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ABSTRACT

Development of semi-automated steady state exogenous contrast cerebral blood

volume mapping

Frank Anthony Provenzano

Functional magnetic resonance imaging (fMRI) as it exists, in its many forms and vari-

ants, has revolutionized the fields of neurology and psychology by revealing functional

differences non-invasively. Although blood oxygenation level dependent (BOLD)

fMRI is used interchangeably with fMRI, it measures one single difference in a phys-

iological measurement using a set sequence. As such, there are other established

changes in the brain that relate to blood movement and capacity that can also be

measured using MRI. One measure, exogenous steady state cerebral blood volume,

uses a bolus routine contrast agent administered intravenously alongside a pair of

high resolution ‘structural-like’ MRI images to provide detailed information within

small cortical and subcortical structures.

In this thesis I design a semi-automated algorithm to generate maps of steady state

exogenous cerebral blood volume magnetic resonance imaging datasets. To do this I

developed an algorithm and tested it on existing MRI scanning protocols. A series

of automated pre-processing steps are developed and tested, including automated

scan flagging for artifacts and requisite vascular segmentation. Then, a methodology

is developed to create cerebral blood volume (CBV) region of interest (ROI) masks



that can then be applied on an existing database to test known CBV dysfunction in a

group of patients at high risk for psychosis. Finally, we develop an experiment to see if

template based cerebral blood alterations co-registered with class segmentation maps

have any positive predictive value in determining disease state in a well characterized

cohort of five age-matched groups in an Alzheimer’s disease neuroimaging study.
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Chapter 1

Introduction

1.1 Motivations

Historically, there has always been a significant chasm between the detection of brain

function as measured in vivo, and disease state. Some early experiments set the

framework for the detection of in vivo cerebral function, looking at both human and

canine models in an attempt to couple observed increased neuronal “activity” with an

observable and detectable change. [35, 77, 60] The underlying principle that governs

this relationship is referred to as “neurovascular coupling”. This idea states that the

metabolic need of neurons is coupled to the flow and volume of blood. Although

modern testing paradigms seek to exploit this relationship to detect dynamic changes

(e.g. resting for 30 seconds followed by looking at faces for 30 seconds [42]), one may

extend the temporal frame to look at changes on the order of months or years, as one

would see with slow progressing neurodegenerative diseases. Figure 1-1 demonstrates

this relationship on the capillary level.
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Figure 1-1: This figure shows an example of a neuron's relationship to blood supply.
Although neurons do not continue to develop in adulthood (with the exception of the
dentate gyrus, olfactory bulb and the subventricular zone[43]), there is synaptic and
angiogenic reorganization that occurs during the aging process.[32]

Magnetic Resonance Imaging (MRI) provides a relatively safe and non-invasive

measurement technique exploiting the physical properties of different tissues, while

providing high spatial resolution and not subjecting a subject to radiation like com-

puted tomography (CT) or positron emission tomography (PET). Additionally, newer

technologies permit for increasingly better temporal and spatial scanning and a va-

riety of pulse sequences to provide greater information to distinguish between tissue

types [62]. There are several variants of fMRI, including Blood oxygenation level

dependent fMRI (BOLD), while the most recognized variation of fMRI, suffers from

relatively poor spatial resolution compared to structural MRI.[64]

One reason to do MRI in patients with neurological conditions is established as a

tennet of modern neurology training.[8] A set of pulse sequences to determine struc-
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Figure 1-2: A graphic representation and interpretation of Angelo Mosso’s ‘First’
Neuroimaging experiment. A farmer named Michele Bertino had experienced a skull
injury, exposing his cerebrum under the skull. Dr. Mosso attached a sensor that
compressed a cylinder upon measurable cerebral pulsatile changes. Additionally, a
sensor was placed on the forearm to act as a control. (left) Several experiments were
performed (right) while the awake patient was connected to the apparatus (a), in-
cluding a resting experiment demonstrating resting state pulsatility(top), the subject
hearing church bells (*) and the patient being asked to perform a calculation of two
numbers (**) and providing a response (***). Although this experiment is thought
to have captured an analog of CBF, the change in pulsatility can be considered to be
a change in intra-session cerebral blood volume[60]
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tural abnormalities are generally unique a prescribing physician or center, but used

to determine specific tissue or vascular findings. For a patient presenting with a small

stroke, MRI may be used alongside CT to determine timing of bleeds, or an MRA

used to identify large cerebrovasculature aneurysms or malformations. These findings

tend to be ’structural’ in presentation, in that cell volume or neuronal loss is identified

in imaging as measurable atrophy or volume change. Observable variations in brain

function, through indirect measures of metabolism or activity, have been associated

with dysfunction in neurological and psychiatric disorders.[82]

For disease etiologies where the anatomic region impairment is focal and clearly

defined within several millimeters of either canonical or anatomical space, steady

state exogenous contrast ssCBV offers resolution comparable with structural imag-

ing while revealing a metric (relative CBV) not otherwise resolvable in of either T1,

T2, T2* or proton density (PD) weighting.[51, 58] Additionally, ssCBV is an inher-

ently quantitative measurement. Comparatively, BOLD fMRI is, in its practice, not

frequently measured in a quantitative analysis due to several limitations relating to

sequence parameters and deoxygenation factors, though feasible.[37] Thousands of

studies have successfully used fMRI BOLD imaging to demonstrate changes in re-

gions in response to an activation paradigm or from functional connectivity present

in resting state scans. However, a significant limitation in doing per-patient analy-

sis is the significance gleaned from group data statistics. Knowing that functional

changes are present in many disease states, ssCBV may offer a protocol-insensitive

quantitative measurement of brain metabolism.

CBV itself can be measured several ways in vivo using imaging measures. Bolus
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tracking MRI can measure the AUC and changes in transverse relaxation rate (δR2),

vascular space occupancy (VASO) can apply a signal nulling by manipulating sequence

inversion times, and CBV can also be indirectly extracted from CBF measures by

relating the MTT. Concordance between steady state and dynamic approaches, as

well as dynamic and PET approaches have been studied to examine the various effects

of reliability and reproducibility.[50, 29]

Predominantly, the most common uses of CBV and other blood based metrics

of MRI imaging are applied in determining the extent of both tumor growth and

stroke.[21, 76, 98] Since these areas frequently have drastic changes in contrast accu-

mulation and perfusion compared to normal appearing tissue. One of the underlying

assumptions of contrast enhanced MRI is the presupposition of an intact BBB—one

that is frequently violated in oncologic and infarct cases. A challenge of this modality

is the reliable generation of functional CBV maps across scanners and sites. Exoge-

nous steady state CBV has been calculated at a range of scan sites, however the val-

ues for CBV vary significantly based on MRI noise or other user required parameters

[39, 90, 45]. The hippocampus, which has a volume roughly 4 cc located bilaterally in

the medial temporal lobe (MTL), is an area implicated in many diseases.[83] ssCBV

amongst subject and control studies have revealed voxel based and regional differences

in several neurologic disorders. [44, 80, 83, 84, 90]

Alzheimer's disease is a neurodegenerative disease that afflicts millions of older

adults around the world. Roughly one in three seniors will get some form of de-

mentia, and AD accounts for more than 60% of all dementias. AD is characterized

by a constellation of changes that occur within the brain of an affected individual.

5



Figure 1-3: This figure reflects the neuropathology revealed by the Braak's in
Alzheimer's disease staging.[9] Starting at stage I, one can see pathology that be-
gins with isolated NFT in the pre-α layer the trans entorhinal cortex of the medial
temporal lobe. MTL volume loss is known to occur in late stage diseases, less so in
preclinical stages. A tool with resolution able to interrogate submillimeter resolution
may be able to detect these histology changes as metabolic signatures prior to volume
changes.
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Two noted neuropathological correlates of AD are deposition of insoluble amyloid

and buildups of hyperphosphorylated tau proteins. Figure 1-3 demonstrates one of

these changes as seen with NFT staining in the transrhinal region of the EC before

any other region has noted changes.[9] The end result of chronic changes is noted at-

rophy throughout several key areas of the brain, including the cortical mantle as well

as the MTL. Some functional imaging studies have focused on ligands that bind to

some of these deposits, such as PiB for amyloid deposition, or functional or activation

changes in patients with AD. Subtle functional changes may not be detected if the

detection sampling size is too large. As such, a method that can reliably interrogate

this small area may be of value in early detection of this disease. In addition to

neurological disorders, many psychiatric diseases have noted changes with imaging.

Schizophrenia is a form of psychosis afflicting 1% of the US adult population. It was

classically shown to be a disorder of dopamine, detectable by PET scans targeting

dopamine receptor activity in the frontal lobe.[65] However, an amendment to that

theory is that glutamate, and glutamanergic dysfunction by means of extracellular

glutamate, may also trace and elucidate severity of schizophrenia, specifically the pro-

gression into advanced state from an at-risk state.[57] Studies from our and outside

labs have found elevated CBV in the CA1 subregion of the hippocampus to indicate

dysfunction in schizophrenia patients.[80, 90, 104] The ability to classify and calcu-

late CA1 hippocampal CBV may aid in drug discovery, drug efficacy and potentially

earlier diagnosis. The goal of this dissertation is to develop and test a framework

for the generation of CBV images using routine scanner sequences, protocols and ex-

perimental constructs, as well as to define a system whereby new regions of interest
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(ROI) may be applied and adapted for disease assessment and tracking. In addition

to particular schizophrenia regions of interest, our lab has also discovered an area of

the hippocampal formation, revealed by CBV mapping, which can be helpful in the

earliest stages of Alzheimer's disease.[44] This region was defined using a generative

group template to which patient MRI images were co-registered and statistical anal-

yses performed.[3, 78] Additionally, we wish to establish criteria for “processability”

of images, as well streamline the automated and accurate generation of CBV images

for further analytical studies.

1.2 Specific aims

Figure 1-4: Flowchart of specific aims
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1.2.1 Specific aim 1: Develop software to generate CBV im-

ages with a priori anatomic segmentations

For this aim, a software package is to be written that can reliably generate cere-

bral blood volume maps from routine structural T1 weighted MRI images (TE=3.1,

TR=6.7, spoiled gradient echo) acquired prior to and after a bolus injection of a

gadolinium based contrast agent (GBCA) [62]. The images need to be converted,

organized, and error measures and checks will be written to ensure adequate clinical

perfusion and image quality. Analysis of anatomical segmentation would be written

into the algorithm, to allow for standard anatomical masks. [25] Systems would be

tested and coded to ensure reproducibility. The programming environment would

be programmed using Matlab (Mathworks Software, Natick MA USA) programming

interface along with new and existing Unix shell software, with a specific goal for

repository considerations and eventual software deployment for other users and sites.

