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ABSTRACT 

The role of basal ganglia circuitry in motivation 

Fernanda Carvalho Poyraz 

 

The basal ganglia are a set of subcortical nuclei in the forebrain of vertebrates that are 

highly conserved among mammals. Classically, dysfunction in the basal ganglia has been linked 

to motor abnormalities. However, it is now widely recognized that in addition to their role in 

motor behavior, these set of nuclei play a role in reinforcement learning and motivated behavior 

as well as in many diseases that present with abnormal motivation. In this dissertation, I first 

provide a review of the literature that describes the current state of research on the basal ganglia 

and the background for the original studies I later present. I describe the anatomy and physiology 

of the basal ganglia, including how structures are interconnected to form two parallel pathways, 

the direct and the indirect pathways. I further review published studies that have investigated 

how the basal ganglia regulate motor behavior and motivation. And finally, I also summarize 

findings on how disruption in basal ganglia circuitry function has been linked to a number of 

neuropsychiatric diseases, with special focus on the symptoms of schizophrenia. I then present 

original data and discuss the results of three studies investigating basal ganglia function and 

behavior. 

In the first study, I investigated the bridging collaterals, axon collaterals of direct-

pathway medium spiny neurons (dMSNs) in the striatum that target the external segment of the 

globus (GPe), the canonical target of indirect-pathway medium spiny neurons (iMSNs). Previous 

work in the Kellendonk laboratory has linked these collaterals to increased dopamine D2 

receptor (D2R) function and increased striatal excitability, as well as to abnormal locomotor 



response to stimulation of the direct pathway. I expanded on these findings by first 

demonstrating that bridging collaterals form synaptic contacts with GPe cells. I was also able to 

generate a viral vector to selectively increase excitability in specific populations of MSNs. I used 

this virus to show that chronically increasing excitability of the indirect pathway, but not the 

direct pathway, leads to a circuit-level change in connectivity by inducing the growth of bridging 

collaterals from dMSNs in the GPe. I also confirmed that increased density of bridging 

collaterals are associated with an abnormal locomotor response to stimulation of striatal dMSNs 

and further demonstrated that chronic pharmacologic blockade of D2Rs can rescue this abnormal 

locomotor phenotype. Furthermore, I found that motor training reverses the enhanced density of 

bridging collaterals and partially rescue the abnormal locomotor phenotype associated with 

increased collaterals, thereby establishing a new link between connectivity in the basal ganglia 

and motor learning. 

In the second study, I conducted a series of experiments in which I selectively increased 

excitability of the direct or indirect pathway in specific striatal sub-regions that have been 

implicated in goal-directed behavior, namely the DMS and NA core. I found that this 

manipulation was not sufficient to induce significant effects in different behavioral assays of 

locomotion and motivation, including the progressive ratio and concurrent choice tasks. These 

findings also suggest that increased bridging collateral density does not have a one-to-one 

relationship with the motivational deficit of D2R-OEdev mice, as previously hypothesized. 

In the third and final study, my original aim was to determine whether the motivational 

deficit of D2R-OEdev mice, induced by upregulation of D2Rs in the striatum, could be reversed 

by acutely activating Gαi-coupled signaling in the indirect pathway in these animals. I found that 

this manipulation increased motivation in D2R-OEdev mice but also in control littermates. This 



effect was due to energized behavioral performance, which, however, came at the cost of goal-

directed efficiency. Moreover, selective manipulation of MSNs in either the DMS or NA core 

showed that both striatal regions contribute to this effect on motivation. Further investigation 

aimed at understanding how Gαi-coupled signaling affects striatal circuit function revealed that 

activating a Gαi-coupled receptor did not lead to a significant change in somatic MSN activity in 

vivo or to a change in neuronal excitability in vitro. In contrast, the GPe, which receives 

monosynaptic inhibition from the indirect pathway, showed disinhibited activity when Gαi 

signaling was activated in striatal iMSNs. In addition, as drug therapies for psychiatric diseases 

are not usually given acutely but involve long-term, continuous administrations, I also studied 

how chronically decreasing function of iMSNs would affect behavior. I showed that chronically 

activating a Gαi-coupled receptor in iMSNs does not lead to a measurable effect on locomotion or 

motivation, a behavioral desensitization response that can be recovered within 48 h and may be 

due to receptor desensitization to the drug or circuit-level compensation to a chronic decrease in 

iMSN function. 

Finally, I conclude this dissertation with a general discussion addressing how the findings 

from each study can be related to each other to provide a more complete understanding of how 

basal ganglia function regulate behavior, how disruption in the basal ganglia can underlie 

neuropsychiatric disease, and how strategies to target basal ganglia function should be employed 

to treat disorders of motivation. I conclude this dissertation by proposing new avenues of 

research for further exploring my findings. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

OVERVIEW 

The basal ganglia are a set of subcortical nuclei in the forebrain of vertebrates that are 

highly conserved among mammals. These nuclei are interconnected with various brain regions, 

including cortex, thalamus, and brain stem, forming complex circuits that have been implicated 

in a number of behavioral processes. The gross connectivity between the basal ganglia and other 

regions of the brain have been described since the seventeenth century (Willis, 1664), with early 

anatomical studies characterizing the gross interconnectivity among these nuclei (Percheron et 

al., 1994). As new research tools became available, neuroscientists have been able to more 

carefully dissect circuits, and the anatomy of the basal ganglia has been further linked to 

physiology and behavior. Historically, the basal ganglia were first implicated in motor behavior 

through early observations in patients with Parkinson’s disease, Huntington’s disease, and brain 

lesions (Albin et al., 1989). However, basal ganglia dysfunction has also been observed in 

patients with neuropsychiatric disease, such as drug addiction and schizophrenia. This set of 

nuclei is now widely recognized for their involvement in reinforcement learning and motivated 

behavior, as well as in a number of diseases that present with abnormal motivation. 

Involvement of the basal ganglia in disorders of motivation provided the impetus for the 

work presented here. In the following sections, I will first review the literature relevant to the 

original studies I conducted, including the anatomy and physiology of the basal ganglia and what 

is known about their function in normal behavior and diseased states. For consistency, as the 

original research findings I present in this dissertation were conducted in mice, most of my 
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review of the literature will include studies done in rodents. But at appropriate points, I will also 

discuss how these findings relate to work done in primates and humans. After reviewing the 

literature, I will describe in detail the three studies I conducted. In the first study, I contributed to 

the anatomical and functional characterization of the “bridging collaterals”, axon collaterals that 

interconnect the direct and indirect pathways of the basal ganglia and may be important in 

schizophrenia. In the second study, I tested whether chronic manipulations increasing excitability 

of specific pathways in the basal ganglia could affect motivation. And finally, in the last study I 

investigated how decreasing function of the indirect pathway of the basal ganglia, both acutely 

and chronically, affects motivation and neuronal activity, providing mechanistic and behavioral 

insight for development for new therapies for disorders of abnormal motivation. I conclude this 

dissertation with a general discussion that brings together findings from all three studies and 

proposes future directions for my work. 

 

BASAL GANGLIA ANATOMY AND PHYSIOLOGY 

 

CONNECTIVITY AND PATHWAYS 

The basal ganglia are composed of a bilateral set of evolutionarily conserved nuclei in the 

vertebrate forebrain. Anatomically, the striatum, comprising the dorsal striatum and nucleus 

accumbens (NA) – also referred to as the ventral striatum – is the largest of these nuclei and is 

considered the main input nucleus of the basal ganglia. In primates, the striatum is composed of 

the caudate nucleus and putamen, which are separated by the internal capsule. In rodents, 

however, there are no physical barriers separating striatal sub-regions. The striatum receives 

glutamatergic inputs from both cortex and thalamus. Cortical inputs to the striatum comes from a 



3 

 

broad range of cortical regions, including sensory, motor, and associational cortex, in a highly 

topographical manner (Alexander et al., 1986). The thalamic inputs to the striatum come 

predominantly from midline and intralaminar nuclei (Berendse and Groenewegen, 1990, Erro et 

al., 2001, Van der Werf et al., 2002, Vercelli et al., 2003, Yasukawa et al., 2004, Doig et al., 

2010). Most of these synaptic inputs are axo-dendritic, targeting the dendritic spines of medium 

spiny neurons (MSNs) – also known as spiny projection neurons – which express both NMDA 

and AMPA glutamate receptors (Carter et al., 2007). MSNs make up 95% of all neurons in the 

striatum and connect the striatum to other nuclei of the basal ganglia through GABAergic 

projections (Kemp and Powell, 1971). The other 5% of neurons in the striatum are interneurons 

that release acetylcholine or GABA. These interneurons are known to also receive cortico-

thalamic excitatory inputs, and they can synapse on other interneurons or on MSNs (Calabresi et 

al., 2000, Tepper et al., 2010).  

The other structures in the basal ganglia include the pallidum, substantia nigra, and 

subthalamic nucleus. The pallidum consists of the globus pallidus and its ventral extension, the 

ventral pallidum (VP). The globus pallidus consists of two functionally distinct parts, the internal 

segment of the globus pallidus (GPi) and the external segment of the globus pallidus (GPe). 

Pallidal neurons are GABAergic and tonically active, providing inhibitory tone to neurons in the 

nuclei to which they project (Surmeier et al., 2005). The substantia nigra is another structure of 

the basal ganglia, and it is located in the midbrain. Functionally, it can be divided into the 

substantia nigra pars compacta (SNc) and the substantia nigra pars reticulata (SNr). The SNc 

contains dopaminergic neurons, while neurons in the SNr are more similar to pallidal neurons in 

that they are GABAergic and tonically inhibit the nuclei to which they project (Surmeier et al., 

2005). Together, the GPi and SNr are considered output nuclei because, unlike other nuclei of 
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the basal ganglia, they project to structures outside the basal ganglia, predominantly the 

thalamus. Finally, the subthalamic nucleus (STN) is also part of the basal ganglia and is 

composed of tonically-active glutamatergic projection neurons (Surmeier et al., 2005). 

Interconnectivity among all these nuclei can be complex, and it is useful to describe it by 

considering the basal ganglia as an integral component of the cortico-basal ganglia-thalamo-

cortical loop. 

Information received by the striatum, the main input nucleus of the basal ganglia, flows 

to other nuclei through two parallel pathways, the direct and indirect pathways, arising from 

distinct populations of MSNs distributed uniformly throughout the striatum and approximately 

equal in number (Valjent et al., 2009). The direct pathway is formed by MSNs that express the 

dopamine D1 receptor (D1R), as well as the peptide neurotransmitters substance P and 

dynorphin. The indirect pathway, in turn, arises from MSNs that express the dopamine D2 

receptor (D2R) in addition to the adenosine A2A receptor and the neuropeptide enkephalin. The 

gene and protein expression profiles of these two neuronal populations have been characterized 

by immunohistochemistry, in situ hybridization, as well as single-cell RT-PCR studies (Gerfen 

and Young, 1988, Surmeier et al., 1996, Matamales et al., 2009). The segregation of these two 

populations of striatal MSNs has been further confirmed in transgenic mice using bacterial 

artificial chromosomes (BAC) expressing fluorescent proteins under the control of the promoters 

for the D1R and D2R genes, Drd1 and Drd2, respectively (Gong et al., 2003, Ade et al., 2011). 

Using these BAC transgenic mice, researchers have demonstrated that D1Rs and D2Rs are co-

expressed in fewer than 5% of MSNs in the adult striatum (Bertran-Gonzalez et al., 2008, Shuen 

et al., 2008). Thus, at the somatic level, two populations of MSNs can be readily distinguished 

based on their gene expression profiles. 
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As suggested by their name, MSNs of the direct pathway (dMSNs) project directly to the 

output nuclei of the basal ganglia, the GPi and SNr. The latter two nuclei project mainly to the 

thalamus, including the ventral anterior, ventral lateral, and mediodorsal nuclei, as well as to the 

superior colliculus and pedunculopontine nucleus in both rodents and primates (Moriizumi and 

Hattori, 1992, Shink et al., 1997, McFarland and Haber, 2002, Bodor et al., 2008, Kaneda et al., 

2008). Some researchers have proposed that GPi and SNr function as basal ganglia output nuclei 

in segregated loops, with the GPi predominantly targeting the motor cortex via the ventrolateral 

thalamus, while the SNr preferentially targets association cortical areas via the ventroanterior 

and mediodorsal thalamus (Romanelli et al., 2005). Regardless of the specific thalamic nuclei to 

which they project, the majority of neurons in the SNr and GPi inhibit the thalamus by providing 

GABAergic tone to its targets. As a result, increased dMSN activity, or activation of the direct 

pathway of the basal ganglia, inhibits the basal ganglia output nuclei, thereby providing a net 

disinhibition of the thalamus.  

MSNs of the indirect pathway (iMSNs), in turn, can have the opposite effect on the 

output of the basal ganglia. These striatal neurons only project to the GPe or to the VP. Neurons 

in the GPe are known to provide inhibitory tone to the output nuclei of the basal ganglia by 

synapsing on neurons in the STN, which in turn send excitatory projections to the GPi and SNr 

(Kita and Kitai, 1987). Since pallidal neurons are GABAergic and neurons in the STN are 

glutamatergic, through a polysynaptic circuit, the net effect of iMSNs on basal ganglia output is 

to decrease disinhibition to the thalamus. Figure 1 outlines the connectivity of the direct and 

indirect pathways described above, illustrating how the distinct neuroanatomical organization of 

these pathways can lead to opposing effects on basal ganglia output. 
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Despite the conceptual appeal of having two dichotomous circuits that provide opposing 

influences on basal ganglia output, a number of functionally-relevant anatomical complexities 

exist within this circuitry. For instance, while iMSNs project exclusively to the GPe or VP, not 

all dMSNs project only to the SNr or GPi. In the dorsal striatum, dMSNs that project to the 

output nuclei of the basal ganglia are known to also extend axonal collaterals to the GPe, 

classically known to be the targets of iMSNs (Wu et al., 2000, Fujiyama et al., 2011), and axon 

terminals of dMSNs arising from the NA can also be found in the pallidum (Lu et al., 1998). 

Moreover, the GPe has been shown to project back to the striatum (Staines and Fibiger, 1984). 

Another exception to the direct/indirect pathway dichotomy is the fact that, in contrast to the 

GPe, the VP can function as an output nucleus of the basal ganglia, much like the GPi and SNr, 

as some cells in the VP have been shown to project to the mediodorsal thalamus (Tripathi et al., 

2013). Finally, the STN is also part of a third pathway that can influence basal ganglia output, 

Figure 1: Connectivity and pathways in the basal ganglia. A. The striatum is the main input nucleus of 

the basal ganglia and receives excitatory inputs from the cortex and thalamus (blue arrows). The internal 

segment of the globus pallidus (GPi) and the substantia nigra pars reticulata (SNr) are the main output 

nuclei of the basal ganglia; they project to regions outside the basal ganglia, predominantly the thalamus 

(red arrows). B. Within the basal ganglia two parallel pathways interconnect input and output nuclei. The 

direct pathway is formed by striatal medium spiny neurons (MSNs) that project monosynaptically to the 

GPi or SNr, output nuclei of the basal ganglia (solid red arrows). Many of the direct-pathway MSNs 

(dMSNs) also have axon collaterals that project to the external segment of the globus pallidus (GPe) 

(dotted red arrow). In contrast, the indirect pathway arising from striatal MSNs (iMSNs) interconnect 

with the output nuclei of the basal ganglia, the GPi and SNr, through a polysynaptic circuit via the GPe or 

ventral pallidum (VP, not shown) and subthalamic nucleus (STN, connection not shown) (solid green 

arrows). 
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the so-called hyperdirect pathway. Excitatory projections, predominantly from motor cortex but 

also prefrontal regions, have been shown to directly target the STN, allowing cortical 

information to enter the basal ganglia bypassing the striatum (Haynes and Haber, 2013). 

Despite these exceptions, the circuit connectivity described above and illustrated in 

Figure 1 explains how the basal ganglia are integrated in a loop with the cortex and thalamus. 

The striatum receives corticothalamic inputs and relays neural information to the output nuclei of 

the basal ganglia either directly via the dMSNs or indirectly via iMSNs. Influence from both the 

direct and indirect pathways determines whether neurons in the SNr and GPe will inhibit or 

disinhibit their thalamic targets. Thalamic nuclei, in turn, send excitatory projections to the 

cortex and can project directly back to the striatum, thereby closing the cortico-basal ganglia-

thalamo-cortical loop. Anatomical tracing studies in both rodents and primates have 

demonstrated that functional regions in the cortex that send inputs to the basal ganglia are 

connected with specific areas of each nucleus of the basal ganglia and the thalamus, revealing a 

topographical pattern of connectivity through cortex, basal ganglia, and thalamus composed of a 

series of parallel, segregated loops (Haber and Calzavara, 2009). Data in primates have also 

demonstrated that terminals from different functional regions converge at nodes within the 

corticostriatal pathway (Haber et al., 2006, Calzavara et al., 2007). From a circuitry point of 

view, this organization allows for specific loops to be activated or inhibited independently. 

Therefore, it is conceptually feasible that opposing influence of the direct and indirect pathways 

on basal ganglia output can occur simultaneously on different loops when animals engage in 

complex behaviors: while the direct pathway promotes thalamic disinhibition to drive specific 

behaviors via a particular loop, the indirect pathway maintains thalamic inhibition via competing 

loops to suppress unwanted actions. 
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In addition to being integrated in a series of loops with the cortex and thalamus, the basal 

ganglia are modulated by dopaminergic neurons in the midbrain located both in the SNc and 

ventral tegmental area (VTA). Dopaminergic terminals densely innervate dMSNs and iMSNs 

throughout the entire striatum (Moss and Bolam, 2008). One functionally-relevant feature of 

dopaminergic terminals in the striatum is that they exhibit presynaptic D2R expression thought 

to function as autoreceptors in a negative feedback mechanism, whereby their activation leads to 

decreased release of dopamine (Sesack et al., 1994, Ford, 2014). Moreover, presynaptic D2R 

expression in the striatum does not only occur in the terminals of dopaminergic neurons, as 

cortical afferent presynaptic terminals to the striatum have also been shown to express D2Rs 

(Wang and Pickel, 2002). The presynaptic expression of D2Rs in the striatum has posed a 

challenge to the study of D2R function in iMSNs since pharmacological agents targeting this 

receptor in the striatum can bind to both presynaptic and postsynaptic receptors, and it can be 

difficult to experimentally isolate the effects elicited by targeting D2Rs in each of these neuronal 

compartments. 

Histologically, the striatum displays another level of heterogeneity in its organization into 

patch (striosome) and matrix compartments that have specialized gene expression as well as 

different inputs and outputs. The patch compartment has enriched immunoreactivity for 

enkephalin, substance P, as well as cholinergic muscarinic receptors and mu opioid receptors 

(Graybiel et al., 1981, Moriwaki et al., 1996, Bernard et al., 1999). In contrast, the matrix 

compartment has high acetylcholinesterase activity, somatostatin-immunoreactive fibers, and 

GABAergic neurons that co-express calbindin (Graybiel and Ragsdale, 1978, Herkenham and 

Pert, 1981, Gerfen, 1984, Gerfen et al., 1985). Patches receive inputs from the prelimbic cortex 

and project to the SNc, while the matrix receives inputs from sensory and motor cortical regions 
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and projects to the SNr (Gerfen, 1984). The connectivity of striatal patch and matrix 

compartments has been proposed to represent a second level of functional organization in the 

basal ganglia in addition to the parallel circuits formed by the direct and indirect pathways 

(Gerfen, 1992). 

Moreover, different types of striatal neurons form synaptic contacts locally within the 

striatum. MSN-to-MSN lateral inhibition represents one type of such synaptic contact. In 

addition to projecting outside of the striatum, both dMSNs and iMSNs are known to extend 

richly-branching axon collateral arbors around their cell bodies (Kawaguchi et al., 1989). 

GABAergic synapses between these collaterals and GABAA receptors on neighboring MSNs 

represent a lateral inhibition mechanism via which striatal output may be further regulated 

(Czubayko and Plenz, 2002). Using BAC transgenic mice, researchers have characterized MSN-

to-MSN lateral connectivity by demonstrating that, while iMSNs project both to other iMSNs 

and to dMSNs, dMSNs locally synapse only onto other dMSNs (Taverna et al., 2008).  

Synapses involving striatal interneurons represent a second type of local connectivity 

within the striatum. Among striatal interneurons, it is known that the GABAergic interneurons 

form feed-forward inhibitory synaptic connections with both MSNs and neighboring 

interneurons (Koos and Tepper, 1999). In addition, cholinergic interneurons release 

acetylcholine in the striatum, and changes in their activity have been linked to motor and 

reinforcement learning in primates (Kimura et al., 1984, Aosaki et al., 1994). However, the 

mechanisms by which acetylcholine affects basal ganglia output are not well characterized. 

Although MSNs lack nicotinic receptors (Luo et al., 2013), they express muscarinic receptors 

that are thought to mediate increased MSN excitation when acetylcholine is released from 

cholinergic interneurons, even in the absence of synaptic input (Hsu et al., 1996, Hsu et al., 1997, 
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Galarraga et al., 1999). Studies using optogenetics have also demonstrated that activation of 

cholinergic interneurons triggers dopamine release from presynaptic terminals in the striatum 

(Cachope et al., 2012, Threlfell et al., 2012).  In addition, cholinergic interneurons express D2Rs 

and their activity can be modulated by dopamine (Yan et al., 1997). Thus, even though they 

represent a small minority of neurons in the basal ganglia, striatal interneurons can influence 

basal ganglia output by modulating dopamine release and activity of MSNs. 

With an understanding of the parallel circuits that integrate basal ganglia input and 

output, it is important to also acknowledge specific differences in the anatomical connectivity 

involving the dorsal striatum and the NA. These differences exist at the level of afferents and 

efferents and further reinforce the concept that the basal ganglia are integrated in parallel loops 

with the cortex and thalamus. Afferent dopaminergic modulation from the midbrain to the 

striatum target striatal sub-regions selectively. The vast majority of dopaminergic neurons 

projecting to the dorsal striatum come from the SNc, while those projecting to the NA come 

from the VTA (Ungerstedt, 1971, Fallon and Moore, 1978, Gerfen et al., 1987). In respect to 

cortical inputs, the dorsal striatum receives inputs from associative and sensorimotor cortical 

areas, while the NA receives inputs from the orbitofrontal cortex and other limbic cortical areas 

(Gerfen, 1984, Nakano et al., 2000). There are also differences in the efferent targets of striatal 

MSNs arising from the dorsal striatum and NA. Consistent with their dorsal-ventral orientation, 

iMSNs in the dorsal striatum project to the GPe, while iMSNs in the NA project to the VP. 

Similarly, among the dMSNs that project to the pallidum, those arising from the dorsal striatum 

target the GPe, while those arising from the NA target the VP. Moreover, it is known that in the 

dorsal striatum, projections from dMSNs to the GPe are predominantly axon collaterals from 

neurons that also project to output nuclei of the basal ganglia (Kawaguchi et al., 1990, Wu et al., 
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2000, Fujiyama et al., 2011). Although axon terminals of dMSNs arising from the NA can also 

be found in the VP (Lu et al., 1998), it is not known if these terminals represent axon collaterals. 

Moreover, functional differences related to anatomical connectivity have been reported between 

dMSN “non-canonical” projections from the dorsal striatum to the GPe and those from the NA to 

the VP. One recent study estimated that 18% of the neurons in the GPe receive input from 

dMSNs in the dorsal striatum, while as many as 50% of the neurons in the VP receive inputs 

from dMSNs in the NA (Kupchik et al., 2015). 

The dorsal striatum and NA can be further divided into sub-compartments. The medial 

and lateral regions of the dorsal striatum receive inputs from distinct cortical regions. While 

sensorimotor cortex projects to the dorsolateral striatum (DLS), associative cortical structures, 

including medial prefrontal cortex and anterior cingulate, project to the dorsomedial striatum 

(DMS) (Pan et al., 2010). The NA, in turn, can be anatomically subdivided into core and shell. 

The core of the NA receives inputs from associative and limbic cortex (Brog et al., 1993), much 

like the DMS. In contrast, the shell of the NA has very distinct morphological and anatomical 

properties when compared to the rest of the striatum and is considered by some to be part of the 

extended amygdala (Alheid and Heimer, 1988, Heimer et al., 1991, Heimer et al., 1997). 

Compared to the NA core, neurons in the NA shell have lower density of dendritic spines and 

less branching (Meredith et al., 1992). The NA shell also receives afferent innervation from 

different cortical and subcortical structures compared to those of the core, including lateral 

hypothalamus and brainstem (Brog et al., 1993). In addition to innervating the VP and GPi, the 

NA shell also project to the VTA, as well as to the lateral hypothalamus and other structures in 

the extended amygdala (Heimer et al., 1991). Despite this traditional sub-compartmentalization, 

it has also been proposed that functional sub-regions within the striatum follow a gradient along 
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the dorsolateral-to-ventromedial axis, especially when considering the source of corticostriatal 

inputs (Moriwaki et al., 1996). 

In summary, although a number of exceptions have been described, the basal ganglia can 

be conceptually framed as integrated in serial loops with the cortex and thalamus, with the direct 

and indirect parallel pathways providing opposing influence on basal ganglia output. Activity in 

this circuit is modulated internally by striatal interneurons and externally by dopaminergic 

neurons that project to the striatum.  

 

NEUROPHYSIOLOGY OF MEDIUM SPINY NEURONS 

Much of the intrinsic neurophysiological properties of dMSNs and iMSNs, as well as 

their influence of basal ganglia output, have been characterized both in vitro and in vivo. Both 

dMSNs and iMSNs have a low resting membrane potential in the absence of corticothalamic 

input. At rest, inward rectifying Kir2 potassium channels, expressed in abundance by all striatal 

MSNs hold the membrane potential near the equilibrium potential of potassium (Wilson, 1993). 

In response to glutamatergic synaptic inputs from the cortex and thalamus, MSNs can depolarize 

if inputs have enough temporal and spatial convergence to overwhelm Kir2 channels and cause 

them to close, allowing the membrane potential to reach spike threshold (Wilson and 

Kawaguchi, 1996). Slice electrophysiological recordings from genetically-identified iMSNs and 

dMSNs have demonstrated that both types of MSNs share similar passive membrane properties, 

including resting membrane potential, action potential properties, input resistance, and 

afterhyperpolarization amplitude (Cepeda et al., 2008). Using optogenetic tools to identify 

dMSNs and iMSNs, findings from in vivo electrophysiology experiments are in line with in vitro 

data and provide further insight on how MSN activity is related to behavior. Both types of MSNs 
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show similarly low baseline activity when animals are not engaging in motor actions and are 

concomitantly active during initiation of action sequences (Jin et al., 2014b), presumably driven 

by strong corticothalamic inputs that reverse hyperpolarization in MSNs to allow initiation of 

behavioral programs. 

Even though dMSNs and iMSNs exhibit similar passive membrane properties and 

general levels of activity in vivo, there are many known functional differences between these two 

neuronal populations that can lead to different responses to synaptic input. Some of these 

functional differences arise from differences in the morphology of dMSNs and iMSNs. In 

rodents, the total dendritic length of iMSNs is smaller than that of dMSNs (Gertler et al., 2008). 

From this difference in dendritic surface area, with no evident dissimilarity in the density of 

synaptic inputs to dMSNs and iMSNs, some have inferred that dMSNs receive more 

glutamatergic inputs than iMSNs (Gerfen and Surmeier, 2011). In addition, smaller dendritic 

length leads to lower membrane capacitance, which can account for the higher intrinsic 

excitability of iMSNs compared to dMSNs that has been demonstrated in a number of studies 

using slice physiology (Kreitzer and Malenka, 2007, Cepeda et al., 2008, Gertler et al., 2008, 

Lobo et al., 2010).  

However, most of the physiological differences between dMSNs and iMSNs can be 

attributed to the different dopamine receptors they express that are thought to mediate diverging 

modulatory effects of dopamine on these two populations of striatal neurons. It is thought that 

activation of D1Rs leads to somatic depolarization and facilitates spiking in dMSNs, while 

activation of D2Rs on iMSNs has the opposing effect, causing cells to become less likely to 

depolarize and fire action potentials. However, although researchers have some insight on how 
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membrane conductances can be changed upon activation of D1Rs and D2Rs on the cell surface 

of MSNs, much of the intracellular mechanisms underlying these effects remain unknown. 

The D1R is a Gαs/olf-protein-coupled receptor that activates adenylate cyclase and 

consequently increases production of cyclic AMP (cAMP). High levels of cAMP in MSNs lead 

to the activation of protein kinase A (PKA), which induces phosphorylation of various 

substrates, as well as activation of immediate early gene expression and modulation of ion 

channels. Some specific physiological effects of D1R activation on MSNs have been described. 

For instance, intracellular signaling activated by D1Rs has been shown to increase Cav1 L-type 

channel currents (Surmeier et al., 1995, Galarraga et al., 1997) and to decrease somatic A-type 

potassium currents (Kitai and Surmeier, 1993). D1R activation in MSNs can also reduce N- and 

P-type calcium currents (Surmeier et al., 1995) that control activation of calcium-dependent 

potassium currents (Vilchis et al., 2000). In addition, bypassing G protein signaling, the second 

intracellular loop of the D1R has been shown to interact directly with the C-terminal region of N-

type Cav2.2 channels and mediate inhibition or internalization of these channels both in 

transfected cells and in native tissue (Kisilevsky et al., 2008, Kisilevsky and Zamponi, 2008). 

Moreover, in both transfected cells and cultured neurons, the D1R has been shown to interact 

with the NR1 and NR2A subunits of the glutamatergic NMDA receptor (Lee et al., 2002, 

Fiorentini et al., 2003).  

In contrast, D2Rs are Gαi/o-protein-coupled receptors that when activated leads to 

inhibition of adenylate cyclase and decreased cAMP production. Decreased production of cAMP 

decreases PKA activity, which can have a modulatory effect on ions channel conductances. 

Assuming that dMSNs and iMSNs express similar intracellular signaling proteins, it is expected 

that activation of D2Rs in iMSNs would have opposite physiological effects compared to 
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activation of D1Rs in dMSNs. Studies using slice electrophysiology have indeed shown this 

dichotomy for some conductances regulated by G protein signaling. For instance, in contrast to 

the effect of activating D1Rs, activation of D2Rs reduces Cav1 L-type channel currents 

(Hernandez-Lopez et al., 1997, Hernandez-Lopez et al., 2000). In heterologous cell culture 

systems, it has been demonstrated that D2Rs can also activate G-protein coupled inwardly 

rectifying potassium (GIRK) channels via the Gβγ subunit (Kuzhikandathil et al., 1998, Lavine et 

al., 2002). The activation of GIRKs induced by activation of D2Rs and other G-protein coupled 

receptors (GPCRs) has an inhibitory effect on neurons and could potentially mediate several 

functions of dopamine in vivo (Luscher and Slesinger, 2010). However, the striatum expresses 

low levels of GIRK channels (Karschin et al., 1996), and D2R-dependent outward currents that 

are characteristic of GIRKs cannot be readily measured in MSNs unless GIRK channels are 

artificially overexpressed (Marcott et al., 2014). Thus, the well-characterized GIRK-mediated 

decrease in excitability promoted by Gαi signaling is likely not relevant for D2Rs expressed in 

MSNs. Moreover, the D2R can also interact directly with the NR2B subunit of the NMDA 

receptor in response to high extracellular dopamine in the postsynaptic density microdomain of 

excitatory synapses in striatal neurons (Liu et al., 2006). Thus, most studies investigating the 

physiological effects of dopamine on D1Rs and D2Rs suggest that activation of each receptor 

leads to opposing downstream effects, reinforcing a dichotomy between these two neuronal 

populations. 

It is also important to note that two splice variants of the D2R exist, the D2R long and 

short isoforms (D2L and D2S, respectively), which are identical except for an insert of 29 amino 

acids in the third extracellular loop of the D2L isoform (Dal Toso et al., 1989). Some differences 

in subcellular distributions and coupling to G proteins have been reported for these two D2R 
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isoforms (Montmayeur et al., 1991, Usiello et al., 2000, Morris et al., 2007, De Mei et al., 2009). 

However, D2Rs expressed postsynaptically by iMSNs are predominantly of the D2L type 

(Usiello et al., 2000), and therefore it can be inferred that the physiological effects described 

above measured in striatal MSNs are likely mediated by the D2L isoform. 

The 32-kDa dopamine- and cAMP-regulated phosphoprotein (DARPP-32) is a substrate 

of PKA that plays a role in dopamine signaling in striatal MSNs, mediating some of the opposite 

physiological effects of D1R and D2R activation. Phosphorylation of DARPP-32 at threonine 34 

by PKA activates the protein phosphatase 1 (PP1) inhibitory function of DARPP-32 (Hemmings 

et al., 1984). Studies in BAC transgenic mice overexpressing DARPP-32 tagged for 

immunoprecipitation have shown that enhanced D1R stimulation results in increased 

phosphorylation of DARPP-32 in response to PKA activation in dMSNs, whereas stimulation of 

D2Rs in iMSNs reduces phosphorylation of DARPP-32 at threonine 34, presumably as a 

consequence of reduced PKA activation (Bateup et al., 2008) and/or the dephosphorylation of 

threonine 34 by the calmodulin-dependent protein calcineurin that is also activated by increased 

intracellular Ca2+ after activation of D2Rs (Nishi et al., 1997). In MSNs, the phosphorylation 

state of multiple PKA targets, such as ionotropic glutamate and GABA receptors, is the result of 

an equilibrium between PKA and PP1 activity (Greengard et al., 1999, Greengard, 2001). 

Therefore, DARPP-32 is a regulator protein that acts to amplify PKA signaling and can mediate 

the opposing functions of D1Rs and D2Rs in the striatum. 

In addition, several MAP kinases have been shown to mediate signaling involved in the 

physiological effects of dopamine. Observations in heterologous cell culture systems suggest that 

both D1Rs and D2Rs can regulate the MAP kinases extracellular signal regulated kinases 1 and 2 

(ERK1 and ERK2) (Chen et al., 2004, Wang et al., 2005). Pharmacological studies in vivo have 
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shown that psychostimulants that lead to high extracellular dopamine, such as amphetamine or 

cocaine (Valjent et al., 2006), and the D2R antagonist haloperidol (Pozzi et al., 2003) enhances 

phosphorylation of ERK1 and ERK2 in the striatum. These findings were confirmed with BAC 

transgenic mice, further revealing that psychostimulants activate ERK selectively in dMSNs, 

while haloperidol activates ERK selectively in iMSNs (Bertran-Gonzalez et al., 2008). 

Furthermore, it has also been shown that ERK phosphorylation mediated by D1Rs in the striatum 

involves an interaction with the NMDA glutamate receptor and requires the presence of 

endogenous glutamate (Valjent et al., 2000, Valjent et al., 2005, Pascoli et al., 2011). In cell 

culture, D2R-mediated ERK signaling has been shown to be dependent on Gαi protein coupling 

(Ghahremani et al., 2000, Beom et al., 2004). Thus, evidence suggests that some of the 

dichotomous physiological effects of activating D1Rs and D2Rs in striatal MSNs may be 

mediated by ERK signaling. 

Another important distinction between dMSNs and iMSNs and how they can be 

modulated by dopamine via D1Rs and D2Rs, respectively, relates to the different affinities of 

dopamine for each type of receptor. The affinity of D2Rs for dopamine is reported to be 10- to 

100-fold greater than that of D1Rs (Missale et al., 1998). However, most measures of affinity for 

dopamine have been made using displacement of radiolabeled antagonists from receptors 

expressed in heterologous systems, and these methods do not take into account the coupling 

efficacy to downstream signaling cascades. Even though it is problematic to infer that these 

measurements reflect what happens in vivo, many researchers have proposed that D2Rs are 

preferentially activated by basal (tonic) extracellular levels of dopamine, while burst (phasic) 

firing of dopaminergic neurons mainly activates the low-affinity D1Rs (Grace et al., 2007, 

Surmeier et al., 2011). Researchers have also proposed that both D1Rs and D2Rs can exist in 
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both high- and low- affinity states with similar affinities to dopamine in their high-affinity states 

(Cumming, 2011). These observations have led to different conceptual models of how dopamine 

may affect activity in the basal ganglia during reinforcement learning (Goto and Grace, 2005, 

Grace et al., 2007), but the actual relevance of tonic and phasic dopamine and dopamine receptor 

affinity states to basal ganglia output and behavior still needs to be fully tested with selective 

manipulations in vivo. 

