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ABSTRACT

Distributed and Large-Scale Optimization

Abdulrahman Kalbat

This dissertation is motivated by the pressing need for solving real-world large-scale optimization

problems with the main objective of developing scalable algorithms that are capable of solving such

problems efficiently. Large-scale optimization problems naturally appear in complex systems such

as power networks and distributed control systems, which are the main systems of interest in this

work. This dissertation aims to address four problems with regards to the theory and application

of large-scale optimization problems, which are explained below:

Chapter 2: In this chapter, a fast and parallelizable algorithm is developed for an arbitrary de-

composable semidefinite program (SDP). Based on the alternating direction method of multipliers,

we design a numerical algorithm that has a guaranteed convergence under very mild assumptions.

We show that each iteration of this algorithm has a simple closed-form solution, consisting of

matrix multiplications and eigenvalue decompositions performed by individual agents as well as in-

formation exchanges between neighboring agents. The cheap iterations of the proposed algorithm

enable solving a wide spectrum of real-world large-scale conic optimization problems that could be

reformulated as SDP.

Chapter 3: Motivated by the application of sparse SDPs to power networks, the objective of this

chapter is to design a fast and parallelizable algorithm for solving the SDP relaxation of a large-

scale optimal power flow (OPF) problem. OPF is fundamental problem used for the operation and

planning of power networks, which is non-convex and NP-hard in the worst case. The proposed

algorithm would enable a real-time power network management and improve the system’s reliability.

In particular, this algorithm helps with the realization of Smart Grid by allowing to make optimal

decisions very fast in response to the stochastic nature of renewable energy. The proposed algorithm

is evaluated on IEEE benchmark systems.

Chapter 4: The design of an optimal distributed controller using an efficient computational



method is one of the most fundamental problems in the area of control systems, which remains

as an open problem due to its NP-hardness in the worst case. In this chapter, we first study

the infinite-horizon optimal distributed control (ODC) problem (for deterministic systems) and

then generalize the results to a stochastic ODC problem (for stochastic systems). Our approach

rests on formulating each of these problems as a rank-constrained optimization from which an

SDP relaxation can be derived. We show that both problems admit sparse SDP relaxations with

solutions of rank at most 3. Since a rank-1 SDP matrix can be mapped back into a globally-

optimal controller, the rank-3 solution may be deployed to retrieve a near-global controller. We

also propose computationally cheap SDP relaxation for each problem and then develop effective

heuristic methods to recover a near-optimal controller from the low-rank SDP solution. The design

of several near-optimal structured controllers with global optimality degrees above 99% will be

demonstrated.

Chapter 5: The frequency control problem in power networks aims to control the global fre-

quency of the system within a tight range by adjusting the output of generators in response to the

uncertain and stochastic demand. The intermittent nature of distributed power generation in smart

grid makes the traditional decentralized frequency controllers less efficient and demands distributed

controllers that are able to deal with the uncertainty in the system introduced by non-dispatchable

supplies (such as renewable energy), fluctuating loads, and measurement noise. Motivated by this

need, we study the frequency control problem using the results developed in Chapter 4. In partic-

ular, we formulate the problem and then conduct a case study on the IEEE 39-Bus New England

system. The objective is to design a near-global optimal distributed frequency controller for the

New England test system by optimally adjusting the mechanical power input to each generator

based on the real-time measurement received from neighboring generators through a user-defined

communication topology.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

This dissertation is motivated by the pressing need for solving real-world large-scale optimization

problems with the main objective of developing scalable algorithms that are capable of solving such

problems efficiently. Large-scale optimization problems naturally appear in complex systems such

as power networks and distributed control systems that are the main systems of interest in this

work. This dissertation addresses four problems in Chapters 2-5, which are concerned with the

theory and applications of large-scale optimization. In what follows, we will first introduce the

problem to be studied in each chapter of this work and then outline the main contributions.

1.0.1 A Fast Distributed Algorithm for Decomposable SDPs

Semidefinite programs (SDP) are attractive due in part to three reasons. First, positive semidefinite

constraints appear in many applications [1]. Second, SDPs can be used to study and approximate

hard combinatorial optimization problems [2]. Third, this class of convex optimization problems

includes linear, quadratic, quadratically-constrained quadratic, and second-order cone programs.

It is known that small- to medium-sized SDP problems can be solved efficiently by interior point

methods in polynomial time up to any arbitrary precision [3]. However, these methods are less

practical for large-scale SDPs due to computation time and memory issues. However, it is possible

to somewhat reduce the complexity by exploiting any possible structure in the problem such as

sparsity.

Alternating direction method of multipliers (ADMM) is a first-order optimization algorithm

proposed in the mid-1970s by [4] and [5]. This method has attracted much attention recently
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since it can be used for large-scale optimization problems and also be implemented in parallel and

distributed computational environments [6; 7]. Compared to second-order methods that are able

to achieve a high accuracy via expensive iterations, ADMM relies on low-complex iterations and

can achieve a modest accuracy in tens of iterations.

Because of the scalability of ADMM, the main objective of Chapter 2 is to design a distributed

ADMM-based parallel algorithm for solving an arbitrary sparse large-scale decomposable SDP with

a guaranteed convergence, under very mild assumptions. We consider a canonical form of decom-

posable SDPs, which is characterized by a graph of agents (nodes) and edges. Each agent needs

to find the optimal value of its associated positive semidefintie matrix subject to local equality

and inequality constraints as well as overlapping constraints with its neighbors (more precisely, the

matrices of two neighboring agents may be subject to consistency constraints). The objective func-

tion of the overall SDP is the summation of individual objectives of all agents. At every iteration,

each agent performs simple computations (matrix multiplication and eigenvalue decomposition)

without having to solve any optimization subproblem, and then communicates some information to

its neighbors. By deriving a Lyapunov-type non-increasing function, it is shown that the proposed

algorithm converges as long as Slater’s conditions hold. Simulations results on large-scale SDP

problems with a few million variables are offered to elucidate the efficacy of this work.

1.0.2 A Fast Parallelizable Algorithm for Convex Relaxation of Optimal Power

Flow Problem

The optimal power flow (OPF) problem finds an optimal operating point of a power system by

minimizing a certain objective function (e.g., transmission loss or generation cost) subject to power

flow equations and operational constraints [8], [9]. Motivated by the importance of this fundamental

problem for operation and planning as well as the potential monetary savings involved [10], many

optimization techniques have been explored for the OPF problem. Due to the non-convexity and

NP-hardness of OPF, the existing algorithms are not robust, lack performance guarantees and may

not find a global optimum. With the goal of designing a polynomial-time algorithm that finds a

global solution for OPF, [11] derives an SDP relaxation for OPF, which results in a globally optimal

solution if the duality gap is zero. The proposed relaxation can find near-global solutions with global

optimality guarantees of at least 99% for IEEE and Polish systems [12], and is theoretically proven
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to be exact under various assumptions [13], [14], [15], [16], [17], [18]. However, this relaxation is a

high-dimensional SDP problem, which imposes some limitations on its practicality for real-world

networks.

Motivated by the application of sparse SDPs to power networks, the objective of Chapter 3 is

to design a fast and parallelizable algorithm for solving sparse SDPs that could be utilized to solve

large-scale SDP relaxations of the OPF problem. To this end, the underling sparsity structure of

a given SDP problem is captured using a tree decomposition technique, leading to a decomposed

SDP problem. A highly distributed/parallelizable numerical algorithm is developed for solving the

decomposed SDP, based on the ADMM method. Each iteration of the designed algorithm has

a closed-form solution, which involves multiplications and eigenvalue decompositions over certain

submatrices induced by the tree decomposition of the sparsity graph. The proposed algorithm

is applied to the classical optimal power flow problem, and also evaluated on IEEE benchmark

systems. This algorithm exhibits an outstanding performance for power systems since real-world

networks have low treewidth.

1.0.3 Convex Relaxation for Optimal Distributed Control Problem

Real-world systems mostly consist of many interconnected subsystems, and designing an optimal

controller for them pose several challenges to the field of control theory. The area of distributed

control is created to address the challenges arising in the control of these systems. The objective is

to design a constrained controller whose structure is specified by a set of permissible interactions

between the local controllers with the aim of reducing the computation or communication com-

plexity of the overall controller. If the local controllers are not allowed to exchange information,

the problem is often called decentralized controller design. It has been long known that the de-

sign of an optimal distributed (decentralized) controller is a daunting task because it amounts to

an NP-hard optimization problem in general [19; 20]. There is no surprise that the decentralized

control problem is computationally hard to solve. This is a consequence of the fact that several

classes of optimization problems, including polynomial optimization and quadratically-constrained

quadratic program (QCQP) as a special case, are NP-hard in the worst case. Due to the complex-

ity of such problems, various convex relaxation methods based on linear matrix inequality (LMI),

semidefinite programming, and second-order cone programming (SOCP) have gained popularity [21;
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22].

In Chapter 4, two problems of infinite-horizon optimal distributed control (ODC) and stochastic

ODC are studied. Our approach rests on formulating each of these problems as a rank-constrained

optimization problem from which an SDP relaxation can be derived. As the first contribution

of this chapter, we show that infinite-horizon ODC and stochastic ODC both admit sparse SDP

relaxations with solutions of rank at most 3. Since a rank-1 SDP matrix can be mapped back

into a globally-optimal controller, the rank-3 solution may be deployed to retrieve a near-global

controller. We also propose two computationally cheap SDP relaxations associated with infinite-

horizon ODC and stochastic ODC. Afterwards, we develop effective heuristic methods to recover a

near-optimal controller from the low-rank SDP solution. The superiority of the proposed technique

is demonstrated on several thousand simulations for mass spring and random systems.

1.0.4 Optimal Distributed Frequency Control in Power Systems

The problem of frequency control in power systems is mainly about controlling the frequency of

the grid within a tight range in order to keep a balance between the active powers injected and

withdrawn by the generators and customers, respectively. The intermittent nature of distributed

power generation in smart grid requires controllers that are able to deal with the uncertainty in

the system caused by non-dispatchable supplies (such as renewable energy), fluctuating loads and

measurement noise. Motivated by this need, the performance of the computationally-cheap SDP

relaxation combined with the indirect recovery method for both Infinite-Horizon and Stochastic

ODC developed in Chapter 4 is evaluated in Chapter 5 on the problem of designing an optimal

distributed frequency controller for IEEE 39-Bus New England Power System. The main objective

of the unknown optimal distributed controller is to optimally adjust the mechanical power input to

each generator as well as being structurally constrained by a user-defined communication topology.

This pre-determined communication topology specifies which generators exchange their rotor angle

and frequency measurements with one another. These controllers are designed for four different

communication topologies and are proven to be all stabilizing with high near global optimality

degrees (as high as 99 % for some topologies).

It is worth mentioning that the materials presented in this dissertation are published in the

following journal and conferences:
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• G. Fazelnia, R. Madani, A. Kalbat and J. Lavaei, “Convex Relaxation for Optimal Distributed

Control Problem,” accepted in IEEE Transactions on Automatic Control, 2015.

• A. Kalbat, R. Madani, G. Fazelnia, and J. Lavaei, “Efficient Convex Relaxation for Stochas-

tic Optimal Distributed Control Problem,” in Proc. 52nd Annual Allerton Conference on

Communication, Control, and Computing, Monticello, IL, 2014.

• A. Kalbat and J. Lavaei, “A Fast Distributed Algorithm for Decomposable Semidefinite Pro-

grams,” in Proc. 54th IEEE Conference on Decision and Control, Osaka, Japan, 2015.

• R. Madani, A. Kalbat and J. Lavaei, “ADMM for Sparse Semidefinite Programming with

Applications to Optimal Power Flow Problem,” in Proc. 54th IEEE Conference on Decision

and Control, Osaka, Japan, 2015.
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Chapter 2

A Fast Distributed Algorithm for

Decomposable Semidefinite Programs

In this chapter, a fast and parallelizable algorithm is developed for an arbitrary decomposable

semidefinite program (SDP). To formulate a decomposable SDP, we consider a multi-agent canoni-

cal form represented by a graph, where each agent (node) is in charge of computing its corresponding

positive semidefinite matrix subject to local equality and inequality constraints as well as overlap-

ping (consistency) constraints with regards to the agent’s neighbors. Based on the alternating

direction method of multipliers, we design a numerical algorithm, which has a guaranteed con-

vergence under very mild assumptions. Each iteration of this algorithm has a simple closed-form

solution, consisting of matrix multiplications and eigenvalue decompositions performed by individ-

ual agents as well as information exchanges between neighboring agents. The cheap iterations of

the proposed algorithm enable solving real-world large-scale conic optimization problems.

2.1 Introduction

Alternating direction method of multipliers (ADMM) is a first-order optimization algorithm pro-

posed in the mid-1970s by [4] and [5]. This method has attracted much attention recently since

it can be used for large-scale optimization problems and also be implemented in parallel and dis-

tributed computational environments [6; 7]. Compared to second-order methods that are able to

achieve a high accuracy via expensive iterations, ADMM relies on low-complex iterations and can
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achieve a modest accuracy in tens of iterations. Inspired by Nesterov’s scheme for accelerating

gradient methods [23], great effort has been devoted to accelerating ADMM and attaining a high

accuracy in a reasonable number of iterations [24]. Since ADMM’s performance is affected by the

condition number of the problem’s data, diagonal rescaling is proposed in [25] for a class of problems

to improve the performance and achieve a linear rate of convergence.

The O( 1
n) worst-case convergence rate of ADMM is proven in [26; 27] under the assumptions

of closed convex sets and convex functions (not necessarily smooth). In [28], the O( 1
n) convergence

rate is obtained for an asynchronous ADMM algorithm. The recent paper [29] represents ADMM

as a dynamical system and then reduces the problem of proving the linear convergence of ADMM

to verifying the stability of a dynamical system [29].

Semidefinite programs (SDP) are attractive due in part to three reasons. First, positive semidef-

inite constraints appear in many applications [1]. Second, SDPs can be used to study and ap-

proximate hard combinatorial optimization problems [2]. Third, this class of convex optimization

problems includes linear, quadratic, quadratically-constrained quadratic, and second-order cone

programs. It is known that small- to medium-sized SDP problems can be solved efficiently by inte-

rior point methods in polynomial time up to any arbitrary precision [3]. However, these methods

are less practical for large-scale SDPs due to computation time and memory issues. However, it

is possible to somewhat reduce the complexity by exploiting any possible structure in the problem

such as sparsity.

The pressing need for solving real-world large-scale optimization problems calls for the devel-

opment of efficient, scalable, and parallel algorithms. Because of the scalability of ADMM, the

main objective of this work is to design a distributed ADMM-based parallel algorithm for solving

an arbitrary sparse large-scale SDP with a guaranteed convergence, under very mild assumptions.

We consider a canonical form of decomposable SDPs, which is characterized by a graph of agents

(nodes) and edges. Each agent needs to find the optimal value of its associated positive semidefintie

matrix subject to local equality and inequality constraints as well as overlapping constraints with

its neighbors (more precisely, the matrices of two neighboring agents may be subject to consistency

constraints). The objective function of the overall SDP is the summation of individual objectives of

all agents. From the computation perspective, each agent is treated as a processing unit and each

edge of the graph specifies what agents can communicate. We propose a distributed algorithm,
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whose iterations comprise local matrix multiplications and eigenvalue decompositions performed

by individual agents as well as information exchanges between neighboring agents.

This chapter is organized as follows. An overview of ADMM is provided in Section 2.2. The

distributed multi-agent SDP problem is formalized in Section 2.3. An ADMM-based parallel al-

gorithm is developed in Section 2.4, by first studying the 2-agent case and then investigating the

general multi-agent case. Simulation results on randomly-generated large-scale SDPs with a few

million variables are provided in Section 2.5. Finally, a summary is given in Section 2.6.

Notations: Rn and Sn denote the sets of n × 1 real vectors and n × n symmetric matrices,

respectively. Lower case letters (e.g., x) represent vectors, and upper case letters (e.g., W ) represent

matrices. tr{W} denotes the trace of a matrix W and the notation W � 0 means that W is

symmetric and positive semidefinite. Given a matrix W , its (l,m) entry is denoted as W (l,m).

The symbols (·)T , ‖ · ‖2 and ‖ · ‖F denote the transpose, `2-norm (for vectors) and Frobenius

norm (for matrices) operators, respectively. The ordering operator (a, b)� returns (a, b) if a < b

and returns (b, a) if a > b. The notation |X | represents the cardinality (or size) of the set X .

The finite sequence of variables x1, . . . , xn is denoted by {xi}ni=1. For an m × n matrix W , the

notation W (X ,Y) denotes the submatrix of W whose rows and columns are chosen from X and Y,

respectively, for given index sets X ⊆ {1, . . . ,m} and Y ⊆ {1, . . . , n}.
The notation G = (V, E) defines a graph G with the vertex (or node) set V and the edge set E .

The set of neighbors of vertex i ∈ V is denoted as N(i). To orient the edges of G, we define a new

edge set E+ = {(i, j) | (i, j) ∈ E and i < j}.

2.2 Alternating Direction Method of Multipliers

Consider the optimization problem

min
x∈Rn, y∈Rm

f(x) + g(y) (2.1a)

subject to Ax+By = c (2.1b)

where f(x) and g(y) are convex functions, A,B are known matrices, and c is a given vector of

appropriate dimension. The above optimization problem has a separable objective function and
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linear constraints. Before proceeding with the chapter, three numerical methods for solving this

problem will be reviewed.

The first method is dual decomposition, which uses the Lagrangian function

L(x, y, λ) = f(x) + g(y) + λT (Ax+By − c)

= f(x) + λTAx︸ ︷︷ ︸
h1(x,λ)

+ g(y) + λTBy︸ ︷︷ ︸
h2(y,λ)

−λT c (2.2)

where λ is the Lagrange multiplier corresponding to the constraint (2.1b). The above Lagrangian

function can be separated into two functions h1(x, λ) and h2(y, λ). Inspired by this separation, the

dual decomposition method is based on updating x, y and λ separately. This leads to the iterations

xt+1 := argmin
x

h1(x, λt) (2.3a)

yt+1 := argmin
y

h2(y, λt) (2.3b)

λt+1 := λt + αt(Axt+1 +Byt+1 − c) (2.3c)

for t = 0, 1, 2, ..., with an arbitrary initialization (x0, y0, λ0), where αt is a step size. Note that

“argmin” denotes any minimizer of the corresponding function.

Despite its decomposability, the dual decomposition method has robustness and convergence

issues. The method of multipliers could be used to remedy these difficulties, which is based on the

augmented Lagrangian function

Lµ(x, y, λ) = f(x) + g(y) + λT (Ax+By − c) +
µ

2
‖Ax+By − c‖22 (2.4)

where µ is a nonnegative constant. Notice that (2.4) is obtained by augmenting the Lagrangian

function in (2.2) with a quadratic term in order to increase the smallest eigenvalue of the Hessian

of the Lagrangian with respect to (x, y). However, this augmentation creates a coupling between x

and y. The iterations corresponding to the method of multipliers are

(xt+1, yt+1) := argmin
(x,y)

Lµ(x, y, λt) (2.5a)

λt+1 := λt + µ(Axt+1 +Byt+1 − c) (2.5b)

where t = 0, 1, 2, ....
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In order to avoid solving a joint optimization with respect to x and y at every iteration, the

alternating direction method of multipliers (ADMM) can be used. The main idea is to first update

x by freezing y at its latest value, and then update y based on the most recent value of x. This

leads to the 2-block ADMM problem with the iterations [7]:

Block 1: xt+1 := argmin
x
Lµ(x, yt, λt) (2.6a)

Block 2: yt+1 := argmin
y
Lµ(xt+1, y, λt) (2.6b)

Dual: λt+1 := λt + µ(Axt+1 +Byt+1 − c) (2.6c)

ADMM offers a distributed computation property, a high degree of robustness, and a guaranteed

convergence under very mild assumptions. In the remainder of this chapter, we will use this first-

order method to solve large-scale decomposable SDP problems.

2.3 Problem Formulation

Consider an arbitrary simple, connected, and undirected graph G = (V, E) with the node set

V := {1, . . . , n} and the edge set E ⊆ V ×V, as illustrated in Figure 2.1. In a physical context, each

node could represent an agent (or a machine or a processor or a thread) and each edge represents

a communication link between the agents. In the context of this work, each agent is in charge of

computing a positive semidefinite matrix variable Wi, and each edge (i, j) ∈ E specifies an overlap

between the matrix variables Wi and Wj of agents i and j. More precisely, each edge (i, j) is

accompanied by two arbitrary integer-valued index sets Iij and Iji to capture the overlap between

Wi and Wj through the equation Wi(Iij , Iij) = Wj(Iji, Iji). Figure 2.2 illustrates this specification

through an example with three overlapping matrices, where every two neighboring submatrices

with an identical color must take the same value at optimality. Another way of thinking about

this setting is that Figure 2.1 represents the sparsity graph of an arbitrary sparse large-scale SDP

with a single global matrix variable W , which is then reformulated in terms of certain matrices

of W , named W1, ...,Wn, using the Chordal extension and matrix completion theorems [30]. The

objective of this chapter is to solve the decomposable SDP problem (interchangeably referred to as

distributed multi-agent SDP) given below.
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W1 Wi Wj Wn

· · · · · ·1 i j n
Iij Iji

Figure 2.1: A graph representation of the distributed multi-agent SDP.

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

W1 (8× 8)

1 2 3 4 5
1
2
3
4
5

W2 (5× 5)

1 2 3 4 5
1
2
3
4
5

W3 (5× 5)

I12 = (1, 3, 4, 5)

I21 = (1, 2, 3, 4)

I13 = (6, 7, 8)

I31 = (1, 2, 3)

I23 = (3, 5) I32 = (2, 4)

Figure 2.2: An illustration of the definitions of Iij and Iji for three overlapping submatrices W1,

W2 and W3
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Decomposable SDP:

minimize
∑
i∈V

tr(AiWi) (2.7a)

subject to : tr(B
(i)
j Wi) = c

(i)
j ∀ j = 1, . . . , pi and i ∈ V (2.7b)

tr(D
(i)
l Wi) ≤ d(i)

l ∀ l = 1, . . . , qi and i ∈ V (2.7c)

Wi � 0 ∀ i ∈ V (2.7d)

Wi(Iij , Iij) = Wj(Iji, Iji) ∀ (i, j) ∈ E+ (2.7e)

with the variables Wi ∈ Sni for i = 1, ..., n, where

• the superscript in (·)(i) is not a power but means that the expression corresponds to agent

i ∈ V.

• ni denotes the size of the submatrix Wi, and pi and qi show the numbers of equality and

inequality constraints for agent i, respectively.

• c(i)
j and d

(i)
l denote the jth and lth elements of the vectors ci ∈ Rpi and di ∈ Rqi for agent i,

as defined below:

ci , [c
(i)
1 , . . . , c

(i)
pi ]T , di , [d

(i)
1 , . . . , d

(i)
qi ]T

• the matrices Ai, B
(i)
j , and D

(i)
l are known and correspond to agent i ∈ V.

The formulation in (2.7) has three main ingredients:

• Local objective function: each agent i ∈ V has its own local objective function tr(AiWi)

with respect to the local matrix variable Wi. The summation of all local objective functions

denotes the global objective function in (2.7a).

• Local constraints: each agent i ∈ V has local equality and inequality constraints (2.7b) and

(2.7c), respectively, as well as a local positive semidefiniteness constraint (2.7d).

• Overlapping constraints: constraint (2.7e) states that certain entries of Wi and Wj are

identical.
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The objective is to design a distributed algorithm for solving (2.7), by allowing each agent i ∈ V
to collaborate with its neighbors N(i) to find an optimal value for its positive semidefinite submatrix

Wi while meeting its own constraints as well as all overlapping constraints. This is accomplished by

local computations performed by individual agents and local communication between neighboring

agents for information exchange.

There are two scenarios in which (2.7) could be used. In the first scenario, it is assumed that

the SDP problem of interest is associated with a multi-agent system and matches the formulation

in (2.7) exactly. In the second scenario, we consider an arbitrary sparse SDP problem in the

centralized standard form, i.e., an SDP with a single positive semidefinite matrix W , and then

convert it into a distributed SDP with multiple but smaller positive semidefinite matrices Wi to

match the formulation in (2.7) (note that a dense SDP problem can be put in the form of (2.7)

with n = 1). The conversion from a standard SDP to a distributed SDP is possible using the

idea of chordal decomposition of positive semidefinite cones in [31], which exploits the fact that a

matrix W has a positive semidefinite completion if and only if certain submatrices of W , denoted

as W1, ...,Wn, are positive semidefinite [32].

In this chapter, we propose an iterative algorithm for solving the decomposable SDP problem

(2.7) using the first-order ADMM method. We show that each iteration of this algorithm has a

simple closed-form solution, which consists of matrix multiplication and eigenvalue decomposition

over matrices of size ni for agent i ∈ V.

Our work improves upon some recent papers in this area. [33] is a special case of our work with

n = 1, which does not offer any parallelizable algorithm for sparse SDPs and may not be applicable

to large-scale sparse SDP problems. [31] uses the clique-tree conversion method to decompose

sparse SDPs with chordal sparsity pattern into smaller sized SDPs, which can then be solved by

interior point methods but this approach is limited by the large number of consistency constraints

for the overlapping parts. Recently, [34] solves the decomposed SDP created by [31] using a first-

order splitting method, but it requires solving a quadratic program at every iteration, which again

imposes some limitations on the scalability of the proposed algorithm. In contrast, the algorithm

to be proposed here is parallelizable with low computations at every iteration, without requiring

any initial feasible point unlike interior point methods.
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W1

W2∗

∗
W1(I12, I12)

=

W2(I21, I21)

Figure 2.3: Positive semidefinite matrix W (two blocks)

2.4 Distributed Algorithm for Decomposable Semidefinite Pro-

grams

In this section, we design an ADMM-based algorithm to solve (2.7). For the convenience of the

reader, we first consider the case where there are only two overlapping matrices W1 and W2. Later

on, we derive the iterations for the general case with an arbitrary graph G.

2.4.1 Two-Agent Case

Assume that there are two overlapping matrices W1 and W2 embedded in a global SDP matrix

variable W as shown in Figure 2.3, where ”*” submatrices of W are redundant (meaning that there

is no explicit constraint on the entries of these parts). The SDP problem for this case can be put



CHAPTER 2. A FAST DISTRIBUTED ALGORITHM FOR DECOMPOSABLE
SEMIDEFINITE PROGRAMS 15

in the canonical form (2.7), by setting V = {1, 2}, E+ = {(1, 2)} and |V| = 2:

min
W1∈Sn1

W2∈Sn2

tr(A1W1) + tr(A2W2) (2.8a)

subject to tr(B
(1)
j W1) = c

(1)
j ∀ j = 1, . . . , p1 (2.8b)

tr(B
(2)
j W2) = c

(2)
j ∀ j = 1, . . . , p2 (2.8c)

tr(D
(1)
l W1) ≤ d(1)

l ∀ l = 1, . . . , q1 (2.8d)

tr(D
(2)
l W2) ≤ d(2)

l ∀ l = 1, . . . , q2 (2.8e)

W1,W2 � 0 (2.8f)

W1(I12, I12) = W2(I21, I21) (2.8g)

where the data matrices A1, B
(1)
j ,D

(1)
l ∈ Sn1 , the matrix variable W1 ∈ Sn1 and the vectors c1 ∈ Rp1

and d1 ∈ Rq1 correspond to agent 1, whereas the data matrices A2, B
(2)
j ,D

(2)
l ∈ Sn2 , the matrix

variable W2 ∈ Sn2 and the vectors c2 ∈ Rp2 and d2 ∈ Rq2 correspond to agent 2. Constraint (2.8g)

states that the (I12, I12) submatrix of W1 overlaps with the (I21, I21) submatrix of W2. With no

loss of generality, assume that the overlapping part occurs at the lower right corner of W1 and the

upper left corner of W2, as illustrated in Figure 2.3. The dual of the 2-agent SDP problem in (2.8)

can be expressed as

minimize
(
cT1 z1 + dT1 v1

)
+
(
cT2 z2 + dT2 v2

)
(2.9a)

subject to : −
p1∑
j=1

z
(1)
j B

(1)
j −

q1∑
l=1

v
(1)
l D

(1)
l +R1 −

0 0

0 H1,2

 = A1 (2.9b)

−
p2∑
j=1

z
(2)
j B

(2)
j −

q2∑
l=1

v
(2)
l D

(2)
l +R2 +

H2,1 0

0 0

 = A2 (2.9c)

H1,2 = H2,1 (2.9d)

v1, v2 ≥ 0 (2.9e)

R1, R2 � 0 (2.9f)

with the variables z1, z2, v1, v2, R1, R2, H1,2, H2,1, where z1 ∈ Rp1 , z2 ∈ Rp2 , v1 ∈ Rq1 and v2 ∈ Rq2

are the Lagrange multipliers corresponding to the equality and inequality constraints in (2.8b)-

(2.8e), respectively, and the dual matrix variables R1 ∈ Sn1 and R2 ∈ Sn2 are the Lagrange
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multipliers corresponding to the constraint (2.8f). The dual matrix variable H1,2 is the Lagrange

multiplier corresponding to the submatrix W1(I12, I12) of W1, whereas H2,1 is the Lagrange multi-

plier corresponding to the submatrix W2(I21, I21) of W2. Since the overlapping entries between W1

and W2 are equal, as reflected in constraint (2.8g), the corresponding Lagrange multipliers should

be equal as well, leading to constraint (2.9d).

If we apply ADMM to (2.9), it becomes impossible to split the variables into two blocks of

variables associated with agents 1 and 2. The reason is that the augmented Lagrangian function of

(2.9) creates a coupling between H1,2 and H2,1, which then requires updating H1,2 and H2,1 jointly.

This issue can be resolved by introducing a new auxiliary variable H(1,2) in order to decompose the

constraint H1,2 = H2,1 into two constraints H1,2 = H(1,2) and H2,1 = H(1,2). Similarly, to make

the update of v1 and v2 easier, we do not impose positivity constraints directly on v1 and v2 as in

(2.9e). Instead, we impose the positivity on two new vectors u1, u2 ≥ 0 and then add the additional

constraints v1 = u1 and v2 = u2. By applying the previous modifications, (2.9) could be rewritten

in the decomposable form

minimize
2∑
i=1

(
cTi zi + dTi vi + I+(Ri) + I+(ui)

)
(2.10a)

subject to : −
p1∑
j=1

z
(1)
j B

(1)
j −

q1∑
l=1

v
(1)
l D

(1)
l +R1 −

0 0

0 H1,2

 = A1 (2.10b)

−
p2∑
j=1

z
(2)
j B

(2)
j −

q2∑
l=1

v
(2)
l D

(2)
l +R2 +

H2,1 0

0 0

 = A2 (2.10c)

H1,2 = H(1,2) (2.10d)

H2,1 = H(1,2) (2.10e)

v1 = u1 (2.10f)

v2 = u2 (2.10g)

with the variables z1, z2, v1, u1, v2, u2, R1, R2, H1,2, H2,1, H
(1,2), where I+(Ri) is equal to 0 if Ri � 0

and is +∞ otherwise, and I+(ui) is equal to 0 if ui ≥ 0 and is +∞ otherwise.

To streamline the presentation, define

Bsum
i =

pi∑
j=1

z
(i)
j B

(i)
j , Dsum

i =

qi∑
l=1

v
(i)
l D

(i)
l , i = 1, 2 (2.11)
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and

H full
1,2 =

0 0

0 H1,2

 , H full
2,1 =

−H2,1 0

0 0

 (2.12)

Note that Bsum
i , Dsum

i , H full
1,2 and H full

2,1 are functions of the variables zi, vi, H1,2 and H2,1, re-

spectively, but the arguments are dropped for notational simplicity. The augmented Lagrangian

function for (2.10) can be obtained as

Lµ (F ,M) =
2∑
i=1

(
cTi zi + dTi vi + I+(Ri) + I+(ui)

)
+
µ

2

∥∥∥∥−Bsum
1 −Dsum

1 +R1 −H full
1,2 −A1 +

G1

µ

∥∥∥∥2

F

+
µ

2

∥∥∥∥−Bsum
2 −Dsum

2 +R2 −H full
2,1 −A2 +

G2

µ

∥∥∥∥2

F

+
µ

2

∥∥∥∥H1,2 −H(1,2) +
G1,2

µ

∥∥∥∥2

F

+
µ

2

∥∥∥∥H2,1 −H(1,2) +
G2,1

µ

∥∥∥∥2

F

+
µ

2

∥∥∥∥v1 − u1 +
λ1

µ

∥∥∥∥2

2

+
µ

2

∥∥∥∥v2 − u2 +
λ2

µ

∥∥∥∥2

2

(2.13)

where F =
(
z1, z2, v1, v2, u1, u2, R1, R2, H1,2, H2,1, H

(1,2)
)

is the set of optimization variables and

M = (G1, G2, G1,2, G2,1, λ1, λ2) is the set of Lagrange multipliers whose elements correspond to

constraints (2.10b) - (2.10g), respectively. Note that the augmented Lagrangian in (2.13) is obtained

using the identity

tr
[
XT (A−B)

]
+
µ

2
‖A−B‖2F =

µ

2

∥∥∥∥A−B +
X

µ

∥∥∥∥2

F

+ constant (2.14)

In order to proceed, we need to split the set of optimization variables F into two blocks of variables.

To this end, define X =
{
u1, u2, R1, R2, H

(1,2)
}

and Y = {z1, z2, v1, v2, H1,2, H2,1}. Using the
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method delineated in Section 2.2, the two-block ADMM iterations can be obtained as

(Block 1) X t+1 = argmin
X

Lµ
(
X ,Yt,Mt

)
(2.15a)

(Block 2) Yt+1 = argmin
Y

Lµ
(
X t+1,Y,Mt

)
(2.15b)

Gt+1
1 = Gt1 + µ

(
−B

t+1
sum
1 −D

t+1
sum
1 +Rt+1

1 −H
t+1
full
1,2 −A1

)
(2.15c)

Gt+1
2 = Gt2 + µ

(
−B

t+1
sum
2 −D

t+1
sum
2 +Rt+1

2 −H
t+1
full
2,1 −A2

)
(2.15d)

Gt+1
1,2 = Gt1,2 + µ

Ht+1
1,2 −H

t+1
(1,2)

 (2.15e)

Gt+1
2,1 = Gt2,1 + µ

Ht+1
2,1 −H

t+1
(1,2)

 (2.15f)

λt+1
1 = λt1 + µ

(
vt+1

1 − ut+1
1

)
(2.15g)

λt+1
2 = λt2 + µ

(
vt+1

2 − ut+1
2

)
(2.15h)

for t = 0, 1, 2, ....

The above updates are derived based on the fact that ADMM aims to find a saddle point of

the augmented Lagrangian function by alternatively performing one pass of Gauss Seidel over X
and Y and then updating the Lagrange multipliers M through Gradient ascent.

It is straightforward to show that the optimization over X in Block 1 is fully decomposable

and amounts to 5 separate optimization subproblems with respect to the individual variables

u1, u2, R1, R2, H
(1,2). In addition, the optimization over Y in Block 2 is equivalent to 2 separate

optimization subproblems with the variables (z1, v1, H1,2) and (z2, v2, H2,1), respectively. Interest-

ingly, all these subproblems have closed-form solutions. The corresponding iterations that need

to be taken by agents 1 and 2 are provided in (2.16) and (2.17) (given in the next two pages).

Note that these agents need to perform local computation in every iteration according to (2.16)

and (2.17) and then exchange the updated values of the pairs (H1,2, G1,2) and (H2,1, G2,1) with one

another.

To elaborate on (2.16) and (2.17), the positive semidefinite matrices R1 and R2 are updated

through the operator (·)+, where X+ is defined as the projection of an arbitrary symmetric matrix

X onto the set of positive semidefinite matrices by replacing its negative eigenvalues with 0 in
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Iterations for Agent 1

Rt+1
1 =

(
B

t
sum
1 +D

t
sum
1 +H

t
full
1,2 +A1 −

Gt1
µ

)
+

(2.16a)

ut+1
1 =

(
vt1 +

λt1
µ

)
+

(2.16b)

H
t+1
(1,2) =

1

2

(
Ht

1,2 +Ht
2,1 +

Gt1,2
µ

+
Gt2,1
µ

)
(2.16c)

(z1, v1, H1,2)t+1 = Lin

(
ut+1

1 , Rt+1
1 , H

t+1
(1,2), Gt1, G

t
1,2, λ

t
1

)
(2.16d)

Gt+1
1 = Gt1 + µ

(
−B

t+1
sum
1 −D

t+1
sum
1 +Rt+1

1 −H
t+1
full
1,2 −A1

)
(2.16e)

Gt+1
1,2 = Gt1,2 + µ

(
Ht+1

1,2 −H
t+1
(1,2)

)
(2.16f)

λt+1
1 = λt1 + µ

(
vt+1

1 − ut+1
1

)
(2.16g)

the eigenvalue decomposition[33]. The positive vectors u1 and u2 are also updated through the

operator (x)+, which replaces any negative entry in an arbitrary vector x with 0 while keeping

the nonnegative entries. Using the first-order optimality condition ∇H(1,2)Lµ(·) = 0, one could

easily find the closed-form solution for H(1,2) as shown in (2.16c) and (2.17c). By combining the

conditions ∇z1Lµ(·) = 0, ∇v1Lµ(·) = 0 and ∇H1,2Lµ(·) = 0, the updates of (z1, v1, H1,2) and

(z2, v2, H2,1) reduce to a (not necessarily unique) linear mapping, denoted as Lin(·) in (2.16d) and

(2.17d) (due to non-uniqueness, we may have multiple solutions, and any of them can be used in

the updates). The Lagrange multipliers inM are updated through Gradient ascent, as specified in

(2.16e)-(2.16g) for agent 1 and in (2.17e)-(2.17g) for agent 2.