The end goal of the software would be not only CBV map generation, but also

the organization of the necessary files to allow for group-level analysis (specifically

templates for disease and control groups), and the application of parametric results

generated from group level analysis such that it can be applied on an individual

patient's CBV map in the future. The most common statistical measure of these

maps would be mean value of a region or regions in a group template space. [23]
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1.2.2 Specific Aim 2: Using extant literature and findings

support CBV findings by examining hippocampal dys-

function in schizophrenia

For this aim, we apply the previous method to generate CBV maps, and examine

potential metabolic dyshomeostasis as measured using the steady state exogenous

contrast CBV. Similar work has been demonstrated by our lab and confirmed by oth-

ers to be associated with both early and late stage neurologic disease states.[84]Small

et al. discussed alterations in the framework of the hippocampus in several disorders,

including Alzheimer's disease, schizophrenia, depression and temporal lobe epilepsy,

to name a few.

Figure 1-5: CBV findings in preclinical Alzheimer's disease as shown by Khan et
al.[44]

Figure 1-5 demonstrates a parametrically defined region of reduced relative CBV

within an area of the MTL and hippocampal formation called the entorhinal cortex

(EC), specifically the lateral aspect. The CBV maps of these regions were taken

from a single scanner over the course of several years, and processed and curated in-

house.[19] We would seek to demonstrate a similar finding, concordant with current

literature, in an affected region of the brain in a diseased or prodromal state, ideally
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in prodromal psychosis and schizophrenia. We wish to apply this method to a new

dataset to prove the validity of the CBV maps generated.

1.2.3 Specific aim 3: Use a priori CBV maps in template

space and determine whether functional imaging changes

in small areas of the hippocampus are predictive of

structural changes as measured by standard MRI se-

quences

For this aim, we examine structural MRI images with class segmentation and mor-

phometric techniques to determine if regions identified functionally in groupwise data

can have a greater positive predictive value in the structural domain than existing

structural image software and methodology.[53, 54] Although structural changes have

been clearly identified in patients with advanced disease, evidence shows that func-

tional deficits would be apparent prior to structural change which indicates cellular

loss.[83]

Additionally, we want to be able to test the acquisition and processing components

of this algorithm at different locations and on different servers, as similar software

techniques have done before.[33] Due to the nature of the individual processing com-

ponents and potential for neuroimaging diagnostics, the ability to accurately and

repeatedly get appreciably similar results is crucial. As such, several methods will be

examined to see which yields the best results.
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1.3 Innovation

The work proposed could potentially be applied to aid in the diagnosis of neurologic

and psychiatric disorders. MRI post-processing techniques have been used to chart

hippocampal volume changes in the ageing brain, a known biomarker of dementia

risk. The software, Neuroquant, uses a proprietary version of a cortical and subcor-

tical segmentation algorithm based on a widely used toolkit (Freesurfer) to measure

hippocampal volume.[63, 75] It provides healthy established ranges of hippocampal

volume, as shown in Figure ??, for known age and gender matched groups and has

a published rate of error. Our software may provide a range of regional CBV values

in control and subject groups. We wish to establish the reproducability of our work

across different magnets and different sites. A framework for such a multi-site system

has been used with MR imaging with the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) and their scanning procedures.[97] Ideally, a user would be able to process

locally or accurately ‘push’ their scans to a DICOM repository or process locally. Re-

ports would be generated similar to existing post-processing MRI techniques.[36, 48]

1.4 Background

1.4.1 CBV fMRI and Metabolism

Physiologists and radiologists may have different fundamental ideas regarding the

definition of “Metabolic” in the field of imaging. 1 It can either refer to activity-based

1Although many modalities claim to perform metabolic imaging, it is often based on a previous
direct coupling. For instance, PET imaging is not“glucose metabolism”but rather the direct measure
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or longitudinal changes in tissue energy consumption, although unless one refers to

imaging of the functional component of energy in mammalian cells, ATP to ADP,

usually the measured changes in vivo are from changes in the earlier stages of energy

metabolism. FDG-PET measures glucose uptake through a radionuclide, fMRI BOLD

measures changes of magnetic susceptibility of the oxygen carrying species, Hb and

DeoxyHB, and CBV measures the signal of contrast agent only in areas of actively

perfused blood[96]. When discussing changes measured in CBV, our method focuses

explicitly on the steady state equilibrium found by measuring the value of signal

changes only present in the microvasculature within a given set of voxels. Activity in

cerebral tissues is proportional to the need to perfuse active metabolic components

through the lumen of adjacent vessels.This principle that drives CBV, CBF and BOLD

is referred to “neurovascular coupling” and was first defined by Roy and Sherrington.

Despite a thorough understanding of underlying mechanistic changes occurring during

activity and basal states, changes revealed by all functional imaging presupposes

either increased glucose uptake, water movement, cerebral metabolic rate of oxygen

utilization (CMRO2) or microvascular volume. One of the most important addenda

to referring to FDG PET and CBV as “measures of metabolism” is to append “as

shown by glucose uptake and percent signal change”, respectively.

The first step in acquiring CBV scans is the acquisition of the MRI image pairs

and appropriate patient safety clearing for IV contrast injection. One issue that needs

to be verified mathematically and systemically is the uptake of contrast signal in the

scan. Though rare, since contrast uptake in T1 weighted signal can be verified visually

of “glucose uptake”
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Figure 1-6: A diagram coupling neurovascular activity, metabolites, oxygen blood
flow and volume[52]

by a technician, inadequate injections or improper uptake will prevent adequate signal

change in the post-contrast image. Histogram analysis is used to rule out those

scans prior to processing. In addition, a standard high-resolution (<1mm3) image

prior to the contrast image pairs is acquired and processed using FreeSurfer. The

main component to generating the CBV image is isolating an area of pure blood

volume. Historically, patent, large and regular cerebrovasculature is used, specifically

the superior sagittal sinus.[49, 58] In the post contrast image the vessel is easily

identifiable as an area of increased T1 signal. A specific algorithm isolates the largest

identifiable portion of this vessel and generates a mask of its location in co-registered

pre and post contrast space. An arithmetic subtracted image is calculated by taking

the pre contrast image from the post-contrast image, and dividing by a value of

the highest quartile of the subtracted sagittal sinus masked value. A brain mask

is obtained from the binarized map, which means to set any non-zero value to 1.
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FreeSurfer segmentation and several morphological techniques are also employed.

1.4.2 Statistical analysis and template atlas generation

There are two main statistical methods we employ in analyzing CBV images: mean

region based and voxel based (VBA). CBV offers relatively higher spatial resolution

compared to comparable functional imaging techniques (e.g. fMRI BOLD or 18-

FDG PET). As such, we can capitalize on both methods in seeking to examine mean

functional differences in groups both categorically and longitudinally. In the first

example, VBA, the images are co-registered to a standard brain, either generated from

a group specific generated template or a canonical template. N-number of statistical

tests are conducted as if each measure is i.i.d. A gaussian smoothing kernel may be

used after co-registration to increase SNR.[101] Statistics can be reported by setting

a connected component cluster-level significance. [28]This approach is useful if the

locus of signal change is expected to occur in a smaller punctate region, but the search

region is unknown, as itt is unbiased to anatomical localization.

Conversely, ROI based statistical approaches rely on only one region, and generally

the mean statistical value of signal in that region. This region can be chosen from

either routine anatomically drawn values in native (i.e. acquisition) space or on a

template to which the brains are co-registered. When the entire region of an effected

area is suspected to be impaired and expected to show decreased signal, an ROI

approach would yield the most significant results due to multiple comparisons. When

the size and location of the region of impairment is unknown, it would be preferrable
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Figure 1-7: A diagram showing joined CBV maps used to generate CBV values for
voxel level analysis

to focus on a VBM approach, whereas ROI analyses tend to provide statistics (most

commonly mean) within a prescribed anatomical area.

1.4.3 Semi-automated analysis and error-metrics

The goal of this section was to write a software suite that could take T1-weighted im-

ages acquired with minimal a priori technician involvement and sequence parameters

to generate reproducible CBV maps. Since the contrast agent impacts T1 weighting,

any sequence with T1 weighting will show increased signal in the reconstructed im-

age. To allow multiple scanners to detect the sequence and signal, we need to identify

orientation, voxel size and basic SNR of both images to ensure images fall within a

range to be pre-processed. Additionally, a system must be in place to filter macro
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Figure 1-8: A schematic representation of how anatomically based CBV images can
be used for direct statistical analyses. The left pane represents n subject images that
get co-registered into a standard space of continuous values, middle, which are then
used to generate voxel by voxel statistics. Since there are no time series or other
corrections in place besides the initial template co-registration, any result, right, is
based only on the raw subtracted and normalized signal value.
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epi-cortical vessels so as they do not contribute to the regional CBV value. In original

papers, a 10% threshold was used to filter such values, however, I have implemented a

Gaussian model to filter discordantly high signal, effectively separating vessels larger

than a voxel[50]. This model is irrespective of scanner intensity differences, as long as

images are scaled appropriately in the same sequence and contrast uptake is adequate.

Additionally, if either scanner, field or patient induced artifacts prevent automated

vessel identification, the program will flag and allow for user investigation and inter-

vention.

1.4.4 Parameterization and delineation of template ROIs in

suspect groups

Once CBV maps have been generated, and a locus identified in a region known to

demonstrate dysfunction, we must be able to either take that region or find a new

regions and accurately apply to new CBV scans. For instance, in one our studies,

automatically generated CBV were generated using parametric analysis and a global

CBV decrease was found in pre-clinical Alzheimer's disease in patients prior to disease

conversion. A particular utility in this approach would be acquiring new CBV scans

on patients and stereotactically applying these parametric maps to a new brain.
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Chapter 2

Specific Aim 1: Cerebral Blood

Volume Toolkit Development

2.1 Examine pre and post contrast MRI images

for uptake and processability

2.1.1 Introduction and study design

While there is a fascinating historical imperative governing functional brain imaging

as it is practiced today, the first paper to use principles of MR images to examine

relative increased activity, or function, using MRI would be by Belliveau et al.[7] In

this paper, a T1-weighted MRI image was taken prior to a series of fat-suppressed

echo-planar 8-10mm sagittal slice images in the V1 visual cortex in the occipital lobe.

