different

levels of the system stack rarely compared, let alone coordinated.

This chapter presents1 a remedy for this problem, conducting an experimental survey

of the present state of energy management across the stack, and finding those that are

most promising for reducing energy–inefficiencies. Focusing on settings that are exposed to

software, we measure the total energy, average power, and execution time of 41 benchmark

applications in 220 configurations, across a total of 200,000 program executions.

Some of the more important findings of the survey include that effective paralleliza-

tion and compiler optimizations have the potential to save far more energy than Linux’s

frequency tuning algorithms; that certain non-complementary energy strategies can un-

dercut each other’s savings by half when combined; and that while the power impacts of

most strategies remain constant across applications, the runtime impacts vary, resulting in

inconsistent energy impacts.

1This work was previously introduced in a conference publication [115].

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 111

6.1 Introduction

Modern computational needs and resource constraints have promoted energy efficiency to

a first order design goal, precipitating a wide array of energy conservation techniques from

the circuit to the user and everywhere in between. Despite marked advances in energy

efficiency, the anticipated constraints of future domains such as wearable or implanted

computers necessitate continued advances.

The fragmentation of work between different communities is one obstacle to progress.

Individual research papers tend to compare a new technique against the next closest, which

rarely extends into other layers of the system stack. When the energy savings of a new

technique are not compared to existing techniques at multiple levels of the stack, it is hard

to evaluate the new idea’s broader impact to energy research. Since experimental methods

vary widely, using different hardware, versions of the OS, compilers and flags, languages,

and benchmarks, comparing results across research papers is rarely a viable option. For

example, some studies report power while others report energy, some measure power while

others model it, and some report usage for the entire package while others report usage only

for the cores. Accurately comparing a new technique to old techniques requires normalized

experimental evaluation methodologies on similar software and architectural platforms.

Understanding how a research project fits into the quantitative landscape of existing

work enables researchers to evaluate the new work’s energy savings and tradeoffs in the

proper context. For example, if one strategy decreases energy consumption by 50% but

requires new hardware, it might be less desirable than an alternative that saves only 40%

but uses commodity hardware. Or, a language extension that saves 200% of the energy of

existing system level strategies may be more readily adopted into the language standard

than one that saves only 20%. It is also important to understand how techniques combine,

both in deployment and when discerning the most promising future research directions. For

example, if a compiler level energy optimization complements an operating system level

technique, both techniques merit further investigation regardless of which saves more in

isolation. However, if one eclipses or eliminates the impact of the other, the lower saver

may be less valuable.

To restore a broad context for software energy research, this work measures the rela-

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 112

tive power, performance, and energy effects of a range of energy management strategies.

While most of the strategies we study have been previously evaluated in some context,

this is the first time that all of the results can be compared, because our experiments have

standardized the architecture, OS, measurement tools, and benchmarks. We examine each

technique in isolation as well as in combination with other techniques at different parts of

the system. Examining 220 experimental configurations of 41 applications totaling more

than 200,000 trial runs, we juxtapose the energy impacts of frequency scaling, sleep states,

parallelism, compiler optimizations, application-specific power caps, and source-level opti-

mizations. These are some of our key findings.

There is only so much room to save power in software (Section 6.3). We found

that the lowest system baseline power (i.e., the operating system running with no user

applications) consumed 60% of serial application power, and 35% of the power of a well

parallelized application. Moreover, single-threaded power varies relatively little across pro-

grams.

Linux does not provide energy-efficient frequency tuning algorithms (Sections 6.4.1,

and 6.4.5). Add us to the chorus [136] noticing that Linux’s energy-efficient frequency

scaling algorithm, ondemand, is not great at its purported job. Particularly when applica-

tions were parallelized, ondemand often increased energy rather than saving it. The aptly

named powersave algorithm does save some power but at great cost to performance, so it

is also an energy loser.

Overclocking has little to no effect on energy (Sections 6.4.1 and 6.4.5). While

overclocking saves runtime, it eats away a commensurate amount of power, resulting in no

net effect on energy for most applications. At increased thread counts (e.g., 16 threads),

overclocking’s power increases begin to outstrip its runtime savings, meaning overclocking

reduces energy by a small amount.

Parallelization can save so much energy relative to other strategies that energy-

conscious software developers must embrace it (Section 6.4.3). Most desktop,

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 113

server, and mobile chips have multiple cores, each of which costs power even when unused.

When these cores are utilized, the performance gains more than offset their power costs. For

example, increasing parallelization from 1 to 16 threads saved energy for all the applications

we tested — even the poorly scaling applications — for an average of 55% energy savings

across applications.

Good compilation beats most other energy management techniques (Section 6.4.4).

Performance-oriented optimizations (e.g., gcc’s -O3) offer significant energy savings, with

-O3 optimized software consuming less than 43% of -O0 optimized. As for power-oriented

optimizations, despite research proposals dating back 20 years [239], modern compilers still

do not explicitly optimize for, or significantly impact power.

Java programs require special energy attention, but they don’t make it easy

(Sections 6.4.4 and 6.5.1). Optimizing Java for energy is even more important than

optimizing native languages. Not surprisingly, interpreted Java costs nearly 8X the energy

of compiled Java. Additionally, prior work has found that Java is particularly prone to

source-level inefficiencies, possibly in part from the development tools used to produce

it [30]. Despite this, we observed that Java is challenging to manually optimize for energy.

Power-oriented source code optimizations are probably not worth the average

programmer’s time (Section 6.5.1). Source-level power tuning suggested by previous

research [162] may be effective for tiny embedded programs but is challenging in larger

programs. Despite hundreds of micro-optimizations across eight selected benchmarks, we

were unable to produce significant power savings for any of the applications.

Idle states are very complementary to other techniques (Sections 6.4.5 and 6.5.4).

Processor idle or sleep states saved energy — up to 19% — with nearly all of the energy

management strategies we combined it with.

Non-complementary conservation strategies can undercut one another by half

(Sections 6.5.3, 6.4.5 6.5.4). Not all of the management techniques play well together

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 114

and their benefits are absolutely not additive. For example, the 19% idle state savings can

be cut in half when frequency is tuned to lower levels. However, none of the management

strategies interfere so badly that they completely negate another strategy’s effects when

combined.

6.2 Background on Energy Management

To set the context for the techniques that this work measures, this section provides a

short primer on energy management strategies. For a more complete survey, we refer

the reader elsewhere [200, 245, 249, 255]. Although these techniques span many fields

of computer science, they all boil down to two broad strategies: reduce a computation’s

resource requirements and use no more than the required resources.

Circuit One popular energy conservation technique is to turn off or turn down un-

derutilized components. This is usually accomplished by reducing or stopping the clock

and/or supply voltage. An integrated circuit’s power consumption is the sum of the active

(Pactive = α·C · V 2
dd · f) and leakage (Pleak = Vdd · Ileak) power, where α is an activity factor

determined by the dynamic switching activity in the circuit, C is the circuit’s capacita-

tive load, Vdd is the supply voltage, f is the clock frequency, and Ileak is the amount of

leakage current. Frequency scaling reduces the clock for a linear reduction in active power,

while clock gating stops it entirely. Power gating turns off current to idle components,

while dynamic voltage and frequency scaling (DVFS) reduces supply voltage and frequency

together. Targeting supply voltage is particularly effective as it reduces both active and

leakage power, the latter of which accounts for up to 50% of total power today [97].

When applied to an idle or near-idle circuit (e.g., a processor executing a memory-bound

workload) these techniques save power while minimally impacting application runtime, ul-

timately saving energy. The control policies to manage these settings is an active area of

research, particularly with respect to emerging integrated voltage regulators [232], which

are improving the spatial and temporal resolution of DVFS. These controls are increasingly

being exposed to software, however; it remains to be seen what type of control policy is

best.

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 115

Architecture Above the circuit, there is a huge volume of work in energy-oriented mi-

croarchitecture including cache tuning [130], on-chip networks [131], memory compres-

sion [17], and instruction speculation control [124]. The research community is also embrac-

ing heterogeneity in the form of specialized accelerators [70, 89] and asymmetric designs [29]

such as ARM’s big.LITTLE. Even the now mainstream chip multiprocessors originated out

of a need to scale performance without increasing power density, so the software paralleliza-

tion it forced could be considered part of the power-conservation landscape.

Platform Off-chip, there are numerous other strategies. DC to AC conversion, which

consumes 0.9 Watts for every compute Watt [240], is unsurprisingly a focus of datacenter

energy efficiency. Cooling, which incurs similar overheads, has also received significant

attention (e.g., [191]). On laptops and mobile devices, reducing screen brightness and duty

cycling for services such as GPS are other proven energy savers [14, 39].

Operating System Operating systems get involved by explicitly treating energy as an-

other hardware resource to be managed [174, 243]. To save energy, they control software’s

interactions with lower level resources, for example adjusting DVFS on the fly [183], map-

ping processes to cores to keep total power below a cap [15, 208], or strategically offloading

computation to achieve battery lifetime goals [246].

Compiler and Runtime Via static analysis, feedback directed compilation, or JIT com-

pilation, compilers can analyze applications to insert hints about when to change frequen-

cies [226], rearrange computation to create longer idle periods [8], and place instructions

and data into memory in a more energy efficient manner – either by reorganizing instruc-

tions in the register file [213] or by creating a compiler-managed scratchpad [100]. There

is also research on offloading compilation to a remote machine [145] to save energy and on

power-saving hybrid garbage collection schemes [73].

Source and Language At the source level, energy optimization strategies range from

micro-optimizations such as manual loop unrolling [48] to macro solutions like updating soft-

ware development environments to encourage programmers to be more energy friendly [30].

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 116

Additionally, language extensions (such as EnerJ, which recruits programmer assistance in

finding opportunities for power-accuracy tradeoffs [207]) and new languages (such as Eon,

which has programmers identify high and low power energy regions at the source level [229])

have been proposed to improve energy efficiency.

Suite Applications Used

Parsec 3.0

blackscholes*, bodytrack, canneal, dedup,

ferret, fluidanimate*, raytrace, swaptions,

streamcluster, x264

SPLASH-2X
barnes, fft, fmm, ocean cp*, radix*

water spatial

Spec CPU 2006

bzip2, gcc, mcf, hmmer, sjeng, milc, gromacs,

cactusADM, astar*, lbm*, wrf, sphinx3, tonto,

povray, GemsFDTD, gamess, omnetpp

DaCapo 9.12
avrora, h2, jython, luindex, lusearch*, pmd*,

sunflow

Spec JBB 2013 pjbb2005 with 8 warehouses and 100,000 transactions.

* benchmark chosen for application-specific experiments

Table 6.1: Experimental benchmarks, chosen to represent a range of languages, programming

styles, and application domains.

6.3 Experimental Design and Methodology

Good experimental design and methodology were crucial for this survey. This section de-

scribes and justifies the design choices we made.

Experimental System All the experiments in this chapter use a single, dedicated Dell

PowerEdge R420 server. The server is dual socket with Intel Sandybridge E5-2430 chips,

each with six cores and two-way hyper-threading for a total of 24 hardware contexts. The

system has 24GB of DRAM and runs Ubuntu 12.04.2 with the 3.9.11 version of the Linux

kernel, the latest release at the time of our first data collections. To allow the operating

system and userspace to adjust certain controls such as frequency tuning, we switched

the Dell BIOS settings to ‘operating system control’. The machine runs gcc Version 4.6.3

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 117

compiler and Java HotSpot 64-bit server VM with JRE 2, build number 1.5.0.

Power Measurements For all of the power and energy measurements, we use Intel’s

Running Average Power Limit, or RAPL, interface [45]. RAPL uses non-architectural,

model-specific registers (MSRs) that indicate the amount of energy consumed by different

parts of the system (e.g., package, cores, DRAM). We sample all the energy counters every

50ms over the course of each program’s run and then combine the values to compute total

energy. Dividing this value by the total runtime produces the average power during a

program’s execution.

Benchmark Suite

Parsec SpecCPU Splash2X DaCapo SpecJBB

System (Sec. 6.4)

Processor Frequency Tuning X X X X X

Overclocking (Turbo Boost) X X X X X

Processor Sleep States X X X X X

Parallelism X X X

Compiler Opt. Sets X X X

Interpreted v. Compiled X X

Application Specific (Sec. 6.5)

Source Code Tuning * * * *

Per App. Frequencies X X X X X

Per App. Power Caps X X X X X

X= full set of applications, * = select applications only

Table 6.2: A summary of the energy efficiency techniques explored in this experimental

survey.

Benchmark Applications and Inputs Our experiments use 41 benchmarks from five

different suites, each commonly used in previous energy management research. The ap-

plications represent a breadth of languages, design paradigms, and application domains.

Table 6.1 lists the applications. The first ten come from the Parsec Benchmark Suite [21]

which contains multi-threaded programs written in C and C++. We ran each of these pro-

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 118

grams with the ‘simlarge’ inputs. The next six applications are from the Splash-2 Bench-

mark Suite [257], which are also multi-threaded and written in C. In contrast to Parsec’s

benchmarks, many of Splash’s benchmarks come from high-performance computing and

graphics. As prior characterizations demonstrate, these two suites are also fundamentally

different with respect to their memory usage and communication patterns [22]. We use the

Splash2x variant of the suite that is distributed with the latest version of Parsec in order to

have access to the ‘simlarge’ input sets. The next benchmark suite is SPEC CPU2006 [82],

which includes single-threaded, CPU-intensive workloads in C, C++, and Fortran, of which

we use 17 benchmarks and the test input sizes. The fourth suite is DaCapo [25], a multi-

threaded Java benchmark collection with applications from a variety of real-world domains.

We benchmark seven programs using the ‘default’ input size. Although DaCapo is multi-

threaded, it does not allow the user to set the target thread count, so we leave the ‘external’

thread count setting at one (see the usage documentation [47]) and exclude DaCapo from

the parallel experiments. The final benchmark used is SPECjbb2005 [230], which is a clien-

t/server system designed to test the performance of Java servers. As packaged, SPECjbb

always tries to complete in a fixed amount of time. This makes it hard to compare en-

ergy across trials, so we use the pjbb2005 patch [26], a variant of the benchmark that fixes

the workload size instead of the runtime. The workload size in pjbb is set via two in-

puts, a transaction and a warehouse count (see [230] for details). Exploratory experiments

on our machine showed the most scalable configuration to be 100,000 transactions and 8

warehouses, so these are the settings we chose. Without constraints, pjbb uses all the hard-

ware threads. To adjust parallelism to a discrete thread count, we used the taskset unix

command.

Energy Management Technique Selection The energy management techniques cited

in Section 6.2 represent just a fraction of work in the area. To narrow down the large

pool, this study focuses on techniques that are software-controllable, as opposed to those

that require changes to the underlying architecture, circuitry, or hardware devices. Because

hardware energy savings are already well studied (e.g., [56].), it made sense to cut the space

this way.

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 119

 20

 40

 60

 80

 100

 120

 0.1 1 10 30 60

P
o
w

e
r

(W
)

Runtime (s)

Measured Min

Measured MaxDacapo

Parsec

Speccpu

Specjbb

Splash2x

Figure 6.1: Baseline Performance and Power. The 41 benchmark applications exhibited more

variation in runtime than in power when run at our baseline configuration of a single thread utilizing

a processor set to maximum frequency, and with compiler/JVM optimizations and processor idle

states all enabled.

We culled the remaining space by choosing a representative set of techniques that are

broadly applicable to a variety of workloads and systems and that span multiple levels of

the software stack. We omitted techniques that were infeasible to replicate on our own

machine including those requiring complex toolchains, architectural simulation, specialized

hardware, or homegrown compiler or operating systems. Table Table 6.2 summarizes the

nine power management techniques we chose to study. More detailed explanations of the

techniques, including pointers to relevant prior work, are presented alongside the experimen-

tal results. Section 6.4 measures the individual and combined effects of six generic system

techniques: processor frequency scaling, overclocking, use of idle states (all in the OS), com-

piler optimization flags, interpretation versus compilation, and the effects of parallel thread

counts. Section 6.5 presents the results of three application-specific experiments, namely

power-oriented source code transformations, per-application processor frequency tuning,

and per-application power capping. Section 6.5 also compares and contrasts application-

specific strategies with generic system strategies.

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 120

0%

50%

100%

150%

200%

250%

Perf
w/ t

urb
o

Perf
no tu

rb
o

Ondem
and

Powers
ave

R
e

la
ti
v
e

 C
h

a
n

g
e

Normalized System Frequency Effects

Runtime
Power
Energy
Baseline

+ 20%
+ 7%

+114%

-17% -13%
-31%

+ 0% -6%

+ 47%

40

60

80

100

120

 0.1 1 10 30 60

P
o

w
e

r
(W

)

Runtime (s)

Across System Frequency Settings

Measured Min

Measured MaxPerf w/ turbo
Perf no turbo
Ondemand
Powersave

Figure 6.2: System frequency tuning algorithms, such as ondemand save at most 6% of energy

across applications versus the system baseline of maximum frequency with Turbo Boost enabled (perf

w/ turbo). Other frequency tuning options include disabling Turbo Boost for decreased runtime but

no net energy savings (perf no turbo) or a powersave option that saves an average of 31% of the

power, but with great costs to runtime (powersave).

Experimental Rigor Given the breadth of this study, we took particular care to gather

accurate, precise, and well organized results. This strengthens our own conclusions and

enables other investigators to analyze and build on our data, which we have provided

at: www.arcade.cs.columbia.edu/energy-study. Automated scripts managed all aspects

of the experiment setup, data collection and labelling, thus ensuring repeatability. In addi-

tion to the raw energy and runtime data, we gathered supplemental data, such as frequency

readings via the i7z tool [103], to confirm that each configuration was successfully applied

and implemented as expected. Each benchmark was run a minimum of 20 times at each

configuration, and as many times as necessary for the 95% confidence interval to come

within 2% of each application’s energy, runtime, and power means. In rare cases, this re-

quired over 100 program runs of an application for a single configuration. In total, the

measurements represent over 200,000 application runs across the 220 individual and com-

bined energy management configurations. Using averaging (with geometric means for any

pre-normalized data [62]) and normalization we compress this vast amount of data into easy

to understand results.

Baseline Power and Performance For clarity and to aid inter-study comparisons,

nearly all experimental data is reported relative to a single baseline configuration. This

www.arcade.cs.columbia.edu/energy-study

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 121

baseline, which is our system’s default, maximizes processor frequency (2200 MHz), enables

Turbo Boost and idle states, maximizes compiler optimizations (-O3 and -funroll-loops

for gcc, compiled for the JVM), and runs each application with one thread. Getting the

Java benchmarks to run with one thread required using the taskset command to force

the virtual machine onto a single thread. When not taskset, we observed that the Virtual

Machine might use any number of hardware threads even if the application is offered only

a single thread.

Figure 6.1 shows the measured runtime and power of the 41 benchmarks on this baseline

configuration. Each point on the plot represents the average across as many runs as required

to reach our statistical standards. The runtimes (from 0.4 to 66 seconds) showed a greater

range than the power consumption (from 61 to 79 Watts). Primarily a result of the range

in runtime, energy also ranged widely from 24 to 4036 Joules.

This initial data corroborates existing work from Esmaeilzadeh et al. [56], showing that

power is not necessarily related to the thermal-design point, or TDP, of the CPU. While

the TDP of our machine is 190 Watts across both sockets, a multithreaded microbenchmark

designed to generate large amounts of busywork consumed only 120 Watts. The fact that we

never near TDP even at peak system usage could be a symptom of a good cooling system,

though this theory has not been tested. We have marked the busywork micromenchmark

as “Measured Max” power on Figure 6.1. We also record a “Measured Min” at 43 Watts,

which is is the machine power when nothing other than system utilities and our power

profiler were running. Note that this background power is significant, accounting for an

average of 60% of the single-threaded benchmark power and for 35% of the multithreaded

busywork program.