2.4.2 Multi-Agent Case

In this part, we will study the general distributed multi-agent SDP (2.7). The dual of this prob-

lem, after considering all modifications used to convert (2.9) to (2.10), can be expressed in the
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Iterations for Agent 2

Rt+1
2 =

(
B

t
sum
2 +D

t
sum
2 +H

t
full
2,1 +A2 −

Gt2
µ

)
+

(2.17a)

ut+1
2 =

(
vt2 +

λt2
µ

)
+

(2.17b)

H
t+1
(1,2) =

1

2

(
Ht

1,2 +Ht
2,1 +

Gt1,2
µ

+
Gt2,1
µ

)
(2.17c)

(z2, v2, H2,1)t+1 = Lin

(
ut+1

2 , Rt+1
2 , H

t+1
(1,2), Gt2, G

t
2,1, λ

t
2

)
(2.17d)

Gt+1
2 = Gt2 + µ

(
−B

t+1
sum
2 −D

t+1
sum
2 +Rt+1

2 −H
t+1
full
2,1 −A2

)
(2.17e)

Gt+1
2,1 = Gt2,1 + µ

(
Ht+1

2,1 −H
t+1
(1,2)

)
(2.17f)

λt+1
2 = λt2 + µ

(
vt+1

2 − ut+1
2

)
(2.17g)

decomposable form

minimize
∑
i∈V

(
cTi zi + dTi vi + I+(Ri) + I+(ui)

)
(2.18a)

subject to : −Bsum
i −Dsum

i +Ri −
∑

k∈N(i)

H full
i,k = Ai ∀ i ∈ V (2.18b)

Hi,j = H(i,j) ∀ (i, j) ∈ E+ (2.18c)

Hj,i = H(i,j) ∀ (i, j) ∈ E+ (2.18d)

vi = ui ∀ i ∈ V (2.18e)

with the variables zi, vi, ui, Ri, Hi,j , Hj,i, H
(i,j) for every i ∈ V and (i, j) ∈ E+, where Bsum

i =∑pi
j=1 z

(i)
j B

(i)
j , Dsum

i =
∑qi

l=1 v
(i)
l D

(i)
l and Hsum

i =
∑

k∈N(i)H
full
i,k . Note that zi ∈ Rpi and vi ∈ Rqi

are the Lagrange multipliers corresponding to the equality and inequality constraints in (2.7b) and

(2.7c), respectively, and that Ri ∈ Sni is the Lagrange multiplier corresponding to the constraint

(2.7d). Each element hfull
i,k (a, b) of H full

i,k is either zero or equal to the Lagrange multiplier corre-

sponding to an overlapping element Wi(a, b) between Wi and Wk. For a better understanding of the
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Hsum
1 = H full

1,2 +H full
1,3
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3
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1
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H1,3

I12 (blue) = (1, 3, 5)
I13 (orange) = (5, 7, 8)

Figure 2.4: An illustration of the difference between H full
i,j , Hi,j and Hsum

i . Agent 1 is overlapping

with agents 2 and agent 3 at the entries specified by I12 and I13. The white squares in the left

matrix H full
1,2 + H full

1,3 represent those entries with value 0, and the color squares carry Lagrange

multipliers.

difference between H full
i,j , Hi,j and Hsum

i , an example is given in Figure 2.4 for the case where agent

1 is overlapping with agents 2 and 3. The ADMM iterations for the general case can be derived

similarly to the 2-agent case, which yields the local computation (2.20) for each agent i ∈ V.

Consider the parameters defined in (2.21) for every i ∈ V, (i, j) ∈ E+, and time t ∈ {1, 2, 3, ....}.
Define V t as

V t =
∑
i∈V

((
∆t
p1

)
i
+
(
∆t
p4

)
i
+
(
∆t
d1

)
i
+
(
∆t
d2

)
i

)
+
∑
i,j∈E+

((
∆t
p2

)
i,j

+
(
∆t
p3

)
i,j

+
(
∆t
d3

)
i,j

) (2.19)

Note that (∆p1,∆p2,∆p3,∆p4), (∆d1,∆d2,∆d3), and V are the primal residues, dual residues

and aggregate residue for the decomposed problem (2.18). It should be noticed that the dual

residues are only considered for the variables in the block X =
{
ui, Ri, H

(i,j)
}

. Since H(i,j) appears

twice in (2.18), the norm in the residue ∆d3 is multiplied by 2. The main result of this chapter will

be stated below.

Theorem 1. Assume that Slater’s conditions hold for the decomposable SDP problem (2.7). Con-

sider the iterative algorithm given in (2.20). The following statements hold:

• The aggregate residue V t attenuates to 0 in a non-increasing way as t goes to +∞.
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Iterations for Agent i ∈ V

Rt+1
i =

(
B

t
sum
i +D

t
sum
i +H

t
sum
i +Ai −

Gti
µ

)
+

(2.20a)

ut+1
i =

(
vti +

λti
µ

)
+

(2.20b)

H
t+1

(i,k)� =
1

2

(
Ht
i,k +Ht

k,i +
Gti,k
µ

+
Gtk,i
µ

)
∀k ∈ N(i) (2.20c)(

zt+1
i , vt+1

i ,
{
Ht+1
i,k

}
k∈N(i)

)
= Lin

(
ut+1
i , Rt+1

i ,

{
H

t+1
(i,k)�

}
k∈N(i)

, Gti,
{
Gti,k

}
k∈N(i)

, λti

)
(2.20d)

Gt+1
i = Gti + µ

(
−B

t+1
sum
i −D

t+1
sum
i +Rt+1

i −H
t+1
sum
i −Ai

)
(2.20e)

Gt+1
i,k = Gti,k + µ

Ht+1
i,k −H

t+1
(i,k)�

 ∀k ∈ N(i) (2.20f)

λt+1
i = λti + µ

(
vt+1
i − ut+1

i

)
(2.20g)

(
∆t
p1

)
i

=

∥∥∥∥B t
sum
i +D

t
sum
i +H

t
sum
i +Ai −Rti

∥∥∥∥2

F

(2.21a)

(
∆t
p2

)
i,j

=

∥∥∥∥Ht
i,j −H

t
(i,j)

∥∥∥∥2

F

(2.21b)

(
∆t
p3

)
i,j

=

∥∥∥∥Ht
j,i −H

t
(i,j)

∥∥∥∥2

F

(2.21c)(
∆t
p4

)
i

=
∥∥vti − uti∥∥2

2
(2.21d)(

∆t
d1

)
i

=
∥∥Rti −Rt−1

i

∥∥2

F
(2.21e)(

∆t
d2

)
i

=
∥∥uti − ut−1

i

∥∥2

2
(2.21f)(

∆t
d3

)
i,j

= 2

∥∥∥∥H t
(i,j) −H

t−1
(i,j)

∥∥∥∥2

F

(2.21g)
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• For every i ∈ V, the limit of (Gt1, G
t
2, ..., G

t
n) at t = +∞ is an optimal solution for (W1,W2, ...,

Wn).

Proof. After realizing that (2.20) is obtained from a two-block ADMM procedure, the theorem

follows from [35] that studies the convergence of a standard ADMM problem. The details are

omitted for brevity.

Since the proposed algorithm is iterative with an asymptotic convergence, we need a finite-time

stopping rule. Based on [36], we terminate the algorithm as soon as max {P1,P2 , D1,D2,D3,D4,Gap}
becomes smaller than a pre-specified tolerance, where

(P1)i =

∥∥∥BT
i W i − ci

∥∥∥
2

+
∥∥∥max

(
D
T
i W i − di,0

)∥∥∥
2

1 + ‖ci‖2
(2.22a)

(P2)i,j =
‖Wi(Iij , Iij)−Wj(Iji, Iji)‖F

1 + ‖Wi(Iij , Iij)‖F + ‖Wj(Iji, Iji)‖F
(2.22b)

(D1)i =
‖−Bsum

i −Dsum
i +Ri −Hsum

i −Ai‖F
1 + ‖Ai‖1

(2.22c)

(D2)i,j =

∥∥Hi,j −H(i,j)
∥∥
F

1 + ‖Hi,j‖F +
∥∥H(i,j)

∥∥
F

(2.22d)

(D3)i,j =

∥∥Hj,i −H(i,j)
∥∥
F

1 + ‖Hj,i‖F +
∥∥H(i,j)

∥∥
F

(2.22e)

(D4)i =
‖vi − ui‖2

1 + ‖vi‖2 + ‖ui‖2
(2.22f)

Gap =

∣∣∑
i∈V
(
cTi zi + dTi vi − tr (AiWi)

)∣∣
1 +

∣∣∑
i∈V
(
cTi zi + dTi vi

)∣∣+
∣∣∑

i∈V tr (AiWi)
∣∣ (2.22g)

for every i ∈ V and (i, j) ∈ E+, where

• the letters P and D refer to the primal and dual infeasibilities, respectively.

• W i is the vectorized version of Wi obtained by stacking the columns of Wi one under another

to create a column vector.

• Bi and Di are matrices whose columns are the vectorized versions of B
(i)
j and D

(i)
l for j =

1, . . . , pi and l = 1, . . . , qi, respectively.

The stopping criteria in (2.22) are based on the primal and dual infeasibilities as well as the duality

gap.
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2.5 Simulations Results

The objective of this section is to elucidate the results developed earlier on randomly generated

large-scale structured SDP problems. The algorithm was implemented in a high-performance C++

code and all of the simulations below were run on a laptop with an Intel Core i7 quad-core 2.5

GHz CPU and 8 GB RAM. For more details about the C++ implementation and for the full code,

please check Appendix.

For every i ∈ V, we generate a random instance of the problem as follows:

• Each matrix Ai is chosen as Ω + ΩT + niI, where the entries of Ω are uniformly chosen from

the integer set {1, 2, 3, 4, 5}. This creates reasonably well-conditioned matrices Ai.

• Each matrix Bj(or Dl) is chosen as Ω + ΩT , where Ω is generated as before.

• Each matrix variable Wi is assumed to be 40 by 40.

• The matrices W1, ...,Wn are assumed to overlap with each other in a banded structure, asso-

ciated with a path graph G with the edges (1, 2), (2, 3), ..., (n− 1, n). One can regard Wi’s as

submatrices of a full-scale matrix variable W in the form of Figure 2.3 but with n overlapping

blocks, where 25% of the entries of every two neighboring matrices Wi and Wi+1 (leading to

a 10× 10 submatrix) overlaps.

In order to demonstrate the proposed algorithm on large-scale SDPs, three different values will

be considered for the total number of overlapping blocks (or agents): 1000, 2000 and 4000. To give

the reader a sense of how large the simulated SDPs are, the total number of entries of Wi’s in the

decomposed SDP problem (NDecomp) and the total number of entries of W in the corresponding

full-SDP problem (NFull) are listed below:

• 1000 agents: NFull = 0.9 billion, NDecomp = 1.6 million

• 2000 agents: NFull = 3.6 billion, NDecomp = 3.2 million

• 4000 agents: NFull = 14.4 billion, NDecomp = 6.4 million

The simulation results are provided in Table 2.1 with the following entries: Pobj and Dobj are

the primal and dual objective values, “iter” denotes the number of iterations needed to achieve a
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Cases 1000 2000 4000

Pobj 4.010774e+05 8.004677e+05 1.607917e+06

Dobj 4.010047e+05 8.003433e+05 1.607689e+06

pi = 5 iter 308 348 368

qi = 0 tCPU (sec) 66.74 147.09 329.48

titer (sec per iter) 0.22 0.42 0.90

Optimality 99.98% 99.98% 99.98%

Pobj 8.119377e+05 1.626216e+06 3.249436e+06

Dobj 8.119114e+05 1.626207e+06 3.249429e+06

pi = 0 iter 1033 1360 1652

qi = 5 tCPU (sec) 230.48 579.95 1544.59

titer (sec per iter) 0.22 0.43 0.93

Optimality 99.996% 99.9994% 99.9997%

Pobj 1.192407e+06 2.373408e+06 4.741277e+06

Dobj 1.192402e+06 2.373401e+06 4.741266e+06

pi = 5 iter 2323 2754 2902

qi = 5 tCPU (sec) 525.312 1295.69 2940.62

titer (sec per iter) 0.23 0.47 1.01

Optimality 99.9995% 99.9997% 99.9997%

Table 2.1: Simulation results for three cases with 1000, 2000 and 4000 agents.

desired tolerance, tCPU and titer are the total CPU time (in seconds) and the time per iteration (in

seconds per iteration), and “Optimality” (in percentage) is calculated as:

Optimality Degree (%) = 100− Pobj −Dobj

Pobj
× 100

As shown in Table 2.1, the simulations were run for three cases:

• pi = 5 and qi = 0: each agent has 5 equality constraints and no inequality constraints.

• pi = 0 and qi = 5: each agent has no equality constraints and 5 inequality constraints.

• pi = 5 and qi = 5: each agent has 5 equality constraints and 5 inequality constraints.
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Figure 2.5: Aggregate residue for the case of 4000 agents with pi = qi = 5.

All solutions reported in Table 2.1 are based on the tolerance of 10−3 and an optimality degree of

at least 99.9%. The aggregative residue V t is plotted in Figure 2.5 for the 4000-agent case with pi =

qi = 5, which is a monotonically decreasing function. Note that the time per iteration is between

0.22 and 1.01 in a C++ implementation. Efficient and computationally cheap preconditioning

methods could dramatically reduce the number of iterations, but this is outside the scope of this

work.

2.6 Summary

In this chapter, a fast and parallelizable algorithm is developed for an arbitrary decomposable

semidefinite program (SDP). To formulate a decomposable SDP, we consider a multi-agent canonical

form represented by a graph, where each agent (node) is in charge of computing its corresponding

positive semidefinite matrix. The main goal of each agent is to ensure that its matrix is optimal

with respect to some measure and satisfies local equality and inequality constraints. In addition,

the matrices of two neighboring agents may be subject to overlapping constraints. The objective

function of the optimization is the sum of all objectives of individual agents. The motivation behind

this formulation is that an arbitrary sparse SDP problem can be converted to a decomposable SDP
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by means of the Chordal extension and matrix completion theorems. Using the alternating direction

method of multipliers, we develop a distributed algorithm to solve the underlying SDP problem.

At every iteration, each agent performs simple computations (matrix multiplication and eigenvalue

decomposition) without having to solve any optimization subproblem, and then communicates some

information to its neighbors. By deriving a Lyapunov-type non-increasing function, it is shown that

the proposed algorithm converges as long as Slater’s conditions hold. Simulations results on large-

scale SDP problems with a few million variables are offered to elucidate the efficacy of the proposed

technique.
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Chapter 3

A Fast Parallelizable Algorithm for

Convex Relaxation of Optimal Power

Flow Problem

This chapter designs a distributed algorithm for solving the semidefinite programming (SDP) re-

laxation of the optimal power flow (OPF) problem, based on the alternating direction method of

multipliers (ADMM). It is known that exploiting the sparsity of a large-scale SDP problem leads to

a decomposed formulation with a lower computational cost. The algorithm proposed in this work

deploys the sparsity of power networks and solves the decomposed formulation of the SDP prob-

lem using an ADMM scheme whose iterations consist of two subproblems. Both subproblems are

highly parallelizable and enjoy closed-form solutions, which make the iterations computationally

very cheap. While an arbitrary decomposable multi-agent SDP formulation was solved in the dual

domain in Chapter 2, the sparse and large-scale SDP for the OPF problem is solved in the primal

domain combined with the tree/chordal/clique decomposition technique in order to better exploit

the structure of power systems. The numerical algorithm developed here is also tested on the IEEE

benchmark systems.
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3.1 Introduction

The optimal power flow (OPF) problem finds an optimal operating point of a power system by

minimizing a certain objective function (e.g., transmission loss or generation cost) subject to power

flow equations and operational constraints [8], [9]. Motivated by the importance of this fundamental

problem for operation and planning as well as the potential monetary savings involved [10], many

optimization techniques have been explored for the OPF problem. Due to the non-convexity and

NP-hardness of OPF, the existing algorithms are not robust, lack performance guarantees and may

not find a global optimum. With the goal of designing a polynomial-time algorithm that finds a

global solution for OPF, [11] derives an SDP relaxation for OPF, which results in a globally optimal

solution if the duality gap is zero. The proposed relaxation can find near-global solutions with global

optimality guarantees of at least 99% for IEEE and Polish systems [12], and is theoretically proven

to be exact under various assumptions [13], [14], [15], [16], [17], [18]. However, this relaxation is a

high-dimensional SDP problem, which imposes some limitations on its practicality for real-world

networks.

The emerging smart grid paradigm and the integration of intermittent and distributed power

generation calls for the development of efficient, scalable, and parallel algorithms for solving large-

scale OPF problems to enable real-time network management and improve the system’s reliability.

In response to this need, we aim to design an algorithm that is able to solve large-scale SDP

relaxations. Early efforts to solve OPF in a distributed way (without considering non-convexity) can

be traced back to [37], [38]. In [39], a fully decentralized ADMM-based algorithm is developed for a

convex approximation of dynamic OPF. The papers [40] and [41] exploit primal-dual decomposition

and ADMM methods for the SDP relaxation of OPF, but they need to solve an expensive SDP

sub-problem at every iteration. The work [42] designs a distributed algorithm for a second-order

cone relaxation of OPF over radial (acyclic) networks. In contrast to the existing methods, the

algorithm to be proposed here applies to both distribution and transmission networks, and does

not require solving any optimization sub-problem at any iteration.

While small- to medium-sized SDPs are efficiently solvable by second-order-based interior point

methods in polynomial time up to any arbitrary precision [3], these methods are impractical for

solving large-scale SDPs due to computation time and memory issues. A promising approach for

solving large-scale SDP problems is ADMM. In light of the scalability of ADMM, the main objective
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of this work is to design an ADMM-based parallel algorithm for solving sparse large-scale SDPs

tailored to the OPF problem with a guaranteed convergence under very mild assumptions. We start

by defining a representative graph for the large-scale SDP problem, from which a decomposed SDP

formulation is obtained using a tree/chordal/clique decomposition technique. This decomposition

replaces the large-scale SDP matrix variable with certain submatrices of this matrix. In order to

solve the decomposed SDP problem iteratively, a distributed ADMM-based algorithm is derived,

whose iterations comprise entry-wise matrix multiplication/division and eigendecomposition on

certain submatrices of the SDP matrix. By finding the optimal solution for the distributed SDP,

one could recover the solution to the original large-scale SDP formulation using an explicit formula.

Similar to the work in Chapter 2, the work in this chapter is related to and improves upon the

recent papers [33], [43], [34]. In contrast with the above papers, the algorithm proposed in this

work is composed of low-complex and parallelizable iterations, which run fast if the treewidth of the

representative graph of the SDP problem is small. Since this treewidth is low for real-world power

networks, our algorithm is well suited for the SDP relaxation of power optimization problems.

This chapter is organized as follows. Some preliminaries and definitions are provided in Sec-

tion 3.2. An arbitrary sparse SDP is converted into a decomposed SDP in Section 3.3, for which

a numerical algorithm in the primal domain is developed in Section 3.4. The algorithm is used to

solve the convex relaxation of the OPF problem in Section 3.5. Numerical examples are given in

Section 3.6, followed by a summary in Section 3.7.

Notations: R, C, and Hn denote the sets of real numbers, complex numbers, and n×n Hermitian

matrices, respectively. The notation X1 ◦X2 refers to the Hadamard (entrywise) multiplication of

matrices X1 and X2. The symbols 〈·, ·〉 and ‖ · ‖F denote the Frobenius inner product and norm of

matrices, respectively. The notation ‖v‖2 denotes the `2-norm of a vector v. The m×n rectangular

identity matrix, whose (i, j) entry is equal to the Kronecker delta δij , is denoted by Im×n. The

notations Re{W}, Im{W}, rank{W}, and diag{W} denote the real part, imaginary part, rank,

and diagonal of a Hermitian matrix W, respectively. Given a vector v, the notation diag{v}
denotes a diagonal square matrix whose entries are given by v. The notation W � 0 means that

W is Hermitian and positive semidefinite. The notation “i” is reserved for the imaginary unit. The

superscripts (·)∗ and (·)T represent the conjugate transpose and transpose operators, respectively.

Given a matrix W, its (l,m) entry is denoted as Wlm. The subscript (·)opt is used to show the
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optimal value of an optimization variable. Given a matrix W, its Moore-Penrose pseudoinverse is

denoted as pinv{W}. Given a simple graph H, its vertex and edge sets are denoted by VH and EH,

respectively. Given two sets S1 and S2, the notation S1\S2 denotes the set of all elements of S1 that

do not exist in S2. Given a Hermitian matrix W and two sets of positive integer numbers S1 and

S2, define W{S1,S2} as a submatrix of W obtained through two operations: (i) removing all rows

of W whose indices do not belong to S1, and (ii) removing all columns of W whose indices do not

belong to S2. For instance, W {{1,2}, {2,3}} is a 2×2 matrix with the entries W12,W13,W22,W23.

3.2 Preliminaries

Consider the semidefinite program

minimize
X∈Hn

〈X,M0〉 (3.1a)

subject to ls ≤ 〈X,Ms〉 ≤ us, s = 1, . . . , p, (3.1b)

X � 0. (3.1c)

where M0,M1, . . . ,Mp ∈ Hn, and

(ls, us) ∈ ({−∞} ∪ R)× (R ∪ {+∞})

for every s = 1, . . . , p. Notice that the constraint (3.1b) reduces to an equality constraint if ls = us.

Problem (3.1) is computationally expensive for a large n due to the presence of the positive

semidefinite constraint (3.1c). However, if M0,M1, . . . ,Mp are sparse, this expensive constraint can

be decomposed and expressed in terms of some principal submatrices of X with smaller dimensions.

This will be explained next.

3.2.1 Representative Graph and Tree Decomposition

In order to leverage any possible sparsity of problem (3.1), a simple graph shall be defined to

capture the zero-nonzero patterns of M0,M1, . . . ,Mp.

Definition 1. Define G = (VG , EG) as the representative graph of the SDP problem (3.1), which

is a simple graph with n vertices whose edges are specified by the nonzero off-diagonal entries of
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M0,M1, . . . ,Mp. In other words, two arbitrary vertices i and j are connected if the (i, j) entry of

at least one of the matrices M0,M1, . . . ,Mp is nonzero.

Using a tree decomposition algorithm (also known as chordal or clique decomposition), we can

obtain a decomposed formulation for problem (3.1), in which the positive semidefinite requirement

is imposed on certain principal submatrices of X as opposed to X itself.

Definition 2 (Tree decomposition). A tree graph T is called a tree decomposition of G if it satisfies

the following properties:

1. Every node of T corresponds to and is identified by a subset of VG.

2. Every vertex of G is a member of at least one node of T .

3. Tk is a connected graph for every k ∈ VG, where Tk denotes the subgraph of T induced by all

nodes of T containing the vertex k of G.

4. The subgraphs Ti and Tj have a node in common for every (i, j) ∈ EG.

Each node of T is a bag (collection) of vertices of G and hence it is referred to as a bag.

Let T = (VT , ET ) be an arbitrary tree decomposition of G, with the set of bags VT = {C1, C2, . . . ,

Cq}. As discussed in the next section, it is possible to cast problem (3.1) in terms of those entries

of X that appear in at least one of the submatrices X{C1, C1},X{C2, C2}, . . . , X{Cq, Cq}. These

entries of X are referred to as important entries. Once the optimal values of the important entries

of X are found using an arbitrary algorithm, the remaining entries can be obtained from an explicit

(recursive) formula to be stated later.

Among the factors that may contribute to the computational complexity of the decomposed

problem are: the size of the largest bag, the number of bags, and the total number of important

entries. Finding a tree decomposition that leads to the minimum number of important entries

(minimum fill-in problem) or possesses the minimum size for its largest bag (treewidth problem) is

known to be NP-hard. Nevertheless, there are many efficient algorithms in the literature that find

near-optimal tree decompositions (specially for power networks due to their near planarity) [44;

45].
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3.2.2 Sparsity Pattern of Matrices

Let Fn denote the set of symmetric n × n matrices with entries belonging to the set {0, 1}. The

distributed optimization scheme to be proposed in this work uses a group of sparse slack matrices.

We identify the locations of nonzero entries of such matrix variables using descriptive matrices in

Fn.

Definition 3. Given an arbitrary matrix X ∈ Hn, define its sparsity pattern as a matrix N ∈ Fn

such that Nij = 1 if and only if Xij 6= 0 for every i, j ∈ {1, ..., n}. Let |N| denote the number of

nonzero entries of N. Define the set

S(N) , {X ∈ Hn | X ◦N = X}.

Due to the Hermitian property of X, if d denotes the number of nonzero diagonal entries of N,

then every X ∈ S(N) can be specified by (|N|+ d)/2 real-valued scalars corresponding to Re{X}
and (|N| − d)/2 real scalars corresponding to Im{X}. Therefore, S(N) is |N|-dimensional over R.

Definition 4. Suppose that T = (VT , ET ) is a tree decomposition of the representative graph G
with the bags C1, C2, . . . , Cq.

• For r = 1, . . . , q, define Cr ∈ Fn as a sparsity pattern whose (i, j) entry is equal to 1 if

{i, j} ⊆ Cr and is 0 otherwise for every i, j ∈ {1, ..., n}.

• Define C ∈ Fn as an aggregate sparsity pattern whose (i, j) entry is equal to 1 if and only if

{i, j} ⊆ Cr for at least one index r ∈ {1, . . . , p}.

• For s = 0, 1, . . . , p, define Ns ∈ Fn as the sparsity pattern of Ms.

The sparsity pattern C, which can also be interpreted as the adjacency matrix of a chordal extension

of G induced by T , captures the locations of the important entries of X. The matrix C will later

be used to describe the domain of definition for the variable of decomposed SDP problem.

3.2.3 Indicator Functions

To streamline the formulation, we will replace any positivity or positive semidefiniteness constraints

in the decomposed SDP problem by the indicator functions introduced below.
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Definition 5. For every l ∈ {−∞} ∪ R and u ∈ R ∪ {+∞}, define the convex indicator function

Il,u : R→ {0,+∞} as

Il,u(x) ,

 0 if l ≤ x ≤ u
+∞ otherwise

Definition 6. For every r ∈ {1, 2, . . . , q}, define the convex indicator function Jr : Hn → {0,+∞}
as

Jr(X) ,

 0 if X{Cr, Cr} � 0

+∞ otherwise

3.3 Decomposed SDP

Consider the problem

minimize
X∈S(C)

〈X,M0〉 (3.2a)

subject to ls ≤ 〈X,Ms〉 ≤ us, s = 1, . . . , p, (3.2b)

X{Cr, Cr} � 0, r = 1, . . . , q (3.2c)

which is referred to as decomposed SDP throughout this chapter. Due to the chordal theorem [32],

problems (3.1) and (3.2) lead to the same optimal objective value. Furthermore, if Xref ∈ S(C)

denotes an arbitrary solution of the decomposed SDP problem (3.2), then there exists a solution

Xopt to the SDP problem (3.1) such that Xopt ◦C = Xref .

To understand how Xopt can be constructed from Xref , observe that those entries of X corre-

sponding to the zeros of C are 0 due to the relation Xref ∈ S(C). These entries of the matrix

variable X that are needed for SDP but have not been found by decomposed SDP are referred to

as missing entries. Several completion approaches can be adopted in order to recover these missing

entries. An algorithm is proposed in [43; 46] that obtains a completion for Xref within the set {X ∈
Hn |X◦C = Xref , X � 0}whose determinant is maximum. However such a solution may not be fa-

vorable for applications that require a low-rank solution such as an SDP relaxation. It is also known

that there exists a polynomial-time algorithm to fill a partially-known real-valued matrix in such

a way that the rank of the resulting matrix becomes equal to the highest rank among all bags [47;

48]. In [49], this result was extended to the complex domain by proposing a recursive algorithm that
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transforms Xref ∈ S(C) into a solution Xopt for the original SDP problem (3.1) whose rank is up-

per bounded by the maximum rank among the matrices Xref{C1, C1},Xref{C2, C2}, . . . ,Xref{Cq, Cq}.
This algorithm is stated below for completeness.

Matrix completion algorithm:

1. Set T ′ := T and X := Xref .

2. If T ′ has a single node, then consider Xopt as X and terminate; otherwise continue to the

next step.

3. Choose a pair of bags Cx, Cy of T ′ such that Cx is a leaf of T ′ and Cy is its unique neighbor.

4. Define

K , pinv{X{Cx ∩ Cy, Cx ∩ Cy}} (3.3a)

Gx , X{Cx \ Cy, Cx ∩ Cy} (3.3b)

Gy , X{Cy \ Cx, Cx ∩ Cy} (3.3c)

Ex , X{Cx \ Cy, Cx \ Cy} ∈ Cdx×dx (3.3d)

Ey , X{Cy \ Cx, Cy \ Cx} ∈ Cdy×dy (3.3e)

Sx , Ex −GxKG∗x = QxDxQ
∗
x (3.3f)

Sy , Ey −GyKG∗y = QyDyQ
∗
y (3.3g)

where QxDxQ
∗
x and QyDyQ

∗
y denote the eigenvalue decompositions of Sx and Sy with the

diagonals of Dx and Dy arranged in descending order. Then, update a part of X as follows:

X{Cy \ Cx, Cx \ Cy} := GyKG∗x + Qy

√
Dy Idy×dx

√
Dx Q∗x (3.4)

and update X{Cx \ Cy, Cy \ Cx} accordingly to preserve the Hermitian property of X.

5. Update T ′ by merging Cx into Cy, i.e., replace Cy with Cx ∪ Cy and then remove Cx from T ′.

6. Go back to step 2.
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Theorem 2. Consider an arbitrary solution Xref of the decomposed SDP problem (3.2). The output

of the matrix completion algorithm, denoted as Xopt, is a solution of the original SDP problem (3.1).

Moreover, the rank of Xopt is smaller than or equal to:

max

{
rank {Xref{Cr, Cr}}

∣∣∣∣ r = 1, . . . , q

}
.

Proof. See [49; 50] for the proof.

3.4 Alternating Direction Method of Multipliers

For the convenience of the reader, the ADMM algorithm is restated in this section. Consider the

optimization problem

minimize
x∈Rnx

y∈Rny

f(x) + g(y) (3.5a)

subject to Ax + By = c. (3.5b)

where c ∈ Rnc , A ∈ Rnc×nx and B ∈ Rnc×ny are given matrices. Also f : Rnx → R ∪ {+∞} and

g : Rny → R ∪ {+∞} are given convex functions. Notice that the variables x and y are coupled

through the linear constraint (3.5b) while the objective function is separable.

The augmented Lagrangian function for problem (3.5) is equal to

Lµ(x,y, λ) = f(x) + g(y) (3.6a)

+ λT(Ax + By − c) (3.6b)

+ (µ/2)‖Ax + By − c‖22, (3.6c)

where λ ∈ Rnc is the Lagrange multiplier associated with the constraint (3.5b), and µ ∈ R is a

fixed parameter. ADMM is one approach for solving problem (3.5), which performs the following

procedure at each iteration [7]:

xk+1 = arg min
x∈Rnx

Lµ(x,yk, λk), (3.7a)

yk+1 = arg min
y∈Rny

Lµ(xk+1,y, λk), (3.7b)

λk+1 = λk + µ(Axk+1 + Byk+1 − c). (3.7c)
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where k = 0, 1, 2, . . ., for an arbitrary initialization (x0,y0, λ0). In these equations, “argmin” means

an arbitrary minimizer of a convex function and does not need any uniqueness assumption. Notice

that each of the updates (3.7a) and (3.7b) is an optimization sub-problem with respect to either x

and y, by freezing the other variable at its latest value. We employ the energy sequence {εk}∞k=1

proposed in [24] as measure for convergence:

εk+1 = (1/µ)‖λk+1 − λk‖22 + µ‖B(yk+1 − yk)‖22 (3.8)

ADMM is particularly interesting for the cases where (3.7a) and (3.7b) can be performed effi-

ciently through an explicit formula. Under such circumstances, it would be possible to execute a

large number of iterations in a short amount of time. In this section, we first cast the decomposed

SDP problem (3.2) in the form of (3.5) and then regroup the variables into two blocks P1 and P2

playing the roles of x and y in the ADMM algorithm.

3.4.1 Projection Into Positive Semidefinite Cone

The algorithm to be proposed in this work requires the projection of q matrices belonging to

H|C1|,H|C2|, . . . ,H|Cq | onto the positive semidefinite cone. This is probably the most computationally

expensive part of each iteration.

Definition 7. For a given Hermitian matrix Ẑ, define the unique solution to the optimization

problem

minimize
Z∈Hm

‖Z− Ẑ‖2F (3.9a)

subject to Z � 0 (3.9b)

as the projection of Ẑ onto the cone of positive semidefinite matrices, and denote it as Ẑ+.

The next Lemma reveals the interesting fact that problem (3.9) can be solved through an

eigenvalue decomposition of Ẑ.

Lemma 1. Let Ẑ = Q × diag{(ν1 . . . , νm)} ×Q∗ denote the eigenvalue decomposition of Ẑ. The

solution of the projection problem (3.9) is given by

Ẑ+ = Q× diag{(max{ν1, 0}, . . . ,max{νm, 0})} ×Q∗

Proof. See [51] for the proof.
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3.4.2 ADMM for Decomposed SDP

We apply ADMM to the following reformulation of the decomposed SDP problem (3.2):

minimize
X∈S(C)

{XN ;s∈S(Ns)}ps=0

{XC;r∈S(Cr)}qr=1

{zs∈R}ps=0

z0 +

p∑
s=1

Ils,us(zs) +

q∑
r=1

Jr(XC;r)

subject to X ◦Cr = XC;r, r = 1, 2, . . . , q, (3.10a)

X ◦Ns = XN ;s, s = 0, 1, . . . , p, (3.10b)

zs = 〈Ms,XN ;s〉, s = 0, 1, . . . , p. (3.10c)

If X is a feasible solution of (3.10) with a finite objective value, then

Jr(X) = Jr(X ◦Cr)
(3.10a)

= Jr(XC;r) = 0

which concludes that X{Cr, Cr} � 0. Also,

Ils,us(〈X,Ms〉) = Ils,us(〈X ◦Ns,Ms〉)
(3.10b)

= Ils,us(〈XN ;s,Ms〉)
(3.10c)

= Ils,us(zs) = 0

which yields that ls ≤ 〈X,Ms〉 ≤ us. Therefore, X is a feasible point for problem (3.2) as well,

with the same objective value. Define

1. ΛC;r ∈ S(Cr) as the Lagrange multiplier associated with the constraint (3.10a) for r =

1, 2, . . . , q,

2. ΛN ;s ∈ S(Ns) as the Lagrange multiplier associated with the constraint (3.10b) for s =

0, 1, . . . , p,

3. λz;s ∈ R as the Lagrange multiplier associated with the constraint (3.10c) for s = 0, 1, . . . , p.

We regroup the primal and dual variables as

(Block 1) P1 = (X, {zs}ps=0)

(Block 2) P2 = ({XC;r}qr=1, {XN ;s}ps=0)

(Dual) D = ({ΛC;r}qr=1, {ΛN ;s}ps=0, {λz;s}ps=0) .
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Note that “block 1”, “block 2” and “D” play the roles of x, y and λ in the standard formulation

of ADMM, respectively. The augmented Lagrangian can be calculated as

(2/µ)Lµ(P1,P2,D) = LD(D)/µ2+ ‖z0 − 〈M0,XN ;0〉+ (1 + λz;0)/µ‖2F

+

p∑
s=1

‖zs − 〈Ms,XN ;s〉+ λz;s/µ‖2F + (2/µ)Ils,us(zs)

+

q∑
r=1

‖X ◦Cr −XC;r + (1/µ)ΛC;r‖2F + (2/µ)Jr(XC;r)

+

p∑
s=1

‖X ◦Ns −XN ;s + (1/µ)ΛN ;s‖2F (3.12)

where

LD(D) = −(1 + λz;0)2 −
p∑
s=1

λ2
z;s −

q∑
r=1

‖ΛC;r‖2F −
p∑
s=1

‖ΛN ;s‖2F

Using the blocks P1 and P2, the ADMM iterations for problem (3.10) can be expressed as follows:

1. The subproblem (3.7a) in terms of P1 consists of two parallel steps:

(a) Minimization in terms of X: This step consists of |C| scalar quadratic and unconstrained

programs. It possesses an explicit formula that involves |C| parallel multiplication op-

erations.

(b) Minimization in terms of {zs}ps=0: This step consists of p+ 1 scalar quadratic programs

each with a box constraint. It possesses an explicit formula that involves p+ 1 parallel

multiplication operations.

2. The subproblem (3.7b) in terms of P2 also consists of two parallel steps:

(a) Minimization in terms of {XC;r}qr=1: This step consists of q projection problems of the

form (3.9). According to Lemma 1, this reduces to q parallel eigenvalue decomposition

operations on matrices of sizes |Cr| × |Cr| for r = 1, . . . , q.

(b) Minimization in terms of {XN ;s}ps=0: This step consists of p unconstrained quadratic

programs of sizes |Ns| for s = 0, 1, . . . , p. The quadratic programs are parallel and each

of them possesses an explicit formula that involves 2|Ns| multiplications.



CHAPTER 3. A FAST PARALLELIZABLE ALGORITHM FOR CONVEX RELAXATION OF
OPTIMAL POWER FLOW PROBLEM 40

3. Computation of the dual variables at each iteration, in equation (3.7c), consists of three

parallel steps:

(a) Updating {ΛC;r}qr=1: Computational costs for this step involves no multiplications and

is negligible.

(b) Updating {ΛN ;s}ps=0: Computational costs for this step involves no multiplications and

is negligible.

(c) Updating {λz;s}ps=0: This step is composed of p+ 1 parallel inner product computations,

each involving |Ns| multiplications for s = 0, 1, . . . , p.

The fact that every step of the above algorithm has an explicit easy-to-compute formula makes the

algorithm very appealing for large-scale SDPs.

Notation 1. For every D,E ∈ Hn, the notation D�C E refers to the entrywise division of those

entries of D and E that correspond to the ones of C i.e.,

(D�C E)ij ,

 Dij/Eij if Cij = 1

0 if Cij = 0.

Theorem 3. Assume that Slater’s conditions hold for the decomposable SDP problem (3.2) and

consider the iterative algorithm given in (3.18). The limit of Xk at k = +∞ is an optimal solution

for (3.2).

Proof. The convergence of both primal and dual variables is guaranteed for a standard ADMM

problem if the matrix B in (3.5b) has full column rank [35]. After realizing that (3.18) is obtained

from a two-block ADMM procedure, the theorem can be concluded form the fact that the equivalent

of B for the algorithm (3.18) is a mapping from the variables {XC;r}qr=1 and {XN ;s}ps=0 to

{XC;r}qr=1, {XN ;s}ps=0 and {〈Ms,XN ;s〉}ps=0

which is not singular, i.e., it has full column rank. The details are omitted for brevity.