This study is often mis-intrepreted to show changes in signal concordant with BOLD,
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Figure 2-1: A diagram showing CBV analytic stream to generate both canonical
region of interest analyses as well as voxel based analysis. Since the method of CBV
generation outlied uses a pair of anisometric gradient echo images, we can use either
unbiased voxel by voxel statistical measures or identify a canonical or archetypical
region and co-register that region with a greated degree of certainy and fewer partial
voluming effects than if it were a lower resolution EPI fMRI study or other functional
image.
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Figure 2-2: Simulated TR values for tissue classes alongside GBCA injection

but was in fact a measure local blood volume difference.1 GBCA was administered

before this process and the TR modified to account for multiple scan acquisitions. A

flashing image device was fitted to elicit a strong change in cortical activity of the

patient in the V1 visual cortex (in the occipital lobe).2 The T1 was used to provide

high resolution mapping while the echoplanar charted the changes of the injection of

a contrast agent (chelated Gadolinium), generating a concentration-time curve, the

integral of which is proportional to volume of blood in the area mapped.

While this experiment was later perfected by Ogawa et al. to define the blood

oxygenation level dependent (BOLD) effect in EPI of patients, it took several years

1Talmudic interpretations of signal contrasts aside, MRI signal for almost all studies measure
resonance changes of water, and more accurately, H1 protons. All contrast mechanisms change
either relaxivitiy or susceptibility of components within.

2For all fMRI studies mentioned, when discussing flashing checkerboard or other activity, all
studies are dynamic sequences that look at either the increase in volume, flow or DeOHb from local
changes in susceptibility or T1 shortening. ssCBV always acquires just one pair of scans; if multiple
T1 scans are acquired, it often follows DCE modeling.[91, 74]
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(a) a

(b) b

Figure 2-3: (Two variations of chelated gadolinium contrast agent. Chelation is
a process by which elemental or ionic gadolinium is bound to an inert substance
that remains in the vasculature without passing the blood brain barrier of a healthy
individual and is eventually excreted. (a) shows gadodiamide marketed as Omniscan
and (b) shows Gadobutrol marketed as Gadovist
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Figure 2-4: Instance of contrast enhanced signal change mapped on orthogonal pro-
jections of the brain[7]

C(t) =
K(t− Ta)

β
exp(−t− Ta

2β
) (2.1)

Figure 2-5: Levenberg-Marquart concentration time curve of the change in ∆R2 (∝
1/∆T2)as a function of bolus detection of GBCA injection. Both β and K are inherent
functions of the curve fitting procedure, Ta is the time at which the bolus is injected
and ‘t’ is the time.[50]
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to examine the basal changes in magnetic susceptibility using T1 weighted imaging

in patient groups.[64] Lin et al. proposed a series of experiments repeating Belliveauś

Figure 2-6: Comparison of exogenous, at multiple injection doses, and endogenous
contrast agents in both gradient and spin echo MR sequences. Note ordinate is log-
transformed.[66]

EPI techniques while adding a fairly generic T1-weighted sequence prior to and after

the bolus injection of Gadolinium. Relaxivity values for known tissue types can be

seen in 6.1.[50] This sequence was a FLASH (fast low angle shot) MRI originally

designed to reduce the time of a T1 image acquisition. Since T1 times for water and

tissue are larger than T2*, scanning time is an important consideration irrespective of

magnetic sequence strength in developing a human MRI protocol. While T1 imaging

for a sample of brain has sampling and physical proton relaxation constraints, a sub-

milimeter isometric MRI pair can be acquired using current software techniques in

approximately 12 minutes, an important consideration for patient compliance.[10, 24]

Our lab was interested in examining was the physiological changes predicted by disease

state in areas of the medial temporal lobe of the brain. To do so requires a high

resolution functional image that captured the hippocampus along its longest axis;
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coronal. Both murine and human variations of this steady-state exogenous CBV

protocol were developed.[67, 68]

2.1.2 Methods

Image sequence and parameters for this study had been previously defined, tested

and validated to optimize SNR and patient scanning time. MRI scan pairs had

been acquired prior to and during the initial phase of this study using those identical

parameters on a Philips Achieva 3T MRI scanner with a 32-channel SENSE head coil.

A T1-weighted gradient echo scan using FFE (“T1-FFE”), FOV 240x196, TR=7,

TE=3, TI=1000, FS=10, 2 dynamics, Voxel size 0.68x0.68x3mm3.[92, 20, 69] An

archetypical pulse sequence diagram can be seen in 6-13. A gradient echo image with

rf spoiling is ideal (compared to gradient spoiling) for several reasons3:

� It is invariant in space

� Does not generate eddy currents (a common contributor to MRI noise)

� Is governed by phase changes the generally follow a fixed quadratic formula

The non-zero composition of the MRI matrix follows a modest Gaussian distribution.

In order to determine whether the requisites scan acquisitions are suitable for pro-

cessing, several requirements need to be met, specifically adequate contrast uptake

and minimal movement artifacts. There should be a way to see if proper gadolinium

uptake occurred, as well as if other artifactual errors have occurred which would pre-

clude proper pre-processing. We assume MRI technicians will perform the necessary

3Spoiling of gradient echo pulse sequences are routine in modern-day clinical practice for the time
and availability they provide
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phantom studies and address scanner quality control assumes that permit two acqui-

sitions without any scaling differences. Therefore, the only changes between sequence

reconstructions will yield only changes attributable to factors such as RF noise, fluid

movement inside the tissue being imaged. Therefore, the introduction of a systemic

‘tracer’, influencing a reduced T1-relaxation time and increased signal should cause

the total histogram of the signal to increase, assuming a static scaling parameters.

Tissue class segmentation is influenced by global histogram calculations. Gadolinium

accumulates throughout a subjectś entire vasculature, but specifically does not cross

the BBB in patients with an intact BBB[34, 46]. We therefore assume (and require)

such integrity in patients for whom a CBV analysis is to be performed. However, as

part of good radiological practices, one may discover an infarct or bleed through MR

contrast administration. For these patients, a BBB integrity assumption fails, (i.e.

acute trauma or malignancies), and a gadolinium-enhanced MRI could not be used

for CBV calculations.

To test whether an image was properly perfused, images are converted to non-

scaled the non-zero histograms of brain-extracted voxels of co-registered images (pre

and post contrast) were calculated and examined. “Brain-extraction” refers to the

process by which constructed MRI images are separated into the internal cerebrum

and neuronal structures and the outer dura matter, cerebral spinal fluid, skull and

skin.[85] Additionally, the images'regional cortical and subcortical values were exam-

ined using Freesurfer.[22] A mean difference was calculated and any results after the

max histogram distribution (presumably of white and gray matter) is noted. For

any can that does not have adequate uptake, this difference is orders of magnitude
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Figure 2-7: Non-zero histogram distribution for tissue classes using a standard class
segmentation protocol.[2]

smaller than one for which it does. Besides examining the capacity for uptake, this

pre-requisite algorithm will examine whether images were scaled using the same pa-

rameters.

2.1.3 Results

For a sample of 50 patients who had been recruited to have the pre-requisite CBV

scans (pre and post contrast MPRAGE, .68x.68x3mm), two scans had been identified

through traditional user curated methods to not meet standards contrast perfusion.

A template was created using 20 normal controls to generate an averaged scaled

histogram and mean values of a two-degree Gaussian distribution were compared

from each scan pair to the “template”. To provide a coarse metric or scanner uptake,
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Figure 2-8: A dual histogram analysis panel: The top panel refers to non-zero his-
togram bins of 100 for the pre-contrast image in red and the post contrast image in
blue. The lower panel refers to the subtracted histogram difference.
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Figure 2-9: A set of four pairs of dual histogram analysis panels. TL, TR, BL all refer
to patients who have had adequate contrast uptake an little movement. BR shows
a patient with poor contrast uptake (often when the administration of i.v. GBCA
bolus of GBCA does not enter the venous system). The bottom histogram difference
can be seen to be reversed, whereas the previous bimodal distributions are clearly -
and +, the bottom is reversed. Sometimes, if not revered, the fit is below a particular
R2 value when the function is minimized.

g(s) =
1

2
√
π
a1 exp(

(s− b1)2

2c21
) +

1

2
√
π
a1 exp(

(s− b2)2

2c22
) (2.2)

Figure 2-10: A modified 2-degree gaussian distribution
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signs of both means were measured as it was observed empirically that the histogram

differences for all patients followed a negative first degree value (indicating voxels

in the pre-contrast image that become perfused) and a positive second degree value

(indicating voxels those same voxels in the post contrast image). The algorithm

correctly identified every patient previously identified by rater observation to have

poor contrast uptake by rater identification. We plan to explore the changes in

histograms presented through movement which would improperly scale MRI images.

2.1.4 Conclusion

This is an important a priori measurement technique to rule out patient scans before

calculation and allow a trained rater to either support the algorithm findings and

exclude or further investigate. Either way, it reflects an important feature germane

specifically to matched intra-class, intra-modal contrast agent images.

2.2 Identify region of pure blood in the superior

sagittal sinus

2.2.1 Introduction and study design

CT or MR Angiography is an important technique in radiology to identify and exam-

ine cerebrovascular abnormalities such as aneurysms or infarct. Angiography identifies

areas within tissue where active perfusion occurs.[26] In the non-acute setting where

MRI has been cleared for the patient, there are two methods to generate the extent of
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vascularization: time-of-flight (TOF) dynamic and contrast based MR imaging. Cur-

rent FDA guidelines suggest TOF methods unless it is otherwise contraindicated.[38]

Although the entire vasculature might help get a greater sampling data of mean blood

volume extant literature supports isolating the main venous output of the superior

portion of the brain, the superior sagittal sinus. Sampling voxels within this vessel

provide a value of averaged expected signal in a modality (whether it be dynamic

PET or contrast MRI) that can be used as a normalization of tissue values. For

dynamic MRI imaging using a kinetic modeling, there is often an AIF measure that

is acquired. This is a voxel that is placed either by software or a technician, but is

often noisy and a source of error or variance.[47] In wanting to generate new CBV

images and adhere to previous protocols as much as possible, we wanted to capture

a portion of this vessel that we assume to be measurable in all patients repeatedly

with no severe cerebral abnormalities using a semi-automated procedure. We wanted

to adapt a method to identify only the specific locus of cerebrovasculature we wish

to sample, the main venous outflow of the cerebrum, the SSS.

