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Natural hydrocarbon seeps occur on the seafloor along continental margins, and account for up 8 

to 47% of the oil released into the oceans1.  Hydrocarbon seeps are known to support local 9 

benthic productivity2, but little is known about their impact on photosynthetic organisms in the 10 

overlying water column.  Here we present high temporal and spatial resolution observations of 11 

chlorophyll concentrations in the Northern Gulf of Mexico using in-situ and shipboard flow-12 

through fluorescence measurements from May to July 2012, as well as an analysis of ocean-13 

colour satellite images from 1997 to 2007. All three methods reveal elevated chlorophyll 14 

concentration in waters influenced by natural hydrocarbon seeps found at depths greater than 15 

1000m.  Temperature and nutrient profiles above seep sites suggest that nutrient-rich water 16 

upwells from depth, facilitating phytoplankton growth and thus supporting the higher chlorophyll 17 

concentrations observed.  Since upwelling occurs at natural seep locations around the world1, 2, 3, 18 

we conclude that offshore hydrocarbon seeps, and perhaps other types of deep ocean vents and 19 

seeps, may influence biogeochemistry and productivity of the overlying water column. 20 

Natural hydrocarbon seeps occur on the seafloor along continental margins, where 21 

gaseous and liquid hydrocarbons migrate from deep reservoirs into unconsolidated sediments 22 

near the seafloor and some of this fluid is released through focused vents4, 5. In the Gulf of 23 
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Mexico, such seeps frequently emit plumes of oil and gas into the water column, releasing up to 24 

1.1×108 L oil yr-1 (6). A significant percentage of the released hydrocarbons are consumed and 25 

mixed along their ascent through the water column from depths that can exceed 2000 m (5). 26 

Although rising hydrocarbon plumes can be advected laterally by sub-surface currents, in the 27 

Gulf of Mexico, they typically surface within a ~3-km radius of their seafloor origin7. Wind and 28 

surface currents then shape the resulting ~0.1-µm thick oil-slicks into patches up to several 29 

hundred meters wide and kilometers long5, 7 that can then be detected by satellite remote sensing. 30 

These slicks gradually dissipate through spreading, flocculation, dissolution, evaporation and 31 

weathering over subsequent days8. 32 

MacDonald et al.9 used Synthetic Aperture RADAR imagery of surface oil-slick features 33 

to map the locations of putative natural oil seeps in the Northern Gulf of Mexico. Using a 34 

combination of ROV dives and satellite remote sensing, they found that even the most prolific 35 

sites exhibited some episodicity in the seepage of oil and gas. Some of the most persistent slicks 36 

were associated with the Green Canyon reservoir (GC), and the site denoted as GC600 is one of 37 

the best-studied natural hydrocarbon seep sites in the Gulf of Mexico10, located at a depth of 38 

approximately 1200 m.  39 

GC600 and other sites away from seeps were studied during a shipboard survey in the 40 

Northern Gulf of Mexico in May-July 2012 (Supplementary Table 1).  Vertical profiles of the 41 

water column made with a Conductivity-Temperature-Depth (CTD) rosette system with a 42 

chlorophyll fluorometer showed that chlorophyll concentrations at the deep chlorophyll 43 

maximum near GC600 were significantly elevated compared to non-seep, background sites 44 

(Wilcoxon Rank Sum Test, P = 0.01; Fig. 1a), with mean chlorophyll concentration at the seep 45 

chlorophyll maximum (0.66 ± 0.03 mg m-3) more than double that of background sites (0.29 ± 46 
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0.02 mg m-3).  The depth of the average chlorophyll maximum was shallower at seep sites (82m) 47 

compared to the background sites (99m).  Depth-integrated chlorophyll concentrations at GC600 48 

were also significantly higher than the background sites (Wilcoxon Rank Sum Test, P = 0.01), 49 

with integrated chlorophyll at the seep averaging 28.2 ± 1.1 mg m-2 vs. 22.3 ± 1.8 mg m-2 for 50 

background sites. The increase in chlorophyll may be attributable to elevated nutrient 51 

concentrations between 50-200 m at GC600 relative to non-seep sites (Fig. 1b, Supplementary 52 