In what follows, we elaborate on every step of the ADMM iterations:

Block 1: The first step of the algorithm that corresponds to (3.7a) consists of the operation

Pk+1
1 := arg min Lµ(P1,Pk2 ,Dk).
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Notice that the minimization of Lµ(P1,Pk2 ,Dk) with respect to P1 is decomposable in terms of the

real scalars

Re{Xij} for i = 1, . . . , n; j = i, . . . , n (3.14a)

Im{Xij} for i = 1, . . . , n; j = i+ 1, . . . , n (3.14b)

zs for s = 1, . . . , p (3.14c)

which leads to the explicit formulas (3.18a), (3.18b) and (3.18c).

Block 2: The second step of the algorithm that corresponds to (3.7b) consists of the operation

Pk+1
2 = arg min Lµ(Pk+1

1 ,P2,Dk)

Notice that the minimization of Lµ(Pk+1
1 ,P2,Dk) with respect to P2 is decomposable in terms of

the matrix variables {XC;r}qr=1 and {XN ;s}ps=0. Hence, the update of XC;r reduces to the problem

(3.9) for Ẑ = XC;r{Cr, Cr}. As shown in Lemma 1, this can be performed via the eigenvalue

decomposition of a |Cr| × |Cr| matrix. In addition, the updated value of XN ;s is a minimizer of the

function

LN ;s(Z) = ‖zs − 〈Ms,Z〉+ λz;s/µ‖2F + ‖X ◦Ns − Z + (1/µ)ΛN ;s‖2F (3.16)

By taking the derivatives of this function, it is possible to find an explicit formula for Zopt. Define

L′N ;s(Z) ∈ S(Ns) as the gradient of LN ;s(Z) with the following structure:

L′N ;s(Z) ,

[
∂LN ;s

∂Re{Zij}
+ i

∂LN ;s

∂Im{Zij}

]
i,j=1,...,n

Then, we have

L′N ;s(Z)/2 = Z−X ◦Ns − (1/µ)ΛN,s

+ (−zs + 〈Ms,Z〉 − λz;s/µ)Ms.

Therefore,

Zopt = X ◦Ns + (1/µ)ΛN,s + ysMs, (3.17)

where ys , zs − 〈Ms,Z
opt〉+ λz;s/µ. Hence, it only remains to derive the scalar ys, which can be

done by inner multiplying Ms to the both sides of the equation (3.17). This leads to the equations

(3.18e) and (3.18f).
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ADMM for Decomposed SDP:

Block 1 :

Xk+1 :=

[
q∑

r=1

Cr ◦ (Xk
C;r −Λk

C;r/µ) +

p∑
s=1

Ns ◦ (Xk
N ;s −Λk

N ;s/µ)

]
�C

[
q∑

r=1

Cr +

p∑
s=1

Ns

]
(3.18a)

zk+1
0 := 〈M0,X

k
N ;0〉 − (λk

z;0 + 1)/µ (3.18b)

zk+1
s := max{min{〈Ms,X

k
N ;s〉 − λk

z;s/µ, us}, ls} for s = 1, 2, . . . , p (3.18c)

Block 2 :

Xk+1
C;r := (Xk+1 ◦Cr + Λk

C;r/µ)+ for r = 1, 2, . . . , q (3.18d)

yk+1
s :=

zk+1
s + λk

z;s/µ− 〈Ms,Ns ◦Xk+1 + Λk
N ;s/µ〉

1 + ‖Ms‖2F
for s = 0, 1, . . . , p (3.18e)

Xk+1
N ;s := Ns ◦Xk+1 + Λk

N,s/µ+ yk+1
s Ms for s = 0, 1, . . . , p (3.18f)

Dual :

Λk+1
C;r := Λk

C;r + µ(Xk+1 ◦Cr −Xk+1
C;r ) for r = 1, 2, . . . , q (3.18g)

Λk+1
N ;s := Λk

N ;s + µ(Xk+1 ◦Ns −Xk+1
N ;s ) for s = 0, 1, . . . , p (3.18h)

λk+1
z;s := λk

z;s + µ(zk+1
s − 〈Ms,X

k+1
N ;s 〉) for s = 0, 1, . . . , p (3.18i)

3.5 Optimal Power Flow

Consider an n-bus electrical power network with the topology described by a simple graph H =

(VH, EH), meaning that each vertex belonging to VH = {1, . . . , n} represents a node of the network

and each edge belonging to EG represents a transmission line. Let Y ∈ Cn×n denote the admittance

matrix of the network. Define V ∈ Cn as the voltage phasor vector, i.e., Vk is the voltage phasor for

node k ∈ VH. Let P + Q i represent the nodal complex power vector, where P ∈ Rn and Q ∈ Rn

are the vectors of active and reactive powers injected at all buses. P+Q i can be interpreted as the

complex-power supply minus the complex-power demand at node k of the network. The classical

OPF problem can be described as follows:
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minimize
V∈Cn

Q∈Rn

P∈Rn

∑
k∈VG

fk(Pk) (3.19a)

subject to V min
k ≤ |Vk| ≤ V max

k , k ∈ N (3.19b)

Qmin
k ≤ Qk ≤ Qmax

k , k ∈ N (3.19c)

Pmin
k ≤ Pk ≤ Pmax

k k ∈ N (3.19d)

P + iQ = diag{VV∗Y∗} (3.19e)

where V min
k , V max

k , Pmin
k , Pmax

k , Qmin
k and Qmax

k are given network limitations, and fk(Pk) is a

convex function accounting for the power generation cost at node k. This problem may include

additional constraints (such as thermal limits over the lines) that are ignored here only for the sake

of simplicity in the presentation. For the same reason, assume that the objective function is the

total active power loss
∑

k∈VG Pk. More details on a general formulation may be found in [11].

OPF is a highly non-convex problem, which is known to be difficult to solve in general. However,

the constraints of problem (3.19) can all be expressed as linear functions of the entries of the

quadratic matrix VV∗. This implies that the constraints of OPF are linear in terms of a matrix

variable W , VV∗. One can reformulate OPF by replacing each ViV
∗
j by Wij and represent

the constraints in the form of problem (3.1) with a representative graph that is isomorphic to

the network topology graph H. In order to preserve the equivalence of the two formulations, two

additional constraints must be added to the problem: (i) W � 0, (ii) rank{W} = 1. If we drop

the rank condition as the only non-convex constraint of the reformulated OPF problem, we attain

the SDP relaxation of OPF that is convex:

minimize
W∈Hn

〈W, (Y + Y∗)/2〉 (3.20a)

subject to (V min
k )2≤〈W, eke

∗
k〉≤(V max

k )2, k ∈ VH (3.20b)

Qmin
k ≤ 〈W,YQ;k〉 ≤ Qmax

k , k ∈ VH (3.20c)

Pmin
k ≤ 〈W,YP ;k〉 ≤ Pmax

k , k ∈ VH (3.20d)

W � 0 (3.20e)
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Test cases p q Maximum Running time of

size of bags 1000 iterations (sec)

Chow’s 9 bus 27 7 3 6.18

IEEE 14 bus 42 12 3 9.96

IEEE 30 bus 90 18 4 14.66

IEEE 57 bus 171 26 6 21.25

IEEE 118 bus 354 66 5 53.13

IEEE 300 bus 900 111 7 98.95

Table 3.1: Running time of the proposed algorithm for solving the SDP relaxation of OPF problem

on IEEE test cases.

where e1, . . . , en denote the standard basis vectors in Rn and

YQ;k ,
1

2i
(Y∗keke

∗
k − eke∗kY)

YP ;k ,
1

2
(Y∗eke

∗
k + eke

∗
kY)

for every k ∈ VH.

As stated in the introduction, several papers in the literature have shown great promises for

finding global or near-global solutions of OPF using the above relaxation. The major drawback of

relaxing the OPF problem to an SDP is the requirement of defining a matrix variable, which makes

the number of scalar variables of the problem quadratic with respect to the number of network

buses. However, we have shown in [50] that real-world grids would have a low treewidth, e.g.,

at most 26 for the Polish test system with over 3000 buses. This makes our proposed numerical

algorithm scalable and highly parallelizable for the above SDP relaxation. As an example, the SDP

relaxation of OPF for the Polish Grid amounts to simple operations over matrices of size 27 by 27

or smaller.

3.6 Simulation Results

In this section, we evaluate the performance of the proposed algorithm for solving the SDP re-

laxation of OPF over IEEE test cases. All simulations are run in MATLAB using a laptop with
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an Intel Core i7 quad-core 2.5 GHz CPU and 12 GB RAM. As shown in Figure 3.1, the energy

function εk (as defined in (3.8)) is monotonically decreasing for all simulated cases. In addition,

the utmost accuracy of 10−25 is ultimately achievable for all these systems. The time per 1000

iteration is between 6.18 and 100 seconds in a MATLAB implementation, which can be reduced

significantly in C++ and by parallel computing. We have verified that these numbers diminish

by at least a factor of 3 if certain small-sized bags are combined to obtain a modest number of

bags. This shows a trade-off between the chosen granularity for the algorithm and its computation

time for a serial implementation (as opposed to a parallel implementation). To elaborate on the

algorithm, note that every iteration amounts to a basic matrix operation or an eigendecomposition

over matrices of size at most 7× 7 for the IEEE 300-bus system. Efficient preconditioning methods

could dramatically reduce the number of iterations (as OPF is often very ill-conditioned due to

high inductance-to-resistance ratios), and this is left for future work.

3.7 Summary

The main objective of this chapter is to design a fast and parallelizable algorithm for solving

sparse SDPs corresponding to the convex relaxation of power optimization problems. To this end,

the underling sparsity structure of a given SDP problem is captured using a tree decomposition

technique, leading to a decomposed SDP problem. A highly distributed/parallelizable numerical

algorithm is developed for solving the decomposed SDP, based on the alternating direction method

of multipliers (ADMM). Each iteration of the designed algorithm has a closed-form solution, which

involves multiplications and eigenvalue decompositions over certain submatrices induced by the tree

decomposition of the sparsity graph. The proposed algorithm is applied to the classical optimal

power flow problem, and also evaluated on IEEE benchmark systems. This algorithm is well suited

for power optimization problems since it exploits the fact that real-world power networks have a

low treewidth.
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Figure 3.1: These plots show the convergence behavior of the energy function εk for IEEE test

cases. (a): Chow’s 9 bus, (b): IEEE 14 bus, (c): IEEE 30 bus, (d): IEEE 57 bus, (e): IEEE 118

bus, (f): IEEE 300 bus.
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Chapter 4

Convex Relaxation for Optimal

Distributed Control Problem

This chapter is concerned with the optimal distributed control (ODC) problem. We first study

the infinite-horizon ODC problem (for deterministic systems) and then generalize the results to

a stochastic ODC problem (for stochastic systems). By adopting a Lyapunov approach, we show

that each of these non-convex controller design problems admits a rank-constrained formulation,

which can be relaxed to a semidefinite program (SDP). The notion of treewidth is then utilized to

prove that the SDP relaxation has a matrix solution with rank at most 3. If the SDP relaxation has

a rank-1 solution, a globally optimal solution can be recovered from it; otherwise, a near-optimal

controller together with a bound on its optimality degree may be attained. Since the proposed

SDP relaxation is not computationally attractive, a computationally-cheap SDP relaxation is also

developed. It is shown that this relaxation works as well as Riccati equations in the extreme case

of designing a centralized controller. The superiority of the proposed technique is demonstrated on

several thousand simulations for mass spring and random systems.

4.1 Introduction

Real-world systems mostly consist of many interconnected subsystems, and designing an optimal

controller for them pose several challenges to the field of control. The area of distributed control is

created to address the challenges arising in the control of these systems. The objective is to design
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a constrained controller whose structure is specified by a set of permissible interactions between

the local controllers with the aim of reducing the computation or communication complexity of the

overall controller. If the local controllers are not allowed to exchange information, the problem is

often called decentralized controller design. It has been long known that the design of an optimal

distributed (decentralized) controller is a daunting task because it amounts to an NP-hard opti-

mization problem in general [19; 20]. Great effort has been devoted to investigating this highly

complex problem for special types of systems, including spatially distributed systems [52; 53; 54; 55;

56], dynamically decoupled systems [57; 58], weakly coupled systems [59], and strongly connected

systems [60].

There is no surprise that the decentralized control problem is computationally hard to solve.

This is a consequence of the fact that several classes of optimization problems, including polynomial

optimization and quadratically-constrained quadratic program (QCQP) as a special case, are NP-

hard in the worst case. Due to the complexity of such problems, various convex relaxation methods

based on linear matrix inequality (LMI), semidefinite programming (SDP), and second-order cone

programming (SOCP) have gained popularity [21; 22]. These techniques enlarge the possibly non-

convex feasible set into a convex set characterizable via convex functions, and then provide the

exact or a lower bound on the optimal objective value. The SDP relaxation usually converts an

optimization with a vector variable to a convex optimization with a matrix variable, via a lifting

technique. The exactness of the relaxation can then be interpreted as the existence of a low-rank

(e.g., rank-1) solution for the SDP relaxation. Several papers have studied the existence of a

low-rank solution to matrix optimizations with linear or nonlinear (e.g., LMI) constraints. For

instance, the papers [61; 62; 63] provide an upper bound on the lowest rank among all solutions

of a feasible LMI problem. A rank-1 matrix decomposition technique is developed in [64] to find a

rank-1 solution whenever the number of constraints is small. It was shown in [11] and [65] that the

SDP relaxation is able to solve a large class of non-convex energy-related optimization problems

performed over power networks. The success of the relaxation was related to the hidden structure

of those optimizations induced by the physics of a power grid. Inspired by this positive result, the

notion of “nonlinear optimization over graph” was developed in [66] and [67]. This technique maps

the structure of an abstract nonlinear optimization into a graph from which the exactness of the

SDP relaxation may be concluded. By adopting the graph technique developed in [66] and [67], the
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objective of this chapter is to study the potential of the SDP relaxation for the optimal distributed

control problem.

In this chapter, two problems of infinite-horizon ODC (for deterministic systems) and stochastic

ODC (for stochastic systems) are studied. Our approach rests on formulating each of these problems

as a rank-constrained optimization from which an SDP relaxation can be derived. With no loss

of generality, this chapter focuses on the design of a static controller. As the first contribution

of this chapter, we show that infinite-horizon ODC and stochastic ODC both admit sparse SDP

relaxations with solutions of rank at most 3. Since a rank-1 SDP matrix can be mapped back

into a globally-optimal controller, the rank-3 solution may be deployed to retrieve a near-global

controller.

Since the proposed relaxations are computationally expensive, we propose two computationally

cheap SDP relaxations associated with infinite-horizon ODC and stochastic ODC. Afterwards, we

develop effective heuristic methods to recover a near-optimal controller from the low-rank SDP

solution. Note that the computationally-cheap SDP relaxations associated with infinite-horizon

ODC and stochastic ODC are both exact for the classical (centralized) LQR and H2 problems.

This implies that the relaxations indirectly solve Riccati equations in the extreme case where the

controller under design is unstructured. In this chapter, we conduct thousands of simulations on a

mass-spring system and 100 random systems to elucidate the efficacy of the proposed relaxations. In

particular, the design of several near-optimal structured controllers with global optimality degrees

above 99% will be demonstrated.

This chapter is organized as follows. The ODC problem is formulated in Section 4.2. The

SDP relaxation of an arbitrary QCQP is thoroughly studied via a graph- theoretic approach in

Section 4.3. The infinite-horizon ODC problem is studied in Section 4.4. The results are generalized

to a stochastic ODC problem in Section 4.5. Various experiments on mass spring systems and

random simulations are provided in Section 4.6. A summary is given in Section 4.7.

Notations: R, Sn and Sn+ denote the sets of real numbers, n × n symmetric matrices and n × n
positive semidefinite matrices, respectively. rank{W} and trace{W} denote the rank and trace of

a matrix W . The notation W � 0 means that W is symmetric and positive semidefinite. Given a

matrix W , its (l,m) entry is denoted as Wlm. Given a block matrix W, its (l,m) block is shown

as Wlm. The superscript (·)opt is used to show the globally optimal value of an optimization
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parameter. The symbols (·)T and ‖ · ‖ denote the transpose and 2-norm operators, respectively.

The notation |x| shows the size of a vector x. The expected value of a random variable x is shown

as E{x}.

4.2 Problem Formulation

Consider the discrete-time system x[τ + 1] = Ax[τ ] +Bu[τ ]

y[τ ] = Cx[τ ]
τ = 0, 1, 2, ... (4.1)

with the known matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n, and x[0] ∈ Rn. With no loss of

generality, assume that C has full row rank. The goal is to design a distributed controller minimizing

a quadratic cost function. We focus on the static case where the objective is to design a static

controller of the form u[τ ] = Ky[τ ] under the constraint that the controller gain K must belong

to a given linear subspace K ⊆ Rm×r. The set K captures the sparsity structure of the unknown

constrained controller u[τ ] = Ky[τ ] and, more specifically, it contains all m×r real-valued matrices

with forced zeros in certain entries. This problem will be formalized below.

Optimal Distributed Control (ODC) problem: Design a stabilizing static controller u[τ ] =

Ky[τ ] to minimize the cost function

p∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α trace{KKT } (4.2)

subject to the system dynamics (4.1) and the controller requirement K ∈ K, for a terminal time p,

a nonnegative scalar α, and positive-definite matrices Q and R.

Remark 1. The third term in the objective function of the ODC problem is a soft penalty term

aimed at avoiding a high-gain controller. Instead of this soft penalty, we could impose a hard

constraint trace{KKT } ≤ β, for a given number β. The method to be developed later can readily

be adopted for the modified case.

In this chapter of the thesis, we first deal with the infinite-horizon ODC problem in Sec-

tion 4.4, corresponding to the case p = +∞, and then generalize the results to a stochastic ODC

problem in Section 4.5 This problem will be studied based on the following steps:
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• First, the infinite-horizon ODC problem is cast as an optimization with linear matrix inequal-

ity constraints as well as quadratic constraints.

• Second, the resulting non-convex problem is formulated as a rank-constrained optimization.

• Third, an SDP relaxation of the problem is derived by dropping the non-convex rank con-

straint.

• Last, the rank of the minimum-rank solution of the SDP relaxation is analyzed.

In the next section, a sparse QCQP formulation of the ODC problem with a guaranteed low-

rank SDP solution will be designed. To achieve this goal, a graph is associated to each QCQP

formulation, which is then sparsified to contrive a sparse QCQP problem with a low-rank SDP

solution. Please note that neither the infinite-horizon ODC nor the stochastic ODC problems

could directly be formulated as a QCQP. The main objective of the next section is to understand

Theorem 4, which will later be used in the Lyapunov approach for infinite-horizon ODC and the

stochastic ODC problems.

4.3 SDP Relaxation for Quadratic Optimization

The objective of this section is to study the SDP relaxation of a QCQP problem using a graph-

theoretic approach. Before proceeding with this part, some notions in graph theory will be reviewed.

4.3.1 Graph Theory Preliminaries

Notation 2. The notation G = (V, E) denotes as a graph G with the vertex set V and the edge set

E.

Definition 8. For two simple graphs G1 = (V1, E1) and G2 = (V2, E2), the notation G1 ⊆ G2 means

that V1 ⊆ V2 and E1 ⊆ E2. G1 is called a subgraph of G2 and G2 is called a supergraph of G1. A

subgraph G1 of G2 is said to be an induced subgraph if for every pair of vertices vl, vm ∈ V1, the

relation (vl, vm) ∈ E1 holds if and only if (vl, vm) ∈ E2. In this case, G1 is said to be induced by the

vertex subset V1.

Definition 9. For two simple graphs G1 = (V, E1) and G2 = (V, E2) with the same set of vertices,

their union is defined as G1 ∪ G2 = (V, E1 ∪ E2).
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Definition 10. The representative graph of an n×n symmetric matrix W , denoted by G(W ), is a

simple graph with n vertices whose edges are specified by the locations of the nonzero off-diagonal

entries of W . In other words, two arbitrary vertices i and j are connected if Wij is nonzero.

Consider a graph G identified by a set of “vertices” and a set of edges. This graph may have

cycles in which case it cannot be a tree. Using the notion to be explained below, we can map G
into a tree T identified by a set of “nodes” and a set of edges where each node of T contains a

group of vertices of G.

Definition 11 (Treewidth). Given a graph G = (VG , EG), a tree T is called a tree decomposition of

G if it satisfies the following properties:

1. Every node of T corresponds to and is identified by a subset of VG. Alternatively, each node

of T is regarded as a group of vertices of G.

2. Every vertex of G is a member of at least one node of T .

3. For every edge (i, j) of G, there should be a node in T containing vertices i and j simultane-

ously.

4. Given an arbitrary vertex k of G, the subgraph induced by all nodes of T containing vertex k

must be connected (more precisely, a tree).

The width of a tree decomposition is the cardinality of its biggest node minus one (recall that each

node of T is indeed a set containing a number of vertices of G). The treewidth of G is the minimum

width over all possible tree decompositions of G and is denoted by tw(G).

Note that the treewidth of a tree is equal to 1. Figure 4.1 shows a graph G with 6 vertices

named a, b, c, d, e, f , together with its minimal tree decomposition T . Every node of T is a set

containing three members of VG . The width of this decomposition is therefore equal to 2.

Definition 12 (Enriched Supergraph). Given a graph G accompanied by a tree decomposition T
of width t, G is called an enriched supergraph of G derived by T if it is obtained according to the

following procedure:

1. Add a sufficient number of (redundant) vertices to the nodes of T , if necessary, in such a

way that every node includes exactly t+ 1 vertices. Also, add the same vertices to G (without
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Figure 4.1: A minimal tree decomposition for a ladder

incorporating new edges). Denote the new graphs associated with T and G as T̃ and G̃,

respectively.

2. Index the nodes of the tree T̃ as V1, V2, . . . , V|T | in such a way that for every r ∈ {1, ..., |T |},
the node Vr becomes a leaf of T r defined as the subgraph of T̃ induced by {V1, . . . , Vr}. Denote

the neighbor of Vr in T r as Vr′ (note that Vr ⊆ VG).

3. Define G|T | := G̃ and O|T | as the empty sequence. Define also k = |T |.

4. Let Vk \ Vk′ = {o1, . . . , os} and Vk′ \ Vk = {w1, . . . , ws}. Define

Gk−1 :=
(
VGk , EGk ∪ {(o1, w1), . . . , (os, ws)}

)
(4.3)

Ok−1 := Ok ∪ (o1, . . . , os) (4.4)

k := k − 1 (4.5)

5. If k = 1, set G := G1, O := O1 and terminate; otherwise go to step 4. G is referred to as an

enriched supergraph of G derived by T .

Step 4 of the above definition is illustrated in Figure 4.2. Figure 4.3 delineates the process of

obtaining an enriched supergraph G of the graph G depicted in Figure 4.1. Bold lines show the

edges added at each step of the algorithm.
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Figure 4.2: This figure illustrates Step 4 of Definition 12 for designing an enriched supergraph. The

shaded area includes the common vertices of the nodes Vk and Vk′ .

4.3.2 SDP Relaxation

Consider the standard nonconvex QCQP problem

min
x∈Rn

f0(x) (4.6a)

s.t. fk(x) ≤ 0 for k = 1, . . . , p (4.6b)

where fk(x) = xTAkx+ 2bTk x+ ck for k = 0, . . . , p. Define

Fk ,

 ck bTk

bk Ak

 and w , [x0 xT ]T , (4.7)

where x0=1. Given k ∈ {0, 1, ..., p}, the function fk(x) is a homogeneous polynomial of degree 2

with respect to w. Hence, fk(x) has a linear representation as fk(x) = trace{FkW}, where

W , wwT (4.8)

Conversely, an arbitrary matrix W ∈ Sn+1 can be factorized as (4.8) with w1 = 1 if and only if it

satisfies the three properties: W11 = 1, W � 0, and rank{W} = 1. Therefore, the general QCQP
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Figure 4.3: An enriched supergraph G of the graph G given in Figure 4.1: (a) the steps of the

algorithm (b) the resulting enriched supergraph.
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(4.6) can be reformulated as below:

min
W∈Sn+1

trace{F0W} (4.9a)

s.t. trace{FkW} ≤ 0 for k = 1, . . . , p (4.9b)

W11 = 1 (4.9c)

W � 0 (4.9d)

rank{W} = 1. (4.9e)

This optimization is called a rank-constrained formulation of the QCQP (4.6). In the above

representation of QCQP, the constraint (4.9e) carries all the nonconvexity. Neglecting this con-

straint yields the convex problem

min
W∈Sn+1

trace{F0W} (4.10a)

s.t. trace{FkW} ≤ 0 for k = 1, . . . , p (4.10b)

W11 = 1 (4.10c)

W � 0, (4.10d)

which is called an SDP relaxation of the QCQP (4.6). The existence of a rank-1 solution for the

SDP relaxation guarantees the equivalence between the original QCQP and its relaxed problem.

4.3.3 Connection Between Rank and Sparsity

To explore the rank of the minimum-rank solution of the SDP relaxation, define G = G(F0)∪ · · · ∪
G(Fp) as the sparsity graph associated with the rank-constrained problem (4.9). The graph G
describes the zero-nonzero pattern of the matrices F0, . . . , Fp, or alternatively captures the sparsity

level of the QCQP problem (4.6). The graph G = (VG , EG) has the following properties:

1. Each vertex of VG corresponds to one of the entries of w or equivalently one of the elements

of the set {x0, x1, ..., xn} (note that x0 = 1). Let the vertex associated with the variable xi

be denoted as vxi for i = 0, 1, ..., n.

2. Given two distinct indices i, j ∈ {0, 1, . . . , n}, the pair (vxi , vxj ) is an edge of G if and

only if the monomial xixj has a nonzero coefficient in at least one of the polynomials

f0(x), f1(x), . . . , fp(x).
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Let Ḡ = (VḠ , EḠ) be an enriched supergraph of G, obtained from a tree decomposition of width

t. Let m denote the number of vertices of Ḡ.

Theorem 4. Consider an arbitrary solution Ŵ ∈ Sn+1
+ of the SDP relaxation problem (4.10) and

let Z ∈ Sm be a matrix with the property that G(Z) = Ḡ. Let W
opt

denote an arbitrary solution of

the optimization

min
W∈Sm

trace{ZW} (4.11a)

s.t. W kk = Ŵkk for k ∈ VG , (4.11b)

W kk = 1 for k ∈ VḠ \ VG , (4.11c)

W ij = Ŵij for (i, j) ∈ EG , (4.11d)

W � 0. (4.11e)

Define W opt as the (n + 1)-th principal minor of W
opt

. Then, W opt satisfies the following two

properties:

a) W opt is an optimal solution to the SDP relaxation (4.10).

b) rank{W opt} ≤ t+ 1.

Proof. See [63] for the proof.

Assume that a tree decomposition of G with a small width is known. Theorem 4 states that an

arbitrary (high-rank) solution to the SDP relaxation problem can be transformed into a low-rank

solution by solving the convex program (4.11).

4.4 Deterministic Control Systems

The primary objective of the ODC problem is to design a structurally constrained gain K. Assume

that the matrix K has l free entries to be designed. Denote these parameters as h1, h2, ..., hl. To

formulate the ODC problem, the space of permissible controllers can be characterized as

K ,

{
l∑

i=1

hiMi

∣∣∣∣∣ h ∈ Rl
}
, (4.12)

for some (fixed) 0-1 matrices M1, ...,Ml ∈ Rm×r. Now, the ODC problem can be stated as follows.
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Optimal Distributed Control (ODC) problem: Minimize

p∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α trace{KKT } (4.13a)

subject to

x[τ + 1] = Ax[τ ] +Bu[τ ] for τ = 0, 1, . . . , p (4.13b)

y[τ ] = Cx[τ ] for τ = 0, 1, . . . , p (4.13c)

u[τ ] = Ky[τ ] for τ = 0, 1, . . . , p (4.13d)

K = h1M1 + . . .+ hlMl (4.13e)

x[0] = given (4.13f)

over the variables

x[0], x[1], . . . , x[p] ∈ Rn (4.13g)

y[0], y[1], . . . , y[p] ∈ Rr (4.13h)

u[0], u[1], . . . , u[p] ∈ Rm (4.13i)

h ∈ Rl. (4.13j)

In this section, we deal with the infinite-horizon ODC problem, corresponding to the case

p = +∞.

4.4.1 Lyapunov Formulation

To deal with the infinite dimension of the infinite-horizon ODC and its hard stability constraint, a

Lyapunov approach will be taken below.

Theorem 5. The infinite-horizon ODC problem is equivalent to finding a controller K ∈ K, a

symmetric Lyapunov matrix P ∈ Sn, an auxiliary symmetric matrix G ∈ Sn and an auxiliary
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matrix L ∈ Rm×n to satisfy the following optimization problem:

min
K,L,P,G

x[0]TPx[0] + α trace{KKT } (4.14a)

subject to: 
G G (AG+BL)T LT

G Q−1 0 0

AG+BL 0 G 0

L 0 0 R−1

 � 0, (4.14b)

P I

I G

 � 0, (4.14c)

L = KCG (4.14d)

K ∈ K (4.14e)

Proof. Given an arbitrary control gain K, consider the system (4.1) under the controller u[τ ] =

Ky[τ ]. It is evident that

x[τ ] = (A+BKC)τx[0], τ = 0, 1, ...,∞ (4.15)

Hence, the cost function (4.2) can be written as:

∞∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α trace{KKT } = x[0]TPx[0] + α trace{KKT } (4.16)

where

P =

∞∑
τ=0

((A+BKC)τ )T (Q+ CTKTRKC)(A+BKC)τ (4.17)

or equivalently

(A+BKC)TP (A+BKC)− P +Q+ (KC)TR(KC) = 0 (4.18a)

P � 0 (4.18b)

On the other hand, it is well-known that replacing the equality sign “=” in (4.18a) with the

inequality sign “�” does not affect the solution of the optimization problem [22]. After pre- and

post-multiplying the Lyapunov inequality obtained from (4.18a) with P−1 and using the Schur
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complement formula, the constraints (4.18a) and (4.18b) can be combined as
P−1 P−1 ST P−1(KC)T

P−1 Q−1 0 0

S 0 P−1 0

(KC)P−1 0 0 R−1

 � 0 (4.19)

where S = (A + BKC)P−1 and 0’s in the above matrix are zero matrices of appropriate dimen-

sions. By replacing P−1 with a new variable G in the above matrix and defining L as KCG,

the constraints (4.14b) and (4.14d) will be obtained. The minimization of x[0]TPx[0] subject to

the constraint (4.14c) ensures that P = G−1 is satisfied for at least one optimal solution of the

optimization problem.

Theorem 6. Consider the special case where C = I, α = 0 and K contains the set of all unstruc-

tured controllers. Then, the infinite-horizon ODC problem has the same solution as the convex

optimization problem obtained from the nonlinear optimization (4.14) by removing its non-convex

constraint (4.14d).

Proof. It is easy to verify that a solution (Kopt, P opt, Gopt, Lopt) of the convex problem stated

in the theorem can be mapped to the solution (Lopt(Gopt)−1, P opt, Gopt, Lopt) of the non-convex

problem (4.14) and vice versa (recall that C = I by assumption). This completes the proof.

4.4.2 SDP Relaxation

Theorem 6 states that a classical optimal control problem can be precisely solved via a convex

relaxation of the nonlinear optimization (4.14) by eliminating its constraint (4.14d). However, this

simple convex relaxation does not work satisfactorily for a general control structure K. To design

a better relaxation, define

w :=
[

1 hT vec{CG}T
]T

(4.20)

where h is a column vector containing the variables (free parameters) of K, and vec{CG} is a

column vector containing all scalar entries of CG. It is possible to write every entry of the bilinear

matrix term KCG as a linear function of the entries of the parametric matrix wwT . Hence, by

introducing a new matrix variable W playing the role of wwT , the nonlinear constraint (4.14d)
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can be rewritten as a linear constraint in term of W . In addition, the term α trace{KKT } in the

objective function of the ODC problem is also linear in W . Now, one can relax the non-convex

mapping constraint W = wwT to W � 0 and another constraint stating that the first column of

W is equal to w. This convex problem is referred to as SDP relaxation of ODC in this work.

In the case where the relaxation has the same solution as ODC, the relaxation is said to be exact.

Theorem 7. Consider the case where K contains only diagonal matrices. The following statements

hold regarding the SDP relaxation of the infinite-horizon ODC problem:

i) The relaxation is exact if it has a solution (Kopt, P opt, Gopt, Lopt,W opt) such that rank{W opt} =

1.

ii) The relaxation always has a solution (Kopt, P opt, Gopt, Lopt,W opt) such that rank{W opt} ≤ 3.

Proof. To study the SDP relaxation of the aforementioned control problem, we need to define a

sparsity graph G. Let η denote the number of rows of W . The graph G has η vertices with the

property that two arbitrary disparate vertices i, j ∈ {1, 2, ..., η} are connected in the graph if Wij

appears in at least one of the constraints of the SDP relaxation excluding the global constraint

W � 0. For example, vertex 1 is connected to all remaining vertices of the graph. The graph

G with its vertex 1 removed is depicted in Figure 4.4. This graph is acyclic and therefore the

treewidth of the graph G is at most 2. Hence, It follows from Theorem 4 that the SDP relaxation

has a matrix solution with rank at most 2+1.

Theorem 7 states that the SDP relaxation of the infinite-horizon ODC problem has a low-rank

solution. However, it does not imply that every solution of the relaxation is low-rank. Theorem 4

provides a procedure for converting a high-rank solution of the SDP relaxation into a matrix solution

with rank at most 3. The above theorem will be generalized below.

Proposition 1. The infinite-horizon ODC problem has a convex relaxation with the property that

its exactness amounts to the existence of a rank-1 matrix solution W opt. Moreover, it is always

guaranteed that this relaxation has a solution such that rank{W opt} ≤ 3.

Proof. The procedure of designing an SDP relaxation with a guaranteed low-rank solution will be

only sketched here. There are two binary matrices Φ1 and Φ2 such that K = Φ1diag{k}Φ2 for
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Figure 4.4: The sparsity graph for the infinite-horizon ODC problem in the case where K consists

of diagonal matrices (the central vertex 1 is removed for simplicity).

every K ∈ K, where diag{k} denotes a diagonal matrix whose diagonal contains the free (variable)

entries of K. Hence, the design of a structured control gain K for the system (A,B,C) amounts

to the design of a diagonal control gain diag{k} for the system (A,BΦ1,Φ2C) (after updating the

matrices Q and R accordingly). It follows from Theorem 7 that the SDP relaxation of the ODC

problem equivalently formulated for the new system satisfies the properties of this theorem.

In this section, it has been shown that the infinite-horizon ODC problem has an SDP relaxation

with a low-rank solution. Nevertheless, there are many SDP relaxations with this property and it

is desirable to find the one offering the highest lower bound on the optimal solution of the ODC

problem. To this end, the abovementioned SDP relaxation should be reformulated in such a way

that the diagonal entries of the matrix W are incorporated into as many constraints of the problem

as possible in order to indirectly penalize the rank of the matrix W . This idea will be flourished

next, but for a computationally-cheap relaxation of the ODC problem.

4.4.3 Computationally-Cheap SDP Relaxation

The aforementioned SDP relaxation has a high dimension for a large-scale system, which makes it

less interesting for computational purposes. Moreover, the quality of its optimal objective value
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can be improved using some indirect penalty technique. The objective of this subsection is to offer

a computationally-cheap SDP relaxation for the ODC problem, whose solution outperforms that of

the previous SDP relaxation. For this purpose, Consider an invertible matrix Φ ∈ Rn×n such that

CΦ =
[
I 0

]
(4.21)

where I the is identity matrix and “0” is an r × (n− r) zero matrix. Define also

K2 = {KKT | K ∈ K} (4.22)

Indeed, K2 captures the sparsity pattern of the matrix KKT . For example, if K consists of block-

diagonal (rectangular) matrix, K2 will also include block-diagonal (square) matrices. Let µ ∈ R be

a positive number such that

Q � µ× Φ−TΦ−1 (4.23)

where Φ−T denotes the transpose of the inverse of Φ. Define Q̂ := Q− µ× Φ−TΦ−1.

Computationally-Cheap SDP Relaxation of ODC: This optimization problem is defined as

the minimization of

trace{x[0]TPx[0] + αW33} (4.24)

subject to the constraints
G− µW22 G (AG+BL)T LT

G Q̂−1 0 0

AG+BL 0 G 0

L 0 0 R−1

 � 0, (4.25a)

P I

I G

 � 0, (4.25b)

W :=


In Φ−1G

 KT

0


GΦ−T W22 LT[
K 0

]
L W33


� 0, (4.25c)

K ∈ K, (4.25d)

W33 ∈ K2, (4.25e)
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with the parameter set {K,L,G, P,W}, where the dependent variables W22 and W33 represent

two blocks of W.

The following remarks can be made regarding the computationally-cheap SDP relaxation:

• The constraint (4.25a) corresponds to the Lyapunov inequality associated with (4.18a), where

W22 in its first block aims to play the role of P−1Φ−TΦ−1P−1.

• The constraint (4.25b) ensures that the relation P = G−1 occurs at optimality (at least for

one of the solution of the problem).

• The constraint (4.25c) is a surrogate for the only complicating constraint of the ODC problem,

i.e., L = KCG.

• Since no non-convex rank constraint is imposed on the problem to maintain the convexity of

the relaxation, the rank constraint is compensated in various ways. More precisely, the entries

of W are constrained in the objective function (4.24) through the term trace{αW33}, in the

first block of the constraint (4.25a) through the term G−µW22, and also via the constraints

(4.25d) and (4.25e). These terms aim to automatically penalize the rank of W indirectly.

• The proposed relaxation takes advantage of the sparsity of not onlyK, but alsoKKT (through

the constraint (4.25e)).

Theorem 8. The computationally-cheap SDP relaxation is a convex relaxation of the infinite-

horizon ODC problem. Furthermore, the relaxation is exact if and only if it possesses a solution

(Kopt, Lopt, P opt, Gopt,Wopt) such that rank{Wopt} = n.