2.2.2 Methods

Clinicians order T1 weighted MRI with contrast (i.e. gadolinium) to show vasculature

whilst preserving gray matter and white matter anatomy frequently. Vasculature in

those images can be predicted in three dimensions through thresholding and stacking

each slice orthogonal to the thickest axis (usually B0 or the axial plane, but in our

case oblique coronal). We can use existing techniques using linear algebraic methods
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Figure 2-11: Sample time of flight (TOF) MRA with a 1.5 T MRI field strength
acquisition (a) and a 3.0 T MRI field strength acquisition. [1]
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Figure 2-12: Form of the Hessian matrix

to classify vessels using local matrix changes and definining shape parameters. These

parameters are based on the eigenvalues of the hessian matrix and is referred to as a

vesselness measure, as first described by Frangi.[27]

Frangi proposes two dissimilarity features to quantify and detect on a voxel basis.

These features are based on the three eigenvalues of each voxel of the hessian form.

RA =
|λ2|
|λ3|

(2.4)

Figure 2-13: Ratio component for the blob likelihood.
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RB =
|λ1|√
‖|λ2λ3|‖

(2.5)

Figure 2-14: Ratio component for structures that range from flat circle to line struc-
tures.

S = ‖H‖F =

√∑
i≤D

λ2i (2.6)

Figure 2-15: The ’structureness’ component

Vo(s) =

{
0 if λ2 > 0 ∨ λ3 > 0

(1− exp(−RA2

2α2 ))(exp(−RB2

2β2 ))(1− exp(− S2
2c2

))
(2.7)

Figure 2-16: All components joined together to produce final grayscale invariant
vesselness equation.

Figure 2-17: A sample image shown in A upon which an edge detection B is per-
formed and a “Ridge” detection is performed. One can see the identifiable areas in
the edge detection bound the area contained between those points, adding to diffi-
culty for a multiple voxel boundary, or in the event an edge contains features between
the abutting areas. A “Ridge” detection in C isolates the local points of infection
by discretizing and modeling as a 2nd degree polynomial, identifying only areas of
inflection, making it ideal for vessels larger than two voxels length.
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The jacobian of the 1st order derivative minima will not capture steep changes

(as in the border between a vessel edge and T1 signal modulated cisternal space)in

n-dimensions. Nor will it be useful in defining high intensity local changes. Instead,

we chose to use 2nd order derivitives which are sensitive to points of inflection which

better characterize regions where greatly increased signal are present next to physical

boundaries where the signal drops off quickly. This form of the 3D matrix is called

the Hessian. However, many structures in the post-contrast brain have local minima

and maxima parallel to the plane of the sagittal sinus, and we wish to identify only

that structure which contains the vessel in question. The steps to identify such a

region are two-fold: 1) generate a probabilistic a priori atlas of the superior sagittal

sinus and 2) to use that atlas as a probabilistic model in identifying the same vessel.

We use the vesselness method on the post-contrast image (to avoid any additional

co-registration artifacts from later methods in the processing).[27] The subtracted

image, which is closer in practice to an MRA was not used in order to reduce the

chance of errant clusters of bright voxels. We perform morphological operations on

the final thresholded vesselness map and morphologically erode those images with a

cubic kernel (as seen in 2-20), apply a thresholding on the grayscaled minima and

create a connected component map of the possible vessels.

We then co-register the masked connected component mask unto a co-registered

probabilistic vessel atlas of manually curated vessels and choose the vessel with the

highest value as seen in 2-23.

We use a Bayesian classifier to calculate the approximate vessel from a ẑ seen in

2-21
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Figure 2-18: The raw vesselness map generated from a random subject’s post gadolin-
ium scan. TL is oblique coronal to the long axis of the hippocampus, TR is sagittal
anisotropic and BL is axial anisotropic. One can make out several structures including
the bulk of bilateral hemispheric WM. We are only interested in the isolated region
located medial and superior to both of those regions.
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Figure 2-19: The same vesselness map in 2-18 with a connected component algorithm
applied with false color. Each color reflects a masked region of contiguous voxels in
n-dimensional space. The area we wish to identify is indicated with an arrow.

img =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 , b =

1 1 1
1 1 1
1 1 1

 , img	 b =


0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

 (2.8)

Figure 2-20: Here, a n-dimensional image (where n=2), img is eroded with structuring
element b. For our analyses, kernels were cubic 3x3x3.

ẑ = argmax
k∈{1,...,K}

p(Vk)
n∏
i=1

p(xi|Ak) (2.9)

Figure 2-21: Here we wish to determine a vessel value from ẑ, from the total connected
components V ∈ k, as a function of the existing atlas mask, A, and voxels in a potential
mask.
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Figure 2-22: Eigenvalue shape descriptions based on the hessian matrix of a sphere
(or ‘blob’ structure), plate-like and tube-like structure. Tubular structures can be
identified by adjusting values of the prescribed eigenvalue amounts

Individual	  Post-‐Contrast	  

Individual	  Pre-‐Contrast	  

Calculate	  SSS	  from	  
vesselness	  map	  

Vesselness	  Atlas	  Genera,on	  

TEMPLATE	  SPACE	  

Make	  average	  SSS	  
map	  

Group	  Template	  
from	  pre-‐contrast	  
images	  

Use	  transforma=on	  on	  
vesselness	  map	  

Make	  connected	  
component	  
vesselness	  map	  

Individual	  Post-‐
Contrast	  

Individual	  Pre-‐
Contrast	  

Find	  most	  
likely	  vessel	  
based	  on	  
atlas	  value	  
maximiza=o
n	  

Use	  same	  vessel	  
as	  mask	  on	  new	  
post-‐contrast	  
image	  

Calculate	  individual	  Pre	  
to	  group	  template	  pre	  
transforma=on	  

Applying	  atlas	  to	  new	  
subject	  

Figure 2-23: Diagram of how the vesselness atlas is created. Although we have used
an aforementioned 3.0T MRI vesselness mask as our primary atlas, this explains the
framework for both the creation of new vessel atlas and the application of said atlas
to any new image which has had vesselness operated on it.
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CBV =
TPost − TPre

SSSPost − SSSPre
(2.10)

Figure 2-24: relative CBV is calculated from tissue, T, in a voxel in the post and pre
contrast image divided by the mean value of blood as calculated from the superior
sagittal sinus (SSS) in the post and pre contrast images. The denominator for each
voxel in the subtracted tissue image is identical.

Once the final vessel is finally calculated the final CBV image is calculated using

the following formula

2.2.3 Results

Figure 2-25: Vesselness maps with the following characterstics: α=0.05, β=20, c=30.
For the scanner on which most of the pre and post contrast MRI pairs have been
acquired, these are the values which have been shown to be most useful in generating
reliable SSS extraction maps.

A successful vessel segmentation is defined as any ROI in which at least four voxels

are isolated inside of a vessel. A mask atlas was created from a diverse population

across a varied population. A top proportion of vessels is chosen from either the

subtracted image or the post-contrast image, although both methods reveal similar

values.
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Figure 2-26: Rendering of an averaged and thresholded joint magnetic resonance
angiography from a sample of co-registered vesselness maps. Note the clearly defined
superior sagittal sinus on the top of the image as well as other
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2.2.4 Conclusions

This particular method of vessel segmentation has provided accurate vessel repre-

sentations on all of the patients to which it was applied. SSS integrity is one of

the necessary components to analysis and we wish to semi-automate this process to

permit for regular identification of this particular neuroanatomical structure.

2.3 Identification and elimation of epicortical ves-

sels in ROI analysis

2.3.1 Introduction and study design

Figure 2-27: Anatomical representation of the main cavernous outflow (shown with a
texture) and inflow (shown with a bold line) within the vasculature of the brain.

The brain is richly vascularized and consists of a gossamer system of extra or epi-

cortical arterial input and venous outflows. Identification of areas located within these
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largest regions allow low resolution ( >1.5 mm3) MRI images to identify voxels con-

tained entirely within voxels thought to represent an area containing only pure blood.

These areas are helpful for clinical applications of gross vascular abnormality such

as measurement of blood brain barrier integrity, however, do not relate necessarily

to the changes in discrete cerebrovascular function that associates with angiogenesis

and synaptogenesis that we wish to measure using our CBV mapping techniques. Lin

et al. prescribed a strict threshold of the highest 10% of all signal in the subtracted

brain. [50] However, this original specification was meant for animal models with

smaller variance in total head and neck size and shape. Hence, a hard coded percent-

age value does not take into account large changes in signal uptake found in the event

that a patient has more tortuous or dense large vasculature.[16] To apply a dynamic

approach to this filtering, we sought a method irrespective of all present signal and

anatomy.

2.3.2 Methods

MRI scaling parameters for every CBV are not fixed and the intensity values present

in images going to contain a mixture of values not fixed at a 10-binned histogram.

A Gaussian model curve fitting for subtracted histograms was observed. Using a

curve fitting procedure similar to the method described to identify uptake, as well

as empirical observation of vasculature elimination as it is defined in the subtracted

image (as areas of very high signal) we decided to fit a separate 2 degree Gaussian

curve, eliminating all values 2.5σ above the second gaussian mean. Here we expect
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variation within the distribution, as demonstrated before, however the value of 2.5σ

was tested on a sample of 94 patients who had acquired the standard pre-requisite

CBV scans. Empirically, each scan was inspected in this group and locations within

the medical temporal lobe that are thought to contain high beds of vascular were

examined along the long axis of the hippocampal circuit. An example of this patient

is shown in 2-34.

Figure 2-28: Sample MTL section of a non-brain extracted subtracted image (TL)
The subtracted image. Outlined expanded below in BL. (TM) Freesurfer cortical
segmentation mask (where each color represents a unique different region) overlaid
onto the co-registered subtracted image. Some vasculature revealed by the subtracted
image is present in the masked labels, however much is still claimed as regions since
most GRE sequences Freesurfer suggests and for which it is optimized do not have
any sort of vascular delineation. Outlined expanded below in BM. (TR) This section
represents the cortical mask (CM) excluding any voxels which fall outside of the GMM
in the vessel mask (VM) (i.e. CM ∧ ¬VM). Outlined expanded below in BL.
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2.3.3 Results

Time of flight MRA information for these patients is unavailable, and if available

would not necessarily align with gadolinium accumulation, since TOF MRA will not

capture small vasculature. The basis for shortened T1 signal with steady state CBV

is that microvasculature will exhibit increased T1 signal in patients within an arith-

metic subtracted image.[100] However, by applying this signal filtering method on a

large quantity of patients, we are able to manually inspect and verify adequate ves-

sel filtering, and compare existing histogram analyses with previously acquired CBV

maps.

