Distributed and Large-Scale Optimization

Abdulrahman Kalbat

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2016

©2016 Abdulrahman Kalbat All Rights Reserved

ABSTRACT

Distributed and Large-Scale Optimization

Abdulrahman Kalbat

This dissertation is motivated by the pressing need for solving real-world large-scale optimization problems with the main objective of developing scalable algorithms that are capable of solving such problems efficiently. Large-scale optimization problems naturally appear in complex systems such as power networks and distributed control systems, which are the main systems of interest in this work. This dissertation aims to address four problems with regards to the theory and application of large-scale optimization problems, which are explained below:

Chapter 2: In this chapter, a fast and parallelizable algorithm is developed for an arbitrary decomposable semidefinite program (SDP). Based on the alternating direction method of multipliers, we design a numerical algorithm that has a guaranteed convergence under very mild assumptions. We show that each iteration of this algorithm has a simple closed-form solution, consisting of matrix multiplications and eigenvalue decompositions performed by individual agents as well as information exchanges between neighboring agents. The cheap iterations of the proposed algorithm enable solving a wide spectrum of real-world large-scale conic optimization problems that could be reformulated as SDP.

Chapter 3: Motivated by the application of sparse SDPs to power networks, the objective of this chapter is to design a fast and parallelizable algorithm for solving the SDP relaxation of a large-scale optimal power flow (OPF) problem. OPF is fundamental problem used for the operation and planning of power networks, which is non-convex and NP-hard in the worst case. The proposed algorithm would enable a real-time power network management and improve the system's reliability. In particular, this algorithm helps with the realization of Smart Grid by allowing to make optimal decisions very fast in response to the stochastic nature of renewable energy. The proposed algorithm is evaluated on IEEE benchmark systems.

Chapter 4: The design of an optimal distributed controller using an efficient computational

method is one of the most fundamental problems in the area of control systems, which remains as an open problem due to its NP-hardness in the worst case. In this chapter, we first study the infinite-horizon optimal distributed control (ODC) problem (for deterministic systems) and then generalize the results to a stochastic ODC problem (for stochastic systems). Our approach rests on formulating each of these problems as a rank-constrained optimization from which an SDP relaxation can be derived. We show that both problems admit sparse SDP relaxations with solutions of rank at most 3. Since a rank-1 SDP matrix can be mapped back into a globallyoptimal controller, the rank-3 solution may be deployed to retrieve a near-global controller. We also propose computationally cheap SDP relaxation for each problem and then develop effective heuristic methods to recover a near-optimal controller from the low-rank SDP solution. The design of several near-optimal structured controllers with global optimality degrees above 99% will be demonstrated.

Chapter 5: The frequency control problem in power networks aims to control the global frequency of the system within a tight range by adjusting the output of generators in response to the uncertain and stochastic demand. The intermittent nature of distributed power generation in smart grid makes the traditional decentralized frequency controllers less efficient and demands distributed controllers that are able to deal with the uncertainty in the system introduced by non-dispatchable supplies (such as renewable energy), fluctuating loads, and measurement noise. Motivated by this need, we study the frequency control problem using the results developed in Chapter 4. In particular, we formulate the problem and then conduct a case study on the IEEE 39-Bus New England system. The objective is to design a near-global optimal distributed frequency controller for the New England test system by optimally adjusting the mechanical power input to each generator based on the real-time measurement received from neighboring generators through a user-defined communication topology.

Table of Contents

Li	List of Figures iv			
\mathbf{Li}	st of	Table	S	vii
1	Intr	oducti	ion	1
		1.0.1	A Fast Distributed Algorithm for Decomposable SDPs	1
		1.0.2	A Fast Parallelizable Algorithm for Convex Relaxation of Optimal Power	
			Flow Problem	2
		1.0.3	Convex Relaxation for Optimal Distributed Control Problem $\ldots \ldots \ldots$	3
		1.0.4	Optimal Distributed Frequency Control in Power Systems	4
2	A F	`ast Di	stributed Algorithm for Decomposable Semidefinite Programs	6
	2.1	Introd	$uction \ldots \ldots$	6
	2.2	Altern	ating Direction Method of Multipliers	8
	2.3	Proble	em Formulation	10
	2.4 Distributed Algorithm for Decomposable Semidefinite Programs		14	
		2.4.1	Two-Agent Case	14
		2.4.2	Multi-Agent Case	19
	2.5	Simula	ations Results	24
	2.6	Summ	ary	26
3	A F	`ast Pa	rallelizable Algorithm for Convex Relaxation of Optimal Power Flow	
	Pro	blem		28
	3.1	Introd	uction	29

	3.2	Preliminaries	31
		3.2.1 Representative Graph and Tree Decomposition	31
		3.2.2 Sparsity Pattern of Matrices	33
		3.2.3 Indicator Functions	33
	3.3	Decomposed SDP	34
	3.4	Alternating Direction Method of Multipliers	36
		3.4.1 Projection Into Positive Semidefinite Cone	37
		3.4.2 ADMM for Decomposed SDP	38
	3.5	Optimal Power Flow	42
	3.6	Simulation Results	44
	3.7	Summary	45
4	Cor	nvex Relaxation for Optimal Distributed Control Problem	17
	4.1 Introduction		
	4.2	Problem Formulation	50
	4.3	SDP Relaxation for Quadratic Optimization	51
		4.3.1 Graph Theory Preliminaries	51
		4.3.2 SDP Relaxation	54
		4.3.3 Connection Between Rank and Sparsity	56
	4.4	Deterministic Control Systems	57
		4.4.1 Lyapunov Formulation	58
		4.4.2 SDP Relaxation	60
		4.4.3 Computationally-Cheap SDP Relaxation	62
		4.4.4 Controller Recovery	65
	4.5	Stochastic Control Systems	66
	4.6	Mass-Spring and Random Systems	72
		4.6.1 Mass-Spring Systems	72
		4.6.2 Random Systems	77
	4.7	Summary	77

5	Opt	Optimal Distributed Frequency Control in Power Systems			
	5.1	Introduction	81		
	5.2	Power System Dynamic Model	82		
	5.3	Case Study: IEEE 39-Bus System	84		
	5.4	Summary	89		
6	6 Conclusions and Future Work				
Bibliography 97					
Appendix: High-performance $C++$ Implementation 105					
	admm-sdp.cpp				
	adm	m-sdp.h	144		

List of Figures

2.1	A graph representation of the distributed multi-agent SDP	11
2.2	An illustration of the definitions of I_{ij} and I_{ji} for three overlapping submatrices W_1 ,	
	W_2 and W_3	11
2.3	Positive semidefinite matrix W (two blocks)	14
2.4	An illustration of the difference between $H_{i,j}^{\text{full}}$, $H_{i,j}$ and H_i^{sum} . Agent 1 is overlapping	
	with agents 2 and agent 3 at the entries specified by I_{12} and I_{13} . The white squares	
	in the left matrix $H_{1,2}^{\text{full}} + H_{1,3}^{\text{full}}$ represent those entries with value 0, and the color	
	squares carry Lagrange multipliers	21
2.5	Aggregate residue for the case of 4000 agents with $p_i = q_i = 5$	26
3.1	These plots show the convergence behavior of the energy function ε^k for IEEE test	
	cases. (a): Chow's 9 bus, (b): IEEE 14 bus, (c): IEEE 30 bus, (d): IEEE 57 bus,	
	(e): IEEE 118 bus, (f): IEEE 300 bus	46
4.1	A minimal tree decomposition for a ladder	53
4.2	This figure illustrates Step 4 of Definition 12 for designing an enriched supergraph.	
	The shaded area includes the common vertices of the nodes V_k and $V_{k'}$	54
4.3	An enriched supergraph $\overline{\mathcal{G}}$ of the graph \mathcal{G} given in Figure 4.1: (a) the steps of the	
	algorithm (b) the resulting enriched supergraph. \ldots	55
4.4	The sparsity graph for the infinite-horizon ODC problem in the case where \mathcal{K} consists	
	of diagonal matrices (the central vertex 1 is removed for simplicity). \ldots	62
4.5	Mass-spring system with two masses	73

4.6	Two different structures for the controller K : (a) Decentralized control structure,	
	(b) Distributed control structure. The free parameters are colored in red (uncolored	
	entries are set to zero)	73
4.7	The near-optimal values of the free parameters of the decentralized controller \hat{K}	
	for a mass-spring system under 100 random initial states. Corresponding to each	
	free parameter $i \in \{1, 2,, 20\}$, the 100 values of this parameter (associated with	
	different trials) are shown as 100 points on a vertical line. \ldots \ldots \ldots \ldots \ldots	75
4.8	Optimality degree (%) of the decentralized controller \hat{K} for a mass-spring system	
	under 100 random initial states	75
4.9	The optimality degree and the optimal cost of the near-optimal controller designed	
	for the mass-spring system for two different control structures. The noise covariance	
	matrix Σ_v is assumed to be equal to σI , where σ varies over a wide range	76
4.10	The optimality degree and the stability level (maximum of the absolute eigenvalues)	
	associated with 100 near-optimal sparse controllers designed for 100 highly-unstable $\$	
	random systems.	78
5.1	Single line diagram of IEEE 39-Bus New England Power System	85
5.2	Weighted graph of the Kron reduced network of IEEE 39-Bus New England Power	
	System. Weights (thicknesses) of all edges are normalized to the minimum off-	
	diagonal entry of the susceptance B^{Kron} .	87
5.3	Four communication topologies studied for IEEE 39-bus system.	88
5.4	A near-optimal controller \hat{K} is designed to solve the infinite-horizon ODC problem	
	for every control topology given in Figure 5.3 and every α between 0 and 15: (a)	
	optimality degree, (b) near-optimal cost, and (c) closed-loop stability (maximum of	
	the absolute eigenvalues of the closed-loop system). $\ldots \ldots \ldots \ldots \ldots \ldots$	90
5.5	A near-optimal controller \hat{K} is designed to solve the stochastic ODC problem for	
	every control topology given in Figure 5.3 and every α between 0 and 15 under the	
	assumptions that $\Sigma_d = I$ and $\Sigma_v = 0$: (a) optimality degree, (b) near-optimal cost,	
	and (c) closed-loop stability \ldots	91

5.6 A near-optimal controller \hat{K} is designed to solve the stochastic ODC problem for every control topology given in Figure 5.3 and every σ between 0 and 15 under the assumptions that $\Sigma_d = I$, $\alpha = 0$ and $\Sigma_v = \sigma I$: (a) optimality degree, (b) nearoptimal cost, and (c) closed-loop stability $\ldots \ldots .92$

List of Tables

2.1	Simulation results for three cases with 1000, 2000 and 4000 agents	25
3.1	Running time of the proposed algorithm for solving the SDP relaxation of OPF	
	problem on IEEE test cases.	44
5.1	The data and initial values of generators (in per unit) for IEEE 39-Bus New England	
	Power System.	86

Acknowledgments

First and foremost, I would like to express my deepest gratitude and appreciation to my PhD advisor, Javad Lavaei, for his continuous support, encouragement and extreme patience throughout my PhD studies. I am honored and privileged to have had the chance to learn from his impressive mathematical talents, his creativity and his generous spirit. I am forever indebted to him for introducing me to a broad range of useful and high-impact research that shaped my academic life and helped me to become a mature and independent researcher. Certainly, this thesis would not have been completed without his generous help and support.

I am also grateful to Xiaodong Wang, Javad Ghaderi, Ali Davoudi and Reza Arghandeh for their time while serving as members on my dissertation committee and for their thoughtful comments and advice that have made my thesis much stronger.

My sincere thanks to my parents for their unconditional love and support. I am grateful to my bothers and sister for their continuous encouragement to pursue my dreams and support my passion for education and science and engineering. I am thankful to all my colleagues and friends at Columbia University who made my academic life exciting.

I would like to thank the United Arab Emirates Embassy and the United Arab Emirates University for their generous financial support during my master and PhD studies in Columbia University.

To my family

Chapter 1

Introduction

This dissertation is motivated by the pressing need for solving real-world large-scale optimization problems with the main objective of developing scalable algorithms that are capable of solving such problems efficiently. Large-scale optimization problems naturally appear in complex systems such as power networks and distributed control systems that are the main systems of interest in this work. This dissertation addresses four problems in Chapters 2-5, which are concerned with the theory and applications of large-scale optimization. In what follows, we will first introduce the problem to be studied in each chapter of this work and then outline the main contributions.

1.0.1 A Fast Distributed Algorithm for Decomposable SDPs

Semidefinite programs (SDP) are attractive due in part to three reasons. First, positive semidefinite constraints appear in many applications [1]. Second, SDPs can be used to study and approximate hard combinatorial optimization problems [2]. Third, this class of convex optimization problems includes linear, quadratic, quadratically-constrained quadratic, and second-order cone programs. It is known that small- to medium-sized SDP problems can be solved efficiently by interior point methods in polynomial time up to any arbitrary precision [3]. However, these methods are less practical for large-scale SDPs due to computation time and memory issues. However, it is possible to somewhat reduce the complexity by exploiting any possible structure in the problem such as sparsity.

Alternating direction method of multipliers (ADMM) is a first-order optimization algorithm proposed in the mid-1970s by [4] and [5]. This method has attracted much attention recently

 $\mathbf{2}$

since it can be used for large-scale optimization problems and also be implemented in parallel and distributed computational environments [6; 7]. Compared to second-order methods that are able to achieve a high accuracy via expensive iterations, ADMM relies on low-complex iterations and can achieve a modest accuracy in tens of iterations.

Because of the scalability of ADMM, the main objective of Chapter 2 is to design a distributed ADMM-based parallel algorithm for solving an arbitrary sparse large-scale decomposable SDP with a guaranteed convergence, under very mild assumptions. We consider a canonical form of decomposable SDPs, which is characterized by a graph of agents (nodes) and edges. Each agent needs to find the optimal value of its associated positive semidefinite matrix subject to local equality and inequality constraints as well as overlapping constraints with its neighbors (more precisely, the matrices of two neighboring agents may be subject to consistency constraints). The objective function of the overall SDP is the summation of individual objectives of all agents. At every iteration, each agent performs simple computations (matrix multiplication and eigenvalue decomposition) without having to solve any optimization subproblem, and then communicates some information to its neighbors. By deriving a Lyapunov-type non-increasing function, it is shown that the proposed algorithm converges as long as Slater's conditions hold. Simulations results on large-scale SDP problems with a few million variables are offered to elucidate the efficacy of this work.

1.0.2 A Fast Parallelizable Algorithm for Convex Relaxation of Optimal Power Flow Problem

The optimal power flow (OPF) problem finds an optimal operating point of a power system by minimizing a certain objective function (e.g., transmission loss or generation cost) subject to power flow equations and operational constraints [8], [9]. Motivated by the importance of this fundamental problem for operation and planning as well as the potential monetary savings involved [10], many optimization techniques have been explored for the OPF problem. Due to the non-convexity and NP-hardness of OPF, the existing algorithms are not robust, lack performance guarantees and may not find a global optimum. With the goal of designing a polynomial-time algorithm that finds a global solution for OPF, [11] derives an SDP relaxation for OPF, which results in a globally optimal solution if the duality gap is zero. The proposed relaxation can find near-global solutions with global optimality guarantees of at least 99% for IEEE and Polish systems [12], and is theoretically proven to be exact under various assumptions [13], [14], [15], [16], [17], [18]. However, this relaxation is a high-dimensional SDP problem, which imposes some limitations on its practicality for real-world networks.

Motivated by the application of sparse SDPs to power networks, the objective of Chapter 3 is to design a fast and parallelizable algorithm for solving sparse SDPs that could be utilized to solve large-scale SDP relaxations of the OPF problem. To this end, the underling sparsity structure of a given SDP problem is captured using a tree decomposition technique, leading to a decomposed SDP problem. A highly distributed/parallelizable numerical algorithm is developed for solving the decomposed SDP, based on the ADMM method. Each iteration of the designed algorithm has a closed-form solution, which involves multiplications and eigenvalue decompositions over certain submatrices induced by the tree decomposition of the sparsity graph. The proposed algorithm is applied to the classical optimal power flow problem, and also evaluated on IEEE benchmark systems. This algorithm exhibits an outstanding performance for power systems since real-world networks have low treewidth.

1.0.3 Convex Relaxation for Optimal Distributed Control Problem

Real-world systems mostly consist of many interconnected subsystems, and designing an optimal controller for them pose several challenges to the field of control theory. The area of *distributed control* is created to address the challenges arising in the control of these systems. The objective is to design a constrained controller whose structure is specified by a set of permissible interactions between the local controllers with the aim of reducing the computation or communication complexity of the overall controller. If the local controllers are not allowed to exchange information, the problem is often called *decentralized controller* design. It has been long known that the design of an optimal distributed (decentralized) controller is a daunting task because it amounts to an NP-hard optimization problem in general [19; 20]. There is no surprise that the decentralized control problem is computationally hard to solve. This is a consequence of the fact that several classes of optimization problems, including polynomial optimization and quadratically-constrained quadratic program (QCQP) as a special case, are NP-hard in the worst case. Due to the complexity of such problems, various convex relaxation methods based on linear matrix inequality (LMI), semidefinite programming, and second-order cone programming (SOCP) have gained popularity [21;

22].

In Chapter 4, two problems of infinite-horizon optimal distributed control (ODC) and stochastic ODC are studied. Our approach rests on formulating each of these problems as a rank-constrained optimization problem from which an SDP relaxation can be derived. As the first contribution of this chapter, we show that infinite-horizon ODC and stochastic ODC both admit sparse SDP relaxations with solutions of rank at most 3. Since a rank-1 SDP matrix can be mapped back into a globally-optimal controller, the rank-3 solution may be deployed to retrieve a near-global controller. We also propose two computationally cheap SDP relaxations associated with infinitehorizon ODC and stochastic ODC. Afterwards, we develop effective heuristic methods to recover a near-optimal controller from the low-rank SDP solution. The superiority of the proposed technique is demonstrated on several thousand simulations for mass spring and random systems.

1.0.4 Optimal Distributed Frequency Control in Power Systems

The problem of frequency control in power systems is mainly about controlling the frequency of the grid within a tight range in order to keep a balance between the active powers injected and withdrawn by the generators and customers, respectively. The intermittent nature of distributed power generation in smart grid requires controllers that are able to deal with the uncertainty in the system caused by non-dispatchable supplies (such as renewable energy), fluctuating loads and measurement noise. Motivated by this need, the performance of the computationally-cheap SDP relaxation combined with the indirect recovery method for both Infinite-Horizon and Stochastic ODC developed in Chapter 4 is evaluated in Chapter 5 on the problem of designing an optimal distributed frequency controller for IEEE 39-Bus New England Power System. The main objective of the unknown optimal distributed controller is to optimally adjust the mechanical power input to each generator as well as being structurally constrained by a user-defined communication topology. This pre-determined communication topology specifies which generators exchange their rotor angle and frequency measurements with one another. These controllers are designed for four different communication topologies and are proven to be all stabilizing with high near global optimality degrees (as high as 99 % for some topologies).

It is worth mentioning that the materials presented in this dissertation are published in the following journal and conferences:

- G. Fazelnia, R. Madani, A. Kalbat and J. Lavaei, "Convex Relaxation for Optimal Distributed Control Problem," *accepted in IEEE Transactions on Automatic Control*, 2015.
- A. Kalbat, R. Madani, G. Fazelnia, and J. Lavaei, "Efficient Convex Relaxation for Stochastic Optimal Distributed Control Problem," in Proc. 52nd Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, 2014.
- A. Kalbat and J. Lavaei, "A Fast Distributed Algorithm for Decomposable Semidefinite Programs," in Proc. 54th IEEE Conference on Decision and Control, Osaka, Japan, 2015.
- R. Madani, A. Kalbat and J. Lavaei, "ADMM for Sparse Semidefinite Programming with Applications to Optimal Power Flow Problem," in Proc. 54th IEEE Conference on Decision and Control, Osaka, Japan, 2015.

Chapter 2

A Fast Distributed Algorithm for Decomposable Semidefinite Programs

In this chapter, a fast and parallelizable algorithm is developed for an arbitrary decomposable semidefinite program (SDP). To formulate a decomposable SDP, we consider a multi-agent canonical form represented by a graph, where each agent (node) is in charge of computing its corresponding positive semidefinite matrix subject to local equality and inequality constraints as well as overlapping (consistency) constraints with regards to the agent's neighbors. Based on the alternating direction method of multipliers, we design a numerical algorithm, which has a guaranteed convergence under very mild assumptions. Each iteration of this algorithm has a simple closed-form solution, consisting of matrix multiplications and eigenvalue decompositions performed by individual agents as well as information exchanges between neighboring agents. The cheap iterations of the proposed algorithm enable solving real-world large-scale conic optimization problems.

2.1 Introduction

Alternating direction method of multipliers (ADMM) is a first-order optimization algorithm proposed in the mid-1970s by [4] and [5]. This method has attracted much attention recently since it can be used for large-scale optimization problems and also be implemented in parallel and distributed computational environments [6; 7]. Compared to second-order methods that are able to achieve a high accuracy via expensive iterations, ADMM relies on low-complex iterations and can achieve a modest accuracy in tens of iterations. Inspired by Nesterov's scheme for accelerating gradient methods [23], great effort has been devoted to accelerating ADMM and attaining a high accuracy in a reasonable number of iterations [24]. Since ADMM's performance is affected by the condition number of the problem's data, diagonal rescaling is proposed in [25] for a class of problems to improve the performance and achieve a linear rate of convergence.

The $\mathcal{O}(\frac{1}{n})$ worst-case convergence rate of ADMM is proven in [26; 27] under the assumptions of closed convex sets and convex functions (not necessarily smooth). In [28], the $\mathcal{O}(\frac{1}{n})$ convergence rate is obtained for an asynchronous ADMM algorithm. The recent paper [29] represents ADMM as a dynamical system and then reduces the problem of proving the linear convergence of ADMM to verifying the stability of a dynamical system [29].

Semidefinite programs (SDP) are attractive due in part to three reasons. First, positive semidefinite constraints appear in many applications [1]. Second, SDPs can be used to study and approximate hard combinatorial optimization problems [2]. Third, this class of convex optimization problems includes linear, quadratic, quadratically-constrained quadratic, and second-order cone programs. It is known that small- to medium-sized SDP problems can be solved efficiently by interior point methods in polynomial time up to any arbitrary precision [3]. However, these methods are less practical for large-scale SDPs due to computation time and memory issues. However, it is possible to somewhat reduce the complexity by exploiting any possible structure in the problem such as sparsity.

The pressing need for solving real-world large-scale optimization problems calls for the development of efficient, scalable, and parallel algorithms. Because of the scalability of ADMM, the main objective of this work is to design a distributed ADMM-based parallel algorithm for solving an arbitrary sparse large-scale SDP with a guaranteed convergence, under very mild assumptions. We consider a canonical form of decomposable SDPs, which is characterized by a graph of agents (nodes) and edges. Each agent needs to find the optimal value of its associated positive semidefinitie matrix subject to local equality and inequality constraints as well as overlapping constraints with its neighbors (more precisely, the matrices of two neighboring agents may be subject to consistency constraints). The objective function of the overall SDP is the summation of individual objectives of all agents. From the computation perspective, each agent is treated as a processing unit and each edge of the graph specifies what agents can communicate. We propose a distributed algorithm,

whose iterations comprise local matrix multiplications and eigenvalue decompositions performed by individual agents as well as information exchanges between neighboring agents.

This chapter is organized as follows. An overview of ADMM is provided in Section 2.2. The distributed multi-agent SDP problem is formalized in Section 2.3. An ADMM-based parallel algorithm is developed in Section 2.4, by first studying the 2-agent case and then investigating the general multi-agent case. Simulation results on randomly-generated large-scale SDPs with a few million variables are provided in Section 2.5. Finally, a summary is given in Section 2.6.

Notations: \mathbb{R}^n and \mathbb{S}^n denote the sets of $n \times 1$ real vectors and $n \times n$ symmetric matrices, respectively. Lower case letters (e.g., x) represent vectors, and upper case letters (e.g., W) represent matrices. $\operatorname{tr}\{W\}$ denotes the trace of a matrix W and the notation $W \succeq 0$ means that W is symmetric and positive semidefinite. Given a matrix W, its (l,m) entry is denoted as W(l,m). The symbols $(\cdot)^T$, $\|\cdot\|_2$ and $\|\cdot\|_F$ denote the transpose, ℓ_2 -norm (for vectors) and Frobenius norm (for matrices) operators, respectively. The ordering operator $(a,b) \leq \operatorname{returns} (a,b)$ if a < band returns (b,a) if a > b. The notation $|\mathcal{X}|$ represents the cardinality (or size) of the set \mathcal{X} . The finite sequence of variables x_1, \ldots, x_n is denoted by $\{x_i\}_{i=1}^n$. For an $m \times n$ matrix W, the notation $W(\mathcal{X}, \mathcal{Y})$ denotes the submatrix of W whose rows and columns are chosen from \mathcal{X} and \mathcal{Y} , respectively, for given index sets $\mathcal{X} \subseteq \{1, \ldots, m\}$ and $\mathcal{Y} \subseteq \{1, \ldots, n\}$.

The notation $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ defines a graph \mathcal{G} with the vertex (or node) set \mathcal{V} and the edge set \mathcal{E} . The set of neighbors of vertex $i \in \mathcal{V}$ is denoted as N(i). To orient the edges of \mathcal{G} , we define a new edge set $\mathcal{E}^+ = \{(i, j) \mid (i, j) \in \mathcal{E} \text{ and } i < j\}.$

2.2 Alternating Direction Method of Multipliers

Consider the optimization problem

 $\min_{x \in \mathbb{R}^n, \ y \in \mathbb{R}^m} \qquad \qquad f(x) + g(y) \tag{2.1a}$

subject to
$$Ax + By = c$$
 (2.1b)

where f(x) and g(y) are convex functions, A, B are known matrices, and c is a given vector of appropriate dimension. The above optimization problem has a separable objective function and

linear constraints. Before proceeding with the chapter, three numerical methods for solving this problem will be reviewed.

The first method is *dual decomposition*, which uses the Lagrangian function

$$\mathcal{L}(x, y, \lambda) = f(x) + g(y) + \lambda^T (Ax + By - c)$$

= $\underbrace{f(x) + \lambda^T Ax}_{h_1(x,\lambda)} + \underbrace{g(y) + \lambda^T By}_{h_2(y,\lambda)} - \lambda^T c$ (2.2)

where λ is the Lagrange multiplier corresponding to the constraint (2.1b). The above Lagrangian function can be separated into two functions $h_1(x, \lambda)$ and $h_2(y, \lambda)$. Inspired by this separation, the dual decomposition method is based on updating x, y and λ separately. This leads to the iterations

$$x^{t+1} := \underset{x}{\operatorname{argmin}} h_1(x, \lambda^t) \tag{2.3a}$$

$$y^{t+1} := \underset{y}{\operatorname{argmin}} h_2(y, \lambda^t) \tag{2.3b}$$

$$\lambda^{t+1} := \lambda^t + \alpha^t (Ax^{t+1} + By^{t+1} - c)$$
(2.3c)

for t = 0, 1, 2, ..., with an arbitrary initialization (x^0, y^0, λ^0) , where α^t is a step size. Note that "argmin" denotes any minimizer of the corresponding function.

Despite its decomposability, the dual decomposition method has robustness and convergence issues. The *method of multipliers* could be used to remedy these difficulties, which is based on the augmented Lagrangian function

$$\mathcal{L}_{\mu}(x,y,\lambda) = f(x) + g(y) + \lambda^{T}(Ax + By - c) + \frac{\mu}{2} ||Ax + By - c||_{2}^{2}$$
(2.4)

where μ is a nonnegative constant. Notice that (2.4) is obtained by augmenting the Lagrangian function in (2.2) with a quadratic term in order to increase the smallest eigenvalue of the Hessian of the Lagrangian with respect to (x, y). However, this augmentation creates a coupling between xand y. The iterations corresponding to the method of multipliers are

$$(x^{t+1}, y^{t+1}) := \underset{(x,y)}{\operatorname{argmin}} \mathcal{L}_{\mu}(x, y, \lambda^t)$$
(2.5a)

$$\lambda^{t+1} := \lambda^t + \mu(Ax^{t+1} + By^{t+1} - c)$$
(2.5b)

where t = 0, 1, 2,

In order to avoid solving a joint optimization with respect to x and y at every iteration, the *alternating direction method of multipliers* (ADMM) can be used. The main idea is to first update x by freezing y at its latest value, and then update y based on the most recent value of x. This leads to the 2-block ADMM problem with the iterations [7]:

Block 1:
$$x^{t+1} := \underset{x}{\operatorname{argmin}} \mathcal{L}_{\mu}(x, y^t, \lambda^t)$$
 (2.6a)

Block 2:
$$y^{t+1} := \underset{u}{\operatorname{argmin}} \mathcal{L}_{\mu}(x^{t+1}, y, \lambda^t)$$
 (2.6b)

Dual:
$$\lambda^{t+1} := \lambda^t + \mu(Ax^{t+1} + By^{t+1} - c)$$
 (2.6c)

ADMM offers a distributed computation property, a high degree of robustness, and a guaranteed convergence under very mild assumptions. In the remainder of this chapter, we will use this firstorder method to solve large-scale decomposable SDP problems.

2.3 Problem Formulation

Consider an arbitrary simple, connected, and undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with the node set $\mathcal{V} := \{1, \ldots, n\}$ and the edge set $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$, as illustrated in Figure 2.1. In a physical context, each node could represent an agent (or a machine or a processor or a thread) and each edge represents a communication link between the agents. In the context of this work, each agent is in charge of computing a positive semidefinite matrix variable W_i , and each edge $(i, j) \in \mathcal{E}$ specifies an overlap between the matrix variables W_i and W_j of agents i and j. More precisely, each edge (i, j) is accompanied by two arbitrary integer-valued index sets I_{ij} and I_{ji} to capture the overlap between W_i and W_j through the equation $W_i(I_{ij}, I_{ij}) = W_j(I_{ji}, I_{ji})$. Figure 2.2 illustrates this specification through an example with three overlapping matrices, where every two neighboring submatrices with an identical color must take the same value at optimality. Another way of thinking about this setting is that Figure 2.1 represents the sparsity graph of an arbitrary sparse large-scale SDP with a single global matrix variable W, which is then reformulated in terms of certain matrices of W, named W_1, \ldots, W_n , using the Chordal extension and matrix completion theorems [30]. The objective of this chapter is to solve the decomposable SDP problem (interchangeably referred to as distributed multi-agent SDP) given below.

Figure 2.1: A graph representation of the distributed multi-agent SDP.

Figure 2.2: An illustration of the definitions of I_{ij} and I_{ji} for three overlapping submatrices W_1 , W_2 and W_3

Decomposable SDP:

minimize
$$\sum_{i \in \mathcal{V}} \operatorname{tr}(A_i W_i) \tag{2.7a}$$

subject to : $\mathbf{tr}(B_i^{(i)}W_i) = c_i^{(i)}$

$$\mathbf{tr}(B_j^{(i)}W_i) = c_j^{(i)} \qquad \forall \ j = 1, \dots, p_i \quad \text{and} \quad i \in \mathcal{V}$$
(2.7b)
$$\mathbf{tr}(D_l^{(i)}W_i) \le d_l^{(i)} \qquad \forall \ l = 1, \dots, q_i \quad \text{and} \quad i \in \mathcal{V}$$
(2.7c)

$$W_i \succeq 0 \qquad \forall i \in \mathcal{V}$$
 (2.7d)

$$W_i(I_{ij}, I_{ij}) = W_j(I_{ji}, I_{ji}) \qquad \forall (i, j) \in \mathcal{E}^+$$
(2.7e)

with the variables $W_i \in \mathbb{S}^{n_i}$ for i = 1, ..., n, where

- the superscript in $(\cdot)^{(i)}$ is not a power but means that the expression corresponds to agent $i \in \mathcal{V}$.
- n_i denotes the size of the submatrix W_i , and p_i and q_i show the numbers of equality and inequality constraints for agent *i*, respectively.
- $c_j^{(i)}$ and $d_l^{(i)}$ denote the j^{th} and l^{th} elements of the vectors $c_i \in \mathbb{R}^{p_i}$ and $d_i \in \mathbb{R}^{q_i}$ for agent i, as defined below:

$$c_i \triangleq [c_1^{(i)}, \dots, c_{p_i}^{(i)}]^T, \quad d_i \triangleq [d_1^{(i)}, \dots, d_{q_i}^{(i)}]^T$$

• the matrices A_i , $B_i^{(i)}$, and $D_l^{(i)}$ are known and correspond to agent $i \in \mathcal{V}$.

The formulation in (2.7) has three main ingredients:

- Local objective function: each agent $i \in \mathcal{V}$ has its own local objective function $\operatorname{tr}(A_i W_i)$ with respect to the local matrix variable W_i . The summation of all local objective functions denotes the global objective function in (2.7a).
- Local constraints: each agent $i \in \mathcal{V}$ has local equality and inequality constraints (2.7b) and (2.7c), respectively, as well as a local positive semidefiniteness constraint (2.7d).
- Overlapping constraints: constraint (2.7e) states that certain entries of W_i and W_j are identical.

The objective is to design a distributed algorithm for solving (2.7), by allowing each agent $i \in \mathcal{V}$ to collaborate with its neighbors N(i) to find an optimal value for its positive semidefinite submatrix W_i while meeting its own constraints as well as all overlapping constraints. This is accomplished by local computations performed by individual agents and local communication between neighboring agents for information exchange.

There are two scenarios in which (2.7) could be used. In the first scenario, it is assumed that the SDP problem of interest is associated with a multi-agent system and matches the formulation in (2.7) exactly. In the second scenario, we consider an arbitrary sparse SDP problem in the centralized standard form, i.e., an SDP with a single positive semidefinite matrix W, and then convert it into a distributed SDP with multiple but smaller positive semidefinite matrices W_i to match the formulation in (2.7) (note that a dense SDP problem can be put in the form of (2.7) with n = 1). The conversion from a standard SDP to a distributed SDP is possible using the idea of chordal decomposition of positive semidefinite cones in [31], which exploits the fact that a matrix W has a positive semidefinite completion if and only if certain submatrices of W, denoted as $W_1, ..., W_n$, are positive semidefinite [32].

In this chapter, we propose an iterative algorithm for solving the decomposable SDP problem (2.7) using the first-order ADMM method. We show that each iteration of this algorithm has a simple closed-form solution, which consists of matrix multiplication and eigenvalue decomposition over matrices of size n_i for agent $i \in \mathcal{V}$.

Our work improves upon some recent papers in this area. [33] is a special case of our work with n = 1, which does not offer any parallelizable algorithm for sparse SDPs and may not be applicable to large-scale sparse SDP problems. [31] uses the clique-tree conversion method to decompose sparse SDPs with chordal sparsity pattern into smaller sized SDPs, which can then be solved by interior point methods but this approach is limited by the large number of consistency constraints for the overlapping parts. Recently, [34] solves the decomposed SDP created by [31] using a first-order splitting method, but it requires solving a quadratic program at every iteration, which again imposes some limitations on the scalability of the proposed algorithm. In contrast, the algorithm to be proposed here is parallelizable with low computations at every iteration, without requiring any initial feasible point unlike interior point methods.

Figure 2.3: Positive semidefinite matrix W (two blocks)

2.4 Distributed Algorithm for Decomposable Semidefinite Programs

In this section, we design an ADMM-based algorithm to solve (2.7). For the convenience of the reader, we first consider the case where there are only two overlapping matrices W_1 and W_2 . Later on, we derive the iterations for the general case with an arbitrary graph \mathcal{G} .

2.4.1 Two-Agent Case

Assume that there are two overlapping matrices W_1 and W_2 embedded in a global SDP matrix variable W as shown in Figure 2.3, where "*" submatrices of W are redundant (meaning that there is no explicit constraint on the entries of these parts). The SDP problem for this case can be put

in the canonical form (2.7), by setting $\mathcal{V} = \{1, 2\}, \mathcal{E}^+ = \{(1, 2)\}$ and $|\mathcal{V}| = 2$:

$$\min_{\substack{W_1 \in \mathbb{S}^{n_1} \\ W_2 \in \mathbb{S}^{n_2}}} \mathbf{tr}(A_1 W_1) + \mathbf{tr}(A_2 W_2)$$
(2.8a)

subject to

$$\mathbf{tr}(B_j^{(1)}W_1) = c_j^{(1)}$$
 $\forall \ j = 1, \dots, p_1$ (2.8b)

$$\mathbf{tr}(B_j^{(2)}W_2) = c_j^{(2)} \qquad \forall \ j = 1, \dots, p_2 \qquad (2.8c)$$
$$\mathbf{tr}(D_l^{(1)}W_1) \le d_l^{(1)} \qquad \forall \ l = 1, \dots, q_1 \qquad (2.8d)$$

$$\mathbf{tr}(D_l^{(2)}W_2) \le d_l^{(2)} \qquad \forall l = 1, \dots, q_1 \qquad (2.8e)$$

$$W_1, W_2 \succeq 0 \tag{2.8f}$$

$$W_1(I_{12}, I_{12}) = W_2(I_{21}, I_{21})$$
(2.8g)

where the data matrices $A_1, B_j^{(1)}, D_l^{(1)} \in \mathbb{S}^{n_1}$, the matrix variable $W_1 \in \mathbb{S}^{n_1}$ and the vectors $c_1 \in \mathbb{R}^{p_1}$ and $d_1 \in \mathbb{R}^{q_1}$ correspond to agent 1, whereas the data matrices $A_2, B_j^{(2)}, D_l^{(2)} \in \mathbb{S}^{n_2}$, the matrix variable $W_2 \in \mathbb{S}^{n_2}$ and the vectors $c_2 \in \mathbb{R}^{p_2}$ and $d_2 \in \mathbb{R}^{q_2}$ correspond to agent 2. Constraint (2.8g) states that the (I_{12}, I_{12}) submatrix of W_1 overlaps with the (I_{21}, I_{21}) submatrix of W_2 . With no loss of generality, assume that the overlapping part occurs at the lower right corner of W_1 and the upper left corner of W_2 , as illustrated in Figure 2.3. The dual of the 2-agent SDP problem in (2.8) can be expressed as

minimize

$$(c_1^T z_1 + d_1^T v_1) + (c_2^T z_2 + d_2^T v_2)$$
 (2.9a)

subject to :

$$-\sum_{j=1}^{p_1} z_j^{(1)} B_j^{(1)} - \sum_{l=1}^{q_1} v_l^{(1)} D_l^{(1)} + R_1 - \begin{bmatrix} 0 & 0 \\ 0 & H_{1,2} \end{bmatrix} = A_1$$
(2.9b)

$$-\sum_{j=1}^{p_2} z_j^{(2)} B_j^{(2)} - \sum_{l=1}^{q_2} v_l^{(2)} D_l^{(2)} + R_2 + \begin{bmatrix} H_{2,1} & 0\\ 0 & 0 \end{bmatrix} = A_2$$
(2.9c)

$$H_{1,2} = H_{2,1} \tag{2.9d}$$

$$v_1, v_2 \ge 0 \tag{2.9e}$$

$$R_1, R_2 \succeq 0 \tag{2.9f}$$

with the variables $z_1, z_2, v_1, v_2, R_1, R_2, H_{1,2}, H_{2,1}$, where $z_1 \in \mathbb{R}^{p_1}$, $z_2 \in \mathbb{R}^{p_2}$, $v_1 \in \mathbb{R}^{q_1}$ and $v_2 \in \mathbb{R}^{q_2}$ are the Lagrange multipliers corresponding to the equality and inequality constraints in (2.8b)-(2.8e), respectively, and the dual matrix variables $R_1 \in \mathbb{S}^{n_1}$ and $R_2 \in \mathbb{S}^{n_2}$ are the Lagrange

multipliers corresponding to the constraint (2.8f). The dual matrix variable $H_{1,2}$ is the Lagrange multiplier corresponding to the submatrix $W_1(I_{12}, I_{12})$ of W_1 , whereas $H_{2,1}$ is the Lagrange multiplier corresponding to the submatrix $W_2(I_{21}, I_{21})$ of W_2 . Since the overlapping entries between W_1 and W_2 are equal, as reflected in constraint (2.8g), the corresponding Lagrange multipliers should be equal as well, leading to constraint (2.9d).

If we apply ADMM to (2.9), it becomes impossible to split the variables into two blocks of variables associated with agents 1 and 2. The reason is that the augmented Lagrangian function of (2.9) creates a coupling between $H_{1,2}$ and $H_{2,1}$, which then requires updating $H_{1,2}$ and $H_{2,1}$ jointly. This issue can be resolved by introducing a new auxiliary variable $H^{(1,2)}$ in order to decompose the constraint $H_{1,2} = H_{2,1}$ into two constraints $H_{1,2} = H^{(1,2)}$ and $H_{2,1} = H^{(1,2)}$. Similarly, to make the update of v_1 and v_2 easier, we do not impose positivity constraints directly on v_1 and v_2 as in (2.9e). Instead, we impose the positivity on two new vectors $u_1, u_2 \ge 0$ and then add the additional constraints $v_1 = u_1$ and $v_2 = u_2$. By applying the previous modifications, (2.9) could be rewritten in the decomposable form

 ${\rm minimize}$

$$\sum_{i=1}^{2} \left(c_i^T z_i + d_i^T v_i + I_+(R_i) + I_+(u_i) \right)$$
(2.10a)

subject to :
$$-\sum_{i=1}^{p_1}$$

$$-\sum_{j=1}^{p_1} z_j^{(1)} B_j^{(1)} - \sum_{l=1}^{q_1} v_l^{(1)} D_l^{(1)} + R_1 - \begin{bmatrix} 0 & 0\\ 0 & H_{1,2} \end{bmatrix} = A_1$$
(2.10b)

$$-\sum_{j=1}^{p_2} z_j^{(2)} B_j^{(2)} - \sum_{l=1}^{q_2} v_l^{(2)} D_l^{(2)} + R_2 + \begin{bmatrix} H_{2,1} & 0\\ 0 & 0 \end{bmatrix} = A_2$$
(2.10c)

$$H_{1,2} = H^{(1,2)} \tag{2.10d}$$

$$H_{2,1} = H^{(1,2)} \tag{2.10e}$$

$$v_1 = u_1 \tag{2.10f}$$

$$v_2 = u_2 \tag{2.10g}$$

with the variables $z_1, z_2, v_1, u_1, v_2, u_2, R_1, R_2, H_{1,2}, H_{2,1}, H^{(1,2)}$, where $I_+(R_i)$ is equal to 0 if $R_i \succeq 0$ and is $+\infty$ otherwise, and $I_+(u_i)$ is equal to 0 if $u_i \ge 0$ and is $+\infty$ otherwise.

To streamline the presentation, define

$$B_i^{\text{sum}} = \sum_{j=1}^{p_i} z_j^{(i)} B_j^{(i)}, \quad D_i^{\text{sum}} = \sum_{l=1}^{q_i} v_l^{(i)} D_l^{(i)}, \quad i = 1, 2$$
(2.11)

and

$$H_{1,2}^{\text{full}} = \begin{bmatrix} 0 & 0 \\ 0 & H_{1,2} \end{bmatrix}, \quad H_{2,1}^{\text{full}} = \begin{bmatrix} -H_{2,1} & 0 \\ 0 & 0 \end{bmatrix}$$
(2.12)

Note that B_i^{sum} , D_i^{sum} , $H_{1,2}^{\text{full}}$ and $H_{2,1}^{\text{full}}$ are functions of the variables z_i , v_i , $H_{1,2}$ and $H_{2,1}$, respectively, but the arguments are dropped for notational simplicity. The augmented Lagrangian function for (2.10) can be obtained as

$$\mathcal{L}_{\mu}(\mathcal{F},\mathcal{M}) = \sum_{i=1}^{2} \left(c_{i}^{T} z_{i} + d_{i}^{T} v_{i} + I_{+}(R_{i}) + I_{+}(u_{i}) \right) + \frac{\mu}{2} \left\| -B_{1}^{\text{sum}} - D_{1}^{\text{sum}} + R_{1} - H_{1,2}^{\text{full}} - A_{1} + \frac{G_{1}}{\mu} \right\|_{F}^{2} + \frac{\mu}{2} \left\| -B_{2}^{\text{sum}} - D_{2}^{\text{sum}} + R_{2} - H_{2,1}^{\text{full}} - A_{2} + \frac{G_{2}}{\mu} \right\|_{F}^{2}$$

$$\left. + \frac{\mu}{2} \left\| H_{1,2} - H^{(1,2)} + \frac{G_{1,2}}{\mu} \right\|_{F}^{2} + \frac{\mu}{2} \left\| H_{2,1} - H^{(1,2)} + \frac{G_{2,1}}{\mu} \right\|_{F}^{2} + \frac{\mu}{2} \left\| v_{1} - u_{1} + \frac{\lambda_{1}}{\mu} \right\|_{2}^{2} + \frac{\mu}{2} \left\| v_{2} - u_{2} + \frac{\lambda_{2}}{\mu} \right\|_{2}^{2}$$

$$(2.13)$$

where $\mathcal{F} = (z_1, z_2, v_1, v_2, u_1, u_2, R_1, R_2, H_{1,2}, H_{2,1}, H^{(1,2)})$ is the set of optimization variables and $\mathcal{M} = (G_1, G_2, G_{1,2}, G_{2,1}, \lambda_1, \lambda_2)$ is the set of Lagrange multipliers whose elements correspond to constraints (2.10b) - (2.10g), respectively. Note that the augmented Lagrangian in (2.13) is obtained using the identity

$$\mathbf{tr}\left[X^{T}(A-B)\right] + \frac{\mu}{2} \|A-B\|_{F}^{2} = \frac{\mu}{2} \left\|A-B+\frac{X}{\mu}\right\|_{F}^{2} + \text{constant}$$
(2.14)

In order to proceed, we need to split the set of optimization variables \mathcal{F} into two blocks of variables. To this end, define $\mathcal{X} = \{u_1, u_2, R_1, R_2, H^{(1,2)}\}$ and $\mathcal{Y} = \{z_1, z_2, v_1, v_2, H_{1,2}, H_{2,1}\}$. Using the

method delineated in Section 2.2, the two-block ADMM iterations can be obtained as

(Block 1)
$$\mathcal{X}^{t+1} = \underset{\mathcal{X}}{\operatorname{argmin}} \mathcal{L}_{\mu} \left(\mathcal{X}, \mathcal{Y}^{t}, \mathcal{M}^{t} \right)$$
 (2.15a)

(Block 2)
$$\mathcal{Y}^{t+1} = \underset{\mathcal{V}}{\operatorname{argmin}} \mathcal{L}_{\mu} \left(\mathcal{X}^{t+1}, \mathcal{Y}, \mathcal{M}^{t} \right)$$
 (2.15b)

$$G_1^{t+1} = G_1^t + \mu \left(-B_1^{t+1} - D_1^{t+1} + R_1^{t+1} - H_{1,2}^{t+1} - A_1 \right)$$
(2.15c)

$$G_2^{t+1} = G_2^t + \mu \left(-B_2^{\text{sum}} - D_2^{\text{sum}} + R_2^{t+1} - H_{2,1}^{\text{full}} - A_2 \right)$$
(2.15d)

$$G_{1,2}^{t+1} = G_{1,2}^t + \mu \left(H_{1,2}^{t+1} - H^{(1,2)} \right)$$
(2.15e)

$$G_{2,1}^{t+1} = G_{2,1}^t + \mu \left(H_{2,1}^{t+1} - H^{(1,2)} \right)$$
(2.15f)

$$\lambda_1^{t+1} = \lambda_1^t + \mu \left(v_1^{t+1} - u_1^{t+1} \right)$$
(2.15g)

$$\lambda_2^{t+1} = \lambda_2^t + \mu \left(v_2^{t+1} - u_2^{t+1} \right)$$
(2.15h)

for $t = 0, 1, 2, \dots$

The above updates are derived based on the fact that ADMM aims to find a saddle point of the augmented Lagrangian function by alternatively performing one pass of Gauss Seidel over \mathcal{X} and \mathcal{Y} and then updating the Lagrange multipliers \mathcal{M} through Gradient ascent.

It is straightforward to show that the optimization over \mathcal{X} in Block 1 is fully decomposable and amounts to 5 separate optimization subproblems with respect to the individual variables $u_1, u_2, R_1, R_2, H^{(1,2)}$. In addition, the optimization over \mathcal{Y} in Block 2 is equivalent to 2 separate optimization subproblems with the variables $(z_1, v_1, H_{1,2})$ and $(z_2, v_2, H_{2,1})$, respectively. Interestingly, all these subproblems have closed-form solutions. The corresponding iterations that need to be taken by agents 1 and 2 are provided in (2.16) and (2.17) (given in the next two pages). Note that these agents need to perform local computation in every iteration according to (2.16) and (2.17) and then exchange the updated values of the pairs $(H_{1,2}, G_{1,2})$ and $(H_{2,1}, G_{2,1})$ with one another.

