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ABSTRACT

Asymptotic Analysis of Service Systems with

Congestion-Sensitive Customers

John Yao

Many systems in services, manufacturing, and technology, feature users or customers sharing a

limited number of resources, and which suffer some form of congestion when the number of users

exceeds the number of resources. In such settings, queueing models are a common tool for describing

the dynamics of the system and quantifying the congestion that results from the aggregated effects of

individuals joining and leaving the system. Additionally, the customers themselves may be sensitive

to congestion and react to the performance of the system, creating feedback and interaction between

individual customer behavior and aggregate system dynamics.

This dissertation focuses on the modeling and performance of service systems with congestion-

sensitive customers using large-scale asymptotic analyses of queueing models. This work extends

the theoretical literature on congestion-sensitive customers in queues in the settings of service dif-

ferentiation and observational learning and abandonment. Chapter 2 considers the problem of a

service provider facing a heterogeneous market of customers who differ based on their value for ser-

vice and delay sensitivity. The service provider seeks to find the revenue maximizing level of service

differentiation (offering different price-delay combinations). We show that the optimal policy places

the system in heavy traffic, but at substantially different levels of congestion depending on the de-

gree of service differentiation. Moreover, in a differentiated offering, the level of congestion will vary

substantially between service classes. Chapter 3 presents a new model of customer abandonment in

which congestion-sensitive customers observe the queue length, but do not know the service rate.



Instead, they join the queue and observe their progress in order to estimate their wait times and

make abandonment decisions. We show that an overloaded queue with observational learning and

abandonment stabilizes at a queue length whose scale depends on the tail of the service time dis-

tribution. Methodologically, our asymptotic approach leverages stochastic limit theory to provide

simple and intuitive results for optimizing or characterizing system performance. In particular, we

use the analysis of deterministic fluid-type queues to provide a first-order characterization of the

stochastic system dynamics, which is demonstrated by the convergence of the stochastic system to

the fluid model. This also allows us to crisply illustrate and quantify the relative contributions of

system or customer characteristics to overall system performance.
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Chapter 1

Introduction

1.1 Congestion-Sensitive Customers in Service Systems

Models of service systems in which users require shared resources have many wide-ranging

applications. This broad definition may describe a diverse group of settings from technology,

with data packets moving through a router on the Internet, users accessing data from servers,

computing jobs that require calculations on a shared processor (or set of processors); virtual

services, with callers at a telephone call center, citizens requiring passport issuance or renewal

via a government office; and physical services, with customers at an amusement park, patrons

at a food truck or coffee shop, travelers in a security screening line at the airport. The

characteristic feature of such settings is that the shared resources are limited and, with

sufficient demand, the users experience some sort of congestion. This may take the form of

slower perceived service (bandwidth or processor sharing), delay prior to receiving service

(the usual and ubiquitous waiting in line), or possibly outright inability to access the system

(telephone services or web servers, in some cases).
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Queueing theory is the traditional mathematical framework for modeling such systems

and analyzing their performance. Its origins are generally attributed to A. K. Erlang’s work

on telephone networks in the early 20th century. The early research in these areas focused on

system dynamics and the various tradeoffs between capacity and congestion (Saaty (1961),

Chapter 1). In much of the “classic” literature, the behavior of individuals in the system was

exogenously specified. Arrivals and service completions were modeled as stochastic processes,

but whose rates were exogenous and known. Similarly, abandonments were modeled as

a customer’s random (but again exogenously specified) patience timer running out before

reaching service. The focus was on studying how the aggregate dynamics of these individual

customers and servers in the system resulted in congestion and quantifying the performance

of such systems. In these models, the performance of the system had little or no feedback

into the behavior of the individual customers in the system.

Since the work of Naor (1969), researchers have been modeling the two-way interaction

of individual behavior with the system – not only how individual behavior gives rise to

aggregate system dynamics, but also how the resulting system dynamics in turn influences

individual behavior. A survey of these models and mode of analysis can be found in Hassin

and Haviv (2003), which additionally focuses on game-theoretic equilibria, incorporating the

strategic interaction between individuals in the system. As a starting point, we summarize

some of the contributions of Naor (1969) and, in particular, how his system is affected by

including dependence of the individual customer behavior and the system performance.

The classic paper by Naor asked what would happen when the arrival rate of customers

depended on the level of congestion in the system. In his model, each individual customer

made a utility-maximizing decision whether to join the queue or balk. The utility of the
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customer was simply the value for service minus the cost of waiting. The first fundamental

difference of Naor’s model, compared to the standard M/M/1 model is that Naor’s model is

always stable (the queue length is bounded with probability 1), even when the arrival rate

exceeds the service rate. Naor’s model is equivalent to a finite-buffer single-server system.

In such systems, often denoted M/M/1/c, there is a buffer capacity of c customers and any

customers arriving when there are c customers already in the system are blocked. In Naor’s

model, the “buffer level” is not exogenously specified, but rather determined by the economic

parameters of the market – the value of the service, the speed of service, and the cost of

waiting.

Additionally, Naor showed that this self-optimizing behavior of individuals did not max-

imize total welfare. If the system were run as an M/M/1/c system, with the buffer size

c chosen to maximize the steady-state expected net utility per unit time, then c would be

smaller than the one arising from individual utility-maximizing decisions. The reason for

this is that the congestion created by a customer joining the system is an externality cost, so

without incorporating this cost into the individual economic calculations of the customers,

the system ends up in an overly-congested state. Naor showed that by introducing an ad-

ditional fee (or “toll”) for joining the system, which is equal to the externality cost of an

individual customer joining, every individual customer’s incentives are aligned with the social

welfare objective and results in an optimally utilized system.

This dissertation considers the effects of individual self-optimizing behavior on service

systems, explicitly modeling the interaction between system performance and customer be-

havior. We assume that customers are congestion sensitive and that they seek to ensure that

the value that they receive for service exceeds the delay costs they incur while waiting for
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service.

The problem of service differentiation is studied in Chapter 2, taking the perspective of

the system manager and solving a revenue-maximization problem where there are several cus-

tomer segments that are heterogeneous with respect to their valuation and delay-sensitivity

and individual customer characteristics are private information. The problem is formulated

as a mechanism design problem in a multi-class, multi-server queue where the optimal pol-

icy is the revenue-maximizing menu of service classes, each with a distinct price and delay,

along with a queueing discipline that induces these delays. Due to the information asym-

metry, the price-delay menu is designed as an incentive-compatible and individually-rational

mechanism. We show that the optimal policy manipulates system congestion to appropri-

ately segment the customer market. This serves to differentiate customers based on their

willingness-to-pay and delay-sensitivity and boost revenues by extracting higher prices from

customers who are more delay-sensitive.

Chapter 3 considers the setting of observational learning and customer abandonment.

Here, we present a descriptive model of system dynamics in an overloaded queue under

the assumption that customers may observe the queue, but do not know the service rate.

Since customers are unable to form a delay estimate upon arriving at the system, they join

the queue and observe their progress to estimate their wait times and subsequently decide

whether or not to stay in the system. If their estimated wait time (based on their observa-

tions) exceeds their patience, they may abandon. We describe how the system dynamics are

significantly impacted by long service times, characterized by the tail of the service time dis-

tribution. This is in contrast to the Palm/Erlang-A style of abandonment where customers

abandon after an (exogenous) patience time has been exceeded. We highlight the new and
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interesting dynamics of observation-based abandonment. In particular, abandonments are

triggered by customers with longer-than-normal service times, which affect customers’ wait-

ing time estimates and lead to abandonments. This intuition is captured by the scaling of

the stabilizing queue length, which depends on the tail of the service time distribution – i.e.,

the likelihood of triggering abandonments – and the relative magnitude of abandonments.

We also connect the system dynamics to the rate at which customers are able to learn the

service rate. In particular, with lower service time variability, corresponding to low noise

and faster learning, abandonments will tend to occur towards the back of the line and the

equilibrium queue length will tend to be longer. This illustrates how system performance,

and thus management decisions, may be impacted by limited information and the variability

of service requirements.

Methodologically, we employ asymptotic analysis which focuses on the large-scale behav-

ior of these systems. This mode of analysis is intended to highlight the “first-order” system

dynamics and draw insight from deterministic analogues of the stochastic system. There

are several reasons for starting with deterministic systems. First, the deterministic ana-

logues much simpler to analyze, with dynamics that are clear and simple to state. Second,

when chosen properly, a deterministic analogue may capture the approximate behavior of

a stochastic system. For example, a unit Poisson process can be described stochastically

as the renewal process associated with i.i.d. exponential random variables with unit mean.

On the other hand one may think of it as a deterministic path (a line with unit slope, in-

tersecting the origin) with some added stochastic variability. These two perspectives are

linked by the functional strong law of large numbers (FSLLN) which shows that, at the right

scale, the Poisson process is well-approximated by the deterministic path, and the functional
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central limit theorem (FCLT) which shows that the (appropriately scaled) stochastic vari-

ability around this deterministic path is well-approximated by a Brownian motion. (See, for

example Chapter 5 of Chen and Yao (2001).) Moreover, the stochastic variability occurs at

a smaller order-of-magnitude than the deterministic path. This allows us to gain insight into

the connection between customer behavior and system performance that may be otherwise

obscured by the complexity of the fully stochastic system.

More precisely, we consider systems with large customer demand and large service ca-

pacity, but where the individual behavior of customers remains fixed (i.e., their congestion

sensitivity does not depend on the size of the system). We study the behavior of the asymp-

totic system, in which the system size grows to infinity, in order to gain insight into the

behavior of finite systems. This approach necessarily uses approximations and approximate

solutions, which become increasingly accurate in large systems, but still have relevance to

“small” systems. Of particular interest is how asymptotic analysis characterizes the scale

of the system and allows for simple and clear comparisons of order of magnitude effects of

different system primitives or across different settings.

For example, in the case of service differentiation, the work of Mendelson and Whang

(1990) and Afèche (2013) show that service differentiation is optimal in the social welfare

and revenue maximizing settings, respectively. However, the results of Chapter 2 reveal that

this differentiation may be of different orders of magnitude, and that revenue-maximization

may lead to a degree of differentiation that is not seen in a social-welfare maximizing system.

Similarly, in our work on abandonment, the effects of noisy observations and long service

times are manifested in the asymptotic scale of the queue length. This suggests that observa-

tional learning and abandonment has an order of magnitude impact on the system dynamics
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when compared to systems where customers have complete knowledge of the service rate

and make join/balk decisions. Moreover, the equilibrium queue length, where the system

stabilizes, is primarily determined by the service time distribution and while the arrival rate

affects a high-order term.

1.2 Service Differentiation

The focus of Chapter 2 is price discrimination based on the speed at which a service is

delivered, which we call “service differentiation” (analogous to the notion of “product dif-

ferentiation”). Differentiation of services based on price and quality (often times delay) has

become a prevalent business practice. Some examples include: parcel delivery services such

as FedEx and UPS that offer overnight delivery at substantially higher prices than stan-

dard ground shipping; airport security screening whereby any economy class ticket holder,

regardless of frequent flyer status, can purchase access to a priority lane; and various gov-

ernment services, e.g., passport issuance and renewals, that can be expedited by paying

additional fees. The debate over network neutrality principles questioned whether Internet

service providers should be allowed to charge higher prices to certain content providers for

faster data transmission rates. In all of the above, an essentially identical service is pro-

visioned at varying quality levels (based on delay) and segments the market in a way that

enables the firm to provide faster processing for impatient customers and shift system con-

gestion to more patient customers. For revenue-maximizing firms, this service differentiation

is driven by the potential to extract further revenues from the less-patient customer base,

while non-profit providers can use service differentiation to better allocate resources and
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increase social welfare. The high-level problem for the service provider is how to optimally

design and implement a menu of price-delay service offerings in such settings. We study this

service differentiation problem in the context of a large-scale stochastic service system that

is prone to congestion due to queueing.

We consider a monopolistic revenue-maximizing firm (service provider) that offers a single

service to a market of heterogeneous price- and delay-sensitive customers. The system is

modeled as a multi-server queue and may have multiple service classes that are differentiated

in terms of price and delay. Demand for each service class consists of a stream of atomistic

and rational customers. An individual customer gains positive utility from receiving service,

but suffers negative utility for each unit of time spent waiting. Upon arrival, he chooses

the service class (or opts out) that maximizes his net expected utility. In this manner, the

set of price and delay combinations affects the demand for each service class, which in turn

determines the congestion in each class, and so on. An optimal solution specifies a menu of

service classes and a sequencing rule that maximize the expected revenue rate.

The market is composed of distinct customer segments or “types.” All customers of a

particular type have the same linear delay sensitivity and a random service valuation (or

willingness-to-pay) drawn from a common distribution. The type and valuation of any indi-

vidual customer is private information and thus unknown to the service provider. Designing

the service provider’s revenue maximizing product menu, taking into account the effect of

customers’ self-optimizing choices, can be cast as a mechanism design problem. As a point of

reference, the socially optimal menu for the above model is known and fairly straightforward

to characterize and implement, based on the key insights that it is optimal to set prices equal

to the externality costs and to allocate servers so as to minimize aggregate delay costs. For
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revenue maximization, however, both of these insights no longer hold and the firm’s problem

becomes more complex and only partially understood.

Main findings. This work proposes an approximate analysis, that applies to systems

with large processing capacity operating in settings with large market potential. This greatly

simplifies the study of the revenue-maximization problem, while preserving the significant

insights into the structure of the optimal solution. Some of the key contributions are the

following.

1. Solution via Deterministic Analysis. Setting aside queueing dynamics, we propose

a deterministic relaxation of the revenue maximization problem and show that its solution

yields an intuitive price-delay menu and suggests a simple priority sequencing rule. This

translates to a solution in the stochastic setting that achieves near-optimal revenue perfor-

mance in large-scale systems. We apply this framework to the setting with two customer

types (§2-4) and show that it easily extends to multiple customer segments (§5), which is

relevant to settings with significant market heterogeneity.

2. Insights into Service Differentiation. Our approach shows that the first-order (non-

vanishing at large scale) features of the stochastic solution can be immediately determined

from the solution to the deterministic relaxation. Such features are prices, delays, level of

differentiation, system utilization, sequencing of customers, and strategic delay (which was

first analyzed in Afèche (2013)). For example, we identify conditions that imply first-order

service differentiation is optimal. We also establish that in systems with two service classes,

strategic delay is a first-order effect when there is ample capacity (some fraction of servers

permanently idle at large scale), but second-order (vanishing at large scale) when there is

not, including settings where the service provider decides to set capacity at a level that
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avoids permanently idle servers. In systems where it is optimal to offer three or more service

classes, strategic delay is always a first-order consideration. These results do not rely on

restrictive assumptions on the market primitives, such as uniform or exponential valuation

distributions.

3. Connection to Asymptotic Queueing Regimes. The work also contributes to the pricing

and revenue management aspect of the heavy-traffic analysis of queueing systems. We believe

that this is the first work to show that classical operating regimes, such as the so-called

efficiency-driven (ED) and quality-driven (QD), may arise endogenously as a result of pricing

(specifically, price discrimination and service differentiation). In particular, the high priority

class operates in the QD regime, experiencing an underloaded and uncongested system,

while the lowest priority class operates in the heavily utilized ED regime, experiencing a

system that is always congested. This complements earlier results by Maglaras and Zeevi

(2003a) that first showed that the quality and efficiency-driven (QED) operating regime

arises endogenously as a result of revenue maximization when customers are homogenous in

their delay costs.

Related Literature. The work on strategic customers in queues – where arrivals depend

on system congestion – is extensive, dating back to the seminal study of Naor (1969); a

survey of the topic area can be found in Hassin and Haviv (2003). Two early references that

are relevant to our work are Mendelson (1985) and Mendelson and Whang (1990), which

introduced the atomistic, utility-maximizing customer behavior model in queues with single

and multi-type markets, respectively; the latter focused on welfare maximization.

The revenue maximization problem that we consider is most closely related to Afèche

(2013), who analyzed a single-server queueing system facing a market with two customer
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types, and made three important and related contributions. First, he formulated the prob-

lem in a mechanism design framework, and, second, showed that externality pricing and

delay cost minimization are no longer optimal in the revenue maximization setting. Third,

he established necessary and sufficient conditions for the optimal solution to include strategic

delay, in which the service provider chooses to artificially delay some customers beyond what

is caused by system congestion alone. His study provides an exact analysis of the two-type

case and partial extensions of this approach to multiple (more than two) customer types

in a M/M/1 setting can be found in Afèche and Pavlin (2011) and Katta and Sethuraman

(2005). These partial extensions require more restrictive assumptions on the market primi-

tives – specifically, all customers of a given type (common delay cost) share a common service

valuation, and there is a monotone relationship between delay cost and service valuation.

Our work adopts the mechanism design formulation (which allows for strategic delay) intro-

duced in Afèche (2013), applied to a multi-server setting. More importantly, our method of

analysis and the focus of our results are different. Unlike the above papers, we undertake an

approximate rather than exact analysis approach, which provides new and complementary

insights. In particular, our approach distinguishes the first-order features from those that

become vanishingly small in large systems. We note that our proposed framework extends

to multi-type setting without further restrictions. Another example of interest that can be

handled within our framework and is of interest to service systems and information service

networks is the parallel multi-pool, multi-server system.

The above references and the closely related literature uses exact analysis for single-

server queueing systems. There is a parallel stream of work that, like this chapter, consid-

ers multi-server systems and leverages asymptotic analysis to gain insight into the optimal
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prices and policies. Maglaras and Zeevi (2003a) consider a single-class system, character-

ize the asymptotic equilibrium operating point, and show that, when demand is elastic,

the revenue-maximizing price places the system in the QED regime. Maglaras and Zeevi

(2005) introduces the use of a deterministic relaxation for a two class system, where choice is

captured via an aggregated demand function in a setting with partially substitutable prod-

ucts; atomistic choice, incentive compatibility, and delay preference heterogeneity were not

considered.

The three operating regimes that we discuss (ED, QED, and QD) in the context of

large-scale, multi-server systems are well established. Halfin and Whitt (1981) provided the

first rigorous mathematical foundation of the QED regime and also identify the ED and

QD regimes. (For this reason, the QED regime is often referred to as the Halfin Whitt

regime.) The terminology we use was introduced by Garnett et al. (2002) and applied in

Borst et al. (2004) to the economic optimization of a multi-server system. (They call the

QED regime the “rationalized” regime.) In Borst et al. (2004), these operating regimes

arise as a result of optimal capacity sizing (or “dimensioning”), which balances staffing

costs and waiting costs. In that and much of the work in capacity sizing and optimal

control of multi-server systems (typically motivated by call center applications), demand is

exogenous – although there is an associated waiting cost, there is no reduction in demand

(customer arrivals) when delays are higher. By contrast, demand in our model is delay-

sensitive and therefore endogenously determined via a game-theoretic equilibrium, which

captures the complex interaction between individual, utility-maximizing customers and a

revenue or social-welfare maximizing service provider. There is a significant body of work in

which asymptotic operating regimes arise from endogenous demand, including Maglaras and
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Zeevi (2003a,b, 2005), Whitt (2003), Armony and Maglaras (2004b,a), and Plambeck and

Ward (2006). However, these consider problems in which large-scale delay differentiation is

absent and find that the QED regime is economically optimal.

Strategic delay can be viewed as the queueing system manifestation of damaged goods,

a concept from the economics and marketing literature, which refers to the practice of in-

troducing a low-price low-quality version of a good, despite equal (or greater) production

costs, that serves to segment the customer market and price discriminate. A number of

examples of such cases can be found in Deneckere and McAfee (1996), while McAfee (2007)

derives sufficient conditions this practice to be optimal. More recently, Anderson and Dana

(2009) provide necessary conditions for a monopolist firm to increase profits by engaging

in price discrimination, which may include offering damaged goods. A significant difference

between our work and these is that we consider a system that is subject to congestion, so

quality degrades as more customers purchase the service, and the service provider only has

a partial (deliberate delay) or indirect (pricing and sequencing) influence on quality. The

marketing and economics literature generally disregards the operational considerations of the

service system, and the inherent conflict between price discrimination and efficient resource

utilization that gives rise to congestion effects.

1.3 Observational Learning and Abandonment

Any service or process with limited or shared resources may be subject to congestion effects.

In information services procured over the Internet, such as voice-over-IP, streaming video,

online games, etc., users experience congestion as a result of bandwidth sharing, resulting in
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a deterioration of quality. In other services, congestion takes the form of queueing delays,

where users wait in a line, which may be physical or virtual, until they enter service. This

occurs, for example, with customers waiting for rides in an amusement park, on the telephone

at a call center, or with an order request in a make-to-order production system. It is

important to understand how congestion affects users’ utility and their choices, since that

will ultimately influence system equilibrium behavior and performance. State-dependent and

steady-state measures of expected congestion depend on user demand, processing capacity,

service policies, and the behavior of other customers. While it is common to assume that

users have some measure of their expected congestion this requires the service provider to

truthfully announce such information or individual users to know the details of the system

and be able to calculate it. An alternative assumption is that customers learn about their

expected delay by joining the system and observing the speed at which they move through

the queue. As they progress in line, customers decide whether to stay and wait or to abandon

the system. This chapter presents a model of observational learning in a queueing system

and characterizes how this phenomenon affects the behavior of delay-sensitive customers and

the resulting dynamics and delay characteristics of system.

In particular, we study a problem where customers join an observable single-server queue

but do not know the service rate. Instead, each customer estimates his remaining wait time

based on his own experience of moving through the queue, which incorporates both service

completions and abandonments from the line ahead of him. These wait time estimates will

naturally be coupled across customers, since they wait in the same queue, but will also

depend on their individual queue positions. Customers whose wait time estimates exceed

their patience may decide to abandon. A particularly slow service time realization may
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simultaneously discourage many customers in the queue, which in turn may lead to a wave

of abandonments. Since abandonments are triggered by long service times, the frequency and

magnitude of these abandonment waves depend on the tail of the service time distribution

and not only on its mean. We assume that customers are homogeneous with respect to their

reward from service and their delay sensitivity, similar to the classic model first introduced in

Naor (1969). We assume that the queueing system is overloaded, so the arrival rate exceeds

the service rate.

We make several stylized assumptions that allow us to study this system and ultimately

characterize its equilibrium behavior, the queueing dynamics, the profile of abandonments

along the queue, and the waiting time of customers who eventually reach service. We assume

that customers form snapshot estimates of the system’s service rate based on the last service

time realization, that any incurred waiting costs are sunk, and that they disregard any

strategic interaction with other customers (i.e., we do not study a game). Despite these

simplifying assumptions the resulting problem remains intricate and involves the study of

a queue where an individual customer’s behavior is dependent on his queue position – the

dynamics are not easily summarized by the aggregate queue length.

Methodologically, we analyze the model via an analogous fluid queue, where arrivals,

service completions, and abandonments happen deterministically at rates that match the

stochastic system. The fluid and stochastic models converge in an asymptotic regime in which

the service rate and arrival rate of customers grow large. Typically a fluid model is established

in the natural scale defined by the strong law of large numbers. In our case, we scale the

service and arrival rates in proportion to a factor n and we would expect the equilibrium

queue length – at which abandonments balance excess arrivals – to also scale proportionally
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to n, with the limit depending only on the mean rates of the respective processes. However,

in our system with observational learning, the magnitude of the equilibrium queue length is

smaller than this natural scale and depends on the tail of the service time distribution in an

interesting way – as the probability of long service times shrinks, the scale of the equilibrium

queue length grows and approaches the natural fluid scale.

The dependence of the fluid scale on the tail probabilities is a characteristic effect of

observational learning and this result is quite intuitive. The system equilibrium is the oper-

ating point at which the state-dependent abandonment rate balances the exogenous arrival

rate minus service rate. Furthermore, these abandonments occur in waves that are triggered

when a portion of the queue is discouraged by an unusually long service time. Therefore,

in order to keep the system in equilibrium when long service times occur less frequently, we

require more abandonments per occurrence, which results in a longer queue length.

Since abandonments may occur over the length of the queue, we characterize the aban-

donment profile – i.e., the long run intensity of abandonments as a function of queue position

– for stochastic systems with finite demand and processing capacity. Again, this profile de-

pends on the tail service time distribution and, while the back of the queue will tend to have

more abandonments than the front as system size increases, the profile is not necessarily

monotone in queue position for a finite system. In the asymptotic limit of infinite demand

and processing capacity, all abandonments are concentrated at the end of the queue. We

first derive our results for exponential service times, which provides a concrete example and

demonstration of our methodological approach. We summarize the analogous results for a

variety of different service time distributions and focus on comparing the effects of different

distributions on the system dynamics under observational learning.
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This chapter and the methodology it introduces offers a foundation for and insight into

extensions that incorporate more complex customer behavior, needed, for example to study

the effect of observational learning in service systems with strategic customers. We also

provide a brief discussion of possible variations and extensions to our model.

Related literature. In the classic models of customer abandonment in queues, cus-

tomers are endowed with an exogenous patience and abandon when his time in queue ex-

ceeds his patience. A common assumption in these models is that the customer’s patience is

drawn from an exponential distribution, for example in the Markovian M/M/1 +M queue.

Such assumptions allow for closed-form calculation of a variety of system characteristics

(Ancker and Gafarian (1962)), but come at the loss of some realism (Brown et al. (2005)).

More recent works study the GI/GI/1 +GI queue, allowing for general, independent inter-

arrival, service, and patience distributions. The methodology to study such systems have

primarily involved asymptotic analysis, in the form of diffusion limits for system dynamics

in Ward and Glynn (2005) and Reed and Ward (2008) for critically loaded queues, and fluid

limits in Jennings and Reed (2012) (which also provides a diffusion-scale refinement) and

Jennings and Puha (2013) with overloaded queues. This last work also features a state de-

scriptor that tracks system characteristics over the length of the queue; they model this as

a measure-valued processes. In the multi-server setting, Whitt (2004), derives heavy-traffic

approximations for a Markovian FCFS queue with abandonment, and provides results in

both the QED regime (where the relevant approximation is a diffusion) and the overloaded

ED regime (fluid approximation). Whitt (2006) extends this to provide a fluid approxima-

tion for a more general G/GI/s + GI queue in the overloaded regime. When customers

have no knowledge of the expected wait time then users may be willing to wait until their
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patience runs out. However, with some knowledge of expected wait time, then strategic

and/or rational users may abandon when the expected wait exceeds their patience.

The concept of strategic customers in queues was introduced by Naor (1969), which con-

siders a model in which utility-maximizing customers, who have a priori knowledge of the

service rate, decide to join or balk based on observed queue length. This may be viewed as the

“full information” case in our setting, and will serve as a benchmark for our model. Hassin

and Haviv (2003) provide a thorough survey on queueing games, with strategic abandonment

considered in chapter 5 of their book. They note that customers in an observable M/M/m

queue with linear delay costs have no incentive to abandon since conditions do not deterio-

rate over time, with similar results holding for standard unobservable queues. Without some

sort of deterioration of conditions over time, once a customer makes a rational decision to

join, he will not subsequently (rationally) abandon. Modifications to the queueing model

or customer behavior assumptions allow for abandonment. For example, Mandelbaum and

Shimkin (2000) modify an M/M/m system to allow unwitting customers to be placed in a

“fault state” where they never receive service. They find strategic equilibrium abandonment

strategies under which the resulting system behavior follows that of an M/M/m+G queue

with the added fault state. Other examples of strategic abandonment in the face of deteri-

orating conditions include Hassin and Haviv (1995), Haviv and Ritov (2001), and Shimkin

and Mandelbaum (2004). Afèche and Sarhangian (2015) consider an observable two-class

priority queue and show that customers in the lower priority may abandon when a higher

priority customer arrives, since their expected waiting time increases when a higher priority

customer arrives to the system. In each of the above models, the system parameters are as-

sumed to be known a priori by customers. We do not consider strategic interactions among
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customers in this work, but our model, analysis, and results provides a foundation for this

important next step.