6.4 System-Level Results

Here, we present the system-level measurements of frequency tuning, overclocking, processor

idle states, parallelism, and compiler flags. We first examine the impact of each setting in

isolation and then examine how the five techniques combine. Section 6.5 presents the

remaining application-specific techniques listed in Table 6.2.

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 122

6.4.1 Frequency Tuning and Overclocking

A huge body of prior work uses dynamic frequency scaling to improve energy efficiency.

The key insight is that lower processor frequencies consume less power, so energy can be

conserved if processor frequencies are reduced during periods of low work. The challenge of

frequency tuning is to figure out when and by how much to reduce frequency without causing

performance losses significant enough to negate the power savings. Operating systems

are often tasked with this, because they can measure application performance and then

reactively set the clock frequency via software exposed registers in the CPU [28]. Linux

provides several algorithms, called cpufreq governors, to manage this process. The available

algorithms depend on the machine architecture and version of Linux, so we measure three

commonly available ones:

• The performance governor sets frequency to its maximum, 2200 MHz on our test

machine. We call this setting perf w/ Turbo because, as described below, it also

includes Turbo Boosting. It is the baseline described in Section 6.3.

• The powersave governor also uses a constant frequency, but at the system minimum,

which is 1200 MHz on our machine.

• The ondemand governor increases or decreases frequency, reportedly per processor,

when a (tunable) threshold of dynamically measured CPU utilization is reached [183].

We leave all tunables at their default settings, for example leaving the utilization

threshold at 95%.

In addition to frequency, power governors also have limited influence on overclocking,

which means temporarily raising frequency above the processor manufacturers’ recommend

level for sustained computation. Both Intel and AMD offer dynamic overclocking called

Turbo Boost and Turbo CORE respectively. Overclocking may or may not have significant

bearing on energy; while it reduces compute time, it also causes the system to run hotter

and dissipate more power. For safety reasons, hardware has ultimate control over when

and for how long overclocking can occur, but the operating system does have the option

to disable overclocking all together. By default, the ondemand and performance governors

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 123

permit overclocking, which kicks in only when the processor frequency has reached the

maximum rating. Using an Intel-supported driver, we were able to create a fourth governor

that isolates the effects of Turbo Boosting:

• The performance no Turbo governor sets the CPU frequency to its maximum, but

disables Turbo Boost (i.e., no dynamic over clocking).

On our system, disabling overclocking for the ondemand algorithm is not an option. Dis-

abling overclocking for the powersave algorithm would not make sense because by the algo-

rithm’s definition, frequency is always set to minimum.

Experiments show that these four frequency management strategies yield a range of

power-performance tradeoffs. The left panel of Figure 6.2 plots the individual applica-

tion runtimes and power consumption at each of these four settings, while the right panel

summarizes the impact of these settings across all applications.

Disabling Turbo Boost and removing the machine’s ability to ramp up frequency for

short periods of time resulted in a runtime increase of 20% across applications. We did

not monitor the frequency changes across all of our experiments, but observed using the

i7z tool [103] that Turbo Boost almost always increases frequency (up to 2700 MHz, or 500

MHz above the normal maximum frequency) when a single procesor is working at 100%

utilization but the remaining processes are idle, as was the case for most of the experiments

in Figure 6.2. In many cases, the frequency was allowed to remain at 2600-2700 Mhz for

the duration of the application’s execution provided the other cores remained idle, which

explains the significant performance differential.

Conversely, disabling Turbo Boost decreased power by an average of 17% across applica-

tions, a direct consequence of the lower average processing frequency. The nearly equivalent

increase in runtime and decrease in power meant that across applications, disabling Turbo

Boost produced no net change in energy versus Turbo Boost enabled. Individual applica-

tions saw some minor energy shifts with Turbo Boost disabled versus enabled: at most a

9% increase and a 6% decrease with 17 applications increasing in energy consumption and

24 decreasing.

Similarly, the out-of-the-box ondemand algorithm affects energy by only a small amount,

with 6% average savings across applications. Most of the individual applications (38 out of

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 124

0%

50%

100%

150%

200%

250%

Idle On Idle off

R
e
la

ti
v
e
 C

h
a
n
g
e

+19%
+13%
+6%

Runtime
Power

Energy
Baseline

Figure 6.3: Processor idle states enable 19% energy savings relative to the mode that prevents

cores from entering these power-saving sleep modes.

0%

50%

100%

150%

200%

250%

1 Thread 4 Threads 16 Threads

R
e
la

ti
v
e
 C

h
a
n
g
e

Runtime
Power

Energy
Baseline

-55%
-69%

+ 23%
+ 32%

-45%
-59%

Figure 6.4: Parallelization increases energy savings for all applications tested. For our 12 core, 24

hyperthread server, running 16 application threads consumed just 45% of the energy of the serial

execution.

41) saved a little energy, but only six saved more than 10% relative to the baseline. This

limited savings may be unsurprising to some in the operating systems community, who

have questioned the efficacy of the ondemand frequency tuning algorithm [136] as well as

frequency tuning’s potential to save energy at all on modern processors [140]. Powersave

is a big energy loser, with an average increase of 47% versus the baseline and with not a

single individual application saving energy. From these results, it is clear that powersave,

or any similar strategy that reduces frequencies to a minimum, is not a desirable policy for

active processors.

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 125

6.4.2 Idle States

Most computers spend a significant amount of time underutilized, for example while serv-

ing I/O. Datacenter servers reportedly use only 10-50% of their processors at a time; the

remainder are idling [16]. Idleness can be costly in terms of power draw with under-utilized

servers still drawing more than 50% of their peak power [16]. In recent years processor

vendors have offered a rich menu of processor idle states, that send the processor to increas-

ingly deep levels of ‘sleep’ for increasing power savings. The specifics vary from vendor to

vendor, but as an example, a first level of sleep might be to stop the CPU clocks, a second

to turn down CPU voltage, and a third to reduce the voltage further and stop refreshing

cache [242]. The reason for multiple levels of idleness, sometimes called c-states, is that each

deepening state comes at an added transition cost, taking increasingly more time for the

processor to switch back to active. If a processor is sent into a deep idle state immediately

before an application requests its resources, the application will experience runtime delays.

Thus, the main challenge to managing idle states is to figure out when to idle, how deeply

to idle, and when to wake up.

As with frequency scaling, the operating system has been tasked with observing appli-

cation behavior and managing idle states accordingly. Linux provides a cpuidle idle state

manager [182], which is analogous to its cpufreq frequency algorithms. The cpuidle man-

ager monitors the dynamic use of all the system processors and uses this information to

determine the appropriate depth of sleep. It is also possible to force a processor to use a

specific idle state (see instructions in [80]) rather than allowing the automated manager to

control sleep depth. According to the documentation [80], manual settings are helpful for

reducing system latency but not likely to save more power than the cpuidle manager, so we

limit our experiments to the managed algorithm rather than manual settings. This narrows

our idle state exploration to just two settings:

• The idle on data is measured with the perf w/ turbo frequency tuning, per application

thread count of one, and gcc-O3 or the default javacc options (i.e., the baseline).

• The idle off is the same configuration but with cpuidle disabled (i.e., the cores are

not allowed to sleep).

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 126

Figure 6.3 plots the comparison, which reveals a 19% energy difference between idle on

and off across all 41 applications. For individual applications, the differences range from 11

to 25%, with all applications seeing a net energy decrease when idle states are enabled. Also

in line with expectations, power is on average 13% higher when idle states are turned off, at

most 24%, and at least 8%. Unexpectedly, all of the applications run faster by an average

of 6% when idle states are enabled. We found that this runtime difference reverses when

Turbo Boost is disabled, and we suspect that with idle states enabled, the core used by the

single-threaded application is able to take advantage of the lower overall system power and

turn on Turbo Boost more frequently than when idle states are disabled, resulting in the

shorter runtimes.

6.4.3 Parallelism

Although the idea of parallelism has been around since the first computers [252], multicores

became mainstream roughly a decade ago, when AMD and Intel started selling dual core

processors for desktops. This revolution was driven largely by energy and power concerns.

The increasing clock speeds and transistor counts that drove performance higher for fifty

years also drove power density to unsustainable levels. Computer architects reacted by

simplifying processor cores and offering more of them, which kept heat levels under control

while allowing performance to continue to grow. The catch is that to effectively increase

performance, software must actually use multiple cores.

As core counts grow, software engineers are left to deal with the difficult challenges of

writing well parallelized code to improve performance on future generations of chips [153].

One could argue (as Urz Holzle, senior vice president at Google, did [88]) that it is the

responsibility of computer architects to keep serial processing efficient so that software is

not forced into parallelism. However, for better or worse, chip-multiprocessors now dominate

the desktop market, and core counts in the mobile market are also creeping up [222]. In

addition to runtime efficiency, prior research has shown that energy efficiency is similarly

reliant on effective parallelization [196], so energy conscious programmers must also deal

with this reality.

We measured the interplay of performance, energy, and parallelism on our 12 core, 24

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 127

0%

50%

100%

150%

200%

250%

gcc-O3 gcc-O2 gcc-O0

R
e

la
ti
v
e

 C
h

a
n

g
e

+1%+1%

+6%
+7%

+131%

+133%
Runtime
Power
Energy
Baseline

Figure 6.5: Standard compiler optimization sets save energy, but largely through runtime

reductions not power reductions. Applications without optimization take 133% more energy and

131% more time than fully optimized applications.

0%

200%

400%

600%

800%

Compiled Interpreted

R
e

la
ti
v
e

 C
h

a
n

g
e

+819%
+795%

+3%

Runtime
Power
Energy
Baseline

Figure 6.6: Java compilation saves substantial energy versus interpreted code, which consumes

8X the energy, but again these savings are due to runtime, not power.

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 128

hyperthread machine; Figure 6.4 summarizes the results. The baseline is the same as before,

with the data showing average changes in runtime, power, and energy for 4-thread and 16-

thread program runs versus single-threaded runs. The results are averaged across multiple

runs of the 17 benchmarks from the Parsec, Splash2x, and SPECjbb suites, the three suites

that supported discrete thread count settings. From the runtime values, it is evident that

some of the applications scale poorly: on average the applications show only a 2X speedup

over serial with four threads, and a 3X times speedup with 16 threads. The most scalable

application tested, radix, saw only an 8X speedup at 16 threads. Jumping from 4 to 16

threads caused radix’s power to increase by 50%, thanks to increased core activity reducing

the opportunity to exploit idle states. This power increase tempered the runtime savings,

so that radix’s energy at 16 threads was about 20% of its single-threaded energy. In other

applications, a similar phenomenon occurred: speedups provided by added parallelism were

offset by the power increases resulting from more concurrently active threads. However the

power increases did not exceed the runtime savings for any of the applications we tested,

meaning all of the applications saved energy. Even the most poorly scaling application,

raytrace, whose runtime at 16 threads decreased only 19% versus one thread saved a

non-negligible amount of energy at 13%. On average, the applications saved 55% of the

single-threaded energy when run with 16 threads.

6.4.4 Compiler optimizations

Most existing work on energy efficient compilation focuses on the power and energy impacts

of performance optimizations. They typically find that these optimizations reduce runtime

much more than they increase power, resulting in a net decrease in energy. In attempts

to isolate which optimizations are the most power efficient, a number of studies apply

individual optimizations such as function in-lining, loop unrolling, and loop vectorization

to benchmarks (e.g., [211]). Other research has constructed new optimization sets for

energy rather than performance (e.g., [184]). The conclusion of all prior studies seems to

be the same: when it comes to compilation, what is best for performance is best for energy.

This is not a surprising conclusion when the optimizations tested affect performance al-

most exclusively (and not power). The community has proposed a few power-optimizations,

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 129

1
0
0

5
6

4
2

1
0
7

5
9

4
4

2
3
4

1
1
3

7
0

1
1
9

5
8

4
4

1
2
7

6
0

4
7

2
7
8

1
1
1

7
4

9
9

5
3

3
9

1
0
6

5
8

4
1

2
3
2

1
0
8

6
6

1
1
6

5
5

4
2

1
2
4

5
7

4
4

2
7
5

1
0
8

7
1

9
6

5
2

4
3

1
0
2

5
5

4
5

2
2
5

1
0
0

7
1

1
1
1

5
8

4
5

1
2
0

6
1

4
8

2
5
7

1
1
3

7
5

1
4
4

6
4

4
8

1
5
3

6
7

5
1

3
4
8

1
2
5

8
2

1
5
9

6
8

5
0

1
6
9

7
1

5
3

3
7
9

1
3
4

8
4

1
0
0

P
er

f
w

/
tu

rb
o

P
er

f
n
o

tu
rb

o

O
n
d
em

a
n
d

P
ow

er
sa

v
e

1
4

1
6

1
4

1
6

1
4

1
6

1
4

1
6

1
4

1
6

1
4

1
6

T
h
re
a
d
co
u
n
t

-O
3

-O
2

-O
0

-O
3

-O
2

-O
0

Id
le

o
n

Id
le

o
ff

B
a
se

li
n
e

F
ig

u
re

6.
7:

E
n

e
rg

y
e
ff

e
c
ts

o
f

c
o
m

b
in

in
g

m
u

lt
ip

le
c
o
n

fi
g
u

ra
ti

o
n

s.
T

h
is

ta
b

le
sh

ow
s

cr
o
ss

-l
ev

el
en

er
g
y

in
te

ra
ct

io
n

s
o
f

th
e

fi
ve

en
er

g
y

co
n

fi
gu

ra
ti

on
s

d
is

cu
ss

ed
so

fa
r,

as
a

p
er

ce
n
ta

ge
of

th
e

b
a
se

li
n

e,
(i

.e
.,

b
a
se

li
n

e
=

1
0
0
%

).
N

o
te

th
a
t

th
e

m
a
tr

ix
in

cl
u

d
es

d
a
ta

fr
o
m

o
n

ly
th

e

p
ar

al
le

l,
n

at
iv

e
b

en
ch

m
ar

k
su

it
es

:
P

ar
se

c,
S

p
la

sh
2x

.

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 130

such as reordering instructions or memory operands or reassigning registers to reduce con-

trol path switching. A good overview of these techniques is presented in a 1994 paper by

Tiwari et al. [239]. Twenty years later it seems none of these techniques have made it into

mainstream compilers, so quantitative data on their ability to improve power and energy is

sparse. Given the lack of power-specific optimizations in commercial compilers, we measure

the energy effects of standard sets of compiler optimizations. While we are far from the first

to take these measurements, we include them to provide a quantitative comparison point

for the other measurements in this chapter.

Figure 6.5 shows the energy effects of the standard gcc compiler optimization sets for

applications in the three native benchmark suites. On average, the applications ran in 131%

less time for gcc-O3 versus gcc-O0, meaning the optimized code took 43% of the time of

the unoptimized code to run. The change in power was negligible, about 1% on average, so

the energy effects track the runtime, with gcc-O0 taking 233% of gcc-O3’s energy. The per

application energy savings of turning on optimizations ranged wildly, from less than 1% to

nearly 700%, likely a reflection of how optimized the original source code was. In terms of

energy and runtime the -O2 optimizations were very similar to -O3 on average, with 8 of

the 33 applications actually saving more energy with -O2 than with -O3. These numbers

emphasize compilers’ important contributions to energy savings, but confirm that all the

savings come in the form of reduced runtime.

For the eight Java benchmarks, we measured the energy of interpreting rather than

compiling. On average, the cost of interpreting was huge, consuming 818% more energy on

average than compilation, which is roughly in line with the runtime impact of 795%. Again,

the energy changes varied between applications, from an energy savings of 23% for pmd (the

only application to save energy, and purely a result of runtime savings), to an increase of

over 2600% for sunflow. Average power increases were barely significant at just 3%, and

varied less between applications (-0.5% to 6%).

6.4.5 Cross-Layer Energy Effects

The preceding sections explore the impact of each optimization in isolation. We wanted to

know whether turning on multiple techniques resulted in additive, negative, or synergistic

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 131

interference, so we ran experiments that combine all of the techniques presented so far. The

heatmap matrix in Figure 6.7 shows all of these combinatorial effects as a percentage of

the baseline. The data in the matrix comes from the 16 applications in the two paralleliz-

able, native benchmark suites, Splash2x and Parsec. The rows represent different system

frequency algorithms, while the columns cover all of the idle states, compiler options, and

parallelism configurations previously discussed.

A number of insights could be drawn from these comparative experiments. Most notably,

the energy savings of one strategy can be cut by half depending on what other strategies

are in use (e.g., enabling idle states saves 19% at the baseline frequency, but only 10.4%

when the powersave algorithm is used.) Similarly, the ondemand frequency algorithm saves

less energy at 16 threads than with one thread. In fact, at 16 threads, ondemand actually

increases energy regardless of compiler optimization or idle state configuration. Compiler

optimizations follow this pattern as well, saving less energy at 16 threads (about 40% across

configurations) than at one thread (57%).

Several techniques were a win across the board. For all 18 configurations, disabling

Turbo Boost saved energy because the runtime savings from Turbo Boost’s increased fre-

quency were more than offset by corresponding power increases. However, unlike the other

techniques, disabling Turbo Boost saves more energy for 16 threaded trials than serial trials.

Idle states also provided nearly universal energy savings, with 34 out of 36 configurations

showing energy decreases when they were enabled. Increasing parallelism, even without per-

fect performance scaling, was also a relatively large energy winner, with energy decreasing

from 1 to 4 to 16 threads for all configurations.

Ultimately, the best energy configuration was with idle states on, the -O3 optimization

set, 16 threads, and the performance no turbo frequency tuning. Note that this does

not match our baseline and the system default, which enables Turbo Boost. The worst

configuration was essentially the opposite: -O0, idle off, one thread, and the powersave

algorithm. The difference between these two configurations is a whopping 10.3X.

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 132

6.5 Application-Level Energy Management

This section presents the measurements of three application-specific energy management

techniques: source code tuning, custom frequency scaling, and power capping. It then links

these techniques to system-level techniques in a combination study.

6.5.1 Source Code Tuning

A number of recent and older works suggest that optimizing source code for power sav-

ings can have significant impact [20, 30, 162, 239]. Surveying these works and others, we

found eight kinds of source-level transformations purported to save power or energy, and

applied these transformations to the eight benchmarks marked with a * in Table 6.1. The

transformations aim to:

1. reduce temporary variables,

2. eliminate common subexpressions (e.g. consolidate duplicate computations or lookups

in complex structures),

3. postpone variable declarations until needed,

4. use operator= instead of the operator alone and use prefix instead of postfix operators

(but only for complex types),

5. use direct assignments of variables rather than initializations followed by assignment,

6. replace multiply and divide operations with shifts or addition when possible,

7. optimize loops with unrolling and unswitching (moving a conditional from inside to

outside of a loop)

8. reduce the number of arguments passed to functions.

To focus our efforts, we looked for opportunities to apply the first six optimizations

within loops or within functions called inside loops. In total, we made 688 changes across

the eight applications, ranging from 5 to 292 changes per application. Figure 6.8 shows the

exact number of changes per application, in square brackets above each triplet of bars. It

was simpler to make changes in the less optimized applications of the Splash2x and Parsec

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 133

0%

50%

100%

150%

astar

blackscholes

fluidanim
ate

lbm
lusearch

ocean

pm
d

radix

R
e

la
ti
v
e

 t
o

 U
n

o
p

ti
m

iz
e

d
 C

o
d

e

[116] [24] [28] [195] [5] [292] [6]

[22]

Runtime
Power
Energy

Figure 6.8: Source code tuning methods from prior embedded systems research were not very

effective energy savers for for our complex and already well-optimized benchmarks running on servers.

benchmarks, and conversely more difficult to improve the already-optimized SPECCPU

benchmarks. The DaCapo benchmarks were especially challenging to transform. This is

partly because they are already well optimized, and partly because it is difficult to track the

scope of objects whose instantiation may be far removed from use, as opposed to variables

in native benchmarks, whose scope often lasts only one function. When the scope of an

object was unclear, it was necessary to be more conservative about deletion or modification.