2.3.4 Conclusions

Using this method we have improved upon an approach that does not take into

account all possible histogram values. We have extended it to be adaptable to any

coverage area, although there is still ways to improve upon it. Particularly, to perform

isolated vascular closing on the final maps (errant voxels whose value falls outside the

range of appreciable Gaussian model). While these voxels max reflect true CBV

values within that area, we don't wish to include that into any appreciable validated

method.
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Figure 2-29: The collection of scripts are shown in the final CBV program container,
written for Matlab. This program requires the input of a structural T1 weighted
image and a pair of pre and post contrast gadolinium images and will generate all
necessary images for ROI or VBA analysis.
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2.4 Examination of the effects of bias field

2.4.1 Introduction and study design

MRI acquisition is subject to several types of artifactual concerns previously men-

tioned. [72, 4, 5] Some relate to environmental (such as radiofrequency (rf) noise),

magnet inhomogeneities, subject specific (e.g. accumulation of para or ferromagnetic

dyes or materials inside the body or skin), session specific (e.g. movement artifacts)

or acquisition specific (e.g. aliasing). Repeated scans can improve the detection

in contrast enhanced MRI, and any machine influence that would impact multi-site

studies might be reduced by having repeated sequences.[102] Although many studies

use dynamic contrast enhancement, the steady state method of CBV analysis uses

only two sequences prior to and after a steady state of contrast equilibrium has been

reached.

2.4.2 Methods

In order to standardize and measure bias field, we first extracted a brain mask of one

of several randomly selected images within our studies. All MRI images go through

a cursory inspection to ensure that gross or prohibitive scan issues are addressed.

This is usually performed by a trained MRI technician, however experience within

our scanner has shown us that not all types of artifacts can be adequately identified

prior to pre-processing.[88] These artifacts we have discovered to be most often motion

and bias field.
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Figure 2-30: An example of bias field artifacts are shown here. Note the upper left
corner of the top figure, and the left side of the bottom figure. One can easily see
the dampening in signal intensity that can be potentially problematic in both clinical
and research uses.
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Figure 2-31: Artifactual errors seen due to high signal in the eye, indicative of a
PE artifact in the left-right direction. It is possible that non-visible artifacts may
artificially dampen or increase signal elsewhere parallel to the plane of the PE direc-
tion, and as such, represents an image that would most likely be excluded from CBV
analysis.[61]

2.4.3 Results

Upon investigation of subtracted bias field images on pre and post contrast weighted

images, maximum field error is roughly two orders of magnitude lower than single

image bias field. These focal areas of bias field subtraction align with areas of high

signal from GBCA accumulation. It is unlikely that the result of the bias field is in

fact from the GBCA impacting the local field around the T1, and that if it does, it is

on the order of 10-2, which are unlikely to adversely affect our signal, if at all. Another

issue is the calculation of bias field in contrast enhanced images. It is possible that

the techniques by which BFE is calculated are failing to account for the differences

that punctate enhancement cause, and as such would be intepreted as a higher BFE.

One prospective method that should require further investigation is the extraction of
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epicortical vasculature followed by BFE estimation. Similarly, an analysis of BFE on

the subtracted image (which would join errors) might also prove helpful (since that

is the only image where a diffuse field effect might impact quantization of signal.

2.4.4 Conclusion

Although BFE contribute to local field inhomogeneities that may impact measure-

ments from unique scanning acquisition to scanning acquisition, it does not appear as

there are BF correction algorithms in place to detect and correct the unique contrast

enhanced effects present in exogenous contrast pair CBV scans. Additionally, by sub-

tracting, the only detectable BFE field effects are the result of the BFE estimating

high values near the areas of increased signal. It is more likely that the difference in

BFE is the result of poor BFE techniques and not contributing to an effect in this

dataset, but merits further exploration into techniques agnostic (or perhaps incorpo-

rating) the subtracted image maps .
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Figure 2-32: This image represents orthogonal views of the bias fields generated
from both the post contrast image and the pre contrast image. The brain has been
extracted prior to both of these analyses.[103] (a,b,c) Sagittal, coronal and axial view
of the post-contrast image bias field maps and the (d,e,f) pre-contrast image field
maps.
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Figure 2-33: Brain extracted CBV image is shown in three orthogonal planes. The
marked brightness occurs in regions with large macrovasculature.

Figure 2-34: The subtracted bias field image (of post - pre) is shown overlaid with a
60% opacity on a subtracted image
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Chapter 3

Apply CBV techniques on

high-risk for conversion to

psychosis dataset

3.1 Create a broad based population template onto

which we can isolate and identify anatomical

and canonical defined regions

3.1.1 Introduction and study design

Many psychiatric and neurological are structurally and morphologically identical on

MRI or CT in early stages and change during advanced stages. Volume changes within

the gray matter reflects an etiology that that may lead to such a change, not only
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in AD, schizophrenia but also similar diseases like bipolar disorder.[17] The earliest

stages of bipolar disorder and prodromal psychosis can often present with similar

pathologies, the so called “Kraepelinian dichotomy”. Although fraught with issues,

both disorders have been associated with structural hippocampal abnormalities.

In mid 2015, two studies featured the structural analysis of multi-site coordinated

imaging projects of controls and both schizophrenia and major depressive disorder

(MDD).[93][79] Hippocampal volume changes were observed in both studies compared

to healthy controls, implicating a greater involvement in the hippocampal network in

these diseases.

Additionally, in Alzheimer's disease one component leading to volume change can

be attributed to neurofibrillary tangles, or clumping of proteins that attach to and

maintain the structure of microtubules, called tau. Clumping of these proteins (as

measured with histology) greatly reduce neuronal tone and shrink effective sizes of

gray matter in targeted areas, specifically the hippocampal formation (hippocampus

and entorhinal cortex). I along with our group have tried to examine and track these

volumetric changes irrespective of other potential burdens to see how they correlate

with disease diagnosis or other factors. Specifically, I wanted to test the creation of

an appropriate atlas that might provide per-patient single-scan volumetric data that

might provide value to later diagnosis.
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Figure 3-1: An example of disease progression as a function of impairment on the
cellular level in schizophrenia[83]

3.1.2 Methods

Template atlases for brains require several features: they must reflect an accurate

portrayal of the groups onto which they should be applied, must have no particularly

asymmetric or out of place features and must be all of appreciable scan quality and

acquisition. Two templates methodologies that address concerns of sampling and va-

riety in normal and somewhat changed brains are varied in the archetypical approach

or the population approach. In the archetypical approach, the idea is to find a brain

that represents an average brain, without averaging artifacts to reduce tissue class

segmentation partial voluming. An example of this brain atlas type is the ‘11colin”

brain from Montreal Neurological Institute. The “colin” brain represented a single

subject imaged 27 times using the same sequence and scanning protocol.[86] The se-

quences were co-registered and averaged. The strength of this atlas is to preserve
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anatomical absolution while reducing scanner noise. An alternative is the MNI 152

(or 301).[17] These represent identical sequences on either 152 or 301 different brains

that are also averaged. The result reduces the fine spatial information for a better

template procedure, whereas the colin27 brain is subject to any particular morpho-

logical changes inherent in that one patient's brain. For our study we wanted to use

a diffeomorphic technique to generate this atlas in a 54-person data set with the ex-

isting CBV protocols. Diffeomorphic atlas registration allows for local shape changes

to be preserved

3.1.3 Results

Figure 3-2: An example of a functional template brain and the region of interest we
wish to test, specifically the left anterior CA1 of the hippocampus

Diffeomorphic co-registration was able to generate a T1 weighted image that could

clearly define the hippocampal subregions and eliminate any medial temporal abnor-

malities upon visual inspection. A trained rater was able to delineate a portion of

anatomy (in this case, and what will be defined later) the anterior portion of of the
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CA1 of the hippocampus. Any image that is co-registered to this map will have this

region as defined by a symmetric co-registration procedure. Each of the 54 images

were checked with a ‘yes’ or ‘no’ rater metric to ensure the ROI was within the CA1.

3.1.4 Conclusions

The purpose of this arm of the study was descriptive and categorical, since there is no

‘canonical’ CA1 ROI based on Schobel et al’s work that a user was trained to draw

on new datasets, only the fact that the ROI successully encompassed a region on a

new image that is considered the same that is found in the paper. Further studies

should examine forward application of CBV results in a template space to refine those

regions.

3.2 Test forward application and accuracy of tem-

plate to functional CBV images

3.2.1 Introduction and study design

Canonical regions are not necessarily pathologically or etiologically the regions where

a disease is though to occur. Although canonical regions often overlap, in the hip-

pocampus, if a disease is thought to occur in a particular region, then that region

ought to be tested irrespective of how it is defined either pathologically or struc-

turally. Santiago Ramon y Cajal, thought to be the founder of modern neuroscience,

defined canonical regions and layers of the hippocampus as delineated by fiber pro-
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jections, histology and pathology.[73] Individual template registrations use several

different methods to identify regions based on a priori population templates drawings

and such voxel labeling methods as hidden markov random fields (HMRF). However,

disease locus may not include canonical labeling constructs. CBV has been used for

neuro-oncological purposes irrespective of BBB integrity to determine CBV changes

in response to chemotherapeutic or surgical intervention. These CBV values, however,

are germane to only instances where accumulation of contrast agent is much higher

than structurally comparable brains, and reflect grossly abnormal malignant tissue,

with an entirely different range of angiogenic contrast uptake values. Therefore SNR

thresholds that may preclude structural (T1 weighted) MRI brain scans for our pop-

ulation based of neurologically and psychiatric analyses are not expected to present

with radiologically identifiable alterations. This is not true for brain tumors, such

as glioblastoma multiforme (GBM), where CBV values are often used to determine

extent threshold of blood supplies and cortigraphy. Since the region of interest for

certain diseases is focally localized but not limited to a particular canonical region, we

need to determine which region, based off of parametric or slice-by-slice analysis that

allow for accurate forward application, i.e. inform a hand drawn region of interest

on existing findings anatomically and take the union of a group of those regions on a

template to find the best match.

As such, we wish to strengthen our template overlapping on the co-registration

and atlas, instead of other regional devices.
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Figure 3-3: Drawing of the hippocampus as edited from Santiago Ramon y Cajal
which delineates subregions[73]

3.2.2 Methods

Having developed the previous methodology, we test overlapping metrics of differ-

ent sized ROIs compared to hand drawn ROIs in the sample database and test the

overlap. We will generate a template from a mixed subject and control group space

with no identifiable structural abnormalities. Structural aberrations in the hippocam-

pus have been shown to be present in cases with responsible confirmed diagnoses of

schizophrenia (i.e. 12-18 months of psychiatric evaluation), however in wanting to ad-

dress all possible variations of these patient populations we expect a larger number of

patients to be included in this population template. Our steady state CBV method is

unique in that the functional alterations do not impart any partial voluming difference

compared to the structural image. In BOLD, very few acquisitions can reveal struc-

tural detail required to define small regions. Since the CA1 comprises a “C” shape of
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roughly 1 cubic centimeter in patients, cubic interpolation would average signal and

include the suspected spared dentate gyrus region. We wish to compare hand-drawn

CA1 in patients with the co-registered images with generated co-registered images

with population derived ROIs.