The limits on customers’ delay information and their effects on queueing systems is well-

recognized and has been well-studied. Guo and Zipkin (2007) consider the effects of providing

additional state-dependent information, such as queue length or exact waiting time, to cus-

tomers who know the system parameters and who make strategic join/balk decisions. They

find conditions in which additional information is beneficial to the customer or the service

provider and show that more information is not always better. In fact, Allon et al. (2011)

show that when such information is not verifiable, the service provider may be intentionally

vague in their delay announcement to strategic customers. Cui and Veeraraghavan (2014)

consider strategic customers and join/balk decisions with a visible queue, but relax the

assumptions on customer’s knowledge of system parameters, allowing them to hold hetero-

geneous and arbitrary prior beliefs about the service rate. They characterize the impact of

these beliefs on the system performance, revenues, and incentives of the service provider to

offer service rate information. In their model, customers are not allowed to abandon and do

not update their beliefs after joining the system.

The ability to deduce information from the state of the queue goes beyond delay infor-

mation. Bassamboo and Randhawa (2015) show that the system manager may infer some

information about customer patience from the queue and use it to improve system perfor-

mance. Debo and Veeraraghavan (2009, 2014) show that queue length may allow uninformed

customers to distinguish between systems of differing quality (e.g., a customer’s reward for

service), when some of the population has private information about the quality.

In the above models that incorporated strategic customers, their decisions were whether
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to join or balk, except in the case of Mandelbaum and Shimkin (2000), where customers

followed a predetermined abandonment strategy upon joining the system. By contrast, the

model presented in Akşin et al. (2013), features an endogenous, dynamic abandonment strat-

egy based on an optimal stopping problem, in which customers make sequential decisions

about whether to continue waiting or abandon. They also demonstrate how to calibrate their

model to empirical data and identify the model-implied characteristics of heterogeneous cus-

tomer types. Akşin et al. (2015) additionally incorporates the impact of delay announcements

on customer abandonment behavior. Using empirical data on customer abandonment under

a given policy, they fit structural parameters of a more general abandonment model in order

to make predictions on the impact of alternative policies on customer abandonment behavior

and the resulting system performance. Their model also assumes that customers have some

limited knowledge of system parameters. In particular, the hazard rate of the waiting time

distribution is a critical element to the customers’ abandonment decisions. Ata et al. (2015a)

builds on this abandonment model to establish and calculate a unique equilibrium in which

the customer abandonment behavior and system dynamics (the virtual offered waiting time

distribution) are consistent and rational. Ata et al. (2015b) extends the model to a multi-

class system and considers a heavy-traffic limit under hazard-rate scaling. They demonstrate

that the system exhibits state-space collapse and are again able to establish and calculate

a unique equilibrium. This model applies to an unobservable queue so customer behavior

depends only on a steady-state equilibrium distribution of other customers’ behavior. By

contrast, in our model, customers may be directly affected by the actions of other customers

in the line.

Parkan and Warren (1978) introduces a model of observation-based abandonments in a
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visible G/M/1 queue. As with our model, customers make a waiting time estimate based on

their queue position and estimated service rate and abandon if that estimate exceeded their

patience. Customers are assumed to have a prior belief on the service rate and make Bayesian

updates after observing each realized service time. However, an accurate estimate of wait

time also requires an estimate of the number of customers ahead in line who will abandon.

While this is acknowledged by the model, their work does not specify how customers may

make this estimate. Instead, their analysis provides an upper bound on the abandonment

probabilities by supposing each customer calculates his estimated wait time under the as-

sumption that no one else abandons. In our model, customers react to abandonments ahead

of them in line and, while we use a relatively simplistic model of waiting time estimation,

we show that this interaction plays an important role in the system dynamics.

The idea that customers waiting in line incorporate observations into their behavior is also

supported by empirical work. Batt and Terwiesch (2015) show that abandonments among

patients waiting in an emergency department are sensitive to the number of people waiting,

arrivals, departures, and the perceived urgency of other patients. Their study reveals that

patients attempt to estimate their wait time based on observations and inferences, which

ultimately influences their decision to abandon or stay.

Finally, the presence of the service time distribution in the scaling is an unusual feature

that appears, to our knowledge, in only one other setting – that of the shortest remaining

processing time (SRPT) policy. This is known to be the best queue-length minimizing, non-

idling policy. The common theme is that the SRPT discipline may be, in some sense, “too

good” at reducing the queue length (as compared to, say first-come-first-served discipline).

The dependence on the tail distribution arises from the varying effectiveness of the SRPT
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discipline for different service time distributions. For heavier tailed distributions there is

also a greater concentration of short service times (assuming a fixed mean) which means

that a SRPT discipline will result in a smaller queue length scaling. Although, the setting

is quite different, the connection to our model is that abandonment waves are also “too

good” at reducing the queue length and are triggered by long service times. So a heavy-

tailed service time distribution will result in more frequent abandonments which is again

reflected in a smaller queue length scaling. Down et al. (2009) show the dependence of the

service time distribution on the scaling of the smallest remaining service time for which work

accumulates (the “left-edge” of the measure valued state descriptor). Lin et al. (2011) finds

a similar service time distribution dependent scaling for the mean response time under heavy

traffic. Gromoll et al. (2013) shows that the SRPT queue length under standard diffusion

scaling results in a trivial (identically zero) limit and Puha (2014) shows that a correction

factor, which depends on the rate at which the tail distribution tends to zero, is needed to

recover the usual diffusion limit.
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Chapter 2

Service Differentiation

In this chapter, we consider the problem of revenue maximization in a multi-server system

with heterogeneous customers. In Section 2.1, we describe the model (including a model

of the service system and a customer choice model) and formulate the optimization prob-

lem. We first analyze and provide a solution for the case where there are two customer

types (Sections 2.2-2.3). In Section 2.2 we solve and analyze a carefully chosen deterministic

“relaxation” of the original problem. The insights from the deterministic analysis are then

translated into a valid stochastic control policy, which is our proposed policy. In Section 2.3

we introduce a sequence of scaled systems and show that this proposed policy is asymptoti-

cally optimal. In Section 2.4, we extend our approach to the multi-type setting (3 or more

customer types) and identify novel features not found in the two-type problem. And finally,

in Section 2.5, we compare and contrast the revenue maximizing solution with the social

welfare maximizing solution of Mendelson and Whang (1990).
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2.1 Model and Problem Formulation

System model. The service provider (SP) operates s servers, which are used to offer k

classes of service that are differentiated by price and delay. Arrivals into a service class

j ∈ {1, . . . , k} form an independent Poisson process with rate λj, which is determined by

the customer choice model specified below. Each service class has an infinite-capacity buffer

and customers in that class wait in a queue until they are allocated a server. The delay

experienced by a customer in a given service class is the time he spends in the system minus

the time spent in service.1 All customers have random processing requirements that are

independent and identically distributed (i.i.d.) draws from an exponential distribution with

mean 1/µ. While it may be more realistic to consider different mean processing requirements

among different customer types, this assumption makes the analysis simpler. Moreover, we

will see that the customer market is segmented primarily by delay cost parameters.

The allocation of servers to customers is determined by a control policy π, which satisfies

the following assumptions: i) each server may only work on one customer at a time; ii)

service for any customer may be interrupted without penalty and resumed without restarting

service (allow preempt/resume); iii) the policy does not depend on the realized service times

of customers; iv) servers may not idle if there are any customers waiting in queue.

Assumption i) is for ease of exposition – all major results hold if processor sharing is

allowed. Assumption ii) simplifies many of the proofs; if preemption is not allowed, the

asymptotic results are the same in the limit, but the rates of convergence may differ –

see Remark 3. Assumptions iii)-iv) are standard work-conservation assumptions. A formal

1All results hold if delay is defined to be the sojourn time, with only trivial changes to the proofs.

24



description of these queueing dynamics is provided in Appendix B. We allow for strategic

delay by assuming that customers are sent to an infinite-capacity “delay node” following

service completion, where a customer from service class j is held for δj ≥ 0 units of time and

then released from the system. This is one of several ways to add strategic delay (see §3.2

and §7 of Afèche (2013)), and can achieve the expected delays obtained under any alternative

implementation.

Given a control policy π and an arrival rate vector λ = (λ1, . . . , λk) that satisfies∑k
j=1 λj < sµ, standard queueing results (e.g., Saaty (1961) and references therein) show

that there exists a unique stationary distribution for the number of customers for each ser-

vice class that are in queue or in service, but not in the delay node (sometimes called the

“headcount process”). Define EDj(λ, π) to be the expected time in queue for class j cus-

tomers under this stationary distribution. The overall delay experienced by a customer in

class j is therefore EDj(λ, π)+δj. (Expected values are always with respect to the stationary

distribution generated by a specified arrival rate vector λ and admissible control π.)

Customer choice model. Customers of type i = 1, 2 arrive at the system according to

an independent Poisson process with rate Λi and may choose a service class to purchase or

leave the system without service. Each type i customer has a willingness-to-pay Vi which is

an i.i.d. draw from a distribution Fi. We assume that for each i the cumulative distribution

function Fi is strictly increasing on its support, has a continuous density fi, an increasing

generalized failure rate (IGFR), and a finite mean. The IGFR and finite mean assumptions

ensure that an infinite price is not optimal (Lariviere (2006)). (This is a common condition in

the revenue management literature, but weaker assumptions, e.g., that the functions pF̄i(p)

for i = 1, 2 are coercive, also suffice.) Each type i customer incurs an additive linear delay
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cost of ci per unit time spent waiting, where ci is common across all type i customers. We

assume, without loss of generality, that c1 > c2, so type 1 customers are more delay sensitive

than type 2 customers.

A type i customer with willingness-to-pay Vi, who arrives at a system offering k service

classes with prices pj and overall delays dj, j = 1, . . . , k, calculates his net utility for each

service class j,

Ui(j) = Vi − (pj + cidj), (2.1)

and chooses the option that maximizes his net utility,

j∗ = argmaxj{Ui(j) : Ui(j) ≥ 0, j = 1, . . . , k} with j∗ = 0 if Ui(j) < 0 for all j = 1, . . . , k;

where j = 0 represents the no-purchase option. Customers who choose not to enter the

system are lost and do not return.

Information structure. We assume that the characteristics of each customer segment

(Λi, ci, Fi, and µ) are known to the SP, while the type i ∈ {1, 2} and valuation Vi of any

individual customer are private information, and thus unknown to the SP. Since the SP is

unable to distinguish between customer types, he offers the same set of service classes to all

customers. We also assume that the queues are unobservable so customers make their choice

based on the announced prices and delays (which we require to be credible).

Number of service classes offered. Observe that all customers of type i will select

the same service class, because any individual type i customer selects the service class j with

the minimum “full cost,” pj + cidj, irrespective of his individual willingness-to-pay Vi. In a

market with N customer types, the SP need only offer up to N service classes (k ≤ N). For

26



N = 2, the resulting mean demand rate for each service class is given by

λ1(p1, p2, d1, d2) = Λ1F̄1(p1 + c1d1)1{p1 + c1d1 ≤ p2 + c1d2}

+ Λ2F̄2(p1 + c2d1)1{p1 + c2d1 < p2 + c2d2}, (2.2)

λ2(p1, p2, d1, d2) = Λ1F̄1(p2 + c1d2)1{p2 + c1d2 < p1 + c1d1}

+ Λ2F̄2(p2 + c2d2)1{p2 + c2d2 ≤ p1 + c2d1}, (2.3)

where F̄i(·) := 1− Fi(·) and 1{·} is the indicator function. We assume that if a customer of

type i is indifferent between the two service classes, he will choose service class j = i. By

the Poisson thinning property, the arrival process into each service class is itself Poisson.

System equilibrium. The queueing delays (ED1,ED2) depend on the demand rates

(λ1, λ2) and control policy π, and, in turn, these demand rates depend, in part, on the

queueing delays. An equilibrium for the system is an operating point where the queueing

delays induce precisely the demand rates that in turn induce said delays (under given prices,

control policy, strategic delays, and demand model).

Definition 1 (Equilibrium). Fix prices (p1, p2), a control policy π, strategic delays (δ1, δ2),

and a customer demand model (λ1, λ2) = (λ1(p1, p2, d1, d2), λ2(p1, p2, d1, d2)). The system

admits an equilibrium if λ1 + λ2 < sµ and

dj = EDj(λ1, λ2, π) + δj j = 1, 2. (2.4)

Remark 1. We do not provide general conditions under which an equilibrium exists, but

rather show in §2.3 that a unique equilibrium exists for the specific solution we propose to

the following economic optimization problem.
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Revenue maximization problem. The SP’s problem is to find prices (p1, p2), a control

policy π, and strategic delays (δ1, δ2) to maximize the equilibrium revenue rate given by

R(π, p1, p2, δ1, δ2) =
2∑
j=1

pjλj(p1, p2, d1, d2), (2.5)

where (d1, d2) are the overall delays in equilibrium (assuming it exists), given in (2.4), and

the customer demand model λj(·), j = 1, 2, is given in (2.2) and (2.3).

We adopt the formulation of Afèche (2013), which states the above as a mechanism

design problem. Applying the revelation principle (Myerson (1979)), we consider, without

loss of generality, only direct mechanisms that satisfy incentive compatibility and individual

rationality.

• Incentive Compatibility: pi + cidi ≤ pj + cidj for all j 6= i.

• Individual Rationality: λi = ΛiF̄i(pi + cidi) for i = 1, 2.

In a direct mechanism, each customer reports their private information (type i and valuation

Vi) to the SP, who then uses that information to determine which service class the customer

purchases, if any. If such a mechanism satisfies the incentive compatibility and individual

rationality conditions, then it is a Nash equilibrium for customers to truthfully report their

types and valuations. Under this labeling, type i customers are either assigned to service

class i or turned away.

The revenue maximization problem is to find prices (p1, p2), a control policy π, and
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strategic delays (δ1, δ2) to:

maximize
2∑
i=1

piλi (2.6)

subject to pi + cidi ≤ pj + cidj i, j = 1, 2 and i 6= j

λi = ΛiF̄i(pi + cidi) i = 1, 2

λ1 + λ2 < sµ

di = EDi(λ1, λ2, π) + δi i = 1, 2

δi ≥ 0 i = 1, 2.

The solution to (2.6) does not necessarily have two distinct service classes; the optimiza-

tion problem allows both classes to offer the same level of service, e.g., by pricing the “two

options” equally and sequencing all customers through one queue that is served under a

FIFO discipline. We consider such solutions to be single-class. The ability of the SP to seg-

ment the market by delay sensitivity, but not valuation, is a consequence of additive delay

costs; linearity of the delay cost is not required.

2.2 Deterministic Analysis

Our proposed analysis framework relies on a deterministic relaxation (“DR”), which preserves

the essential economic considerations and the capacity constraint of the original problem

(2.6) while ignoring the complications presented by the queueing dynamics and resulting

equilibrium. We then use the optimal solution to the DR to construct an approximate

solution to the original problem, which achieves near-optimal performance in large systems

in a way we make precise in the next section.
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2.2.1 Deterministic Relaxation

The DR seeks prices (p1, p2) and delays (d1, d2) that

maximize p1λ1 + p2λ2 (2.7)

subject to pi + cidi ≤ pj + cidj i, j = 1, 2 and i 6= j

λi = ΛiF̄i(pi + cidi) i = 1, 2

λ1 + λ2 ≤ sµ

d1 ≥ 0, d2 ≥ 0.

The delays are treated as “free” decision variables, only constrained to be non-negative

and to satisfy the system-wide capacity constraint; they do not need to correspond to an

achievable pair of equilibrium delays in the queueing system as required in (2.6). In this

precise sense, (2.7) is a (deterministic) relaxation of (2.6).

An optimal solution to (2.7), which we call the “DR solution,” exists since the objective

function is coercive and the feasible set is closed. We denote the DR solution (p̄1, p̄2, d̄1, d̄2)

and set λ̄i = ΛiF̄i(p̄i + cid̄i), i = 1, 2. We also denote by κ̄i the fraction of system capacity

consumed by class i in the DR solution

κ̄i =
λ̄i
sµ

i = 1, 2. (2.8)

Remark 2. Note that while we guarantee the existence of a DR solution and describe

some of its properties that are useful in constructing a stochastic solution, we do not pro-

vide closed-form expressions for the DR solution. By treating delays as decision variables,

computing the DR solution to (2.7) is substantially easier than directly solving (2.6), both

of which, in general, may require numerical methods. We do not discuss numerical methods
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in this paper and assume that the solution to the deterministic optimization problem (2.7)

is accessible.

Since (2.7) is a relaxation of (2.6), the optimal revenue rate in the DR setting,

R̄ = p̄1λ̄1 + p̄2λ̄2,

is an upper bound on the optimal revenue rate in (2.6). In later sections, we prove asymptotic

optimality of approximate solutions by demonstrating that their revenues converge to this

upper bound.

2.2.2 Characterization of the DR Solution

The SP earns revenue from fees but not delays. Therefore, a feasible DR solution (p1, p2, d1, d2)

cannot be optimal if it is possible to maintain the same full cost in a service class while re-

ducing its delay and increasing its price, since this would increase revenues and maintain

feasibility.

Proposition 2.1 (Structure of the DR solution). It suffices to consider solutions (p1, p2, d1, d2)

that satisfy

(a) d1 = 0, and

(b) p1 = p2 + c1d2.

Recall that c1 > c2. At the optimal solution (p̄1, p̄2, d̄1, d̄2), type 1 customers do not

wait; type 2 customers wait “only long enough” to satisfy incentive compatibility, i.e., p̄1 =

p̄2 + c1d̄2, and segment the market.
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capacitated uncapacitated

undifferentiated p̄1 = p̄2 p̄1 = p̄2

κ̄1 + κ̄2 = 1 κ̄1 + κ̄2 < 1

differentiated p̄1 > p̄2 p̄1 > p̄2

κ̄1 + κ̄2 = 1 κ̄1 + κ̄2 < 1

Table 2.1: Categorization of DR solutions (N = 2).

We propose the following categorization and nomenclature for the DR solution, sum-

marized in Table 2.1. If p̄1 = p̄2 we say that the DR solution is “undifferentiated,” and

if p̄1 > p̄2 it is “differentiated.”2 If κ̄1 + κ̄2 = 1 it is “capacitated,” and if κ̄1 + κ̄2 < 1

it is “uncapacitated” (since the two cases refer to the DR solutions for which the capacity

constraint in (2.7) is either binding or not). With this in mind, we first answer the question

of when the DR solution is differentiated.

Consider the following “single-product problem,” in which the SP is constrained to of-

fering only one service class:

max
p

{
p(Λ1 + Λ2)Ḡ(p) : (Λ1 + Λ2)Ḡ(p) ≤ sµ

}
, (2.9)

where Ḡ(p) = 1−G(p), and G(p) is the aggregate willingness-to-pay distribution with density

g(p),

G(p) :=
Λ1F1(p) + Λ2F2(p)

Λ1 + Λ2

, g(p) :=
Λ1f1(p) + Λ2f2(p)

Λ1 + Λ2

. (2.10)

2Note that if p̄1 > p̄2 and κ̄2 = 0, then (p̄1, p̄1) is also a solution to the DR, and so the problem essentially

reduces to a single product with a single market segment. Therefore we assume that any solution with κ̄2 = 0

is also “undifferentiated.”

32



We assume that there is a unique maximizer of the single-product problem, which we

denote by p̂.3 Observe that if the optimal solution to the DR (2.7) is undifferentiated

(p̄1 = p̄2), then the optimal solution to the single-product problem (2.9) must be p̂ = p̄1 = p̄2.

In that case, no revenue is lost in restricting the SP to a single service class in the DR setting.

In Proposition 2.2 below we provide a necessary and sufficient condition for a differenti-

ated solution, expressed in terms of demand elasticity4 at the single-product optimal price p̂.

Let εi(pi, di) be the demand elasticity for service class i at price pi and delay di, for i = 1, 2,

and let εg(p) be the elasticity of the aggregate demand for a single service class at price p:

εi(pi, di) =
pifi(pi + cidi)

F̄i(pi + cidi)
, εg(p) =

pg(p)

Ḡ(p)
. (2.11)

Proposition 2.2 (Conditions for service differentiation). Assume that the optimal solution

of the single-product problem (2.9) has a unique solution, p̂, and assume that F̄2(p̂) > 0. Let

p̄1, p̄2 be the optimal prices of the deterministic relaxation (2.7). Then

p̄1 > p̄2 if and only if

(
1− c2

c1

)
ε2(p̂, 0) > εg(p̂). (2.12)

3It is straightforward to extend Proposition 2.2 to the case of multiple solutions to (2.9) by requiring

that the condition (2.12) hold for all single-product optimal prices. Moreover, uniqueness of p̂ is guaranteed

if, for example, G is strictly IGFR, but this is an additional assumption and does not follow from IGFR

assumptions on individual demand distributions F1 and F2.
4In general, the demand elasticity at a price p is the proportional change in demand due to a change in

price:

ε(p) = − p
λ

∂λ

∂p
.

Demand is elastic at p if ε(p) > 1 in which case reducing the price will increase revenue; demand is inelastic

at p if ε(p) < 1 in which case increasing the price will increase revenue.
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We assume that F̄2(p̂) > 0, so that ε2(p̂, 0) is well-defined.5 Differentiated services should

be offered if and only if the demand for type 2 (delay-insensitive) customers at p̂ is sufficiently

more elastic than the aggregate demand at that price. In that case, the SP may increase

revenues by lowering the price for type 2 customers. Elasticity relative to the aggregate

demand (as opposed to simply having an elasticity which is greater than 1) allows for the

single-product solution to be capacitated. The factor of (1− c2/c1) accounts for the fact

that any reduction in class 2 price must be matched by an increase in delays, in order to

maintain incentive compatibility.

2.2.3 Translating the DR Solution

We construct a solution to the stochastic problem (2.6) based on the results of §2.2.1-2.2.2,

thereby translating the DR solution into a stochastic solution. The number of services classes

k and their respective prices p̄1, p̄2 are taken directly from the DR solution. For k = 1, this

fully specifies the solution (of course, no strategic delay is added to a single class). When two

service classes are offered, k = 2 with p̄1 > p̄2, the control policy π gives strict preemptive

priority to class 1 and strategic delay δ2 is added to class 2 as needed to discourage type 1

customers (no strategic delay in class 1, δ1 = 0).

δ2 = max(0, d̄2 − (ED2 − ED1)).

This captures the intuition, from Proposition 2.1, that class 1 delays should be as small

as possible and class 2 delays should be only large enough to guarantee type 1 incentive

5If F̄2(p̂) = 0, it can be shown that a sufficient condition for service differentiation is

F̄2 (p̂ (1− (1− c)/εg(p̂))) > 0.
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compatibility.

Henceforth, we will explicitly distinguish between the “DR solution” to (2.7) and its

interpretation in the stochastic system, which will be referred to as the “stochastic solution.”

We will also port the nomenclature in Table 2.1 to the stochastic setting. We call the

stochastic solution “differentiated” if it offers two service classes and “undifferentiated” if it

offers a single service class. With some abuse of terminology, we call the queueing system

operating under the stochastic solution “capacitated” (“uncapacitated”) if the underlying

DR solution is capacitated, κ̄1 + κ̄2 = 1 (uncapacitated, κ̄1 + κ̄2 < 1). Of course, the

equilibrium traffic intensity in the queueing system under the stochastic solution is always

less than 1.

2.3 Asymptotic Performance Analysis

2.3.1 Preliminaries

We now prove that the stochastic solution prescribed above is asymptotically optimal in

the stochastic setting, and induces an equilibrium and operating regime that is consistent

with the DR solution. Consider a sequence of systems with increasing capacity and market

potential, indexed by n:

sn := n,

Λn
i := nΛ̂i, i = 1, 2,

(2.13)

with Λ̂i := Λi/s, and Λi and s are the parameters of the system of original interest. With

this definition in place, when n = s, the corresponding system in that sequence matches
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the original system. While the size of each customer segment Λn
i scales with capacity,

the valuation distribution Fi(·) and delay cost parameter ci are held fixed. In this way, the

customer population grows large, but the characteristics and behavior of individual customers

remain the same. We use a superscript n to index quantities that depend on the size of the

system.

For the nth system in the sequence, the revenue maximization problem is analogous to

(2.6) with quantities having a superscript n replacing their counterparts. The scaled DR

revenue rate nR̄/s is again an upper bound on the optimal revenue rate earned in the nth

system. The stochastic solution constructed in §2.2.3 can be applied to each system of size

n as follows.

Undifferentiated DR solution (single class). If p̄1 = p̄2 = p̂, offer a single service class

(k = 1) at price p̂ with no strategic delay. The arrival rate into the single class is

λn = Λn
1 F̄1(p̂+ c1d

n) + Λn
2 F̄2(p̂+ c2d

n),

where dn is simply the queueing delay EDn under the work-conserving control policy πn.

The single-class problem is largely addressed in Maglaras and Zeevi (2003a), whose results

easily extend to a heterogenous market of customers that are offered a single service class.

In particular, their Theorems 1 and 2 can prove that p̂ is asymptotically optimal and the

resulting system operates in the QED regime (in the capacitated case).

Differentiated DR solution (two classes). If p̄1 > p̄2, offer two service classes (k = 2) at

prices (p̄1, p̄2) and add strategic delays (0, δn2 ), where δn2 = max(0, d̄2 − (EDn
2 − EDn

1 )). The

control policy πn gives class 1 strict preemptive priority over class 2. For the remainder of

this section, we focus on this differentiated case, when necessary distinguishing between the
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capacitated and uncapacitated cases.

Our first result shows that the stochastic solution yields a unique equilibrium for each

system in the sequence, under a simplified customer choice model,

λnj = Λn
j F̄j(p̄j + cjd

n
j ), for j = 1, 2. (2.14)

In contrast to the demand model described in (2.2)-(2.3), (2.14) explicitly assumes that

customers choose the “correct” service class, or equivalently, report their type truthfully.

We denote by ρnj = λnj /nµ the traffic intensity in class j = 1, 2. Furthermore, the sequence

of equilibria (i.e., the traffic intensities (ρn1 , ρ
n
2 ) and overall delays (dn1 , d

n
2 ) induced by the

stochastic solution) converges to the DR solution.

Proposition 2.3 (System equilibrium). Assume the scaling in (2.13) and the customer

choice model in (2.14). Under the stochastic solution consisting of prices (p̄1, p̄2), strategic

delays (δn1 , δ
n
2 ), and priority rule πn described above:

(a) for every n, there exists a unique system equilibrium (ρn1 , ρ
n
2 , d

n
1 , d

n
2 );

(b) as n→∞, ρnj → κ̄j and dnj → d̄j, for j = 1, 2;

(c) as n→∞, if the DR solution in (2.7) is capacitated, κ̄i + κ̄2 = 1, then δn2 → 0; and if

it is uncapacitated, κ̄i + κ̄2 < 1, then δn2 → d̄2.

2.3.2 Incentive Compatibility and Revenue Optimality

Proposition 2.3 establishes the asymptotic system behavior under the assumption that cus-

tomers make the “correct” choices. Theorem 2.4 establishes that the stochastic solution
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becomes incentive compatible in large systems, which implies it is a Nash equilibrium strat-

egy for customers to choose the “correct” service classes (or equivalently to truthfully report

their type and valuation).

Theorem 2.4 (Large-scale incentive compatibility). Assume the scaling in (2.13). Then,

there exists a finite Nic such that for all n ≥ Nic, the stochastic solution composed of prices

(p̄1, p̄2), strategic delays (δn1 , δ
n
2 ), and priority rule πn described in §2.3.1 is incentive com-

patible, namely

p̄i + cid
n
i ≤ p̄j + cid

n
j , i, j = 1, 2 and i 6= j.