Table 1 summarizes the main biochemical and physiological effects that have been 

shown to result from activation of D1Rs or D2Rs on striatal MSNs. It is important to note, 

however, that most studies reporting electrophysiological changes induced by activation of D1Rs 

and D2Rs in striatal MSNs were done with whole-cell patch clamp in acute slices, a technique 

that allows researchers to measure changes in conductances in the soma but not in other cellular 

compartments, including dendrites and axon terminals. A few studies have used two-photon 

microscopy and calcium sensors to determine how excitability of MSNs are specifically affected 

at proximal and distal dendrites, confirming that dendrites of iMSNs are more excitable than 

those of dMSNs and demonstrating that activation of D2Rs can suppress dendritic excitability of 

iMSNs (Carter and Sabatini, 2004, Carter et al., 2007, Day et al., 2008). Moreover, it is known 

that D2Rs are also expressed in the presynaptic terminals of iMSNs targeting the GPe (Levey et 

al., 1993, Yung et al., 1995), and some findings have shown that dopamine can modulate GABA 

release from iMSN terminals targeting pallidal neurons via presynaptic D2Rs (Floran et al., 

1997, Wei et al., 2013, Mamad et al., 2015). A role for D2Rs acting on presynaptic terminals of 

iMSNs to suppress GABA release has also been demonstrated for axon collaterals that target 

neighboring MSNs (Tecuapetla et al., 2009, Kohnomi et al., 2012). 
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Table 1: Biochemical and physiological effects of activating D1Rs and D2Rs in MSNs 

 Target Effect References 

Activation of 

D1Rs 

Gαs, Gαolf Stimulates cAMP production  

Cav1 L-type channel Increases currents 
(Surmeier et al., 1995, 

Galarraga et al., 1997) 

A-type K+ channels Decreases currents (Kitai and Surmeier, 1993). 

N- and P -type Ca2+ 

channels 
Decreases currents (Surmeier et al., 1995) 

Ca2+- dependent K+ 

channels 
Activates currents (Vilchis et al., 2000) 

N-type l Cav2.2 

channel 
Inhibition and internalization 

(Kisilevsky et al., 2008, 

Kisilevsky and Zamponi, 

2008) 

NR1 and NR2A 

NMDA subunits 
Interacts 

(Lee et al., 2002, Fiorentini 

et al., 2003) 

DARPP-32 Increases phosphorylation (Bateup et al., 2008) 

ERK1 and ERK2 Increases phosphorylation (Valjent et al., 2006) 

Activation of 

D2Rs 

Gαi, Gα0 Inhibits cAMP production  

Cav1 L-type channel Decreases currents 
(Hernandez-Lopez et al., 

2000) 

NRB NMDA 

subunit 
Interacts (Liu et al., 2006) 

DARPP-32 Decreases phosphorylation (Bateup et al., 2008) 

ERK1 and ERK2 Decreases phosphorylation (Pozzi et al., 2003) 

 

 

STRIATAL PATHWAY AND BEHAVIOR 

 

MOTOR BEHAVIOR 

Despite the complexities in anatomy and function, a number of studies suggest that the 

opposing influence on output to the thalamus exerted by the two main pathways of the basal 

ganglia mediate opposing influences on behavior, with the direct pathway being permissive for 

behavior initiation and the indirect pathway being inhibitory. This opposition has been most 

clearly demonstrated in the domain of motor behavior, and as a result, the two pathways have 

been classically referred to as the “go” (direct) and “no-go” (indirect) pathways. 
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Combining knowledge of basal ganglia connectivity and dopamine receptor function, 

dopamine depletion studies and observed effects of psychostimulants provided some initial 

evidence in support of this classical model. The neurotoxin 6-hydroxydopamine (6-OHDA) can 

selectively destroy dopaminergic neurons and has been used to model parkinsonism in different 

species (Ungerstedt, 1968). When locally delivered into the striatum, 6-OHDA is taken up by 

dopaminergic terminals and induces cell death (Blum et al., 2001). The loss of dopaminergic 

modulation to the striatum that ensues leads to robust motor impairments in both rodents and 

primates (Blesa and Przedborski, 2014). In contrast, psychostimulants such as cocaine and 

amphetamine, which increase extracellular dopamine by blocking dopamine reuptake through 

the dopamine transporter (DAT), induces hyperactive motor behavior in rodents (Jaber et al., 

1997).  

Pharmacological studies measuring the effect of selective dopamine receptor agonists and 

antagonists on motor behavior have further elucidated the role of dMSNs and iMSNs on motor 

control. D1R agonists have a stimulatory effect on locomotor activity in rodents, while treatment 

with D2R agonists leads to a biphasic locomotor response, characterized by decreased activity at 

low doses and behavioral activation at high doses (Eilam et al., 1992). This biphasic effect can 

be explained by the fact that D1Rs are only expressed postsynaptically, while D2Rs are 

expressed both presynaptically and postsynaptically (Sesack et al., 1994). While selective D1R 

stimulation in striatal dMSNs increases locomotor activity by activating the direct pathway, D2R 

agonists in the striatum can lead to activation of postsynaptic receptors on iMSNs and 

presynaptic autoreceptors in dopaminergic terminals. Presynaptic D2Rs have been shown to 

provide negative feedback to dopamine neurons, decreasing dopamine release into the striatum 

(Starke et al., 1989) and likely mediating the initial decreased activity of the biphasic motor 
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response to D2R agonists. In addition, presynaptic D2Rs are predominantly of the D2S isoform, 

while postsynaptic D2Rs are predominantly of the D2L isoform (Usiello et al., 2000, De Mei et 

al., 2009). As a result, different contributions of D2S and D2L isoforms are thought to also 

mediate the biphasic response of D2R agonists on motor behavior. 

The most direct evidence for a dichotomy between direct and indirect pathways on motor 

output comes from optogenetics studies. Using Cre-dependent expression of the excitatory opsin 

channelrhodopsin-2 (ChR2) in the dorsal striatum of Drd1-Cre and Drd2-Cre mice, researchers 

have shown that activating dMSNs leads to increased movement initiation in freely-behaving 

animals, while activating iMSNs increases freezing and bradykinesia, and decreases initiation of 

movements (Kravitz et al., 2010). Similar optogenetic manipulations in the NA, however, do not 

elicit similar changes in locomotor activity (Lobo et al., 2010). In agreement with this negative 

finding, studies using optogenetics to activate dopaminergic terminals projecting from the VTA 

to the NA also did not show difference in locomotor activity induced by either phasic or tonic 

stimulation (Chaudhury et al., 2013). These studies suggest that the control of locomotor activity 

by the direct and indirect pathways and their modulation by dopamine may be mediated 

primarily by the dorsal striatum. 

Other strategies have also been used to demonstrate the opposing effects on motor output 

by the direct and indirect pathways. For instance, in one study, researchers selectively ablated 

iMSNs in the entire striatum by locally delivering diphtheria toxin to animals that selectively 

expressed the diphtheria toxin receptor in iMSNs (Durieux et al., 2009). Consistent with a role of 

the indirect pathway in inhibiting locomotion, they found that ablating iMSNs induced 

hyperlocomotion in mice (Durieux et al., 2009). In another study, selective deletion of DARPP-

32 in iMSNs or dMSNs was performed to probe the roles of direct and indirect pathways in 
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controlling motor behavior (Bateup et al., 2010). This study showed that DARPP-32 deletion in 

dMSNs decreased basal and psychostimulant-induced locomotion, while DARPP-32 deletion in 

iMSNs led to increased locomotor activity in mice (Bateup et al., 2010), thereby directly 

implicating DARPP-32 in supporting the opposing functions of direct and indirect pathways on 

motor behavior. 

Despite evidence emphasizing the opposing functions of direct and indirect pathways, it 

is known that complex, coordinated activity of both pathways are necessary for the precise 

regulation of motor output. In vivo calcium imaging has shown that both dMSNs and iMSNs 

show increased activity when animals engage in motor actions, yet are inactive when animals are 

not moving (Cui et al., 2013). To expand on these observations, another study used in vivo 

electrophysiology to investigate how activity of dMSNs and iMSNs change while animals 

engage in action sequences. They confirmed that these two types of neurons are concomitantly 

active during initiation of action sequences, but their activities can differ while the action 

sequence is ongoing (Jin et al., 2014a). As previously suggested, based on the anatomical 

organization of the basal ganglia in segregated, parallel loops, these findings are consistent with 

a model in which both pathways are active in different loops when animals initiate movements: 

while the direct pathway functions to activate wanted motor programs, the indirect pathway may 

be activated to suppress unwanted motor programs. These studies further suggest the importance 

of balanced direct- and indirect-pathway output for appropriate control of motor behaviors.  

 

MOTIVATION 

The basal ganglia are also thought to regulate motivated behaviors, and this regulation 

has been largely studied in the context of dopaminergic modulation of striatal function. 

Motivation can be defined as the activation of goal-directed behavior. Animals have the adaptive 
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ability to approach life-sustaining aspects of their environment, which can be considered 

rewards, and to withdraw from what may be life-threatening. Motivation pertains to animals’ 

goal-directed approach behavior to learned rewards, and potential rewards, including exploration 

of their environment and engagement in actions that have been previously reinforced by rewards. 

Furthermore, in addition to what is external and can produce and reinforce motivated behavior, 

the induced internal state that produces and reinforces such behaviors can also be considered 

rewarding (Ikemoto, 2010). This conceptual framework will be helpful in interpreting the body 

of data concerning how dopamine and the basal ganglia regulate motivation. 

It is important to explicitly describe specific aspects of motivation and explain how 

researchers can probe different phases of reinforcement learning and the different components of 

motivation that are at play when subjects engage in reward-seeking behavior. In order to 

effectively engage in motivated behavior, subjects must first learn that certain actions lead to 

rewarding outcomes. In this initial phase, subjects can learn several features of an action-

outcome association, which include the value of the reward, the amount of expended effort 

required to obtain the reward, and the specific action contingencies for achieving that outcome. 

Once subjects learn an action-outcome association, several components of motivation are 

simultaneously at play during reward-seeking behavior. For instance, animals must determine 

how to direct their behavior to specific actions based on how much they bias their decision on 

associations related to reward value, required effort, and contingency. These biases characterize 

motivational states that can be assessed experimentally with instrumental tasks by measuring 

both action selection and action vigor, which represent the “directional”, goal-directed 

component and the “activational”, arousal component of motivation, respectively (Salamone and 

Correa, 2012). Most of the behavioral studies described in this section attempt to understand how 
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the basal ganglia mediate motivated behavior by manipulating a specific aspect of basal ganglia 

function and assaying behavior. In reviewing these studies, I use the framework described above 

to identify reproducible findings that can guide understanding of how different striatal sub-region 

may selectively regulate motivated behavior through dopaminergic modulation of the direct and 

indirect pathways.  

In the 1980s, Wolfram Schultz and colleagues conducted single-cell recordings of 

dopaminergic neurons in the midbrain in primates performing an instrumental task involving 

reaching movements for a food reward in response to auditory and visual cues (Aebischer and 

Schultz, 1984, Schultz, 1986). These researchers found that phasic activity of midbrain dopamine 

neurons that project to the striatum was associated with the presentation of the visual or auditory 

stimuli that would be followed by the food reward. Despite an established link between 

dopamine and motor function, execution of reaching movements was less significantly 

associated with dopaminergic activity, indicating that activity of midbrain dopaminergic neurons 

does not encode specific movement parameters. These observations gave rise to a model of 

reinforcement learning now known as the reward prediction error hypothesis that predicts that 

phasic dopamine release from midbrain neurons to the striatum signals a discrepancy between 

the predicted and expected rewarding properties of an outcome (Schultz, 1998). 

The role of dopaminergic modulation of basal ganglia function on motivated behavior has 

been further supported by research with psychostimulant drugs, including cocaine and 

amphetamine, both of which strongly increases extracellular dopamine concentrations in the 

striatum (Di Chiara and Imperato, 1988). Researchers have applied the reward prediction error 

hypothesis to psychostimulant drug addiction, proposing that recurring drug-induced positive 

prediction errors produce a potentiated increase in the rewarding value of states or actions 



25 

 

associated with drug use, prompting compulsive drug-seeking behavior (Redish, 2004). 

However, the predictive value of this model of drug addiction has been challenged (Panlilio et 

al., 2007). Nevertheless, regardless of how drug-seeking behavior can be modeled using the 

reward prediction error hypothesis, studies investigating the reinforcing properties of 

psychostimulants have provided insight on how dopamine regulates goal-directed behavior by 

affecting basal ganglia function. Several lesion studies and intracranial self-administration 

studies have specifically implicated NA dopamine in the effects of psychostimulants on 

behavior. It has been demonstrated that psychostimulants preferentially increase dopamine 

concentrations in the NA compared to the dorsal striatum (Di Chiara and Imperato, 1988). In 

agreement with this observation, local depletion of dopamine with 6-OHDA or local infusion of 

dopamine receptor antagonists in self-administration studies suggest that psychostimulants act 

preferentially in the NA (Lyness et al., 1979, Roberts et al., 1980, Maldonado et al., 1993, 

McGregor and Roberts, 1993). 

Although both psychostimulants and natural rewards lead to increased extracellular 

dopamine in the striatum, it has been estimated that drugs like cocaine and amphetamine increase 

concentrations of dopamine by an additional order of magnitude when compared to natural 

rewards, such as food and sexual stimuli (Damsma et al., 1992, McCullough and Salamone, 

1992, Wise et al., 1995, Fiorino et al., 1997, Bassareo and Di Chiara, 1999, Ranaldi et al., 1999, 

Ikemoto et al., 2015). Despite inducing lower extracellular dopamine in the striatum and 

relatively smaller effects on motivated behavior compared to psychostimulants, a significant 

body of research has investigated the role of striatal dopamine in regulating motivation for 

natural rewards. And, as discussed below, similar to studies on the rewarding effects of 
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psychostimulant drugs, many studies of motivation for natural reward have also focused on the 

effects of dopamine in the NA.  

A large body of literature has characterized how NA dopamine regulates motivation for 

food. In this field, researchers have been able to dissociate motivation from feeding behavior, as 

dopamine depletion or local infusions of D1R and D2R antagonists in the NA does not 

substantially impair food intake (Ungerstedt, 1971, Koob et al., 1978, Salamone et al., 1993, 

Baldo et al., 2002). Evidence also suggest that NA dopamine is not involved in the hedonic 

reactivity to food, as dopamine depletion in the NA does not decrease appetitive taste reactivity 

for food (Berridge and Robinson, 1998). Instead, researchers have demonstrated specific roles 

for NA dopamine on the goal-directed aspects of motivated behavior. For instance, in 

instrumental tasks in which animals are given the choice to either expend little or no effort to 

obtain a small reward or expend a greater effort to obtain a larger reward, dopamine depletion or 

pharmacological blockade of dopamine receptors in the NA reduce selection of the more 

effortful behaviors associated with higher reinforcement (Salamone et al., 1994). In line with a 

role of NA dopamine on reward-related action selection, one study using local infusions of 

dopamine antagonists into the NA showed that both D1R and D2R blockers impair operant 

responding specifically in situations in which animals had to select a new set of approach actions 

for reward-seeking, a behavior they call “flexible approach” (Nicola, 2010). Moreover, 

Pavlovian-to-instrumental transfer (PIT), defined as the ability of a reward-paired cue to initiate 

or invigorate reward-seeking actions, has also been shown to depend on NA dopamine 

(Parkinson et al., 2002). With the advent of optogenetics and cell-specific mouse lines, 

researchers have confirmed that dopamine release from the VTA to the NA is in itself rewarding, 

as measured by conditioned place preference and self-administration of light stimulation (Tsai et 
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al., 2009, Ilango et al., 2014a, Steinberg et al., 2014). In addition, an optogenetics study using a 

food-seeking operant task showed that activation of dopaminergic neurons in the VTA facilitates 

the development of reinforcement during reward seeking (Adamantidis et al., 2011). Overall, 

therefore, studies using experimental methods as diverse as dopamine depletion, pharmacology, 

and optogenetic have established that dopamine modulation in the NA regulates many aspects of 

goal-directed behavior for natural rewards. 

Despite a large body of evidence implicating dopaminergic projections from the VTA to 

the NA in motivation, even before the era of optogenetics, electrical stimulation studies had 

suggested that dopaminergic neurons in the SNc that project to the dorsal striatum are also 

involved in motivation (Routtenberg and Malsbury, 1969, Ritter and Stein, 1974, Corbett and 

Wise, 1980). And more recently, 

optogenetics studies have further 

confirmed that stimulation of 

dopaminergic neurons in the SNc can 

be as rewarding as stimulation of 

dopaminergic neurons in the VTA 

(Rossi et al., 2013, Ilango et al., 

2014b).  

Given that dopamine 

modulation of both dorsal and ventral 

regions of the striatum have been 

linked to motivation, many lesion and 

pharmacological studies have also 

Figure 2: Striatal sub-regions and motivation. The 

striatum can be divided into dorsal and ventral regions. The 

dorsal striatum can be further subdivided into dorsomedial 

striatum (DMS) and dorsolateral striatum (DLS). The ventral 

part of the striatum is the nucleus accumbens (NA), which is 

composed of both core and shell compartments. Lesion and 

pharmacological studies have implicated each of these striatal 

sub-regions in specific aspects of motivated behavior. 



28 

 

sought to identify how sub-regions of the striatum may be selectively important for different 

aspects of motivation. In the remainder of this section, I describe in detail a number of findings 

pertaining to the involvement of different striatal sub-regions on specific aspects of motivation. 

The general conclusions that can be drawn from these studies are summarized in Figure 2. 

Similar and distinct roles for the NA core and shell in different aspects of motivated 

behavior have been demonstrated. In a pharmacological study, infusion of D1R or D2R 

antagonists selectively into the NA core or shell showed that dopamine antagonism into either 

region could reduce instrumental responding for high-effort rewards (Nowend et al., 2001). A 

role for effort-based decision making was further confirmed for the NA core, as dopamine 

depletion of this region similarly impaired behavioral response to high-effort rewards in a cost-

benefit T-maze task (Mai et al., 2012). Using a different approach to decrease NA function, a 

study using infusions of muscimol and baclofen into the shell or core compartments of the NA 

demonstrated that the NA core, but not the shell, appears to be part of the neural circuit that 

biases choices towards larger rewards associated with a greater effort cost (Ghods-Sharifi and 

Floresco, 2010). Other specific dissociations between NA sub-compartments have been 

identified. For instance, post-training excitotoxic lesions of the NA core, but not the shell, 

selectively affected outcome devaluation (Corbit et al., 2001), implicating the NA core in 

encoding the value of rewards. In the same study, animals with lesions in the NA shell had intact 

sensitivity to reward value, but instead failed to show positive transfer in a PIT test (Corbit et al., 

2001). Researchers have attempted to distinguish how NA core and shell regulate two different 

types of PIT, general PIT (G-PIT) and outcome-specific PIT (S-PIT). While G-PIT is usually 

demonstrated using a single response procedure, which is typically interpreted in terms of the 

general arousing properties of the conditioned stimulus, in S-PIT animals are usually given 
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Pavlovian conditioning with two conditioned stimuli each paired with different outcomes and 

tested on how each stimulus can influence specific instrumental responding. A dissociation 

between NA sub-regions was found in a study showing that muscimol inactivation of the NA 

core abolished G-PIT and spared S-PIT, while inactivation of the NA shell abolished S-PIT and 

spared G-PIT (Corbit and Balleine, 2011). This finding is in line with previous studies showing 

that excitotoxic lesion or infusion of dopamine antagonists selectively into the NA core also 

abolished G-PIT (Hall et al., 2001, Lex and Hauber, 2008). These studies, therefore, point to a 

role of the NA shell in processing the sensory specificity of outcomes. Consistent with this idea, 

researchers have shown that the NA shell, but not other striatal sub-regions, can mediate 

animals’ hedonic experience of rewards via the opioid system in the striatum (Pecina and 

Berridge, 2005, Castro and Berridge, 2014). Thus, while the NA core have been implicated in 

goal-directed behavior by modulating reward-seeking behavior based on reward value and effort, 

the NA shell seems to be more involved in processing the sensory specificity of outcomes, 

including hedonic reactivity to rewards through processes that appear to be independent of 

dopamine. 

Functional and anatomical studies of the dorsal striatum predict a stronger link between 

the DMS and motivation than between the DLS and motivation because the DMS receives inputs 

from prefrontal cortex and anterior cingulate, regions that have been implicated in affective 

functions, while the DLS receives inputs predominantly from sensorimotor cortex (Pan et al., 

2010). Behavioral experiments have indeed confirmed this dissociation. For instance, excitotoxic 

lesions to the DLS, but not the DMS, disrupt habit formation of operant responding and does not 

affect sensitivity to the reward value (Yin et al., 2004, Hilario et al., 2012). In contrast, lesions to 

the DMS done either before or after instrumental training revealed that the DMS plays a role in 
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the acquisition of action-outcome associations as well as in the expression of these associations 

by encoding outcome value and contingency (Yin et al., 2005). The DMS has also been linked to 

action vigor, as one study showed that excitotoxic lesion to this striatal sub-region impaired 

state-dependent modulation of vigor in an instrumental task in rodents (Wang et al., 2013). Thus, 

while the DLS has been more clearly linked to motor function and appears to mediate habit 

formation in instrumental tasks of incentive motivation, the DMS has been consistently 

implicated in goal-directed behavior and in modulating performance vigor. 

Although a number of studies have identified or proposed specific mechanisms by which 

dopamine may modulate motivated behavior and have provided insight on which striatal sub-

regions may be important for specific aspects of motivation, few studies have rigorously probed 

how the direct and indirect pathways of the basal ganglia control specific aspects of motivation. 

And most studies that have manipulated these two pathways selectively have studied motivation 

for drugs of abuse (Durieux et al., 2009, Lobo et al., 2010, Bock et al., 2013, Hikida et al., 2013). 

The few studies investigating pathway-specific functions in motivation for natural rewards 

support an opposing influence of direct and indirect pathways on reward-seeking behavior, 

similar to that proposed for motor behavior. For instance, one study using optogenetics to bypass 

dopamine signaling and selectively activate dMSNs and iMSNs in the DMS in mice showed that 

activation of the direct pathway appeared to be rewarding and led to persistent self-stimulation, 

while indirect pathway stimulation appeared to be aversive on a more transient timescale 

(Kravitz et al., 2012). Another study using optogenetics to selectively stimulate dMSNs or 

iMSNs in the DMS demonstrated that selective activation of each pathway can introduce 

opposite biases in the distribution of choices in an operant task of goal-directed action selection 

(Tai et al., 2012). Although these studies help understand how the parallel pathways of the basal 
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ganglia arising from different striatal sub-regions regulate motivated behavior for natural 

rewards, more research is needed in this field. 

In conclusion, incentive motivation, defined as the activation of goal-directed behavior, 

requires learning of action-outcome associations and can be dissected into separate components, 

such as action selection and action vigor, that can often be studied experimentally. Dopaminergic 

modulation of specific striatal sub-regions has been selectively implicated in different aspects of 

motivated behavior for natural rewards. And basal ganglia output regulated by activity of the 

direct and indirect pathways has also been linked to motivation. However, although genetic tools 

have become available for selectively targeting neuronal populations in the rodent striatum, 

comprehensive studies using these tools to probe how dMSNs and iMSNs in different striatal 

sub-regions regulate motivation for natural rewards are still lacking. 

 

STRIATAL PATHWAYS AND DISEASE 

Dysfunction of the basal ganglia has been implicated in many neuropsychiatric diseases, 

many of which involve abnormalities in motor functions or motivation. These diseases include 

Parkinson’s disease, Huntington’s disease, drug addiction, obsessive-compulsive disorder 

(OCD), Tourette’s syndrome, attention deficit hyperactivity disorder (ADHD), and 

schizophrenia. In this section, I will first provide an overview of how basal ganglia dysfunction 

has been shown to underlie symptoms in each of these disorders, with particular emphasis on 

dopaminergic modulation of the direct and indirect pathways. Then I will describe in more detail 

research on schizophrenia that implicates D2R hyperfunction in certain symptoms of this 

disease. Large emphasis will be placed on one particular mouse model of schizophrenia 
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endophenotypes, as insight obtained from this model provided the groundwork for most of the 

studies I present in this dissertation. 

Dysfunction of the basal ganglia underlies many motor neurological disorders, including 

Parkinson’s disease and Huntington’s disease. In Parkinson’s disease, muscular rigidity, 

bradykinesia postural instability, and tremor are thought to be caused by depletion of dopamine 

in the midbrain (Albin et al., 1989). Lack of dopaminergic modulation of both direct and indirect 

pathways can explain impaired motor output when considering that dopamine normally acts to 

disinhibit basal ganglia output to the thalamus via these two parallel pathways. Interestingly, 

even though Parkinson’s disease is more notably characterized by motor abnormalities, lack of 

motivation is also highly prevalent in patients with this disease (Pedersen et al., 2009). And 

although largely correlational, imaging studies have demonstrated differences in dopamine 

binding to D2Rs between patients with Parkinson’s diseases with lack of motivation and those 

without this symptom (Thobois et al., 2010). The motor symptoms observed in Huntington’s 

disease can also be explained using the classic model of basal ganglia circuitry. This disease is 

characterized by abnormal involuntary writhing movements, known as chorea, that result from a 

polyglutamine expansion in the ubiquitously-expressed huntingtin protein, which for unknown 

reasons leads to the degeneration of certain types of neurons, including striatal MSNs. The 

classical model of basal ganglia circuitry has been employed to explain symptoms in 

Huntington’s disease, with researchers proposing that hyperkinetic, choreic movements in the 

early stages of disease result from initial dysfunction of iMSNs, which are preferentially lost in 

this disorder, while hypokinesia during the late disease stages is a consequence of further injury 

to dMSNs (Reiner et al., 1988, Spektor et al., 2002).  
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The basal ganglia have been also implicated in symptoms in a number of psychiatric 

disorders, including drug addition, OCD, Tourette’s syndrome, and ADHD. Drug addiction can 

be classified as a disorder of abnormally high motivation that leads patients to lose control over 

drug intake. Given that drugs of abuse increase extracellular dopamine in the striatum and can 

theoretically promote reward-seeking behavior via effects on both direct and indirect pathways, 

the basal ganglia have been hypothesized to be a site where the neuroplastic events that underlie 

addictive behaviors take place (Lobo and Nestler, 2011, Luscher and Malenka, 2011, Nestler, 

2013, van Huijstee and Mansvelder, 2014). Among patients with OCD, structural abnormalities 

in cortico-basal ganglia-thalamo-cortical loops have been demonstrated (Rodman et al., 2012, de 

Wit et al., 2014). And one of the current hypotheses for the etiology of OCD is that abnormal 

activity in the orbitofrontal cortex and NA underlie symptoms. This hypothesis is supported by 

findings in rodent models that stimulation of this specific cortico-striatal loop can both produce 

and ameliorate compulsive-like behaviors (Ahmari et al., 2013, Burguiere et al., 2013, Ahmari, 

2015). Among neurodevelopmental disorders, Tourette’s syndrome is characterized by simple 

and complex motor tics, and local pharmacological inactivation of dorsal striatal neurons has 

been able to reproduce some of these repetitive behaviors in primates (Worbe et al., 2009). 

Finally, ADHD is a neurodevelopmental disorder that leads to hyperactivity, impulsiveness, and 

cognitive impairments. Psychostimulants that increase extracellular levels of dopamine are 

paradoxically efficacious in treating this disorder, and the theories that have been proposed to 

explain this phenomenon have posited that patients with ADHD have either abnormal cortico-

basal ganglia-thalamo-cortical activity (Vaidya et al., 1998, Max et al., 2002, Sullivan and Brake, 

2003, Shafritz et al., 2004) or abnormal dopaminergic modulation in the basal ganglia 

(Gainetdinov and Caron, 2001, Heiser et al., 2004, Larisch et al., 2006). 
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Schizophrenia is a highly heterogeneous disorder that is characterized by so-called 

positive, negative and cognitive symptoms. The positive symptoms – also known as psychotic 

symptoms – include hallucinations, delusions and disordered thought processes. However, most 

patients also exhibit impairments in a number of social, emotional and cognitive behaviors. Such 

deficits are categorized as either negative symptoms (e.g. social withdrawal, anhedonia and 

deficits in incentive motivation) or cognitive symptoms (e.g. impairments in working memory, 

behavioral flexibility, verbal memory, reference memory and cognitive processing speed). 

Although negative and cognitive symptoms are not required for diagnosis, they are present in a 

high proportion of patients and can be particularly insidious for patient outcomes (Fenton and 

McGlashan, 1991, Green et al., 2000). At the global functional level, the basal ganglia have been 

implicated in both positive and negative symptoms of schizophrenia. Neuroimaging studies have 

demonstrated abnormal basal ganglia activity while patients engage in tasks of reinforcement 

learning that characterize the negative symptoms (Esslinger et al., 2012, Nielsen et al., 2012). In 

addition, it has been shown that intrinsic activity in the striatum is increased in patients during 

psychosis and correlates with severity of positive symptoms (Ettinger et al., 2013). Therefore, it 

has been proposed that altered basal ganglia function is part of the etiology of the disorder 

(Simpson et al., 2010). 

The dopaminergic system is the neurotransmitter system most robustly implicated in 

schizophrenia pathology, with disruptions in subcortical dopamine systems linked to the positive 

symptoms and disruptions in cortical dopamine transmission linked to cognitive impairment. The 

former idea refers to the long-standing dopamine hypothesis originally formulated by van 

Rossum in the 1960s, which posits that dopamine hyperactivity is central to psychosis in 

schizophrenia (Baumeister and Francis, 2002). In the 1950s, the dopamine 



35 

 

antagonist chlorpromazine was accidently discovered as an antipsychotic medication. Later in 

the 1970s Philipp Seeman, Solomon Snyder and colleagues found that the therapeutic dose of 

antipsychotic medication is inversely proportional to their binding affinity for dopamine 

receptors (Creese et al., 1976, Seeman et al., 1976). Despite many efforts by the pharmaceutical 

industry, all antipsychotic medications used to treat patients with schizophrenia still target D2Rs 

– the main site of action of chlorpromazine. 

Using post-mortem analyses, direct evidence for alterations in the dopamine system were 

uncovered in the 1980s. These studies consistently showed increased levels of D2Rs in the brains 

of patients with schizophrenia (Mita et al., 1986, Hess et al., 1987), particularly in the striatum 

(Joyce et al., 1988, Marzella and Copolov, 1997). Numerous imaging studies have also pointed 

to increased density of D2Rs in the striatum of patients with schizophrenia, with Laruelle 

calculating a 12% increase in striatal D2R density in drug-naïve or drug-free patients after 

comparing 13 imaging studies (Laruelle, 1998). However, a more recent meta-analysis suggests 

it is still unclear whether the increase in D2R density is truly present early in the disorder or if it 

is due to subsequent antipsychotic treatment (Howes et al., 2012). Dopamine depletion 

experiments have additionally reported increased basal occupancy of striatal D2Rs in drug-free 

patients that not only correlates with positive symptoms but predicts their response 

to antipsychotics, thus suggesting a tight relationship between D2R hyperfunction in the striatum 

and psychosis (Abi-Dargham et al., 2000). 

Impairments in the striatal dopamine system have also been observed at the presynaptic 

level. Increased striatal uptake of 18F-fluorodopa (or L-β-11C-DOPA) and increased 

amphetamine-induced dopamine release have been repeatedly measured in patients as an 

indication of presynaptic dopamine hyperfunction (Howes et al., 2012). These alterations appear 
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to occur early on in the disease process as they are observed in prodromal subjects that are at 

high risk for conversion to schizophrenia(Howes et al., 2009), and newer imaging tools with 

higher spatial resolution have revealed that the largest effect size of these abnormalities is not in 

the limbic striatum, as has been postulated for many years, but rather in the associative striatum – 

a striatal area that receives dense input from several prefrontal cortical areas, including the 

dorsolateral prefrontal cortex (Kegeles et al., 2010, Howes et al., 2012). 

Based on the above-described observations of increased D2R occupancy and density in 

the striatum of patients, a mouse model that overexpresses D2Rs throughout development 

selectively in the striatum was developed to reproduce this pathophysiological aspect of 

schizophrenia. This approach allows for an assessment of the causal consequences on brain 

function and on behaviors relevant to the cognitive or negative symptoms that are downstream of 

striatal D2R hyperfunction. Specifically, the bi-transgenic tetracycline-sensitive expression 

system was used to selectively overexpress D2Rs in the striatum in a temporally controlled, 

reversible manner to generate the D2R-OEdev mice (Kellendonk et al., 2006). D2R-OEdev mice 

have 15% higher D2R binding capacity than wild-type mice, which is in the range of what has 

been calculated by a meta-analysis of imaging studies in patients with schizophrenia (Kellendonk 

et al., 2006). D2R-OEdev mice display cognitive deficits in working memory, a well-established 

cognitive deficit of the disorder (Bach et al., 2008), as well as deficits in incentive motivation, 

with  rigorous behavioral testing of D2R-OEdev mice revealing that this motivational deficit 

cannot be explained by anhedonia, motor dysfunction or decreased appetite (Drew et al., 2007, 

Ward et al., 2009, Simpson et al., 2011, Simpson et al., 2012). Instead, this deficit is associated 

with an inability to adapt behavior to reward and reflects a deficit in incentive motivation similar 

to what has been observed in patients with schizophrenia (Fervaha et al., 2013, Gold et al., 2013, 
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Wolf et al., 2014). The deficit in motivation observed in D2R-OEdev mice can be rescued when 

the overexpression of D2Rs is reversed to normal levels by switching off transgene expression, 

suggesting that concurrent up-regulation of D2Rs in the striatum is contributing to this deficit 

(Drew et al., 2007). 

In an attempt to more precisely and mechanistically understand how this pathophysiology 

may contribute to the motivational deficit, the Kellendonk laboratory examined how 

upregulation of D2Rs in striatal MSNs affects the physiological function and anatomical 

connectivity of these neurons. Published work from the Kellendonk laboratory showed that D2R-

OEdev mice have increased neuronal excitability and decreased dendritic arborization of MSNs in 

both the direct and indirect pathways that result from decreased function and expression of the 

inward rectifier potassium channel 2 family (Kir2.1/2.3) (Cazorla et al., 2012). These 

physiological and morphological changes are reversed by switching off transgene expression in 

adult animals and restoring D2R expression to normal levels (Cazorla et al., 2012). Moreover, 

evidence from this mouse model suggests that D2R overexpression not only increases MSN 

excitability but also alters the anatomical and functional balance of the dorsal striatal output 

pathways (Cazorla et al., 2014). Axon collaterals of dMSNs that target the GPe have the 

potential to bridge direct and indirect pathways and alter the balance of basal ganglia output; 

therefore, they have been referred to as “bridging collaterals”. Studies in the Kellendonk 

laboratory has shown that the bridging collaterals are extremely plastic in the adult animal and 

their density appears to be regulated by D2R expression (Cazorla et al., 2014). Genetic up-

regulation of striatal D2Rs enhances the density of bridging collaterals, whereas genetic down-

regulation leads to a gene dosage-dependent decrease (Cazorla et al., 2014). Moreover, increased 

bridging collaterals of D2R-OEdev mice can be reversed by reinstating lower excitability by re-
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expressing wild-type Kir2 channels in the striatum (Cazorla et al., 2014). The functional 

importance of these bridging collaterals has been confirmed with in vivo direct pathway 

stimulation during anesthetized recordings of GPe activity and also using in vivo direct pathway 

stimulation in behaving animals. In vivo recordings during direct pathway stimulation in D2R-

OEdev mice revealed enhanced inhibition of GPe activity, and in vivo direct pathway stimulation 

in D2R-OEdev mice impaired the behavioral activation that is normally observed after stimulation 

of the direct pathway (Kravitz et al., 2010, Cazorla et al., 2014). Together, these results strongly 

suggest that the reversible anatomical changes observed in the bridging collaterals of the dorsal 

striatum in D2R-OEdev mice are a consequence of the alteration in neuronal excitability that 

result from decreased Kir2 expression in MSNs. The reversibility of motivational deficits, MSN 

excitability, and bridging collateral density when switching off D2R up-regulation offers an 

enticing link between pathophysiology and behavior.  
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CHAPTER 2 

BRIDGING COLLATERALS 

 

INTRODUCTION 

In the classical model of basal ganglia circuitry, the direct and indirect pathways arising 

from striatal MSNs are often described as segregated both functionally and anatomically. 