3.3 Demonstrate CBV changes in humans in a new

prodromal psychosis population with forward

application of CBV ROI

3.3.1 Introduction and study design

Our lab has previously produced existing findings in human CBV dysfunction driven

by suspected glutamate alterations[80] which have additionally been replicated by an

outside laboratory[90]. In short, these findings predict elevations in ssCBV in the left

anterior hippocampus (encompassing the CA1) in patients with prodromal psychosis

and schizophrenia. Other studies have examined CBF changes in male schizophrenic

patients and have found lateralized aberrations in the left temporal area during an

auditory task.[40] This may correlate to suspected increases of glutamate focal to

the same region, and the potential value of potential glutamate reducing agents in

ameliorating positive disease symptoms. We wish to use a CA1 ROI (whether hand

drawn or automatically applied) to determine whether this region can provide a sensi-

tive and specific measure to determine prodromal patients from CBV scanning alone.
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The success of this would be t-test significance and appreciable ROC compared to

other ROI regions. The advantage of ssCBV compared to dynamic T2* weighted

image or DSC acquisitions is whole hippocampal circuit acquisition and the ability

to differentiate whole circuit subfields (i.e. CA1, CA3, subiculum and dentate gyrus)

3.3.2 Methods

Using Cerebral Blood Volume (CBV) fMRI, we have previously reported that selec-

tive hypermetabolism in the anterior CA1 region of the hippocampal circuit occurs in

prodromal stages of schizophrenia and related psychotic disorders. To date, a manual

approach was used to generate CBV maps of the hippocampal circuit. This approach

is time consuming and introduces sources of noise. To address these limitations, over

the last few years we have been developing and optimized an analytic toolkit that gen-

erates CBV maps of the hippocampal circuit in an automated fashion. Here, we show

this toolkit and test its ability to detect anterior CA1 hypermetabolism in prodro-

mal stages of disease. Recruited patients who are at an at-risk state for conversion to

pyschosis (N=50) and controls (N=16) underwent a series of identical MRI scans on a

Philips Achieva 3.0T MRI scanner, including a structural T1-weighted image (1x1x1

mm) as well as two T1-weighted scans (.68x.68x3 mm), acquired in the coronal plane

along the long axis of the hippocampus prior to and after a bolus injection of a GBCA.

The at-risk group eligibility is determined by positive symptoms detected through an

established inventory.[55] Of these patients, roughly 1/3 are predicted to convert to

Schizophrenia within 24 months whereas the remaining patients are generally given
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other related diagnoses, such as schizoaffective disorder. The aforementioned ‘best’

template methodology (either automated or hand drawn) is to be applied and tested.

Figure 3-4: Findings from a paper which used a manual/per slice region of interest
analysis [17]

3.3.3 Results

Our software was able to generate CBV maps for each patient and apply the template

drawn ROIs to template co-registered CBV. Mean value differences reveal a significant

increase in CBV signal, concordant with extant literature, in the prodromal group

versus the age matched controls. By detected anterior CA1 CBV elevation, we can

hypothesize that elevations in CBV are correlated to increased basal metabolism. For

a sample of 66 age matched patients (50 prodromal psychosis 16 healthy controls) a

two-tailed t-test revealed a p<0.003, whereas no area in the anterior hippocampus
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exhibited any alterations. Achieving this goal is important if CBV-fMRI is to be

applied in different research centers if the focus of interest if investigating hippocampal

circuit may help elucidate disease state. Additionally, an automated toolkit is required

if CBV-fMRI will turn out to become a biomarker of prodromal schizophrenia, as we

are currently testing, and potentially used in clinical trials.

Figure 3-5: Preliminary results from CBV ROI study. Independent samples t-test is
significant at p<0.005 not assuming equal variances.

3.3.4 Conclusions

It appears as though upon an initial fairly low-N study that this CBV toolkit demon-

strates results concordant with existing literature, as in a increase in mean CBV

sensitive to only the anterior CA1 of the hippocampus in patients in an at-risk group.

Given this finding, it merits further exploration of our methods and techniques on a

larger scale to further validate this as well determine repeatability and reliability in

our studies.
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(a) a (b) b

(c) c

Figure 3-6: (Left anterior (a) dentate gyrus (b) CA3 and (c) subiculum mean CBV
value in a group of controls and age-matched patients at high risk for psychosis.
Independent samples t-test is not significant at p<0.05 not assuming equal variances.
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Chapter 4

Examining utlility of functionally

derived results on structural

images

4.1 Examine CBV and volume in Alzheimer's dis-

ease

4.1.1 Introduction and study design

Hippocampal grey matter volume loss in Alzheime's dementia is a well-known struc-

tural change that occurs in advanced stage disease. Aβ, both CSF and cerebral,

WMH, specific neuropsychological dysfunction are also established markers of disease

state, but with varying severity and metrics.[14, 12, 11, 13, 10, 15, 99] However, vol-

63



ume loss indicates a heretofore-irreversible pathological disease state with little known

potential amelioration.[87, 6, 81, 41] In a previous study I have shown that amyloid

deposition and regionally defined PiB PET positivity (as 1.5< mean PiB SUV) to

be “necessary but not sufficient” in characterizing Alzheime's disease in a patient[71].

However, the exact mechanism and relationship of amyloid deposition is still not well

defined in the earliest stages of AD[18].

Figure 4-1: Established athologies in AD along with the biomarkers that can be used
to discriminate between the various blood, neuropsych and imaging markers.[18]

Although the utility for A β imaging exists for neurologists, A β positivity is

not particularly useful in sequestering patients with “preclinical” (i.e. patients who

progress to a confirmed AD diagnosis within 3-5 years) Alzheimer's disease and those

who have a different form of dementia such as LBD; however, it is useful in excluding

Aβ negative patients with FTD.[59] We showed changes in CBV in the area known
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Figure 4-2: VBM analysis of age-matched controls and AD patients in the ADNI
dataset. Voxel-level significance at p<0.001 reveals several clusters, many of which
pass cluster level significance statistical threshold.
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Figure 4-3: VBM analysis of age-matched controls and controls who convert to AD
within 36 months in the ADNI dataset. Voxel-level significance at p<0.001 reveals
one small cluster that does not pass cluster-level significance.
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as the lateral EC (sometimes referred to as transrhinal cortex) concordant with early

Braak staging findings in both preclinical human AD and animal models with AD

pathology[9].

It would behoove clinicians to determine a timeline or appropriate curve fitting

procedure to assign structural or functional changes to the HC along with suspected

disease state. What we hypothesize is a hippocampal volume reduction being driven

by dysfunction in the lateral EC. We would like to determine which region (either

canonical EC or our parametrically derived lateral EC) is most sensitive in predi-

cating conversion to AD from a categorically healthy state. To do this, we will use

big-data neuroimaging initiatives (ADNI and NACC) with acquired structural images

and our own datasets WHICAP (Washington Heights Inwood Community Alzheimers̀

Project) to establish expected variances according to age and potential disease pro-

gression.

4.1.2 Methods

We want to confirm structural changes in a sample population of patients and localize

these changes. Well known structural changes have been identified in the medial

temporal lobe which follow the known etiology of Alzheimer's disease. Additionally,

the posterior parietal lobe has also been well established as a cite of structural and

functional impairment in disease state that might otherwise be structurally identified

as normal.[56] These well known features core to the disease state are to be proven in

a subsection of well-characterized adults in the ADNI dataset. One hypothesis we test
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is that functionally derived findings from a voxel based CBV analysis might be more

sensitive in detecting early disease state when compared to structural findings. CBV

imaging presupposes that cerebral tissue tone changes occur following a reduction in

vascular perfusion and availability. Whether this reorganization occurs as the result of

angiogenic mechanisms resulting from synaptic pruning or other causes, there should

be a change in the GBCA subtracted image due to local overal Gd3+ concentration

differences .[95]

We then test on a new dataset the positive predictive value of gray matter volume

per-patient in this structurally (VBM)-derived ROI mask, our functionally derived

parametric ROI mask and a standard hippocampal ROI mask.[30] SPM8 will be used

to perform tissue class segmentation. We predict healthy controls to AD convert-

ers to have no significant baseline structural abnormalities (isometric T1 weighted

1x1x1mm3) at baseline as measured through a standard voxel.

4.1.3 Results

We performed two primary VBM experiments in our ADNI groups to replicate known

dysfunction and to test the sensitivity of possible preclinical structural changes. HC

who stay healthy compared to healthy controls to convert to AD within 3 years did

not reveal any structural changes in the MTL. A glass brain output of the SPM

analysis reveals a small cluster that does not pass cluster-level significance testing,

the results of which can be seen in 4-3. A second analysis was performed comparing

the same healthy control group to patients with confirmed AD. The results are in 4-2
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with cluster significances in 6.3. Several cluster level regions are noted, specifically a

region wit 1315 cluster and a cluster level significance of p<0.009 located in the left

hippocampus and entorhinal cortex. Visual inspection of the results in the glass brain

show bilateral medial temporal lobe involvement with varying degrees of significance.

Figure 4-4: Shown in white is a sample gray matter segmented image co-registered
to template space. The red arrows point to ares of red that reflect the thresholded
binarized mask co-registered to the space of the image.