Table 2). A possible explanation for the elevated nutrient concentrations is indicated in 53 

temperature profiles showing colder water at GC600 between 50 m and about 1000 m compared 54 

to background sites (Fig. 1c, Supplementary Fig. 1), suggesting the upwelling of colder, nutrient-55 

rich waters at GC600.   56 

Turbulence generated by buoyant bubble plumes originating at natural seeps can draw 57 

surrounding water into the rising bubble stream to generate upwelling flows that persist at least 58 

up to the pycnocline.  These strong episodic upwelling flows manifest as colder water compared 59 

to background in hydrographic profiles of the water column above seep locations and have been 60 

observed at both shallow11 and deep12 seeps.  Plume-generated upwelling above seeps could 61 

exert a “bottom-up” influence on near-surface microbes similar to eddy-driven upwelling that 62 

has been shown to episodically supply nutrients to phytoplankton in subtropical waters13.  The 63 

transport of bubbles from depths greater than 1000 m has been observed in echo-sounder data in 64 

the Gulf of Mexico5, 6, in the Norwegian-Barents-Spitzbergen continental margin12, and the 65 

Black Sea14 and likely happens at hydrocarbon seeps elsewhere in the world.   66 

Elevations in localized chlorophyll concentration were not restricted to the deep 67 

chlorophyll maximum layer, though near-surface increases in chlorophyll above seep sites were 68 

more subtle and exemplified the intermittent nature of the driving mechanisms. During three 69 
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oceanographic cruises, high temporal and spatial resolution chlorophyll fluorescence data were 70 

acquired using an Aquatic Laser Fluorescence Analyzer (WETLabs)15 plumbed to the ship’s 71 

flow-through system to continuously measure chlorophyll concentrations in near-surface waters 72 

along the ship track. Observations along ship tracks near GC600 were separated into "seep" and 73 

"non-seep background" categories based on proximity (> or < 3 km) to the seafloor coordinates 74 

of GC600 (Fig. 2). To exclude the Mississippi River plume, comparisons between categories 75 

were only made for sections of the ship track near GC600 with salinities > 35.6.  While there was 76 

a slight decrease in surface chlorophyll concentrations at GC600 compared to background during 77 

the May-July 2012 cruise (consistent with the vertical profiles in Fig. 1a), during the other two 78 

cruises (in September 2012 and June 2013) near-surface chlorophyll concentrations at GC600 79 

were significantly elevated relative to corresponding background areas nearby (Wilcoxon Rank 80 

Sum test, P < 0.001 for each comparison, Fig. 2b, c, Supplementary Table 3).  Moreover, the 81 

range and variance of near-surface chlorophyll concentrations were higher in all three visits to 82 

the GC600 site compared to nearby background. Maximum near-surface chlorophyll 83 

concentrations at GC600 were remarkably higher than corresponding background values, with an 84 

average elevation > 300%.  Episodic upwelling could explain both the higher chlorophyll 85 

maxima and variance near the seep. Moreover, chlorophyll concentrations at these sites were 86 

skewed towards the higher end of the distribution, with higher kurtosis values suggesting that the 87 

increase in variance was related to infrequent extreme values, rather than multiple modest 88 

increases.  89 

The coincidence between near-surface oil inputs and chlorophyll enhancement is best 90 

demonstrated on larger scales by comparing satellite observations of surface oil slicks with 91 

satellite-derived chlorophyll concentrations. The database of putative natural oil seeps was 92 
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remapped onto 10 x 10 km grids to identify the single grid cell with the highest cumulative 93 

surface area covered by slicks between 1997 to 2007 (site Alpha). Four locations that had no 94 

observed oil slicks were also identified to provide non-seep, background conditions for 95 

comparison. The 8-day, 9-km average satellite-derived chlorophyll concentration [chl8] within 50 96 

x 50 km boxes (the red and black boxes in Fig. 3a, based on two grid cells in each direction from 97 