Moreover, if the solution is capacitated, λ̄1 + λ̄2 = sµ, then δn2 = 0 for all n sufficiently large.

Incentive compatibility is achieved for a finite sized system, i.e., for all systems in the

sequence above the threshold Nic, customers will choose the correct service class (in equi-

librium). So, one does not need to assume that customers make the right choices through

(2.14), as in Proposition 2.3, but rather the atomistic, utility maximizing behavior of cus-

tomers described in (2.2)-(2.3) guarantee the desired behavior in large systems. If the solution

is capacitated, the system congestion creates sufficient queueing delay in class 2 to satisfy

the incentive compatibility condition and strategic delay becomes vanishingly small in large

systems; if the solution is uncapacitated, queueing delays in both classes will become neg-

ligible, in which case, the SP adds strategic delay to class 2 in order to optimally segment

the market and ensure that delay-sensitive customers have an incentive to pay a premium

for high-priority service (cf. Proposition 2.3(c)).

We define

Rn = p̄1λ
n
1 + p̄2λ

n
2
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to be the revenue rate in the nth system generated by this solution.

Theorem 2.5 (Asymptotic revenue optimality). Assume the scaling in (2.13). Then, the

revenue rate Rn generated by the stochastic solution composed of prices (p̄1, p̄2), strategic

delays (δn1 , δ
n
2 ), and priority rule πn described in §2.3.1, satisfies

nR̄

s
−Rn ≤M, for all n ≥ Nic,

for some finite positive constant M , and Nic as in Theorem 2.4. (Note that nR̄/s is an upper

bound on the optimal revenue of the original mechanism design problem (2.6) for the scale-n

system.)

Theorem 2.5 is an unusually strong optimality result. Given that the DR is, in some sense,

a fairly crude (first-order) approximation of the mechanism design problem (2.6), one might

expect that the policy predicated on the DR would lead to a performance gap, in terms of

revenue, that increases with system size. Indeed, it is typical that system design optimized via

a deterministic analysis may result in a asymptotic optimality gap that grows proportionally

to
√
n, and that even systems where the “second-order” behavior has been optimized will

still have an asymptotic gap that is o(
√
n), but still diverges with n. Indeed, in Maglaras

and Zeevi (2003a, 2005) this asymptotic gap for policies based on deterministic analysis

often grows proportionally to
√
n, which is the magnitude of the stochastic fluctuations not

captured by the DR. They further optimized the
√
n behavior so the gap is then o(

√
n),

but still diverges with n. Theorem 2.5 shows that the optimality gap of the policy derived

via the static DR remains bounded, regardless of the volume of workflow and scale of the

resulting revenues. This type of bounded error result is also featured in Randhawa (2013).

The underlying driver is that the fluid-optimal solution describes a critically loaded system
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with non-degenerate delays, which is uniquely determined by the ED regime, and, in turn,

guarantees O(1) accuracy of the fluid model. We discuss this in detail in the following

section.

2.3.3 System Operating Regime and Its Implications

The asymptotic operating regime of a single-class multi-server queue can be naturally char-

acterized by focusing on the probability that an arriving customer will have to wait prior to

commencing service:

• P(waiting time > 0) ≈ 0: “quality driven” (QD) regime (focus on providing high-

quality service).

• P(waiting time > 0) ≈ 1: “efficiency driven” (ED) regime (focus on efficient use of

resources).

• P(waiting time > 0) ≈ ν ∈ (0, 1): “quality and efficiency driven” (QED) regime.

The celebrated work of Halfin and Whitt (1981) showed that these regimes are equivalently

characterized by the system’s traffic intensity. Specifically, the QED regime, where the

probability of having to wait for service is modest, i.e., neither “never” nor “always,” arises

if and only if ρn = 1 − β/
√
n for some 0 < β < ∞. This corresponds to the well-known

“heavy-traffic” regime that has been studied extensively in the queueing literature. The ED

regime operates at still higher asymptotic utilization rates,
√
n(1 − ρn) → 0, implying that

arriving customers always have to wait. The QD regime corresponds to lower asymptotic

utilization rates where arriving customers never wait,
√
n(1− ρn)→∞. The next theorem
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characterizes the operating regime that arises as a consequence of the economic objectives

in (2.6).

Theorem 2.6 (System operating regimes). Assume the scaling in (2.13), and consider the

stochastic solution composed of prices (p̄1, p̄2), strategic delays (δn1 , δ
n
2 ) and priority rule πn

described in §2.3.1. Then,

(a) if the DR solution in (2.7) is capacitated, κ̄1 + κ̄2 = 1, then the traffic intensity in the

stochastic system is

ρn1 = κ̄1 + o(1/n) and ρn2 = κ̄2 −
α

n
+ o(1/n),

and the system operates in the ED regime, namely,

ρn1 + ρn2 = 1− α

n
+ o(1/n),

where α is a finite positive constant that depends on model primitives;

(b) if the DR solution in (2.7) is uncapacitated, κ̄1 + κ̄2 < 1, then

ρn1 = κ̄1 + o(1/n) and ρn2 = κ̄2 + o(1/n),

and the system operates in the QD regime.

Relating back to Proposition 2.3 and Theorem 2.4, if the DR solution is capacitated,

then the resulting equilibrium converges to the ED regime in which the delay of the low

priority class emerges due to significant congestion effects (strategic delay vanishes in those

cases). The high priority class never experiences any significant delay since they receive

static priority, and κ̄1 < 1 (that class is effectively facing an underutilized system operating

in the QD regime).
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The system operating regimes characterized above are the result of economic optimiza-

tion, and are not imposed a priori for analysis purposes. To summarize, i) in a capacitated

system, a single-class stochastic solution gives rise to the QED regime (cf. Maglaras and

Zeevi (2003a)); ii) a two-class stochastic solution in a capacitated system places class 1 in

the QD regime and class 2 in the ED regime; and iii) in the uncapacitated case all classes

operate in the QD regime and strategic delay is required to differentiate the two service

classes. Therefore, we show that strategic delay is a first-order effect in the two-class system

only in the uncapacitated case, when some fraction of servers are asymptotically always idle.

In a system where the service provider sets capacity, with an associated positive cost (e.g.

analogous to the setting of §5 in Maglaras and Zeevi (2003a)), this suggests an optimized

capacity level avoids permanently idle servers and thus strategic delay will be of second-order

importance – i.e., approaches zero as the system grows large. In finite systems, the opti-

mal solution may include non-zero strategic delay even when the service provider optimizes

capacity.

The O(1/n) convergence characterized by the ED regime also explains the bounded rev-

enue optimality gap in Theorem 2.5. Note that in the capacitated case

Rn = p̄1λ
n
1 + p̄2λ

n
2 = nµ (p̄1ρ

n
1 + p̄2ρ

n
2 ) ,

= nµ
(
p̄1(κ̄1 + o(1/n)) + p̄2

(
κ̄2 −

α

n
+ o(1/n)

))
,

= nµ(p̄1κ̄1 + p̄2κ̄2) + nµ
(
p̄1o(1/n)− p̄2

α

n
+ p̄2o(1/n)

)
,

=
nR̄

s
− µp̄2α + o(1). (2.15)

In the uncapacitated case, ρn2 converges at rate o(1/n) in the QD regime, so the stochastic

solution will provide revenues that are close, in absolute dollars, to the optimum.
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Remark 3 (Non-preemption). If we restricted our control policy π to non-preemptive

priorities, much of this analysis would carry through directly. Class 1 would get strict

non-preemptive priority in the differentiated case, and prices and strategic delays would

remain unchanged. (A different proof would be required to extend Proposition 2.3(a), which

establishes equilibrium delays.) In this setting, both class 1 and class 2 delays will converge to

their respective limits at rate O(1/n), and the incentive compatibility and revenue optimality

results would carry through. (This is also true, for example, in the appropriately scaled

M/M/1 system). In contrast, class 1 delay converged exponentially fast to zero in the

preemptive case.

Finally, the assumptions on Fi(·), i = 1, 2, can be substantially weakened as long as the

DR solution to (2.7) is guaranteed and accessible. In that case, the results and intuition

of Propositions 2.1 and 2.3 as well as Theorems 2.4-2.6 still hold under much weaker as-

sumptions, for example the functions Fi(·) are only required to be strictly increasing and

continuously differentiable in a neighborhood of the DR solution.

2.4 Multiple Customer Types

The analysis of the two-type model of the preceding sections establishes that strategic delay

becomes asymptotically negligible in large-scale capacitated systems. This sharp insight

turns out to hinge crucially on the restrictive assumption of a market with only two segments.

In this section we study a market with multiple types (N ≥ 3) and demonstrate that strategic

delay is a first-order effect that is needed to allow differentiation into three or more service

classes, regardless of system capacity. The problem formulation and methodology described
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in §2.1-2.3 is readily extended to the multi-type setting. We focus on highlighting additional

insights rather than the straightforward extensions of Propositions 2.1 and 2.3 or Theorems

2.4-2.6.

2.4.1 Analysis of the Deterministic Relaxation

We consider N customer types with linear delay costs c1 > c2 > · · · > cN , valuation

distributions Fi(·), and potential demand Λi, i = 1, . . . , N . The mechanism design problem

is then to find prices (p1, . . . , pN), a control policy π, and the strategic delay prescription

(δ1, . . . , δN) that maximize revenues. The following DR is the analogue of (2.7):

maximize
N∑
i=1

piλi (2.16)

subject to pi + cidi ≤ pj + cidj i, j = 1, . . . , N and i 6= j

λi = ΛiF̄i(pi + cidi) i = 1, . . . , N

N∑
i=1

λi ≤ sµ

di ≥ 0 i = 1, . . . , N.

The optimal solution to (2.16), indexed by customer type, is denoted p̄ = (p̄1, . . . , p̄N)

and d̄ = (d̄1, . . . , d̄N), where two or more customer types may have the same price and

delay offering. (In the two-type setting, this corresponded to the undifferentiated solution.)

The solution to (2.16) can be expressed with respect to distinct service classes, denoted

by p̂ = (p̂(1), . . . , p̂(k)) and d̂ = (d̂(1), . . . , d̂(k)), along with k sets {A(1), . . . , A(k)}, where

A(j) is the set of all customer types that prefer class j to any other service class (i.e.,

p̄i = p̂(j) and d̄i = d̂(j) for all i ∈ A(j)). We will call the sets A(j), j = 1, . . . , k, “market
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segments.” Note that a customer prefers one service class over others but may still choose

the no-purchase option. Therefore Lemma 2.7 does not claim that it is optimal to serve

consecutive types and the optimal solution to (2.16) may satisfy (2.17) and still price out

intermediate customers types. More technically, these market segments reflect the structure

of the incentive compatibility conditions, but not individual rationality conditions.

Generalizing Proposition 2.1, it suffices to consider solutions that satisfy

d1 = 0 and pi + cidi = pi+1 + cidi+1 for i = 1, . . . , N − 1. (2.17)

In the multi-type setting, this structure describes the optimal pooling of customer types in

the DR.

Lemma 2.7. For any feasible solution to (2.16) (p1, . . . , pN), (d1, . . . , dN) that satisfies the

conditions (2.17), the market segments A(j), j = 1, . . . , k are contiguous in the following

sense

A(1) =
{

1, . . . , |A(1)|
}
,

A(2) =
{
|A(1)|+ 1, . . . , |A(1)|+ |A(2)|

}
,

...

A(k) =
{∑k−1

j=1 |A(j)|+ 1, . . . , N
}
.

Lemma 2.7 shows that the market segments A(j), j = 1, . . . , k, consist of consecutive

customer types (recall that customer types are ordered by their delay sensitivity c1 > c2 >

· · · > cN). An example with N = 10 customer types and k = 4 service classes, along with

the associated DR solution p̄, d̄ and p̂, d̂, {A(1), . . . , A(4)} is shown in Figure 2.1. We note

that a partial extension to Proposition 2.2 may be derived. See Lemma A.6 in Appendix A.

45



Customer types

Service classes

1 32 5 64 7 98 10

Figure 2.1: This DR solution specifies k = 4 service classes, where p̂(j) and d̂(j) denote the

price and delay, respectively, of service class j and A(j) denotes the segment of customer

types that choose service class j.

2.4.2 Prescribed Solution for the Stochastic System

Suppose the DR solution to (2.16) offers k distinct service classes at prices p̂(1) > p̂(2) >

· · · > p̂(k) and delays d̂(k) > · · · > d̂(2) > d̂(1) = 0, with market segments A(1), . . . , A(k). At

the DR solution, we define the relative workload contribution from class j ∈ {1, . . . , k} to be

κ̂(j) :=

∑
i∈A(j)

ΛiF̄i(p̂(j) + cid̂(j))

sµ

and, following terminology established in §2.2, we say that the DR solution is capacitated if∑k
j=1 κ̂(j) = 1, and uncapacitated otherwise.

We again specify a stochastic solution with the same number of service classes and prices

as the DR, combined with strict preemptive priorities and strategic delays that are added

only if queueing delays are insufficient. If k = 1, there is only a single class priced at p̂(1);

no priorities or strategic delays are needed. If k ≥ 2 there are k service classes with prices
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p̂ = (p̂(1), . . . , p̂(k)), served with a strict preemptive priority rule, with highest priority given

to class 1 and lowest to class k. Strategic delay is given by δ = (δ(1), . . . , δ(k)), where: δ(j) is

such that

d(j) = d̂(j) + max
`=1,...,j

{
ED(`) − d̂(`)

}
for j = 1, . . . , k

and so

δ(j) = d(j) − ED(j) = max
`=1,...,j

{
(d̂(j) − d̂(`))− (ED(j) − ED(`))

}
for j = 1, . . . , k.

(Note that δ(1) = 0.)

Applying the scaling in (2.13) to all customer types i = 1, . . . , N , the demand for each

class j in the nth system in the sequence is given by

γn(j) =
∑
i∈A(j)

Λn
i F̄i(p̂(j) + cid

n
(j))1{p̂(j) + cid

n
(j) ≤ p̂(`) + cid

n
(`) for all ` = 1, . . . , k}

+
∑
i/∈A(j)

Λn
i F̄i(p̂(j) + cid

n
(j))1{p̂(j) + cid

n
(j) < p̂(`) + cid

n
(`) for all ` 6= j},

where dn(j) = EDn
(j) + δn(j) is the overall delay. The revenue earned in the nth system under

our solution is Rn =
∑k

j=1 p̂(j)γ
n
(j).

Necessity of strategic delay. Proposition 2.3 and Theorems 2.4-2.6 all generalize in

the multi-class case. Focusing on the intermediate classes j = 2, . . . , k − 1, i.e., excluding

the highest and lowest priority classes, the strategic delay added to an intermediate class j

is non-vanishing in large systems,

δn(j) → d̂(j) as n→∞,

irrespective of capacity utilization. The limiting amount of strategic delay added to the

lowest priority class k depends on the capacity constraint, as it did in the two-class setting.
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Essentially, the priority rule causes all congestion to be experienced in only the lowest priority

class, so first-order strategic delay must be added to differentiate intermediate service classes.

Remark 4 (Connection to Afèche (2013)). Afèche (2013) introduced a mechanism

design (incentive-compatible) formulation of revenue maximization problems in queueing

systems, where he was the first to demonstrate the use of strategic delay in the context of

revenue maximization in a queueing system, highlight the use of delay in the low priority

class to achieve incentive compatibility, the importance of capacity, and obtain parameter

conditions that favor differentiation. His study focused on a two-type market served by an

M/M/1 system and used exact analysis, and some of his results and conditions imposed

further restrictions on the valuation distributions. Some of his results may be extended to

service systems in which the achievable region of delays is explicitly and tractably charac-

terized, including a two-class multi-server queue. As pointed out in § 7 of Afèche (2013), the

exact analysis approach based on the achievable region may become intractable in queue-

ing systems of increasing complexity, including multi-type and multi-class queues, whereat

progress is made by imposing additional restrictions on the customer market. Our analy-

sis leverages Afèche’s formulation but uses a more tractable framework that relies on the

solution of a much simpler deterministic relaxation and asymptotic approximations. Such

model approximations are justified via asymptotic limits in large-scale systems, and offer a

framework that generates strong insights regarding first-order drivers of optimized system

performance and allows the treatment of systems that may not be amenable to exact anal-

ysis. The latter is underscored by the analysis of a market with multiple (N ≥ 3) types.

As previously mentioned in Remark 2, the DR may not, in the generality presented here,

yield closed-form expressions for optimal prices. However, when numerical computation is
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required, the DR solution is likely considerably easier to compute than the exact solution,

which additionally depends on the queueing delay equilibrium. Moreover, once a DR solu-

tion is found, all of its features (price, service differentiation, and insight into operational

considerations) carry over as first-order drivers of system performance in an asymptotically

optimal solution to the stochastic problem. The insights gleaned from model approxima-

tions become accurate in systems and application settings characterized by large processing

capacity and large market potential. For example, while the exact analysis of Afèche (2013)

simply shows that the two customer types are always offered distinct service classes (if both

types are present in the system), our asymptotic analysis suggests that this distinction may

become negligible in large systems, in particular when type 2 demand is sufficiently inelastic

(in the sense of Proposition 2.2). An even more extreme example of asymptotically negligible

differentiation is detailed in the next section.

Remark 5 (An alternative implementation). Is it possible to achieve the same

degree of delay differentiation if k ≥ 3 without the use of strategic delay in a capacitated

system? While the answer is affirmative, the resulting heuristic may not be desirable. For

example, suppose k = 3 and consider a structure with two priority lanes. Users that select

the most expensive service class p̂(1) get assigned to the high priority queue and experience

negligible delay. Users that select the cheapest class p̂(3) get assigned the second (low) priority

queue. Users that select the intermediate service class p̂(2) get assigned to the high priority

queue with probability 1− d̂(2)/d̂(3) and to the low priority queue with probability d̂(2)/d̂(3),

which results in an average delay that converges to d̂(2). One can verify that this policy is

incentive compatible and results in near-optimal revenues. However, while the average delays

in the intermediate service classes are asymptotically optimal, this policy would subject those
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customers to either very long delays or no delay at all, a quality that makes it less desirable

from an operational standpoint. While this demonstrates that the solution to the DR may

have multiple implementations in the stochastic setting, we believe that the one provided in

§2.4.2 is the most natural and efficient interpretation of the DR solution.

2.5 Contrast with Mendelson-Whang’s Socially Opti-

mal Solution

In the welfare-maximization problem, the SP seeks to find prices (p1, . . . , pN) and a policy

π that maximize the overall welfare in the system (net utility to customers plus revenue to

the SP). As with the revenue maximization objective in (2.6), this can be reformulated as a

mechanism design problem:

maximize W (p, d) =
N∑
i=1

Λi

(∫ ∞
pi+cidi

vfi(v) dv − cidiF̄i(pi + cidi)

)
(2.18)

subject to pi + cidi ≤ pj + cidj i, j = 1, . . . , N and i 6= j

λi = ΛiF̄i(pi + cidi) i = 1, . . . , N

N∑
i=1

λi < sµ

Money transfers from customers to the SP are “internal” and are not reflected in the welfare

objective.

Mendelson and Whang (1990) offered a complete analysis of this problem for a system

modeled as an M/M/1 queue. Their main insights were: i) the SP should offer N service

classes, i.e., one for each customer type; ii) the optimal prices are equal to the externality
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costs for each class; and iii) resulting equilibrium delays arise naturally as the result of

system congestion under a strict priority rule that strives to minimize the total delay costs

(the “cµ-rule”). A relatively simple variation of their arguments in the M/M/1 context can

be applied in the multi-server setting of our paper to re-establish i)-iii).

First, consider the following deterministic relaxation (DR) of the social welfare optimiza-

tion problem (2.18):

maximize W (p, d) (2.19)

subject to pi + cidi ≤ pj + cidj i, j = 1, . . . , N and i 6= j

λi = ΛiF̄i(pi + cidi) i = 1, . . . , N

N∑
i=1

λi ≤ sµ

pi ≥ 0, di ≥ 0 i = 1, . . . , N.

The social-welfare objective is equivalent to delay-cost minimization and so, in the DR

setting (2.19), the optimal solution is unique and undifferentiated6 with zero delay and

optimal price p̂soc,

p̂soc =


Ḡ−1

(
sµ∑N
i=1 Λi

)
,
∑N

i=1 Λi > sµ

0, otherwise.

Since we expect the DR to be asymptotically optimal in large systems, this suggests that

as the system size grows large, the optimal strategy identified by the Mendelson-Whang

solution degenerates to a single-class offering. That would imply that delay differentiation

is always asymptotically negligible in the social welfare setting.

6This assumes that the model primitives are such that F̄N (p̂soc) > 0 to rule out meaningless “differenti-

ation” for the Nth type, such as pN = 0, dN = p̂soc/cN .
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To be more precise, the Mendelson-Whang solution under the scaling (2.13), prescribes

the vector of social welfare optimal prices in the nth system, pn = (pn1 , . . . , p
n
N), to be

pnj =
N∑
`=1

c`λ
n
`

∂EDn
`

∂λnj
, j = 1, . . . , N. (2.20)

Here, λnj = Λn
j F̄ (pnj + cjEDn

j ) is the demand rate, and EDn
j is the queueing delay in each

class j = 1, . . . , N under a strict preemptive priority policy πn that gives class j priority over

class j + 1. Let ρnj = λnj /nµ denote the traffic intensity in class j in the nth system under

this optimal solution.

Proposition 2.8 (Social welfare solution structure). Assume the scaling in (2.13) and as-

sume that F̄N(p̂soc) > 0. Then as n→∞,

(a) pnj∗ → p̂soc and EDn
j → 0 for j = 1, . . . , N ;

(b) if p̂soc > 0 then
√
n
(

1−
∑N

j=1 ρ
n
j∗

)
→ β for some strictly positive, finite constant β

that depends on model primitives.

Part (a) asserts that the DR indeed captures the first order properties of the optimal

solution for the original mechanism design problem (2.18), and that the exact analysis in

Mendelson and Whang (1990) provides a lower order (and asymptotically vanishing) re-

finement around the DR solution (that may, of course, be significant in systems of modest

size).

Part (b) asserts that a capacitated social-welfare optimized system must equilibrate in

the QED regime, namely
∑N

j=1 ρ
n
j∗ ≈ 1− β/

√
n. This complements the analysis in Maglaras

and Zeevi (2003a), who showed that the QED regime was welfare maximizing in a market

with a single customer type. In contrast, revenue maximization requires significant delay
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differentiation to extract, in return, significant price premia, and this leads the system to

operate in the ED regime that is accompanied by higher resource utilization rates.

53



54



Chapter 3

Observational Learning and

Abandonment

In this chapter, we consider the effects of customer abandonment in a service system. In

section 3.1 we specify the queueing model and introduce a new model of customer abandon-

ment based on observations. The stochastic model that is the focus of our analysis is fully

specified in section 3.1.2. In section 3.2 we describe an analogous fluid model and compare

it to fluid model analogues of the Naor and Erlang-A systems. In section 3.3.1, we specify

how the system scales in size, develop some intuition using the fluid model, and identify

the scaling constant of our model with observation based abandonment. Again, we compare

and contrast the dynamics of our system with those of the Naor and Erlang-A systems. In

section 3.3.4, we develop asymptotic results that characterize the behavior of the stochastic

system and show that the stochastic queue length process and fluid queue length process

converge.
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3.1 Model

We model the service system as a M/GI/1 queue. This is a single-server queue where

customers arrive into the system according to a Poisson renewal process with rate λ, so

the elapsed time between consecutive arrivals are independent and exponentially distributed

with mean 1/λ. Each customer has a random processing requirement that is an independent

draw from a common service time distribution F with mean 1/µ and finite variance. We

assume that λ > µ so the rate of customers arriving into the system exceeds the processing

capacity of the system; it is in this sense that the queue is “overloaded.” We denote by ρ

the ratio of the arrival rate to service rate,

ρ :=
λ

µ
> 1. (3.1)

The service system has an infinite-capacity buffer and customers wait in a queue according to

their order of arrival until they are sent to the server or they abandon the system and are lost

(we do not allow for retrials). Each customer has the same patience, which is deterministic

and equal to τ time units.

3.1.1 Abandonment Dynamics

Our model assumes that customers use their rate of progress in the queue to estimate their

remaining wait time. In this way, customer abandonment behavior accounts for both service

completions and abandonments by customers in line ahead of them. For a single service

period, we first describe how customers form their wait time estimates and identify those

whose wait time estimates exceed their patience (we call these “discouraged customers”).

We then specify the abandonment mechanism for discouraged customers. This procedure
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repeats for customers in the queue for each and every service period.

We also provide an alternative formulation that is probabilistically equivalent and more

conducive to analysis, which we will use for the remainder of the paper.

Discouraged Customers. Suppose a service period lasts v time units. Upon service

completion, each customer in the queue updates his estimated remaining wait time as follows.

The customer in queue position x estimates his remaining wait time as xv. If xv > τ then his

estimated wait time exceeds his patience and we say that customer is “discouraged.” Since

all customers observe the same service period v, a discouraged customer in queue position x

implies that all customers behind him (queue positions x + 1, x + 2, etc.) are discouraged

as well.

Implicit in this dynamic are several important assumptions.

• A customer ignores all prior observations and estimates his remaining wait time using

only the most recent observed service period.

• A customer ignores his elapsed waiting time so that his remaining patience time is

always τ .

• A customer who arrives to the system during the service period does not become dis-

couraged at the end of that service period.

That is, a customer must observe a complete service period in order to become dis-

couraged. Therefore, the only customers that may be discouraged are the ones who

were already present at the end of the previous service period.

These assumptions are not relevant in settings where decisions are made upon arrival to the

system and abandonments are not allowed thereafter (e.g., Naor (1969)). However, we make
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these assumptions to substantially simplify the model and its analysis. In section 3.5, we

will discuss ways in which some of these assumptions could be relaxed and why we believe

doing so will not affect our key findings.

Abandonments. Having identified discouraged customers, we now describe how a sub-

set of those discouraged customers abandon. Note that not all discouraged customers neces-

sarily abandon. Our abandonment model incorporates the idea that a customer’s estimated

wait time is also affected by abandonments elsewhere in the line, which may in fact encourage

customers to stay. In contrast to service completions, abandonments only affect customers

behind the abandonment position.

After a service completion, let Y be the number of discouraged customers and let R be

the number of customers who abandon (R ≤ Y ). We will rank the Y discouraged customers

from 1 to Y , with 1 being the discouraged customer closest to the head of the line and Y

being the discouraged customer farthest from the head of the line. The R customers who

abandon comprise the set {k1, k2, . . . , kR} where each kj ∈ {1, 2, . . . , Y } specifies the rank of

the jth customer to abandon.

The abandonment procedure for a set of Y discouraged customers specifies a subset of

R customers who abandon. The R customers are selected iteratively and we assume that kj

is the jth abandonment, selected as follows:

Starting with j = 1 and Y1 = Y ,

• Select one discouraged customer, kj ∈ {1, . . . , Yj}, with uniform probability 1/Yj.

• Customers 1, . . . , kj − 1 remain in line and are still discouraged.

Customer kj abandons.
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Customers kj + 1, . . . , Yj remain in line and are no longer discouraged (will not aban-

don).

• Set Yj+1 = kj − 1 to be the number of discouraged customers remaining.

• If Yj+1 = 0, end the procedure and set R = j.

Otherwise, if Yj+1 ≥ 1, repeat the procedure.

Therefore, out of a set of Yj discouraged customers, one of them abandons with each being

equally likely to do so. When this occurs, the customers behind him are no longer discouraged

while the customers ahead remain discouraged. The process repeats until there are no

discouraged customers remaining. Note that the discouraged customer closest to the front

of the line always abandons. Therefore, when there are Y ≥ 1 discouraged customers at

the end of a service completion, then at least 1 and up to Y customers abandon. These

abandonments occur in a “back-to-front” sequence where the final customer to abandon is

the discouraged customer with the lowest queue position (closest to the front of the line).