Proof. The objective function and constraints of the computationally-cheap SDP relaxation are all

linear functions of the tuple (K,L, P,G,W). Hence, this relaxation is indeed convex. To study the

relationship between this optimization problem and the infinite-horizon ODC, consider a feasible

point (K,L, P,G) of the ODC formulation (4.14). It can be deduced from the relation L = KCG

that (K,L, P,G,W) is a feasible solution of the computationally-cheap SDP relaxation if the free

blocks of W are considered as

W22 = GΦ−TΦ−1G, W33 = KKT (4.26)
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(note that (4.14b) and (4.25a) are equivalent for this choice of W). This implies that computationally-

cheap SDP problem is a convex relaxation of the infinite-horizon ODC problem.

Consider now a solution (Kopt, Lopt, P opt, Gopt,W opt) of the computationally-cheap SDP relax-

ation such that rank{Wopt} = n. Since the rank of the first block of Wopt (i.e., In) is already n,

a Schur complement argument on the blocks (1, 1), (1, 3), (2, 1) and (2, 3) of Wopt yields that

0 = Lopt −
[
Kopt 0

]
(In)−1Φ−1Gopt (4.27)

or equivalently Lopt = KoptCGopt, which is tantamount to the constraint (4.14d). This implies

that (Kopt, Lopt, P opt, Gopt) is a solution of the ODC problem and hence the relaxation is exact.

So far, we have shown that the existence of a rank-n solution Wopt guarantees the exactness of the

relaxation. The converse of this statement can also be proved similarly.

The matrix variable W in the first SDP relaxation of the infinite-horizon ODC problem had

O(n2) rows. In contrast, this number reduces to O(n) for the matrix W in the computationally-

cheap SDP relaxation, which significantly reduces the computation time of the relaxation.

Corollary 1. Consider the special case where C = I, α = 0 and K contains the set of all unstruc-

tured controllers. Then, the computationally-cheap SDP relaxation is exact for the infinite-horizon

ODC problem.

Proof. The proof follows from that of Theorem 6.

4.4.4 Controller Recovery

Once the computationally-cheap SDP relaxation is solved, a controller K must be recovered. This

can be achieved in two ways as explained below.

Direct Recovery Method for ODC: A near-optimal controller K̂ for the infinite-horizon ODC

problem is chosen to be equal to the optimal matrix Kopt obtained from the computationally-cheap

SDP relaxation.

Indirect Recovery Method for ODC: Let (Kopt, Lopt, P opt, Gopt,Wopt) denote a solution of

the computationally-cheap SDP relaxation. A near-optimal controller K̂ for the infinite-horizon

ODC problem is recovered by solving a convex program with the variables K ∈ K and γ ∈ R to
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minimize the cost function

ε× γ + α trace{KKT } (4.28)

subject to the constraint
(Gopt)−1 −Q+ γIn (A+BKC)T (KC)T

(A+BKC) Gopt 0

(KC) 0 R−1

 � 0 (4.29)

where ε is a pre-specified nonnegative number.

The direct recovery method assumes that the controllerKopt obtained from the computationally-

cheap SDP relaxation is near-optimal, whereas the indirect method assumes that the controller Kopt

might be unacceptably imprecise while the inverse of the Lyapunov matrix is near-optimal. The

indirect method is built on the SDP relaxation by fixing G at its optimal value and then perturbing

Q as Q − γIn to facilitate the recovery of a stabilizing controller. It may rarely happen that a

stabilizing controller can be recovered from a solution Gopt if γ is set to zero. In other words, since

the solution of the computationally-cheap SDP relaxation is not exact in general, there may not

exist any controller K̂ satisfying the Lyapunov equation jointly with Gopt. Nonetheless, perturbing

the diagonal entries of Q with γ boosts the degree of the freedom of the problem and helps with the

existence of a controller K̂. Although none of the proposed recovery methods is universally better

than the other one, we have verified in numerous simulations that the indirect recovery method

significantly outperforms the direct recovery method with a high probability.

4.5 Stochastic Control Systems

The ODC problem was investigated for a deterministic system in the preceding section. The

objective of this section is to generalize the results derived earlier to stochastic systems. To this

end, consider the discrete-time system x[τ + 1] = Ax[τ ] +Bu[τ ] + Ed[τ ]

y[τ ] = Cx[τ ] + Fv[τ ]
τ = 0, 1, 2, ... (4.30)

with the known matrices A, B, C, E, and F , where

• x[τ ] ∈ Rn, u[τ ] ∈ Rm and y[τ ] ∈ Rr denote the state, input and output of the system.
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• d[τ ] and v[τ ] denote the input disturbance and measurement noise, which are assumed to be

zero-mean white-noise random processes.

The goal is to design an optimal distributed controller. In order to simplify the presentation, we

focus on the static case where the objective is to design a static controller of the form u[τ ] = Ky[τ ]

under the structural constraint K ∈ K. This section of this chapter is mainly concerned with the

following problem.

Stochastic Optimal Distributed Control (SODC) problem: Design a stabilizing static con-

troller u[τ ] = Ky[τ ] to minimize the cost function

lim
τ→+∞

E
(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α trace{KKT } (4.31)

subject to the system dynamics (4.30) and the controller requirement K ∈ K, for a nonnegative

scalar α and positive-definite matrices Q and R.

Define two covariance matrices as below:

Σd = E{Ed[0]d[0]TET }, Σv = E{Fv[0]v[0]TF T } (4.32)

In what follows, the SODC problem will be formulated as a nonlinear optimization program.

Theorem 9. The SODC problem is equivalent to finding a controller K ∈ K, a symmetric Lyapunov

matrix P ∈ Sn, and auxiliary matrices G ∈ Sn, L ∈ Rm×n and M ∈ Sr to minimize the objective

function

trace{PΣd +MΣv +KTRKΣv}+ α trace{KKT } (4.33)
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subject to the constraints 
G G (AG+BL)T LT

G Q−1 0 0

AG+BL 0 G 0

L 0 0 R−1

 � 0, (4.34a)

P I

I G

 � 0, (4.34b)

 M (BK)T

BK G

 � 0, (4.34c)

L = KCG (4.34d)

K ∈ K (4.34e)

Proof. It is straightforward to verify that

x[τ ] = (A+BKC)τx[0] +
τ−1∑
t=0

(A+BKC)tEd[τ − t− 1]

+
τ−1∑
t=0

(A+BKC)tBKFv[τ − t− 1]

(4.35)

for τ = 1, 2, .... On the other hand, since the controller under design must be stabilizing, (A +

BKC)τ approaches zero as τ goes to +∞. In light of the above equation, it can be verified that

E
{

lim
τ→+∞

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α trace{KKT }

}
=

= E
{

lim
τ→+∞

x[τ ]T
(
Q+ CTKTRKC

)
x[τ ]

}
+ E

{
lim

τ→+∞
v[τ ]TF TKTRKFv[τ ]

}
+ α trace{KKT }

= trace{PΣd + (BK)TP (BK)Σv +KTRKΣv + αKKT }

(4.36)

where

P =

∞∑
t=0

(
(A+BKC)t

)T
(Q+ CTKTRKC)(A+BKC)t (4.37)

Similar to the proof of Theorem 5, the above infinite series can be replaced by the following expanded
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Lyapunov inequality: 
P−1 P−1 ST P−1(KC)T

P−1 Q−1 0 0

S 0 P−1 0

(KC)P−1 0 0 R−1

 � 0 (4.38)

where S = (A+BKC)P−1. After replacing P−1 and KCP−1 with new variables G and L, it can

be concluded that:

• The condition (4.38) is identical to the set of constraints (4.34a) and (4.34d).

• The cost function (4.36) can be expressed as

trace{PΣd + (BK)TG−1(BK)Σv +KTRKΣv + αKKT } (4.39)

• Since P appears only once in the constraints of the optimization problem (4.33)-(4.34) (i.e.,

the condition (4.34b)) and the objective function of this optimization includes the term

trace{PΣd}, the optimal value of P is equal to G−1.

• Similarly, the optimal value of M is equal to (BK)TG−1(BK).

The proof follows from the above observations.

The SODC problem is cast as a (deterministic) nonlinear program in Theorem 9. This opti-

mization problem is non-convex due only to the complicating constraint (4.34d) . More precisely,

the removal of this nonlinear constraint makes the optimization problem a semidefinite program

(note that the term KTRK in the objective function is convex due to the assumption R � 0).

The traditional H2 optimal control problem (i.e., in the centralized case) can be solved using

Riccati equations. It will be shown in the next proposition that the abovementioned semidefinite

program correctly solves the centralized H2 optimal control problem.

Proposition 2. Consider the special case where C = I, α = 0, Σv = 0, and K contains the

set of all unstructured controllers. Then, the SODC problem has the same solution as the convex

optimization problem obtained from the nonlinear optimization (4.33)-(4.34) by removing its non-

convex constraint (4.34d).
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Proof. It is similar to the proof of Theorem 6.

Proposition 2 states that a classical optimal control problem can be precisely solved via a

convex relaxation of the nonlinear optimization (4.33)-(4.34) by eliminating its constraint (4.34d).

However, this simple convex relaxation does not work satisfactorily for a general control structure

K. To design a better relaxation, consider the vector w defined in (4.20). Similar to infinite-

horizon ODC, the bilinear matrix term KCG can be represented as a linear function of the entries

of the parametric matrix W defined as wwT . Now, relaxing the constraint W = wwT to W � 0

and adding another constraint stating that the first column of W is equal to w leads to an SDP

relaxation. This convex problem is referred to as SDP relaxation of SODC. In the case where

the relaxation has the same solution as SODC, the relaxation is said to be exact.

Proposition 3. Consider the case where K contains only diagonal matrices. The following state-

ments hold regarding the SDP relaxation of the SODC problem:

i) The relaxation is exact if it has a solution (Kopt, P opt, Gopt, Lopt,Mopt,W opt) such that

rank{W opt} = 1.

ii) The relaxation always has a solution (Kopt, P opt, Gopt, Lopt,Mopt,W opt) such that rank{W opt} ≤
3.

Proof. The proof is omitted (see Theorems 7 and 9).

As before, it can be deduced from Proposition 3 that the SODC problem has a convex relaxation

with the property that its exactness amounts to the existence of a rank-1 matrix solution W opt.

Moreover, it is always guaranteed that this relaxation has a solution such that rank{W opt} ≤ 3.

A computationally-cheap SDP relaxation will be derived below. Let µ1 and µ2 be two nonneg-

ative numbers such that

Q � µ1 × Φ−TΦ−1, Σv � µ2 × I (4.40)

Define Q̂ := Q− µ1 × Φ−TΦ−1 and Σ̂v := Σv − µ2 × I.

Computationally-Cheap SDP Relaxation of SODC: This optimization problem is defined as

the minimization of

trace{PΣd +MΣv + µ2RW33 + αW33 +KTRKΣ̂v} (4.41)
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subject to the constraints
G− µ1W22 G (AG+BL)T LT

G Q̂−1 0 0

AG+BL 0 G 0

L 0 0 R−1

 � 0, (4.42a)

P I

I G

 � 0, (4.42b)

 M (BK)T

BK G

 � 0, (4.42c)

W :=


In Φ−1G

 KT

0


GΦ−T W22 LT[
K 0

]
L W33


� 0, (4.42d)

K ∈ K, (4.42e)

W33 ∈ K2, (4.42f)

with the parameter set {K,L,G, P,M,W}.

It should be noted that the constraint (4.42c) ensures that the relation M = (BK)TG−1(BK)

occurs at optimality.

Theorem 10. The computationally-cheap SDP relaxation is a convex relaxation of the SODC prob-

lem. Furthermore, the relaxation is exact if and only if possesses a solution (Kopt, Lopt, P opt, Gopt,

Mopt,Wopt) such that rank{Wopt} = n.

Proof. Since the proof is similar to that of the infinite-horizon case presented earlier, it is omitted

here.

For the retrieval of a near-optimal controller, the Direct Recovery Method delineated for the

infinite-horizon ODC problem can be readily deployed. However, the Indirect Recovery Method

explained earlier should be modified.
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Indirect Recovery Method for SODC: Let (Kopt, Lopt, P opt, Gopt,Mopt,Wopt) denote a solu-

tion of the computationally-cheap SDP relaxation of SODC. A near-optimal controller K̂ for the

SODC problem is recovered by solving a convex program with the variables K ∈ K and γ ∈ R to

minimize the cost function

ε× γ + trace{(BK)T (Gopt)−1(BK)Σv +KTRKΣv + α KKT } (4.43)

subject to the constraint
(Gopt)−1 −Q+ γIn (A+BKC)T (KC)T

(A+BKC) Gopt 0

(KC) 0 R−1

 � 0 (4.44)

where ε is a pre-specified nonnegative number.

The above recovery method is obtained by assuming that Gopt is the optimal value of the inverse

Lyapunov matrix for the ODC problem.

4.6 Mass-Spring and Random Systems

In this section, we elucidate the results of this chapter on a mass-spring system and 100 random

system. We will solve thousands of SDP relaxations for these systems and evaluate their perfor-

mance for different control topologies and a wide range of values for (α,Σd,Σv). Note that the

computation time for each SDP relaxation is from a fraction of a second to 4 seconds on a desktop

computer with an Intel Core i7 quad-core 3.4 GHz CPU and 16 GB RAM.

4.6.1 Mass-Spring Systems

In this subsection, the aim is to evaluate the performance of the developed controller design tech-

niques on the Mass-Spring system, as a classical physical system. Consider a mass-spring system

consisting of N masses. This system is exemplified in Figure 4.5 for N = 2. The system can be

modeled in the continuous-time domain as

ẋc(t) = Acxc(t) +Bcuc(t) (4.45)

where the state vector xc(t) can be partitioned as [o1(t)T o2(t)T ] with o1(t) ∈ Rn equal to the

vector of positions and o2(t) ∈ Rn equal to the vector of velocities of the N masses. We assume
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Figure 4.5: Mass-spring system with two masses

(a) Decentralized control structure (b) Distributed control structure

Figure 4.6: Two different structures for the controller K: (a) Decentralized control structure, (b)

Distributed control structure. The free parameters are colored in red (uncolored entries are set to

zero).

that N = 10 and adopt the values of Ac and Bc from [68]. The goal is to design a static sampled-

data controller with a pre-specified structure (i.e., the controller is composed of a sampler, a static

discrete-time structured controller and a zero-order holder). Two ODC problems will be solved

below.

Infinite-Horizon ODC: In this experiment, we first discretize the system with the sampling time

of 0.1 second and denote the obtained system as

x[τ + 1] = Ax[τ ] +Bu[τ ], τ = 0, 1, ... (4.46)

It is aimed to design a constrained controller u[τ ] = Kx[τ ] to minimize the infinite sum cost function

∞∑
τ=0

(
x[τ ]Tx[τ ] + u[τ ]Tu[τ ]

)
(4.47)

with x[0]’s entries being drawn from a normal distribution. To study the effects of the initial state

on the designed near-optimal controller, we generated 100 random initial states. We then solved

the computationally-cheap SDP relaxation combined with the Direct Recovery Method to design

a decentralized controller (shown in Figure 4.6 (a)) minimizing the cost function (4.47). The free
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parameters of each controller are colored in red in this figure. Structure (a) corresponds to a fully

decentralized controller, where each local controller has access to the position and velocity of its

associated mass. The values of controllers’ parameters are depicted in Figure 4.7, where the 20

points on the x-axis represent 20 different entries of the designed decentralized controller. As can

be seen, the parameters of the controller vary over the 100 trials. This contrasts with the fact that

the optimal controller associated with a centralized (classical) LQR problem is universally optimal

and its parameters are independent of the initial state. Define a measure of near-global optimality

as follows:

Optimality degree (%) = 100− upper bound - lower bound

upper bound
× 100

where

• Lower bound: is equal to the optimal objective value of the SDP relaxation, which serves as

a lower bound on the minimum value of the cost function (4.47).

• Upper bound: corresponds to the cost function (4.47) at a near-optimal controller K̂ retrieved

using the Direct Recovery Method. This number serves as an upper bound on the minimum

value of the cost function (4.47).

The optimality degrees of the controllers designed for these 100 random trials are depicted in Fig-

ure 4.8. As can be seen, the optimality degree is better than 95% for more than 98 trials. It should

be mentioned that all of these controllers stabilize the closed-loop system.

Stochastic ODC: In this experiment, two control structures of “decentralized” and “distributed”

(shown in Figures 4.6(a) and (b)) will be studied for the matrix K ∈ R10×20. Structure (b) cor-

responds to a distributed controller, in which limited communications between neighboring local

controllers is allowed. We assume that the system is subject to both input disturbance and mea-

surement noise. Consider the case Σd = I and Σv = σI, where σ varies from 0 to 5. Using the

computationally-cheap SDP relaxation in conjunction with the indirect recovery method, a near-

optimal controller is designed for each of the aforementioned control structures under various noise

levels. The results are reported in Figure 4.9. The structured controllers designed using the SDP

relaxation are all stable with optimality degrees higher than 95% in the worst case and close to

99% in many cases.
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Figure 4.7: The near-optimal values of the free parameters of the decentralized controller K̂ for

a mass-spring system under 100 random initial states. Corresponding to each free parameter

i ∈ {1, 2, ..., 20}, the 100 values of this parameter (associated with different trials) are shown as 100

points on a vertical line.

Figure 4.8: Optimality degree (%) of the decentralized controller K̂ for a mass-spring system under

100 random initial states.
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(a) Optimality degree of the near-optimal controller for a stochastic mass spring

system.

(b) Cost of the near-optimal controller for a stochastic mass spring system.

Figure 4.9: The optimality degree and the optimal cost of the near-optimal controller designed

for the mass-spring system for two different control structures. The noise covariance matrix Σv is

assumed to be equal to σI, where σ varies over a wide range.
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4.6.2 Random Systems

The goal of this example is to test the efficiency of the computationally-cheap SDP relaxation

combined with the indirect recovery method on 100 highly-unstable random systems. Assume that

n = m = r = 25, and that C,Q,R are identity matrices of appropriate dimensions. Suppose that

Σd = I and Σv = 0. To make the problem harder, assume that the controller under design must

satisfy the hard constraint trace{KKT } ≤ 2 (to avoid a high gain K). We generated hundred

random tuples (A,B,K) according to the following rules:

• The entries of A were uniformly chosen from the interval [0, 0.5] at random.

• The entries of B were uniformly chosen from the interval [0, 1] at random.

• Each entry of the matrix K was enforced to be zero with the probability of 70%.

Note that although the matrices A and B are nonnegative, the matrix K under design can have

both positive and negative entries. The randomly generated systems are highly unstable with the

maximum absolute eigenvalue as high as 6 (instability for discrete-time systems requires a maximum

magnitude less than 1). Although the control of such systems was not easy and the control structure

was enforced to be 70% sparse with an enforced sparsity pattern, the proposed technique was always

able to design a “stabilizing” near-optimal controller with an optimality degree between 50% and

75%. The results are reported in Figure 4.10.

4.7 Summary

This chapter studies the infinite-horizon ODC problem as well as the stochastic ODC problem.

The objective is to design a fixed-order distributed controller with a pre-determined structure to

minimize a quadratic cost functional for either a deterministic or a stochastic system. For both

infinite-horizon ODC and stochastic ODC, the problem is cast as a rank-constrained optimization

with only one non-convex constraint requiring the rank of a variable matrix to be 1. This chapter

proposes a semidefinite program (SDP) as a convex relaxation, which is obtained by dropping the

rank constraint. The notion of treewidth is exploited to study the rank of the minimum-rank

solution of the SDP relaxation. This method is applied to the static distributed control case and it

is shown that the SDP relaxation has a matrix solution with rank at most 3. Moreover, multiple
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Figure 4.10: The optimality degree and the stability level (maximum of the absolute eigenval-

ues) associated with 100 near-optimal sparse controllers designed for 100 highly-unstable random

systems.
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recovery methods are proposed to round the rank-3 solution to rank 1, from which a near-global

controller may be retrieved. Computationally-cheap SDP relaxations are also developed for infinite-

horizon ODC and stochastic ODC. These relaxations are guaranteed to exactly solve the LQR and

H2 problems for the classical centralized control problem. The results of this work are tested

through thousands of simulations.
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Chapter 5

Optimal Distributed Frequency

Control in Power Systems

In this chapter, the results developed in Chapter 4 for Infinite-Horizon and Stochastic Optimal Dis-

tributed Control (ODC) are used to design an optimal distributed frequency controller for power

systems. In general, the problem of frequency control in power systems accounts for keeping the

balance between the real powers injected and demanded by the generators and the customers, re-

spectively. There are mainly two reasons why the previous results are promising for designing such

a controller. First, the integration of distributed power generation in the era of smart grid calls

for efficient methods to design distributed controllers that allow certain generators to exchange

real-time information with one another. Second, the intermittent nature of distributed power gen-

eration needs robust controllers that are able to deal with the uncertainty in the system introduced

by non-dispatchable supplies (such as renewable energy), fluctuating loads and measurement noise.

In the context of this chapter, the main objective of the unknown optimal distributed controller

is to optimally adjust the mechanical power input to each generator as well as being structurally

constrained by a user-defined communication topology. This pre-determined communication topol-

ogy specifies which generators exchange their rotor angle and frequency measurements with one

another. In this chapter, we first derive the state-space model of the power system. Then, the per-

formance of the computationally-cheap SDP relaxation combined with the indirect recovery method

for both Infinite-Horizon and Stochastic ODC is evaluated on the problem of designing an optimal



CHAPTER 5. OPTIMAL DISTRIBUTED FREQUENCY CONTROL IN POWER
SYSTEMS 81

distributed frequency control for IEEE 39-Bus New England Power System. These controllers are

designed for four different communication topologies and we show that they are all stabilizing and

with high global optimality degrees (as high as 99 % for some topologies).

5.1 Introduction

The installed capacity and energy production levels for electric generation from non-traditional

renewable resources, such as solar and wind, are growing rapidly in the United States and through-

out many parts of the world. The high penetration of renewable energy in the next-generation

grid will reduce the greenhouse gas emission and the carbon footprint. A challenge, however, of

solar and wind generation is their intermittency, making it hard to match supply and demand that

result in a challenge for frequency control of power systems. This is due to the fact that most

frequency/active power control actions are continuous, in contrast to the discrete switching action

inherent in switched capacitor banks and tap changing transformers used for voltage/VAR control.

Frequency control in power systems usually involves three different stages that work at different

timescales. As generation or load fluctuates, the primary frequency control, also known as droop

control, operates continuously to stop frequency deviation through a speed governor that adjusts the

generation power based on local frequency feedback. The secondary frequency control, also known

as automatic generation control (AGC), operates at time steps of several seconds and adjusts the

setpoints of governors in a control area in a centralized fashion to bring the frequency back to the

reference value and the inter-area power flows to their scheduled values. Economic dispatch, also

known as the tertiary control, operates at time steps of several minutes or up and schedules the

output levels of online generators and the power flows [69], [70], [71], [72].

Early efforts of demonstrating the potential performance improvement obtained by applying

optimal control theory concepts to frequency control are represented in the works [73], [74], [75],

[76]. However, these efforts were impractical at the time due to the lack of wide area measurements

that were needed for state estimation which is a fundamental element in optimal control. With

the rapidly increasing penetration of Phasor Measurement Units (PMU) at the bulk transmission

scale in the US and many other parts of the world, we could overcome the previous limitations.

When coupled with tremendous advances in computational power to implement advanced control
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and estimation algorithms, it is believed that it is the time to revisit optimal control applications

in frequency control of power systems [77].

Motivated by the idea that optimal control theory becomes a viable and promising option,

the objective of this chapter is to design an optimal distributed frequency controller using the

results developed in Chapter 4 for Infinite-Horizon and Stochastic Optimal Distributed Control

(ODC). The main objective of the unknown optimal distributed controller is to optimally adjust the

mechanical power input to each generator as well as being structurally constrained by a user-defined

communication topology. This pre-determined communication topology specifies which generators

exchange their rotor angle and frequency measurements with one another. In this chapter, we first

derive the state-space model of the power system. Then, the performance of the computationally-

cheap SDP relaxation combined with the indirect recovery method for both Infinite-Horizon and

Stochastic ODC is evaluated on the problem of designing an optimal distributed frequency control

for IEEE 39-Bus New England Power System.

This chapter is organized as follows. A power system dynamic model is derived in Section 5.2.

The computationally-cheap SDP relaxation combined with the indirect recovery method for both

Infinite-Horizon and Stochastic ODC is used to design an optimal distributed frequency controller

through a case study for IEEE 39-Bus New England Power System in Section 5.3. A summary is

given in Section 5.4.

5.2 Power System Dynamic Model

In this section, we derive a simple classical model of the power system. However, our result can

be deployed for a complicated high-order model with nonlinear terms (our SDP relaxation may be

revised to handle possible nonlinear terms in the dynamics). To derive a simple state-space model

of the power system, we start with the widely-used per-unit swing equation

Miθ̈i +Diθ̇i = PMi − PEi (5.1)

where θi denotes the voltage (or rotor) angle at bus i (in rad), PMi is the mechanical power input

to the generator at bus i (in per unit), PEi is the electrical active power injection at bus i (in per

unit), Mi is the inertia coefficient of the generator at bus i (in pu-sec2/rad), and Di is the damping

coefficient of the generator at bus i (in pu-sec/rad)[78]. The electrical real power PEi in (5.1) comes
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from the nonlinear AC power flow equation:

PEi =
n∑
j=1

|Vi||Vj | [ Gij cos(θi − θj) +Bij sin(θi − θj) ] (5.2)

where n denotes the number of buses in the system, Vi is the voltage phasor at bus i, Gij is the

line conductance, and Bij is the line susceptance. To simplify the formulation, a commonly-used

technique is to approximate equation (5.2) by its corresponding DC power flow equation stated

below:

PEi =
n∑
j=1

Bij(θi − θj) (5.3)

The approximation error is often small in practice due to the common practice of power engineering,

which rests upon the following assumptions:

• For most networks, G� B −→ G = 0

• For most neighbouring buses, |θi − θj | ≤ (10o to 15o)

−→ sin(θi − θj) ≈ θi − θj
−→ cos(θi − θj) ≈ 1

• In per unit, |Vi| is close to 1 (0.95 to 1.05)

−→ |Vi||Vj | ≈ 1

It is possible to rewrite (5.3) into the matrix format PE = Lθ, where PE and θ are the vectors of

real power injections and voltage (or rotor) angles at only the generator buses (after removing the

load buses and the intermediate zero buses). In this equation, L denotes the Laplacian matrix and

can be found as follows [79]:

Lii =
n̄∑

j=1,j 6=i
BKron
ij if i = j

Lij = −BKron
ij if i 6= j

(5.4)

where BKron is the susceptance of the Kron reduced admittance matrix Y Kron defined as

Y Kron
ij = Yij −

YikYkj
Ykk

(i, j = 1, 2, . . . , n and i, j 6= k) (5.5)

where k is the index of the non-generator bus to be eliminated from the admittance matrix and

n̄ is the number of generator buses. Note that the Kron reduction method aims to eliminate the
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static buses of the network because the dynamics and interactions of only the generator buses are

of interest [69].

By defining the rotor angle state vector as θ = [θ1, . . . , θn̄]T and the frequency state vector as

w = [w1, . . . , wn̄]T and by substituting the matrix format of PE into (5.1), the state space model

of the swing equation used for frequency control in power systems could be written as

 θ̇
ẇ

 =

 0n̄×n̄ In̄

−M−1L −M−1D

θ
w

+

0n̄×n̄

M−1

PM (5.6a)

(5.6b)

y =

θ
w

 (5.6c)

where M = diag(M1, . . . ,Mn̄) and D = diag(D1, . . . , Dn̄). It is assumed that both rotor angle

and frequency are available for measurement at each generator (implying that C = I2n̄). This is a

reasonable assumption with the recent advances in Phasor Measurement Unit (PMU) technology

[80].

5.3 Case Study: IEEE 39-Bus System

In this section, the performance of the computationally-cheap SDP relaxation combined with the

indirect recovery method will be evaluated on the problem of designing an optimal distributed

frequency control for IEEE 39-Bus New England Power System. The one-line diagram of this

system is shown in Figure 5.1. The main objective of the unknown controller is to optimally adjust

the mechanical power input to each generator as well as being structurally constrained by a user-

defined communication topology. This pre-determined communication topology specifies which

generators exchange their rotor angle and frequency measurements with one another.

By substituting the per-unit inertia (M) and damping (D) coefficients for the 10 generators of

IEEE 39-Bus system [81] based on the data in Table 5.1, the continuous-time state space model

matrices Ac, Bc and Cc can be found. The system is then discretized to the discrete-time model

matrices A, B and C with the sampling time of 0.2 second. The initial values of the rotor angle (θ0)

were calculated by solving power (or load) flow problem for the system using MATPOWER [82].
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Figure 5.1: Single line diagram of IEEE 39-Bus New England Power System.
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Bus Gen M D θ0 w0

30 G10 4 5 -0.0839 1.0

31 G2 3 4 0.0000 1.0

32 G3 2.5 4 0.0325 1.0

33 G4 4 6 0.0451 1.0

34 G5 2 3.5 0.0194 1.0

35 G6 3.5 3 -0.0073 1.0

36 G7 3 7.5 0.1304 1.0

37 G8 2.5 4 0.0211 1.0

38 G9 2 6.5 0.127 1.0

39 G1 6 5 -0.2074 1.0

Table 5.1: The data and initial values of generators (in per unit) for IEEE 39-Bus New England

Power System.

In practice, the rotor speed does not vary significantly from synchronous speed and thus the initial

frequency (w0) was assumed to be 1.0 per unit. Both θ0 and w0 are reported for each generator in

Table 5.1.

The 39-bus system has 10 generators, labeled as G1, G2, ..., G10. Four communication topologies

are considered in this work: decentralized, localized, star, and ring. In order to better understand

how the interactions among the 10 generators in the system are related to the communication

structures, the Kron reduced network of the system is visualized by the weighted graph shown

in Figure 5.2. In a fully decentralized structure, none of the generators communicate with each

other. In a localized communication structure, the generators may only communicate with their

close neighbors. In a star topology, a single generator is able to communicate with all other

generators in the system. The ring communication structure—forming a closed path—aims to

provide communications between neighbors. These topologies are visualized in Figure 5.3. The

locations of the generators in the figure are based on the exact coordinates of the power plants

named in [83]. Note that G1 represents a group of generators, but it is considered as a single node

near the border between New York and Connecticut in this map. G4 and G5 are very close in
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G10
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G8 G9

G1

Figure 5.2: Weighted graph of the Kron reduced network of IEEE 39-Bus New England Power

System. Weights (thicknesses) of all edges are normalized to the minimum off-diagonal entry of the

susceptance BKron.

distance, but G4 was somewhat shifted from its real coordinates to make the communication link

between them visible in this map.

Infinite-Horizon ODC: Assume that Q = I and R = 0.1I. Suppose also that α is a parameter

between 0 and 15. The goal is to solve a an infinite-horizon ODC problem for each value of α in

the interval [0, 15] and for each of the four aforementioned communication topologies. This will be

achieved in two steps. First, a computationally-cheap SDP relaxation is solved. Second, a near-

optimal controller K̂ is designed by choosing the best solution of the direct and indirect recovery

methods. The results are reported in Figures 5.4(a)-(c). The following observations can be made:

• The designed controllers are almost 100% optimal for three control topologies of decentralized,

localized and ring, and this result holds for all possible values of α. The optimality degree

for the star controller is above 77%.

• For every value of α ∈ [0, 15], the decentralized controller has the lowest performance while
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(a) Decentralized (b) Localized

(c) Ring (d) Star Topology (G10 in center)

Figure 5.3: Four communication topologies studied for IEEE 39-bus system.
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the ring controller offers the best performance.

• The closed-loop system is always stable for all 4 control topologies and all possible values of

α.

Stochastic ODC: Assume that the power system is under input disturbance and measurement

noise. The disturbance can arise from non-dispatchable supplies (such as renewable energy) and

fluctuating loads, among others. The measurement noise may account for the inaccuracy of the

rotor angle and frequency measurements. Assume that Σd is equal to I. We consider two different

scenarios:

i) Suppose that Σv = 0, while α varies from 0 to 15. For each SODC problem, we solve a

computationally-cheap SDP relaxation, from which a near-optimal solution K̂ is designed

by choosing the best solution of the direct and indirect recovery methods. The outcome is

plotted in Figure 5.5.

ii) Suppose that α = 0, while Σv is equal to σI with σ varying between 0 and 15. As before,

we design a near-optimal controller for each SODC problem. The results are reported in

Figure 5.6.

In the above experiments, we designed structured controllers to optimize an infinite-horizon

ODC or a stochastic ODC problem. This was achieved by solving their associated computationally-

cheap SDP relaxations. Interestingly, the designed controllers were all stabilizing (with no excep-

tion), and their optimality degrees were close to 99% in case of decentralized, localized and ring

structures. In case of the star structure, the optimality degree was higher than 77% in infinite-

horizon ODC and around 94% for various levels of σ and α in stochastic ODC.

5.4 Summary

This chapter utilizes the results previously developed for Infinite-Horizon and Stochastic ODC in

Chapter 4 to design an optimal distributed frequency controller for power systems. The main objec-

tive of the unknown optimal distributed controller is to optimally adjust the mechanical power input
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(a) Optimality degree for infinite-horizon ODC
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(b) Near-optimal cost for infinite-horizon ODC
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(c) Stability degree for infinite-horizon ODC

Figure 5.4: A near-optimal controller K̂ is designed to solve the infinite-horizon ODC problem for

every control topology given in Figure 5.3 and every α between 0 and 15: (a) optimality degree,

(b) near-optimal cost, and (c) closed-loop stability (maximum of the absolute eigenvalues of the

closed-loop system).
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(a) Optimality degree for stochastic ODC

0 5 10 15
200

210

220

230

240

250

260

270

280

U
p

p
e

r 
B

o
u

n
d

α

 

 

Ring
Localized
Star
Decentralized

(b) Near-optimal cost for stochastic ODC
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(c) Stability degree for stochastic ODC

Figure 5.5: A near-optimal controller K̂ is designed to solve the stochastic ODC problem for every

control topology given in Figure 5.3 and every α between 0 and 15 under the assumptions that

Σd = I and Σv = 0: (a) optimality degree, (b) near-optimal cost, and (c) closed-loop stability
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(a) Optimality degree for stochastic ODC
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(b) Near-optimal cost for stochastic ODC
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(c) Stability degree for stochastic ODC

Figure 5.6: A near-optimal controller K̂ is designed to solve the stochastic ODC problem for every

control topology given in Figure 5.3 and every σ between 0 and 15 under the assumptions that

Σd = I, α = 0 and Σv = σI: (a) optimality degree, (b) near-optimal cost, and (c) closed-loop

stability
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to each generator as well as being structurally constrained by a user-defined communication topol-

ogy. This pre-determined communication topology specifies which generators exchange their rotor

angle and frequency measurements with one another. The performance of the computationally-

cheap SDP relaxation combined with the indirect recovery method for both Infinite-Horizon and

Stochastic ODC is evaluated on the problem of designing an optimal distributed frequency control

for IEEE 39-Bus New England Power System. These controllers are designed for four different

communication topologies and it is shown that the controllers are all stabilizing with global opti-

mality degrees close to 99% in case of decentralized, localized and ring structures. In case of the

star structure, the optimality degree was higher than 77% in infinite-horizon ODC and around 94%

for various levels of σ and α in stochastic ODC.
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Chapter 6

Conclusions and Future Work

This dissertation is concerned with developing efficient, scalable and distributed algorithms for

solving real-world large-scale optimization problems that arise in complex systems such as power

networks and distributed control systems. This dissertation addresses four problems, each involving

the development of an efficient optimization algorithm. In what follows, the contributions made

for each problem are first summarized and possible future directions are then outlined.

Chapter 2: In this chapter, a fast and parallelizable algorithm is developed for an arbitrary

decomposable semidefinite program (SDP). To formulate a decomposable SDP, we consider a multi-

agent canonical form represented by a graph, where each agent (node) is in charge of computing

its corresponding positive semidefinite matrix. The motivation behind the multi-agent formulation

is that an arbitrary sparse SDP problem can be converted to a decomposable SDP by means of

the Chordal extension and matrix completion theorems. Using the alternating direction method

of multipliers (ADMM), we develop a distributed algorithm to solve the underlying SDP problem.

At every iteration, each agent performs simple computations (matrix multiplication and eigenvalue

decomposition) without having to solve any optimization subproblem, and then communicates some

information to its neighbors. By deriving a Lyapunov-type non-increasing function, it is shown that

the proposed algorithm converges as long as Slater’s conditions hold. Simulations results on large-

scale SDP problems with a few million variables are offered to elucidate the efficacy of this work.

Some of the possible future research directions, are as follows:

• To accelerate the proposed first-order method and obtain a faster convergence, it is important
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to study how this algorithm can be combined with Nesterov method.

• Since ADMM is sensitive to the condition number of the problem’s data, it is important

to study how efficient and cheap preconditioning techniques could be used to speed up the

convergence for ill-conditioned problems.

• The distributed algorithm designed here is a synchronous algorithm in which each agent

should wait for the messages from the neighbours before starting the new iteration. An

asynchronous version of the previous algorithm should be developed to eliminate the need for

a global clock that commands the agents when to start the computations and when to start

exchanging data. Such algorithm is easier to be implemented in a multi-machine setting if

needed so.

Chapter 3: Motivated by the application of SDPs to power networks, the objective of this

chapter is to design a fast and parallelizable algorithm for solving sparse SDPs corresponding to

power optimization problems. To this end, the underling sparsity structure of a given SDP prob-

lem is captured using a tree decomposition technique, leading to a decomposed SDP problem. A

highly distributed/parallelizable numerical algorithm is developed for solving the decomposed SDP,

based on the ADMM method in the primal domain. Each iteration of the designed algorithm has

a closed-form solution, which involves multiplications and eigenvalue decompositions over certain

submatrices induced by the tree decomposition of the sparsity graph. The proposed algorithm is

applied to the classical optimal power flow problem, and also evaluated on IEEE benchmark sys-

tems. The proposed algorithm has a very low computational complexity for power systems because

real-world power networks have low treewidth. All of the future research directions previously

discussed for Chapter 2 are valid here to improve the convergence of the proposed algorithm in

the primal domain. Another direction is to study other power optimization problems such as state

estimation.