the central cell) was extracted for each of the 5 locations centered on Alpha and the 4 98 

background sites to generate time series. Between 1997 - 2007, [chl8] could be calculated before 99 

and after the observation of 23 oil slicks directly inside the 10 x 10 km Alpha box. For these 100 

observed 23 slick events, the change in 8-day chlorophyll concentration ∆[chl8] around Alpha for 101 

the time interval that followed the slick was significantly greater than concurrent changes 102 

averaged across the four non-seep background locations during the same 8-day period (Fig. 3b, 103 

c; Wilcoxon Signed-Rank test, P = 0.01). This suggests that changes in chlorophyll 104 

concentrations observed at Alpha following slicks were not caused by broad regional 105 

environmental factors, common with the background sites. In contrast, if slick events observed at 106 

site Alpha were excluded from the time series, values of ∆[chl8] at Alpha were not significantly 107 

different from the corresponding mean background values (Wilcoxon Signed-Rank test, P = 108 

0.22). Thus, ∆[chl8] at Alpha only deviated significantly from background for the time periods 109 

following observation of a surface slick at Alpha. 110 

The SAR image database for this region was discontinuous (with only 176 distinct 111 

acquisitions over the 10 year study period). Combining infrequent imaging with the sporadic 112 

nature of seepage and cloud cover (that obscures satellite-derived chlorophyll), and the necessity 113 

for calm surface conditions for slick detection using SAR imagery suggests that the influence of 114 

natural seeps on chlorophyll concentrations was almost certainly underestimated by the satellite 115 
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observations. Nevertheless, the satellite observations uniquely link the increases in chlorophyll 116 

concentrations at Alpha to the episodic transport of oil and other material from the deep sea to 117 

the surface ocean, potentially connecting episodic upwelling of nutrients to the supply of 118 

hydrocarbons.   119 

The connection between elevated chlorophyll and oil at seep sites may be more complex 120 

than the nutrient upwelling scenario presented initially. Oil reaching the upper water column 121 

impacts an intricately interconnected microbial community including oil-degrading bacteria, 122 

cyanobacteria, eukaryotic phytoplankton, protistan grazers, and viruses16. Interactions among 123 

these organisms and their environment can result in negative or positive feedbacks on 124 

phytoplankton biomass. Hydrocarbon degradation by heterotrophic bacteria in near-surface 125 

waters can be rapid, but is typically nutrient limited16, 17 and these bacteria may outcompete 126 

phytoplankton for the available nutrients. Fresh crude oil is toxic to phytoplankton at high 127 

concentrations18, 19, but can have either inhibiting or stimulating effects at low concentrations 128 

depending on the species composition of the phytoplankton assemblage20, the influence of 129 

protistan grazers16, 21, 22, nutrient concentrations16, 23, the type of oil24, and the duration of 130 

exposure25. Protistan grazers, which may be fairly tolerant of crude oil contamination22, 26, play 131 

an important ecological role in aquatic microbial communities, both as consumers of bacteria and 132 

phytoplankton, and in the recycling of limiting nutrients22. Increases in phytoplankton biomass 133 

following oil spills have been attributed to an indirect “top down” effect through predation on 134 

bacteria that compete with phytoplankton for nutrients27, 28. Thus, the episodic influx of nutrients 135 

and hydrocarbons into the upper water column at seep sites could affect local phytoplankton 136 

abundance through direct, “bottom-up” effects on phytoplankton growth rate, or through indirect 137 