4.1.4 Conclusion

This analysis demonstrates a ’ground truth’ for volumetric changes in two of the

groups in our ADNI study. It confirms existing findings of volumetric loss in disease

state, while showing no demonstrable volume loss in categorically healthy groups we

know to convert to AD versus groups who do.
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Figure 4-5: Gray matter volume in the MTRC in the five age-matched ADNI groups.
One way ANOVA and pair-wise students t-test are not significant at p<0.05.
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Figure 4-6: Linear regression of five age-matched ADNI groups in increasing order of
potential clinical risk. 1

)
Healthy Controls 2

)
Healthy Controls who convert to AD

within 3 years 3
)

MCI who do not convert to AD in 3 years 4
)

MCI who do convert
to AD within 3 years 5

)
AD. R2=0.017, F=2.8, p<0.096
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Figure 4-7: The entorhinal cortex volume (in mm3 of five groups of subjects in the
ADNI study. All subject groups were age matched. *** indicates two-tailed t-test
significance. For the HC compared to AD, t=6.467 p<0.001, for the HC compared
to MCI who convert to AD, t=4.067 p<0.001. The demographic and population
information are in 6-9
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Figure 4-8: Left pane reflects predicted EC CBV value differences in preclinical AD
compared to healthy controls whereas right pane reflects predicted EC volume differ-
ences in the same group
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4.2 Test the postitive predictive value of forward-

applied functionally derived metabolic atlases

in early-stage structural MRI disease states

4.2.1 Introduction and study design

BOLD was originally lauded by psychologists without medical clearance to provide

i.v. injections of contrast agent in order to determine changes in neurovascular cou-

pling during active or resting states.[10, 31] One question we wish to explore is in

disparate databases, we ca n apply functional templates of either VBM or CBV VBA

to test whether those regions provide increased statistical significance in determin-

ing patient groups compared to unbiased voxel based t-testing. Such a study would

permit for a system that can apply these parametrically derived regions using a spe-

cific and sometimes difficult to obtain protocol on either retrospective structural MRI

analyses of varied acquisition parameters compared across various sites. Although we

have processed CBV on various scanners through collaborators, several million non-

GBCA T1 structural scans are performed every year in the US and present a potential

valuable dataset for focal and predicted grey matter loss otherwise determined to be

insignificant on a group level in preclinical stages.

4.2.2 Methods

We wish to use a large, public, sample database such as the ADNI dataset to categorize

and define hippocampal change in patients. We wish to test the templates of those
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particular data and determine whether our existing finding in CBV patients is more or

less accurate in determining conversion of patients to AD from a categorically healthy

state. We will co-register our Figure 2 findings along with findings to see which has

the highest positive predictive value.

4.2.3 Results

Figure 4-9: An example of a expected variance for age in a specific age group with
CBV, taken from studies related to hippocampal volume changes[10]

4.2.4 Conclusion

Using the previous analysis, we have examined groups for which there are no structural

deficits along with groups for which there are known structural deficits. From a tem-

poral perspective, one can predict linearity from the stage of healthy late-adulthood

through to confirmed Alzheimer’s Disease, which at least three stages between the

two (known healthy converters, mild cognitive impairment, and known mild cognitive

impairment converters).
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Chapter 5

Discussion and conclusion

5.1 Discussion

5.1.1 Specific Aim 1

We have now discussed the development of a framework to calculate exogenous con-

trast ssCBV from routine T1 weighted MRI images prior to and after the injection of a

contrast agent. The aforementioned algorithm and technique is simply an extension of

the existing manual methods that our lab had performed. In developing it, we wished

to preserve modularity to allow for troubleshooting as well as allow other methods to

be supplanted at any stage. This evolving algorithm has been applied to hundreds

of MRI pre/post gadolinium pairs. Literature on MRI artifacts and pre-processing is

procedural and generally lacking in detail with respect to scanner acquisition. Fortu-

itously, a wide range of MRI quality in the images we have processed have allowed us

to build analytic techniques into our algorithm. Although this does so at the cost of
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Figure 5-1: The addressed specific aims of this project. The first two aims were exe-
cuted successfully, since the toolkit has been able to semi-automate the development
of exogenous steady state cerebral blood volume maps, and we were able to show
dysfunction specific and sensitive the region previously shown to exhibit dysfunction
in patients who progress to psychosis. The applied CBV region, however, did not
have a higher positive predictive value than a known area of dysfunction in diagnosis
or predicting disease states.
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scan exclusion, it is a practice that many studies fail to adequately address.

We have also proposed two methods of vessel identification and elimination and

examined the results of those techniques on the same scans. Unfortunately, we stand

by our approach to base our algorithmic development on existing methods in lieu

of completely foregoing each existing procedural step. Doing so we have in essence

‘automated’ the human intervention approaches such as identifying four voxels in a

vessel and applying a strict threshold of voxels. By adding adaptive components

to each, we have created a unique range of intra-subject CBV ROI values that are

in concordance with existing literature and expected physiological values. Assigning

an absolute numerical value, however, to these results, requires joint in and ex vivo

analysis, perhaps using imaging capable of measuring neuronal blood volume through

microscopy or histology approaches.

Nevertheless, we are eager to test and seek improvements for this approach on

more images from different scanner types and acquisitions. Since much of our analysis

requires templates (that are not yet generative), a greater variance in usable subject

acquisition can provide important results. We also wish to seek better test-retest

reliability, since there is no gold-standard for CBV, only differing modalities with

their own advantages and limitations.

5.1.2 Specific Aim 2

We expect a variance of physiological CBV with the expectation that disease state

aberrations are larger than that variance. Although we were uncertain of what results
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might have been feasible given a new dataset and this group of controls and patients,

we were pleased to discover changes that currently fall in line with expected findings

in schizophrenia and psychosis using an entirely new analysis and approach. Although

this dataset is still actively being followed, and we do not know eventual converters

to psychosis given this high risk group, it is promising that alterations sensitive and

specific to a region1 of known dysfunction were sensitive and specific within a small

region of the hippocampus.

The methodology of this template approach is one that can benefit from more sen-

sitive hippocampal (or other regional) improvements and methods of co-registration,

as well as different types of population templates. However, as it stands now, sup-

ported by the voxel information present in the current acquisition parameters, a highly

accurate scheme of template derived images can be used to examine known loci of

cerebral blood volume changes.

5.1.3 Specific Aim 3

The testing of this aim was a feasibility paradigm for informed structural image

analysis changes. Given our finding in Alzheimer’s disease CBV changes, we wanted

to examine whether this region, the ‘outer banks’ of the lateral entorhinal cortex,

the MTRC, might show structural signs of vulnerability in a new dataset, otherwise

undetectable using group based or cortical volume based approaches.

Although this approach is examining two different measures, gray matter volume

in an identical region applied to several images, and canonically derived entorhinal

1By region we mean either a canonical, drawn or derived region
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cortex volume, the hypothesis that the region would be predictive of conversion in

otherwise healthy individuals was based on the understanding that blood volume

changes and cell death are continous and overlapping. Although the MTRC volume

approach linearly trended towards significance across disease states, pure entorhinal

cortex volume was significant at determining advanced disease state. To our surprise,

MTRC GM volume changes were not as significant at delineating healthy controls

and AD as entorhinal cortex volume alone. This leads us to support our previous

hypothesis that impairment is focal in a specific area of the MTRC in the earlier

stages of disease but then spreads through the MTL and other parts of the brain in

later disease.

The framework of this analysis might have value in examining other areas of

dysfunction measurable on CBV VBA that can be applied to gray matter volume.

Although the exact timeline and mechanism of AD spread is not known in humans, one

might be able to use this categorical disease state and volume analyses as a foundation

for charting disease progression as a gradient: measurable changes in CBV leading to

changes in gray matter, potentially overlapping depending on disease and pathology.

5.2 Conclusion

We have studied a variant of fMRI often overlooked, but with its roots firmly in the

history of neuroimaging. We have analyzed this approach from ‘fruits to nuts’, in-

specting all components from patient acquisition to forward application of detected

regions. Although there is still much work to be done to examine replication, repro-
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ducability, inter-scanner variance and longtiduinal analyses, we are eager to see the

evolution of this version of functional imaging and the improvements we can make on

existing and new disease states.
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Chapter 6

Appendix

Table 6.1: T1 relaxation values of known tissue types

Tissue T1(ms)
gray matter (GM) 950
white matter (WM) 600
muscle 900
cerebrospinal fluid (CSF) 4500
blood (arterial) 1200
blood (venous) 1200
blood (gado enhanced) 1200
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Figure 6-1: The demographics of the prodromal psychosis data-set.

Table 6.2: Eigenvalue shape characteristics in three dimensions based on the 1st, 2nd

and 3rd eigenvalues[27]

λ1 λ1 λ1 Orientation Pattern
L L H(-) plate like (bright)
L L H(+) plate like (dark)
L H(-) H(-) tubular like (bright)
L H(+) H(+) tubular like (dark)
H(-) H(-) H(-) blob like (bright)
H(+) H(+) H(+) blob like (dark)

Table 6.3: Voxel and cluster based results from VBM analysis

cluster cluster cluster cluster peak peak peak peak peak
p(FWE-cor) p(FDR-cor) equivk p(unc) p(FWE-cor) p(FDR-cor) T equivZ p(unc) x,y,z {mm}

0.122 0.255 1315 0.009 0.234 0.658 4.78 4.37 0 -21 -7 -17
0.856 0.658 4.07 3.8 0 -28 18 -11
0.977 0.69 3.81 3.58 0 -42 9 -27

0.271 0.31 958 0.023 0.445 0.658 4.51 4.15 0 26 9 -39
0.828 0.658 4.11 3.83 0 21 -7 -17
0.995 0.69 3.66 3.46 0 28 -1 -23

0.971 0.843 207 0.257 0.554 0.658 4.39 4.06 0 -38 -51 28
0.995 0.843 118 0.393 0.639 0.658 4.31 4 0 -44 -16 -33
0.863 0.843 352 0.144 0.695 0.658 4.25 3.95 0 -42 -39 45
0.967 0.843 215 0.248 0.764 0.658 4.18 3.89 0 -57 -4 -20
0.994 0.843 128 0.373 0.847 0.658 4.08 3.81 0 10 -13 0
0.942 0.843 258 0.207 0.908 0.69 3.99 3.73 0 8 -51 37

0.997 0.704 3.61 3.42 0 8 -37 43
0.999 0.704 3.54 3.35 0 6 -57 27

0.996 0.843 112 0.406 0.96 0.69 3.87 3.64 0 -6 -52 33
0.989 0.843 153 0.329 0.973 0.69 3.82 3.6 0 -3 -72 22
0.901 0.843 311 0.168 0.975 0.69 3.81 3.59 0 27 18 0
0.996 0.843 117 0.395 0.985 0.69 3.76 3.54 0 -44 -73 24

0.994 0.69 3.69 3.48 0 -40 -78 30
0.993 0.843 134 0.362 0.992 0.69 3.7 3.49 0 -38 -10 -6
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Figure 6-2: Vesselness maps with the following characterstics: α=0.2, β=20, c=30

Figure 6-3: Vesselness maps with the following characterstics: α=0.05, β=50, c=30
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Figure 6-4: Vesselness maps with the following characterstics: α=0.05, β=50, c=1

Figure 6-5: Vesselness maps with the following characterstics: α=0.2, β=20, c=100
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Figure 6-6: Vesselness maps with the following characterstics: α=0.01, β=20, c=30

Figure 6-7: Vesselness maps with the following characterstics: α=0.01, β=1, c=30
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Figure 6-8: ADNI study demographics.