Chapter 4: This chapter studies the infinite-horizon optimal distributed control (ODC) problem

as well as the stochastic ODC problem. The objective is to design a fixed-order distributed controller

with a pre-determined structure to minimize a quadratic cost functional for either a deterministic

or a stochastic system. Both problems are cast as a rank-constrained optimization problem with

only one non-convex constraint requiring the rank of a variable matrix to be 1. This chapter
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proposes an SDP problem as a convex relaxation, which is obtained by dropping the rank constraint.

The notion of treewidth is exploited to study the rank of the minimum-rank solution of the SDP

relaxation. This method is applied to the static distributed control case and it is shown that the

SDP relaxation has a matrix solution with rank at most 3. Moreover, multiple recovery methods

are proposed to round the rank-3 solution to rank 1, from which a near-global controller may be

retrieved. Computationally-cheap SDP relaxations are also developed for infinite-horizon ODC

and stochastic ODC. The results of this work are tested on thousands of simulations. Some of the

possible extensions as future work, are as follows:

• One direction is to study the design of a robust distributed controller with a known structure

to minimize a quadratic cost function either in the worst case or in expectation with respect

to the random variable ∆. This corresponds to the case when the system matrices A(∆),

B(∆), C(∆) and D(∆) depend on some uncertainty vector ∆ belonging to some uncertainty

region.

• Another possibility is to generalize the results obtained for linear systems to certain nonlinear

systems with the aim of representing a sufficiently detailed (approximate) model of a real-

world system.

Chapter 5: This chapter utilizes the results previously developed for Infinite-Horizon and

Stochastic ODC in Chapter 4 to design an optimal distributed frequency control in power sys-

tems. The performance of the computationally-cheap SDP relaxation combined with the indirect

recovery method for both Infinite-Horizon and Stochastic ODC is evaluated on the problem of

designing an optimal distributed frequency control for IEEE 39-Bus New England Power System.

These controllers are designed for four different communication topologies and shown to be all sta-

bilizing with optimality degrees close to 99% in some cases. A simple classical model of the power

system was used. A necessary future work is to consider a more realistic high-order model for the

power system.
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Appendix: High-performance C++

Implementation

This appendix shows the full C++ code that implements the multi-agent SDP algorithm developed

in Chapter 2. The code consists of the main implementation file admm-sdp.cpp and also a header

file admm-sdp.hpp.

admm-sdp.cpp

1 /*
2 ADMM for Solving SDPs in Parallel
3
4 -- This code implements a fast, parallelizable algorithm for an arbitrary decomposable

semidefinite program (SDP).↪→
5 This code solves the the decomposable SDP problem defined below:
6
7 ------------------------------------------------------------------------------
8 min sum_(over all agents i in V) [ tr(A_i * W_i)]
9

10 subject to
11 tr(B_j^(i) * W_i) = c_j^(i) for all j = 1,...., p_i and i in V
12 tr(D_l^(i) * W_i) <= d_l^(i) for all l = 1,...., q_i and i in V
13 W_i >= 0 (PSD)
14 W_i(I_ij, I_ij) = W_j(I_ji, I_ji) for all (i, j) in E
15
16 over the variables W_i in S^ni for i = 1, ...., n
17 ------------------------------------------------------------------------------
18
19 -- Please check the following reference paper on which this code is based:
20 - Abdulrahman Kalbat and Javad Lavaei, A Fast Distributed Algorithm for Decomposable

Semidefinite Programs,↪→
21 Proc. 54th IEEE Conference on Decision and Control, 2015.
22
23 -- Variables definitions and correspondance between the code and the reference paper:
24
25 ------------------------------------------------------------------------
26 | Code | Paper | Type |
27 ------------------------------------------------------------------------
28 randAdj | g=(V,E) | Input |
29 edges_Set | E | Found from randAdj |
30 mu_mult | mu | Input |
31 delta_less | | Found from randAdj |
32 delta_greater | | Found from randAdj |
33 n | |v| | Input or from randAdj |
34 w_size_i | n_i | Input |
35 p_i | p_i | Input |
36 q_i | q_i | Input |
37 A | A | Input |
38 B | B | Input |
39 D | D | Input |
40 c_i | c_i | Input |
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41 d_i | d_i | Input |
42 I_ij | I_ij | Input |
43 I_ji | I_ji | Input |
44 z | z_i | Variable |
45 v | v_i | Variable |
46 u | u_i | Variable |
47 R_lower | R_i | Variable |
48 G_i_lower | G_i | Variable |
49 Lambda_i | Lambda_i | Variable |
50 H_ij_lower | H_ij | Variable |
51 H_ji_lower | H_ji | Variable |
52 H_ij_coup_lower | H^(ij) | Variable |
53 G_ij_lower | G_ij | Variable |
54 G_ji_lower | G_ji | Variable |
55 H_ij_basis_map | | Found from I_ij |
56 H_ji_basis_map | | Found from I_ji |
57 H_ij_sum_tr | H_i_sum | Found from H_*_basis_map and H_*_lower |
58 B_sum | B_i_sum | Found from B_lower and z |
59 D_sum | D_i_sum | Found from D_lower and v |
60 p_infeas_i_1 | P_1 | DIMACS error measure |
61 p_infeas_i_2 | P_2 | DIMACS error measure |
62 d_infeas_i_1 | D_1 | DIMACS error measure |
63 d_infeas_i_2[0] | D_2 | DIMACS error measure |
64 d_infeas_i_2[1] | D_3 | DIMACS error measure |
65 d_infeas_i_3 | D_4 | DIMACS error measure |
66 gap_iter | Gap | DIMACS error measure |
67 p_residue_i_1 | delta_p1 | primal residue |
68 p_residue_i_2 | delta_p4 | primal residue |
69 p_residue_i_3 | delta_p2 | primal residue |
70 p_residue_i_4 | delta_p3 | primal residue |
71 d_residue_i_1 | delta_d1 | dual residue |
72 d_residue_i_2 | delta_d2 | dual residue |
73 d_residue_i_3 | delta_d3 | dual residue |
74 residue_sum | V^t | aggregate residue |
75 ------------------------------------------------------------------------
76
77
78 -- In order to start using the code, please open the header file "admm_sdp.h"
79 and please read the definitions of the different paramters in the bottom of the file that are

needed↪→
80 to randomly generate Multiagent SDP problems. The paramterer could be changed in the bottom of

the↪→
81 header file.
82
83 -- Dependencies: this code has no dependencies. If you want to activate the multi-threaded

version↪→
84 of the code, you only need a C++ compiler that supports OpenMp. OpenMp 3.1 is supported since

gcc and g++ 4.7↪→
85
86 -- Compiling the code:
87 -> Single Threaded (32 bit): g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++

-D__NO_INLINE__ -m32↪→
88 -> Single Threaded (64 bit): g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++

-D__NO_INLINE__ -m64↪→
89

90 -> Multi Threaded (32 bit): g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++
-D__NO_INLINE__ -m32 -fopenmp↪→

91 -> Multi Threaded (64 bit): g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++
-D__NO_INLINE__ -m64 -fopenmp↪→

92
93 Note: some of the flags in the compilation command are redundant, but they are included so you

could use both gcc and g++↪→
94 without the need to change anything in the command.
95

96 */
97
98
99

100 #include <stdlib.h>
101 #include <cmath>
102 #include <vector>
103 #include <ctime>
104 #include <omp.h>
105 #include <iostream>
106 #include <fstream>
107 #include <chrono>
108 #include <stdint.h>
109 #include "admm_sdp.h"
110
111 #include <time.h>
112 #include <sys/timeb.h>
113

114 // initialization of static members
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115 bool RandomFuncs::FirstCall = true;
116
117 unsigned long long RandomFuncs::x;
118

119 ////////////////////////////////////////////////////////////////////////////////
120 // value = S[row][column]
121 ////////////////////////////////////////////////////////////////////////////////
122 void SparseMatrix::Get(uint64_t row, uint64_t column, double &value)
123 {
124 if (row < m_size)
125 {
126 value = 0;
127

128 uint64_t row_size = m_Values[row].size();
129 for(uint64_t i = 0; i < row_size; i++)
130 {
131 if (m_Columns[row][i] > column)
132 break;
133

134 if (m_Columns[row][i] == column)
135 {
136 value = m_Values[row][i];
137 break;
138 }
139 }
140 }
141 else
142 value = GetNAN();
143 }
144

145 ////////////////////////////////////////////////////////////////////////////////
146 // value = S[row][column]
147 ////////////////////////////////////////////////////////////////////////////////
148 void SparseMatrix::GetLastElement(uint64_t row, uint64_t column, double &value)
149 {
150 if (row < m_size)
151 {
152 value = 0;
153

154 if (column <= m_LastNonZeroElement[row])
155 {
156 uint64_t row_size = m_Values[row].size();
157 for(uint64_t i = row_size - 1; i >= 0; i--)
158 {
159 if (m_Columns[row][i] < column)
160 break;
161

162 if (m_Columns[row][i] == column)
163 {
164 value = m_Values[row][i];
165 break;
166 }
167 }
168 }
169 }
170 else
171 value = GetNAN();
172 }
173

174 ////////////////////////////////////////////////////////////////////////////////
175 // S[row][column] = value
176 ////////////////////////////////////////////////////////////////////////////////
177 void SparseMatrix::Set(uint64_t row, uint64_t column, double value)
178 {
179 if (row < m_size)
180 {
181 uint64_t row_size = m_Values[row].size();
182 uint64_t i = 0;
183 for(; i < row_size; i++)
184 {
185 if (m_Columns[row][i] > column)
186 {
187 if (std::abs(value) > DEF_PRESICE)
188 {
189 std::vector<double> temp_Values(row_size + 1);
190 std::vector<uint64_t> temp_Columns(row_size + 1);
191

192 for (uint64_t j = 0; j < i; j++)
193 {
194 temp_Values[j] = m_Values[row][j];
195 temp_Columns[j] = m_Columns[row][j];
196 }
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197

198 temp_Values[i] = value;
199 temp_Columns[i] = column;
200

201 for (uint64_t j = i + 1; j <= row_size; j++)
202 {
203 temp_Values[j] = m_Values[row][j - 1];
204 temp_Columns[j] = m_Columns[row][j - 1];
205 }
206

207 m_Values[row].swap(temp_Values);
208 m_Columns[row].swap(temp_Columns);
209

210 if (m_LastNonZeroElement[row] < column)
211 m_LastNonZeroElement[row] = column;
212 }
213
214 break;
215 }
216

217 if (m_Columns[row][i] == column)
218 {
219 if (std::abs(value) > DEF_PRESICE)
220 {
221 m_Values[row][i] = value;
222

223 if (m_LastNonZeroElement[row] < column)
224 m_LastNonZeroElement[row] = column;
225 }
226 else
227 {
228 std::vector<double> temp_Values(row_size - 1);
229 std::vector<uint64_t> temp_Columns(row_size - 1);
230

231 for (uint64_t j = 0; j < i; j++)
232 {
233 temp_Values[j] = m_Values[row][j];
234 temp_Columns[j] = m_Columns[row][j];
235 }
236

237 for (uint64_t j = i; j < row_size - 1; j++)
238 {
239 temp_Values[j] = m_Values[row][j + 1];
240 temp_Columns[j] = m_Columns[row][j + 1];
241 }
242

243 m_Values[row].swap(temp_Values);
244 m_Columns[row].swap(temp_Columns);
245
246

247 if (m_LastNonZeroElement[row] == column)
248 {
249 int64_t i_last = i - 1;
250 for(; i_last >= 0; i_last--)
251 {
252 if (m_Values[row][i_last] != 0)
253 {
254 m_LastNonZeroElement[row] =

m_Columns[row][i_last];↪→
255 break;
256 }
257 }
258

259 if (i_last < 0)
260 m_LastNonZeroElement[row] = 0;
261 }
262 }
263
264 break;
265 }
266 }
267

268 if (i == row_size && std::abs(value) > DEF_PRESICE)
269 {
270 std::vector<double> temp_Values(row_size + 1);
271 std::vector<uint64_t> temp_Columns(row_size + 1);
272

273 for (uint64_t j = 0; j < i; j++)
274 {
275 temp_Values[j] = m_Values[row][j];
276 temp_Columns[j] = m_Columns[row][j];
277 }
278
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279 temp_Values[i] = value;
280 temp_Columns[i] = column;
281

282 for (uint64_t j = i + 1; j <= row_size; j++)
283 {
284 temp_Values[j] = m_Values[row][j - 1];
285 temp_Columns[j] = m_Columns[row][j - 1];
286 }
287

288 m_Values[row].swap(temp_Values);
289 m_Columns[row].swap(temp_Columns);
290

291 m_LastNonZeroElement[row] = column;
292 }
293 }
294 }
295

296 ////////////////////////////////////////////////////////////////////////////////
297 // S[row][column] = S[row][column] + value
298 ////////////////////////////////////////////////////////////////////////////////
299 void SparseMatrix::Add(uint64_t row, uint64_t column, double value)
300 {
301 if (row < m_size)
302 {
303 if (std::abs(value) > DEF_PRESICE)
304 {
305 uint64_t row_size = m_Values[row].size();
306 uint64_t i = 0;
307 for(; i < row_size; i++)
308 {
309 if (m_Columns[row][i] > column)
310 {
311 std::vector<double> temp_Values(row_size + 1);
312 std::vector<uint64_t> temp_Columns(row_size + 1);
313

314 for (uint64_t j = 0; j < i; j++)
315 {
316 temp_Values[j] = m_Values[row][j];
317 temp_Columns[j] = m_Columns[row][j];
318 }
319

320 temp_Values[i] = value;
321 temp_Columns[i] = column;
322

323 for (uint64_t j = i + 1; j <= row_size; j++)
324 {
325 temp_Values[j] = m_Values[row][j - 1];
326 temp_Columns[j] = m_Columns[row][j - 1];
327 }
328

329 m_Values[row].swap(temp_Values);
330 m_Columns[row].swap(temp_Columns);
331

332 if (m_LastNonZeroElement[row] < column)
333 m_LastNonZeroElement[row] = column;
334
335 break;
336 }
337

338 if (m_Columns[row][i] == column)
339 {
340 double val = m_Values[row][i] + value;
341 if (std::abs(val) > DEF_PRESICE)
342 {
343 m_Values[row][i] = val;
344

345 if (m_LastNonZeroElement[row] < column)
346 m_LastNonZeroElement[row] = column;
347 }
348 else
349 {
350 std::vector<double> temp_Values(row_size - 1);
351 std::vector<uint64_t> temp_Columns(row_size -

1);↪→
352

353 for (uint64_t j = 0; j < i; j++)
354 {
355 temp_Values[j] = m_Values[row][j];
356 temp_Columns[j] = m_Columns[row][j];
357 }
358

359 for (uint64_t j = i; j < row_size - 1; j++)
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360 {
361 temp_Values[j] = m_Values[row][j + 1];
362 temp_Columns[j] = m_Columns[row][j +

1];↪→
363 }
364

365 m_Values[row].swap(temp_Values);
366 m_Columns[row].swap(temp_Columns);
367

368 if (m_LastNonZeroElement[row] == column)
369 {
370 int64_t i_last = i - 1;
371 for(; i_last >= 0; i_last--)
372 {
373 if (m_Values[row][i_last] != 0)
374 {
375 m_LastNonZeroElement[row]

=
m_Columns[row][i_last];

↪→
↪→

376 break;
377 }
378 }
379

380 if (i_last < 0)
381 m_LastNonZeroElement[row] = 0;
382 }
383 }
384
385 break;
386 }
387 }
388

389 if (i == row_size && std::abs(value) > DEF_PRESICE)
390 {
391 std::vector<double> temp_Values(row_size + 1);
392 std::vector<uint64_t> temp_Columns(row_size + 1);
393

394 for (uint64_t j = 0; j < i; j++)
395 {
396 temp_Values[j] = m_Values[row][j];
397 temp_Columns[j] = m_Columns[row][j];
398 }
399

400 temp_Values[i] = value;
401 temp_Columns[i] = column;
402

403 for (uint64_t j = i + 1; j <= row_size; j++)
404 {
405 temp_Values[j] = m_Values[row][j - 1];
406 temp_Columns[j] = m_Columns[row][j - 1];
407 }
408

409 m_Values[row].swap(temp_Values);
410 m_Columns[row].swap(temp_Columns);
411

412 m_LastNonZeroElement[row] = column;
413 }
414 }
415 }
416 }
417

418 ////////////////////////////////////////////////////////////////////////////////
419 // permutation of rows I and J in the matrix
420 ////////////////////////////////////////////////////////////////////////////////
421 void SparseMatrix::SwapRows(uint64_t row_i, uint64_t row_j)
422 {
423 if (row_i < m_size && row_j < m_size)
424 {
425 m_Values[row_i].swap(m_Values[row_j]);
426 m_Columns[row_i].swap(m_Columns[row_j]);
427

428 uint64_t temp_last = m_LastNonZeroElement[row_i];
429 m_LastNonZeroElement[row_i] = m_LastNonZeroElement[row_j];
430 m_LastNonZeroElement[row_j] = temp_last;
431 }
432 }
433

434 ////////////////////////////////////////////////////////////////////////////////
435 // addition of row I to row SUM and saving the result in the row SUM
436 ////////////////////////////////////////////////////////////////////////////////
437 void SparseMatrix::AddRow(uint64_t row_i, uint64_t row_sum, double alpha)
438 {
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439 if (row_i < m_size && row_sum < m_size && alpha != 0)
440 {
441 uint64_t i_size = m_Values[row_i].size();
442 uint64_t sum_size = m_Values[row_sum].size();
443
444 uint64_t temp_size = i_size + sum_size;
445

446 std::vector<double> sum_Values(temp_size);
447 std::vector<uint64_t> sum_Columns(temp_size);
448
449 uint64_t i_index = 0;
450 uint64_t sum_index = 0;
451 uint64_t k = 0;
452 while (i_index != i_size || sum_index != sum_size)
453 {
454 if (sum_index == sum_size)
455 {
456 sum_Values[k] = alpha * m_Values[row_i][i_index];
457 sum_Columns[k] = m_Columns[row_i][i_index];
458 i_index++;
459 k++;
460
461 continue;
462 }
463 else if (i_index == i_size)
464 {
465 sum_Values[k] = m_Values[row_sum][sum_index];
466 sum_Columns[k] = m_Columns[row_sum][sum_index];
467 sum_index++;
468 k++;
469 }
470 else if (m_Columns[row_i][i_index] < m_Columns[row_sum][sum_index])
471 {
472 sum_Values[k] = alpha * m_Values[row_i][i_index];
473 sum_Columns[k] = m_Columns[row_i][i_index];
474 i_index++;
475 k++;
476 }
477 else if (m_Columns[row_i][i_index] > m_Columns[row_sum][sum_index])
478 {
479 sum_Values[k] = m_Values[row_sum][sum_index];
480 sum_Columns[k] = m_Columns[row_sum][sum_index];
481 sum_index++;
482 k++;
483 }
484 else
485 {
486 double val = alpha * m_Values[row_i][i_index] +

m_Values[row_sum][sum_index];↪→
487 if (std::abs(val) > DEF_PRESICE)
488 {
489 sum_Values[k] = val;
490 sum_Columns[k] = m_Columns[row_i][i_index];
491 k++;
492 }
493
494 i_index++;
495 sum_index++;
496 }
497 }
498

499 sum_Values.resize(k);
500 sum_Columns.resize(k);
501

502 m_Values[row_sum].swap(sum_Values);
503 m_Columns[row_sum].swap(sum_Columns);
504
505 int64_t i_last = k - 1;
506 for(; i_last >= 0; i_last--)
507 {
508 if (m_Values[row_sum][i_last] != 0)
509 {
510 m_LastNonZeroElement[row_sum] = m_Columns[row_sum][i_last];
511
512 break;
513 }
514 }
515

516 if (i_last == -1)
517 m_LastNonZeroElement[row_sum] = 0;
518 }
519 }
520
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521 ////////////////////////////////////////////////////////////////////////////////
522 // product of two rows like two vectors, the sum of the pairwise products of the elements
523 ////////////////////////////////////////////////////////////////////////////////
524 void SparseMatrix::RowsProduct(uint64_t row_i, uint64_t row_j, double & prod)
525 {
526 if (row_i < m_size && row_j < m_size)
527 {
528 prod = 0;
529
530 uint64_t i_index = 0;
531 uint64_t j_index = 0;
532

533 uint64_t i_size = m_Values[row_i].size();
534 uint64_t j_size = m_Values[row_j].size();
535

536 while (i_index != i_size && j_index != j_size)
537 {
538 if (m_Columns[row_i][i_index] < m_Columns[row_j][j_index])
539 i_index++;
540 else if (m_Columns[row_i][i_index] == m_Columns[row_j][j_index])
541 {
542 prod += m_Values[row_i][i_index] * m_Values[row_j][j_index];
543 i_index++;
544 j_index++;
545 }
546 else
547 j_index++;
548 }
549 }
550 }
551

552 ////////////////////////////////////////////////////////////////////////////////
553 // product of row and vector like two vectors, the sum of the pairwise products of the elements
554 ////////////////////////////////////////////////////////////////////////////////
555 void SparseMatrix::RowVectorProduct(const std::vector<double> &x, uint64_t row, double & prod)
556 {
557 if (row < m_size)
558 {
559 prod = 0;
560
561 uint64_t i_index = 0;
562 uint64_t i_size = m_Values[row].size();
563 uint64_t x_size = x.size();
564

565 while (i_index != i_size)
566 {
567 if (m_Columns[row][i_index] >= x_size)
568 {
569 prod = GetNAN();
570 return;
571 }
572

573 prod += x[m_Columns[row][i_index]] * m_Values[row][i_index];
574 i_index++;
575 }
576 }
577 }
578

579 ////////////////////////////////////////////////////////////////////////////////
580 // filling the sparse matrix row values
581 ////////////////////////////////////////////////////////////////////////////////
582 void SparseMatrix::PushRow(uint64_t row, const std::vector<double> &values, const

std::vector<uint64_t> &columns, uint64_t count)↪→
583 {
584 if (row < m_size && values.size() >= count && columns.size() >= count)
585 {
586 m_Values[row].resize(count);
587 m_Columns[row].resize(count);
588

589 for (uint64_t i = 0; i < count; i++)
590 {
591 m_Values[row][i] = values[i];
592 m_Columns[row][i] = columns[i];
593 }
594
595 int64_t i_last = count - 1;
596 for(; i_last >= 0; i_last--)
597 {
598 if (m_Values[row][i_last] != 0)
599 {
600 m_LastNonZeroElement[row] = m_Columns[row][i_last];
601
602 break;
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603 }
604 }
605

606 if (i_last == -1)
607 m_LastNonZeroElement[row] = 0;
608 }
609 }
610

611 ////////////////////////////////////////////////////////////////////////////////
612 // Computes eigenvectors and eigenvalues of a symmetric matrix
613 ////////////////////////////////////////////////////////////////////////////////
614 MatrixFuncs::ResultCode MatrixFuncs::EigenVectorsSymm(const std::vector<double> &a,

std::vector<double> &eigen_values, std::vector<double> &eigen_vectors)↪→
615 {
616 MatrixFuncs::ResultCode result_code = ercNoError;
617

618 int64_t dim = (int64_t)sqrt(a.size());
619

620 if (dim * dim != (int64_t)a.size() || dim == 0)
621 return ercInputDataError;
622
623 double tolerance = DEF_TOLERANCE;
624

625 // allocation for a vector of eigenvalues and a matrix of eigenvectors
626 eigen_values.resize(dim);
627 eigen_vectors.resize(dim * dim);
628

629 // calculating Hessenberg form of A
630 std::vector<double> d;
631 std::vector<double> e;
632 HessenbergFormSymm(a, eigen_vectors, d, e);
633

634 // computing the norm of H
635 double norm = 0;
636 for (int64_t i = 0; i < dim; i++)
637 norm += std::abs(d[i]);
638 for (int64_t i = 0; i < dim - 1; i++)
639 norm += 2 * std::abs(e[i]);
640

641 // finding the index of the first non-zero subdiagonal element
642 int64_t min_index;
643 for (int64_t i = 0; i < dim; i++)
644 {
645 if (i == dim - 1)
646 {
647 min_index = i;
648 break;
649 }
650

651 double sum = std::abs(d[i]) + std::abs(d[i + 1]);
652 if (sum == 0)
653 sum = norm;
654 if ((std::abs(e[i]) <= tolerance * sum) && (std::abs(e[i]) <= tolerance))
655 e[i] = 0;
656 else
657 {
658 min_index = i;
659 break;
660 }
661 }
662

663 // finding the index of the first zero element e[i] starting from min_index
664 int64_t max_index;
665 for (max_index = min_index + 1; max_index < dim; max_index++)
666 {
667 if (max_index == dim - 1)
668 break;
669 double sum = std::abs(d[max_index]) + std::abs(d[max_index + 1]);
670 if (sum == 0)
671 sum = norm;
672 if ((std::abs(e[max_index]) < tolerance * sum) && (std::abs(e[max_index]) <

tolerance))↪→
673 {
674 e[max_index] = 0;
675 break;
676 }
677 }
678
679 int64_t count = 0;
680

681 // we now proceed with an iterative algorithm. On each step we are making e[i] closer
to zero for i = min_index↪→

682 // and recalculating max_index and min_index
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683 while ((min_index < dim - 1) && (count < 10000))
684 {
685 // performing a step of the QR-algorithm with shifts for the block

[min_index,max_index] of H;↪→
686 // for that we compute H = P_k*...*P_1*H*P’_1*...*P’_k, k = max_index -

min_index,↪→
687 // each P_i is a plane rotation making a subdiagonal element of H - shift*I

zero↪→
688

689 // the shift is the eigenvalue of an upper left block 2x2 closer to the corner
element d[min_index]↪→

690 double g = (d[min_index+1] - d[min_index]) / (2.0 * e[min_index]);
691 if (g >= 0)
692 g -= sqrt(g * g + 1);
693 else
694 g += sqrt(g * g + 1);
695

696 double shift = d[min_index] + e[min_index] * g;
697

698 g = d[max_index] - shift;
699

700 // performing max_index - min_index plane rotations on the block
[min_index,max_index];↪→

701 // this is an implicit computation, done in a way to work faster
702 bool zero = false;
703 double s = 1, c = 1, p = 0;
704 for (int64_t i = max_index - 1; i >= min_index; i--)
705 {
706 double f = s * e[i];
707 double b = c * e[i];
708 double r = sqrt(f * f + g * g);
709 e[i + 1] = r;
710

711 if (r == 0)
712 {
713 // in case zero appeared on the subdiagonal of the block

[min_index,max_index]↪→
714 e[i + 1] = 0;
715 d[i + 1] -= p;
716 zero = true;
717 break;
718 }
719

720 s = f / r;
721 c = g / r;
722 g = d[i + 1] - p;
723 r = (d[i] - g) * s + 2.0 * c * b;
724 p = s * r;
725 d[i + 1] = g + p;
726 g = c * r - b;
727

728 // modification of S (which is being saved as eigenVectors)
729 for (int64_t j = 0; j < dim; j++)
730 {
731 f = eigen_vectors[j * dim + i + 1];
732 eigen_vectors[j * dim + i + 1] = s * eigen_vectors[j * dim + i]

+ c * f;↪→
733 eigen_vectors[j * dim + i] = c * eigen_vectors[j * dim + i] - s

* f;↪→
734 }
735 }
736

737 e[max_index] = 0;
738 if (!zero)
739 {
740 d[min_index] -= p;
741 e[min_index] = g;
742 }
743
744 count++;
745

746 // recalculation of min_index
747 for (int64_t i = min_index; i < dim; i++)
748 {
749 if (i == dim - 1)
750 {
751 min_index = i;
752 break;
753 }
754

755 double sum = std::abs(d[i]) + std::abs(d[i + 1]);
756 if (sum == 0)
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757 sum = norm;
758 if ((std::abs(e[i]) < tolerance * sum) && (std::abs(e[i]) < tolerance))
759 {
760 e[i] = 0;
761 count = 0;
762 } else
763 {
764 min_index = i;
765 break;
766 }
767 }
768

769 // recalculation of max_index
770 int64_t indx;
771 for (indx = min_index + 1; indx < dim; indx++)
772 {
773 if (indx == dim - 1)
774 break;
775 double sum = std::abs(d[indx]) + std::abs(d[indx + 1]);
776 if (sum == 0)
777 sum = norm;
778 if ((std::abs(e[indx]) < tolerance * sum) && (std::abs(e[indx]) <

tolerance))↪→
779 {
780 e[indx] = 0;
781 break;
782 }
783 }
784

785 if (indx < max_index || min_index >= max_index)
786 {
787 max_index = indx;
788 count = 0;
789 }
790 }
791

792 // eigenvalues of A are the diagonal elements
793 for (int64_t i = 0; i < dim; i++)
794 eigen_values[i] = d[i];
795
796 return result_code;
797 }
798

799 ///////////////////////////////////////////////////////////////////////////////
800 // Computes the Hessenberg (tridiagonal in this case) form of a symmetric matrix A
801 //H = SAS’, where H is an upper Hessenberg matrix, S - ortogonal matrix and S’ is S transposed
802 ///////////////////////////////////////////////////////////////////////////////
803 void MatrixFuncs::HessenbergFormSymm(const std::vector<double> &a, std::vector<double> &s,

std::vector<double> &d, std::vector<double> &e)↪→
804 {
805 int64_t dim = (int64_t)sqrt(a.size());
806

807 // memory allocation
808 s.resize(dim * dim);
809 d.resize(dim);
810 e.resize(dim);
811

812 std::vector<double> H(a);
813 std::vector<double> v(dim);
814 std::vector<double> h(dim);
815
816 bool first_modification = true;
817 // algorithm based on Householder transformations
818 for (int64_t i = 0; i < dim - 2; i++)
819 {
820 double t = 0;
821 for (int64_t j = i + 1; j < dim; j++)
822 t += H[j * dim + i] * H[j * dim + i];
823

824 double u = sqrt(t);
825

826 // if all the elements of the i^th column starting from i+2 are zeroes, then we
save the diagonal↪→

827 // and subdiagonal elements and go to the next iteration
828 if (u <= std::abs(H[(i + 1) * dim + i]))
829 {
830 d[i] = H[i * dim + i];
831 e[i] = H[(i + 1) * dim + i];
832 continue;
833 }
834

835 if (H[(i + 1) * dim + i] > 0)
836 u *= -1;
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837

838 double w = sqrt(u * u - H[(i + 1) * dim + i] * u);
839

840 v[i + 1] = (H[(i + 1) * dim + i] - u) / w;
841 for (int64_t j = i + 2; j < dim; j++)
842 v[j] = H[j * dim + i] / w;
843

844 // at this iteration, we compute H -> P*H*P, where P = I - v*v’
845 // P*H*P = H - H*v*v’ - v*v’*H + v*v’*H*v*v’ =
846 // = H - h*v’ - v*h’ + mult*v*v’ = H - h*v’ - (h*v’)’ + mult*v*v’,
847 // where the vector h = H*v and the number mult = h’*v are computed below
848

849 // the vector h has zeros at the first (i-1) coordinates, and the i^th
coordinate is irrelevant↪→

850 // #pragma omp parallel for schedule(guided) //SECOND
851 for (int64_t j = i + 1; j < dim; j++)
852 {
853 h[j] = 0;
854 // we use only the elements of H below the main diagonal
855 for (int64_t k = i + 1; k < dim; k++)
856 if (k <= j)
857 h[j] += H[j * dim + k] * v[k];
858 else
859 h[j] += H[k * dim + j] * v[k];
860 }
861
862 double mult = 0;
863 for (int64_t j = i + 1; j < dim; j++)
864 mult += h[j] * v[j];
865

866 // final computation of H;
867 // we save the next diagonal and subdiagonal elements and compute only the

columns starting from i+1↪→
868 d[i] = H[i * dim + i];
869 e[i] = u;
870

871 // #pragma omp parallel for schedule(guided) //SECOND
872 for (int64_t j = i + 1; j < dim; j++)
873 for (int64_t k = i + 1; k <= j; k++)
874 H[j * dim + k] += (-v[k] * h[j] - v[j] * h[k] + mult * v[j] *

v[k]);↪→
875

876 if (first_modification)
877 {
878 // at the first modification, S is initialized by P = I - v*v’
879 for (int64_t k = 0; k < dim; k++)
880 for (int64_t j = 0; j < dim; j++)
881 if ((j > i) && (k > i))
882 if (j == k)
883 s[k * dim + j] = 1 - v[j] * v[k];
884 else
885 s[k * dim + j] = -v[j] * v[k];
886 else
887 if (j == k)
888 s[k * dim + j] = 1;
889 else
890 s[k * dim + j] = 0;
891 first_modification = false;
892 }
893 else
894 {
895 // computation of S = P*S = S - v*v’*S = S - v*h’, where h’ = v’*S
896 // #pragma omp parallel for schedule(guided) //SECOND
897 for (int64_t j = 1; j < dim; j++)
898 {
899 h[j] = 0;
900 for (int64_t k = i + 1; k < dim; k++)
901 h[j] += s[j * dim + k] * v[k];
902 }
903 // #pragma omp parallel for schedule(guided) //SECOND
904 for (int64_t j = i + 1; j < dim; j++)
905 for (int64_t k = 1; k < dim; k++)
906 s[k * dim + j] -= (v[j] * h[k]);
907 }
908 }
909

910 // in case the matrix A was already in the Hessenberg form, we initialize S by identity
911 if (first_modification)
912 for (int64_t k = 0; k < dim; k++)
913 for (int64_t j = 0; j < dim; j++)
914 if (j == k)
915 s[k * dim + j] = 1;
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916 else
917 s[k * dim + j] = 0;
918

919 d[dim - 2] = H[(dim - 2) * dim + dim - 2];
920 d[dim - 1] = H[(dim - 1) * dim + dim - 1];
921 e[dim - 2] = H[(dim - 1) * dim + dim - 2];
922
923 return;
924 }
925
926

927 ////////////////////////////////////////////////////////////////////////////////
928 // Multiplication of real matrices written in a 1-dim array row-wise
929 ////////////////////////////////////////////////////////////////////////////////
930 void MatrixFuncs::Multiply( const int64_t &m, const int64_t &dim, const int64_t &n,

const std::vector<double> &a, const std::vector<double> &b, bool left_trans, bool
right_trans,

↪→
↪→

931 const double &alpha,
std::vector<double> &mult)↪→

932 {
933 if ((int64_t)mult.size() != m * n)
934 mult.resize(m * n);
935

936 // computation of mult
937 if(left_trans && right_trans)
938 {
939 // Both matrices are transposed
940 // #pragma omp parallel for schedule(guided) //SECOND
941 for (int64_t i = 0; i < m; i++)
942 for (int64_t j = 0; j < n; j++)
943 {
944 double sum = 0;
945 int64_t ind = i - m;
946 for ( int64_t k = 0; k < dim; k++)
947 sum += a[ind += m] * b[j * dim + k];
948 mult[i * n + j] = alpha * sum;
949 }
950 }else if(left_trans)
951 {
952 // First matrix is transposed
953 // #pragma omp parallel for schedule(guided) //SECOND
954 for (int64_t i = 0; i < m; i++)
955 for (int64_t j = 0; j < n; j++)
956 {
957 double sum = 0;
958 int64_t ind1 = i - m, ind2 = j - n;
959 for (int64_t k = 0; k < dim; k++)
960 sum += a[ind1 += m] * b[ind2 += n];
961 mult[i * n + j] = alpha * sum;
962 }
963 }else if(right_trans)
964 {
965 // Second matrix is transposed
966 // #pragma omp parallel for schedule(guided) //SECOND
967 for (int64_t i = 0; i < m; i++)
968 for (int64_t j = 0; j < n; j++)
969 {
970 double sum = 0;
971 for (int64_t k = 0; k < dim; k++)
972 sum += a[i * dim + k] * b[j * dim + k];
973 mult[i * n + j] = alpha * sum;
974 }
975 }else
976 {
977 // Matrices are not transposed
978 // #pragma omp parallel for schedule(guided) //SECOND
979 for (int64_t i = 0; i < m; i++)
980 for (int64_t j = 0; j < n; j++)
981 {
982 double sum = 0;
983 int64_t ind = j - n;
984 for (int64_t k = 0; k < dim; k++)
985 sum += a[i * dim + k] * b[ind += n];
986 mult[i * n + j] = alpha * sum;
987 }
988 }
989
990 return;
991 }
992

993 ////////////////////////////////////////////////////////////////////////////////
994 // Multiplication of sparse real matrices
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995 ////////////////////////////////////////////////////////////////////////////////
996 void MatrixFuncs::MultiplySparse( const int64_t &m, const int64_t &dim, SparseMatrix &a,

SparseMatrix &mult)↪→
997 {
998 mult.clear();
999

1000 if ((int64_t)a.size() < m)
1001 return;
1002

1003 mult.resize(m);
1004

1005 std::vector<double> temp_values(m);
1006 std::vector<uint64_t> temp_columns(m);
1007

1008 // Second matrix is transposed
1009 #pragma omp parallel for schedule(guided) // StarGraph
1010 for (int64_t i = 0; i < m; i++)
1011 {
1012 int64_t count = 0;
1013 for (int64_t j = 0; j < m; j++)
1014 {
1015 double sum = 0;
1016

1017 a.RowsProduct(i, j, sum);
1018

1019 if (std::abs(sum) > DEF_PRESICE)
1020 {
1021 temp_values[count] = sum;
1022 temp_columns[count] = j;
1023
1024 count++;
1025 }
1026 }
1027

1028 mult.PushRow(i, temp_values, temp_columns, count);
1029 }
1030
1031 return;
1032 }
1033

1034 ////////////////////////////////////////////////////////////////////////////////
1035 // Solves the system of linear equations A*x = B
1036 ////////////////////////////////////////////////////////////////////////////////
1037 MatrixFuncs::ResultCode MatrixFuncs::DevideByVectorAnaliticSymm( const

std::vector<double> &a, const std::vector<double> &b, std::vector<double> &x)↪→
1038 {
1039 MatrixFuncs::ResultCode result_code = ercNoError;
1040