Figure 3.1 depicts and example of an abandonment sequence which is described as follows.

(a) There are Y = 8 discouraged customers (in red) out of a total of Q = 12 customers in

line.

(b) With probability 1/Y = 1/8, the first to abandon is the fifth discouraged customer

(k1 = 5).

(c) The customers behind the abandonment remain in line and are no longer discouraged.

There are Y2 = 4 remaining customers.
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(a) Y1 = 8 discouraged customers. (b) k1 = 5th discouraged customer abandons

(c) Y2 = 4 discouraged customers remain. (d) k2 = 2nd discouraged customer abandons

(e) Y3 = 1 discouraged customer remains. (f) k3 = 1st discouraged customer abandons

(g) No discouraged customers remain. Head of line enters service.

Figure 3.1: Example of an abandonment sequence with Y = 8, R = 3 and {k1, k2, k3} =

{5, 2, 1}
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(d) With probability Y2 = 1/4, the second customer to abandon is the second discouraged

customer (k2 = 2).

(e) The customers behind the abandonment remain in line and are no longer discouraged.

There is Y3 = 1 remaining customer.

(f) With probability 1/Y3 = 1, the third customer to abandon is the first discouraged

customer.

So in this example, Y = 8, R = 3 and {k1, k2, k3} = {5, 2, 1}.

We note that all (remaining) discouraged customers are equally likely to abandon, even

though customers with higher queue positions have a greater difference between their wait

time estimate and their patience (in this sense they are more discouraged).

Moreover, a customer is no longer discouraged when a customer ahead of him abandons.

This assumes that the customer who sees an abandonment ahead of him simply registers

his progress in line and does not infer anything from the abandoning customer. We do not

consider any strategic behavior or, in particular, any game theoretic equilibrium strategies

among the customers.

One interpretation of this is that the customer in queue position x considers only the

amount of time that was required to move from queue position x+1 to x. He advanced in line

due to either a service completion or an abandonment ahead of him in line. If we assume that

abandonments happen instantaneously then the time spent at the previous queue position

is 0 if the customer advances due to an abandonment, otherwise it is equal to the realized

service time v if he advances due to a service completion.
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Alternative Formulation. We now show that the abandonment sequence described

above is probabilistically equivalent to a formulation in which the kth discouraged customer

abandons independently with 1/k (where k = 1 is the discouraged customer closest to the

front of the line). Let Y be the number of discouraged customers and suppose that the R

customers abandon comprise the set {k1, . . . , kR} where k1 > k2 > · · · > kR = 1.

Under the abandonment wave formulation, the set {k1, . . . , kR} describes a sequence in

which the k1th discouraged customer is the first to abandon out of the group of Y discouraged

customers, which occurs with probability 1/Y . After the first abandonment, there are k1−1

discouraged customers remaining and k2 is the second to abandon with probability 1/(k1−1),

and so on. Therefore, the probability of this abandonment sequence is

P (k1, . . . , kR | Y ) =

(
1

Y

)(
1

k1 − 1

)(
1

k2 − 1

)
· · ·
(

1

kR−1 − 1

)(
1

kR

)
.

Under the alternative formulation, the kth discouraged customer abandons independently

with probability 1/k (and remains in line with probability 1 − 1/k), so the probability of

this subset of customers abandoning is

P (k1, . . . , kR | Y ) =

(
1− 1

Y

)(
1− 1

Y − 1

)
· · ·
(

1− 1

k1 + 1

)
1

k1

(
1− 1

k1 − 1

)
. . .

=

(
Y − 1

Y

)(
Y − 2

Y − 1

)
. . .

(
k1

k1 + 1

)(
1

k1

)(
k1 − 2

k1 − 1

)
. . .

=

(
1

Y

)(
1

k1 − 1

)(
1

k2 − 1

)
. . .

(
1

kR−1 − 1

)(
1

kR

)
.

Since the joint distribution of customers abandoning is the same in both formulations, we

may use either one in describing our system. (The independent abandonment formulation

does not explicitly incorporate the “back-to-front” sequence of abandonments, but can be

inferred from kR abandons first, kR−1 abandons second, etc.) For the remainder of this
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chapter, we will assume that the kth discouraged customer abandons independently with

probability 1/k.

3.1.2 Stochastic System

Let {ui, i ≥ 1} be a sequence of i.i.d. random variables drawn from an Exponential distribu-

tion with rate λ. Let {vi, i ≥ 1} be a sequences of i.i.d. random variables drawn from the dis-

tribution F with E [vi] = µ−1. Let {Xi, i ≥ 1} be an i.i.d. sequence of (infinite-dimensional)

random vectors where the kth element of Xi, denoted by Xik, is an independent draw from

a Bernoulli distribution with P (Xik = 1) = 1/k. The sequences {ui, i ≥ 1}, {vi, i ≥ 1},

and {Xi, i ≥ 1} are the problem primitives and are defined on a common probability space

(Ω,F ,P).

The sequence {ui, i ≥ 1} represents customer interarrival times, where ui is the time

between the arrivals of the i− 1st and ith customer, while {vi, i ≥ 1} represents processing

times, where vi is the processing time of the ith customer to enter service. The sequence

{Xi, i ≥ 1} are indicators of customer abandonments, where Xik = 1 if the kth discouraged

customer abandons after the ith service completion and 0 otherwise.

The customer interarrival times, {ui, i ≥ 1}, define a Poisson renewal process for arrivals

where

A(t) = max{i ≥ 0 : u1 + · · ·+ ui ≤ t} (3.2)

is the number of customers who arrive to the system in the first t time units. Similarly, the

processing requirements {vi, i ≥ 1} define a renewal service process where

S(t) = max{i ≥ 0 : v1 + · · ·+ vi ≤ t} (3.3)
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is the number of customers processed in the first t time units of server busy time.

We denote by Qi−1 the number of customers in the queue after the i−1st service comple-

tion, after the departure of the customer who finished service, any abandonments, and the

head of line entering service. Therefore, at the end of the ith service period, at most Qi−1

customers may be discouraged. (This assumes that the customer at the head of the line,

who is about to enter service may be discouraged and abandon. However, this is purely for

notational simplicity. All results hold under the assumption that the head of the line does

not get discouraged, and can be stated by replacing Qi−1 with (Qi−1 − 1)+.). At the end of

the ith service completion, the customer in queue position x has patience τ and estimated

wait time xvi, so if x ≥ bτ/vic+1 then that customer is discouraged. Therefore, the number

of discouraged customers immediately following the ith service completion is

Yi =

(
Qi−1 −

⌊
τ

vi

⌋)+

. (3.4)

The total number of abandonments after the ith service completion is

Ri =

Yi∑
k=1

Xik.

Let N(t) be the total headcount process and let Q(t) be the queue length process. We

define the busy time process B(t) and idle time process I(t)

B(t) =

∫ t

0

1{N(s) > 0} ds, (3.5)

I(t) = t−B(t) =

∫ t

0

1{N(s) = 0} ds, (3.6)

the departure counting process

D(t) = S(B(t)), (3.7)
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and the abandonment counting process

R(t) =

D(t)∑
i=1

Ri. (3.8)

The total headcount process N(t) is therefore

N(t) = N(0) + A(t)−D(t)−R(t)

where N(0) is the initial number in the system and the queue length process is Q(t) =

(N(t)− 1)+.

3.1.3 Embedded Markov Chain

Just as with the M/GI/1 queue, if we look at the process at the service completion epochs,

then we find a discrete-time Markov chain Ni embedded in the continuous-time process N(t).

Define ti to be the ith service completion epoch. Let Ni = N(ti) be the number of customers

in the system and Qi = Q(ti) = (Ni − 1)+ be the number of customers in queue. We have

Ni = (Ni + Ai − 1−Ri)
+

where

Ri =

Yi∑
k=1

Xik Yi =

(
Qi−1 −

⌊
τ

vi

⌋)+

.

For each i, the random pair (Ai, Ri), conditional on Qi−1, is an independent draw from the

joint distribution

P (Ai = x,Ri = y) =

∫ ∞
0

e−λv
(λv)x

x!

(Qi−1−bτ/vc)+∑
k=1

Xik dF (v).
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3.1.4 Properties of the Stochastic System

In this section, we provide some useful notation and descriptions of the dynamics of the

stochastic system. In particular, we identify the distribution of discouraged customers

throughout the line as well as the profile of abandonment probabilities.

We define m(k) to be the probability that a service time is sufficiently long for a customer

in queue position k to be discouraged, but not long enough for the customer in queue position

k − 1 to be discouraged. For k = 1, a customer is discouraged for any vi > τ . For k ≥ 2,

this occurs for vik > τ and vi(k − 1) ≤ τ . Therefore,

m(k) = P (vik > τ, vi(k − 1) ≤ τ) =


F̄ (τ) k = 1

F̄
(
τ
k

)
− F̄

(
τ
k−1

)
k ≥ 2

where F (x) = P (vi ≤ x) is the distribution function of the service times and F̄ (x) = 1−F (x)

is the tail distribution. Note that m(k) depends only on service times and does not depend

on the queue length.

As we discussed in section 3.1.1, if a customer in queue position k is discouraged, then so

are all the customers in queue positions k+ 1, . . . , Qi−1. Therefore, if the customer in queue

position k is discouraged, but not k − 1 (which occurs with probability m(j)), then there

are precisely Qi−1 − k + 1 = Yi discouraged customers. Therefore, we have the probability

distribution of Yi (conditional on Qi−1)

P (Yi = 0 | Qi−1 = q) =
∞∑

k=q+1

m(k) = F

(
τ

q

)

P (Yi = y | Qi−1 = q) = m(q − y + 1) = F̄

(
τ

q − k + 1

)
− F̄

(
τ

q − k

)
k = 1, . . . , q − 1

P (Yi = q | Qi−1 = q) = m(1) = F̄ (τ) .

66



Restricting our attention to the first x queue positions, we consider only the discouraged

customers in this portion of the queue, conditional on Qi−1 = q ≥ x. If there are Yi

discouraged customers in the entire queue, then (Yi − Qi−1 + x)+ = (x − bτ/vic)+ of them

will be found in the first x ≤ Qi−1 queue positions. Comparing this expression with (3.4),

it is clear that the probability that there are exactly k discouraged customers in the first x

queue positions can be written

P

((
x−

⌊
τ

vi

⌋)+

= k

∣∣∣∣∣ Qi−1 = q

)
= P (Yi = k | Qi−1 = x) = m(x− k + 1) k = 1, . . . , x.

Note that there is no explicit dependence on Qi−1 other than x ≤ Qi−1.

Let Rix be the indicator that the customer in queue position x abandons after the ith

service completion. For all x > Qi−1, the probability of abandoning is zero (recall that

we assume that only customers who are present for a complete service period may become

discouraged and abandon). For x ≤ Qi−1, we condition on the event that the customer in

queue position x is the kth discouraged customer, for k = 1, . . . , x.

p(x) := P (Rix = 1 | Qi−1 ≥ x) (3.9)

=
x∑
k=1

1

k
m(x− k + 1)

=
x−1∑
k=1

1

k

[
F̄

(
τ

x− k + 1

)
− F̄

(
τ

x− k

)]
+

1

x
F̄ (τ). (3.10)

Again, (3.10) has no explicit dependence on Qi−1 other than x ≤ Qi−1. This is consistent

with the intuition that a customer’s wait time estimate and abandonment decision are not

affected by any customers behind him in the queue.

The expected number of abandonments from the first x queue positions after a service
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completion is given by

H(x) := E

[
x∑
k=1

Rik

∣∣∣∣∣ Qi−1 ≥ x

]
=

x∑
k=1

p(k) =
x∑
k=1

1

k
F̄

(
τ

x− k + 1

)
(3.11)

We note that H(x) is a non-decreasing function

H(x+ 1)−H(x) = F̄ (τ) +
x∑
k=1

1

k

(
F̄

(
τ

x− k + 2

)
− F̄

(
τ

x− k + 1

))
≥ 0

and unbounded (H(x) ↑ ∞ as x ↑ ∞)

H(x) ≥ F̄ (τ)

∫ x

1

1

k
dk = F̄ (τ) log(x).

(If F (·) has finite support, then start with some v such that F̄ (v) > 0, replace F̄ (τ) with

F̄ (v) and take the integral from τ/v.)

Note that the summands

1

k
F̄

(
τ

x− k + 1

)
are non-increasing in k, but the probabilities p(x) (given in the expression (3.10)) are not

necessarily monotone in x.

The function H(x) will play a key role in the behavior of the system. For example,

H(Qi−1) is the expected number of total abandonments, conditional on queue length, after

the ith service completion.

H(Qi−1) = E [Ri | Qi−1] =

Qi−1∑
k=1

1

k
F̄

(
τ

Qi−1 − k + 1

)
. (3.12)

Also, if we consider the Markov chain described in section 3.1.3, we have that

E [Qi −Qi−1 | Qi−1] = E [Ai − 1−Ri | Qi−1] = ρ− 1−H(Qi−1). (3.13)

Therefore, E [Qi −Qi−1 | Qi−1] > 0 for H(Qi−1) < ρ − 1 and E [Qi −Qi−1 | Qi−1] > 0 for

H(Qi−1) > ρ − 1. Since H(·) is an increasing function, this suggests that the process Qi
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will be attracted towards an equilibrium level q where H(q) ≈ ρ − 1. We explore this idea

further using a fluid model in the next section, 3.2.

3.2 Fluid Model

We present and analyze an analogous fluid queue, where arrivals, service completions, and

abandonments are modeled as deterministic flows of continuous fluid, instead of discrete

stochastic processes. The rates of the deterministic flows are chosen to match the mean

rates of the corresponding stochastic processes. In this section, we first characterize the

abandonment flows in the fluid system, which correspond to the average abandonments in

the stochastic setting. This abandonment behavior determines the dynamics of the fluid

queue; in particular, we show that the queue level stabilizes at an equilibrium level that

balances arrivals with service completions and abandonments.

Note that, for our system, this is not (yet) a fluid approximation in the traditional sense

of being the centering process for a functional strong law of large numbers. We have not

yet introducing any scaling or asymptotic analysis, which is done in section 3.3. For now,

we consider this fluid model simply as a deterministic dynamical system that follows the

average dynamics of the stochastic system.

Deterministic Flows. In the fluid queue, the arrival flow is at rate λ per unit time

and the service completion flow is at rate µ per unit busy time (when there is a positive

fluid level). The function H(x) specifies the expected number of abandonments with a queue

length x for a single service completion. Therefore, the abandonment flow is at rate µH(x)

for fluid level x. Since the fluid level is continuous, we need to specify an extension of H(x)
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from the positive integers to the positive reals. We do this via a simple linear interpolation:

H(x) :=


xF̄ (τ), x < 1

∫ x
0
p(dke) dk, x ≥ 1

(3.14)

= H(bxc) + (x− bxc)(H(dxe)−H(bxc)).

From (3.14), we see that the fluid abandonment per infinitesimal portion of fluid at level

x is constant over the interval [bxc, dxe) and is equal to the probability of abandonment

from queue position dxe in the stochastic system. It is easy to verify that the definition of

H(x) in (3.14) is continuous (but not differentiable) and matches the expression in (3.11)

for x ∈ Z+. Also, we see that H(x) obviously inherits the properties of being non-decreasing

and unbounded.

3.2.1 Fluid System Dynamics

Let N̄(t) be the amount of fluid in the system at time t and let Q̄(t) = (N̄(t)− 1)+ be the

fluid queue length at time t. Arrivals occur at rate λ, service completions at rate µ, and

abandonments at rate µH(Q̄(t)) (these rates are described in units of fluid per unit time).

The fluid level process N̄(t) can be written

N̄(t) = N̄(0) + λt− µt− µ
∫ t

0

H(Q̄(s)) ds

and satisfies the ODE

dN̄(t)

dt
= µ

(
ρ− 1−H(Q̄(t))

)
. (3.15)

This is analogous to the difference equation (3.13).
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Clearly N̄(t) > 0 for all t > 0. Since H(·) is continuous, increasing, and unbounded,

there exists a value q̄ such that

H(q̄) = ρ− 1.

which is the fixed point of (3.15). Moreover, N̄(t) is concave increasing for N̄(t) < q̄ + 1

and convex decreasing for N̄(t) > q̄ + 1. Note also that the fluid level process N̄(t) is

continuously differentiable in t. Therefore, the fluid model equilibrates to the level where

the rate of abandonment balances excess arrivals. Moreover, from an arbitrary initial fluid

level N̄(0), the fluid level monotonically increases (decreases) to this equilibrium level when

the initial level is below (above) equilibrium.

3.2.2 Naor and Erlang-A Fluid Analogues

As a comparison, we consider the fluid analogues of the Naor and Erlang-A systems. Naor’s

model is equivalent to an M/M/1/c system where there is a finite buffer with capacity

c = bµτc. Therefore, we can define an analogous fluid model as

N̄Naor(t) = min{N̄Naor(0) + λt− µt, µτ + 1}

or, in differential form

dN̄Naor(t)

dt
=


λ− µ, N̄Naor(t) < µτ + 1

0, N̄Naor(t) ≥ µτ + 1

.

Here we see that q̄Naor = µτ is the fixed point of the system and that N̄Naor(t) increases

linearly (at rate λ − µ) up to that level. (In the Naor model, the queue never starts above

the threshold level.)
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For the Erlang-A system, the expected number of abandonments per unit time is propor-

tional to the length of the queue, where the proportionality constant is the rate parameter of

the customer’s exponential patience. For an average customer patience of τ , the analogous

fluid model follows the dynamics

N̄ErlA(t) = N̄ErlA(0) + λt− µt− 1

τ

∫ t

0

Q̄ErlA(s) ds

or, in differential form

dN̄ErlA(t)

dt
= λ− µ− 1

τ
Q̄ErlA(t)

so the equilibrium level, or fixed point, is

q̄ErlA = (λ− µ)τ = µτ(ρ− 1).

As with our model, the Erlang-A model is concave increasing above the equilibrium level

and convex decreasing below it, and the fluid sample paths are monotone.

3.3 Asymptotic Analysis

Thus far, we’ve seen that the queue length process is governed by a notion of flow balance

– the queue tends to equilibrate a level where abandonments balance excess arrivals. In

section 3.3.1 we introduce a scaling that considers a sequence of systems with proportionally

increasing arrival rates and service rates (of the single server) and preserves the individual

abandonment behavior of customers. In section 3.3.2 we first examine the asymptotic behav-

ior of the fluid model, which is markedly different from the asymptotic limits of either the

Naor or Erlang-A fluid models. From the limiting behavior of the fluid model, we identify

the scaling of the equilibrium queue level that balances arrivals with service completions and
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abandonments. Section 3.3.3 establishes some preliminary results for the stochastic system

and, finally, in section 3.3.4 we establish a functional strong law of large numbers for the

queue length process.

3.3.1 Scaling

We now consider a sequence of systems, indexed by n, in which the arrival rate and service

capacity become increasingly large, but the behavior of each individual customer remains

unchanged. In the stochastic system, we assume that the interarrival time and service time

distributions are scaled proportionally by their means, λn = nλ and µn = nµ, respectively.

Each customer’s estimated remaining time is still based on his queue position and most

recent observed service period, which is compared to his patience which remains τ (unscaled)

for all n. We also maintain the abandonment procedure described in section 3.1.1 and

thus the equivalent formulation with independent Bernoulli abandonment decisions remains

unchanged.

The scaled stochastic processes (e.g., Nn(t), Qn(t), An(t), Dn(t), Rn(t)) for the nth

system are denoted by a superscript n. While the individual abandonment behavior of each

customer is unscaled, we do note that the abandonment profile over the queue does depend

on n through the service time distribution. In particular, the expected abandonments per

service completion from the first x queue positions in the nth system is given by

Hn(x) =
x∑
k=1

1

k
F̄ n

(
τ

x− k + 1

)
,

where, for example, if service times follow an exponential distribution, F̄ n(x) = exp(−nµx).
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3.3.2 Fluid Model Asymptotics

For the nth stochastic system, we define a fluid queue with deterministic streams of arrivals

at rate nλ, departures at rate nµ, and abandonments from the queue at rate nµHn(Qn(t)).

The earlier results of this section hold for each n in the sequence. In particular, there exists

an equilibrium queue length q̄n at which Hn(q̄n) = ρ − 1, balancing abandonments with

excess arrivals.

As the processing capacity increases, the likelihood of long service times decreases, so

we expect that the equilibrium queue length will increase in order to allow for sufficient

abandonments. If we consider the similarly scaled versions of the Naor fluid model N̄n
Naor(t)

(where τ is unscaled) and Erlang-A fluid model N̄n
ErlA(t) (where γ is unscaled), we see that

the equilibrium level also scales with n:

q̄nNaor = nµτ q̄nErlA = nµτ(ρ− 1).

Therefore, if we scale the fluid levels by 1/n we have that

N̄n
Naor(t)

n
= min

{
N̄n
Naor(0)

n
+ λt− µt, µτ +

1

n

}

and

N̄n
ErlA(t)

n
=
N̄n
ErlA(0)

n
+ λt− µt− 1

τ

∫ t

0

Q̄n
ErlA(s)

n
ds.

So we see that the scaled fluid model yields essentially the same dynamics for all n as the

n = 1 case (within a factor of 1/n and assuming that the initial level at t = 0 is also scaled

by n).

However, this is not the correct scaling for our system where abandonments are based

on observed service times. To understand why, consider a system with exponential service
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times for large n and suppose the queue length is nµτ (i.e., the equilibrium queue length in

the scale n Naor model). The probability that a service time is long enough to discourage,

say, half the line (nµτ/2 customers) is

F̄ n

(
τ

nµτ/2

)
= e−2.

and, on average, log(nµτ/2) will abandon. This holds true for each and every service period

and so we will have order n log(n) abandonments per unit time compared to order n imbal-

ance between arrivals and service completions. This level of abandonment is unsustainable,

so the equilibrium queue length cannot be order n.

More formally, we define functions Un(x) and Ln(x) that upper and lower bound (re-

spectively) the number of expected abandonments Hn(x) for every n.

Lemma 3.1. For every n, Hn(x) is upper bounded by the function Un(x) for all x and lower

bounded by the function Ln(x) for x ≥ 3, where

Un(x) := F̄ n
(τ
x

)
(log(x) + 1) (3.16)

Ln(x) := log

(
x

log(x) + 1

)
F̄ n

(
τ

x

(
1 +

1

log(x)

))
. (3.17)

For any x > 0, if we consider a scaled queue length nx (and again assume exponential

service times), we have

Hn(nx) ≥ Ln(nx) = F̄ n

(
τ

nx

(
1 +

1

log(nx)

))
(log(nx)− log(log(nx) + 1))

= exp

(
−µτ
x

log(nx)

log(nx)− 1

)
(log(nx)− log(log(nx) + 1))→∞.

We see that abandonment waves occur too frequently and, coupled with the magnitude of the

abandonment waves, results in an unsustainable abandonment rate. The correct equilibrium
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queue length scaling allows the frequency of abandonment waves to diminish at just the right

scale to balance the magnitude of abandonment waves in equilibrium, resulting in a number

of abandonments (per service completion) that scales as O(1).

In Lemma 3.2, we identify the asymptotic rate of growth, denoted αn, for the equilibrium

queue length. This is the natural scaling of the system, in the sense that the dynamics of

the fluid and stochastic system are asymptotically identical up to smaller o(αn) stochastic

fluctuations, shown in §3.3.4. While the previous analysis holds for general service time

distributions, we now restrict our attention to exponential service times F̄ n(x) = exp(−nµx).

The scaling αn derived in Lemma 3.2 relates specifically to the exponential distribution, but

the same approach yields scalings for other service time distributions, some of which are

provided for comparison in Section 3.4.

Lemma 3.2.

lim
n→∞

Hn (αnx) =



0 x < µτ

1 x = µτ

∞ x > µτ

where

αn =
n

log(log(n))
. (3.18)

Discussion. Lemma 3.2 establishes αn as the scale of the system. Moreover, since Hn(x)

captures the number of abandonments from the first x queue positions in the nth system,

Lemma 3.2 implies that the abandonment profile of the limiting system is concentrated at

the back of the queue. That is, in the limit, customers abandon only from an infinitesimal,

o(αn) part of the queue. Figure 3.2a shows that, in the scaled system, abandonments become
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concentrated at the back of the line. Figure 3.2b illustrates this effect from the perspective

of abandonment intensity, which shifts from the front to the back of the queue as the scale

increases.
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(a) Expected abandonments.
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(b) Abandonment profiles.

Figure 3.2: Queue length is normalized to [0, 1] where 0 is an empty queue and 1 is the

equilibrium queue length. Abandonment intensity is normalized to represent the probability

of abandonment from equal portions of the queue with respect to the equilibrium queue

length. Model parameters are λ = 5, µ = 1, τ = 10.

Noting that H(x) ≈ E [ log(Yi);Yi ≥ 1 | Qi = x], the magnitude of an abandonment wave

is roughly the log of the number of discouraged customers. For fixed queue length x, if

the likelihood of long service times (longer than τ/x) decreases, then H(x) will decrease.

Therefore, compared to a system with equilibrium queue length q̄n, a lower likelihood of

long service times results in increased equilibrium queue lengths. Note that short service

times are essentially irrelevant.

The scaling αn is smaller than n by a factor of 1/ log log(n). These iterated logarithms
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are due to two completely separate effects. The outer logarithm is related to the tail quantile

function of service times (log(p) in the case of the exponential distribution), which reflects

the likelihood of a long service time. The inner logarithm reflects the magnitude of the

abandonment wave, log(Yi).

Lemma 3.2 provides the order of magnitude of the equilibrium queue length q̄n for large

n, but does not further specify the equilibrium level that yields Hn(q̄n) = ρ−1. In particular,

it suggests that q̄n ≈ αnµτ for any λ > µ. Lemma 3.3 below provides a refinement that

identifies the dependence on the load of the system.

Lemma 3.3.

lim
n→∞

Hn

(
αnµτ

1− log(x)
log log(n)

)
= x.

Therefore, we see that the function Hn(x) has order 1 variation for x with variation of

order n/(log log n)2. Since q̄n is defined to satisfy Hn(q̄n) for all n, it must be that

αn

q̄n
∼ 1− log(ρ− 1)

log log(n)
.

With the Naor and Erlang-A models, we saw that the 1/n-scaled fluid processes followed

essentially the same dynamics as the unscaled fluid processes. Although we’ve identified the

αn scaling, our model is again unsual in that the appropriately-scaled limiting process is

quite different from the fluid process for finite n.

Proposition 3.4. If

lim
n→∞

1

αn
Q̄n(0) = q̄0 <∞
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then

lim
n→∞

1

αn
Q̄n(t) =


q̄0, t = 0

µτ, t > 0

Therefore, the fluid limit is a process that starts at q̄0, jumps to µτ , and remains there.

Note that the fluid path Q̄n(t) is continuous in t for every n, but the limit process has a

jump at t = 0.

From the asymptotic behavior of Hn(x) described in Lemmas 3.2 this discontinuous limit

process should be unsurprising. For q̄0 < µτ , the number of abandonments is negligible and

the process increases due to excess arrivals at rate n(λ− µ). Of course, the queue build up

is at rate n while the amount needed to reach equilibrium (where abandonments become

significant) is order αn. Therefore the build up occurs in time 1/ log log(n) and, in the limit,

this becomes instantaneous.

Having identified the equilibrium queue length scaling, we want to show that, in large

scale, fluid queue becomes a close approximation to the stochastic queue. In particular, we

want show that the stochastic queue length process converges almost surely uniformly on

t ∈ [0, T ] (for any T > 0) to the fluid queue process under the scaling established in Lemma

3.2.