“top-down” effects mediated through the planktonic food web. These nutrient and grazing 138 
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hypotheses explaining increased chlorophyll at seep sites should not be thought of as mutually 139 

exclusive29 and need further study, with sufficient spatial and temporal resolution to resolve the 140 

underlying processes in light of the high variability we have documented.  141 

Three independent observation methods – vertical profiles and near-surface in-situ 142 

fluorometry, as well as broad-scale remote sensing – revealed localized increases in 143 

phytoplankton biomass above natural hydrocarbon seeps that in aggregate have regional 144 

implications for productivity, carbon and nutrient cycling, and food-web dynamics in the 145 

ecologically and economically important Northern Gulf of Mexico. These observations have 146 

afforded an unprecedented view into a highly variable and previously undescribed process that 147 

connects sea-floor features at depths exceeding 1000 m to biological processes in the overlying 148 

euphotic zone. Given the global abundance and distribution of offshore hydrocarbon seeps1 , 149 

these observations in the Gulf of Mexico likely reflect a world-wide phenomenon. They also 150 

raise the possibility that other types of deep ocean vents and seeps may have subtle influences in 151 

their overlying water column, influences that would likely only be detected with purposeful high 152 

temporal and spatial resolution sampling. 153 

 154 
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Figure Legends: 286 

 287 

Figure 1: Water column profiles of chlorophyll, nutrients, and temperature above seep 288 

GC600 and background sites. Average seep (red) and non-seep background (blue) chlorophyll 289 

concentrations (a), nitrate plus nitrite concentrations (b), and temperatures (c) from multiple 290 



 14

CTD casts at GC600 and non-seep sites. Panels a and c derive from 9 seep and 10 non-seep CTD 291 

casts. Data are means ±1 s.e.m for 1-m depth bins. In b data are means ±1 s.e.m for both depth 292 

and concentration. Supplementary Table 2 has further details on nutrient data. Dotted horizontal 293 

lines show the mean depths of seep (red) and non-seep (blue) deep chlorophyll maxima. 294 

 295 

Figure 2: Transects of near-surface chlorophyll concentrations near seep GC600. Surface 296 

chlorophyll concentrations were measured near GC600 during three cruises using shipboard 297 

flow-through fluorometry. Observations along ship tracks were separated into "seep" (90.6°W – 298 

90.53°W) and "non-seep background" (90.53°W - 90.1°W) categories based on distance from 299 

GC600. The plots show chlorophyll concentration at each location with color of the dots 300 

indicating salinity according to the right-hand legend. Transects were truncated where salinity 301 

dropped below 35.6. 302 

 303 

Figure 3: Changes satellite derived chlorophyll concentrations following oil slick events. 304 

(a), Map showing the 10 × 10 km grid cells used to quantify oil slicks and the 50 x 50 km boxes 305 

surrounding site Alpha (red), and the four background sites (black) used to quantify chlorophyll 306 

concentration. . (b), changes in chlorophyll concentration in the 50 × 50 km area around Alpha 307 

(black) and background sites (gray) from one 8-day interval to the next (∆[chl8]) when a slick 308 

was observed at Alpha. The median ∆[chl8] at Alpha and background sites across all slick events 309 

are shown by the red and blue dotted lines.  310 

 311 

 312 









Methods: 1	

Hydrography: 2	

GC600 and comparable non-seep locations in the northern Gulf of Mexico were sampled during 3	

a cruise on board the R/V Endeavor in May-July 2012.  Nine water column profiles were made at 4	

GC600 and 10 profiles were made at the non-seep background stations (Supplementary Table 1) 5	

using a water-sampling rosette equipped with a Seabird 11+ CTD and a Wetlabs ECO-AFL 6	

chlorophyll fluorometer.  Nutrient samples (NO3
- + NO2

-, PO4
3-, SiO2) were collected from 7	

Niskin bottles fired at slightly different depths on each CTD cast and analyzed at sea within six 8	

hours of collection using a Lachat QuikChem 8000 flow-injection analysis system (Lachat 9	

Instruments, Loveland CO, USA)1. For comparison between seep and background categories, 10	

chlorophyll concentrations, nutrient concentrations, and temperature from each CTD cast were 11	

first averaged into depth bins (1-m bins for chlorophyll and temperature, variable depth bins for 12	

nutrients, see Supplementary Table 2) and then combined to calculate average seep and 13	

background profiles. 14	

Along-track fluorometry:  15	

An Aquatic Laser Fluorescence Analyzer (ALFA, WETLabs)2 was used to measure laser-16	

induced fluorescence emission spectra in near-surface waters during three cruises that passed 17	

over GC600 on the R/V Endeavor (June-July 2012, September 2012, and June-July 2013).  The 18	