1041 if (a.size() == 0)
1042 return ercInputDataError;
1043

1044 int64_t dim = (int64_t)sqrt(a.size());
1045

1046 if (dim * dim != (int64_t)a.size())
1047 return ercInputDataError;
1048

1049 if (dim != (int64_t)b.size())
1050 return ercInputDataError;
1051

1052 x.resize(dim);
1053

1054 std::vector<double> L(a);
1055

1056 // computation of L
1057

1058 for (int64_t i = 0; i < dim; i++)
1059 {
1060 for (int64_t j = 0; j < i; j++)
1061 {
1062 double sum2 = 0;
1063 //#pragma omp parallel for schedule(guided) //SECOND
1064 for (int64_t k = 0; k < j; k++)
1065 sum2 += L[i * dim + k] * L[j * dim + k];
1066

1067 L[i * dim + j] = (L[i * dim + j] - sum2) / L[j * dim + j];
1068 }
1069
1070 double sum1 = 0;
1071 //#pragma omp parallel for schedule(guided) //SECOND
1072 for (int64_t k = 0; k < i; k++)
1073 sum1 += L[i * dim + k] * L[i * dim + k];
1074

1075 if (L[i * dim + i] - sum1 <= 0)
1076 {
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1077 for (int64_t j = 0; j < dim; j++)
1078 x[j] = GetNAN();
1079

1080 return ercInputDataError; //A must be a positive definite matrix
1081 }
1082 else
1083 L[i * dim + i] = sqrt(L[i * dim + i] - sum1);
1084 }
1085

1086 //#pragma omp parallel for schedule(guided) //SECOND
1087 for (int64_t i = 0; i < dim; i++)
1088 {
1089 x[i] = b[i];
1090 }
1091

1092 for (int64_t i = 0; i < dim; i++)
1093 {
1094 x[i] /= L[i * dim + i];
1095

1096 //#pragma omp parallel for schedule(guided) //SECOND
1097 for (int64_t j = i + 1; j < dim; j++)
1098 {
1099 x[j] -= L[j * dim + i] * x[i];
1100 }
1101 }
1102

1103 for (int64_t i = dim - 1; i >= 0; i--)
1104 {
1105 x[i] /= L[i * dim + i];
1106

1107 //#pragma omp parallel for schedule(guided) //SECOND
1108 for (int64_t j = 0; j < i; j++)
1109 {
1110 x[j] -= L[i * dim + j] * x[i];
1111 }
1112 }
1113
1114 return result_code;
1115 }
1116

1117 ////////////////////////////////////////////////////////////////////////////////
1118 // Solves the system of linear equations A*x = b for symmetric positive definite matrix A by

using Gauss method(analitical method).↪→
1119 // The matrices A and vector b must have the same number of rows.
1120 // Algorithm is divided into two phases
1121 ////////////////////////////////////////////////////////////////////////////////
1122

1123 ////////////////////////////////////////////////////////////////////////////////
1124 // Fase_1(preliminary calculations) - reduction matrix A to the lower triangular matrices
1125 ////////////////////////////////////////////////////////////////////////////////
1126 MatrixFuncs::ResultCode

MatrixFuncs::DevideByVectorAnaliticSymmSparse_Fase_1( SparseMatrix &a_triang,
SparseMatrix &s)

↪→
↪→

1127 {
1128 MatrixFuncs::ResultCode result_code = ercNoError;
1129

1130 int64_t dim = a_triang.size();
1131

1132 if (dim == 0)
1133 return ercInputDataError;
1134

1135 s.resize(dim);
1136

1137 //reduction of the matrix A to a triangular form
1138

1139 for (int64_t i = dim - 1; i >= 0; i--)
1140 {
1141 double val_ii;
1142 a_triang.Get(i, i, val_ii);
1143

1144 // modification of A and S
1145 #pragma omp parallel for schedule(guided) // StarGraph
1146 for (int64_t j = i - 1; j >= 0; j--)
1147 {
1148 double val_ji;
1149 a_triang.GetLastElement(j, i, val_ji);
1150

1151 if (val_ji != 0.0)
1152 {
1153 double temp = val_ji / val_ii;
1154

1155 s.Set(j, i, -temp);
1156
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1157 a_triang.AddRow(i, j, -temp);
1158 }
1159 }
1160 }
1161
1162 return result_code;
1163 }
1164

1165 ////////////////////////////////////////////////////////////////////////////////
1166 // Solves the system of linear equations A*x = b for symmetric positive definite matrix A by

using Gauss method(analitical method).↪→
1167 // The matrices A and vector b must have the same number of rows.
1168 // Algorithm is divided into two phases
1169 ////////////////////////////////////////////////////////////////////////////////
1170

1171 ////////////////////////////////////////////////////////////////////////////////
1172 // Fase_2 - transformation of vector b (using transformation matrix S) and sequential

computation of the vector x↪→
1173 ////////////////////////////////////////////////////////////////////////////////
1174 MatrixFuncs::ResultCode

MatrixFuncs::DevideByVectorAnaliticSymmSparse_Fase_2( SparseMatrix &a_triang,
SparseMatrix &s, const std::vector<double> &b, std::vector<double> &x)

↪→
↪→

1175 {
1176 MatrixFuncs::ResultCode result_code = ercNoError;
1177

1178 int64_t dim = a_triang.size();
1179

1180 if (dim == 0)
1181 return ercInputDataError;
1182

1183 if (dim != s.size())
1184 {
1185 std::cout << "return" << std::endl;
1186 return ercInputDataError;
1187 }
1188

1189 if (dim != (int64_t)b.size())
1190 {
1191 std::cout << "return" << std::endl;
1192 return ercInputDataError;
1193 }
1194

1195 x.resize(dim);
1196

1197 std::vector<double> temp_b(b);
1198

1199 // modification of B
1200 for (int64_t i = dim - 1; i >= 0; i--)
1201 {
1202 double temp = 0;
1203 s.RowVectorProduct(temp_b, i, temp);
1204 temp_b[i] += temp;
1205 }
1206

1207 // recursive computation of the vector x
1208 for (int64_t i = 0; i < dim; i++)
1209 {
1210 double sum_sq = 0.0;
1211 a_triang.RowVectorProduct(x, i, sum_sq);
1212
1213 double val_ii;
1214 a_triang.Get(i, i, val_ii);
1215

1216 x[i] = (temp_b[i] - sum_sq) / val_ii;
1217 }
1218
1219 return result_code;
1220 }
1221

1222 ////////////////////////////////////////////////////////////////////////////////
1223 // Addition of real vectors
1224 ////////////////////////////////////////////////////////////////////////////////
1225 void MatrixFuncs::AddVectors(const std::vector<double> &v_1, const std::vector<double> &v_2,

const double &alpha, const double &beta, std::vector<double> &sum)↪→
1226 {
1227 int64_t dim = v_1.size();
1228 if ((int64_t)sum.size() != dim)
1229 sum.resize(dim);
1230

1231 for (int64_t i = 0; i < dim; i++)
1232 sum[i] = alpha * v_1[i] + beta * v_2[i];
1233
1234 return;
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1235 }
1236

1237 ////////////////////////////////////////////////////////////////////////////////
1238 // Computes the inverse of matrix a, matrices are written in a 1-dim array row-wise
1239 ////////////////////////////////////////////////////////////////////////////////
1240 MatrixFuncs::ResultCode MatrixFuncs::Inverse(const std::vector<double> &a, std::vector<double>

&a_inv)↪→
1241 {
1242 MatrixFuncs::ResultCode result_code = ercNoError;
1243

1244 if (a.size() == 0)
1245 return ercInputDataError;
1246

1247 int64_t dim = (int64_t)sqrt(a.size());
1248

1249 if (dim * dim != (int64_t)a.size())
1250 return ercInputDataError;
1251

1252 a_inv.resize(dim * dim);
1253

1254 std::vector<double> lu(a);
1255 std::vector<double> lu_mod(dim*dim);
1256 std::vector<int64_t> permutation(dim);
1257

1258 // LU decomposition
1259 for (int64_t i = 0; i < dim; i++)
1260 {
1261 // finding pivot: the row’s number of the maximal element among A[i][i],

A[i+1][i], ..., A[n-1][i]↪→
1262 double permutation_value = 0;
1263 long permutation_indx = -1;
1264

1265 for (int64_t k = i; k < dim; k++)
1266 if (std::abs(lu[k * dim + i]) - permutation_value > 0)
1267 {
1268 permutation_value = std::abs(lu[k * dim + i]);
1269 permutation_indx = k;
1270 }
1271

1272 if (std::abs(permutation_value) < DEF_TOLERANCE)
1273 {
1274 // error in case matrix a is singular (will be treated as warning

unless pivotValue = 0)↪→
1275 result_code = ercSingularMatrixWarning;
1276

1277 if (!permutation_value)
1278 {
1279 for (int64_t j = 0; j < dim * dim; j++)
1280 a_inv[j] = GetNAN();
1281 return ercSingularMatrixError;
1282 }
1283 }
1284

1285 if (i != permutation_indx)
1286 {
1287 permutation[i] = permutation_indx;
1288 // switching i and pivot rows in A:
1289 for (int64_t j = 0; j < dim; j++)
1290 {
1291 double temp = lu[i * dim + j];
1292 lu[i * dim + j] = lu[permutation_indx * dim + j];
1293 lu[permutation_indx * dim + j] = temp;
1294 }
1295 }
1296 else
1297 permutation[i] = -1;
1298

1299 // modification of A
1300 //#pragma omp parallel for schedule(guided) //SECOND
1301 for (int64_t j = i + 1; j < dim; j++)
1302 {
1303 double temp = (lu[j * dim + i] /= lu[i * dim + i]);
1304

1305 for (int64_t k = i + 1; k < dim; k++)
1306 lu[j * dim + k] -= temp * lu[i * dim + k];
1307 }
1308 }
1309

1310 // recursive computation of the inverse matrix of L (the lower half of LU)
1311 //#pragma omp parallel for schedule(guided) //SECOND
1312 for (int64_t i = 0; i < dim - 1; i++)
1313 for (int64_t j = i + 1; j < dim; j++)
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1314 {
1315 double temp = lu[j * dim + i] * -1.0;
1316

1317 for (int64_t k = i + 1; k < j; k++)
1318 temp -= lu[j * dim + k] * lu_mod[i * dim + k];
1319

1320 lu_mod[i * dim + j] = temp;
1321 }
1322

1323 // recursive computation of the inverse matrix of U (the upper half of LU)
1324 //#pragma omp parallel for schedule(guided) //SECOND
1325 for (int64_t i = dim - 1; i >= 0; i--)
1326 {
1327 lu_mod[i * dim + i] = 1.0 / lu[i * dim + i];
1328

1329 for (int64_t j = i - 1; j >= 0; j--)
1330 {
1331 double temp = 0;
1332

1333 for (int64_t k = i; k > j; k--)
1334 temp -= lu[j * dim + k] * lu_mod[i * dim + k];
1335

1336 lu_mod[i * dim + j] = temp / lu[j * dim + j];
1337 }
1338 }
1339

1340 // computation of inv(U)*inv(L)
1341 //#pragma omp parallel for schedule(guided) //SECOND
1342 for (int64_t i = 0; i < dim; i++)
1343 {
1344 for (int64_t j = 0; j < i; j++)
1345 {
1346 double temp = 0;
1347

1348 for (int64_t k = i; k < dim; k++)
1349 temp += lu_mod[k * dim + i] * lu_mod[j * dim + k];
1350

1351 a_inv[i * dim + j] = temp;
1352 }
1353

1354 for (int64_t j = i; j < dim; j++)
1355 {
1356 double temp = lu_mod[j * dim + i];
1357

1358 for (int64_t k = j + 1; k < dim; k++)
1359 temp += lu_mod[k * dim + i] * lu_mod[j * dim + k];
1360

1361 a_inv[i * dim + j] = temp;
1362 }
1363 }
1364

1365 // computation of the final result
1366 for (int64_t i = dim - 1; i >= 0; i--)
1367 if (permutation[i] != -1)
1368 for (int64_t j = 0; j < dim; j++)
1369 {
1370 double temp = a_inv[j * dim + i];
1371 a_inv[j * dim + i] = a_inv[j * dim + permutation[i]];
1372 a_inv[j * dim + permutation[i]] = temp;
1373 }
1374
1375 return result_code;
1376 }
1377

1378 ////////////////////////////////////////////////////////////////////////////////
1379 //Restoring symmetric matrix from lower triangular part
1380 ////////////////////////////////////////////////////////////////////////////////
1381 void MatrixFuncs::SymmMatrixFromLowerMatrix( const int64_t &m, const std::vector<double>

&a_lower, std::vector<double> &a)↪→
1382 {
1383 uint64_t lower_dim = (int64_t)(0.5 * m * (m + 1));
1384 if (a_lower.size() != lower_dim)
1385 {
1386 a.clear();
1387 return;
1388 }
1389

1390 a.resize(m * m);
1391 for (int64_t i = 0, k = 0; i < m; i++)
1392 for (int64_t j = 0; j <= i; j++, k++)
1393 a[i * m + j] = a_lower[k];
1394

1395 for (int64_t i = 0, k = 0; i < m; i++, k++)
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1396 for (int64_t j = 0; j < i; j++, k++)
1397 a[j * m + i] = a_lower[k];
1398
1399 return;
1400 }
1401

1402 ////////////////////////////////////////////////////////////////////////////////
1403 //Recording lower triangular part of symmetric matrix
1404 ////////////////////////////////////////////////////////////////////////////////
1405 void MatrixFuncs::LowerMatrix( const int64_t &m, const std::vector<double> &a,

std::vector<double> &a_lower)↪→
1406 {
1407 if ((int64_t)a.size() != m * m)
1408 {
1409 a_lower.clear();
1410 return;
1411 }
1412

1413 uint64_t lower_dim = (int64_t)(0.5 * m * (m + 1));
1414

1415 a_lower.resize(lower_dim);
1416 for (int64_t i = 0, k = 0; i < m; i++)
1417 for (int64_t j = 0; j <= i; j++, k++)
1418 a_lower[k] = a[i * m + j];
1419
1420 return;
1421 }
1422

1423 ////////////////////////////////////////////////////////////////////////////////
1424 //Frobenius matrix norm calculation using lower triangular part of symmetric matrix
1425 ////////////////////////////////////////////////////////////////////////////////
1426 void MatrixFuncs::FrobeniusNormSymmLower(const int64_t &m, const std::vector<double> &a_lower,

double &norm)↪→
1427 {
1428 uint64_t lower_dim = (int64_t)(0.5 * m * (m + 1));
1429 if (a_lower.size() != lower_dim)
1430 {
1431 norm = GetNAN();
1432 return;
1433 }
1434
1435 norm = 0;
1436 for (int64_t i = 0, count = 0; i < m; i++, count++)
1437 {
1438 for (int64_t j = 0; j < i; j++, count++)
1439 norm += 2 * a_lower[count] * a_lower[count];
1440

1441 norm += a_lower[count] * a_lower[count];
1442 }
1443

1444 norm = sqrt(norm);
1445
1446 return;
1447 }
1448

1449 ////////////////////////////////////////////////////////////////////////////////
1450 //P-norm calculation using lower triangular part of symmetric matrix
1451 ////////////////////////////////////////////////////////////////////////////////
1452 void MatrixFuncs::PNormSymmLower(const int64_t &m, const int64_t &p, const std::vector<double>

&a_lower, double &norm)↪→
1453 {
1454 uint64_t lower_dim = (int64_t)(0.5 * m * (m + 1));
1455 if (a_lower.size() != lower_dim || m == 0)
1456 {
1457 norm = GetNAN();
1458 return;
1459 }
1460
1461 norm = 0;
1462

1463 std::vector<double> sum(m, 0);
1464 if (p == 1)
1465 {
1466 for (int64_t i = m - 1, count = lower_dim - 1; i >= 0; i--)
1467 {
1468 sum[i] += std::abs(a_lower[count]);
1469 count--;
1470 for (int64_t j = i - 1; j >= 0; j--, count--)
1471 {
1472 sum[i] += std::abs(a_lower[count]);
1473 sum[j] += std::abs(a_lower[count]);
1474 }
1475 }



APPENDIX: HIGH-PERFORMANCE C++ IMPLEMENTATION 124

1476 double max = sum[0];
1477 for (int64_t i = 1; i < m; i++)
1478 if (sum[i] > max)
1479 max = sum[i];
1480
1481 norm = max;
1482 }
1483 else
1484 {
1485 for (int64_t i = m - 1, count = lower_dim - 1; i >= 0; i--)
1486 {
1487 sum[i] += pow(std::abs(a_lower[count]), p);
1488 count--;
1489 for (int64_t j = i - 1; j >= 0; j--, count--)
1490 {
1491 sum[i] += pow(std::abs(a_lower[count]), p);
1492 sum[j] += pow(std::abs(a_lower[count]), p);
1493 }
1494 }
1495 double max = sum[0];
1496 for (int64_t i = 1; i < m; i++)
1497 if (sum[i] > max)
1498 max = sum[i];
1499

1500 norm = pow(max, 1.0 / p);
1501 }
1502
1503 return;
1504 }
1505

1506 ////////////////////////////////////////////////////////////////////////////////
1507 //P-norm calculation for vector
1508 ////////////////////////////////////////////////////////////////////////////////
1509 void MatrixFuncs::PNormVector(const int64_t &p, const std::vector<double> &v, double &norm)
1510 {
1511 int64_t dim = v.size();
1512 if (dim == 0)
1513 {
1514 norm = GetNAN();
1515 return;
1516 }
1517
1518 norm = 0;
1519 for (int64_t i = 0; i < dim; i++)
1520 {
1521 norm += pow(v[i], p);
1522 }
1523

1524 norm = pow(norm, 1.0 / p);
1525
1526 return;
1527 }
1528

1529 ////////////////////////////////////////////////////////////////////////////////
1530 // Multiplication of real vectors
1531 ////////////////////////////////////////////////////////////////////////////////
1532 void MatrixFuncs::MultiplyVectors( const std::vector<double> &v_1, const std::vector<double>

&v_2, const double &alpha, double &mult)↪→
1533 {
1534 int64_t dim = v_1.size();
1535 if ((int64_t)v_2.size() != dim)
1536 {
1537 mult = GetNAN();
1538 return;
1539 }
1540
1541 mult = 0;
1542 for (int64_t i = 0; i < dim; i++)
1543 mult += alpha * v_1[i] * v_2[i];
1544
1545 return;
1546 }
1547

1548 ////////////////////////////////////////////////////////////////////////////////
1549 // Multiplication of integer and real vectors
1550 ////////////////////////////////////////////////////////////////////////////////
1551 void MatrixFuncs::MultiplyVectors( const std::vector<int64_t> &v_1, const std::vector<double>

&v_2, const double &alpha, double &mult)↪→
1552 {
1553 int64_t dim = v_1.size();
1554 if ((int64_t)v_2.size() != dim)
1555 {
1556 mult = GetNAN();
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1557 return;
1558 }
1559
1560 mult = 0;
1561 for (int64_t i = 0; i < dim; i++)
1562 mult += alpha * v_1[i] * v_2[i];
1563
1564 return;
1565 }
1566

1567 ////////////////////////////////////////////////////////////////////////////////
1568 // Finding the maximum element in the vector
1569 ////////////////////////////////////////////////////////////////////////////////
1570 double MatrixFuncs::Max( const std::vector<double> &a)
1571 {
1572 int64_t dim = a.size();
1573 if (dim == 0)
1574 return GetNAN();
1575

1576 double max = a[0];
1577 for (int64_t i = 1; i < dim; i++)
1578 if (a[i] > max)
1579 max = a[i];
1580
1581 return max;
1582 }
1583

1584 ////////////////////////////////////////////////////////////////////////////////
1585 // Calculation of the sum of vector elements
1586 ////////////////////////////////////////////////////////////////////////////////
1587 double MatrixFuncs::Sum( const std::vector<double> &a)
1588 {
1589 int64_t dim = a.size();
1590 if (dim == 0)
1591 return GetNAN();
1592

1593 double sum = a[0];
1594 for (int64_t i = 1; i < dim; i++)
1595 sum += a[i];
1596
1597 return sum;
1598 }
1599

1600 ///////////////////////////////////////////////////////////////////////////////
1601 // Generate integer random matrix
1602 ///////////////////////////////////////////////////////////////////////////////
1603 RandomFuncs::ResultCode RandomFuncs::MatrixI(int64_t n, int64_t m, std::vector <int64_t>

&rand_m, uint64_t min, uint64_t max, bool rand_init, int64_t mult)↪→
1604 {
1605 if (n <= 0 || m <= 0)
1606 {
1607 return ercDimensionError; // error dimension
1608 }
1609

1610 rand_m.resize(n * m);
1611

1612 if (FirstCall)
1613 {
1614 InitSeed(rand_init);
1615 FirstCall = false;
1616 }
1617
1618 int64_t d = max - min + 1;
1619 if (d != 1)
1620 for (int64_t i = 0; i < n * m; i++)
1621 rand_m[i] = (NextInt() % d + min) * mult;
1622 else
1623 for (int64_t i = 0; i < n * m; i++)
1624 rand_m[i] = min * mult;
1625 return ercNoError;
1626 }
1627

1628 ///////////////////////////////////////////////////////////////////////////////
1629 // Generate real random matrix
1630 ///////////////////////////////////////////////////////////////////////////////
1631 RandomFuncs::ResultCode RandomFuncs::Matrix(int64_t n, int64_t m, std::vector <double> &rand_m,

uint64_t min, uint64_t max, bool rand_init, double max_add, double mult)↪→
1632 {
1633 if (n <= 0 || m <= 0)
1634 {
1635 return ercDimensionError; // error dimension
1636 }
1637
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1638 rand_m.resize(n * m);
1639

1640 if (FirstCall)
1641 {
1642 InitSeed(rand_init);
1643 FirstCall = false;
1644 }
1645
1646 int64_t d = max - min + 1;
1647
1648 double add = 0;
1649

1650 if (d != 1)
1651 for (int64_t i = 0; i < n * m; i++)
1652 {
1653 if (std::abs(max_add) > 0)
1654 {
1655 add = NextDouble() * max_add;
1656 }
1657 rand_m[i] = (NextInt() % d + min + add) * mult;
1658 }
1659 else
1660 for (int64_t i = 0; i < n * m; i++)
1661 rand_m[i] = (min + add) * mult;
1662
1663 return ercNoError;
1664 }
1665

1666 RandomFuncs::ResultCode RandomFuncs::SparseSymmetricMatrixZeroDiagonalB(const int64_t n, const
double density, std::vector <bool> &rand_m, bool rand_init)↪→

1667 {
1668 if (n <= 0)
1669 {
1670 return ercDimensionError; // error dimension
1671 }
1672

1673 if (density < 0 || density > 1)
1674 {
1675 return ercDensityError; // error density
1676 }
1677

1678 if (FirstCall)
1679 {
1680 InitSeed(rand_init);
1681 FirstCall = false;
1682 }
1683

1684 rand_m.resize(n * n);
1685 for (int64_t i = 0; i < n * n; i++)
1686 rand_m[i] = 0;
1687

1688 int64_t max_nonzero_count = (int64_t)((n * (n - 1)) * density); // zero diagonal
1689 max_nonzero_count -= max_nonzero_count%2;
1690 int64_t nonzero_count = 0;
1691 int64_t IJ_count = (int64_t)(0.5 * n * (n - 1));
1692 std::vector <std::pair<int64_t, int64_t> > IJ(IJ_count);
1693 for (int64_t i = 0, k = 0; i < n; i++)
1694 for (int64_t j = i + 1; j < n; j++, k++)
1695 IJ[k] = std::pair<int64_t, int64_t>(i, j);
1696

1697 while (nonzero_count < max_nonzero_count)
1698 {
1699 int64_t indx = NextInt() % IJ_count;
1700

1701 int64_t i = IJ[indx].first;
1702 int64_t j = IJ[indx].second;
1703

1704 rand_m[i * n + j] = 1;
1705 rand_m[j * n + i] = 1;
1706

1707 IJ.erase(IJ.begin() + indx);
1708
1709 IJ_count -= 1;
1710 nonzero_count += 2;
1711 }
1712
1713 return ercNoError;
1714 }
1715

1716 double RandomFuncs::NextDouble()
1717 {
1718 x = a * x + c;
1719 x = x % m;
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1720

1721 return (double)x / (m - 1);
1722 }
1723

1724 unsigned long RandomFuncs::NextInt()
1725 {
1726 x = a * x + c;
1727 x = x % m;
1728
1729 return x;
1730 }
1731

1732 void RandomFuncs::InitSeed(bool rand_init)
1733 {
1734 // initialization of the seed
1735 if (rand_init)
1736 {
1737 x = time(NULL);
1738 x = x % m;
1739 }
1740 else
1741 {
1742 x = 5;
1743 }
1744
1745 FirstCall = false;
1746 }
1747

1748 ///////////////////////////////////////////////////////////////////////////////
1749 // Generate boolean banded matrix
1750 ///////////////////////////////////////////////////////////////////////////////
1751 AdjacencyMatrix::ResultCode AdjacencyMatrix::CreateBandedGraph(std::vector <bool>

&AdjacencyMatrix, const int64_t n)↪→
1752 {
1753 if (n <= 0)
1754 {
1755 return ercDimensionError; // error dimension
1756 }
1757

1758 AdjacencyMatrix.resize(n * n);
1759 for (int64_t i = 0; i < n * n; i++)
1760 AdjacencyMatrix[i] = 0;
1761

1762 for (int64_t i = 0; i < n - 1; i++)
1763 {
1764 AdjacencyMatrix[i * n + i + 1] = 1;
1765 AdjacencyMatrix[(i + 1) * n + i] = 1;
1766 }
1767
1768 return ercNoError;
1769 }
1770
1771

1772 ///////////////////////////////////////////////////////////////////////////////
1773 // Generate boolean sparse random matrix with zero diagonal elements
1774 ///////////////////////////////////////////////////////////////////////////////
1775 AdjacencyMatrix::ResultCode AdjacencyMatrix::CreateRandomGraph(std::vector <bool>

&AdjacencyMatrix, const int64_t n, bool rand_init, double density)↪→
1776 {
1777 if (n <= 0)
1778 {
1779 return ercDimensionError; // error dimension
1780 }
1781

1782 if (density < 0 || density > 1)
1783 {
1784 return ercDensityError; // error density
1785 }
1786

1787 RandomFuncs::SparseSymmetricMatrixZeroDiagonalB(n, density, AdjacencyMatrix,
rand_init);↪→

1788
1789 return ercNoError;
1790 }
1791

1792 ///////////////////////////////////////////////////////////////////////////////
1793 // Generate boolean sparse matrix with non-zero elements in center-th row and column excluding

the diagonal element↪→
1794 ///////////////////////////////////////////////////////////////////////////////
1795 AdjacencyMatrix::ResultCode AdjacencyMatrix::CreateStarGraph(std::vector <bool>

&AdjacencyMatrix, const int64_t n, int64_t center)↪→
1796 {
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1797 if (n <= 0)
1798 {
1799 return ercDimensionError; // error dimension
1800 }
1801

1802 if ((center < 0 && center != -1) || center > (n - 1))
1803 {
1804 return ercCenterError; // error central point
1805 }
1806

1807 AdjacencyMatrix.resize(n * n);
1808 for (int64_t i = 0; i < n * n; i++)
1809 AdjacencyMatrix[i] = 0;
1810
1811 int64_t k = center;
1812 if (k == -1)
1813 k = (int64_t)std::floor(0.5 * n) - 1;
1814

1815 for (int64_t i = 0; i < n; i++)
1816 {
1817 if ( i != k)
1818 {
1819 AdjacencyMatrix[i * n + k] = 1;
1820 AdjacencyMatrix[k * n + i] = 1;
1821 }
1822 }
1823
1824 return ercNoError;
1825 }
1826

1827 ///////////////////////////////////////////////////////////////////////////////
1828 // Generate boolean user defined matrix
1829 ///////////////////////////////////////////////////////////////////////////////
1830 AdjacencyMatrix::ResultCode AdjacencyMatrix::CreateUserDefinedGraph(std::vector <bool>

&AdjacencyMatrix, const int64_t n, const std::string& filein)↪→
1831 {
1832 if (n <= 0)
1833 {
1834 return ercDimensionError; // error dimension
1835 }
1836
1837 std::ifstream file;
1838 file.open(filein.c_str());
1839 if (file)
1840 {
1841 AdjacencyMatrix.resize(n * n);
1842

1843 for(int64_t i = 0; i < n * n; i++)
1844 {
1845 if (!file.eof())
1846 {
1847 double a;
1848 file >> a;
1849 if (a != 0)
1850 AdjacencyMatrix[i] = 1;
1851 else
1852 AdjacencyMatrix[i] = 0;
1853 }
1854 else
1855 return ercDimensionError; // error input data dimension
1856 }
1857 file.close();
1858 }
1859 else
1860 {
1861 AdjacencyMatrix.clear();
1862 return ercEmptyInputError; // inpur file not found
1863 }
1864
1865
1866 return ercNoError;
1867 }
1868
1869

1870 ////////////////////////////////////////////////////////////////////////////////
1871 //ADMM iterative algorithm starts here
1872 ////////////////////////////////////////////////////////////////////////////////
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1873 int64_t ADMM_SDP_Algo(int64_t n, int64_t W_size_min, int64_t W_size_max, int64_t p_min, int64_t
p_max, int64_t q_min, int64_t q_max, int64_t A_i_min, int64_t A_i_max, int64_t B_i_min,
int64_t B_i_max, int64_t D_i_min, int64_t D_i_max, int64_t W_i_min, int64_t W_i_max,
int64_t c_i_min, int64_t c_i_max, int64_t d_i_min, int64_t d_i_max,
AdjacencyMatrix::AdjacencyMatrixType AdjacencyType, double density, int64_t center, const
std::string& filein, double mu_mult, double overlap_ratio, double tole, const
std::string& fileout, bool rand_init)

↪→
↪→
↪→
↪→
↪→
↪→

1874 {
1875 // Start the timer for calculating algorithm initialization time
1876 auto t0 = std::chrono::high_resolution_clock::now();
1877

1878 double inv_mu_mult = 1.0 / mu_mult;
1879
1880
1881 std::vector<bool> randAdj;
1882 AdjacencyMatrix::ResultCode result;
1883 switch(AdjacencyType)
1884 {
1885 case(AdjacencyMatrix::eamtBandedGraph):
1886 result = AdjacencyMatrix::CreateBandedGraph(randAdj, n);
1887 //#ifdef _DEBUG
1888 std::cout << "Banded Graph" << std::endl;
1889 for (int64_t i = 0; i < n; i++)
1890 {
1891 for (int64_t j = 0; j < n; j++)
1892 std::cout << randAdj[i * n + j] << " ";
1893 std::cout << std::endl;
1894 }
1895 //#endif
1896 break;
1897 case(AdjacencyMatrix::eamtRandomGraph):
1898 result = AdjacencyMatrix::CreateRandomGraph(randAdj, n, rand_init, density);
1899 //#ifdef _DEBUG
1900 std::cout << "Random Graph" << std::endl;
1901 for (int64_t i = 0; i < n; i++)
1902 {
1903 for (int64_t j = 0; j < n; j++)
1904 std::cout << randAdj[i * n + j] << " ";
1905 std::cout << std::endl;
1906 }
1907 //#endif
1908 break;
1909 case(AdjacencyMatrix::eamtStarGraph):
1910 result = AdjacencyMatrix::CreateStarGraph(randAdj, n, center);
1911 //#ifdef _DEBUG
1912 std::cout << "Star Graph" << std::endl;
1913 for (int64_t i = 0; i < n; i++)
1914 {
1915 for (int64_t j = 0; j < n; j++)
1916 std::cout << randAdj[i * n + j] << " ";
1917 std::cout << std::endl;
1918 }
1919 //#endif
1920 break;
1921 case(AdjacencyMatrix::eamtUserDefinedGraph):
1922 result = AdjacencyMatrix::CreateUserDefinedGraph(randAdj, n, filein);
1923 //#ifdef _DEBUG
1924 std::cout << "User Defined Graph" << std::endl;
1925 for (int64_t i = 0; i < n; i++)
1926 {
1927 for (int64_t j = 0; j < n; j++)
1928 std::cout << randAdj[i * n + j] << " ";
1929 std::cout << std::endl;
1930 }
1931 //#endif
1932 break;
1933 default:
1934 result = AdjacencyMatrix::ercTypeError;
1935 }
1936

1937 if (result != AdjacencyMatrix::ercNoError)
1938 return -2; // adjacency matrix creation error
1939

1940 // get the indices of only the non-zero entries to define the set of edges
1941 std::vector<int64_t> edges_Set;
1942 for (int64_t i = 0; i < n; i++)
1943 for (int64_t j = i; j < n; j++)
1944 if (randAdj[i * n + j] != 0)
1945 {
1946 edges_Set.push_back(i);
1947 edges_Set.push_back(j);
1948 }
1949
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1950 int64_t edges_Num = edges_Set.size();
1951 edges_Num /= 2;
1952

1953 // Compute for each agent i:
1954 // neighb_all_num: the total number of agents connected to agent i
1955 // neighb_less_num: the total number of agents in the lower part of randAdj connected to

agent i↪→
1956 // neighb_greater_num: The total number of agents in the upper part of randAdj connected to

agent i↪→
1957 std::vector<int64_t> neighb_all_num(n, 0);
1958 std::vector<int64_t> neighb_less_num(n, 0);
1959 std::vector<int64_t> neighb_greater_num(n, 0);
1960

1961 for (int64_t i = 0; i < n; i++)
1962 {
1963 for (int64_t j = 0; j < i; j++)
1964 if (randAdj[i * n + j] != 0)
1965 {
1966 neighb_all_num[i]++;
1967 neighb_less_num[i]++;
1968 }
1969 for (int64_t j = i + 1; j < n; j++)
1970 if (randAdj[i * n + j] != 0)
1971 {
1972 neighb_all_num[i]++;
1973 neighb_greater_num[i]++;
1974 }
1975 }
1976

1977 // Find the set delta which is the set of agents connected to agent i
1978 std::vector<std::vector<int64_t> > delta_less(n);
1979 std::vector<std::vector<int64_t> > delta_greater(n);
1980

1981 for (int64_t i = 0; i < n; i++)
1982 {
1983 delta_less[i].resize(neighb_less_num[i]);
1984 delta_greater[i].resize(neighb_greater_num[i]);
1985

1986 for (int64_t j = 0, k = 0; j < i; j++)
1987 if (randAdj[i * n + j] != 0)
1988 {
1989 delta_less[i][k] = j;
1990 k++;
1991 }
1992

1993 for (int64_t j = i + 1, k = 0; j < n; j++)
1994 if (randAdj[i * n + j] != 0)
1995 {
1996 delta_greater[i][k] = j;
1997 k++;
1998 }
1999 }
2000

2001 randAdj.clear();
2002 randAdj.reserve(0);
2003

2004 // Randomly define the number of data matrices B and D for each agent i.
2005 std::vector<int64_t> p_i;
2006 std::vector<int64_t> q_i;
2007 RandomFuncs::MatrixI(n, 1, p_i, p_min, p_max, rand_init);
2008 RandomFuncs::MatrixI(n, 1, q_i, q_min, q_max, rand_init);
2009
2010 std::vector<int64_t> w_size_i;
2011 std::vector<std::vector<double> > A(n);
2012 std::vector<std::vector<double> > A_lower(n);
2013 std::vector<std::vector<std::vector<double> > > B(n);
2014 std::vector<std::vector<std::vector<double> > > B_lower(n);
2015 std::vector<std::vector<int64_t> > c_i(n);
2016 std::vector<std::vector<std::vector<double> > > D(n);
2017 std::vector<std::vector<std::vector<double> > > D_lower(n);
2018 std::vector<std::vector<int64_t> > d_i(n);
2019

2020 // Randomly define the size of the variable W_i for each agent i.
2021 RandomFuncs::MatrixI(n, 1, w_size_i, W_size_min, W_size_max, rand_init);
2022

2023 // Randomly create data matrices A, B and D for each agent each with size
2024 // w_size_i. The total number of data matrices B and D for each agent is p_i and q_i,

respectively.↪→
2025 // Also, randomly create the vectors c_i and d_i with sizes p_i and q_i, respectively.
2026 for (int64_t i = 0; i < n; i++)
2027 {
2028 int64_t w_size = w_size_i[i];
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2029

2030 RandomFuncs::Matrix(w_size, w_size, A[i], A_i_min, A_i_max, rand_init, 1.0);
2031

2032 for (int64_t j = 0; j < w_size; j++)
2033 {
2034 A[i][j * w_size + j] = 2 * A[i][j * w_size + j] + w_size_i[i];
2035

2036 for (int64_t k = j + 1; k < w_size; k++)
2037 {
2038 A[i][j * w_size + k] = A[i][k * w_size + j] = A[i][j * w_size

+ k] + A[i][k * w_size + j];↪→
2039 }
2040 }
2041

2042 MatrixFuncs::LowerMatrix( w_size, A[i], A_lower[i]);
2043

2044 if (p_i[i] != 0)
2045 {
2046 B[i].resize(p_i[i]);
2047 B_lower[i].resize(p_i[i]);
2048 for (int64_t p = 0; p < p_i[i]; p++)
2049 {
2050 RandomFuncs::Matrix(w_size, w_size, B[i][p], B_i_min, B_i_max,

rand_init, 0, 0.01);↪→
2051

2052 for (int64_t j = 0; j < w_size; j++)
2053 {
2054 B[i][p][j * w_size + j] = 2 * B[i][p][j * w_size + j];
2055

2056 for (int64_t k = 0; k < j; k++)
2057 {
2058 B[i][p][j * w_size + k] = B[i][p][k * w_size +

j] = B[i][p][j * w_size + k] + B[i][p][k
* w_size + j];