3.3.3 Stochastic System Preliminaries

As a preliminary result, we show that the embedded Markov chain {Qn
i } process is stable in

the sense that there exists a constant M̄ > µτ such that Qn
i ≤ M̄αn for all i almost surely

for large n. As with Proposition 3.5, the intuition stems from Lemma 3.2. From the large-

scale behavior of Hn(x) and the Markov chain description of the system, we expect that any
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order-αn queue build-up above αnµτ is very quickly removed via abandonment. Similarly,

if the queue is below αnµτ (by an order αn amount) there is negligible abandonment and

the queue quickly increases due to the excess arrivals. The mean reversion is sufficiently

strong to ensure that, for large enough n, the queue length process never moves εαn above

its starting value or the equilibrium level, µταn, whichever is larger.

The proof of Proposition 3.4 is also similar to that of Proposition 3.5. In the case of

the deterministic fluid queue, we bounded the fluid queue process below (above) by a linear

function with a constant rate of abandonment that was just higher (lower) than that of the

fluid queue. Here, we bound the stochastic queue by reflected random walks.

Proposition 3.5. If

q0 := lim sup
n

Qn(0)

αn
<∞

then for all n sufficiently large,

max
0≤i≤∞

Qn
i

αn
≤ M̄ almost surely. (3.19)

Here, M̄ = max{q0, µτ}+ ε for any ε > 0.

Proposition 3.6 ensures that, eventually (n large enough), the number of emptying times

is O(n/ log(n)).

Proposition 3.6. For all n sufficiently large,

∞∑
i=0

1{Qn
i = 0} < nµτ

log(n)
almost surely.

Each time the queue empties, it sits idle until the subsequent arrival, a period of time

that is exponentially distributed with mean 1/nλ.
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3.3.4 Convergence to Fluid Model

We now focus on proving the convergence of the stochastic process Qn(t) to the fluid process

Q̄n(t).

lim
n→∞

1

αn
∥∥Qn(t)− Q̄n(t)

∥∥ = 0 almost surely u.o.c.

This convergence is illustrated in Figure 3.3.

Note that the concept of functional convergence we are applying here is convergence under

the uniform topology. This topology usually suffices when the limiting process is continuous.

Even though the limit process characterized in Proposition 3.4 is not continuous, the fluid

process Q̄n(t) is continuous for every n. Of course, it is not true that either Qn(t) or Q̄n(t)

converges to the limit process of Proposition 3.4 under the uniform topology (except in the

trivial case where Qn(0)/αn → µτ). This is due to the “unmatched” jump, or discontinuity,

at 0 and would require a different notion of convergence. Whitt (2002) provides a thorough

treatment of this topic.

We begin by splitting up the difference in queue length processes (stochastic and fluid)

into three differences: arrivals, departures, and abandonments.

Qn(t)− Q̄n(t) = (An(t)− nλt)− (Dn(t)− nµt)−
(
Rn(t)−

∫ t

0

nµHn(Q̄n(s)) ds

)
.

For An(t)−nλt and Dn(t)−nµBn(t), convergence at rate np for any p > 1/2 is guaranteed

by a Functional Strong Law of Large Numbers (FSLLN). (Recall, the interarrival times and

service times have finite variance, so a Strong Law of Large Numbers holds for np; see, for

example, Durrett (1996), p. 66. This, in turn, can be extended to a FSLLN by an argument

analogous to Lemma 5.8 of Chen and Yao (2001). We do this explicitly for a martingale that

is L2 bounded. See Lemma B.16 in Appendix B.1). The departure process result additionally
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Figure 3.3: Comparison of stochastic sample path (green) and deterministic fluid path (blue)

as n increases. Parameters are λ = 5, µ = 1, τ = 10, service time distribution is exponential.

requires that the server busy time Bn(t)
a.s.−→ t as n → ∞, which follows from Proposition

3.6.

Lemma 3.7. For any p > 1/2,

1

np
‖An(t)− nλt‖ a.s.−→ 0 u.o.c.

Lemma 3.8. For any p > 1/2,

1

np
‖Dn(t)− nµt‖ a.s.−→ 0 u.o.c.
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We further break down the difference between the stochastic and fluid abandonment

processes into the following.

Rn(t)−nµ
∫ t

0

Hn(Q̄n(s)) ds =

Dn(t)∑
i=1

 Y ni∑
j=1

Xij −Hn(Qn
i−1)

 (3.20)

+

Dn(t)∑
i=1

(
Hn(Qn

i−1)− E

[
nµ

∫ tni

tni−1

Hn(Qn(s)) ds

∣∣∣∣∣ Qn
i−1

])
(3.21)

+ nµ

Dn(t)∑
i=1

(
E

[∫ tni

tni−1

Hn(Qn(s)) ds

∣∣∣∣∣ Qn
i−1

]
−
∫ tni

tni−1

Hn(Qn(s)) ds

)
(3.22)

+ nµ

∫ t

0

(
Hn(Qn(s))−Hn(Q̄n(s))

)
ds (3.23)

As with the arrival and departure processes, we show that the first three of these differences

(3.20)-(3.22), scaled by n−p (p > 1/2), converges almost surely u.o.c.

Lemma 3.9. For any p > 1/2,

1

np

∥∥∥∥∥∥
Dn(t)∑
i=1

 Y ni∑
j=1

Xij −Hn(Qn
i−1)

∥∥∥∥∥∥ a.s.−→ 0 u.o.c.

This represents the accumulated difference between the realized abandonments after the

each service period and its expected value (conditional on the queue length). We identify

this as a martingale and apply a functional strong law of large numbers (FSLLN).

Lemmas 3.10 and 3.11 combine to deal with the accumulated difference

Hn(Qn
i−1)− nµ

∫ tni

tni−1

Hn(Qn(s)) ds.

We see that the integral averages over the ith service period [tni−1, t
n
i ], which includes arrivals

during that time. We further split this into two parts: Lemma 3.10 is a deterministic
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difference (given Qn
i−1), which we bound using (3.24), while Lemma 3.11 again leverages

martingale structure.

Lemma 3.10. For any p > 1/2,

1

np

∥∥∥∥∥∥
Dn(t)∑
i=1

(
Hn(Qn

i−1)− E

[
nµ

∫ tni

tni−1

Hn(Qn(s)) ds

∣∣∣∣∣ Qn(tni−1)

])∥∥∥∥∥∥ a.s.−→ 0 u.o.c.

Lemma 3.11. For any p > 1/2,

1

np

∥∥∥∥∥∥
Dn(t)∑
i=1

(
E

[
nµ

∫ tni

tni−1

Hn(Qn(s)) ds

∣∣∣∣∣ Qn(tni−1)

]
− nµ

∫ tni

tni−1

Hn(Qn(s)) ds

)∥∥∥∥∥∥ a.s.−→ 0 u.o.c.

The results of Lemmas 3.7-3.11 provides

∥∥Qn(t)− Q̄n(t)
∥∥ ≤ εnp + nµ

∫ t

0

∥∥Hn(Qn(s))−Hn(Q̄n(s))
∥∥ ds.

The approach of Mandelbaum and Pats (1995) identifies a Lipschitz constant for the inte-

grand and applies Gronwall’s inequality (see Ethier and Kurtz (1986), p. 498) to achieve

convergence. However, from Lemma 3.2 it is obvious that, in the limit, our integrand is not

continuous. However, we are able to bound the integrand via Proposition 3.12 below and

this, in turn is enough to achieve convergence (again, with Gronwall’s inequality). We point

out, however, that it is crucial that the convergence of the first terms (Lemmas 3.7-3.11) are

at rate O(n1−ε).

Proposition 3.12. If x < y ≤ M̄αn then for all n > ee, there exists a constant C > 0 such

that

Hn(y)−Hn(x) ≤ C

(
y − x
αn

)
(log log n)(log n)1−µτ/M̄ . (3.24)

Proposition 3.13.

1

αn
∥∥Qn(t)− Q̄n(t)

∥∥ a.s.−→ 0 u.o.c.
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3.4 Information and the Speed of Learning

The unusual feature of this model is that the natural fluid scale of the queue length process

is dependent on the tail of the service time distribution. The reason for this is clear from the

form of Hn(x) and the fact that the queue length will stabilize around a level that balances

abandonments and excess arrivals. The tail distribution dependence of the queue length

scaling has an interesting interpretation in terms of the availability of information and the

speed of learning.

To make this connection, we consider analysis of the model with exponential service

times in the context of other service time distributions, comparing the system dynamics

under these alternative assumptions. Each service time distribution has mean 1/µ, which

allows for comparison to the analysis and results of the previous sections and illustrates

how the scaling of the system depends on the tail of the distribution. We generalize the

exponential distribution to Erlang-d service times and show that the queue length scaling

increases with the shape parameter d and as the variance of the service time distribution

decreases. The Erlang-d distribution is in some ways analogous to the case where customers

use the average of d service time observations in their estimate of remaining wait time,

specifically in the way that the service time observations of the customers become less noisy

as d increases. As an example of a distribution with heavier tails, we consider the Pareto

distribution and see that the queue length scaling is larger and the there is some probability

of abandoning from the very front of the queue. The uniform distribution is an example

of a distribution with finite support, which necessitates O(n) scaling. Deterministic service

times can be seen as the limiting case in which there is no noise from realized service times,
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but still some randomness from the abandonment sequence. Finally, the Naor model is the

“full information” scenario, in which customers know beforehand the average service time

and make strategic join or balk decisions. We will see that the case of deterministic service

times and case of full information are very similar, with the same queue length scaling and

key threshold queue length.

3.4.1 Alternative Service Time Distributions
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Figure 3.4: Comparison across service time distributions. Queue length is normalized to [0, 1]

where 0 is an empty queue and 1 is the equilibrium queue length. Abandonment intensity

is normalized to represent the probability of abandonment from equal portions of the queue

with respect to the equilibrium queue length. Common parameters are λ = 5, µ = 1, τ = 10,

with scale n = 10. Erlang distribution has shape d = 5. Pareto distribution has shape a = 2.

Uniform distribution has support [0, 2/µ].

Pareto. Suppose that the service times are distributed according to a Pareto distribution

86



with shape parameter a = 2 and support [1/2µ,∞). The tail probability is

P (vi > x) = F̄ (x) =

(
1

2µ

)2

x ≥ 1

2µ
.

In this case E [vi] = 1/µ and Var (vi) =∞ (so the analysis in section 3.3.4 must be changed

accordingly). The relevant aspect of this distribution is that the tail is substantially heavier

than the exponential distribution, so we expect the queue length scaling to be smaller.

Indeed, it is straightforward to check that

αn =
nµτ√
log(n)

√
ρ− 1.

Figure 3.4b shows that, among the distributions considered, the Pareto is the only one to

have abandonments from very near the front of the queue.

Erlang. Suppose that the service times are distributed according to an Erlang distribu-

tion with shape parameter d, so the tail probability of each service time vi is

P (vi > x) = F̄ (x) = e−dµx
d−1∑
k=0

(dµx)k

k!
.

In this case, E [vi] = 1/µ and Var (vi) = 1/(dµ2). This distribution is the convolution of d

independent exponential distributions each with mean 1/(dµ). Therefore, the abandonment

behavior after a service completion is analogous to a model in which customers base their

wait time estimates on an average of the previous d service completions, each of which are

independent and exponentially distributed with rate µ. However, the Erlang distribution

allows us to preserve the assumption that customer wait time estimates after a service

completion are independent of all previous service time realizations.

The analysis of the previous sections carry through directly and it is straightforward to
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see that the scaling in this case is

αn =
dnµτ

log
(

log(n)
ρ−1

)
+ (d− 1) log log log(n)

.

Writing this as

αn =
nµτ

log log(n)

(
1 + (d− 1)

1− log(ρ−1)
log log(n)

+ (d− 1) log log log(n)
log log(n)

)
>

nµτ

log log(n)

(
1

1− log(ρ−1)
log log(n)

)

where the inequality holds for sufficiently large n such that

log3(n)

log2(n)
>

log2(n)

log2(n)− log(ρ− 1)
.

So, indeed, the queue length scaling is larger than under exponential service times, however

only very slightly. In Figures 3.4a and 3.4b, we see that the abandonments with the Erlang

distribution are further back in the queue relative to the exponential distribution.

Uniform Service Times. Suppose that the service requirements follow a uniform dis-

tribution over [0, 2/(nµ)]. Since vi ≤ 2/(nµ) with probability 1, the minimum queue length

necessary for abandonments is bnµτ/2c+1. This already suggests that the equilibrium queue

length scaling is O(n), which is confirmed and refined by following our previous analysis.

For x ≥ bnµτ/2c+ 1

Hn(x) =

x−bnµτ/2c+1∑
k=1

1

k
F̄ n

(
τ

x− k + 1

)
,

which is bounded by

Un(x) = F̄ n
(τ
x

)(
log
(
x− nµτ

2
+ 1
)

+ 1
)

Ln(x) = F̄ n

(
τ

x

log(x)

log(x)− 1

)
(log(x)− log log(x)) .

Note that the upper bound differs slightly from the one established in Lemma 3.1 in order
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to account for the finite tail of this distribution. These bounds verify that the scaling is

αn =
nµτ

2

1

1− ρ−1
log(n)

.

Observe that, for large n, we can write

αn ≈ nµτ

2

(
1 +

ρ− 1

log(n)

)
and so we see that q̄n = nµτ/2 + O(n/ log(n)). Figures 3.4a and 3.4b illustrate how there

are no abandonments in the front portion of the queue.

Deterministic Service Times. If vi = 1/µ with probability 1, then Yi = (Qi−1 −

bµτc)+ and abandonments only happen from queue positions above the threshold level bµτc.

The abandonment sequence is still stochastic and so, for x ≥ bµτc + 1, the probability of

abandonment is

P (Rix = 1) =
1

x− bµτc
.

Note that any customer who joins the system with a queue position at or below the threshold

will never abandon and always receive service. Conversely, any customer who joins the system

at a queue position above the threshold will eventually abandon with probability 1, since

he must eventually pass through queue position bµτc+ 1 (if he had not abandoned earlier)

and the customer at that queue position always abandons after each service completion. A

customer who joins above the threshold at position bnµτc+k, will have an equal probability

1/k of observing 1, 2, . . . , k service completions before abandoning.

To determine the queue length scaling under deterministic service times, we note that

Hn(x) = 0 for x ≤ bnµτc while

Hn(x) =

x−bnµτc∑
k=1

1

k
and pn(x) =

1

x− bnµτc
for x ≥ bnµτc.
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Therefore, the equilibrium fluid level is q̄n = bnµτc+ x where x = O(1) and satisfies

bxc∑
k=1

1

k
+
x− bxc
bxc

= ρ− 1.

Full Information. Naor (1969) considers a model in which customers know a priori

the average service time 1/µ and observe the queue length. His formulation provides a

linear waiting cost-per-unit-time c and reward-for-service R (both deterministic), which can

be reinterpreted as a maximum willingness-to-wait τ = R/c. He shows that the optimal

(and equilibrium) strategy for an arriving customer is to join when the queue length is at or

below the threshold bµτc and balk when it is above. His results clearly hold under the scaling

described in section 3.3.1, in which case the threshold queue length is bnµτc. This can be

viewed as “abandoning” instantly from queue position bnµτc+1, which as the original paper

notes, has no dependence on λ.

Truncated Distributions. It is clear from the analysis of the uniform distribution that

any service time distribution with a finite support will recover the usual O(n) fluid scaling

(and thus fewer abandonments). Therefore, truncating the distribution would change the

order of magnitude of the equilibrium queue length, a much stronger effect than reducing

the mean (but keeping the tail of the distribution proportional). This truncation may be

implemented as a service system policy and, in particular, the truncation point may be a

parameter chosen by the service provider. One illustrative, though fictional, example of

such a service system may be seen in “The Soup Nazi” episode1of the television sitcom

Seinfeld. This particular episode centers on a fictional soup stand in Manhattan with an

unusually surly owner, who is the service provider (and the episode’s title character). The

overwhelming popularity of this soup stand places it in the overloaded regime with a long
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line of waiting customers at all times. The service provider insists that customers follow an

extremely specific procedure while being served (ordering, receiving, and paying for their

soup). Any customer who does not follow the procedure is removed from service (usually

with the declaration, “No soup for you!”) and the next customer enters service.

We see that this policy serves to effectively truncate the service time distribution. If

customer abandonment behavior follows our model, then the service provider would ensure

that customers waiting in line do not get discouraged by a customer with an unusually

long service time. If we denote by vmax the truncation point, or the maximum amount of

time a customer may take before being thrown out, then an appropriate choice of vmax may

reduce abandonments by very occasionally removing customers from service (with probability

F̄ (vmax)). Moreover, for each customer removed from service, the service provider saves, in

expectation, approximately log(Q − τ/vmax) customers from abandoning (where Q is the

queue length). Note that, by doing so, the service provider increases the length of the line

and the overall wait time for customers. However, the expected delay at the equilibrium

queue length is still below the patience time of the customers – so their disutility of waiting

still remains below their utility of getting soup. In fact, fewer abandonments mean that more

customers (who would have been willing to wait were they not discouraged by an unusually

long service time) remain in line and receive positive utility for completing service. The

operations management rationale is summed up by Seinfeld as “The main thing is to keep

the line moving.”

1“The Soup Nazi.” Seinfeld. Fox. 2 Nov. 1995. Television.
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3.5 Discussion of Assumptions and Extensions

Our model makes a number of simplifying assumptions for both the ease of analysis and to

provide clear and concise results and intuition. With the insights from the basic model, we

now provide some informal and qualitative discussion on relaxing or modifying some of these

assumptions.

Single Service Time Observation. One of the more restrictive assumptions of our model

is that customers make a snapshot estimate, ignoring all prior observations. It is likely

that even fairly unsophisticated customers would understand that realized service times

may vary and thus incorporate several observations into their wait time estimate. This

is partially addressed by assuming an Erlang-d distribution, which can be interpreted as

averaging d exponential service times in section 3.4. This modification does not account

for the correlation between the d consecutive service completions that contain overlapping

observations, but it does appropriately reduce the noise from individual observations and

provide a more precise measurement of the service rate. While the abandonment profile

under the Erlang-d distribution does concentrate more abandonments in the back of the line,

we see that the queue length scaling is largely the same as for the exponential distribution

(for any finite d). It may be that increasing the parameter dn → ∞ as n → ∞ would be

required to provide a substantive difference in queue length scaling over exponential service

times.

Abandonment Wave. We assume that customers who are discouraged abandon in a se-

quence described in section 3.1.1. While this captures the idea that an abandoning customer

improves the estimated (and actual) wait time of customers behind him, we take a very
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simplistic view. Methodologically, the useful aspect of our modeling choice is that we can

represent this dynamic as independent abandonment decisions. One may choose to model

other independent abandonment decisions, with different probabilities that will yield differ-

ent abandonment profiles.

For example, any discouraged customer with abandons with equal probability p ∈ (0, 1].

The impact on our analysis would be to change the 1/k probabilities in the expressions for

expected abandonments H(x) in (3.12) and p(x) in (3.10). Recall that this gave rise to the

log(x) expressions in the upper and lower bound functions (3.16)-(3.17), and the appearance

of (at least one) log(n) factor in the scaling under all the non-deterministic service time

assumptions. Therefore, changing the abandonment wave dynamic would have an impact the

scaling. For example, if any discouraged customer abandons with equal probability p ∈ (0, 1]

then for exponential service times, we expect the equilibrium scaling to be O(n/ log(n)) (or

more precisely, nµτ/ log(np/(ρ− 1))).

One may also consider abandonment decisions made based on partial service time ob-

servations. As soon as the elapsed service time multiplied by the queue position exceeds a

customer’s patience τ , he abandons. Assuming all customers have the same patience and

waiting costs are sunk, customers from the back of the line will abandon first. This again

results in a sequential back-to-front abandonment wave that occurs over the duration of

the service period. This is equivalent to assuming that all discouraged customers abandon,

which is a special case (p = 1) of the dynamics described in the previous paragraph.

Yet another alternative abandonment wave assumption is that customers who are “more

discouraged” (greater difference between estimated wait time and patience) are more likely

to abandon. This makes the customers in the back of the line more likely to abandon first and
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thus result in more abandonments per service completion. This can be placed in the context

of a bounded rationality decision model in which any customer may choose to abandon (i.e.,

a customer does not always make a utility-maximizing decision), where the probability of

abandonment depends on the expected disutility of remaining in line.

Constant Patience. Another assumption is that customers do not track their elapsed

time and always compare their estimated wait time to their original patience τ . We note

that this is consistent with Naor (1969) who also assumes that delay costs are sunk and,

hence, a customer will always remain in the system after joining even though his realized

waiting time may actually exceed his patience τ = R/c (thus earning negative utility).

While our assumption is consistent with sunk delay costs, a plausible alternative setting

is one in which customers have fixed deadlines of τ time units after their arrival. In that

case, customers would indeed need to track their elapsed waiting times. While this adds

a substantially more difficult element to the analysis (in particular, keeping track of a Qi-

dimensional vector of elapsed waiting times), we conjecture that the queue length scaling

will, in fact, be the same (for distributions that give rise to o(n) scaling).

The rationale is as follows: If customers track their elapsed waiting time, then any

customer’s remaining patience is at most τ . Therefore, for the same queue length and

service time realization, the number of discouraged customers in the diminishing-patience

system will always be greater than that in our original model. Therefore, for any ω in our

probability space, the queue length under a diminishing-patience model is less than the queue

length under the original model. For exponential service times (and Pareto and Erlang), the

queue length scaling is o(n) while they move through the queue at rate µn, so the elapsed

waiting time is negligible and the patience of all customers in the queue is τ − o(1). This
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small perturbation will not substantially affect Hn(x) for large n and so we expect the queue

length scaling to, in fact, be identical under a diminishing-patience model (for service time

distributions with o(n) queue length scaling in the original model).

Strategic Interactions. The fact that, in the asymptotic limit, the queue length is o(n)

and the waiting time is o(1) highlights that the abandonment behavior we describe is clearly

not an equilibrium strategy – a customer should just join this system and never abandon. Of

course, if all customers follow this strategy then the system becomes overloaded. The model

therefore requires modification before strategic equilibria can be even considered. These

modifications should give rise to a O(n) queue length scaling, which requires more than

averaging (a finite number of) observations. One possible line of investigation would be to

add some heterogeneity in customer patience. For example, if we assume that τ is a random

draw from some distribution then the queue may equilibrate to a level where exactly 1−µ/λ

fraction of customers eventually abandon and it is rational for them to do so.

Multi-Server Setting. Finally, we consider what the system dynamics would be if we as-

sume a multi-server system and consider many-server scaling. In anM/M/n queue, with each

service time being Exponential(µ), the time between service completions is Exponential(nµ).

Therefore, the tail distribution F̄ n(·) remains the same. Assuming that customers base their

abandonment decision off of a single observation of the elapsed time between service com-

pletions, we expect exactly the same O(n/ log log(n)) scaling. Note however, that a more

common assumption of the multi-server system is that customers are sensitive to a timescale

that is comparable to their service time. Therefore, we would need to extend our model to

incorporate O(n) service completion observations.
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Appendix A

Chapter 2 Proofs

A.1 Main Results

This section contains the proofs of the main Propositions 2.2 and 2.3 and Theorems 2.4 and

2.5. Proofs of Proposition 2.1, Lemma 2.7, Proposition 2.8 and some side lemmas are in

with a few side lemmas to Appendix B.

Proof of Proposition 2.2. We prove the equivalent statement: p̄1 = p̄2 = p̂ if and only if

(1− c2/c1)ε2(p̂, 0) ≤ εg(p̂).

Fix (p1, p2, d1, d2) to be a feasible solution to the DR (2.7) that additionally satisfies

d1 = 0, d2 =
1

c1

(p1 − p2).

The full cost for each class at this solution is

p1 + c1d1 = p1 and p2 + c2d2 = cp1 + (1− c)p2,

respectively, where c := c2/c1. Define the functions κ1(p1, d1) and κ2(p2, d2) to be the relative
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workload contributions by class 1 and class 2, respectively, at the price point (p1, d1, p2, d2):

κ1(p1, d1) :=
Λ1F̄1(p1 + c1d1)

sµ
, κ2(p1, d2) :=

Λ1F̄2(p2 + c2d2)

sµ
. (A.1)

The following result, specifically (A.2), proves the “only if” part of the above assertion.

Lemma A.1. Let p̂ be the optimal solution to the single-product problem (2.9), and let

(p̄1, p̄2, d̄1, d̄2) be the optimal solution to the DR (2.7). Then

p̄1 = p̄2 = p̂ implies (1− c)ε2(p̂, 0) ≤ εg(p̂) and (A.2)

p̄1 > p̄2 implies
ε1(p̄1, 0)

p̄1

<

(
1− c

1− c
κ2(p̄2, d̄2)

κ1(p̄1, 0)

)
(1− c)ε2(p̄2, d̄2)

p̄2

, (A.3)

where εi(pi, di), i = 1, 2 and εg(p) are the price elasticities defined in (2.11) and κi(pi, di),

i = 1, 2, are defined in (A.1).

It remains to show that ε2(p̂, 0) ≤ εg(p̂) implies p̄1 = p̄2 = p̂. Note that (A.3) is equivalent

to the statement that p̄1 = p̄2 = p̂, provided that

ε1(p̄1, 0)

p̄1

≥
(

1− c

1− c
κ2(p̄2, d̄2)

κ1(p̄1, 0)

)
(1− c)ε2(p̄2, d̄2)

p̄2

.

Also, if p̄1 = p̄2 = p̂ then d̄2 = 0, and hence

ε1(p̂, 0) ≥
(

1− c

1− c
κ2(p̂, 0)

κ1(p̂, 0)

)
(1− c)ε2(p̂, 0),

which we rewrite in terms of fi and F̄i,

p̂f1(p̂)

F̄1(p̂)
≥
(

1− c

1− c
Λ2F̄2(p̂)

Λ1F̄1(p̂)

)
(1− c) p̂f2(p̂)

F̄2(p̂)
.
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Some algebraic manipulation yields

Λ1f1(p̂) ≥
(
(1− c)Λ1F̄1(p̂)− cΛ2F̄2(p̂)

) f2(p̂)

F̄2(p̂)
,

Λ1f1(p̂) + Λ2f2(p̂)

Λ1F̄1(p̂) + Λ2F̄2(p̂)
≥ (1− c) f2(p̂)

F̄2(p̂)
,

εg(p̂) ≥ (1− c)ε2(p̂, 0),

and we deduce that (1−c)ε2(p̂, p̂) ≤ εg(p̂) implies p̄1 = p̄2 = p̂. This concludes the proof.

Proof of Proposition 2.3. Consider the sequence of systems under the scaling (2.13).

Proof of (a) (Existence and uniqueness of equilibrium.) Fix a positive integer n and put

sn = n. We make two trivial observations that substantially simplify our analysis.

Observation 1: Since the control is a strict preemptive priority, the number of class 1

customers in the system form a Markov process that is an M/M/n queue with arrival rate

λn1 and service rate µ; customers in class 2 are “invisible” to customers in class 1.

Observation 2: Since the service requirements of all customers are i.i.d. exponential with

rate µ, the total number of customers in the system form a Markov process that is an M/M/n

queue with arrival rate λn1 + λn2 and service rate µ.

For any arrival rate 0 ≤ λn1 < nµ, we define, with some abuse of notation, EDn
1 (λn1 ) to

be the queueing delay in class 1 as an explicit function of the arrival rate in class 1. The

expectation is taken with respect to the stationary distribution of the class 1 headcount

process under the arrival rate λn1 and the sequencing rule πn. With Observation 1, standard

queueing results show that such a stationary distribution exists and is unique as long as

λn1 < nµ.