Figure 6.8 shows the power, performance, and energy effects of our transformations rela-

tive to the unoptimized programs. The data represents multiple trials, all utilizing the same

baseline as previous experiments, with gcc optimization level O3 and the -funroll-loops

options enabled for native programs, and the compiled virtual machine used for the Java

programs. Only one application saw a significant reduction in energy — blackscholes

— while four others’ energy was slightly reduced by our transformations. The effective

transformations in blackscholes were common subexpression elimination, the reduction

of temporary variables, and direct assignment, all within a ‘hot’ function, and missed by the

optimizing compiler due to the complex objects involved in the computation. The trans-

formations reduced power for five of the eight applications, but none of these measured

reductions were outside of our 2% confidence interval range, so they should be considered

statistically insignificant. One application, radix, experienced a significant power increase

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 134

at 17%, likely due to additional loop unrolls that the compiler would normally not perform.

This study could be considered a failure given that the optimizations did not result

in significant power or energy savings, but we still felt it important to include the nega-

tive results. They demonstrate that, at least for previously optimized applications run on

servers, micro-optimizations for power and energy are challenging. Given that the results

were poor and the source-level transformations require disproportionately more effort than

other energy saving techniques, we suggest that power-specific source transformations are

not worth the average programmer’s time once the code has been optimized for performance.

6.5.2 Application Tuned Frequencies

As previously shown, the ondemand frequency governor provides only small energy savings.

In part this is because it is conservative (optimizing for performance) and reactive (waiting

to measure processor utilization before adjusting frequency). We also observed (using the i7z

frequency monitoring tool [103]) that even when only one core is utilized by an application,

ondemand tends to unnecessarily ramp up the frequency of the entire socket. All of these

behaviors limit ondemand’s ability to conserve energy.

A number of researchers have noticed that reactive measurements coupled with the high

latencies of switching frequencies through the OS may result in less than optimal frequency

tuning, and have proposed alternate methods. For example, a recent paper by Rangan et

al. [199] proposes setting individual core frequencies to different static values, then migrating

application threads to improve both energy and throughput. Hints from compilers [258],

static analysis tools [219], and even software developers [229] have also been proposed to

tune frequencies more effectively. None of these papers distribute open-source code, so in

lieu of reimplementing their work, we contextualize it by running individual applications

at discrete, constant frequency levels. This obviously does not replicate techniques that

continually switch applications between frequency levels, but it at least gives us an idea of

the range of power-performance tradeoffs involved in application-specific frequency tuning.

Linux provides a mechanism for root to change individual processor frequencies through

a userspace governor. On the machine used for these experiments, frequencies can be set to

11 distinct levels, from 1200 MHz through 2200 MHz at 100 MHz steps. A twelfth option

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 135

0%

50%

100%

150%

200%

250%

2201

2200

2100

2000

1900

1800

1700

1600

1500

1400

1300

1200

R
e

la
ti
v
e

 C
h

a
n

g
e

Frequency in MHz

Runtime
Power
Energy
Baseline

Figure 6.9: Application-specific frequency tuning, or running an application at a single discrete

frequency, allows power-performance tradeoffs to be flexibly manipulated.

0%

50%

100%

150%

200%

250%

no cap 30W 25W 20W 15W 10W

R
e

la
ti
v
e

 C
h

a
n

g
e

RAPL PKG Cap per Socket

+19%

+7%

-10%

Runtime
Power
Energy
Baseline

Figure 6.10: RAPL power caps, which limit the amount of power a part of the chip is allowed to

consume over a given time window, yield a more limited power-performance tradeoff range.

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 136

is to set the frequency to maximum (2200 MHz) and enable Turbo Boost. Figure 6.9 shows

how all 41 benchmarks perform, on average, at different frequency levels. So that all the

applications could be used, these results show single-threaded runs: the unused 11 cores (22

hyperthreads) were set to minimum frequency while the occupied processor’s frequency was

varied. Idle states are turned on for all of these experiments. In the average case, none of

the frequency configurations saves energy relative to 2200 MHz with Turbo Boost; instead,

there is a smooth power-performance tradeoff curve with runtime increases always slightly

over-shadowing power decreases. Looking at individual applications, three of the 41 save

a negligible amount of energy when Turbo Boost is disabled but frequency remains set to

2200 MHz. Moving down the frequency scale to 2100 MHz none of the applications save any

significant amounts of energy. Power decreases are relatively uniform across applications,

sinking a little more at each frequency. The corresponding runtime increases, however, vary

significantly between applications. For example, at 1700 MHz, runtime may increase as

little as 38% or as much as 74% relative to the baseline, resulting in relative energy losses of

9 to 35%. Future algorithms should be sure to account for this highly application-specific

response to frequency tuning.

6.5.3 Per Application Power Caps

While hardware ensures that on-chip power levels do not exceed the TDP, sometimes there

is a need to cap power at a lower level. For example, in datacenters, enforcing a strict

power cap somewhere below the TDP could make energy expenses more predictable and

affordable. Several research projects have addressed this need via power-attentive thread

to core scheduling and DVFS [40, 99, 208]. A couple of industrial tools exist as well, for

example, Intel’s RAPL Power Caps [45]. Since our machine contains Intel processors, we

experiment with this particular implementation.

RAPL allows a user with sufficient privileges to limit power across multiple domains

per socket: power plane 0 which includes cores and private caches, power plane 1 which

includes alternate processing units such as GPUs, the package which includes both power

planes as well as shared caches, and finally DRAM . The user selects a domain to cap, then

gives the RAPL interface a specific power value to limit that domain, as well as a time

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 137

 40

 60

 80

 100

 120

 80
 100

 120
 140

 160
 180

 200
 220

P
o

w
e

r
(W

)

Runtime (s)

blackscholes

 40

 60

 80

 100

 120

 80
 100

 120
 140

 160
 180

 200
 220

P
o

w
e

r
(W

)

Runtime (s)

fluidanimate

 40

 60

 80

 100

 120

 80
 100

 120
 140

 160
 180

 200
 220

P
o

w
e

r
(W

)

Runtime (s)

radix

 40

 60

 80

 100

 120

 80
 100

 120
 140

 160
 180

 200
 220

P
o

w
e

r
(W

)

Runtime (s)

specjbb

 40

 60

 80

 100

 120

 80
 100

 120
 140

 160
 180

 200
 220

P
o

w
e

r
(W

)

Runtime (s)

ocean_cp

RAPL, idle on
RAPL, idle off
App. Freq, idle on
App. Freq, idle off
System Freq, idle on
System Freq, idle off

Figure 6.11: Application-specific strategies versus system level strategies for frequency

tuning. RAPL caps, application-specific frequency tuning, and system frequency governors could

not be combined with each other, so we compared their power performance effects instead. All three

could be combined with idle states, however, which when enabled saved energy across all of the

different frequency configurations.

window. The time window specifies periods during which average power levels must meet

the cap. For example, if the given window is 100ms and the cap is 30W, RAPL promises

that every 100ms, the average power of the specified domain will not exceed 30W. RAPL

documentation is unclear about how these power limits are maintained, but our reverse

engineering shows that frequency scaling is at least part of their strategy. RAPL capping

overrides system frequency algorithms, but does allow idle states to be enabled.

Figure 6.10 shows the results of capping both sockets’ package power at various levels.

Initial experiments showed that useful package capping values fell between 30 and 10 Watts.

Only the 8 applications marked with a * in Table 6.1 were used for these results. Across

applications, capping traded modest (up to 11%) decreases in power for modest but slightly

larger (up to 20%) increases in runtime, resulting in a slight net energy increase. The graph

indicates that the power increases and runtime decreases were not quite monotonic as power

caps were lowered, but the slight up and down fluctuations are less than our error range at

1%, and thus should not be considered statistically significant.

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 138

6.5.4 Comparing Application-Specific to System-Level Strategies

We wrap up our study by showing how system-level strategies (frequency governors and idle

states) compare with application-level techniques (application-specific frequency tuning and

RAPL caps). The frequency governors, application-specific frequencies, and RAPL caps all

control the same knob of processor frequency, so these three strategies cannot be combined

and should be considered mutually exclusive. However, idle states can be combined with

all three forms of frequency tuning, and we noticed that toggling Turbo Boost on or off has

some effect on RAPL capping performance. For the five parallelizable applications marked

with * in Table 6.1, we set the compiler optimization level to -O3, and the thread counts

to 16 (note this deviation from the baseline of one thread; we return to unnormalized data

here) then ran multiple trials of the following configurations:

• 6 levels of RAPL caps × 2 idle settings × 2 turbo settings

• 12 application-specific frequency values × 2 idle settings

• 4 system frequency algorithms × 2 idle settings

This comes to a total of 56 configurations per application, each of which is plotted in the

power-performance graphs of Figure 6.11. A few insights immediately jump out. First, the

fastest configurations tend to take the most power, and overall, the majority of configu-

rations seem to make a strict trade of increased runtime for decreases in power. Second,

ocean cp trades off much less performance for power savings than the other three applica-

tions. Third, regardless of the configuration, turning idle states on has a positive effect on

power. Though it may not jump out of the plots immediately, idle states also save energy

for the majority of configurations.

Relative to the system default (i.e., the baseline), the number of configurations that save

energy varies significantly per application. For example, 50 of ocean cp’s 56 configurations

save energy, with the best saving 24%. However, for fluidanimate, just 12 configurations

save energy with the best saving only 5%. The lowest energy configuration for each applica-

tion varies as well: for ocean cp the best is to turn off idle states and minimize frequency,

while for fluidanimate and blackscholes it is idle states on and maximized frequency,

and for both radix and SPECjbb it is idle states on with RAPL caps set to 10W and

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 139

no Turbo Boost. These results show that while the power savings trends of each strategy

may hold across applications, the performance tradeoffs can vary, resulting in unpredictable

energy effects.

6.6 Related Work

In the most comprehensive prior study of energy efficiency techniques, Esmaeilzadeh et

al. [56] examined the power-performance tradeoffs of different microarchitectural features in-

cluding clock frequencies, memory hierarchy configuration, and hardware parallelism. While

the two studies overlap in some dimensions (parallelism, frequency tuning), ours explores a

wider variety of software techniques, for the first time allowing direct quantitative compar-

isons between energy efficiency solutions at different layers of the stack.

Several other studies also compare multiple hardware-level energy efficiency techniques.

Patki et al. take an HPC perspective, examining how overprovisioning techniques (such as

overclocking) and power capping can help improve supercomputers’ efficiency [190]. Subra-

maniam and Feng combine RAPL capping with a variety of server load inputs to see how

well RAPL can provide energy proportionality (i.e., similarly efficient execution for different

levels of server utilization) [233]. Le Sueur and Heiser examine the effects of DVFS and idle

states across multiple processor generations [140], finding that newer processors see smaller

energy benefits from frequency scaling. None of these works compare the hardware-level

techniques to higher level software techniques as we do.

Like ours, Schone et al.’s experiment space includes processor level DVFS, different

degrees of parallelism, and overclocking [210], but their study measures the impact of these

techniques on memory and last level cache bandwidth only. The relative energy savings

of multiple software-level techniques are compared in just a few prior works. Most are

either qualitative (e.g., [59]), or focused exclusively on compiler or application-level energy

management strategies [104, 171]), without linking those techniques to the system-level as

this study has.

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 140

6.7 Limitations and Future Work

The experimental survey of software–level energy management solutions presented here is

the most thorough published work in the area, but there are still opportunities for plenty

of future work.

Compare more energy solutions. Beyond the nine explored energy management tech-

niques, there are many additional energy management solutions discussed in literature or

available as open source tools. Future work could continue to compare and combine other

energy strategies to those presented in this work.

Investigate cross–language energy differences. We did not examine the energy ef-

fects of the same algorithm being implemented in different languages. Such a future inves-

tigation would need to be nuanced to pick apart the energy losses or gains involved in not

only the implementation of the language itself, but also of the types of choices developers

make when writing an algorithm in different languages — for example through the use of

iterative versus recursive solutions or procedural versus object-oriented program structures.

Examine effects of different benchmark inputs. While we did study a breadth of

benchmarks in this work, we did not examine the effects of different benchmark inputs.

Different inputs could have a significant effect on the energy use of an application, and it

would be worth investigating whether this effect impacts the efficacy of different kinds of

energy saving strategies.

6.8 Discussion

Energy management has become a large field in recent years, with work spanning all levels

of the stack. The broad interest in energy-efficiency has caused fragmentation: most man-

agement strategies are not compared against each other – especially those at different levels

of the stack – and most research papers do not quantitatively or even qualitatively address

how their work will combine with existing strategies. As a first step to bridging these dis-

continuities, this experimental survey directly compared and combined nine existing but

CHAPTER 6. ENERGY EFFICIENCY ACROSS THE STACK 141

previously uncontrasted energy management strategies.

CHAPTER 7. NRG-LOOPS 142

Chapter 7

NRG-Loops

For the final project of this dissertation, we demonstrate how feedback–directed optimiza-

tions within software can allow applications to have a more active role in reducing inef-

ficiencies. Specifically, we introduce a new language extension called NRG-Loops,1 which

allows an application to manage its own power and energy consumption through dynamic

adjustments to functionality, performance, and accuracy. The adjustments, which come in

the form of truncated, adapted, or perforated loops, are conditionally enabled as runtime

power and energy constraints dictate. NRG-Loops are portable across different hardware

platforms and operating systems and are complementary to existing system-level efficiency

techniques, such as DVFS and idle states. Using a prototype C library supported by com-

modity hardware energy meters (and with no modifications to the compiler or operating

system), this chapter demonstrates four NRG-Loop applications that in 2-6 lines of source

code changes can save up to 55% power and 90% energy, resulting in up to 12X better

energy efficiency than system-level techniques.

7.1 Introduction

Computer scientists were concerned about power consumption when the Eniac was built

in 1946 [158], and since then, concerns have only increased as power overconsumption

1This work was previously introduced in a conference publication [117] and earlier versions of this work

appeared as a tech report [114] and as a workshop paper [116].

CHAPTER 7. NRG-LOOPS 143

threatens to have significant financial and environmental consequences. Although power

and energy efficiency have traditionally been considered an issue for only hardware and

operating systems to handle, energy efficiency concerns are slowly creeping up the stack and

becoming a problem for application software to address as well. In 2011, 70% of returned

Motorola devices were due to battery life complaints attributable to applications [69], and

new power monitors — such as the OS X Battery Status Menu — allow end-users to see

which applications are to blame when power consumption is high.

While power efficiency is important, it does not yet trump runtime efficiency. Unfortu-

nately, runtime performance and power efficiency are often at odds, and balancing the two

needs simultaneously is a challenge. Until recently, a choice had to be made at hardware

design time between optimizing for higher performance or for lower power. Now, instead of

preselecting the tradeoffs, computer architects build in the option to dynamically tune hard-

ware resources at runtime, so that hardware may switch between performance-aggressive

and power-saving states, or to various states in the middle of those two goals. The different

balances of power and performance can be adjusted through a wide menu of power manage-

ment controls that include changing processor or memory voltage and frequency (DVFS),

temporarily overclocking or putting processors into idle states, and choosing from one of

multiple asymmetric multicores.

These system-level knobs are controlled by operating systems, runtime software, and

compilers. A key downside of system-level knobs is that they must be tuned conservatively

to avoid disturbing the performance and accuracy of overlying programs. In typical uses,

even mildly power-saving states are entered only when the hardware is completely unused

by overlying applications resulting in limited power and energy savings for active systems.

Another issue with system-level power techniques is that they must be applied to hardware

constructs — for example, voltage must be scaled for an entire socket or at least an entire

processor core — which is not suitable when multiple applications share a hardware context

through multiprogramming or simultaneous multithreading.

To achieve more aggressive energy savings, programs must introduce their own application-

level knobs. Tough decisions about when it is appropriate to trade performance, accuracy,

or functionality for power and energy savings cannot be made by compilers or operating

CHAPTER 7. NRG-LOOPS 144

systems. They need to be internal to applications, and made on a case-by-case basis by

developers, as different applications may want to make syntactically and semantically varied

changes. For example, one application might choose to save power by adjusting its caching

strategies, while another might reduce thread counts, and another may choose to scale

down data structure sizes. However, to make power and energy efficiency trades, program-

mers need two types of support not presently available. First, they need runtime power

and energy usage statistics that are accessible to the program’s source code, in order to

evaluate when adaptations are needed, or even whether they are needed at all for a partic-

ular program execution. Second, they need language support that helps them incorporate

adaptations into source code simply but flexibly, without making assumptions about the

underlying platform so that applications remain portable.

This chapter provides for both of these needs through a set of language extensions

called NRG-Loops (pronounced “Energy Loops”). NRG-Loops let applications to set run-

time evaluated NRG-Conditions that dictate whether and when to make changes. NRG-

Conditions are used within annotated for loops, and ensure that applications make adjust-

ments only in the case that runtime power or energy use meets a specified budget. This

budget can be expressed in absolute Watts or Joules, or alternatively set relative to other

parts of the program (e.g., function foo is allocated 50% of the energy of function bar),

or relative to the system (e.g. 80% of the maximum system power). At runtime, the bud-

gets are compared to the accumulated energy or average power across loop iterations using

measurements abstracted from system hardware counters. When the budget is met, the

program dynamically truncates, adapts, or perforates the loop to begin reducing power or

energy use. NRG-Loop adjustments can be made in arbitrary application-specific ways, the

resulting code is portable to multiple systems, the savings are complementary to system-

level energy management techniques, and no compiler or operating system modifications

are required.

The primary contributions of this chapter are:

• A specification of NRG-Loops, a platform-independent C or C++ language extension

that lets applications trade performance, accuracy, or functionality only as dynamic

power and energy use necessitates (Section 7.2).

CHAPTER 7. NRG-LOOPS 145

• A prototype implementation of NRG-Loops, called NRG-RAPL, that utilizes hard-

ware power counters to implement the NRG-Loop syntax and semantics for a Lin-

ux/Intel platform (Section 7.3).

• Four case studies that demonstrate 10-90% energy savings and up to 55% power

savings by changing just 2-6 lines of source code per program (Section 7.4).

CHAPTER 7. NRG-LOOPS 146

NRG-

Condi-

tions

NRG_TOT_E <= <float > // in Joules

NRG_AVG_P <= <float > // in Watts

NRG-

Loops

NRG_TRUNC_for (<loop bounds > &&

<NRG condition >) {

// body

}

NRG_ADAPT_for (<loop bounds > &&

<NRG condition >) {

// original body

} NRG_ALTERNATE {

// alternate body

}

NRG_PROB_PERF_for (<loop bounds > &&

<NRG condition >;

PROB_SKIP=<float >) {

// body

}

NRG_AUTO_PERF_for (<restricted bound > &&

NRG_TOT_E <= <float >) {

// body

}

NRG-

Helpers

SYS_MAX_POWER

SYS_MIN_POWER

struct NRG_USAGE_INFO {

float energy;

float average_power;

float wall_time;

}

NRG_AUDIT {

// arbitrary code

} NRG_USAGE(NRG_USAGE_INFO* foo);

Figure 7.1: The NRG-Loops Syntax.

CHAPTER 7. NRG-LOOPS 147

7.2 NRG-Loops

NRG-Loops provide a simple, flexible interface for applications to modify their own perfor-

mance, functionality, and accuracy to save power and energy. The syntax of NRG-Loops

is purposefully brief to avoid a steep learning curve for users. This first version of NRG-

Loops extends C or C++ programs, but a similar paradigm could be developed for other

languages. This section describes the syntax and semantics of NRG-Loops, which consists

of several abstractions: NRG-Conditions, four types of for-loop directives, and a few helper

data structures and functions. To increase portability, NRG-Loops abstract away the un-

derlying measurements or models that collect power and energy usage statistics. Later,

Section 7.3 discusses one possible implementation of NRG-Loops that uses hardware power

meters to populate this information into the appropriate syntactic structures.