To elaborate on (2.16) and (2.17), the positive semidefinite matrices R_1 and R_2 are updated through the operator $(\cdot)_+$, where X_+ is defined as the projection of an arbitrary symmetric matrix X onto the set of positive semidefinite matrices by replacing its negative eigenvalues with 0 in

Iterations for Agent	t 1	
	$R_1^{t+1} = \left(B_1^{\text{sum}} + D_1^{\text{sum}} + H_{1,2}^{\text{full}} + A_1 - \frac{G_1^t}{\mu}\right)_+$	(2.16a)
	$u_1^{t+1} = \left(v_1^t + \frac{\lambda_1^t}{\mu}\right)_+$	(2.16b)
	$H^{t+1}_{(1,2)} = \frac{1}{2} \left(H^t_{1,2} + H^t_{2,1} + \frac{G^t_{1,2}}{\mu} + \frac{G^t_{2,1}}{\mu} \right)$	(2.16c)
	$(z_1, v_1, H_{1,2})^{t+1} = \operatorname{Lin}\left(u_1^{t+1}, R_1^{t+1}, H^{(1,2)}, G_1^t, G_{1,2}^t, \lambda_1^t\right)$	(2.16d)
	$G_1^{t+1} = G_1^t + \mu \left(-B_1^{\text{sum}} - D_1^{\text{sum}} + R_1^{t+1} - H_{1,2}^{\text{full}} - A_1 \right)$	(2.16e)
	$G_{1,2}^{t+1} = G_{1,2}^t + \mu \left(H_{1,2}^{t+1} - H^{(1,2)} \right)$	(2.16f)
	$\lambda_1^{t+1} = \lambda_1^t + \mu \left(v_1^{t+1} - u_1^{t+1} \right)$	(2.16g)

the eigenvalue decomposition [33]. The positive vectors u_1 and u_2 are also updated through the operator $(x)_+$, which replaces any negative entry in an arbitrary vector x with 0 while keeping the nonnegative entries. Using the first-order optimality condition $\nabla_{H^{(1,2)}}\mathcal{L}_{\mu}(\cdot) = 0$, one could easily find the closed-form solution for $H^{(1,2)}$ as shown in (2.16c) and (2.17c). By combining the conditions $\nabla_{z_1}\mathcal{L}_{\mu}(\cdot) = 0$, $\nabla_{v_1}\mathcal{L}_{\mu}(\cdot) = 0$ and $\nabla_{H_{1,2}}\mathcal{L}_{\mu}(\cdot) = 0$, the updates of $(z_1, v_1, H_{1,2})$ and $(z_2, v_2, H_{2,1})$ reduce to a (not necessarily unique) linear mapping, denoted as Lin(\cdot) in (2.16d) and (2.17d) (due to non-uniqueness, we may have multiple solutions, and any of them can be used in the updates). The Lagrange multipliers in \mathcal{M} are updated through Gradient ascent, as specified in (2.16e)-(2.16g) for agent 1 and in (2.17e)-(2.17g) for agent 2.

2.4.2 Multi-Agent Case

In this part, we will study the general distributed multi-agent SDP (2.7). The dual of this problem, after considering all modifications used to convert (2.9) to (2.10), can be expressed in the

Iterations for Agent 2 $R_{2}^{t+1} = \left(B_{2}^{sum} + D_{2}^{sum} + H_{2,1}^{full} + A_{2} - \frac{G_{2}^{t}}{\mu}\right)_{+} \qquad (2.17a)$ $u_{2}^{t+1} = \left(v_{2}^{t} + \frac{\lambda_{2}^{t}}{\mu}\right)_{+} \qquad (2.17b)$ $H_{1,2}^{t+1} = \frac{1}{2}\left(H_{1,2}^{t} + H_{2,1}^{t} + \frac{G_{1,2}^{t}}{\mu} + \frac{G_{2,1}^{t}}{\mu}\right) \qquad (2.17c)$

$$(z_2, v_2, H_{2,1})^{t+1} = \operatorname{Lin}\left(u_2^{t+1}, R_2^{t+1}, H^{(1,2)}, G_2^t, G_{2,1}^t, \lambda_2^t\right)$$
(2.17d)

$$G_2^{t+1} = G_2^t + \mu \left(-B_2^{t+1} - D_2^{t+1} + R_2^{t+1} - H_{2,1}^{t+1} - A_2 \right)$$
(2.17e)

$$G_{2,1}^{t+1} = G_{2,1}^t + \mu \left(H_{2,1}^{t+1} - H_{(1,2)}^{t+1} \right)$$
(2.17f)

$$\lambda_2^{t+1} = \lambda_2^t + \mu \left(v_2^{t+1} - u_2^{t+1} \right)$$
(2.17g)

decomposable form

minimize
$$\sum_{i \in \mathcal{V}} \left(c_i^T z_i + d_i^T v_i + I_+(R_i) + I_+(u_i) \right)$$
(2.18a)

subject to:
$$-B_i^{\text{sum}} - D_i^{\text{sum}} + R_i - \sum_{k \in N(i)} H_{i,k}^{\text{full}} = A_i \quad \forall i \in \mathcal{V}$$
 (2.18b)

$$H_{i,j} = H^{(i,j)} \qquad \forall (i,j) \in \mathcal{E}^+ \qquad (2.18c)$$

$$H_{j,i} = H^{(i,j)} \qquad \forall (i,j) \in \mathcal{E}^+ \qquad (2.18d)$$

$$\psi_i = u_i \qquad \qquad \forall \ i \in \mathcal{V} \tag{2.18e}$$

with the variables $z_i, v_i, u_i, R_i, H_{i,j}, H_{j,i}, H^{(i,j)}$ for every $i \in \mathcal{V}$ and $(i, j) \in \mathcal{E}^+$, where $B_i^{\text{sum}} = \sum_{j=1}^{p_i} z_j^{(i)} B_j^{(i)}, D_i^{\text{sum}} = \sum_{l=1}^{q_i} v_l^{(i)} D_l^{(i)}$ and $H_i^{\text{sum}} = \sum_{k \in N(i)} H_{i,k}^{\text{full}}$. Note that $z_i \in \mathbb{R}^{p_i}$ and $v_i \in \mathbb{R}^{q_i}$ are the Lagrange multipliers corresponding to the equality and inequality constraints in (2.7b) and (2.7c), respectively, and that $R_i \in \mathbb{S}^{n_i}$ is the Lagrange multiplier corresponding to the constraint (2.7d). Each element $h_{i,k}^{\text{full}}(a, b)$ of $H_{i,k}^{\text{full}}$ is either zero or equal to the Lagrange multiplier corresponding of the sponding to an overlapping element $W_i(a, b)$ between W_i and W_k . For a better understanding of the

Figure 2.4: An illustration of the difference between $H_{i,j}^{\text{full}}$, $H_{i,j}$ and H_i^{sum} . Agent 1 is overlapping with agents 2 and agent 3 at the entries specified by I_{12} and I_{13} . The white squares in the left matrix $H_{1,2}^{\text{full}} + H_{1,3}^{\text{full}}$ represent those entries with value 0, and the color squares carry Lagrange multipliers.

difference between $H_{i,j}^{\text{full}}$, $H_{i,j}$ and H_i^{sum} , an example is given in Figure 2.4 for the case where agent 1 is overlapping with agents 2 and 3. The ADMM iterations for the general case can be derived similarly to the 2-agent case, which yields the local computation (2.20) for each agent $i \in \mathcal{V}$.

Consider the parameters defined in (2.21) for every $i \in \mathcal{V}$, $(i, j) \in \mathcal{E}^+$, and time $t \in \{1, 2, 3, ...\}$. Define V^t as

$$V^{t} = \sum_{i \in \mathcal{V}} \left(\left(\Delta_{p1}^{t} \right)_{i} + \left(\Delta_{p4}^{t} \right)_{i} + \left(\Delta_{d1}^{t} \right)_{i} + \left(\Delta_{d2}^{t} \right)_{i} \right) + \sum_{i,j \in \mathcal{E}^{+}} \left(\left(\Delta_{p2}^{t} \right)_{i,j} + \left(\Delta_{p3}^{t} \right)_{i,j} + \left(\Delta_{d3}^{t} \right)_{i,j} \right)$$
(2.19)

Note that $(\Delta_{p1}, \Delta_{p2}, \Delta_{p3}, \Delta_{p4})$, $(\Delta_{d1}, \Delta_{d2}, \Delta_{d3})$, and V are the primal residues, dual residues and aggregate residue for the decomposed problem (2.18). It should be noticed that the dual residues are only considered for the variables in the block $\mathcal{X} = \{u_i, R_i, H^{(i,j)}\}$. Since $H^{(i,j)}$ appears twice in (2.18), the norm in the residue Δ_{d3} is multiplied by 2. The main result of this chapter will be stated below.

Theorem 1. Assume that Slater's conditions hold for the decomposable SDP problem (2.7). Consider the iterative algorithm given in (2.20). The following statements hold:

• The aggregate residue V^t attenuates to 0 in a non-increasing way as t goes to $+\infty$.

Iterations for Agent $i \in \mathcal{V}$

$$R_{i}^{t+1} = \left(B_{i}^{sum} + D_{i}^{sum} + H_{i}^{sum} + A_{i} - \frac{G_{i}^{t}}{\mu}\right)_{+}$$
(2.20a)

$$u_i^{t+1} = \left(v_i^t + \frac{\lambda_i^t}{\mu}\right)_+ \tag{2.20b}$$

$$H^{t+1}_{(i,k) \preceq} = \frac{1}{2} \left(H^t_{i,k} + H^t_{k,i} + \frac{G^t_{i,k}}{\mu} + \frac{G^t_{k,i}}{\mu} \right) \qquad \forall k \in N(i)$$
(2.20c)

$$\left(z_{i}^{t+1}, v_{i}^{t+1}, \left\{H_{i,k}^{t+1}\right\}_{k \in N(i)}\right) = \operatorname{Lin}\left(u_{i}^{t+1}, R_{i}^{t+1}, \left\{H_{i,k}^{t+1}, \left\{H_{i,k}^{t+1}\right\}_{k \in N(i)}, G_{i}^{t}, \left\{G_{i,k}^{t}\right\}_{k \in N(i)}, \lambda_{i}^{t}\right)\right)$$

$$(2.20d)$$

$$G_i^{t+1} = G_i^t + \mu \left(-B_i^{t+1} - D_i^{t+1} + R_i^{t+1} - H_i^{t+1} - A_i \right)$$
(2.20e)

$$G_{i,k}^{t+1} = G_{i,k}^t + \mu \left(H_{i,k}^{t+1} - H^{(i,k)}_{\perp} \right) \qquad \forall k \in N(i)$$
(2.20f)

$$\lambda_i^{t+1} = \lambda_i^t + \mu \left(v_i^{t+1} - u_i^{t+1} \right)$$
(2.20g)

$$\left(\Delta_{p1}^{t}\right)_{i} = \left\| B_{i}^{\text{sum}} + D_{i}^{\text{sum}} + H_{i}^{\text{sum}} + A_{i} - R_{i}^{t} \right\|_{F}^{2}$$
(2.21a)

$$\left(\Delta_{p2}^{t}\right)_{i,j} = \left\| H_{i,j}^{t} - H_{i,j}^{(i,j)} \right\|_{F}^{2}$$
(2.21b)

$$\left(\Delta_{p3}^{t}\right)_{i,j} = \left\|H_{j,i}^{t} - H_{i,j}^{(i,j)}\right\|_{F}^{2}$$
(2.21c)

$$\left(\Delta_{p4}^{t}\right)_{i} = \left\|v_{i}^{t} - u_{i}^{t}\right\|_{2}^{2}$$
(2.21d)

$$\left(\Delta_{d1}^{t}\right)_{i} = \left\|R_{i}^{t} - R_{i}^{t-1}\right\|_{F}^{2}$$
(2.21e)

$$\left(\Delta_{d2}^{t}\right)_{i} = \left\|u_{i}^{t} - u_{i}^{t-1}\right\|_{2}^{2}$$
(2.21f)

$$\left(\Delta_{d3}^{t}\right)_{i,j} = 2 \left\| H^{(i,j)} - H^{(i,j)} \right\|_{F}^{2}$$
(2.21g)

• For every $i \in \mathcal{V}$, the limit of $(G_1^t, G_2^t, ..., G_n^t)$ at $t = +\infty$ is an optimal solution for $(W_1, W_2, ..., W_n)$.

Proof. After realizing that (2.20) is obtained from a two-block ADMM procedure, the theorem follows from [35] that studies the convergence of a standard ADMM problem. The details are omitted for brevity.

Since the proposed algorithm is iterative with an asymptotic convergence, we need a finite-time stopping rule. Based on [36], we terminate the algorithm as soon as max $\{P_1, P_2, D_1, D_2, D_3, D_4, Gap\}$ becomes smaller than a pre-specified tolerance, where

$$\left(\mathbf{P}_{1}\right)_{i} = \frac{\left\|\overline{B}_{i}^{T}\overline{W}_{i} - c_{i}\right\|_{2} + \left\|\max\left(\overline{D}_{i}^{T}\overline{W}_{i} - d_{i}, \mathbf{0}\right)\right\|_{2}}{1 + \|c_{i}\|_{2}}$$
(2.22a)

$$(\mathbf{P}_{2})_{i,j} = \frac{\|W_{i}(I_{ij}, I_{ij}) - W_{j}(I_{ji}, I_{ji})\|_{F}}{1 + \|W_{i}(I_{ij}, I_{ij})\|_{F} + \|W_{j}(I_{ji}, I_{ji})\|_{F}}$$
(2.22b)

$$(\mathbf{D}_{1})_{i} = \frac{\|-B_{i}^{\mathrm{sum}} - D_{i}^{\mathrm{sum}} + R_{i} - H_{i}^{\mathrm{sum}} - A_{i}\|_{F}}{1 + \|A_{i}\|_{1}}$$
(2.22c)

$$(D_2)_{i,j} = \frac{\left\| H_{i,j} - H^{(i,j)} \right\|_F}{1 + \left\| H_{i,j} \right\|_F + \left\| H^{(i,j)} \right\|_F}$$
(2.22d)

$$(D_3)_{i,j} = \frac{\left\| H_{j,i} - H^{(i,j)} \right\|_F}{1 + \left\| H_{i,j} \right\|_F + \left\| H^{(i,j)} \right\|_F}$$
(2.22e)

$$(\mathbf{D}_4)_i = \frac{\|v_i - u_i\|_2}{1 + \|v_i - u_i\|_2}$$
(2.22f)

$$Cap = \frac{\left|\sum_{i \in \mathcal{V}} \left(c_i^T z_i + d_i^T v_i - \operatorname{tr} \left(A_i W_i\right)\right)\right|}{\left|\sum_{i \in \mathcal{V}} \left(c_i^T z_i + d_i^T v_i - \operatorname{tr} \left(A_i W_i\right)\right)\right|}$$
(2.22a)

$$\operatorname{Gap} = \frac{\left|\sum_{i \in \mathcal{V}} \left(c_i^T z_i + d_i^T v_i - \operatorname{tr} \left(A_i W_i\right)\right)\right|}{1 + \left|\sum_{i \in \mathcal{V}} \left(c_i^T z_i + d_i^T v_i\right)\right| + \left|\sum_{i \in \mathcal{V}} \operatorname{tr} \left(A_i W_i\right)\right|}$$
(2.22g)

for every $i \in \mathcal{V}$ and $(i, j) \in \mathcal{E}^+$, where

- the letters P and D refer to the primal and dual infeasibilities, respectively.
- \overline{W}_i is the vectorized version of W_i obtained by stacking the columns of W_i one under another to create a column vector.
- \overline{B}_i and \overline{D}_i are matrices whose columns are the vectorized versions of $B_j^{(i)}$ and $D_l^{(i)}$ for $j = 1, \ldots, p_i$ and $l = 1, \ldots, q_i$, respectively.

The stopping criteria in (2.22) are based on the primal and dual infeasibilities as well as the duality gap.
2.5 Simulations Results

The objective of this section is to elucidate the results developed earlier on randomly generated large-scale structured SDP problems. The algorithm was implemented in a high-performance C++ code and all of the simulations below were run on a laptop with an Intel Core i7 quad-core 2.5 GHz CPU and 8 GB RAM. For more details about the C++ implementation and for the full code, please check Appendix.

For every $i \in \mathcal{V}$, we generate a random instance of the problem as follows:

- Each matrix A_i is chosen as $\Omega + \Omega^T + n_i I$, where the entries of Ω are uniformly chosen from the integer set $\{1, 2, 3, 4, 5\}$. This creates reasonably well-conditioned matrices A_i .
- Each matrix B_i (or D_l) is chosen as $\Omega + \Omega^T$, where Ω is generated as before.
- Each matrix variable W_i is assumed to be 40 by 40.
- The matrices $W_1, ..., W_n$ are assumed to overlap with each other in a banded structure, associated with a path graph \mathcal{G} with the edges (1, 2), (2, 3), ..., (n - 1, n). One can regard W_i 's as submatrices of a full-scale matrix variable W in the form of Figure 2.3 but with n overlapping blocks, where 25% of the entries of every two neighboring matrices W_i and W_{i+1} (leading to a 10 × 10 submatrix) overlaps.

In order to demonstrate the proposed algorithm on large-scale SDPs, three different values will be considered for the total number of overlapping blocks (or agents): 1000, 2000 and 4000. To give the reader a sense of how large the simulated SDPs are, the total number of entries of W_i 's in the decomposed SDP problem (N_{Decomp}) and the total number of entries of W in the corresponding full-SDP problem (N_{Full}) are listed below:

- 1000 agents: $N_{\text{Full}} = 0.9$ billion, $N_{\text{Decomp}} = 1.6$ million
- 2000 agents: $N_{\text{Full}} = 3.6$ billion, $N_{\text{Decomp}} = 3.2$ million
- 4000 agents: $N_{\text{Full}} = 14.4$ billion, $N_{\text{Decomp}} = 6.4$ million

The simulation results are provided in Table 2.1 with the following entries: P_{obj} and D_{obj} are the primal and dual objective values, "iter" denotes the number of iterations needed to achieve a

CHAPTER 2. A FAST DISTRIBUTED ALGORITHM FOR DECOMPOSABLE SEMIDEFINITE PROGRAMS

Cases		1000	2000	4000
	$P_{\rm obj}$	4.010774e+05	8.004677e + 05	1.607917e + 06
	$D_{ m obj}$	4.010047e+05	8.003433e+05	1.607689e + 06
$p_i = 5$	iter	308	348	368
$q_i = 0$	$t_{\rm CPU}~({ m sec})$	66.74	147.09	329.48
	t_{iter} (sec per iter)	0.22	0.42	0.90
	Optimality	99.98%	99.98%	99.98%
	$P_{\rm obj}$	8.119377e+05	1.626216e + 06	3.249436e + 06
	$D_{ m obj}$	8.119114e+05	1.626207e + 06	3.249429e+06
$p_i = 0$	iter	1033	1360	1652
$q_i = 5$	$t_{\rm CPU}~({ m sec})$	230.48	579.95	1544.59
	t_{iter} (sec per iter)	0.22	0.43	0.93
	Optimality	99.996%	99.9994%	99.9997%
	$P_{ m obj}$	1.192407e + 06	2.373408e+06	4.741277e+06
	$D_{ m obj}$	1.192402e+06	2.373401e+06	4.741266e+06
$p_i = 5$	iter	2323	2754	2902
$q_i = 5$	$t_{\rm CPU}~({ m sec})$	525.312	1295.69	2940.62
	t_{iter} (sec per iter)	0.23	0.47	1.01
	Optimality	99.9995%	99.9997%	99.9997%

Table 2.1: Simulation results for three cases with 1000, 2000 and 4000 agents.

desired tolerance, t_{CPU} and t_{iter} are the total CPU time (in seconds) and the time per iteration (in seconds per iteration), and "Optimality" (in percentage) is calculated as:

Optimality Degree (%) =
$$100 - \frac{P_{\rm obj} - D_{\rm obj}}{P_{\rm obj}} \times 100$$

As shown in Table 2.1, the simulations were run for three cases:

- $p_i = 5$ and $q_i = 0$: each agent has 5 equality constraints and no inequality constraints.
- $p_i = 0$ and $q_i = 5$: each agent has no equality constraints and 5 inequality constraints.
- $p_i = 5$ and $q_i = 5$: each agent has 5 equality constraints and 5 inequality constraints.

Figure 2.5: Aggregate residue for the case of 4000 agents with $p_i = q_i = 5$.

All solutions reported in Table 2.1 are based on the tolerance of 10^{-3} and an optimality degree of at least 99.9%. The aggregative residue V^t is plotted in Figure 2.5 for the 4000-agent case with $p_i = q_i = 5$, which is a monotonically decreasing function. Note that the time per iteration is between 0.22 and 1.01 in a C++ implementation. Efficient and computationally cheap preconditioning methods could dramatically reduce the number of iterations, but this is outside the scope of this work.

2.6 Summary

In this chapter, a fast and parallelizable algorithm is developed for an arbitrary decomposable semidefinite program (SDP). To formulate a decomposable SDP, we consider a multi-agent canonical form represented by a graph, where each agent (node) is in charge of computing its corresponding positive semidefinite matrix. The main goal of each agent is to ensure that its matrix is optimal with respect to some measure and satisfies local equality and inequality constraints. In addition, the matrices of two neighboring agents may be subject to overlapping constraints. The objective function of the optimization is the sum of all objectives of individual agents. The motivation behind this formulation is that an arbitrary sparse SDP problem can be converted to a decomposable SDP.

CHAPTER 2. A FAST DISTRIBUTED ALGORITHM FOR DECOMPOSABLE SEMIDEFINITE PROGRAMS

by means of the Chordal extension and matrix completion theorems. Using the alternating direction method of multipliers, we develop a distributed algorithm to solve the underlying SDP problem. At every iteration, each agent performs simple computations (matrix multiplication and eigenvalue decomposition) without having to solve any optimization subproblem, and then communicates some information to its neighbors. By deriving a Lyapunov-type non-increasing function, it is shown that the proposed algorithm converges as long as Slater's conditions hold. Simulations results on largescale SDP problems with a few million variables are offered to elucidate the efficacy of the proposed technique.

Chapter 3

A Fast Parallelizable Algorithm for Convex Relaxation of Optimal Power Flow Problem

This chapter designs a distributed algorithm for solving the semidefinite programming (SDP) relaxation of the optimal power flow (OPF) problem, based on the alternating direction method of multipliers (ADMM). It is known that exploiting the sparsity of a large-scale SDP problem leads to a decomposed formulation with a lower computational cost. The algorithm proposed in this work deploys the sparsity of power networks and solves the decomposed formulation of the SDP problem using an ADMM scheme whose iterations consist of two subproblems. Both subproblems are highly parallelizable and enjoy closed-form solutions, which make the iterations computationally very cheap. While an arbitrary decomposable multi-agent SDP formulation was solved in the dual domain in Chapter 2, the sparse and large-scale SDP for the OPF problem is solved in the primal domain combined with the tree/chordal/clique decomposition technique in order to better exploit the structure of power systems. The numerical algorithm developed here is also tested on the IEEE benchmark systems.

3.1 Introduction

The optimal power flow (OPF) problem finds an optimal operating point of a power system by minimizing a certain objective function (e.g., transmission loss or generation cost) subject to power flow equations and operational constraints [8], [9]. Motivated by the importance of this fundamental problem for operation and planning as well as the potential monetary savings involved [10], many optimization techniques have been explored for the OPF problem. Due to the non-convexity and NP-hardness of OPF, the existing algorithms are not robust, lack performance guarantees and may not find a global optimum. With the goal of designing a polynomial-time algorithm that finds a global solution for OPF, [11] derives an SDP relaxation for OPF, which results in a globally optimal solution if the duality gap is zero. The proposed relaxation can find near-global solutions with global optimality guarantees of at least 99% for IEEE and Polish systems [12], and is theoretically proven to be exact under various assumptions [13], [14], [15], [16], [17], [18]. However, this relaxation is a high-dimensional SDP problem, which imposes some limitations on its practicality for real-world networks.

The emerging smart grid paradigm and the integration of intermittent and distributed power generation calls for the development of efficient, scalable, and parallel algorithms for solving largescale OPF problems to enable real-time network management and improve the system's reliability. In response to this need, we aim to design an algorithm that is able to solve large-scale SDP relaxations. Early efforts to solve OPF in a distributed way (without considering non-convexity) can be traced back to [37], [38]. In [39], a fully decentralized ADMM-based algorithm is developed for a convex approximation of dynamic OPF. The papers [40] and [41] exploit primal-dual decomposition and ADMM methods for the SDP relaxation of OPF, but they need to solve an expensive SDP sub-problem at every iteration. The work [42] designs a distributed algorithm for a second-order cone relaxation of OPF over radial (acyclic) networks. In contrast to the existing methods, the algorithm to be proposed here applies to both distribution and transmission networks, and does not require solving any optimization sub-problem at any iteration.

While small- to medium-sized SDPs are efficiently solvable by second-order-based interior point methods in polynomial time up to any arbitrary precision [3], these methods are impractical for solving large-scale SDPs due to computation time and memory issues. A promising approach for solving large-scale SDP problems is ADMM. In light of the scalability of ADMM, the main objective

of this work is to design an ADMM-based parallel algorithm for solving sparse large-scale SDPs tailored to the OPF problem with a guaranteed convergence under very mild assumptions. We start by defining a representative graph for the large-scale SDP problem, from which a decomposed SDP formulation is obtained using a tree/chordal/clique decomposition technique. This decomposition replaces the large-scale SDP matrix variable with certain submatrices of this matrix. In order to solve the decomposed SDP problem iteratively, a distributed ADMM-based algorithm is derived, whose iterations comprise entry-wise matrix multiplication/division and eigendecomposition on certain submatrices of the SDP matrix. By finding the optimal solution for the distributed SDP, one could recover the solution to the original large-scale SDP formulation using an explicit formula.

Similar to the work in Chapter 2, the work in this chapter is related to and improves upon the recent papers [33], [43], [34]. In contrast with the above papers, the algorithm proposed in this work is composed of low-complex and parallelizable iterations, which run fast if the treewidth of the representative graph of the SDP problem is small. Since this treewidth is low for real-world power networks, our algorithm is well suited for the SDP relaxation of power optimization problems.

This chapter is organized as follows. Some preliminaries and definitions are provided in Section 3.2. An arbitrary sparse SDP is converted into a decomposed SDP in Section 3.3, for which a numerical algorithm in the primal domain is developed in Section 3.4. The algorithm is used to solve the convex relaxation of the OPF problem in Section 3.5. Numerical examples are given in Section 3.6, followed by a summary in Section 3.7.

Notations: \mathbb{R} , \mathbb{C} , and \mathbb{H}^n denote the sets of real numbers, complex numbers, and $n \times n$ Hermitian matrices, respectively. The notation $\mathbf{X}_1 \circ \mathbf{X}_2$ refers to the Hadamard (entrywise) multiplication of matrices \mathbf{X}_1 and \mathbf{X}_2 . The symbols $\langle \cdot, \cdot \rangle$ and $\|\cdot\|_F$ denote the Frobenius inner product and norm of matrices, respectively. The notation $\|\mathbf{v}\|_2$ denotes the ℓ_2 -norm of a vector \mathbf{v} . The $m \times n$ rectangular identity matrix, whose (i, j) entry is equal to the Kronecker delta δ_{ij} , is denoted by $\mathbf{I}_{m \times n}$. The notations $\operatorname{Re}\{\mathbf{W}\}$, $\operatorname{Im}\{\mathbf{W}\}$, $\operatorname{rank}\{\mathbf{W}\}$, and $\operatorname{diag}\{\mathbf{W}\}$ denote the real part, imaginary part, rank, and diagonal of a Hermitian matrix \mathbf{W} , respectively. Given a vector \mathbf{v} , the notation $\operatorname{diag}\{\mathbf{v}\}$ denotes a diagonal square matrix whose entries are given by \mathbf{v} . The notation $\mathbf{W} \succeq 0$ means that \mathbf{W} is Hermitian and positive semidefinite. The notation "i" is reserved for the imaginary unit. The superscripts $(\cdot)^*$ and $(\cdot)^{\mathrm{T}}$ represent the conjugate transpose and transpose operators, respectively. Given a matrix \mathbf{W} , its (l, m) entry is denoted as W_{lm} . The subscript $(\cdot)_{\text{opt}}$ is used to show the

optimal value of an optimization variable. Given a matrix \mathbf{W} , its Moore-Penrose pseudoinverse is denoted as pinv{ \mathbf{W} }. Given a simple graph \mathcal{H} , its vertex and edge sets are denoted by $\mathcal{V}_{\mathcal{H}}$ and $\mathcal{E}_{\mathcal{H}}$, respectively. Given two sets \mathcal{S}_1 and \mathcal{S}_2 , the notation $\mathcal{S}_1 \setminus \mathcal{S}_2$ denotes the set of all elements of \mathcal{S}_1 that do not exist in \mathcal{S}_2 . Given a Hermitian matrix \mathbf{W} and two sets of positive integer numbers \mathcal{S}_1 and \mathcal{S}_2 , define $\mathbf{W}{\{\mathcal{S}_1, \mathcal{S}_2\}}$ as a submatrix of \mathbf{W} obtained through two operations: (i) removing all rows of \mathbf{W} whose indices do not belong to \mathcal{S}_1 , and (ii) removing all columns of \mathbf{W} whose indices do not belong to \mathcal{S}_2 . For instance, $\mathbf{W}{\{\{1, 2\}, \{2, 3\}\}}$ is a 2×2 matrix with the entries $W_{12}, W_{13}, W_{22}, W_{23}$.

3.2 Preliminaries

Consider the semidefinite program

$\underset{\mathbf{X}\in\mathbb{H}^{n}}{\operatorname{minimize}}$	$\langle {f X}, {f M}_0 angle$		(3.1a)
subject to	$l_s \leq \langle \mathbf{X}, \mathbf{M}_s \rangle \leq u_s,$	$s=1,\ldots,p,$	(3.1b)
	$\mathbf{X} \succeq 0.$		(3.1c)

where $\mathbf{M}_0, \mathbf{M}_1, \ldots, \mathbf{M}_p \in \mathbb{H}^n$, and

$$(l_s, u_s) \in (\{-\infty\} \cup \mathbb{R}) \times (\mathbb{R} \cup \{+\infty\})$$

for every s = 1, ..., p. Notice that the constraint (3.1b) reduces to an equality constraint if $l_s = u_s$.

Problem (3.1) is computationally expensive for a large n due to the presence of the positive semidefinite constraint (3.1c). However, if $\mathbf{M}_0, \mathbf{M}_1, \ldots, \mathbf{M}_p$ are sparse, this expensive constraint can be decomposed and expressed in terms of some principal submatrices of \mathbf{X} with smaller dimensions. This will be explained next.

3.2.1 Representative Graph and Tree Decomposition

In order to leverage any possible sparsity of problem (3.1), a simple graph shall be defined to capture the zero-nonzero patterns of $\mathbf{M}_0, \mathbf{M}_1, \ldots, \mathbf{M}_p$.

Definition 1. Define $\mathcal{G} = (\mathcal{V}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}})$ as the representative graph of the SDP problem (3.1), which is a simple graph with n vertices whose edges are specified by the nonzero off-diagonal entries of $\mathbf{M}_0, \mathbf{M}_1, \dots, \mathbf{M}_p$. In other words, two arbitrary vertices *i* and *j* are connected if the (i, j) entry of at least one of the matrices $\mathbf{M}_0, \mathbf{M}_1, \dots, \mathbf{M}_p$ is nonzero.

Using a tree decomposition algorithm (also known as chordal or clique decomposition), we can obtain a *decomposed* formulation for problem (3.1), in which the positive semidefinite requirement is imposed on certain principal submatrices of **X** as opposed to **X** itself.

Definition 2 (Tree decomposition). A tree graph \mathcal{T} is called a tree decomposition of \mathcal{G} if it satisfies the following properties:

- 1. Every node of \mathcal{T} corresponds to and is identified by a subset of $\mathcal{V}_{\mathcal{G}}$.
- 2. Every vertex of \mathcal{G} is a member of at least one node of \mathcal{T} .
- 3. \mathcal{T}_k is a connected graph for every $k \in \mathcal{V}_{\mathcal{G}}$, where \mathcal{T}_k denotes the subgraph of \mathcal{T} induced by all nodes of \mathcal{T} containing the vertex k of \mathcal{G} .
- 4. The subgraphs \mathcal{T}_i and \mathcal{T}_j have a node in common for every $(i, j) \in \mathcal{E}_{\mathcal{G}}$.

Each node of \mathcal{T} is a bag (collection) of vertices of \mathcal{G} and hence it is referred to as a bag.

Let $\mathcal{T} = (\mathcal{V}_{\mathcal{T}}, \mathcal{E}_{\mathcal{T}})$ be an arbitrary tree decomposition of \mathcal{G} , with the set of bags $\mathcal{V}_{\mathcal{T}} = \{\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_q\}$. As discussed in the next section, it is possible to cast problem (3.1) in terms of those entries of \mathbf{X} that appear in at least one of the submatrices $\mathbf{X}\{\mathcal{C}_1, \mathcal{C}_1\}, \mathbf{X}\{\mathcal{C}_2, \mathcal{C}_2\}, \ldots, \mathbf{X}\{\mathcal{C}_q, \mathcal{C}_q\}$. These entries of X are referred to as *important entries*. Once the optimal values of the important entries of X are found using an arbitrary algorithm, the remaining entries can be obtained from an explicit (recursive) formula to be stated later.

Among the factors that may contribute to the computational complexity of the decomposed problem are: the size of the largest bag, the number of bags, and the total number of important entries. Finding a tree decomposition that leads to the minimum number of important entries (minimum fill-in problem) or possesses the minimum size for its largest bag (treewidth problem) is known to be NP-hard. Nevertheless, there are many efficient algorithms in the literature that find near-optimal tree decompositions (specially for power networks due to their near planarity) [44; 45].

3.2.2 Sparsity Pattern of Matrices

Let \mathbb{F}^n denote the set of symmetric $n \times n$ matrices with entries belonging to the set $\{0, 1\}$. The distributed optimization scheme to be proposed in this work uses a group of sparse slack matrices. We identify the locations of nonzero entries of such matrix variables using descriptive matrices in \mathbb{F}^n .

Definition 3. Given an arbitrary matrix $\mathbf{X} \in \mathbb{H}^n$, define its sparsity pattern as a matrix $\mathbf{N} \in \mathbb{F}^n$ such that $N_{ij} = 1$ if and only if $X_{ij} \neq 0$ for every $i, j \in \{1, ..., n\}$. Let $|\mathbf{N}|$ denote the number of nonzero entries of \mathbf{N} . Define the set

$$\mathcal{S}(\mathbf{N}) \triangleq \{\mathbf{X} \in \mathbb{H}^n \mid \mathbf{X} \circ \mathbf{N} = \mathbf{X}\}.$$

Due to the Hermitian property of \mathbf{X} , if d denotes the number of nonzero diagonal entries of \mathbf{N} , then every $\mathbf{X} \in \mathcal{S}(\mathbf{N})$ can be specified by $(|\mathbf{N}| + d)/2$ real-valued scalars corresponding to $\operatorname{Re}\{\mathbf{X}\}$ and $(|\mathbf{N}| - d)/2$ real scalars corresponding to $\operatorname{Im}\{\mathbf{X}\}$. Therefore, $\mathcal{S}(\mathbf{N})$ is $|\mathbf{N}|$ -dimensional over \mathbb{R} .

Definition 4. Suppose that $\mathcal{T} = (\mathcal{V}_{\mathcal{T}}, \mathcal{E}_{\mathcal{T}})$ is a tree decomposition of the representative graph \mathcal{G} with the bags $\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_q$.

- For r = 1, ..., q, define $\mathbf{C}_r \in \mathbb{F}^n$ as a sparsity pattern whose (i, j) entry is equal to 1 if $\{i, j\} \subseteq C_r$ and is 0 otherwise for every $i, j \in \{1, ..., n\}$.
- Define $\mathbf{C} \in \mathbb{F}^n$ as an aggregate sparsity pattern whose (i, j) entry is equal to 1 if and only if $\{i, j\} \subseteq C_r$ for at least one index $r \in \{1, \ldots, p\}$.
- For s = 0, 1, ..., p, define $\mathbf{N}_s \in \mathbb{F}^n$ as the sparsity pattern of \mathbf{M}_s .

The sparsity pattern \mathbf{C} , which can also be interpreted as the adjacency matrix of a chordal extension of \mathcal{G} induced by \mathcal{T} , captures the locations of the important entries of \mathbf{X} . The matrix \mathbf{C} will later be used to describe the domain of definition for the variable of decomposed SDP problem.

3.2.3 Indicator Functions

To streamline the formulation, we will replace any positivity or positive semidefiniteness constraints in the decomposed SDP problem by the indicator functions introduced below.

Definition 5. For every $l \in \{-\infty\} \cup \mathbb{R}$ and $u \in \mathbb{R} \cup \{+\infty\}$, define the convex indicator function $\mathcal{I}_{l,u} : \mathbb{R} \to \{0, +\infty\}$ as

$$\mathcal{I}_{l,u}(x) \triangleq \begin{cases} 0 & \text{if } l \le x \le u \\ +\infty & \text{otherwise} \end{cases}$$

Definition 6. For every $r \in \{1, 2, ..., q\}$, define the convex indicator function $\mathcal{J}_r : \mathbb{H}^n \to \{0, +\infty\}$ as

$$\mathcal{J}_r(\mathbf{X}) \triangleq \begin{cases} 0 & \text{if } \mathbf{X}\{\mathcal{C}_r, \mathcal{C}_r\} \succeq 0 \\ +\infty & \text{otherwise} \end{cases}$$

3.3 Decomposed SDP

Consider the problem

$$\begin{array}{ll} \underset{\mathbf{X}\in\mathcal{S}(\mathbf{C})}{\text{minimize}} & \langle \mathbf{X}, \mathbf{M}_0 \rangle \\ \end{array} \tag{3.2a}$$

subject to
$$l_s \leq \langle \mathbf{X}, \mathbf{M}_s \rangle \leq u_s, \qquad s = 1, \dots, p, \qquad (3.2b)$$

$$\mathbf{X}\{\mathcal{C}_r, \mathcal{C}_r\} \succeq 0, \qquad r = 1, \dots, q \qquad (3.2c)$$

which is referred to as *decomposed SDP* throughout this chapter. Due to the chordal theorem [32], problems (3.1) and (3.2) lead to the same optimal objective value. Furthermore, if $\mathbf{X}_{ref} \in \mathcal{S}(\mathbf{C})$ denotes an arbitrary solution of the decomposed SDP problem (3.2), then there exists a solution \mathbf{X}_{opt} to the SDP problem (3.1) such that $\mathbf{X}_{opt} \circ \mathbf{C} = \mathbf{X}_{ref}$.

To understand how \mathbf{X}_{opt} can be constructed from \mathbf{X}_{ref} , observe that those entries of \mathbf{X} corresponding to the zeros of \mathbf{C} are 0 due to the relation $\mathbf{X}_{ref} \in \mathcal{S}(\mathbf{C})$. These entries of the matrix variable \mathbf{X} that are needed for SDP but have not been found by decomposed SDP are referred to as *missing entries*. Several completion approaches can be adopted in order to recover these missing entries. An algorithm is proposed in [43; 46] that obtains a completion for \mathbf{X}_{ref} within the set $\{\mathbf{X} \in \mathbb{H}^n \mid \mathbf{X} \circ \mathbf{C} = \mathbf{X}_{ref}, \mathbf{X} \succeq 0\}$ whose determinant is maximum. However such a solution may not be favorable for applications that require a low-rank solution such as an SDP relaxation. It is also known that there exists a polynomial-time algorithm to fill a partially-known real-valued matrix in such a way that the rank of the resulting matrix becomes equal to the highest rank among all bags [47; 48]. In [49], this result was extended to the complex domain by proposing a recursive algorithm that

transforms $\mathbf{X}_{ref} \in \mathcal{S}(\mathbf{C})$ into a solution \mathbf{X}_{opt} for the original SDP problem (3.1) whose rank is upper bounded by the maximum rank among the matrices $\mathbf{X}_{ref}\{\mathcal{C}_1, \mathcal{C}_1\}, \mathbf{X}_{ref}\{\mathcal{C}_2, \mathcal{C}_2\}, \ldots, \mathbf{X}_{ref}\{\mathcal{C}_q, \mathcal{C}_q\}$. This algorithm is stated below for completeness.

Matrix completion algorithm:

- 1. Set $\mathcal{T}' := \mathcal{T}$ and $\mathbf{X} := \mathbf{X}_{ref}$.
- If T' has a single node, then consider X_{opt} as X and terminate; otherwise continue to the next step.
- 3. Choose a pair of bags $\mathcal{C}_x, \mathcal{C}_y$ of \mathcal{T}' such that \mathcal{C}_x is a leaf of \mathcal{T}' and \mathcal{C}_y is its unique neighbor.
- 4. Define

$$\mathbf{K} \triangleq \operatorname{pinv}\{\mathbf{X}\{\mathcal{C}_x \cap \mathcal{C}_y, \mathcal{C}_x \cap \mathcal{C}_y\}\}$$
(3.3a)

$$\mathbf{G}_x \triangleq \mathbf{X}\{\mathcal{C}_x \setminus \mathcal{C}_y, \mathcal{C}_x \cap \mathcal{C}_y\}$$
(3.3b)

$$\mathbf{G}_{y} \triangleq \mathbf{X}\{\mathcal{C}_{y} \setminus \mathcal{C}_{x}, \mathcal{C}_{x} \cap \mathcal{C}_{y}\}$$
(3.3c)

$$\mathbf{E}_x \triangleq \mathbf{X}\{\mathcal{C}_x \setminus \mathcal{C}_y, \mathcal{C}_x \setminus \mathcal{C}_y\} \in \mathbb{C}^{d_x \times d_x}$$
(3.3d)

$$\mathbf{E}_{y} \triangleq \mathbf{X}\{\mathcal{C}_{y} \setminus \mathcal{C}_{x}, \mathcal{C}_{y} \setminus \mathcal{C}_{x}\} \in \mathbb{C}^{d_{y} \times d_{y}}$$
(3.3e)

$$\mathbf{S}_x \triangleq \mathbf{E}_x - \mathbf{G}_x \mathbf{K} \mathbf{G}_x^* = \mathbf{Q}_x \mathbf{D}_x \mathbf{Q}_x^* \tag{3.3f}$$

$$\mathbf{S}_{y} \triangleq \mathbf{E}_{y} - \mathbf{G}_{y}\mathbf{K}\mathbf{G}_{y}^{*} = \mathbf{Q}_{y}\mathbf{D}_{y}\mathbf{Q}_{y}^{*}$$
(3.3g)

where $\mathbf{Q}_x \mathbf{D}_x \mathbf{Q}_x^*$ and $\mathbf{Q}_y \mathbf{D}_y \mathbf{Q}_y^*$ denote the eigenvalue decompositions of \mathbf{S}_x and \mathbf{S}_y with the diagonals of \mathbf{D}_x and \mathbf{D}_y arranged in descending order. Then, update a part of \mathbf{X} as follows:

$$\mathbf{X}\{\mathcal{C}_y \setminus \mathcal{C}_x, \mathcal{C}_x \setminus \mathcal{C}_y\} := \mathbf{G}_y \mathbf{K} \mathbf{G}_x^* + \mathbf{Q}_y \sqrt{\mathbf{D}_y} \ \mathbf{I}_{d_y \times d_x} \sqrt{\mathbf{D}_x} \ \mathbf{Q}_x^*$$
(3.4)

and update $\mathbf{X}\{\mathcal{C}_x \setminus \mathcal{C}_y, \mathcal{C}_y \setminus \mathcal{C}_x\}$ accordingly to preserve the Hermitian property of \mathbf{X} .

- 5. Update \mathcal{T}' by merging \mathcal{C}_x into \mathcal{C}_y , i.e., replace \mathcal{C}_y with $\mathcal{C}_x \cup \mathcal{C}_y$ and then remove \mathcal{C}_x from \mathcal{T}' .
- 6. Go back to step 2.

Theorem 2. Consider an arbitrary solution \mathbf{X}_{ref} of the decomposed SDP problem (3.2). The output of the matrix completion algorithm, denoted as \mathbf{X}_{opt} , is a solution of the original SDP problem (3.1). Moreover, the rank of \mathbf{X}_{opt} is smaller than or equal to:

$$\max\left\{ \operatorname{rank}\left\{ \mathbf{X}_{\operatorname{ref}}\left\{ \mathcal{C}_{r},\mathcal{C}_{r}\right\} \right\} \ \middle| \ r=1,\ldots,q \right\}.$$

Proof. See [49; 50] for the proof.

3.4 Alternating Direction Method of Multipliers

For the convenience of the reader, the ADMM algorithm is restated in this section. Consider the optimization problem

$$\begin{array}{ll} \underset{\mathbf{x} \in \mathbb{R}^{n_x} \\ \mathbf{y} \in \mathbb{R}^{n_y} \end{array}}{\text{minimize}} & f(\mathbf{x}) + g(\mathbf{y}) & (3.5a) \\ \text{subject to} & \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} = \mathbf{c}. & (3.5b) \end{array}$$

where $\mathbf{c} \in \mathbb{R}^{n_c}$, $\mathbf{A} \in \mathbb{R}^{n_c \times n_x}$ and $\mathbf{B} \in \mathbb{R}^{n_c \times n_y}$ are given matrices. Also $f : \mathbb{R}^{n_x} \to \mathbb{R} \cup \{+\infty\}$ and $g : \mathbb{R}^{n_y} \to \mathbb{R} \cup \{+\infty\}$ are given convex functions. Notice that the variables \mathbf{x} and \mathbf{y} are coupled through the linear constraint (3.5b) while the objective function is separable.

The augmented Lagrangian function for problem (3.5) is equal to

$$\mathcal{L}_{\mu}(\mathbf{x}, \mathbf{y}, \lambda) = f(\mathbf{x}) + g(\mathbf{y})$$
(3.6a)

$$+\lambda^{\mathrm{T}}(\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} - \mathbf{c}) \tag{3.6b}$$

$$+ (\mu/2) \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} - \mathbf{c}\|_2^2, \qquad (3.6c)$$

where $\lambda \in \mathbb{R}^{n_c}$ is the Lagrange multiplier associated with the constraint (3.5b), and $\mu \in \mathbb{R}$ is a fixed parameter. ADMM is one approach for solving problem (3.5), which performs the following procedure at each iteration [7]:

$$\mathbf{x}^{k+1} = \underset{\mathbf{x} \in \mathbb{R}^{n_x}}{\operatorname{arg\,min}} \quad \mathcal{L}_{\mu}(\mathbf{x}, \mathbf{y}^k, \lambda^k), \tag{3.7a}$$

$$\mathbf{y}^{k+1} = \underset{\mathbf{y} \in \mathbb{R}^{n_y}}{\operatorname{arg\,min}} \quad \mathcal{L}_{\mu}(\mathbf{x}^{k+1}, \mathbf{y}, \lambda^k), \tag{3.7b}$$

$$\lambda^{k+1} = \lambda^k + \mu(\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{y}^{k+1} - \mathbf{c}).$$
(3.7c)

where k = 0, 1, 2, ..., for an arbitrary initialization $(\mathbf{x}^0, \mathbf{y}^0, \lambda^0)$. In these equations, "argmin" means an arbitrary minimizer of a convex function and does not need any uniqueness assumption. Notice that each of the updates (3.7a) and (3.7b) is an optimization sub-problem with respect to either \mathbf{x} and \mathbf{y} , by freezing the other variable at its latest value. We employ the energy sequence $\{\varepsilon^k\}_{k=1}^{\infty}$ proposed in [24] as measure for convergence:

$$\varepsilon^{k+1} = (1/\mu) \|\lambda^{k+1} - \lambda^k\|_2^2 + \mu \|\mathbf{B}(y^{k+1} - y^k)\|_2^2$$
(3.8)

ADMM is particularly interesting for the cases where (3.7a) and (3.7b) can be performed efficiently through an explicit formula. Under such circumstances, it would be possible to execute a large number of iterations in a short amount of time. In this section, we first cast the decomposed SDP problem (3.2) in the form of (3.5) and then regroup the variables into two blocks \mathcal{P}_1 and \mathcal{P}_2 playing the roles of \mathbf{x} and \mathbf{y} in the ADMM algorithm.

3.4.1 Projection Into Positive Semidefinite Cone

The algorithm to be proposed in this work requires the projection of q matrices belonging to $\mathbb{H}^{|\mathcal{C}_1|}, \mathbb{H}^{|\mathcal{C}_2|}, \ldots, \mathbb{H}^{|\mathcal{C}_q|}$ onto the positive semidefinite cone. This is probably the most computationally expensive part of each iteration.

Definition 7. For a given Hermitian matrix $\widehat{\mathbf{Z}}$, define the unique solution to the optimization problem

$$\min_{\mathbf{Z} \in \mathbb{H}^m} \|\mathbf{Z} - \widehat{\mathbf{Z}}\|_F^2$$
(3.9a)

subject to
$$\mathbf{Z} \succeq 0$$
 (3.9b)

as the projection of $\widehat{\mathbf{Z}}$ onto the cone of positive semidefinite matrices, and denote it as $\widehat{\mathbf{Z}}^+$.

The next Lemma reveals the interesting fact that problem (3.9) can be solved through an eigenvalue decomposition of $\widehat{\mathbf{Z}}$.

Lemma 1. Let $\widehat{\mathbf{Z}} = \mathbf{Q} \times \operatorname{diag}\{(\nu_1 \dots, \nu_m)\} \times \mathbf{Q}^*$ denote the eigenvalue decomposition of $\widehat{\mathbf{Z}}$. The solution of the projection problem (3.9) is given by

$$\widehat{\mathbf{Z}}^+ = \mathbf{Q} \times \operatorname{diag}\{(\max\{\nu_1, 0\}, \dots, \max\{\nu_m, 0\})\} \times \mathbf{Q}^*$$

Proof. See [51] for the proof.