However, a number of studies have challenged this view. Tracing studies in rodents have 

demonstrated that MSNs that project to the GPi and SNr have axon collaterals that target the GPe 

(Kawaguchi et al., 1990, Wu et al., 2000, Fujiyama et al., 2011). Similar findings were also 

confirmed in primates (Levesque and Parent, 2005). In fact, these studies suggest that only a 

small minority of striatal MSNs (3% of all labeled neurons in the rat) project only to the output 

structures of the basal ganglia, while closer to half (60% of all labeled neurons) project to the 

GPi and SNr and possess axon collateral terminal fields in the GPe (Kawaguchi et al., 1990, Wu 

et al., 2000, Fujiyama et al., 2011). Anatomically, these collaterals have the potential to bridge 

the direct and indirect pathways, and they are referred to here as “bridging collaterals”. The 

functional relevance of the bridging collaterals in regulating the output of the basal ganglia and 

behaviors that depend on the balance of direct and indirect pathways is still largely unknown. 

A mouse model of chronic upregulation of D2Rs in the striatum provides some insight on 

the potential regulatory mechanisms and functional relevance of the bridging collaterals. 

Transgenic D2Rs are overexpressed throughout development in striatal MSNs of D2R-OEdev 

mice, and this mouse has been shown to model endophenotypes of schizophrenia (Kellendonk et 

al., 2006, Drew et al., 2007). D2R-OEdev mice display more excitable MSNs, a phenotype that 

can be reversed by turning off transgenic overexpression of D2Rs in adulthood (Cazorla et al., 
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2012) (Figure 3A). Similarly, these animals display increased density of bridging collaterals 

when D2Rs are overexpressed (Figure 3B). In addition, the density of collaterals can be reduced 

to control levels when D2R overexpression is genetically turned off in the adult and reversed 

back to high levels when the striatal D2R transgene is subsequently allowed to be expressed 

(Figure 3C). These findings suggest that bridging collaterals are highly plastic in adult animals. 

The observations that MSN excitability and density of bridging collaterals can be modulated by 

Figure 3: Physiological and anatomical changes can be induced by dopamine D2 receptor (D2R) 

upregulation in the striatum. A. Input-output curves for MSNs recorded from 3-month-old D2R-OEdev 

mice are significantly right-shifted compared to those for MSNs of control mice; this difference is 

reversed when transgenic D2R overexpression is turned off (Cazorla et al., 2012). B. Bridging terminals 

of dMSNs in the GPe are increased in D2R-OEdev mice (Cazorla et al., 2014). C. Kinetics of bridging 

collateral retraction in the GPe of D2R-OEdev mice treated with doxycycline for increasing time periods 

and regrowth after re-expressing the transgene for 60 days (14 on + 60 off) (Cazorla et al., 2014). 
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D2R expression in the striatum raise the question of whether some of the behavioral phenotypes 

of D2R-OEdev mice may be mediated by the bridging collaterals. 

Moreover, direct evidence that terminal fields of dMSN in the GPe form functional 

synapses with pallidal neurons is lacking. In an attempt to address this question, previous work 

in the Kellendonk laboratory used in vivo electrophysiology to show that optogenetic stimulation 

of dMSNs leads to greater inhibition of GPe activity in D2R-OEdev mice compared to control 

littermates, presumably because of increased bridging collaterals (Cazorla et al., 2014) (Figure 

4). Inhibition of the pallidum after activation of the dMSNs was compared to inhibition induced 

by activation of iMSNs, an established monosynaptic pathway. Since the time course of 

inhibition following stimulation of dMSNs or iMSNs were comparable, these electrophysiology 

data are consistent with a functional monosynaptic pathway emerging also from dMSNs via the 

bridging collaterals. To further confirm this interpretation, I attempted to use a different 

Figure 4: Increased bridging collaterals are associated with enhanced GPe inhibition. Optogenetic 

activation of the direct pathway reveals inhibition in the GPe that is enhanced in D2R-OEdev mice. A. 

Graphs of relative firing frequency in GPe neurons for direct comparison of four groups before, during, 

and after 5-s laser illumination. B. Change in firing rate during laser-induced stimulation of direct or 

indirect pathway expressed as a z score of the pre-stimulation firing rate distribution. C. Proportion of 

GPe cell units for which basal firing rate is significantly decreased after laser stimulation. (Cazorla et al., 

2014). 



42 

 

approach to positively establish that dMSNs form synaptic contacts in the GPe. I selectively 

transfected dMSNs with a virus vector designed to label synaptic sites in order to determine 

whether dMSNs form synapses in the GPe that would correspond to the terminal fields of the 

bridging collaterals. 

In many circuits in the brain, neuronal activity has been shown to regulate axonal 

projections and shape connectivity between brain structures (Catalano and Shatz, 1998, Hua et 

al., 2005, De Marco Garcia et al., 2011). Given that D2R-OEdev mice exhibit more excitable 

striatal MSNs, the Kellendonk laboratory has investigated whether increased activity in these 

neurons can mediate plasticity involving the growth of bridging collaterals. Previous work has 

demonstrated that decreased function of Kir2 channels could account for increased MSN 

excitability in D2R-OEdev mice (Cazorla et al., 2012) (Figure 5A-B). Moreover, rescuing 

excitability of MSNs in D2R-OEdev mice by overexpressing the wild-type Kir2.1 channel in the 

striatum or by treating animals chronically with the D2R antagonist haloperidol was sufficient to 

retract bridging collaterals in the adult animal (Cazorla et al., 2014) (Figures 5C-D). These 

findings led to the question of whether activity-dependent plasticity involving bridging 

collaterals was only relevant in the D2R-OEdev mouse model or whether excitability could also 

be involved in regulating bridging collaterals in developmentally normal animals.  

The endogenous Kir2.1 channel is a tetrameric ion channel that is abundantly expressed in 

striatal MSNs and is responsible for rapid inward rectification of potassium from the 

extracellular space, preventing high extracellular potassium from depolarizing neurons. The 

Kir2.1AAA gene codes for a mutant monomer – the GYG motif of the pore region is replaced by 

three alanine residues (AAA) – that renders the channel inactive when incorporated into its 

tetrameric structure, resulting in a dominant-negative effect that effectively increases excitability 
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of neurons expressing this transgene (Preisig-Muller et al., 2002, Cazorla et al., 2012). The 

Kellendonk laboratory has expressed Kir2.1AAA in the striatum to show that increasing MSN 

excitability by decreasing function of this channel in the striatum can induce growth of bridging 

collaterals in wild-type animals (Cazorla et al., 2014) (Figure 5E). Based on these observations, I 

further studied regulation of bridging collaterals by selectively increasing excitability in iMSNs 

and dMSNs to determine whether activity-dependent plasticity mediating growth of the bridging 

Figure 5: D2R overexpression decreases striatal inward rectifying currents through 

downregulation of Kir2 channels. A. Representative inward rectifying currents obtained for negative 

membrane potentials (-60 to -150 mV in 10-mV steps) in control and D2R-OEdev mice (Cazorla et al., 

2012). Kir channel currents (IKir) are isolated by subtracting remaining currents in presence of cesium 

(CsCl) to total currents (ACSF). B. Striatal expression of the dominant-negative Kir2.1 AAA channel is 

sufficient to induce MSN hyperexcitability measured by comparing input-output curves (Cazorla et al., 

2012). C. Increased bridging terminal density is restored in D2R-OEdev mice after striatal transfection 

with AAV-Kir2.1WT-IRES-hrGFP (Cazorla et al., 2014). D. Bridging collaterals show reduced density in 

D2R-OEdev mice and control littermates after treatment with haloperidol for 14 days (Cazorla et al., 

2014). E. Increasing MSN excitability promotes the growth of bridging collaterals terminal fields in the 

GPe of adult mice (Cazorla et al., 2014). 
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collaterals may be specifically controlled by the direct or indirect pathways of the basal ganglia. I 

therefore generated an adeno-associated virus (AAV) to manipulate excitability of specific 

neuronal populations in the striatum via Cre-dependent expression of the trans-dominant 

negative mutant Kir2.1AAA channel. 

In addition, I also investigated how bridging collaterals may be relevant for behavior. 

Optogenetic stimulation of the direct pathway has been shown to induce increased locomotor 

activity in mice (Kravitz et al., 2010). Using a similar paradigm, the Kellendonk laboratory 

expressed ChR2 in the direct pathway of D2R-OEdev mice and control littermates to test for a 

behavioral phenotype that could be linked to the bridging collaterals. This experiment confirmed 

that stimulation of dMSNs increases locomotion in control mice, while in D2R-OEdev mice, 

stimulation of dMSNs led to a paradoxical decrease in locomotion. In addition, when Kir2.1AAA 

was expressed in the indirect pathway in the dorsal striatum of developmentally normal animals, 

a manipulation that leads to increased density of bridging collaterals, stimulation of dMSNs also 

led to decreased locomotor activity (Cazorla et al., 2014) (Figure 6). Based on these findings, I 

attempted to further confirm the link between the bridging collaterals and this behavioral 

phenotype by investigating whether treating D2R-OEdev mice chronically with haloperidol, a 

manipulation previously shown to retract bridging collaterals, could rescue the abnormal 

locomotor response to activation of dMSNs in D2R-OEdev mice. 
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Furthermore, evidence that growth and retraction of the bridging collaterals can be 

affected by D2Rs via their effects on neuronal excitability suggested that regulating the density 

of bridging collaterals could be a mechanism by which chronic changes in the dopamine system 

modulate basal ganglia output. Due to the importance of the basal ganglia in motor coordination, 

I tested D2R-OEdev mice in the rotarod test of motor performance and found that D2R-OEdev 

mice show a deficit in motor coordination. However, D2R-OEdev mice improve their 

performance in the rotarod test with ongoing training and, after three weeks, reach the level of 

performance of control littermates. Given the evidence for exercise-dependent functional 

plasticity in cortico-striatal input (Costa et al., 2004), I asked whether retraction of collaterals 

was associated with improved motor performance in D2R-OEdev mice. In addition, I also 

investigated whether rotarod training could reverse the functional imbalance of the direct and 

indirect pathways in D2R-OEdev mice.  

Figure 6: Increased bridging collaterals are associated with disrupted behavioral activation of 

direct pathway. Behavioral activation after direct-pathway stimulation is disrupted in mice expressing 

Kir2.1AAA in the striatum. A. Traces showing mean locomotor activity of mice co-expressing Cre-

dependent ChR2 and non-conditional Kir2.1AAA or a control gene in the striatum during open field 

performance. B. Mean locomotor activity of 5 30-s sessions before laser stimulation (pre), during laser 

stimulation (laser), and after laser stimulation (post) for mice in both groups (Cazorla et al., 2014). 
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 Thus, based on previous work done in the Kellendonk laboratory establishing a link 

between D2R function in the striatum and the bridging collaterals, I conducted a series of 

experiments to expand on these findings. First, I confirm that dMSNs form synaptic contacts in 

the GPe. Second, I provide anatomical and behavioral evidence that further supports a link 

between indirect-pathway function and plasticity involving the bridging collaterals. And finally, 

I describe a novel phenomenon whereby behavioral intervention can modify anatomical 

connectivity in the brain and affect the balance of direct and indirect pathways. 

 

MATERIALS AND METHODS 

Viral construct 

The AAV1/2-Syn-DIO-Synaptophysin-GFP virus was obtained from Dr. Thomas Jessell, 

and the AAV5-EF1α-DIO-ChR2(H134R)-eYFP and AAV2-EF1α-DIO-mCherry viruses were 

purchased from the University of North Carolina Vector Core. The AAV2/1-Syn-DIO-

Kir2.1AAA-IRES-mCherry virus was made from a DNA construct generated by molecular 

cloning. To generate the Syn-DIO-Kir2.1AAA-IRES-mCherry viral construct, the IRES-

mCherry sequence, excised using the restriction enzyme NotI from IRES-mCherry3Myc-

pCAGEN (obtained from Dr. Jonathan Javitch), was ligated into pcDNA3.1-IRKAAA-HA 

(obtained from Dr. Paul Slesinger) immediately following the IRKAAA-HA sequence after 

linearizing the latter plasmid with BamHI. The IRKAAA-HA-IRES-mCherry sequence from the 

resulting plasmid was amplified by PCR with designer primers to introduce NheI and AscI 

restriction sites flanking the amplified sequence. The PCR product was then digested with NheI 

and AscI, and the digested fragment was ligated to the backbone fragment of pAAV-Syn-DIO-

SF-D2RL-Venus (obtained from Dr. Jonathan Javitch), also digested with NheI and AscI. This 
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procedure led to replacement of the SF-D2RL-Venus sequence with the IRKAAA-HA-IRES-

mCherry sequence. The DIO-Kir2.1AAA-IRES-mCherry DNA construct was submitted to 

Vector Biolabs for packaging into AAV2/1. 

Animals 

All animal protocols used in the present study were approved by the Institutional Animal 

Care and Use Committees of Columbia University and New York State Psychiatric Institute. 

Drd1-GFP (X60Gsat/Mmmh), Drd1-Cre (FK150Gsat/Mmcd), and Drd2-Cre (ER44Gsat/Mmcd) 

mice on a C57BL/6J background were purchased from the Mutant Mouse Resource & Research 

Centers (National Institutes of Health). Drd1-GFP mice were crossed to either Drd1-Cre or 

Drd2-Cre mice to obtain Drd1-GFP/Drd1-Cre or Drd1-GFP/Drd2-Cre double transgenic mice, 

respectively. The generation of D2R-OEdev mice has been described previously (Kellendonk et 

al., 2006). TetO-D2R mice have been backcrossed onto the C57BL/6J background and 

CaMKIIα-tTA mice backcrossed onto the 129SveVTac background. To generate D2R-OEdev 

mice, tetO-D2R/C57BL6 mice were crossed with CaMKIIα-tTA/129SveVTac mice. Double 

transgenic mice express the transgenic D2R, and these animals were crossed to Drd1-GFP or 

Drd1-Cre mice to obtain the triple transgenic D2R-OEdev/Drd1-GFP or D2R-OE/Drd1-Cre mice, 

respectively. For all experiments that included D2R-OEdev animals, controls were littermates that 

were positive for the Cre or GFP transgenes but negative for the TetO or tTa transgenes. Both 

male and female adult mice at least 8-weeks old were used in this study. Mice were housed under 

a 12:12-hour light:dark cycle in a temperature-controlled environment, and all behavioral testing 

was done during the light cycle. Food and water were available ad libitum.  
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Construction of fiberoptics 

Fiberoptics implanted into the brain for optical stimulation experiments were constructed 

in house by interfacing a 200-mm, 0.37-numerical-aperture optical fiber (Fiber Instrument Sales) 

with a 1.25-mm stick zirconium ferrule. The fiber extended 4 mm beyond the end of the ferrule. 

Fibers were attached with epoxy resin into the ferrules, and subsequently cut with a diamond pen 

and polished. All fibers were calibrated to have a least 80% efficiency of light transmission. 

Fiberoptic patch cords with a 200-mm core diameter were also constructed in house using an 

FC/PC connectorization kit (Thor Labs). 

Stereotaxic injections and fiberoptic implantations 

For all viral injection surgeries mice were anesthetized with a mixture of ketamine and 

xylazine (100 mg/kg and 10 mg/kg) injected by intraperitoneal injection. Animals were then 

placed in a stereotaxic apparatus and body temperature was maintained at 37 ˚C with a heating 

pad. Small cranial windows (< 0.5 mm) were drilled at the appropriate sites and viruses were 

delivered at an average rate of 100 nL/min using glass pipettes (tip opening 10-15 µm). All 

stereotactic coordinates were measured relative to bregma. A total of 0.4-0.5 µL volume was 

delivered into each site for all injections. The DMS was targeted bilaterally with viral injections 

(anterior-posterior (AP) +1.0 mm, medial-lateral (ML) ±1.8 mm, dorsal-ventral (DV) -3.4 mm). 

For surgeries that also involved fiberoptic implantation, implants were done immediately 

following glass pipette used for viral injection were removed. Fiberoptic implants were placed 

bilaterally into the DMS, above the site targeted with the AAV5-ef1a-DIO-ChR2(H134R)-eYFP 

virus (AP: +1.0 mm, ML: ±1.8 mm, DV: -3.3 mm). The implant was secured to the skull using 

dental cement (Dentsply). All behavioral experiments or histological analysis were done at least 

four weeks after surgery to allow for stable viral transfection. 
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Drug treatment 

Chronic treatment with haloperidol (1 mg/kg/day) was performed using osmotic 

minipumps (Alzet) designed to deliver the drug at a steady rate of 0.5 µL/h over 14 days. 

Haloperidol was dissolved in 8.5% lactic acid (6 parts by volume) and neutralized with 1 N 

NaOH (4 parts by volume). Vehicle solution consisted of a mixture of 8.5% lactic acid and 1 N 

NaOH at a 6:4 ratio by volume. Drug and vehicle solutions were prepared on the same day of 

implantation. Minipumps were filled with either drug or vehicle and implanted into mice 

subcutaneously in the interscapular region under isoflurane anesthesia.  

Behavioral assays 

Rotarod training 

A rotarod apparatus (Ugo Basile) was used to measure motor coordination and motor 

learning. On each day of training, each mouse was placed on the rotating rotarod system in three 

individual trials. In each trial mice were allowed to stay on the rotarod for up to 10 min, and the 

latency to fall was recorded if animals fell before the 10 min elapsed. Mice were immediately 

placed back in their homecage after falling from the rotarod or after the 10 min elapsed for each 

trial. The rotarod was set to accelerating mode (0 rpm to full speed in 5 min) on the first three 

days of training, and acceleration was started after mice were placed on the rotarod. On each of 

the first three days, mice were subjected to three identical trials, with acceleration from 0 to 20 

rpm on the first day, 0 to 30 rpm on the second day, and 0 to 40 rpm on the third day. On all 

subsequent days of training mice were subjected to three trials per day with the rotarod set to 

constant mode with different speeds: 20 rpm in the first trial, 30 rpm in the second trial, and 40 

rpm in the third trial on each day of training. In all trials with constant speed, animals were 

individually placed on the rotarod while the rotarod was already rotating at the specified speed. 
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In vivo optical stimulation 

Assessment of locomotor activity with stimulation of dMSNs was done in acrylic activity 

chambers (42 cm long × 42 cm wide × 38 cm high) equipped with infrared photobeams for 

motion detection (Kinder Scientific). Mice with fiberoptic implants were first briefly 

immobilized for attachment of fiberoptic patch cords connected to a laser (473 nM) adjusted to 

give an output of 2 mW light intensity. The laser was controlled by a stimulator through which 

the laser could be manually switched to on and off modes. Turning the laser on led to constant 

light output. Once the patchcords were connected, mice were placed in the activity chamber 

where they were allowed to move freely and habituate for 5 min. After the first 5 min, the laser 

was switched on and off in a series of 5 stimulation trials. Each stimulation trial lasted 90 s; the 

laser was off during the first 30 s, it was then switched on for the duration of the subsequent 30 s, 

and it was finally turned off during the last 30 s. Animals were video recorded during the entire 

session to allow for post-hoc hand scoring of motor activity. 

Histology and immunohistochemistry 

For all histological analysis of brain tissue following behavioral experiments, mice were 

anesthetized with a mixture of ketamine and xylazine (100 mg/kg and 10mg/kg, respectively), 

delivered by intraperitoneal injection, and transcardially perfused, first with phosphate buffered 

saline (PBS) and then with 4% paraformaldehyde. Following perfusion, brains were post-fixed in 

4% paraformaldehyde for 24 hours and then transferred to PBS. Brains were sliced into 50-μm 

sagittal sections using a vibratome and every section was collected. 

For co-localization analysis and confirmation of virally targeted region and fiberoptic 

placement, immunohistochemistry using fluorescence was performed on free-floating sections by 

treating sections first with blocking buffer (0.5% bovine serum albumin, 5% horse serum, 0.2% 
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Triton X-100), followed by the primary rabbit dsRed polyclonal antibody (1:250, Clontech, cat. 

632496) and chicken anti-GFP polyclonal antibody (1:1000, Abcam, cat. ab13970) and the 

appropriate fluorescent-labeled secondary antibodies. Sections were washed with 0.2% Triton X-

100 after incubation with antibodies and with 50 mM Tris-Cl pH 7.4 before mounting. Sections 

were mounted on glass slides and subsequently coverslipped for imaging with VectaShield 

containing DAPI (Vector Labs). For confirmation of spread of viral infection in targeted 

structures, images were acquired at 2.5x magnification using a Hamamatsu camera attached to a 

Carl Zeiss epifluorescence microscope. For analysis of co-expression of immune-labelled 

proteins, images were acquired at 40x using a Nikon Ti Eclipse inverted microscope for scanning 

confocal microscopy. Micrographs were processed using ImageJ software (National Institutes of 

Health). 

For quantification of bridging collaterals, immunohistochemistry using 3,3′-

diaminobenzidine (DAB) was performed on free-floating sections by treating sections first with 

blocking buffer (0.5% bovine serum albumin, 5% horse serum, 0.2% Triton X-100). Every 

fourth section covering the GPe and SNr from one hemisphere in their entirety (6 sections per 

mouse) was stained using a rabbit polyclonal antibody against aequorea GFP (1:2000; Molecular 

Probes). The signal was revealed using a biotinylated anti-rabbit antibody (1:1000; Jackson 

ImmunoResearch), together with the Vectastain ABC and DAB peroxidase substrate kits (Vector 

Labs, cat. PK-4000 and SK-4100, respectively). Contrast was intensified using 0.025% nickel 

cobalt and 0.02% nickel ammonium sulfate. Sections were dehydrated, cleared, and mounted on 

slides with Permount (Fisher Scientific). Brightfield and darkfield photomicrographs were taken 

using an AxioImager 2 microscope (Zeiss) connected to an AxioCam video camera. Terminal 

density was evaluated using GFP staining. Quantification was performed using ImageJ using two 
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random counting frames per structure and per slice with background subtraction. Optical density 

was measured for striatum, GPe, and SNr, and all values reported are in percentage of striatal 

optical density.  

Data analysis and statistics 

All data collected in the current study were processed with Excel (Microsoft). Statistical 

analyses were done with either Excel or Prism 5 (GraphPad). For normally-distributed data sets, 

including optical density of terminal fields, locomotor activity, and ambulatory distance, two-

way analyses of variance (ANOVAs) were conducted. Bonferroni post hoc tests were conducted 

when appropriate. Because of the nature of the rotarod task, data was not normally distributed 

and therefore the Log-rank non-parametric test was used for statistical analysis.  

 

RESULTS 

 

SYNAPTIC CONTACTS 

To confirm that the bridging collaterals form 

synaptic contacts in the GPe, I obtained a virus 

vector that allowed Cre-dependent selective 

labeling of synaptic vesicles. This virus vector 

(AAV1/2-Syn-DIO-Synaptophysin-GFP) was 

designed to express the synaptic vesicle protein 

synaptophysin fused to GFP in transfected 

cells, thereby labeling all synaptic contacts of 

transfected neurons. I injected this virus into the 

Figure 7: dMSNs form synaptic contacts in the 

GPe. A Cre-dependent virus for expression of 

synaptophysin fused to GFP was injected into the 

DMS of Drd1-Cre mice (tract marks of injection 

pipette highlighted in yellow) for restricted 

expression in dMSNs. GFP signal, indicating 

regions where dMSNs form synaptic contacts was 

observed in the striatum around the injection site, 

in the output nuclei of the basal ganglia (GPi and 

SNr), as well as in the GPe. 
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DMS of Drd1-Cre mice and subsequently located regions in the basal ganglia that showed GFP 

fluorescence. As showed in Figure 7, transfection of striatal dMSNs with this virus led to 

labeling of both GPi and SNr, the output nuclei of the basal ganglia. In addition, labeling was 

also observed within the striatum itself around the injected site, confirming that MSNs form local 

synaptic contacts, presumably with neighboring MSNs. Most importantly, however, robust 

labeling was observed in the GPe, confirming that dMSNs projecting from the DMS form 

synaptic contacts with cells in the GPe. These synaptic contacts likely correspond to axon 

terminal fields of the bridging collaterals. 

 

REGULATION BY INDIRECT PATHWAY 

In order to study how the bridging collaterals may be selectively regulated by activity of 

the direct or indirect pathways, I constructed a Cre-dependent viral vector to restrict expression 

of the trans-dominant negative Kir2.1AAA channel to either the direct or indirect pathway to 

determine which population of MSNs mediates the growth of collaterals. The DNA construct for 

the AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry was generated by sub-cloning the sequences 

for Kir2.1AAA and IRES-mCherry from pcDNA3.1-IRKAAA-HA and IRES-mCherry3Myc-

pCAGEN, respectively, into the backbone of pAAV-SyI-DIO-SF-D2RL-Venus. Figure 4 shows 

scheme of the viral vector construct as well as micrographs from sections immune-stained for 

mCherry, confirming expression restricted to dMSNs or iMSNs. To confirm specificity, the virus 

was injected into the DMS of Drd1-GFP+ mice that were also Drd1-Cre+, Drd1-Cre-, Drd2-Cre+, 

or Drd2-Cre+. Since GFP is expressed in dMSNs in Drd1-GFP+ mice (Figure 8B), injection of 

AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry into Drd1-GFP+/Drd1-Cre+ led to co-expression 

of GFP and mCherry in dMSNs in the striatum (Figure 8C), and no mCherry expression was 
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detected when the virus was injected into Drd1-GFP+/Drd1-Cre- animals (Figure 8D). In 

contrast, when Drd1-GFP+/Drd2-Cre+ animals were injected with the viral vector, expression of 

both GFP and mCherry were detected in the striatum, but no cells co-expressed both fluorescent 

markers (Figure 8E). The specificity of viral expression to Cre-positive cells was further 

confirmed by the lack of mCherry expression in the striatum of Drd1-GFP+/Drd2-Cre- mice also 

injected with the virus (Figure 8F).  

Figure 8: Kir2.1AAA can be expressed selectively in dMSNs or iMSNs. A. Schematic of viral DNA 

construct used to generate the AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry virus that was used to 

selectively express Kir2.1AAA in Cre-positive neurons. B. GFP signal in sagittal section of Drd1-GFP 

BAC transgenic mouse used in C-F. Striatal expression of Kir2.1AAA/mCherry (red) and GFP (green) in 

Drd1-GFP+/Drd1-Cre+ (C), Drd1-GFP+/Drd1-Cre- (D), Drd1-GFP+/Drd2-Cre+ (E), Drd1-GFP+/Drd2-

Cre- (F) Scale bar, 1 mm.  
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Previous work from the Kellendonk laboratory has demonstrated that nonselective 

expression of Kir2.1AAA in the dorsomedial striatum leads to increased neuronal excitability and 

can induce growth of bridging collaterals in mice (Cazorla et al., 2012, Cazorla et al., 2014). 

Having confirmed the generation of a new virus to selectively express Kir2.1AAA in Cre-positive 

cells, the virus was injected into the DMS of Drd1-GFP+/Drd1-Cre+ and Drd1-GFP+/Drd2-Cre+ 

adult mice to determine how increased excitability in specific populations of striatal MSNs, 

dMSNs or iMSNs, contributes to the growth of bridging collaterals. As a control, the AAV2-

EF1α-DIO-mCherry virus was also injected in littermates of the same genotype. After waiting 

four weeks following viral injection to allow stable expression of transfected Kir2.1AAA in 

dMSNs or iMSNs, mice were sacrificed and the density of GFP-positive terminal fields in the 

GPe, representing bridging collaterals from striatal dMSNs, were quantified. Compared to 

Figure 9: Bridging collaterals are regulated by excitability of the indirect pathway. A. 

Expression of Kir2.1AAA in dMSNs did not significantly change the density of dMSN terminal 

fields in the GPe but led to a significant increase in the density of terminal fields in the SNr (p = 

0.0012; Bonferroni post hoc test: GPe: p > 0.05; SNr: p < 0.001). B. Expression of Kir2.1AAA in 

iMSNs significantly increased the density of GFP-positive terminal fields of dMSNs in the GPe, 

but did not significantly change the density of terminal fields in the SNr (p = 0.0049; Bonferroni 

post hoc test: GPe: p < 0.01; SNr: p > 0.05). A total of 4 Drd2-Cre and 3 Drd2-Cre mice injected 

with each virus were used for this analysis.  
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expression of a control gene, expression of Kir2.1AAA in dMSNs did not lead to a significant 

change in the density of bridging collaterals, while a significant increase in the density of 

terminal fields in the SNr, the main projection target of dMSNs, was observed (F(1,12) = 17.76; p 

= 0.0012 Bonferroni post hoc test: GPe: p > 0.05; SNr: p < 0.001; n = 4 mice per group) (Figure 

9A). In contrast, expression of Kir2.1AAA in the indirect pathway led to a significant increase in 

the density of bridging collaterals, and no change was observed in the density of terminal fields 

in the SNr (F(1,12) = 14.81; p = 0.0049 Bonferroni post hoc test: GPe: p < 0.01; SNr: p > 0.05; n = 

3 mice per group) (Figure 9B). These findings show that chronically increasing excitability of 

iMSNs in adult mice is sufficient to promote the growth of bridging collaterals (axon collaterals 

originating from striatal dMSNs), whereas chronically increasing excitability of dMSNs did not 

promote the growth of these collaterals. Chronically increasing excitability of dMSNs, however, 

was sufficient to increase the density of terminal fields to the SNr, one of the main target nuclei 

of the direct pathway.  

 

ASSOCIATION WITH BEHAVIORAL ACTIVATION OF DIRECT PATHWAY 

Having shown that activity in the indirect pathway can induce a circuit-level connectivity 

change in the basal ganglia, I proceeded to investigate whether this change in connectivity could 

be relevant for behavior. Two previous findings from the Kellendonk laboratory led to the 

question of whether the D2R antagonist haloperidol could affect basal ganglia output at the 

behavioral level by changing the density of bridging collaterals. First, it was previously shown 

that increased bridging collateral density in D2R-OEdev mice, induced by D2R upregulation, 

could be reversed in adult animals by chronic treatment with the D2R antagonist haloperidol 

(Cazorla et al., 2014). And second, increased density of bridging collaterals was shown to be 
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associated with abnormal locomotor activation upon optogenetic stimulation of the direct 

pathway (Cazorla et al., 2014). Thus, to further investigate whether pharmacologically targeting 

the indirect pathway could have behavioral effects associated with the bridging collaterals, Cre-

dependent ChR2 was expressed in dMSNs in the DMS of D2R-OEdev/Drd1-Cre mice and control 

Drd1-Cre littermates. Fiberoptic implants were also placed in the DMS of these mice to allow for 

temporally-controlled light-stimulation of dMSNs while animals were allowed to move freely. 

Before behavioral testing, animals were treated for 14 days with the D2R antagonist haloperidol 

or vehicle.  

Figure 10 shows how stimulation of dMSNs affected movement initiation in D2R-OEdev 

and control littermates after chronic treatment with haloperidol or vehicle. As previously 

reported (Kravitz et al., 2010), control animals treated with vehicle moved more when the laser 

was turned on compared to when the laser was turned off (F(2,14) = 21.11, p = 0.0006; 

Bonferroni’s multiple comparisons: PRE vs. LASER: p < 0.001; LASER vs. POST: p < 0.01, 

PRE vs. POST:  p > 0.05; n = 5 mice) (Figure 10). Moreover, as had been previously 

demonstrated in the Kellendonk laboratory, D2R-OEdev mice paradoxically moved less when the 

laser was turned on compared to when the laser was turned off (F(2,14) = 58.71, p < 0.0001; 

Bonferroni’s multiple comparisons: PRE vs. LASER: p < 0.001; LASER vs. POST: p < 0.001, 

PRE vs. POST: p > 0.05; n = 5 mice) (Figure 10). Compared to animals treated with vehicle, 

animals treated with haloperidol, including both D2R-OEdev mice and control littermates, showed 

decreased movements at baseline when the laser was turned off (F(1,20) = 31.40, p < 0.0001; 

Bonferroni post hoc tests, D2R-OEdev: p < 0.001, 5-6 mice per treatment, Control: p < 0.05, n = 

5-8 mice per treatment) (Figure 10). Nevertheless, after chronic treatment with haloperidol, 

control mice still responded with increased locomotion to laser stimulation (F(2,17) = 39.44, p < 
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0.0001; Bonferroni’s multiple comparisons: PRE vs. LASER: p < 0.001; LASER vs. POST: p < 

0.001, PRE vs. POST: p > 0.05; n = 8 mice) (Figure 10). Most remarkably, however, after 

chronic treatment with haloperidol, D2R-OEdev mice no longer exhibited decreased movements 

Figure 10: Retraction of bridging collaterals can rescue behavioral activation of direct pathway. 

Mean locomotor activity of 5 30-s sessions before laser stimulation (PRE), during laser stimulation 

(LASER), and after laser stimulation (POST) for D2R-OEdev mice and control littermates treated with 

haloperidol or vehicle for 14 days. Control animals treated with vehicle moved more when the laser was 

turned on compared to when the laser was turned off (p = 0.0006; Bonferroni’s multiple comparisons: 

PRE vs. LASER: p < 0.001; LASER vs. POST: p < 0.01, PRE vs. POST:  p > 0.05). D2R-OEdev mice 

moved less when the laser was turned on compared to when the laser was turned off (p < 0.0001; 

Bonferroni’s multiple comparisons: PRE vs. LASER: p < 0.001; LASER vs. POST: p < 0.001, PRE vs. 

POST: p > 0.05). Control mice still responded with increased locomotion to laser stimulation after 

treatment with haloperidol (p < 0.0001; Bonferroni’s multiple comparisons: PRE vs. LASER: p < 0.001; 

LASER vs. POST: p < 0.001, PRE vs. POST: p > 0.05). After chronic treatment with haloperidol, D2R-

OEdev mice responded to laser stimulation of dMSNs with increased movement (p < 0.0001; Bonferroni’s 

multiple comparisons: PRE vs. LASER: p < 0.001; LASER vs. POST: p < 0.001, PRE vs. POST: p > 

0.05). A total of 5 control mice treated with vehicle, 5 D2R-OEdev mice animals treated with haloperidol, 

8 control mice treated with haloperidol, and 6 D2R-OEdev mice treated with haloperidol were assayed for 

this analysis. 
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when the laser was turned on but instead responded to laser stimulation of dMSNs with 

increased movement similarly to control animals (F(2,17) = 114.3, p < 0.0001; Bonferroni’s 

multiple comparisons: PRE vs. LASER: p < 0.001; LASER vs. POST: p < 0.001, PRE vs. POST: 

p > 0.05; n = 6) (Figure 10). Therefore, chronic haloperidol treatment was sufficient to fully 

rescue a behavioral phenotype associated with increased bridging collaterals. 

 

REGULATION BY MOTOR TRAINING 

Thus far, I have provided evidence demonstrating that the bridging collaterals (axon 

collaterals of dMSNs that target the GPe) can increase in density when chronic excitability of 

iMSNs is increased and are associated with disrupted behavioral activation upon stimulation of 

dMSNs. Since D2R-OEdev mice show increased density of bridging collaterals and their growth 

and retraction are plastic even in the adult animal, I hypothesized that other behavioral 

phenotypes of D2R-OEdev mice may also be associated with these collaterals. In addition to the 

anatomical and physiological phenotypes of D2R-OEdev described so far, these animals also 

display a deficit in motor coordination compared to control littermates, as measured by impaired 

performance on the rotarod task. As shown in Figure 11, while control mice are able to remain 

on a horizontal rod rotating at constant 20 rpm or 30 rpm speeds for 10 min without extensive 

training, D2R-OEdev mice exhibit impaired performance in comparison during the first week of 

training (Log-rank tests: 20 rpm: χ² = 7.429, p = 0.0064; 30 rpm: χ² = 4.531, p = 0.0333; n = 5 

mice per genotype). However, while this impairment is most pronounced in the first week, the 

difference decreased with ongoing motor training, and at the end of three weeks, D2R-OEdev 

mice can perform at a similar level to their control littermates (Log-rank tests: 20 rpm: χ² = 

1.000, p = 0.3173; 30 rpm: χ² = 2.242, p = 0.1343; n = 5 mice per genotype) (Figure 11). 
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Given that the time course of this effect was comparable to the time course of growth and 

retraction of bridging collaterals, together with evidence for exercise-dependent functional 

plasticity in cortico-striatal input (Costa et al., 2004), I questioned whether plasticity involving 

the bridging collaterals could be associated with improved performance of D2R-OEdev in the 

rotarod task after repeated motor training. To this end, I trained D2R-OEdev/Drd1-GFP and 

Drd1-GFP control mice daily on the rotarod task for three weeks and measured density of 

bridging collaterals after training. Statistical analysis revealed a significant effect of rotarod 

training (F(1,15) = 13.96, p = 0.0467, n = 3-6 mice per group) (Figure 12) Specifically, after daily 

motor training in the rotarod task, D2R-OEdev mice had decreased density of bridging collaterals 

compared to D2R-OEdev mice that were never trained in this motor task (Bonferroni post hoc 

test: p < 0.01, n = 3-6 mice per training condition) (Figure 12). Among control littermates not 

expressing the D2R transgene, rotarod training did not appear to affect the density of bridging 

collaterals (Bonferroni post hoc test: p > 0.05, n = 4-6 mice per training condition) (Figure 12).  