ALFA was connected to the ship’s underway intake, receiving water pumped from 19	

approximately 5 m depth at a flow rate of 2.2 L/min. Using 405 and 514 nm excitation lasers, the 20	

ALFA acquired two fluorescence emission spectra between 400 to 800 nm, every 11 seconds. 21	

Then, using real-time spectral deconvolution analysis of the spectra, the concentrations of 22	

fluorescent phytoplankton pigments, including chlorophyll-a, were quantified from fluorescence 23	



normalized to water Raman scattering 2. Data from the ship's thermosalinograph and GPS were 24	

fed into the ALFA unit and combined into a single data stream. Chlorophyll fluorescence from 25	

the ALFA was calibrated to extracted chlorophyll-a from discrete samples collected at different 26	

locations along the cruise track. For calibrations, water was filtered (0.2 µm polycarbonate filter) 27	

within an hour of collection, and filters were frozen (-20°C) until extraction in acetone or 28	

methanol. Extracted chlorophyll was quantified based on fluorescence using a Turner Designs 29	

fluorometer1, 2. 30	

Due to high variability in phytoplankton pigments associated with the Mississippi river 31	

plume, transects near GC600 with surface salinity lower than 35.6 were excluded from our 32	

analyses. Sections of the ship track within 3 km of GC600 were categorized as "seep" (S). The 33	

non-seep background statistics were calculated from portions of the same ship track segment that 34	

were > 3 km from GC600 and matched the salinity criteria. 35	

 36	

Satellite imaging: A database of 176 SAR images that had been processed to identify surface 37	

oil-slick features in the Northern Gulf of Mexico was gridded into 10 x10 km cells as described 38	

by MacDonald et al3, 4.  This database was used to identify the single grid cell with the highest 39	

cumulative area covered by slicks from 1997 to 2007. This site (centered at 27.15°N, 91.35°W) 40	

was designated "Alpha". In addition, four 50 x 50 km boxes with no incidence of oil slicks 41	

during the study period, located at a similar latitude as Alpha, and not routinely affected by the 42	

Mississippi river plume, were identified as non-seep background sites (Fig. 3A).  Satellite-43	

derived chlorophyll concentration time series for five 50 x 50 km boxes centered on Alpha and 44	

the four background sites were constructed using NASA Sea-viewing Wide Field-of-view Sensor 45	

(SeaWiFS) Level 3, 8-day composite, 9-km resolution chlorophyll data (NASA Ocean Biology 46	



(OB.DAAC). Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Ocean Color Data, 2014.0 47	

Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. doi: 10.5067/ORBVIEW-48	

2/SEAWIFS_OC.2014.0), averaging across pixels within each box. The size of this region of 49	

interest for chlorophyll observation was chosen to reflect how far currents might spread a surface 50	

oil slick in 8 days. The change in 8-day chlorophyll concentration in the 50 × 50 km area around 51	

site Alpha from one 8-day interval to the next (∆[chl8]) could be estimated for 23 time intervals 52	

when an oil slick was observed directly at site Alpha. Excluding these slick events, ∆[chl8] could 53	

also be calculated for Alpha over another 392 time intervals during the study period. For each of 54	

these time windows, ∆[chl8] was also calculated at each of the four background sites, then 55	

averaged together to represent a mean background condition for comparison to Alpha. Thus, data 56	

from Alpha and the background sites represent the change in chlorophyll at each site across the 57	

same two 8-day time intervals, rather than the absolute chlorophyll concentrations, and 58	

comparisons between Alpha and the mean background were paired in time for analysis. The 59	

potential for the slicks to interfere with the optical measurements used for satellite-derived 60	

chlorophyll concentration was minimized because the slicks were identified in one 8-day time 61	

interval, while the chlorophyll response was measured from that interval to the next. Meanwhile, 62	

slick dissipation is usually rapid by comparison – MacDonald et al5 calculated the half-life of a 63	

slick to range from 0.25 to maximum of 8 days. 64	

	65	

References	66	

1.	 Knap	A,	A.	Michaels,	A.	Close,	H.	Ducklow,	A.	Dickson.	1996.	Protocols	for	the	Joint	Global	67	
Ocean	Flux	Study	(JGOFS)	Core	Measurements:	JGOFS	Report	Nr.	19,	vi+170	pp:		Reprint	of	68	
the	IOC	Manuals	and	Guides	No.	29,	UNESCO	1994.:	69	