3.4.2 ADMM for Decomposed SDP

We apply ADMM to the following reformulation of the decomposed SDP problem (3.2):

$$\begin{array}{ll}
\underset{\mathbf{X}\in\mathcal{S}(\mathbf{C})}{\min i z_{\mathbf{X},s\in\mathcal{S}(\mathbf{C})}} & z_{0} + \sum_{s=1}^{p} \mathcal{I}_{l_{s},u_{s}}(z_{s}) + \sum_{r=1}^{q} \mathcal{J}_{r}(\mathbf{X}_{C;r}) \\ \underset{\mathbf{X}_{C;r}\in\mathcal{S}(\mathbf{C}_{r})\}_{r=1}^{q}}{\{z_{s}\in\mathbb{R}\}_{s=0}^{p}} & z_{0} + \sum_{s=1}^{p} \mathcal{I}_{l_{s},u_{s}}(z_{s}) + \sum_{r=1}^{q} \mathcal{J}_{r}(\mathbf{X}_{C;r}) \\ \\ \underset{\mathbf{X}_{C;r}\in\mathcal{S}(\mathbf{C}_{r})\}_{r=1}^{q}}{\operatorname{subject to}} & \mathbf{X}\circ\mathbf{C}_{r} = \mathbf{X}_{C;r}, & r = 1, 2, \dots, q, \quad (3.10a) \\ \\ \mathbf{X}\circ\mathbf{N}_{s} = \mathbf{X}_{N;s}, & s = 0, 1, \dots, p, \quad (3.10b) \\ \\ z_{s} = \langle \mathbf{M}_{s}, \mathbf{X}_{N;s} \rangle, & s = 0, 1, \dots, p. \quad (3.10c) \\ \end{array}$$

$$\mathcal{J}_r(\mathbf{X}) = \mathcal{J}_r(\mathbf{X} \circ \mathbf{C}_r) \stackrel{(3.10a)}{=} \mathcal{J}_r(\mathbf{X}_{C;r}) = 0$$

If **X** is a feasible solution of (3.10) with a finite objective value, then

which concludes that $\mathbf{X}\{\mathcal{C}_r, \mathcal{C}_r\} \succeq 0$. Also,

$$\begin{split} \mathcal{I}_{l_s,u_s}(\langle \mathbf{X},\mathbf{M}_s\rangle) &= \mathcal{I}_{l_s,u_s}(\langle \mathbf{X} \circ \mathbf{N}_s,\mathbf{M}_s\rangle) \\ &\stackrel{(3.10b)}{=} \mathcal{I}_{l_s,u_s}(\langle \mathbf{X}_{N;s},\mathbf{M}_s\rangle) \\ &\stackrel{(3.10c)}{=} \mathcal{I}_{l_s,u_s}(z_s) = 0 \end{split}$$

which yields that $l_s \leq \langle \mathbf{X}, \mathbf{M}_s \rangle \leq u_s$. Therefore, **X** is a feasible point for problem (3.2) as well, with the same objective value. Define

- 1. $\Lambda_{C;r} \in \mathcal{S}(\mathbf{C}_r)$ as the Lagrange multiplier associated with the constraint (3.10a) for $r = 1, 2, \ldots, q$,
- 2. $\Lambda_{N;s} \in \mathcal{S}(\mathbf{N}_s)$ as the Lagrange multiplier associated with the constraint (3.10b) for $s = 0, 1, \ldots, p$,

3. $\lambda_{z;s} \in \mathbb{R}$ as the Lagrange multiplier associated with the constraint (3.10c) for s = 0, 1, ..., p. We regroup the primal and dual variables as

(Block 1)
$$\mathcal{P}_1 = (\mathbf{X}, \{z_s\}_{s=0}^p)$$

(Block 2) $\mathcal{P}_2 = (\{\mathbf{X}_{C;r}\}_{r=1}^q, \{\mathbf{X}_{N;s}\}_{s=0}^p)$
(Dual) $\mathcal{D} = (\{\mathbf{\Lambda}_{C;r}\}_{r=1}^q, \{\mathbf{\Lambda}_{N;s}\}_{s=0}^p, \{\lambda_{z;s}\}_{s=0}^p).$

Note that "block 1", "block 2" and " \mathcal{D} " play the roles of \mathbf{x} , \mathbf{y} and λ in the standard formulation of ADMM, respectively. The augmented Lagrangian can be calculated as

$$(2/\mu)\mathcal{L}_{\mu}(\mathcal{P}_{1},\mathcal{P}_{2},\mathcal{D}) = \mathcal{L}_{D}(\mathcal{D})/\mu^{2} + \|z_{0} - \langle \mathbf{M}_{0}, \mathbf{X}_{N;0} \rangle + (1 + \lambda_{z;0})/\mu\|_{F}^{2} + \sum_{s=1}^{p} \|z_{s} - \langle \mathbf{M}_{s}, \mathbf{X}_{N;s} \rangle + \lambda_{z;s}/\mu\|_{F}^{2} + (2/\mu)\mathcal{I}_{l_{s},u_{s}}(z_{s}) + \sum_{r=1}^{q} \|\mathbf{X} \circ \mathbf{C}_{r} - \mathbf{X}_{C;r} + (1/\mu)\mathbf{\Lambda}_{C;r}\|_{F}^{2} + (2/\mu)\mathcal{J}_{r}(\mathbf{X}_{C;r}) + \sum_{s=1}^{p} \|\mathbf{X} \circ \mathbf{N}_{s} - \mathbf{X}_{N;s} + (1/\mu)\mathbf{\Lambda}_{N;s}\|_{F}^{2}$$
(3.12)

where

$$\mathcal{L}_D(\mathcal{D}) = -(1+\lambda_{z;0})^2 - \sum_{s=1}^p \lambda_{z;s}^2 - \sum_{r=1}^q \|\mathbf{\Lambda}_{C;r}\|_F^2 - \sum_{s=1}^p \|\mathbf{\Lambda}_{N;s}\|_F^2$$

Using the blocks \mathcal{P}_1 and \mathcal{P}_2 , the ADMM iterations for problem (3.10) can be expressed as follows:

- 1. The subproblem (3.7a) in terms of \mathcal{P}_1 consists of two parallel steps:
 - (a) Minimization in terms of X: This step consists of |C| scalar quadratic and unconstrained programs. It possesses an explicit formula that involves |C| parallel multiplication operations.
 - (b) Minimization in terms of $\{z_s\}_{s=0}^p$: This step consists of p+1 scalar quadratic programs each with a box constraint. It possesses an explicit formula that involves p+1 parallel multiplication operations.
- 2. The subproblem (3.7b) in terms of \mathcal{P}_2 also consists of two parallel steps:
 - (a) Minimization in terms of {X_{C;r}}^q_{r=1}: This step consists of q projection problems of the form (3.9). According to Lemma 1, this reduces to q parallel eigenvalue decomposition operations on matrices of sizes |C_r| × |C_r| for r = 1,...,q.
 - (b) Minimization in terms of $\{\mathbf{X}_{N;s}\}_{s=0}^{p}$: This step consists of p unconstrained quadratic programs of sizes $|\mathbf{N}_{s}|$ for s = 0, 1, ..., p. The quadratic programs are parallel and each of them possesses an explicit formula that involves $2|\mathbf{N}_{s}|$ multiplications.

- 3. Computation of the dual variables at each iteration, in equation (3.7c), consists of three parallel steps:
 - (a) Updating $\{\Lambda_{C;r}\}_{r=1}^{q}$: Computational costs for this step involves no multiplications and is negligible.
 - (b) Updating $\{\Lambda_{N;s}\}_{s=0}^{p}$: Computational costs for this step involves no multiplications and is negligible.
 - (c) Updating $\{\lambda_{z;s}\}_{s=0}^{p}$: This step is composed of p+1 parallel inner product computations, each involving $|\mathbf{N}_{s}|$ multiplications for $s = 0, 1, \dots, p$.

The fact that every step of the above algorithm has an explicit easy-to-compute formula makes the algorithm very appealing for large-scale SDPs.

Notation 1. For every $\mathbf{D}, \mathbf{E} \in \mathbb{H}^n$, the notation $\mathbf{D} \oslash_{\mathbf{C}} \mathbf{E}$ refers to the entrywise division of those entries of \mathbf{D} and \mathbf{E} that correspond to the ones of \mathbf{C} i.e.,

$$(\mathbf{D} \oslash_{\mathbf{C}} \mathbf{E})_{ij} \triangleq \begin{cases} D_{ij}/E_{ij} & \text{if } C_{ij} = 1 \\ 0 & \text{if } C_{ij} = 0. \end{cases}$$

Theorem 3. Assume that Slater's conditions hold for the decomposable SDP problem (3.2) and consider the iterative algorithm given in (3.18). The limit of \mathbf{X}^k at $k = +\infty$ is an optimal solution for (3.2).

Proof. The convergence of both primal and dual variables is guaranteed for a standard ADMM problem if the matrix **B** in (3.5b) has full column rank [35]. After realizing that (3.18) is obtained from a two-block ADMM procedure, the theorem can be concluded form the fact that the equivalent of **B** for the algorithm (3.18) is a mapping from the variables $\{\mathbf{X}_{C;r}\}_{r=1}^{q}$ and $\{\mathbf{X}_{N;s}\}_{s=0}^{p}$ to

$$\{\mathbf{X}_{C;r}\}_{r=1}^{q}, \{\mathbf{X}_{N;s}\}_{s=0}^{p} \text{ and } \{\langle \mathbf{M}_{s}, \mathbf{X}_{N;s} \rangle\}_{s=0}^{p}$$

which is not singular, i.e., it has full column rank. The details are omitted for brevity.

In what follows, we elaborate on every step of the ADMM iterations: Block 1: The first step of the algorithm that corresponds to (3.7a) consists of the operation

$$\mathcal{P}_1^{k+1} := \arg\min \ \mathcal{L}_{\mu}(\mathcal{P}_1, \mathcal{P}_2^k, \mathcal{D}^k).$$

Notice that the minimization of $\mathcal{L}_{\mu}(\mathcal{P}_1, \mathcal{P}_2^k, \mathcal{D}^k)$ with respect to \mathcal{P}_1 is decomposable in terms of the real scalars

$$\operatorname{Re}\{X_{ij}\}$$
 for $i = 1, \dots, n; \quad j = i, \dots, n$ (3.14a)

Im{
$$X_{ij}$$
} for $i = 1, ..., n; j = i + 1, ..., n$ (3.14b)

$$z_s \quad \text{for} \quad s = 1, \dots, p \tag{3.14c}$$

which leads to the explicit formulas (3.18a), (3.18b) and (3.18c).

Block 2: The second step of the algorithm that corresponds to (3.7b) consists of the operation

$$\mathcal{P}_2^{k+1} = \arg\min \ \mathcal{L}_\mu(\mathcal{P}_1^{k+1}, \mathcal{P}_2, \mathcal{D}^k)$$

Notice that the minimization of $\mathcal{L}_{\mu}(\mathcal{P}_{1}^{k+1}, \mathcal{P}_{2}, \mathcal{D}^{k})$ with respect to \mathcal{P}_{2} is decomposable in terms of the matrix variables $\{\mathbf{X}_{C;r}\}_{r=1}^{q}$ and $\{\mathbf{X}_{N;s}\}_{s=0}^{p}$. Hence, the update of $\mathbf{X}_{C;r}$ reduces to the problem (3.9) for $\widehat{\mathbf{Z}} = \mathbf{X}_{C;r}\{\mathcal{C}_{r}, \mathcal{C}_{r}\}$. As shown in Lemma 1, this can be performed via the eigenvalue decomposition of a $|\mathcal{C}_{r}| \times |\mathcal{C}_{r}|$ matrix. In addition, the updated value of $\mathbf{X}_{N;s}$ is a minimizer of the function

$$\mathcal{L}_{N;s}(\mathbf{Z}) = \|z_s - \langle \mathbf{M}_s, \mathbf{Z} \rangle + \lambda_{z;s} / \mu\|_F^2 + \|\mathbf{X} \circ \mathbf{N}_s - \mathbf{Z} + (1/\mu)\mathbf{\Lambda}_{N;s}\|_F^2$$
(3.16)

By taking the derivatives of this function, it is possible to find an explicit formula for \mathbf{Z}_{opt} . Define $\mathcal{L}'_{N;s}(\mathbf{Z}) \in \mathcal{S}(\mathbf{N}_s)$ as the gradient of $\mathcal{L}_{N;s}(\mathbf{Z})$ with the following structure:

$$\mathcal{L}'_{N;s}(\mathbf{Z}) \triangleq \left[\frac{\partial \mathcal{L}_{N;s}}{\partial \operatorname{Re}\{Z_{ij}\}} + \mathbf{i}\frac{\partial \mathcal{L}_{N;s}}{\partial \operatorname{Im}\{Z_{ij}\}}\right]_{i,j=1,\dots,n}$$

Then, we have

$$\mathcal{L}'_{N;s}(\mathbf{Z})/2 = \mathbf{Z} - \mathbf{X} \circ \mathbf{N}_s - (1/\mu) \mathbf{\Lambda}_{N,s}$$

 $+ (-z_s + \langle \mathbf{M}_s, \mathbf{Z} \rangle - \lambda_{z;s}/\mu) \mathbf{M}_s.$

Therefore,

$$\mathbf{Z}_{\text{opt}} = \mathbf{X} \circ \mathbf{N}_s + (1/\mu) \mathbf{\Lambda}_{N,s} + y_s \mathbf{M}_s, \qquad (3.17)$$

where $y_s \triangleq z_s - \langle \mathbf{M}_s, \mathbf{Z}^{\text{opt}} \rangle + \lambda_{z;s}/\mu$. Hence, it only remains to derive the scalar y_s , which can be done by inner multiplying \mathbf{M}_s to the both sides of the equation (3.17). This leads to the equations (3.18e) and (3.18f).

ADMM for Decomposed SDP:

Block 1 :		
$\mathbf{X}^{k+1} := \left[\sum_{r=1}^{q} \mathbf{C}_{r} \circ (\mathbf{X}_{C;r}^{k} - \mathbf{\Lambda}_{C;r}^{k}/\mu) + \sum_{s=1}^{p} \mathbf{N}_{s} \circ (\mathbf{X}_{N;s}^{k} - \mathbf{\Lambda}_{N;s}^{k}/\mu)\right] \oslash$	$\mathbf{c}\left[\sum_{r=1}^{q}\mathbf{C}_{r}+\sum_{s=1}^{p}\mathbf{N}_{s}\right]$	(3.18a)
$z_0^{k+1}:=\langle \mathbf{M}_0,\mathbf{X}_{N;0}^k angle-(\lambda_{z;0}^k+1)/\mu$		(3.18b)
$z_s^{k+1} := \max\{\min\{\langle \mathbf{M}_s, \mathbf{X}_{N;s}^k angle - \lambda_{z;s}^k/\mu, u_s\}, l_s\}$	for $s = 1, 2, \dots, p$	(3.18c)
Block 2:		
$\mathbf{X}_{C;r}^{k+1} := (\mathbf{X}^{k+1} \circ \mathbf{C}_r + \mathbf{\Lambda}_{C;r}^k/\mu)^+$	for $r = 1, 2,, q$	(3.18d)
$y_s^{k+1} := \frac{z_s^{k+1} + \lambda_{z;s}^k/\mu - \langle \mathbf{M}_s, \mathbf{N}_s \circ \mathbf{X}^{k+1} + \mathbf{\Lambda}_{N;s}^k/\mu \rangle}{1 + \ \mathbf{M}_s\ _F^2}$	for $s = 0, 1,, p$	(3.18e)
$\mathbf{X}_{N,s}^{k+1} := \mathbf{N}_s \circ \mathbf{X}^{k+1} + \mathbf{\Lambda}_{N,s}^k / \mu + y_s^{k+1} \mathbf{M}_s$	for $s = 0, 1, \dots, p$	(3.18f)
Dual :		
$\mathbf{\Lambda}^{k+1}_{C;r} := \mathbf{\Lambda}^k_{C;r} + \mu(\mathbf{X}^{k+1} \circ \mathbf{C}_r - \mathbf{X}^{k+1}_{C;r})$	for $r = 1, 2, \dots, q$	(3.18g)
$\mathbf{\Lambda}_{N;s}^{k+1} := \mathbf{\Lambda}_{N;s}^k + \mu(\mathbf{X}^{k+1} \circ \mathbf{N}_s - \mathbf{X}_{N;s}^{k+1})$	for $s = 0, 1, \dots, p$	(3.18h)
$\lambda_{z;s}^{k+1} := \lambda_{z;s}^k + \mu(z_s^{k+1} - \langle \mathbf{M}_s, \mathbf{X}_{N;s}^{k+1} \rangle)$	for $s = 0, 1,, p$	(3.18i)

3.5 Optimal Power Flow

Consider an *n*-bus electrical power network with the topology described by a simple graph $\mathcal{H} = (\mathcal{V}_{\mathcal{H}}, \mathcal{E}_{\mathcal{H}})$, meaning that each vertex belonging to $\mathcal{V}_{\mathcal{H}} = \{1, \ldots, n\}$ represents a node of the network and each edge belonging to $\mathcal{E}_{\mathcal{G}}$ represents a transmission line. Let $\mathbf{Y} \in \mathbb{C}^{n \times n}$ denote the admittance matrix of the network. Define $\mathbf{V} \in \mathbb{C}^n$ as the voltage phasor vector, i.e., V_k is the voltage phasor for node $k \in \mathcal{V}_{\mathcal{H}}$. Let $\mathbf{P} + \mathbf{Q}$ i represent the nodal complex power vector, where $\mathbf{P} \in \mathbb{R}^n$ and $\mathbf{Q} \in \mathbb{R}^n$ are the vectors of active and reactive powers injected at all buses. $\mathbf{P} + \mathbf{Q}$ i can be interpreted as the complex-power supply minus the complex-power demand at node k of the network. The classical OPF problem can be described as follows:

$\underset{\mathbf{V} \in \mathbb{C}^n}{\text{minimize}}$	$\sum f_k(P_k)$	(3.19a)
$\mathbf{Q} \in \mathbb{R}^n$ $\mathbf{P} \in \mathbb{R}^n$	$k \in \mathcal{V}_\mathcal{G}$	

subject to
$$V_k^{\min} \le |V_k| \le V_k^{\max}, \qquad k \in \mathcal{N}$$
 (3.19b)

$$Q_k^{\min} \le Q_k \le Q_k^{\max}, \qquad k \in \mathcal{N}$$
 (3.19c)

$$P_k^{\min} \le P_k \le P_k^{\max} \qquad \qquad k \in \mathcal{N} \qquad (3.19d)$$

$$\mathbf{P} + \mathbf{iQ} = \operatorname{diag}\{\mathbf{VV}^*\mathbf{Y}^*\} \tag{3.19e}$$

where V_k^{\min} , V_k^{\max} , P_k^{\min} , P_k^{\max} , Q_k^{\min} and Q_k^{\max} are given network limitations, and $f_k(P_k)$ is a convex function accounting for the power generation cost at node k. This problem may include additional constraints (such as thermal limits over the lines) that are ignored here only for the sake of simplicity in the presentation. For the same reason, assume that the objective function is the total active power loss $\sum_{k \in \mathcal{V}_G} P_k$. More details on a general formulation may be found in [11].

OPF is a highly non-convex problem, which is known to be difficult to solve in general. However, the constraints of problem (3.19) can all be expressed as linear functions of the entries of the quadratic matrix \mathbf{VV}^* . This implies that the constraints of OPF are linear in terms of a matrix variable $\mathbf{W} \triangleq \mathbf{VV}^*$. One can reformulate OPF by replacing each $V_i V_j^*$ by W_{ij} and represent the constraints in the form of problem (3.1) with a representative graph that is isomorphic to the network topology graph \mathcal{H} . In order to preserve the equivalence of the two formulations, two additional constraints must be added to the problem: (i) $\mathbf{W} \succeq 0$, (ii) rank{ \mathbf{W} } = 1. If we drop the rank condition as the only non-convex constraint of the reformulated OPF problem, we attain the SDP relaxation of OPF that is convex:

$$\min_{\mathbf{W} \in \mathbb{H}^n} \quad \langle \mathbf{W}, (\mathbf{Y} + \mathbf{Y}^*)/2 \rangle \tag{3.20a}$$

subject to

$$(V_k^{\min})^2 \leq \langle \mathbf{W}, e_k e_k^* \rangle \leq (V_k^{\max})^2, \qquad k \in \mathcal{V}_{\mathcal{H}}$$
(3.20b)

$$Q_k^{\min} \le \langle \mathbf{W}, \mathbf{Y}_{Q;k} \rangle \le Q_k^{\max}, \qquad k \in \mathcal{V}_{\mathcal{H}}$$
(3.20c)

$$P_k^{\min} \le \langle \mathbf{W}, \mathbf{Y}_{P;k} \rangle \le P_k^{\max}, \qquad k \in \mathcal{V}_{\mathcal{H}}$$
(3.20d)

$$\mathbf{W} \succeq 0 \tag{3.20e}$$

CHAPTER 3. A FAST PARALLELIZABLE ALGORITHM FOR CONVEX RELAXATION OF OPTIMAL POWER FLOW PROBLEM 44

Test cases	p	q	Maximum	Running time of
			size of bags	1000 iterations (sec)
Chow's 9 bus	27	7	3	6.18
IEEE 14 bus	42	12	3	9.96
IEEE 30 bus	90	18	4	14.66
IEEE 57 bus	171	26	6	21.25
IEEE 118 bus	354	66	5	53.13
IEEE 300 bus	900	111	7	98.95

Table 3.1: Running time of the proposed algorithm for solving the SDP relaxation of OPF problem on IEEE test cases.

where e_1, \ldots, e_n denote the standard basis vectors in \mathbb{R}^n and

$$\begin{aligned} \mathbf{Y}_{Q;k} &\triangleq \frac{1}{2\mathbf{i}} (\mathbf{Y}_{k}^{*} e_{k} e_{k}^{*} - e_{k} e_{k}^{*} \mathbf{Y}) \\ \mathbf{Y}_{P;k} &\triangleq \frac{1}{2} (\mathbf{Y}^{*} e_{k} e_{k}^{*} + e_{k} e_{k}^{*} \mathbf{Y}) \end{aligned}$$

for every $k \in \mathcal{V}_{\mathcal{H}}$.

As stated in the introduction, several papers in the literature have shown great promises for finding global or near-global solutions of OPF using the above relaxation. The major drawback of relaxing the OPF problem to an SDP is the requirement of defining a matrix variable, which makes the number of scalar variables of the problem quadratic with respect to the number of network buses. However, we have shown in [50] that real-world grids would have a low treewidth, e.g., at most 26 for the Polish test system with over 3000 buses. This makes our proposed numerical algorithm scalable and highly parallelizable for the above SDP relaxation. As an example, the SDP relaxation of OPF for the Polish Grid amounts to simple operations over matrices of size 27 by 27 or smaller.

3.6 Simulation Results

In this section, we evaluate the performance of the proposed algorithm for solving the SDP relaxation of OPF over IEEE test cases. All simulations are run in MATLAB using a laptop with

an Intel Core i7 quad-core 2.5 GHz CPU and 12 GB RAM. As shown in Figure 3.1, the energy function ε^k (as defined in (3.8)) is monotonically decreasing for all simulated cases. In addition, the utmost accuracy of 10^{-25} is ultimately achievable for all these systems. The time per 1000 iteration is between 6.18 and 100 seconds in a MATLAB implementation, which can be reduced significantly in C++ and by parallel computing. We have verified that these numbers diminish by at least a factor of 3 if certain small-sized bags are combined to obtain a modest number of bags. This shows a trade-off between the chosen granularity for the algorithm and its computation time for a serial implementation (as opposed to a parallel implementation). To elaborate on the algorithm, note that every iteration amounts to a basic matrix operation or an eigendecomposition over matrices of size at most 7 × 7 for the IEEE 300-bus system. Efficient preconditioning methods could dramatically reduce the number of iterations (as OPF is often very ill-conditioned due to high inductance-to-resistance ratios), and this is left for future work.

3.7 Summary

The main objective of this chapter is to design a fast and parallelizable algorithm for solving sparse SDPs corresponding to the convex relaxation of power optimization problems. To this end, the underling sparsity structure of a given SDP problem is captured using a tree decomposition technique, leading to a decomposed SDP problem. A highly distributed/parallelizable numerical algorithm is developed for solving the decomposed SDP, based on the alternating direction method of multipliers (ADMM). Each iteration of the designed algorithm has a closed-form solution, which involves multiplications and eigenvalue decompositions over certain submatrices induced by the tree decomposition of the sparsity graph. The proposed algorithm is applied to the classical optimal power flow problem, and also evaluated on IEEE benchmark systems. This algorithm is well suited for power optimization problems since it exploits the fact that real-world power networks have a low treewidth.

Figure 3.1: These plots show the convergence behavior of the energy function ε^k for IEEE test cases. (a): Chow's 9 bus, (b): IEEE 14 bus, (c): IEEE 30 bus, (d): IEEE 57 bus, (e): IEEE 118 bus, (f): IEEE 300 bus.

Chapter 4

Convex Relaxation for Optimal Distributed Control Problem

This chapter is concerned with the optimal distributed control (ODC) problem. We first study the infinite-horizon ODC problem (for deterministic systems) and then generalize the results to a stochastic ODC problem (for stochastic systems). By adopting a Lyapunov approach, we show that each of these non-convex controller design problems admits a rank-constrained formulation, which can be relaxed to a semidefinite program (SDP). The notion of treewidth is then utilized to prove that the SDP relaxation has a matrix solution with rank at most 3. If the SDP relaxation has a rank-1 solution, a globally optimal solution can be recovered from it; otherwise, a near-optimal controller together with a bound on its optimality degree may be attained. Since the proposed SDP relaxation is not computationally attractive, a computationally-cheap SDP relaxation is also developed. It is shown that this relaxation works as well as Riccati equations in the extreme case of designing a centralized controller. The superiority of the proposed technique is demonstrated on several thousand simulations for mass spring and random systems.

4.1 Introduction

Real-world systems mostly consist of many interconnected subsystems, and designing an optimal controller for them pose several challenges to the field of control. The area of *distributed control* is created to address the challenges arising in the control of these systems. The objective is to design

CHAPTER 4. CONVEX RELAXATION FOR OPTIMAL DISTRIBUTED CONTROL PROBLEM

a constrained controller whose structure is specified by a set of permissible interactions between the local controllers with the aim of reducing the computation or communication complexity of the overall controller. If the local controllers are not allowed to exchange information, the problem is often called *decentralized controller* design. It has been long known that the design of an optimal distributed (decentralized) controller is a daunting task because it amounts to an NP-hard optimization problem in general [19; 20]. Great effort has been devoted to investigating this highly complex problem for special types of systems, including spatially distributed systems [52; 53; 54; 55; 56], dynamically decoupled systems [57; 58], weakly coupled systems [59], and strongly connected systems [60].

There is no surprise that the decentralized control problem is computationally hard to solve. This is a consequence of the fact that several classes of optimization problems, including polynomial optimization and quadratically-constrained quadratic program (QCQP) as a special case, are NPhard in the worst case. Due to the complexity of such problems, various convex relaxation methods based on linear matrix inequality (LMI), semidefinite programming (SDP), and second-order cone programming (SOCP) have gained popularity [21; 22]. These techniques enlarge the possibly nonconvex feasible set into a convex set characterizable via convex functions, and then provide the exact or a lower bound on the optimal objective value. The SDP relaxation usually converts an optimization with a vector variable to a convex optimization with a matrix variable, via a lifting technique. The exactness of the relaxation can then be interpreted as the existence of a low-rank (e.g., rank-1) solution for the SDP relaxation. Several papers have studied the existence of a low-rank solution to matrix optimizations with linear or nonlinear (e.g., LMI) constraints. For instance, the papers [61; 62; 63] provide an upper bound on the lowest rank among all solutions of a feasible LMI problem. A rank-1 matrix decomposition technique is developed in [64] to find a rank-1 solution whenever the number of constraints is small. It was shown in [11] and [65] that the SDP relaxation is able to solve a large class of non-convex energy-related optimization problems performed over power networks. The success of the relaxation was related to the hidden structure of those optimizations induced by the physics of a power grid. Inspired by this positive result, the notion of "nonlinear optimization over graph" was developed in [66] and [67]. This technique maps the structure of an abstract nonlinear optimization into a graph from which the exactness of the SDP relaxation may be concluded. By adopting the graph technique developed in |66| and |67|, the

CHAPTER 4. CONVEX RELAXATION FOR OPTIMAL DISTRIBUTED CONTROL PROBLEM

objective of this chapter is to study the potential of the SDP relaxation for the optimal distributed control problem.

In this chapter, two problems of infinite-horizon ODC (for deterministic systems) and stochastic ODC (for stochastic systems) are studied. Our approach rests on formulating each of these problems as a rank-constrained optimization from which an SDP relaxation can be derived. With no loss of generality, this chapter focuses on the design of a static controller. As the first contribution of this chapter, we show that infinite-horizon ODC and stochastic ODC both admit sparse SDP relaxations with solutions of rank at most 3. Since a rank-1 SDP matrix can be mapped back into a globally-optimal controller, the rank-3 solution may be deployed to retrieve a near-global controller.

Since the proposed relaxations are computationally expensive, we propose two computationally cheap SDP relaxations associated with infinite-horizon ODC and stochastic ODC. Afterwards, we develop effective heuristic methods to recover a near-optimal controller from the low-rank SDP solution. Note that the computationally-cheap SDP relaxations associated with infinite-horizon ODC and stochastic ODC are both exact for the classical (centralized) LQR and H_2 problems. This implies that the relaxations indirectly solve Riccati equations in the extreme case where the controller under design is unstructured. In this chapter, we conduct thousands of simulations on a mass-spring system and 100 random systems to elucidate the efficacy of the proposed relaxations. In particular, the design of several near-optimal structured controllers with global optimality degrees above 99% will be demonstrated.

This chapter is organized as follows. The ODC problem is formulated in Section 4.2. The SDP relaxation of an arbitrary QCQP is thoroughly studied via a graph- theoretic approach in Section 4.3. The infinite-horizon ODC problem is studied in Section 4.4. The results are generalized to a stochastic ODC problem in Section 4.5. Various experiments on mass spring systems and random simulations are provided in Section 4.6. A summary is given in Section 4.7.

Notations: \mathbb{R} , \mathbb{S}^n and \mathbb{S}^n_+ denote the sets of real numbers, $n \times n$ symmetric matrices and $n \times n$ positive semidefinite matrices, respectively. rank $\{W\}$ and trace $\{W\}$ denote the rank and trace of a matrix W. The notation $W \succeq 0$ means that W is symmetric and positive semidefinite. Given a matrix W, its (l, m) entry is denoted as W_{lm} . Given a block matrix \mathbf{W} , its (l, m) block is shown as \mathbf{W}_{lm} . The superscript $(\cdot)^{\text{opt}}$ is used to show the globally optimal value of an optimization

parameter. The symbols $(\cdot)^T$ and $\|\cdot\|$ denote the transpose and 2-norm operators, respectively. The notation |x| shows the size of a vector x. The expected value of a random variable x is shown as $\mathcal{E}\{x\}$.

4.2 **Problem Formulation**

Consider the discrete-time system

$$\begin{cases} x[\tau+1] = Ax[\tau] + Bu[\tau] \\ y[\tau] = Cx[\tau] \end{cases} \quad \tau = 0, 1, 2, \dots$$
(4.1)

with the known matrices $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{r \times n}$, and $x[0] \in \mathbb{R}^n$. With no loss of generality, assume that C has full row rank. The goal is to design a distributed controller minimizing a quadratic cost function. We focus on the static case where the objective is to design a static controller of the form $u[\tau] = Ky[\tau]$ under the constraint that the controller gain K must belong to a given linear subspace $\mathcal{K} \subseteq \mathbb{R}^{m \times r}$. The set \mathcal{K} captures the sparsity structure of the unknown constrained controller $u[\tau] = Ky[\tau]$ and, more specifically, it contains all $m \times r$ real-valued matrices with forced zeros in certain entries. This problem will be formalized below.

Optimal Distributed Control (ODC) problem: Design a stabilizing static controller $u[\tau] = Ky[\tau]$ to minimize the cost function

$$\sum_{\tau=0}^{p} \left(x[\tau]^{T} Q x[\tau] + u[\tau]^{T} R u[\tau] \right) + \alpha \operatorname{trace} \{ K K^{T} \}$$

$$(4.2)$$

subject to the system dynamics (4.1) and the controller requirement $K \in \mathcal{K}$, for a terminal time p, a nonnegative scalar α , and positive-definite matrices Q and R.

Remark 1. The third term in the objective function of the ODC problem is a soft penalty term aimed at avoiding a high-gain controller. Instead of this soft penalty, we could impose a hard constraint trace{ KK^T } $\leq \beta$, for a given number β . The method to be developed later can readily be adopted for the modified case.

In this chapter of the thesis, we first deal with the **infinite-horizon ODC** problem in Section 4.4, corresponding to the case $p = +\infty$, and then generalize the results to a **stochastic ODC** problem in Section 4.5 This problem will be studied based on the following steps:

CHAPTER 4. CONVEX RELAXATION FOR OPTIMAL DISTRIBUTED CONTROL PROBLEM

- First, the infinite-horizon ODC problem is cast as an optimization with linear matrix inequality constraints as well as quadratic constraints.
- Second, the resulting non-convex problem is formulated as a rank-constrained optimization.
- Third, an SDP relaxation of the problem is derived by dropping the non-convex rank constraint.
- Last, the rank of the minimum-rank solution of the SDP relaxation is analyzed.

In the next section, a sparse QCQP formulation of the ODC problem with a guaranteed lowrank SDP solution will be designed. To achieve this goal, a graph is associated to each QCQP formulation, which is then sparsified to contrive a sparse QCQP problem with a low-rank SDP solution. Please note that neither the infinite-horizon ODC nor the stochastic ODC problems could directly be formulated as a QCQP. The main objective of the next section is to understand Theorem 4, which will later be used in the Lyapunov approach for infinite-horizon ODC and the stochastic ODC problems.

4.3 SDP Relaxation for Quadratic Optimization

The objective of this section is to study the SDP relaxation of a QCQP problem using a graphtheoretic approach. Before proceeding with this part, some notions in graph theory will be reviewed.

4.3.1 Graph Theory Preliminaries

Notation 2. The notation $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ denotes as a graph \mathcal{G} with the vertex set \mathcal{V} and the edge set \mathcal{E} .

Definition 8. For two simple graphs $\mathcal{G}_1 = (\mathcal{V}_1, \mathcal{E}_1)$ and $\mathcal{G}_2 = (\mathcal{V}_2, \mathcal{E}_2)$, the notation $\mathcal{G}_1 \subseteq \mathcal{G}_2$ means that $\mathcal{V}_1 \subseteq \mathcal{V}_2$ and $\mathcal{E}_1 \subseteq \mathcal{E}_2$. \mathcal{G}_1 is called a subgraph of \mathcal{G}_2 and \mathcal{G}_2 is called a supergraph of \mathcal{G}_1 . A subgraph \mathcal{G}_1 of \mathcal{G}_2 is said to be an induced subgraph if for every pair of vertices $v_l, v_m \in \mathcal{V}_1$, the relation $(v_l, v_m) \in \mathcal{E}_1$ holds if and only if $(v_l, v_m) \in \mathcal{E}_2$. In this case, \mathcal{G}_1 is said to be induced by the vertex subset \mathcal{V}_1 .

Definition 9. For two simple graphs $\mathcal{G}_1 = (\mathcal{V}, \mathcal{E}_1)$ and $\mathcal{G}_2 = (\mathcal{V}, \mathcal{E}_2)$ with the same set of vertices, their union is defined as $\mathcal{G}_1 \cup \mathcal{G}_2 = (\mathcal{V}, \mathcal{E}_1 \cup \mathcal{E}_2)$.

CHAPTER 4. CONVEX RELAXATION FOR OPTIMAL DISTRIBUTED CONTROL PROBLEM

Definition 10. The representative graph of an $n \times n$ symmetric matrix W, denoted by $\mathcal{G}(W)$, is a simple graph with n vertices whose edges are specified by the locations of the nonzero off-diagonal entries of W. In other words, two arbitrary vertices i and j are connected if W_{ij} is nonzero.

Consider a graph \mathcal{G} identified by a set of "vertices" and a set of edges. This graph may have cycles in which case it cannot be a tree. Using the notion to be explained below, we can map \mathcal{G} into a tree \mathcal{T} identified by a set of "nodes" and a set of edges where each node of \mathcal{T} contains a group of vertices of \mathcal{G} .

Definition 11 (Treewidth). Given a graph $\mathcal{G} = (\mathcal{V}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}})$, a tree \mathcal{T} is called a tree decomposition of \mathcal{G} if it satisfies the following properties:

- Every node of *T* corresponds to and is identified by a subset of V_G. Alternatively, each node of *T* is regarded as a group of vertices of *G*.
- 2. Every vertex of \mathcal{G} is a member of at least one node of \mathcal{T} .
- For every edge (i, j) of G, there should be a node in T containing vertices i and j simultaneously.
- Given an arbitrary vertex k of G, the subgraph induced by all nodes of T containing vertex k must be connected (more precisely, a tree).

The width of a tree decomposition is the cardinality of its biggest node minus one (recall that each node of \mathcal{T} is indeed a set containing a number of vertices of \mathcal{G}). The treewidth of \mathcal{G} is the minimum width over all possible tree decompositions of \mathcal{G} and is denoted by $\operatorname{tw}(\mathcal{G})$.

Note that the treewidth of a tree is equal to 1. Figure 4.1 shows a graph \mathcal{G} with 6 vertices named a, b, c, d, e, f, together with its minimal tree decomposition \mathcal{T} . Every node of \mathcal{T} is a set containing three members of $\mathcal{V}_{\mathcal{G}}$. The width of this decomposition is therefore equal to 2.

Definition 12 (Enriched Supergraph). Given a graph \mathcal{G} accompanied by a tree decomposition \mathcal{T} of width $t, \overline{\mathcal{G}}$ is called an enriched supergraph of \mathcal{G} derived by \mathcal{T} if it is obtained according to the following procedure:

1. Add a sufficient number of (redundant) vertices to the nodes of \mathcal{T} , if necessary, in such a way that every node includes exactly t+1 vertices. Also, add the same vertices to \mathcal{G} (without

CHAPTER 4. CONVEX RELAXATION FOR OPTIMAL DISTRIBUTED CONTROL PROBLEM

Figure 4.1: A minimal tree decomposition for a ladder

incorporating new edges). Denote the new graphs associated with \mathcal{T} and \mathcal{G} as $\tilde{\mathcal{T}}$ and $\tilde{\mathcal{G}}$, respectively.

- 2. Index the nodes of the tree $\tilde{\mathcal{T}}$ as $V_1, V_2, \ldots, V_{|\mathcal{T}|}$ in such a way that for every $r \in \{1, \ldots, |\mathcal{T}|\}$, the node V_r becomes a leaf of \mathcal{T}^r defined as the subgraph of $\tilde{\mathcal{T}}$ induced by $\{V_1, \ldots, V_r\}$. Denote the neighbor of V_r in \mathcal{T}^r as $V_{r'}$ (note that $V_r \subseteq \mathcal{V}_{\mathcal{G}}$).
- 3. Define $\mathcal{G}^{|\mathcal{T}|} := \tilde{\mathcal{G}}$ and $\mathcal{O}^{|\mathcal{T}|}$ as the empty sequence. Define also $k = |\mathcal{T}|$.
- 4. Let $V_k \setminus V_{k'} = \{o_1, ..., o_s\}$ and $V_{k'} \setminus V_k = \{w_1, ..., w_s\}$. Define

$$\mathcal{G}^{k-1} := \left(\mathcal{V}_{\mathcal{G}^k}, \mathcal{E}_{\mathcal{G}^k} \cup \{ (o_1, w_1), \dots, (o_s, w_s) \} \right)$$

$$(4.3)$$

$$\mathcal{O}^{k-1} := \mathcal{O}^k \cup (o_1, \dots, o_s) \tag{4.4}$$

$$k := k - 1 \tag{4.5}$$

5. If k = 1, set $\overline{\mathcal{G}} := \mathcal{G}^1$, $\mathcal{O} := \mathcal{O}^1$ and terminate; otherwise go to step 4. $\overline{\mathcal{G}}$ is referred to as an enriched supergraph of \mathcal{G} derived by \mathcal{T} .

Step 4 of the above definition is illustrated in Figure 4.2. Figure 4.3 delineates the process of obtaining an enriched supergraph $\overline{\mathcal{G}}$ of the graph \mathcal{G} depicted in Figure 4.1. Bold lines show the edges added at each step of the algorithm.

Figure 4.2: This figure illustrates Step 4 of Definition 12 for designing an enriched supergraph. The shaded area includes the common vertices of the nodes V_k and $V_{k'}$.

4.3.2 SDP Relaxation

Consider the standard nonconvex QCQP problem

$$\min_{x \in \mathbb{R}^n} \quad f_0(x) \tag{4.6a}$$

s.t.
$$f_k(x) \le 0$$
 for $k = 1, ..., p$ (4.6b)

where $f_k(x) = x^T A_k x + 2b_k^T x + c_k$ for $k = 0, \dots, p$. Define

$$F_k \triangleq \begin{bmatrix} c_k & b_k^T \\ b_k & A_k \end{bmatrix} \quad \text{and} \quad w \triangleq [x_0 \quad x^T]^T, \tag{4.7}$$

where $x_0=1$. Given $k \in \{0, 1, ..., p\}$, the function $f_k(x)$ is a homogeneous polynomial of degree 2 with respect to w. Hence, $f_k(x)$ has a linear representation as $f_k(x) = \text{trace}\{F_kW\}$, where

$$W \triangleq ww^T \tag{4.8}$$

Conversely, an arbitrary matrix $W \in \mathbb{S}^{n+1}$ can be factorized as (4.8) with $w_1 = 1$ if and only if it satisfies the three properties: $W_{11} = 1$, $W \succeq 0$, and rank $\{W\} = 1$. Therefore, the general QCQP

CHAPTER 4. CONVEX RELAXATION FOR OPTIMAL DISTRIBUTED CONTROL PROBLEM

Figure 4.3: An enriched supergraph $\overline{\mathcal{G}}$ of the graph \mathcal{G} given in Figure 4.1: (a) the steps of the algorithm (b) the resulting enriched supergraph.

CHAPTER 4. CONVEX RELAXATION FOR OPTIMAL DISTRIBUTED CONTROL PROBLEM

(4.6) can be reformulated as below:

$$\min_{W \in \mathbb{S}^{n+1}} \operatorname{trace}\{F_0W\}$$
(4.9a)

s.t.
$$\operatorname{trace}\{F_kW\} \le 0 \quad \text{for} \quad k = 1, \dots, p$$
 (4.9b)

$$W_{11} = 1$$
 (4.9c)

$$W \succeq 0 \tag{4.9d}$$

$$\operatorname{rank}\{W\} = 1. \tag{4.9e}$$

This optimization is called a **rank-constrained formulation** of the QCQP (4.6). In the above representation of QCQP, the constraint (4.9e) carries all the nonconvexity. Neglecting this constraint yields the convex problem

$$\min_{W \in \mathbb{S}^{n+1}} \operatorname{trace}\{F_0W\}$$
(4.10a)

s.t.
$$\operatorname{trace}\{F_kW\} \le 0 \quad \text{for} \quad k = 1, \dots, p$$
 (4.10b)

$$W_{11} = 1$$
 (4.10c)

$$W \succeq 0, \tag{4.10d}$$

which is called an **SDP relaxation** of the QCQP (4.6). The existence of a rank-1 solution for the SDP relaxation guarantees the equivalence between the original QCQP and its relaxed problem.

4.3.3 Connection Between Rank and Sparsity

To explore the rank of the minimum-rank solution of the SDP relaxation, define $\mathcal{G} = \mathcal{G}(F_0) \cup \cdots \cup \mathcal{G}(F_p)$ as the **sparsity graph** associated with the rank-constrained problem (4.9). The graph \mathcal{G} describes the zero-nonzero pattern of the matrices F_0, \ldots, F_p , or alternatively captures the sparsity level of the QCQP problem (4.6). The graph $\mathcal{G} = (\mathcal{V}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}})$ has the following properties:

- 1. Each vertex of $\mathcal{V}_{\mathcal{G}}$ corresponds to one of the entries of w or equivalently one of the elements of the set $\{x_0, x_1, ..., x_n\}$ (note that $x_0 = 1$). Let the vertex associated with the variable x_i be denoted as v_{x_i} for i = 0, 1, ..., n.
- 2. Given two distinct indices $i, j \in \{0, 1, ..., n\}$, the pair (v_{x_i}, v_{x_j}) is an edge of \mathcal{G} if and only if the monomial $x_i x_j$ has a nonzero coefficient in at least one of the polynomials $f_0(x), f_1(x), \ldots, f_p(x)$.

Let $\overline{\mathcal{G}} = (\mathcal{V}_{\overline{\mathcal{G}}}, \mathcal{E}_{\overline{\mathcal{G}}})$ be an enriched supergraph of \mathcal{G} , obtained from a tree decomposition of width t. Let m denote the number of vertices of $\overline{\mathcal{G}}$.

Theorem 4. Consider an arbitrary solution $\widehat{W} \in \mathbb{S}^{n+1}_+$ of the SDP relaxation problem (4.10) and let $Z \in \mathbb{S}^m$ be a matrix with the property that $\mathcal{G}(Z) = \overline{\mathcal{G}}$. Let $\overline{W}^{\text{opt}}$ denote an arbitrary solution of the optimization

$$\min_{\overline{W}\in\mathbb{S}^m} \operatorname{trace}\{\overline{ZW}\}\tag{4.11a}$$

s.t. $\overline{W}_{kk} = \widehat{W}_{kk}$ for $k \in \mathcal{V}_{\mathcal{G}}$, (4.11b)

$$\overline{W}_{kk} = 1 \qquad \text{for} \quad k \in \mathcal{V}_{\bar{\mathcal{G}}} \setminus \mathcal{V}_{\mathcal{G}}, \tag{4.11c}$$

$$\overline{W}_{ij} = \widehat{W}_{ij} \quad \text{for} \quad (i,j) \in \mathcal{E}_{\mathcal{G}}, \tag{4.11d}$$

$$\overline{W} \succeq 0. \tag{4.11e}$$

Define W^{opt} as the (n + 1)-th principal minor of $\overline{W}^{\text{opt}}$. Then, W^{opt} satisfies the following two properties:

- a) W^{opt} is an optimal solution to the SDP relaxation (4.10).
- b) rank{ W^{opt} } $\leq t + 1$.

Proof. See [63] for the proof.

Assume that a tree decomposition of \mathcal{G} with a small width is known. Theorem 4 states that an arbitrary (high-rank) solution to the SDP relaxation problem can be transformed into a low-rank solution by solving the convex program (4.11).

4.4 Deterministic Control Systems

The primary objective of the ODC problem is to design a structurally constrained gain K. Assume that the matrix K has l free entries to be designed. Denote these parameters as $h_1, h_2, ..., h_l$. To formulate the ODC problem, the space of permissible controllers can be characterized as

$$\mathcal{K} \triangleq \left\{ \sum_{i=1}^{l} h_i M_i \ \middle| \ h \in \mathbb{R}^l \right\}, \tag{4.12}$$

for some (fixed) 0-1 matrices $M_1, ..., M_l \in \mathbb{R}^{m \times r}$. Now, the ODC problem can be stated as follows.

CHAPTER 4. CONVEX RELAXATION FOR OPTIMAL DISTRIBUTED CONTROL PROBLEM

Optimal Distributed Control (ODC) problem: Minimize

$$\sum_{\tau=0}^{p} \left(x[\tau]^{T} Q x[\tau] + u[\tau]^{T} R u[\tau] \right) + \alpha \operatorname{trace} \{ K K^{T} \}$$
(4.13a)

subject to

$$x[\tau + 1] = Ax[\tau] + Bu[\tau]$$
 for $\tau = 0, 1, \dots, p$ (4.13b)

$$y[\tau] = Cx[\tau] \qquad \text{for} \quad \tau = 0, 1, \dots, p \qquad (4.13c)$$

$$u[\tau] = Ky[\tau]$$
 for $\tau = 0, 1, ..., p$ (4.13d)

$$K = h_1 M_1 + \ldots + h_l M_l \tag{4.13e}$$

$$x[0] = \text{given} \tag{4.13f}$$

over the variables

$$x[0], x[1], \dots, x[p] \in \mathbb{R}^n \tag{4.13g}$$

$$y[0], y[1], \dots, y[p] \in \mathbb{R}^r \tag{4.13h}$$

$$u[0], u[1], \dots, u[p] \in \mathbb{R}^m \tag{4.13i}$$

$$h \in \mathbb{R}^l. \tag{4.13j}$$

In this section, we deal with the **infinite-horizon ODC** problem, corresponding to the case $p = +\infty$.

4.4.1 Lyapunov Formulation

To deal with the infinite dimension of the infinite-horizon ODC and its hard stability constraint, a Lyapunov approach will be taken below.