Figure 11: D2R-OEdev mice have a motor impairment that improves with training. Performance in 

the rotarod, measured as latency to fall from a rod rotating at (A) 20 rpm and (B) 30 rpm is shown for 

D2R-OEdev mice and control littermates. During the first week of training in the rotarod task, D2R-OEdev 

mice exhibit impaired performance in comparison to control littermates (20 rpm: p = 0.0064, 30 rpm: p = 

0.0333). At the end of three weeks of training, D2R-OEdev mice can perform at a similar level to their 

control littermates (20 rpm: p = 0; 30 rpm: p = 0.1343). A total of 5 mice per genotype were assayed for 

this analysis. 
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Given the potential implications of this experience-induced plasticity for disease-

modifying therapies in schizophrenia, I decided to further explore this phenomenon. I 

hypothesized that rotarod training might be sufficient to reverse the functional imbalance of the 

direct and indirect pathways in D2R-OEdev mice, as measured by motor output following 

stimulation of dMSNs. Therefore, I expressed ChR2 selectively in dMSNs in the DMS of D2R-

OEdev/Drd1-Cre mice and control Drd1-Cre littermates. Fiberoptic implants were also placed 

into the DMS of these mice to allow for temporally-controlled light-stimulation of dMSNs while 

animals moved freely. After undergoing surgery, D2R-OEdev mice and control littermates were 

divided into subgroups; a subset of animals of each genotype underwent daily rotarod training 

for at least three weeks while the other half remained rotarod-naïve. Following training, I used 

the same behavioral paradigm used to demonstrate the behavioral effect of chronic haloperidol in 

D2R-OEdev mice to measure motor activity induced by light-stimulation of dMSNs in D2R-OEdev 

Figure 12: Rotarod training induces retraction of bridging collaterals in D2R-OEdev mice. Quantification of 

bridging collaterals in D2R-OEdev and control littermates that were rotarod-naïve or trained in the rotarod for three 

weeks showed a significant effect of rotarod training (p = 0.0467). Among control mice, rotarod training did not 

affect density of bridging collaterals (Bonferroni post hoc test: p > 0.05). Rotarod-trained D2R-OEdev mice had 

decreased density of bridging collaterals compared to rotarod-naïve D2R-OEdev (Bonferroni post hoc test: p < 0.01). 

A total of 3 rotarod-naïve control mice, 6 rotarod-trained control mice, 4 rotarod-naïve D2R-OEdev mice, and 6 

rotarod-trained D2R-OEdev mice were used for this analysis. 
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and control mice that were rotarod-trained or rotarod-naive. Figure 13 shows motor performance 

for animals trained in the rotarod, as well as measures of locomotor response to stimulation of 

the direct pathway after rotarod training. Similar to performance of the previous cohort (see 

Figure 13), among animals that received rotarod training, D2R-OEdev showed an initial 

impairment in motor performance compared to control mice (Log-rank tests: 20 rpm: χ² = 4.521, 

p = 0.0335; 30 rpm: χ² = 10.43, p = 0.0012) that was no longer present after three weeks of 

rotarod training (Log-rank tests: 20 rpm: χ² = 2.560, p = 0.1096; 30 rpm: χ² = 1.421, p = 0.2333) 

(Figure 13A-B). Since I have previously demonstrated that three weeks of rotarod training is 

sufficient to induce retraction of bridging collaterals in D2R-OEdev mice, I tested whether motor 

training could also rescue the disrupted behavioral phenotype of D2R-OEdev upon optogenetic 

stimulation of dMSNs. Figure 13C shows measures of locomotor activity when rotarod-trained 

and rotarod-naïve D2R-OEdev and control mice were tested in the optogenetic open field 

paradigm. I was able to reproduce the impaired behavioral activation of D2R-OEdev mice with 

stimulation of striatal dMSNs, as rotarod-naïve D2R-OEdev mice showed reduced locomotor 

activity when the laser was turned on compared to when the laser was turned off (F(2,11) = 8.721, 

p = 0.0168; Bonferroni’s multiple comparisons: PRE vs. LASER: p < 0.05; LASER vs. POST: p 

< 0.05, PRE vs. POST:  p > 0.05; n = 4) (Figure 13C). Among control animals, rotarod training 

did not affect increased locomotion induced by stimulation of dMSNs, and both rotarod-naïve 

(F(2,20) = 6.607, p = 0.0116; Bonferroni’s multiple comparisons: PRE vs. LASER: p < 0.05; 

LASER vs. POST: p < 0.05, PRE vs. POST:  p > 0.05; n = 7) and rotarod-trained (F(2,32) = 6.986, 

p = 0.0050; Bonferroni’s multiple comparisons: PRE vs. LASER: p < 0.001; LASER vs. POST: 

p < 0.05, PRE vs. POST:  p > 0.05; n = 11) mice responded to laser stimulation with increased 

locomotor activity (Figure 13C). Remarkably, however, D2R-OEdev mice trained in the rotarod  
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Figure 13: Rotarod training partially rescues abnormal behavioral activation of direct pathway. A-B. 

Performance in the rotarod, measured as latency to fall from a rod rotating at (A) 20 rpm and (B) 30 rpm 

is shown for D2R-OEdev mice and control littermates that underwent rotarod training. During the first week 

of training, D2R-OEdev mice exhibited impaired performance in comparison to control littermates (20 rpm: p = 

0.0064; 30 rpm: p = 0.0333). At the end of three weeks of training, D2R-OEdev mice performed at a similar level to 

their control littermates (20 rpm: p = 0.1096; 30 rpm: p = 0.2333). C. Mean locomotor activity of 5 30-s sessions 

before laser stimulation (PRE), during laser stimulation (LASER), and after laser stimulation (POST) for D2R-OEdev 

mice and control littermates that were either rotarod-naïve or trained in the rotarod for at least three weeks. Rotarod-

naïve control animals moved more when the laser was turned on compared to when the laser was turned off (p = 

0.0116; Bonferroni’s multiple comparisons: PRE vs. LASER: p < 0.05; LASER vs. POST: p < 0.05, PRE vs. POST:  

p > 0.05); rotarod-naïve D2R-OEdev mice moved less when the laser was turned on compared to when the laser was 

turned off (p = 0.0168; Bonferroni’s multiple comparisons: PRE vs. LASER: p < 0.05; LASER vs. POST: p < 0.05, 

PRE vs. POST:  p > 0.05). Control mice still responded with increased locomotion to laser stimulation after rotarod 

training (p = 0.0050; Bonferroni’s multiple comparisons: PRE vs. LASER: p < 0.001; LASER vs. POST: p < 0.05, 

PRE vs. POST:  p > 0.05). But rotarod-trained D2R-OEdev mice no longer responded to laser stimulation of dMSNs 

with decreased movement (F(2,38) = 0.4662, p = 0.6335). A total of 7 rotarod-naïve control mice, 4 rotarod-trained 

control mice, 11 rotarod-naïve D2R-OEdev mice, and 12 rotarod-trained D2R-OEdev mice were used for this analysis. 
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no longer responded to stimulation of dMSNs with decreased locomotion during laser 

stimulation (F(2,38) = 0.4662, p = 0.6335; n = 12) (Figure 13C). Therefore, behavioral intervention 

through motor training was sufficient to partially rescue an abnormal behavioral phenotype of 

D2R-OEdev associated with the balance of direct and indirect pathways. 

 

DISCUSSION 

In summary, in the current study I provide mechanistic insight on plasticity involving the 

bridging collaterals, as well as evidence related to how the bridging collaterals may regulate 

behavior and how behavior may regulate the bridging collaterals. First, I demonstrated that 

bridging collaterals form synaptic contacts with GPe cells. I was also able to generate a viral 

vector to selectively increase excitability in specific populations of MSNs. I used this virus to 

demonstrate that chronically increasing excitability of the indirect pathway, but not the direct 

pathway, leads to a circuit-level change in connectivity by inducing the growth of bridging 

collaterals from dMSNs in the GPe. I also confirmed that increased density of bridging 

collaterals are associated with an abnormal locomotor response to stimulation of striatal dMSNs 

and demonstrated that chronic pharmacologic blockade of D2Rs can rescue this abnormal 

locomotor phenotype. Furthermore, I demonstrated that motor training can lead to changes in the 

density of bridging collaterals and partially rescue the abnormal locomotor phenotype associated 

with increased collaterals, thereby establishing a new link between connectivity in the basal 

ganglia and motor learning. 

Many studies have established a role for neuronal activity in the regulation of axonal 

growth and in shaping proper connectivity within neural circuits (Catalano and Shatz, 1998, Hua 

et al., 2005, De Marco Garcia et al., 2011). Neuronal excitability via changes in the function of 
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Kir channels have been shown to regulate plasticity in a variety of neurons and brain circuits 

(Burrone et al., 2002, Hartman et al., 2006). In the current study, I contributed to the 

characterization of a new form of plasticity in the basal ganglia using a genetic tool that knocks 

down Kir2 channel function. By generating and characterizing the AAV2/1-Syn-DIO-

Kir2.1AAAIRES-mCherry virus, I provide a useful tool for research on the effects of neuronal 

excitability on brain circuit plasticity and behavior. Numerous mouse lines are available in which 

Cre recombinase is expressed in selective neuronal populations. I expect, therefore, that this viral 

construct will be used to study how chronically increasing excitability in restricted neuronal 

populations can affect neuronal circuits and behavior in a variety of brain regions and animal 

models. 

However, one limitation to the use of the AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry 

virus is that I did not perform an extensive characterization of how transfecting Kir2.1AAA into 

MSNs affects neuronal excitability. The original experiments done in the Kellendonk laboratory 

that showed that non-conditional expression of Kir2.1AAA in the DMS leads to increased MSN 

excitability were done using a virus (AAV2-CMV-Kir2.1AAA-IRES-hrGFP) that had the 

cytomegalovirus (CMV) promoter instead of the synapsin (Syn) promoter to drive Kir2.1AAA 

expression. The CMV promoter is known to lead to higher but more transient expression of 

virally-transfected genes in neurons compared to the Syn promoter using AAV vectors in rodents 

(McCown et al., 1996, Paterna et al., 2000, Kugler et al., 2003). In addition, these two promoters 

have been shown to preferentially drive transgene expression in different cells types (Gholizadeh 

et al., 2013). Thus, although robust viral transfection was observed for both viruses, as measured 

by fluorophore signal in striatal MSNs, it cannot be immediately assumed that transfection with 

both viruses resulted in equal expression of Kir2.1AAA in MSNs. The internal ribosomal entry site 
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(IRES) in both constructs allowed expression of fluorophores (hrGFP or mCherry) as separate 

proteins, and their pattern of expression do not represent the pattern of expression of Kir2.1AAA in 

the cell. Since an HA tag is included in the Kir2.1AAA sequence in both constructs, 

immunohistochemically probing for the HA tag would be a reasonable strategy to directly 

compared Kir2.1AAA expression using each virus. Or, alternatively, slice physiology 

characterization of intrinsic excitability in genetically-identified dMSNs and iMSNs after 

transfection with the AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry construct could be directly 

compared to previously collected slice physiology data using the AAV2-CMV-Kir2.1AAA-

IRES-hrGFP construct (Cazorla et al., 2012). 

Another limitation of the study is the fact that all manipulations of excitability targeted 

the DMS even though increased excitability in MSNs throughout the striatum has been measured 

in D2R-OEdev mice (Cazorla et al., 2012). It would be informative, for example, to characterize 

how increasing excitability of MSNs in the DLS may affect density of bridging collaterals. 

Given that the DLS is known to be part of the motor cortico-basal ganglia-thalamic loop and in 

this study I also implicate the bridging collaterals in motor learning, it is plausible the collaterals 

are regulated by MSN excitability in this striatal sub-region. Moreover, it is not known if 

structures analogous to the bridging collaterals are also formed by dMSNs in the NA projecting 

to the VP. The tools used in this study to measure density of collaterals in Drd1-GFP mice could 

also be employed to measure terminal field density in the VP. Given recent evidence that as 

much as 50% of GPe neurons receive inputs from dMSNs (Kupchik et al., 2015), it is plausible 

that plasticity involving the density dMSN terminal fields in the VP may also be mediated by 

MSN excitability. 
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The fact that the D2R-OEdev mouse recapitulates increased striatal D2R function, as seen 

in patients with schizophrenia, and also exhibits phenotypes reminiscent of this disease 

(Kellendonk et al., 2006, Drew et al., 2007) raises the question of whether density and function 

of bridging collaterals may also be increased in schizophrenia. Furthermore, the robust effect of 

the D2R antagonist and antipsychotic haloperidol on retracting the bridging collaterals and 

rescuing an abnormal behavioral phenotype of D2R-OEdev mice suggests that a similar 

phenomenon may underlie the mechanism via which haloperidol alleviates symptoms in patients. 

In fact, all antipsychotics currently used to treat schizophrenia are either antagonists or weak 

partial agonists for D2Rs. These medications take weeks to reach their full efficacy in patients, 

suggesting that neural plasticity results from chronic downregulation of D2R function. This 

evidence supports a possible link between the collaterals and schizophrenia. Testing these 

hypotheses in patients could lead to important insight on the pathophysiology of schizophrenia 

and potentially new tools for therapies that target specific circuit elements in the basal ganglia. 

One first step to determine the strength of the association between the bridging collaterals and 

pharmacological treatment would be to test whether other antipsychotic medications, including 

atypical antipsychotics that also antagonize D2Rs, can retract bridging collaterals in D2R-OEdev 

mice. 

Furthermore, the findings presented here demonstrating that bridging collaterals are also 

associated with motor learning may have implications for schizophrenia beyond motor control. 

Patients with schizophrenia have increased striatal D2R availability, which predicts treatment 

response to antipsychotic medication (Abi-Dargham et al., 2000). I propose that not only 

antipsychotics but also behavioral intervention may be efficacious in patients by retracting 

bridging collaterals, possibly correcting an anatomical imbalance in the cortico-basal ganglia-
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thalamo-cortical loops involved in psychosis. In line with this idea, a recent study has 

demonstrated that behavioral therapy can be effective in treating psychosis (Leff et al., 2013). 

Since bridging collaterals are regulated by neuronal activity and given previous evidence for 

behavioral-induced functional plasticity in cortico-striatal inputs (Costa et al., 2004), my 

demonstration that behavioral training can lead to changes in connectivity in the basal ganglia is 

consistent with the idea that, by engaging activity in cortico-striatal circuits, behavioral 

intervention may alter the anatomy of the same striatal output pathways that are sensitive to 

antipsychotic medication. This idea is attractive, as cognitive behavioral therapy is widely 

discussed as adjunct therapy for schizophrenia. Elucidating the circuits and mechanisms by 

which these therapies exert their effects may be important for developing safer, effective 

therapies for patients with schizophrenia. 

One way to strengthen the link between behavioral intervention through motor training 

and retraction of bridging collaterals would be to obtain parallel measures of collateral density, 

rotarod performance, and locomotor response to stimulation of the direct pathway. In order to 

obtain such data set, mice expressing four different transgenes would be required, D2R-OEdev 

mice (CaMKIIa-tTa+/TetO-D2R+) that are also positive for Drd1-GFP, and Drd1-Cre. Thus, a 

large breeding colony would be necessary, and the data collected would be merely correlational. 

In addition, large cohorts may be necessary to establish strong associations between behavioral 

measures and density of bridging collaterals. In the current study, regression analyses were 

underpowered for establishing correlations between measures of rotarod performance and 

density of collaterals, or measures of behavioral response to direct-pathway stimulation and 

density of collaterals. 
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 Given the well-accepted theory that the basal ganglia are integrated with the thalamus 

and cortex in parallel loops that regulate different types of behaviors, it may be possible that 

plasticity involving the bridging collaterals is topographically-specified by the loops that are 

preferentially activated. The finding from the Kellendonk laboratory that D2R-OEdev mice have a 

larger increase in the density of bridging collaterals in the more medial aspect of the GPe 

compared to controls supports this hypothesis (Cazorla et al., 2014). It is plausible that motor 

training in the rotarod task leads to selective retraction of collaterals in specific medial-lateral or 

dorsal-ventral aspects of the GPe. If such selective retraction occurs, it is also possible that 

expression of ChR2 in the DMS may not have been optimal to activate basal ganglia loops that 

undergo bridging collateral plasticity with rotarod training. In fact, the DLS, rather than the 

DMS, is a striatal sub-region that has been more strongly established as be part of sensorimotor 

cortico-basal ganglia-thalamo-cortical loop (Pan et al., 2010). Thus, it may be possible that the 

rescue of locomotor response to stimulation of the direct pathway after rotarod training would 

have been more robust if ChR2 was expressed in the DLS. 

Finally, in order to move from correlational analyses and establish a causal link between 

behavioral intervention and altered connectivity in the basal ganglia, it would be necessary to 

directly and specifically target the bridging collaterals. Optogenetics would be one strategy to 

establish causality, as ChR2 or the inhibitory opsin Archaerhodposin-3 (Arch3.0) could be Cre-

dependently expressed in dMSNs and the bridging collaterals selectively targeted with 

fiberoptics placed in the GPe. This approach would answer whether stimulating or inhibiting the 

bridging collaterals during motor learning tasks can affect performance, causally linking the 

collaterals to behavior. However, opsins such as ChR2 and Arch3.0 are expressed throughout 

axonal projections, and laser illumination of the GPe would also stimulate dMSN projections to 
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the SNr and GPi, potentially confounding the results. Therefore, some technical limitations still 

need to be overcome to establish a causal relationship between the bridging collaterals and 

behavior. 
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CHAPTER 3 

EXCITABILITY OF STRIATAL PATHWAYS AND MOTIVATION 

 

INTRODUCTION 

By studying the phenotypes induced by altered MSN excitability and connectivity in 

D2R-OEdev mice, I showed in Chapter 2 how the balance of the direct and indirect pathways can 

be important for regulating behaviors mediated by the basal ganglia. Using optogenetics, I 

contributed to establishing that increased bridging collaterals are associated with enhanced 

pallidal inhibition and disrupted locomotor response to stimulation of the direct pathway. 

Moreover, the D2R antagonist and antipsychotic haloperidol reverses both the morphological 

changes and the disruption in locomotor activation of D2R-OEdev mice. These findings suggest 

that an increase in bridging collaterals, as observed in D2R-OEdev mice, may also be involved in 

the generation of symptoms of schizophrenia. Positive symptoms, such as hallucinations and 

delusions, cannot currently be modeled in the mouse. As a model of schizophrenia 

endophenotypes, D2R-OEdev mice exhibit phenotypes that resemble both the cognitive deficits 

and the impaired motivation seen in patients with this disorder (Kellendonk et al., 2006, Drew et 

al., 2007). Similar to what is observed in patients with schizophrenia, the motivational deficit of 

D2R-OEdev mice is consistent with an impairment in assessing effort in anticipation of a reward 

as these mice will expend less effort to obtain a reward despite having intact hedonic reactivity to 

rewards (Drew et al., 2007, Gard et al., 2009). However, while the deficits in working memory 

observed in D2R-OEdev mice appear to result from developmental processes and are not reversed 

when D2R overexpression is turned off in adulthood, the motivational deficit of D2R-OEdev mice 

appears to be more directly linked to striatal overexpression of D2Rs because this deficit is 
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rescued when levels of striatal D2R expression is reverted to baseline in the adult animal 

(Kellendonk et al., 2006, Drew et al., 2007). Since the bridging collaterals are regulated by 

chronic changes in excitability of MSNs via changes in Kir2 channel function, as demonstrated 

and discussed in Chapter 2, I hypothesized that increased density of bridging collaterals and/or 

increased excitability might underlie impaired incentive motivation in D2R-OEdev mice.  

To test this hypothesis, I attempted to phenocopy the motivation deficit of D2R-OEdev 

mice by downregulating Kir2.1 channel function in selective populations of striatal MSNs. For 

this purpose, I used cell-type restricted expression of the trans-dominant negative mutant 

Kir2.1AAA channel in the mouse striatum, in either dMSNs or iMSNs and in specific striatal sub-

regions, to chronically increase excitability of these neurons. Increased excitability in D2R-OEdev 

mice is observed in both dMSNs and iMSNs and in both dorsal and ventral regions of the 

striatum (Cazorla et al., 2012). However, the DMS and NA core have been more consistently 

implicated in the activation of goal-directed behavior (Corbit et al., 2001, Yin et al., 2005). 

Therefore, I chose to target the DMS or the NA core to manipulate excitability in a pathway-

specific manner. I assessed motivation using instrumental tasks, including a progressive ratio 

schedule of reinforcement and a concurrent choice task. Both of these tasks have been validated 

in rodents and can provide reliable measures of how much effort an animal is willing to expend 

to obtain a food reward (Salamone et al., 2003, Bradshaw and Killeen, 2012). In addition, I also 

tested whether chronically increasing excitability of dMSNs or dMSNs in specific striatal sub-

regions alters locomotor activity in mice. Thus, in addition to investigating how excitability in 

different circuits and brain regions may contribute to the motivation phenotype of D2R-OEdev 

mice, I also aimed to understand how the basal ganglia regulate motivated behavior for natural 

rewards through specific striatal sub-circuits. 
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MATERIALS AND METHODS 

Animals 

All animal protocols used in the present study were approved by the Institutional Animal 

Care and Use Committees of Columbia University and New York State Psychiatric Institute. 

Drd1-Cre (FK150Gsat/Mmcd) and Drd2-Cre (ER44Gsat/Mmcd) on a C57BL/6J background 

were purchased from the Mutant Mouse Resource & Research Centers (National Institutes of 

Health). Both male and female adult mice at least eight weeks old were used in this study. Mice 

were housed under a 12:12-hour light:dark cycle in a temperature-controlled environment, and 

all behavioral testing was done during the light cycle. Food and water were available ad libitum, 

except when they were being trained or tested in operant behavioral tasks, during which time 

mice were only given 2 h per day of unrestricted feeding time, which occurred immediately after 

testing session. Mice were also food deprived on days when they underwent testing for food 

preference, during which time they were given an additional hour of unrestricted feeding with 

laboratory chow immediately after each test session.  

Stereotaxic injections 

For all viral injection surgeries mice were anesthetized with a mixture of ketamine and 

xylazine (100 mg/kg and 10 mg/kg) administered by intraperitoneal injection. Animals were then 

placed in a stereotaxic apparatus and body temperature was maintained at 37 ˚C with a heating 

pad. Small cranial windows (< 0.5 mm) were drilled at the appropriate sites and viruses were 

delivered at an average rate of 100 nL/min using glass pipettes (tip opening 10-15 µm). All 

stereotactic coordinates were measured relative to bregma. A total of 0.4-0.5 µL volume was 

delivered into each site for all injections. Two bilateral sites of injection were used for targeting 
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the DMS to allow diffusion of the virus to the entire region (site A: AP: +1.3 mm, ML: ±1.4 mm, 

DV: -3.3; site B: AP +0.9 mm, ML ±2.0 mm, DV -3.4 mm). The NA core was targeted 

bilaterally with one set of coordinates (AP: +1.7 mm, ML: ±1.2 mm, DV: 4.0 mm). All 

behavioral experiments were started least four weeks after surgery to allow for stable viral 

transfection. 

Drug treatments 

D-Amphetamine (Sigma A5880) was dissolved in sterile saline (0.9% NaCl) at 0.2 

mg/mL and administered via intraperitoneal injection at a dose of 2 mg/kg. Amphetamine 

solution was prepared on the same day of experiment. 

Behavioral assays 

Open field locomotion 

 Locomotor activity in an open field was assessed in acrylic activity chambers (42 cm 

long × 42 cm wide × 38 cm high) equipped with infrared photobeams for motion detection 

(Kinder Scientific). To measure baseline locomotion, mice were placed in the open field, and 

activity was automatically recorded for 60 min. To measure amphetamine-induced locomotion, 

mice were similarly placed in the open field after the system had been programmed to interrupt 

recording 90 min after starting a session, at which point mice were administered amphetamine 

and placed back in the open field. Recording of locomotor activity resumed for another 90 min 

immediately after injections. 

  



75 

 

Operant training and progressive ratio 

Operant training and testing were done in experimental chambers equipped with liquid 

dippers, retractable levers, head entry detector in the feeder trough, a house light, and an exhaust 

fan. Unless otherwise indicated, for every session the dipper was submerged into a tray 

containing evaporated milk, so that raising the dipper provided a reward of one drop of 

evaporated milk into the feeder trough. Throughout the study, each animal was subjected to only 

one operant session per day. 

Mice were first trained to consume the liquid reward from the dipper located inside the 

feeder trough. In the first session, they were placed inside the chambers with the dipper in the 

raised position, providing access to a drop of evaporated milk. The dipper was retracted 10 

seconds after the first head entry into the feeder trough. A variable inter-trial interval (ITI) 

ensued, followed by a new trial identical to the first. The session ended after 30 minutes or 20 

dipper presentations. On the following day, mice underwent another session similar to the first, 

except that the dipper retraction was response-independent. During each trial, the dipper was 

raised for 8 seconds and then lowered independently of whether mice had made a head entry. 

The session ended after 30 minutes or 30 dipper presentations. All mice underwent dipper 

training for 2 days before moving on to Pavlovian training. All mice underwent one hour-long 

Pavlovian training session, in which the mechanical dipper was raised approximately once per 

minute for 5 seconds. Immediately before the dipper was raised, the lever was extended into the 

chamber for 6 seconds to allow mice to associate the lever extension to the milk reward. Whether 

the mouse pressed the lever or not, the dipper was raised when the lever was retracted, providing 

access to the reward. In the subsequent phase of training, mice were required to press a lever to 

earn the milk reward. At the beginning of a session, the lever was extended into the chamber, and 

lever presses were reinforced on a continuous reinforcement (CRF) schedule. In CRF and in all 
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subsequent sessions, the reward consisted of raising the dipper with a drop of evaporated milk in 

it for 5 seconds. The lever was retracted after every two times the mouse earned a reward, and 

then was re-extended after a variable ITI (averaging 30 seconds). The session ended when the 

mouse earned 60 reinforcements, or one hour elapsed. Mice continued undergoing daily CRF 

sessions until they earned 60 rewards in two consecutive sessions. When all mice reached 

criterion, they were moved to training fixed interval (FI) schedules. 

In FI schedule training, lever presses were not reinforced until after a fixed interval 

(timed relative to the lever extension) had elapsed. Mice began on FI 4 s schedule, meaning that 

the first lever press occurring 4 s after lever extension was reinforced. Each reinforcement was 

followed by a variable ITI (mean of 30 seconds; range of 110 seconds), during which the lever 

remained retracted. The start of a new trial was signaled by the extension of the lever. Each 

session consisted of a maximum of 36 trials or 1 hour. Mice were subjected to sessions with 

increasing intervals on each day; the FI durations were 4, 8, 16, and 24 s. All animals were 

required to complete all 36 trails in the FI 24 s schedule before being tested in the progressive 

ratio schedule. 

The progressive ratio task directly assesses operant motivation by quantifying the amount 

of effort a subject is willing to expend to earn a reward. The progressive ratio schedule used was 

one in which the amount of presses required to obtain each successive reward increased 

exponentially by a power of two. Motivation was measured by recording the total number of 

lever presses made and number of rewards earned during a session, as well as how long a subject 

continued to respond before giving up. Each session could last up to 2 hours but ended early if 

the mouse did not press the lever for 3 minutes. Mice underwent 5-7 consecutive days of testing 

in the progressive ratio schedule. 



77 

 

Concurrent choice 

All mice were first tested in the progressive ratio schedule before being trained for the 

concurrent choice task. A random ratio (RR) schedule, consisting of a constant probability of 

reinforcement for each lever press, was used to train animals for this task. All mice were first 

trained for at least 2 days in an hour-long RR 5 sessions, in which on average every fifth lever 

press was rewarded. Following this training, animals were subjected to the concurrent choice 

task, consisting of RR sessions, in which animals could press a lever to obtain a milk reward, in 

operant boxes that also contained 8-12 g freely accessible laboratory chow in a dish. Increasing 

ratios were used (RR5, RR10, RR20) with concurrent choice (i.e. freely available chow), and all 

mice underwent at least two sessions with each ratio. For the experiments in which mice were 

virally injected in the DMS, an RR 30 schedule of reinforcement was also used, and mice were 

also tested at least twice in RR 30 session without concurrent free chow available. The amount of 

food consumed by each mouse in each session was calculated by subtracting the weight of the 

food remaining after a session from the weight of the food pellet measured before the session. 

Outcome devaluation 

In this task, mice are tested to determine whether or not they are pressing the lever 

because they have formed a habit, or if they are still sensitive to the outcome. The reward is 

therefore devalued by allowing mice to have unlimited access to the reward for a specified time 

period prior to the trial. If mice are truly pressing the lever in order to obtain the reward, they 

should press the lever fewer times throughout the session if they have been exposed to the 

reward beforehand. Here, the valued reward was sweetened evaporated milk, and standard 

mouse chow served as the control. Mice were therefore pre-fed with the valued reward or a non-

valued reward before testing. The mice were then placed in an operant chamber with a lever 
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extended, but lever presses were not reinforced throughout the session. Because this non-

reinforced task should extinguish pressing behavior, mice were trained in RR 30 sessions for 1-2 

days in between devaluation testing days in order to maintain high press rates.  

On outcome devaluation testing days, mice were first pre-fed with either the valued 

reward (sweetened evaporated milk) for 30 min or laboratory chow – a control food which they 

had never been trained to associate as a reward for lever pressing – for 1 h. Mice were only given 

30 min of access to the valued reward in order to prevent complete satiation with milk, which 

might have resulted in complete loss of motivation to obtain the reward during the session. All 

mice were single-housed during pre-feeding. Immediately after pre-feeding mice were placed in 

an operant chamber with an extended lever for 15 minutes without ever receiving a reward. 

Testing occurred on two different days in a randomized design so that each mouse received pre-

feeding with milk or chow once. The number of lever presses made in each session was 

measured for assessment of outcome devaluation. 

Food preference 

 Assessment of food preference was always done at the end of all operant training and 

testing. On separate days, mice were subjected to two food preference sessions, in which they 

were individually placed in standard holding cages with access to different foods or water. In one 

session, mice had access to freely available evaporated milk and laboratory chow, and in the 

other session mice had access to freely available water and laboratory chow. The order of 

sessions was counterbalanced for each experimental group. Total consumption of milk, chow, 

and water was calculated for each mouse by measuring the weight of the food or the volume of 

milk or water before and after each session. 
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Histology and immunohistochemistry 

For all histological analysis of brain tissue following behavioral experiments, mice were 

anesthetized with a mixture of ketamine and xylazine (100 mg/kg and 10mg/kg, respectively), 

administered by intraperitoneal injection, and were transcardially perfused, first with PBS and 

then with 4% paraformaldehyde. Following perfusion, brains were post-fixed in 4% 

paraformaldehyde for 24 hours, and then transferred to PBS. Brains were then sliced into 50-μm 

coronal sections using a vibratome and every section was collected. 

For confirmation of virally targeted regions, immunohistochemistry using fluorescence 

was performed on these free-floating sections by treating sections first with blocking buffer 

(0.5% bovine serum albumin, 5% horse serum, 0.2% Triton X-100), followed by the primary 

rabbit dsRed polyclonal antibody (1:250, Clontech, cat. 632496) and subsequently with goat 

anti-rabbit IgG (H+L) secondary antibody Alexa Fluor 568 conjugate (1:1000, Thermo Fisher 

Scientific, cat. A-11011). Sections were washed with 0.2% Triton X-100 in between incubation 

with antibodies and with 50 mM Tris-Cl pH 7.4 before mounting. Sections were mounted on 

glass slides and subsequently coverslipped for imaging with VectaShield containing DAPI 

(Vector Labs). Images were acquired at 2.5x magnification using a Hamamatsu camera attached 

to a Carl Zeiss epifluorescence microscope. Micrographs were processed using ImageJ software 

(National Institutes of Health). 

Data analysis and statistics 

All data collected in the current study were processed with Excel (Microsoft). Statistical 

analyses were done with either Excel or with Prism 5 (GraphPad). Most data sets were normally 

distributed and Student’s t test, repeated-measures ANOVAs, or two-way ANOVAs were done, 

with Bonferroni or Dunnett post hoc tests conducted when appropriate. Because the data set for 
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session duration in the progressive ratio task was not normally distributed, the Log-rank non-

parametric test was used to compare whether or not the independent variables significantly 

affected survival functions for session duration. 

 

RESULTS 

INCREASING EXCITABILITY OF DIRECT PATHWAY 

First, I chronically increased excitability of the direct pathway by expressing the trans-

dominant negative Kir2.1AAA channel in dMSNs in the DMS. I used Drd1-Cre mice to selectively 

target the direct pathway. These animals were injected with the AAV2/1-Syn-DIO-Kir2.1AAA-

IRES-mCherry virus, characterized in Chapter 2, or the control virus AAV2-EF1α-DIO-mCherry 

into the DMS. The purpose of this experiment was to determine whether changes in chronic 

excitability of the direct pathway arising from the DMS might lead to specific changes in 

motivated behavior. After allowing the transgene to be expressed for several weeks, I tested 

these animals in a number of behavioral assays, the results of which are shown in Figure 14. This 

manipulation was carried out in two separate cohorts of mice, and most, but not all, behavior 

tests were conducted for both cohorts. In tests for which data from both cohorts were available, 

results were pooled to yield the plots presented in Figure 14. The number of subjects tested to 

generate each plot and statistics is reported. 

In this first experiment, I found that Drd1-Cre mice expressing Kir2.1AAA in dMSNs in 

the DMS did not show differences in locomotor activity in an open field compared to control 

littermates (t(11) = 1.337, p = 0.2082; n = 20 mice per group) (Figure 14A). In addition, animals’ 

preferences for laboratory chow and evaporated milk were also assayed, and no differences in 
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food consumption or preference between groups were detected for any of the food pairs tested 

(F(1,18) = 0.00004571, p = 0.9947; n = 10 mice per group) (Figure 14B). 

These animals were then trained to press a lever to earn a food reward. Increasing FI schedules 

were used during training to shape mice to press a lever at high rates to continue earning 

rewards. In each FI session, for each trial, a pre-determined time interval (4, 8, 12, 16, or 24 s) 

after the lever extension had to elapse before a lever press resulted in the presentation of a 

reward. As shown in Figure 14C, mice expressing Kir2.1AAA in dMSNs in the DMS 

progressively increased their rate of responding with increasing FI schedules (F(4,38) = 247.0, p < 

0.0001; n = 20 mice per group). However, for each FI schedule, no difference in training 

performance was observed between mice expressing Kir2.1AAA and those expressing a control 

gene in dMSNs in the DMS (F(1,38) = 0.08082, p = 0.7777; n = 20 mice per group) (Figure 14C). 

Once all animals were adequately trained, they were tested in a progressive ratio schedule 

of reinforcement, a test of motivation that measures how much effort an animal is willing to 

expend to obtain a food reward. I used a specific progressive ratio schedule in which the lever 

press requirement doubled with each successive reward and the session timed out if a mouse 

stopped responding for three minutes. Animals were tested in this schedule for multiple 

consecutive days, and the parameters used to compare performance between groups included the 

session duration, representing how long an animal continued to press a lever on average across 

all sessions, as well as total number of lever presses and lever press rate for each session. No 

significant differences were observed between mice expressing Kir2.1AAA or a control gene in 

dMSNs in the DMS in the survival functions of their average session duration (Log-rank test: χ² 

= 1.907, p = 0.1763; n = 20 mice per group), or in the number of lever press responses they made 

in each session (F(1,38) = 1.456, p = 0.2350; n = 20 mice per group) (Figures 14D-E). Finally, in 
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all progressive ratio sessions, animals’ press rates were not different between groups (F(1,38) = 

0.0009894, p = 0.9751; n = 20 mice per group) (Figure 14F). 

