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ABSTRACT 

A Comparative Approach to Cerebellar Circuit Function 

Karina Rose Scalise 

 

The approaches available for unlocking a neural circuit – deciphering its algorithm’s 

means and ends – are restricted by the biological characteristics of both the circuit in question 

and the organism in which it is studied. The cerebellum has long appealed to circuits 

neuroscientists in this regard because of its simple yet evocative structure and physiology. 

Decades of efforts to validate theories inspired by its distinctive characteristics have yielded 

intriguing but highly equivocal results. In particular, the general spirit of David Marr and James 

Albus’s models of cerebellar involvement in associative learning, now almost 50 years old, 

continues to shape much research, and yet the resulting data indicates that the Marr-Albus 

theories cannot, in their original incarnations, be the whole story. 

In efforts to resolve these mysteries of the cerebellum, researchers have pushed the 

advantages of its simple circuit even further by studying it in model organisms with 

complimentary methodological advantages. Much early work for example was conducted in 

monkeys and humans taking advantage of the mechanically simple and precise oculomotor 

behaviors at which these foveates excel. Then, as genetic tools entered the scene and became 

increasingly powerful, neuroscientists began porting what had been learned into mouse, a model 

system in which these tools can be deployed with great sophistication. This was effective in part 

because cerebellum is highly conserved across vertebrates so complimentary insights can be 

made across different model systems. 



 

 

Today genetic prowess has been further augmented by rapid advances in optical methods 

for visualizing and manipulating genetically targeted components. The promise of these new 

capabilities provides grounds for exploring additional model organisms with characteristics 

particularly suited to harnessing the power of modern methodology. 

In the following chapters I explore the promise and challenges of adding a new organism 

to the current pantheon of most commonly studied cerebellar model organisms. In chapter 1, I 

introduce the cerebellar circuit and a sampling of the historically equivocal outcomes met by 

efforts to test Marr-Albus theories in the context of a classical cerebellar learning paradigm: 

vestibulo-ocular reflex adaptation.  

In chapter 2, I detail my efforts to establish a method for population calcium imaging in 

cerebellar granule cells (GCs) of the weakly electric mormyrid fish, gnathonemus petersii. The 

unusual anatomical placement of GCs in this organism, directly on the surface of the brain, is 

ideal for optical methods, which require the ability to illuminate structures of interest. 

Furthermore, in the mormyrid, GCs play analogous role in two circuits -- the cerebellum and a 

purely sensory structure, the electrosensory lobe, which has a cerebellum-like structure. This 

latter circuit is unusually well-characterized and appears to employ a Marr-Albus style 

associative learning algorithm. This could provide a helpful context for interpreting the purpose 

of GC processing, shared by this circuit and the cerebellum proper. However, taking advantage 

of these qualities will require overcoming methodological hurdles presented by imaging in this 

as-yet not genetically tractable organism. While I was able to load and image evoked transients 

in these cells, and twice observed spontaneous transient, I did not find a loading method that 

allowed routine observation of spontaneous levels of activity.  



 

 

In chapter 3, I introduce the larval zebrafish, danio rerio, an organism in which optical 

and genetic methods are already quite established. The zebrafish is genetically tractable and 

orders of magnitudes smaller than other vertebrate model systems, making it extremely 

accessible to optical monitoring and manipulation of neural activity. However, in contrast to the 

mormyrid, very little is known about the physiology of the cerebellar circuit components in this 

organism or the behaviors to which they contribute. 

In chapter 4 I detail my efforts to contribute to this modest foundational knowledge by 

characterizing the electrophysiological activity of Purkinje cells of larval zebrafish during the 

optomotor response (OMR)—a behavior with similarities to cerebellar-dependent visual 

stabilization behaviors that have been studied extensively in mammals. I observe a diversity of 

structured motor and visual activity that suggests that Purkinje cells could contribute to adjusting 

swim speed during the OMR and other behaviors. 

In chapter 5, I outline some of the upfront work that remains before cerebellar researchers 

are likely to fully harness the power of optical and genetic methods in the zebrafish as well as the 

types of experiments that may become possible if we do. 
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CHAPTER 1: INTRODUCTION TO THE CEREBELLAR CIRCUIT 

 

Historical context and motivation  

The simple architecture of the cerebellum has tantalized neuroscientists for decades. Its 

small number of cell types are connected in a highly regular structure whose very form seems to 

suggest function.  Based on the distinctive architecture of the two major inputs to cerebellum, 

described in detail below, David Marr and James Albus conjectured that the circuit might serve 

as a flexible module for supervised learning and adapting of desired responses to particular 

sensorimotor contexts (Albus 1971; Ito and Kano 1982; Marr 1969). It has been theorized that 

such a capacity to learn and continually adjust input-output rules might offer organisms a way to 

keep sensorimotor transformations properly calibrated in the face of such physical changes as 

growing bodies or tiring muscles. 