Theorem 5. The infinite-horizon ODC problem is equivalent to finding a controller $K \in \mathcal{K}$, a symmetric Lyapunov matrix $P \in \mathbb{S}^n$, an auxiliary symmetric matrix $G \in \mathbb{S}^n$ and an auxiliary

CHAPTER 4. CONVEX RELAXATION FOR OPTIMAL DISTRIBUTED CONTROL PROBLEM

matrix $L \in \mathbb{R}^{m \times n}$ to satisfy the following optimization problem:

$$\min_{K,L,P,G} \qquad x[0]^T P x[0] + \alpha \operatorname{trace}\{KK^T\}$$
(4.14a)

subject to:

$$\begin{bmatrix} G & G & (AG + BL)^T & L^T \\ G & Q^{-1} & 0 & 0 \\ AG + BL & 0 & G & 0 \\ L & 0 & 0 & R^{-1} \end{bmatrix} \succeq 0,$$
(4.14b)

$$\begin{vmatrix} P & I \\ I & G \end{vmatrix} \succeq 0, \tag{4.14c}$$

$$L = KCG \tag{4.14d}$$

$$K \in \mathcal{K} \tag{4.14e}$$

Proof. Given an arbitrary control gain K, consider the system (4.1) under the controller $u[\tau] = Ky[\tau]$. It is evident that

$$x[\tau] = (A + BKC)^{\tau} x[0], \qquad \tau = 0, 1, ..., \infty$$
(4.15)

Hence, the cost function (4.2) can be written as:

$$\sum_{\tau=0}^{\infty} \left(x[\tau]^T Q x[\tau] + u[\tau]^T R u[\tau] \right) + \alpha \operatorname{trace} \{ K K^T \} = x[0]^T P x[0] + \alpha \operatorname{trace} \{ K K^T \}$$
(4.16)

where

$$P = \sum_{\tau=0}^{\infty} ((A + BKC)^{\tau})^T (Q + C^T K^T RKC) (A + BKC)^{\tau}$$
(4.17)

or equivalently

$$(A + BKC)^T P(A + BKC) - P + Q + (KC)^T R(KC) = 0$$
(4.18a)

$$P \succeq 0 \tag{4.18b}$$

On the other hand, it is well-known that replacing the equality sign "=" in (4.18a) with the inequality sign " \leq " does not affect the solution of the optimization problem [22]. After pre- and post-multiplying the Lyapunov inequality obtained from (4.18a) with P^{-1} and using the Schur
complement formula, the constraints (4.18a) and (4.18b) can be combined as

$$\begin{vmatrix} P^{-1} & P^{-1} & S^T & P^{-1}(KC)^T \\ P^{-1} & Q^{-1} & 0 & 0 \\ S & 0 & P^{-1} & 0 \\ (KC)P^{-1} & 0 & 0 & R^{-1} \end{vmatrix} \succeq 0$$

$$(4.19)$$

where $S = (A + BKC)P^{-1}$ and 0's in the above matrix are zero matrices of appropriate dimensions. By replacing P^{-1} with a new variable G in the above matrix and defining L as KCG, the constraints (4.14b) and (4.14d) will be obtained. The minimization of $x[0]^T Px[0]$ subject to the constraint (4.14c) ensures that $P = G^{-1}$ is satisfied for at least one optimal solution of the optimization problem.

Theorem 6. Consider the special case where C = I, $\alpha = 0$ and \mathcal{K} contains the set of all unstructured controllers. Then, the infinite-horizon ODC problem has the same solution as the convex optimization problem obtained from the nonlinear optimization (4.14) by removing its non-convex constraint (4.14d).

Proof. It is easy to verify that a solution $(K^{\text{opt}}, P^{\text{opt}}, G^{\text{opt}}, L^{\text{opt}})$ of the convex problem stated in the theorem can be mapped to the solution $(L^{\text{opt}}(G^{\text{opt}})^{-1}, P^{\text{opt}}, G^{\text{opt}}, L^{\text{opt}})$ of the non-convex problem (4.14) and vice versa (recall that C = I by assumption). This completes the proof.

4.4.2 SDP Relaxation

Theorem 6 states that a classical optimal control problem can be precisely solved via a convex relaxation of the nonlinear optimization (4.14) by eliminating its constraint (4.14d). However, this simple convex relaxation does not work satisfactorily for a general control structure \mathcal{K} . To design a better relaxation, define

$$w := \begin{bmatrix} 1 & h^T & \operatorname{vec}\{CG\}^T \end{bmatrix}^T$$
(4.20)

where h is a column vector containing the variables (free parameters) of K, and $vec{CG}$ is a column vector containing all scalar entries of CG. It is possible to write every entry of the bilinear matrix term KCG as a linear function of the entries of the parametric matrix ww^{T} . Hence, by introducing a new matrix variable W playing the role of ww^{T} , the nonlinear constraint (4.14d) can be rewritten as a linear constraint in term of W. In addition, the term α trace $\{KK^T\}$ in the objective function of the ODC problem is also linear in W. Now, one can relax the non-convex mapping constraint $W = ww^T$ to $W \succeq 0$ and another constraint stating that the first column of W is equal to w. This convex problem is referred to as **SDP relaxation of ODC** in this work. In the case where the relaxation has the same solution as ODC, the relaxation is said to be <u>exact</u>.

Theorem 7. Consider the case where \mathcal{K} contains only diagonal matrices. The following statements hold regarding the SDP relaxation of the infinite-horizon ODC problem:

- i) The relaxation is exact if it has a solution $(K^{opt}, P^{opt}, G^{opt}, L^{opt}, W^{opt})$ such that rank $\{W^{opt}\} = 1$.
- ii) The relaxation always has a solution $(K^{opt}, P^{opt}, G^{opt}, L^{opt}, W^{opt})$ such that rank $\{W^{opt}\} \leq 3$.

Proof. To study the SDP relaxation of the aforementioned control problem, we need to define a sparsity graph \mathcal{G} . Let η denote the number of rows of W. The graph \mathcal{G} has η vertices with the property that two arbitrary disparate vertices $i, j \in \{1, 2, ..., \eta\}$ are connected in the graph if W_{ij} appears in at least one of the constraints of the SDP relaxation excluding the global constraint $W \succeq 0$. For example, vertex 1 is connected to all remaining vertices of the graph. The graph \mathcal{G} with its vertex 1 removed is depicted in Figure 4.4. This graph is acyclic and therefore the treewidth of the graph \mathcal{G} is at most 2. Hence, It follows from Theorem 4 that the SDP relaxation has a matrix solution with rank at most 2+1.

Theorem 7 states that the SDP relaxation of the infinite-horizon ODC problem has a low-rank solution. However, it does not imply that every solution of the relaxation is low-rank. Theorem 4 provides a procedure for converting a high-rank solution of the SDP relaxation into a matrix solution with rank at most 3. The above theorem will be generalized below.

Proposition 1. The infinite-horizon ODC problem has a convex relaxation with the property that its exactness amounts to the existence of a rank-1 matrix solution W^{opt} . Moreover, it is always guaranteed that this relaxation has a solution such that rank $\{W^{opt}\} \leq 3$.

Proof. The procedure of designing an SDP relaxation with a guaranteed low-rank solution will be only sketched here. There are two binary matrices Φ_1 and Φ_2 such that $K = \Phi_1 \operatorname{diag}\{k\}\Phi_2$ for

Figure 4.4: The sparsity graph for the infinite-horizon ODC problem in the case where \mathcal{K} consists of diagonal matrices (the central vertex 1 is removed for simplicity).

every $K \in \mathcal{K}$, where diag $\{k\}$ denotes a diagonal matrix whose diagonal contains the free (variable) entries of K. Hence, the design of a structured control gain K for the system (A, B, C) amounts to the design of a diagonal control gain diag $\{k\}$ for the system $(A, B\Phi_1, \Phi_2 C)$ (after updating the matrices Q and R accordingly). It follows from Theorem 7 that the SDP relaxation of the ODC problem equivalently formulated for the new system satisfies the properties of this theorem.

In this section, it has been shown that the infinite-horizon ODC problem has an SDP relaxation with a low-rank solution. Nevertheless, there are many SDP relaxations with this property and it is desirable to find the one offering the highest lower bound on the optimal solution of the ODC problem. To this end, the abovementioned SDP relaxation should be reformulated in such a way that the diagonal entries of the matrix W are incorporated into as many constraints of the problem as possible in order to indirectly penalize the rank of the matrix W. This idea will be flourished next, but for a computationally-cheap relaxation of the ODC problem.

4.4.3 Computationally-Cheap SDP Relaxation

The aforementioned SDP relaxation has a high dimension for a large-scale system, which makes it less interesting for computational purposes. Moreover, the quality of its optimal objective value

can be improved using some indirect penalty technique. The objective of this subsection is to offer a computationally-cheap SDP relaxation for the ODC problem, whose solution outperforms that of the previous SDP relaxation. For this purpose, Consider an invertible matrix $\Phi \in \mathbb{R}^{n \times n}$ such that

$$C\Phi = \left[\begin{array}{cc} I & 0 \end{array} \right] \tag{4.21}$$

where I the is identity matrix and "0" is an $r \times (n-r)$ zero matrix. Define also

$$\mathcal{K}^2 = \{ KK^T \mid K \in \mathcal{K} \}$$
(4.22)

Indeed, \mathcal{K}^2 captures the sparsity pattern of the matrix KK^T . For example, if \mathcal{K} consists of blockdiagonal (rectangular) matrix, \mathcal{K}^2 will also include block-diagonal (square) matrices. Let $\mu \in \mathbb{R}$ be a positive number such that

$$Q \succ \mu \times \Phi^{-T} \Phi^{-1} \tag{4.23}$$

where Φ^{-T} denotes the transpose of the inverse of Φ . Define $\widehat{Q} := Q - \mu \times \Phi^{-T} \Phi^{-1}$.

Computationally-Cheap SDP Relaxation of ODC: This optimization problem is defined as the minimization of

trace{
$$x[0]^T P x[0] + \alpha \mathbf{W}_{33}$$
} (4.24)

subject to the constraints

$$\begin{bmatrix} G - \mu \mathbf{W}_{22} & G & (AG + BL)^T & L^T \\ G & \widehat{Q}^{-1} & 0 & 0 \\ AG + BL & 0 & G & 0 \\ L & 0 & 0 & R^{-1} \end{bmatrix} \succeq 0, \qquad (4.25a)$$

$$\begin{bmatrix} P & I \\ P & I \end{bmatrix} \succeq 0 \qquad (4.25b)$$

$$\begin{bmatrix} I & I \\ I & G \end{bmatrix} \succeq 0, \tag{4.25b}$$

$$\mathbf{W} := \begin{bmatrix} I_n & \Phi^{-1}G & K^T \\ 0 & 0 \end{bmatrix}$$
$$:= \begin{bmatrix} I_n & \Phi^{-1}G & K^T \\ 0 & 0 \end{bmatrix} \succeq 0, \qquad (4.25c)$$
$$:= \begin{bmatrix} K & 0 \\ K & 0 \end{bmatrix} & K^T \\ := \begin{bmatrix} K & 0 \end{bmatrix} = \begin{bmatrix} 1 & K^T \\ K & 0 \end{bmatrix} = \begin{bmatrix} 1 & K^T \\ K & 0 \end{bmatrix} = \begin{bmatrix} 1 & K^T \\ K & 0 \end{bmatrix}$$

$$K \in \mathcal{K},\tag{4.25d}$$

 $\mathbf{W}_{33} \in \mathcal{K}^2, \tag{4.25e}$

with the parameter set $\{K, L, G, P, \mathbf{W}\}$, where the dependent variables \mathbf{W}_{22} and \mathbf{W}_{33} represent two blocks of \mathbf{W} .

The following remarks can be made regarding the computationally-cheap SDP relaxation:

- The constraint (4.25a) corresponds to the Lyapunov inequality associated with (4.18a), where \mathbf{W}_{22} in its first block aims to play the role of $P^{-1}\Phi^{-T}\Phi^{-1}P^{-1}$.
- The constraint (4.25b) ensures that the relation $P = G^{-1}$ occurs at optimality (at least for one of the solution of the problem).
- The constraint (4.25c) is a surrogate for the only complicating constraint of the ODC problem, i.e., L = KCG.
- Since no non-convex rank constraint is imposed on the problem to maintain the convexity of the relaxation, the rank constraint is compensated in various ways. More precisely, the entries of \mathbf{W} are constrained in the objective function (4.24) through the term trace{ $\alpha \mathbf{W}_{33}$ }, in the first block of the constraint (4.25a) through the term $G \mu \mathbf{W}_{22}$, and also via the constraints (4.25d) and (4.25e). These terms aim to automatically penalize the rank of \mathbf{W} indirectly.
- The proposed relaxation takes advantage of the sparsity of not only K, but also KK^T (through the constraint (4.25e)).

Theorem 8. The computationally-cheap SDP relaxation is a convex relaxation of the infinitehorizon ODC problem. Furthermore, the relaxation is exact if and only if it possesses a solution $(K^{opt}, L^{opt}, P^{opt}, G^{opt}, \mathbf{W}^{opt})$ such that $rank\{\mathbf{W}^{opt}\} = n$.

Proof. The objective function and constraints of the computationally-cheap SDP relaxation are all linear functions of the tuple (K, L, P, G, \mathbf{W}) . Hence, this relaxation is indeed convex. To study the relationship between this optimization problem and the infinite-horizon ODC, consider a feasible point (K, L, P, G) of the ODC formulation (4.14). It can be deduced from the relation L = KCG that (K, L, P, G, \mathbf{W}) is a feasible solution of the computationally-cheap SDP relaxation if the free blocks of \mathbf{W} are considered as

$$\mathbf{W}_{22} = G\Phi^{-T}\Phi^{-1}G, \qquad \mathbf{W}_{33} = KK^T \tag{4.26}$$

(note that (4.14b) and (4.25a) are equivalent for this choice of **W**). This implies that computationallycheap SDP problem is a convex relaxation of the infinite-horizon ODC problem.

Consider now a solution $(K^{\text{opt}}, L^{\text{opt}}, P^{\text{opt}}, G^{\text{opt}}, W^{\text{opt}})$ of the computationally-cheap SDP relaxation such that rank $\{\mathbf{W}^{\text{opt}}\} = n$. Since the rank of the first block of \mathbf{W}^{opt} (i.e., I_n) is already n, a Schur complement argument on the blocks (1, 1), (1, 3), (2, 1) and (2, 3) of \mathbf{W}^{opt} yields that

$$0 = L^{\text{opt}} - \begin{bmatrix} K^{\text{opt}} & 0 \end{bmatrix} (I_n)^{-1} \Phi^{-1} G^{\text{opt}}$$
(4.27)

or equivalently $L^{\text{opt}} = K^{\text{opt}}CG^{\text{opt}}$, which is tantamount to the constraint (4.14d). This implies that $(K^{\text{opt}}, L^{\text{opt}}, P^{\text{opt}}, G^{\text{opt}})$ is a solution of the ODC problem and hence the relaxation is exact. So far, we have shown that the existence of a rank-*n* solution \mathbf{W}^{opt} guarantees the exactness of the relaxation. The converse of this statement can also be proved similarly.

The matrix variable W in the first SDP relaxation of the infinite-horizon ODC problem had $O(n^2)$ rows. In contrast, this number reduces to O(n) for the matrix \mathbf{W} in the computationallycheap SDP relaxation, which significantly reduces the computation time of the relaxation.

Corollary 1. Consider the special case where C = I, $\alpha = 0$ and \mathcal{K} contains the set of all unstructured controllers. Then, the computationally-cheap SDP relaxation is exact for the infinite-horizon ODC problem.

Proof. The proof follows from that of Theorem 6.

4.4.4 Controller Recovery

Once the computationally-cheap SDP relaxation is solved, a controller K must be recovered. This can be achieved in two ways as explained below.

Direct Recovery Method for ODC: A near-optimal controller \hat{K} for the infinite-horizon ODC problem is chosen to be equal to the optimal matrix K^{opt} obtained from the computationally-cheap SDP relaxation.

Indirect Recovery Method for ODC: Let $(K^{\text{opt}}, L^{\text{opt}}, P^{\text{opt}}, G^{\text{opt}}, \mathbf{W}^{\text{opt}})$ denote a solution of the computationally-cheap SDP relaxation. A near-optimal controller \hat{K} for the infinite-horizon ODC problem is recovered by solving a convex program with the variables $K \in \mathcal{K}$ and $\gamma \in \mathbb{R}$ to

minimize the cost function

$$\varepsilon \times \gamma + \alpha \operatorname{trace}\{KK^T\}$$

$$(4.28)$$

subject to the constraint

$$\begin{array}{cccc} (G^{\text{opt}})^{-1} - Q + \gamma I_n & (A + BKC)^T & (KC)^T \\ (A + BKC) & G^{\text{opt}} & 0 \\ (KC) & 0 & R^{-1} \end{array} \right\} \succ 0$$
 (4.29)

where ε is a pre-specified nonnegative number.

The direct recovery method assumes that the controller K^{opt} obtained from the computationallycheap SDP relaxation is near-optimal, whereas the indirect method assumes that the controller K^{opt} might be unacceptably imprecise while the inverse of the Lyapunov matrix is near-optimal. The indirect method is built on the SDP relaxation by fixing G at its optimal value and then perturbing Q as $Q - \gamma I_n$ to facilitate the recovery of a stabilizing controller. It may rarely happen that a stabilizing controller can be recovered from a solution G^{opt} if γ is set to zero. In other words, since the solution of the computationally-cheap SDP relaxation is not exact in general, there may not exist any controller \hat{K} satisfying the Lyapunov equation jointly with G^{opt} . Nonetheless, perturbing the diagonal entries of Q with γ boosts the degree of the freedom of the problem and helps with the existence of a controller \hat{K} . Although none of the proposed recovery methods is universally better than the other one, we have verified in numerous simulations that the indirect recovery method significantly outperforms the direct recovery method with a high probability.

4.5 Stochastic Control Systems

The ODC problem was investigated for a deterministic system in the preceding section. The objective of this section is to generalize the results derived earlier to stochastic systems. To this end, consider the discrete-time system

$$\begin{cases} x[\tau+1] = Ax[\tau] + Bu[\tau] + Ed[\tau] \\ y[\tau] = Cx[\tau] + Fv[\tau] \end{cases} \quad \tau = 0, 1, 2, \dots$$
(4.30)

with the known matrices A, B, C, E, and F, where

• $x[\tau] \in \mathbb{R}^n$, $u[\tau] \in \mathbb{R}^m$ and $y[\tau] \in \mathbb{R}^r$ denote the state, input and output of the system.

• $d[\tau]$ and $v[\tau]$ denote the input disturbance and measurement noise, which are assumed to be zero-mean white-noise random processes.

The goal is to design an optimal distributed controller. In order to simplify the presentation, we focus on the static case where the objective is to design a static controller of the form $u[\tau] = Ky[\tau]$ under the structural constraint $K \in \mathcal{K}$. This section of this chapter is mainly concerned with the following problem.

Stochastic Optimal Distributed Control (SODC) problem: Design a stabilizing static controller $u[\tau] = Ky[\tau]$ to minimize the cost function

$$\lim_{\tau \to +\infty} \mathcal{E}\left(x[\tau]^T Q x[\tau] + u[\tau]^T R u[\tau]\right) + \alpha \operatorname{trace}\{K K^T\}$$
(4.31)

subject to the system dynamics (4.30) and the controller requirement $K \in \mathcal{K}$, for a nonnegative scalar α and positive-definite matrices Q and R.

Define two covariance matrices as below:

$$\Sigma_d = \mathcal{E}\{Ed[0]d[0]^T E^T\}, \quad \Sigma_v = \mathcal{E}\{Fv[0]v[0]^T F^T\}$$
(4.32)

In what follows, the SODC problem will be formulated as a nonlinear optimization program.

Theorem 9. The SODC problem is equivalent to finding a controller $K \in \mathcal{K}$, a symmetric Lyapunov matrix $P \in \mathbb{S}^n$, and auxiliary matrices $G \in \mathbb{S}^n$, $L \in \mathbb{R}^{m \times n}$ and $M \in \mathbb{S}^r$ to minimize the objective function

$$\operatorname{trace}\{P\Sigma_d + M\Sigma_v + K^T R K \Sigma_v\} + \alpha \operatorname{trace}\{K K^T\}$$

$$(4.33)$$

subject to the constraints

$$\begin{bmatrix} G & G & (AG + BL)^T & L^T \\ G & Q^{-1} & 0 & 0 \\ AG + BL & 0 & G & 0 \\ L & 0 & 0 & R^{-1} \end{bmatrix} \succeq 0,$$
(4.34a)
$$\begin{bmatrix} P & I \\ I & G \end{bmatrix} \succeq 0,$$
(4.34b)

$$\begin{bmatrix} M & (BK)^T \\ BK & G \end{bmatrix} \succeq 0, \tag{4.34c}$$

$$L = KCG \tag{4.34d}$$

$$K \in \mathcal{K}$$
 (4.34e)

Proof. It is straightforward to verify that

$$x[\tau] = (A + BKC)^{\tau} x[0] + \sum_{t=0}^{\tau-1} (A + BKC)^{t} Ed[\tau - t - 1] + \sum_{t=0}^{\tau-1} (A + BKC)^{t} BKFv[\tau - t - 1]$$

$$(4.35)$$

for $\tau = 1, 2, ...$ On the other hand, since the controller under design must be stabilizing, $(A + BKC)^{\tau}$ approaches zero as τ goes to $+\infty$. In light of the above equation, it can be verified that

$$\mathcal{E}\left\{\lim_{\tau \to +\infty} \left(x[\tau]^T Q x[\tau] + u[\tau]^T R u[\tau]\right) + \alpha \operatorname{trace}\{KK^T\}\right\} = \\ = \mathcal{E}\left\{\lim_{\tau \to +\infty} x[\tau]^T \left(Q + C^T K^T R K C\right) x[\tau]\right\} \\ + \mathcal{E}\left\{\lim_{\tau \to +\infty} v[\tau]^T F^T K^T R K F v[\tau]\right\} + \alpha \operatorname{trace}\{KK^T\} \\ = \operatorname{trace}\{P\Sigma_d + (BK)^T P(BK)\Sigma_v + K^T R K \Sigma_v + \alpha K K^T\}$$

$$(4.36)$$

where

$$P = \sum_{t=0}^{\infty} \left((A + BKC)^{t} \right)^{T} (Q + C^{T} K^{T} RKC) (A + BKC)^{t}$$
(4.37)

Similar to the proof of Theorem 5, the above infinite series can be replaced by the following expanded

Lyapunov inequality:

$$\begin{vmatrix} P^{-1} & P^{-1} & S^T & P^{-1}(KC)^T \\ P^{-1} & Q^{-1} & 0 & 0 \\ S & 0 & P^{-1} & 0 \\ (KC)P^{-1} & 0 & 0 & R^{-1} \end{vmatrix} \succeq 0$$

$$(4.38)$$

where $S = (A + BKC)P^{-1}$. After replacing P^{-1} and KCP^{-1} with new variables G and L, it can be concluded that:

- The condition (4.38) is identical to the set of constraints (4.34a) and (4.34d).
- The cost function (4.36) can be expressed as

$$\operatorname{trace}\{P\Sigma_d + (BK)^T G^{-1}(BK)\Sigma_v + K^T R K \Sigma_v + \alpha K K^T\}$$
(4.39)

- Since P appears only once in the constraints of the optimization problem (4.33)-(4.34) (i.e., the condition (4.34b)) and the objective function of this optimization includes the term trace{ $P\Sigma_d$ }, the optimal value of P is equal to G^{-1} .
- Similarly, the optimal value of M is equal to $(BK)^T G^{-1}(BK)$.

The proof follows from the above observations.

The SODC problem is cast as a (deterministic) nonlinear program in Theorem 9. This optimization problem is non-convex due only to the complicating constraint (4.34d). More precisely, the removal of this nonlinear constraint makes the optimization problem a semidefinite program (note that the term $K^T R K$ in the objective function is convex due to the assumption $R \succ 0$).

The traditional H_2 optimal control problem (i.e., in the centralized case) can be solved using Riccati equations. It will be shown in the next proposition that the abovementioned semidefinite program correctly solves the centralized H_2 optimal control problem.

Proposition 2. Consider the special case where C = I, $\alpha = 0$, $\Sigma_v = 0$, and \mathcal{K} contains the set of all unstructured controllers. Then, the SODC problem has the same solution as the convex optimization problem obtained from the nonlinear optimization (4.33)-(4.34) by removing its non-convex constraint (4.34d).

Proof. It is similar to the proof of Theorem 6.

Proposition 2 states that a classical optimal control problem can be precisely solved via a convex relaxation of the nonlinear optimization (4.33)-(4.34) by eliminating its constraint (4.34d). However, this simple convex relaxation does not work satisfactorily for a general control structure \mathcal{K} . To design a better relaxation, consider the vector w defined in (4.20). Similar to infinite-horizon ODC, the bilinear matrix term KCG can be represented as a linear function of the entries of the parametric matrix \mathbf{W} defined as ww^T . Now, relaxing the constraint $\mathbf{W} = ww^T$ to $\mathbf{W} \succeq 0$ and adding another constraint stating that the first column of \mathbf{W} is equal to w leads to an SDP relaxation. This convex problem is referred to as **SDP relaxation of SODC**. In the case where the relaxation has the same solution as SODC, the relaxation is said to be exact.

Proposition 3. Consider the case where \mathcal{K} contains only diagonal matrices. The following statements hold regarding the SDP relaxation of the SODC problem:

- i) The relaxation is exact if it has a solution $(K^{opt}, P^{opt}, G^{opt}, L^{opt}, M^{opt}, W^{opt})$ such that $\operatorname{rank}\{W^{opt}\}=1.$
- ii) The relaxation always has a solution $(K^{opt}, P^{opt}, G^{opt}, L^{opt}, M^{opt}, W^{opt})$ such that rank $\{W^{opt}\} \leq 3$.

Proof. The proof is omitted (see Theorems 7 and 9).

As before, it can be deduced from Proposition 3 that the SODC problem has a convex relaxation with the property that its exactness amounts to the existence of a rank-1 matrix solution W^{opt} . Moreover, it is always guaranteed that this relaxation has a solution such that rank $\{W^{\text{opt}}\} \leq 3$.

A computationally-cheap SDP relaxation will be derived below. Let μ_1 and μ_2 be two nonnegative numbers such that

$$Q \succ \mu_1 \times \Phi^{-T} \Phi^{-1}, \quad \Sigma_v \succeq \mu_2 \times I$$
 (4.40)

Define $\widehat{Q} := Q - \mu_1 \times \Phi^{-T} \Phi^{-1}$ and $\widehat{\Sigma}_v := \Sigma_v - \mu_2 \times I$.

Computationally-Cheap SDP Relaxation of SODC: This optimization problem is defined as the minimization of

$$\operatorname{trace}\{P\Sigma_d + M\Sigma_v + \mu_2 R\mathbf{W}_{33} + \alpha \mathbf{W}_{33} + K^T R K \Sigma_v\}$$

$$(4.41)$$

70

subject to the constraints

$$\begin{bmatrix} G - \mu_1 \mathbf{W}_{22} & G & (AG + BL)^T & L^T \\ G & \widehat{Q}^{-1} & 0 & 0 \\ AG + BL & 0 & G & 0 \\ L & 0 & 0 & R^{-1} \end{bmatrix} \succeq 0,$$
(4.42a)

$$\begin{bmatrix} P & I \\ I & G \end{bmatrix} \succeq 0, \tag{4.42b}$$

$$\begin{bmatrix} M & (BK)^T \\ BK & G \end{bmatrix} \succeq 0, \tag{4.42c}$$

$$\mathbf{W} := \begin{bmatrix} I_n & \Phi^{-1}G & K^T \\ 0 & \Phi^{-T} & \mathbf{W}_{22} & L^T \\ - & - & - & - & - & - & - \\ G\Phi^{-T} & \mathbf{W}_{22} & L^T \\ - & - & - & - & - & - & - \\ \hline \begin{bmatrix} K & 0 \end{bmatrix} & L & \mathbf{W}_{33} \end{bmatrix} \succeq 0,$$
(4.42d)

$$K \in \mathcal{K},\tag{4.42e}$$

$$\mathbf{W}_{33} \in \mathcal{K}^2,\tag{4.42f}$$

with the parameter set $\{K, L, G, P, M, \mathbf{W}\}$.

It should be noted that the constraint (4.42c) ensures that the relation $M = (BK)^T G^{-1}(BK)$ occurs at optimality.

Theorem 10. The computationally-cheap SDP relaxation is a convex relaxation of the SODC problem. Furthermore, the relaxation is exact if and only if possesses a solution $(K^{opt}, L^{opt}, P^{opt}, G^{opt}, M^{opt}, \mathbf{W}^{opt})$ such that rank $\{\mathbf{W}^{opt}\} = n$.

Proof. Since the proof is similar to that of the infinite-horizon case presented earlier, it is omitted here. $\hfill \Box$

For the retrieval of a near-optimal controller, the Direct Recovery Method delineated for the infinite-horizon ODC problem can be readily deployed. However, the Indirect Recovery Method explained earlier should be modified.

Indirect Recovery Method for SODC: Let $(K^{\text{opt}}, L^{\text{opt}}, P^{\text{opt}}, G^{\text{opt}}, M^{\text{opt}}, \mathbf{W}^{\text{opt}})$ denote a solution of the computationally-cheap SDP relaxation of SODC. A near-optimal controller \hat{K} for the SODC problem is recovered by solving a convex program with the variables $K \in \mathcal{K}$ and $\gamma \in \mathbb{R}$ to minimize the cost function

$$\varepsilon \times \gamma + \operatorname{trace}\{(BK)^T (G^{\operatorname{opt}})^{-1} (BK) \Sigma_v + K^T R K \Sigma_v + \alpha \ K K^T\}$$
(4.43)

subject to the constraint

$$\begin{bmatrix} (G^{\text{opt}})^{-1} - Q + \gamma I_n & (A + BKC)^T & (KC)^T \\ (A + BKC) & G^{\text{opt}} & 0 \\ (KC) & 0 & R^{-1} \end{bmatrix} \succ 0$$
(4.44)

where ε is a pre-specified nonnegative number.

The above recovery method is obtained by assuming that G^{opt} is the optimal value of the inverse Lyapunov matrix for the ODC problem.

4.6 Mass-Spring and Random Systems

In this section, we elucidate the results of this chapter on a mass-spring system and 100 random system. We will solve thousands of SDP relaxations for these systems and evaluate their performance for different control topologies and a wide range of values for $(\alpha, \Sigma_d, \Sigma_v)$. Note that the computation time for each SDP relaxation is from a fraction of a second to 4 seconds on a desktop computer with an Intel Core i7 quad-core 3.4 GHz CPU and 16 GB RAM.

4.6.1 Mass-Spring Systems

In this subsection, the aim is to evaluate the performance of the developed controller design techniques on the *Mass-Spring* system, as a classical physical system. Consider a mass-spring system consisting of N masses. This system is exemplified in Figure 4.5 for N = 2. The system can be modeled in the continuous-time domain as

$$\dot{x}_c(t) = A_c x_c(t) + B_c u_c(t) \tag{4.45}$$

where the state vector $x_c(t)$ can be partitioned as $[o_1(t)^T \ o_2(t)^T]$ with $o_1(t) \in \mathbb{R}^n$ equal to the vector of positions and $o_2(t) \in \mathbb{R}^n$ equal to the vector of velocities of the N masses. We assume

(a) Decentralized control structure

(b) Distributed control structure

Figure 4.6: Two different structures for the controller K: (a) Decentralized control structure, (b) Distributed control structure. The free parameters are colored in red (uncolored entries are set to zero).

that N = 10 and adopt the values of A_c and B_c from [68]. The goal is to design a static sampleddata controller with a pre-specified structure (i.e., the controller is composed of a sampler, a static discrete-time structured controller and a zero-order holder). Two ODC problems will be solved below.

Infinite-Horizon ODC: In this experiment, we first discretize the system with the sampling time of 0.1 second and denote the obtained system as

$$x[\tau+1] = Ax[\tau] + Bu[\tau], \qquad \tau = 0, 1, \dots$$
(4.46)

It is aimed to design a constrained controller $u[\tau] = Kx[\tau]$ to minimize the infinite sum cost function

$$\sum_{\tau=0}^{\infty} \left(x[\tau]^T x[\tau] + u[\tau]^T u[\tau] \right)$$
(4.47)

with x[0]'s entries being drawn from a normal distribution. To study the effects of the initial state on the designed near-optimal controller, we generated 100 random initial states. We then solved the computationally-cheap SDP relaxation combined with the Direct Recovery Method to design a decentralized controller (shown in Figure 4.6 (a)) minimizing the cost function (4.47). The free

parameters of each controller are colored in red in this figure. Structure (a) corresponds to a fully decentralized controller, where each local controller has access to the position and velocity of its associated mass. The values of controllers' parameters are depicted in Figure 4.7, where the 20 points on the x-axis represent 20 different entries of the designed decentralized controller. As can be seen, the parameters of the controller vary over the 100 trials. This contrasts with the fact that the optimal controller associated with a centralized (classical) LQR problem is universally optimal and its parameters are independent of the initial state. Define a measure of near-global optimality as follows:

Optimality degree (%) = $100 - \frac{\text{upper bound - lower bound}}{\text{upper bound}} \times 100$

where

- Lower bound: is equal to the optimal objective value of the SDP relaxation, which serves as a lower bound on the minimum value of the cost function (4.47).
- Upper bound: corresponds to the cost function (4.47) at a near-optimal controller \hat{K} retrieved using the Direct Recovery Method. This number serves as an upper bound on the minimum value of the cost function (4.47).

The optimality degrees of the controllers designed for these 100 random trials are depicted in Figure 4.8. As can be seen, the optimality degree is better than 95% for more than 98 trials. It should be mentioned that all of these controllers stabilize the closed-loop system.

Stochastic ODC: In this experiment, two control structures of "decentralized" and "distributed" (shown in Figures 4.6(a) and (b)) will be studied for the matrix $K \in \mathbb{R}^{10 \times 20}$. Structure (b) corresponds to a distributed controller, in which limited communications between neighboring local controllers is allowed. We assume that the system is subject to both input disturbance and measurement noise. Consider the case $\Sigma_d = I$ and $\Sigma_v = \sigma I$, where σ varies from 0 to 5. Using the computationally-cheap SDP relaxation in conjunction with the indirect recovery method, a nearoptimal controller is designed for each of the aforementioned control structures under various noise levels. The results are reported in Figure 4.9. The structured controllers designed using the SDP relaxation are all stable with optimality degrees higher than 95% in the worst case and close to 99% in many cases.

Figure 4.7: The near-optimal values of the free parameters of the decentralized controller \hat{K} for a mass-spring system under 100 random initial states. Corresponding to each free parameter $i \in \{1, 2, ..., 20\}$, the 100 values of this parameter (associated with different trials) are shown as 100 points on a vertical line.

Figure 4.8: Optimality degree (%) of the decentralized controller \hat{K} for a mass-spring system under 100 random initial states.

(a) Optimality degree of the near-optimal controller for a stochastic mass spring system.

(b) Cost of the near-optimal controller for a stochastic mass spring system.

Figure 4.9: The optimality degree and the optimal cost of the near-optimal controller designed for the mass-spring system for two different control structures. The noise covariance matrix Σ_v is assumed to be equal to σI , where σ varies over a wide range.

4.6.2 Random Systems

The goal of this example is to test the efficiency of the computationally-cheap SDP relaxation combined with the indirect recovery method on 100 highly-unstable random systems. Assume that n = m = r = 25, and that C, Q, R are identity matrices of appropriate dimensions. Suppose that $\Sigma_d = I$ and $\Sigma_v = 0$. To make the problem harder, assume that the controller under design must satisfy the hard constraint trace{ KK^T } ≤ 2 (to avoid a high gain K). We generated hundred random tuples (A, B, \mathcal{K}) according to the following rules:

- The entries of A were uniformly chosen from the interval [0, 0.5] at random.
- The entries of B were uniformly chosen from the interval [0, 1] at random.
- Each entry of the matrix K was enforced to be zero with the probability of 70%.

Note that although the matrices A and B are nonnegative, the matrix K under design can have both positive and negative entries. The randomly generated systems are highly unstable with the maximum absolute eigenvalue as high as 6 (instability for discrete-time systems requires a maximum magnitude less than 1). Although the control of such systems was not easy and the control structure was enforced to be 70% sparse with an enforced sparsity pattern, the proposed technique was always able to design a "stabilizing" near-optimal controller with an optimality degree between 50% and 75%. The results are reported in Figure 4.10.

4.7 Summary

This chapter studies the infinite-horizon ODC problem as well as the stochastic ODC problem. The objective is to design a fixed-order distributed controller with a pre-determined structure to minimize a quadratic cost functional for either a deterministic or a stochastic system. For both infinite-horizon ODC and stochastic ODC, the problem is cast as a rank-constrained optimization with only one non-convex constraint requiring the rank of a variable matrix to be 1. This chapter proposes a semidefinite program (SDP) as a convex relaxation, which is obtained by dropping the rank constraint. The notion of treewidth is exploited to study the rank of the minimum-rank solution of the SDP relaxation. This method is applied to the static distributed control case and it is shown that the SDP relaxation has a matrix solution with rank at most 3. Moreover, multiple

(b) Stability level of open-loop and closed-loop systems

Figure 4.10: The optimality degree and the stability level (maximum of the absolute eigenvalues) associated with 100 near-optimal sparse controllers designed for 100 highly-unstable random systems.

recovery methods are proposed to round the rank-3 solution to rank 1, from which a near-global controller may be retrieved. Computationally-cheap SDP relaxations are also developed for infinite-horizon ODC and stochastic ODC. These relaxations are guaranteed to exactly solve the LQR and H_2 problems for the classical centralized control problem. The results of this work are tested through thousands of simulations.

Chapter 5

Optimal Distributed Frequency Control in Power Systems

In this chapter, the results developed in Chapter 4 for Infinite-Horizon and Stochastic Optimal Distributed Control (ODC) are used to design an optimal distributed frequency controller for power systems. In general, the problem of frequency control in power systems accounts for keeping the balance between the real powers injected and demanded by the generators and the customers, respectively. There are mainly two reasons why the previous results are promising for designing such a controller. First, the integration of distributed power generation in the era of smart grid calls for efficient methods to design distributed controllers that allow certain generators to exchange real-time information with one another. Second, the intermittent nature of distributed power generation needs robust controllers that are able to deal with the uncertainty in the system introduced by non-dispatchable supplies (such as renewable energy), fluctuating loads and measurement noise. In the context of this chapter, the main objective of the unknown optimal distributed controller is to optimally adjust the mechanical power input to each generator as well as being structurally constrained by a user-defined communication topology. This pre-determined communication topology specifies which generators exchange their rotor angle and frequency measurements with one another. In this chapter, we first derive the state-space model of the power system. Then, the performance of the computationally-cheap SDP relaxation combined with the indirect recovery method for both Infinite-Horizon and Stochastic ODC is evaluated on the problem of designing an optimal

CHAPTER 5. OPTIMAL DISTRIBUTED FREQUENCY CONTROL IN POWER SYSTEMS

distributed frequency control for IEEE 39-Bus New England Power System. These controllers are designed for four different communication topologies and we show that they are all stabilizing and with high global optimality degrees (as high as 99 % for some topologies).

5.1 Introduction

The installed capacity and energy production levels for electric generation from non-traditional renewable resources, such as solar and wind, are growing rapidly in the United States and throughout many parts of the world. The high penetration of renewable energy in the next-generation grid will reduce the greenhouse gas emission and the carbon footprint. A challenge, however, of solar and wind generation is their intermittency, making it hard to match supply and demand that result in a challenge for frequency control of power systems. This is due to the fact that most frequency/active power control actions are continuous, in contrast to the discrete switching action inherent in switched capacitor banks and tap changing transformers used for voltage/VAR control.

Frequency control in power systems usually involves three different stages that work at different timescales. As generation or load fluctuates, the primary frequency control, also known as droop control, operates continuously to stop frequency deviation through a speed governor that adjusts the generation power based on local frequency feedback. The secondary frequency control, also known as automatic generation control (AGC), operates at time steps of several seconds and adjusts the setpoints of governors in a control area in a centralized fashion to bring the frequency back to the reference value and the inter-area power flows to their scheduled values. Economic dispatch, also known as the tertiary control, operates at time steps of several minutes or up and schedules the output levels of online generators and the power flows [69], [70], [71], [72].

Early efforts of demonstrating the potential performance improvement obtained by applying optimal control theory concepts to frequency control are represented in the works [73], [74], [75], [76]. However, these efforts were impractical at the time due to the lack of wide area measurements that were needed for state estimation which is a fundamental element in optimal control. With the rapidly increasing penetration of Phasor Measurement Units (PMU) at the bulk transmission scale in the US and many other parts of the world, we could overcome the previous limitations. When coupled with tremendous advances in computational power to implement advanced control

CHAPTER 5. OPTIMAL DISTRIBUTED FREQUENCY CONTROL IN POWER SYSTEMS

and estimation algorithms, it is believed that it is the time to revisit optimal control applications in frequency control of power systems [77].

Motivated by the idea that optimal control theory becomes a viable and promising option, the objective of this chapter is to design an optimal distributed frequency controller using the results developed in Chapter 4 for Infinite-Horizon and Stochastic Optimal Distributed Control (ODC). The main objective of the unknown optimal distributed controller is to optimally adjust the mechanical power input to each generator as well as being structurally constrained by a user-defined communication topology. This pre-determined communication topology specifies which generators exchange their rotor angle and frequency measurements with one another. In this chapter, we first derive the state-space model of the power system. Then, the performance of the computationallycheap SDP relaxation combined with the indirect recovery method for both Infinite-Horizon and Stochastic ODC is evaluated on the problem of designing an optimal distributed frequency control for IEEE 39-Bus New England Power System.

This chapter is organized as follows. A power system dynamic model is derived in Section 5.2. The computationally-cheap SDP relaxation combined with the indirect recovery method for both Infinite-Horizon and Stochastic ODC is used to design an optimal distributed frequency controller through a case study for IEEE 39-Bus New England Power System in Section 5.3. A summary is given in Section 5.4.

5.2 Power System Dynamic Model

In this section, we derive a simple classical model of the power system. However, our result can be deployed for a complicated high-order model with nonlinear terms (our SDP relaxation may be revised to handle possible nonlinear terms in the dynamics). To derive a simple state-space model of the power system, we start with the widely-used per-unit swing equation

$$M_i \ddot{\theta}_i + D_i \dot{\theta}_i = P_{Mi} - P_{Ei} \tag{5.1}$$

where θ_i denotes the voltage (or rotor) angle at bus *i* (in rad), P_{Mi} is the mechanical power input to the generator at bus *i* (in per unit), P_{Ei} is the electrical active power injection at bus *i* (in per unit), M_i is the inertia coefficient of the generator at bus *i* (in pu-sec²/rad), and D_i is the damping coefficient of the generator at bus *i* (in pu-sec/rad)[78]. The electrical real power P_{Ei} in (5.1) comes

CHAPTER 5. OPTIMAL DISTRIBUTED FREQUENCY CONTROL IN POWER SYSTEMS

from the nonlinear AC power flow equation:

$$P_{Ei} = \sum_{j=1}^{n} |V_i| |V_j| \left[G_{ij} \cos(\theta_i - \theta_j) + B_{ij} \sin(\theta_i - \theta_j) \right]$$
(5.2)

where *n* denotes the number of buses in the system, V_i is the voltage phasor at bus *i*, G_{ij} is the line conductance, and B_{ij} is the line susceptance. To simplify the formulation, a commonly-used technique is to approximate equation (5.2) by its corresponding DC power flow equation stated below:

$$P_{Ei} = \sum_{j=1}^{n} B_{ij}(\theta_i - \theta_j)$$
(5.3)

The approximation error is often small in practice due to the common practice of power engineering, which rests upon the following assumptions:

- For most networks, $G \ll B \longrightarrow G = 0$
- For most neighbouring buses, $|\theta_i \theta_j| \le (10^o \text{ to } 15^o)$ $\longrightarrow sin(\theta_i - \theta_j) \approx \theta_i - \theta_j$ $\longrightarrow cos(\theta_i - \theta_j) \approx 1$
- In per unit, $|V_i|$ is close to 1 (0.95 to 1.05) $\longrightarrow |V_i||V_j| \approx 1$

It is possible to rewrite (5.3) into the matrix format $P_E = L\theta$, where P_E and θ are the vectors of real power injections and voltage (or rotor) angles at only the generator buses (after removing the load buses and the intermediate zero buses). In this equation, L denotes the Laplacian matrix and can be found as follows [79]:

$$L_{ii} = \sum_{j=1, j \neq i}^{n} B_{ij}^{\text{Kron}} \quad \text{if } i = j$$

$$L_{ij} = -B_{ij}^{\text{Kron}} \qquad \text{if } i \neq j$$
(5.4)

where B^{Kron} is the susceptance of the Kron reduced admittance matrix Y^{Kron} defined as

$$Y_{ij}^{\text{Kron}} = Y_{ij} - \frac{Y_{ik}Y_{kj}}{Y_{kk}} \quad (i, j = 1, 2, \dots, n \text{ and } i, j \neq k)$$
 (5.5)

where k is the index of the non-generator bus to be eliminated from the admittance matrix and \bar{n} is the number of generator buses. Note that the Kron reduction method aims to eliminate the

static buses of the network because the dynamics and interactions of only the generator buses are of interest [69].

By defining the rotor angle state vector as $\theta = [\theta_1, \dots, \theta_{\bar{n}}]^T$ and the frequency state vector as $w = [w_1, \dots, w_{\bar{n}}]^T$ and by substituting the matrix format of P_E into (5.1), the state space model of the swing equation used for frequency control in power systems could be written as

$$\begin{bmatrix} \dot{\theta} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} 0_{\bar{n}\times\bar{n}} & I_{\bar{n}} \\ -M^{-1}L & -M^{-1}D \end{bmatrix} \begin{bmatrix} \theta \\ w \end{bmatrix} + \begin{bmatrix} 0_{\bar{n}\times\bar{n}} \\ M^{-1} \end{bmatrix} P_M$$
(5.6a)

$$\begin{bmatrix} \theta \end{bmatrix}$$
(5.6b)

$$y = \begin{bmatrix} \theta \\ w \end{bmatrix}$$
(5.6c)

where $M = \text{diag}(M_1, \ldots, M_{\bar{n}})$ and $D = \text{diag}(D_1, \ldots, D_{\bar{n}})$. It is assumed that both rotor angle and frequency are available for measurement at each generator (implying that $C = I_{2\bar{n}}$). This is a reasonable assumption with the recent advances in Phasor Measurement Unit (PMU) technology [80].

5.3 Case Study: IEEE 39-Bus System

In this section, the performance of the computationally-cheap SDP relaxation combined with the indirect recovery method will be evaluated on the problem of designing an optimal distributed frequency control for IEEE 39-Bus New England Power System. The one-line diagram of this system is shown in Figure 5.1. The main objective of the unknown controller is to optimally adjust the mechanical power input to each generator as well as being structurally constrained by a user-defined communication topology. This pre-determined communication topology specifies which generators exchange their rotor angle and frequency measurements with one another.

By substituting the per-unit inertia (M) and damping (D) coefficients for the 10 generators of IEEE 39-Bus system [81] based on the data in Table 5.1, the continuous-time state space model matrices A_c , B_c and C_c can be found. The system is then discretized to the discrete-time model matrices A, B and C with the sampling time of 0.2 second. The initial values of the rotor angle (θ_0) were calculated by solving power (or load) flow problem for the system using MATPOWER [82].

CHAPTER 5. OPTIMAL DISTRIBUTED FREQUENCY CONTROL IN POWER SYSTEMS

Figure 5.1: Single line diagram of IEEE 39-Bus New England Power System.

CHAPTER 5. OPTIMAL DISTRIBUTED FREQUENCY CONTROL IN POWER SYSTEMS

Bus	Gen	M	D	θ_0	w_0
30	G10	4	5	-0.0839	1.0
31	G2	3	4	0.0000	1.0
32	G3	2.5	4	0.0325	1.0
33	G4	4	6	0.0451	1.0
34	G5	2	3.5	0.0194	1.0
35	G6	3.5	3	-0.0073	1.0
36	G7	3	7.5	0.1304	1.0
37	G8	2.5	4	0.0211	1.0
38	G9	2	6.5	0.127	1.0
39	G1	6	5	-0.2074	1.0

Table 5.1: The data and initial values of generators (in per unit) for IEEE 39-Bus New England Power System.

In practice, the rotor speed does not vary significantly from synchronous speed and thus the initial frequency (w_0) was assumed to be 1.0 per unit. Both θ_0 and w_0 are reported for each generator in Table 5.1.

The 39-bus system has 10 generators, labeled as $G_1, G_2, ..., G_{10}$. Four communication topologies are considered in this work: decentralized, localized, star, and ring. In order to better understand how the interactions among the 10 generators in the system are related to the communication structures, the Kron reduced network of the system is visualized by the weighted graph shown in Figure 5.2. In a fully decentralized structure, none of the generators communicate with each other. In a localized communication structure, the generators may only communicate with their close neighbors. In a star topology, a single generator is able to communicate with all other generators in the system. The ring communication structure—forming a closed path—aims to provide communications between neighbors. These topologies are visualized in Figure 5.3. The locations of the generators in the figure are based on the exact coordinates of the power plants named in [83]. Note that G_1 represents a group of generators, but it is considered as a single node near the border between New York and Connecticut in this map. G_4 and G_5 are very close in CHAPTER 5. OPTIMAL DISTRIBUTED FREQUENCY CONTROL IN POWER SYSTEMS

Figure 5.2: Weighted graph of the Kron reduced network of IEEE 39-Bus New England Power System. Weights (thicknesses) of all edges are normalized to the minimum off-diagonal entry of the susceptance B^{Kron} .

distance, but G_4 was somewhat shifted from its real coordinates to make the communication link between them visible in this map.

Infinite-Horizon ODC: Assume that Q = I and R = 0.1I. Suppose also that α is a parameter between 0 and 15. The goal is to solve a an infinite-horizon ODC problem for each value of α in the interval [0, 15] and for each of the four aforementioned communication topologies. This will be achieved in two steps. First, a computationally-cheap SDP relaxation is solved. Second, a nearoptimal controller \hat{K} is designed by choosing the best solution of the direct and indirect recovery methods. The results are reported in Figures 5.4(a)-(c). The following observations can be made:

- The designed controllers are almost 100% optimal for three control topologies of decentralized, localized and ring, and this result holds for all possible values of α. The optimality degree for the star controller is above 77%.
- For every value of $\alpha \in [0, 15]$, the decentralized controller has the lowest performance while

Figure 5.3: Four communication topologies studied for IEEE 39-bus system.