	70	
2.	 Chekalyuk	A,	Barnard	A,	Quigg	A,	Hafez	M,	Zhao	Y.	Aquatic	laser	fluorescence	analyzer:	field	71	

evaluation	in	the	northern	Gulf	of	Mexico.	Optics	Express	2014,	22(18):	21641-21656.	72	



	73	
3.	 MacDonald	IR,	Garcia-Pineda	O,	Beet	A,	Asl	SD,	Feng	L,	Graettinger	G,	et	al.	Natural	and	74	

Unnatural	Oil	Slicks	in	the	Gulf	of	Mexico.	J	Geophys	Res	In	press.	75	

	76	
4.	 MacDonald	IR,	et	al.		.	Neural	network	analysis	determination	of	oil	slick	distribution	and	77	

thickness	from	satellite	Synthetic	Aperture	Radar,	April	24	-	August	3,	2010.	(2015),	78	
Distributed	by	Gulf	of	Mexico	Research	Initiative	Information	and	Data	Cooperative	79	
(GRIIDC),	Harte	Research	Institute,	Texas	A&M	University	–	Corpus	Christi	DOI:	80	
10.7266/N7KW5CZN.	81	

	82	
5.	 Macdonald	IR,	Guinasso	NL,	Ackleson	SG,	Amos	JF,	Duckworth	R,	Sassen	R,	et	al.	Natural	oil-83	

slicks	in	the	gulf-of-mexico	visible	from	space.	J	Geophys	Res	1993,	98(C9):	16351-16364.	84	

	85	

	86	



 1 

Elevated surface chlorophyll associated with natural oil seeps in the Gulf of Mexico. 1 

D’souza N.A.1,3; Subramaniam A.1; Juhl A.R.1; Hafez M.1; Chekalyuk A.1; Phan S.1,; Yan B.1; 2 

MacDonald I.R.2; Weber S.C.3; Montoya J.P.3 3 
1 Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 4 
2 Florida State University, Tallahassee, Florida 5 
3 Georgia Institute of Technology, Atlanta, Georgia. 6 

 7 

Supplementary Figures and Tables: 8 

 9 

Supplementary Table 1: Dates and locations of CTD casts. Data from these CTD casts were 10 

used in Fig. 1. 11 

 12 

Supplementary Table 2: Summary statistics for water column nutrient concentrations at 13 

GC600 and non-seep sites. Mean concentrations of NO2
-+ NO3

-
, PO4

3-, and SiO2 for seep and 14 

non-seep sites were compared within depth bins using t-tests, n is the number of casts with data 15 

within a given depth bin. Statistical significance of NO2
- + NO3

- concentrations in the upper 3 16 

depth bins were not tested because the values were below the detection limit. PO4
3- data in the 17 

106-157 m depth bin failed normality tests and was not analyzed by t-test, though the seep 18 

concentrations were significantly higher than the non-seep values using a Wilcoxon Rank-Sum 19 

test (P < 0.001). The 52-80 m and 158-202 m bins lacked sufficient observations to test statistical 20 

significance.   21 

 22 

Supplementary Table 3: Summary statistics of near-surface chlorophyll concentrations 23 

near GC600 on three separate cruises. Summary statistics for the data shown in Fig. 2. 24 

 25 

Supplementary Figure 1: Average water temperature profiles for seep and non-seep sites to 26 