For any arrival rate pair (λn1 , λ
n
2 ), with λn1 , λ

n
2 ≥ 0 and λn1 +λn2 < nµ, we define EDn

2 (λn1 , λ
n
2 )
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to be the queueing delay in class 2 as a function of arrival rates in both classes. The

expectation is taken with respect to the stationary distribution of the headcount process

under arrival rates (λn1 , λ
n
2 ) and the sequencing rule πn. With Observation 2, standard

queueing results show that such a stationary distribution exists and is unique as long as

λn1 +λn2 < nµ. Note that EDn
1 (λn1 ) is continuous and monotone increasing in λn1 . EDn

2 (λn1 , λ
n
2 )

is continuous and monotone increasing in λn1 and in λn2 .

For each class i = 1, 2, we write the class i arrival rate in that class as an explicit function

of the class i overall delay dni ≥ 0: λni (dni ) = Λn
i F̄i(p̄i + cid

n
i ), i = 1, 2. In class 2, strategic

delay is added such that the overall delay dn2 = δn2 +ξn2 = max{ξn2 , ξn1 + d̄2}. Note that λni (dni )

is monotone non-increasing in dni . An equilibrium in the nth system is given by a delay pair

(ξn1 , ξ
n
2 ) that jointly satisfies

λn1 (ξn1 ) + λn2 (δn2 + ξn2 ) < nµ,

EDn
1 (λn1 (ξn1 )) = ξn1 ,

EDn
2 (λn1 (ξn1 ), λn2 (δn2 + ξn2 )) = ξn2 .

(A.4)

Since class 2 customers are “invisible” to class 1, we first show that a unique ξ1 exists for

class 1 and then, given ξ1, we show that a unique ξ2 exists for class 2.

Class 1: Define h1(x) := x − EDn
1 (λn1 (x)). Note that h1(x) exists for all x ≥ 0, since

λn1 (0) = Λn
1 F̄1(p̄1) < nµ, and is continuous with h1(0) < 0 and h1(∞) > 0 (since λn1 (∞) = 0).

Furthermore, h1(x) is monotone increasing in x since EDn
1 (λn1 (x)) is monotone non-increasing

in x. Therefore, there exists a unique ξn1 such that h1(ξn1 ) = 0.

Class 2: Fix λn1 = Λn
1 F̄1(p̄1 + c1ξ

n
1 ) and note that λn1 < nµκ̄1. Define

h2(x) := x−max{EDn
2 (λn1 , λ

n
2 (max{x, ξn1 + d̄2})), ξn1 + d̄2}.
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Note that h2(x) exists for all x ≥ 0, since λn2 (ξn1 + d̄2) < nµ − λn1 , and is continuous with

h2(0) < 0 and h2(∞) > 0 (since λn2 (∞) = 0). Furthermore, h2(x) is monotone increasing in

x since the second term is monotone non-increasing in x. Therefore, there exists a unique

ξn2 such that h2(ξn2 ) = 0.

We conclude that there exists a unique equilibrium for each n, which can be represented

by the delay pair (ξn1 , ξ
n
2 ) satisfying (A.4), or equivalently the traffic intensity pair (ρn1 , ρ

n
2 ),

where

ρni =
Λn
i F̄i(p̄i + cid

n
i )

nµ
, i = 1, 2

dn1 = ξn1 , and dn2 = max{ξn2 , ξn1 + d̄2}. Note that under this equilibrium, ρn1 + ρn2 < 1 and

therefore a unique stationary distribution exists for every n.

Proof of (b) (Convergence of equilibria to DR solution). We prove part (b) in two steps.

In Step 1 we show that a limit exists, ρni → ρ∞i , i = 1, 2. In Step 2 we show that the overall

delays converge to the delays in the DR solution, dni → d̄i, i = 1, 2. From Step 2, it follows

immediately, by the continuity of Fi(·), that ρ∞i = κ̄i, i = 1, 2.

In what follows, let {ρni }∞n=1 be the sequence of class i traffic intensities in equilibrium

and let {EDn
i }∞n=1 be the associated sequence of class i expected queueing delays, i = 1, 2.

For each n,

ρn1 =
Λ̂1

µ
F̄1(p̄1 + c1EDn

1 ),

ρn2 =
Λ̂2

µ
F̄2(p̄2 + c2δ

n
2 + c2EDn

2 ),

where the expectation is taken with respect to the unique stationary distribution established

in part (a).

Step 1. Proving that ρni → ρ∞i , i = 1, 2.
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If ρn1 = 0 then EDn
1 = 0 (since there are no class 1 customers in the system), but then

ρn1 = κ̄1 > 0, in contradiction. Therefore, ρn1 > 1 for all n. Now, suppose there exist

subsequences {nk}∞k=1 and {n`}∞`=1 such that

lim
k→∞

nk(1− ρnk1 ) = g and lim
`→∞

n`(1− ρn`1 ) = g,

where 0 ≤ g < g ≤ ∞.

Lemma A.2. Given a sequence of single-class M/M/n systems, indexed by n, with arrival

rate λn and service rate µ, with λn < nµ, let EDn be the expected queueing delay with respect

to the stationary distribution.

1. If n(1− ρn)→ 0, then EDn →∞.

2. n(1− ρn)→ g ∈ (0,∞) if and only if EDn → d = 1
µg
∈ (0,∞).

3. If n(1− ρn)→∞, then EDn → 0.

Since 0 ≤ g < g ≤ ∞, by Lemma A.2, we have that

0 ≤ lim
k→∞

EDnk
1 < lim

`→∞
EDn`

1 ≤ ∞.

Noting that ρn1 is continuous and strictly decreasing in EDn
1 ,

0 ≤ lim
`→∞

ρn`1 < lim
k→∞

ρnk1 ≤ 1.

Since lim`→∞ ρ
n`
1 is strictly less than 1, we have

lim
`→∞

n`(1− ρn`1 ) = g =∞

and therefore g ≤ g, contradicting our assumption. Therefore, all subsequences converge to

a common limit, which we denote ρ∞1 . The same argument shows that ρn1 + ρn2 converges as

n→∞. Therefore, ρn2 → ρ∞2 .
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Step 2. Proving that overall delays converge to the DR solution dni → d̄i, i = 1, 2.

First, observe that dn1 = EDn
1 > d̄1 = 0 and dn2 = max{EDn

2 , d̄2 + EDn
1} > d̄2. Therefore,

ρn1 + ρn2 =
Λ̂1

µ
F̄1(p̄1 + c1d

n
1 ) +

Λ̂2

µ
F̄2(p̄2 + c2d

n
2 ) < κ̄1 + κ̄2 ≤ 1.

In the uncapacitated case, κ̄1 + κ̄2 < 1 so ρn1 + ρn2 is bounded away from 1 so EDn
1 → 0

and EDn
2 → 0, and we conclude that dn1 → 0, dn2 → d̄2, and δn2 → d̄2.

In the capacitated case, κ̄1 + κ̄2 = 1 (κ̄2 > 0), ρn1 < κ̄1 < 1 is bounded away from 1 so

EDn
1 → 0 and therefore dn1 → 0. Since F̄1 is continuous, this implies that ρn1 → κ̄1.

For class 2, suppose limn→∞ d
n
2 > d̄2, then there exists ε > 0 such that for all n sufficiently

large

ρn2 =
Λ̂2

µ
F̄2(p̄2 + c2d

n
2 ) ≤ κ̄2 − ε.

since F̄2(·) is strictly decreasing. Therefore, eventually ρn1 +ρn2 < 1, which implies EDn
2 → 0,

in contradiction. Since dn2 > d̄2 for all n, we conclude that dn2 → d̄2 and, by continuity of

F̄1(·), ρn2 → κ̄2.

Proof of (c) (Strategic delay). For the uncapacitated case, since EDn
2 → 0 and dn2 → d̄2,

it must be that δn2 → d̄2. For the capacitated case, we defer to the proof of Lemma A.3,

where it is shown that EDn
2 → d̄2.

This completes the proof.

The following Lemma is central to the proof of Theorem 2.4-2.6.

Lemma A.3 (Rates of convergence). Assume the scaling in (2.13). Set the stochastic so-

lution to prices (p̄1, p̄2), strategic delays (δn1 , δ
n
2 ), and priority rule πn described in §3.3.1.
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Assume that customer types choose the “correct” service class, i.e.,

λnj = Λn
j F̄j(p̄j + cjd

n
j ), for j = 1, 2.

If the DR solution is uncapacitated (κ̄1 + κ̄2 < 1),

dn1 = o(1/n) and dn2 = d̄2 + o(1/n), (A.5)

while if the DR solution is capacitated (κ̄1 + κ̄2 = 1),

dn1 = o(1/n) and dn2 = d̄2 +O(1/n). (A.6)

Proof of Lemma A.3. We prove this in three steps.

Step 1. We first prove that dn1 = o(1/n) in both the capacitated and uncapacitated

cases. From Proposition 2.3(b), ρn1 → κ̄1 < 1 and therefore
√
n(1− ρn1 )→∞. The proof of

Proposition 1 of Halfin and Whitt (1981) shows that for a single-class multi-server queue,

√
n(1− ρn1 ) exp(n(1− ρn1 )2/2)ν(ρn1 )→ 1

1 +
√

2π
as n→∞.

Here, ν(·) is the probability that a class 1 customer has a positive waiting time, as a function

of traffic intensity. Therefore,

n3/2 exp(n(1− ρn1 )2/2)EDn
1 →

1

µ(1− κ̄1)(1 +
√

2π)
∈ (0,∞) as n→∞,

which yields dn1 = O(n−3/2e−bn) = o(1/n) where b = 1
2
(1 − κ̄1)2. This also proves that

EDn
2 = o(1/n), and therefore dn2 = d̄2 + o(1/n), if κ̄1 + κ̄2 < 1, so we have proven (A.5).

Step 2. We now provide an intermediate step showing that n(κ̄1 − ρn1 ) → 0 in both the

capacitated and uncapacitated cases. Since F1(·) is continuously differentiable, the mean

value theorem ensures that there exists some d̃n1 ∈ [0, dn1 ] such that

ρn1 =
Λ̂1F̄1(p̄1 + c1d

n
1 )

µ
=

Λ̂1F̄1(p̄1)

µ︸ ︷︷ ︸
=κ̄1

−dn1
c1Λ̂1f1(p̄1 + c1d̃

n
1 )

µ
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and therefore

n(κ̄1 − ρn1 ) = ndn1
c1Λ̂1f1(p̄1 + c1d̃

n
1 )

µ
.

Since ndn1 → 0 as n→∞ and d̃n1 ≤ dn1 we conclude that n(κ̄1− ρn1 )→ 0. (A nearly identical

argument also proves n(κ̄2 − ρn2 )→ 0, if κ̄1 + κ̄2 < 1.)

Step 3. This step proves the dn2 rate of convergence in the capacitated case, (A.6). F2(·)

is continuously differentiable, so there exists some d̃n2 ∈ [d̄2, d
n
2 ] such that

n(κ̄2 − ρn2 ) = n(dn2 − d̄2)
c2Λ̂2f2(p̄2 + c2d̃

n
2 )

µ
,

and f2(p̄2 + c2d̃
n
2 ) → f2(p̄2 + c2d̄2) > 0. Note that (1 − ρn) = (κ̄1 − ρn1 ) + (κ̄2 − ρn2 ), which

combined with the result of Step 2, gives us

lim
n→∞

n(1− ρn) = lim
n→∞

n(κ̄2 − ρn2 ) =
c2Λ̂2f2(p̄2 + c2d̄2)

µ
lim
n→∞

n(dn2 − d̄2).

Recall that dn2 − d̄2 = max{EDn
2 − d̄2,EDn

1} and therefore

lim
n→∞

n(dn2 − d̄2) = max
{

lim
n→∞

n(EDn
2 − d̄2), 0

}
.

If limn→∞ n(EDn
2 − d̄2) ≤ 0 then n(1 − ρn) → 0 and, by Lemma A.2, EDn

2 ≥ EDn → ∞, a

contradiction. Similarly, if limn→∞ n(EDn
2−d̄2) =∞ then EDn → 0 and therefore EDn

2 → 0,

again a contradiction. Therefore, it must be that

lim
n→∞

n(EDn
2 − d̄2) =

1

c2κ̄2d̄2Λ̂2f2(p̄2 + c2d̄2)
∈ (0,∞)

since ρn1EDn
1 + ρn2EDn

2 = (ρn1 + ρn2 )EDn implying EDn → κ̄d̄2 and n(1 − ρn) → 1/µκ̄2d̄2.

Therefore dn2 = d̄2 +O(1/n), proving the remainder of (A.6).
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Proof of Theorem 2.4. It suffices to show that the delays (dn1 , d
n
2 ) from Proposition 2.3 are

incentive compatible for sufficiently large n. If incentive compatibility is satisfied, then it

is a Nash equilibrium for customers to truthfully report their types and valuations. This

allows us to drop the assumption that customers choose the correct service class and thus

define, for any n ≥ Nic, a system where the customer demand model is given by (2.2)-(2.3),

under which an equilibrium exists, and where the prices and equilibrium delays are incentive

compatible.

Applying Proposition 2.1(b) to the incentive compatibility conditions, the delays (dn1 , d
n
2 )

are incentive compatible if

d̄2 ≤ (dn2 − dn1 ) ≤ c1

c2

d̄2. (A.7)

From Proposition 2.3(b) we have that dn1 → 0 and dn2 → d̄2 as n→∞ Since c1/c2 > 1, there

exists some Nic such that for all n ≥ Nic, d
n
2 − dn1 ≤ c1

c2
d̄2. Strategic delay δn2 ensures that

the left hand inequality is satisfied for all n.

In the capacitated case, the results of Lemma A.3 show that

dn2 = max{EDn
2 , d̄2 + EDn

1} = max{d̄2 +O(1/n), d̄2 + o(1/n)}

and therefore EDn
2 > d̄2 + EDn

1 and δn2 = 0 for all n sufficiently large (this may be larger

than Nic).

This concludes the proof.

Proof of Theorem 2.5. By Theorem 2.4, for any n ≥ Nic, the prescribed solution is incentive

compatible and customers choose the “correct” service class. We write the revenues earned

in the nth system as

Rn = p̄1λ
n
1 + p̄2λ

n
2 = nµ(p̄1ρ

n
1 + p̄2ρ

n
2 )
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where λni = Λn
i F̄i(p̄i + cid

n
i ) and ρni = λni /nµ. Therefore

Rn = nµ(p̄1κ̄1 + p̄2κ̄2)− µp̄1n(κ̄1 − ρn1 )− µp̄2n(κ̄2 − ρn2 )

=
nR̄

s
− µp̄1n(κ̄1 − ρn1 )− µp̄2n(κ̄2 − ρn2 ).

From (A.5) and (A.6) we have that n(κ̄1−ρn1 )→ 0 while, if the DR solution is uncapacitated

n(κ̄2 − ρn2 ) → 0 and if the DR solution is capacitated n(κ̄2 − ρn2 ) → 1/µκ̄2d̄2. Therefore,

there exists a finite, positive constant M such that

n(κ̄1 − ρn1 ) + n(κ̄2 − ρn2 ) ≤M for all n ≥ Nic.

Proof of Theorem 2.6. By Theorem 2.4, for any n ≥ Nic, the prescribed solution is incentive

compatible and customers choose the “correct” service class. Therefore, all the assumptions

of Proposition 2.3 and Lemma A.3 are satisfied for the sequence of systems indexed by n,

starting at Nic, and the results of Proposition 2.3 and Lemma A.3 hold. In particular, a

unique sequence of equilibria exists, the equilibrium delays converges to the DR solution,

and as n→∞, if the DR solution is uncapacitated,

ρn1 = κ̄1 + o(1/n) and ρn2 = κ̄2 + o(1/n),

while if the DR solution is capacitated,

ρn1 = κ̄1 + o(1/n) and ρn2 = κ̄2 −
α

n
+ o(1/n).

where α = 1/µκ̄2d̄2. This concludes the proof.

113



A.2 Additional Proofs

Queueing Dynamics

We represent the control policy π as an allocation process π(t) : [0,∞) → Zk+, where

πj(t) is the number of servers processing class j customers at time t. We require πj(t) to be

right continuous with left limits and Lebesgue integrable. As an example, consider a strict

preemptive priority policy, with highest priority given to class 1 and lowest given to class k.

Under such a policy, an arriving class j customer interrupts any lower-priority customer in

service, from classes j+1, . . . , k. If all servers are serving higher- or equal-priority customers,

the arriving customer waits in queue. As long as the queues of all higher-priority classes are

empty, then idle servers may resume interrupted lower-priority customers (from highest to

lowest priority and in the order that they were interrupted) and start working on customers

from the highest-priority non-empty queue. In other words, all processing capacity is first

applied to class 1 and any remaining capacity is then successively applied to class 2, then to

class 3, and so on. Such a policy can be expressed as follows:

π1(t) = min{s, Z1(t)} πj(t) = min{(s− Z1(t)− · · · − Zj−1(t))+ , Zj(t)}, j = 2, . . . , k,

(A.8)

where (Z1(t), . . . , Zk(t)) is the headcount process defined below.

We now define the system dynamics for fixed arrival rate vector λ = (λ1, . . . , λk) and

control policy π(t). Consider 2k mutually independent unit-rate Poisson processes, N
(a)
j (t)

and N
(s)
j (t) for j = 1, . . . , k. N

(a)
j (λjt) is the number of customers that have arrived into

class j by time t and N
(s)
j

(∫ t
0
µπj(s) ds

)
is the number of class j customers that have

completed service by time t. The system may be described in terms of the “headcount
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process” ((Z1(t), . . . , Zk(t)) : 0 ≤ t < ∞) where Zj(t) is the number of class j cus-

tomers in the system excluding the delay node at time t, and the “queue length process”

((Q1(t), . . . , Qk(t)) : 0 ≤ t <∞) where Qj(t) is the number of class j customers in queue at

time t. These processes must jointly satisfy the following conditions:

k∑
j=1

πj(t) = min

{
s,

k∑
j=1

Zj(t)

}
, (A.9)

Qj(t) = Zj(t)− πj(t) ≥ 0 for j = 1, . . . , k, (A.10)

Zj(t) = N
(a)
j (λjt)−N (s)

j

(∫ t

0

µπj(s) ds

)
≥ 0 for j = 1, . . . , k. (A.11)

Condition (A.9) ensures the total number of servers working at any time does not exceed s,

and that no servers idle while there are customers waiting in the queue. Condition (A.10)

restricts the number of servers working on class j customers to be at most the number of class

j customers in the system at that time. Condition (A.11) describes the system dynamics.

We require that the control π, (π1(t), . . . , πk(t)) be adapted to the filtration generated by

(Z1(t), . . . , Zk(t)).

Proof of Proposition 2.1. We prove the general N -type case stated in (2.17). Note that in

the case of additive, linear delay costs, local incentive compatibility implies global incentive

compatibility. This is also shown in Lemma 2 of Katta and Sethuraman (2005) although we

clarify that the assumption d1 ≤ d2 ≤ . . . dN is redundant.

Lemma A.4 (Local incentive compatibility implies global incentive compatibility.).

pi + cidi ≤ pi+1 + cidi+1 for i = 1, . . . , N − 1

pi + cidi ≤ pi−1 + cidi−1 for i = 2, . . . , N
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implies

pi + cidi ≤ pj + cidj for all i, j = 1, . . . , N.

Proof of Lemma A.4. First, we note that local incentive compatibility is equivalent to

ci+1(di+1 − di) ≤ pi − pi+1 ≤ ci(di+1 − di)

and since ci > ci+1 this implies that di+1 ≥ di and pi ≥ pi+1. We now prove by induction.

Fix i ∈ 1, . . . , N − 2. For j > i, assume pi + cidi ≤ pj + cidj (the base case j = i + 1 is

true by local incentive compatibility).

pj+1 + cidj+1 = pj+1 + cjdj+1 + (ci − cj)dj+1

≥ pj + cjdj + (ci − cj)dj+1

= pj + cidj + (ci − cj)(dj+1 − dj)

≥ pi + cidi

Fix i ∈ 3, . . . , N . For j < i, assume pi + cidi ≤ pj + cidj (the base case j = i− 1 is true

by local incentive compatibility).

pj−1 + cidj−1 = pj−1 + cjdj−1 − (cj − ci)dj−1

≥ pj + cjdj − (cj − ci)dj−1

= pj + cidj + (cj − ci)(dj − dj−1)

≥ pi + cidi

This concludes the proof of Lemma A.4.

Supposing each property does not hold for a feasible solution (p1, . . . , pN), (d1, . . . , dN),

we construct an alternative solution (p̆1, . . . , p̆N), (d̆1, . . . , d̆N), that satisfies the property, is
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feasible, and achieves at least as high a revenue rate. In particular, the alternative solution

is constructed to satisfy p̆i + cid̆i = pi + cidi for all i = 1, . . . , N , which guarantees that the

capacity constraint is satisfied, and it is trivial to check local incentive compatibility and

therefore global incentive compatibility.

Proof of (a). Suppose d1 > 0. Take p̆1 = p1 + c1d1, d̆1 = 0, and p̆i = pi, d̆i = di for

i = 2, . . . , N . Note that if F̄1(p1 + c1d1) > 0 then revenues are strictly improved.

Proof of (b). Suppose pi + cidi < pi+1 + cidi+1. Take

p̆i+1 =
ci(pi+1 + ci+1di+1)− ci+1(pi + cidi)

ci − ci+1

d̆i+1 =
pi + cidi − pi+1 − ci+1di+1

ci − ci+1

and p̆j = pj, d̆j = dj for j 6= i + 1. Note that if F̄i+1(pi+1 + ci+1di+1) > 0 then revenues are

strictly improved.

Proof of Proposition 2.7. A feasible solution that satisfies (2.17) implies

di = di−1 +
1

ci−1

(pi−1 − pi).

Since incentive compatibility implies p1 ≥ p2 ≥ · · · ≥ pN , we see that if pi = pj for some i > j

then pi = pi+1 = · · · = pj and di = di+1 = · · · = dj. Therefore the sets {A(1), . . . , A(N)} must

have the structure described. Note that it is possible for i ∈ A(j) and F̄i(p(j) + cid(j)) = 0, in

which case no type i customers will purchase service. However, the solution will still segment

the market such that type i customers are in the jth segment.

Proof of Lemma A.1. Apply Proposition 2.1 to reduce the deterministic relaxation (2.7) to
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two variables p1 and p2, and set c := c2
c1
< 1,

maximize Λ1p1F̄1(p1) + Λ2p2F̄2(cp1 + (1− c)p2) (A.12)

subject to p1 ≥ p2

Λ1F̄1(p1) + Λ2F̄2(cp1 + (1− c)p2) ≤ sµ.

Equations (A.2) and (A.3) follow from the KKT necessary conditions of (A.12).

Proof of Lemma A.2. Lemma A.2 follows immediately from Lemma A.5 and the M/M/n

delay formula.

Lemma A.5 (Halfin and Whitt). Given a sequence of single-class M/M/n systems, indexed

by n, with arrival rate λn and service rate µ, we define ρn = λn

nµ
and νn = P(Zn ≥ n), the

probability that all servers are busy.

(a) If
√
n(1− ρn)→ 0 then νn → 1.

(b)
√
n(1− ρn)→ β ∈ (0,∞) if and only if νn → ν ∈ (0, 1).

(c) If
√
n(1− ρn)→∞ then νn → 0.

Proof of Proposition 2.8.

Proof of (a). Let EDn
j∗ be the queueing delay for class j, j = 1, . . . , N , in the nth

system operating under the optimal prices pnj∗ and a strict priority rule. Let W n
∗ be the

optimal social welfare under this solution.

Let EDn
soc be the queueing delay in the nth system operating with a single service class

at price p̂soc and let W n
soc be the resulting social welfare. We first show that EDn

soc → 0.
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Define ρnsoc to be the utilization in the nth system and note that

ρnsoc =
N∑
j=1

Λn
j

nµ
F̄j(p̂soc + cjEDn

soc) <
N∑
j=1

Λn
j

nµ
F̄j(p̂

n
soc) ≤ 1 for all n.

If limn→∞ EDn
soc > 0 then limn→∞ ρ

n
soc < 1 implying that limn→∞ EDn

soc = 0, in contradiction.

If limn→∞ p
n
j∗ 6= p̂soc then Wn

∗
Wn
soc

< 1 for sufficiently large n, in contradiction.

Proof of (b). We can write the queueing delays in each class as

EDn
1∗ = ψn(ρn1∗), and EDn

j∗ =
ωnj∗ψ

n(ωnj∗)

ρnj∗
−
ωn(j−1)∗ψ

n(ωn(j−1)∗)

ρnj∗
for j = 2, . . . , N.

(A.13)

where ωnj∗ :=
∑j

`=1 ρ
n
`∗ for j = 1, . . . , N ,

νn(x) :=

(
n−1∑
j=0

(nx)j

j!
+

(nx)n

n!(1− x)

)−1

(nx)n

n!(1− x)
and ψn(x) :=

νn(x)

nµ(1− x)
. (A.14)

Note that νn(x) is the formula for probability of delay and ψn(x) is the formula for expected

delay in a standard M/M/n queue in stationarity, each as a function of traffic intensity

x ∈ [0, 1).

Define

κj∗ :=
Λ̂jF̄j(p̂soc)

µ
for j = 1, . . . , N.

From part (a) we have ρnj∗ → κj∗. Since
∑N−1

j=1 κj∗ < 1, we have that, n(κj∗ − ρnj∗) → 0 for

all j = 1, . . . , N − 1 (see Step 2 in the proof of Lemma A.3) and therefore
√
n(κj∗−ρnj∗)→ 0

for all j = 1, . . . , N − 1. It remains to show that
√
n(κN∗ − ρnN∗)→ β ∈ (0,∞).

FN(·) is continuously differentiable, so there exists some d̃n ∈ [0,EDn
N∗] such that

(κN∗ − ρnN∗) = EDn
N∗

Λ̂NfN(pnN∗ + cN d̃
n)

µ
.
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According to the formulas above, we can write

EDn
N∗ =

ωnN∗
ρnN∗

νn(ωnN∗)

nµ(1− ωnN∗)
−
ωn(N−1)∗

ρnN∗

νn(ωn(N−1)∗)

nµ(1− ωn(N−1)∗)

n(1− ωnN∗)EDn
N∗ =

ωnN∗
µρnN∗

(
νn(ωnN∗)−

ωn(N−1)∗

ωnN∗

(1− ωnN∗)
(1− ωn(N−1)∗)

νn(ωn(N−1)∗)

)

lim
n→∞

n(1− ωnN∗)EDn
N∗ =

1

µκN∗
lim
n→∞

νn(ωnN∗).

Also, note that

n(1− ωnN∗)(κN∗ − ρnN∗) =
N−1∑
j=1

n
(
κnj∗ − ρnj∗

)
(κN∗ − ρnN∗) + n(κN∗ − ρnN∗)2

lim
n→∞

n(1− ωnN∗)(κN∗ − ρnN∗) = lim
n→∞

n(κN∗ − ρnN∗)2.

Therefore, we have that

(
lim
n→∞

√
n(κN∗ − ρnN∗)

)2

=
Λ̂NfN(p̂soc)

µ2κN∗
lim
n→∞

νn(ωnN∗).

By Lemma A.5, it must be that
√
n(κN∗ − ρnN∗)→ β ∈ (0,∞).

Multi-Type KKT conditions

The equivalent of Proposition 2.2 in the multi-type case simply shows whether there is a

single-class or there is more than one class. In the two-type case, this covered the only two

possibilities, but there are multiple ways to segment N types into k = 2, . . . , N − 1 classes

(although Lemma 2.7 vastly reduces the possible combinations).