CHAPTER 5. OPTIMAL DISTRIBUTED FREQUENCY CONTROL IN POWER SYSTEMS

the ring controller offers the best performance.

• The closed-loop system is always stable for all 4 control topologies and all possible values of α .

Stochastic ODC: Assume that the power system is under input disturbance and measurement noise. The disturbance can arise from non-dispatchable supplies (such as renewable energy) and fluctuating loads, among others. The measurement noise may account for the inaccuracy of the rotor angle and frequency measurements. Assume that Σ_d is equal to *I*. We consider two different scenarios:

- i) Suppose that $\Sigma_v = 0$, while α varies from 0 to 15. For each SODC problem, we solve a computationally-cheap SDP relaxation, from which a near-optimal solution \hat{K} is designed by choosing the best solution of the direct and indirect recovery methods. The outcome is plotted in Figure 5.5.
- ii) Suppose that $\alpha = 0$, while Σ_v is equal to σI with σ varying between 0 and 15. As before, we design a near-optimal controller for each SODC problem. The results are reported in Figure 5.6.

In the above experiments, we designed structured controllers to optimize an infinite-horizon ODC or a stochastic ODC problem. This was achieved by solving their associated computationallycheap SDP relaxations. Interestingly, the designed controllers were all stabilizing (with no exception), and their optimality degrees were close to 99% in case of decentralized, localized and ring structures. In case of the star structure, the optimality degree was higher than 77% in infinitehorizon ODC and around 94% for various levels of σ and α in stochastic ODC.

5.4 Summary

This chapter utilizes the results previously developed for Infinite-Horizon and Stochastic ODC in Chapter 4 to design an optimal distributed frequency controller for power systems. The main objective of the unknown optimal distributed controller is to optimally adjust the mechanical power input

(c) Stability degree for infinite-horizon ODC

Figure 5.4: A near-optimal controller \hat{K} is designed to solve the infinite-horizon ODC problem for every control topology given in Figure 5.3 and every α between 0 and 15: (a) optimality degree, (b) near-optimal cost, and (c) closed-loop stability (maximum of the absolute eigenvalues of the closed-loop system).

(c) Stability degree for stochastic ODC

Figure 5.5: A near-optimal controller \hat{K} is designed to solve the stochastic ODC problem for every control topology given in Figure 5.3 and every α between 0 and 15 under the assumptions that $\Sigma_d = I$ and $\Sigma_v = 0$: (a) optimality degree, (b) near-optimal cost, and (c) closed-loop stability

Figure 5.6: A near-optimal controller \hat{K} is designed to solve the stochastic ODC problem for every control topology given in Figure 5.3 and every σ between 0 and 15 under the assumptions that $\Sigma_d = I$, $\alpha = 0$ and $\Sigma_v = \sigma I$: (a) optimality degree, (b) near-optimal cost, and (c) closed-loop stability

CHAPTER 5. OPTIMAL DISTRIBUTED FREQUENCY CONTROL IN POWER SYSTEMS

to each generator as well as being structurally constrained by a user-defined communication topology. This pre-determined communication topology specifies which generators exchange their rotor angle and frequency measurements with one another. The performance of the computationallycheap SDP relaxation combined with the indirect recovery method for both Infinite-Horizon and Stochastic ODC is evaluated on the problem of designing an optimal distributed frequency control for IEEE 39-Bus New England Power System. These controllers are designed for four different communication topologies and it is shown that the controllers are all stabilizing with global optimality degrees close to 99% in case of decentralized, localized and ring structures. In case of the star structure, the optimality degree was higher than 77% in infinite-horizon ODC and around 94% for various levels of σ and α in stochastic ODC.

Chapter 6

Conclusions and Future Work

This dissertation is concerned with developing efficient, scalable and distributed algorithms for solving real-world large-scale optimization problems that arise in complex systems such as power networks and distributed control systems. This dissertation addresses four problems, each involving the development of an efficient optimization algorithm. In what follows, the contributions made for each problem are first summarized and possible future directions are then outlined.

Chapter 2: In this chapter, a fast and parallelizable algorithm is developed for an arbitrary decomposable semidefinite program (SDP). To formulate a decomposable SDP, we consider a multi-agent canonical form represented by a graph, where each agent (node) is in charge of computing its corresponding positive semidefinite matrix. The motivation behind the multi-agent formulation is that an arbitrary sparse SDP problem can be converted to a decomposable SDP by means of the Chordal extension and matrix completion theorems. Using the alternating direction method of multipliers (ADMM), we develop a distributed algorithm to solve the underlying SDP problem. At every iteration, each agent performs simple computations (matrix multiplication and eigenvalue decomposition) without having to solve any optimization subproblem, and then communicates some information to its neighbors. By deriving a Lyapunov-type non-increasing function, it is shown that the proposed algorithm converges as long as Slater's conditions hold. Simulations results on large-scale SDP problems with a few million variables are offered to elucidate the efficacy of this work. Some of the possible future research directions, are as follows:

• To accelerate the proposed first-order method and obtain a faster convergence, it is important

to study how this algorithm can be combined with Nesterov method.

- Since ADMM is sensitive to the condition number of the problem's data, it is important to study how efficient and cheap preconditioning techniques could be used to speed up the convergence for ill-conditioned problems.
- The distributed algorithm designed here is a synchronous algorithm in which each agent should wait for the messages from the neighbours before starting the new iteration. An asynchronous version of the previous algorithm should be developed to eliminate the need for a global clock that commands the agents when to start the computations and when to start exchanging data. Such algorithm is easier to be implemented in a multi-machine setting if needed so.

Chapter 3: Motivated by the application of SDPs to power networks, the objective of this chapter is to design a fast and parallelizable algorithm for solving sparse SDPs corresponding to power optimization problems. To this end, the underling sparsity structure of a given SDP problem is captured using a tree decomposition technique, leading to a decomposed SDP problem. A highly distributed/parallelizable numerical algorithm is developed for solving the decomposed SDP, based on the ADMM method in the primal domain. Each iteration of the designed algorithm has a closed-form solution, which involves multiplications and eigenvalue decompositions over certain submatrices induced by the tree decomposition of the sparsity graph. The proposed algorithm is applied to the classical optimal power flow problem, and also evaluated on IEEE benchmark systems. The proposed algorithm has a very low computational complexity for power systems because real-world power networks have low treewidth. All of the future research directions previously discussed for Chapter 2 are valid here to improve the convergence of the proposed algorithm in the primal domain. Another direction is to study other power optimization problems such as state estimation.

Chapter 4: This chapter studies the infinite-horizon optimal distributed control (ODC) problem as well as the stochastic ODC problem. The objective is to design a fixed-order distributed controller with a pre-determined structure to minimize a quadratic cost functional for either a deterministic or a stochastic system. Both problems are cast as a rank-constrained optimization problem with only one non-convex constraint requiring the rank of a variable matrix to be 1. This chapter
proposes an SDP problem as a convex relaxation, which is obtained by dropping the rank constraint. The notion of treewidth is exploited to study the rank of the minimum-rank solution of the SDP relaxation. This method is applied to the static distributed control case and it is shown that the SDP relaxation has a matrix solution with rank at most 3. Moreover, multiple recovery methods are proposed to round the rank-3 solution to rank 1, from which a near-global controller may be retrieved. Computationally-cheap SDP relaxations are also developed for infinite-horizon ODC and stochastic ODC. The results of this work are tested on thousands of simulations. Some of the possible extensions as future work, are as follows:

- One direction is to study the design of a robust distributed controller with a known structure to minimize a quadratic cost function either in the worst case or in expectation with respect to the random variable Δ. This corresponds to the case when the system matrices A(Δ), B(Δ), C(Δ) and D(Δ) depend on some uncertainty vector Δ belonging to some uncertainty region.
- Another possibility is to generalize the results obtained for linear systems to certain nonlinear systems with the aim of representing a sufficiently detailed (approximate) model of a real-world system.

Chapter 5: This chapter utilizes the results previously developed for Infinite-Horizon and Stochastic ODC in Chapter 4 to design an optimal distributed frequency control in power systems. The performance of the computationally-cheap SDP relaxation combined with the indirect recovery method for both Infinite-Horizon and Stochastic ODC is evaluated on the problem of designing an optimal distributed frequency control for IEEE 39-Bus New England Power System. These controllers are designed for four different communication topologies and shown to be all stabilizing with optimality degrees close to 99% in some cases. A simple classical model of the power system was used. A necessary future work is to consider a more realistic high-order model for the power system.

Bibliography

- J. Lavaei and S. H. Low, "Zero duality gap in optimal power flow problem," *IEEE Transactions* on Power Systems, vol. 27, no. 1, pp. 92–107, 2012.
- [2] M. X. Goemans and D. P. Williamson, "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming," *Journal of the ACM (JACM)*, vol. 42, no. 6, pp. 1115–1145, 1995.
- [3] L. Vandenberghe and S. Boyd, "Semidefinite programming," SIAM Review, vol. 38, pp. 49–95, 1994.
- [4] D. Gabay and B. Mercier, "A dual algorithm for the solution of nonlinear variational problems via finite element approximation," *Computers and Mathematics with Applications*, vol. 2, no. 1, pp. 17 40, 1976.
- [5] R. Glowinski and A. Marroco, "Sur l'approximation, par lments finis d'ordre un, et la rsolution, par phalisation-dualit d'une classe de problemes de dirichlet non linaires," ESAIM: Mathematical Modelling and Numerical Analysis - Modlisation Mathematique et Analyse Numrique, vol. 9, no. R2, pp. 41–76, 1975. [Online]. Available: http://eudml.org/doc/193269
- [6] J. Eckstein and W. Yao, "Augmented lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results," *RUTCOR Research Reports*, vol. 32, 2012.
- [7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," *Foundations and Trends*® *in Machine Learning*, vol. 3, no. 1, pp. 1–122, 2011.

- [8] J. Momoh, R. Adapa, and M. El-Hawary, "A review of selected optimal power flow literature to 1993. I. nonlinear and quadratic programming approaches," *IEEE Trans. Power Syst.*,, vol. 14, no. 1, pp. 96–104, Feb 1999.
- J. Carpentier, "Contribution a l etude du dispatching economique," Bulletin Society Francaise Electricians, vol. 3, no. 8, pp. 431–447, 1962.
- [10] M. B. Cain, R. P. O'Neill, and A. Castillo, "History of optimal power flow and formulations," Federal Energy Regulatory Commission FERC, Tech. Rep., December 2012.
- [11] J. Lavaei and S. H. Low, "Zero duality gap in optimal power flow problem," *IEEE Transactions on Power Systems*, vol. 27, no. 1, pp. 92–107, 2012.
- [12] R. Madani, M. Ashraphijuo, and J. Lavaei, "Promises of conic relaxation for contingencyconstrained optimal power flow problem," in 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton)., Sept 2014, pp. 1064–1071.
- [13] S. Sojoudi and J. Lavaei, "Physics of power networks makes hard optimization problems easy to solve," in *IEEE Power and Energy Society General Meeting*, 2012.
- [14] S. H. Low, "Convex relaxation of optimal power flow (part I, II)," IEEE Trans. Control of Network Systems, vol. 1, no. Part I: 1; Part II: 2, pp. Part–I, 2014.
- [15] J. Lavaei, D. Tse, and B. Zhang, "Geometry of power flows and optimization in distribution networks," *IEEE Trans. Power Syst.*, vol. 29, no. 2, pp. 572–583, 2014.
- [16] S. Sojoudi and J. Lavaei, "Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure," SIAM J. Optimiz., vol. 24, no. 4, pp. 1746–1778, 2014.
- [17] L. Gan, N. Li, U. Topcu, and S. H. Low, "Optimal power flow in distribution networks," Proc. 52nd IEEE Conference on Decision and Control, 2013.
- [18] R. Madani, S. Sojoudi, and J. Lavaei, "Convex relaxation for optimal power flow problem: Mesh networks," *IEEE Trans. Power Syst.*, vol. 30, no. 1, pp. 199–211, 2015.

- [19] H. S. Witsenhausen, "A counterexample in stochastic optimum control," SIAM Journal of Control, vol. 6, no. 1, 1968.
- [20] J. N. Tsitsiklis and M. Athans, "On the complexity of decentralized decision making and detection problems," *Conference on Decision and Control*, 1984.
- [21] L. Vandenberghe and S. Boyd, "Semidefinite programming," SIAM Review, 1996.
- [22] S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge, 2004.
- [23] Y. Nesterov, "A method of solving a convex programming problem with convergence rate $O(1/k^2)$," Soviet Mathematics Doklady, vol. 27, no. 2, pp. 372–376, 1983.
- [24] T. Goldstein, B. O'Donoghue, S. Setzer, and R. Baraniuk, "Fast alternating direction optimization methods," SIAM Journal on Imaging Sciences, vol. 7, no. 3, pp. 1588–1623, 2014.
- [25] P. Giselsson and S. Boyd, "Diagonal scaling in Douglas–Rachford splitting and ADMM," 53rd IEEE Conference on Decision and Control, 2014.
- [26] B. He and X. Yuan, "On the O(1/n) convergence rate of the Douglas–Rachford alternating direction method," SIAM Journal on Numerical Analysis, vol. 50, no. 2, pp. 700–709, 2012.
- [27] R. D. C. Monteiro and B. F. Svaiter, "Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers," *SIAM Journal on Optimization*, vol. 23, no. 1, pp. 475–507, 2013.
- [28] E. Wei and A. Ozdaglar, "On the O(1/k) Convergence of Asynchronous Distributed Alternating Direction Method of Multipliers," ArXiv e-prints, Jul. 2013.
- [29] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I. Jordan, "A general analysis of the convergence of ADMM," arXiv preprint arXiv:1502.02009, 2015.
- [30] R. Madani, G. Fazelnia, S. Sojoudi, and J. Lavaei, "Low-rank solutions of matrix inequalities with applications to polynomial optimization and matrix completion problems," *IEEE Conference on Decision and Control*, 2014.

- [31] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, "Exploiting sparsity in semidefinite programming via matrix completion I: General framework," *SIAM Journal on Optimization*, vol. 11, no. 3, pp. 647–674, 2001.
- [32] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, "Positive definite completions of partial hermitian matrices," *Linear algebra and its applications*, vol. 58, pp. 109–124, 1984.
- [33] Z. Wen, D. Goldfarb, and W. Yin, "Alternating direction augmented lagrangian methods for semidefinite programming," *Mathematical Programming Computation*, vol. 2, no. 3-4, pp. 203–230, 2010.
- [34] Y. Sun, M. S. Andersen, and L. Vandenberghe, "Decomposition in conic optimization with partially separable structure," *SIAM Journal on Optimization*, vol. 24, no. 2, pp. 873–897, 2014.
- [35] B. He and X. Yuan, "On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers," *Numerische Mathematik*, pp. 1–11, 2012.
- [36] H. Mittelmann, "An independent benchmarking of SDP and SOCP solvers," Mathematical Programming, vol. 95, no. 2, pp. 407–430, 2003. [Online]. Available: http://dx.doi.org/10. 1007/s10107-002-0355-5
- [37] B. Kim and R. Baldick, "Coarse-grained distributed optimal power flow," *IEEE Trans. Power Syst.*, vol. 12, no. 2, pp. 932–939, May 1997.
- [38] R. Baldick, B. Kim, C. Chase, and Y. Luo, "A fast distributed implementation of optimal power flow," *IEEE T. Power Syst.*, vol. 14, no. 3, pp. 858–864, Aug 1999.
- [39] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, "Dynamic network energy management via proximal message passing," *Foundations and Trends in Optimization*, vol. 1, no. 2, pp. 73– 126, 2014.
- [40] A. Lam, B. Zhang, and D. Tse, "Distributed algorithms for optimal power flow problem," in 51st Annual Conference on Decision and Control (CDC), Dec 2012, pp. 430–437.
- [41] E. Dall'Anese, H. Zhu, and G. Giannakis, "Distributed optimal power flow for smart microgrids," *IEEE Trans. Smart Grid.*, vol. 4, no. 3, pp. 1464–1475, Sept 2013.

- [42] Q. Peng and S. Low, "Distributed algorithm for optimal power flow on a radial network," in 53rd Annual Conference on Decision and Control (CDC), Dec 2014, pp. 167–172.
- [43] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, "Exploiting sparsity in semidefinite programming via matrix completion I: General framework," *SIAM J. Optimiz.*, vol. 11, no. 3, pp. 647–674, 2001.
- [44] H. L. Bodlaender and A. M. Koster, "Treewidth computations I. upper bounds," Inform. Comput., vol. 208, no. 3, pp. 259–275, 2010.
- [45] —, "Treewidth computations II. lower bounds," *Inform. Comput.*, vol. 209, no. 7, pp. 1103–1119, 2011.
- [46] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota, "Exploiting sparsity in semidefinite programming via matrix completion II: Implementation and numerical results," *Math. Program.*, vol. 95, no. 2, pp. 303–327, 2003.
- [47] M. Laurent, "Polynomial instances of the positive semidefinite and Euclidean distance matrix completion problems," SIAM J. Matrix Aanl. A., vol. 22, no. 3, pp. 874–894, 2001.
- [48] M. Laurent and A. Varvitsiotis, "A new graph parameter related to bounded rank positive semidefinite matrix completions," *Math. Program.*, vol. 145, no. 1-2, pp. 291–325, 2014.
- [49] R. Madani, G. Fazelnia, S. Sojoudi, and J. Lavaei, "Low-rank solutions of matrix inequalities with applications to polynomial optimization and matrix completion problems," in 53rd Annual Conference on Decision and Control (CDC), Dec 2014, pp. 4328–4335.
- [50] R. Madani, M. Ashraphijuo, and J. Lavaei, "Promises of conic relaxation for contingencyconstrained optimal power flow problem," to appear in *IEEE T. Power Syst.*, 2015, http: //www.ieor.berkeley.edu/~lavaei/SCOPF_2014.pdf.
- [51] N. J. Higham, "Computing a nearest symmetric positive semidefinite matrix," *Linear Algebra Appl.*, vol. 103, pp. 103–118, May. 1988.
- [52] R. D'Andrea and G. Dullerud, "Distributed control design for spatially interconnected systems," *IEEE Transactions on Automatic Control*, vol. 48, no. 9, pp. 1478–1495, 2003.

- [53] B. Bamieh, F. Paganini, and M. A. Dahleh, "Distributed control of spatially invariant systems," *IEEE Transactions on Automatic Control*, vol. 47, no. 7, pp. 1091–1107, 2002.
- [54] C. Langbort, R. Chandra, and R. D'Andrea, "Distributed control design for systems interconnected over an arbitrary graph," *IEEE Transactions on Automatic Control*, vol. 49, no. 9, pp. 1502–1519, 2004.
- [55] N. Motee and A. Jadbabaie, "Optimal control of spatially distributed systems," *IEEE Trans*actions on Automatic Control, vol. 53, no. 7, pp. 1616–1629, 2008.
- [56] G. Dullerud and R. D'Andrea, "Distributed control of heterogeneous systems," *IEEE Trans*actions on Automatic Control, vol. 49, no. 12, pp. 2113–2128, 2004.
- [57] T. Keviczky, F. Borrelli, and G. J. Balas, "Decentralized receding horizon control for large scale dynamically decoupled systems," *Automatica*, vol. 42, no. 12, pp. 2105–2115, 2006.
- [58] F. Borrelli and T. Keviczky, "Distributed LQR design for identical dynamically decoupled systems," *IEEE Transactions on Automatic Control*, vol. 53, no. 8, pp. 1901–1912, 2008.
- [59] D. D. Siljak, "Decentralized control and computations: status and prospects," Annual Reviews in Control, vol. 20, pp. 131–141, 1996.
- [60] J. Lavaei, "Decentralized implementation of centralized controllers for interconnected systems," *IEEE Transactions on Automatic Control*, vol. 57, no. 7, pp. 1860–1865, 2012.
- [61] A. Barvinok, "Problems of distance geometry and convex properties of quadartic maps," Discrete and Computational Geometry, vol. 12, pp. 189–202, 1995.
- [62] G. Pataki, "On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues," *Mathematics of Operations Research*, vol. 23, pp. 339–358, 1998.
- [63] R. Madani, G. Fazelnia, S. Sojoudi, and J. Lavaei, "Low-rank solutions of matrix inequalities with applications to polynomial optimization and matrix completion problems," *Conference* on Decision and Control, 2014.
- [64] J. F. Sturm and S. Zhang, "On cones of nonnegative quadratic functions," Mathematics of Operations Research, vol. 28, pp. 246–267, 2003.

- [65] S. Sojoudi and J. Lavaei, "Physics of power networks makes hard optimization problems easy to solve," *IEEE Power & Energy Society General Meeting*, 2012.
- [66] —, "On the exactness of semidefinite relaxation for nonlinear optimization over graphs: Part I," *IEEE Conference on Decision and Control*, 2013.
- [67] —, "On the exactness of semidefinite relaxation for nonlinear optimization over graphs: Part II," *IEEE Conference on Decision and Control*, 2013.
- [68] F. Lin, M. Fardad, and M. R. Jovanovi, "Design of optimal sparse feedback gains via the alternating direction method of multipliers," *IEEE Transactions on Automatic Control*, vol. 58, no. 9, 2013.
- [69] A. R. Bergen and V. Vittal, *Power Systems Analysis*. Prentice Hall, 1999, vol. 2.
- [70] M. Ilic, "From hierarchical to open access electric power systems," *Proceedings of the IEEE*, vol. 95, no. 5, pp. 1060–1084, May 2007.
- [71] A. Kiani and A. Annaswamy, "A hierarchical transactive control architecture for renewables integration in smart grids," in *Decision and Control (CDC)*, 2012 IEEE 51st Annual Conference on, Dec 2012, pp. 4985–4990.
- [72] C. Zhao and S. Low, "Optimal decentralized primary frequency control in power networks," in Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, Dec 2014, pp. 2467– 2473.
- [73] C. Fosha and O. I. Elgerd, "The megawatt-frequency control problem: A new approach via optimal control theory," *Power Apparatus and Systems, IEEE Transactions on*, vol. PAS-89, no. 4, pp. 563–577, April 1970.
- [74] E. Tacker, C. Lee, T. Reddoch, and P. Julich, "Optimal control of interconnected, electric energy systems: A new formulation," *Proceedings of the IEEE*, vol. 60, no. 10, pp. 1239–1241, Oct 1972.
- [75] E. Bohn and S. Miniesy, "Optimum load-frequency sampled-data control with randomly varying system disturbances," *Power Apparatus and Systems, IEEE Transactions on*, vol. PAS-91, no. 5, pp. 1916–1923, Sept 1972.

- [76] P. Kambale, H. Mukai, J. Spare, and J. Zaborszky, ""a reevaluation of the normal operating state control (agc) of the power system using computer control and system theory part iii. tracking the dispatch targets with unit control"," *Power Apparatus and Systems, IEEE Transactions on*, vol. PAS-102, no. 6, pp. 1903–1912, June 1983.
- [77] C. DeMarco, C. Baone, Y. Han, and B. Lesieutre, "Primary and secondary control for high penetration renewables," Power Systems Engineering Research Center PSERC, Tech. Rep., May 2012.
- [78] M. A. Pai, Energy Function Analysis for Power System Stability. Kluwer Academic Publishers, Boston, 1989.
- [79] F. Dorfler and F. Bullo, "Novel insights into lossless AC and DC power flow," IEEE Power and Energy Society General Meeting, 2013.
- [80] M. Andreasson, D. Dimarogonas, H. Sandberg, and K. Johansson, "Distributed control of networked dynamical systems: Static feedback, integral action and consensus," *IEEE Transactions on Automatic Control*, vol. PP, no. 99, pp. 1–1, 2014.
- [81] I. E. Atawi, "An advance distributed control design for wide-area power system stability," Ph.D. dissertation, Swanson School Of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 2013.
- [82] R. Zimmerman, C. Murillo-Sanchez, and R. Thomas, "Matpower: Steady-state operations, planning, and analysis tools for power systems research and education," *IEEE Transactions* on Power Systems, vol. 26, no. 1, pp. 12–19, Feb 2011.
- [83] M. Ilic, J. Lacalle-Melero, F. Nishimura, W. Schenler, D. Shirmohammadi, A. Crough, and A. Catelli, "Short-term economic energy management in a competitive utility environment," *IEEE Transactions on Power Systems*, vol. 8, no. 1, pp. 198–206, Feb 1993.

Appendix: High-performance C++ Implementation

This appendix shows the full C++ code that implements the multi-agent SDP algorithm developed in Chapter 2. The code consists of the main implementation file admm-sdp.cpp and also a header file admm-sdp.hpp.

admm-sdp.cpp

```
/*
 1
       ADMM for Solving SDPs in Parallel
 2
 3
       -- This code implements a fast, parallelizable algorithm for an arbitrary decomposable
 4
      \hookrightarrow semidefinite program (SDP). This code solves the the decomposable SDP problem defined below:
 5
 6
                                                                                     _____
       min sum_(over all agents i in V) [ tr(A_i * W_i)]
 \frac{8}{9}
       subject to
tr(B_j^(i) * W_i) = c_j^(i)
tr(D_1^(i) * W_i) <= d_1^(i)
W_i >= 0 (PSD)
10
                                                   for all j = 1, \ldots, p_i and i in V
for all l = 1, \ldots, q_i and i in V
11
12
13
       W_i(I_{ij}, I_{ij}) = W_j(I_{ji}, I_{ji}) for all (i, j) in E
14
15
       over the variables W_i in S^ni for i = 1, ...., n
16
17
18
      -- Please check the following reference paper on which this code is based:
- Abdulrahman Kalbat and Javad Lavaei, A Fast Distributed Algorithm for Decomposable
19
20
      \hookrightarrow Semidefinite Programs,
Proc. 54th IEEE Conference on Decision and Control, 2015.
\frac{21}{22}
22
23
24
25
       -- Variables definitions and correspondance between the code and the reference paper:
26
       | Code
                            1
                                Paper
                                              1
                                                 Туре
27
                                g=(V,E)
E
       randAdj
                            1
                                             1
                                                 Input
28
       edges_Set
29
                                                 Found from randAdj
30
       mu_mult
                                mu
                                                 Input
31
       delta_less
                                                 Found from randAdj
32
       delta_greater
                                                 Found from randAdj
                                |v|
                                                 Input or from randAdj
33
       n
34
       w_size_i
                                                 Input
                                n_i
35
       p_i
q_i
A
                                p_i
q_i
A
                                                 Input
36
                                                 Input
37
                                                 Input
38
       В
                                В
                                                 Input
39
       D
                                D
                                                 Input
40
       c_i
                                c_i
                                                 Input
```