Animals were also tested in a concurrent choice task, in which they were given the choice 

to press a lever to obtain a preferred food reward (evaporated milk) or to consume a less 

palatable food reward (laboratory chow) without expending any effort. In this assay, although I 

tested animals in different RR schedules, I only show the data from the highest RR schedule 

tested (RR 30). I found that chronically increasing excitability of dMSNs in the DMS did not 

affect how much animals were willing to press a lever to obtain a more palatable reward in an 

RR 30 schedule of reinforcement when given the option to freely consume a less palatable food 

(F(1,18) = 0.1271, p = 0.7256; n= 10 mice per group) (Figures 14G). Both groups showed 

decreased operant responding when a freely available food was introduced (chow availability: 

F(1,18) = 70.44, p < 0.001, group: F(1,18) = 0.4262, p = 0.5221; n = 10 mice per group), 

demonstrating that animals in both groups could modulate their behavior based on the available 

choices (Figure 14G). In sessions in which laboratory chow was freely available, the amount of 

chow consumed by each mouse was measured, and no difference was observed in chow 

consumption between mice with more excitable dMSNs in the DMS and control animals (F(1,18) 

= 0.5920, p = 0.4516; n = 10 mice per group) (Figure 14H). 

I further tested whether mice with increased excitability of the direct pathway in the DMS 

showed any behavioral difference to controls in how well they could encode the value of the  

reward. Since all animals were trained to press a lever to obtain evaporated milk as a food 

reward, I tested whether decreasing the value of that reward by pre-feeding animals with 

evaporated milk would decrease their rate of operant responding in extinction trials. I found that,  
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Figure 14: Effects of chronically increasing excitability of direct pathway in the DMS. A. Mice expressing 

Kir2.1AAA in dMSNs in the DMS have similar baseline locomotor activity compared to controls, as measured by 

distance traveled in an open field for 1 h (p = 0.2082; n = 20 mice per group). B. No differences in food preference 

between groups were detected for any of the food pairs tested (p = 0.9947; n = 10 mice per group). C. All mice 

progressively increased their rate of responding with increasing FI schedules (p = 0.7777; n = 20 mice per group). 

D-F. No differences were observed between groups in the progressive ratio schedule of reinforcement, as measured 

by (D) the survival functions for average session duration (p = 0.1763; n = 20 mice per group), (E) number of 

responses in each session (p = 0.2350; n = 20 mice per group), and (F) rate of lever pressing (p = 0.9751; n = 20 

mice per group). G. In the concurrent choice task, both groups showed decreased operant responding when a freely 

available food was introduced (chow availability: p < 0.001, group: p = 0.5221; n = 10 mice per group). G-H. There 

were also no performance differences between mice expressing Kir2.1AAA or a control virus in the concurrent choice 

task, as measured by (G) the total number of responses in concurrent choice sessions with RR 30 schedule of 

reinforcement (p = 0.7256; n= 10 mice per group), and (H) amount of chow consumed by mice in each group during 

these concurrent choice sessions (p = 0.4516; n = 10 mice per group). I. In an outcome devaluation test, mice in both 

groups showed similar decreased rates of pressing after pre-feeding with evaporated milk compared to a control 

condition in which mice were pre-fed chow, a food that had never been associated with lever pressing (pre-fed food: 

p = 0.0018, group: p = 0.7682; n = 10 mice per group). 
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compared to a control condition in which mice were pre-fed chow, a food that had never been 

previously associated with lever pressing, mice in both groups showed similar decreased rates of 

pressing after pre-feeding with evaporated milk (pre-fed food: F(1,17) = 13.61, p = 0.0018, group: 

F(1,17) = 0.08970, p = 0.7682; n = 10 mice per group) (Figure 14I). This finding demonstrates that 

expressing Kir2.1AAA in dMSNs in the DMS does not impair animals’ sensitivity to outcome 

devaluation.  

 Given the negative results reported above, I attempted to determine whether it was 

possible to induce a behavioral phenotype in animals expressing Kir2.1AAA in the direct pathway 

in the DMS. Since acute amphetamine leads to extracellular levels of dopamine that are higher 

than physiological levels (Kuczenski and Segal, 1997), I predicted that increased dopamine 

activation of D1Rs in more excitable dMSNs could further potentiate the direct pathway’s 

function to drive behavior. I therefore measured locomotion in freely behaving mice expressing 

Kir2.1AAA or a control gene in dMSNs in the DMS before and after acute systemic treatment with 

Figure 15. Chronically increasing excitability of dMSNs in the DMS potentiates locomotor response 

to acute amphetamine. A. Open field locomotor activity of mice expressing Kir2.1AAA or a control gene 

in dMSNs in the DMS 90 min before and 90 min after treatment with amphetamine (2 mg/kg). B. 

Comparing locomotor activity for both groups 20 min before and 20 min after treatment with 

amphetamine showed that mice in both groups increased locomotion in response to amphetamine (p = 

0.0006), and mice expressing Kir2.1AAA had a potentiated response to the drug compared to controls (p = 

0.0437). A total of 10 mice expressing Kir2.1AAA and 10 mice expressing the mCherry control gene were 

assayed for this analysis. 
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amphetamine. As expected, mice in both groups showed increased locomotion after acute 

treatment with amphetamine (F(1,18) = 17.33, p = 0.0006; n = 10 mice per group) (Figure 15). 

And most importantly, mice expressing Kir2.1AAA in dMSNs in the DMS exhibited a potentiated 

locomotor response to amphetamine treatment compared to control animals (F(1,18) = 4.705, p = 

0.0437; n = 10 mice per group) (Figure 15). Therefore, it is possible to induce a behavior read-

out for chronically increasing excitability in a selective population of striatal MSNs using the 

AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry virus despite negative findings in behavioral 

measures of baseline locomotion and motivation for food. 

 I also conducted a similar experiment involving a similar series of behavioral assays in a 

separate cohort of Drd1-Cre mice, but this time expression of Kir2.1AAA was targeted to dMSNs 

in the NA core instead of the DMS. The purpose of this experiment was to test whether 

chronically increased excitability of dMSNs in the NA core would affect incentive motivation in 

mice. The results for this experiment are presented in Figure 16 which includes data from one 

single cohort of mice tested in all behavioral assays. 

 Similar to what was observed when excitability was increased in the DMS, expressing 

Kir2.1AAA in dMSNs in the NA core also did not change animal’s baseline locomotor activity 

(t(22) = 0.1937, p = 0.8482; n = 9-10 mice per group) or animal’s food preferences (F(1,16) = 

0.0008703, p = 0.9768) (Figures 16A-B). Mice were then trained to press a lever to obtain a food 

reward and were trained in FI schedules with progressively longer intervals before testing in 

operant tasks of motivation. FI schedules with longer intervals led to higher number of lever 

press responses in both groups (F(4,15) = 140.5, p < 0.0001; n = 9 mice per group) (Figure 16C). 

Although no differences were observed between groups when animals were tested in FI 4 s  
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Figure 16: Effects of chronically increasing excitability of direct pathway in the NA core. A. Mice 

expressing Kir2.1AAA in dMSNs in the NA core show similar baseline locomotor activity compared to 

controls, as measured by distance traveled in an open field for 1 h (p = 0.8482). B. No differences in food 

preference between groups were detected for any of the food pairs tested (p < 0.0001). C. No differences 

were observed between groups when animals were tested in FI 4 s through FI 16 s (p = 0.8308). At the 

longest FI interval, FI 24 s, mice with more excitable dMSNs in the NA core made significantly more 

lever presses in a session compared to the control group (p = 0.0486). D-F. No differences were observed 

between groups in the progressive ratio schedule of reinforcement, as measured by (D) the survival 

functions for average session duration (p = 0.5982), (E) number of responses in each session (p = 0.9587), 

and (F) rate of lever pressing (p = 0.7580). G-H. There were also no differences between performance in 

mice expressing Kir2.1AAA or a control virus in the concurrent choice task, as measured by (G) the total 

number of responses in concurrent choice sessions with RR 20 schedule of reinforcement (p = 0.8111), 

and (H) the amount of chow consumed by mice in each group during these concurrent choice sessions (p 

= 0.7535). A total of 9 mice expressing Kir2.1AAA and 9 mice expressing the mCherry control gene were 

assayed for this analysis.  
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through FI 16 s (F(1,15) = 0.04726, p = 0.8308; 9 mice per group), at the longest intervals, FI 24 s, 

mice with more excitable dMSNs in the NA core made significantly more lever presses in a 

session compared to the control group (F(1,15) = 4.608, p = 0.0486; n = 9 mice per group) (Figure 

16C). However, when animals were tested in tasks of motivation, including the progressive ratio 

and concurrent choice tasks, no behavioral differences in performance were observed between 

groups (Figures 16D-H). In the progressive ratio task, the survival functions for session duration 

were not different between groups (Log-rank test: χ² = 0.2777, p = 0.5982; n = 9 mice per group) 

(Figure 16D). Other parameters in this task, including total number of lever presses (F(1,16) = 

0.002762, p = 0.9587; n = 9 mice per group) and rate of responding (F(1,16) = 0.09826, p = 

0.7580; n = 9 mice per group) in each session were similarly not changed (Figures 16E-F). In the 

concurrent choice assay for this experiment, animals were given the choice to either press a lever 

to obtain a more palatable food reward at different RR schedules of reinforcement or to consume 

the freely available less palatable laboratory chow. Only data for the highest RR schedule tested 

(RR 20) is shown for this experiment. Mice expressing Kir2.1AAA or a control gene in dMSNs in 

the NA core did not perform differently in this task, as measured by the total number of lever 

presses (F(1,16) = 0.05903, p = 0.8111; n = 9 mice per group) and amount of chow consumed 

(F(1,16) = 0.1021, p = 0.7535; n = 9 mice per group) in concurrent choice sessions (Figures 16G-

H). 

 

INCREASING EXCITABILITY OF INDIRECT PATHWAY 

I also carried out a parallel set of experiments using Drd2-Cre mice to manipulate 

excitability in iMSNs selectively in the DMS or NA core. As in the set of experiments described 

above, I injected mice with the AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry viral vector or the  
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control virus AAV2-EF1α-DIO-mCherry into either the DMS or NA core. Mice were tested in 

the same behavioral paradigms as those done for experiments targeting dMSNs in Drd1-Cre 

mice. In addition to testing how MSN excitability affects motivation, these experiments were 

also intended to determine whether increasing density of bridging collaterals could also affect 

motivation because in Chapter 2 I showed that injecting the AAV2/1-Syn-DIO-Kir2.1AAA-

IRES-mCherry virus in the DMS of Drd2-Cre mice to increase excitability of iMSNs can induce 

growth of bridging collaterals (see Figure 9).  

Chronically increasing excitability of the indirect pathway by expressing Kir2.1AAA 

selectively in iMSNs in the DMS did not lead to behavior effects in most assays tested. There 

were no differences in baseline locomotor activity (t(22) = 0.5121, p = 0.6137; n = 9-10 mice per 

group) or food preferences (F(1,17) = 0.07919, p = 0.7818; n = 9-10 mice per group) between 

groups (Figures 17A-B). Moreover, when animals of both groups were trained to press a lever to 

obtain a food reward, they showed a similar progressive increase in lever pressing with 

increasing FI schedule intervals (F(4,17) = 95.49, p < 0.0001; group: F(1,17) = 0.1091, p = 0.7452; n 

= 9-10 mice per group) (Figure 17C). In the progressive ratio task, mice expressing either 

Kir2.1AAA or a control gene in iMSNs in the DMS continued to respond for a similar amount of 

time (Log-rank test: χ² = 0.01734, p = 0.8952; n = 9-10 mice per group) and made similar total 

number of lever presses (F(1,17) = 3.854, p = 0.0662; n = 9-10 mice per group) (Figures 17D-E). 

However, the rate of lever pressing was significantly different between groups, with mice 

injected with the Kir2.1AAA virus showing increased rates of responding compared to controls 

(F(1,17) = 10.45, p = 0.0049; n = 9-10 mice per group) (Figure17F). In the concurrent choice task, 

a trend towards increased total number of lever presses was observed when animals were tested  
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Figure 17: Effects of chronically increasing excitability of indirect pathway in the DMS. A. Mice 

expressing Kir2.1AAA in iMSNs in the DMS show similar baseline locomotor activity compared to 

controls, as measured by distance traveled in an open field for 1 h (p = 0.6137). B. No differences in food 

preference between groups were detected for any of the food pairs tested (p = 0.7818). C. All mice 

progressively increased their rate of responding with increasing FI schedules (p < 0.0001; group: p = 

0.7452). D-E. No differences were observed between groups for two parameters in the progressive ratio 

schedule of reinforcement, (D) the survival functions for average session duration (p = 0.8952) and (E) 

the number of responses in each session (p = 0.0662). F. The rate of lever pressing in the progressive ratio 

schedule was increased in mice expressing Kir2.1AAA compared to controls (p = 0.0049). G. In RR 30 

sessions without concurrent choice, a trend towards increased total number of lever presses for mice 

expressing Kir2.1AAA compared to controls was observed (p = 0.0546). Both groups showed decreased 

operant responding when a freely available food was introduced (chow availability: p < 0.0001). G-H. 

There were also no differences between mice expressing Kir2.1AAA or a control virus in the concurrent 

choice task, as measured by (G) the total number of responses in concurrent choice sessions with RR 30 

schedule (p = 0.1150), and (H) the amount of chow consumed by mice in each group during these 

concurrent choice sessions (p = 0.7592). I. In an outcome devaluation test, mice in both groups showed 

similar decreased rates of pressing after pre-feeding with evaporated milk compared to a control condition 

in which mice were pre-fed chow, a food that had never been previously associated with lever pressing 

(pre-fed food: p = 0.0003, group: p = 0.5916). A total of 10 mice expressing Kir2.1AAA and 9 mice 

expressing the mCherry control gene were assayed for this analysis. 
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in the RR 30 schedule of reinforcement at baseline (F(1,17) = 4.262, p = 0.0546; n = 9-10 mice per 

group). When animals were given the choice to either press a lever to obtain evaporated milk or  

freely eat laboratory chow, they reduced their number of responses compared to baseline (chow 

availability: F(1,17) = 27.94, p < 0.0001; n = 9-10 mice per group) (Figure 17G). However, on 

concurrent choice sessions, no differences were observed between groups in either total number 

of lever presses (F(1,17) = 2.759, p = 0.1150; n = 9-10 mice per group) or amount of food 

consumed (F(1,17) = 0.09700, p = 0.7592; n = 9-10 mice per group) (Figures 17G-H). In addition, 

animals in this cohort were subjected to an outcome devaluation test, and both groups were 

similarly sensitive to pre-feeding with evaporated milk (pre-fed food: F(1,16) = 20.90, p = 0.0003, 

group: F(1,16) = 0.2997, p = 0.5916), suggesting that chronically increasing excitability of the 

indirect pathway in the DMS does not affect how animals encode the value of a reward (Figure 

17I). 

 Finally, I also injected the AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry virus into the 

NA core of Drd2-Cre mice in order to selectively increase excitability of the indirect pathway in 

that striatal region. Subsequent behavioral testing yielded the results presented in Figure 18. As 

can be seen in Figures 18A-B, baseline locomotor activity (t(22) = 0.1140, p = 0.9103; n = 8 mice 

per group) and food preferences (F(1,42) = 0.005533, p = 0.9411; n = 8 mice per group) were not 

changed between groups. Mice were also trained in operant tasks including FI schedules with 

progressively longer time intervals, and no differences between groups were observed for FI 

schedule with interval requirements between 4 and 16 s (F(3,14) = 0.1254, p = 0.7285; n = 8 mice 

per group) (Figure 18C). However, in striking contrast to what was observed in Drd1-Cre mice 

(see Figure 16C), Drd2-Cre mice expressing Kir2.1AAA in the NA core made significantly fewer  
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Figure 18: Effects of chronically increasing excitability of iMSNs in the NA core. A. Mice expressing 

Kir2.1AAA in iMSNs in the NA core show similar baseline locomotor activity compared to controls, as 

measured by distance traveled in an open field for 1 h (p = 0.9103). B. No differences in food preference 

between groups were detected for any of the food pairs tested (p = 0.9411). C. No differences were 

observed between groups when animals were tested in FI 4 s through FI 16 s (p = 0.7285). At the longest 

interval, FI 24 s, mice with more excitable dMSNs in the NA core made significantly more lever presses 

in a session compared to the control group (p = 0.0346). D-F. No differences were observed between 

groups in the progressive ratio schedule of reinforcement, as measured by (D) the survival functions for 

average session duration (p = 0.4762), (E) number of responses in each session (p = 0.6822), and (F) rate 

of lever pressing (p = 0.4833). G-H. There were also no differences in performance between mice 

expressing Kir2.1AAA or a control virus in the concurrent choice task, as measured by (G) the total number 

of responses in concurrent choice sessions with RR 20 schedule of reinforcement (p = 0.7100), and (H) 

the amount of chow consumed by mice in each group during concurrent choice tasks (p = 0.1573). A total 

of 8 mice expressing Kir2.1AAA and 8 mice expressing the mCherry control gene were assayed for this 

analysis. 
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Figure 19: Kir2.1AAA was selectively expressed in targeted 

regions. Sample micrographs of coronal sections from mice 

injected with the AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry 

virus used in each of the experiments in the current study. A. 

Drd1-Cre mice injected in the DMS. B. Drd1-Cre mice injected in 

the NA core. C. Drd2-Cre mice injected in the DMS. D. Drd2-Cre 

mice injected in the NA core. Scale bar: 1 mm. 

lever presses when compared to controls in the FI 24 s schedule (F(1,14) = 0.5480, p = 0.0346; n = 

8 mice per group) (Figure 18C). However, when animals were then tested in tasks of motivation, 

including the progressive ratio and the concurrent choice tasks, no differences in performance 

were observed between animals with chronically increased excitability of iMSNs in the NA core 

and controls (Figures 18D-H). The survival functions for average session duration were not 

statistically different between groups (Log-rank tests: χ² = 0.5076, p = 0.4762; n = 8 mice per 

group) (Figure 18D). And the total number of lever presses (F(1,14) = 0.1748, p = 0.6822; n = 8 

mice per groups) and rate of responding (F(1,14) = 0.5185, p = 0.4833; n = 8 mice per group) were 

also not different between groups expressing Kir2.1AAA or a control gene in iMSNs in the NA 

core (Figures 18E-F). Finally, in the concurrent choice task, mice were given the option to either 

press a lever to obtain a more palatable reward (RR 20 schedule of reinforcement) or to consume 

a freely available less palatable 

reward. No differences were 

observed between groups in the 

number of lever presses made 

(F(1,14) = 0.1440, p = 0.7100; n = 8 

mice per group) or in the amount 

of food consumed (F(1,14) = 2.233, 

p = 0.1573; n = 8 mice per group) 

in this task (Figures 18G-H). 

For all experiments 

involving expression of Cre-

dependent Kir2.1AAA by injecting 
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the AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry virus in selective striatal sub-region of Drd1-

Cre and Drd2-Cre mice, histological confirmation of virus expression was done for all subjects. 

As shown in Figure 19, the stereotaxic coordinates and virus injection protocol used in this study 

were appropriate to selectively transfect neurons in either the DMS or NA core. 

 

DISCUSSION 

In summary, I conducted a series of experiments in which I selectively increased 

excitability of the direct or indirect pathway in specific striatal sub-regions that have been 

implicated in goal-directed behavior, namely the DMS and NA core. I found that this 

manipulation did not lead to significant changes in different behavioral assays, such as locomotor 

activity in an open field and tasks of motivation, including the progressive ratio and concurrent 

choice tasks. 

Even though I did not observe any clear effect on motivation after increasing excitability 

of striatal MSNs in a pathway-specific and region-specific manner, I did identify a few 

behavioral effects of this manipulation. One interesting finding was that among mice targeted in 

the NA core, expressing Kir2.1AAA in dMSNs led to increased responding in an FI 24 s schedule, 

while expressing Kir2.1AAA in iMSNs led to the exact opposite effect, with animals showing 

decreased responding in this same operant schedule. For this study, I decided to use FI schedules 

to train animals to press at high rates because this schedule has been previously used for the 

same purpose in other studies that investigated the effects of basal ganglia manipulations on 

incentive motivation (Drew et al., 2007, Trifilieff et al., 2013). However, it is known that mice 

can learn to time the interval and will scale their rate of responding to the FI schedule with 

repeated training on the same schedule (Taylor et al., 2007). In the current study, mice were not 
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subjected to the same FI schedule more than twice precisely to avoid this effect. Nevertheless, a 

specific effect in operant responding in the FI 24 s schedule, with no differences observed in all 

other behavioral assays in this study, suggest that excitability of dMSNs and iMSNs in the NA 

core may have a specific effect related to timing. Additional experiments with mice expressing 

Kir2.1AAA selectively in dMSNs or iMSNs in the NA core could be done to test for a behavioral 

effect on a peak interval timing task (Taylor et al., 2007), potentially establishing a new link 

between NA function and timing in mice. 

One possibility for the lack of effect of increasing MSN excitability on motivation is that 

protein expression or function of the Kir2.1AAA channel was not efficient in dMSNs and iMSNs. 

The data presented in Chapter 2 showing an effect of chronic excitability on bridging collaterals 

goes against this possibility, as the same virus, AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry, 

was used in both studies. Moreover, I also demonstrated potentiated amphetamine-induced 

locomotion in animals expressing Kir2.1AAA in dMSNs in the DMS, consistent with what would 

be expected with increased function of the direct pathway. In addition, electrophysiological 

recordings done in the Kellendonk laboratory in iMSNs from Drd2-Cre mice injected with the 

AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry virus in the NA have shown that resting 

membrane in these neurons have a mean of -74.62 mV (95% C.I.: -79.25 to -69.99 mV), a value 

statistically higher than the mean of -79.62 mV (95% C.I.: -80.70 to -78.53 mV) observed in 

iMSNs in the NA in animals injected with a control virus. Together, these data indicate that Cre-

dependent expression of the Kir2.1AAA channel using the AAV2/1-Syn-DIO-Kir2.1AAA-IRES-

mCherry virus leads to a physiological effect on excitability of striatal MSNs that can induce a 

behavioral phenotype under specific pharmacological conditions. Nevertheless, as discussed in 

Chapter 2, a more comprehensive and direct demonstration that transfection of MSNs using this 



95 

 

Cre-dependent Kir2.1AAA virus leads to a robust effect on neuronal excitability is still lacking. 

Despite this limitation, the negative results on motivation presented here suggest that chronically 

increasing excitability of dMSNs or iMSNs in a striatal sub-region-specific manner does not 

affect incentive motivation in mice.  

When testing animals in tasks of motivation, I did observe a significant effect on rate of 

responding when I manipulated excitability of iMSNs in the DMS. Similar manipulation to 

dMSNs in the DMS did not lead to differences in rate of responding in any of the motivation 

assays. Some measurable parameters of goal-directed behavior that characterize motivation can 

be isolated and interpreted individually. These parameters include latency to initiate behavior, 

vigor of behavior, and duration of behavior. In this study, mice expressing Kir2.1AAA in the DMS 

were not different from controls in their latency to initiate lever pressing (data not shown) or in 

the amount of time it took for them to “give up” lever-pressing behavior as the ratio requirement 

to obtain a reward increased. Lever press rate, which can be considered a measure of action vigor 

in the progressive ratio task, was specifically increased in mice with increased excitability of 

iMSNs in the DMS. These results can appear counterintuitive because the indirect pathway is 

traditionally thought to inhibit behavior initiation, and here I increased excitability of the indirect 

pathway. However, consistent with the known role of the DMS on performance vigor (Wang et 

al., 2013), it is plausible that disturbing excitability of the indirect pathway may interfere with 

the function of that pathway in inhibiting behaviors, rendering the influence of the direct 

pathway on vigor unrestrained by the indirect pathway and, consequently, stronger compared to 

controls. In support of this interpretation, in a separate cohort of Drd2-Cre mice injected with the 

AAV2/1-Syn-DIO-Kir2.1AAA-IRES-mCherry virus in the DMS, albeit in a smaller region of 

the DMS (data not shown), the same specific increase in press rate in the progressive ratio task 
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was observed. To further explore these findings, the role of iMSNs in the DMS on restricting the 

vigor of goal-directed actions should be studied using different strategies to manipulate function 

of the indirect pathway, ideally with better temporal control, including optogenetic and 

chemogenetic approaches. 

As described in Chapter 2, increasing excitability of iMSNs in the DMS using the same 

genetic strategy used in the current study leads to growth of direct-pathway bridging collaterals 

into the GPe. My initial hypothesis was that increased collateral density may be responsible for 

the motivational deficit in D2R-OEdev mice. This one-to-one relationship does not hold true, as 

increasing the density of bridging collaterals by increasing excitability of iMSNs in the DMS 

was not sufficient to affect motivation in mice. It can be concluded, therefore, that plasticity 

involving the bridging collaterals likely does not mediate the reversible deficit in motivation 

observed in D2R-OEdev mice. Nevertheless, another strategy that could be used to confirm this 

conclusion would be to attempt to rescue the motivational deficit of D2R-OEdev mice by 

overexpressing the wild-type Kir2.1 protein in selective populations of striatal MSNs to decrease 

neuronal excitability. If the interpretation of the current data is correct, overexpression of the 

wild-type Kir2.1 channel would also not be sufficient to rescue the motivational deficit of D2R-

OEdev mice. For technical reasons, I was not able to carry out this experiment. Instead, I 

attempted to perform a similar pathway-specific manipulation using a designer receptor 

exclusively-activated by a designed drug (DREADD), which provided additional temporal 

control of neuronal function and, as described in Chapter 4, led to further insight on how basal 

ganglia circuits regulate motivated behavior. 

Another consideration for the data presented in this study is that, as I also showed in 

Chapter 2, behavioral training leads to plasticity involving the bridging collaterals, and the 
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density of these collaterals were never measured in either D2R-OEdev mice or mice expressing 

Kir2.1AAA in the striatum after testing on operant tasks of motivation. It is conceivable that, in this 

study, expressing Kir2.1AAA in iMSNs in the DMS induced growth of bridging collaterals in 

mice but the daily operant training that preceded the actual behavioral assays for motivation may 

have led to retraction of collaterals, masking a potential effect of bridging collaterals on 

motivation.  

The results of this study were largely negative, although some specific behavioral 

phenotypes were identified that can be further explored. One of the aims of the study was to 

determine the role of basal ganglia sub-circuits on motivation for natural rewards, but it may be 

possible that the manipulation was too mild to induce behavioral effects in the absence of higher 

levels of extracellular dopamine in the striatum. The observation that Kir2.1AAA expression in 

dMSNs in the DMS potentiated animals’ locomotor response to a psychostimulant supports this 

speculation. It might be possible that by producing a mild shift in the balance between the direct 

and indirect pathways, expression of Kir2.1AAA in iMSNs might also lead to a behavioral effect 

on psychostimulant-induced locomotion. A reduced response to psychostimulant would be 

expected because Kir2.1AAA expression in the indirect pathway would increase excitability of 

iMSNs, presumably counteracting the effect of dopamine to inhibit activity of iMSNs via D2Rs. 

Thus, to expand on some of the negative findings presented in this study, it would be interesting 

to test mice expressing Kir2.1AAA in different striatal sub-circuits in similar behavioral assays 

after treatment with psychostimulants that increase extracellular levels of dopamine in the 

striatum, including amphetamine and cocaine. Moreover, it would also be informative to conduct 

the comprehensive set of manipulations and behavioral assays done in the current study using 

other strategies to selectively target function of striatal dMSNs and iMSNs. Some of such 
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selective strategies include the use of DREADDs and opsins, which can be selectively expressed 

in dMSNs and iMSNs and has been shown to affect behaviors regulated by the striatum (Kravitz 

et al., 2010, Ferguson et al., 2011, Kravitz et al., 2012). Other strategies that could be used to 

further study motivated behavior and have been previously shown to affect how dMSNs and 

iMSNs regulate behavior include inactivation of specific neuronal populations using neurotoxins 

(Durieux et al., 2009, Hikida et al., 2013) or selective deletion of DARPP32 in specific MSN 

populations (Bateup et al., 2010). Although these strategies have been used by researchers to 

probe specific aspects of basal ganglia function, comprehensive descriptions of how each of 

these strategies for disrupting basal ganglia function affect motivation when applied to specific 

striatal sub-circuits are still lacking.  
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CHAPTER 4 

INDIRECT PATHWAY FUNCTION AND MOTIVATION 

 

INTRODUCTION 

The findings presented in Chapter 3 demonstrate that downregulation of Kir2.1 function 

in MSNs is not sufficient to impair motivation in wild-type mice. Nevertheless, these findings do 

not discard the alternative that increased MSN excitability and activity may be necessary in 

D2R-OEdev mice for their motivational deficit. I therefore attempted to rescue the motivational 

deficit of D2R-OEdev mice by increasing function of the indirect pathway of the basal ganglia in 

these mice. For the current study, in addition to manipulating neuronal function chronically, as I 

did with Kir2.1AAA expression in Drd1-Cre and Drd2-Cre animals in Chapter 2, I also 

manipulated indirect-pathway function acutely, with the aim to dissociate the acute effect on 

neuronal activity from the chronic plasticity effects that may alter the density of bridging 

collaterals. To address the question of whether the increase in excitability of iMSNs in D2R-

OEdev mice could explain the motivational deficit induced by striatal D2R upregulation, I used 

hM4D, a designer Gαi-coupled receptor exclusively-activated by the designer drug clozapine-N-

oxide (CNO) to selectively decrease function of the indirect pathway in D2R-OEdev and control 

mice. CNO can be used to activate hM4D receptors – and consequently activate intracellular Gαi 

signaling – both acutely and chronically to test if these manipulations in striatal iMSNs could be 

sufficient to rescue the motivational deficit of D2R-OEdev mice.  

For the acute manipulation, I first tested how activating Gαi-coupled signaling in the 

indirect pathway affected locomotion and motivation in D2R-OEdev and control mice. I further 

tested animals expressing hM4D in striatal iMSNs in a novel behavioral assay, the progressive 
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hold-down task, that attempts to dissociate the directional from the activational components of 

motivation. I found that activating Gαi-signaling in iMSNs boosts motivation in both D2R-OEdev 

and control mice by energizing behavior at the cost of goal-directed efficiency. Moreover, I also 

used the DREADD system to selectively activate Gαi signaling in iMSNs in either the DMS or 

NA core, and I found that both striatal sub-regions contribute to the acute effect on motivation of 

decreasing indirect-pathway function. 

In order to further characterize the acute behavioral effects and understand how activating 

Gαi-coupled signaling in MSNs affects striatal circuit function, I probed activity of iMSNs 

expressing hM4D after CNO treatment both in vitro and in vivo. First I tested whether I could 

measure a change in intrinsic excitability in iMSNs expressing hM4D in the absence and 

presence of CNO using slice electrophysiology. In addition, I used in vivo calcium imaging in 

freely-behaving animals to probe how neurons at different nodes in the indirect pathway respond 

to activation of hM4D receptors in iMSNs. I tested whether activating Gαi signaling could lead to 

a change in somatic MSN activity. Then I also tested how neuronal activity in the GPe, which 

receives monosynaptic inhibition from the indirect pathway, was affected by activation of hM4D 

receptors in iMSNs. I found that activating Gαi-signaling does not lead to a significant change in 

somatic MSN activity. In contrast, neurons in the GPe, which receive monosynaptic inhibition 

from the indirect pathway, show increased activity when striatal hM4D receptors are activated. 

Consistent with these findings, I found that excitability of iMSNs was not affected by hM4D 

activation at the somatic level, and recent work from the Kellendonk laboratory and others has 

demonstrated that activation of hM4D receptors in iMSNs can inhibit GABAergic synaptic 

transmission to the pallidum (Bock et al., 2013). My observations, therefore, suggest that acutely 
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inhibiting indirect-pathway output to the pallidum arising from the DMS and NA core are 

potential therapeutic strategies for energizing behavior and thereby enhance motivation. 

Previous work from the Kellendonk laboratory has shown that, similar to the effects of 

restoring MSN excitability in D2R-OEdev mice by overexpressing wild-type Kir2.1 channels 

(Cazorla et al., 2014), expressing hM4D receptors non-conditionally in the DMS of D2R-OEdev 

and treating these animals with CNO chronically is sufficient to retract bridging collaterals. To 

expand on these findings, I also investigated whether selectively decreasing iMSN function in 

D2R-OEdev and control littermates chronically using the DREADD system could affect 

motivation in these animals. To this end, I treated mice expressing hM4D in iMSNs in the DMS 

and NA core chronically with CNO before testing for changes in locomotor activity and 

motivation. In an attempt to dissociate the acute effects of the drug on neuronal activity from the 

potential chronic effects of the drug on circuit rewiring, animals were tested both while on 

chronic CNO treatment and after allowing the drug to clear for 48 h. Having found that 

chronically activating hM4D receptors in iMSNs does not lead to a measurable effect on 

motivation, I conducted additional experiments to show that the lack of behavioral response to 

the chronic manipulation may be due to receptor desensitization or to short-term circuit-level 

compensation to a chronic decrease in iMSN function. These findings have important 

implications for drug therapies that target GPCRs in the striatum, and the behavioral 

desensitization effect described in this study should be considered in predicting how chronic 

pharmacologic manipulations of Gαi signaling in the striatum may affect behavior. 
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MATERIALS AND METHODS 

Animals 

All animal protocols used in the present study were approved by the Institutional Animal 

Care and Use Committees of Columbia University and New York State Psychiatric Institute. The 

generation of D2R-OEdev mice has been described previously (Kellendonk et al., 2006). TetO-

D2R mice have been backcrossed onto the C57BL/6J background and CaMKIIα-tTA mice 

backcrossed onto the 129SveVTac background. To generate D2R-OEdev mice, tetO-

D2R/C57BL6 mice were crossed to CaMKIIα-tTA/129SveVTac mice. Double transgenic mice 

express the transgenic D2R, and these animals were crossed to Drd2-Cre (ER44Gsat/Mmcd) 

mice, purchased from the Mutant Mice Resource & Research Centers, to obtain the transgenic 

D2R-OE/Drd2-Cre mice. For experiments that included D2R-OEdev animals, controls were 

littermates of D2R-OE/Drd2-Cre mice that were positive for the Cre transgene but negative for 

the TetO or tTa transgenes. For experiments that did not include D2R-OEdev mice, animals were 

Drd2-Cre backcrossed onto the C57BL/6J background. Both male and female adult mice at least 

8-weeks old were used in this study. Mice were housed under a 12:12-hour light:dark cycle in a 

temperature-controlled environment, and all behavioral testing was done during the light cycle. 

Food and water were available ad libitum except for experiments that required restriction. 

Animals were food-deprived when being trained or tested in operant behavioral tasks. During 

such training or testing each animal was restricted to 1.8 g of food per day, provided immediately 

after each operant session. For chronic CNO treatment, mice had ad libitum access to CNO-

treated water instead of regular drinking water. Animals were water-restricted for 16 h prior to 

experiments that involved acute oral CNO treatment. 
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Stereotaxic injections 

For viral injection surgeries that did not involve lens implantation, including surgeries 

done for mice used for behavioral assays of motivation and for electrophysiology, mice were 

anesthetized with a mixture of ketamine and xylazine (100 mg/kg and 10 mg/kg) administered by 

intraperitoneal injection. Since viral injection surgeries that included lens implantation last 

longer than suitable for anesthesia with ketamine/xylazine, mice were anesthetized by inhalation 

with isoflurane (3.0% for induction, 1.0% for maintenance) mixed with oxygen (1 L/min) for 

such surgeries. For all surgeries, once anesthetized, animals were placed in a stereotaxic 

apparatus and body temperature was maintained at 37 ˚C with a heating pad. Surgical incisions 

to expose the cranium were made, and small cranial windows (<0.5 mm) were drilled at the 

appropriate sites. Virus was delivered at an average rate of 100 nL/min using glass pipettes (tip 

opening 10-15 µm). All stereotactic coordinates were measured relative to bregma. A total of 

0.4-0.5 µL volume was delivered into each site for all injections. For co-injection of two viruses 

in the case of AAV1-Syn-flexed-GCaMP6F and AAV5/hSyn-DIO-hM4D-mCherry delivered 

into the DMS for calcium imaging, equal volumes of each virus were mixed and loaded into the 

injection pipette. Unless otherwise indicated, two sites of injection were used for bilaterally 

targeting the DMS to allow diffusion of the virus to the entire region (site A: anterior-posterior 

(AP): +1.3 mm, medial-lateral (ML): ±1.4 mm, dorsal-ventral (DV): -3.3; site B: AP +0.9 mm, 

ML ±2.0 mm, DV -3.4 mm). The NA core was targeted bilaterally with one set of coordinates 

(AP: +1.7 mm, ML: ±1.2 mm, DV: 4.0 mm). For calcium imaging in the striatum, the DMS was 

targeted unilaterally using a single injection site (AP: +1.3 mm, ML: ±1.4 mm, DV: -3.3 mm). 