7.2.1 NRG-Conditions

NRG-Conditions enable programs to monitor accumulated energy or average power across

loop iterations, and then to react intelligently to these measurements at runtime. There

are two types of NRG-Conditions, as illustrated in Figure 7.1. The first type of condition,

NRG TOT E, checks if the total accumulated energy across loop iterations is less than or equal

to the given value of Joules. The right-hand side can be any expression that evaluates to a

floating point value. The second type of condition, NRG AVG P, checks if the average power

across loop iterations is less than or equal to the specified value in Watts, again expressed

as a floating point expression. An example NRG-Condition that limits power to 50 Watts

is: NRG AVG P <= 50.0.

Instead of setting NRG-Condition values in terms of absolute Watts or Joules, the

power or energy limits for one piece of code can alternatively be set relative to the amount

consumed by a different part of source code at runtime. For example, a user could write an

NRG-Condition that ensures a loop body in function bar() consumes at most the energy

that function foo() consumed: NRG TOT E <= foo energy.

The value of foo energy could be predetermined at development time, but more likely,

users will want to dynamically import such a value, because energy varies across platforms,

CHAPTER 7. NRG-LOOPS 148

inputs, and even different executions. Dynamic energy measurement is easy with the help

of NRG AUDITs, which enclose an arbitrary region of code in a pair of curly braces, as

shown in Figure 7.1. The enclosed code may perform any computation including spawning

threads and calling functions — even calling more NRG AUDITS. The audits record the energy

(in Joules), the average power (in Watts) and the wall time (in seconds) of the enclosed

region (and any child threads or functions) and deposit the information into a named

NRG USAGE INFO structure. For example, foo energy can be obtained as follows:

NRG_AUDIT {

foo();

} NRG_USAGE (NRG_USAGE_INFO* foo_usage);

float foo_energy = foo_usage ->energy;

7.2.2 Truncate Loops

NRG-Conditions serve as a secondary for loop bound (concatenated to the original loop

bound) for different types of NRG-Loops. The first type of NRG-Loop is called an NRG TRUNCATE for.

Continuing our foo() example, an NRG TRUNCATE for can be expressed as follows:

NRG_TRUNCATE_for (int i=0; i<N; ++i &&

NRG_TOT_E <= foo_energy) {

// do work u n t i l f oo energy exceeded

}

This directive tells the loop body to execute while both the original loop bound (int

i=0; i<N; ++i) and NRG-Condition (NRG TOT E <= foo energy) hold, and to stop exe-

cution otherwise. Like a regular loop bound, the NRG-Condition is checked only at the

beginning of a loop iteration, and thus will not stop a loop in the middle of an iteration,

even if the power limit or energy budget has already been exceeded. The user rather than

the NRG TRUNCATE for is responsible for any clean-up (e.g. releasing a lock, freeing memory,

closing files) that may be required as a result of exiting the loop early.

7.2.3 Adapt Loops

The next type of loop directive is an NRG ADAPT for. Like the truncate directive, it con-

catenates an NRG-Condition to the original loop bound. It also has the user add a second,

CHAPTER 7. NRG-LOOPS 149

alternate loop body that directly follows the first, is wrapped in brackets, and is preceded

by the NRG ALTERNATE keyword as shown in Figure 7.1 and the snippet below:

NRG_ADAPT_for (int i=0; i<N; ++i &&

NRG_TOT_E <= foo_energy) {

// do work u n t i l f oo energy exceeded

} NRG_ALTERNATE {

// do more energy e f f i c i e n t work

}

Execution of the original loop body continues while both the original loop bound and

the NRG-Condition hold. If the NRG-Condition breaks before the original bound, then

execution transfers to the alternate loop body. After the transfer, the alternate body

continues to execute until the original bound is met. Note that the original bound state (e.g.,

loop index value or i in then running example) is not reset upon transfer to the alternate

body. As with the truncate loop, NRG-Conditions are checked only at the beginning of

loop iterations and control is never transferred in the middle of an iteration. Again, any

required clean up relating to loop body transfer must be handled by the user.

In the case of an NRG AVG P condition, loop execution may transfer back to the original

loop body if the average power goes back below the specified limit after the alternate body

is executed for a time. This will not happen with an NRG TOT E condition, because total

energy increases monotonically.

7.2.4 Perforate Loops

Finally, there are two types of NRG-Loops that allow applications to perforate, or skip

select loop iterations. The first type, NRG PROB PERF for, executes normally until the NRG-

Condition bound is exceeded, then probabilistically skips iterations with a probability of the

specified PROB SKIP, which should be a floating point number between 0 and 1. For example,

if the user specifies PROB SKIP = 0.1 as in the following example, once the NRG-Condition

has been exceeded, 1 out of 10 future loop iterations will be skipped.

NRG_PROB_PERF_FOR (int i=0; i<N; ++i &&

NRG_TOT_E <= foo_energy;

PROB_SKIP = 0.1) {

// once NRG−Condition met , do work 9/10 times

CHAPTER 7. NRG-LOOPS 150

}

The second type of perforation is NRG AUTO PERF for. This type of NRG-Loop auto-

matically decides how many loop iterations to skip in order to meet a user-specified energy

budget. Unlike the other types of NRG-Loops, it does not support NRG AVG P and it restricts

the original loop bound to be of the form (int i=0; i<=N; ++i). For example:

NRG_AUTO_PERF_FOR (int i=0; i<N; ++i &&

NRG_TOT_E <= foo_energy) {

// do work , s k i pp ing an es t imated number o f

// i t e r a t i o n s to e x a c t l y match foo energy

}

These two restrictions allow the loop increment to be modified (e.g., change ++i to

i=i+2 or i=i+3, etc.) to keep the loop on target to consume no more energy than specified

in the NRG TOT E condition.

7.2.5 NRG Helpers

NRG-Loops also contains two helpers to assist users in choosing platform-independent NRG-

Condition values. The first helper, SYS MAX POWER, is a global floating point value that holds

the maximum power (in Watts) that the platform can achieve with all hardware threads

active. Similarly, SYS MIN POWER is a global floating point value that holds the minimum

power (in Watts) of the system when running essential services only (i.e., an idle operating

system). These two constants can be used within NRG-Conditions to further abstract NRG-

Loop code from a particular platform, for example, NRG AVG P <= 0.8*SYS MAX POWER.

7.3 NRG-RAPL

The first implementation of the NRG-Loops interface is a C library called NRG-RAPL.

It is named for its use of Intel’s Running Average Power Limit (RAPL) [45] counters to

profile energy. NRG-RAPL is portable and lightweight, utilizing commodity hardware and

requiring no operating system extensions or middleware. This section describes the library

implementation, including how NRG-Loops syntax is translated at the preprocessor level

into pure C (Section 7.3.1), how energy is profiled (Section 7.3.2), and how we attribute

CHAPTER 7. NRG-LOOPS 151

the hardware-level measurements to software constructs (Section 7.3.3). The tool usage

(Section 7.3.4) is also discussed.

7.3.1 Translating NRG-Loops

Since the NRG-Loops syntax is highly abstracted to minimize programmer effort, NRG-

RAPL’s first job is to translate the code into a pure C intermediate representation. Trans-

lation involves (1) accumulating energy or recording average power across loop iterations as

required, (2) checking this usage against the specified limits, and (3) adjusting the source

code as necessary. To collect power and energy data, the intermediate representation uses

the previously described NRG AUDIT helper and its NRG USAGE INFO structure.

Each kind of loop directive and type of NRG-Condition has its own intermediate repre-

sentation, so there are eight types of translations in total. Space prevents us from sharing

all eight, but as an example, here is the intermediate representation of an Adapt NRG-Loop

when an energy condition is used:

float NRG_BUDGET = 0.0;

for (int i = 0; i<N; ++i) {

if (NRG_BUDGET <= <float >) {

NRG_AUDIT {

// o r i g i n a l loop body

} NRG_USAGE(NRG_USAGE_INFO *use);

NRG_BUDGET += use ->energy;

} else {

// a l t e r n a t e loop body

}

}

The translated code starts the loop with its original bounds, inserting a check at the

top of each iteration to see if energy use has exceeded or met the user-specified budget. If

it has, control transfers to the alternate body through the use of an else statement. If

the budget has not been met, the original loop body runs — within an NRG AUDIT. The

recorded NRG USAGE INFO is accessed to update the budget based on the energy consumed

by the loop body.

CHAPTER 7. NRG-LOOPS 152

7.3.2 Profiling Energy and Power

Any power profiler or model could be used to collect energy and power within the audit

calls. There is some debate about the best way to monitor power and energy today, be-

cause techniques vary widely in terms of implementation complexity, precision, accuracy,

portability/availability, and scope of coverage (i.e., is only processor power being measured,

or the whole system’s power draw including any peripherals such as monitors?). Unfortu-

nately, no existing power measurement technique fares well in all of these categories. For

this implementation, we chose to use a combination of hardware power meters and operat-

ing system usage statistics that performs at least reasonably in each of the categories and

has been shown to be among the most accurate techniques for measuring power [204], and

has been used in several previous works (e.g., [214] and [263]).

Hardware meters supplement power measurements with event-based linear models that

are periodically re-calibrated. Meters are conveniently found in widely available server SoCs

such as the Intel SandyBridge and the IBM POWER7, and have recently been introduced

to mobile devices. The meters can cover a large portion of computation, accounting for

processor, interconnect, cache, and DRAM power and energy. However, with update fre-

quencies on the order of 1ms, they are not terribly precise and have been shown to have

occasional modeling errors [160]. Other drawbacks are that the meters are small and over-

flow frequently, and that they currently exist only at the granularity of a whole socket, which

can contain multiple CPUs running many concurrent processes, making it a challenge to

attribute power measurements to individual processes and threads.

7.3.3 Energy Accounting in NRG-RAPL

NRG-RAPL’s energy accounting fixes the overflow and hardware meter granularity prob-

lems, and reduces the overheads involved in dynamic profiling by combining meter reads

across multiple concurrently running audit functions. When the application has one or more

audits open, NRG RAPL spawns a single monitoring thread (regardless of the number of

active audits) to periodically sample:

• Esys: a system-wide energy reading obtained from RAPL counters for all sockets

CHAPTER 7. NRG-LOOPS 153

• Usys: system-wide CPU time from /proc/stat

• Utid: CPU time for each application thread tid from

/proc/<pid>/tasks/<tid>/stat

The frequency of these readings is configurable, but RAPL samples must be taken frequently

enough to provide good precision and to detect overflow — the RAPL counters overflowed

roughly every 10-20 seconds on our experimental machine — yet not so often that profiling

results in excessive overhead. Sampling at 100 Hz strikes a good balance between these

constraints on our machine, yielding reasonable precision with negligible time or power

overhead above the unmonitored application.

As every ith sample is recorded, NRG-RAPL decomposes it into individual measure-

ments for every active thread tid according to the following equation:

Etid,i =
Utid,i−Utid,i−1

Usys,i−Usys,i−1
× (Esys,i − Esys,i−1)

This divides the measured energy values amongst running threads according to CPU uti-

lization. Thus, should another thread or co-running application run up Esys, that usage

will not be charged to tid.

In addition to the profiling samples, NRG-RAPL maintains an application thread tree

by interposing on calls to pthreads which create or destroy threads. It also maintains

information about the nested structure of the audits created per thread by reading the

opening and closing brackets surrounding audits in the intermediate translations of NRG-

Loops. Combining the active thread and audit information with Etid,i measurements, NRG-

RAPL fills in usage records of any open audits of the thread tid and its ancestors.

7.3.4 Usage Logistics

After a user adds NRG-Loop directives to their application, he or she must link against

NRG-RAPL (i.e., -lnrgrapl), and ensure that the NRG-RAPL shared object file is loaded

first (i.e., via LD PRELOAD or LD LIBRARY PATH). The only other requirement of the current

implementation is that, once compiled, the application be executed by a sudoer. This is

because Linux does not currently expose even read-only access of the RAPL registers to

CHAPTER 7. NRG-LOOPS 154

non-sudoers. This work is just one example of why it would be beneficial for Linux to do

so in the future.

7.4 Case Studies

This section demonstrates the potential of NRG-Loops and the immediate utility of NRG-

RAPL with four case studies that: maintain an energy budget by trading-off video quality

(Section 7.4.1), respect a power cap by reducing parallelism (Section 7.4.2), save power by

approximating a mathematical algorithm (Section 7.4.3), and keep a third-party advertise-

ment’s power use in check (Section 7.4.4). The NRG-RAPL instrumentation adds minimal

energy, power, and runtime overhead to these applications (Section 7.4.5).

The experimental platform is a dual socket Dell PowerEdge R420 server with Intel

Sandybridge E5-2430 processors, each with 6 cores, 12 hardware threads, and 24GB of

DRAM (for a machine total of 12 cores, 24 threads, and 48GB DRAM). The machine runs

Linux kernel version 3.9.11 and Ubuntu 12.04.2. Intel sleep states [182], Turbo Boost [35],

and the ondemand frequency governor [183] are turned on for all the experiments to demon-

strate that NRG-Loops complement and extend the savings of existing system-level energy

management techniques.

7.4.1 Perforate: Bodytrack

Sometimes the best strategy to meet high computational demands under strict energy bud-

gets is to reduce the accuracy of application services provided. To demonstrate real-world,

application-level accuracy tradeoffs, we augmented the bodytrack application from the

Parsec benchmark suite [21]. Bodytrack tracks the poses of a person recorded on multiple

video cameras; the majority of this work occurs in a for loop within the main function,

which processes frames one at a time. We perforated this loop using both types of NRG

perforation loops. For the first type of perforation, we varied the probabilistic percentage

of loops a user might choose to skip from 0 to 75% by modifying the MY PROB variable in the

code below. Note that the NRG-Condition is somewhat of a no-op in this example, telling

the code to start perforating when energy use is greater than or equal to zero; we did this

CHAPTER 7. NRG-LOOPS 155

to make the numbers comparable to our next experiment.

NRG_PROB_PERF_for (int i=0; i < frames; ++i &&

NRG_TOT_E <=0; PROB_SKIP = MY_PROB) {

// DO FRAME PROCESSING

}

0 %

20 %

40 %

60 %

80 %

100 %

5% 10% 20% 50% 75%

W
h

o
le

 P
ro

g
ra

m
E

n
e

rg
y
 S

a
v
in

g
s

Perforation Rate

0 %

20 %

40 %

60 %

80 %

100 %

10000 7500 5000 2500 1000
W

h
o

le
 P

ro
g

ra
m

E
n

e
rg

y
 S

a
v
in

g
s

Energy Budget (Joules)

Figure 7.2: An NRG Perforate Loop augments bodytrack to (left) drop different specified

percentages of frames to save energy, or (right) maximize quality without exceeding various allocated

energy budgets.

Varying the probability of perforation (to 0.05, 0.1, 0.2, 0.5, and 0.75) produces the

whole program energy savings shown to the left of Figure 7.2 when bodytrack is run with an

input size of native and the -O3 compiler flag is enabled. Unsurprisingly, as more frames are

skipped more energy is saved, ranging from 3.9% savings when 5% of frames are dropped to

74% savings when 75% of frames are unexecuted. Of course, in most applications skipping

75% of the work is not reasonable. Developers will have to decide how many frames it

makes sense to trade for energy, but at least with NRG-Loops they can now reason about

the energy values of these tradeoffs and easily affect the changes they want to make at

runtime, incorporating dynamic conditions such as changing inputs into their decision.

The second way to initiate perforation changes in a program using NRG-Loops is to

set a total energy budget. This may be preferable in situations where the developer knows

exactly how much energy they need to save, and is flexible about the number of frames

skipped. Adding this kind of NRG-Loop to a program is as easy as choosing the BUDGET to

spend, connecting the library, and modifying a single line of source code:

NRG_AUTO_PERF_for (int i=0; i < frames; ++i &&

NRG_TOT_E <= BUDGET) {

// DO FRAME PROCESSING

CHAPTER 7. NRG-LOOPS 156

}

To find appropriate possible BUDGETs, we first used an NRG AUDIT helper to determine

the overall energy consumed by the program, which is approximately 9600 Joules on our

machine. The right side of Figure 7.2 shows the percentage of energy saved when the

BUDGET is set to 10,000, 7500, 5000, 2500, and 1000 Joules, and the framerate is adjusted

automatically by the NRG Perforate Loop to meet these budgets. Even though 10,000 is

above the un-budgeted, original program’s energy, there is still a little savings because the

NRG-Loop drops a few early frames before it is sure that the target budget will be met.

For lower budgets, even more frames are dropped throughout the loop’s iterations, and the

energy savings are accordingly higher — up to 89.8% when the budget is set to 1000 Joules.

7.4.2 Adapt: Parallel Substring Search

For safety reasons and to prevent overheating, hardware enforces a hard power cap. Called

a TDP, or thermal design point, this upper bound for power varies by architecture, and

in practice may never be reached thanks to efficient cooling strategies. For example, on

our experimental machine, which has a 190W TDP, we never observed a peak power of

more than 120W even with all 12 cores fully utilized. Despite this, there are numerous

reasons one may wish to cap an application’s power below the TDP, for example to make

datacenter energy expenses more predictable and affordable, to allow more headroom under

the TDP for applications sharing a machine, or to throttle usage when the power supply is

intermittent or variable as with RFID harvesting [49], solar [229], or kinetic [105] sources

of energy. We call these sub-TDP power caps soft power caps.

Several existing tools tune hardware and operating system resources to enforce user-

specified soft caps, using techniques such as DVFS, thread mapping, and asymmetric hard-

ware [40, 99, 208]. The soft caps provided by these tools are hardware-centric, and thus

applied to specific hardware components such as a single core, a socket, or a whole machine.

In contrast, NRG-Loops enable soft caps on software entities, specifically those encased by

for loops.

Software-centric power caps can be simply implemented using the NRG ADAPT for direc-

tive. To compare system-based soft caps to NRG Adapt Loop-based soft caps, we imple-

CHAPTER 7. NRG-LOOPS 157

mented a C++ benchmark that searches many long base strings for a particular substring

match. Substring searching is used in many important real world applications, such as

genomic analysis and satellite image processing. For faster throughput, base strings can be

searched in parallel by multiple software threads. And, since parallelism is highly corre-

lated with power [115], we opted to use dynamic adjustments to the degree of parallelism

to regulate the application’s power and enforce the soft cap.

The code that follows shows how NRG-Loop annotations can be added to the benchmark

to enforce a user-specified cap at SOFT CAP Watts.

NRG_ADAPT_for (int i=0; i<STRINGS_TO_CHECK; ++i &&

NRG_AVG_P <= SOFT_CAP) {

if (num_threads < MAX) num_threads += 2;

// num threads search concurren t l y f o r s u b s t r i n g

} NRG_ALTERNATE {

num_threads -= 2;

if (num_threads < MIN) num_threads = MIN;

// num threads search concurren t l y f o r s u b s t r i n g

}

As the benchmark searches base strings with num threads threads, an NRG ADAPT for checks

that average power stays below the SOFT CAP. If it does not, control shifts to the alternate

loop body, where the thread count is decreased by 2, and a check for over decrementing

is performed to ensure that num threads is at least a MIN number of threads (in our ex-

periments, 2). Afterwards, the smaller num threads search for the substring just as in the

original loop body. Finally, in case the average loop power happens to go back above the

SOFT CAP, execution will automatically return to the original loop body, so we also added

a line of code to the original body that increments the threads back up by 2 to increase

search speed.

In the code snippet, SOFT CAP is expressed as an absolute value, but it could also be

expressed relative to the system maximum using the helper described in Section 7.2.5, for

example: #define SOFT CAP 0.5*SYS MAX POWER.