41	d_i	d_i	Input
42	I_ij	I_ij	Input
43	I ii	Iīi	Input
44	-5	zi	Variable
45	v	v i	Variable
46		u i	Variable
40	R lover		
47	C i lemen		
48	G_1_10wer	G_1 Lenkler	
49	Lambda_1	Lambda_1	Variable
50	H_ij_lower	H_ij	Variable
51	H_ji_lower	H_ji	Variable
52	H_ij_coup_lower	H^(ij)	Variable
53	G_ij_lower	G_ij	Variable
54	G_ji_lower	G_ji	Variable
55	H ij basis map	-5	Found from I ii
56	H ii basis map		Found from I ii
57	H ii sum tr	H i sum	Found from H * basis map and H * lower
58	B sum	R i sum	Found from B lover and Z
50	D gum	D i sum	Found from D lower and z
60	p infond i 1		
00	p_infeas_i_1	F_1 D_0	
61	p_inieas_i_2	P_2	DIMACS error measure
62	d_infeas_1_1		DIMACS error measure
63	d_infeas_1_2[0]	D_2	DIMACS error measure
64	d_infeas_i_2[1]	D_3	DIMACS error measure
65	d_infeas_i_3	D_4	DIMACS error measure
66	gap_iter	Gap	DIMACS error measure
67	p_residue_i_1	delta_p1	primal residue
68	p_residue_i_2	delta_p4	primal residue
69	p_residue_i_3	delta_p2	primal residue
70	p residue i 4	delta p3	primal residue
71	d residue i 1	delta d1	dual residue
72	d residue i 2	delta d2	dual residue
73	d residue i 3	delta d3	
74	regidue sum	V^+	addregste residue
74	Sum	· · ·	
76			
77			
78	In order to st	art using the	e code, please open the header file "admm_sdp.h"
79	and please read t	the definition	ns of the different paramters in the bottom of the file that are
	\rightarrow needed		-
80	to randomly gener	ate Multiage	nt SDP problems. The paramterer could be changed in the bottom of
	\hookrightarrow the		
81	header file.		
00			
04			
83	Dependencies:	this code ha	s no dependencies. If you want to activate the multi-threaded
82 83	Dependencies: → version	this code has	s no dependencies. If you want to activate the multi-threaded
82 83 84	Dependencies: → version of the code, you	this code has	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since
82 83 84	Dependencies: → version of the code, you → gcc and g++	this code has only need a (4.7	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since
82 83 84 85	$\begin{array}{rll} & \text{Dependencies:} \\ \hookrightarrow & \text{version} \\ \text{of the code, you} \\ \hookrightarrow & \text{gcc and g++} \end{array}$	this code has only need a 4.7	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since
82 83 84 85 86	Dependencies: \rightarrow version of the code, you \rightarrow gcc and g++ Compiling the	this code has only need a 4.7 code:	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since
82 83 84 85 86 87	 Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade 	this code has only need a 4.7 code: ed (32 bit): ;	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm sdp.cpp -o admm sdp -lstdc++
82 83 84 85 86 87	Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -D NO INLIN	this code has only need a (4.7 code: ed (32 bit): g E -m32	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++
82 83 84 85 86 87 88	Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threade	this code has only need a (4.7) code: d (32 bit): p Em32 d (64 bit): d	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++
82 83 84 85 86 87 88	Dependencies: → version of the code, you → gcc and g++ → Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -D_NO_INLIN	this code has only need a 4.7 code: ed (32 bit): 2 ed (64 bit): 2 F - m64	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++
82 83 84 85 86 87 88 88	Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -DNO_INLIN	this code has only need a 4.7 code: ed (32 bit): ; Em32 ed (64 bit): ; Em64	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++
82 83 84 85 86 87 88 88 89 90	Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -DNO_INLIN -> Multi Threade	this code has only need a (4.7 code: ed (32 bit): ; ed (64 bit): ; Em64 i (32 bit): ;	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++
82 83 84 85 86 87 88 88 89 90	Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -DNO_INLIN -> Multi Threaded	this code has only need a (4.7 code: ad (32 bit): g d (64 bit): g Em64 d (32 bit): g Em32 =for	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++
82 83 84 85 86 87 88 88 89 90	Dependencies: → version of the code, you → gcc and g++ → Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -DNO_INLIN -> Multi Threadee → -DNO_INLIN -> Multi Threadee	this code has only need a (4.7) code: ed (32 bit): ged (64 bit): ged (64 bit): ged (32 bit): ged (32 bit): ged (32 bit): ged (32 bit): ged (34 bit): ged	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++
82 83 84 85 86 87 88 89 90 91	Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded	this code has only need a (4.7 code: ed (32 bit): g ed (64 bit): g Em64 d (32 bit): g Em32 -fop d (64 bit): g	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++
82 83 84 85 86 87 88 88 89 90 91	Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN	this code has only need a (4.7 code: ed (32 bit): p ed (64 bit): p em64 d (32 bit): g em32 _fop d (64 bit): g em64 _fop	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp
82 83 84 85 86 87 88 89 90 91 91 92 92	Dependencies: → version of the code, you → gcc and g++ → Compiling the -> Single Threade → -DNO_INLIN -> Sugle Threade → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the	this code has only need a (4.7) code: ad $(32 \text{ bit}): g$ ad $(64 \text{ bit}): g$ Em64 d $(32 \text{ bit}): g$ Em32 -fop d $(64 \text{ bit}): g$ Em64 -fop a flags in the	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e. compilation command are redundant but they are included so you
82 83 84 85 86 87 88 89 90 91 91 92 93	Dependencies: → version of the code, you → gcc and g++ · Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the	this code has only need a 0 4.7 code: ed (32 bit): p Em32 ed (64 bit): p Em64 d (32 bit): g Em64 -fop e flags in the th gcc and ct	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you
82 83 84 85 86 87 88 89 90 91 91 92 93	Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use boo	this code has only need a (4.7 code: ed (32 bit): g Em32 ed (64 bit): g Em64 i (32 bit): g Em64 -fop i (64 bit): g Em64 -fop e flags in the th gcc and g+	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you ++
82 83 84 85 86 87 88 89 90 91 92 93 94 95	Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the ↔ could use bo without the need	this code has only need a (4.7) code: ad $(32 \text{ bit}):$ ad $(64 \text{ bit}):$ Em64 d $(32 \text{ bit}):$ g Em64 -fop d $(64 \text{ bit}):$ g Em64 -fop a flags in the th gcc and g+ to change and	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you +
82 83 84 85 86 87 88 88 89 90 91 92 93 94 95 96	Dependencies: → version of the code, you → gcc and g++ · Compiling the -> Single Threade → -DNO_INLIN -> Single Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the ↔ could use bo without the need */	this code has only need a (4.7 code: ed (32 bit): g Em32 ed (64 bit): g Em64 d (32 bit): g Em32 -fop d (64 bit): g Em64 -fop e flags in the th gcc and g+ to change an	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you ++ ything in the command.
82 83 84 85 86 87 88 89 90 91 91 92 93 94 95 96 97	Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */	this code has only need a (4.7 code: ed (32 bit): p Em32 ed (64 bit): p Em64 d (32 bit): g Em64 -fop d (64 bit): g Em64 -fop e flags in the th gcc and g+ to change and	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you ++ ything in the command.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */	this code has only need a (4.7 code: ed (32 bit): p ed (64 bit): p Em32 d (64 bit): g Em64 d (32 bit): g Em64 -fop e flags in the th gcc and g+ to change an	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you ++ ything in the command.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */	this code has only need a (4.7) code: ad $(32 \text{ bit}): g$ ed $(64 \text{ bit}): g$ Em64 d $(32 \text{ bit}): g$ Em32 -fop d $(64 \text{ bit}): g$ Em64 -fop e flags in the th gcc and g+ to change any	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you + ything in the command.
82 83 84 85 86 87 88 88 90 91 91 92 93 94 95 96 97 98 99 9100	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.h< pre=""></stdlib.h<></pre>	this code has only need a (4.7 code: ed (32 bit): ; Em32 ed (64 bit): ; Em64 d (32 bit): g Em64 -fop d (64 bit): g Em64 -fop e flags in th th gcc and g+ to change an;	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you + ything in the command.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 90 100	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <cmath></cmath></stdlib.f </pre>	this code has only need a (4.7 code: ed (32 bit): ; ed (64 bit): ; Em32 d (64 bit): g Em32 -fop d (64 bit): g Em64 -fop e flags in the th gcc and g+ to change and	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you ++ ything in the command.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 90 100 101	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <stdlib.f #include <stdlib.f< pre=""></stdlib.f<></stdlib.f </stdlib.f </pre>	this code has only need a (4.7 code: ad (32 bit): p Em32 ad (64 bit): p Em64 d (32 bit): g Em64 -fop a flags in the th gcc and g+ to change any	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you ++ ything in the command.
82 83 84 85 86 87 88 88 89 90 91 92 93 94 95 96 97 98 99 97 98 99 100 101 102 103	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <ctime></ctime></stdlib.f </pre>	this code has only need a (4.7 code: ed (32 bit): p Em32 ed (64 bit): p Em64 d (32 bit): g Em64 -fop a flags in th th gcc and g+ to change any	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ cenmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ cenmp e compilation command are redundant, but they are included so you +ything in the command.
	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <stdlib.f #include <ctime> #include <c< td=""><td>this code has only need a (4.7 code: ed (32 bit): ; Em32 ed (64 bit): ; Em64 i (32 bit): g Em64 -fop i (64 bit): g Em64 -fop e flags in the th gcc and g+ to change and</td><td>s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you ++ ything in the command.</td></c<></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></stdlib.f </stdlib.f </pre>	this code has only need a (4.7 code: ed (32 bit): ; Em32 ed (64 bit): ; Em64 i (32 bit): g Em64 -fop i (64 bit): g Em64 -fop e flags in the th gcc and g+ to change and	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you ++ ything in the command.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <ctime> #include <ctime< td=""><td>this code has only need a (4.7 code: ed (32 bit): p Em32 ed (64 bit): p Em64 d (32 bit): g Em32 -fop d (64 bit): g Em64 -fop e flags in the th gcc and g+ to change any n></td><td>s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you + ything in the command.</td></ctime<></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></stdlib.f </pre>	this code has only need a (4.7 code: ed (32 bit): p Em32 ed (64 bit): p Em64 d (32 bit): g Em32 -fop d (64 bit): g Em64 -fop e flags in the th gcc and g+ to change any n>	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you + ything in the command.
	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <ctime> #include <ctime> #include <ctime> #include <ctime> #include <ctime> #include <istream #include <istream< td=""><td>this code has only need a (4.7 code: ed (32 bit): p Em32 ed (64 bit): p Em64 d (32 bit): g Em64 -fop a flags in th th gcc and g+ to change any</td><td>s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you ++ ything in the command.</td></istream<></istream </ctime></ctime></ctime></ctime></ctime></stdlib.f </pre>	this code has only need a (4.7 code: ed (32 bit): p Em32 ed (64 bit): p Em64 d (32 bit): g Em64 -fop a flags in th th gcc and g+ to change any	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you ++ ything in the command.
82 83 84 85 86 87 88 88 89 90 91 92 93 94 95 96 97 98 99 97 98 99 9100 101 102 103 104 105	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -D_NO_INLIN -> Single Threaded → -D_NO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <stdlib.f #include <control #include <cont< td=""><td>this code has only need a (4.7 code: ed (32 bit): ; Em32 ed (64 bit): ; Em64 i (32 bit): g Em64 -fop a flags in the th gcc and g+ to change and</td><td>s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you ++ ything in the command.</td></cont<></control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </control </stdlib.f </stdlib.f </pre>	this code has only need a (4.7 code: ed (32 bit): ; Em32 ed (64 bit): ; Em64 i (32 bit): g Em64 -fop a flags in the th gcc and g+ to change and	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you ++ ything in the command.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -D_NO_INLIN -> Single Threaded → -D_NO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <ctime> #include <ctime> #include <ctime> #include <ctime> #include <ctorno> #include <stdint.f #include <stdint.f< pre=""></stdint.f<></stdint.f </ctorno></ctime></ctime></ctime></ctime></stdlib.f </pre>	this code has only need a (4.7 code: ad (32 bit): ; bd (64 bit): ; Em32 -fop d (64 bit): g Em64 -fop e flags in the th gcc and g+ to change and h>	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ yenmp e compilation command are redundant, but they are included so you ++ ything in the command.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <cmath> #include <ctor> #include <ctor> #include</ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></ctor></cmath></stdlib.f </pre>	this code has only need a (4.7 code: ed (32 bit): p Em32 ed (64 bit): g Em64 d (32 bit): g Em64 -fop a flags in the th gcc and g+ to change any b.h"	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ t+ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp ++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ penmp e compilation command are redundant, but they are included so you t+ ything in the command.
	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -D_NO_INLIN -> Single Threaded → -D_NO_INLIN -> Multi Threaded → -D_NO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <ctime> #include <ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></ctime></stdlib.f </pre>	this code has only need a (4.7 code: ad (32 bit): ; Em32 ad (64 bit): ; Em64 d (32 bit): g Em64 -fop a flags in th th gcc and g+ to change an; a> b>	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ tenmp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ benmp e compilation command are redundant, but they are included so you typthing in the command.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 97 98 99 97 97 98 99 90 100 101 102 103 104 105 106 107 108 109 110 1112	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -D_NO_INLIN -> Single Threaded → -D_NO_INLIN -> Multi Threaded → -D_NO_INLIN -> Multi Threaded → -D_NO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <ctime> #include <ctime> #include <ctime> #include <ctime> #include <ctoron> #include <ctoron> #include <ctoron> #include <stdlin.f #include <stdlin.f #include <ctoron> #include <ctoron> #include <stdlin.f #include <stdlin.f< td=""><td>this code has only need a (4.7 code: ed (32 bit): ; Em32 ed (64 bit): ; Em64 i (32 bit): g Em64 -fop i (64 bit): g Em64 -fop e flags in the th gcc and g+ to change and </td><td>s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ enemp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ enemp e compilation command are redundant, but they are included so you et ything in the command.</td></stdlin.f<></stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </stdlin.f </ctoron></ctoron></stdlin.f </stdlin.f </ctoron></ctoron></ctoron></ctime></ctime></ctime></ctime></stdlib.f </pre>	this code has only need a (4.7 code: ed (32 bit): ; Em32 ed (64 bit): ; Em64 i (32 bit): g Em64 -fop i (64 bit): g Em64 -fop e flags in the th gcc and g+ to change and 	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ enemp ++ -O3 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ enemp e compilation command are redundant, but they are included so you et ything in the command.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threade → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <ctime> #include <ctime> #include <ctime> #include <ctime> #include <ctime.h> #include <time.h> #include <time.h< time.h=""> #include <time.h< time.h=""> #include <time.h<< td=""><td>this code has only need a (4.7 code: ed (32 bit): p Em32 ed (64 bit): p Em64 d (32 bit): g Em64 d (32 bit): g Em64 -fop e flags in the th gcc and g+ to change any p> h> b.h"</td><td>s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ tenmp ++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ memp e compilation command are redundant, but they are included so you tend in the command.</td></time.h<<></time.h<></time.h<></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></time.h></ctime.h></ctime></ctime></ctime></ctime></stdlib.f </pre>	this code has only need a (4.7 code: ed (32 bit): p Em32 ed (64 bit): p Em64 d (32 bit): g Em64 d (32 bit): g Em64 -fop e flags in the th gcc and g+ to change any p> h> b.h"	s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ tenmp ++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ memp e compilation command are redundant, but they are included so you tend in the command.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113	<pre> Dependencies: → version of the code, you → gcc and g++ Compiling the -> Single Threade → -DNO_INLIN -> Single Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN -> Multi Threaded → -DNO_INLIN Note: some of the → could use bo without the need */ #include <stdlib.f #include <ctime> #include <ctime> #include <ctime> #include <ctime> #include <ctime> #include <fstream #include <stdlith.f #include <stdlith.f #include <ctime> #include <ctime> #include <ctime> #include <ctime> #include <stdlith.f #include <stdlith.f #include <stdlith.f #include <ctime> #include <stdlith.f #include <s< td=""><td>this code has only need a (4.7 code: ed (32 bit): p Em32 ed (64 bit): g Em64 d (32 bit): g Em64 -fop a flags in the th gcc and g+ to change any b h cohered b,h of static mentions only need a (a flags in the cohered b,h cohered a flags in the cohered b,h cohered a flags in the cohered b,h cohered a flags in the cohered a fl</td><td><pre>s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ tenmp ++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ momp e compilation command are redundant, but they are included so you thing in the command.</pre></td></s<></stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </stdlith.f </ctime></stdlith.f </stdlith.f </stdlith.f </ctime></ctime></ctime></ctime></stdlith.f </stdlith.f </fstream </ctime></ctime></ctime></ctime></ctime></stdlib.f </pre>	this code has only need a (4.7 code: ed (32 bit): p Em32 ed (64 bit): g Em64 d (32 bit): g Em64 -fop a flags in the th gcc and g+ to change any b h cohered b,h of static mentions only need a (a flags in the cohered b,h cohered a flags in the cohered b,h cohered a flags in the cohered b,h cohered a flags in the cohered a fl	<pre>s no dependencies. If you want to activate the multi-threaded C++ compiler that supports OpenMp. OpenMp 3.1 is supported since g++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ g++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ tenmp ++ -03 -std=c++11 admm_sdp.cpp -o admm_sdp -lstdc++ momp e compilation command are redundant, but they are included so you thing in the command.</pre>

```
115
    bool RandomFuncs::FirstCall = true;
116
    unsigned long long RandomFuncs::x;
117
118
     119
    120
121
     void SparseMatrix::Get(uint64_t row, uint64_t column, double &value)
122
123
            if (row < m_size)
{</pre>
124
125
                   value = 0:
126
127
128
                   uint64_t row_size = m_Values[row].size();
                   for(uint64_t i = 0; i < row_size; i++)
{</pre>
129
130
                          if (m_Columns[row][i] > column)
131
132
                                 break;
133
134
                          if (m_Columns[row][i] == column)
135
                          {
136
                                 value = m_Values[row][i];
137
                                 break:
138
                          }
                   }
139
140
            }
            else
141
                   value = GetNAN();
142
    }
143
144
     145
    146
147
     void SparseMatrix::GetLastElement(uint64_t row, uint64_t column, double &value)
148
149
150
            if (row < m_size)</pre>
151
            {
                   value = 0;
152
153
154
                   if (column <= m_LastNonZeroElement[row])</pre>
                   Ł
155
                          uint64_t row_size = m_Values[row].size();
for(uint64_t i = row_size - 1; i >= 0; i--)
156
157
158
159
                                 if (m_Columns[row][i] < column)</pre>
160
                                        break;
161
                                 if (m_Columns[row][i] == column)
162
                                 {
163
164
                                         value = m_Values[row][i];
165
                                        break;
                                 }
166
                          }
167
168
                   }
169
            }
else
170
                   value = GetNAN();
171
    }
172
173
     174
    // S[row][column] = value
175
176
177
     void SparseMatrix::Set(uint64_t row, uint64_t column, double value)
178
     ſ
179
            if (row < m_size)</pre>
            {
180
                   uint64_t row_size = m_Values[row].size();
uint64_t i = 0;
181
182
183
                   for(; i < row_size; i++)</pre>
                   ſ
184
                          if (m_Columns[row][i] > column)
185
                          ſ
186
187
                                  if (std::abs(value) > DEF_PRESICE)
                                 ł
188
189
                                        std::vector<double> temp_Values(row_size + 1);
                                        std::vector<uint64_t> temp_Columns(row_size + 1);
190
191
                                        for (uint64_t j = 0; j < i; j++)</pre>
192
193
                                        ſ
                                               temp_Values[j] = m_Values[row][j];
temp_Columns[j] = m_Columns[row][j];
194
195
                                        }
196
```

```
197
                                                         temp_Values[i] = value;
temp_Columns[i] = column;
198
199
200
                                                         for (uint64_t j = i + 1; j <= row_size; j++)</pre>
201
202
                                                         {
                                                                   temp_Values[j] = m_Values[row][j - 1];
temp_Columns[j] = m_Columns[row][j - 1];
203
204
                                                         }
205
206
207
                                                         m_Values[row].swap(temp_Values);
208
                                                         m_Columns[row].swap(temp_Columns);
209
210
                                                         if (m_LastNonZeroElement[row] < column)</pre>
211
                                                                   m_LastNonZeroElement[row] = column;
                                               }
212
213
214
                                               break;
                                     }
215
216
217
                                     if (m_Columns[row][i] == column)
218
                                     ł
219
                                               if (std::abs(value) > DEF_PRESICE)
220
                                               {
221 \\ 222
                                                         m_Values[row][i] = value;
223
                                                         if (m_LastNonZeroElement[row] < column)</pre>
224
                                                                   m_LastNonZeroElement[row] = column;
                                              else
{
225
226
227
                                                         std::vector<double> temp_Values(row_size - 1);
228
229
                                                         std::vector<uint64_t> temp_Columns(row_size - 1);
230
                                                         for (uint64_t j = 0; j < i; j++)</pre>
231
232
                                                         {
                                                                   temp_Values[j] = m_Values[row][j];
temp_Columns[j] = m_Columns[row][j];
233
234
                                                         7
235
236
                                                         for (uint64_t j = i; j < row_size - 1; j++)</pre>
237
238
                                                         {
                                                                   temp_Values[j] = m_Values[row][j + 1];
temp_Columns[j] = m_Columns[row][j + 1];
239
240
                                                         }
241
242
243
                                                         m_Values[row].swap(temp_Values);
244
                                                         m_Columns[row].swap(temp_Columns);
245
246
                                                         if (m_LastNonZeroElement[row] == column)
247
                                                         {
248
                                                                    int64_t i_last = i - 1;
249
                                                                   for(; i_last >= 0; i_last--)
250
251
                                                                    Ł
                                                                              if (m_Values[row][i_last] != 0)
252
                                                                             {
253
254
                                                                                        m_LastNonZeroElement[row] =
                                                                                         → m_Columns[row][i_last];
255
                                                                                        break;
256
                                                                             }
                                                                   }
257
258
259
                                                                    if (i_last < 0)</pre>
260
                                                                             m_LastNonZeroElement[row] = 0;
261
                                                         }
                                               }
262
263
264
                                               break:
                                     }
265
                           }
266
267
                           if (i == row_size && std::abs(value) > DEF_PRESICE)
268
269
                           ł
                                     std::vector<double> temp_Values(row_size + 1);
std::vector<uint64_t> temp_Columns(row_size + 1);
270
271
272
273
                                     for (uint64_t j = 0; j < i; j++)</pre>
                                     -{
274
                                               temp_Values[j] = m_Values[row][j];
temp_Columns[j] = m_Columns[row][j];
275
276
                                     }
277
278
```

```
temp_Values[i] = value;
temp_Columns[i] = column;
279
280
281
                                    for (uint64_t j = i + 1; j <= row_size; j++)</pre>
282
283
                                    {
                                              temp_Values[j] = m_Values[row][j - 1];
temp_Columns[j] = m_Columns[row][j - 1];
284
285
286
                                    }
287
                                    m_Values[row].swap(temp_Values);
288
289
                                    m_Columns[row].swap(temp_Columns);
290
                                    m_LastNonZeroElement[row] = column;
291
                          }
292
                }
293
      }
294
295
      296
297
298
299
       void SparseMatrix::Add(uint64_t row, uint64_t column, double value)
300
       {
                if (row < m_size)
{</pre>
301
302
                          if (std::abs(value) > DEF_PRESICE)
303
304
                          ł
                                    uint64_t row_size = m_Values[row].size();
uint64_t i = 0;
305
                                    for(; i < row_size; i++)
{</pre>
306
307
308
309
                                              if (m_Columns[row][i] > column)
                                              {
310
                                                        std::vector<double> temp_Values(row_size + 1);
std::vector<uint64_t> temp_Columns(row_size + 1);
311
312
313
                                                        for (uint64_t j = 0; j < i; j++)</pre>
314
315
                                                        {
                                                                  temp_Values[j] = m_Values[row][j];
temp_Columns[j] = m_Columns[row][j];
316
317
                                                        }
318
319
                                                        temp_Values[i] = value;
temp_Columns[i] = column;
320
321
322
323
                                                        for (uint64_t j = i + 1; j <= row_size; j++)</pre>
324
                                                        {
                                                                  temp_Values[j] = m_Values[row][j - 1];
temp_Columns[j] = m_Columns[row][j - 1];
325
326
                                                        }
327
328
329
                                                        m_Values[row].swap(temp_Values);
330
                                                        m_Columns[row].swap(temp_Columns);
331
                                                        if (m_LastNonZeroElement[row] < column)</pre>
332
333
                                                                  m_LastNonZeroElement[row] = column;
334
335
                                                        break;
336
                                              }
                                              if (m_Columns[row][i] == column)
{
337
338
339
340
                                                        double val = m_Values[row][i] + value;
341
                                                        if (std::abs(val) > DEF_PRESICE)
342
                                                        Ł
                                                                  m_Values[row][i] = val;
343
344
345
                                                                  if (m_LastNonZeroElement[row] < column)</pre>
346
                                                                            m_LastNonZeroElement[row] = column;
347
                                                        else
348
349
                                                                  std::vector<double> temp_Values(row_size - 1);
350
                                                                  std::vector<uint64_t> temp_Columns(row_size -
351
                                                                   \rightarrow 1);
352
                                                                  for (uint64_t j = 0; j < i; j++)</pre>
353
354
                                                                  ſ
                                                                           temp_Values[j] = m_Values[row][j];
temp_Columns[j] = m_Columns[row][j];
355
356
                                                                  7
357
358
                                                                  for (uint64_t j = i; j < row_size - 1; j++)</pre>
359
```



```
if (row_i < m_size && row_sum < m_size && alpha != 0)
{
439
440
441
                         uint64_t i_size = m_Values[row_i].size();
                         uint64_t sum_size = m_Values[row_sum].size();
442
443
444
                         uint64_t temp_size = i_size + sum_size;
445
                         std::vector<double> sum_Values(temp_size);
446
                         std::vector<uint64_t> sum_Columns(temp_size);
447
448
                         uint64_t i_index = 0;
uint64_t sum_index = 0;
uint64_t k = 0;
449
450
451
                         while (i_index != i_size || sum_index != sum_size)
452
453
454
                                   if (sum_index == sum_size)
455
                                   {
                                             sum_Values[k] = alpha * m_Values[row_i][i_index];
sum_Columns[k] = m_Columns[row_i][i_index];
456
457
                                              _index++;
458
                                             k++;
459
460
461
                                             continue;
462
                                   }
                                   else if (i_index == i_size)
463
                                   ſ
464
                                             sum_Values[k] = m_Values[row_sum][sum_index];
465
466
                                             sum_Columns[k] = m_Columns[row_sum][sum_index];
                                             sum_index++;
k++;
467
468
469
470
                                   else if (m_Columns[row_i][i_index] < m_Columns[row_sum][sum_index])
471
                                             sum_Values[k] = alpha * m_Values[row_i][i_index];
sum_Columns[k] = m_Columns[row_i][i_index];
472
473
474
                                             i_index++;
                                             k++;
475
                                   else if (m_Columns[row_i][i_index] > m_Columns[row_sum][sum_index])
{
476
477
478
                                             sum_Values[k] = m_Values[row_sum][sum_index];
479
                                             sum_Columns[k] = m_Columns[row_sum][sum_index];
480
481
                                             sum_index++;
                                             k++;
482
                                   }
else
{
483
484
485
                                             double val = alpha * m_Values[row_i][i_index] +
486

→ m_Values[row_sum][sum_index];
if (std::abs(val) > DEF_PRESICE)
487
                                             {
488
                                                      sum_Values[k] = val;
sum_Columns[k] = m_Columns[row_i][i_index];
489
490
491
                                                      k++;
                                             }
492
493
494
                                             i_index++;
                                             sum_index++;
495
496
                                   }
                         }
497
498
499
                         sum_Values.resize(k);
                         sum_Columns.resize(k);
500
501
502
                         m_Values[row_sum].swap(sum_Values);
                         m_Columns[row_sum].swap(sum_Columns);
503
504
                         int64_t i_last = k - 1;
for(; i_last >= 0; i_last--)
505
506
507
508
                                   if (m_Values[row_sum][i_last] != 0)
509
                                   {
                                             m_LastNonZeroElement[row_sum] = m_Columns[row_sum][i_last];
510
511
512
                                             break;
                                   }
513
                         }
514
515
516
                         if (i_last == -1)
517
                                   m_LastNonZeroElement[row_sum] = 0;
                }
518
      }
519
520
```

```
521
    522
523
524
    void SparseMatrix::RowsProduct(uint64_t row_i, uint64_t row_j, double & prod)
525
    Ł
            if (row_i < m_size && row_j < m_size)</pre>
526
527
528
                  prod = 0;
529
                  uint64_t i_index = 0;
uint64_t j_index = 0;
530
531
532
                  uint64_t i_size = m_Values[row_i].size();
533
                  uint64_t j_size = m_Values[row_j].size();
534
535
                  while (i_index != i_size && j_index != j_size)
536
537
538
                          if (m_Columns[row_i][i_index] < m_Columns[row_j][j_index])</pre>
                                 i index++
539
                          else if (m_Columns[row_i][i_index] == m_Columns[row_j][j_index])
540
541
                          ſ
542
                                prod += m_Values[row_i][i_index] * m_Values[row_j][j_index];
543
                                i_index++;
j_index++;
544
545
                         }
                         else
546
                                j_index++;
547
                  }
548
           }
549
    }
550
551
    552
    553
554
555
    void SparseMatrix::RowVectorProduct(const std::vector<double> &x, uint64_t row, double & prod)
    Ł
556
            if (row < m_size)</pre>
557
558
                  prod = 0;
559
560
                  uint64_t i_index = 0;
561
                  uint64_t i_size = m_Values[row].size();
uint64_t x_size = x.size();
562
563
564
565
                  while (i_index != i_size)
566
                          if (m_Columns[row][i_index] >= x_size)
567
568
                          {
                                prod = GetNAN();
569
570
                                 return:
571
                         }
                         prod += x[m_Columns[row][i_index]] * m_Values[row][i_index];
i_index++;
572
573
574
                  }
575
           }
576
    }
577
578
    579
    580
581
    void SparseMatrix::PushRow(uint64_t row, const std::vector<double> &values, const
582
         std::vector<uint64_t> &columns, uint64_t count)
     \hookrightarrow
583
    ł
            if (row < m_size && values.size() >= count && columns.size() >= count)
584
585
586
                  m_Values[row].resize(count);
587
                  m_Columns[row].resize(count);
588
                  for (uint64_t i = 0; i < count; i++)
589
590
                  {
                         m_Values[row][i] = values[i];
m_Columns[row][i] = columns[i];
591
592
                  }
593
594
                  int64_t i_last = count - 1;
595
                  for(; i_last >= 0; i_last--)
596
                  ł
597
598
                          if (m_Values[row][i_last] != 0)
599
600
                                m_LastNonZeroElement[row] = m_Columns[row][i_last];
601
602
                                break;
```

```
}
603
                         }
604
605
                         if (i_last == -1)
606
                                  m_LastNonZeroElement[row] = 0;
607
               }
608
      }
609
610
      611
      // Computes eigenvectors and eigenvalues of a symmetric matrix
612
613
614
      MatrixFuncs::ResultCode MatrixFuncs::EigenVectorsSymm(const std::vector<double> &a,
            std::vector<double> &eigen_values, std::vector<double> &eigen_vectors)
       \hookrightarrow
      {
615
\begin{array}{c} 616 \\ 617 \end{array}
               MatrixFuncs::ResultCode result_code = ercNoError;
618
               int64_t dim = (int64_t)sqrt(a.size());
619
               if (dim * dim != (int64_t)a.size() || dim == 0)
    return ercInputDataError;
620
621
622
623
               double tolerance = DEF_TOLERANCE;
624
625
           // allocation for a vector of eigenvalues and a matrix of eigenvectors
               eigen_values.resize(dim);
626
               eigen_vectors.resize(dim * dim);
627
628
               // calculating Hessenberg form of A
std::vector<double> d;
std::vector<double> e;
629
630
631
               HessenbergFormSymm(a, eigen_vectors, d, e);
632
633
               // computing the norm of H
double norm = 0;
for (int64_t i = 0; i < dim;_i++)</pre>
634
635
636
               for (int64_t i = 0; i < dim - 1; i++)
    norm += 2 * std::abs(e[i]);</pre>
637
638
639
640
               // finding the index of the first non-zero subdiagonal element
int64_t min_index;
for (int64_t i = 0; i < dim; i++)</pre>
641
642
643
644
               ſ
                         if (i == dim - 1)
645
                         {
646
647
                                  min_index = i;
648
                                  break;
                         }
649
650
651
                         double sum = std::abs(d[i]) + std::abs(d[i + 1]);
                         if (sum == 0)
sum = norm;
652
653
654
                         if ((std::abs(e[i]) <= tolerance * sum) && (std::abs(e[i]) <= tolerance))</pre>
655
                                  e[i] = 0;
                         else
656
                         {
657
658
                                  min_index = i;
                    break;
659
660
               }
661
662
               // finding the index of the first zero element e[i] starting from min_index
663
               int64_t max_index;
664
665
               for (max_index = min_index + 1; max_index < dim; max_index++)</pre>
666
                         if (max_index == dim - 1)
667
668
                                  break;
669
                         double sum = std::abs(d[max_index]) + std::abs(d[max_index + 1]);
670
                         if (sum == 0)
    sum = norm;
671
                         if ((std::abs(e[max_index]) < tolerance * sum) && (std::abs(e[max_index]) <</pre>
672
                               tolerance))
                          \rightarrow
                         {
673
674
                                  e[max_index] = 0;
675
                                  break
                         }
676
               }
677
678
               int64_t count = 0;
679
680
681
               // we now proceed with an iterative algorithm. On each step we are making e[i] closer
                     to zero for i = min_index
               // and recalculating max_index and min_index
682
```

```
while ((min_index < dim - 1) && (count < 10000))
{</pre>
683
684
685
                              // performing a step of the QR-algorithm with shifts for the block
                                     [min_index,max_index] of H;
                              // for that we compute H = P_k*...*P_1*H*P'_1*...*P'_k, k = max_index -
686
                                \hookrightarrow min_index,
687
                              // each P_i is a plane rotation making a subdiagonal element of H - shift*I \hookrightarrow zero
688
                              // the shift is the eigenvalue of an upper left block 2x2 closer to the corner
689
                               \hookrightarrow element d[min_index]
                              double g = (d[min_index+1] - d[min_index]) / (2.0 * e[min_index]);
if (g >= 0)
690
691
                                        g -= sqrt(g * g + 1);
692
693
                              else
694
                                         g += sqrt(g * g + 1);
695
                              double shift = d[min_index] + e[min_index] * g;
696
697
698
                              g = d[max_index] - shift;
699
                              // performing max_index - min_index plane rotations on the block
700
                                     [min_index,max_index];
                              // this is an implicit computation, done in a way to work faster
bool zero = false;
double s = 1, c = 1, p = 0;
for (int64_t i = max_index - 1; i >= min_index; i--)
701
702
703
704
705
                              ſ
                                   double f = s * e[i];
double b = c * e[i];
double r = sqrt(f * f + g * g);
e[i + 1] = r;
706
707
708
709
710
711
                                   if (r == 0)
712
                                         {
                                                    \ensuremath{/\!/} in case zero appeared on the subdiagonal of the block
713
                                                     \hookrightarrow
                                                           [min_index,max_index]
                                         e[i + 1] = 0;
d[i + 1] -= p;
zero = true;
714
715
716
                                         break;
717
                                         }
718
719
720
                                         s = f / r;
                                    \begin{array}{l} s = 1 \ / \ r; \\ c = g \ / \ r; \\ g = d[i + 1] - p; \\ r = (d[i] - g) * s + 2.0 * c * b; \\ p = s * r; \\ d[i + 1] = g + p; \\ g = c * r - b; \end{array} 
721
722
723
724
725
726
727
                                         // modification of S (which is being saved as eigenVectors) for (int64_t j = 0; j < dim; j++)
728
729
                                         ł
730
                                                    f = eigen_vectors[j * dim + i + 1];
eigen_vectors[j * dim + i + 1] = s * eigen_vectors[j * dim + i]
731
732
                                                           + c * f;
                                                    eigen_vectors[j * dim + i] = c * eigen_vectors[j * dim + i] - s
733
                                                           * f;
734
                                         }
                              }
735
736
737
                              e[max_index] = 0;
                              if (!zero)
738
739
                                         d[min_index] -= p;
e[min_index] = g;
740
741
                              }
742
\begin{array}{c} 743 \\ 744 \end{array}
                              count++:
745
                              // recalculation of min_index
746
                              for (int64_t i = min_index; i < dim; i++)</pre>
747
748
                              {
749
                                         if (i == \dim - 1)
750
                                         {
                                                    min_index = i;
break;
751
752
753
                                         }
754
                                         double sum = std::abs(d[i]) + std::abs(d[i + 1]);
755
                                         if (sum == 0)
756
```

```
757
                                       sum = norm;
                      if ((std::abs(e[i]) < tolerance * sum) && (std::abs(e[i]) < tolerance))
758
759
                              {
                                      e[i] = 0;
count = 0;
760
761
                              } else
762
                              ł
763
764
                                      min_index = i;
765
                                       break:
                              }
766
767
                      }
768
                      // recalculation of max_index
769
                      int64_t indx;
770
771
                      for (indx = min_index + 1; indx < dim; indx++)</pre>
                      {
772
                              if (indx == dim - 1)
773
774
                                      break;
                              double sum = std::abs(d[indx]) + std::abs(d[indx + 1]);
775
                              if (sum == 0)
sum = norm;
776
777
778
                              if ((std::abs(e[indx]) < tolerance * sum) && (std::abs(e[indx]) <</pre>
                               \hookrightarrow
                                   tolerance))
                              {
779
                                       e[indx] = 0;
780
781
                                      break;
                              }
782
                      }
783
784
785
                      if (indx < max_index || min_index >= max_index)
786
                      {
787
                              max_index = indx;
788
                              count = 0:
                      }
789
             }
790
791
             792
793
794
795
             return result_code;
796
     }
797
798
799
     800
801
802
     void MatrixFuncs::HessenbergFormSymm(const std::vector<double> &a, std::vector<double> &s,
803
           std::vector<double> &d, std::vector<double> &e)
      \hookrightarrow
     {
804
              int64_t dim = (int64_t)sqrt(a.size());
805
806
              // memory allocation
s.resize(dim * dim);
807
808
809
              d.resize(dim);
810
              e.resize(dim);
811
              std::vector<double> H(a);
812
              std::vector<double> v(dim);
813
              std::vector<double> h(dim);
814
815
              bool first_modification = true;
816
817
              // algorithm based on Householder transformations
              for (int64_t i = 0; i < dim - 2; i++)
818
819
              double t = 0;
for (int64_t j = i + 1; j < dim; j++)
    t += H[j * dim + i] * H[j * dim + i];
820
821
822
823
                      double u = sqrt(t);
824
825
826
                      // if all the elements of the i^th column starting from i+2 are zeroes, then we
                       \hookrightarrow save the diagonal
                      // and subdiagonal elements and go to the next iteration
if (u <= std::abs(H[(i + 1) * dim + i]))</pre>
827
828
                      {
829
                              d[i] = H[i * dim + i];
e[i] = H[(i + 1) * dim + i];
830
831
                  continue;
832
833
                      }
834
              835
836
```

```
double w = sqrt(u * u - H[(i + 1) * dim + i] * u);
838
839
               v[i + 1] = (H[(i + 1) * dim + i] - u) / w;
for (int64_t j = i + 2; j < dim; j++)
     v[j] = H[j * dim + i] / w;
840
841
842
843
                         // at this iteration, we compute H -> P*H*P, where P = I - v*v'
// P*H*P = H - H*v*v' - v*v'*H + v*v'*H*v*v' =
// = H - h*v' - v*h' + mult*v*v' = H - h*v' - (h*v')' + mult*v*v',
844
845
846
847
                         // where the vector h = H*v and the number mult = h'*v are computed below
848
                         /\!/ the vector h has zeros at the first (i-1) coordinates, and the i^th
849
                          \hookrightarrow coordinate is irrelevant
                         #pragma omp parallel for schedule(guided)
for (int64_t j = i + 1; j < dim; j++)</pre>
850
      11
                                                                                    //SECOND
851
852
                         ſ
853
                                  h[j] = 0;
                                  854
855
856
                                                    h[j] += H[j * dim + k] * v[k];
857
858
                                           else
                                                    h[j] += H[k * dim + j] * v[k];
859
                         }
860
861
                        862
863
864
865
866
                         // final computation of H;
                        // we save the next diagonal and subdiagonal elements and compute only the \hookrightarrow columns starting from i+1 d[i] = H[i * dim + i];
867
868
                         e[i] = u;
869
870
                        11
871
872
873
874
                                             \rightarrow v[k]);
875
876
                         if (first_modification)
877
                         Ł
                                  // at the first modification, S is initialized by P = I - v*v'
878
                                  for (int64_t k = 0; k < dim; k++)
    for (int64_t j = 0; j < dim; j++)
        if ((j > i) && (k > i))
879
880
881
882
                                                              if (j == k)
                                                                       s[k * dim + j] = 1 - v[j] * v[k];
883
                                                              else
884
                                                                       s[k * dim + j] = -v[j] * v[k];
885
886
                                                     else
887
                                                              if (j == k)
                                                                       s[k * dim + j] = 1;
888
889
                                                              else
890
                                                                       s[k * dim + j] = 0;
                                  first modification = false:
891
                         }
892
                         else
{
893
894
                                  // computation of S = P*S = S - v*v'*S = S - v*h', where h' = v'*S
895
                                  #pragma omp parallel for schedule(guided)
for (int64_t j = 1; j < dim; j++)</pre>
      11
                                                                                             //SECOND
896
897
898
                                  ſ
                                           h[j] = 0;
for (int64_t k = i + 1; k < dim; k++)
h[j] += s[j * dim + k] * v[k];
899
900
901
902
                                  }
                                  11
                                                                                              //SECOND
903
904
905
906
                         }
907
               }
908
909
               // in case the matrix A was already in the Hessenberg form, we initialize S by identity
910
911
912
913
914
                                                    s[k * dim + j] = 1;
915
```

```
916
                                 else
917
                                        s[k * dim + j] = 0;
918
           d[dim - 2] = H[(dim - 2) * dim + dim - 2];
d[dim - 1] = H[(dim - 1) * dim + dim - 1];
919
920
921
            e[\dim - 2] = H[(\dim - 1) * \dim + \dim - 2];
922
923
            return:
924
    }
925
926
     927
    928
929
     void MatrixFuncs::Multiply(
                                   const int64_t &m, const int64_t &dim, const int64_t &n,
930
         const std::vector<double> &a, const std::vector<double> &b, bool left_trans, bool
     \hookrightarrow
     \hookrightarrow
         right_trans,
931
                                                      const double &alpha,

→ std::vector<double> &mult)

    {
932
            if ((int64_t)mult.size() != m * n)
933
                  mult.resize(m * n);
934
935
936
            // computation of mult
            if(left_trans && right_trans)
937
            {
938
939
                   // Both matrices are transposed
                   940
    11
                                                                //SECOND
941
942
                          {
943
                                 944
945
946
947
                                 mult[i * n + j] = alpha * sum;
948
                          }
949
            }else if(left_trans)
950
951
952
                   // First matrix is transposed
                   //SECOND
953
    11
954
955
956
                          {
                                 double sum = 0;
int64_t ind1 = i - m, ind2 = j - n;
957
958
                                 for (int64_t k = 0; k < dim; k++)
sum += a[ind1 += m] * b[ind2 += n];
959
960
961
                                 mult[i * n + j] = alpha * sum;
                          7
962
            }else if(right_trans)
963
964
                   // Second matrix is transposed
965
                   #pragma omp parallel for schedule(guided)
for (int64_t i = 0; i < m; i++)</pre>
                                                                //SECOND
966
    11
967
                          for (int64_t j = 0; j < n; j++)
{</pre>
968
969
                                 double sum = 0;
970
                                 for (int64_t k = 0; k < dim; k++)
971
                                       sum += a[i * dim + k] * b[j * dim + k];
972
973
                                 mult[i * n + j] = alpha * sum;
                          }
974
           }else
{
975
976
                   // Matrices are not transposed
977
                   11
                                                                //SECOND
978
979
980
                                 981
982
983
984
985
986
                          }
987
988
            }
989
990
            return;
991
    }
992
     993
994
    // Multiplication of sparse real matrices
```

```
995
     void MatrixFuncs::MultiplySparse( const int64_t &m, const int64_t &dim, SparseMatrix &a,
996
           SparseMatrix &mult)
      \rightarrow
      ł
997
             mult.clear();
998
999
             if ((int64_t)a.size() < m)</pre>
1000
1001
                     return;
1002
1003
             mult.resize(m);
1004
             std::vector<double> temp_values(m);
1005
1006
             std::vector<uint64_t> temp_columns(m);
1007
1008
             // Second matrix is transposed
     #pragma omp parallel for schedule(guided) // StarGraph
    for (int64_t i = 0; i < m; i++)</pre>
1009
1010
             {
                     int64_t count = 0;
for (int64_t j = 0; j < m; j++)
{</pre>
1011
1012
1013
1014
                             double sum = 0;
1015
1016
1017
                             a.RowsProduct(i, j, sum);
1018
                             if (std::abs(sum) > DEF_PRESICE)
1019
1020
                             Ł
1021
                                    temp_values[count] = sum;
1022
                                    temp_columns[count] = j;
1023
                                    count++:
1024
                            }
1025
                     }
1026
1027
                     mult.PushRow(i, temp_values, temp_columns, count);
1028
             }
1029
1030
             return;
1031
     }
1032
1033
      1034
      1035
1036
      MatrixFuncs::ResultCode MatrixFuncs::DevideByVectorAnaliticSymm(
1037
                                                                           const
           std::vector<double> &a. const std::vector<double> &b. std::vector<double> &x)
      \hookrightarrow
1038
     {
1039
             MatrixFuncs::ResultCode result_code = ercNoError;
1040
1041
             if (a.size() == 0)
                    return ercInputDataError;
1042
1043
1044
             int64_t dim = (int64_t)sqrt(a.size());
1045
             1046
1047
1048
             1049
1050
1051
1052
             x.resize(dim):
1053
1054
             std::vector<double> L(a);
1055
1056
             // computation of L
1057
             for (int64_t i = 0; i < dim; i++)</pre>
1058
1059
             Ł
                     for (int64_t j = 0; j < i; j++)</pre>
1060
1061
                     {
1062
                             double sum2 = 0;
                            //#pragma omp parallel for schedule(guided)
1063
1064
1065
1066
                            L[i * dim + j] = (L[i * dim + j] - sum2) / L[j * dim + j];
1067
                     }
1068
1069
     double sum1 = 0;
//#pragma omp parallel for schedule(guided)
1070
                                                       //SECOND
1071
                     for (int64_t k = 0; k < i; k++)
sum1 += L[i * dim + k] * L[i * dim + k];
1072
1073
1074
                     if (L[i * dim + i] - sum1 <= 0)</pre>
1075
1076
```

```
1077
1078
1079
                          return ercInputDataError; //A must be a positive definite matrix
1080
1081
                   }
1082
                   else
1083
                          L[i * dim + i] = sqrt(L[i * dim + i] - sum1);
            }
1084
1085
     //#pragma omp parallel for schedule(guided)
                                                  //SECOND
1086
1087
            for (int64_t i = 0; i < dim; i++)</pre>
1088
            Ł
                   x[i] = b[i];
1089
            }
1090
1091
            for (int64_t i = 0; i < dim; i++)</pre>
1092
1093
                   x[i] /= L[i * dim + i];
1094
1095
     //#pragma omp parallel for schedule(guided)
1096
                                                 //SECOND
                   for (int64_t j = i + 1; j < dim; j++)
{</pre>
1097
1098
                          x[j] -= L[j * dim + i] * x[i];
1099
                   }
1100
            }
1101
1102
            for (int64_t i = dim - 1; i >= 0; i--)
1103
1104
                   x[i] /= L[i * dim + i];
1105
1106
     //#pragma omp parallel for schedule(guided)
                                                  //SECOND
1107
                   for (int64_t j = 0; j < i; j++)
{</pre>
1108
1109
1110
                          x[j] -= L[i * dim + j] * x[i];
1111
                   }
1112
            }
1113
1114
            return result_code;
     7
1115
1116
     1117
     // Solves the system of linear equations A*x = b for symmetric positive definite matrix A by
1118
         using Gauss method(analitical method).
     1119
1120
1121
1122
     1123
     1124
1125
     MatrixFuncs::ResultCode
1126
         MatrixFuncs::DevideByVectorAnaliticSymmSparse_Fase_1(
                                                               SparseMatrix &a_triang,
      \hookrightarrow
      \hookrightarrow
          SparseMatrix &s)
     {
1127
            MatrixFuncs::ResultCode result_code = ercNoError;
1128
1129
            int64_t dim = a_triang.size();
1130
1131
            if (\dim == 0)
1132
                   return ercInputDataError;
1133
1134
1135
            s.resize(dim):
1136
            //reduction of the matrix A to a triangular form
1137
1138
            for (int64_t i = dim - 1; i >= 0; i--)
1139
            ſ
1140
                   double val_ii;
1141
1142
                   a_triang.Get(i, i, val_ii);
1143
                   // modification of A and S
1144
     1145
1146
1147
1148
                          double val_ji;
                          a_triang.GetLastElement(j, i, val_ji);
1149
1150
                          if (val_ji != 0.0)
1151
                          Ł
1152
                                 double temp = val_ji / val_ii;
1153
1154
                                 s.Set(j, i, -temp);
1155
1156
```

a_triang.AddRow(i, j, -temp); 1157 } 11581159} 1160} 1161 1162return result_code; 11637 11641165// Solves the system of linear equations A*x = b for symmetric positive definite matrix A by 1166 using Gauss method(analitical method). // The matrices A and vector b must have the same number of rows. 1167 // Algorithm is divided into two phases 1168116911701171 1172// Fase_2 - transformation of vector b (using transformation matrix S) and sequential 11731174 MatrixFuncs::DevideByVectorAnaliticSymmSparse_Fase_2(SparseMatrix &a_triang, \hookrightarrow SparseMatrix &s, const std::vector<double> &b, std::vector<double> &x) \hookrightarrow { 11751176 MatrixFuncs::ResultCode result_code = ercNoError; 1177 int64_t dim = a_triang.size(); 1178 1179 1180if $(\dim == 0)$ return ercInputDataError; 1181 1182 1183if (dim != s.size()) 1184 ſ std::cout << "return" << std::endl;</pre> 11851186return ercInputDataError; 1187 } 1188 if (dim != (int64_t)b.size()) 1189 { 1190 std::cout << "return" << std::endl:</pre> 1191 return ercInputDataError; 1192 } 1193 1194 1195x.resize(dim); 1196 1197 std::vector<double> temp_b(b); 1198 // modification of B 1199 for (int64_t i = dim - 1; i >= 0; i--) 1200 1201 ſ double temp = 0;1202 s.RowVectorProduct(temp_b, i, temp); 1203 temp_b[i] += temp; 1204 } 1205 12061207 // recursive computation of the vector x for (int64_t i = 0; i < dim; i++) 1208 1209double sum_sq = 0.0; a_triang.RowVectorProduct(x, i, sum_sq); 1210 1211 1212 double val_ii; a_triang.Get(i, i, val_ii); 1213 1214 1215 x[i] = (temp_b[i] - sum_sq) / val_ii; 1216 } 1217 1218 1219 return result_code; } 1220 1221 1222// Addition of real vectors 1223 1224void MatrixFuncs::AddVectors(const std::vector<double> &v_1, const std::vector<double> &v_2, 1225const double &alpha, const double &beta, std::vector<double> &sum) \hookrightarrow { 1226 1227 int64_t dim = v_1.size(); 1228 if ((int64_t)sum.size() != dim) sum.resize(dim); 12291230 for (int64_t i = 0; i < dim; i++)
 sum[i] = alpha * v_1[i] + beta * v_2[i];</pre> 123112321233 1234 return;

```
1235
      }
1236
       1237
       1238
1239
       MatrixFuncs::ResultCode MatrixFuncs::Inverse(const std::vector<double> &a, std::vector<double>
1240
       \hookrightarrow &a_inv)
       {
1241
1242
                MatrixFuncs::ResultCode result_code = ercNoError;
1243
1244
                if (a.size() == 0)
1245
                         return ercInputDataError;
1246
1247
                int64_t dim = (int64_t)sqrt(a.size());
1248
                if (dim * dim != (int64_t)a.size())
1249
                         return ercInputDataError;
1250
1251
1252
                a inv.resize(dim * dim):
1253
                std::vector<double> lu(a);
std::vector<double> lu_mod(dim*dim);
1254
1255
                std::vector<int64_t> permutation(dim);
1256
1257
1258
                // LU decomposition
                for (int64_t i = 0; i < dim; i++)</pre>
1259
1260
                         // finding pivot: the row's number of the maximal element among A[i][i],
1261
                          \stackrel{\hookrightarrow}{\rightarrow} A[i+1][i], \dots, A[n-1][i] \\ double permutation_value = 0; \\ long permutation_indx = -1; \\ \end{cases}
1262
1263
1264
                         for (int64_t k = i; k < dim; k++)
1265
                                  if (std::abs(lu[k * dim + i]) - permutation_value > 0)
1266
1267
                                           permutation_value = std::abs(lu[k * dim + i]);
permutation_indx = k;
1268
1269
                                  7
1270
1271
                         if (std::abs(permutation_value) < DEF_TOLERANCE)</pre>
1272
1273
                         ſ
1274
                                  // error in case matrix a is singular (will be treated as warning
                                  → unless pivotValue = 0)
result_code = ercSingularMatrixWarning;
1275
1276
1277
                                   if (!permutation_value)
                                   Ł
1278
                                           1279
1280
1281
                                           return ercSingularMatrixError;
                                  }
1282
                         }
1283
1284
1285
                         if (i != permutation_indx)
1286
                         Ł
                                  permutation[i] = permutation_indx;
// switching i and pivot rows in A:
for (int64_t j = 0; j < dim; j++)</pre>
1287
1288
1289
1290
                                   ł
                                           double temp = lu[i * dim + j];
lu[i * dim + j] = lu[permutation_indx * dim + j];
lu[permutation_indx * dim + j] = temp;
1291
1292
1293
                                  7
1294
1295
                         }
                         else
1296
                                  permutation[i] = -1;
1297
1298
1299
                         // modification of A
       //#pragma omp parallel for schedule(guided) //#
for (int64_t j = i + 1; j < dim; j++)</pre>
1300
                                                                 //SECOND
1301
1302
                                  double temp = (lu[j * dim + i] /= lu[i * dim + i]);
1303
1304
                                  1305
1306
                         }
1307
1308
                }
1309
                // recursive computation of the inverse matrix of L (the lower half of LU)
1310
       //#pragma omp parallel for schedule(guided)
                                                                //SECOND
1311
               for (int64_t i = 0; i < dim - 1; i++)
for (int64_t j = i + 1; j < dim; j++)
1312
1313
```

```
1314
                       {
                                double temp = lu[j * dim + i] * -1.0;
1315
1316
                                for (int64_t k = i + 1; k < j; k++)
        temp -= lu[j * dim + k] * lu_mod[i * dim + k];</pre>
1317
1318
1319
1320
                                lu_mod[i * dim + j] = temp;
                       7
1321
1322
               // recursive computation of the inverse matrix of U (the upper half of LU) % \left( {{{\left( {{LU} \right)}}} \right)
1323
      1324
                                                            //SECOND
1325
               {
1326
                       lu_mod[i * dim + i] = 1.0 / lu[i * dim + i];
1327
1328
                       for (int64_t j = i - 1; j >= 0; j--)
1329
1330
                        Ł
                                double temp = 0;
1331
1332
                                for (int64_t k = i; k > j; k--)
    temp -= lu[j * dim + k] * lu_mod[i * dim + k];
1333
1334
1335
                                lu_mod[i * dim + j] = temp / lu[j * dim + j];
1336
1337
                       }
               }
1338
1339
               // computation of inv(U)*inv(L)
1340
      //#pragma omp parallel for schedule(guided)
    for (int64_t i = 0; i < dim; i++)</pre>
                                                             //SECOND
1341
1342
1343
               ſ
                        for (int64_t j = 0; j < i; j++)</pre>
1344
1345
                        {
                                double temp = 0:
1346
1347
                                for (int64_t k = i; k < dim; k++)
    temp += lu_mod[k * dim + i] * lu_mod[j * dim + k];</pre>
1348
1349
1350
1351
                                a_inv[i * dim + j] = temp;
                       }
1352
1353
                        for (int64_t j = i; j < dim; j++)</pre>
1354
1355
                                double temp = lu_mod[j * dim + i];
1356
1357
                                for (int64_t k = j + 1; k < dim; k++)
    temp += lu_mod[k * dim + i] * lu_mod[j * dim + k];</pre>
1358
1359
1360
                                a_inv[i * dim + j] = temp;
1361
                       }
1362
               }
1363
1364
               1365
1366
1367
                                for (int64_t j = 0; j < dim; j++)</pre>
1368
                                {
1369
                                         double temp = a_inv[j * dim + i];
1370
                                        a_inv[j * dim + i] = a_inv[j * dim + permutation[i]];
a_inv[j * dim + permutation[i]] = temp;
1371
1372
                                }
1373
1374
1375
              return result_code;
      }
1376
1377
      1378
      1379
1380
                                                              const int64_t &m, const std::vector<double>
1381
       \hookrightarrow
            &a_lower, std::vector<double> &a)
      {
1382
               uint64_t lower_dim = (int64_t)(0.5 * m * (m + 1));
1383
               if (a_lower.size() != lower_dim)
{
1384
1385
1386
                       a.clear();
1387
                       return:
               }
1388
1389
              1390
1391
1392
1393
1394
              for (int64_t i = 0, k = 0; i < m; i++, k++)
1395
```

```
1396
1397
1398
1399
             return:
1400
     }
1401
     1402
     //Recording lower triangular part of symmetric matrix
1403
1404
     void MatrixFuncs::LowerMatrix(
                                        const int64_t &m, const std::vector<double> &a,
1405
      \hookrightarrow
          std::vector<double> &a_lower)
     {
1406
1407
             if ((int64_t)a.size() != m * m)
1408
             Ł
1409
                    a_lower.clear();
1410
                    return;
1411
             }
1412
            uint64_t lower_dim = (int64_t)(0.5 * m * (m + 1));
1413
1414
             a_lower.resize(lower_dim);
1415
            a_lower[k] = a[i * m + j];
1416
1417
1418
1419
1420
             return:
1421
     }
1422
     1423
     //Frobenius matrix norm calculation using lower triangular part of symmetric matrix
1424
1425
     void MatrixFuncs::FrobeniusNormSymmLower(const int64_t &m, const std::vector<double> &a_lower,
1426
      \hookrightarrow double &norm)
             uint64_t lower_dim = (int64_t)(0.5 * m * (m + 1));
if (a_lower.size() != lower_dim)
{
     {
1427
1428
1429
1430
                    norm = GetNAN():
1431
1432
                    return;
1433
             }
1434
             norm = 0;
1435
             for (int64_t i = 0, count = 0; i < m; i++, count++)</pre>
1436
1437
                    1438
1439
1440
                    norm += a_lower[count] * a_lower[count];
1441
             }
1442
1443
1444
            norm = sqrt(norm);
1445
1446
             return;
     }
1447
1448
     1449
     //P-norm calculation using lower triangular part of symmetric matrix
1450
1451
     void MatrixFuncs::PNormSymmLower(const int64_t &m, const int64_t &p, const std::vector<double>
1452
          &a_lower, double &norm)
      \hookrightarrow
     {
1453
             uint64_t lower_dim = (int64_t)(0.5 * m * (m + 1));
if (a_lower.size() != lower_dim || m == 0)
1454
1455
             {
1456
                    norm = GetNAN();
1457
1458
                    return:
            }
1459
1460
1461
            norm = 0:
1462
1463
             std::vector<double> sum(m, 0);
             if (p == 1)
1464
1465
                    for (int64_t i = m - 1, count = lower_dim - 1; i >= 0; i--)
1466
1467
                    ſ
                            sum[i] += std::abs(a_lower[count]);
1468
                            count--
1469
                            for (int64_t j = i - 1; j >= 0; j--, count--)
1470
                            {
1471
                                   sum[i] += std::abs(a_lower[count]);
1472
1473
                                   sum[j] += std::abs(a_lower[count]);
1474
                            }
                    }
1475
```

```
double max = sum[0];
1476
                    for (int64_t i = 1; i < m; i++)
if (sum[i] > max)
1477
1478
1479
                                   max = sum[i];
1480
1481
                    norm = max:
1482
             }
             else
{
1483
1484
                    for (int64_t i = m - 1, count = lower_dim - 1; i >= 0; i--)
1485
1486
                            sum[i] += pow(std::abs(a_lower[count]), p);
1487
1488
                            count-
                            for (int64_t j = i - 1; j >= 0; j--, count--)
1489
1490
                            {
                                   sum[i] += pow(std::abs(a_lower[count]), p);
sum[j] += pow(std::abs(a_lower[count]), p);
1491
1492
                            }
1493
                    }
1494
                    double max = sum[0];
1495
                    for (int64_t i = 1; i < m; i++)
if (sum[i] > max)
1496
1497
1498
                                   max = sum[i];
1499
                    norm = pow(max, 1.0 / p);
1500
1501
             }
1502
1503
             return;
1504
     }
1505
     1506
     //P-norm calculation for vector
1507
1508
     void MatrixFuncs::PNormVector(const int64_t &p, const std::vector<double> &v, double &norm)
1509
1510
     ſ
             int64_t dim = v.size();
1511
             if (\dim == 0)
1512
             {
1513
                    norm = GetNAN();
1514
                    return:
1515
             }
1516
1517
             norm = 0;
1518
1519
             for (int64_t i = 0; i < dim; i++)</pre>
1520
             ſ
1521
                    norm += pow(v[i], p);
             }
1522
1523
             norm = pow(norm, 1.0 / p);
1524
1525
             return;
1526
     }
1527
1528
     1529
1530
     // Multiplication of real vectors
1531
     void MatrixFuncs::MultiplyVectors( const std::vector<double> &v_1, const std::vector<double>
1532
          &v_2, const double &alpha, double &mult)
      \hookrightarrow
     {
1533
             int64_t dim = v_1.size();
if ((int64_t)v_2.size() != dim)
1534
1535
             {
1536
                    mult = GetNAN();
1537
1538
                    return;
             }
1539
1540
1541
             mult = 0;
             mult = 0; i < dim; i++)
    mult += alpha * v_1[i] * v_2[i];</pre>
1542
1543
1544
1545
             return:
     }
1546
1547
     1548
     1549
1550
1551
          &v_2, const double &alpha, double &mult)
      \hookrightarrow
     {
             int64_t dim = v_1.size();
if ((int64_t)v_2.size() != dim)
{
1552
1553
1554
1555
1556
                    mult = GetNAN();
```

```
1557
               return;
         }
1558
1559
1560
         mult = 0;
1561
          for (int64_t i = 0; i < dim; i++)</pre>
1562
               mult += alpha * v_1[i] * v_2[i];
1563
1564
          return;
    }
1565
1566
    1567
    1568
1569
1570
    double MatrixFuncs::Max( const std::vector<double> &a)
1571
    ſ
          int64_t dim = a.size();
1572
          if (\dim == 0)
1573
1574
               return GetNAN();
1575
          double max = a[0];
1576
         for (int64_t i = 1; i < dim; i++)
if (a[i] > max)
1577
1578
1579
                     max = a[i];
1580
         return max;
1581
    }
1582
1583
    1584
    1585
1586
1587
    double MatrixFuncs::Sum( const std::vector<double> &a)
1588
    ſ
          int64_t dim = a.size();
1589
          if (\dim == 0)
1590
               return GetNAN();
1591
1592
         1593
1594
1595
1596
1597
         return sum;
    }
1598
1599
    1600
    1601
1602
    RandomFuncs::ResultCode RandomFuncs::MatrixI(int64_t n, int64_t m, std::vector <int64_t>
1603
        &rand_m, uint64_t min, uint64_t max, bool rand_init, int64_t mult)
     \rightarrow
    {
1604
          if (n \le 0 || m \le 0)
1605
1606
          {
               return ercDimensionError; // error dimension
1607
         }
1608
1609
1610
          rand_m.resize(n * m);
1611
1612
          if (FirstCall)
1613
          {
               InitSeed(rand_init);
FirstCall = false;
1614
1615
         }
1616
1617
          int64_t d = max - min + 1;
1618
          if (d != 1)
1619
               1620
1621
          else
1622
               1623
1624
1625
         return ercNoError;
    }
1626
1627
1628
    1629
1630
    RandomFuncs::ResultCode RandomFuncs::Matrix(int64_t n, int64_t m, std::vector <double> &rand_m,
1631
        uint64_t min, uint64_t max, bool rand_init, double max_add, double mult)
    ſ
1632
          if (n \le 0 || m \le 0)
1633
          {
1634
               return ercDimensionError; // error dimension
1635
          }
1636
1637
```

```
1638
                rand_m.resize(n * m);
1639
                if (FirstCall)
{
1640
1641
                         InitSeed(rand_init);
FirstCall = false;
1642
1643
1644
                }
1645
1646
                int64_t d = max - min + 1;
1647
1648
                double add = 0;
1649
1650
                if (d != 1)
                         for (int64_t i = 0; i < n * m; i++) {
1651
1652
                                  if (std::abs(max_add) > 0)
{
1653
1654
                                           add = NextDouble() * max_add;
1655
                                  z
1656
1657
                                  rand_m[i] = (NextInt() % d + min + add) * mult;
1658
                         }
1659
                else
                         for (int64_t i = 0; i < n * m; i++)
    rand_m[i] = (min + add) * mult;</pre>
1660
1661
1662
                return ercNoError;
1663
      }
1664
1665
      RandomFuncs::ResultCode RandomFuncs::SparseSymmetricMatrixZeroDiagonalB(const int64_t n, const
1666
             double density, std::vector <bool> &rand_m, bool rand_init)
        \hookrightarrow
       ł
1667
                if (n <= 0)
1668
1669
                ſ
                         return ercDimensionError; // error dimension
1670
                }
1671
1672
                if (density < 0 || density > 1)
1673
                ſ
1674
                         return ercDensityError; // error density
1675
                }
1676
1677
                if (FirstCall)
1678
1679
                {
                         InitSeed(rand_init);
1680
1681
                         FirstCall = false;
                }
1682
1683
                1684
1685
1686
1687
                int64_t max_nonzero_count = (int64_t)((n * (n - 1)) * density); // zero diagonal
1688
                max_nonzero_count -= max_nonzero_count%2;
int64_t nonzero_count = 0;
int64_t IJ_count = (int64_t)(0.5 * n * (n - 1));
1689
1690
1691
                1692
1693
1694
1695
1696
1697
                while (nonzero_count < max_nonzero_count)</pre>
1698
                ł
                         int64_t indx = NextInt() % IJ_count;
1699
1700
                         int64_t i = IJ[indx].first;
1701
                         int64_t j = IJ[indx].second;
1702
1703
                         rand_m[i * n + j] = 1;
rand_m[j * n + i] = 1;
1704
1705
1706
                         IJ.erase(IJ.begin() + indx);
1707
1708
                         IJ_count -= 1;
nonzero_count += 2;
1709
1710
                }
1711
1712
1713
                return ercNoError;
      }
1714
1715
       double RandomFuncs::NextDouble()
1716
1717
       ſ
1718
                x = a * x + c;
                x = x \% m;
1719
```

```
1720
            return (double)x / (m - 1);
1721
     }
1722
1723
     unsigned long RandomFuncs::NextInt()
1724
1725
     {
            x = a * x + c;
x = x % m;
1726
1727
1728
            return x:
1729
     }
1730
1731
     void RandomFuncs::InitSeed(bool rand_init)
1732
1733
     Ł
             // initialization of the seed
1734
             if (rand_init)
1735
             {
1736
1737
                    x = time(NULL);
1738
                    x = x % m;
1739
            }
1740
            else
1741
            {
1742
                    x = 5;
            }
\begin{array}{c} 1743 \\ 1744 \end{array}
1745
            FirstCall = false;
     }
1746
1747
1748
     1749
1750
1751
          &AdjacencyMatrix, const int64_t n)
      \hookrightarrow
     {
1752
             if (n <= 0)
1753
            {
1754
                    return ercDimensionError; // error dimension
1755
            }
1756
1757
1758
             AdjacencyMatrix.resize(n * n);
            for (int64_t i = 0; i < n * n; i++)
1759
                    AdjacencyMatrix[i] = 0;
1760
1761
             for (int64_t i = 0; i < n - 1; i++)
1762
1763
             {
                    AdjacencyMatrix[i * n + i + 1] = 1;
AdjacencyMatrix[(i + 1) * n + i] = 1;
1764
1765
            }
1766
1767
1768
            return ercNoError;
     }
1769
1770
1771
     1772
     // Generate boolean sparse random matrix with zero diagonal elements
1773
1774
     AdjacencyMatrix::ResultCode AdjacencyMatrix::CreateRandomGraph(std::vector <bool>
1775
          &AdjacencyMatrix, const int64_t n, bool rand_init, double density)
      \hookrightarrow
     {
1776
             if (n <= 0)
1777
             {
1778
                    return ercDimensionError; // error dimension
1779
            }
1780
1781
             if (density < 0 || density > 1)
1782
1783
             {
                    return ercDensityError; // error density
1784
            }
1785
1786
1787
            RandomFuncs::SparseSymmetricMatrixZeroDiagonalB(n, density, AdjacencyMatrix,
             \rightarrow rand_init);
1788
1789
            return ercNoError;
1790
     }
1791
     1792
     // Generate boolean sparse matrix with non-zero elements in center-th row and column excluding
1793
     1794
1795
     AdjacencyMatrix::ResultCode AdjacencyMatrix::CreateStarGraph(std::vector <bool>
          &AdjacencyMatrix, const int64_t n, int64_t center)
      \hookrightarrow
     ł
1796
```

```
if (n <= 0)
{
1797
1798
1799
                     return ercDimensionError; // error dimension
             }
1800
1801
1802
              if ((center < 0 && center != -1) || center > (n - 1))
              {
1803
1804
                     return ercCenterError; // error central point
             }
1805
1806
             AdjacencyMatrix.resize(n * n);
for (int64_t i = 0; i < n * n; i++)</pre>
1807
1808
1809
                     AdjacencyMatrix[i] = 0;
1810
             int64_t k = center;
if (k == -1)
1811
1812
                     k = (int64_t)std::floor(0.5 * n) - 1;
1813
1814
              for (int64_t i = 0; i < n; i++)</pre>
1815
1816
              {
                     if ( i != k)
{
1817
1818
                             AdjacencyMatrix[i * n + k] = 1;
AdjacencyMatrix[k * n + i] = 1;
1819
1820
                     }
1821
1822
             }
1823
1824
             return ercNoError;
1825
      }
1826
      1827
      1828
1829
1830
      AdjacencyMatrix::ResultCode AdjacencyMatrix::CreateUserDefinedGraph(std::vector <bool>
      \hookrightarrow
           &AdjacencyMatrix, const int64_t n, const std::string& filein)
      {
1831
             if (n <= 0)
1832
             {
1833
                     return ercDimensionError;
                                                                     // error dimension
1834
             }
1835
1836
             std::ifstream file;
1837
1838
             file.open(filein.c_str());
1839
             if (file)
1840
                     AdjacencyMatrix.resize(n * n);
1841
1842
                     for(int64_t i = 0; i < n * n; i++)</pre>
1843
1844
                     {
                             if (!file.eof())
1845
                             Ł
1846
                                     double a;
1847
                                     file >> a;
if (a != 0)
1848
1849
                                             AdjacencyMatrix[i] = 1;
1850
1851
                                     else
1852
                                             AdjacencyMatrix[i] = 0;
1853
                             }
else
1854
1855
                                     return ercDimensionError;
                                                                     // error input data dimension
1856
1857
                     file.close();
1858
             }
else
1859
             {
1860
                     AdjacencyMatrix.clear();
1861
1862
                     return ercEmptyInputError;
                                                                     // inpur file not found
             }
1863
1864
1865
             return ercNoError;
1866
      }
1867
1868
1869
      1870
      //ADMM iterative algorithm starts here
1871
1872
```

```
int64_t ADMM_SDP_Algo(int64_t n, int64_t W_size_min, int64_t W_size_max, int64_t p_min, int64_t
p_max, int64_t q_min, int64_t q_max, int64_t A_i_min, int64_t A_i_max, int64_t B_i_min,
1873
                 p_max, into4_t q_min, into4_t q_max, into4_t A_1_min, into4_t A_1_max, into4_t B_1_min,
int64_t B_i_max, int64_t D_i_min, int64_t D_i_max, int64_t W_i_min, int64_t W_i_max,
int64_t c_i_min, int64_t c_i_max, int64_t d_i_min, int64_t d_i_max,
AdjacencyMatrix::AdjacencyMatrixType AdjacencyType, double density, int64_t center, const
std::string& filein, double mu_mult, double overlap_ratio, double tole, const
           \rightarrow
           \rightarrow 
           \hookrightarrow
          \hookrightarrow
                 std::string& fileout, bool rand_init)
           \rightarrow
1874
         {
1875
                // Start the timer for calculating algorithm initialization time
1876
               auto t0 = std::chrono::high_resolution_clock::now();
1877
1878
                     double inv_mu_mult = 1.0 / mu_mult;
1879
1880
1881
                     std::vector<bool> randAdj;
AdjacencyMatrix::ResultCode result;
1882
                     switch(AdjacencyType)
1883
1884
1885
                     case(AdjacencyMatrix::eamtBandedGraph):
                                 result = AdjacencyMatrix::CreateBandedGraph(randAdj, n);
1886
         //#ifdef DEBUG
1887
                                 std::cout << "Banded Graph" << std::endl;
for (int64_t i = 0; i < n; i++)</pre>
1888
1889
                                  {
1890
                                              for (int64_t j = 0; j < n; j++)
        std::cout << randAdj[i * n + j] << " ";
std::cout << std::endl;</pre>
1891
1892
1893
1894
                                 }
1895
         //#endif
1896
                                 break:
                     case(AdjacencyMatrix::eamtRandomGraph):
1897
                                 result = AdjacencyMatrix::CreateRandomGraph(randAdj, n, rand_init, density);
1898
         //#ifdef _DEBUG
1899
                                 std::cout << "Random Graph" << std::endl;
for (int64_t i = 0; i < n; i++)</pre>
1900
1901
                                  ſ
1902
                                              for (int64_t j = 0; j < n; j++)
        std::cout << randAdj[i * n + j] << " ";
std::cout << std::endl;</pre>
1903
1904
1905
                                 }
1906
         //#endif
1907
1908
                                 break;
                     case(AdjacencyMatrix::eamtStarGraph):
1909
                                 result = AdjacencyMatrix::CreateStarGraph(randAdj, n, center);
1910
         //#ifdef _DEBUG
1911
                                  std::cout << "Star Graph" << std::endl;</pre>
1912
1913
                                  for (int64_t i = 0; i < n; i++)
1914
                                              for (int64_t j = 0; j < n; j++)
    std::cout << randAdj[i * n + j] << " ";
std::cout << std::endl;</pre>
1915
1916
1917
1918
                                 }
         //#endif
1919
1920
                                  break:
                     case(AdjacencyMatrix::eamtUserDefinedGraph):
1921
1922
                                 result = AdjacencyMatrix::CreateUserDefinedGraph(randAdj, n, filein);
         //#ifdef _DEBUG
1923
                                 std::cout << "User Defined Graph" << std::endl;
for (int64_t i = 0; i < n; i++)</pre>
1924
1925
                                  {
1926
                                              for (int64_t j = 0; j < n; j++)
        std::cout << randAdj[i * n + j] << " ";
std::cout << std::endl;</pre>
1927
1928
1929
                                 }
1930
         //#endif
1931
                                 break;
1932
                     default:
1933
1934
                                 result = AdjacencyMatrix::ercTypeError;
1935
                     7
1936
1937
                     if (result != AdjacencyMatrix::ercNoError)
1938
                                 return -2;
                                                                        // adjacency matrix creation error
1939
               // get the indices of only the non-zero entries to define the set of edges
    std::vector<int64_t> edges_Set;
1940
1941
                     for (int64_t i = 0; i < n; i++)
for (int64_t j = i; j < n; j++)
if (randAdj[i * n + j] != 0)
1942
1943
1944
                                              {
1945
1946
                                                          edges_Set.push_back(i);
1947
                                                          edges_Set.push_back(j);
                                              }
1948
1949
```

```
1950
                int64_t edges_Num = edges_Set.size();
               edges_Num \neq = 2;
1951
1952
           // Compute for each agent i:
1953
           // neighb_all_num: the total number of agents connected to agent i
1954
           // neighb_less_num: the total number of agents in the lower part of randAdj connected to
1955
                agent i
1956
           // neighb_greater_num: The total number of agents in the upper part of randAdj connected to
               agent i
               std::vector<int64_t> neighb_all_num(n, 0);
std::vector<int64_t> neighb_less_num(n, 0);
1957
1958
               std::vector<int64_t> neighb_greater_num(n, 0);
1959
1960
               for (int64_t i = 0; i < n; i++)</pre>
1961
1962
                        1963
1964
1965
1966
                                          neighb_all_num[i]++;
                                          neighb_less_num[i]++;
1967
1968
                                 7
                        1969
1970
1971
1972
                                          neighb_all_num[i]++
                                          neighb_greater_num[i]++;
1973
1974
                                 }
               }
1975
1976
1977
           // Find the set delta which is the set of agents connected to agent i
1978
               std::vector<std::vector<int64_t> > delta_less(n);
1979
               std::vector<std::vector<int64_t> > delta_greater(n);
1980
1981
                for (int64_t i = 0; i < n; i++)</pre>
1982
1983
                        delta_less[i].resize(neighb_less_num[i]);
1984
                        delta_greater[i].resize(neighb_greater_num[i]);
1985
                        1986
1987
1988
1989
                                          delta_less[i][k] = j;
1990
                                 }
1991
1992
                        1993
1994
                                 {
1995
                                          delta_greater[i][k] = j;
1996
1997
                                          k++;
                                 }
1998
               }
1999
2000
2001
               randAdj.clear();
randAdj.reserve(0);
2002
2003
           // Randomly define the number of data matrices B and D for each agent i.
    std::vector<int64_t> p_i;
    std::vector<int64_t> q_i;
2004
2005
2006
               RandomFuncs::MatrixI(n, 1, p_i, p_min, p_max, rand_init);
RandomFuncs::MatrixI(n, 1, q_i, q_min, q_max, rand_init);
2007
2008
2009
2010
               std::vector<int64_t> w_size_i;
2011
               std::vector<std::vector<double> > A(n);
               std::vector<std::vector<double> > A_lower(n);
std::vector<std::vector<std::vector<double> > B(n);
2012
2013
               std::vector<std::vector<std::vector<double> >> B_lower(n);
2014
               std::vector<std::vector<int64_t> > c_i(n);
2015
2016
               std::vector<std::vector<double> >> D(n);
2017
               std::vector<std::vector<double> >> D_lower(n);
2018
               std::vector<std::vector<int64_t> > d_i(n);
2019
           // Randomly define the size of the variable W_i for each agent i.
2020
2021
               RandomFuncs::MatrixI(n, 1, w_size_i, W_size_min, W_size_max, rand_init);
2022
2023
           // Randomly create data matrices A, B and D for each agent each with size
               // w_size_i. The total number of data matrices B and D for each agent is p_i and q_i,
2024
                 \hookrightarrow respectively.
           // Also, randomly create the vectors c_i and d_i with sizes p_i and q_i, respectively.
    for (int64_t i = 0; i < n; i++)
    {</pre>
2025
2026
2027
                        int64_t w_size = w_size_i[i];
2028
```

```
2029
2030
                           RandomFuncs::Matrix(w_size, w_size, A[i], A_i_min, A_i_max, rand_init, 1.0);
2031
                           for (int64_t j = 0; j < w_size; j++)</pre>
2032
2033
2034
                                     A[i][j * w_size + j] = 2 * A[i][j * w_size + j] + w_size_i[i];
2035
                                     for (int64_t k = j + 1; k < w_size; k++)</pre>
2036
2037
                                     Ł
                                                A[i][j * w_size + k] = A[i][k * w_size + j] = A[i][j * w_size
2038
                                                      + k] + A[i][k * w_size + j];
2039
                                     }
                           }
2040
2041
                           MatrixFuncs::LowerMatrix( w_size, A[i], A_lower[i]);
2042
2043
                           if (p_i[i] != 0)
{
2044
2045
                                     B[i].resize(p_i[i]);
B_lower[i].resize(p_i[i]);
for (int64_t p = 0; p < p_i[i]; p++)</pre>
2046
2047
2048
2049
2050
                                               RandomFuncs::Matrix(w_size, w_size, B[i][p], B_i_min, B_i_max,
                                                    rand_init, 0, 0.01);
                                                \hookrightarrow
2051
                                               for (int64_t j = 0; j < w_size; j++)</pre>
2052
2053
                                               Ł
                                                         B[i][p][j * w_size + j] = 2 * B[i][p][j * w_size + j];
2054
2055
                                                         for (int64_t k = 0; k < j; k++)
2056
2057
                                                         ł
                                                                   B[i][p][j * w_size + k] = B[i][p][k * w_size +
2058
                                                                        j] = B[i][p][j * w_size + k] + B[i][p][k
                                                                    \hookrightarrow
                                                                     \rightarrow 
                                                                          * w_size + j];
                                                         }
2059
                                               }
2060
2061
                                               MatrixFuncs::LowerMatrix( w_size, B[i][p], B_lower[i][p]);
2062
2063
2064
                                     }
2065
                                     RandomFuncs::MatrixI(p_i[i], 1, c_i[i], c_i_min, c_i_max, rand_init);
2066
                           }
2067
2068
                           if (q_i[i] != 0)
2069
                           Ł
2070
                                     D[i].resize(q_i[i]);
D_lower[i].resize(q_i[i]);
for (int64_t q = 0; q < q_i[i]; q++)</pre>
2071
2072
2073
2074
2075
                                               RandomFuncs::Matrix(w_size, w_size, D[i][q], D_i_min, D_i_max,
                                                    rand_init, 0, 0.01);
2076
                                               for (int64_t j = 0; j < w_size_i[i]; j++)</pre>
2077
2078
                                               ł
                                                         \begin{array}{l} D[i][q][j * w\_size + j] = 2 * D[i][q][j * w\_size + j]; \\ for (int64\_t \ k = 0; \ k < j; \ k++) \end{array}
2079
2080
                                                          Ł
2081
2082
                                                                   D[i][q][j * w_size + k] = D[i][q][k * w_size +
                                                                    \rightarrow j] = D[i][q][j * w_size + k] + D[i][q][k
                                                                          * w_size + j];
2083
                                                         }
2084
                                               }
2085
                                               MatrixFuncs::LowerMatrix( w_size, D[i][q], D_lower[i][q]);
2086
2087
2088
                                     }
2089
2090
                                     RandomFuncs::MatrixI(q_i[i], 1, d_i[i], d_i_min, d_i_max, rand_init,
                                          -1);
                                      \hookrightarrow
                           }
2091
                 7
2092
2093
                 // specifies the rows and columns where the two agents variables W_i and // W_j are overlapping
            // Define for each edge two sets of indices I_ij and I_ji which
2094
2095
                 // W_j are overlapping
int64_t max_ij = 0, max_ji = 0, max_ = 0;
for (int64_t i = 1; i < edges_Num; i++)</pre>
2096
2097
2098
2099
                  ſ
2100
                           if (edges_Set[i * 2] > max_ij)
                                     max_ij = edges_Set[i * 2];
2101
```
```
2102
                            2103
2104
2105
                  }
2106
                  max_ij++;
2107
                  max_ji++;
2108 \\ 2109
                  max_ = std::max(max_ij, max_ji);
                  std::vector <std::vector <int64_t> > I_ij(max_ij * max_ji);
2110
                  std::vector <std::vector <int64_t> > I_ji(max_ji * max_ij);
2111
2112
                  std::vector <int64_t> overlap_size(max_ * max_, 0);
2113
2114
2115
                  for (int64_t i = 0; i < edges_Num; i++)</pre>
2116
                  Ł
                            int64_t indx_i = edges_Set[i * 2];
int64_t indx_j = edges_Set[i * 2 + 1];
2117
2118
2119
                  2120
2121
2122
2123
                            int64_t overlap_size_i = (int64_t)(overlap_ratio * k_min + 0.5);
overlap_size[indx_i * max_ + indx_j] = overlap_size_i;
overlap_size[indx_j * max_ + indx_i] = overlap_size_i;
2124
2125
2126
2127
2128
                  // Randomly generate the set of unique indices I_ij at which W_i
                  // Kandomiy generate ---
// overlaps with W_j
I_ij[indx_i * max_ji + indx_j].resize(overlap_size_i);
for (int64_t j = overlap_size_i - 1, count = 1; j >= 0; j--, count++)

2129
2130
2131
2132
2133
                                      I_ij[indx_i * max_ji + indx_j][j] = w_size_i[indx_i] - count;
                            }
2134
2135
                  // Randomly generate the set of unique indices I_ji at which W_j // overlaps with W_i
2136
2137
                            Ind ______ max_ij + indx_i].resize(overlap_size_i);
for (int64_t j = 0; j < overlap_size_i; j++)</pre>
2138
2139
                            {
2140
                                      I_ji[indx_j * max_ij + indx_i][j] = j;
2141
                            }
2142
                  }
2143
2144
                  std::vector<std::vector<int64_t> > size_type_z_v_Hij_Hji(n);
2145
2146
2147
                  for (int64_t i = 0; i < n; i++)</pre>
2148
                  {
2149
                            size_type_z_v_Hij_Hji[i].resize((2 + neighb_less_num[i] +
                            → neighb_greater_num[i]) * 2, 0);
size_type_z_v_Hij_Hji[i][0] = p_i[i];
size_type_z_v_Hij_Hji[i][1 * 2] = q_i[i];
2150
2151
2152
2153
                            for (int64_t j = 0; j < neighb_less_num[i]; j++)</pre>
2154
                            {
                                      2155
2156
2157
                                       \hookrightarrow (n_overlap + 1) * 0.5);
                            }
2158
2159
2160
                            for (int64_t j = 0; j < neighb_greater_num[i]; j++)</pre>
2161
                            ł
                                      int64_t n_overlap = overlap_size[i * max_ + delta_greater[i][j]];
size_type_z_v_Hij_Hji[i][(j + 2 + neighb_less_num[i]) * 2] = n_overlap
2162
2163
                                             * n_overlap;
                                      size_type_z_v_Hij_Hji[i][(j + 2 + neighb_less_num[i]) * 2 + 1] =
2164
                                       \rightarrow (int64_t)(n_overlap * (n_overlap + 1) * 0.5);
                            }
2165
                  }
2166
2167
                  std::vector<int64_t> jacobian_size_i_lower(n);
2168
2169
2170
                  for (int64_t i = 0; i < n; i++)</pre>
2171
                  {
                            double jacobian_size_i = 0;
jacobian_size_i_lower[i] = p_i[i] + q_i[i];
for (int64_t j = 0; j < (2 + neighb_less_num[i] + neighb_greater_num[i]); j++)</pre>
2172
2173
2174
2175
                            ſ
                                      jacobian_size_i += size_type_z_v_Hij_Hji[i][j * 2];
jacobian_size_i_lower[i] += size_type_z_v_Hij_Hji[i][j * 2 + 1];
2176
2177
                            }
2178
2179
```