↪→
↪→

2059 }
2060 }
2061

2062 MatrixFuncs::LowerMatrix( w_size, B[i][p], B_lower[i][p]);
2063

2064 }
2065

2066 RandomFuncs::MatrixI(p_i[i], 1, c_i[i], c_i_min, c_i_max, rand_init);
2067 }
2068

2069 if (q_i[i] != 0)
2070 {
2071 D[i].resize(q_i[i]);
2072 D_lower[i].resize(q_i[i]);
2073 for (int64_t q = 0; q < q_i[i]; q++)
2074 {
2075 RandomFuncs::Matrix(w_size, w_size, D[i][q], D_i_min, D_i_max,

rand_init, 0, 0.01);↪→
2076

2077 for (int64_t j = 0; j < w_size_i[i]; j++)
2078 {
2079 D[i][q][j * w_size + j] = 2 * D[i][q][j * w_size + j];
2080 for (int64_t k = 0; k < j; k++)
2081 {
2082 D[i][q][j * w_size + k] = D[i][q][k * w_size +

j] = D[i][q][j * w_size + k] + D[i][q][k
* w_size + j];

↪→
↪→

2083 }
2084 }
2085

2086 MatrixFuncs::LowerMatrix( w_size, D[i][q], D_lower[i][q]);
2087

2088 }
2089

2090 RandomFuncs::MatrixI(q_i[i], 1, d_i[i], d_i_min, d_i_max, rand_init,
-1);↪→

2091 }
2092 }
2093

2094 // Define for each edge two sets of indices I_ij and I_ji which
2095 // specifies the rows and columns where the two agents variables W_i and
2096 // W_j are overlapping
2097 int64_t max_ij = 0, max_ji = 0, max_ = 0;
2098 for (int64_t i = 1; i < edges_Num; i++)
2099 {
2100 if (edges_Set[i * 2] > max_ij)
2101 max_ij = edges_Set[i * 2];
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2102

2103 if (edges_Set[i * 2 + 1] > max_ji)
2104 max_ji = edges_Set[i * 2 + 1];
2105 }
2106 max_ij++;
2107 max_ji++;
2108 max_ = std::max(max_ij, max_ji);
2109

2110 std::vector <std::vector <int64_t> > I_ij(max_ij * max_ji);
2111 std::vector <std::vector <int64_t> > I_ji(max_ji * max_ij);
2112

2113 std::vector <int64_t> overlap_size(max_ * max_, 0);
2114

2115 for (int64_t i = 0; i < edges_Num; i++)
2116 {
2117 int64_t indx_i = edges_Set[i * 2];
2118 int64_t indx_j = edges_Set[i * 2 + 1];
2119

2120 // Pick the minimum size between W_i and W_j. This represents the extreme case when
2121 // W_i (or W_j) lies completely inside W_j (or W_i)
2122 int64_t k_min = std::min(w_size_i[indx_i], w_size_i[indx_j]);
2123

2124 int64_t overlap_size_i = (int64_t)(overlap_ratio * k_min + 0.5);
2125 overlap_size[indx_i * max_ + indx_j] = overlap_size_i;
2126 overlap_size[indx_j * max_ + indx_i] = overlap_size_i;
2127

2128 // Randomly generate the set of unique indices I_ij at which W_i
2129 // overlaps with W_j
2130 I_ij[indx_i * max_ji + indx_j].resize(overlap_size_i);
2131 for (int64_t j = overlap_size_i - 1, count = 1; j >= 0; j--, count++)
2132 {
2133 I_ij[indx_i * max_ji + indx_j][j] = w_size_i[indx_i] - count;
2134 }
2135

2136 // Randomly generate the set of unique indices I_ji at which W_j
2137 // overlaps with W_i
2138 I_ji[indx_j * max_ij + indx_i].resize(overlap_size_i);
2139 for (int64_t j = 0; j < overlap_size_i; j++)
2140 {
2141 I_ji[indx_j * max_ij + indx_i][j] = j;
2142 }
2143 }
2144

2145 std::vector<std::vector<int64_t> > size_type_z_v_Hij_Hji(n);
2146

2147 for (int64_t i = 0; i < n; i++)
2148 {
2149 size_type_z_v_Hij_Hji[i].resize((2 + neighb_less_num[i] +

neighb_greater_num[i]) * 2, 0);↪→
2150 size_type_z_v_Hij_Hji[i][0] = p_i[i];
2151 size_type_z_v_Hij_Hji[i][1 * 2] = q_i[i];
2152

2153 for (int64_t j = 0; j < neighb_less_num[i]; j++)
2154 {
2155 int64_t n_overlap = overlap_size[i * max_ + delta_less[i][j]];
2156 size_type_z_v_Hij_Hji[i][(j + 2) * 2] = n_overlap * n_overlap;
2157 size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1] = (int64_t)(n_overlap *

(n_overlap + 1) * 0.5);↪→
2158 }
2159

2160 for (int64_t j = 0; j < neighb_greater_num[i]; j++)
2161 {
2162 int64_t n_overlap = overlap_size[i * max_ + delta_greater[i][j]];
2163 size_type_z_v_Hij_Hji[i][(j + 2 + neighb_less_num[i]) * 2] = n_overlap

* n_overlap;↪→
2164 size_type_z_v_Hij_Hji[i][(j + 2 + neighb_less_num[i]) * 2 + 1] =

(int64_t)(n_overlap * (n_overlap + 1) * 0.5);↪→
2165 }
2166 }
2167

2168 std::vector<int64_t> jacobian_size_i_lower(n);
2169

2170 for (int64_t i = 0; i < n; i++)
2171 {
2172 double jacobian_size_i = 0;
2173 jacobian_size_i_lower[i] = p_i[i] + q_i[i];
2174 for (int64_t j = 0; j < (2 + neighb_less_num[i] + neighb_greater_num[i]); j++)
2175 {
2176 jacobian_size_i += size_type_z_v_Hij_Hji[i][j * 2];
2177 jacobian_size_i_lower[i] += size_type_z_v_Hij_Hji[i][j * 2 + 1];
2178 }
2179
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2180

2181 }
2182

2183 // Preallocation and initial values of all variables and multipliers
2184 std::vector<std::vector<double> > z(n);
2185 std::vector<std::vector<double> > v(n);
2186 std::vector<std::vector<double> > u(n);
2187 std::vector<std::vector<double> > R_lower(n);
2188 std::vector<std::vector<double> > G_i_lower(n);
2189 std::vector<std::vector<double> > Lambda_i(n);
2190

2191 std::vector<std::vector<double> > H_ij_lower(max_ij * max_ji);
2192 std::vector<std::vector<double> > H_ji_lower(max_ji * max_ij);
2193 std::vector<std::vector<double> > H_ij_coup_lower(max_ij * max_ji);
2194 std::vector<std::vector<double> > G_ij_lower(max_ij * max_ji);
2195 std::vector<std::vector<double> > G_ji_lower(max_ji * max_ij);
2196

2197 std::vector<std::vector<double> > H_ij_basis(max_ij * max_ji);
2198 std::vector<std::vector<double> > H_ij_basis_full(max_ij * max_ji);
2199 std::vector<std::vector<double> > H_ij_basis_vec_tr(max_ij * max_ji);
2200

2201 std::vector<std::vector<double> > H_ji_basis(max_ji * max_ij);
2202 std::vector<std::vector<double> > H_ji_basis_full(max_ji * max_ij);
2203 std::vector<std::vector<double> > H_ji_basis_vec_tr(max_ji * max_ij);
2204
2205

2206 std::vector<std::vector<int64_t> > H_ij_basis_map(max_ij * max_ji);
2207 std::vector<std::vector<int64_t> > H_ji_basis_map(max_ji * max_ij);
2208

2209 std::vector<SparseMatrix> triang_jacobian(n);
2210 std::vector<SparseMatrix> s_jacobian(n);;
2211

2212 std::vector<std::vector<double> > H_ij_sum_tr(n);
2213 std::vector<std::vector<double> > B_sum(n);
2214 std::vector<std::vector<double> > D_sum(n);
2215

2216 std::vector<std::vector<double> > H_ij_sum_tr_lower(n);
2217 std::vector<std::vector<double> > B_sum_lower(n);
2218 std::vector<std::vector<double> > D_sum_lower(n);
2219

2220 std::vector<double> p_infeas_i_1(n, 0);
2221 std::vector<double> p_infeas_i_2(edges_Num, 0);
2222 std::vector<double> d_infeas_i_1(n, 0);
2223 std::vector<double> d_infeas_i_3(n, 0);
2224 std::vector<std::vector<double> > d_infeas_i_2(2);
2225 d_infeas_i_2[0].resize(edges_Num, 0);
2226 d_infeas_i_2[1].resize(edges_Num, 0);
2227

2228 std::vector<double> p_residue_i_1(n, 0);
2229 std::vector<double> p_residue_i_2(n, 0);
2230 std::vector<double> p_residue_i_3(edges_Num, 0);
2231 std::vector<double> p_residue_i_4(edges_Num, 0);
2232

2233 std::vector<double> d_residue_i_1(n, 0);
2234 std::vector<double> d_residue_i_2(n, 0);
2235 std::vector<double> d_residue_i_3(edges_Num, 0);
2236

2237 for (int64_t i = 0; i < n; i++)
2238 {
2239 z[i].resize(p_i[i], 0);
2240 v[i].resize(q_i[i], 0);
2241 u[i].resize(q_i[i], 0);
2242 Lambda_i[i].resize(q_i[i], 0);
2243

2244 int64_t dim_lower = (int64_t)(0.5 * (w_size_i[i] * ( w_size_i[i] + 1)));
2245

2246 R_lower[i].resize(dim_lower, 0);
2247 G_i_lower[i].resize(dim_lower, 0);
2248 }
2249

2250 for (int64_t i = 0; i < edges_Num; i++)
2251 {
2252 int64_t indx_i = edges_Set[i * 2];
2253 int64_t indx_j = edges_Set[i * 2 + 1];
2254 int64_t temp_overlap_size = overlap_size[indx_i * max_ + indx_j];
2255 int64_t dim_lower = (int64_t)(0.5 * (temp_overlap_size * (temp_overlap_size +

1)));↪→
2256

2257 H_ij_lower[indx_i * max_ji + indx_j].resize(dim_lower, 0);
2258 H_ji_lower[indx_j * max_ij + indx_i].resize(dim_lower, 0);
2259 H_ij_coup_lower[indx_i * max_ji + indx_j].resize(dim_lower, 0);
2260
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2261 G_ij_lower[indx_i * max_ji + indx_j].resize(dim_lower, 0);
2262 G_ji_lower[indx_j * max_ij + indx_i].resize(dim_lower, 0);
2263 }
2264

2265 // Create the basis matrix for H_ij and H_ji
2266 for (int64_t i = 0; i < edges_Num; i++)
2267 {
2268 int64_t indx_i = edges_Set[i * 2];
2269 int64_t indx_j = edges_Set[i * 2 + 1];
2270 const std::vector <int64_t> & IJ = I_ij[indx_i * max_ji + indx_j];
2271 int64_t temp_overlap_size = overlap_size[indx_i * max_ + indx_j];
2272 int64_t temp_w_size = w_size_i[indx_i];
2273 int64_t columns_count_vec = (int64_t)(0.5 * temp_overlap_size *

(temp_overlap_size + 1));↪→
2274 H_ij_basis_full[indx_i * max_ji + indx_j].resize(temp_w_size * temp_w_size, 0);
2275 H_ij_basis_vec_tr[indx_i * max_ji + indx_j].resize(temp_w_size * temp_w_size *

columns_count_vec, 0);↪→
2276

2277 for (int64_t k = 0, count = 0; k < temp_overlap_size; k++, count++)
2278 {
2279 for (int64_t j = 0; j < k; j++, count++)
2280 {
2281 H_ij_basis_full[indx_i * max_ji + indx_j][IJ[j] * temp_w_size +

IJ[k]] = 1;↪→
2282 H_ij_basis_full[indx_i * max_ji + indx_j][IJ[k] * temp_w_size +

IJ[j]] = 1;↪→
2283 H_ij_basis_vec_tr[indx_i * max_ji + indx_j][count * temp_w_size

* temp_w_size + IJ[j] * temp_w_size + IJ[k]] = 1;↪→
2284 H_ij_basis_vec_tr[indx_i * max_ji + indx_j][count * temp_w_size

* temp_w_size + IJ[k] * temp_w_size + IJ[j]] = 1;↪→
2285 }
2286 H_ij_basis_full[indx_i * max_ji + indx_j][IJ[k] * temp_w_size + IJ[k]]

= 1;↪→
2287 H_ij_basis_vec_tr[indx_i * max_ji + indx_j][count * temp_w_size *

temp_w_size + IJ[k] * temp_w_size + IJ[k]] = 1;↪→
2288 }
2289 }
2290

2291 for (int64_t i = 0; i < edges_Num; i++)
2292 {
2293 int64_t indx_i = edges_Set[i * 2];
2294 int64_t indx_j = edges_Set[i * 2 + 1];
2295 const std::vector <int64_t> & JI = I_ji[indx_j * max_ij + indx_i];
2296 int64_t temp_overlap_size = overlap_size[indx_j * max_ + indx_i];
2297 int64_t temp_w_size = w_size_i[indx_j];
2298 int64_t columns_count_vec = (int64_t)(0.5 * temp_overlap_size *

(temp_overlap_size + 1));↪→
2299 H_ji_basis_full[indx_j * max_ij + indx_i].resize(temp_w_size * temp_w_size, 0);
2300 H_ji_basis_vec_tr[indx_j * max_ij + indx_i].resize(temp_w_size * temp_w_size *

columns_count_vec, 0);↪→
2301

2302 for (int64_t k = 0, count = 0; k < temp_overlap_size; k++, count++)
2303 {
2304 for (int64_t j = 0; j < k; j++, count++)
2305 {
2306 H_ji_basis_full[indx_j * max_ij + indx_i][JI[j] * temp_w_size +

JI[k]] = -1;↪→
2307 H_ji_basis_full[indx_j * max_ij + indx_i][JI[k] * temp_w_size +

JI[j]] = -1;↪→
2308 H_ji_basis_vec_tr[indx_j * max_ij + indx_i][(count) *

temp_w_size * temp_w_size + JI[j] * temp_w_size + JI[k]]
= -1;

↪→
↪→

2309 H_ji_basis_vec_tr[indx_j * max_ij + indx_i][(count) *
temp_w_size * temp_w_size + JI[k] * temp_w_size + JI[j]]
= -1;

↪→
↪→

2310 }
2311 H_ji_basis_full[indx_j * max_ij + indx_i][JI[k] * temp_w_size + JI[k]]

= -1;↪→
2312 H_ji_basis_vec_tr[indx_j * max_ij + indx_i][(count) * temp_w_size *

temp_w_size + JI[k] * temp_w_size + JI[k]] = -1;↪→
2313 }
2314 }
2315

2316 // Create a mapping between the non-zero elements in H_ij_basis_full and
2317 // H_ij (the variable format). This will be used to update H_ij_sum for each agent i.
2318 // Similarly for H_ji_basis_full and H_ji
2319 for (int64_t i = 0; i < n; i++)
2320 {
2321 for (int64_t j = 0; j < neighb_less_num[i]; j++)
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2322 {
2323 int64_t temp_delta_less = delta_less[i][j];
2324 int64_t temp_overlap_size = overlap_size[i * max_ + temp_delta_less];
2325 H_ji_basis_map[i * max_ij + temp_delta_less].resize( temp_overlap_size

* (temp_overlap_size + 1) * 2, 0);↪→
2326

2327 for (int64_t p = 0, count = 0; p < w_size_i[i]; p++)
2328 for (int64_t k = 0; k <= p; k++)
2329 if (H_ji_basis_full[i * max_ij + temp_delta_less][k *

w_size_i[i] + p] == -1)↪→
2330 {
2331 H_ji_basis_map[i * max_ij +

temp_delta_less][count * 4] = k;↪→
2332 H_ji_basis_map[i * max_ij +

temp_delta_less][count * 4 + 1] = p;↪→
2333 count++;
2334 }
2335

2336 for (int64_t p = 0, count = 0; p < temp_overlap_size; p++)
2337 for (int64_t k = 0; k <= p; k++, count++)
2338 {
2339 H_ji_basis_map[i * max_ij + temp_delta_less][count * 4

+ 2] = k;↪→
2340 H_ji_basis_map[i * max_ij + temp_delta_less][count * 4

+ 3] = p;↪→
2341 }
2342 }
2343

2344 for (int64_t j = 0; j < neighb_greater_num[i]; j++)
2345 {
2346 int64_t temp_delta_greater = delta_greater[i][j];
2347 int64_t temp_overlap_size = overlap_size[i * max_ +

temp_delta_greater];↪→
2348 H_ij_basis_map[i * max_ji + temp_delta_greater].resize(

temp_overlap_size * (temp_overlap_size + 1) * 2, 0);↪→
2349

2350 for (int64_t p = 0, count = 0; p < w_size_i[i]; p++)
2351 for (int64_t k = 0; k <= p; k++)
2352 if (H_ij_basis_full[i * max_ji + temp_delta_greater][k

* w_size_i[i] + p] == 1)↪→
2353 {
2354 H_ij_basis_map[i * max_ji +

temp_delta_greater][count * 4] = k;↪→
2355 H_ij_basis_map[i * max_ji +

temp_delta_greater][count * 4 + 1] = p;↪→
2356 count++;
2357 }
2358

2359 for (int64_t p = 0, count = 0; p < temp_overlap_size; p++)
2360 for (int64_t k = 0; k <= p; k++, count++)
2361 {
2362 H_ij_basis_map[i * max_ji + temp_delta_greater][count *

4 + 2] = k;↪→
2363 H_ij_basis_map[i * max_ji + temp_delta_greater][count *

4 + 3] = p;↪→
2364 }
2365 }
2366 }
2367
2368 bool error = false;
2369

2370 // Find the inverse of the Jacobian matrix for each agent i
2371 #pragma omp parallel for schedule(guided)
2372 for (int64_t i = 0; i < n; i++)
2373 {
2374 int64_t dim2 = w_size_i[i] * w_size_i[i];
2375 int64_t dim1 = jacobian_size_i_lower[i];
2376

2377 // Store the different terms for each agent in row and column format
2378 // which are multiplied later to create the different blocks of the jacobian
2379

2380 SparseMatrix jacobian_col(dim1);
2381 std::vector<double> values(dim2);
2382 std::vector<uint64_t> columns(dim2);
2383
2384 int64_t count = 0;
2385 for (int64_t j = 0; j < p_i[i]; j++, count++)
2386 {
2387 for (int64_t k = 0; k < dim2; k++)
2388 {
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2389 values[k] = B[i][j][k];
2390 columns[k] = k;
2391 }
2392

2393 jacobian_col.PushRow(count, values, columns, dim2);
2394 }
2395

2396 for (int64_t j = 0; j < q_i[i]; j++, count++)
2397 {
2398 for (int64_t k = 0; k < dim2; k++)
2399 {
2400 values[k] = D[i][j][k];
2401 columns[k] = k;
2402 }
2403

2404 jacobian_col.PushRow(count, values, columns, dim2);
2405 }
2406

2407 for (int64_t j = 0; j < neighb_less_num[i]; j++)
2408 for (int64_t l = 0; l < size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; l++,

count++)↪→
2409 {
2410 int64_t index = i * max_ij + delta_less[i][j];
2411 for (int64_t k = 0, nz = 0; k < dim2; k++)
2412 {
2413 double val = H_ji_basis_vec_tr[index][l * dim2 + k];
2414 if (val != 0)
2415 {
2416 values[nz] = val;
2417 columns[nz] = k;
2418
2419 nz++;
2420 }
2421

2422 jacobian_col.PushRow(count, values, columns, nz);
2423 }
2424 }
2425

2426 for (int64_t j = 0; j < neighb_greater_num[i]; j++)
2427 for (int64_t l = 0; l < size_type_z_v_Hij_Hji[i][(j + 2 +

neighb_less_num[i]) * 2 + 1]; l++, count++)↪→
2428 {
2429 int64_t index = i * max_ji + delta_greater[i][j];
2430 for (int64_t k = 0, nz = 0; k < dim2; k++)
2431 {
2432 double val = H_ij_basis_vec_tr[index][l * dim2 + k];
2433 if (val != 0)
2434 {
2435 values[nz] = val;
2436 columns[nz] = k;
2437
2438 nz++;
2439 }
2440

2441 jacobian_col.PushRow(count, values, columns, nz);
2442 }
2443 }
2444

2445 MatrixFuncs::MultiplySparse(dim1, dim2, jacobian_col, triang_jacobian[i]);
2446 for (int64_t j = p_i[i]; j < dim1; j++)
2447 triang_jacobian[i].Add(j, j, 1.0);
2448

2449 jacobian_col.clear();
2450

2451 MatrixFuncs::DevideByVectorAnaliticSymmSparse_Fase_1(triang_jacobian[i],
s_jacobian[i]);↪→

2452 }
2453 if (error)
2454 return -1;
2455
2456 std::vector<double> gap;
2457 std::vector<double> max_infeas;
2458 std::vector<double> residue_sum;
2459 std::vector<double> residue_sum_primal;
2460 std::vector<double> residue_sum_dual;
2461
2462 std::vector<double> p_residue_i_1_plot;
2463 std::vector<double> p_residue_i_2_plot;
2464 std::vector<double> p_residue_i_3_plot;
2465 std::vector<double> d_residue_i_1_plot;
2466 std::vector<double> d_residue_i_2_plot;
2467 std::vector<double> d_residue_i_3_plot;
2468
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2469 double max_infeas_iter = tole + 1;
2470

2471 // Stop the timer for calculating algorthm’s initialization time
2472 auto t1 = std::chrono::high_resolution_clock::now();
2473 auto dt = 1.e-9*std::chrono::duration_cast<std::chrono::nanoseconds>(t1-t0).count();
2474 std::cout<<"" << std::endl;
2475 std::cout<<"Algorithm’s Initialization Time= "<< dt << " seconds" << std::endl;
2476 std::cout<<"" << std::endl;
2477
2478 std::cout<<"Starting to solve using ADMM... " << std::endl;
2479 std::cout<<"" << std::endl;
2480 std::cout<<"ITE PFEAS DFEAS POBJ DOBJ TIME" << std::endl;
2481
2482 double time_s=0;
2483 int64_t iter = 0;
2484

2485 // Start ADMM Algorithm main loop here
2486 while (max_infeas_iter > tole)
2487 {
2488 // Start the timer for calculating algorithm’s main loop time
2489 auto t0 = std::chrono::high_resolution_clock::now();
2490 iter=iter+1;
2491

2492 // Update (z_i, H_ij, H_ji)
2493 #pragma omp parallel for schedule(dynamic)
2494 for (int64_t i = 0; i < n; i++)
2495 {
2496 std::vector<double> temp_Array;
2497 std::vector<double> temp;
2498 std::vector<double> vec_R_G_A;
2499 std::vector<double> vec_R_G_A_lower;
2500 std::vector<double> zi_vi_Hij_Hji_vec;
2501

2502 vec_R_G_A.clear();
2503 vec_R_G_A_lower.clear();
2504 MatrixFuncs::AddVectors(R_lower[i], G_i_lower[i], 1.0, inv_mu_mult,

vec_R_G_A_lower);↪→
2505 MatrixFuncs::AddVectors(vec_R_G_A_lower, A_lower[i], 1.0, -1.0,

vec_R_G_A_lower);↪→
2506 MatrixFuncs::SymmMatrixFromLowerMatrix(w_size_i[i], vec_R_G_A_lower,

vec_R_G_A);↪→
2507

2508 int64_t dim2 = w_size_i[i] * w_size_i[i];
2509 int64_t jacobian_size_lower = jacobian_size_i_lower[i];
2510

2511 temp_Array.clear();
2512 temp_Array.resize(jacobian_size_lower, 0);
2513 temp.clear();
2514
2515 int64_t count = 0;
2516 for (int64_t j = 0; j < p_i[i]; j++, count++)
2517 {
2518 MatrixFuncs::MultiplyVectors(B[i][j], vec_R_G_A, 1.0,

temp_Array[count]);↪→
2519 temp_Array[count] += -inv_mu_mult * c_i[i][j];
2520 }
2521

2522 for (int64_t j = 0; j < q_i[i]; j++, count++)
2523 {
2524 MatrixFuncs::MultiplyVectors(D[i][j], vec_R_G_A, 1.0,

temp_Array[count]);↪→
2525 temp_Array[count] += -inv_mu_mult * d_i[i][j] + u[i][j] -

inv_mu_mult * Lambda_i[i][j];↪→
2526 }
2527

2528 for (int64_t j = 0; j < neighb_less_num[i]; j++)
2529 {
2530 int64_t dim = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1];
2531 MatrixFuncs::Multiply(dim, dim2, 1, H_ji_basis_vec_tr[i *

max_ij + delta_less[i][j]], vec_R_G_A, false, false, 1,
temp);

↪→
↪→

2532 MatrixFuncs::AddVectors(H_ij_coup_lower[delta_less[i][j] *
max_ji + i], temp, 1.0, 1.0, temp);↪→

2533 MatrixFuncs::AddVectors(G_ji_lower[i * max_ij +
delta_less[i][j]], temp, - inv_mu_mult, 1.0, temp);↪→

2534 for (int64_t k = 0; k < dim; k++, count++)
2535 temp_Array[count] = temp[k];
2536 }
2537

2538 for (int64_t j = 0; j < neighb_greater_num[i]; j++)
2539 {
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2540 int64_t dim = size_type_z_v_Hij_Hji[i][(j + 2 +
neighb_less_num[i]) * 2 + 1];↪→

2541 MatrixFuncs::Multiply(dim, dim2, 1, H_ij_basis_vec_tr[i *
max_ji + delta_greater[i][j]], vec_R_G_A, false, false,
1, temp);

↪→
↪→

2542 MatrixFuncs::AddVectors(H_ij_coup_lower[i * max_ji +
delta_greater[i][j]], temp, 1.0, 1.0, temp);↪→

2543 MatrixFuncs::AddVectors(G_ij_lower[i * max_ji +
delta_greater[i][j]], temp, - inv_mu_mult, 1.0, temp);↪→

2544 for (int64_t k = 0; k < dim; k++, count++)
2545 temp_Array[count] = temp[k];
2546 }
2547

2548 zi_vi_Hij_Hji_vec.clear();
2549 MatrixFuncs::DevideByVectorAnaliticSymmSparse_Fase_2(triang_jacobian[i],

s_jacobian[i], temp_Array, zi_vi_Hij_Hji_vec);↪→
2550
2551
2552 int64_t size_sum = 0;
2553

2554 for (int64_t l = 0; l < p_i[i]; l++)
2555 z[i][l] = zi_vi_Hij_Hji_vec[l];
2556 size_sum += p_i[i];
2557

2558 for (int64_t l = 0, k = size_sum; l < q_i[i]; l++, k++)
2559 v[i][l] = zi_vi_Hij_Hji_vec[k];
2560 size_sum += q_i[i];
2561

2562 for (int64_t j = 0; j < neighb_less_num[i]; j++)
2563 {
2564 for (int64_t l = 0, k = size_sum; l <

size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; l++, k++)↪→
2565 H_ji_lower[i * max_ij + delta_less[i][j]][l] =

zi_vi_Hij_Hji_vec[k];↪→
2566 size_sum += size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1];
2567 }
2568

2569 for (int64_t j = 0; j < neighb_greater_num[i]; j++)
2570 {
2571 for (int64_t l = 0, k = size_sum; l <

size_type_z_v_Hij_Hji[i][(j + 2 + neighb_less_num[i]) * 2
+ 1]; l++, k++)

↪→
↪→

2572 H_ij_lower[i * max_ji + delta_greater[i][j]][l] =
zi_vi_Hij_Hji_vec[k];↪→

2573 size_sum += size_type_z_v_Hij_Hji[i][(j + 2 +
neighb_less_num[i]) * 2 + 1];↪→

2574 }
2575 }
2576

2577 // Update H_ij_sum for each agent i
2578 #pragma omp parallel for schedule(dynamic)
2579 for (int64_t i = 0; i < n; i++)
2580 {
2581 int64_t dim = w_size_i[i];
2582

2583 if ((int64_t)H_ij_sum_tr[i].size() != dim * dim)
2584 H_ij_sum_tr[i].resize(dim * dim);
2585

2586 for (int64_t j = 0; j < dim * dim; j++)
2587 H_ij_sum_tr[i][j] = 0;
2588

2589 for (int64_t j = 0; j < neighb_less_num[i]; j++)
2590 {
2591 int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1];
2592 int64_t indx = i * max_ij + delta_less[i][j];
2593

2594 for (int64_t k = 0; k < dim1; k ++)
2595 H_ij_sum_tr[i][H_ji_basis_map[indx][k * 4 + 1] * dim +

H_ji_basis_map[ indx][k * 4]] +=
-H_ji_lower[indx][k];

↪→
↪→

2596 }
2597

2598 for (int64_t j = 0; j < neighb_greater_num[i]; j++)
2599 {
2600 int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2 +

neighb_less_num[i]) * 2 + 1];↪→
2601 int64_t indx = i * max_ji + delta_greater[i][j];
2602

2603 for (int64_t k = 0; k < dim1; k ++)
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2604 H_ij_sum_tr[i][H_ij_basis_map[ indx][k * 4 + 1] * dim +
H_ij_basis_map[ indx][k * 4]] +=
H_ij_lower[indx][k];

↪→
↪→

2605 }
2606 MatrixFuncs::LowerMatrix(dim, H_ij_sum_tr[i], H_ij_sum_tr_lower[i]);
2607 }
2608

2609 // Update B_sum for each agent i
2610 #pragma omp parallel for schedule(dynamic)
2611 for (int64_t i = 0; i < n; i++)
2612 {
2613 if (p_i[i] != 0)
2614 {
2615 int64_t dim = (int64_t)(0.5 * w_size_i[i] * (w_size_i[i] + 1));
2616

2617 if ((int64_t)B_sum_lower[i].size() != dim)
2618 B_sum_lower[i].resize(dim);
2619

2620 for (int64_t k = 0; k < dim; k++)
2621 B_sum_lower[i][k] = 0;
2622

2623 for (int64_t j = 0; j < p_i[i]; j++)
2624 MatrixFuncs::AddVectors(B_sum_lower[i], B_lower[i][j],

1, z[i][j], B_sum_lower[i]);↪→
2625 }
2626 }
2627

2628 // Update D_sum for each agent i
2629 #pragma omp parallel for schedule(dynamic)
2630 for (int64_t i = 0; i < n; i++)
2631 {
2632 if (q_i[i] != 0)
2633 {
2634 int64_t dim = (int64_t)(0.5 * w_size_i[i] * (w_size_i[i] + 1));
2635

2636 if ((int64_t)D_sum_lower[i].size() != dim)
2637 D_sum_lower[i].resize(dim);
2638

2639 for (int64_t k = 0; k < dim; k++)
2640 D_sum_lower[i][k] = 0;
2641

2642 for (int64_t j = 0; j < q_i[i]; j++)
2643 MatrixFuncs::AddVectors(D_sum_lower[i], D_lower[i][j],

1, v[i][j], D_sum_lower[i]);↪→
2644 }
2645 }
2646

2647 // Update R_i
2648 #pragma omp parallel for schedule(dynamic)
2649 for (int64_t i = 0; i < n; i++)
2650 {
2651 std::vector<double> temp_Array;
2652 std::vector<double> temp_mat;
2653 std::vector<double> temp_mat_1;
2654 std::vector<double> temp_mat_2;
2655 std::vector<double> Veig;
2656 std::vector<double> Deig_vec;
2657 std::vector<double> Deig;
2658 std::vector<double> R_lower_old;
2659 std::vector<double> R_residue_lower;
2660 std::vector<double> u_old;
2661

2662 int64_t dim = w_size_i[i];
2663

2664 temp_Array.clear();
2665

2666 MatrixFuncs::AddVectors(A_lower[i], H_ij_sum_tr_lower[i], 1.0, 1.0,
temp_Array);↪→

2667 MatrixFuncs::AddVectors(temp_Array, G_i_lower[i], 1.0, -inv_mu_mult,
temp_Array);↪→

2668 if (p_i[i] != 0)
2669 MatrixFuncs::AddVectors(temp_Array, B_sum_lower[i], 1.0, 1.0,

temp_Array);↪→
2670 if (q_i[i] != 0)
2671 MatrixFuncs::AddVectors(temp_Array, D_sum_lower[i], 1.0, 1.0,

temp_Array);↪→
2672

2673 temp_mat.clear();
2674 temp_mat_1.clear();
2675 temp_mat_2.clear();
2676

2677 MatrixFuncs::SymmMatrixFromLowerMatrix(dim, temp_Array, temp_mat);
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2678

2679 Veig.clear();
2680 Deig_vec.clear();
2681 Deig.clear();
2682 Deig.resize(dim *dim, 0);
2683

2684 MatrixFuncs::EigenVectorsSymm( temp_mat, Deig_vec, Veig);
2685

2686 for (int64_t j = 0; j < dim; j++)
2687 if (Deig_vec[j] > 0)
2688 Deig[j * dim + j] = Deig_vec[j];
2689

2690 MatrixFuncs::Multiply(dim, dim, dim, Deig, Veig, false, true, 1,
temp_mat_1);↪→

2691 MatrixFuncs::Multiply(dim, dim, dim, Veig, temp_mat_1, false, false, 1,
temp_mat_2);↪→

2692

2693 R_lower_old.clear();
2694 R_lower_old = R_lower[i];
2695 MatrixFuncs::LowerMatrix(dim, temp_mat_2, R_lower[i]);
2696

2697 R_residue_lower.clear();
2698 MatrixFuncs::AddVectors(R_lower[i], R_lower_old, 1.0, -1.0,

R_residue_lower);↪→
2699
2700 double norm = 0;
2701 MatrixFuncs::FrobeniusNormSymmLower(dim, R_residue_lower, norm);
2702 d_residue_i_1[i] = norm * norm;
2703

2704 if (q_i[i] != 0)
2705 {
2706 u_old.clear();
2707 u_old = u[i];
2708 MatrixFuncs::AddVectors(v[i], Lambda_i[i], 1.0, inv_mu_mult,

u[i]);↪→
2709

2710 for (int64_t q = 0; q < q_i[i]; q++)
2711 u[i][q] = std::max(0.0, u[i][q]);
2712

2713 d_residue_i_2[i] = 0;
2714 for (int64_t k = 0; k < q_i[i]; k++)
2715 d_residue_i_2[i] += (u[i][k] - u_old[k]) * (u[i][k] -

u_old[k]);↪→
2716

2717 MatrixFuncs::AddVectors(Lambda_i[i], v[i], 1.0, mu_mult,
Lambda_i[i]);↪→

2718 MatrixFuncs::AddVectors(Lambda_i[i], u[i], 1.0, -mu_mult,
Lambda_i[i]);↪→

2719 }
2720

2721 MatrixFuncs::AddVectors(G_i_lower[i], R_lower[i], 1.0, mu_mult,
G_i_lower[i]);↪→

2722 MatrixFuncs::AddVectors(G_i_lower[i], H_ij_sum_tr_lower[i], 1.0,
-mu_mult, G_i_lower[i]);↪→

2723 MatrixFuncs::AddVectors(G_i_lower[i], A_lower[i], 1.0, -mu_mult,
G_i_lower[i]);↪→

2724 if (p_i[i] != 0)
2725 MatrixFuncs::AddVectors(G_i_lower[i], B_sum_lower[i], 1.0,

-mu_mult, G_i_lower[i]);↪→
2726 if (q_i[i] != 0)
2727 MatrixFuncs::AddVectors(G_i_lower[i], D_sum_lower[i], 1.0,

-mu_mult, G_i_lower[i]);↪→
2728 }
2729

2730 // Update G_ij, G_ji and H_ij_coup
2731 #pragma omp parallel for schedule(dynamic)
2732 for (int64_t i = 0; i < edges_Num; i++)
2733 {
2734 std::vector<double> H_ij_coup_lower_old;
2735 std::vector<double> H_ij_coup_lower_residue;
2736

2737 int64_t ind_i = edges_Set[i * 2];
2738 int64_t ind_j = edges_Set[i * 2 + 1];
2739 int64_t dim = overlap_size[ind_i * max_ + ind_j];
2740

2741 H_ij_coup_lower_old.clear();
2742 H_ij_coup_lower_old = H_ij_coup_lower[ind_i * max_ji + ind_j];
2743

2744 MatrixFuncs::AddVectors(H_ij_lower[ind_i * max_ji + ind_j],
H_ji_lower[ind_j * max_ij + ind_i], 0.5, 0.5,
H_ij_coup_lower[ind_i * max_ji + ind_j]);

↪→
↪→
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2745 MatrixFuncs::AddVectors(H_ij_coup_lower[ind_i * max_ji + ind_j],
G_ij_lower[ind_i * max_ji + ind_j], 1.0, 0.5 * inv_mu_mult,
H_ij_coup_lower[ind_i * max_ji + ind_j]);

↪→
↪→

2746 MatrixFuncs::AddVectors(H_ij_coup_lower[ind_i * max_ji + ind_j],
G_ji_lower[ind_j * max_ij + ind_i], 1.0, 0.5 * inv_mu_mult,
H_ij_coup_lower[ind_i * max_ji + ind_j]);

↪→
↪→

2747

2748 H_ij_coup_lower_residue.clear();
2749 MatrixFuncs::AddVectors(H_ij_coup_lower[ind_i * max_ji + ind_j],

H_ij_coup_lower_old, 1.0, -1.0, H_ij_coup_lower_residue);↪→
2750 double norm = 0;
2751 MatrixFuncs::FrobeniusNormSymmLower(dim, H_ij_coup_lower_residue,

norm);↪→
2752 d_residue_i_3[i] = 2 * norm * norm;
2753

2754 MatrixFuncs::AddVectors(G_ij_lower[ind_i * max_ji + ind_j],
H_ij_lower[ind_i * max_ji + ind_j], 1.0, mu_mult,
G_ij_lower[ind_i * max_ji + ind_j]);

↪→
↪→

2755 MatrixFuncs::AddVectors(G_ij_lower[ind_i * max_ji + ind_j],
H_ij_coup_lower[ind_i * max_ji + ind_j], 1.0, -mu_mult,
G_ij_lower[ind_i * max_ji + ind_j]);

↪→
↪→

2756

2757 MatrixFuncs::AddVectors(G_ji_lower[ind_j * max_ij + ind_i],
H_ji_lower[ind_j * max_ij + ind_i], 1.0, mu_mult,
G_ji_lower[ind_j * max_ij + ind_i]);

↪→
↪→

2758 MatrixFuncs::AddVectors(G_ji_lower[ind_j * max_ij + ind_i],
H_ij_coup_lower[ind_i * max_ji + ind_j], 1.0, -mu_mult,
G_ji_lower[ind_j * max_ij + ind_i]);