We compare the NRG-Loop solution against Intel’s RAPL and DVFS-based power cap-

ping tool, Intel Power Governor [46], which is an example of system-only soft caps. The

tool lets users limit power across three domains per socket: power plane 0 (PP0) which

CHAPTER 7. NRG-LOOPS 158

includes cores and private caches, the package (PKG) which includes all PP0 elements as

well as alternate processing units such as GPUs and shared caches, and DRAM. The user

selects one or more of these three domains to cap, then gives the Power Governor interface

a specific power value in Watts to limit each domain to, as well as a time window in mil-

liseconds over which the running average power must not exceed the cap. As an example,

if the time window is 100ms and the cap is 30W, RAPL promises that for every 100ms, the

average power of the target RAPL domain will not exceed 30W. Because RAPL caps are

enforced in multiple domains, getting our benchmark to respect an overall soft cap required

tuning all the individual settings. For example, to get the program to run within a soft cap

of 55 Watts, the RAPL PKG cap had to be set to 45 Watts, and the other two domains

had to remain uncapped. To get the program to run within a soft cap of 40 Watts, we had

to set the PKG cap to 15 Watts and the DRAM to 15 Watts and disable Turbo Boost.

Such device and system-specific tuning is probably more than most software developers will

wish to take on, particularly as the settings must be re-tuned for each soft cap, application,

device, and, potentially, input.

0%

100%

200%

300%

400%

500%

30 35 40 45 50 55 60 65

E
n

e
rg

y
 R

e
la

ti
v
e

 t
o

 U
n

c
a

p
p

e
d

Soft Power Cap (Watts)

1243%

NRG-Loops
Intel Power

Governor

Figure 7.3: NRG Adapt Loops can meet a preset power budget by adjusting application-internal

thread count, analogously to the Intel Power Governor tuning DVFS. For the string matching appli-

cation shown, NRG-Loops can set a broader range of caps (Power Governor caps could not be used

below 45 Watts), and required up to 12X less energy to enforce them.

Figure 7.3 shows the energy impact on the substring search benchmark when NRG-

Loops and the Power Governor enforce a range of soft caps between 30 and 65 Watts. In

CHAPTER 7. NRG-LOOPS 159

each experiment, the maximum thread count is set to 12, the number of base strings to 12

thousand, and the length of each base string to 5 million. Each bar reports the program

energy at a particular cap relative to the energy of the uncapped program, which maximizes

performance by running continuously with 12 threads. For the NRG-Loop soft caps, the

reduced power was always almost exactly offset by the increase in runtime due to decreased

parallel processing. Thus, the total energy was roughly equivalent to the peak performance

energy, regardless of what cap was set.

The same was not true for the Power Governor caps. First, no Power Governor cap

setting could produce a soft cap below 45 Watts. Even at 45 Watts, the Power Governor

struggled to maintain the soft cap, significantly increasing runtime so that the energy con-

sumption was more than 12 times both the uncapped program and the NRG Loop-based

cap. For the 50 Watt Power Governor soft cap, the energy consumed was still 2X the un-

capped energy. Only at the 60 Watt cap, as the program neared its uncapped power of 63

Watts, were Power Governor caps finally able to keep energy within 4% of uncapped.

At least for this application, NRG-Loops worked better than system capping in two

ways. First, once we added the 7 lines of code above to the program, setting a new cap was

as simple as passing a new value for SOFT CAP); far preferable to the complicated tuning

required to set the Power Governor caps. Second, the NRG-Loop based caps offered a

broader range of viable power caps than Power Governor, often at a significantly lower

energy consumption.

7.4.3 Truncate: Streamcluster

Algorithms sometimes spend valuable energy converging to a perfect solution when an

approximate solution is good enough. The streamcluster application from the Parsec

benchmark suite [21] is one example of this. Streamcluster is a data mining/pattern recog-

nition application that solves the online clustering problem, assigning a stream of input

points to their nearest center [181]. Misailovic et al. identified a loop within the pFL func-

tion that can be approximated: if given fewer iterations, the number of centers that the

program considers clustering the data around will be decreased, possibly without detriment

to a final solution [164].

CHAPTER 7. NRG-LOOPS 160

0%

5%

10%

15%

20%

25%

675 650 625 600 575 550

W
h

o
le

 P
ro

g
ra

m
E

n
e

rg
y
 S

a
v
in

g
s

Energy Budget for
Inner Loop of pFL (Joules)

Figure 7.4: NRG Truncate Loops estimate a mathematical clustering algorithm within

streamcluster to save various amounts of whole program energy depending on the degree of ap-

proximation.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

E
n
e
rg

y
 (

J
)

Game time (s)

Unrestricted Ads

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

E
n
e
rg

y
 (

J
)

Game time (s)

Restricted Ads

Game
Ad

Figure 7.5: A minesweeper game uses NRG-Adapt Loops to prioritize game power over

third-party advertisements. Run unchecked, the ads sometimes consumes more power than the

game, but NRG-Loops can force the ads to occasionally pause, decreasing net game+ad energy.

In the Misailovic et al. work, the authors tried to guarantee minimal disturbance to

an ideal solution, so they conservatively perforated the loop. In a scenario where overall

energy savings is more important that guaranteeing a near-perfect outcome of the algorithm,

a truncating NRG-Loop may be appropriate. Truncating the inner-loop of pFL with NRG-

Loops is as simple as including the NRG-RAPL header file and modifying the original for

loop to include an extra NRG-Condition:

float pFL (<args >) {

NRG_TRUNCATE_for (i=0; i<iter; ++i &&

NRG_TOT_E <= BUDGET) {

// COMPUTE CLUSTER VALUE

CHAPTER 7. NRG-LOOPS 161

}

}

To determine the potential whole program energy savings of truncating the loop, we ex-

perimented with different values assigned to the BUDGET variable in the NRG-Condition.

To find a baseline for our experiments, we first used an NRG AUDIT and discovered that,

when run with native inputs, the inner loop consumes anywhere from 600 to 733 Joules to

complete all of its iterations. With a BUDGET value of 675 Joules (which is in the range of

un-truncated consumption and therefore most likely affects program accuracy minimally),

NRG-Loops provides a whole program energy savings of 3.5%, as shown in Figure 7.4. Re-

ducing the energy of the inner loop further — down to 550 Joules — results in a whole

program energy savings of over 20%.

7.4.4 Adapt: Minesweeper and Advertisement

Free applications comprise 91% of the mobile marketplace [76], and 77% of the top free

applications in the Google Play store are advertisement supported [142]. Moreover, third-

party ads may consume as much as 65-75% of the total mobile application energy [185].

These numbers indicate that developers and mobile providers alike have an incentive to

ensure that mobile ads consume only their fair share of energy.

While operating systems could be tasked with moderating ad energy use, that would

take valuable control away from developers. Instead, NRG-Loops make it simple for devel-

opers to moderate ads on their own terms using familiar programming techniques even if the

advertisements are written by third-parties and have unpredictable demands. To demon-

strate this, we introduced NRG-Loops into a text-based minesweeper game [152] that calls

a simulated advertisement. The advertisement in this experiment is a separate pthread that

performs computationally and I/O intensive busywork. The minesweeper game has poten-

tially long rounds of play with varying durations depending on live user interactions. To

keep the advertisement’s power in check, we converted the code that calls the advertisement

into an Adapt NRG-Loop that pauses the ad for PAUSE TIME microseconds if it consumes

more than a given POWER LIMIT:

NRG_ADAPT_for (int i=0; i<MAX_ADS; ++i &&

CHAPTER 7. NRG-LOOPS 162

NRG_AVG_P <= POWER_LIMIT) {

// run ad normal ly

} NRG_ALTERNATE {

usleep(PAUSE_TIME);

}

Figure 7.5 shows resource measurements of two versions of the game being played by a

real user. The first version (at left) does not restrict ad energy, while the second version

(at right) restricts advertisements with the PAUSE TIME set 2 seconds and the POWER LIMIT

to 20 Watts. Both graphs show the energy in Joules consumed by the minesweeper game

in two second intervals over 30 total seconds of play, and the energy of the advertisement

recorded at each iteration of the above for loop. Fluctuations in the game energy (solid

red series) are a result of dynamic user interactions. In the unrestricted ads version, the

advertisement energy (dashed blue series) regularly consumes more than half of the energy

of the game, and sometimes even exceeds the game’s energy. In the restricted version of the

game, the ads are periodically paused to respect the power limit. Together the unrestricted

game and ads consume an average of 72 Watts, while the restricted game and ads consume

only an average 54 Watts together.

7.4.5 Overheads

To find the overheads of NRG-RAPL, we compared the applications’ runtime, power, and

energy with no NRG-Loops annotations versus with annotations added but dynamic modi-

fications disabled (i.e. the frame skip probabilities were set to zero, and the energy budgets

and power caps were set to unattainable levels). We then used a standalone RAPL monitor

thread to measure 10 trials of the programs running on the opposite chip socket so that the

power and energy consumption of the monitor itself would not be counted. Across trials

and benchmarks, the maximum energy increase was 0.6%, the maximum power increase

was 0.1%, and the maximum runtime increase was 1.4% (on average, -0.4%), indicating

that NRG-RAPL has a very limited affect on program performance. These overheads do

not include the minesweeper game, because the live user interaction makes the energy usage

and runtime highly variable.

CHAPTER 7. NRG-LOOPS 163

7.5 Related Work

Energy management is an established and crowded field. This section contextualizes NRG-

Loops within this large body of work, relating it to examples of different categories of

efficiency techniques: system-only management techniques, those that use application hints

or both application hints and exposed knobs.

System-Only Management. Most energy managers operate entirely at the system level,

with the system both offering the energy conserving knobs and initiating the action to tune

them. Modern systems offer many knobs, including DVFS, overclocking, idle states, ad-

justable DRAM refresh rates, asymmetric multicores, configurable floating point widths,

and dynamic adjustments to LED screens [52]. These knobs let the system avoid using

and paying for any more resources than necessary to maintain performance and accuracy,

but must be conservatively tuned to avoid performance or accuracy hits to overlying ap-

plications. Projects that fall into this category including Linux’s cpufreq and cpuidle

governors [28, 182], PowerAdvisor [260], Pack & Cap [40], computational sprinting [196],

and a tool for optimizing dynamic backlight scaling [146].

Application Hints. Another category of energy management tools adds application hints

to help manage system resources. These tools use annotations or new languages to denote

regions of code for which it is safe to optimize power while potentially reducing perfor-

mance or accuracy. To make the adjustments or approximations, they rely on the same

set of system-level knobs as tools in the previous category, though those knobs may now

be tuned more aggressively. For example, EnerJ [207] is a language where the type system

indicates which program values can tolerate imprecision for subsequent approximation by

the runtime system. Some of the other techniques in this category include architecture

support for disciplined approximate programming [57], Flikker [147], Eon [229], and the

Latency, Accuracy, Battery abstraction [123].

Application Hints & Exposed Knobs. A third category of work lets the application

expose internal knobs (most commonly, loop perforation), but ultimately relies on the sys-

CHAPTER 7. NRG-LOOPS 164

tem to decide when and by how much to tune those knobs. Examples include PowerScope

used with the Odyssey OS [63], GRACE-2 [247], PowerDial’s Dynamic Knobs [87], the

Green framework [11].

Application-Only Management. NRG-Loops comprise a new category of management

solutions, that allow applications to tune their own knobs from within themselves. There

are several important benefits to forgoing system involvement. First, application-only man-

agement provides transparency and control to the programmer, which beats hoping for a

system’s “best effort” of efficiency. Additionally, application-only management does not

require modifying the operating system, meaning that updating new application knobs is

simpler. Finally, application-only management is portable — the source code is not tied to

specialized systems, and thus program annotations do not need to be revised to execute on

new platforms.

7.6 Limitations and Future Work

There are a few limitations to the NRG-Loop work that could be addressed in future work;

we discuss them in the following paragraphs.

Language and Platform. NRG-Loops are currently only supported within C and C++,

and on machines that can dynamically measure power usage. However, with extra imple-

mentation effort, the NRG-Loops paradigm could be extended to work with other popular

languages, such as Java and Python. Additionally, while today’s mobile phones do not

typically provide power measurements accessible to user-space, we believe that this will be

a common feature in the near future.

Measurement precision. RAPL registers are updated every 1ms and the CPU usage

every 10ms (at 100 jiffies/sec), so NRG-RAPL cannot audit sub-10ms windows of execution.

However, since the application must adjust loops that represent large chunks of execution

to make a difference in energy consumption, this may not be a practical limitation. In the

case studies presented in the next section we had no problems with precision.

CHAPTER 7. NRG-LOOPS 165

System coverage. The specifics of the power model remain, by design, orthogonal to

the NRG-Loop interface, with the expectation that as power models improve and energy

meters become more pervasive, the availability and quality of power information provided

through the NRG-Loop interface will only improve. For example, in smartphones, many

non-processor resources such as the network and backlight account for a significant portion

of smartphone power draw. To the extent that their energy usage is exposed, it can be

incorporated into improved implementations of the NRG-Loop interface.

Library Preemption. With a user-level library like NRG-RAPL, it is possible that the

monitor thread could be preempted or delayed, thus creating irregular profiling samples.

However, Linux never stalled the monitor in any of our experiments, including stress tests

with more than 100 busy application threads. On extremely busy systems, it may be

necessary for monitor threads to be granted a higher priority so that they are not preempted.

7.7 Discussion

In most previous work, the operating system or specialized hardware took sole responsibility

for managing power and energy efficiency. In contrast, NRG-Loops enable applications to

have a more active role in reducing efficiency, resulting in more control for programmers.

Additionally, this chapter showed that application-only management is not only complemen-

tary to system-level management, but that is also portable, simple, and effective — saving

up to 55% of whole system power and up to 90% of system energy with just a few lines

of source code modifications. All of the benefits of NRG-Loops are immediately available

through an open source, software-only C library (NRG-RAPL) which runs on commodity

hardware and does not require changes to the operating system or a new runtime system.

CHAPTER 8. CONCLUSIONS 166

Chapter 8

Conclusions

As computing systems become more diverse, it is increasingly difficult to match arbitrary

software to general purpose hardware in an optimally performant and energy efficient man-

ner, even with the help of sophisticated compilers and operating systems. This dissertation

explained why this mismatch is a significant problem, demonstrated some cases where the

mismatch caused losses in efficiency, and presented five case studies that use new measure-

ment techniques and methodologies to improve the efficiency of contemporary computer

systems.

8.1 Summary of Findings

The five ideas presented in Chapters 3-7 support this dissertation’s thesis that measurement

can mitigate inefficiencies. The projects used different types of new and existing measure-

ment technologies to understand efficiency behaviors at the intersection of hardware and

software, and to direct users towards the construction of more efficient general-purpose

systems. Below, we summarize the findings of each project.

Parallel Block Vectors Chapter 3 explored efficiency issues that arise as a result of

parallel computing. To do so, it introduced a new way of examining parallel program

performance, called PBV profiles. Unlike existing profiles which examine parallel programs

from the perspective of a thread or process, PBV profiles count runtime statistics per basic

CHAPTER 8. CONCLUSIONS 167

block and per parallelism phase. The fast collection of PBV profiles (enabled by the new

Harmony tool), coupled with detailed dynamic information about program behavior, makes

parallel block vectors broadly useful. This chapter demonstrated a few ways in which PBV

profiles can help identify inefficiencies in past program executions— pinpointing the very

small regions of code where they occur — and also discussed and demonstrated methods for

optimizing both hardware and software to reduce inefficiencies in future program executions.

Datacenter-Wide Application Interference Chapter 4 moved beyond single machine

parallelism to discuss inefficiencies that arise as a result of CMP and SMT parallelism in the

context of a distributed datacenter. The chapter discussed the challenges involved in pre-

dicting, measuring, and correcting datacenter–wide efficiency issues, with a particular focus

on application interference. The chapter went on to suggest a collection of measurement

techniques to work around the identified complexities and to work towards understanding

interference between datacenter applications. A proof-of-concept implementation and an

application interference study on production Google servers revealed application interfer-

ence “in the wild” on 1000 12-core machines running live commercial datacenter workloads.

In addition to demonstrating the feasibility of measurement and the presence of real world

application interference, this chapter outlined a couple of procedures to reduce this specific

kind of inefficiency.

Speedy GPGPU Design Chapter 5 showed how inefficiencies can be avoided at hard-

ware design time with hardware–software co-design. Specifically, this chapter took three

steps towards speeding up the design of GPUs for computational workloads. First, it intro-

duced a new, fast GPU profiling tool called GT-Pin, which measures a variety of instruction-

level performance factors of applications as they run natively on existing GPUs, helping to

identify a variety of inefficiencies. Next, the chapter showed a characterization by GT-Pin

of 25 very large OpenCL benchmarks, exploring several features relevant to GPU design.

Finally, it introduced a method to expedite cycle-accurate performance simulations of very

large, real–world computational applications on general purpose graphics processing units,

thus making it simpler to avoid efficiency issues at the hardware design stage.

CHAPTER 8. CONCLUSIONS 168

Energy Efficiency Across the Stack Chapter 6 shifted focus to power– and energy–

inefficiencies. The project in this chapter involved understanding and evaluating a growing

body of software-level solutions for reducing energy–inefficiencies, and reporting the results

of an experimental survey that compared and combined 220 combinations of such solutions.

The work prompted a number of suggestions and directions for future energy research,

particularly for software-controlled energy management.

NRG-Loops Chapter 7 introduced a method for correcting energy–inefficiencies “on the

fly” within a programming language, without compromising the portability of applications

to different platforms. The new NRG-Loop language extensions enable this by allowing

applications to conditionally adapt their own performance, accuracy, or functionality, when

runtime measurements indicate that their execution has exceeded preset power limits or

energy budgets. This chapter demonstrated that, among other adaptations, applications can

cancel unnecessary work, estimate mathematical solutions, adjust framerates, or decrease

internal parallelism to save power and energy on general purpose systems.

8.2 Looking Forward

The research conducted for this dissertation has uncovered a few takeaway lessons for the

community, as well as some research areas in need of future attention.

Power consumption needs to be a focus across the system stack. Currently,

most consider power aand energy consumption to be a problem that should be solved

exclusively at the level of hardware and the circuitry. However, it is important for all systems

researchers from programming languages and compilers researchers to system researchers

and computer architects to care about power and energy consumption for several reasons

including environmental sustainability, financial expenses of computing, and device battery

life.

A couple of ideas for improving power and energy efficiency emerged as we conducted

the energy survey in Chapter 6. For example, development aids that help programmers

write energy efficient code could overcome multiple issues including the difficulty of manual

CHAPTER 8. CONCLUSIONS 169

power optimization, the special needs of object-oriented programs [20], and the inflation in

energy caused by IDE programming [30]. There is also a need for power aware compiler

optimizations, since present optimizations have minimal effect on power. Machine-specific

power optimizations may be especially timely, with mobile devices such as Android moving

to ahead-of-time byte code compilation [144].

Adequate measurement and tuning support must be provided. One of the chief

reasons researchers today are not focusing on power and energy consumption is a dearth of

good measurement and modelling tools. For example, smartphones typically do not include

meters for monitoring memory versus processor versus peripherals such as LCD screens,

if they include any power meters at all. Even when in–hardware support is provided,

sometimes it is not as simple to use as it should be. For example in the NRG-Loop project

presented in Chapter 7, the hardware power counters were extremely limiting. First, they

were small, and frequently overflowed; and second, they were available only per socket, and

not per core, which would have made our attribution of power to processors much simpler.

Parallelism needs to stop being overlooked. Parallelism is largely related to power

consumption, as we discussed in Chapters 3 and 6. It is also extremely ubiquitous — all five

of our projects dealt with some form of parallelism. Despite this, many research papers seem

to ignore the effects of parallelism at both the hardware level (CMP, SMT, and ILP), and

the software level (multithreaded programming at the application level, multi-programming

at the operating system level). Pretending parallelism does not exist and will not persist

into the future is a dangerous presumption that is likely to lead to incorrect or at least

inapplicable research results.