The GPe was targeted unilaterally for calcium imaging with virus injected in discrete pulses 

covering a 0.3-mm distance in the DV axis (AP: 0.0 mm, ML: +1.8 mm, DV: -3.9-4.1 mm). 
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For viral injections accompanied by lens implantation, a microlens composed of a pair of 

gradient refractive index lenses fused to a relay lens was used. A 2-mm cranial window was 

drilled over the intended implantation site, followed by removal of the dura and aspiration of 

portions around the edges of the craniotomy. Following unilateral injection of AAV1-Syn-

GCaMP6F into the GPe or co-injection of AAV1-Syn-flexed-GCaMP6F and AAV5/hSyn-DIO-

hM4D-mCherry into the DMS, as described above, the microlens was lowered into the same site 

used for viral injection with alternate retractions of 0.5 mm for every 1 mm ventral increment to 

allow penetrated tissue to properly settle around the lens. For implants into the DMS, 

microlenses measuring 0.6 mm in diameter and ~7.3mm in length were used, and for implants 

into the GPe, microlenses measuring 0.5 mm in diameter and ~8.4 mm in length were used 

(Inscopix). After implantation, the portion of the lens extending above the skull was fixed in 

place using dental cement and anchored by 3 screws attached to different plates on the skull. The 

lens was covered with a silicone elastomer to protect the imaging surface from external damage. 

The silicone elastomer was removed four weeks after surgery for attachment of a baseplate 

(Inscopix) to support the miniature microscope on each animal’s head. For this procedure, mice 

were once again anesthetized with isoflurane. The silicone mold was removed, and the miniature 

microscope (Inscopix) with a baseplate attached and the 475-nm LED turned on was positioned 

above the implanted lens and lowered with a micromanipulator until fluorescence could be 

detected. Once the microscope was positioned for imaging in an adequate focal plane, the 

magnetic baseplate was cemented around the lens adjoined to the dental cement previously 

placed at the time of surgery. The microscope was subsequently detached and a magnetic cover 

plate (Inscopix) was secured onto the baseplate with a screw set to protect the lens until imaging. 
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Drug treatments 

CNO was provided by the National Institutes of Health as part of the National Institutes 

of Mental Health Chemical Synthesis and Drug Supply Program. For behavioral experiments, 

CNO was always dissolved in sterile PBS on the same day it was used for treatment. For acute 

treatment, the drug was always prepared at 0.2 mg/mL and delivered at 2 mg/kg dose by 

intraperitoneal injections 30 minutes prior to a behavioral task, unless otherwise indicated. Saline 

injections for control condition consisted of 0.25 mL sterile PBS. For chronic treatment, CNO 

was dissolved in animals’ regular drinking water at a concentration of 0.25 mg/mL. Animals 

treated with CNO chronically had this CNO solution as their only source of drinking water for at 

least two weeks, to which they had access ad libitum. Except where otherwise indicated, CNO 

solution in the drinking water was freshly-prepared on the day prior to start of chronic treatment, 

and freshly-prepared solution was replenished as needed approximately every 2-4 days for the 

duration of chronic treatment. Vehicle chronic treatment consisted of regular mouse drinking 

water. For acute oral CNO administration, animals were allowed to freely consume CNO 

solution in drinking water at 0.25 mg/mL for 1 h before behavioral testing. Crossover designs for 

drug treatment were used for testing in all behavioral assays, unless otherwise indicated, with 

animals receiving CNO or saline/vehicle on alternate days of testing counterbalancing for 

variables such as genotype, virally-targeted brain region, and sex. CNO solutions used for 

electrophysiology experiments were first dissolved at 1 mM or 100 µM in artificial cerebrospinal 

fluid (ACSF, exact composition described in “In vitro electrophysiology” section) and stored at -

20 ˚C until the day of recording, at which time an aliquot was thawed and diluted 1:100 in 

oxygenated ACSF to a final concentration of 10 µM or 1 µM. 

  



106 

 

Behavioral assays 

Progressive ratio 

Training and testing for the progressive ratio schedule of reinforcement were conducted 

similarly to the training and testing conducted for the study presented in Chapter 3, with a few 

differences detailed below. The first exception was that in the current study, mice were never 

subjected to FI schedules. Instead, in order to get animals pressing at high rates, they were 

trained in random interval (RI) schedules. In RI schedule training, the lever remained extended 

throughout the session but lever presses were not reinforced until after a random interval had 

elapsed. Between reinforcements, there was a variable ITI, defined by the RI schedule. All mice 

began on RI 3 s schedule, meaning that the first lever press occurring on average 3 s after start of 

a trial was reinforced. When a mouse earned at least 40 rewards in one session, the RI schedule 

was increased. The RI schedules used were 3 s, 10 s, 15 s, and 20 s. When all mice reached the 

criterion of 40 rewards in one session on the RI 20 s schedule, they began experimental testing 

on the progressive ratio schedule. Mice continued to be trained in RI 20 s sessions for 1-2 days in 

between each progressive ratio session in order to prevent lever pressing behavior from 

extinguishing with the low reinforcement rate characteristic of the progressive ratio schedule. 

Mice were subjected to 1-3 progressive ratio sessions for each condition, and measures for each 

condition were averaged. 

Progressive hold-down 

All mice tested in the progressive hold-down test were subjected to this task after being 

tested in the progressive ratio task. Specific training for the progressive hold-down test consisted 

of variable interval hold-down (VIH) schedules. Each session involved up to 40 trials and, at the 

beginning of each trial, the required hold duration was drawn randomly from a distribution with 
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a mean specified by the session. Each session ended when a mouse successfully completed 40 

trials or when 1 h elapsed. This hold requirement remained in place until the subject was 

reinforced for completing the trial. During the first session, the distribution of required hold 

durations had a mean of 0.5 s (VIH 0.5 s). When all mice in the cohort earned 40 rewards in one 

session, they were moved to the subsequent VIH schedule, following the sequence VIH 0.5 s, 1 

s, 2 s, 4 s, 6 s, 8 s, and 10 s. Animals only started being tested in the progressive hold-down test 

when all subjects in the cohort were able to complete all 40 trials in VIH 10 s. For the 

progressive ratio task, the first required hold duration was fixed at 3 s, and the requirement for 

subsequent hold durations was increased sequentially by a factor of 1.4. The sessions could last 

up to 2 h but ended early if the mouse did not press the lever for 10 minutes. The energizing 

component of motivation was assessed by the number of lever presses made and how long 

subjects continued to respond, while the goal-directed component was assessed by the number of 

rewards earned in a session and the proportion of rewarded presses. Mice were subjected to two 

progressive hold-down sessions for each condition, and measures for each condition were 

averaged. 

Outcome devaluation 

In this task, mice are tested to determine whether or not they are pressing the lever 

because they have formed a habit, or if they are still sensitive to the outcome. The reward is 

therefore devalued by allowing mice to have unlimited access to the reward for a specified time 

period prior to the trial. If mice are truly pressing the lever in order to obtain the reward, they 

should press the lever fewer times throughout the session if they have been exposed to the 

reward beforehand. Here, the valued reward was sweetened evaporated milk, and standard 

mouse chow served as the control. Mice were therefore pre-fed with the valued reward a non-
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valued reward before testing. The mice were then placed in an operant chamber with a lever 

extended, but lever presses were not reinforced throughout the session. Because this non-

reinforced task should extinguish pressing behavior, mice were trained in random ratio (RR) 

sessions for 2-3 days in between devaluation testing days in order to maintain high press rates. In 

an RR schedule there is a constant probability of reinforcement for each lever press. The specific 

schedule used, RR 20, required that the animal press the lever on average 20 times before 

receiving a reward.  

On outcome devaluation testing days, mice were first pre-fed with either the valued 

reward (sweetened evaporated milk) for 30 min or laboratory chow – a control food which they 

had never been trained to associate as a reward for lever pressing – for 1 h. Mice were only given 

30 min of access to the valued reward in order to prevent complete satiation with milk, which 

might have resulted in complete loss of motivation to obtain the reward during the session. All 

mice were single-housed during pre-feeding.  After 1 h passed from the start of pre-feeding, mice 

were treated with either CNO or saline. Thirty minutes after the injection, mice were placed in an 

operant chamber with an extended lever for 15 minutes without ever receiving a reward. Testing 

occurred on four different days in a randomized design so that each mouse received each 

experimental manipulation once (pre-feeding with milk or chow and injected with either an acute 

CNO or saline injection). The number of lever presses made in each session was measured for 

assessment of outcome devaluation. 

Open field 

For experiments that did not involve calcium imaging, exploration and reactivity to an 

open field was assessed in acrylic activity chambers (42 cm long × 42 cm wide × 38 cm high) 

equipped with infrared photobeams for motion detection (Kinder Scientific). Mice were placed 
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in the open field, and activity was automatically recorded for a specified amount of time (90 or 

120 min). The open field system was programmed to interrupt recording 20 or 30 min after the 

start, at which point mice were administered CNO or saline and placed back in the open field. 

Recording of locomotor activity resumed immediately after injections. 

For calcium imaging experiments, cellular activity and locomotor activity were 

simultaneously measured while animals moved freely in an open field. Before each imaging 

session, the miniature microscope was connected to the magnetic baseplate attached to each 

animal’s cranium and fixed in place by the baseplate screw set while the mouse was briefly 

anesthetized with isoflurane. Each animal was placed back into its home cage for 20 min to 

recover from anesthesia before drug injection or imaging. For imaging sessions, mice were place 

in acrylic activity chambers (42 cm long × 42 cm wide × 38 cm high) less than 1 min before 

optical recording with the miniature microscope was initiated. The Ethovision XT system 

(Noldus) was used to trigger both start and end of recording sessions using a TTL pulse 

converter. This software was also used to track each animal’s locomotor activity using a video 

camera placed over the open field area.  

Histology and immunohistochemistry 

For all histological analysis of brain tissue following behavioral experiments, mice were 

anesthetized with a mixture of ketamine and xylazine (100 mg/kg and 10mg/kg, respectively), 

delivered by intraperitoneal injection, and transcardially perfused, first with PBS and then with 

4% paraformaldehyde (PFA). Following perfusion, brains were post-fixed in 4% PFA for 24 

hours, and then transferred to PBS. Brains were then sliced into 50-μm sagittal or coronal 

sections using a vibratome and every section was collected. Immunohistochemistry using 

fluorescence was performed on these free-floating sections by treating sections first with 



110 

 

blocking buffer (0.5% bovine serum albumin, 5% horse serum, 0.2% Triton X-100), followed by 

overnight incubation with one or more primary antibody and subsequently with the appropriate 

secondary antibody conjugated to a fluorophore. The primary antibodies used included rabbit 

anti-DsRed (1:250, Clontech, cat. 632496), mouse anti-RFP (1:1000, Abcam, cat. AB65856), 

rabbit anti-Cre (1:2000 (Kellendonk et al., 1999)), and goat anti-ChAT (1:100, Millipore, cat. 

AB144P). Sections were washed with 0.2% Triton X-100 in between primary and secondary 

antibody incubations and with 50 mM Tris-Cl pH 7.4 before mounting. Sections were mounted 

on glass slides and subsequently coverslipped for imaging with VectaShield containing DAPI 

(Vector Labs). For confirmation of spread of viral infection in targeted structures, images were 

acquired at 2.5x magnification using a Hamamatsu camera attached to a Carl Zeiss 

epifluorescence microscope. For analysis of co-expression of fluorescent and immune-labelled 

proteins, images were acquired at 20x or 40x using a Nikon Ti Eclipse inverted microscope for 

scanning confocal microscopy. Micrographs were processed using ImageJ software (National 

Institutes of Health). 

In vitro electrophysiology 

Mice injected with AAV5/hSyn-DIO-hM4D-mCherry into the DMS, were sacrificed four 

weeks after surgery by rapid decapitation and brains were harvested into ice-cold, oxygenated 

ACSF containing 1.25 mM NaH2PO4, 2.5 KCl mM, 10 mM glucose, 26.2 mM NaHCO3, 126 

NaCl mM, 2 CaCl2 mM and 2 MgCl2 mM (pH 7.4, 300–310 mOsm). Coronal sections (300 µm 

thick) containing striatum were cut using a vibratome in ice-cold oxygenated ACSF and 

incubated at 32 °C for 30 min, followed by at least 30 min incubation at room temperature before 

recordings. Voltage- and current-clamp whole-cell recordings were performed using standard 

techniques (Cazorla et al., 2012). Electrode resistance was 3-6 MΩ when filled with internal 
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solution composed of 130 mM K+-gluconate, 5 mM NaCl, 10 mM HEPES, 0.5 mM EGTA, 2.0 

mM Mg+-ATP, and 0.3 mM Na+-GTP (pH 7.3, 280 mOsm). Cells expressing the hM4D receptor 

in the striatum were identified by mCherry fluorescence under epifluorescence microscopy. 

Measures of excitability were obtained by injecting 500-ms currents ranging from -150 to 350 

pA in 20 pA steps. The resting membrane potential was determined from this protocol as each 

patched cell’s potential with 0 pA current. Rheobase was determined as the minimal injected 

current that resulted in an action potential. Spike frequency was determined from the initial pair 

of action potentials as previously described (Cazorla et al., 2012). For each cell patched, 

measures of excitability were obtained 5 min after the cell was patched first with ACSF in the 

bath and then 15 min after maintaining ACSF in the bath solution or exchanging the bath 

solution to 1 µM CNO or 10 µM CNO diluted in ACSF. 

Data analysis and statistics 

All data collected in the current study were processed with Excel (Microsoft) or with 

custom scripts and functions written with MATLAB (Mathworks). Statistical analyses were done 

with either one of the latter software or with Prism 5 (GraphPad). All statistical tests were 2-

tailed and alpha level was set to 0.05. 

For operant tests of motivation, the behavioral measures used for analysis included the 

total number of lever presses and reinforcers earned in a session for the progressive ratio and 

progressive hold-down tests. For outcome devaluation tests, total number of lever presses made 

in a session was the parameter analyzed. To compare normally-distributed parameters, such as 

number of lever presses and reinforcers earned, under different conditions, repeated measures 

analysis of variance (ANOVA) tests were used to test for statistical significance. The log-rank 



112 

 

Mantel-Cox test, a nonparametric statistical test, was used to compare whether or not the 

independent variables significantly affected session durations. 

To analyze the effect of drug on locomotor activity in an open field, the sums of the total 

ambulatory distance from a time point 30 min after i.p. injection until the end of each session 

were obtained. These measures were tested for statistical significance using repeated measures 

ANOVA tests. 

Calcium imaging recordings acquired at 15-20 Hz were processed using Mosaic 

(Inscopix). First, movies were spatially down-sampled using a spatial binning factor of 4 to 

reduce the large file size and decrease processing time. To correct for brain movement, all 

frames in movie sequences acquired from the same mouse and same focal place were registered 

to one single frame. Multiple movies sequences registered to the same frame were then 

concatenated in time and a sub-region within the field of view in the concatenated movie was 

cropped in order to remove post-registration black borders. Using the mean z-projection image of 

the entire movie as reference (FO) to normalize fluorescence signals to the average fluorescence 

of the entire frame, a movie representing percent-change-over-baseline (ΔF/FO) was generated. 

The ΔF/FO movie was temporally binned by a factor of 4. Calcium transients from individual 

cells were isolated and identified with an automated cell-sorting algorithm that employs 

independent and principal component analyses of each ΔF/FO movie. The independent 

components identified by the algorithms were visually inspected for spatial configuration and 

temporal properties of calcium traces and those that appeared like calcium transients from 

individual cell bodies were used for further analysis. These raw calcium traces for each cell 

measured as z-scores over the entire time recorded were separated into 12-s time bins for 

statistical analysis. For individual cell analysis, the sums of calcium activity in 12-s bins 



113 

 

measured from each 5-min recording session done after treatment with either saline or CNO – or 

after two treatments with saline – were compared using one-factor ANOVA tests. Cells that 

displayed significant increases or decreases in activity in between sessions were identified and 

the proportions of significantly changed and unchanged cells were used in a chi-squared test to 

determine whether these proportions were expected by chance. Additional analyses were done 

for data obtained from calcium imaging in the striatum after thresholding the raw traces to obtain 

estimates of individual calcium events. The sums of these events (either counting each event as a 

single unit or summing the z-scores for each event) were obtained in 12-s bins. Since the latter 

data sets were not normally distributed, individual cell analyses were performed using the non-

parametric Wilcoxon rank sum test to identify cells that showed significantly decreased or 

increased calcium activity after treatment with either saline or CNO – or after two treatments 

with saline. Proportions of significantly changed and unchanged cells were compared using the 

chi-squared test as described above. 

 

RESULTS 

 

ACUTE BEHAVIORAL EFFECTS OF DECREASING INDIRECT-PATHWAY FUNCTION 

The D2R-OEdev mouse overexpress D2Rs selectively in striatal MSNs and exhibit a 

deficit in motivation (Kellendonk et al., 2006, Drew et al., 2007). Since chronic upregulation of 

striatal D2Rs leads to increased excitability of MSNs (Cazorla et al., 2012), I questioned whether 

an increase in iMSN function in D2R-OEdev mice could explain the motivational deficit induced 

by developmental D2R upregulation in the striatum. I therefore expressed hM4D receptors in 

indirect-pathway MSNs of the DMS and NA core of Drd2-Cre/D2R-OEdev mice and Drd2-Cre 
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control littermates. The hM4D protein is a genetically modified Gαi-coupled receptor that can no 

longer be activated by endogenous ligands, but instead can be activated by CNO (Armbruster et 

al., 2007). Activation of hM4D in the indirect pathway of the rat has been shown to decrease 

excitability of MSNs (Ferguson et al., 2011). Thus, I attempted to use this chemogenetic 

approach to study how activating Gαi signaling, and presumably decreasing excitability and 

function, of the indirect pathway acutely would affect motivation D2R-OEdev and control mice. 

To study the behavioral consequences of acutely activating Gαi signaling in the indirect 

pathway of D2R-OEdev mice and control littermates, I selectively targeted iMSNs in the DMS 

and NA core, sub-regions of the striatum known to support motivated behavior (Corbit and 

Balleine, 2011, Hilario et al., 

2012, Burton et al., 2015). I 

injected Drd2-Cre mice with 

an AAV vector for Cre-

dependent expression of the 

hM4D receptor. The virus was 

delivered bilaterally to target 

either the medial striatum, 

encompassing both DMS and 

NA core (Figure 20B), or each 

of these striatal sub-regions 

separately (Figures 20C-D). 

The hM4D protein expressed 

virally is fused to the 

Figure 20: The Gαi-coupled designer receptor hM4D can be 

expressed selectively in specific striatal regions. A. Diagram of 

coronal section showing targeted injection sites in DMS and NA. B. 

Coronal section micrograph showing hM4D-mCherry expression in 

the DMS and NA core of Drd2-Cre mouse. Scale bar: 1 mm. C. 

Sagittal section micrograph showing hM4D-mCherry expression in 

the DMS, as well as immune-positive axon terminals present in the 

GPe and absent in the SNr. Scale bar: 1 mm. E. Sagittal section 

micrograph showing hM4D-mCherry expression in the NA core and 

axon terminals in the VP. Scale bar: 1 mm.  
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fluorophore mCherry, allowing for detection of the subcellular localization of the receptor by 

probing for mCherry. Expression of hM4D receptor in the injected sites was observed at the 

soma and dendrites of infected cells. In addition, hM4D expression was also observed in the 

neuropil and in regions where axons of iMSNs terminate: the GPe, in the case of animals 

injected in the DMS (Figure 20C), and the VP, in the case of animals injected in the NA core 

(Figure 20D). No fluorescence signal was observed in the output nuclei of the direct pathway, 

the SNr and GPi, in animals injected in the DMS (Figure 20C), evidencing that expression was 

restricted to iMSNs, as these neurons are known to only project to the GPe (Gerfen and 

Surmeier, 2011). 

I also quantified the selectivity of this expression system by immunohistochemistry. Co-

staining for hM4D and Cre revealed that 95% of hM4D-positive cells were also immune-positive 

for Cre, and the efficiency of transfection was also high, as 86% of Cre-positive cells within the 

constraints of the virally-infected region were immune-positive for hM4D (Figure 21A). 

Cholinergic interneurons that represent less than 2% of neurons in the striatum are also known to 

Figure 21: The Gαi-coupled designer receptor hM4D can be expressed selectively in iMSNs. A. 

Micrograph of immunostained striatal tissue from Drd2-Cre mouse expressing hM4D-mCherry (red) in 

neurons that also express Cre (green); 95% of mCherry-positive neurons are also Cre-positive and 86% of 

Cre-positive neurons in virally-targeted region are positive for hM4D-mCherry (n = 175 cells). Scale bar: 

50 µm. B. Micrograph of striatal tissue from Drd2-Cre mouse immunostained for hM4D-mCherry (red) 

and the marker for cholinergic neurons, ChAT; 5% of ChAT-positive neurons express hM4D-mCherry in 

virally-targeted region (n = 110 cells). Scale bar: 100 µm. 
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Figure 22: Motivational deficit of D2R-OEdev mice can be reproduced in animals expressing hM4D 

in iMSNs. At baseline without any drug treatment, D2R-OEdev expressing hM4D in iMSNs show 

impaired performance in the progressive ratio task of motivation compared to control animals, as 

measured by (A) the survival functions for session durations (p = 0.0121) and (B) the total number of 

reinforcers earned in a session (p = 0.0140). A total of 11 D2R-OEdev mice and 11 control mice were 

assayed for this analysis. 

express D2Rs (Dawson et al., 1990). I therefore quantified what proportion of these interneurons 

also expressed hM4D in our viral transfection system. I found that only 5% of neurons positive 

for choline acetyltransferase (ChAT), a marker for cholinergic interneurons, were also immune-

positive for hM4D in the virally-infected region (Figure 21B), in agreement with previous results 

using this BAC transgene Cre mouse line (Kravitz et al., 2010). Hence, I demonstrated that I can 

selectively and efficiently express hM4D receptors in the striatal indirect pathway and that these 

receptors localize to both somatic and axonal regions of MSNs. 

To test for the effect of hM4D receptor activation in the indirect pathway of mice 

chronically overexpressing striatal D2Rs, I trained Drd2-Cre/D2R-OEdev mice and Drd2-Cre 

control littermates expressing Cre-dependent hM4D in the DMS and NA core to press a lever to 

earn a food reward. Once all animals were adequately trained, they were tested in a progressive 

ratio schedule of reinforcement, a test of motivation that measures how much effort an animal is 

willing to expend to obtain a reward. I used a specific progressive ratio schedule in which the 

lever press requirement doubled with each successive reward.  
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I first tested whether I could measure the motivation deficit of D2R-OEdev mice in our 

experimental system. I confirmed the previously reported impairment in performance of D2R-

OEdev mice in the progressive ratio task, as D2R-OEdev stopped responding sooner than control 

littermates (Log-rank test: χ² = 4.235, p = 0.0121, n = 11 mice) and earned fewer rewards (t(20) = 

2.692, p = 0.0140; n = 11 mice) (Figure 22) (Drew et al., 2007).  

I then retested the animals after treatment with saline or CNO using a within-group 

Figure 23: Decreasing function of indirect pathway increases motivation in D2R-OEdev and control 

littermates. A-C. Both D2R-OEdev and control mice expressing hM4D in iMSNs in the DMS and NA core 

show enhanced performance in the progressive ratio test of motivation after treatment with CNO compared to 

saline, as measured by (A) survival functions for session duration (D2R-OEdev: p < 0.0001; control: p = 

0.0019), (B) total number of lever presses made (p < 0.001), and (C) total number of reinforcers earned (p < 

0.001). A-C. When comparing performance between genotypes after treatment with CNO in the progressive 

ratio test, (A) D2R-OEdev continued to respond in the task for shorter times (p < 0.0012), (B) made fewer total 

lever presses (p < 0.0101, Bonferroni post hoc test: p < 0.001) and (C) earned fewer reinforcers (p < 0.0119, 

Bonferroni post hoc test, p < 0.01) per session compared to control littermates. Analysis of animals’ press rate 

per ratio requirement show that subjects of either genotype did not exhibit a general increase in rate of 

pressing when treated with CNO compared to saline (D) (p = 0.1446). A total of 12 D2R-OEdev mice and 12 

control mice were assayed for this analysis. 
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design in which animals received treatment with saline or CNO on alternate days of testing. I 

found that D2R-OEdev mice continued to respond by pressing a lever for significantly longer 

times after treatment with CNO compared to treatment with saline (Log-rank test: χ² = 19.56, p < 

0.0001, Log-rank test; n = 12 mice) (Figure 23A). Control littermates also responded to CNO 

treatment by continuing to press the lever for longer times compared to the saline control 

condition (χ² = 9.671, p = 0.0019, Log-rank test; n = 12 mice) (Figure 23A). Both D2R-OEdev 

and control animals showed increased total number of lever presses in sessions after CNO 

treatment compared to saline treatment (F(1,22) = 69.21, p < 0.001; n = 12 mice per genotype) 

(Figure 23B). Consistent with these results, both D2R-OEdev and control mice also earned more 

reinforcers after treatment with CNO compared with saline (F(1,22) = 65.49, p < 0.001; n = 12 

mice per genotype) (Figure 23C). Moreover, although mice in both groups showed enhanced 

performance in the progressive ratio task after CNO treatment, this enhancement cannot be 

attributed to a general increased rate of pressing because, for each ratio requirement, mice in 

both groups showed unaltered press rates after treatment with CNO when compared with saline 

(F(1,44) = 1.894, p = 0.1446; n = 12 mice per genotype) (Figure 23D). However, while CNO 

robustly enhanced motivation in both groups, D2R-OEdev still displayed decreased performance 

in the task compared to control littermates after acute treatment with the drug, as measured by 

how long animals continued to respond in the task (χ² = 10.49, p < 0.0012, Log-rank test; n = 12 

per genotype) (Figure 23A), the number of lever presses made (F(1,22) = 7.912, p < 0.0101, 

Bonferroni post hoc test, p < 0.001, n = 12 per genotype) (Figure 23B), and the number of 

reinforcers earned (F(1,22) = 7.526, p < 0.0119, Bonferroni post hoc test, p < 0.01, n = 12 per 

genotype) (Figure 23C).  
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The indirect pathway of the basal ganglia has been strongly linked to regulation of motor 

behaviors (Lenz and Lobo, 2013) and optogenetic activation of MSNs expressing D2Rs inhibit 

motor activity, (Kravitz et al., 2010). Thus, I hypothesized that acutely activating hM4D 

receptors in iMSNs in the DMS and NA core would also energize motor behavior. To test this 

hypothesis, I tracked locomotion of D2R-OEdev and control littermates expressing hM4D in 

iMSNs before and after treatment with CNO or saline. I found that both D2R-OEdev and control 

littermates showed increased ambulation after treatment with CNO (F(1,22) = 32.36, p < 0.0001; 

12 mice per genotype), which peaked approximately 30 min after drug injection and remained 

elevated for the remainder of the testing session (Figure 24). There were, however, no 

differences between D2R-OEdev mice and control littermates in their locomotor response to CNO 

(F(1,22) = 1.388, p = 0.2513; 12 mice per genotype) (Figure 24). 

Figure 24: Decreasing function of indirect pathway increases locomotion in D2R-OEdev and control 

littermates. Plot of locomotion in open field across time showed that both D2R-OEdev and control mice 

increased ambulatory activity after treatment with CNO compared to saline (p < 0.0001). The increase in 

locomotion reached maximum level approximately 30 min after injection with CNO for mice of both 

genotypes. No difference was observed between D2R-OEdev and control littermates in their response to 

CNO treatment (p = 0.2513). A total of 12 D2R-OEdev mice and 12 control mice were assayed for this 

analysis. 
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Behaviorally, incentive 

motivation is thought to consist 

of at least two components. Both 

changes in directional action 

selection, the goal-directed 

component, and changes in 

arousal, the activational 

component, can lead to changes 

in motivation measured by 

behavioral tasks such as the 

progressive ratio schedule of 

reinforcement (Salamone and 

Correa, 2002, Bailey et al., 

2015). Given that activating 

hM4D receptors in iMSNs leads 

to hyperactivity in the open field 

and enhanced performance in 

the progressive ratio task, I 

questioned whether this manipulation differentially affects the directional and activational 

components of motivation. To this end, I  tested these animals in the progressive hold-down task, 

which requires animals to hold-down a lever for progressively longer intervals of time to earn 

each subsequent reward (Bailey et al., 2015). During training, both D2R-OEdev and control mice 

Figure 25: Both D2R-OEdev mice and control littermates can 

learn to hold down a lever to obtain a food reward. Before 

testing in the progressive hold-down test, mice were trained to hold 

down a lever to obtain a food reward. Animals underwent daily 

VIH sessions in which the mean hold requirement increased 

progressively from 0.5 s to 10 s; each session ended when 40 trials 

were completed or when 1 h elapsed. On transitions to more 

difficult VIH schedules, mice tended to show decreased 

performance, requiring a greater number of lever presses to 

complete the trials, but efficiency improved with repeated training 

in the same schedule. Both D2R-OEdev and control mice showed 

similar progression of efficiency throughout training, measured by 

the number of lever presses made during a session for different VIH 

schedules (p = 0.1066). Mice of both genotypes were able to 

complete all 40 trials in the VIH 10 s schedule before being tested 

in the progressive hold-down test. A total of 12 D2R-OEdev mice 

and 12 control mice were assayed for this analysis. 
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showed similar learning curves (F(1,21) = 2.842, p = 0.1066, n = 12 mice per genotype) and were 

able to successfully learn to hold-down a lever to obtain a food reward (Figure 25). 

When tested on the progressive hold-down task after acute treatment with CNO or saline, 

both D2R-OEdev mice and control littermates responded to acute treatment with CNO by 

continuing to engage in the task for longer times (Log-rank tests: control: χ² = 12.02, p = 0.005; 

D2R-OEdev: χ² = 21.23, p < 0.0001, n = 12 mice per genotype) (Figure 26A). However, after 

acute treatment with CNO, mice of both genotypes also showed reduced efficiency at making 

longer presses, as confirmed by calculating the proportion of rewarded presses per hold 

requirement; this measure was decreased at hold requirements of 8.2 s and longer when mice 

were treated with CNO compared to saline (F(1,21) = 7.080, p = 0.0143; n = 12 mice per 

genotype) (Figure 26B). Consistent with reduced efficiency, both D2R-OEdev and control mice 

made more lever presses (F(1,21) = 44.82, p < 0.0001; n = 12 mice per genotype) (Figure 26C) and 

earned fewer rewards after treatment with CNO (F(1,21) = 31.92, p < 0.0001; n = 12 mice per 

genotype) (Figure 26D). Figure 26E shows representative histograms of press durations on 

different days of testing for one subject. While this mouse made progressively longer presses on 

saline treatment days, it made generally shorter presses and a greater number of presses on days 

when it was treated with CNO. These results demonstrate that activating Gαi signaling in iMSNs 

in the DMS and NA core leads to increased motivation by energizing behavioral performance at 

the cost of goal-directed efficiency. 
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Figure 26: Decreasing function of indirect pathway energizes behavioral performance at the 

expense of goal-directed efficiency. A-D. D2R-OEdev and control littermates expressing hM4D in 

iMSNs show decreased efficiency in the progressive hold-down test after treatment with CNO compared 

to saline. A. Mice of both genotypes continued to respond for longer times on CNO compared to saline, 

as measured by survival functions for session durations (control: p = 0.005; D2R-OEdev: p < 0.0001). B. 

For each hold requirement, mice treated with CNO showed lower efficiency in responding compared to 

treatment with saline, as measured by the proportion of rewarded presses (p = 0.0143) C-D. Other 

behavioral parameters of the progressive hold-down task also demonstrate that both D2R-OEdev and 

control mice expressing hM4D in iMSNs were less efficient after treatment with CNO: (C) mice on CNO 

made a greater number of lever presses (p < 0.0001) and (D) earned fewer reinforcers (p < 0.0001) in a 

session compared to performance after treatment with saline. E. Histograms of press durations on 

different days of testing for one representative subject: while this mouse made progressively longer 

presses on saline treatment days, it made generally shorter presses and a greater number of presses on 

days when it was treated with CNO. A total of 12 D2R-OEdev mice and 12 control mice were assayed for 

this analysis. 
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In the results presented above, all manipulations targeted both the DMS and NA core, 

medial regions of the striatum that have been specifically shown to support incentive motivation 

in instrumental tasks of reinforcement (Corbit and Balleine, 2011, Hilario et al., 2012, Burton et 

al., 2015). I therefore sought to determine the contribution of each of these regions to the effects 

on motivation of acutely decreasing function of the indirect pathway. I injected the Cre-

dependent hM4D virus in Drd2-Cre mice bilaterally in either the DMS or NA core and then 

trained and tested these animals in the progressive ratio task. I found that there was no difference 

in the response to CNO between mice expressing the hM4D receptor in the DMS or NA core. 

After treatment with CNO, both groups showed no significant differences in how long they 

Figure 27: Inhibiting the indirect pathway in either DMS or NA core leads to enhanced motivation. 

A-C. Mice expressing hM4D in iMSNs selectively in the DMS or NA show enhanced performance in the 

progressive ratio task of motivation after treatment with CNO compared to saline, as measured by (A) 

survival functions for session duration (DMS and NA: p = 0.0183), (B) total number of lever presses 

made (p = 0.0014), and (C) total number of reinforcers earned (p = 0.0003) in a session. There were also 

no differences in the relative responses to CNO between animals expressing hM4D in iMSNs in the DMS 

and those expressing hM4D in the NA core, as measured by (A) survival functions for session duration (p 

= 0.7547), (B) total number of lever presses made (p = 0.7723), and (C) total number of reinforcers 

earned (p = 0.8038). D-E. Plot of animals’ press rate per ratio requirement show that CNO treatment did 

not lead to increased rate of pressing in animals expressing hM4D in either (D) the DMS (p = 0.9422) or 

(E) the NA core (p = 0.7126). A total of 8 mice expressing hM4D in iMSNs in the DMS and 9 mice 

expressing hM4D in iMSNs in the NA core were used for this analysis. 
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continued to engage in the task (Log-rank test: χ² = 0.09760, p = 0.7547, n = 8-9 mice per site) 

(Figure 27A), the total number of lever presses they made (F(1,15) = 0.08685, p = 0.7723 n = 8-9 

mice per site) (Figure 27B), or the total number reinforcers they earned (F(1,15) = 0.1355, p = 

0.8038; n = 8-9 mice per site) (Figure 27C). Moreover, as observed for mice expressing hM4D in 

both DMS and NA core, the response to CNO in mice expressing hM4D separately in each 

striatal sub-region cannot be attributed to higher rates of pressing: for each ratio requirement 

reached by all animals in the study, mice in each group showed similar rates of lever pressing 

after treatment with CNO or saline (DMS: F(1,14) = 0.005455, p = 0.9422, n = 8 mice; NA core: 

F(1,16) = 0.1406, p = 0.7126, n = 9 mice) (Figures 27D-E). 

A comparison of the responses to CNO treatment across experiments, including Drd2-

Cre animals expressing hM4D in both DMS and NA core or in each region separately are 

presented in Figure 28. It is clear that decreasing function of iMSNs in either region separately 

led to smaller effects than those of manipulation to both regions combined, as measured by 

parameters such as session duration (F(2,25) = 7.496, p = 0.0028, Dunnett post hoc tests: DMS: p < 

Figure 28: Inhibiting the indirect pathway in both DMS and NA core has larger effect on 

motivation than separate inhibition of either DMS or NA core. When comparing results across 

experiments (i.e. the effect of response to CNO when expressing hM4D in both the DMS and NA core 

compared to expressing hM4D in each of these sub-regions selectively), it can be seen that the response 

to CNO when hM4D was expressed in both NA and DMS was greater than when hM4D was expressed 

selective in either striatal sub-region, as measured by (A) session duration (p = 0.0028, Dunnett post hoc 

tests: DMS: p < 0.05, NA core: p < 0.001), (B) number of lever presses (p = 0.0155, Dunnett post hoc 

tests: DMS: p < 0.05, NA core: p < 0.05), and (C) number of reinforcers earned (p = 0.0187; Dunnett post 

hoc tests: NA core: p < 0.05). ). A total of 11 mice expressing hM4D in iMSNs in both the DMS and NA 

core, 8 mice expressing hM4D in iMSNs only in the DMS, and 9 mice expressing hM4D in iMSNs only 

in the NA core were used for this analysis. 
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0.05, NA core: p < 0.001; n = 8-11 mice per site) (Figure 28A), lever presses (F(2,25) = 4.950, p = 

0.0155, Dunnett post hoc tests: DMS: p < 0.05, NA core: p < 0.05; n = 8-11 mice per site) 

(Figure 28B), and number of reinforcers earned (F(2,25) = 4.683, p = 0.0187; Dunnett post hoc 

tests: NA core: p < 0.05; n = 8-11 mice per site) (Figure 28C).  