1200 m. Data are means ±1 s.e.m for 1-m depth bins. 27 



Supplementary Table 1 

Date Latitude Longitude 

Seep Sites 5/28/2012 27.36253 -90.5639 
5/28/2012 27.3628 -90.563 
5/28/2012 27.36117 -90.5752 
6/27/2012 27.3646 -90.5779 
6/27/2012 27.36107 -90.567 
6/28/2012 27.36092 -90.5789 
6/28/2012 27.36353 -90.564 
6/29/2012 27.36672 -90.5625 
6/29/2012 27.367 -90.56 

Non-seep sites 5/29/2012 26.02533 -92.2523 
6/5/2012 27.81852 -89.0683 
6/5/2012 27.81738 -89.0629 
6/5/2012 27.81512 -89.0622 
6/9/2012 27.73773 -88.8381 
6/9/2012 27.72155 -88.317 
6/9/2012 27.67295 -88.7774 
6/9/2012 27.5802 -88.7215 

6/17/2012 27.92133 -86.6916 
6/30/2012 27.53693 -89.7668 



Supplementary Table 2 

NO2+NO3 (µM) PO4  (µM) SiO4  (µM) 
Depth bin Seep Non-Seep Stat Sig p-value Seep Non-Seep Stat Sig p-value Seep Non-Seep Stat Sig p-value 

Depth 0-9 
0 0.055 NA NA 0.119 0.102 N 0.133 1.117 0.816 N 0.073 

n = 6 n = 7 n = 6 n = 7 (t-test) n = 6 n = 7 (t-test) 

Depth 10-25 
0.0021 0 NA NA 0.119 0.0913 N 0.059 1.103 0.964 N 0.256 
n = 6 n = 6 n = 6 n = 6 (t-test) n = 6 n = 6 (t-test) 

Depth 26-51 
0 0 NA NA 0.109 0.0987 N 0.303 1.131 0.879 Y <0.001 

n = 8 n = 6 n = 8 n = 6 (t-test) n = 8 n = 6 (t-test) 

Depth 52-80 
0 0.5043 NA NA  0.114 0.112 NA NA 1.27 1.244 NA NA 

n = 2 n = 6 n = 2 n = 6 n = 2 n = 6 

Depth 81-105 
2.654 0.528 Y <0.001 0.183 0.121 Y 0.002 2.071 1.265 Y  <0.001 
n = 6 n = 5 (t-test) n = 6 n = 5 (t-test) n = 6 n = 5 (t-test) 

Depth 106-
157 

12.379 6.454 Y  <0.001 0.713 0.380 NA NA 4.827 2.436 Y  <0.001 
n = 6 n = 5 (t-test) n = 6 n = 5 n = 6 n = 5 (t-test) 

Depth 158-
202 

17.932 12.588 NA NA  1.254 0.909 NA NA 8.666 5.403 NA NA 
n = 2 n = 4 n = 2 n = 4 n = 2 n = 4 



Supplementary Table 3 

 Site – Date of sampling GC600 - June 2012 GC600 - Sept 2012 GC600 - June 2013 

  B S B S B S 

Sample size (n) 190 1665 179 1250 154 3759 

Mean (mg.m-3) 0.0658 0.0629 0.0303 0.0397 0.0429 0.147 

% increase in Mean   -4.41   31.02   242.66 

Std. Dev. (mg.m-3) 0.0147 0.0188 0.0075 0.0241 0.0070 0.0108 

Variance  0.0002 0.0004 0.0001 0.0006 0.0001 0.0001 

Median (mg.m-3) 0.0628 0.0606 0.0300 0.0370 0.0414 0.1460 

% increase in Median   -3.50   23.33   252.66 

Min. (mg.m-3) 0.0483 0.0334 0.0173 0.0186 0.0320 0.1240 

Max. (mg.m-3) 0.2200 0.3900 0.0694 0.7040 0.0744 0.2820 

% increase in max.   77.27   914.41   279.03 

Skewness 6.662 6.488 1.381 18.526 2.002 2.248 

Kurtosis 64.407 91.145 4.442 476.413 5.928 16.557 

P-value  
(when compared with B) 

  P <0.001   P <0.001   P <0.001 

B = background 
S = seep 



Supplementary Figure 1 
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