Work should be quantitatively compared to commonly available baselines. As

the number of researchers greatly increases the existing corpus of research and the vol-

ume per year of research papers will grow as well. Thus the research community needs to

take concerted steps to reduce the amount of fragmentation in related work. Ideally, all

quantitative research ideas should be quantitatively compared to similar works, but this is

becoming increasingly less feasible as the amount of related work increases, and as systems

CHAPTER 8. CONCLUSIONS 170

work becomes increasingly complex to implement. One solution is to have quantitative

research papers compare their work to commonly available baselines. For example, OS

DVFS strategies might compare their energy savings to the widely accessible Linux fre-

quency scaling governors. An alternative is for more experimental surveys — such as the

one in Chapter 6 — to be conducted by independent researchers.

Processing and memory heterogeneity will be a major challenge. Heterogeneity

of processing units is finally more of a reality than a theory, and memory heterogeneity is

likely to increase in the future with the new NVRAM, stacked, and NDP technologies being

studied. A lot of work, particularly the area of measurement and performance analysis,

will be needed to figure out how to keep inefficiencies to a minimum even within the highly

heterogeneous architectures that are the future of general purpose systems.

Specialization will not negate the importance of general purpose efficiency.

Computer hardware that is specialized to minimize inefficiencies via software co-design

shows incredible promise in reducing performance and energy costs by multiple orders of

magnitude. However, one lesson that is underscored by a few of the projects in this dis-

sertation as well as related work is that general purpose computing and computer system

parts (including dated hardware, programming languages, and application source code) are

not going away any time soon. As such, they need to remain a major focus of computer

systems researchers. In Chapter 3, we discussed Amdahl’s law and its implication that

the serial code regions impart bounds on program speedups. In the future, there may be

an Amdahl’s law corollary for the bound that non-specialized code regions and hardware

impart on specialized systems, and we suspect that this will put significant focus back on

general purpose systems research.

As computing technology progresses, complexity and diversity will continue to abound

at all levels of the system stack. While coordinated hardware-software co-design will un-

doubtedly be critical in reaching peak computational capabilities, we must be careful not to

CHAPTER 8. CONCLUSIONS 171

forget about keeping general purpose computing efficient. Just like those presented in this

dissertation, measurement studies that focus on understanding behaviors at the intersection

of hardware and software will continue to be an important facet of keeping inefficiencies in

check.

BIBLIOGRAPHY 172

Bibliography

[1] perf: Linux profiling with performance counters. https://perf.wiki.kernel.org/,

July 2011.

[2] Alaa R. Alameldeen and David A. Wood. IPC considered harmful for multiprocessor

workloads. IEEE Micro, 26(4), July 2006.

[3] Thomas E. Anderson and Edward D. Lazowska. Quartz: a tool for tuning parallel

program performance. SIGMETRICS, 18:115–125, 1990.

[4] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Pro-

gramming. Addison-Wesley, 2000.

[5] Padma Apparao, Ravi Iyer, and Don Newell. Towards modeling & analysis of consol-

idated CMP servers. ACM SIGARCH Computer Architecture News, 36:38–45, May

2008.

[6] Luca Ardito, Giuseppe Procaccianti, Marco Torchiano, and Giuseppe Migliore. Profil-

ing power consumption on mobile devices. In ENERGY: The International Conference

on Smart Grids, Green Communications and IT Energy-aware Technologies, 2013.

[7] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.

StarPU: a unified platform for task scheduling on heterogeneous multicore architec-

tures. Concurrency and Computation: Practice and Experience, 2010.

[8] JosL. Ayala, Alexander Veidenbaum, and Marisa Lpez-Vallejo. Power-aware compila-

tion for register file energy reduction. International Journal of Parallel Programming,

31(6), 2003.

https://perf.wiki.kernel.org/

BIBLIOGRAPHY 173

[9] Reza Azimi, David K. Tam, Livio Soares, and Michael Stumm. Enhancing operating

system support for multicore processors by using hardware performance monitoring.

ACM SIGOPS Operating Systems Review, 43:56–65, April 2009.

[10] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazelwood, A. Jaleel,

Chi-Keung Luk, G. Lyons, H. Patil, and A. Tal. Analyzing parallel programs with

Pin. Computer, 43(3):34 –41, 2010.

[11] Woongki Baek and Trishul M. Chilimbi. Green: a framework for supporting

energy-conscious programming using controlled approximation. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), pages 198–209, June 2010.

[12] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt. Analyzing

CUDA workloads using a detailed GPU simulator. In ISPASS, 2009.

[13] Rajeev Balasubramonian, Jichuan Chang, Troy Manning, Jaime H Moreno, Richard

Murphy, Ravi Nair, and Steven Swanson. Near-data processing: Insights from a

micro-46 workshop. IEEE Micro, 34(4):36–42, 2014.

[14] Nilanjan Banerjee, Ahmad Rahmati, Mark D. Corner, Sami Rollins, and Lin Zhong.

Ubiquitous Computing. Lecture Notes in Computer Science, 4717, 2007.

[15] Mohammad Banikazemi, Dan Poff, and Bulent Abali. PAM: A novel perfor-

mance/power aware meta-scheduler for multi-core systems. In Proceedings of the

ACM/IEEE Conference on Supercomputing (SC), 2008.

[16] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.

Computer, 40(12), 2007.

[17] L. Benini, D. Bruni, A. Macii, and E. Macii. Hardware-assisted data compression for

energy minimization in systems with embedded processors. In Proceedings of Design,

Automation, and Test in Europe (DATE), 2002.

[18] E. Berg and E. Hagersten. Fast data-locality profiling of native execution. In ACM

SIGMETRICS, 2005.

BIBLIOGRAPHY 174

[19] Major Bhadauria and Sally A. McKee. An approach to resource-aware co-scheduling

for CMPs. In Proceedings of the International Conference on Supercomputing (ICS),

2010.

[20] Suparna Bhattacharya, Karthick Rajamani, K. Gopinath, and Manish Gupta. Does

lean imply green?: A study of the power performance implications of Java runtime

bloat. In ACM SIGMETRICS, 2012.

[21] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton

University, 2011.

[22] Christian Bienia, Sanjeev Kumar, and Kai Li. PARSEC vs. SPLASH-2: A quantita-

tive comparison of two multithreaded benchmark suites on chip-multiprocessors. In

2012 IEEE International Symposium on Workload Characterization, 2008.

[23] Ozlem Bilgir, Margaret Martonosi, and Qiang Wu. Exploring the potential of CMP

core count management on data center energy savings. Workshop on Energy Efficient

Design (WEED), June 2011.

[24] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. Coordinated management

of multiple interacting resources in chip multiprocessors: A machine learning ap-

proach. In Proceedings of the Annual International Symposium on Microarchitecture

(MICRO), 2008.

[25] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.

McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,

Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.

Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dinck-

lage, and Ben Wiedermann. The DaCapo benchmarks: Java benchmarking devel-

opment and analysis. In Proceedings of the Annual Conference on Object-Oriented

Programing, Systems, Languages, and Applications (OOPSLA), 2006.

[26] Steve Blackburn, Martin Hirzel, Robin Garner, and Darko Stefanovic. pjbb2005, 2006.

http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/

pjbb2005.

http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005

BIBLIOGRAPHY 175

[27] Sergey Blagodurov, Sergey Zhuravlev, and Alexandra Fedorova. Contention-aware

scheduling on multicore systems. Transactions on Computer Systems (TOCS), 28,

December 2010.

[28] Dominik Brodowski and Nico Golde. CPU frequency and voltage scaling code in the

Linux kernel: CPUFreq governors. http://www.kernel.org/doc/Documentation/

cpu-freq/governors.txt.

[29] Ting Cao, Stephen M Blackburn, Tiejun Gao, and Kathryn S McKinley. The yin and

yang of power and performance for asymmetric hardware and managed software. In

Proceedings of the International Symposium on Computer Architecture (ISCA), 2012.

[30] Eugenio Capra, Chiara Francalanci, and Sandra A. Slaughter. Is software “green”?

application development environments and energy efficiency in open source applica-

tions. Information and Software Technology, 54(1), 2012.

[31] R. Carl and J. E. Smith. Modeling superscalar processors via statistical simulation.

In Workshop on Performance Analysis and its Impact on Design (PAID), 1998.

[32] Trevor E. Carlson, Wim Heirman, Kenzo Van Craeynest, and Lieven Eeckhout. Bar-

rierPoint: sampled simulation of multi-threaded applications. In ISPASS, 2014.

[33] Johnathan Carter, Yun He, John Shalf, Hongzhang Shan, Erich Strohmaier, and

Harvey Wasserman. The performance effect of multi-core on scientific applications.

In Cray User Group Meeting, Seattle, WA, USA, 2007.

[34] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting inter-thread

cache contention on a chip multi-processor architecture. In Proceedings of the Sym-

posium on High Performance Computer Architecture (HPCA), pages 340–351, 2005.

[35] James Charles, Preet Jassi, Narayan S Ananth, Abbas Sadat, and Alexandra Fe-

dorova. Evaluation of the Intel R© Core i7 Turbo Boost feature. In 2012 IEEE Inter-

national Symposium on Workload Characterization, pages 188–197. IEEE, 2009.

[36] Shimin Chen, Phillip B. Gibbons, Michael Kozuch, Vasileios Liaskovitis, Anastassia

Ailamaki, Guy E. Blelloch, Babak Falsafi, Limor Fix, Nikos Hardavellas, Todd C.

http://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
http://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

BIBLIOGRAPHY 176

Mowry, and Chris Wilkerson. Scheduling threads for constructive cache sharing on

CMPs. In Proceedings of the Symposium on Parallelism in Algorithms and Architec-

tures (SPAA), pages 105–115, 2007.

[37] Tony Nowatzki Jaikrishnan Menon Chen-Han and Ho Karthikeyan Sankaralingam.

gem5, gpgpusim, mcpat, gpuwattch, “your favorite simulator here” considered harm-

ful.

[38] Ron C. Chiang and H. Howie Huang. TRACON: Interference-aware scheduling

for data-intensive applications in virtualized environments. In Proceedings of the

ACM/IEEE Conference on Supercomputing (SC), 2011.

[39] Yohan Chon, Elmurod Talipov, Hyojeong Shin, and Hojung Cha. Mobility prediction-

based smartphone energy optimization for everyday location monitoring. In Proceed-

ings of the International Conference on Embedded Networked Sensor Systems (Sen-

Sys), 2011.

[40] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda. Pack & cap: Adaptive DVFS

and thread packing under power caps. In Proceedings of the Annual International

Symposium on Microarchitecture (MICRO), 2011.

[41] CoFluent CPR. Intel System Modeling and Simulation. http://www.intel.com/

content/www/us/en/cofluent/intel-cofluent-studio.html.

[42] S. Collange, M. Daumas, D. Defour, and D. Parello. Barra: A parallel functional

simulator for GPGPU. In MASCOTS, 2010.

[43] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss for effective

trace sampling of superscalar processors. In Proceedings of the IEEE International

Conference on Computer Design (ICCD), 1996.

[44] Gary Cook, Tom Dowdall, David Pomerantz, and Yifei Wang. Clicking clean: How

companies are creating the green internet. greenpeace.org, 2014.

[45] Intel Corporation. Intel 64 R©and IA-32 architectures software developer’s manual.

http://download.intel.com/products/processor/manual/253669.pdf.

http://www.intel.com/content/www/us/en/cofluent/intel-cofluent-studio.html
http://www.intel.com/content/www/us/en/cofluent/intel-cofluent-studio.html
http://download.intel.com/products/processor/manual/253669.pdf

BIBLIOGRAPHY 177

[46] Intel Corporation. Intel R©power governor. https://software.intel.com/en-us/

articles/intel-power-governor.

[47] DaCapo Project. The DaCapo benchmark suite usage documentation, 2009. http:

//www.dacapobench.org/.

[48] V. Dalal and C. P. Ravikumar. Software power optimizations in an embedded system.

In International Conference on VLSI Design, 2001.

[49] Danilo De Donno, Luca Catarinucci, and Luciano Tarricone. An UHF RFID energy-

harvesting system enhanced by a DC-DC charge pump in silicon-on-insulator tech-

nology. IEEE Microwave and Wireless Components Letters, 23(6), 2013.

[50] Matthew Devuyst, Rakesh Kumar, and Dean M. Tullsen. Exploiting unbalanced

thread scheduling for energy and performance on a CMP of SMT processors. In Pro-

ceedings of the International Parallel and Distributed Processing Symposium (IPDPS),

2006.

[51] Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili, and Nathan

Clark. Ocelot: A dynamic optimization framework for bulk-synchronous applications

in heterogeneous systems. In PACT, 2010.

[52] Mian Dong, Yung-Seok Kevin Choi, and Lin Zhong. Power modeling of graphical user

interfaces on OLED displays. In Proceedings of the Design Automation Conference

(DAC), 2009.

[53] Jack Dongarra. China’s Tianhe-2 supercomputer maintains top spot on list of world’s

Top500 supercomputers. Top500.org, 2015.

[54] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Fairness via source

throttling: a configurable and high-performance fairness substrate for multi-core mem-

ory systems. In Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2010.

[55] Lieven Eeckhout. Computer architecture performance evaluation methods. Synthesis

Lectures on Computer Architecture, 10, 2010.

https://software.intel.com/en-us/articles/intel-power-governor
https://software.intel.com/en-us/articles/intel-power-governor
http://www.dacapobench.org/
http://www.dacapobench.org/

BIBLIOGRAPHY 178

[56] Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M. Blackburn, and Kathryn S.

McKinley. Looking back on the language and hardware revolutions: Measured power,

performance, and scaling. In Proceedings of the International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS), 2011.

[57] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture sup-

port for disciplined approximate programming. In Proceedings of the International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS), 2012.

[58] Stijn Eyerman and Lieven Eeckhout. Probabilistic job symbiosis modeling for SMT

processor scheduling. ACM SIGPLAN Notices, 45:91–102, March 2010.

[59] Faiza Fakhar, Barkha Javed, Raihan ur Rasool, Owais Malik, and Khurram Zulfiqar.

Software level green computing for large scale systems. Journal of Cloud Computing,

1(1), 2012.

[60] Naila Farooqui, Andrew Kerr, Greg Eisenhauer, Karsten Schwan, and Sudhakar Yala-

manchili. Lynx: A dynamic instrumentation system for data-parallel applications on

GPGPU architectures. In ISPASS, 2012.

[61] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. Improving performance

isolation on chip multiprocessors via an operating system scheduler. In Proceedings of

the International Conference on Parallel Architectures and Compilation Techniques

(PACT), 2007.

[62] Philip J Fleming and John J Wallace. How not to lie with statistics: the correct way

to summarize benchmark results. Communications of the ACM, 29(3), 1986.

[63] Jason Flinn and M. Satyanarayanan. Managing battery lifetime with energy-aware

adaptation. Transactions on Computer Systems (TOCS), 22(2), May 2004.

[64] J. Fung and S. Mann. Computer vision signal processing on graphics processing units.

In Acoustics, Speech, and Signal Processing, 2004. ICASSP ’04., volume 5, 2004.

BIBLIOGRAPHY 179

[65] Karl Frlinger and Michael Gerndt. ompP: A profiling tool for OpenMP. In Proceedings

of the International Workshop on OpenMP, 2005.

[66] Saturnino Garcia, Donghwan Jeon, Christopher M. Louie, and Michael Bedford Tay-

lor. Kremlin: rethinking and rebooting gprof for the multicore age. In Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion (PLDI), pages 458–469, 2011.

[67] Gartner,Inc. Worldwide traditional PC, tablet, ultramobile and mobile phone ship-

ments on pace to grow 7.6 percent in 2014, 2013.

[68] Gartner,Inc. 4.9 billion connected “things” will be in use in 2015, 2014.

[69] Nancy Gohring. Motorola CEO: Open android store leads to quality issues. Comput-

erWorld, 2011.

[70] V. Govindaraju, Chen-Han Ho, and K. Sankaralingam. Dynamically specialized dat-

apaths for energy efficient computing. In Proceedings of the Symposium on High

Performance Computer Architecture (HPCA), 2011.

[71] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call graph

execution profiler. SIGPLAN Notices, 17:120–126, 1982.

[72] Torbjorn Granlund. Instruction latencies and throughput for AMD and Intel x86

processors, February 2012. http://gmplib.org/~tege/x86-timing.pdf.

[73] Paul Griffin, Witawas Srisa-an, and J. Morris Chang. An energy efficient garbage

collector for java embedded devices. In Proceedings of Languages, Compilers, and

Tools for Embedded Systems (LCTES), 2005.

[74] Preston Grisham. United states tech industry employs 6.5 million in 2014. CompTIA,

2015.

[75] Jayanth Gummaraju, Laurent Morichetti, Michael Houston, Ben Sander, Benedict R.

Gaster, and Bixia Zheng. Twin peaks: a software platform for heterogeneous com-

puting on general-purpose and graphics processors. In Proceedings of the Interna-

http://gmplib.org/~tege/x86-timing.pdf

BIBLIOGRAPHY 180

tional Conference on Parallel Architectures and Compilation Techniques (PACT),

pages 205–216, 2010.

[76] Matt Hamblen. Mobile app download tally will soar above 102b this year. Computer

World, 2013.

[77] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. SimPoint 3.0: Faster

and more flexible program phase analysis. Journal of Instruction Level Parallelism,

7(4):1–28, 2005.

[78] Erica Check Hayden. Technology: The $1,000 genome. Nature, 507:294–295, 2014.

[79] Brian Hayes. The semicolon wars. Computing Science, 2006.

[80] Stuart Hayes. Controlling processor C-State usage in Linux. Dell Whitepaper, 2013.

[81] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The Cilkview scala-

bility analyzer. In Proceedings of the Symposium on Parallelism in Algorithms and

Architectures (SPAA), pages 145–156, 2010.

[82] John L. Henning. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Com-

puter Architecture News, 34(4), 2006.

[83] Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Don Newell, Vineet Chadha, and

Jaideep Moses. Rate-based QoS techniques for cache/memory in CMP platforms.

In Proceedings of the International Conference on Supercomputing (ICS), 2009.

[84] Oscar Hernandez, Ramachandra C. Nanjegowda, Barbara Chapman, Van Bui, and

Richard Kufrin. Open source software support for the OpenMP runtime API for

profiling. In International Conference on Parallel Processing (ICPP), ICPPW, pages

130–137, 2009.

[85] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. Computer,

41:33–38, 2008.

BIBLIOGRAPHY 181

[86] Urs Hoelzle and Luiz Andre Barroso. The Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 1st

edition, 2009.

[87] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal,

and Martin Rinard. Dynamic knobs for responsive power-aware computing. In Pro-

ceedings of the International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2011.

[88] Urs Hölzle. Brawny cores still beat wimpy cores, most of the time. IEEE Micro,

30(4), 2010.

[89] Sunpyo Hong and Hyesoon Kim. An integrated GPU power and performance model.

In Proceedings of the International Symposium on Computer Architecture (ISCA),

2010.

[90] R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jespersen, K. Tay-

lor, and R. Biswas. Performance impact of resource contention in multicore systems.

In Proceedings of the International Parallel and Distributed Processing Symposium

(IPDPS), April 2010.

[91] Jen-Cheng Huang, Lifeng Nai, Hyesoon Kim, and Hsien-Hsin S. Lee. TBPoint: re-

ducing simulation time for large-scale GPGPU kernels. In IPDPS, 2014.

[92] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J Eliot B. Moss,

Zhenlin Wang, and Perry Cheng. The garbage collection advantage: Improving pro-

gram locality. In Proceedings of the Annual Conference on Object-Oriented Program-

ing, Systems, Languages, and Applications (OOPSLA), October 2004.

[93] Ramesh Illikkal, Vineet Chadha, Andrew Herdrich, Ravi Iyer, and Donald Newell.

PIRATE: QoS and performance management in CMP architectures. ACM SIGMET-

RICS, 37, March 2010.