I also investigated the contributions of the DMS and NA core to the locomotor effect of 

acutely decreasing function of the indirect pathway. As shown in Figure 29, I tracked locomotor 

Figure 29: Mice expressing hM4D receptors in iMSNs in either DMS or NA core respond to 

acute CNO treatment with increased locomotion. A. Plot of locomotor activity in 5-min time bins 

of mice expressing hM4D in the DMS before and after receiving acute treatment with either saline or 

CNO. Animals displayed increased locomotion after treatment with CNO but not with saline (p = 

0.0141). The effect peaked approximately 30 min after injection and persisted through the remainder 

of the testing session B. Plot of locomotor activity in 5-min time bins of mice expressing hM4D in the 

NA core before and after receiving acute treatment with either saline or CNO. Animals displayed 

increased locomotion after treatment with CNO but not with saline (p = 0.0102). The effect peaked 

approximately 30 min after injection and persisted through the remainder of the testing session. C. 

Mice expressing hM4D in iMSNs in either the DMS or NA core responded to acute CNO treatment 

with increased ambulatory activity compared to baseline before drug administration (p = 0.0002). 

There was no difference in the relative response to CNO between animals expressing hM4D in the 

DMS compared to those expressing hM4D in the NA core (p = 0.6162).  A total of 8 mice expressing 

hM4D in iMSNs in the DMS and 9 mice expressing hM4D in iMSNs in the NA core were used for 

this analysis. 
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Figure 30: Activating hM4D receptors in iMSNs in the DMS or 

NA core does not affect sensitivity to reward value. In a test of 

outcome devaluation, compared to a control condition in which 

mice were pre-fed chow, a food that had never been previously 

associated with lever pressing, mice in all groups showed similar 

decreased rates of pressing after pre-feeding with evaporated milk 

and treatment with CNO or saline (pre-feeding: p < 0.0001; striatal 

sub-region: p = 0.0790). A total of 8 mice expressing hM4D in 

iMSNs in the DMS and 9 mice expressing hM4D in iMSNs in the 

NA core were used for this analysis. 

activity of Drd2-Cre mice expressing hM4D in either the DMS or NA core before and after 

treatment with CNO or saline. The kinetics of the effects CNO on locomotion with this sub-

region-selective manipulation appeared to be similar to that observed in mice expressing the 

hM4D receptor in both striatal sub-regions (Figures 29A-B, compare to Figure 24). Moreover, I 

observed that animals in both groups displayed increased ambulatory activity after treatment 

with CNO (F(1,15) = 22.96, p = 0.0002; n = 8-9 mice per site) (Figure 29C). There was no 

difference in the relative effects on CNO for mice expressing the hM4D receptor in the DMS 

compared to the NA core (F(1,15) = 0.6162, p = 0.6162; n = 8-9 mice per site) (Figure 29C). 

I then tested whether 

after activating Gαi signaling in 

the striatal indirect pathway 

mice are still sensitive to the 

value of a reward or whether 

this manipulation causes 

animals to become habit-driven. 

Since all animals expressing 

hM4D in the DMS or NA core 

were trained to press a lever to 

obtain evaporated milk as a 

food reward, I tested whether 

decreasing the value of the 

reward by pre-feeding animals 

with evaporated milk would 
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decrease their rate of operant responding in extinction trials. Specifically, I was interested in 

determining if CNO treatment could affect the animals’ ability to encode the value of the reward. 

I found that, compared to a control condition in which mice were pre-fed chow, a food that had 

never been previously associated with lever pressing, mice in all groups showed similar 

decreased lever pressing after pre-feeding with evaporated milk and treatment with CNO or 

saline (pre-feeding: F(3,1) = 23.95, p < 0.0001; striatal sub-region: F(3,1) = 2.392, p = 0.0790; n = 

8-9 mice per site) (Figure 30). This finding suggests that activating Gαi signaling in iMSNs in the 

DMS or NA core does not affect how animals encode the value of the reward. It further suggests 

that these mice are still sensitive to changes in the value of the reward and do not become habit-

driven after treatment with CNO. 

 

ELECTROPHYSIOLOGICAL EFFECTS ON EXCITABILITY 

We then investigated how acute hM4D activation affects neuronal function of the indirect 

pathway. Gαi-coupled GPCRs have been shown to activate a family of inwardly-rectifying 

potassium, the GIRK channels, to evoke inhibitory currents in many cells types (Luscher and 

Slesinger, 2010). In neurons with high levels of GIRK channels, such as the thalamus, it has been 

previously observed in the Kellendonk laboratory that the resting membrane potential of neurons 

expressing hM4D decreases by approximately 7 mV when 1 µM CNO is applied to the bath 

(Parnaudeau et al., 2013). In the striatum, one study in rats found that bath application of CNO to 

acute slices similarly reduced resting membrane potential as well as the spike frequency of 

hM4D-positive iMSNs (Ferguson et al., 2011). To determine whether hM4D activation also 

affects iMSN excitability in the mouse, I patched iMSNs expressing the hM4D receptor in acute 

slices and measured intrinsic excitability properties of these neurons before and after applying 

CNO to the bath. I found no effect of 1 µM or 10 µM CNO on the current-voltage relationship (1 
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µM: F(1,8) = 0.0092, p = 0.9258, n = 6 cells; 10 µM: F(1,14)  = 0.001789, p = 0.9669, n = 8 cells), 

spike frequency (1 µM: F(1,10) = 0.4561, p = 0.5148, n = 6 cells; 10 µM: F(1,14) = 0.006540; p = 

0.9367, n = 8 cells), resting membrane potential (1 µM: t(8) = 0.5527, p = 0.5956, n = 6 cells; 10 

µM: t(12) = 0.5307, p = 0.6053, n = 8 cells), or rheobase (1 µM: t(5) = 1.400, p = 0.2204, n = 6 

cells; 10 µM: t(7) = 0.4213, p = 0.6852, n = 8 cells) in the neurons recorded (Figures 31-32).  

These findings suggest that Gαi signaling in iMSNs does not change intrinsic excitability 

Figure 31: Membrane excitability properties at the soma of iMSNs expressing hM4D are not 

changed in vitro by treatment with CNO (part 1). A-C. Sample traces of voltage response of patched 

cells to injection of 280 pA current in regular ACSF and after incubation for 15 min with (A) regular 

ACSF, (B) 1 µM CNO, or (C) 10 µM CNO. D-F. Current-voltage curves of all cells patched in regular 

ACSF and after incubation for 15 min with (D) regular ACSF, (E) 1 µM CNO, or (F) 10 µM CNO. No 

differences were observed between curves obtained before and after incubation with (D) regular ACSF (p 

= 0.7387), (E) 1 µM CNO (p = 0.9258), or (F) 10 µM CNO (p = 0.9669).  G-I. Input-output curves of all 

cells patched in regular ACSF and after incubation for 15 min with regular (G) ACSF, (H) 1 µM CNO, or 

(I) 10 µM CNO. No differences were observed between curves obtained before and after incubation with 

(G) regular ACSF (p = 0.2981), (H) 1 µM CNO (p = 0.5148), or (I) 10 µM CNO (p = 0.9367). A total of 

25 hM4D-positive cells from 16 mice were patched (6-11 cells from 6-8 mice per drug condition) to 

calculate all statistics reported above. 
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measured at the cellular soma. Instead, Bock et al. have used slice physiology to show that 

stimulation of iMSNs exposed to CNO leads to decreased amplitude of inhibitory post-synaptic 

currents in pallidal neurons (Bock et al., 2013), a finding that has been recently replicated in the 

Kellendonk laboratory. 

 

SOMATIC EFFECTS ON NEURONAL ACTIVITY IN THE INTACT ORGANISM 

I then used in vivo calcium imaging to probe how neurons at different nodes in the 

indirect pathway respond to activation of hM4D. I first co-expressed the hM4D receptor and the 

calcium sensor GCaMP6f in a small region of the DMS of Drd2-Cre mice. The selectivity of this 

manipulation is presented in Figure 33. Using immunohistochemistry, I confirmed that 

Figure 32: Membrane excitability properties at the soma of iMSNs expressing hM4D are not 

changed in vitro by treatment with CNO (part 2). A-C. Resting membrane potential for all cells 

patched in regular ACSF or after incubation for 15 min with (A) regular ACSF, (B) 1 µM CNO, or (C) 10 

µM CNO. No differences were observed for the resting membrane potential of cells measured before and 

after incubation with (A) regular ACSF (p = 0.7380), (B) 1 µM CNO (p = 0.5956), or (C) 10 µM CNO 

(p = 0.6053). M-O. Rheobase calculated for all cells patched in regular ACSF or after incubation for 15 

min with (D) regular ACSF, (E) 1 µM CNO, or (F) 10 µM CNO. No differences were observed between 

rheobase calculated before and after incubation with (D) regular ACSF (p = 0.1038), (E) 1 µM CNO (p = 

0.2204), or (F) 10 µM CNO (p = 0.6852). A total of 25 hM4D-positive cells from 16 mice were patched 

(6-11 cells from 6-8 mice per drug condition) to calculate all statistics reported above. 
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GCaMP6f was only expressed 

in cells immune-positive for 

Cre, and 88% of Cre-positive 

cells in the region of viral 

infection expressed GCaMP6f 

(Figure 33B). Moreover, at 

the center of the virus 

injection site, 86% of cells 

positive for GCaMP6f were 

also immune-positive for 

hM4D (Figure 33C).  

By implanting a 

microlens into the region 

expressing hM4D and 

GCaMP6f, I was able to 

visualize and measure activity of iMSNs before and after activation of Gαi signaling with CNO. 

To compare activity across conditions, each experiment consisted of two sessions on two 

consecutive days in which each animal was allowed to behave freely while I imaged somatic 

activity of the same neurons after treatment with CNO on one day and treatment with saline on a 

different day (SAL/CNO; n = 339 cells from 4 animals). As a control, I also ran experiments in 

which I tested animals after treatment with saline on both days (SAL/SAL; n = 231 cells from 4 

animals). 

Figure 33: The Gαi-coupled designer receptor hM4D and the 

calcium sensor GCaMP can be co-expressed in iMSNs in the 

DMS. A. Diagram of coronal section showing region in the DMS 

virally targeted for in vivo calcium imaging of iMSNs expressing the 

hM4D receptor. A microlens was implanted over the same virally-

targeted region in the DMS for imaging using a miniature microscope. 

B. Representative micrograph of brain section showing GCaMP6f 

fluorescence signal (green) and immunohistochemistry signal for Cre 

recombinase (green). GCaMP6f was only expressed in cells immune-

positive for Cre, and 88% of Cre-positive cells in the region of viral 

infection expressed GCaMP6f (n = 96 cells). Scale bar: 50 µm. C. 

Representative micrograph of brain section showing co-localization of 

GCaMP6f (green) and hM4D (red) detected by immuno-staining for 

mCherry. At the center of virally-targeted site, 86% of cells positive 

for GCaMP6f were also immune-positive for hM4D (n = 120 cells). 

Scale bar: 50 µm. 
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One clear finding in these set of experiments was that activity in iMSNs is closely linked 

to locomotor activity, and positive significant correlations with similar slopes were observed 

between ambulatory distance and calcium activity for the same cells over discrete time intervals 

after treatment with CNO or saline (SAL: Pearson r = 0.5001, p < 0.0001, slope = 0.09681; 

CNO: Pearson r = 0.2395, p = 0.0164, slope = 0.04930; SAL vs. CNO: F(1,196) = 3.25681, p = 

0.07266) (Figure 34A). Figure 34B show an example heat map of calcium traces for one mouse 

with superimposed trace for locomotor activity. Traces for locomotor activity and total calcium 

activity for the entire population of neurons recorded during a 2-min interval illustrate the 

correlation between population-level iMSN activity and locomotion (Figure 34C). Heat maps 

and traces of locomotor activity and population calcium activity for SAL/CNO experiments in all 

mice are shown in Figure 35, and reveal that, although there is a clear relationship between 

population calcium activity and locomotion, distance traveled by the mouse cannot account for 

calcium activity at all time points during imaging. Nevertheless, I also found significant positive  

Figure 34: Somatic calcium activity of iMSNs in the DMS is correlated with motor activity in 

freely-behaving mice. A. Scatter plots and regression lines for calcium activity and locomotor activity in 

12-s time bins of all mice tested after treatment with CNO or saline. Significant correlations were 

observed for data collected after treatment with CNO (Pearson r = 0.2395, p = 0.0164) or saline (Pearson 

r = 0.2395, p = 0.0164). B. Representative heat map of calcium traces from 90 cells binned in time for one 

mouse imaged after treatment with saline (time bins 1-25) or CNO (time bins 26-50). The animal’s 

relative locomotor activity measured in the same time bins during the recording is also plotted. The 

yellow rectangle indicates the time interval in the recording used to generate the plot in C. C. Plot of 

relative locomotor activity and sum of calcium transients from 90 cells during the time interval indicated 

by the yellow rectangle in B, illustrating the relationship between these measures. 
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Figure 35: Heat maps and traces of motor activity and calcium activity 

for all SAL/CNO experiments imaging iMSNs in DMS. Left. Heat map of 

calcium traces from all cells imaged in SAL/CNO experiments for each 

mouse. Data is binned in time for each mouse imaged after treatment on day 

1 (time bins 1-25) and after treatment on day 2 (time bins 26-50), with saline 

or CNO treatment as indicated. Each animal’s relative locomotor activity 

measured in the same time bins during the recording is also plotted. Right. 

Plot of relative locomotor activity and sum of calcium transients from all 

cells imaged in SAL/CNO experiments for each mouse, illustrating the 

relationship between activity of the population of iMSNs imaged and the 

mouse’s locomotor activity. 
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correlations between calcium activity and locomotor activity for each individual recording 

session (Figures 36). 

I then proceeded to analyze raw calcium traces to test for an effect of CNO compared to 

saline. Figure 37A shows sample calcium traces for ten neurons imaged in one SAL/CNO  

experiment, revealing that MSNs display characteristic long periods of little activity with 

 

Figure 36: Correlation between iMSN calcium activity and motor activity was observed 

in all mice tested. Scatter plots and regression lines for calcium activity and locomotor 

activity in 12-s time bins for each mouse used for calcium imaging in the striatum tested after 

treatment with CNO or saline. Significant correlations or correlation trends between 

locomotion and calcium activity were observed for all mice (mouse 1, SAL: Pearson r = 

0.3476, p = 0.0887, CNO: Pearson r = 0.5891, p = 0.0019; mouse 2, SAL: Pearson r = 0.6190, 

p = 0.0010, CNO: Pearson r = 0.07936, p = 0.7061; mouse 3, SAL: Pearson r = 0.3923, p = 

0.0524, CNO: Pearson r = 0.4553, p = 0.0222; mouse 4, SAL: Pearson r = 0.7356, p < 0.0001, 

CNO: Pearson r = 0.3332, p = 0.1036). 
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Figure 37: Activating hM4D receptors in iMSNs does not decrease MSN calcium activity at the somatic 

level. A. Representative calcium traces for twenty isolated indirect-pathway MSNs imaged in a freely-

behaving mouse after treatment with saline or CNO. B Plot of percentage of cells that showed a significant 

decrease or increase in activity when comparing sessions after treatment with CNO to sessions after treatment 

with saline (SAL/CNO condition), and as a control, when comparing paired sessions done after treatment with 

saline (SAL/SAL condition). No difference was observed in the proportion of neurons that showed significant 

decrease or increase in activity across conditions (p = 0.9741). C. Pie chart showing percentage of neurons 

that significantly increase (3.83%), decrease (5.01%), or did not change (91.16%) activity in SAL/CNO 

experiments. D. Pie chart showing percentage of neurons that significantly increase (4.33%), decrease 

(4.33%), or did not change (91.33%) activity in SAL/SAL experiments. A total of 339 cells for the SAL/CNO 

condition and 231 cells for the SAL/SAL condition from 4 different animals were used to calculate all 

statistics reported above. E-F. Histograms of scaled calcium activity for all cells imaged in (E) SAL-SAL 

experiments, revealing no change in activity in the second session compared to the first session (t(231) = 1.134, 

p = 0.2579, n = 231), and (F) SAL-CNO experiments, showing no effect of CNO treatment compared to 

saline treatment (t(338) = 0.4202, p = 0.6746, n = 339). 
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Figure 38: Locomotor activity and variability of calcium transients were not affected by CNO in 

mice co-expressing hM4D and GCaMP6f in iMSNs unilaterally in small region of DMS. A. 

Locomotor activity of all subjects were comparable during striatal calcium imaging sessions after 

treatment with saline or CNO, as measured by distance traveled in an open field during recording sessions 

for each mouse. There was no significant difference in locomotor activity across drug conditions (p = 

0.7685). B. Average variability (standard deviations from the mean) of calcium activity for each mouse in 

12-s bins, recorded after treatment with saline or CNO. There was no significant difference in the 

variability of calcium activity across drug conditions (p = 0.0673). 

occasional short-lived large events thought to represent transient burst activity. Calculation of the 

proportion of cells imaged that showed a significant change in activity with CNO treatment 

compared to saline treatment revealed that 5.01% of cells decreased activity, while 3.83% 

increased activity (Figure 37B). I performed similar comparisons for control experiments in 

which the same animals received injections of saline on two recording sessions, and I found that 

4.33% of the cells recorded significantly decreased or increased activity across sessions (Figure 

37B). For the SAL/CNO and SAL/SAL experiments, the percentage of cells that increased 

activity, decreased activity, or remained unchanged are shown in Figures 37C-D. Analysis of the 

proportion of cells showing decreased or increased activity across experiments revealed that 

there were no differences between these proportions in SAL/CNO and SAL/SAL experiments (χ² 

= 0.05247, p = 0.9741) (Figure 37B-D). In addition, histograms for average activity of all iMSNs 

imaged in SAL-SAL and SAL-CNO experiments are shown in Figure 37E-F, confirming the lack of 
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effect on cellular activity in response to CNO. Moreover, since calcium activity was strongly 

associated with locomotor activity, I verified that total locomotor activity was not different 

between sessions when animals were treated with saline or CNO (F(1,3) = 2.253, p = 0.7685) 

(Figure 38A). The variability in calcium activity across cells for each mouse were also not 

different between recordings after treatment with saline or CNO (t(3) = 2.810; p = 0.0673) (Figure 

38B). 

Additionally, I also tested for an effect of CNO on the proportion of cells that showed a 

significant decrease or increase in activity after normalizing the calcium activity to each animal’s 

locomotor activity, and again, no differences were observed (χ² = 3.252, p = 0.1968). Finally, I 

detected individual calcium events of recorded MSNs for all experiments and performed similar 

statistical analysis. Compared to analysis with the raw calcium traces, using the event data, I was 

able to detect similar correlations between calcium activity and behavior, and I did not identify 

an effect of CNO treatment on the activity of the cells recorded (Figure 39). Thus, in line with 

the observation that activation of Gαi signaling does not alter intrinsic excitability properties of 

striatal iMSNs measured at the cellular soma in vitro, measures of somatic neuronal activity of 

these cells were also not changed after a similar manipulation was performed in vivo in freely 

behaving animals. 
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Figure 39: Analysis of event calcium imaging data yields similar findings as analysis of raw calcium 

transients. A-B. Scatter plots and regression lines for calcium activity and locomotor activity in 12-s time 

bins of all mice tested after treatment with CNO or saline (A) using single-event data set and weighing for 

size of calcium events or (B) using single-event data set considering each event as a single unit. 

Significant correlations with similar slopes were observed for data collected after treatment with CNO or 

saline using either type of analysis, weighing size of events (SAL: Pearson r = 0.3427, p = 0.0005 slope = 

0.01326; CNO: Pearson r = 0.4609, p < 0.0001, slope = 0.01536; SAL vs. CNO: p = 0.6579) (A) and 

considering all events as single units (SAL: Pearson r = 0.3867, p < 0.0001, slope = 0.003165; CNO: 

Pearson r = 0.2929, p = 0.0031, slope = 0.002017; SAL vs. CNO: p = 0.258) C-D. Plots of percentage of 

cells that showed a significant decrease or increase in activity when comparing sessions after treatment 

with CNO to sessions after treatment with saline; and, as a control, when comparing paired sessions done 

after treatment with saline. The data was analyzed using either (C) the single event data set and weighing 

for size of calcium events, or (D) using the single event data set considering each event as a single unit. 

No difference was observed in the proportion of neurons that showed significant decrease or increase in 

activity across conditions with either type of analysis, weighing size of events (p = 0.6387) (C) or 

considering all events as single units (p = 0.5580) (D). A total of 339 cells for the SAL/CNO condition 

and 231 cells for the SAL/SAL condition from 4 different animals were used to calculate all statistics 

reported above. 
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EFFECT ON NEURONAL ACTIVITY OF PALLIDAL NEURONS 

Previous work has shown that activating hM4D receptors in iMSNs in the NA core in 

vitro inhibits inhibitory post-synaptic currents (IPSCs) amplitude in the ventral pallidum after 

optogenetic stimulation of the indirect pathway (Bock et al., 2013). I hypothesized that this 

manipulation in the DMS should also lead to a disinhibition of the GPe in vivo. To address this 

question, I injected a non-conditional GCaMP6f virus in the GPe and Cre-dependent hM4D virus 

in the DMS of Drd2-Cre mice and further implanted a microlens in the GPe (Figures 40A-CD). I 

then imaged activity of cells in the GPe in freely-behaving animals after two treatments with 

CNO or saline. Figure 40D shows sample calcium traces for ten neurons imaged in one SAL-

CNO experiment, illustrating the activity of individual GPe neurons after treatment with saline 

and CNO. Similar analysis as that performed for neurons imaged in the DMS were performed for 

neurons imaged in the GPe. As a control, when animals were imaged in two sequential sessions 

after treatment with saline, only 2.40% of cells increased activity and 3.85% decreased activity 

(SAL-SAL, 211 cells from 3 animals) (Figure 40E). Most remarkably, however, I observed a 

significant increase in calcium activity in the GPe after treatment with CNO compared to saline, 

with 10.05% of cells imaged showing an increase in activity, while only 0.48% showed a 

decrease in activity (SAL/CNO, 209 cells from 3 animals) (Figure 40F). Analysis of these 

proportions demonstrated that the frequency of cells showing increased activity after CNO 

treatment was greater than expected by chance (χ² = 8.889, p = 0.0117). In addition, histograms 

for average activity of all GPe cells imaged in SAL-SAL and SAL-CNO experiments are shown 

in Figure 41. 
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Figure 40: Activating hM4D receptors in striatal iMSNs leads to increased neuronal activity in GPe. 

A. Diagram of sagittal section showing region in the DMS and GPe virally targeted for in vivo calcium 

imaging of GPe cells expressing GCaMP6f and iMSNs in the DMS expressing hM4D. A microlens was 

implanted into the GPe for imaging using a miniature microscope. The yellow arrowheads indicate the 

approximate AP level of the sections in the micrographs shown in C and D. B. Micrograph of representative 

coronal section through dorsal striatum (at the level of most anterior yellow arrowhead in A) immune-

stained for mCherry showing region in DMS expressing hM4D. Scale bar: 1 um. C. Micrograph of 

representative coronal section posterior to section shown in C (most posterior yellow arrowhead in A) 

showing expression of GCaMP6f in GPe. Scale bar: 1 um. D. Representative calcium traces for ten isolated 

GPe neurons imaged in a freely-behaving mouse after treatment with saline or CNO.  E-F. Histograms of 

scaled calcium activity for all cells imaged in (E) SAL-SAL experiments, revealing a small decrease in 

activity in the second session compared to the first session (t(210) = 2.308, p = 0.0220, n = 211), and (F) SAL-

CNO experiments, showing a robust increase in activity after CNO treatment compared to saline treatment 

(t(208) = 6.857, p < 0.0001, n = 209). Insets: Plots of percentage of cells that showed a significant decrease or 

increase in activity when (E, inset) comparing control paired sessions done after treatment with saline 

(SAL-SAL condition, 3.37% significantly increased, 3.79% significantly decreased), and (F, inset) 

comparing sessions done after treatment with saline to sessions after treatment with CNO (SAL-CNO 

condition, 10.05% significantly increased, 0.48% significantly decreased). A significant increase in the 

proportion of cells that showed increased activity can be attributed to CNO treatment when comparing 

proportions across conditions (p = 0.0117). A total of 211 cells for the SAL-CNO condition and 209 cells 

for the SAL-SAL condition from 4 different animals were used to calculate all statistics reported above. 
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Figure 41: Increased GPe activity after treatment with CNO was observed in all mice imaged. 

Histograms of scaled calcium activity for all cells imaged for each mouse in (left) SAL-SAL experiments 

(mouse 1: t(102) = 0.2217, p = 0.8250, n = 103 cells; mouse 2: t(39) = 1.329, p = 0.1917, n = 40 cells; and 

mouse 3: t(68) = 2.577, p = 0.0121, n = 69 cells) and (right) SAL-CNO experiments  (mouse 1: t(97) = 

4.803, p < 0.0001, n = 98; mouse 2: t(49) = 3.755, p = 0.0005, n = 50; and mouse 3: t(60) = 3.225, p = 

0.0020, n = 61).  
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Detailed statistical analysis comparing these histograms are reported for all cells pooled in 

Figure 40 and for each individual mouse in Figure 41, confirming a significant increase in GPe 

cell activity in response to CNO. Hence, while activating Gαi signaling in iMSNs did not elicit a 

robust change in the cells’ intrinsic excitability or activity at the somatic level, the circuit-level 

effect of this manipulation could be readily observed in vivo as a disinhibition of neuronal 

activity in the GPe. 

 

CHRONIC EFFECTS OF DECREASING INDIRECT PATHWAY FUNCTION 

In addition to investigating the effect on acute activation of Gαi signaling in iMSNs in 

selective striatal sub-regions on motivated behavior, membrane excitability, and calcium activity, 

I also investigated the behavioral effects of chronically increasing indirect-pathway function by 

continuous activation of hM4D receptors in the iMSNs in the DMS and NA core. I found that, in 

Drd2-Cre mice expressing the hM4D receptor in both the DMS and NA core, motivated 

behavior was not affected by chronic treatment with CNO in the drinking water for two weeks. 

Chronic CNO treatment did not affect performance of D2R-OEdev mice or control littermates in 

the progressive ratio schedule of reinforcement, as measured by comparing the survival functions 

of average session duration for each group (Log-rank test: control: χ² = 0.2393, p = 0.6247, n = 6 

mice per treatment; D2R-OEdev: χ² = 3.690, p = 0.2969, n = 6 mice per treatment) (Figure 42A), 

or the total number of lever presses for each group (F(1,20) = 1.671, p = 0.2108, n = 6 mice per 

genotype and treatment) (Figure 42B). Moreover, 48 h after chronic treatment with CNO or 

vehicle ended, mice were again tested in the progressive ratio schedule. Once again, no 

differences in performance were detected that could be attributed to previous chronic drug 

treatment with CNO, as measured by survival functions of average session duration (Log-rank 
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test: control: χ² = 0.4089, p = 0.5225, n = 5 mice per treatment; D2R-OEdev: χ² = 1.933, p = 

0.5864, n = 6 mice per treatment) (Figure 42), and total number of lever presses (F(1,19) = 1.867, p 

= 0.2719, n = 5-6 mice per genotype and treatment) (Figure 42D). 

 These negative results led to the question of whether chronic CNO treatment in the 

drinking water was effective in producing CNO levels in the brain that was sufficient to induce 

Figure 42: Chronically activating Gαi signaling in iMSNs in both the DMS and NA core does 

not affect motivation in D2R-OEdev or control littermates. A. No differences were observed in 

the survival function for average session duration in the progressive ratio schedule for D2R-OEdev 

and control mice being treated with CNO or vehicle for at least 2 weeks (control: p = 0.6247; D2R-

OEdev: p = 0.2969). B. The number of lever presses made in a progressive ratio session was also not 

changed in D2R-OEdev and control mice being treated with CNO or vehicle for at least 2 weeks (p = 

0.2108). C. No differences were observed in the survival function for average session duration for 

D2R-OEdev and control mice tested in the progressive ratio schedule 48 h after ending chronic 

treatment with CNO or vehicle (control: p = 0.5225; D2R-OEdev: p = 0.5864). D. The total number 

of lever presses was also not affected by drug treatment in D2R-OEdev and control mice tested in the 

progressive ratio schedule 48 h after ending chronic treatment with CNO or vehicle (p = 0.2719). A 

total of 12 D2R-OEdev mice expressing hM4D in iMSNs in the DMS and NA core (6 mice treated 

with chronic CNO and 6 mice treated with chronic vehicle) and 12 control mice expressing hM4D 

in iMSNs in the DMS and NA core (6 mice treated with chronic CNO and 6 mice treated with 

chronic vehicle) were used for this analysis. A crossover design was not used for this experiment; 

each subject was subjected to only one chronic treatment (CNO or vehicle). 
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any behavior effect in mice. Alternatively, CNO solution in the drinking water maintained at 

room temperature for several days may have been unstable and may have become ineffective 

throughout the two-week treatment period. To get at these questions, one month after conducting 

the last motivation assay in D2R-OEdev and controls expressing hM4D in iMSNs in the DMS and 

NA core, I attempted to induce acute oral consumption of CNO by water-depriving animals for 

16 h and subsequently allowing them to drink CNO-treated water for 1 h before assaying 

locomotion in an open field. Each animal was subjected to three total sessions, including control 

sessions, on different days, counterbalancing the order of sessions for genotype and treatment 

group. In one session animals were given untreated water before testing, in another session 

animals were given freshly-prepared CNO-treated water (fresh CNO) before testing, and in yet 

Figure 43: Oral consumption of CNO induces a behavior response in mice. Distance 

traveled in an open field for 1 h immediately after water-deprived D2R-OEdev or control mice 

expressing hM4D in striatal iMSNs were allowed to freely consume water, freshly-prepared 

CNO, or a CNO solution prepared 1 month prior and stored at room temperature. This acute 

oral consumption of fresh CNO or old CNO led to comparable increases in locomotion in both 

D2R-OEdev and control mice p = 0.0001; Bonferroni post hoc tests: water vs. fresh CNO: 

control: p < 0.01, D2R-OEdev: p < 0.05; water vs. old CNO: control: p < 0.05, D2R-OEdev: p < 

0.01; fresh CNO vs. old CNO: control: p > 0.05, D2R-OEdev: p > 0.05). A total of 12 D2R-

OEdev and 12 control mice expressing hM4D in iMSNs in the DMS and NA core were used for 

this analysis. 
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another session animals were given CNO-treated water that had been prepared one month prior 

and stored at room temperature (old CNO). CNO-treated water (fresh CNO and old CNO) 

contained CNO at the same concentration used for chronic treatment in the experiments 

described above. I found that, compared to the baseline condition in which animals were given 

plain water, acute oral consumption of fresh CNO or old CNO led to comparable increases in 

locomotion in both D2R-OEdev and control mice (F(2,22) = 11.42, p = 0.0001, n = 12 mice per 

group; Bonferroni post hoc tests: water vs. fresh CNO: Control: p < 0.01, D2R-OEdev: p < 0.05; 

water vs. old CNO: Control: p < 0.05, D2R-OEdev: p < 0.01; fresh CNO vs. old CNO: Control: p 

> 0.05, D2R-OEdev: p > 0.05) (Figure 43). Thus, oral consumption of CNO can induce a behavior 

response in mice, and CNO solution appears to be stable at room temperature since a one-month 

old solution was just as effective as a fresh solution in inducing hyperlocomotion in mice 

expressing hM4D in striatal iMSNs. 

To expand on these findings, I further investigated the lack of response on motivation of 

chronically decreasing function of iMSNs specifically in the DMS or the NA core. In addition, I 

also further tested whether or not mice are able to respond to an acute injection of CNO while 

being chronically administered CNO for two weeks. First, I found that similarly to mice 

expressing the hM4D receptor in iMSNs in both the DMS and NA core, mice expressing the 

receptor in iMSNs of either region separately did not respond to chronic treatment with CNO in 

the drinking water. While mice were on CNO, no difference in performance was observed in the 

progressive ratio task, as measured by the survival functions for average session duration (Log-

rank test: DMS: χ² = 0.02327, p = 0.8788, n = 8 mice; NA core: χ² = 0.02327, p = 0.8788, n = 9 

mice) (Figure 44A), and total number of lever presses (F(1,15) = 1.062, p = 0.3192, n = 8-9 mice 

per site) (Figure 44B). Likewise, there was no effect of previous CNO treatment on performance 



145 

 

in the progressive ratio task when animals were tested 48 h after ending chronic treatment. This 

lack of effect was determined from the survival functions for average session duration (Log-rank 

test: DMS: χ² = 0.1018, p = 0.7496, n = 8 mice; NA core: χ² = 0.2851, p = 0.5934, n = 9 mice) 

Figure 44: Chronically activating Gαi signaling in iMSNs in either the DMS or NA core does 

not affect motivation in mice. A. No differences were observed in the survival function for 

average session duration in the progressive ratio schedule for mice expressing hM4D in the DMS 

or NA core being treated with CNO or vehicle for at least 2 weeks (DMS: p = 0.8788; NA core: p 

= 0.8788). B. The number of lever presses made in a progressive ratio session was also not changed 

in mice expressing hM4D in the DMS or NA core being treated with CNO or vehicle for at least 2 

weeks (p = 0.3192). C. No differences were observed in the survival function for average session 

for mice expressing hM4D in the DMS or NA core tested in the progressive ratio schedule 48 h 

after ending chronic treatment with CNO or vehicle (DMS: p = 0.7496; NA core: p = 0.5934) D. 

The total number of lever presses was also not affected by drug treatment in mice expressing 

hM4D in the DMS or NA core tested in the progressive ratio schedule 48 h after ending chronic 

treatment with CNO or vehicle (p = 0.8347). A total of 8 mice expressing hM4D in iMSNs in the 

DMS and 9 mice expressing hM4D in iMSNs in the NA core were used for this analysis. 
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(Figure 44C), and total number of lever presses (F(1,15) = 0.9435, p = 0.8347, n = 8-9 mice per 

site) (Figure 44D). 

The lack of response to chronic treatment with CNO in mice expressing hM4D in iMSNs 

in either the DMS or NA core was expected given that, in a different cohort, mice expressing 

hM4D in iMSNs in both DMS and NA core also did not response to chronic CNO.  In the cohort 

of mice targeted specifically in the DMS or NA core, I also tested whether animals on chronic 

CNO treatment for at least two weeks could exhibit a behavioral response to an acute 

intraperitoneal administration of CNO in tests of motivation and locomotion. In the progressive 

ratio schedule, I found that, while animals expressing hM4D in either DMS or NA core on 

chronic treatment with vehicle responded to acute CNO treatment with increased total number of 

lever presses (F(1,15) = 8.785, p = 0.0097, n = 8-9 mice per site), animals on chronic treatment 

with CNO did not exhibit an acute response to the drug (F(1,15) = 1.108, p = 0.3092, n = 8-9 mice 

per site) (Figure 45A). Session duration times of mice expressing hM4D in the DMS were 

compared with those of mice expressing hM4D in the NA core and there was no difference in 

performance between these groups while animals were on chronic vehicle and treated acutely 

with CNO (Log-rank test, χ² = 0.7529, p = 0.3855, n = 8-9 mice per site). Likewise, there was no 

difference in performance between mice expressing hM4D in the DMS or NA core on chronic 

CNO after acute treatment with CNO (Log-rank test: χ² = 0.5967, p = 0.4512, n = 8-9 mice per 

site). Therefore, the data were pooled for mice expressing hM4D in the DMS or NA core, and a 

significant difference was observed in average session duration when mice were being treated 

with chronic CNO and received an acute administration of CNO compared to when these mice  
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Figure 45: Mice expressing hM4D in iMSNs in either DMS or NA core being chronically treated with 

CNO no longer respond to acute CNO treatment, but response is recovered 48 h after ending chronic 

treatment. A. The number of lever presses made in a progressive ratio session was increased after acute CNO 

treatment in mice chronically treated with vehicle (p = 0.0097) but not in mice chronically treated with CNO 

(p = 0.3092). B. For session duration in the progressive ratio schedule, pooling data for mice expressing 

hM4D in the DMS and NA core revealed a significant difference in session duration when mice were being 

treated with chronic CNO and acutely administered CNO compared to when mice were being treated with 

chronic vehicle and acutely administered CNO (p = 0.0143). C. After discontinuing chronic treatment with 

CNO or saline, mice were re-tested 48 h later and all groups responded to acute CNO with increase total 

number of lever presses (previous chronic vehicle: p = 0.0007; previous chronic vehicle: p < 0.0001). D. 