The KKT conditions for the multi-type problem give us necessary conditions for when k

classes are optimal. p̂(1) > p̂(2) > · · · > p̂(k) is an optimal solution only if

p̂(j)

∑mj
`=i

(
1− c`

ci−1

)
θ`∑N

`=i λi
≤
p̂(j)

∑
`∈A(j)

(
1− c`

cmj−1

)
θ`∑

`∈A(j)
λ`

for j = 2, . . . , k
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where mj is the index of the least delay sensitive customer type in market segment A(j),

θ` := Λ`f`(p̄` + c`d̄`), and λ` := Λ`F̄`(p̄` + c`d̄`). This extends the intuition that a given

k-class solution is not optimal if we can find a subset {i, i+ 1, . . . ,mj} within a segment A(j)

whose elasticity is sufficiently greater than the overall elasticity of that segment. If that is

the case, then revenues can be improved by separating out that subset (which, of course,

must continue to satisfy the structure of equation (2.17) and Lemma 2.7).

Lemma A.6. Let (A(1), . . . , A(k)) and (p̂(1), . . . , p̂(k)) be the solution to the k-product problem.

Then it is the solution to the N-product problem only if

p̂(k)

∑N
`=i

(
1− c`

ci−1

)
θ`∑N

`=i λi
≤
p̂(k)

∑
`∈A(k)

(
1− c`

cmk−1

)
θ`∑

`∈A(k)
λ`

Proof. Equation (2.17) allows us to consider the equivalent but simplified problem.

maximize
N∑
i=1

ΛipiF̄i

(
ci

i∑
k=1

ηkpk

)

subject to
N∑
i=1

ΛiF̄i

(
ci

i∑
k=1

ηkpk

)
≤ µ

p1 ≥ p2 ≥ · · · ≥ pN ≥ 0

where the (strictly) positive constants η1, . . . , ηN are defined as

η1 :=
1

c1

η` :=
1

c`
− 1

c`−1

` = 2, . . . , N.

Note that ci
∑i

`=1 η` = 1 for any i = 1, . . . , N .

Assuming that F̄i(p) is differentiable on (0,∞) for all i = 1, . . . , N , we define

λi := ΛiF̄i

(
ci

i∑
`=1

η`p`

)
i = 1, . . . , N

θi := Λifi

(
ci

i∑
`=1

η`p`

)
i = 1, . . . , N
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Suppose the optimal solution has k ∈ {1, . . . , N} service classes with associated prices

p̂(1) > p̂(2) > · · · > p̂(k). By Proposition (b), the customer types {1, . . . , n} are partitioned

into the sets {A(1), . . . , A(k)} where pi = p̂(j) for all i ∈ A(j) and with indices m1, . . . ,mk−1

such that pj+1 = pmj+1 > pmj = p̂(j). We define

η̂(1) :=
1

cm1

η̂(j) :=
1

cmj
− 1

cmj−1

We know that qmj+1 = 0 for all j = 1, . . . , k and

pi + cidi =


p̂(1) i ∈ A(1)

ci
cm1

p̂(1) +
∑j−1

`=2

(
ci
cm`
− ci

cm`−1

)
p̂(`) +

(
1− ci

cmj−1

)
p̂(j) i ∈ A(j), j = 2, . . . , k

di =

j∑
`=1

η̂(`)p̂(`) −
1

cmj
p̂(j)

The KKT conditions yield

(p̂(k) − q1) =
γ(k)∑

i∈A(k)

(
1− ci

cmk−1

)
θi

(p̂(j) − q1) =
γ(j)∑

i∈A(j)

(
1− ci

cmj−1

)
θi

1−
k∑

`=j+1

p̂(`) − q1

γ(j)

∑
i∈A(`)

(
ci

cm`−1

− ci
cm`−2

)
θi

 j = 2, . . . , k − 1

(p̂(1) − q1) =
γ(1)∑
i∈A(1)

θi

1−
k∑
`=2

p̂(`) − q1

γ(1)

∑
i∈A(`)

(
ci

cm`−1

− ci
cm`−2

)
θi


Combining the conditions qi ≥ 0 for all i ∈ A(k) with the expression (p̂(k) − q1) above, we

have

p̂(k)

∑N
`=i

(
1− c`

ci−1

)
θ`∑N

`=i λi
≤
p̂(k)

∑
`∈A(k)

(
1− c`

cmk−1

)
θ`∑

`∈A(k)
λ`

for all i ∈ A(k)

We also have the condition that p̂(k−1) > p̂(k), which we write∑
i∈A(k)

(
1− ci

cmk−1

)
θi

γ(k)

1−
γ(k)

γ(k−1)

∑
i∈A(k)

(
ci

cmk−1
− ci

cmk−2

)
θi∑

i∈A(k)

(
1− ci

cmk−1

)
θi

 >

∑
i∈Ak−1

(
1− ci

cmk−2

)
θi

γ(k−1)

122



Appendix B

Chapter 3 Proofs

Proof of Lemma 3.1. The upper bound is easy to verify,

Hn(x) =
x∑
k=1

1

k
F̄ n

(
τ

x− k + 1

)
≤ F̄ n

(τ
x

) x∑
k=1

1

k
≤ F̄ n

(τ
x

)
(log(x) + 1).

The interpretation is that Un(x) considers all customers to be discouraged as soon as a single

customer is discouraged, xv > τ . The abandonments then occur with the usual probabilities.

Therefore, Un(x) upper bounds the frequency of abandonment waves.

For the lower bound, we only consider k ∈ [x/(1 + ε), x] for any ε ∈ (0, x− 1].

Hn(x) =
x∑
k=1

1

x− k + 1
F̄ n
(τ
k

)
≥

x∑
k=bx/(1+ε)c+1

1

x− k + 1
F̄ n
(τ
k

)
≥ F̄ n

(τ
x

(1 + ε)
) x∑
k=bx/(1+ε)c+1

1

x− k + 1

≥ F̄ n
(τ
x

(1 + ε)
)∫ x

x/(1+ε)+1

1

x− k + 1
dk

= F̄ n
(τ
x

(1 + ε)
)

log

(
x

ε

1 + ε

)
For Ln(x) in (3.17) and throughout this paper, we take ε = 1/ log(x) so lower bound is valid

for x ≥ 3. In general, the choice of ε may depend on the service time distribution.
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Proof of Lemma 3.2. We will show that

Un(αnx) ∼ (log(n))1−µτ/x and Ln(αnx) ∼ (log(n))1−µτ/x

For the upper bound,

Un(αnx) = exp
(
−nµτ
αnx

)
(log(αnx) + 1)

= exp
(
− log(log(n))

µτ

x

)(
log(n) + log

(
x

log log(n)

)
+ 1

)
= (log(n))−µτ/x(log(n) + o(log(n)))

∼ (log(n))1−µτ/x

For the lower bound,

Ln(αnx) = exp

(
−nµτ
αnx

(
1 +

1

log(n)

))
log

(
αnx

1

log(n) + 1

)
= (log(n))−µτ/x exp

(
− log(log(n))

log(n)

)(
log(n) + log

(
x

(log log(n))(log(n) + 1)

))
= (log(n))−µτ/x exp

(
− log(log(n))

log(n)

)
(log(n) + o(log(n)))

∼ (log(n))1−µτ/x

noting that

log(log(n))

log(n)
→ 0 as n→∞.

Proof of Lemma 3.3. As with the proof of Lemma 3.2, it suffices show that

Un

(
αnµτ

1− log(x)
log log(n)

)
→ x and Ln

(
αnµτ

1− log(x)
log log(n)

)
→ x

We note that

αnµτ

1− log(x)
log log(n)

=
nµτ

log(log(n)/x)
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and show the result for the upper bound

Un

(
αnµτ

1− log(x)
log log(n)

)
= exp

(
− log

(
log(n)

x

))(
log(αnµτ)− log

(
1− log(x)

log log(n)

)
+ 1

)

=
x

log(n)
(log(n) + o(log(n)))

→ x.

The proof for the lower bound is entirely analogous.

Proof of Proposition 3.4. We prove the result for the case that q̄0 < µτ .

Fix some ε > 0 and define

xn = αnµτ

(
1− log(ρ− 1− ε)

log log(n)

)−1

so that

Hn(xn)→ ρ− 1− ε

and consider the following function

Q̂n(t) = Q̄n(0) + nµ

(
(ρ− 1)t−

∫ t

0

Hn(xn) ds

)
= Q̄n(0) + nµt ((ρ− 1)−Hn(xn))

which is a lower bound Q̂n(t) < Q̄n(t) for all t such that Q̄n(t) < xn.

For n sufficiently large such that xn < q̄n (and hence Hn(xn) < ρ− 1), let tn be the time

that Q̂n(tn) = xn:

tn =
xn − Q̄n(0)

nµ(ρ− 1−Hn(xn))
=

(xn − Q̄n(0))/αn

log log(n)(ρ− 1−Hn(xn))
.

We note that

xn − Q̄n(0)

αn
→ µτ − q̄0 and ρ− 1−Hn(xn)→ ε
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and therefore tn → 0 as n→∞.

Since Q̄n(t) is continuous and monotone and Q̂n(t) ≤ Q̄n(t) ≤ q̄n, we have that

xn ≤ Q̄n(t) ≤ q̄n for all t ≥ tn.

Finally, xn/αn → µτ and q̄n/αn → µτ , we obtain our result.

The proof for q̄0 > µτ is essentially the same (choose xn ≥ q̄n such thatHn(xn)→ ρ−1+ε)

and q̄0 = µτ is the trivial case.

B.1 Proof of Proposition 3.5 and associated results

The results in this section lay the groundwork for the proof of Proposition 3.5. The starting

point is the the embedded Markov chain formulation, which we pair with our insight from

the asymptotic behavior of Hn(q). The Markov chain is a process that reverts to the level

q̄n. When Qn
i < q̄n there tend to be relatively few abandonments and the excess arrival rate

will tend to increase the queue length. When Qn
i > q̄n the abandonments tend to outpace

the excess arrivals, diminishing the queue length. The goal is to show that the paths that do

not adhere to this behavior happen with sufficiently small probability (O(1/n1+ε) for some

ε > 0) and then apply the Borel-Cantelli Lemma to conclude that, for n large enough, such

paths occur with probability 0.

Rather than trying to directly analyze the Markov chain, we formulate and analyze two

related reflected random walks, which are chosen to pathwise bound the queue length Markov

chain (Lemma B.1). Therefore, we may upper (respectively, lower) bound the queue length

process by upper (resp., lower) bounding the Q̃n (resp., Q̂n) process. The analysis of the
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bounding processes implement standard approaches for reflected random walks using the

martingale optional stopping theorem.

We begin by constructing a random walk on the same probability space. For any fixed n

and qn we define the sequence of independent and identically distributed random variables

{ξni }

ξni = Ani − 1−
(qn−bτ/vni c)

+∑
j=1

Xij. (B.1)

This is identical to Qn
i except that “abandonments” occur as if the queue length was fixed

at qn. We note that

E [ξni ] = ρ− 1−Hn(qn).

We define the random walk

Snk =
k∑
i=1

ξni . (B.2)

The random walk Snk (and its i.i.d. increments ξni ) should be thought of as being parameter-

ized by qn. Depending on the bounds we want to provide on Qn
i , we will choose qn differently

(say, greater or less than the equilibrium level q̄n). We will also scale our choice of qn with

n.

For each Snk (that is, for each n and choice of qn) we may define two reflected random

walks.

Q̃n
k = qn + Snk + max

0≤i≤k
(−Sni )+ (B.3)

is the random walk starting at qn with a lower reflecting barrier at qn (Q̃n
k ≥ qn pathwise).

Q̂n
k = Snk − max

0≤i≤k
(Sni − qn)+ (B.4)

is the random walk starting at 0 with an upper reflecting barrier at qn (Q̂n
k ≤ qn pathwise).

Of course, we will only use Q̃n
k for qn > q̄n and Q̂n

k for qn < q̄n.
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Lemma B.1. If Qn(0) ≤ qn and qn > q̄n then the reflected random walk Q̃n
i is a pathwise

dominant process. For every ω ∈ Ω and all i ≥ 0,

Qn
i ≤ Q̃n

i .

If qn < q̄n then the reflected random walk Q̂n
i is a pathwise dominated process. For every

ω ∈ Ω and all i ≥ 0,

Qn
i ≥ Q̂n

i .

Proof of Lemma B.1. The upper bound process Q̃n has a lower reflecting barrier at qn > q̄n

(i.e., Q̃n
i ≥ qn for all i) and has abandonments based on a “queue length” of qn, even for

Q̃n
i−1 > qn. When Qn

i < qn the reflecting barrier maintains the ordering Qn
i < Q̃n

i . When

Qn
i > qn, the number of abandonments is at least that of Q̃n, so Qn

i ≥ Q̃n
i for all i.

Assume Q̃n
i−1 ≥ Qn

i−1. We note that

Q̃n
i −Qn

i = (Q̃n
i−1 −Qn

i−1) + (Rn
i − R̃n

i ).

For Qn
i−1 ≥ qn,

Rn
i − R̃n

i =

(Qni−1−bτ/vni c)+∑
j=1

Xij −
(qn−bτ/vni c)+∑

j=1

Xij =

(Qni−1−bτ/vni c)+∑
j=(qn−bτ/vni c)++1

Xij ≥ 0.

For Qn
i−1 ≤ qn − 1,

Rn
i − R̃n

i = −
(qn−bτ/vni c)+∑

j=(Qni−1−bτ/vni c)++1

Xij ≥ −(qn −Qn
i−1)

and therefore

Q̃n
i −Qn

i ≥ Q̃n
i−1 −Qn

i−1 − qn +Qn
i−1 = Q̃n

i−1 − qn ≥ 0.

Since Qn
0 ≤ qn = Q̃n

0 , we conclude that Q̃n
i ≥ Qn

i for all i.
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Similarly, the lower bound process Q̂n has a lower reflecting barrier at 0, an upper re-

flecting barrier at qn < q̄n (i.e. 0 ≤ Q̂n
i ≤ qn for all i), and has abandonments based on a

“queue length” of qn, even for Q̂n
i−1 < qn. When Qn

i > qn the reflecting barrier maintains

the ordering Qn
i > Q̂n

i . When Qn
i < qn, the number of abandonments is at most that of the

Q̂n process, so Qn
i ≥ Q̂n

i for all i. The analogous argument applies for Q̂n
i .

Since we construct Q̃n and Q̂n based on the random walk Sn (for the appropriately chosen

parameter qn) defined in (B.2), we first establish some properties and results regarding Sn.

For fixed n and qn, Lemma B.2 provides an expression for Mn
qn(θ) := E

[
eθξ

n
i

]
, the moment

generating function (MGF) of the i.i.d. random walk increment ξni . Lemma B.3 further

establishes the existence (for qn 6= q̄n) of a value θn such that Mn
qn(θn) = 1. Hence eθ

nSni is

an exponential martingale.

Lemma B.2. For fixed n and qn and any θ < log(1 + 1/ρ), we set

Mn
qn(θ) := E

[
eθξ

n
i
]

= e−θ
µ

γ(θ)

(
1 +

qn∑
k=1

exp

(
− nγ(θ)τ

q − k + 1

)
(e−θ − 1)

k!

[
k−1∏
j=1

(
e−θ − 1 + j

)])
.

to be the moment generating function of ξni . Here

γ(θ) := µ+ λ(1− eθ).

Proof of Lemma B.2. We first calculate

E
[
eθξ

n
i
]

= e−θE
[
eθ(A

n
i −R̃ni )

]

Conditional on vni so Ani ∼ Poisson(nλvni ) distribution and R̃n
i is the sum of qn indepen-
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dent (but not identically distributed) Bernoulli random variables. Therefore

E
[
eθ(A

n
i −R̃ni )

]
=

∫ ∞
0

nµe−nµv
∞∑
`=0

eθ`e−nλv
n
i

(nλvni )`

`!

(q−bτ/vc)+∏
j=1

(
1

j
e−θ +

(
1− 1

j

))
dv

=

∫ ∞
0

nµe−nµve−nλv(1−eθ)

(q−bτ/vc)+∏
j=1

(
1

j
e−θ +

(
1− 1

j

))
dv

=

∫ ∞
0

nµe−n(µ+λ−λeθ)v

(q−bτ/vc)+∏
j=1

(
1

j
e−θ +

(
1− 1

j

))
dv

=
µ

γ(θ)

∫ ∞
0

nγ(θ)e−nγ(θ)v

(q−bτ/vc)+∏
j=1

(
1

j
e−θ +

(
1− 1

j

))
dv

where

γ(θ) = µ+ λ(1− eθ).

We note that, this can be written as

E
[
eθ(A

n
i −R̃ni )

]
=

µ

γ(θ)
Eγ(θ)

[
e−θR̃

n
i

]
(B.5)

where Eγ(θ) [·] is the expectation taken under vni ∼ Exponential(γ(θ)).

We consider E
[
e−θR̃

n
i

]
,

E
[
e−θR̃

n
i

]
=

∫ ∞
0

fn(v)

(q−bτ/vc)+∏
j=1

(
1

j
e−θ +

(
1− 1

j

))
dv

where fn(x) = nµe−nµx. Note that

v ∈ (τ,∞) ⇐⇒
⌊τ
v

⌋
= 0

v ∈
(
τ

k
,

τ

k − 1

]
⇐⇒

⌊τ
v

⌋
= k − 1 k = 2, . . . , q

v ∈
[
0,
τ

q

]
⇐⇒

⌊τ
v

⌋
= q

so the product in the integrand splits [0,∞) into k+1 subintervals and the integral becomes∫ ∞
τ

fn(v)

q∏
j=1

(
j + e−θ − 1

j

)
dv +

q∑
k=2

∫ τ/(k−1)

τ/k

fn(v)

q−k+1∏
j=1

(
j + e−θ − 1

j

)
dv +

∫ τ/q

0

fn(v) dv
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which we write as

E
[
e−θR̃

n
i

]
=

q∑
k=1

mn(k)

[
q−k+1∏
j=1

(
j + e−θ − 1

j

)]
+ 1− F̄ n

(
τ

q

)
.

Using the identity

q∑
k=1

mn(k)

[
q−k+1∏
j=1

(
j + e−θ − 1

j

)]
−F̄ n

(
τ

q

)
= (e−θ−1)

q∑
k=1

F̄ n

(
τ

q − k + 1

) ∏k−1
j=1

(
j + e−θ − 1

)
k!

we simplify the expression to

E
[
e−θR̃

n
i

]
= 1 + (e−θ − 1)

q∑
k=1

F̄ n

(
τ

q − k + 1

) ∏k−1
j=1

(
j + e−θ − 1

)
k!

. (B.6)

Combining (B.5) and (B.6), we get that the MGF of ξni is

E
[
eθξ

n
i
]

= e−θ
µ

γ(θ)

(
1 +

q∑
k=1

F̄ n
γ(θ)

(
τ

q − k + 1

)
(e−θ − 1)

k!

[
k−1∏
j=1

(
e−θ − 1 + j

)])
.

Lemma B.3. For every n and qn, there exists θn 6= 0 such that

E
[
eθ
nξni
]

= 1.

For qn < q̄n, θn < 0, and for qn > q̄n, θn > 0.

Proof of Lemma B.3. Note that Mn
qn(θ) is continuous and differentiable in a neighborhood

of 0. Mn
qn(0) = 1 and

d

dθ
Mn

qn(θ)

∣∣∣∣
θ=0

= E
[
Ani − 1− R̃n

i

]
= ρ− 1−Hn(q).

so E
[
eθξ

n
i

]
< 1 in a neighborhood of 0. We consider separately the cases qn < q̄n and

qn > q̄n. Since Mn
qn(θ) is continuous, it suffices to show that there exists some θ 6= 0 such

that Mn
qn(θ) > 1.
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If qn < q̄n, there exists some θ < 0 such that E
[
eθξ

n
i

]
< 1. Set θ = − log(ρ) < 0,

so e−θ > 1 and e−θµ/γ(θ) = 1. Therefore, there exists some θn ∈ (− log(ρ), 0) such that

E
[
eθ
nξni
]

= 1.

If q > q̄n, there exists some θ > 0 such that E
[
eθξ

n
i

]
< 1. For q > q̄n, we require

θ ∈ (0, log(ρ+ 1)− log(ρ)). For some ε > 0, take

θ = log

(
ρ+ 1

ρ
− ε

ρ

)
so

γ = µ− λ(eθ − 1) = εµ and eθ = 1 +
1− ε
ρ

<
ρ+ 1

ρ

Recall that

E
[
eθξ

n
i
]

= e−θ
µ

γ(θ)
Eγ(θ)

[
e−θR̃

n
i

]
and note that

R̃n
i =

(q−bτ/vni c)+∑
j=1

Xij ≤ (log(q) + 1)1

{
vni >

τ

q

}
.

Therefore

Eγ(θ)
[
e−θR̃

n
i

]
= Eµε

exp

−θ (q−bτ/vni c)+∑
j=1

Xij


≥ Eµε

[
exp

(
−θ(log(q) + 1)1

{
vni >

τ

q

})]
=

∫ ∞
0

nµεe−nµεve−θ(log(q)+1)e−θ1{v>τ/q} dv

= q−θe−θ
(

1− F̄ n

(
ετ

q

)
+ e−θF̄ n

(
ετ

q

))
= q−θe−θ

(
1−

(
1− e−θ

)
F̄ n

(
ετ

q

))
≥ q−θe−θ

(
1−

(
1− e−θ

))
≥ q−θe−2θ.
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Therefore,

E
[
eθξ

n
i
]
>

(
ρ

ρ+ 1

)3
1

q

1

ε

and we have that E
[
eθξ

n
i

]
> 1 for some θ in the interval

θ ∈

(
0, log

(
ρ+ 1

ρ
− 1

ρq

(
ρ

ρ+ 1

)3
))

.

Armed with the exponential martingale eθ
nSni , we bound the hitting probabilities of the

random walk Sni . This applies standard methods using the martingale optional stopping

theorem (see, for example, Chapter 6.4 of Karlin and Taylor (1975)).

Lemma B.4. Fix n and qn 6= q̄n and let θn 6= 0 satisfy Mn
qn(θn) = 1. For any a and b such

that a < 0 < b, we define the stopping times

τa = inf{i : Sni ≤ a} τb = inf{i : Sni ≥ b}

If θn > 0 then

P (τb < τa) ≤
1− eθn(a−qn)

eθnb − eθ(a−qn)

If θn < 0 then

P (τa < τb) ≤
1− eθn(b+qn)

eθn(a−qn) − eθn(b+qn)

P (τb < τa) ≤
eθ
n(a−qn) − 1

eθn(a−qn) − eθn(b+qn)

Proof. Since eθS
n
k is a martingale, we apply the optional stopping theorem to get

E
[
exp

(
θSnτa∧τb

)]
= eθS

n
0 = 1

(the stopped martingale is bounded, hence uniformly integrable). From the hitting time

definitions, we also have

E
[
exp

(
θSnτa∧τb

)]
= (1− P (τb < τa))E

[
eθS

n
τa

∣∣ τa < τb
]

+ P (τb < τa)E
[
eθS

n
τb

∣∣ τb < τa
]
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and therefore

P (τb < τa) =
E
[
eθS

n
τb

∣∣ τb < τa
]
− 1

E
[
eθS

n
τb

∣∣ τb < τa
]
− E

[
eθS

n
τa

∣∣ τa < τb
] (B.7)

P (τb < τa) =
1− E

[
eθS

n
τa

∣∣ τa < τb
]

E
[
eθS

n
τb

∣∣ τb < τa
]
− E

[
eθS

n
τa

∣∣ τa < τb
] . (B.8)

We can upper and lower bound the conditional expectations by noting that

a ≥ Snτa ≥ a− qn and b ≤ Snτb .

Applying the appropriate upper and lower bounds (which depends on θn > 0 or θn < 0), we

obtain our result.

Lemma B.5. For qn > q̄n,

P

(
max

0≤i≤∞
Q̃n
i > qn + b

)
≤ e−θ

nb

where θn > 0 satisfies E
[
eθ
nξni
]

= 1.

Proof of Lemma B.5. This is proven via the standard approach of representing the reflected

random walk as the maximum of a related random walk and then applying the Martingale

Optional Stopping Theorem.

We define the random walk

S̃ni =


Snk − Snk−i, 0 ≤ i ≤ k

Snk , i > k

and note that

max
0≤i≤k

S̃nk = Snk − max
0≤i≤k

(−Sni )+

and therefore

P

(
max

0≤i≤∞
Q̃n
i > qn + b

)
= P

(
max

0≤i≤∞
S̃ni > b

)
.
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Of course, S̃ni is a random walk with i.i.d. increments that have the same distribution as Sni .

So we can apply Lemma B.4. Taking the limit as a→ −∞, we get

P

(
max

0≤i≤∞
S̃nk ≥ b

)
= lim

a→−∞
P (τb < τa) ≤ lim

a→−∞

1− eθn(a−qn)

eθnb − eθn(a−qn)
= e−θ

nb.

Lemma B.6. If q > q̄n then

E
[
eθξ
]
≤
(
1 + (ρ− 1)θ + Cθ2

) (
1− θHn(q) + θ2(log(q) + 2)2

)
(B.9)

where C > 0 is a constant.

If q < q̄n and θ > − log(2) then

E
[
eθξ
]
≤
(
1 + (ρ− 1)θ + Cθ2

)(
1 +

(
−θ +

1

2
θ2

)
qnF̄ n

(
τ

qn

))
. (B.10)

Proof of Lemma B.6. To derive the bound in (B.9), we use Taylor’s theorem to approximate

and bound various quantities in the expression for E
[
eγξ

n
i

]
.

e−θ

1− ρ(eθ − 1)
≤ 1 + (ρ− 1)θ + Cθ2 (B.11)

k−1∏
j=1

(j − (1− e−θ)) ≥ (k − 1)!
(
1− (1− e−θ)(log(k − 1) + 1)

)
(B.12)

k−1∏
j=1

(j − (1− e−θ)) ≤ k! for θ > − log(2) (B.13)

For (B.11)

e−θ

1− ρ(eθ − 1)
≤ 1 + (ρ− 1)θ + Cθ2

the first two derivatives are

d

dθ

(
e−θ

1− ρ(eθ − 1)

)
=

e−θ

1− ρ(eθ − 1)

(
ρeθ

1− ρ(eθ − 1)
− 1

)
d2

dθ2

(
e−θ

1− ρ(eθ − 1)

)
=

e−θ

1− ρ(eθ − 1)

(
2

(
ρeθ

1− ρ(eθ − 1)

)2

−
(

ρeθ

1− ρ(eθ − 1)

)
+ 1

)
.
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Since the second derivative is positive,

e−θ

1− ρ(eθ − 1)
≤ 1 + (ρ− 1)θ +

1

2
f ′′(a)θ2

for some a ∈ (0, θ). Since f ′′(a) is an increasing function and our choice of θn = log(n)/(2µταn)

decreases as n increases, we can choose C = f ′′(e/(2µτee))/2 and

e−θ

1− ρ(eθ − 1)
≤ 1 + (ρ− 1)θ + Cθ2

for all n > ee.

For (B.12), the first two derivatives of the function are

d

dx

(
k−1∏
j=1

(j − x)

)
= −

k−1∏
j=1

(j − x)
k−1∑
j=1

1

j − x

d2

dx2

(
k−1∏
j=1

(j − x)

)
=

k−1∏
j=1

(j − x)

(k−1∑
j=1

1

j − x

)2

−
k−1∑
j=1

1

(j − x)2


Since the second derivative is non-negative for all x ∈ [0, 1),

k−1∏
j=1

(j − x) ≥ (k − 1)!

(
1− x

(
k−1∑
j=1

1

j

))
≥ (k − 1)! (1− x (log(k − 1) + 1)) .

Finally, for (B.13), for all θ > − log(2), e−θ − 1 ≤ 1 and the result is immediate.