[94] Intel Corp. Intel OpenSource HD Graphics programmers reference man-

BIBLIOGRAPHY 182

ual. https://01.org/linuxgraphics/sites/default/files/documentation/

snb_ihd_os_vol1_part1.pdf, 2011.

[95] Intel R© Corporation. Intel R© Parallel Amplifier 2011. http://software.intel.com/

en-us/articles/intel-parallel-amplifier/.

[96] Intel R© Corporation. Intel R© VTune Amplifier XE. http://software.intel.com/

en-us/articles/intel-vtune-amplifier-xe/.

[97] International Technology Roadmap for Semiconductors . ITRS Report, 2009.

[98] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. Core fusion:

accommodating software diversity in chip multiprocessors. In Proceedings of the In-

ternational Symposium on Computer Architecture (ISCA), ISCA ’07, pages 186–197,

2007.

[99] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi. An analysis of

efficient multi-core global power management policies: Maximizing performance for

a given power budget. In Proceedings of the International Symposium on Computer

Architecture (ISCA), 2006.

[100] Yuriko Ishitobi, Tohru Ishihara, and Hiroto Yasuura. Code and data placement for

embedded processors with scratchpad and cache memories. Journal of Signal Pro-

cessing Systems, 60(2), 2010.

[101] Marty Itzkowitz and Yukon Maruyama. HPC profiling with the SunStudio perfor-

mance tools. In Parallel Tools Workshop, 2009.

[102] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don Newell, Yan Soli-

hin, Lisa Hsu, and Steve Reinhardt. QoS policies and architecture for cache/memory

in CMP platforms. ACM SIGMETRICS, 35:25–36, June 2007.

[103] Abhishek Jaiantilal. i7z, 2013. http://code.google.com/p/i7z/.

[104] Ravi Jain, David Molnar, and Zulfikar Ramzan. Towards understanding algorith-

mic factors affecting energy consumption: Switching complexity, randomness, and

https://01.org/linuxgraphics/sites/default/files/documentation/snb_ihd_os_vol1_part1.pdf
https://01.org/linuxgraphics/sites/default/files/documentation/snb_ihd_os_vol1_part1.pdf
http://software.intel.com/en-us/articles/intel-parallel-amplifier/
http://software.intel.com/en-us/articles/intel-parallel-amplifier/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://code.google.com/p/i7z/

BIBLIOGRAPHY 183

preliminary experiments. In Joint Workshop on Foundations of Mobile Computing,

2005.

[105] AJ Jansen and ALN Stevels. Human power, a sustainable option for electronics.

In IEEE International Symposium Proceedings on Electronics and the Environment,

pages 215–218, 1999.

[106] Yunlian Jiang and Xipeng Shen. Exploration of the influence of program inputs on

CMP co-scheduling. In European Conference on Parallel Processing (EUROPAR),

volume 5168 of Lecture Notes in Computer Science, pages 263–273. 2008.

[107] Yunlian Jiang, Xipeng Shen, Jie Chen, and Rahul Tripathi. Analysis and approxi-

mation of optimal co-scheduling on chip multiprocessors. In Proceedings of the Inter-

national Conference on Parallel Architectures and Compilation Techniques (PACT),

2008.

[108] Yunlian Jiang, Kai Tian, and Xipeng Shen. Combining locality analysis with online

proactive job co-scheduling in chip multiprocessors. In International Conference on

High Performance and Embedded Architectures and Compilers (HiPEAC), 2010.

[109] Alexandra Jimborean, Matthieu Herrmann, Vincent Loechner, and Philippe Clauss.

VMAD: a virtual machine for advanced dynamic analysis of programs. In IEEE

International Symposium on Performance Analysis of Systems and Software, ISPASS,

2011.

[110] Haoqiang Jin, Robert Hood, Johnny Chang, Jahed Djomehri, Dennis Jespersen,

Kenichi Taylor, Rupak Biswas, and Piyush Mehrotra. Characterizing application

performance sensitivity to resource contention in multicore architectures. Technical

Report NAS-09-002, NASA Ames Research Center, 2009.

[111] Don Jones, Jr., Simon Marlow, and Satnam Singh. Parallel performance tuning for

Haskell. In Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, Haskell,

pages 81–92, 2009.

BIBLIOGRAPHY 184

[112] A. M. Joshi, L. Eeckhout, L. K. John, and C. Isen. Automated microprocessor stress-

mark generation. In Proceedings of the Symposium on High Performance Computer

Architecture (HPCA), 2008.

[113] Melanie Kambadur, Sunpyo Hong, Juan Cabral, Harish Patil, Chi-Keung Luk, and

Martha A. Kim. Fast computational GPU design with GT-Pin. In Processings of the

International Symposium on Workload Characterization (IISWC), 2015.

[114] Melanie Kambadur and Martha A. Kim. Energy exchanges: Internal power over-

sight for applications. Technical Report CUCS-TR-009-14, Department of Computer

Science, Columbia University, 2014.

[115] Melanie Kambadur and Martha A. Kim. An experimental survey of energy manage-

ment across the stack. In Proceedings of the Annual Conference on Object-Oriented

Programing, Systems, Languages, and Applications (OOPSLA), 2014.

[116] Melanie Kambadur and Martha A. Kim. Trading functionality for power within

applications. In SIGPLAN Workshop on Probabilistic and Approximate Computing

at PLDI (APPROX), 2014.

[117] Melanie Kambadur and Martha A. Kim. NRG-loops: Adjusting power from within

applications. In Proceedings of the International Symposium on Code Generation and

Optimization (CGO), 2016.

[118] Melanie Kambadur, Tipp Moseley, Rick Hank, and Martha A Kim. Measuring in-

terference between live datacenter applications. In Proceedings of the ACM/IEEE

Conference on Supercomputing (SC), 2012.

[119] Melanie Kambadur, Kui Tang, and Martha A. Kim. Harmony: Collection and analysis

of parallel block vectors. In Proceedings of the International Symposium on Computer

Architecture (ISCA), June 2012.

[120] Melanie Kambadur, Kui Tang, and Martha A. Kim. Collection, analysis, and uses of

parallel block vectors. IEEE Micro, 99(1):1, 2013.

BIBLIOGRAPHY 185

[121] Melanie Kambadur, Kui Tang, and Martha A. Kim. ParaShares: Finding the im-

portant basic blocks in multithreaded programs. In Proceedings of the International

European Conference on Parallel and Distributed Computing (Euro-Par), 2014.

[122] Melanie Kambadur, Kui Tang, Joshua Lopez, and Martha A Kim. Parallel scaling

properties from a basic block view. In ACM SIGMETRICS, volume 41, pages 365–366.

ACM, 2013.

[123] Aman Kansal, Scott Saponas, A.J. Bernheim Brush, Kathryn S. McKinley, Todd

Mytkowicz, and Ryder Ziola. The latency, accuracy, and battery (LAB) abstraction:

Programmer productivity and energy efficiency for continuous mobile context sensing.

In Proceedings of the Annual Conference on Object-Oriented Programing, Systems,

Languages, and Applications (OOPSLA), 2013.

[124] Tejas Karkhanis, James E. Smith, and Pradip Bose. Saving energy with just in

time instruction delivery. In International Symposium on Low Power Electronics and

Design (ISLPED), 2002.

[125] Miray Kas. Towards on-chip datacenters: A perspective on general trends and on-chip

particulars. The Journal of SuperComputing (SCI), October 2011.

[126] A. Kerr, G. Diamos, and S. Yalamanchili. A characterization and analysis of PTX

kernels. In IISWC, 2009.

[127] Changkyu Kim, S. Sethumadhavan, D. Gulati, D. Burger, M.S. Govindan, N. Ran-

ganathan, and S.W. Keckler. Composable lightweight processors. In Proceedings of

the Annual International Symposium on Microarchitecture (MICRO), pages 381 –394,

2007.

[128] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair cache sharing and partition-

ing in a chip multiprocessor architecture. In Proceedings of the International Confer-

ence on Parallel Architectures and Compilation Techniques (PACT), pages 111–122,

2004.

BIBLIOGRAPHY 186

[129] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. Thread

cluster memory scheduling: Exploiting differences in memory access behavior. In

Proceedings of the Annual International Symposium on Microarchitecture (MICRO),

2010.

[130] Johnson Kin, Munish Gupta, and William H. Mangione-Smith. The filter cache:

An energy efficient memory structure. In Proceedings of the Annual International

Symposium on Microarchitecture (MICRO), 1997.

[131] Nevin Kirman and José F. Mart́ınez. A power-efficient all-optical on-chip interconnect

using wavelength-based oblivious routing. In Proceedings of the International Con-

ference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2010.

[132] Kishonti. CompuBench CL for OpenCL and CompuBench RS for RenderScript. http:

//compubench.com, 2014.

[133] Younggyun Koh, R. Knauerhase, P. Brett, M. Bowman, Wen Zhihua, and C. Pu. An

analysis of performance interference effects in virtual environments. In International

Symposium on Performance Analysis of Systems Software (ISPASS), april 2007.

[134] T. Lafage and A. Seznec. Choosing representative slices of program execution for

microarchitecture simulations: A preliminary application to the data stream. In

Workshop on Workload Characterization (WWW), 2000.

[135] H. Laha, J. H. Patel, and R. K. Iyer. Accurate low-cost methods for performance

evaluation of cache memory systems. IEEE Transactions on Computers (TC), 37(11),

1988.

[136] Michael Larabel. Benchmarking the Intel P-State, CPUfreq changes. Phoronix Media,

2013.

[137] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong pro-

gram analysis & transformation. In Proceedings of the International Symposium on

Code Generation and Optimization (CGO), pages 75–, 2004.

http://compubench.com
http://compubench.com

BIBLIOGRAPHY 187

[138] J. Lau, S. Schoemackers, and B. Calder. Structures for phase classification. In ISPASS,

2004.

[139] G. Lauterbach. Acceleration architectural simulation by parallel execution of trace

samples. Technical Report TR-93-22, Sun Microsystems Laboratories Inc., 1993.

[140] Etienne Le Sueur and Gernot Heiser. Dynamic voltage and frequency scaling: The

laws of diminishing returns. In Conference on Power-Aware Computing and Systems

(HotPower), 2010.

[141] Sangpil Lee and Won Woo Ro. Parallel GPU architecture simulation framework

exploiting work allocation unit parallelism. In ISPASS, 2013.

[142] Ilias Leontiadis, Christos Efstratiou, Marco Picone, and Cecilia Mascolo. Don’t kill my

ads!: balancing privacy in an ad-supported mobile application market. In Proceedings

of the Workshop on Mobile Computing Systems & Applications, page 2, 2012.

[143] John Levesque, Jeff Larkin, Martyn Foster, Joe Glenski, Garry Geissler, Stephen

Whalen, Brian Waldecker, Johnathan Carter, David Skinner, Helen He, Harvey

Wasserman, John Shalf, Hongzhang Shan, and Erich Strohmaier. Understanding and

mitigating multicore performance issues on the AMD Opteron architecture. Technical

Report LBNL-62500, Lawrence Berkeley National Laboratory, 2007.

[144] Joe Levi. Dalvik vs. ART: Android virtual machines and the battle for better perfor-

mance, 2013. http://pocketnow.com/2013/11/13/dalvik-vs-art.

[145] Zhiyuan Li, Cheng Wang, and Rong Xu. Computation offloading to save energy on

handheld devices: a partition scheme. In Proceedings of the International Conference

on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), 2001.

[146] Chun-Han Lin, Pi-Cheng Hsiu, and Cheng-Kang Hsieh. Dynamic backlight scaling

optimization: A cloud-based energy-saving service for mobile streaming applications.

IEEE Transactions on Computers, 63(2), 2014.

[147] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn.

Flikker: saving dram refresh-power through critical data partitioning. In Proceedings

http://pocketnow.com/2013/11/13/dalvik-vs-art

BIBLIOGRAPHY 188

of the International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 213–224, March 2011.

[148] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building

customized program analysis tools with dynamic instrumentation. In PLDI, 2005.

[149] LuxMark. OpenCL Benchmarking Tool for GPUs. http://www.luxrender.net/

wiki/LuxMark.

[150] Wenjing Ma and Gagan Agrawal. A translation system for enabling data mining

applications on GPUs. In SC, 2009.

[151] Allen D. Malony. Event-based performance perturbation: a case study. In Proceedings

of the ACM SIGNPLAN Symposium on Principles and Practice of Parallel Program-

ming (PPoPP), pages 201–212, 1991.

[152] Marek Marczykowski and Krzysztof Sachanowicz. The saper project (a minesweeper

game). Version X.0.14, 2013. http://marmarek.w.staszic.waw.pl/saper/.

[153] Ami Marowka. Back to thin-core massively parallel processors. Computer, 44(12),

2011.

[154] Jason Mars, Lingjia Tang, and Robert Hundt. Heterogeneity in homogeneous

warehouse-scale computers: A performance opportunity. IEEE Computer Architec-

ture Letters, 10(2), July 2011.

[155] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.

Bubble-up: increasing utilization in modern warehouse scale computers via sensible

co-locations. In Proceedings of the Annual International Symposium on Microarchi-

tecture (MICRO), 2011.

[156] Jason Mars, Lingjia Tang, and Mary Lou Soffa. Directly characterizing cross core

interference through contention synthesis. In International Conference on High Per-

formance and Embedded Architectures and Compilers (HiPEAC), 2011.

http://www.luxrender.net/wiki/LuxMark
http://www.luxrender.net/wiki/LuxMark
http://marmarek.w.staszic.waw.pl/saper/

BIBLIOGRAPHY 189

[157] Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou Soffa. Contention

aware execution: online contention detection and response. In Proceedings of the

International Symposium on Code Generation and Optimization (CGO), 2010.

[158] C. Dianne Martin. Eniac: The press conference that shook the world. IEEE Technol-

ogy and Society Magazine, 14(4), 1996.

[159] Michael R. Marty and Mark D. Hill. Virtual hierarchies to support server consolida-

tion. ACM SIGARCH Computer Architecture News, 35:46–56, June 2007.

[160] John C. McCullough, Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan Kup-

puswamy, Alex C. Snoeren, and Rajesh K. Gupta. Evaluating the effectiveness of

model-based power characterization. In Proceedings of the USENIX Annual Techni-

cal Conference (USENIX), 2011.

[161] Greg McLaren. QProf: a scalable profiler for the Q back end. MIT PhD Thesis, 1995.

[162] H. Mehta, R.M. Owens, M.J. Irwin, R. Chen, and D. Ghosh. Techniques for low

energy software. In Low Power Electronics and Design, 1997.

[163] Miniwatts Marketing Group. Internet world stats, 2015. http://www.

internetworldstats.com/stats.htm.

[164] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Rinard. Quality of

service profiling. In Proceedings of the International Conference on Software Engi-

neering (ICSE), 2010.

[165] Perhaad Mistry, Chris Gregg, Norman Rubin, David Kaeli, and Kim Hazelwood. Ana-

lyzing program flow within a many-kernel OpenCL application. In GPGPU Workshop,

2011.

[166] Miquel Moreto, Francisco J. Cazorla, Alex Ramirez, Rizos Sakellariou, and Mateo

Valero. FlexDCP: a QoS framework for CMP architectures. ACM SIGOPS Operating

Systems Review, 43:86–96, April 2009.

[167] Tipp Moseley. Adaptive thread scheduling for simultaneous multithreading processors.

Master’s thesis, University of Colorado, 2006.

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm

BIBLIOGRAPHY 190

[168] Tipp Moseley, Daniel A. Connors, Dirk Grunwald, and Ramesh Peri. Identifying

potential parallelism via loop-centric profiling. In Proceedings of the International

Conference on Computing Frontiers, CF, pages 143–152, 2007.

[169] Aaftab Munshi, Benedict Gaster, Timothy G. Mattson, James Fung, and Dan Gins-

burg. OpenCL Programming Guide. Addison-Wesley Professional, 1st edition, 2011.

[170] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access scheduling for

chip multiprocessors. In Proceedings of the Annual International Symposium on Mi-

croarchitecture (MICRO), 2007.

[171] Kshirasagar Naik and David S. L. Wei. Software implementation strategies for power-

conscious systems. Mobile Networks and Applications, 6(3), 2001.

[172] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: managing per-

formance interference effects for QoS-aware clouds. In Proceedings of the European

Conference on Computer Systems (EuroSys), 2010.

[173] Kyle J. Nesbit, Nidhi Aggarwal, James Laudon, and James E. Smith. Fair queuing

memory systems. In Proceedings of the Annual International Symposium on Microar-

chitecture (MICRO), 2006.

[174] Rolf Neugebauer and Derek McAuley. Energy is just another resource: Energy ac-

counting and energy pricing in the nemesis os. In Workshop on Hot Topics in Oper-

ating Systems (HOTOS), 2001.

[175] A. T. Nguyen, P. Bose, K. Ekanadham, A. Nanda, and M Michael. Accuracy and

speed–up of parallel trace–driven architectural simulation. In Proceedings of the In-

ternational Parallel Processing Symposium (IPPS), 1997.

[176] Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and Galen

Hunt. Helios: heterogeneous multiprocessing with satellite kernels. In Proceedings of

the ACM Symposium on Operating Systems Principles (SOSP), pages 221–234, 2009.

[177] NPR Staff. The future of nanotechnology and computers so small you can swallow

them. National Public Radio Archives, 2015.

BIBLIOGRAPHY 191

[178] NVIDIA Corporation. NVIDIA visual profiler. http://developer.nvidia.com/

nvidia-visual-profiler, 2014.

[179] M. Oskin, F. T. Chong, and M. Farrens. HLS: combining statistical and symbolic sim-

ulation to guide microprocessor design. In Proceedings of the International Symposium

on Computer Architecture (ISCA), 2000.

[180] Alexandra Ossola. Your full genome can be sequenced and analyzed for just $1,000.

Popular Science, 2015.

[181] L OCallaghan, N Mishra, A Meyerson, S Guha, and R Motwani. High-performance

clustering of streams and large data sets. In Proceedings of the International Confer-

ence on Data Engineering, 2002.

[182] Venkatesh Pallipadi, Shaohua Li, and Adam Belay. cpuidle: Do nothing, efficiently.

In Linux Symposium, volume 2, 2007.

[183] Venkatesh Pallipadi and Alexey Starikovskiy. The ondemand governor. In Linux

Symposium, volume 2, 2006.

[184] James Pallister, Simon J. Hollis, and Jeremy Bennett. Identifying compiler options to

minimize energy consumption for embedded platforms. The Computer Journal, 2013.

[185] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent inside

my app?: fine grained energy accounting on smartphones with eprof. In Proceedings of

the ACM European Conference on Computer Systems (EuroSys), pages 29–42, 2012.

[186] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pinpointing

representative portions of large Intel Itanium programs with dynamic instrumentation.

In MICRO-37, 2004.

[187] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.

PinPlay: A framework for deterministic replay and reproducible analysis of parallel

programs. CGO, pages 2–11.

http://developer.nvidia.com/nvidia-visual-profiler
http://developer.nvidia.com/nvidia-visual-profiler

BIBLIOGRAPHY 192

[188] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.

PinPlay: A framework for deterministic replay and reproducible analysis of parallel

programs. In Proceedings of the International Symposium on Code Generation and

Optimization (CGO), pages 2–11, 2010.

[189] Harish Patil and Mack Stallcup. PinPoints: Simulation Region Selection with PinPlay

and Sniper. In ISCA tutorial, 2014.

[190] Tapasya Patki, David K. Lowenthal, Barry Rountree, Martin Schulz, and Bronis R.

de Supinski. Exploring hardware overprovisioning in power-constrained, high perfor-

mance computing. In Proceedings of the International Conference on Supercomputing

(ICS), 2013.

[191] M.K. Patterson. The effect of data center temperature on energy efficiency. In In-

tersociety Conference on Thermal and Thermomechanical Phenomena in Electronic

Systems (ITHERM), 2008.