2180	
2181	}
2182	
2183	// Preallocation and initial values of all variables and multipliers
2184	std::vector <std::vector<double> > $z(n)$;</std::vector<double>
2185	std://ector <std ector<double=""> > v(n);</std>
2187	<pre>std::vector<std::vector<double> > R lower(n):</std::vector<double></pre>
2188	<pre>std::vector<std::vector<double> > G_i_lower(n);</std::vector<double></pre>
2189	<pre>std::vector<std::vector<double> > Lambda_i(n);</std::vector<double></pre>
2190	
2191	<pre>std::vector<std::vector<double> > H_ij_lower(max_i] * max_ji);</std::vector<double></pre>
2192	std::Vector <std::vector<double>> H_]1_lower(max_]1 * max_1]);</std::vector<double>
2195	std: vector std: vector (double > C i] over (max i) * max_1), std: vector (double > C i) over (max i) * max_1),
2194 2195	std::vector <std::vector<double> > G ii lower(max i) * max i):</std::vector<double>
2196	
2197	<pre>std::vector<std::vector<double> > H_ij_basis(max_ij * max_ji);</std::vector<double></pre>
2198	<pre>std::vector<std::vector<double> > H_ij_basis_full(max_ij * max_ji);</std::vector<double></pre>
2199	std::vector <std::vector<double> > H_ij_basis_vec_tr(max_ij * max_ji);</std::vector<double>
2200	atde upgeter (atde upgeter (double) > W ii bagig (may ii * may ii);
2201	stdvector <stdvector<double> > H_jr_basis(max_jr * max_ij),</stdvector<double>
2202	std::vector <std::vector<double> > H ii basis vec tr(max ii * max i):</std::vector<double>
2204	
2205	
2206	std::vector <std::vector<int64_t> > H_ij_basis_map(max_i) * max_ji);</std::vector<int64_t>
2207	<pre>sta::vector<sta::vector<into4_t> > H_j1_basis_map(max_j1 * max_j);</sta::vector<into4_t></pre>
2208	<pre>std::vector<sparsematrix> triang jacobian(n):</sparsematrix></pre>
2210	std::vector <sparsematrix> s_jacobian(n);;</sparsematrix>
2211	
2212	<pre>std::vector<std::vector<double> > H_ij_sum_tr(n);</std::vector<double></pre>
2213	<pre>std::vector<std::vector<double> > B_sum(n);</std::vector<double></pre>
2214	<pre>sta::vector<sta::vector<double> > D_sum(n);</sta::vector<double></pre>
2215	<pre>std::vector<std::vector<double> > H ij sum tr lower(n):</std::vector<double></pre>
2217	std::vector <std::vector<double> > B_sum_lower(n);</std::vector<double>
2218	<pre>std::vector<std::vector<double> > D_sum_lower(n);</std::vector<double></pre>
2219	
2220	std::vector <double> p_infeas_i_1(n, 0);</double>
2221	std::vector <double> p_infeas_1_2(egges_lum, 0);</double>
2222	std: vector (double) d_infeas_i $(n, 0)$;
2223	std::vector <std::vector<double> > d infeas i 2(2):</std::vector<double>
2225	d_infeas_i_2[0].resize(edges_Num, 0);
2226	d_infeas_i_2[1].resize(edges_Num, 0);
2227	
2228	std::vector <double> p_residue_1_1(n, 0);</double>
2229	std::Vector <double> p_residue_1_2(n, 0);</double>
2230	std::vector <double> p_residue_1_3(edges_Num, 0);</double>
2232	stallvector value plesidae_1_4(edges_wam, 0),
2233	<pre>std::vector<double> d_residue_i_1(n, 0);</double></pre>
2234	<pre>std::vector<double> d_residue_i_2(n, 0);</double></pre>
2235	<pre>std::vector<double> d_residue_i_3(edges_Num, 0);</double></pre>
2236	for $(int f(t, i, j = 0), i < n, i+1)$
2231	
2239	z[i].resize(p i[i], 0):
2240	v[i].resize(q_i[i], 0);
2241	$u[i].resize(q_i[i], 0);$
2242	Lambda_i[i].resize(q_i[i], 0);
2243	
2244	intb4_t dim_lower = (intb4_t)(0.5 * (W_size_1[1] * (W_size_1[1] + 1)));
2245	R lower[i].resize(dim lower, 0):
2247	G_i_lower[i].resize(dim_lower, 0);
2248	}
2249	
2250	for $(int64_t i = 0; i < edges_Num; i++)$
2251	1 int 64 + ind x i = odges Set [i * 2].
2253	1000 ± 0 100 ± 1 = edges_bet[1 + 2]; int64 t indx i = edges Set[1 + 2 + 1].
2254	int64_t temp_overlap_size = overlap_size[indx i * max + indx i]:
2255	int64_t dim_lower = (int64_t)(0.5 * (temp_overlap_size * (temp_overlap_size +
	\rightarrow 1)));
2256	
2257	H_ij_lower[indx_i * max_ji + indx_j].resize(dim_lower, 0);
2258	H_]1_LOWET[Indx_] * max_1] + indx_1].resize(dim_lower, 0);
2259 2260	n_ij_coup_rower[inux_i * max_ji + inux_j].resize(dim_tower, V);

```
G_ij_lower[indx_i * max_ji + indx_j].resize(dim_lower, 0);
G_ji_lower[indx_j * max_ij + indx_i].resize(dim_lower, 0);
2261
2262
                    }
2263
2264
              // Create the basis matrix for H_ij and H_ji
2265
2266
                    for (int64_t i = 0; i < edges_Num; i++)
2267
                               int64_t indx_i = edges_Set[i * 2];
int64_t indx_j = edges_Set[i * 2 + 1];
const std::vector <int64_t> & IJ = I_ij[indx_i * max_ji + indx_j];
int64_t temp_overlap_size = overlap_size[indx_i * max_ + indx_j];
int64_t temp_w_size = w_size_i[indx_i];
int64_t columns_count_vec = (int64_t)(0.5 * temp_overlap_size *
2268
2269
2270
2271
2272
2273
                                → (temp_overlap_size + 1));
H_ij_basis_full[indx_i * max_ji + indx_j].resize(temp_w_size * temp_w_size, 0);
H_ij_basis_vec_tr[indx_i * max_ji + indx_j].resize(temp_w_size * temp_w_size *
2274
2275
                                       columns_count_vec, 0);
                                 \rightarrow
2276
                                for (int64_t k = 0, count = 0; k < temp_overlap_size; k++, count++)</pre>
2277
2278
                                {
2279
                                            for (int64_t j = 0; j < k; j++, count++)</pre>
2280
                                                       H_ij_basis_full[indx_i * max_ji + indx_j][IJ[j] * temp_w_size +
2281
                                                              IJ[k] = 1;
                                                       H_ij_basis_full[indx_i * max_ji + indx_j][IJ[k] * temp_w_size +
2282
                                                              IJ[j] = 1;
2283
                                                       H_ij_basis_vec_tr[indx_i * max_ji + indx_j][count * temp_w_size
                                                       → * temp_w_size + IJ[j] * temp_w_size + IJ[k]] = 1;
H_ij_basis_vec_tr[indx_i * max_ji + indx_j][count * temp_w_size
2284
                                                              * temp_w_size + IJ[k] * temp_w_size + IJ[j]] = 1;
                                                        \hookrightarrow
2285
                                           H_ij_basis_full[indx_i * max_ji + indx_j][IJ[k] * temp_w_size + IJ[k]]
2286
                                                   = 1:
                                           H_ij_basis_vec_tr[indx_i * max_ji + indx_j][count * temp_w_size *
2287
                                                  temp_w_size + IJ[k] * temp_w_size + IJ[k]] = 1;
                                            \hookrightarrow
2288
                                }
                    }
2289
2290
                    for (int64_t i = 0; i < edges_Num; i++)</pre>
2291
2292
                                int64_t indx_i = edges_Set[i * 2];
2293
                                int64_t indx_1 = edges_Set[1 * 2];
int64_t indx_j = edges_Set[i * 2 + 1];
const std::vector <int64_t> & JI = I_ji[indx_j * max_ij + indx_i];
int64_t temp_overlap_size = overlap_size[indx_j * max_ + indx_i];
int64_t temp_w_size = w_size_i[indx_j];
int64_t columns_count_vec = (int64_t)(0.5 * temp_overlap_size *
2294
2295
2296
2297
2298
                                       (temp_overlap_size + 1));
                                 \hookrightarrow
                                H_ji_basis_full[indx_j * max_ij + indx_i].resize(temp_w_size * temp_w_size, 0);
H_ji_basis_vec_tr[indx_j * max_ij + indx_i].resize(temp_w_size * temp_w_size *
2299
2300
                                       columns_count_vec, 0);
                                 \hookrightarrow
2301
2302
                                for (int64_t k = 0, count = 0; k < temp_overlap_size; k++, count++)</pre>
2303
                                            for (int64_t j = 0; j < k; j++, count++)</pre>
2304
2305
2306
                                                       H_ji_basis_full[indx_j * max_ij + indx_i][JI[j] * temp_w_size +
                                                               JI[k]] = -1;
2307
                                                       H_ji_basis_full[indx_j * max_ij + indx_i][JI[k] * temp_w_size +
                                                              JI[i] = -1;
                                                       H_ji_basis_vec_tr[indx_j * max_ij + indx_i][(count) *
2308
                                                        \label{eq:constraint} \hookrightarrow \quad \texttt{temp}\_w\_size \ * \ \texttt{temp}\_w\_size \ + \ \texttt{JI[j]} \ * \ \texttt{temp}\_w\_size \ + \ \texttt{JI[k]]}
                                                               = -1:
2309
                                                       H_ji_basis_vec_tr[indx_j * max_ij + indx_i][(count) *
                                                        2310
                                           H_ji_basis_full[indx_j * max_ij + indx_i][JI[k] * temp_w_size + JI[k]]
2311
                                                   = -1:
2312
                                           H_ji_basis_vec_tr[indx_j * max_ij + indx_i][(count) * temp_w_size *
                                            \leftrightarrow temp_w_size + JI[k] * temp_w_size + JI[k]] = -1;
                                }
2313
2314
                    }
2315
                     // Create a mapping between the non-zero elements in H_ij_basis_full and
2316
                     // H_ij (the variable format). This will be used to update H_ij_sum for each agent i.
2317
              // Similarly for H_ji_basis_full and H_ji
for (int64_t i = 0; i < n; i++)</pre>
2318
2319
2320
                                for (int64_t j = 0; j < neighb_less_num[i]; j++)</pre>
2321
```

2322	4
2022	
2323	<pre>int64_t temp_delta_less = delta_less[1][j];</pre>
2324	<pre>int64_t temp_overlap_size = overlap_size[i * max_ + temp_delta_less];</pre>
2225	H ji bagig man[i * may ji + temp delta legg] regize(temp overlap gize
2020	
	\hookrightarrow * (temp_overlap_size + 1) * 2, 0);
2326	
2327	for $(int64 \pm n = 0)$ count = 0: $n \leq w$ size $i[i]$: $n++$)
2021	
2328	for $(1nt64_t \ k = 0; \ k <= p; \ k++)$
2329	if (H_ji_basis_full[i * max_ij + temp_delta_less][k *
	(y + y) = (z + y) = (z + y)
	\rightarrow w_size_i(i) + pji)
2330	٩, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠, ٠,
2331	H_ji_basis_map[i * max_ij +
	c_{1} term dolta logal count * (1 - k)
	\hookrightarrow temp_derta_ress[count * 4] - k,
2332	H_ji_basis_mapLi * max_ij +
	\rightarrow temp delta less [count * 4 + 1] = p.
0000	
2333	count++,
2334	ł
2335	
2336	for $(int64_t p = 0, count = 0; p < temp_overlap_size; p++)$
2337	for $(int64 + k = 0, k \le n, k++)$
2001	
2338	1
2339	H_ji_basis_mapli * max_ij + temp_delta_less][count * 4
	$rac{1}{2}$ + 21 = k.
0240	i i j k , j k , j k may is the set of j k and j k
2340	n_ji_basis_mapli * max_ij + temp_detta_tessj[Count * 4
	\leftrightarrow + 3] = p:
23/1	}
2041	L L
2342	5
2343	
2344	for (int64_t j = 0; j < neighb_greater num[i]: i++)
9945	۰ ۰۰۰ <u>– ۲۰</u> ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰
2040	$i = \frac{1}{2} \int dx $
2346	<pre>int64_t temp_delta_greater = delta_greater[1][j];</pre>
2347	<pre>int64_t temp_overlap_size = overlap_size[i * max_ +</pre>
	town dolta groaterly
	\rightarrow temp_derta_greater],
2348	H_1J_basis_map[1 * max_j1 + temp_delta_greater].resize(
	\rightarrow temp overlap size * (temp overlap size + 1) * 2. 0):
2349	
2045	for $(i = t \leq 1, \dots, t \leq 1)$
2350	for $(into4_t p = 0, count = 0; p < w_size_i[i]; p++)$
2351	for $(int64_t k = 0; k \le p; k++)$
2352	if (H ij basis full[i * max ji + temp delta greater][k
	\hookrightarrow * W_SIZE_1[1] + p] == 1)
2353	4
2354	H ii basis map[i * max ii +
2001	
	\hookrightarrow temp_delta_greater][count * 4] = k;
2355	H_ij_basis_map[i * max_ji +
	c_{1} term dolts groater [count * 4 + 1] = n:
0050	\rightarrow temp_derta_greater [count * 4 + 1] - p,
2350	count++;
2357	}
2358	
2359	for (int64 t p = 0, count = 0; p < temp overlap size; p++)
2260	for $(int64 + k = 0, k \leq n; k+1, count+1)$
2300	f (into f t $k = 0$, $k < -p$, $k < r$, count $r > r$
2361	1
2362	H_ij_basis_map[i * max_ji + temp_delta_greater][count *
22	z + 2 = R
2363	H_1]_Dasis_map[i * max_ji + temp_delta_greater][count *
	\leftrightarrow 4 + 31 = p:
2364	
2004	
2365	ı
2366	ł
2367	
2368	bool error = false:
2369	
2000	// Find the inverse of the lacobian matrix for each agent i
2370	// Find the inverse of the Jacobian matrix for each agent i
2371	<pre>#pragma omp parallel for schedule(guided)</pre>
2372	for $(int64_t i = 0; i < n; i++)$
2373	
0074	int64 + dim2 = u size i[i] + u size i[i].
23/4	$\frac{1}{100} = 0 \text{dim} 2 = w_{\text{size}} \left[1 \right] \text{w_{size}} \left[1 \right];$
2375	<pre>intb4_t dim1 = jacobian_size_1_lower[1];</pre>
2376	
2377	<pre>// Store the different terms for each agent in row and column format</pre>
2378	// which are multiplied later to create the different blocks of the jacobian
2370	,, which are materprice rater to create the different brocks of the Jacobian
2319	
2380	SparseMatrix jacobian_col(dim1);
2381	<pre>std::vector<double> values(dim2);</double></pre>
2382	std::vector <uint64 t=""> columns(dim2).</uint64>
2002	Stdveetor dimost_ov corumned (dim2),
2303	i = t C A + c c = 0
2384	$1004_t \text{ count} = 0;$
2385	for (int64_t j = 0; j < p_iLi]; j++, count++)
2386	{
2200	for $(in+64 + k = 0 \cdot k < dim 2 \cdot k+1)$
2001	$\int \int (1 + 1) dx = 0, x \in (1 + 1)$
2388	1

2380	values[k] = B[i][i][k]
2389	values [x] = b[i] [j] [x],
2390	[COTAMINS[K] - K,
2391	3
2392	iscopian col PushRow(count values columns dim2).
2393	Jacobian_colli usintow(count, varues, columns, umz),
2394	,
2396	for $(int 64 + i = 0) \cdot i \leq a \cdot [i] \cdot i + count++)$
2330	
2391	for $(in+6/1 + b = 0, b < dim 0, b + 1)$
2396	$\int_{a} \int \int$
2399	
2400	values[k] = D[1][J][k];
2401	columns[k] = k;
2402	}
2403	
2404	Jacobian_col.Pusnkow(count, values, columns, dim2);
2405	}
2406	
2407	for $(into4_{\pm}t_{\pm}) = 0$; $j < neigholess_num[1]; j ++)$
2408	for $(1nt64_t 1 = 0; 1 < size_type_z_v_Hij_Hjl[i][(j + 2) * 2 + 1]; 1++,$
	\hookrightarrow count++)
2409	
2410	<pre>int64_t index = i * max_ij + delta_less[i][j];</pre>
2411	for $(int64_t k = 0, nz = 0; k < dim2; k++)$
2412	{
2413	<pre>double val = H_ji_basis_vec_tr[index][l * dim2 + k];</pre>
2414	if $(val != 0)$
2415	{
2416	values[nz] = val:
2417	columns[nz] = k:
2418	
2419	nz++;
2420	} ´´
2421	
2422	jacobian col.PushRow(count, values, columns, nz);
2423	}
2420	Ъ , , , , , , , , , , , , , , , , , , ,
2424	, c
2426	for (int64 t i = 0, i < neighb greater num[i], i++)
2420	$\int \int $
2421	(1100 ± 0.1) (1100 ± 0.1) (110 ± 0.1) (110 ± 0.1) (110 ± 0.1)
0.400	\rightarrow nergno_ress_num[r]) * 2 + 1], 1++, count++)
2428	
2429	into4_t index = 1 * max_j1 + delta_greater[1][j];
2430	for $(int64_t k = 0, nz = 0; k < dim2; k++)$
2431	1
2432	<pre>double val = H_ij_basis_vec_tr[index][1 * dim2 + k];</pre>
2433	if (val != 0)
2434	{
2435	values[nz] = val;
2436	columns[nz] = k;
2437	
2438	nz++;
2439	}
2440	
2441	jacobian_col.PushRow(count, values, columns, nz);
2442	}
2443	}
2444	
2445	<pre>MatrixFuncs::MultiplySparse(dim1, dim2, jacobian_col, triang_jacobian[i]);</pre>
2446	for (int64_t j = p_i[i]; j < dim1; j++)
2447	<pre>triang_jacobian[i].Add(j, j, 1.0);</pre>
2448	
2449	jacobian_col.clear();
2450	
2451	<pre>MatrixFuncs::DevideByVectorAnaliticSymmSparse_Fase_1(triang_jacobian[i],</pre>
	\rightarrow s_jacobian[i]);
2452	} -~ .
2453	if (error)
2454	return -1;
2455	
2456	<pre>std::vector<double> gap;</double></pre>
2457	<pre>std::vector<double> max_infeas;</double></pre>
2458	<pre>std::vector<double> residue_sum;</double></pre>
2459	<pre>std::vector<double> residue_sum_primal;</double></pre>
2460	<pre>std::vector<double> residue_sum_dual;</double></pre>
2461	
2462	<pre>std::vector<double> p_residue_i_1_plot;</double></pre>
2463	<pre>sta::vector<aouble> p_residue_1_2_plot;</aouble></pre>
2464	<pre>sta::vector<aoudie> p_reslaue_1_3_plot;</aoudie></pre>
2465	<pre>sta::vector<aouble> a_residue_1_i_piot; atd::vector<aouble> d_residue_1_0_bt;</aouble></aouble></pre>
2400	std::vector:\u00D102 a_residue_1_2_piot;
2407 2468	stavector/double/ d_restate_1_3_prot;
<u>4</u> -100	

2469 2470	<pre>double max_infeas_iter = tole + 1;</pre>
2470	// Stop the timer for calculating algorithm's initialization time
2471	auto til - atdu chrono chigh reachtign clack (nov())
2472	atto ti - sta::chrono::high_resolution_clock::how();
2473	auto dt = 1.e-9*std::chrono::duration_cast <std::chrono::nanoseconds>(t1-t0).count();</std::chrono::nanoseconds>
2474	sta::cout<< ">< sta::enal;
2475	std::cout<<"Algorithm's initialization lime= "<< dt << " seconds" << std::endl;
2476	<pre>std::cout<<"" << std::endl;</pre>
2477	
2478	sta::cout<<"Starting to solve using ADMM " << sta::enal;
2479	sta::cout<<" << sta::enal;
2480	Sta::coutes The FFEAS DFEAS FODS DODS TIME Sta::enal;
2401	double time c-0:
2482	int64 t iter = 0:
2403	intor_t iter - 0,
2404	// Start ADMM Algorithm main loop here
2400	vibile (may inform that too here
2460	s s s s s s s s s s s s s s s s s s s
2407	l // Start the timer for coloulating elgenithmic main lean time
2488	// start the timer for carculating algorithm's main foop time
2489	auto to = std::chrono::high_resolution_clock::how();
2490	<pre>iter=iter+1;</pre>
2491	
2492	// Update (z_i, H_i], H_ji)
2493	<pre>#pragma omp parallel for schedule(dynamic)</pre>
2494	for $(1nt64_t = 0; 1 < n; 1++)$
2495	
2496	<pre>std::vector<double> temp_Array;</double></pre>
2497	<pre>std::vector<double> temp;</double></pre>
2498	sta::vector <aouble> vec_K_G_A;</aouble>
2499	sta::vector <double> vec_k_G_A_Lower;</double>
2500	std::vector <double> z1_v1_H1J_HJ1_vec;</double>
2501	
2502	vec_k_G_A.clear();
2503	vec_k_G_A_lower.clear();
2504	<pre>MatrixFuncs::AddVectors(R_lower[i], G_1_lower[i], 1.0, inv_mu_mult,</pre>
	\hookrightarrow vec_R_G_A_lower);
2505	<pre>MatrixFuncs::AddVectors(vec_R_G_A_lower, A_lower[i], 1.0, -1.0,</pre>
	\hookrightarrow vec_R_G_A_lower);
2506	MatrixFuncs::SymmMatrixFromLowerMatrix(w size i[i], vec R G A lower.
	\rightarrow vec B G A).
2507	\rightarrow voc_l_d_n,
2508	int64 + dim2 = u size i[i] * u size i[i]
2500	int 64 + incompared large lower = incohing size i lower[i].
2509	into4_t facobian_size_tower = facobian_size_1_tower[1],
2510	town Arrow close();
2011	temp_array.creat(),
2012	temp_Array.iesize(Jacobian_Size_iower, 0),
2513	temp.creat();
2514	$int64 \pm count = 0$
2516	for $(int64 + i = 0, i < p, i[i], itt count+t)$
2510	r (1004-0) - 0, $j < p_1(1), j_{++}, count_{++})$
2017	L MatmirEuroge.MultinluVestorg(P[i][i] use P.C.A. 1.0
2518	MatrixFuncs::MultiplyVectors(B[1][]], Vec_K_G_A, 1.0,
	\hookrightarrow temp_Array[count]);
2519	temp_Array[count] += -inv_mu_mult * c_i[i][j];
2520	}
2521	
2522	for $(intb4_t j = 0; j < q_1[i]; j++, count++)$
2523	t
2524	<pre>MatrixFuncs::MultiplyVectors(D[i][j], vec_R_G_A, 1.0,</pre>
	\hookrightarrow temp_Array[count]);
2525	temp_Array[count] += -inv_mu_mult * d_i[i][j] + u[i][j] -
	\rightarrow inv mu mult * Lambda i[i][i]:
2526	}
2527	·
2528	for (int64 t i = 0: i < neighb less num[i]: i++)
2529	۲ ۲
2520	$int 64 \pm dim = size \pm vne z v Hii Hii[i][(i \pm 2) \pm 2 \pm 1]$
2531	Matrix Funcs: Multiply (dim dim 2 1 H ii basis vectr[*
2001	mor ii + dolta loga[i][i] = no C A folco folco 1
	\rightarrow max_lj \rightarrow detta_less[1][j]], vec_n_G_A, faise, faise, i,
	↔ temp);
2532	MatrixFuncs::AddVectors(H_ij_coup_lower[delta_less[i][j] *
	\hookrightarrow max_ji + i], temp, 1.0, 1.0, temp);
2533	MatrixFuncs::AddVectors(G_ji_lower[i * max_ij +
	\hookrightarrow delta_less[i][j]], temp, - inv_mu_mult, 1.0. temp):
2534	for $(int64_t k = 0; k < dim; k++, count++)$
2535	temp Arrav[count] = temp[k]:
2536	<u>-</u>
2537	·
2538	for (int64 t j = 0; j < neighb greater num[i]: j++)
2539	{ {
	•

2540	<pre>int64_t dim = size_type_z_v_Hij_Hji[i][(j + 2 +</pre>
	\rightarrow neighb_less_num[i]) * 2 + 1];
2541	MatrixFuncs::Multiply(dim, dim2, 1, H_ij_basis_vec_tr[i *
	\max ii + delta greater[i][i]], vec R G A, false, false,
	\rightarrow 1. temp):
2542	MatrixFuncs: AddVectors(H ij coup lower[i * max ji +
	\rightarrow delta greater[i][i]], temp, 1.0, 1.0, temp):
2543	MatrixFuncs::AddVectors(G ii lower[i * max ii +
2010	\leftarrow delta greater[i][i]] temp - inv mu mult 1.0 temp).
2544	for (int64 t k = 0: k < dim: k++ count++)
2545	$t = t_{\text{mod}} + t_{\text{mod}} +$
2546	}
2547	-
2548	<pre>zi_vi_Hij_Hji_vec.clear();</pre>
2549	MatrixFuncs::DevideByVectorAnaliticSymmSparse_Fase_2(triang_jacobian[i],
	\hookrightarrow s_jacobian[i], temp_Array, zi_vi_Hij_Hji_vec);
2550	
2551	$int64 \pm cize cum = 0$
2552	111004_0 5128_Sum = 0,
2554	for $(int_{64} t = 0; 1 \le p i [i]; 1++)$
2555	z[i][l] = zi vi Hij Hij vec[l]:
2556	size_sum += p_i[i];
2557	
2558	for (int64_t 1 = 0, k = size_sum; 1 < q_i[i]; 1++, k++)
2559	v[i][l] _=_zi_vi_Hij_Hji_vec[k];
2560	size_sum += q_i[i];
2561	
2562	for (into4_t j = 0; j < neignb_less_num[i]; j++)
2563	$\int \int dx = \int dx $
2304	$\operatorname{Size}_{\operatorname{Siz}}_{\operatorname{Siz}_{\operatorname{Siz}}_{\operatorname{Siz}}_{\operatorname{Siz}}_{\operatorname{Siz}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
05.65	$ \qquad \qquad$
2969	n_jiower[i * max_i] + derta_iess[i][j]][i] -
0500	$\leftrightarrow z_1 v_1 n_1 n_1 v_1 v_2 k_1;$
2000	$size_sum + size_vpe_z_vnj_nj[i][(j + 2) + 2 + i];$
2568	ſ
2569	for (int64 t i = 0: i < neighb greater num[i]: i++)
2570	{
2571	for $(int64_t l = 0, k = size_sum; l <$
	size type z v Hii Hii[i][(i + 2 + neighb less num[i]) * 2
	$(\rightarrow + 1) = 1++, k++)$
2572	H ij lower[i * max ji + delta greater[i][i]][1] =
	\rightarrow zi vi Hii Hii vec[k].
2573	size sum $+=$ size type z v Hi Hi[i][(i + 2 +
	jjjjjjjjjjjj-
	\rightarrow neighbless num[i]) * 2 + 1].
2574	\rightarrow neighb_less_num[i]) * 2 + 1];
$2574 \\ 2575$	→ neighb_less_num[i]) * 2 + 1]; }
$2574 \\ 2575 \\ 2576$	→ neighb_less_num[i]) * 2 + 1]; } }
$2574 \\ 2575 \\ 2576 \\ 2577 \\ 2577 \\ $	→ neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i
2574 2575 2576 2577 2578	→ neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic)
2574 2575 2576 2577 2578 2579	→ neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++)
2574 2575 2576 2577 2578 2579 2580	<pre> neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { ist64 + dim = m size ifile </pre>
2574 2575 2576 2577 2578 2579 2580 2581 2581 2582	<pre> neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; } } </pre>
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583	→ neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64 t)H ij sum tr[i]_size() != dim * dim)
2574 2575 2576 2577 2578 2579 2580 2581 2582 2582 2583 2583	<pre> → neighb_less_num[i]) * 2 + 1]; } #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); </pre>
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2583 2584 2585	<pre> → neighb_less_num[i]) * 2 + 1]; } #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); } </pre>
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2583 2584 2585 2586	<pre> → neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) </pre>
$\begin{array}{c} 2574\\ 2575\\ 2576\\ 2577\\ 2578\\ 2579\\ 2580\\ 2580\\ 2581\\ 2582\\ 2583\\ 2584\\ 2585\\ 2586\\ 2586\\ 2587\end{array}$	<pre></pre>
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2585 2586 2587 2588	<pre> → neighb_less_num[i]) * 2 + 1]; } #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t i = 0; i < i i < i <</pre>
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2583 2584 2585 2586 2586 2587 2588	<pre></pre>
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2584 2585 2586 2587 2588 2588 2589 2590	<pre></pre>
2574 2575 2576 2577 2582 2582 2583 2584 2583 2584 2585 2586 2585 2586 2587 2588 2589 2590 2590	<pre> → neighb_less_num[i]) * 2 + 1]; } # pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t j = 0; j < neighb_less_num[i]; j++) { int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; } } </pre>
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2585 2586 2587 2588 2589 2590 2591 2592	<pre> → neighb_less_num[i]) * 2 + 1]; } #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t j = 0; j < neighb_less_num[i]; j++) { int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; int64_t indx = i * max_ij + delta_less[i][j]; } } </pre>
2574 2575 2576 2577 2578 2580 2581 2582 2583 2584 2585 2586 2585 2586 2587 2588 2589 2590 2591 2592 2594	<pre> → neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t j = 0; j < neighb_less_num[i]; j++) { int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; int64_t indx = i * max_ij + delta_less[i][j]; for (int64_t k = 0; k ≤ dim1; k ++) </pre>
2574 2575 2576 2577 2578 2580 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595	<pre> → neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++)</pre>
2574 2575 2576 2577 2582 2581 2582 2583 2584 2585 2586 2587 2586 2587 2588 2588 2589 2590 2591 2592 2593 2594 2595	<pre> → neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t j = 0; j < neighb_less_num[i]; j++) { int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; int64_t indx = i * max_ij + delta_less[i][j]; for (int64_t k = 0; k < dim1; k ++) H_ij_sum_tr[i][i]_tosis_map[indx][k * 4 + 1] * dim +</pre>
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2583 2584 2585 2586 2587 2588 2589 2591 2591 2592 2593 2594 2595	<pre></pre>
2574 2575 2576 2577 2578 2580 2581 2582 2583 2584 2583 2584 2585 2586 2588 2589 2590 2591 2592 2593 2594 2595	<pre></pre>
2574 2575 2576 2577 2578 2580 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595	<pre> → neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t j = 0; j < dim * dim; j++)</pre>
2574 2575 2576 2577 2578 2580 2580 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2595	<pre> → neighb_less_num[i]) * 2 + 1]; } } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t j = 0; j < dim * dim; j++) [int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; int64_t indx = i * max_ij + delta_less[i][j]; for (int64_t k = 0; k < dim1; k ++) H_ij_sum_tr[i][H_ji_basis_map[indx][k * 4 + 1] * dim +</pre>
2574 2575 2576 2577 2578 2582 2583 2584 2585 2586 2587 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2595 2596 2597 2598 2599	<pre> → neighb_less_num[i]) * 2 + 1]; } #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t j = 0; j < neighb_less_num[i]; j++) { int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; int64_t indx = i * max_ij + delta_less[i][j]; for (int64_t k = 0; k < dim1; k ++)</pre>
2574 2575 2576 2577 2578 2580 2581 2582 2583 2584 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2599 2600	<pre> → neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t j = 0; j < neighb_less_num[i]; j++) { int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; int64_t int = i * max.ij + delta_less[i][j]; for (int64_t k = 0; k < dim1; k ++) H_ij_sum_tr[i][H_ji_basis_map[indx][k * 4 + 1] * dim +</pre>
2574 2575 2576 2577 2578 2582 2581 2582 2583 2584 2585 2586 2587 2588 2590 2591 2592 2593 2593 2594 2595 2596 2597 2598 2599 2599 2600	<pre> → neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t j = 0; j < dim * dim; j++)</pre>
2574 2575 2576 2577 2578 2580 2580 2581 2582 2583 2584 2585 2586 2587 2598 2599 2599 2599 2599 2599 2599 2599	<pre> → neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t j = 0; j < dim * dim; j++) { int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; int64_t indx = i * max_ij + delta_less[i][j]; for (int64_t k = 0; k < dim1; k ++)</pre>
2574 2575 2576 2577 2578 2580 2580 2581 2582 2583 2584 2585 2586 2587 2593 2591 2592 2593 2594 2595 2595 2596 2597 2598 2599 2600 2601 2602	<pre> → neighb_less_num[i]) * 2 + 1]; } // Update H_ij_sum for each agent i #pragma omp parallel for schedule(dynamic) for (int64_t i = 0; i < n; i++) { int64_t dim = w_size_i[i]; if ((int64_t)H_ij_sum_tr[i].size() != dim * dim) H_ij_sum_tr[i].resize(dim * dim); for (int64_t j = 0; j < dim * dim; j++) H_ij_sum_tr[i][j] = 0; for (int64_t j = 0; j < neighb_less_num[i]; j++) { int64_t dim1 = size_type_z_v_Hij_Hji[i][(j + 2) * 2 + 1]; int64_t indx = i * max_ij + delta_less[i][j]; for (int64_t k = 0; k < dim1; k ++) H_ij_sum_tr[i][H_ji_basis_map[indx][k * 4 + 1] * dim +</pre>