Lemma B.7. For any given ε > 0. Consider a sequence {qn} such that

lim inf
n

qn

αn
≥ µτ + ε.

Then

lim inf
n

θn ≥ (1 + ε) log(n)

εαn

where θn satisfies E
[
eθ
nξn
]

= 1.
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Proof of Lemma B.7. For qn > q̄n, we established in the proof of Lemma B.2 thatMn
qn(θ) < 1

in a neighborhood of 0 and Mn
qn(θ) > 1 for some θ > 0. Therefore, it suffices to show that

lim
n→∞

Mn
qn

(
(1 + ε) log(n)

εαn

)
< 1.

Choose n large enough so that, qn > q̄n, we can apply (B.9).

E
[
eθξ
]
≤
(
1 + (ρ− 1)θ + Cθ2

) (
1− θHn(qn) + θ2(log(qn) + 2)2

)
For

qn = αn(µτ + ε) θ =
(1 + ε) log(n)

εαn

we note that

θ(log(qn) + 2) ∼
(

1 + ε

ε

)
(log n))2

αn
= o(1)

and therefore, we can consider

Mn
qn

(
(1 + ε) log(n)

εαn

)
≤ 1− (1 + ε) log(n)

εαn
(Hn(qn)− (ρ− 1)) + o(1).

Since qn > q̄n, Hn(qn) > (ρ− 1) and we obtain our result.

Lemma B.8. For any given ε > 0. Consider a sequence {qn} such that

lim sup
n

qn

n/ log(n)
≤ µτ.

Then

lim sup
n

θn ≤ −
(

1 + ε

µτ

)
(log n)2

n

where θn satisfies E
[
eθ
nξn
]

= 1.
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Proof of Lemma B.8. For qn < q̄n, we established in the proof of Lemma B.2 thatMn
qn(θ) < 1

in a neighborhood of 0 and Mn
qn(θ) > 1 for some θ ≤ − log(ρ). Therefore, it suffices to show

that

lim
n→∞

Mn
qn

(
−
(

1 + ε

µτ

)
(log n)2

n

)
< 1.

Choose n large enough so that, qn < q̄n, we can apply (B.10).

We note that

E
[
eθξ

n
i
]
≤
(
1 + (ρ− 1)θ + Cθ2

)(
1 +

(
−θ +

1

2
θ2

)
qnF̄ n

(
τ

qn

))
.

Since

lim sup
n

qn

n/ log(n)
≤ µτ.

we have that, for large enough n,

qnF̄ n

(
τ

qn

)
≤ nµτ

log n
exp (− log n) =

µτ

log n
= o(1)

and therefore

E
[
eθξ

n
i
]
≤ 1 + θ

(
ρ− 1− µτ

log n

)
+ o(θ) < 1.

Proof of Proposition 3.5. Fix any ε > 0. For each n, set

qn = αn (max{µτ + ε, q0}) .

For every n such that qn > q̄n, let Q̃n
i be the random walk reflected at qn, defined by

(B.1)-(B.3). Since Q̃n
i is a pathwise dominating process, by Lemma B.5, we have that

P

(
max

0≤i≤∞
Qn
i > qn + αnε

)
≤ e−θ

nαnε.
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and by Lemma B.7, for all n sufficiently large,

θn ≥ (1 + ε) log(n)

εαn

and therefore

P

(
max

0≤i≤∞
Qn
i > qn + αnε

)
≤ exp

(
−(1 + ε) log(n)

εαn
εαn
)

=
1

n1+ε
.

By the Borel-Cantelli Lemma,

P

(
lim inf

n

{
max

0≤i≤∞
Qn
i ≤ M̄

})
= 1

where

M̄ = max{µτ + ε, q0}+ 2ε

for any ε > 0.

Proof of Proposition 3.6. Since Q̂n
i is a pathwise lower bound on Qn

i , it suffices to show that

P

(
∞∑
i=0

1{Q̂n
i = 0} ≥ nµτ

log(n)

)
= O

(
1

n1+ε

)
.

We define the hitting time τqn to be the first time the process reaches qn.

τqn := inf{i : Q̂n
i ≥ qn}
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Then,

P

(
∞∑
i=0

1{Q̂n
i = 0} ≥ an

)
= P

 τqn∑
i=0

1{Q̂n
i = 0}+

∞∑
i=τqn+1

1{Q̂n
i = 0} ≥ an


= P

( τqn∑
i=0

1{Q̂n
i = 0} ≥ an

)

+
an∑
`=0

P

 τqn∑
i=0

1{Q̂n
i = 0} = `,

∞∑
i=τqn+1

1{Q̂n
i = 0} ≥ an − `


≤ P

( τqn∑
i=0

1{Q̂n
i = 0} ≥ an

)
+ P

 ∞∑
i=τqn+1

1{Q̂n
i = 0} ≥ 1


= P

( τqn∑
i=0

1{Q̂n
i = 0} ≥ an

)
+ P

(
min

0≤i<∞
Q̂n
τqn+i = 0

)
.

So we can bound this by two probabilities that are easier to calculate. The first is the

probability that the number of empty periods is at least an before hitting qn. The second is

the probability that the queue ever empties after reaching qn.

Applying the bounds in Lemma B.4,

P

( τqn∑
i=0

1{Q̂n
i = 0} ≥ an

)
= P (Sni hits −an before qn) ≤ eθ

n(an+qn)

and

P

(
min

0≤i<∞
Q̂n
τqn+i = 0

)
= P

(
min

0≤i<∞
Sni ≤ −qn

)
≤ eθ

n(2qn)

where Mn
qn(θn) = 1. For qn < q̄n, θn < 0.

Take an = qn = nµτ/2 log n. By Lemma B.8, for all n sufficiently large,

θn ≤ −
(

1 + ε

µτ

)
(log n)2

n
.
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Therefore,

eθ
n2qn = eθ

n(an+qn) ≤ exp

(
−2

(
1 + ε

µτ

)(
(log n)2

n

)(
nµτ

2 log n

))
= exp (−(1 + ε) log n) =

1

n1+ε
.

And so,

P

(
∞∑
i=0

1{Q̂n
i = 0} ≥ nµτ

log n

)
= O

(
1

n1+ε

)
.

Our result then follows from Borel-Cantelli.

B.2 Proof of Proposition 3.12 and associated results.

We start with the following preliminary bound. Due to the presence of both x and y in

numerators and denominators of this bound, (B.14) is useful only when we have upper and

lower bounds on x and y.

Lemma B.9. Assume n > ee and fix some εdn ≥ 2. For any y > x ≥ 2εdn,

Hn(y)−Hn(x) ≤
(
y − x
αn

)
F̄ n

(
τ

y

)(nµτ
x

)( αn
εdn

)[
2 log(y) + 3 +

x

nµτ

]
. (B.14)

Proof of Lemma B.9. We split Hn(y) − Hn(x) into three summations. Each summation

considers a different portion of the queue in which the first discouraged customer may be.

Hn(y)−Hn(x) =
x−εdn+1∑
j=1

mn(j)

y∑
k=x+1

1

k − j + 1

+
x∑

j=x−εdn+1

mn(j)

y∑
k=x+1

1

k − j + 1

+

y∑
j=x+1

mn(j)

y−j+1∑
k=1

1

k
.
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For the first summation,

x−εdn∑
j=1

mn(j)

y∑
k=x+1

1

k − j + 1
≤

x−εdn∑
j=1

mn(j)
y − x
εdn

=
y − x
εdn

F̄ n

(
τ

x− εdn

)
≤
(
y − x
αn

)
F̄ n
(τ
x

)( αn
εdn

)

For the second summation,

x∑
j=x−εdn+1

mn(j)

y∑
k=x+1

1

k − j + 1
≤

x∑
j=x−εdn+1

mn(j)
y − x

x− j + 2

=
x∑

j=x−εdn+1

∫ j

j−1

nµτ

u2
F̄ n
(τ
u

)
du

y − x
x− j + 2

≤
x∑

j=x−εdn+1

∫ j

j−1

nµτ(y − x)

u2(x− u+ 1)
F̄ n
(τ
u

)
du

≤
(
y − x
αn

)
F̄ n
(τ
x

)
nµταn

∫ x

x−εdn

1

u2(x− u+ 1)
du

=
1

(x+ 1)2

∫ x

x−εdn

(
1

u
+

1

x− u+ 1
+
x+ 1

u2

)
du

=
1

(x+ 1)2

[
log (εdn + 1) + log

(
x

x− εdn

)
+ (x+ 1)

(
εdn

x(x− εdn)

)]
≤ 1

x2

[
log (εdn + 1) + log

(
x

x− εdn

)
+

εdn
x− εdn

]
≤
(
y − x
αn

)
F̄ n
(τ
x

)(nµτ
x

)(αn
x

)[
log (εdn + 1) +

εdn
x− εdn

+ log

(
x

x− εdn

)]
.
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And for the third summation,

y∑
j=x+1

mn(j)

y−j+1∑
k=1

1

k
≤ [log(y − x) + 1]

y∑
j=x+1

mn(j)

= [log(y − x) + 1]

∫ y

x

nµτ

u2
F̄ n
(τ
u

)
du

≤ [log(y − x) + 1]nµτF̄ n

(
τ

y

)∫ y

x

1

u2
du

= [log(y − x) + 1]nµτF̄ n

(
τ

y

)(
y − x
xy

)
=

(
y − x
αn

)
F̄ n

(
τ

y

)(nµτ
x

)(αn
y

)
[log(y − x) + 1]

In summary, we have the three bounds

x−εdn∑
j=1

mn(j)

y∑
k=x+1

1

k − j + 1
≤
(
y − x
αn

)
F̄ n
(τ
x

)( αn
εdn

)
x∑

j=x−εdn+1

mn(j)

y∑
k=x+1

1

k − j + 1
≤
(
y − x
αn

)
F̄ n
(τ
x

)(nµτ
x

)(αn
x

)
[
log (εdn) + 1 +

εdn
x− εdn

+ log

(
x

x− εdn

)]
y∑

j=x+1

mn(j)

y−j+1∑
k=1

1

k
≤
(
y − x
αn

)
F̄ n

(
τ

y

)(nµτ
x

)(αn
y

)
[log(y − x) + 1] .

Since y ≥ x ≥ 2εdn, we can write down a common upper bound since

αn

y
≤ αn

x
≤ αn

εdn

and

F̄ n
(τ
x

)
≤ F̄ n

(
τ

y

)
and

εdn
x− εdn

≤ 1
x

x− εdn
≤ x

εdn

We can thus combine the three summation bounds and simplify this to

Hn(y)−Hn(x) ≤
(
y − x
αn

)
F̄ n

(
τ

y

)(nµτ
x

)( αn
εdn

)[
2 log(y) + 3 +

x

nµτ

]
.
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We will consider five different regimes for x and y. The idea is that, if there is sufficient

separation between x and y, we can lower bound (y − x)/αn. Otherwise, we can upper and

lower bound x and y and apply (B.14). We consider separately different upper bounds for x

and y so that we can ensure a sufficiently low probability of discouraged users.

Lemma B.10. For any n > ee, if

x < y ≤ µτ
n

log(n)

then

Hn(y)−Hn(x) ≤
(
y − x
αn

)
1

log log(n)
.

Proof of Lemma B.10. For

x < y ≤ µτ
n

log(n)
,

we have,

F̄ n

(
τ

y

)
≤ F̄ n

(
log(n)

nµ

)
= exp (− log n) =

1

n

and therefore

Hn(y)−Hn(x) ≤
(
y − x
αn

)
αnF̄ n

(
τ

y

)
≤
(
y − x
αn

)
1

log log(n)
.

Lemma B.11. For any n > ee, if

x < y ≤ 1

3
µταn y − x ≥ 1

3
µτ

n

log n
.

then

Hn(y)−Hn(x) ≤
(
y − x
αn

)(
1

log log n

)(
1

log n

)(
3

µτ

)[
1 +

log(µτ)

log n

]
.
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Proof of Lemma B.11. The short queue length gives us

F̄ n

(
τ

y

)
≤ F̄ n

(
3 log log(n)

nµ

)
= exp (−3 log log n) = (log n)−3

while the separation between queue lengths gives us(
y − x
αn

)
3

µτ

log n

log log n
≥ 1.

Therefore,

Hn(y)−Hn(x) ≤ F̄ n

(
τ

y

)
[log(y − x) + 1]

≤ (log n)−3 [log(n) + 1 + log (µτ)− log(3)]

≤
(
y − x
αn

)(
3

µτ

)(
log n

log log n

)
(log n)−3 [log(n) + log(µτ)]

=

(
y − x
αn

)(
3

µτ

)(
1

log log n

)(
1

log n

)[
1 +

log(µτ)

log n

]
.

Lemma B.12. For any n > ee, if

x < y ≤ 1

3
µταn y ≥ µτ

n

log n
y − x < 1

3
µτ

n

log n

then

Hn(y)−Hn(x) ≤
(
y − x
αn

)(
1

log log n

)(
9

2µτ

)[
2 +

2 log(µτ) + 1

log n
+

1

3(log n)(log log n)

]
.

Proof of Lemma B.12. We have that,

2

3
µτ

n

log n
≤ x ≤ 1

3
µταn and µτ

n

log n
≤ y ≤ 1

3
µταn.

Hence, x and y are each upper and lower bounded.

Set ε = 1/3µτ and dn = n/ log n, so we have y > x ≥ 2εdn and apply (B.14) with

F̄ n

(
τ

y

)
≤ (log n)−3 nµτ

x
≤ 3

2
log n

αn

εdn
=

3

µτ

log n

log log n
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and

[
2 log(y) + 3 +

x

nµτ

]
≤
[
2 log(nµτ) + 1 +

1

3 log log n

]

to get

Hn(y)−Hn(x) ≤
(
y − x
αn

)
(log n)−3

(
3

2
log n

)(
3

µτ

log n

log log n

)[
2 log(nµτ) + 1 +

1

3 log log n

]
=

(
y − x
αn

)(
9

2µτ

)(
1

log log n

)[
2 +

2 log(µτ) + 1

log n
+

1

3(log n)(log log n)

]
.

Lemma B.13. For any n > ee, if

x < y ≤ M̄αn y − x ≥ 1

9
µταn

then

Hn(y)−Hn(x) ≤
(
y − x
αn

)
(log n)1−µτ/M̄

(
9

µτ

)[
1 +

log(M̄)

log n

]
.

Proof of Lemma B.13. Suppose x and y are order αn and there is separation by at least

order αn.

x < y ≤ M̄αn y − x ≥ 1

9
µταn.

The order αn queue length gives us

F̄ n

(
τ

y

)
≤ F̄ n

( τ

M̄αn

)
= (log n)−µτ/M̄

while the separation between queue lengths gives us

(
y − x
αn

)
9

µτ
≥ 1.
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Therefore,

Hn(y)−Hn(x) ≤ F̄ n

(
τ

y

)
[log(y − x) + 1]

≤ (log n)−µτ/M̄
[
log(n) + 1 + log

(
M̄
)
− log(log(n))

]
≤
(
y − x
αn

)(
9

µτ

)
(log n)−µτ/M̄

[
log(n) + log(M̄)

]
=

(
y − x
αn

)(
9

µτ

)
(log n)1−µτ/M̄

[
1 +

log(M̄)

log n

]
.

Lemma B.14. For any n > ee, if

x < y ≤ M̄αn y ≥ 1

3
µταn y − x ≤ 1

9
µταn

then

Hn(y)−Hn(x) ≤
(
y − x
αn

)
(log n)1−µτ/M̄(log log(n))

(
81

2µτ

)
[
2 +

2 log(M̄) + 3

log n
+

M̄

µτ(log n)(log log n)

]

Proof of Lemma B.14. Suppose x and y are order αn and there is separation by at most

order αn.

x < y ≤ M̄αn y ≥ 1

3
µταn y − x ≤ 1

9
µταn.

Since y is lower bounded and y − x is upper bounded, we have that

x ≥ 2

9
µταn.

Hence, x and y are each upper and lower bounded.

If we take ε = µτ/9 and dn = αn we have y > x ≥ 2εdn and we can apply (B.14) with

F̄ n

(
τ

y

)
≤ (log n)−µτ/M̄

nµτ

x
≤ 9

2
log log n

αn

εdn
=

9

µτ
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and [
2 log(y) + 3 +

x

nµτ

]
≤
[
2 log(n) + 2 log(M̄) + 3 +

M̄

µτ log log n

]
to get

Hn(y)−Hn(x) ≤
(
y − x
αn

)
(log n)−µτ/M̄

(
9

2
log log n

)(
9

µτ

)
[
2 log(n) + 2 log(M̄) + 3 +

M̄

µτ log log n

]
≤
(
y − x
αn

)
(log n)1−µτ/M̄ (log log n)

(
81

2µτ

)
[
2 +

2 log(M̄) + 3

log n
+

M̄

µτ log n log log n

]

B.3 Proof of Proposition 3.13 and associated results.

Proof of Lemma 3.7. This is immediate from the FSLLN.

Proof of Lemma 3.8. As with Lemma 3.7 we have from the FSLLN for any Var (vni ) <∞,

1

np
‖Dn(t)− nµBn(t)‖ a.s.−→ 0 u.o.c.

where Bn(t) is the busy-time process. So it suffices to show that the idle time process

1

np
nµIn(t)

a.s.−→ 0 u.o.c.

The total idle time is defined to be

In(t) =

∫ t

0

1{Qn(s) = 0} ds =

Dn(t)∑
i=0

1{Qn
i = 0}wni

where wni ∼ Exponential(nλ) and so

nIn(t) =

Dn(t)∑
i=0

1{Qn
i = 0}ui
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where wi ∼ Exponential(λ). We have an (eventually) almost sure bound on the number of

emptying times from Proposition 3.6. This bound is uniform for all t. So for n sufficiently

large,

nIn(t) ≤
nµτ/ log(n)∑

i=0

wi.

Therefore,

nIn(t)

np
=

(
µτ

log(n)

)p(
nµτ

log(n)

)−p nµτ/ log(n)∑
i=0

wi.

By the Strong Law of Large Numbers (ui has finite variance),

(
nµτ

log(n)

)−p nµτ/ log(n)∑
i=0

wi
a.s.−→ 1

λ

and so

nIn(t)
a.s.−→ 0 u.o.c.

Lemma B.15 (Martingale SLLN). Let Mk be a martingale with respect to a filtration Fk

such that supk E [(Mk −Mk−1)2] <∞. Then, for any p > 1/2,

Mk

kp
a.s.−→ 0 as k →∞.

Proof of Lemma B.15. Let ζj = Mj −Mj−1 be the martingale differences. Fix p > 1/2 and

define

M̃k :=
k∑
j=1

ζj
jp

M̃0 = 0.

Then,

E
[
M̃k+1

∣∣∣ Fk] =
k∑
j=1

ζj
jp

+ E

[
ζk+1

(k + 1)p

∣∣∣∣ Fk] = M̃k

so M̃k is a martingale.
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Moreover,

E
[
M̃2

k

]
=

k∑
j=1

1

j2p
E
[
ζ2p
j

]
since E [ζiζj] = 0 for i 6= j and therefore,

E
[
M̃2

k

]
≤
(

sup
j=1,...,k

E
[
ζ2
j

]) n∑
ell=1

1

j2p

sup
k

E
[
M̃2

k

]
≤ sup

k

((
sup

j=1,...,k
E
[
ζ2
k

]) k∑
j=1

1

j2p

)

sup
k

E
[
M̃2

k

]
≤
(

sup
k

E
[
ζ2
k

]) ∞∑
j=1

1

j2p
<∞.

Since M̃n is L2-bounded, it is also L1-bounded and, by the martingale convergence theorem

(e.g., Williams (1991), p. 109),

M̃k :=
k∑
j=1

ζj
jp

a.s.−→ M̃∞ <∞.

we have that
∞∑
j=1

ζj
jp
<∞

almost surely. By Kronecker’s Lemma (e.g., Williams (1991), p. 117), we conclude that

1

kp

k∑
j=1

ζk =
Mk

kp
→ 0

almost surely.

Lemma B.16. Let Mn
k be a martingale with respect to the filtration Fnk = σ(Qn

0 , . . . , Q
n
k).

If, for every n, supk E
[
(Mn

k −Mn
k−1)2

]
<∞, then for any p > 1/2

1

np
∥∥Mn

Dn(t)

∥∥ a.s.−→ 0 u.o.c.

Proof of Lemma B.16. This closely follows the proof of Lemma 5.8 of Chen and Yao (2001).
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The martingale differences are L2-bounded so, for fixed n, the martingale SLLN (Lemma

B.15) gives

Mn
k

kp
a.s.−→ 0 as k →∞.

Fix T > 0. For any ε > 0 there exists K(ε) such that for all k ≥ K(ε),

|Mn
k |

kp
<

ε

T p

Define a continuous-time function Mn(t) = Mn
bntc. Take n sufficiently large so that

np >
1

ε

(
max

0≤k≤K(ε)
|Mn

k |
)
.

For all t ∈ [0, T ] such that bntc ≥ K(ε),∣∣∣Mn
bntc

∣∣∣
np

≤

∣∣∣Mn
bntc

∣∣∣
(bntc)p

tp <

∣∣∣Mn
bntc

∣∣∣
(bntc)p

T p < ε

For all t ∈ [0, T ] such that bntc < K(ε),∣∣∣Mn
bntc

∣∣∣
np

≤ 1

np
max

0≤k≤K(ε)
|Mn

k | < ε.

We note that

Mn

(
1

n
Dn(t)

)
= Mn

Dn(t)

and so our result then follows from Lemma 3.8 and the Random Time Change Theorem

(e.g., Chen and Yao (2001), p. 101).

Proof of Lemma 3.9. The process

k∑
i=1

 Y ni∑
j=1

Xij −Hn(Qn
i−1)


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is a martingale with respect to Fnk . This is immediate from our definition ofHn(x). Moreover,

for all n such that max0≤i≤∞Q
n
i < M̄αn almost surely,

E

 Y ni∑
j=1

Xij −Hn(Qn
i−1)

2 ≤ E
[
Hn(Qn

i−1)2
]
≤ Hn(M̄αn) <∞

the martingale differences are L2-bounded.

Apply Lemma B.16 to obtain the result.

Proof of Lemma 3.10. To calculate the conditional expectation, we first condition on vni .

Note that the number of arrivals Ani ∼ Poisson(nλvni ) and, moreover, the arrival times

are uniformly distributed over the interval [tni−1, t
n
i ]. Therefore, for k = 0, . . . , Ani , the

queue length process takes value Qn(q + k) for uk+1v
n
i amount of time, where (u1, u1 +

u2, . . . , u1 + · · ·+uAni , v
n
i − (u1 + · · ·+uAni )) follow the joint distribution of Ani order statistics

of Uniform[0, 1] random variables. In particular, E [uk] = 1/(Ani +1) for all k = 1, . . . , Ani +1.

Therefore,

E

[
nµ

∫ tni

tni−1

Hn(Qn(s)) ds

∣∣∣∣∣ Qn(tni−1) = q

]
= E

[
nµ

∞∑
`=0

e−nλv
n
i

(nλvni )`

`!

∑̀
k=0

uk+1v
n
i H

n(q + k)

]

= E

[
µ

λ

∞∑
`=0

e−nλv
n
i

(nλvni )`+1

(`+ 1)!

∑̀
k=0

Hn(q + k)

]

=
µ

λ

∞∑
`=0

(
µ

λ+ µ

)(
λ

λ+ µ

)`+1∑̀
k=0

Hn(q + k)

=
µ

λ+ µ

∞∑
`=0

(
µ

λ+ µ

)(
λ

λ+ µ

)`∑̀
k=0

Hn(q + k)

=
1

ρ+ 1
E

 Ani∑
k=0

Hn(q + k)

 .

We can also write

Hn(q) =
1

ρ+ 1
E [(Ani + 1)Hn(q)] =

1

ρ+ 1
E

 Ani∑
k=0

Hn(q)


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and therefore(
E

[
nµ

∫ tni

tni−1

Hn(Qn(s)) ds

∣∣∣∣∣ Qn
i−1 = q

]
−Hn(Qn

i−1)

)
=

1

ρ+ 1
E

 Ani∑
k=0

(Hn(q + k)−Hn(q))

 .

For n sufficiently large such that (3.19) holds, we apply the bound (3.24) from Proposition

3.12 to get

1

ρ+ 1
E

 Ani∑
k=0

(Hn(q + k)−Hn(q))

 ≤ 1

ρ+ 1
(log(n))1−µτ/M̄(log log(n))C

(
E [(Ani )2]

αn

)

≤ n−1(log(n))1−µτ/M̄(log log(n))2Cρ.

Therefore, for all t ∈ [0, T ],

1

np

∣∣∣∣∣∣
bntc∑
i=1

(
Hn(Qn

i−1)− E

[
nµ

∫ tni

tni−1

Hn(Qn(s)) ds

∣∣∣∣∣ Qn(tni−1)

])∣∣∣∣∣∣ ≤ T

np
(log(n))1−µτ/M̄(log log(n))2Cρ

which converges to 0 uniformly in t as n → ∞. We obtain our result from Lemma 3.8 and

the Random Time Change Theorem.

Proof of Lemma 3.11. The process

Dn(t)∑
i=1

(
E

[
nµ

∫ tni

tni−1

Hn(Qn(s)) ds

∣∣∣∣∣ Qn
i−1

]
− nµ

∫ tni

tni−1

Hn(Qn(s)) ds

)

is a martingale (by construction) with respect to Fnk . We note that

E

(nµ∫ tni

tni−1

Hn(Qn(s)) ds

)2
∣∣∣∣∣∣ Qn

i−1

 ≤ E
[

(nµ)2(tni − tni−1)2
(
Hn(Qn

i−1) + Ani
)2
∣∣∣ Qn

i−1

]

= (nµ)2E
[

(vni )2
(
Hn(Qn

i−1) + nλvni
)2
∣∣∣ Qn

i−1

]
= 2Hn(Qn

i−1)2 + 2Hn(Qn
i−1)(n3µ2λ)E

[
(vni )3

]
+ n4µ2λ2E

[
(vni )4

]
= 2Hn(Qn

i−1)2 + 12ρHn(Qn
i−1) + 20ρ2

≤ 2Hn(M̄αn)2 + 12ρHn(M̄αn) + 20ρ2 <∞.
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So the martingale differences are L2-bounded for all n such that max0≤i≤∞Q
n
i < M̄αn almost

surely.

Apply Lemma B.16 to obtain the result.

We may now combine the above lemmas, along with Gronwall’s inequality to provide the

o(αn) convergence.

Proof of Proposition 3.13. We note that the first five terms all have o(n−p) convergence for

any p ∈ (1/2, 1). We can thus write

1

αn
∣∣Qn(t)− Q̄n(t)

∣∣ ≤ bn

αn
+
nµ

αn

∫ t

0

∣∣Hn(Qn(s))−Hn(Q̄n(s))
∣∣ ds

≤ C1
np

αn
+ C2(log log n)2(log n)1−µτ/M̄

∫ t

0

∣∣Qn(s)− Q̄n(s)
∣∣

αn
ds

By Gronwall’s inequality, we have that

1

αn
∣∣Qn(t)− Q̄n(t)

∣∣ ≤ C1
bn

αn
exp

(
C2T (log log n)2(log n)1−µτ/M̄

)
= C1n

p−1 log log(n) exp
(
C2T (log log n)2(log n)1−µτ/M̄

)
= C1 exp

(
(p− 1) log(n) + log log log(n) + C2T (log log n)2(log n)1−µτ/M̄

)
.

Since the term (p− 1) log(n) dominates, we can choose any p ∈ (1/2, 1) and we have that

1

αn
∥∥Qn(t)− Q̄n(t)

∥∥ a.s.−→ 0 u.o.c.
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