97



Figure 6-9: ADNI study demographics.
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Figure 6-10: Pulse sequence diagram of an rf spoiled gradient echo image, as is used
in the antecedent pre and post contrast MRI images. The top line reflects the rf
pulse from the magnet, that both applies the prepulse and alternating phased pulses
to cancel transverse magnetizations. ‘Gs’ reflects the slice lobe, ‘Gr’ reflects the read
lobe, ‘Gp’ the phase lobe and ‘Signal’ contains just that. Gradient spoiling can occur
by means of either just the ‘Gs’ or with the ‘Gr’ applying a varying, sometimes random
pulse.
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Figure 6-11: This shows how we derive functional ROI from voxel based approaches.
To do this we generate CBV results on a template brain which is derived from pre-
contrast T1 weighted images. These images contain adequate structural data for
diffeomorphic co-registration algorithms to co-register smaller features than EPI se-
quences. We binarize (i.e. threshold the resultant map at the t or f level of sig-
nificance) the mask at the lowest statistical level and save that separate from the
generated template
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Figure 6-12: For a new patient to be analyzed, we acquire a new patient scan (iso-
metric/isotropic structural T1 weighted image) and segment that into tissue classes.
The middle panel shows the joined GM and WM tissue class segmentations joined
(in red and yellow, respectively) and separated into grey and white, respectively, in
the next two panes. The GM mask is then co-registered into the template space in
which the statistical binarized mask. This uses the structural T1 image as the basis
for transformation and applies that forward transformation to the GM mask.
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Figure 6-13: The intersection of the binarized mask and the gray matter mask is
calculated. Although voxel size differences may occur, all images being in the same
space indicate that all measures of volume are standardized by co-registering.
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Appendix A

Supporting experimentation:

Determination of vascular

thresholding

A.1 Background

One of the requirements of ssCBV is the exclusion of epicortical vessels that do not

directly feed arteriolar or capillary beds of cortical perfusion.[50] These large vessels

may be impacted by natural variation and torturosity in patients in an MRA scan,

however in ssCBV one limitation is that we assume an intact BBB as well as a nor-

mative macrocerebralvascular anatomy. However, depending on imaging modalities,

all voxels or pixels are prone to representing more than one unique tissue class within

a sampled space. This phenomenon is referred to as partial voluming and is an issue

especially in large voxel imaging.[94, 89]
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Figure A-1: This is an example of an image displaying the PV problems and win-
dow sampling limitations in both non and contrast enhanced MRI. The fraction of
an isotropic pixel (or voxel) of size k will capture at most .25π or approximately
78 percent of a 2 or 3 dimensional vessel space, assuming the path of the vessel is
orthogonal to the plane of the voxel.

For voxels that are entirely within a voxel, however, one can safely exclude them

from gray matter analysis. Previous methods of exclusion include a fixed cut-off of

the top ten percent of gray matter vasculature.[50] However, this method assume

similarly effective gray matter vessel classification, which was possible for animal

studies of limited natural variation, but problematic in patient populations. Since

the venous vasculature visible only through either TOF MRA or contrast-enhanced

MR is not available when used as a prior for gray matter segmentation, a fixed cut-off

based entirely on histogram analysis of tissue classes would not allow for any changes

in the total volume of blood, dosage differences or denser vasculature.

An experiment was performed in order to adhere to the principle of large vessel

exclusion while including a component that accounted for individual variation. A pre

and post-contrast image pair were co-registered and a subtracted map was generated

(the subtracted map is proportional to the CBV map prior to SSS blood normaliza-

tion). The existing curve fitting procedure is described in Section 2.3. The following

experiment expands on the feasibility and validation of this method compared to
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anatomical identification, or a gold standard in venous outflow through contrast en-

hancement.

A.2 Methods

In order to test the accuracy of the vessel elimination 12 voxels were chosen in the

subtracted image, five within an area known to contain large (diameter larger than a

voxel) vessels and five firmly within the hippocampus, as visible through a subtracted

CBV map. This was performed in six different age-matched patients to a trained

rater blind to the exclusion mask.

Figure A-2: Shown is a coronal slice. The left hippocampus is indicated by a blue
”x” and the venous system is indicated by a red ”+”. Voxels were chosen in one slice
near the middle of the hippocampal formation.

Several venous systems are clearly visible in the coronal (isometric) plane of the

CBV acquisition parameters. These include the InfSS, SSI, ICVe and BVR. One

venous outflow that is often included in the segmentation of the hippocampus is a
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s =
2 |Xl ∩Xnm|
|Xl|+ |Xnm|

(A.1)

Figure A-3: Here, s is the coefficient that measures overlap between manually labeled
tissue, Xl and tissue preserved (not masked) during masking, Xnm

Table A.1: Overlap ratios for several subjects manually chosen values.

Region DICE (Tl ∩ Tnm) DICE (Vl ∩ Vm)
Subject 1 100% 83%
Subject 2 83% 100%
Subject 3 83% 100%
Subject 4 100% 100%
Subject 5 83% 83%
Subject 6 100% 100%
Mean 91.5% 94.3%

tributary of these systems, identifiable through high contrast differences lateral to

the long axis of the hippocampus. This venous system was chosen as an area of

identifiable blood, and the left hippocampus was chosen as a regional control. Voxels

were chosen and characterized as either manually labeled tissue Tl, tissue not-masked

(i.e. not removed by the automatic vascular filtering) Tnm, manually labeled vessel

Vl or vessel masked Vm.

A.3 Results

Through this preliminary analysis we were able to show agreements in anatomical

labeling and the aforementioned vascular exclusion criteria which is part of the CBV

stream. Separately, we can also evaluate the physiological values of the mean CBV

generated by looking at whole-region mean CBV values, as shown in A-4. Here we see

the distribution of several subject’s left hippocampus CBV values, which align with
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existing literature and other CBV methods.[66, 50] Since there no gold standard for

identifying epicortical blood vessels on non-enhanced structural MRI, visual identifi-

cation is the closest analog to an absolute anatomic identification. Compared to this,

the methods outlined performed with DICE coefficients of 91.5% for adequate seg-

mentation and 94.5% for vessel exclusion. Since there are more voxels to contribute

to the mean CBV value in the Tl ∩ Tnm regions, it is promising that this overlap was

over 90%. As for the vascular segmentation, regions chosen to be clearly part of the

venous tributary system abutting the hippocampus were chosen, and an even higher

overlap ratio promises to exclude the bulk of this.

A.4 Conclusion

There are several limitations to this method, including variations in Gaussian models

to the intensity distribution, as well as aberrant voxels of high signal located within

the hippocampus (and unlikely to be non PV vascular). Future studies should address

likelihood of vessels based on a priori atlases and morphological techniques and alter-

native approaches to voxel distribution voxels. However, despite these, the previously

defined experiments supports the use of this method as an accurate way to sequester

large epicortical vessels in ssCBV images.
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Figure A-4: Here is a histogram of 12 subject’s CBV mean values. The mean and
variance of these CBV values are within physiological limits, and can be used as a
post-hoc exclusionary criteria for subjects that might have intravascular abnormalities
or BBB breakage.
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Appendix B

Supporting experimentation:

Evaluation of SSS segmentation to

manual segmentation

B.1 Methods

AIFs are known to vary greatly from GBCA perfusion study to study.[70] Some of

the natural variation inherent in this technique can be attributed to scanner SNR

differences and noise, physiological differences and computational limitations. Using

several existing studies which had established a technique for the discovery of a mean

value of ’pure blood’ to be used in CBV studies, we performed an experiment to

extract and isolate the SSS in subject post-contrast scans and compare that to an

existing methodology.[68, 80] However, in wishing to compare this to previous studies

(and evaluate differences), we must first understand the limitations of both methods,
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due to the established variation in these methods.

Existing methods to identify a region of pure blood examined the top 4 voxels

in a coronal slice of a post-contrast MRI image and taking the mean value of those

voxels. In order to compare this mean value with the mean value generated from the

segmentation technique described, we manually identified a coronal section anterior

to the most superior arc of the SSS in six age-matched patients with no observable

structural abnormalities.

Figure B-1: This is an orthogonal section of a subtracted subject scan showing the
venous structure elucidated from injection of a GBCA compared to the non-contrast
image.
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Figure B-2: This image shows a representative coronal slice onto which four voxels
within the SSS have their intensities measured and the mean calculated.
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B.2 Results

The results of the voxel-by-voxel statistics for this study are shown in B.1 for the six

subject scans. The overal mean difference in values between the manual labeling and

automated labeling was -1.11%. The units presented are arbitrary units constructed

from identical signal reconstruction techniques in these images without any MRI

receiver gain (in order to preserve intensity).

B.3 Conclusion

In most subjects, there was less than a 2% change between the manual method and

the non-manual method. For two subjects, the expected mean value difference varied

over 5%. Given that very high voxel values may not reflect pure blood value, a given

slice may contain several voxels of aberrantly high intensity that may increase the

variance in the signal detected. Since the SSS segmentation will almost always select

a larger vessel mask, it is sampling more voxels and generating mean values from a

greater n. One can see a large signal variance in subject 6, which could be indicative

of the presence of non-blood voxels. Given these changes and the inherent uncertainty

present with sampled voxels, this approach appears to be a fair
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Table B.1: Table of individual voxel values and mean segmented voxel values

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6
Vessel Segmented Mean 424.234 406.927 435.902 481.851 416.891 437.849
voxel 1 425.263 417.727 445.177 503.175 379.990 424.207
voxel 2 439.023 399.897 442.57 490.567 370.071 498.692
voxel 3 406.207 388.536 431.255 478.151 372.675 497.276
voxel 4 395.156 393.245 432.031 469.707 368.416 477.101
Four Voxel Average 416.412 399.851 437.758 485.400 372.788 474.319
% Difference -1.89% -1.77% 0.424% 0.731% -11.83% 7.68%
Mean % Difference -1.11%

Figure B-3: Here is the distributions of voxel values from both the standard vessel
extracted mean value (from the top 10% of vessel voxel values) and the mean of four
independently chosen brightest voxel values in the coronal plane of an anterior slice
of several images derived from subtracting pre-contrast MRI scans from post-contrast
MRI scans. The ordinate is arbitrary MRI units, and the abcissa is different subjects.
The mean of the four values as well as lines indicating standard deviation are reflected
with blue circles, and the standard vessel extracted in red squares.
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