H_ij_sum_tr[i][H_ij_basis_map[indx][k * 4 + 1] * dim + 2604 H_ij_basis_map[indx][k * 4]] += \hookrightarrow H_ij_lower[indx][k]; 2605 . MatrixFuncs::LowerMatrix(dim, H_ij_sum_tr[i], H_ij_sum_tr_lower[i]); 2606 2607 } 2608 // Update B_sum for each agent i
#pragma omp parallel for schedule(dynamic) 2609 2610 for (int64_t i = 0; i < n; i++)</pre> 2611 { 2612 2613 if (p_i[i] != 0) 2614Ł int64_t dim = (int64_t)(0.5 * w_size_i[i] * (w_size_i[i] + 1)); 2615 2616 if ((int64_t)B_sum_lower[i].size() != dim) 2617 2618 B_sum_lower[i].resize(dim); 2619for $(int64_t k = 0; k < dim; k++)$ 2620 $B_sum_lower[i][k] = 0;$ 2621 2622 2623 2624 → 1, z[i][j], B_sum_lower[i]); 2625 } } 26262627 // Update D_sum for each agent i
#pragma omp parallel for schedule(dynamic) 2628 2629 2630 for (int64_t i = 0; i < n; i++)</pre> 2631 ſ if (q_i[i] != 0)
{ 2632 2633 int64_t dim = (int64_t)(0.5 * w_size_i[i] * (w_size_i[i] + 1)); 2634 26352636 if ((int64_t)D_sum_lower[i].size() != dim) 2637 D_sum_lower[i].resize(dim); 2638 for $(int64_t k = 0; k < dim; k++)$ 2639 $D_sum_lower[i][k] = 0;$ 2640 2641 2642 2643→ 1, v[i][j], D_sum_lower[i]); 2644} } 26452646 // Update R i 2647 #pragma omp parallel for schedule(dynamic) 2648 2649 for $(int64_t i = 0; i < n; i++)$ { 2650std::vector<double> temp_Array; std::vector<double> temp_mat; std::vector<double> temp_mat_1; 265126522653std::vector<double> temp_mat_2; std::vector<double> Veig; std::vector<double> Deig_vec; std::vector<double> Deig; 265426552656 2657std::vector<double> R_lower_old; std::vector<double> R_residue_lower; std::vector<double> u_old; 2658 26592660 2661 int64_t dim = w_size_i[i]; 2662 2663 2664temp_Array.clear(); 26652666 MatrixFuncs::AddVectors(A_lower[i], H_ij_sum_tr_lower[i], 1.0, 1.0, temp_Array); MatrixFuncs::AddVectors(temp_Array, G_i_lower[i], 1.0, -inv_mu_mult, 2667 \rightarrow temp_Array); if (p_i[i] != 0) 2668 MatrixFuncs::AddVectors(temp_Array, B_sum_lower[i], 1.0, 1.0, 2669 \rightarrow temp_Array); if (q_i[i] != 0) 2670 2671MatrixFuncs::AddVectors(temp_Array, D_sum_lower[i], 1.0, 1.0, temp_Array); \hookrightarrow 26722673temp_mat.clear(); 2674temp_mat_1.clear(); temp_mat_2.clear(); 267526762677MatrixFuncs::SymmMatrixFromLowerMatrix(dim, temp_Array, temp_mat);

2679	Veig.clear();
2680	<pre>Deig_vec.clear();</pre>
2681	Deig.clear():
2682	Deig.resize(dim *dim, 0):
2683	2016/10/10/10/10/10/10/10/10/10/10/10/10/10/
2684	MatrixFuncs··FigenVectorsSymm(temp mat Deig vec Veig).
2685	hatiki mes. High veeto by mm (temp_mat, beig_vee, veig),
2000	for $(in+64 + i - 0, i < dim, i+1)$
2080	$101 (11104 \pm 1) = 0; j \in dim; j \neq j$
2687	II (Deig_vec[j] > 0)
2688	Deig[j * dim + j] = Deig_vec[j];
2689	
2690	MatrixFuncs::Multiply(dim, dim, dim, Deig, Veig, false, true, 1,
	\hookrightarrow temp_mat_1);
2691	MatrixFuncs::Multiply(dim, dim, dim, Veig, temp mat 1, false, false, 1,
	() temp mat 2).
2602	\rightarrow temp_mat_2),
2092	
2693	R_lower_old.clear();
2694	R_lower_old = R_lower[1];
2695	MatrixFuncs::LowerMatrix(dim, temp_mat_2, R_Lower[1]);
2696	
2697	<pre>R_residue_lower.clear();</pre>
2698	<pre>MatrixFuncs::AddVectors(R_lower[i], R_lower_old, 1.0, -1.0,</pre>
	\rightarrow B residue lower).
2699	· · · _ · · · · · · · · · · · · · · · ·
2700	double norm = 0 :
2701	MatrixFuncs·FrohaniusNormSummIowar(dim B residue lower norm).
2701	d residue i 1[i] - norm t norm that and the norm
2702	a_restaue_i_i[i] - norm * norm;
2703	
2704	$\prod_{i=1}^{n} (d_{-1}[1]_{i=0})$
2705	1
2706	u_old.clear();
2707	u_old = u[i];
2708	MatrixFuncs::AddVectors(v[i], Lambda i[i], 1.0, inv mu mult.
	n[i]),
2700	\rightarrow u(1),
2709	for $(int 64 + a = 0, a < a = [i], att)$
2710	$\frac{1}{10} \left(\frac{1}{10} \left(\frac{1}{2} - 0 \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} - 0 \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} - 0 \right) \right) \left(\frac{1}{2} - 0 \right) \left(\frac{1}{2} -$
2711	u[1][q] = sta::max(0.0, u[1][q]);
2712	
2713	$d_{residue_1_2[1]} = 0;$
2714	for $(int64_t k = 0; k < q_i[i]; k++)$
2715	d_residue_i_2[i] += (u[i][k] - u_old[k]) * (u[i][k] -
	\rightarrow u old[k]):
2716	·
2717	MatrixFunce: AddVectors(Lambda i[i] v[i] 1.0 mu mult
2111	MatilifullsKuvectors(Lambda_I[1], V[1], 1.0, md_muit,
	\hookrightarrow Lambda_1[1]);
2718	MatrixFuncs::AddVectors(Lambda_i[i], u[i], 1.0, -mu_mult,
	→ Lambda i[i]):
2719	}
2720	
2721	MatrixFuncs::AddVectors(G i lower[i], B lower[i], 1.0, mu mult.
2.21	
	\hookrightarrow G_1_100er(1);
2722	MatrixFuncs::Addvectors(G_1_tower[1], H_1]_sum_tr_tower[1], 1.0,
	→ -mu_mult, G_i_lower[i]);
2723	<pre>MatrixFuncs::AddVectors(G_i_lower[i], A_lower[i], 1.0, -mu_mult,</pre>
	\leftrightarrow G i lower[i]):
2724	if $(\mathbf{p} \mid \mathbf{i} \mid \mathbf{i} \mid \mathbf{j} \mid \mathbf{j})$
2725	MatrixFuncs··AddVectors(C i lower[i] R sum lower[i] 1 0
2120	$ a_1 + a_1 + a_2 + a_2 + a_3 + a_4 + a_$
a - 4 -	→ -mu_murt, G_1_tower[1]/;
2726	11 (q_1[1] != U)
2727	<pre>MatrixFuncs::AddVectors(G_i_lower[i], D_sum_lower[i], 1.0,</pre>
	\hookrightarrow -mu_mult, G_i_lower[i]);
2728	}
2729	-
2730	// Update G_ij, G_ji and H_ij_coup
2731	#pragma omp parallel for schedule(dynamic)
2732	for $(int64 \pm i = 0) \cdot i < addres Num \cdot i++)$
2102	f
2733	
2734	sta:vector <double>j_coup_lower_old;</double>
2735	<pre>sta::vector<aouble> n_lj_coup_lower_reslaue;</aouble></pre>
2730	
2737	<pre>intb4_t ind_i = edges_Set[i * 2];</pre>
2738	<pre>int64_t ind_j = edges_Set[i * 2 + 1];</pre>
2739	<pre>int64_t dim = overlap_size[ind_i * max_ + ind_j];</pre>
2740	
2741	H_ij_coup_lower_old.clear();
2742	H_ij_coup_lower_old = H_ij_coup_lower[ind_i * max_ji + ind i]:
2743	
2744	MatrixFuncs::AddVectors(H ii lower∫ind i * max ii + ind i].
	H ii lower[ind i \star may ii \pm ind i] 0.5 0.5
	↔ H I COUD LOWERLING I * MAX II + IND I):

2745	<pre>MatrixFuncs::AddVectors(H_ij_coup_lower[ind_i * max_ji + ind_j],</pre>
	→ G_ij_lower[ind_i * max_ji + ind_j], 1.0, 0.5 * inv_mu_mult,
	\rightarrow H_ij_coup_lower[ind_i * max_ji + ind_j]);
2746	MatrixFuncs::AddVectors(H_1]_coup_lower[ind_1 * max_j1 + ind_j],
	G_{j} = 1.10Wer[ind_] * max_1] + ind_1], 1.0, 0.5 * inv_mu_muit,
2747	\rightarrow h_lj_coup_tower[ind_1 * max_]1 + ind_]]);
2748	H ij coup lower residue.clear():
2749	<pre>MatrixFuncs::AddVectors(H_ij_coup_lower[ind_i * max_ji + ind_j],</pre>
	\rightarrow H_ij_coup_lower_old, 1.0, -1.0, H_ij_coup_lower_residue);
2750	double norm = 0;
2751	MatrixFuncs::FrobeniusNormSymmLower(dim, H_ij_coup_lower_residue,
	\leftrightarrow norm);
2752 2753	a_restaue_1_3[1] = 2 * norm * norm;
2754	MatrixFuncs::AddVectors(G ij lower∫ind i * max ji + ind j].
	H ij lower[ind i * max ji + ind j], 1.0, mu mult.
	\hookrightarrow G_ij_lower[ind_i * max_ji + ind_j]);
2755	<pre>MatrixFuncs::AddVectors(G_ij_lower[ind_i * max_ji + ind_j],</pre>
	H_ij_coup_lower[ind_i * max_ji + ind_j], 1.0, -mu_mult,
	\hookrightarrow G_ij_lower[ind_i * max_ji + ind_j]);
2756	
2757	MatrixFuncs::AddVectors(G_j1_lower[ind_j * max_ij + ind_i],
	\rightarrow H_j1_lower[ind_] * max_i] + ind_i], 1.0, mu_muit,
0759	$ \hookrightarrow \ \mathbb{G}_{11} = 10 \text{ Wer}[1 \text{ nd}_{-1}] * \text{ max}_{-1} + 1 \text{ nd}_{-1}]; $
2100	$\begin{array}{c} \text{Hattrancs.} \text{Advectors}(\underline{d}_{j}) = 10 \text{ were line} j + 10 \text{ max} \text{ if } + 10 \text{ max} \text{ if } + 10 \text{ max} \text{ max} \text{ if } + 10 \text{ max} \text{ max} \text{ if } + 10 \text{ max} \text{ max} \text{ if } + 10 \text{ max} \text{ max} \text{ max} \text{ if } + 10 \text{ max} \text{ max} \text{ max} \text{ if } + 10 \text{ max} \text{ max} \text{ max} \text{ max} \text{ if } + 10 \text{ max} \text{ max} \text{ max} \text{ max} \text{ if } + 10 \text{ max} $
2759	$\rightarrow \text{G_JI_IOWCI (ING_J + Max_I) + ING_I)},$
2760	5
2761	// Calculate the stopping criteria measures
2762	double gap_primal_dual_pt1 = 0;
2763	double gap_primal_dual_pt2 = 0; double gap_primal_dual_pt3 = 0;
2765	double objprimal = 0;
2766	double obj_dual = 0;
2767	
2768	<pre>#pragma omp parallel lor schedule(dynamic)</pre>
2709	$\begin{cases} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 $
2771	<pre>std::vector<double> temp_mat_G_i;</double></pre>
2772	<pre>std::vector<double> temp;</double></pre>
2773	in+64 + dim - u size i[i].
$2774 \\ 2775$	1004_t and $-$ w_size_1[1];
2776	<pre>temp_mat_G_i.clear();</pre>
2777	<pre>MatrixFuncs::SymmMatrixFromLowerMatrix(dim, G_i_lower[i],</pre>
	\hookrightarrow temp_mat_G_i);
2778	double norm = 0.
2780	temp.clear():
2781	
2782	for $(int64_t p = 0; p < p_i[i]; p++)$
2783	$\{$
2784	$\begin{array}{c} \text{accuse mult} = 0;\\ \text{Matrix Funce: Multiply Vectors (B[i][n] temp mat C i 1 0 mult)}; \end{array}$
2786	norm $+=$ pow(mult - c i[i][p], 2):
2787	}
2788	
2789	<pre>p_infeas_i_1[i] = sqrt(norm);</pre>
2790	norm = 0.
2792	for $(int64_t q = 0; q < q_i[i]; q++)$
2793	$\{$
2794	double mult = 0;
2795	MatrixFuncs: MultiplyVectors(D[1][q], temp_mat_G_1, 1.0, mult);
2796	$norm += pow(sta::max(mult - a_1(1)(q), 0.0), 2);$
2798	, c
2799	<pre>p_infeas_i_1[i] += sqrt(norm);</pre>
2800	norm = 0.
2801 2802	for $(int64 \pm p = 0; p \le p + i[i]; p++)$
2803	$norm += pow(c_i[i][p], 2);$
0001	
2804	
2804 2805	if (p_i[i] == 0)
2804 2805 2806	<pre>if (p_i[i] == 0)</pre>
2804 2805 2806 2807 2808	<pre>if (p_i[i] == 0) for (int64_t q = 0; q < q_i[i]; q++)</pre>
2804 2805 2806 2807 2808 2809	<pre>if (p_i[i] == 0) for (int64_t q = 0; q < q_i[i]; q++)</pre>
2804 2805 2806 2807 2808 2809 2810	<pre>if (p_i[i] == 0) for (int64_t q = 0; q < q_i[i]; q++)</pre>

2812	<pre>MatrixFuncs::AddVectors(R_lower[i], H_ij_sum_tr_lower[i], 1.0, -1.0,</pre>
	\hookrightarrow temp);
2813	<pre>MatrixFuncs::AddVectors(temp, A_Lower[1], 1.0, -1.0, temp);</pre>
2814	if (p_i[i] != 0)
2815	MatrixFuncs::AddVectors(temp, B sum lower[i], 1.0, -1.0, temp):
2816	if (a i[i] l= 0)
2010	Marin Function Methods and Methods and (town D cum lower[i] 10 -10 town)
2817	MatrixFuncs::AddVectors(temp, D_sum_lower[1], 1.0, -1.0, temp);
2818	
2819	MatrixFuncs::FrobeniusNormSymmLower(dim, temp, norm);
2820	
2821	d_infeas_i_1[i] = norm;
2822	
2823	p_residue_i_1[i] = norm * norm;
2824	
2825	<pre>MatrixFuncs::PNormSymmLower(dim, 1, A_lower[i], norm);</pre>
2826	
2827	d infeas i 1[i] /= 1 + norm:
2828	
2829	norm = 0:
2830	double norm $1 = 0$, norm $2 = 0$;
2831	for $(int64 \pm a = 0; a \le a; [i]; a++)$
2031	
2832	
2833	norm $+= pow(v[i][q] - u[i][q], 2);$
2834	norm1 += pow(v[i][q], 2);
2835	<pre>norm2 += pow(u[i][q], 2);</pre>
2836	}
2837	
2838	d_infeas_i_3[i] = sqrt(norm) /(1.0 + sqrt(norm1) + sqrt(norm2)):
2839	
2840	p residue i 2[i] = norm:
2841	P_1001000_1_0_,,
2842	double mult $1 = 0$, mult $2 = 0$, mult $3 = 0$:
2843	for $(int64 \pm p = 0; p \le p \mid [i]; p++)$
2844	$mult 1 + c i [i] [n] \cdot$
2845	
2846	for $(int 64 + a = 0; a \le a; [i]; a++)$
2847	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
2848	
2840	Matrix Funce $\cdot \cdot Multiply Vectors (A[i] temp mat C i 1 0 mult 3) \cdot$
2850	hadrixi and similar provide the standard and the standard stand
2851	#pragma_omp_critical
2852	
2853	gap primal dual pt1 -= mult 1:
2854	g_{ab} primal dual pt2 += mult 1:
2855	gap primal dual pt1 -= mult 2:
2856	g_{ab} primal dual pt2 += mult 2:
2857	g_{ab} primal dual pt1 -= mult 3:
2858	g_{ap} primal dual pt3 += mult_3:
2859	}
2860	}
2861	
2862	<pre>#pragma omp parallel for schedule(dynamic)</pre>
2863	for (int64 t i = 0. i < edges Num. i++)
2864	f
2865	
2866	<pre>std::vector<double> temp:</double></pre>
	<pre>std::vector<double> temp;</double></pre>
2867	std::vector <double> temp; int64 t indx i = edges Set[i * 2]:</double>
2867 2868	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_i = edges_Set[i * 2 + 1].</double></pre>
$2867 \\ 2868 \\ 2869$	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1];</double></pre>
2867 2868 2869 2870	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64 t dim = overlap size[indx i * max + indx i];</double></pre>
2867 2868 2869 2870 2871	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j];</double></pre>
2867 2868 2869 2870 2871 2872	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear():</double></pre>
2867 2868 2869 2870 2871 2872 2872	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(6 is lower[indx_i * max_ii + indx_i]</double></pre>
2867 2868 2869 2870 2871 2872 2873	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j], over (i di lever[indx_i + nex_ii + indx_i] + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2875	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2876	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2876 2877	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2876 2877	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2874 2875 2876 2877 2878 2879	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2877 2878 2879 2880	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2876 2877 2878 2879 2880	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2873 2874 2875 2876 2877 2878 2879 2880 2881	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2877 2877 2878 2879 2880 2881	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2879 2880 2881 2881	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2881	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 28876 28879 2880 2881 2882 2883 2883	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2877 2878 2879 2880 2881 2881 2882 2883 2884 2885	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2876 2877 2880 2880 2881 2882 2883 2884 2885 2886	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j], \hookrightarrow G_ji_lower[indx_j * max_ij + indx_i], 1.0, 1.0, temp); double norm_1 = 0, norm_2 = 0; MatrixFuncs::PNormVector(2, temp, norm_1); p_infeas_i_2[i] = norm_1; MatrixFuncs::PNormVector(2, G_ij_lower[indx_i * max_ji + indx_j], \leftrightarrow norm_1); MatrixFuncs::PNormVector(2, G_ji_lower[indx_j * max_ij + indx_i], \leftrightarrow norm_2); p_infeas_i_2[i] /= 1.0 + norm_1 + norm_2; MatrixFuncs::AddVectors(H_ij_lower[indx_i * max_ji + indx_j], \leftrightarrow H_ij_coup_lower[indx_i * max_ji + indx_j], 1.0, -1.0, temp);</double></pre>
2867 2868 2869 2870 2871 2877 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2883 2884 2885	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2885	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2883 2884 2885 2886 2887 2888	<pre>std::vector<double> temp; int64_t indx_i = edges_Set[i * 2]; int64_t indx_j = edges_Set[i * 2 + 1]; int64_t dim = overlap_size[indx_i * max_ + indx_j]; temp.clear(); MatrixFuncs::AddVectors(G_ij_lower[indx_i * max_ji + indx_j],</double></pre>

2891	<pre>MatrixFuncs::PNormVector(2, H_ij_lower[indx_i * max_ji + indx_j],</pre>
2892	→ norm_1); MatrixFuncs::PNormVector(2, H ij coup lower[indx i * max ji + indx j].
	\rightarrow norm 2):
2893	· · · · · · · · · · · · · · · · · · ·
2894	d infeas i 2[0][i] /= 1.0 + norm 1 + norm 2:
2895	
2896	<pre>MatrixFuncs::AddVectors(H_ji_lower[indx_j * max_ij + indx_i],</pre>
2897	MatrixEuroge: DNorm Voctor(2 tomp norm 1);
2898	Matrixfuncs::PNOrmvector(z, temp, norm_1);
2033	d infers i $2[1][i] = norm 1$
2901	
2902	<pre>MatrixFuncs::PNormVector(2, H_ji_lower[indx_j * max_ij + indx_i],</pre>
2903	<pre> → norm_1); MatrixFuncs::PNormVector(2, H_ij_coup_lower[indx_i * max_ji + indx_j], → norm_2); </pre>
2904	
2905	d infeas i 2[1][i] /= 1.0 + norm 1 + norm 2;
2906	
2907	$//$ p_residue_i_3(i_index,1) =
	\leftrightarrow (norm(temp mat H ij-temp mat H ij coup.'fro'))^2:
2908	MatrixFuncs::AddVectors(H ii] lower[indx i * max ii + indx i]
	$ \qquad \qquad$
2909	\rightarrow n_ij_coup_rower[indx_1 \uparrow max_j \uparrow indx_j], i.o, -i.o, temp);
2910	MatrixFuncs::FrobeniusNormSymmLower(dim temp norm 1).
2911	Matrix and first obtained and wer (arm, temp, norm_1),
2011	n residue i $3[i] = norm 1 * norm 1$
2912	P_foblade_i_o[i] hoim_i hoim_i,
2914	// presidue i $4(i \text{ index.} 1) =$
	() (norm(temp mat H ii_temp mat H ii_coup 'fro'))^2.
2015	\rightarrow (norm (temp_mather j) temp_mather injector, it is)/ 2, Matrix Europe. (Addectors (U is lower [index is the mather i]
2915	Matiliki unics Audvectors (n_j)lower[indx_] * max_l] + indx_l],
0010	\rightarrow H_1J_coup_lower[indx_1 * max_j1 + indx_j], 1.0, -1.0, temp);
2916	
2917	MatrixFuncs::FrobeniusNormSymmLower(dim, temp, norm_1);
2918	n regidue i $4[i] = norm 1 + norm 1$.
2919	p_residue_1_4[i] = norm_1 * norm_1;
2920	}
2921	dealer and item - atduceho(new animal dual atd) / (1)
2922	double gap_iter = std::abs(gap_primal_dual_pti) / (1 +
	\rightarrow std::abs(gap_primal_dual_pt2) + std::abs(gap_primal_dual_pt3));
2923	<pre>gap.push_back(gap_iter);</pre>
2924	
2925	double p_infeas_max_1 = MatrixFuncs::Max(p_infeas_i_1);
2926	double p_infeas_max_2 =MatrixFuncs::Max(p_infeas_1_2);
2927	double d_infeas_max_1 = MatrixFuncs::Max(d_infeas_1_1);
2928	double d_infeas_max_2_pt1 = MatrixFuncs::Max(d_infeas_1_2[0]);
2929	double d_infeas_max_2_pt2 = MatrixFuncs::Max(d_infeas_i_2[1]);
2930	<pre>double d_infeas_max_3 = MatrixFuncs::Max(d_infeas_1_3);</pre>
2931	
2932	<pre>max_infeas_iter = std::max(gap_iter, std::max(p_infeas_max_1,</pre>
	<pre>std::max(p_infeas_max_2, std::max(d_infeas_max_1,</pre>
	<pre>std::max(d_infeas_max_2_pt1, std::max(d_infeas_max_2_pt2,</pre>
	\rightarrow d_infeas_max_3)))));
2933	<pre>max_infeas.push_back(max_infeas_iter);</pre>
2934	
2935	<pre>double p_infeas=std::max(p_infeas_max_1, p_infeas_max_2);</pre>
2936	<pre>double d_infeas=std::max(d_infeas_max_1,</pre>
	→ std::max(d_infeas_max_2_pt1,std::max(d_infeas_max_2_pt2,d_infeas_max_3)));
2937	
2938	<pre>double p_residue_i_1_sum = MatrixFuncs::Sum(p_residue_i_1);</pre>
2939	<pre>double p_residue_i_2_sum = MatrixFuncs::Sum(p_residue_i_2);</pre>
2940	<pre>double p_residue_i_3_sum = MatrixFuncs::Sum(p_residue_i_3);</pre>
2941	<pre>double p_residue_i_4_sum = MatrixFuncs::Sum(p_residue_i_4);</pre>
2942	<pre>double d_residue_i_1_sum = MatrixFuncs::Sum(d_residue_i_1);</pre>
2943	<pre>double d_residue_i_2_sum = MatrixFuncs::Sum(d_residue_i_2);</pre>
2944	<pre>double d_residue_i_3_sum = MatrixFuncs::Sum(d_residue_i_3);</pre>
2945	<pre>double p_residue_sum = p_residue_i_1_sum + p_residue_i_2_sum +</pre>
	\rightarrow p_residue_i_3_sum + p_residue_i_4_sum;
2946	<pre>double d_residue_sum = d_residue_i_1_sum + d_residue_i_2_sum +</pre>
	\hookrightarrow d_residue_i_3_sum;
2947	
2948	residue_sum.push_back(p_residue_sum + d_residue_sum);
2949	residue_sum_primal.push_back(p_residue_sum);
2950	residue_sum_dual.push_back(d_residue_sum);
2951	
2952	<pre>p_residue_i_1_plot.push_back(p_residue_i_1_sum);</pre>
2953	<pre>p_residue_i_2_plot.push_back(p_residue_i_2_sum);</pre>
2954	p_residue_i_3_plot.push_back(p_residue_i_3_sum);
2955	<pre>d_residue_i_1_plot.push_back(d_residue_i_1_sum);</pre>

```
d_residue_i_2_plot.push_back(d_residue_i_2_sum);
d_residue_i_3_plot.push_back(d_residue_i_3_sum);
2956
2957
2958
                    // Stop the timer for calculating algorithm's main loop time
auto t1 = std::chrono::high_resolution_clock::now();
auto dt = 1.e-9*std::chrono::duration_cast<std::chrono::nanoseconds>(t1-t0).count();
2959
2960
2961
2962
                    time_s = time_s+dt;
2963
2964
                    // Uncomment #ifdef _DEBUG and #endif to stop showing the solution in each iteration
2965
                    //#ifdef DEBUG
2966
                    std::printf("%-3u %1.1e %1.1e %e %e %2.2f\n", iter, p_infeas, d_infeas,
2967
                    → -gap_primal_dual_pt2, gap_primal_dual_pt3, time_s);
//#endif
2968
2969
2970
                    double ADMM_Solution = 0;
for (int64_t i = 0; i < n; i++)</pre>
2971
2972
2973
2974
                                double mult = 0:
                               double mult = 0;
MatrixFuncs::MultiplyVectors( c_i[i], z[i], 1.0, mult);
ADMM_Solution -= mult;
MatrixFuncs::MultiplyVectors( d_i[i], v[i], 1.0, mult);
ADMM_Solution -= mult;
2975
2976
2977
2978
                    }
2979
2980
2981
                    Output(fileout, residue_sum);
2982
2983
                    return 0;
        }
2984
2985
        // Write result to file. Here, residue_sum is written to a .csv file
yoid Output(const std::string& fileout, const std::vector <double> &data)
2986
2987
2988
         Ł
                    std::ofstream file;
2989
                    file.open(fileout.c_str());
2990
2991
                    int64_t dim = data.size();
2992
                     for(int64_t i = 0; i <dim; i++)</pre>
2993
                    {
2004
                                file << data[i] << std::endl;</pre>
                    3
2995
2996
                    file.close();
        }
2997
2998
        // Main function
        int main(int argc, char *argv[])
{
2999
3000
3001
                    int64_t Solution = ADMM_SDP_Algo();
3002
                    return 0;
3003
        }
3004
```

admm-sdp.h

```
const double DEF_TOLERANCE = 1E-13;
const double DEF_PRESICE = 1E-13;
 2
3
     // Square sparse matrix
\mathbf{4}
     // Only the non-zero elements are stored
class SparseMatrix
\mathbf{5}
6
7
     Ł
              uint64_t m_size;
                                                                                                            11
8
               ↔ matrix size, count of rows(columns)
              std::vector<std::vector<double> > m_Values;
9
                                                                                   // m_size-vector of real
                   vectors, m_Values[i] - contains all non-zero elements of the i-th row
10
              std::vector<std::vector<uint64_t> > m_Columns;
                                                                             // m_size-vector of integer
               _{\rightarrow} vectors, m_Columns[i] - contains a numbers of columns corresponding to all
                   non-zero elements of the i-th row
              std::vector<uint64 t> m LastNonZeroElement:
                                                                                   // m_size-vector of integer
11
                    numbers, vector contains the column indexes of last non-zero elements in each row of the matrix
                \rightarrow
               \hookrightarrow
12
              static double GetNAN()
13
              {
14
                       uint64_t nan[2] = { 0xffffffff, 0x7fffffff };
15
                       return *(double*)nan;
16
              }
17
18
19
    public:
```

```
SparseMatrix()
20
^{21}
22
                      m_size = 0;
23 \\ 24
              };
25
              SparseMatrix(uint64_t size)
\frac{26}{27}
                      m_size = size;
28
                      m_Values.resize(m_size);
29
                      m_Columns.resize(m_size);
30
                      m_LastNonZeroElement.resize(m_size, 0);
\frac{31}{32}
              };
33
              SparseMatrix(SparseMatrix &SMatrix)
34
                      m_size = SMatrix.m_size;
m_Values = SMatrix.m_Values;
m_LastNonZeroElement = SMatrix.m_LastNonZeroElement;
m_Columns = SMatrix.m_Columns;
\frac{35}{36}
37
38
39
40
              };
41
              void create(uint64_t size)
42
              ſ
43
44
45
                      clear();
                      m_size = size;
46
                      m_Values.resize(m_size);
47
                      m_Columns.resize(m_size);
48
                      m_LastNonZeroElement.resize(m_size, 0);
\frac{49}{50}
              };
51
              void create(SparseMatrix &SMatrix)
52
              {
                      clear();
53
54
55
56
57
58
                      m_size = SMatrix.m_size;
                      m_Values = SMatrix.m_Values;
m_LastNonZeroElement = SMatrix.m_LastNonZeroElement;
                      m_Columns = SMatrix.m_Columns;
\frac{59}{60}
              };
61
              uint64_t size()
\frac{62}{63}
              {
                      return m_size;
64
              };
65
              void resize(uint64_t size)
66
67
              Ł
                      clear();
68
69
70
71
                      m_size = size;
                      m_Values.resize(m_size);
72
                      m_Columns.resize(m_size);
73
                      m_LastNonZeroElement.resize(m_size, 0);
\frac{74}{75}
              };
76
              void clear()
77
              Ł
78
                       if (m_size > 0)
\frac{79}{80}
                       Ł
                               m_{size} = 0;
81
                               m_Values.clear();
82
                               m_Values.resize(0);
83
                               m_LastNonZeroElement.clear()
84
                               m_LastNonZeroElement.resize(0);
85
                               m Columns.clear()
86
                               m_Columns.resize(0);
                      }
87
88
89
              };
              90
91
92
93
              void Get(uint64_t row, uint64_t column, double &value); // Search element starts with
                   the biginning of the row
               \hookrightarrow
94
              95
96
97
98
              void GetLastElement(uint64_t row, uint64_t column, double &value); //Search element
                   starts with the end of the row
99
              100
```

101 102 103		<pre>// S[row][column] = value ////////////////////////////////////</pre>
$104 \\ 105$		///////////////////////////////////////
106 107 108		// S[row][column] = S[row][column] + value ////////////////////////////////////
109		
111		// permutation of rows I and J in the matrix
112 113		<pre>void SwapRows(uint64_t row_i, uint64_t row_j);</pre>
$114 \\ 115$		1,,111111111111111111111111111111111111
116 117 118		<pre>// addition of row I to row SUM and saving the result in the row SUM ////////////////////////////////////</pre>
119 120 121		//////////////////////////////////////
122 123		<pre>elements ////////////////////////////////////</pre>
$124 \\ 125 \\ 126$		//////////////////////////////////////
127 128		<pre>void RowVectorProduct(const std::vector<double> &x, uint64_t row, double & prod);</double></pre>
$129 \\ 130$		
131 132 133		<pre>// filling the sparse matrix row values ////////////////////////////////////</pre>
100	٦.	<pre>→ std::vector<uint64_t> &columns, uint64_t count);</uint64_t></pre>
134	J;	
$136 \\ 137$	{	
$138 \\ 139$		<pre>static double GetNAN() {</pre>
140 141		<pre>uint64_t nan[2] = { 0xffffffff, 0x7fffffff }; return *(double*)nan;</pre>
142		}
$143 \\ 144$	public:	enum ResultCode
$145 \\ 146$		{ ercNoError,
$147 \\ 148 \\ 149 \\ 150$		ercInputDataError, ercSingularMatrixWarning, ercSingularMatrixError, ercNoConvergence
151	nublic.	<pre>};</pre>
152 153 154 155	public:	//////////////////////////////////////
150 157 158 159		// Input // a - (dim-by-dim) matrix, row-wise
160 161 162		<pre>// Output // a_inv - (dim-by-dim) matrix, inverted matrix a static MatrixFuncs::ResultCode Inverse (const std::vector<double> &a,</double></pre>
163 164 165		/// Computes eigenvectors and eigenvalues of a symmetric matrix
$166 \\ 167$		
$168 \\ 169 \\ 170$		// Input // a - symmetric (m-by-m) matrix, row-wise
171		// Output
$172 \\ 173 \\ 174$		<pre>// elgen_values - m-vector of elgenvalues // elgen_vectors - m-vector of m-vectors of elgenvectors, column-wise static MatrixFuncs::ResultCode EigenVectorsSymm(const std::vector<double> &a,</double></pre>
175		- stavector/double/ weigen_values, std::vector/double/ weigen_vectors);
$176 \\ 177$		// Multiplication of real matrices written in a 1-dim array row-wise

178	
179	// Input
181	// a - (m-by-dim) matrix (dim-by-m if transposed)
182	// b - (dim-by-n) matrix (n-by-dim if transposed)
183	// alpha - scalar factor
184	
185	
180	// mult - (m-by-n) matrix = alpha * a * b
107	a const std: vector (double) ka const std: vector (double) kb hool left trans hool
	\rightarrow right trans,
188	<pre>const double α, std::vector<double> &mult);</double></pre>
189	
190	// Multiplication of grange real matrices
191	// Multiplication of sparse leaf matrices
192	
194	// Input
195	// a - (m-by-dim) matrix
196	// b - (dim-by-m) matrix
197	
199	// mult - (m-by-m) matrix = alpha * a * b
200	static void MultiplySparse(const int64_t &m, const int64_t &dim, SparseMatrix &a,
	\rightarrow SparseMatrix &mult);
201	-
202	
203	// solves the system of linear equations $A = B$ for symmetric positive definite matrix
204	\rightarrow A by using choicesky decomposition (analitical method).
204 205	// IIIe matrices A and D must have the same humber of fows
206	
207	// Input
208	// a - (dim-by-dim) matrix
209	// b - dim-vector
210 211	// Qutput
212	// x - dim-vector
213	static MatrixFuncs::ResultCode DevideByVectorAnaliticSymm(const
	\rightarrow std::vector <double> &a, const std::vector<double> &b, std::vector<double> &x);</double></double></double>
214	
215	// Solves the system of linear suprime Arr - h for supervise positive definite matrix
216	// solves the system of finear equations $A + A = D$ for symmetric positive definite matrix
217	\rightarrow A by using Gauss method (an initial method). // The matrices A and vector b must have the same number of rows
411	
218	// Algorithm is divided into two phases
218 219	// Algorithm is divided into two phases
218 219 220	// Algorithm is divided into two phases ///////////////////////////////////
218 219 220 221	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 222	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 222 223 224	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 222 222 224 225	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 222 223 224 225 226 2027	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 222 223 224 225 226 227 228	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 222 223 224 225 226 227 228 229	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 223 224 225 226 227 228 229 229 229 2230	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 222 223 224 225 226 227 227 228 229 230 231	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 222 224 225 226 227 227 228 229 230 231 231 232	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 224 225 226 227 228 229 230 231 231 232 233	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 224 225 226 227 228 229 230 231 232 232 233	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 224 225 226 227 228 229 230 231 232 233 233	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 223 224 225 226 227 228 229 229 230 231 232 233 233	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 233 234 235 236 237	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 233 234 235 233 234 235 236 237 238	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 233 234 235 236 237 238 239 234 237 238 239 234 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 231 232 230 231 232 231 232 236 237 238 239 230 230 231 231 232 236 237 238 239 230 231 231 231 232 231 232 233 231 232 233 233	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 222 224 225 226 227 228 229 230 231 232 233 233 234 235 236 237 238 239 240 241	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 224 225 226 227 228 229 230 231 232 233 233 234 235 236 237 238 239 238 239 230 231 232 233 234 235 236 237 238 239 244 244 244 244 244 244 244 24	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 233 234 235 236 237 238 238 239 240 241 242 243 244 242 243 244 244 244	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 236 237 238 239 240 241 242 243 244 245	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 236 237 238 239 240 241 242 244 244 245	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 246 247	<pre>// Algorithm is divided into two phases ///////////////////////////////////</pre>

249 250	
251	// Input
252	// v_1 - dim-vector
253	// v_2 - dim-vector
254	// alpha - scalar factor
255	// beta - scalar factor
250	
257	// output
250	static void AddVectors(
200	std::vector <double> kv 2. const double kalpha.const double kbeta.</double>
	→ std::vector <double> ∑):</double>
260	
261	
262	//Restoring symmetric matrix from lower triangular part
263	
265	// Input
266	// a_lower - 0.5*m*(m+1) vector
267	
268	// Output
269	// a - (m-by-m/ Symmetric matrix, row-wise
270	static void Symmatrix construction of a lower activity of available to the second static
271	\rightarrow stuvector.uoublev &a_lower, stuvector.uoublev &a),
272	///////////////////////////////////////
273	//Recording lower triangular part of symmetric matrix
274	
275	
270	// input // a - (m-by-m) symmetric matrix rou-wise
278	// a (m by m/ bymmobile matrix, fow wide
279	// Output
280	// a_lower - 0.5*m*(m+1) vector
281	static void LowerMatrix(const int64_t &m, const std::vector <double> &a,</double>
000	\rightarrow std::vector <double> &a_lower);</double>
282	
284	//Frobenius matrix norm calculation using lower triangular part of symmetric matrix
285	7//////////////////////////////////////
286	
287	// Input
288	// a_lower - 0.5*m*(m+1) Vector
290	// Output
291	// norm - Frobenius matrix norm
292	<pre>static void FrobeniusNormSymmLower(const int64_t &m, const std::vector<double></double></pre>
	\hookrightarrow &a_lower, double &norm);
293	
294 205	//P-norm calculation using lower triangular part of symmetric matrix
296	
297	
298	// Input
299	$// a_lower - 0.5*m*(m+1)$ vector
300	// p - order of the norm
302	// Output
303	// norm - p-norm of matrix
304	<pre>static void PNormSymmLower(const int64_t &m, const int64_t &p, const</pre>
	\hookrightarrow std::vector <double> &a_lower, double &norm);</double>
305	
305	//P-norm calculation for vector
308	
309	
310	// Input
311	// v - dim-vector
312 313	1. b - order of the norm
314	// Output
315	// norm - p-norm of vector
316	<pre>static void PNormVector(const int64_t &p, const std::vector<double> &v, double &norm);</double></pre>
317 318	
319	// Multiplication of real vectors
320	
321	
322	// Input
323 324	// v_1 - real Vector
324	// V_Z IGAI VECLUI

325	// alpha - scalar factor
326 327	
328	// mult - scalar product of vectors
329	static void MultiplyVectors(const std::vector <double> &v_1, const std::vector<double></double></double>
330	↔ &v_2, const double α, double &mult);
331	
332	// Multiplication of integer and real vectors
333	
334	// Input
336	// v_1 - integer vector
337	// v_2 - real vector
338	// alpha - scalar factor
340	// Output
341	// mult - scalar product of vectors
342	static void MultiplyVectors(const std::vector <int64_t> &v_1, const std::vector<double></double></int64_t>
343	→ &v_2, const double α, double &mult);
344	///////////////////////////////////////
345	// Finding the maximum element in the vector
$346 \\ 347$	
348	// Input
349	// a - real vector
350 351	// Return
352	// maximum element
353	<pre>static double Max(const std::vector<double> &a);</double></pre>
354	
356	// Calculation of the amount of vector elements
357	
358	
359	// input
361	
362	// Return
363 364	// sum of the elements stat::vector <double> &a):</double>
365	
366	private:
368	// Computes the Hessenberg (tridiagonal in this case) form of a symmetric matrix A
369	//H = SAS', where H is an upper Hessenberg matrix, S - ortogonal matrix and S' is S
	\hookrightarrow transposed
370 371	
372	// Input
373	// a - symmetric (m-by-m) matrix, row-wise
374 375	// Output
376	// s - ortogonal matrix
377	// d - m-vector of diagonal elements of the tridiagonal symmetric matrix H
378	// e - vector of subdiagonal of H
515	→ std::vector <double> kd.std::vector<double> ke):</double></double>
380	};
381 382	class BandomFuncs
383	
384	public:
385 386	enum ResultCode
387	ercNoError,
388	ercDimensionError,
390	lichensityEllor,
391	·
392	//////////////////////////////////////
394	// Jonstate Integer Lanoum mattix
395	
396	// Input
397 398	// min - minimum value for the entries of matrix // max - maximum value for the entries of matrix
399	// mult - multiplier
400	-
401 402	// uutput // rand m - random integer n*m matrix
104	", Innan Incolor H. W. WARTY

403		<pre>static ResultCode MatrixI(int64_t n, int64_t m, std::vector <int64_t> &rand_m, uint64_t</int64_t></pre>
404		
405		// Generate real random matrix
407		
408		
409		// Input
410		// min - minimum value for the entries of matrix
411		// max - maximum value for the entries of matrix
412		// muit - muitipiler
413		// max_adu - maximum added value
415		// Output
416		// rand_m - random real n*m matrix
417		<pre>static ResultCode Matrix(int64_t n, int64_t m, std::vector <double> &rand_m, uint64_t</double></pre>
		\rightarrow min, uint64_t max, bool rand_init, double max_add = 0, double mult = 1);
418		
419		// Generate hoolean sparse random matrix with zero diagonal elements
421		///////////////////////////////////////
422		
423		// Input
424		// density - density of sparse matrix, the number of non-zero elements is approximately
425		→ equal to density*n*n
426		// Output
427		// rand_m - boolean sparse random n*n matrix
428		<pre>static ResultCode SparseSymmetricMatrixZeroDiagonalB(const int64_t n, const double</pre>
		\hookrightarrow density, std::vector <bool> &rand_m, bool rand_init);</bool>
429	private	: // healeen veriable that indicates the first call of a function from CVoStatBordomCons
430 431		// boolean variable that indicates the first call of a function from crestatrandomeens
432		static unsigned long long x;
433		
434		// parameters of the basic random number generator
435		static const unsigned long long $\alpha = 0121$, static const unsigned long long $\alpha = 28411$:
437		static const unsigned long long m = 134456;
438		
439		// generates next real number on [0,1]
440		Static double wexchouble(),
442		<pre>// generates next integer from {0,,m - 1}</pre>
443		<pre>static unsigned long NextInt();</pre>
444		// initialized the cod
445		// Initializes the seed
447	};	Soloto (ora intessol (solot ranging oras),
448		
449	class Ac	1jacencyMatrix
450 451	ublic:	
452	r	enum ResultCode
453		{
454		ercNoLrror,
456		ercDensityError,
457		ercCenterError,
458		ercEmptyInputError,
460		};
461		
462		erum AdjacencyMatrixType
463		l eamtBandedGranh
465		eantRandomGraph,
466		eamtStarGraph,
467		eamtUserDefinedGraph
$408 \\ 469$		Γ,
470		///////////////////////////////////////
471		// Generate boolean banded matrix
$472 \\ 472$		///////////////////////////////////////
474		// Output
475		// AdjacencyMatrix - boolean tridiagonal n*n matrix
476		<pre>static ResultCode CreateBandedGraph(std::vector <bool> &AdjacencyMatrix, const int64_t</bool></pre>
		\rightarrow n);
477		
479		// Generate boolean sparse random matrix with zero diagonal elements
480		///////////////////////////////////////
481		

// Input // density - density of sparse matrix, the number of non-zero nondiagonal elements is \rightarrow approximately equal to density*n*(n-1) // Output // AdjacencyMatrix - boolean sparse random n*n matrix static ResultCode CreateRandomGraph(std::vector <bool> &AdjacencyMatrix, const int64_t \rightarrow n, bool rand_init, double density = 0.1); // Generate boolean sparse matrix with non-zero elements in center-th row and column // Output // AdjacencyMatrix - boolean sparse n*n matrix
static ResultCode CreateStarGraph(std::vector <bool> &AdjacencyMatrix, const int64_t n, \rightarrow int64_t center = -1); // Input // filein - input file // Output // AdjacencyMatrix - boolean n*n matrix static ResultCode CreateUserDefinedGraph(std::vector <bool> &AdjacencyMatrix, int64_t → n, const std::string& filein = "adjacency_matrix.csv"); }; static void Output(const std::string& fileout, const std::vector <double> &data); $--{\rm Please}$ read the following definitions of the different parameters needed to randomly generate multiagent SDP problems: n - total number of agents W_size_min - minimum possible size of variable W_i W_size_max - maximum possible size of variable W_i p_min - minimum possible number of data matrices B (equality costraints) p_max - maximum possible number of data matrices B (equality costraints) q_{min} - minimum possible number of data matrices D (inequality costraints) q_{max} - maximum possible number of data matrices D (inequality costraints) A_i_min - minimum value for the entries of matrices A_i A_i_max - maximum value for the entries of matrices A_i B_{i} min - minimum value for the entries of matrices B_{i} B_{i} max - maximum value for the entries of matrices B_{i} D_i_min - minimum value for the entries of matrices D_i D_i_max - maximum value for the entries of matrices A_i, B_i, D_i <code>c_i_min - minimum value for the entries of vectors c_i c_i_max - maximum value for the entries of vectors c_i</code> d_i_min - minimum value for the entries of vectors d_i d_i_max - maximum value for the entries of vectors d_i AdjacencyMatrix::AdjacencyMatrixType AdjacencyType = AdjacencyMatrix::***** - to get different → graphs, please change ***** with one of the following options: --> eamtBandedGraph: creates a banded (path) graph. Inputs are: n --> eamtBandomGraph: creates a random graph. Inputs are: n, desnity --> eamtStarGraph: creates a star graph. Inputs are: n, center --> eamtUserDefinedGraph: creates a graph that is read from a file called "diagenery matrix early which should be grapted by the ware Molecowne that the number of "adjacency_matrix.csv" which should be created by the user. Make sure that the number of agents "n" are matching in "adjacency_matrix.csv" and the one that is defined here. \hookrightarrow density - density of the randomly generated graph when "eamtRandomGraph" is chosen center - defines the center node in the star graph when "eamtStarGraph" is chosen std::string& filein = "adjacency_matrix.csv" - this file is read to define the graph when \hookrightarrow "eamtUserDefinedGraph" is chosen mu_mult - a constant multiplier for ADMM that the user should specify (usually chosen as 0.1)

558overlap_ratio - this ratio specifies the number of entries of W_i which overlap with other \hookrightarrow agent's matrices W_j 559 tole - this specifies the desired precision of the final solution 560561std::string& fileout = "residue_sum.csv" - this file writes the aggregate residue to the file 562"residue_sum.csv". After the code run, please run "fig_plot.m" so you could plot the aggregate residue from "residue_sum.csv". You can't plot data in "residue_sum.csv" \hookrightarrow \hookrightarrow directly from the c++ code 563 rand_init - please use this as follows: 564--> rand_init = true - this will create different instances of SDP at every code run --> rand_init = false - this will create the same SDP instance at every code run which is also 565566 the same as the Matlab code (for verifying the correctness of the final answer). This is achieved by defining the following four parameters exactly the same in the c++ and Matlab \rightarrow \hookrightarrow (please don't change them since very specific combinations should be chosen): 567a = 8121(could be found in the file "admm_sdp.h" at line 258)c = 28411(could be found in the file "admm_sdp.h" at line 259)m = 134456(could be found in the file "admm_sdp.h" at line 260)RandomFuncs::x = 5(could be found in the file "admm_sdp.cpp" at line 1110) 568569570571572573574 575Addtional Notes: 576-- The data matrices are created as follows: 577 -> A = rand + rand' + n_i * eye(n_i) (where integer elements of rand in [A_i_min, A_i_max]) -> B = rand + rand' (where integer elements of rand in [B i min, B i max]) 578(where integer elements of rand in [B_i_min, B_i_max]) (where integer elements of rand in [D_i_min, D_i_max]) 579 \rightarrow D = rand + rand' 580581-- The data vectors are created as follows: 582-> c = rand (where integer elements of rand in [c_i_min, c_i_max]) -> d = rand (where integer elements of rand in [d_i_min, d_i_max]) 583 584585 586587 Known Bugs: 588- Using "eamtRandomGraph" and "rand_init = false" will create a segmentation error. 589590 */ 591592593594595596597598599static int64_t ADMM_SDP_Algo(int64_t n = 100, int64_t W_size_min = 40, int64_t W_size_max = 40, 600 int64_t p_min = 5, int64_t p_max = 5, int64_t q_min = 5, int64_t q_max = 5, int64_t A_i_min = 1, int64_t A_i_max = 5, int64_t B_i_min = 1, int64_t B_i_max = 5, int64_t D_i_min = 1, int64_t D_i_max = 5, int64_t W_i_min = 1, int64_t W_i_max = 2, int64_t c_i_min = 1, int64_t c_i_max = 3, int64_t d_i_min = 1, int64_t d_i_max = 3, AdjacencyMatrix::AdjacencyMatrixType AdjacencyType = AdjacencyMatrix::eamtBandedGraph, dupble draging = 0.1 int64_t c_orts. \hookrightarrow \hookrightarrow $\stackrel{}{\hookrightarrow}$ double density = 0.1, int64_t center = 0, const std::string& filein = "adjacency_matrix.csv", double mu_mult = 0.1, double overlap_ratio = 0.25, double tole = \hookrightarrow \rightarrow 1e-3, const std::string& fileout = "residue_sum.csv", bool rand_init = false); \hookrightarrow 601 602