Discontinuing chronic treatment with CNO or vehicle was sufficient to re-elicit a response to acute CNO in 

mice measured by session duration (previous chronic vehicle: p = 0.0039; previous chronic CNO: p = 0.0143). 

A total of 8 mice expressing hM4D in iMSNs in the DMS and 9 mice expressing hM4D in iMSNs in the NA 

core were used for this analysis. 
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received chronic vehicle and were treated with an acute administration of CNO  

(Log-rank test: χ² = 6.000, p = 0.0143, n = 17 mice) (Figure 45B). Thus, a response to acute 

CNO in the progressive ratio task could no longer be elicited when animals were being 

chronically treated with CNO for two weeks (Figures 45A-B). 

I also tested whether or not mice are able to once again display a response to an acute 

injection of CNO after ending chronic CNO treatment. This experiment tested the hypothesis that 

hM4D receptors may become permanently desensitized after a long period of continued 

activation with CNO. Mice that had been treated with chronic CNO for two weeks were taken 

off chronic CNO treatment for 48 hours and were subsequently treated with an acute 

administration of CNO or saline to test whether or not they had recovered their sensitivity to this 

drug. After being taken off chronic treatment, mice expressing hM4D in either DMS or NA core 

and previously treated with either CNO or vehicle demonstrated a significant increase in lever 

presses in response to acute CNO (previous chronic vehicle: F(1,15) = 17.89, p = 0.0007; previous 

chronic vehicle: F(1,15) = 33.30, p < 0.0001; n = 8-9 mice per site) (Figure 45C). No significant 

differences were observed between mice expressing hM4D receptors in the DMS or the NA core 

in average session duration when the performance of mice in both groups were compared 48 h 

after discontinuing treatment with chronic vehicle (Log-rank test: χ² = 0.3035, p = 0.5817, n = 8-

9 per site). Similarly, there were no differences for average session duration when performance 

in the two groups was compared 48 h after discontinuing treatment with chronic CNO (Log-rank 

test: Log-rank test: χ² = 0.3035, p = 0.5817, n = 8-9 per site). Thus, the data for average session 

duration after ending chronic treatment were pooled to show that discontinuing chronic treatment 

with CNO or vehicle was sufficient to re-elicit a response to acute CNO in mice (previous 

chronic vehicle: Log-rank test: χ² = 8.335, p = 0.0039; previous chronic CNO: Log-rank test: χ² = 
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6.000, p = 0.0143; n = 17 mice) (Figure 45D). Finally, I also tested mice expressing hM4D in 

iMSNs in the DMS and NA core for baseline locomotor activity in an open field in response to 

an acute intraperitoneal injection of CNO while they were on chronic treatment with CNO or 

vehicle in their drinking water for two weeks, as well as after discontinuing chronic treatment for 

48 h. Remarkably, the results for tests of locomotor activity closely paralleled those obtained for 

measures of motivation.  For analysis of locomotion data, the distance traveled per min as a 

percent of baseline before acute treatment was used for comparison between groups. While mice 

Figure 46: Mice expressing hM4D in iMSNs in either DMS or NA core being chronically treated with 

CNO do not display locomotor response to acute CNO treatment. A. While mice were still on chronic 

treatment, animals on chronic vehicle showed a locomotor response to an acute administration of CNO (p < 

0.0001; Bonferroni post hoc tests, DMS: p < 0.001, NA: p < 0.001), and animals on chronic CNO did not 

respond to acute CNO (p = 0.1873; n = 8-9 mice per site). B-C. Plots of distance traveled in an open field by 

mice expressing hM4D in iMSNs in (B) the DMS or (C) the NA core on chronic treatment with CNO or vehicle 

for 2 weeks. Data is shown in 5-min bins 20 min before and 70 min after acute injection with CNO or saline. A 

total of 8 mice expressing hM4D in iMSNs in the DMS and 9 mice expressing hM4D in iMSNs in the NA core 

were used for this analysis. 
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were still on chronic treatment, animals expressing hM4D in iMSNs in either the DMS or the 

NA core on chronic vehicle showed a locomotor response to an acute administration of CNO 

(F(1,15) = 45.16, p < 0.0001; Bonferroni post hoc tests, DMS: p < 0.001, NA: < 0.001; n = 8-9 

mice per mice) (Figure 46). In contrast, animals on chronic CNO did display a locomotor 

response to an acute administration of CNO (F(1,15) = 1.909, p = 0.1873; n = 8-9 mice per site) 

(Figure 46). Similar to what was observed for assays of motivation, after discontinuing chronic 

treatment for 48 h, an acute CNO administration was sufficient to re-elicit a locomotor response 

Figure 47: Mice expressing hM4D in iMSNs in either DMS or NA core recover locomotor response 

to acute CNO treatment after being taken off chronic CNO treatment for 48 h. A. After being taken 

off 2-week chronic treatment with CNO or vehicle, animals that had been on chronic vehicle showed a 

locomotor response to an acute administration of CNO (p < 0.0001; Bonferroni post hoc tests, DMS: p < 

0.01, NA: < 0.001). A locomotor response was also elicited in animals that were previously treated with 

chronic CNO (p = 0.0001; Bonferroni post hoc tests, DMS: p < 0.01, NA: < 0.01). B-C. Plots of distance 

traveled in an open field by mice expressing hM4D in iMSNs in (B) the DMS or (C) the NA core 48 h 

after discontinuing chronic treatment with CNO or vehicle. Data is shown in 5-min bins 20 min before 

and 70 min after acute injection with CNO or saline. Data is shown in 5-min bins 20 min before and 70 

min after acute injection with CNO or saline. A total of 8 mice expressing hM4D in iMSNs in the DMS 

and 9 mice expressing hM4D in iMSNs in the NA core were used for this analysis. 
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in both groups. Mice previously treated with chronic vehicle responded to acute CNO as before 

(F(1,15) = 39.06, p < 0.0001; Bonferroni post hoc tests, DMS: p < 0.01, NA: < 0.001) (Figure 47). 

And a locomotor response could also be elicited in animals that had been previously treated with 

chronic CNO (F(1,15) = 25.84, p = 0.0001; Bonferroni post hoc tests, DMS: p < 0.01, NA: < 0.01) 

(Figure 47). 

 

DISCUSSION 

The original aim of this study was to determine whether the motivational deficit of D2R-

OEdev mice, induced by upregulation of D2Rs in the striatum, could be reversed by acutely 

activating Gαi-coupled signaling in the indirect pathway in these animals. I found that this 

manipulation increased motivation in D2R-OEdev mice but also in control littermates. This effect 

was due to energized behavioral performance, which, however, came at the cost of goal-directed 

efficiency. Moreover, selective manipulation of iMSNs in either the DMS or NA core showed 

that both striatal regions contribute to this effect on motivation. Further investigation aimed at 

understanding how activating Gαi-coupled signaling affects striatal circuit function revealed that 

that activating Gαi signaling did not lead to a significant change in somatic iMSN activity in vivo 

or to a change in neuronal excitability in vitro. In contrast, the GPe, which receives 

monosynaptic inhibition from the indirect pathway, showed disinhibited activity when Gαi-

signaling was activated in striatal MSNs. 

In testing my initial hypothesis that MSN excitability might underlie the motivational 

deficit of D2R-OEdev mice, I found that decreasing function of the indirect pathway by acutely 

activating the hM4D receptor in striatal iMSNs boosts motivation in mice, as both D2R-OEdev 

and control mice showed increased performance in the progressive ratio schedule of 

reinforcement after treatment with CNO. Since both genotypes improved performance, it is 
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unclear whether hM4D activation rescued the underlying neuronal mechanism that caused the 

motivational deficit of D2R-OEdev mice or whether it enhanced motivation by an independent 

mechanism. Nevertheless, since I reversed the motivational deficit, I propose that inhibiting 

function of the indirect pathway by activating Gαi signaling in iMSNs may represent a more 

general strategy to ameliorate deficits in motivation. 

Using the progressive hold-down task, I demonstrated that inhibiting function of the 

indirect pathway energizes behavior, which however came at the cost of goal-directed efficiency. 

In this task of motivation, maximal efficiency requires animals to suppress hyperactive behavior 

in order to successfully maintain a lever held down until a reward is obtained. Both D2R-OEdev 

and control mice on CNO made more responses and continued to respond for longer times in the 

task, but they earned fewer rewards. These observations suggest that inhibition of the indirect 

pathway in the NA core and DMS enhances motivation by regulating the arousal and readiness 

to initiate behaviors rather than specifically affecting processes related to the optimal selection of 

specific behaviors, such as positively affecting the value of the reward. Ideally, a manipulation 

that enhances motivation would enhance performance in both the progressive ratio and 

progressive hold-down tasks so that the best results with regard to positive outcome would be 

achieved independently of external conditions (Bailey et al., 2015). Thus, therapeutic strategies 

aimed at manipulating the indirect pathway to treat abnormal motivation should take into 

consideration the risks of enhancing motivation while impairing goal-directed efficiency.  

I also addressed the question of whether the DMS and NA core contributed differently to 

the enhancement in motivation observed in the progressive ratio task after inhibition of iMSNs. 

Previous studies have placed emphasis on the NA core as playing a key role in goal-directed 

behavior by regulating how animals allocate effort to achieve specific outcomes based on the 
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rewarding value of those outcomes (Nowend et al., 2001, Mai et al., 2012). However, the role the 

DMS in the performance of goal-directed actions based on action-outcome associations has also 

been clearly established (Yin et al., 2005, Shiflett et al., 2010, Hilario et al., 2012). The 

progressive ratio task is a task of goal-directed behavior that measures how much effort a subject 

is willing to expend to obtain a reward. Acutely decreasing function of the indirect pathway 

selectively in either the NA core or DMS led to similar increased performance in this task, 

without affecting outcome devaluation, suggesting that both striatal regions can regulate goal-

directed behavior by modulating indirect-pathway output. Nevertheless, more refined behavioral 

assays of instrumental performance, such as tasks that measure sensitivity to response 

contingencies or effort/value relationships, after inhibiting the function of the indirect pathway in 

the DMS or NA core may potentially reveal specific dissociations between these two striatal sub-

regions. 

Using in vitro electrophysiology and in vivo calcium imaging, I found that hM4D 

activation in iMSNs disinhibits activity of downstream pallidal neurons without changes in 

somatic excitability or iMSN activity. Given the well-established effect of Gαi signaling on 

neuronal excitability via GIRK channels (Luscher and Slesinger, 2010), it was surprising that I 

did not observe changes in excitability in striatal MSNs expressing the hM4D receptor after 

CNO treatment. However, MSNs only express low levels of GIRK channels (Karschin et al., 

1996). Consistent with low GIRK levels, D2R-dependent outward currents that are characteristic 

of GIRKs cannot be readily measured somatically in MSNs unless GIRK channels are artificially 

overexpressed (Marcott et al., 2014). Furthermore, slice physiology experiments using D2R 

agonists generally report little or no change in MSN resting membrane potential, and, instead, 

D2R activation alters membrane conductances thought to affect synaptic integration and lead to 
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decreased synaptic output (Hernandez-Lopez et al., 2000, Sun et al., 2000, Cepeda et al., 2001, 

Salgado et al., 2005, Perez et al., 2006, Gerfen and Surmeier, 2011, Tritsch and Sabatini, 2012).  

Of note, using the exact same methodology used in the present study, the Kellendonk laboratory 

previously showed that CNO reliably hyperpolarizes thalamic neurons expressing hM4D 

(Parnaudeau et al., 2013). In contrast to the excitability measurements reported in the current 

study, one study has shown an effect of hM4D receptor activation on excitability of iMSN; 

however, this study was performed in rats while I used mice (Ferguson et al., 2011).  

In line with unaltered excitability, I found no effect of hM4D activation on calcium 

activity of iMSNs measured somatically in freely behaving mice. In all conditions tested, 

calcium activity of iMSNs in the DMS was correlated with the animal’s locomotor activity. The 

experimental design I used controlled for a potential effect of this correlation on my ability to 

detect an effect of CNO on somatic calcium activity. I co-expressed hM4D and GCaMP6f 

unilaterally in a small region of the DMS in an effort to image the cells being manipulated 

without broadly affecting basal ganglia output and behavior. I was indeed able to image animals 

across sessions in which they displayed comparable levels of locomotor activity after treatment 

with CNO or saline. Moreover, in my analysis, I tested for the effect of CNO treatment on the 

correlation between activity of iMSNs and locomotion, and I also conducted statistical analysis 

after normalizing calcium activity to locomotor activity. In all cases, I found no effect of CNO 

treatment on somatic calcium activity of iMSNs expressing hM4D. A change in calcium activity 

in these neurons would be expected if hM4D activation led to increased firing of action 

potentials generated near the soma. However, intracellular changes in free calcium resulting from 

changes in spike activity and synaptic input can be compartmentalized in the neuron (Yasuda et 

al., 2004). Axons of iMSNs project out of the striatum to the adjacent pallidum, and changes in 
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firing activity specifically localized to these presynaptic terminals would not be detectible using 

our imaging system in the striatum. 

In contrast to unaltered activity in the indirect pathway, I found that CNO enhanced 

activity in the GPe. This observation suggests that hM4D receptors in the presynaptic axon 

terminals of iMSNs may mediate the effect of CNO on pallidal activity. In support of this 

hypothesis, I found that (a) virally expressed hM4D was transported to the terminals and (b) 

electron microscopy has revealed that the Giα heterotrimeric subunit can be found in axon 

terminals in the GPe, consistent with the distribution characteristic of projections from iMSNs 

(Aronin and DiFiglia, 1992). More importantly, previous work from the Kellendonk laboratory 

and others using slice physiology have shown that optogenetic stimulation of presynaptic 

terminals of iMSNs expressing hM4D leads to decreased light-evoked IPSCs in VP neurons in 

the presence of CNO compared to control conditions (Bock et al., 2013). 

In dopaminergic neurons, the Kv1.2 and other voltage-gated potassium channels have 

been shown to mediate inhibition of axonal dopamine release in a G-protein dependent manner 

upon activation of D2Rs (Martel et al., 2011). RT-PCR analysis has shown that Kv1 family 

channels, including Kv1.2, are also expressed in striatal MSNs (Shen et al., 2004). Future work 

on the mechanism proposed here should probe for specific channels, including Kv1 family 

channels, which may mediate the presynaptic effect of activating Gαi signaling in iMSNs. 

Previous work has also shown that MSNs can laterally inhibit activity of neighboring 

MSNs, and inhibition of iMSNs onto other iMSNs has been established in the striatum (Tunstall 

et al., 2002, Taverna et al., 2008, Tecuapetla et al., 2009, Kohnomi et al., 2012). By expressing 

hM4D in the indirect pathway, I therefore expected to observe decreased inhibition after CNO 

treatment not only of the GPe but also of neighboring iMSNs. As a consequence, some neurons 
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of the indirect pathway would be expected to show enhanced firing and activity upon treatment 

with CNO. I may not have observed the effect of lateral inhibition using in vivo calcium imaging 

because of biological or technical reasons. One biological reason could be that hM4D activation 

may have led to decreased activity at the soma that was compensated for by decreased lateral 

inhibition. If this were the case, I nevertheless would have expected that variability of calcium 

transients would increase after hM4D activation. Another reason could be that hM4D does not 

mediate local inhibition to other iMSNs. And a technical reason could be that calcium imaging 

did not capture all aspects of neuronal activity. Compared to other types of neurons, MSNs are 

hyperpolarized at rest and require excitatory inputs from cortex and thalamus to fire action 

potentials (Wilson and Kawaguchi, 1996). Consistent with this idea, I found that activity of 

MSNs measured at the soma was highly correlated with animals’ engagement in voluntary 

actions, as has been previously described (Cui et al., 2013). However, the calcium imaging 

system I used to measure striatal activity may have predominantly measured burst activity, and 

sparser individual spikes were likely below detection threshold, as they were difficult to 

distinguish from signal noise in the recording conditions I used. In fact, when detecting 

individual calcium events as single units, I found that the average firing rate of iMSNs in freely 

behaving animals was about 0.03 Hz, while in vivo electrophysiology studies report firing rates 

closer to 1 Hz (Kim et al., 2014). Since I did not record activity of iMSNs using 

electrophysiology and calcium imaging in parallel, I cannot reliably infer how many action 

potentials a single calcium transient represents. As a result, I may have not have captured all 

activity in the striatal neurons imaged in vivo, potentially masking some of the more subtle 

effects of CNO treatment. In addition, since I co-expressed hM4D together with GCaMP6f using 

two viruses in vivo, calcium imaging may have been inefficient if areas were imaged that did not 
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have high co-localization of transfected proteins. Although histology revealed that the majority 

of the targeted region had high co-localization of GCaMP6f and hM4D, some regions in the 

periphery of the virally-targeted site were observed where transfection of each virus appeared to 

be segregated in striatal cells. Since I could not identify the cells that were imaged in vivo using 

post hoc histological methods, I cannot confirm that all striatal cells imaged in the current study 

expressed hM4D. 

In addition to the acute manipulations, animals were also chronically treated with CNO in 

order to characterize what happens when function of iMSNs is continuously suppressed. The 

finding in the current study that the chronic manipulation had no effect on motivation or 

locomotion raised several alternative interpretations. Some of these alternatives could be ruled 

out in this study. For instance, I showed that acute oral consumption of CNO (as was done for 

chronic administration of this drug) can induce behavioral effects on locomotion, demonstrating 

that this route of administration is effective. However, given that the exact concentration of CNO 

is the blood or brain was not determined, it is difficult to compare the relative effectiveness of 

oral an intraperitoneal administration of CNO. I was also able to rule out the possibility that the 

CNO solution used in the drinking water is unstable for two weeks at room temperature. I 

showed that the acute effect of oral CNO was similar regardless of whether I used freshly 

prepared solution or a one-month old solution stored at room temperature. 

One alternative explanation for the lack of behavioral response after chronic CNO 

treatment is that the mutated Gαi-protein coupled hM4D receptor could become desensitized 

during chronic CNO administration. To address this question, I administered an acute 

intraperitoneal injection of CNO or saline to mice expressing hM4D in iMSNs while they were 

chronically consuming CNO. The persistent lack of behavioral response to an acute CNO 
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injection supports the hypothesis that a compensatory mechanism takes place that fully occludes 

the effect on motivation and locomotion mediated by hM4D receptor activation. However, this 

observation is consistent with both desensitization at the receptor level and circuit-level re-wiring 

as a consequence of continuous activation of Gαi signaling. 

In order to test whether or not hM4D receptors were permanently suppressed after 

chronic CNO administration, I re-tested mice in the progressive ratio task 48 hours after 

discontinuing chronic treatment with CNO. These mice once again received acute intraperitoneal 

injections of either CNO or saline, and the results indicate that the response to CNO was fully 

recovered within this timeframe. These findings suggest that hM4D receptors are not 

permanently altered after being chronically activated by CNO. However, these results do not 

exclude the possibility that circuit-level rewiring may still mediate this behavioral desensitization 

effect. The fast recovery of the response suggests that structural anatomical rewiring may not be 

required, but circuit-level synaptic plasticity is known to occur in shorter timescales (Caroni et 

al., 2014). One likely possibility given the known regulatory pathways of GPCR activity 

(Gainetdinov et al., 2004) is that the hM4D receptor becomes internalized after chronic 

stimulation. All of these possibilities, therefore, represent new research avenues for advancing 

the findings presented in this study on the chronic effects of activating Gαi signaling in iMSNs. 

In conclusion, the present study shows that acute activation of Gαi signaling in indirect-

pathway striatal neurons enhances motivation in mice, although at the cost of goal-directed 

efficiency. It further demonstrates that neurons in both the DMS and NA core mediate this effect, 

consistent with both striatal sub-regions playing a role in performance of motivated behavior. In 

addition, the observation that activation of Gαi signaling in the striatal indirect pathway leads to 

disinhibition of activity in the GPe without affecting intrinsic excitability of iMSNs suggests that 
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Gαi signaling may be specifically exerting its effects at presynaptic terminals. And finally, this 

study also characterizes a behavioral desensitization effect of continuous activation of Gαi-

coupled receptors in striatal iMSNs. Future work investigating the proposed mechanisms of 

action for the effects reported here, including Gαi signaling in presynaptic terminals of iMSNs 

and desensitization after continuous activation, should provide insight on basal ganglia function 

and guide the development of new treatments for neuropsychiatric disorders caused by basal 

ganglia dysfunction, including those that involve changes in D2R activity and abnormal 

motivation. 
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CHAPTER 5 

GENERAL DISCUSSION 

 

SUMMARY AND IMPLICATIONS OF MAIN FINDINGS  

 The first study presented in this dissertation investigated the bridging collaterals and their 

relevance for basal ganglia function, including behavior and potentially neuropsychiatric 

disorders. First, I demonstrated that the bridging collaterals form synaptic contacts in the GPe. 

Then I generated a viral construct to study the neural and behavioral effects of chronically 

increasing excitability of dMSNs and iMSNs. Using this construct, I showed that chronically 

increasing excitability of the indirect pathway, but not the direct pathway, of the basal ganglia is 

sufficient to induce growth of bridging collaterals. Furthermore, I also showed that chronic 

pharmacologic blockade of D2Rs can rescue an abnormal behavioral phenotype associated with 

the bridging collaterals. I also showed that, in addition to genetic and pharmacologic 

interventions, changes in anatomical connectivity in the basal ganglia involving the bridging 

collaterals can also be induced by behavioral intervention, as motor training was sufficient to 

retract bridging collaterals and to rescue an abnormal behavioral phenotype associated with 

increased density of these collaterals.  

In the second study presented in this dissertation, I used the viral construct I created as 

part of the first study to selectively increase excitability of the direct or indirect pathway in 

specific sub-regions of the basal ganglia. Even though these manipulations did not lead to clear 

effects on motivated behavior, the results of this study identified specific behavioral findings that 

contribute to the field of research on basal ganglia function and behavior.  
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Finally, in the third study of this dissertation, I conducted a series of experiments using a 

chemogenetic approach to alter the function of the indirect pathway both acutely and chronically, 

revealing a number of novel findings about basal ganglia function and cell signaling in MSNs. I 

found that acutely activating Gαi-coupled signaling in the indirect pathway increases motivation 

by energizing behavioral performance, which, however, comes at the cost of goal-directed 

efficiency. Furthermore, I also demonstrated both in vitro and in vivo that activating Gαi 

signaling does not lead to a significant change in somatic excitability or activity in MSNs. 

Instead, I show that the effect of activating a Gαi-coupled receptor in MSNs can be measured 

downstream as disinhibition of the GPe. In addition, I also provide compelling behavioral results 

showing that chronically decreasing function of the indirect pathway using a chemogenetic 

approach may not be effective in increasing motivation because it induces compensatory 

desensitization.  

Even though these three studies had their own specific aims, I argue that the findings are 

not independent from each other. The main commonality between the studies is that all of them 

provide useful insight on how MSN excitability is related to neuronal activity and behavior. In 

Chapter 2, I learned that increasing excitability of MSNs can presumably induce compensatory 

changes in basal ganglia connectivity through a network effect. In Chapter 3, I found that using 

the same manipulation to change MSN excitability does not lead to robust behavioral effects on 

incentive motivation for natural rewards, but instead suggests a potential role for the NA core on 

timing and implicates the balance of direct and indirect pathway on action vigor. Finally, in 

Chapter 4, I attempted to affect neuronal excitability of iMSNs by activating Gαi signaling, but 

instead, I found that this manipulation produces a robust effect on motivated behavior but not by 

changing MSN excitability at the cell soma and likely via effects on presynaptic axon terminals. 
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First, although the bridging collaterals have been linked to excitability, my results do not 

establish an association between these collaterals and motivation in developmentally normal 

animals, However, it may still be possible that in models of disease states, such as the behavioral 

endophenotypes of schizophrenia modeled by overexpression of D2Rs in the striatum, basal 

ganglia connectivity may be abnormal. Thus, testing whether rescuing Kir2.1 function in D2R-

OEdev, both globally in all types of MSNs and selectively in dMSNs and iMSNs, may be 

worthwhile to determine whether impaired motivation in an animal model of schizophrenia 

endophenotypes is linked to bridging collaterals. Second, the results from all three studies beg 

the question of whether activating Gαi signaling in iMSNs, which does not affect somatic 

excitability in these neurons can still affect the bridging collaterals. One experiment done in the 

Kellendonk laboratory showed that non-conditionally expressing the hM4D receptor in the DMS 

to decrease neuronal excitability with chronic CNO treatment is sufficient to retract bridging 

collaterals in D2R-OEdev mice without affecting density of collaterals in control animals. It is not 

known, however, whether chronically activating hM4D receptors selectively in the iMSNs of 

D2R-OEdev mice is also sufficient to retract bridging collaterals. Such experiment can be done, 

but they would require breeding animals with four mutant alleles, D2R-OEdev mice (CaMKIIa-

tTa+/TetO-D2R+) that are also positive for Drd1-GFP, and Drd2-Cre. If this experiment reveals 

that bridging collaterals of D2R-OEdev mice can be retracted by chronically activating Gαi 

signaling in iMSNs in the DMS, it would suggest that collaterals were retracted in some of the 

experiments with chronic CNO treatment presented in Chapter 4. Since chronic CNO treatment 

in that study did not affect motivation in D2R-OEdev mice, this potential finding would further 

dissociate the bridging collaterals from motivation. On the other hand, if bridging collaterals are 

not retracted by chronically activating Gαi signaling in the indirect pathway in the DMS of D2R-
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OEdev mice, then the implication would be that affecting neuronal function via Gαi signaling may 

be fundamentally different from affecting neuronal excitability by regulating Kir2.1 function. In 

the case of Gαi signaling, it may be the case that globally targeting dMSNs and iMSNs, and not 

only iMSNs, in the striatum may be required to induce connectivity changes via the bridging 

collaterals. These potential results would still leave open the alternative that the bridging 

collaterals may be involved in the motivation deficit of D2R-OEdev mice. Thus, although the 

studies I conducted for this dissertation answer many questions about MSN excitability and 

motivation in an animal model of negative symptoms of schizophrenia, some questions remain 

open and should be further investigated. 

Another common ground among the studies, and especially between the studies presented 

in Chapters 2 and 4, is the relevance of the findings for therapies for neuropsychiatric disorders. 

Both pharmacological and behavior therapies for many psychiatric disorders require patients to 

either take a drug continuously, with effects being optimal after weeks of treatment, or, likewise, 

engage in behavior or talk therapy for weeks to months to achieve beneficial outcomes. In 

Chapter 2, I show that behavioral training for three weeks can induce changes in connectivity in 

the basal ganglia, leading to the same anatomical changes that may underlie the mechanism via 

which chronic haloperidol treatment exerts its beneficial effects in schizophrenia (Cazorla et al., 

2014). This finding opens a broad avenue for research on the mechanisms of behavioral therapy 

for schizophrenia, particularly for psychosis which cannot be modelled in rodents but is relieved 

by haloperidol and other D2R antagonists. In support of this proposal, recent studies have shown 

that cognitive behavioral therapy can be effective in treating psychosis in schizophrenia (Leff et 

al., 2013, Mehl et al., 2015). Moreover, in Chapter 4 I show that long-term, continuous 

pharmacological activation of a Gαi-coupled receptor induces desensitization to the beneficial 
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effects of the drug on motivated behavior. These findings should be taken into consideration 

when developing therapies for neuropsychiatric disorders since treatments traditionally require 

continuous use of drugs. These results may even help explain why drugs that target GPCRs, 

including antipsychotic mediations for schizophrenia, may not affect motivation when taken 

chronically by patients. Moreover, also relevant for therapy, in Chapter 4 I found that 

pharmacologically targeting Gαi signaling in the indirect pathway of the basal ganglia can be 

effective acutely to boost motivation, but this effect comes at the cost of goal-directed efficiency. 

The dissociability between the directional and activational components of motivation can, 

therefore, be determined experimentally and should be considered when designing strategies for 

treating disorders of abnormal motivation. Hence, some of the findings presented across different 

studies in this dissertation have important implications for development of therapies for 

neuropsychiatric disorders. 

Finally, the findings in Chapters 2 and 4 report two new types of plasticity in the basal 

ganglia that should be further explored by neuroscientists. One form of plasticity involves 

growth and retraction of the bridging collaterals that can be induced by neurophysiological and 

pharmacological manipulations directed at the indirect pathway of the basal ganglia. This form 

of plasticity has been linked to behavior in D2R-OEdev mice both in the artificial setting in which 

activity in the direct pathway is driven with optogenetics and in the more natural setting in which 

animals undergo motor learning. Both of these links are, however, largely correlational. The 

second form of plasticity involves the behavioral desensitization effect induced by chronic 

activation of a Gαi-coupled receptor expressed in iMSNs. It is not immediately clear whether 

these two forms of plasticity are related. As discussed above, it would be important to determine 

whether chronically activating hM4D in the indirect pathway can affect the density of bridging 
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collaterals. Moreover, although I characterize many aspects of the behavioral desensitization 

induced by chronic activation of Gαi signaling in iMSNs, including the findings that it occurs in 

both the DMS and NA core and can be reversed within 48 h of discontinuing drug treatment, the 

mechanism for this phenomenon remains unknown. The data I report in Chapter 4 is consistent 

with either a cell autonomous effect, such as receptor internalization, or with a fast network 

effect involving compensatory circuit changes, possibly similar to that described for the bridging 

collaterals, but that occur at a much faster timescale. Thus, to expand on the findings involving 

plasticity presented in different studies in this dissertation, it would be interesting to test whether 

a causal link between bridging collaterals and behavior can be established and to further 

investigate the biochemical, physiological, and anatomical mechanisms that may underlie 

behavioral desensitization to chronic activation of Gαi signaling in MSNs. 

 

FUTURE DIRECTIONS 

In this final section, I will explicitly lay out some of the broader research avenues I have 

opened with the findings presented in this dissertation. These future directions pertain to a 

number of sub-fields of neuroscience and to efforts to understand how basal ganglia circuits (a) 

regulate normal behavior, (b) can be disrupted in neuropsychiatric disorders, (c) can undergo 

plasticity with learning, and (d) can compensate to perturbations during both development and 

adulthood. In addition, my findings also open avenues for more mechanistic studies of G protein 

function in MSNs. 

In Chapter 2, I contributed to previous work done in the Kellendonk laboratory to show 

that plasticity involving the bridging collaterals is not regulated in a cell autonomous manner, but 

instead is mediated by a network mechanism. In light of these findings and knowledge about the 



166 

 

anatomy and connectivity in the basal ganglia, it is plausible that activity-dependent induction 

and retraction of the bridging collaterals may be controlled by regulated secretion of factors that 

guide, repel, or induce axonal growth. For instance, it is possible to conceive a scenario where 

increased activity of iMSNs targeting the GPe leads to secretion of an axon guidance molecule 

by cells in the GPe that selectively induces growth or releases inhibition for growth of dMSN 

axon collaterals into the GPe. Some studies have described activity-dependent synaptic plasticity 

mechanisms that regulate basal ganglia connectivity in development (Ding et al., 2012, 

Kozorovitskiy et al., 2012), but much less is known about similar phenomena in adulthood. 

Thus, strategies for screening axon guidance molecules for their effect on inducing growth or 

retraction of bridging collaterals should be developed in order to characterize the biochemical 

mechanisms that may underlie some of the behavioral findings I presented in this dissertation. 

In light of the many parallels I drew between the bridging collaterals and schizophrenia, 

another potential continuation of my findings would be to determine whether structural elements 

homologous to the bridging collaterals exist in humans and are associated with neuropsychiatric 

disease states. Brain imaging techniques may not have the resolution to image axon collaterals or 

activity related to function of these collaterals. But collaborations with neuropathologists who 

may have access to postmortem tissue of patients who suffered from schizophrenia can be 

promising.  It has been shown, for example, that D2R-OEdev mice have decreased protein 

expression of the Kir2.1 channel (Cazorla et al., 2012). Decreased Kir2.1 protein expression may 

also be detectable in striatal tissue from patients with schizophrenia and would provide a clear 

translational link between bridging collaterals and schizophrenia. Thus, approaches to study the 

associations between the findings presented here on bridging collaterals and symptoms in 

patients with schizophrenia could be fruitful and would require interdisciplinary collaborations. 
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In addition to this translational potential, further work on the bridging collaterals can also 

aim to optimize methods to selectively target the collaterals. If selective methods are developed 

to decrease and increase function of the bridging collaterals, it would be possible to determine 

causal relationships between their function and specific behaviors. So far, the evidence linking 

the bridging collaterals to behavior is correlational, and it may be possible that the collaterals 

themselves do not directly regulate behavior. Identifying an axon guidance molecule that can 

drive or inhibit collateral growth, as discussed above, could be useful in this approach. 

Moreover, as alluded to in Chapter 2, genetic tools could also be used for this purpose, but they 

present some challenges because both passing fibers that target basal ganglia output nuclei and 

bridging collaterals of the direct pathway are present in the GPe and the current optogenetic and 

chemo genetic tools currently available do not allow for targeting one of these types of axons 

selectively. Efforts to overcome such challenges, therefore, should be employed to establish 

causal links for some of the correlational findings presented in this dissertation. 

Another logical next step to expand on my findings related to Gαi-coupled signaling in 

MSNs is to characterize the compensatory mechanisms that mediate behavioral desensitization to 

chronic activation of hM4D receptors in iMSNs. Given that GPCRs are known to become 

internalized with repeated activation in many cell types (Doherty and McMahon, 2009), one 

strategy to test if internalization underlies desensitization to repeated activation of hM4D would 

be to perform electron microscopy imaging on immune-labeled hM4D receptors in animals 

expressing hM4D in iMSNs after chronic treatment with CNO.  

Finally, the findings presented in Chapter 4 are consistent with the expression of hM4D 

receptor in presynaptic axon terminals driving the effect of CNO on motivation and GPe 

disinhibition. As discussed in that chapter, the effect of Gαi signaling on motivation may be 
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mediated both through iMSN collateral disinhibition of dMSNs and/or through iMSN 

disinhibition of the GPe. The tools used in the current study do not allow for selectively studying 

these presynanptic terminal-specific effects. Recently, a chemogenetic tool has been developed 

to selectively express DREADDs in presynaptic terminals (Stachniak et al., 2014). These new 

tools could be used to activate only presynaptic Giα signaling in iMSNs in experiments designed 

to answer whether this mechanism can account for the effects presented in Chapter 4. It would 

also be interesting to investigate how activating hM4D receptors in iMSNs might affect lateral 

inhibition via iMSN-to-dMSN synapses using in vivo calcium imaging. Given that the vast 

majority of neurons in the striatum are either dMSNs or iMSNs, expressing D1Rs or D2Rs, 

respectively, using Drd2-Cre animals and co-injecting two viruses that lead to hM4D expression 

in Cre-positive neurons and GCaMP6f expression in Cre-negative neurons would provide a 

system in which hM4D is expressed in iMSNs and GCaMP6f is expressed in dMSNs, allowing 

activity of the direct pathway to be imaged while decreasing function of the indirect pathway 

with CNO treatment. Researchers have been able to successfully generate such “Cre-off” viral 

constructs that can be used together with the more traditional “Cre-on” constructs in the striatum 

to concomitantly express different genes in dMSNs and iMSNs (Saunders et al., 2012). If the 

hypothesis that hM4D acts on presynaptic sites to decrease axon terminal excitability or decrease 

neurotransmitter release is true, I would expect that, similar to the disinhibition of GPe activity 

reported in this study, CNO treatment in mice expressing hM4D in iMSNs would also lead to 

disinhibition of dMSNs in the striatum. Thus, developing new genetic tools for selectively 

targeting and imaging neuronal activity would be useful to advance my research and the field’s 

understanding of how basal ganglia output can be regulated. 
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Overall, therefore, the original research I present in this dissertation demonstrates that 

changes in connectivity in the basal ganglia can be induced by activity-dependent processes 

including behavioral training. I also show that selectively increasing excitability of specific 

pathways in the basal ganglia does not affect motivation for natural rewards. I further 

demonstrate that activating Gαi signaling in iMSNs does not affect excitability at the cell soma 

but leads to disinhibition of the GPe presumably by activing presynaptic axon terminals. And 

finally, I show that activating Gαi signaling acutely in the striatal indirect pathway can enhance 

motivation at the cost of goal directed efficiency and the same manipulation done chronically 

induces behavioral desensitization. I hope that these findings can contribute to neuroscience by 

providing a more complete understanding of how basal ganglia circuitry control motivated 

behavior and to neuropsychiatry by providing insight that can help guide therapeutic strategies 

for disorders of abnormal motivation. 
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