↪→
↪→

2759 }
2760

2761 // Calculate the stopping criteria measures
2762 double gap_primal_dual_pt1 = 0;
2763 double gap_primal_dual_pt2 = 0;
2764 double gap_primal_dual_pt3 = 0;
2765 double obj_primal = 0;
2766 double obj_dual = 0;
2767

2768 #pragma omp parallel for schedule(dynamic)
2769 for (int64_t i = 0; i < n; i++)
2770 {
2771 std::vector<double> temp_mat_G_i;
2772 std::vector<double> temp;
2773

2774 int64_t dim = w_size_i[i];
2775

2776 temp_mat_G_i.clear();
2777 MatrixFuncs::SymmMatrixFromLowerMatrix(dim, G_i_lower[i],

temp_mat_G_i);↪→
2778
2779 double norm = 0;
2780 temp.clear();
2781

2782 for (int64_t p = 0; p < p_i[i]; p++)
2783 {
2784 double mult = 0;
2785 MatrixFuncs::MultiplyVectors(B[i][p], temp_mat_G_i, 1.0, mult);
2786 norm += pow(mult - c_i[i][p], 2);
2787 }
2788

2789 p_infeas_i_1[i] = sqrt(norm);
2790
2791 norm = 0;
2792 for (int64_t q = 0; q < q_i[i]; q++)
2793 {
2794 double mult = 0;
2795 MatrixFuncs::MultiplyVectors(D[i][q], temp_mat_G_i, 1.0, mult);
2796 norm += pow(std::max(mult - d_i[i][q], 0.0), 2);
2797 }
2798

2799 p_infeas_i_1[i] += sqrt(norm);
2800
2801 norm = 0;
2802 for (int64_t p = 0; p < p_i[i]; p++)
2803 norm += pow(c_i[i][p], 2);
2804

2805 if (p_i[i] == 0)
2806 for (int64_t q = 0; q < q_i[i]; q++)
2807 norm += pow(d_i[i][q], 2);
2808

2809 p_infeas_i_1[i] /= 1 + sqrt(norm);
2810

2811 temp.clear();
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2812 MatrixFuncs::AddVectors(R_lower[i], H_ij_sum_tr_lower[i], 1.0, -1.0,
temp);↪→

2813 MatrixFuncs::AddVectors(temp, A_lower[i], 1.0, -1.0, temp);
2814 if (p_i[i] != 0)
2815 MatrixFuncs::AddVectors(temp, B_sum_lower[i], 1.0, -1.0, temp);
2816 if (q_i[i] != 0)
2817 MatrixFuncs::AddVectors(temp, D_sum_lower[i], 1.0, -1.0, temp);
2818

2819 MatrixFuncs::FrobeniusNormSymmLower(dim, temp, norm);
2820

2821 d_infeas_i_1[i] = norm;
2822

2823 p_residue_i_1[i] = norm * norm;
2824

2825 MatrixFuncs::PNormSymmLower(dim, 1, A_lower[i], norm);
2826

2827 d_infeas_i_1[i] /= 1 + norm;
2828
2829 norm = 0;
2830 double norm1 = 0, norm2 = 0;
2831 for (int64_t q = 0; q < q_i[i]; q++)
2832 {
2833 norm += pow(v[i][q] - u[i][q], 2);
2834 norm1 += pow(v[i][q], 2);
2835 norm2 += pow(u[i][q], 2);
2836 }
2837

2838 d_infeas_i_3[i] = sqrt(norm) /(1.0 + sqrt(norm1) + sqrt(norm2));
2839

2840 p_residue_i_2[i] = norm;
2841
2842 double mult_1 = 0, mult_2 = 0, mult_3 = 0;
2843 for (int64_t p = 0; p < p_i[i]; p++)
2844 mult_1 += c_i[i][p] * z[i][p];
2845

2846 for (int64_t q = 0; q < q_i[i]; q++)
2847 mult_2 += d_i[i][q] * v[i][q];
2848

2849 MatrixFuncs::MultiplyVectors(A[i], temp_mat_G_i, 1.0, mult_3);
2850
2851 #pragma omp critical
2852 {
2853 gap_primal_dual_pt1 -= mult_1;
2854 gap_primal_dual_pt2 += mult_1;
2855 gap_primal_dual_pt1 -= mult_2;
2856 gap_primal_dual_pt2 += mult_2;
2857 gap_primal_dual_pt1 -= mult_3;
2858 gap_primal_dual_pt3 += mult_3;
2859 }
2860 }
2861

2862 #pragma omp parallel for schedule(dynamic)
2863 for (int64_t i = 0; i < edges_Num; i++)
2864 {
2865 std::vector<double> temp;
2866

2867 int64_t indx_i = edges_Set[i * 2];
2868 int64_t indx_j = edges_Set[i * 2 + 1];
2869

2870 int64_t dim = overlap_size[indx_i * max_ + indx_j];
2871

2872 temp.clear();
2873 MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],

G_ji_lower[indx_j * max_ij + indx_i], 1.0, 1.0, temp);↪→
2874
2875 double norm_1 = 0, norm_2 = 0;
2876 MatrixFuncs::PNormVector(2, temp, norm_1);
2877

2878 p_infeas_i_2[i] = norm_1;
2879

2880 MatrixFuncs::PNormVector(2, G_ij_lower[indx_i * max_ji + indx_j],
norm_1);↪→

2881 MatrixFuncs::PNormVector(2, G_ji_lower[indx_j * max_ij + indx_i],
norm_2);↪→

2882

2883 p_infeas_i_2[i] /= 1.0 + norm_1 + norm_2;
2884

2885 MatrixFuncs::AddVectors(H_ij_lower[indx_i * max_ji + indx_j],
H_ij_coup_lower[indx_i * max_ji + indx_j], 1.0, -1.0, temp);↪→

2886

2887 MatrixFuncs::PNormVector(2, temp, norm_1);
2888

2889 d_infeas_i_2[0][i] = norm_1;
2890
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2891 MatrixFuncs::PNormVector(2, H_ij_lower[indx_i * max_ji + indx_j],
norm_1);↪→

2892 MatrixFuncs::PNormVector(2, H_ij_coup_lower[indx_i * max_ji + indx_j],
norm_2);↪→

2893

2894 d_infeas_i_2[0][i] /= 1.0 + norm_1 + norm_2;
2895

2896 MatrixFuncs::AddVectors(H_ji_lower[indx_j * max_ij + indx_i],
H_ij_coup_lower[indx_i * max_ji + indx_j], 1.0, -1.0, temp);↪→

2897

2898 MatrixFuncs::PNormVector(2, temp, norm_1);
2899

2900 d_infeas_i_2[1][i] = norm_1;
2901

2902 MatrixFuncs::PNormVector(2, H_ji_lower[indx_j * max_ij + indx_i],
norm_1);↪→

2903 MatrixFuncs::PNormVector(2, H_ij_coup_lower[indx_i * max_ji + indx_j],
norm_2);↪→

2904

2905 d_infeas_i_2[1][i] /= 1.0 + norm_1 + norm_2;
2906

2907 // p_residue_i_3(i_index,1) =
(norm(temp_mat_H_ij-temp_mat_H_ij_coup,’fro’))^2;↪→

2908 MatrixFuncs::AddVectors(H_ij_lower[indx_i * max_ji + indx_j],
H_ij_coup_lower[indx_i * max_ji + indx_j], 1.0, -1.0, temp);↪→

2909

2910 MatrixFuncs::FrobeniusNormSymmLower(dim, temp, norm_1);
2911

2912 p_residue_i_3[i] = norm_1 * norm_1;
2913

2914 // p_residue_i_4(i_index,1) =
(norm(temp_mat_H_ji-temp_mat_H_ij_coup,’fro’))^2;↪→

2915 MatrixFuncs::AddVectors(H_ji_lower[indx_j * max_ij + indx_i],
H_ij_coup_lower[indx_i * max_ji + indx_j], 1.0, -1.0, temp);↪→

2916

2917 MatrixFuncs::FrobeniusNormSymmLower(dim, temp, norm_1);
2918

2919 p_residue_i_4[i] = norm_1 * norm_1;
2920 }
2921

2922 double gap_iter = std::abs(gap_primal_dual_pt1) / (1 +
std::abs(gap_primal_dual_pt2) + std::abs(gap_primal_dual_pt3));↪→

2923 gap.push_back(gap_iter);
2924

2925 double p_infeas_max_1 = MatrixFuncs::Max(p_infeas_i_1);
2926 double p_infeas_max_2 = MatrixFuncs::Max(p_infeas_i_2);
2927 double d_infeas_max_1 = MatrixFuncs::Max(d_infeas_i_1);
2928 double d_infeas_max_2_pt1 = MatrixFuncs::Max(d_infeas_i_2[0]);
2929 double d_infeas_max_2_pt2 = MatrixFuncs::Max(d_infeas_i_2[1]);
2930 double d_infeas_max_3 = MatrixFuncs::Max(d_infeas_i_3);
2931

2932 max_infeas_iter = std::max(gap_iter, std::max(p_infeas_max_1,
std::max(p_infeas_max_2, std::max(d_infeas_max_1,
std::max(d_infeas_max_2_pt1, std::max(d_infeas_max_2_pt2,
d_infeas_max_3))))));

↪→
↪→
↪→

2933 max_infeas.push_back(max_infeas_iter);
2934

2935 double p_infeas=std::max(p_infeas_max_1, p_infeas_max_2);
2936 double d_infeas=std::max(d_infeas_max_1,

std::max(d_infeas_max_2_pt1,std::max(d_infeas_max_2_pt2,d_infeas_max_3)));↪→
2937

2938 double p_residue_i_1_sum = MatrixFuncs::Sum(p_residue_i_1);
2939 double p_residue_i_2_sum = MatrixFuncs::Sum(p_residue_i_2);
2940 double p_residue_i_3_sum = MatrixFuncs::Sum(p_residue_i_3);
2941 double p_residue_i_4_sum = MatrixFuncs::Sum(p_residue_i_4);
2942 double d_residue_i_1_sum = MatrixFuncs::Sum(d_residue_i_1);
2943 double d_residue_i_2_sum = MatrixFuncs::Sum(d_residue_i_2);
2944 double d_residue_i_3_sum = MatrixFuncs::Sum(d_residue_i_3);
2945 double p_residue_sum = p_residue_i_1_sum + p_residue_i_2_sum +

p_residue_i_3_sum + p_residue_i_4_sum;↪→
2946 double d_residue_sum = d_residue_i_1_sum + d_residue_i_2_sum +

d_residue_i_3_sum;↪→
2947

2948 residue_sum.push_back(p_residue_sum + d_residue_sum);
2949 residue_sum_primal.push_back(p_residue_sum);
2950 residue_sum_dual.push_back(d_residue_sum);
2951

2952 p_residue_i_1_plot.push_back(p_residue_i_1_sum);
2953 p_residue_i_2_plot.push_back(p_residue_i_2_sum);
2954 p_residue_i_3_plot.push_back(p_residue_i_3_sum);
2955 d_residue_i_1_plot.push_back(d_residue_i_1_sum);
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2956 d_residue_i_2_plot.push_back(d_residue_i_2_sum);
2957 d_residue_i_3_plot.push_back(d_residue_i_3_sum);
2958

2959 // Stop the timer for calculating algorthm’s main loop time
2960 auto t1 = std::chrono::high_resolution_clock::now();
2961 auto dt = 1.e-9*std::chrono::duration_cast<std::chrono::nanoseconds>(t1-t0).count();
2962 time_s = time_s+dt;
2963

2964 // Uncomment #ifdef _DEBUG and #endif to stop showing the solution in each iteration
2965

2966 //#ifdef _DEBUG
2967 std::printf("%-3u %1.1e %1.1e %e %e %2.2f\n", iter, p_infeas, d_infeas,

-gap_primal_dual_pt2, gap_primal_dual_pt3, time_s);↪→
2968 //#endif
2969 }
2970
2971 double ADMM_Solution = 0;
2972 for (int64_t i = 0; i < n; i++)
2973 {
2974 double mult = 0;
2975 MatrixFuncs::MultiplyVectors( c_i[i], z[i], 1.0, mult);
2976 ADMM_Solution -= mult;
2977 MatrixFuncs::MultiplyVectors( d_i[i], v[i], 1.0, mult);
2978 ADMM_Solution -= mult;
2979 }
2980
2981

2982 Output(fileout, residue_sum);
2983 return 0;
2984 }
2985

2986 // Write result to file. Here, residue_sum is written to a .csv file
2987 void Output(const std::string& fileout, const std::vector <double> &data)
2988 {
2989 std::ofstream file;
2990 file.open(fileout.c_str());
2991 int64_t dim = data.size();
2992 for(int64_t i = 0; i <dim; i++)
2993 {
2994 file << data[i] << std::endl;
2995 }
2996 file.close();
2997 }
2998

2999 // Main function
3000 int main(int argc, char *argv[])
3001 {
3002 int64_t Solution = ADMM_SDP_Algo();
3003 return 0;
3004 }

admm-sdp.h

1 const double DEF_TOLERANCE = 1E-13;
2 const double DEF_PRESICE = 1E-13;
3

4 // Square sparse matrix
5 // Only the non-zero elements are stored
6 class SparseMatrix
7 {
8 uint64_t m_size; //

matrix size, count of rows(columns)↪→
9 std::vector<std::vector<double> > m_Values; // m_size-vector of real

vectors, m_Values[i] - contains all non-zero elements of the i-th row↪→
10 std::vector<std::vector<uint64_t> > m_Columns; // m_size-vector of integer

vectors, m_Columns[i] - contains a numbers of columns corresponding to all
non-zero elements of the i-th row

↪→
↪→

11 std::vector<uint64_t> m_LastNonZeroElement; // m_size-vector of integer
numbers, vector contains the column indexes of last non-zero elements in each row
of the matrix

↪→
↪→

12

13 static double GetNAN()
14 {
15 uint64_t nan[2] = { 0xffffffff, 0x7fffffff };
16 return *(double*)nan;
17 }
18
19 public:



APPENDIX: HIGH-PERFORMANCE C++ IMPLEMENTATION 145

20 SparseMatrix()
21 {
22 m_size = 0;
23 };
24

25 SparseMatrix(uint64_t size)
26 {
27 m_size = size;
28 m_Values.resize(m_size);
29 m_Columns.resize(m_size);
30 m_LastNonZeroElement.resize(m_size, 0);
31 };
32

33 SparseMatrix(SparseMatrix &SMatrix)
34 {
35 m_size = SMatrix.m_size;
36 m_Values = SMatrix.m_Values;
37 m_LastNonZeroElement = SMatrix.m_LastNonZeroElement;
38 m_Columns = SMatrix.m_Columns;
39 };
40

41 void create(uint64_t size)
42 {
43 clear();
44
45 m_size = size;
46 m_Values.resize(m_size);
47 m_Columns.resize(m_size);
48 m_LastNonZeroElement.resize(m_size, 0);
49 };
50

51 void create(SparseMatrix &SMatrix)
52 {
53 clear();
54
55 m_size = SMatrix.m_size;
56 m_Values = SMatrix.m_Values;
57 m_LastNonZeroElement = SMatrix.m_LastNonZeroElement;
58 m_Columns = SMatrix.m_Columns;
59 };
60

61 uint64_t size()
62 {
63 return m_size;
64 };
65

66 void resize(uint64_t size)
67 {
68 clear();
69
70 m_size = size;
71 m_Values.resize(m_size);
72 m_Columns.resize(m_size);
73 m_LastNonZeroElement.resize(m_size, 0);
74 };
75

76 void clear()
77 {
78 if (m_size > 0)
79 {
80 m_size = 0;
81 m_Values.clear();
82 m_Values.resize(0);
83 m_LastNonZeroElement.clear();
84 m_LastNonZeroElement.resize(0);
85 m_Columns.clear();
86 m_Columns.resize(0);
87 }
88 };
89

90 ////////////////////////////////////////////////////////////////////////////////
91 // value = S[row][column]
92 ////////////////////////////////////////////////////////////////////////////////
93 void Get(uint64_t row, uint64_t column, double &value); // Search element starts with

the biginning of the row↪→
94

95 ////////////////////////////////////////////////////////////////////////////////
96 // value = S[row][column]
97 ////////////////////////////////////////////////////////////////////////////////
98 void GetLastElement(uint64_t row, uint64_t column, double &value); //Search element

starts with the end of the row↪→
99

100 ////////////////////////////////////////////////////////////////////////////////
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101 // S[row][column] = value
102 ////////////////////////////////////////////////////////////////////////////////
103 void Set(uint64_t row, uint64_t column, double value);
104

105 ////////////////////////////////////////////////////////////////////////////////
106 // S[row][column] = S[row][column] + value
107 ////////////////////////////////////////////////////////////////////////////////
108 void Add(uint64_t row, uint64_t column, double value);
109

110 ////////////////////////////////////////////////////////////////////////////////
111 // permutation of rows I and J in the matrix
112 ////////////////////////////////////////////////////////////////////////////////
113 void SwapRows(uint64_t row_i, uint64_t row_j);
114

115 ////////////////////////////////////////////////////////////////////////////////
116 // addition of row I to row SUM and saving the result in the row SUM
117 ////////////////////////////////////////////////////////////////////////////////
118 void AddRow(uint64_t row_i, uint64_t row_sum, double alpha = 1.0);
119

120 ////////////////////////////////////////////////////////////////////////////////
121 // product of two rows like two vectors, the sum of the pairwise products of the

elements↪→
122 ////////////////////////////////////////////////////////////////////////////////
123 void RowsProduct(uint64_t row_i, uint64_t row_j, double & prod);
124

125 ////////////////////////////////////////////////////////////////////////////////
126 // product of row and vector like two vectors, the sum of the pairwise products of the

elements↪→
127 ////////////////////////////////////////////////////////////////////////////////
128 void RowVectorProduct(const std::vector<double> &x, uint64_t row, double & prod);
129

130 ////////////////////////////////////////////////////////////////////////////////
131 // filling the sparse matrix row values
132 ////////////////////////////////////////////////////////////////////////////////
133 void PushRow(uint64_t row, const std::vector<double> &values, const

std::vector<uint64_t> &columns, uint64_t count);↪→
134 };
135
136 class MatrixFuncs
137 {
138 static double GetNAN()
139 {
140 uint64_t nan[2] = { 0xffffffff, 0x7fffffff };
141 return *(double*)nan;
142 }
143 public:
144 enum ResultCode
145 {
146 ercNoError,
147 ercInputDataError,
148 ercSingularMatrixWarning,
149 ercSingularMatrixError,
150 ercNoConvergence
151 };
152 public:
153 ////////////////////////////////////////////////////////////////////////////////
154 // Computes the inverse of matrix a, matrices are written in a 1-dim array row-wise
155 ////////////////////////////////////////////////////////////////////////////////
156

157 // Input
158 // a - (dim-by-dim) matrix, row-wise
159

160 // Output
161 // a_inv - (dim-by-dim) matrix, inverted matrix a
162 static MatrixFuncs::ResultCode Inverse (const std::vector<double> &a,

std::vector<double> &a_inv);↪→
163

164 ////////////////////////////////////////////////////////////////////////////////
165 // Computes eigenvectors and eigenvalues of a symmetric matrix
166 ////////////////////////////////////////////////////////////////////////////////
167

168 // Input
169 // a - symmetric (m-by-m) matrix, row-wise
170

171 // Output
172 // eigen_values - m-vector of eigenvalues
173 // eigen_vectors -m-vector of m-vectors of eigenvectors, column-wise
174 static MatrixFuncs::ResultCode EigenVectorsSymm(const std::vector<double> &a,

std::vector<double> &eigen_values, std::vector<double> &eigen_vectors);↪→
175

176 ////////////////////////////////////////////////////////////////////////////////
177 // Multiplication of real matrices written in a 1-dim array row-wise
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178 ////////////////////////////////////////////////////////////////////////////////
179

180 // Input
181 // a - (m-by-dim) matrix (dim-by-m if transposed)
182 // b - (dim-by-n) matrix (n-by-dim if transposed)
183 // alpha - scalar factor
184

185 // Output
186 // mult - (m-by-n) matrix = alpha * a * b
187 static void Multiply( const int64_t &m, const int64_t &dim, const int64_t &n,

const std::vector<double> &a, const std::vector<double> &b, bool left_trans, bool
right_trans,

↪→
↪→

188 const double &alpha, std::vector<double> &mult);
189

190 ////////////////////////////////////////////////////////////////////////////////
191 // Multiplication of sparse real matrices
192 ////////////////////////////////////////////////////////////////////////////////
193

194 // Input
195 // a - (m-by-dim) matrix
196 // b - (dim-by-m) matrix
197

198 // Output
199 // mult - (m-by-m) matrix = alpha * a * b
200 static void MultiplySparse( const int64_t &m, const int64_t &dim, SparseMatrix &a,

SparseMatrix &mult);↪→
201

202 ////////////////////////////////////////////////////////////////////////////////
203 // Solves the system of linear equations A*x = B for symmetric positive definite matrix

A by using Cholesky decomposition(analitical method).↪→
204 // The matrices A and B must have the same number of rows
205 ////////////////////////////////////////////////////////////////////////////////
206

207 // Input
208 // a - (dim-by-dim) matrix
209 // b - dim-vector
210

211 // Output
212 // x - dim-vector
213 static MatrixFuncs::ResultCode DevideByVectorAnaliticSymm( const

std::vector<double> &a, const std::vector<double> &b, std::vector<double> &x);↪→
214

215 ////////////////////////////////////////////////////////////////////////////////
216 // Solves the system of linear equations A*x = b for symmetric positive definite matrix

A by using Gauss method(analitical method).↪→
217 // The matrices A and vector b must have the same number of rows.
218 // Algorithm is divided into two phases
219 ////////////////////////////////////////////////////////////////////////////////
220

221 ////////////////////////////////////////////////////////////////////////////////
222 // Fase_1(preliminary calculations) - reduction matrix A to the lower triangular

matrices↪→
223 ////////////////////////////////////////////////////////////////////////////////
224

225 // Input
226 // a_triang - square sparse matrix
227

228 // Output
229 // a_triang - lower triangular matrix
230 // s - transformation matrix
231

232 /////////////////////////////////////////////////////////////////////////////////
233 // Fase_2 - transformation of vector b (using transformation matrix S) and sequential

computation of the vector x↪→
234 ////////////////////////////////////////////////////////////////////////////////
235

236 // Input
237 // a_triang - lower triangular matrix
238 // b - vector of constant terms
239 // s - transformation matrix
240

241 // Output
242 // x - vector of unknown variables
243

244 static MatrixFuncs::ResultCode DevideByVectorAnaliticSymmSparse_Fase_1( SparseMatrix
&a_triang, SparseMatrix &s);↪→

245 static MatrixFuncs::ResultCode
DevideByVectorAnaliticSymmSparse_Fase_2( SparseMatrix &a_triang,
SparseMatrix &s, const std::vector<double> &b, std::vector<double> &x);

↪→
↪→

246

247 ////////////////////////////////////////////////////////////////////////////////
248 // Addition of real vectors
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249 ////////////////////////////////////////////////////////////////////////////////
250

251 // Input
252 // v_1 - dim-vector
253 // v_2 - dim-vector
254 // alpha - scalar factor
255 // beta - scalar factor
256

257 // Output
258 // sum - dim-vectors
259 static void AddVectors( const std::vector<double> &v_1, const

std::vector<double> &v_2, const double &alpha, const double &beta,
std::vector<double> &sum);

↪→
↪→

260

261 ////////////////////////////////////////////////////////////////////////////////
262 //Restoring symmetric matrix from lower triangular part
263 ////////////////////////////////////////////////////////////////////////////////
264

265 // Input
266 // a_lower - 0.5*m*(m+1) vector
267

268 // Output
269 // a - (m-by-m) symmetric matrix, row-wise
270 static void SymmMatrixFromLowerMatrix( const int64_t &m, const

std::vector<double> &a_lower, std::vector<double> &a);↪→
271

272 ////////////////////////////////////////////////////////////////////////////////
273 //Recording lower triangular part of symmetric matrix
274 ////////////////////////////////////////////////////////////////////////////////
275

276 // Input
277 // a - (m-by-m) symmetric matrix, row-wise
278

279 // Output
280 // a_lower - 0.5*m*(m+1) vector
281 static void LowerMatrix( const int64_t &m, const std::vector<double> &a,

std::vector<double> &a_lower);↪→
282

283 ////////////////////////////////////////////////////////////////////////////////
284 //Frobenius matrix norm calculation using lower triangular part of symmetric matrix
285 ////////////////////////////////////////////////////////////////////////////////
286

287 // Input
288 // a_lower - 0.5*m*(m+1) vector
289

290 // Output
291 // norm - Frobenius matrix norm
292 static void FrobeniusNormSymmLower( const int64_t &m, const std::vector<double>

&a_lower, double &norm);↪→
293

294 ////////////////////////////////////////////////////////////////////////////////
295 //P-norm calculation using lower triangular part of symmetric matrix
296 ////////////////////////////////////////////////////////////////////////////////
297

298 // Input
299 // a_lower - 0.5*m*(m+1) vector
300 // p - order of the norm
301

302 // Output
303 // norm - p-norm of matrix
304 static void PNormSymmLower( const int64_t &m, const int64_t &p, const

std::vector<double> &a_lower, double &norm);↪→
305

306 ////////////////////////////////////////////////////////////////////////////////
307 //P-norm calculation for vector
308 ////////////////////////////////////////////////////////////////////////////////
309

310 // Input
311 // v - dim-vector
312 // p - order of the norm
313

314 // Output
315 // norm - p-norm of vector
316 static void PNormVector( const int64_t &p, const std::vector<double> &v, double &norm);
317

318 ////////////////////////////////////////////////////////////////////////////////
319 // Multiplication of real vectors
320 ////////////////////////////////////////////////////////////////////////////////
321

322 // Input
323 // v_1 - real vector
324 // v_2 - real vector



APPENDIX: HIGH-PERFORMANCE C++ IMPLEMENTATION 149

325 // alpha - scalar factor
326

327 // Output
328 // mult - scalar product of vectors
329 static void MultiplyVectors( const std::vector<double> &v_1, const std::vector<double>

&v_2, const double &alpha, double &mult);↪→
330

331 ////////////////////////////////////////////////////////////////////////////////
332 // Multiplication of integer and real vectors
333 ////////////////////////////////////////////////////////////////////////////////
334

335 // Input
336 // v_1 - integer vector
337 // v_2 - real vector
338 // alpha - scalar factor
339

340 // Output
341 // mult - scalar product of vectors
342 static void MultiplyVectors( const std::vector<int64_t> &v_1, const std::vector<double>

&v_2, const double &alpha, double &mult);↪→
343

344 ////////////////////////////////////////////////////////////////////////////////
345 // Finding the maximum element in the vector
346 ////////////////////////////////////////////////////////////////////////////////
347

348 // Input
349 // a - real vector
350

351 // Return
352 // maximum element
353 static double Max( const std::vector<double> &a);
354

355 ////////////////////////////////////////////////////////////////////////////////
356 // Calculation of the amount of vector elements
357 ////////////////////////////////////////////////////////////////////////////////
358

359 // Input
360 // a - real vector
361

362 // Return
363 // sum of the elements
364 static double Sum( const std::vector<double> &a);
365
366 private:
367 ///////////////////////////////////////////////////////////////////////////////
368 // Computes the Hessenberg (tridiagonal in this case) form of a symmetric matrix A
369 //H = SAS’, where H is an upper Hessenberg matrix, S - ortogonal matrix and S’ is S

transposed↪→
370 ///////////////////////////////////////////////////////////////////////////////
371

372 // Input
373 // a - symmetric (m-by-m) matrix, row-wise
374

375 // Output
376 // s - ortogonal matrix
377 // d - m-vector of diagonal elements of the tridiagonal symmetric matrix H
378 // e - vector of subdiagonal of H
379 static void HessenbergFormSymm(const std::vector<double> &a, std::vector<double> &s,

std::vector<double> &d, std::vector<double> &e);↪→
380 };
381
382 class RandomFuncs
383 {
384 public:
385 enum ResultCode
386 {
387 ercNoError,
388 ercDimensionError,
389 ercDensityError,
390 };
391

392 ///////////////////////////////////////////////////////////////////////////////
393 // Generate integer random matrix
394 ///////////////////////////////////////////////////////////////////////////////
395

396 // Input
397 // min - minimum value for the entries of matrix
398 // max - maximum value for the entries of matrix
399 // mult - multiplier
400

401 // Output
402 // rand_m - random integer n*m matrix
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403 static ResultCode MatrixI(int64_t n, int64_t m, std::vector <int64_t> &rand_m, uint64_t
min, uint64_t max, bool rand_init, int64_t mult = 1);↪→

404

405 ///////////////////////////////////////////////////////////////////////////////
406 // Generate real random matrix
407 ///////////////////////////////////////////////////////////////////////////////
408

409 // Input
410 // min - minimum value for the entries of matrix
411 // max - maximum value for the entries of matrix
412 // mult - multiplier
413 // max_add - maximum added value
414

415 // Output
416 // rand_m - random real n*m matrix
417 static ResultCode Matrix(int64_t n, int64_t m, std::vector <double> &rand_m, uint64_t

min, uint64_t max, bool rand_init, double max_add = 0, double mult = 1);↪→
418

419 ///////////////////////////////////////////////////////////////////////////////
420 // Generate boolean sparse random matrix with zero diagonal elements
421 ///////////////////////////////////////////////////////////////////////////////
422

423 // Input
424 // density - density of sparse matrix, the number of non-zero elements is approximately

equal to density*n*n↪→
425

426 // Output
427 // rand_m - boolean sparse random n*n matrix
428 static ResultCode SparseSymmetricMatrixZeroDiagonalB(const int64_t n, const double

density, std::vector <bool> &rand_m, bool rand_init);↪→
429 private:
430 // boolean variable that indicates the first call of a function from CKeStatRandomGens
431 static bool FirstCall;
432 static unsigned long long x;
433

434 // parameters of the basic random number generator
435 static const unsigned long long a = 8121;
436 static const unsigned long long c = 28411;
437 static const unsigned long long m = 134456;
438

439 // generates next real number on [0,1]
440 static double NextDouble();
441

442 // generates next integer from {0,...,m - 1}
443 static unsigned long NextInt();
444

445 // initializes the seed
446 static void InitSeed(bool rand_init = true);
447 };
448
449 class AdjacencyMatrix
450 {
451 public:
452 enum ResultCode
453 {
454 ercNoError,
455 ercDimensionError,
456 ercDensityError,
457 ercCenterError,
458 ercEmptyInputError,
459 ercTypeError
460 };
461
462 enum AdjacencyMatrixType
463 {
464 eamtBandedGraph,
465 eamtRandomGraph,
466 eamtStarGraph,
467 eamtUserDefinedGraph
468 };
469

470 ///////////////////////////////////////////////////////////////////////////////
471 // Generate boolean banded matrix
472 ///////////////////////////////////////////////////////////////////////////////
473

474 // Output
475 // AdjacencyMatrix - boolean tridiagonal n*n matrix
476 static ResultCode CreateBandedGraph(std::vector <bool> &AdjacencyMatrix, const int64_t

n);↪→
477

478 ///////////////////////////////////////////////////////////////////////////////
479 // Generate boolean sparse random matrix with zero diagonal elements
480 ///////////////////////////////////////////////////////////////////////////////
481
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482 // Input
483 // density - density of sparse matrix, the number of non-zero nondiagonal elements is

approximately equal to density*n*(n-1)↪→
484

485 // Output
486 // AdjacencyMatrix - boolean sparse random n*n matrix
487 static ResultCode CreateRandomGraph(std::vector <bool> &AdjacencyMatrix, const int64_t

n, bool rand_init, double density = 0.1);↪→
488

489 ///////////////////////////////////////////////////////////////////////////////
490 // Generate boolean sparse matrix with non-zero elements in center-th row and column

excluding the diagonal element↪→
491 ///////////////////////////////////////////////////////////////////////////////
492

493 // Output
494 // AdjacencyMatrix - boolean sparse n*n matrix
495 static ResultCode CreateStarGraph(std::vector <bool> &AdjacencyMatrix, const int64_t n,

int64_t center = -1);↪→
496

497 ///////////////////////////////////////////////////////////////////////////////
498 // Generate boolean user defined matrix
499 ///////////////////////////////////////////////////////////////////////////////
500

501 // Input
502 // filein - input file
503

504 // Output
505 // AdjacencyMatrix - boolean n*n matrix
506 static ResultCode CreateUserDefinedGraph(std::vector <bool> &AdjacencyMatrix, int64_t

n, const std::string& filein = "adjacency_matrix.csv");↪→
507

508 };
509

510 static void Output(const std::string& fileout, const std::vector <double> &data);
511
512

513 /*
514 ------------------------------------------------------------------------------
515 --Please read the following definitions of the different parameters
516 needed to randomly generate multiagent SDP problems:
517
518 n - total number of agents
519
520 W_size_min - minimum possible size of variable W_i
521 W_size_max - maximum possible size of variable W_i
522

523 p_min - minimum possible number of data matrices B (equality costraints)
524 p_max - maximum possible number of data matrices B (equality costraints)
525

526 q_min - minimum possible number of data matrices D (inequality costraints)
527 q_max - maximum possible number of data matrices D (inequality costraints)
528
529 A_i_min - minimum value for the entries of matrices A_i
530 A_i_max - maximum value for the entries of matrices A_i
531
532 B_i_min - minimum value for the entries of matrices B_i
533 B_i_max - maximum value for the entries of matrices B_i
534
535 D_i_min - minimum value for the entries of matrices D_i
536 D_i_max - maximum value for the entries of matrices A_i, B_i, D_i
537
538 c_i_min - minimum value for the entries of vectors c_i
539 c_i_max - maximum value for the entries of vectors c_i
540
541 d_i_min - minimum value for the entries of vectors d_i
542 d_i_max - maximum value for the entries of vectors d_i
543
544 AdjacencyMatrix::AdjacencyMatrixType AdjacencyType = AdjacencyMatrix::***** - to get different

graphs, please change ***** with one of the following options:↪→
545 --> eamtBandedGraph: creates a banded (path) graph. Inputs are: n
546 --> eamtRandomGraph: creates a random graph. Inputs are: n, desnity
547 --> eamtStarGraph: creates a star graph. Inputs are: n, center
548 --> eamtUserDefinedGraph: creates a graph that is read from a file called

"adjacency_matrix.csv" which should be created by the user. Make sure that the number of
agents "n" are matching in "adjacency_matrix.csv" and the one that is defined here.

↪→
↪→

549
550 density - density of the randomly generated graph when "eamtRandomGraph" is chosen
551
552 center - defines the center node in the star graph when "eamtStarGraph" is chosen
553
554 std::string& filein = "adjacency_matrix.csv" - this file is read to define the graph when

"eamtUserDefinedGraph" is chosen↪→
555

556 mu_mult - a constant multiplier for ADMM that the user should specify (usually chosen as 0.1)
557
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558 overlap_ratio - this ratio specifies the number of entries of W_i which overlap with other
agent’s matrices W_j↪→

559
560 tole - this specifies the desired precision of the final solution
561
562 std::string& fileout = "residue_sum.csv" - this file writes the aggregate residue to the file

"residue_sum.csv". After the code run, please run "fig_plot.m" so you could plot the
aggregate residue from "residue_sum.csv". You can’t plot data in "residue_sum.csv"
directly from the c++ code

↪→
↪→
↪→

563
564 rand_init - please use this as follows:
565 --> rand_init = true - this will create different instances of SDP at every code run
566 --> rand_init = false - this will create the same SDP instance at every code run which is also

the same as the Matlab code (for verifying the correctness of the final answer). This is
achieved by defining the following four parameters exactly the same in the c++ and Matlab
(please don’t change them since very specific combinations should be chosen):

↪→
↪→
↪→

567

568 a = 8121 (could be found in the file "admm_sdp.h" at line 258)
569 c = 28411 (could be found in the file "admm_sdp.h" at line 259)
570 m = 134456 (could be found in the file "admm_sdp.h" at line 260)
571 RandomFuncs::x = 5 (could be found in the file "admm_sdp.cpp" at line 1110)
572
573 ------------------------------------------------------------------------------
574
575 Addtional Notes:
576
577 -- The data matrices are created as follows:
578 -> A = rand + rand’ + n_i * eye(n_i) (where integer elements of rand in [A_i_min, A_i_max])
579 -> B = rand + rand’ (where integer elements of rand in [B_i_min, B_i_max])
580 -> D = rand + rand’ (where integer elements of rand in [D_i_min, D_i_max])
581
582 -- The data vectors are created as follows:
583 -> c = rand (where integer elements of rand in [c_i_min, c_i_max])
584 -> d = rand (where integer elements of rand in [d_i_min, d_i_max])
585 ------------------------------------------------------------------------------
586
587 Known Bugs:
588
589 - Using "eamtRandomGraph" and "rand_init = false" will create a segmentation error.
590 ------------------------------------------------------------------------------
591 */
592
593
594

595 ///////////////////////////////////////////////////////////////////////////////
596 // Please specify these paramters needed to randomly generate Multiagent SDP Problems
597 ///////////////////////////////////////////////////////////////////////////////
598
599

600 static int64_t ADMM_SDP_Algo(int64_t n = 100, int64_t W_size_min = 40, int64_t W_size_max = 40,
int64_t p_min = 5, int64_t p_max = 5, int64_t q_min = 5, int64_t q_max = 5, int64_t
A_i_min = 1, int64_t A_i_max = 5, int64_t B_i_min = 1, int64_t B_i_max = 5, int64_t
D_i_min = 1, int64_t D_i_max = 5, int64_t W_i_min = 1, int64_t W_i_max = 2, int64_t
c_i_min = 1, int64_t c_i_max = 3, int64_t d_i_min = 1, int64_t d_i_max = 3,
AdjacencyMatrix::AdjacencyMatrixType AdjacencyType = AdjacencyMatrix::eamtBandedGraph,
double density = 0.1, int64_t center = 0, const std::string& filein =
"adjacency_matrix.csv", double mu_mult = 0.1, double overlap_ratio = 0.25, double tole =
1e-3, const std::string& fileout = "residue_sum.csv", bool rand_init = false);

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

601
602
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