[192] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and

Brad Calder. Using simpoint for accurate and efficient simulation. In SIGMETRICS,

volume 31. ACM, 2003.

[193] Taciano Perez and César A. F. De Rose. Non-volatile memory: Emerging technologies

and their impacts on memory systems. Technical Report TR-060, Pontif́ıcia Univer-

sidade Católica do Rio, 2010.

[194] Tobias Preis, Peter Virnau, Wolfgang Paul, and Johannes J Schneider. GPU acceler-

ated monte carlo simulation of the 2D and 3D Ising model. Journal of Computational

Physics, 228(12), 2009.

[195] Kishore Kumar Pusukuri, David Vengerov, Alexandra Fedorova, and Vana Kaloger-

aki. Fact: a framework for adaptive contention-aware thread migrations. In Interna-

tional Conference on Computing Frontiers (CF), 2011.

[196] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou, Kevin P Pipe,

BIBLIOGRAPHY 193

Thomas F Wenisch, and Milo MK Martin. Computational sprinting. In Proceedings

of the Symposium on High Performance Computer Architecture (HPCA), 2012.

[197] Alexander Randall. Q&A: A lost interview with ENIAC co-inventor J. Presper Eckert.

Computerworld, 2006.

[198] Ashay Rane and James Browne. Performance optimization of data structures us-

ing memory access characterization. In IEEE International Conference on Cluster

Computing (CLUSTER), pages 570 –574, 2011.

[199] K. Rangan, G. Wei, and D. Brooks. Thread motion: Fine-grained power management

for multi-core systems. In Proceedings of the International Symposium on Computer

Architecture (ISCA), 2009.

[200] Parthasarathy Ranganathan. Recipe for efficiency: principles of power-aware com-

puting. Communications of the ACM, 53(4):60–67, 2010.

[201] Parthasarathy Ranganathan and Norman Jouppi. Enterprise IT trends and implica-

tions for architecture research. In Proceedings of the Symposium on High Performance

Computer Architecture (HPCA), 2005.

[202] Vijay Janapa Reddi, Alex Settle, Daniel A. Connors, and Robert S. Cohn. PIN: A

binary instrumentation tool for computer architecture research and education. In

Proceedings of the Workshop on Computer Architecture Education, WCAE, 2004.

[203] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Sivius Rus, and Robert Hundt.

Google-wide profiling: A continuous profiling infrastructure for data centers. IEEE

Micro, pages 65–79, 2010.

[204] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A comparison

of high-level full-system power models. In Proceedings of the Conference on Power

Aware Computing and Systems, 2008.

[205] G. Robertson. How powerful was the Apollo 11 computer? endgadget, 2009.

BIBLIOGRAPHY 194

[206] Bratin Saha, Xiaocheng Zhou, Hu Chen, Ying Gao, Shoumeng Yan, Mohan Ra-

jagopalan, Jesse Fang, Peinan Zhang, Ronny Ronen, and Avi Mendelson. Program-

ming model for a heterogeneous x86 platform. SIGPLAN Notices, 44:431–440, 2009.

[207] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis

Ceze, and Dan Grossman. EnerJ: approximate data types for safe and general low-

power computation. In Proceedings of the ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI), 2011.

[208] H. Sasaki, S. Imamura, and K. Inoue. Coordinated power-performance optimization

in manycores. In Proceedings of the International Conference on Parallel Architectures

and Compilation Techniques (PACT), 2013.

[209] Daniele P Scarpazza, Douglas J Ierardi, Adam K Lerer, Kenneth M Mackenzie,

Albert C Pan, Joseph Bank, Edmond Chow, Ron O Dror, JP Grossman, Daniel

Killebrew, et al. Extending the generality of molecular dynamics simulations on a

special-purpose machine. In Proceedings of the International Parallel and Distributed

Processing Symposium (IPDPS), pages 933–945. IEEE, 2013.

[210] Robert Schöne, Daniel Hackenberg, and Daniel Molka. Memory performance at re-

duced CPU clock speeds: An analysis of current x86 64 processors. In Conference on

Power-Aware Computing and Systems (HotPower), 2012.

[211] John S. Seng and Dean M. Tullsen. The effect of compiler optimizations on Pentium

4 power consumption. In Workshop on Interaction Between Compilers and Computer

Architectures, 2003.

[212] Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and Dmitry

Vyukov. Dynamic race detection with the LLVM compiler, 2011.

[213] Dongrui She, Yifan He, B. Mesman, and H. Corporaal. Scheduling for register file

energy minimization in explicit datapath architectures. In Proceedings of Design,

Automation, and Test in Europe (DATE), 2012.

BIBLIOGRAPHY 195

[214] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan Chen.

Power containers: an OS facility for fine-grained power and energy management on

multicore servers. In Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), pages 65–

76, March 2013.

[215] Sameer S. Shende and Allen D. Malony. The Tau parallel performance system. In-

ternational Journal of High Performance Computing Applications, 20:287–311, 2006.

[216] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing

large scale program behavior. In ASPLOS-X, 2002.

[217] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically

characterizing large scale program behavior. SIGOPS Operating Systems Review,

36:45–57, 2002.

[218] Huihui Shi, Yi Wang, Haibing Guan, and Alei Liang. An intermediate language level

optimization framework for dynamic binary translation. SIGPLAN Notices, 42(5),

May 2007.

[219] Dongkun Shin, Jihong Kim, and Seongsoo Lee. Low-energy intra-task voltage schedul-

ing using static timing analysis. In Proceedings of the Design Automation Conference

(DAC), 2001.

[220] SiSoftware. SiSoftware: Sandra 2014. http://www.sisoftware.net, 2014.

[221] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark. Branch prediction,

instruction–window size, and cache size: Performance tradeoffs and simulation tech-

niques. IEEE Transactions on Computers (TC), 48(11), 1999.

[222] E. Slivka. Apple’s A8 chip production for iPhone 6 underway at TSMC. MacRumors,

2014.

[223] Michael D. Smith. Tracing with pixie. Technical Report CSL-TR-91-497, Department

of Computer Science, Stanford University, 1991.

http://www.sisoftware.net

BIBLIOGRAPHY 196

[224] Allan Snavely and Dean Tullsen. Symbiotic jobscheduling for a simultaneous multi-

threading processor. In Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), pages 234–

244, 2000.

[225] S. Solomon, R.K. Thulasiram, and P. Thulasiraman. Option pricing on the GPU. In

HPCC, 2010.

[226] Seung Woo Son, Guangyu Chen, O. Ozturk, M. Kandemir, and A. Choudhary.

Compiler-directed energy optimization for parallel disk based systems. Parallel and

Distributed Systems, 18(9), 2007.

[227] Sony Creative Software, Inc. Sony Vegas Pro. http://www.sonycreativesoftware.

com/vegaspro, 2014.

[228] Sony Creative Software, Inc. Sony Vegas Pro Test Project. http://download.

sonymediasoftware.com/whitepapers/vp11_benchmark.zip, 2014.

[229] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and E. D. Berger.

Eon: A language and runtime system for perpetual systems. In Proceedings of the

International Conference on Embedded Networked Sensor Systems (SenSys), 2007.

[230] Standard Performance Evaluation Corporation. SPECjbb2005, 2013. http://www.

spec.org/jbb2005/.

[231] STMicroelectronics, Inc. PGProf: parallel profiling for scientists and engineers, 2011.

http://www.pgroup.com/products/pgprof.htm.

[232] N. Sturcken, M. Petracca, S. Warren, P. Mantovani, L.P. Carloni, A.V. Peterchev, and

K.L. Shepard. A 2.5D integrated voltage regulator using coupled magnetic core induc-

tors on silicon interposer delivering 10.8A/mm2. In Proceedings of the International

Solid-State Circuits Conference (ISSCC), 2012.

[233] Balaji Subramaniam and Wu-chun Feng. Towards energy-proportional computing

for enterprise-class server workloads. In International Conference on Performance

Engineering (ICPE), 2013.

http://www.sonycreativesoftware.com/vegaspro
http://www.sonycreativesoftware.com/vegaspro
http://download.sonymediasoftware.com/whitepapers/vp11_benchmark.zip
http://download.sonymediasoftware.com/whitepapers/vp11_benchmark.zip
http://www.spec.org/jbb2005/
http://www.spec.org/jbb2005/
http://www.pgroup.com/products/pgprof.htm

BIBLIOGRAPHY 197

[234] Nathan R. Tallent and John M. Mellor-Crummey. Effective performance measurement

and analysis of multithreaded applications. SIGPLAN Notices, 44:229–240, 2009.

[235] Lingjia Tang, Jason Mars, and Mary Lou Soffa. Contentiousness vs. sensitivity: im-

proving contention aware runtime systems on multicore architectures. In Interna-

tional Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era

(EXADAPT), pages 12–21, 2011.

[236] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou Soffa.

The impact of memory subsystem resource sharing on datacenter applications. In

Proceedings of the International Symposium on Computer Architecture (ISCA), 2011.

[237] Lori Thurgood, Mary J. Golladay, and Susan T. Hill. U.S. doctorates in the 20th

century, 2006. National Science Foundation.

[238] Tilera Corporation. Tile-Gx Processor Family. http://www.tilera.com/products/

processors/TILE-Gx_Family/, 2012.

[239] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Compilation techniques for low

energy: An overview. In Low Power Electronics, 1994.

[240] My Ton, Brian Fortenbery, and William Tschudi. DC power for improved data center

efficiency. 2008.

[241] Nigel Topham and Daniel Jones. High speed CPU simulation using JIT binary trans-

lation. In MOBS, volume 7, 2007.

[242] Gabriel Torres. Everything you need to know about the CPU c-states power saving

modes, 2008. http://www.hardwaresecrets.com/article/611.

[243] Amin Vahdat, Alvin Lebeck, and Carla Schlatter Ellis. Every Joule is precious: the

case for revisiting operating system design for energy efficiency. In ACM SIGOPS

European Workshop: Beyond the PC: New Challenges for the Operating System, EW

9, 2000.

[244] Valgrind Developers. Cachegrind: a cache and branch-prediction profiler. http:

//valgrind.org/docs/manual/cg-manual.html.

http://www.tilera.com/products/processors/TILE-Gx_Family/
http://www.tilera.com/products/processors/TILE-Gx_Family/
http://www.hardwaresecrets.com/article/611
http://valgrind.org/docs/manual/cg-manual.html
http://valgrind.org/docs/manual/cg-manual.html

BIBLIOGRAPHY 198

[245] N. Vallina-Rodriguez and J. Crowcroft. Energy management techniques in modern

mobile handsets. Communications Surveys Tutorials, IEEE, PP(99), 2012.

[246] Narseo Vallina-Rodriguez and Jon Crowcroft. ErdOS: achieving energy savings in

mobile OS. In International Workshop on MobiArch, 2011.

[247] Vibhore Vardhan, Wanghong Yuan, Albert F Harris, Sarita V Adve, Robin Kravets,

Klara Nahrstedt, Daniel Sachs, and Douglas Jones. GRACE-2: Integrating fine-

grained application adaptation with global adaptation for saving energy. International

Journal of Embedded Systems, 4(2), 2009.

[248] Chris Velazco. 3,997 models: Android fragmentation as seen by the developers of

opensignalmaps. TechCrunch, 2014. http://bit.ly/1mrbUeQ.

[249] Vasanth Venkatachalam and Michael Franz. Power reduction techniques for micro-

processor systems. ACM Computing Surveys, 37(3), 2005.

[250] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav

Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Taylor. Conservation

cores: reducing the energy of mature computations. In Proceedings of the Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 205–218, 2010.

[251] Jeffrey Vetter and Chris Chambreau. mpiP: Lightweight, Scalable MPI Profiling,

2011. http://mpip.sourceforge.net/.

[252] J. von Neumann. First draft of a report on EDVAC. Technical report, Univ. of

Pennsylvania, 1945.

[253] Bryan Walsh. The surprisingly large energy footprint of the digital economy. Time

Magazine Online, 2013.

[254] Peter Wayner. 10 reasons the browser is becoming the universal OS. InfoWorld, 2013.

[255] Gregory F. Welch. A survey of power management techniques in mobile computing

operating systems. SIGOPS Operating Systems Review, 29(4), 1995.

http://bit.ly/1mrbUeQ
http://mpip.sourceforge.net/

BIBLIOGRAPHY 199

[256] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C.

Hoe. SimFlex: statistical sampling of computer system simulation. IEEE Micro,

26(4), 2006.

[257] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 programs:

characterization and methodological considerations. In Proceedings of the Interna-

tional Symposium on Computer Architecture (ISCA), 1995.

[258] Qiang Wu, Margaret Martonosi, Douglas W. Clark, V. J. Reddi, Dan Connors,

Youfeng Wu, Jin Lee, and David Brooks. A dynamic compilation framework for

controlling microprocessor energy and performance. In Proceedings of the Annual

International Symposium on Microarchitecture (MICRO), 2005.

[259] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: accelerating

microarchitecture simulation via rigorous statistical sampling. In Proceedings of the

International Symposium on Computer Architecture (ISCA), 2003.

[260] Chao Xu, Felix Xiaozhu Lin, Yuyang Wang, and Lin Zhong. Automated OS-level

device runtime power management. In Proceedings of the International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS),

2015.

[261] Chi Xu, Xi Chen, R.P. Dick, and Z.M. Mao. Cache contention and application perfor-

mance prediction for multi-core systems. In International Symposium on Performance

Analysis of Systems Software (ISPASS), March 2010.

[262] Zhiqiang Yu, Lieven Eeckhout, Nilanjan Goswami, Tong Li, Lidiya John, Hye-Jin

Jin, Changsheng Xu, and Junyong Wu. GPGPU-MiniBench: Accelerating GPGPU

micro-architecture simulation. IEEE Transactions on Computers, 2014.

[263] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. ECOSystem: managing

energy as a first class operating system resource. In Proceedings of the International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS), pages 123–132, 2002.

BIBLIOGRAPHY 200

[264] Eddy Z. Zhang, Yunlian Jiang, and Xipeng Shen. Does cache sharing on modern

CMP matter to the performance of contemporary multithreaded programs? In Pro-

ceedings of the ACM SIGNPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), 2010.

[265] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Hardware execution throttling for

multi-core resource management. In Proceedings of the USENIX Annual Technical

Conference (USENIX), 2009.

[266] Yao Zhang and J.D. Owens. A quantitative performance analysis model for GPU

architectures. In HPCA, 2011.

[267] Li Zhao, Ravi Iyer, Ramesh Illikkal, Jaideep Moses, Srihari Makineni, and Don Newell.

Cachescouts: Fine-grain monitoring of shared caches in CMP platforms. In Pro-

ceedings of the International Conference on Parallel Architectures and Compilation

Techniques (PACT), 2007.

[268] Hongtao Zhong, S.A. Lieberman, and S.A. Mahlke. Extending multicore architec-

tures to exploit hybrid parallelism in single-thread applications. In Proceedings of

the Symposium on High Performance Computer Architecture (HPCA), pages 25 –36,

2007.

[269] Stuart Zweben and Betsy Bizot. 2014 Taulbee survey. Computing Research News,

27(5), 2015.

BIBLIOGRAPHY 201

Appendix – Acronyms

This appendix expands all acronyms that are used in this document.

ALU — Arithmetic Logic Unit

AMP — Asymmetric MultiProcessing

AOT — Ahead Of Time

API — Application Program Interface

ASIC — Application-Specific Integrated Circuit

BIOS — Basic Input/Output System

BBV — Basic Block Vector

BB — Basic Block

BNI — Beyond Noisy Interferer

CFG — Control-Flow Graph

CMP — Chip MultiProcessor

CPI — Cycles Per Instruction

CPU — Central Processing Unit

DRAM — Dynamic Random-Access Memory

DVFS — Dynamic Voltage and Frequency Tuning

BIBLIOGRAPHY 202

FPGA — Field Programmable Gate Array

FPU — Floating Point Unit

EU — Execution Unit

FLOPS — Floating Point Operations Per Second

GB — GigaByte

GPGPU — General Purpose Graphics Processing Unit

GPS — Global Positioning System

GPU — Graphics Processing Unit

HDD — Hard Disk Drive

HPC — High Performance Computing

I/O — Input/Output

ILP — Instruction Level Parallelism

IoT — Internet of Things

IPC — Instructions Per Cycle

IPS — Instructions Per Second

ISA — Instruction Set Architecture

IT — Information Technology

JIT — Just-In-Time (Compiler)

JVM — Java Virtual Machine

L1 — Level-1 Cache

L2 — Level-2 Cache

BIBLIOGRAPHY 203

LCD — Liquid Crystal Display

LLC — Last Level Cache

LLVM — Low Level Virtual Machine

MB — MegaByte

MEM — Memory

MHz — Mega Hertz

MIMD — Multiple Instruction Multiple IData

MPI — Message Passing Interface

MRAM — Magnetoresistive Random-Access Memory

MSR — Model Specific Register

NRG — Energy

NUMA — Non-Uniform Memory Access

NVRAM — Non–Volatile Random-Access Memory

OOO — Out Of Order

OS — Operating System

PBV — Parallel Block Vector

PC — Personal Computer

PCRAM — Phase Change Random-Access Memory

QoS — Quality of Service

RAPL — (Intel’s) Running Average Power Limit

RRAM — Resistive Random-Access Memory

BIBLIOGRAPHY 204

SIMD — Multiple Instruction Multiple IData

SMT — Simultaneous MultiThreading

SPI — Seconds Per Instruction

SRAM — Static Random-Access Memory

SoC — System on Chip

TB — TeraByte

TDP — Thermal Design Power / Thermal Design Point

TLP — Thread Level Parallelism

VM — Virtual Machine

	List of Figures
	List of Tables
	1 Introduction
	1.1 Computing Diversity
	1.2 Hardware-Software Mismatches Cause Efficiency Problems
	1.3 Why Efficiency is (Still) Important
	1.4 Considerations Besides Efficiency
	1.5 Measurement's Role in Improving Efficiency
	1.6 Summary of Contributions
	1.7 Dissertation Outline

	2 Background: Measuring the Intersection of Hardware and Software
	2.1 Computer Systems
	2.2 An Overview of Computing Analyses
	2.3 Dynamic Performance Analyses

	3 Parallel Block Vectors
	3.1 Introduction
	3.2 Parallel Block Vector Profiles
	3.3 Harmony: Efficient Collection of PBVs
	3.4 Architectural Design Applications of PBVs
	3.5 Pinpointing Software Performance Issues with PBVs
	3.6 Related Work
	3.7 Limitations and Future Work
	3.8 Discussion

	4 Datacenter-Wide Application Interference
	4.1 Introduction
	4.2 Complexities of Interference in a Datacenter
	4.3 A Methodology for Measuring Interference in Live Datacenters
	4.4 Applying the Measurement Methodology
	4.5 Performance Opportunities
	4.6 Related Work
	4.7 Limitations and Future Work
	4.8 Discussion

	5 Fast Computational GPGPU Design
	5.1 Introduction
	5.2 Background
	5.3 Tracing GPU Programs with GT-Pin
	5.4 A Study of Large OpenCL Applications
	5.5 Selecting GPU Simulation Subsets
	5.6 Related Work
	5.7 Limitations and Future Work
	5.8 Discussion

	6 Energy Efficiency Across the Stack
	6.1 Introduction
	6.2 Background on Energy Management
	6.3 Experimental Design and Methodology
	6.4 System-Level Results
	6.5 Application-Level Energy Management
	6.6 Related Work
	6.7 Limitations and Future Work
	6.8 Discussion

	7 NRG-Loops
	7.1 Introduction
	7.2 NRG-Loops
	7.3 NRG-RAPL
	7.4 Case Studies
	7.5 Related Work
	7.6 Limitations and Future Work
	7.7 Discussion

	8 Conclusions
	8.1 Summary of Findings
	8.2 Looking Forward

	Bibliography
	Appendix Acronyms