However, while these theories make concrete, testable predictions of circuit activity, it 

has proven challenging to conclusively evaluate them. This is in part due to methodological 

constraints. Fortunately, different model organisms have different inherent methodological 

strengths and weaknesses. As the cerebellum is largely conserved across vertebrates, 

methodological limitations could be minimized by choosing different model organisms with 

features best suited to address different question. In this dissertation I explore methodological 

opportunities and challenges in two particular species—the mormyrid electric fish and the 

zebrafish—that could make it easier to monitor and precisely manipulate cerebellar circuitry at 

the population level during behavior. Such methods could allow acquisition of cerebellar data 

that can otherwise be prohibitively taxing to collect. 
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The cerebellar circuit 

The cerebellum has a strikingly simple anatomy that is largely uniform across subregions 

that are engaged by different sensorimotor behaviors. This regularity, despite input sources and 

output targets that vary, has led neuroscientists to suppose that the circuit carries out a single 

canonical function in the variety of tasks in which it is involved. The unique connectivity of the 

less than ten cells that make up this circuit (Fig. 1) has spurred hypotheses about what that 

cerebellar algorithm might be. 

 

Figure 1.1 The cerebellar circuit. 
The cerebellum receives two inputs with quite different characteristics. A single climbing fiber from the inferior 
olive innervates each Purkinje cell (PC) directly while many mossy fibers contact PCs indirectly via a massive 
network of excitatory granule cells and other less numerous interneurons, mostly inhibitory. PCs inhibit the output 
cells of the cerebellum, found in the deep cerebellar nucleus in mammals, which also receive direct input from 
mossy fibers and climbing fibers. CF: climbing fiber, MFs: mossy fibers, G: Golgi cell, U: unipolar brush cell, g: 
granule cell, S: stellate cell, B: basket cell, P: Purkinje cell, DCN: deep cerebellar nucleus. (Lugaro cells, a less 
studied interneuron that inhibits Golgi, basket, and stellate cells and receives inputs from granule cells and Purkinje 
cells, has not been included in this schematic for simplicity of visualization). 
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Marr/Albus theories of cerebellar learning hinge on the contrasting features of the 

cerebellum’s two inputs: mossy fibers and climbing fibers. These pathways eventually converge 

(after substantial interneuronal processing in the case of mossy fibers) on a population of 

cerebellar interneurons called Purkinje cells. Strikingly, just one climbing fiber (CF), as 

compared to many thousands of mossy fibers, drives each Purkinje cell. This and other 

physiological and anatomical differences, discussed below, inspired the theory that during 

learning a teaching signal conveyed by the CF sculpts PC responses to sensorimotor state 

information provided by the mossy fiber pathway. 

The mossy fiber pathway into the cerebellum provides PCs with a broad range of sensory 

and motor information from a variety of brain regions and from the spinal cord. Before this 

information reaches PCs, it undergoes a good deal of pre-processing by an enormous population 

of excitatory interneurons, called granule cells, along with a handful of other less numerous 

interneurons (most inhibitory—called Golgi, basket, stellate and Lugaro cells—and one 

excitatory—called the unipolar brush cell). The axons of granule cells, called parallel fibers, 

course perpendicularly through fan like dendritic arbors of PCs, which are stacked like pancakes. 

Parallel fibers likely contact nearly every PC they pass (Brand et al. 1976). The mossy fiber 

pathway thus does not seem to be highly discriminating in what information it provides to 

individual PCs, but rather offers each PC a multimodal inundation of processed information 

about an organism’s sensory and motor state. 

The climbing-fiber pathway on the other hand stems exclusively from the inferior olive. 

Every PC receives a single, direct CF input. This CF makes such extensive contacts onto a PC 

that its firing drives an unusual second action potential type, called a “complex spike” in 

mammals or, more generally, a “CF response”. 
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A PC’s regular action potentials—driven by the combined effect of excitatory drive from 

parallel fibers, intrinsic PC activity and feed-forward inhibition from stellate and basket cells—

fire at high baseline levels and can reach frequencies of more than 200 Hz when responding to 

stimuli. Numerous studies have indicated that sensory and motor information can be read out 

from the firing rates of these action potentials, called simple spikes. The CF response, on the 

other hand, is driven at quite low frequencies, on the order of 1 Hz. These frequencies do not 

seem compatible with having a strong influence on a rate code in PCs. This observation helped 

inspire the Marr/Albus theory of CF activity as a teaching signal. 

PCs directly inhibit the output cells of the cerebellum. In mammals these output cells are 

separated into the deep cerebellar nuclei, while in teleosts they are found in the same region as 

the PCs that innervate them. In either case, the outputs of the cerebellum contact a wide range of 

brain regions, including strong connections to spinal cord, via relays in the brainstem, as well as 

connections to the forebrain. (Of note, there is one region of cerebellum, the 

vestibulocerebellum, in which PCs do not project to the deep cerebellar nuclei, but have an 

analogous connection to the  vestibular nuclei, which, in addition to connections to spinal cord 

and thalamus, directly innervate motoneurons in the oculomotor nuclei that control eye 

movements). The activity of these output cells mediates the cerebellum’s influence on 

downstream structures, most notably on motor behaviors. 

 

A cerebellar algorithm 

Motor deficits in patients with cerebellar damage or hereditary cerebellar degenerative 

diseases offer clues about the algorithm executed by the cerebellum. Cerebellar patients exhibit 

difficulty with movements normally carried out automatically, including impairment of gait 
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(ataxia), lack of posture stability (tremors) and disordered eye movements (Diener et al. 1993; 

Dietrichs 2008; Fine et al. 2002; Tilikete and Pelisson 2008). In the words of one cerebellar 

patient, “The movements of my left arm are done subconsciously, but I have to think out each 

movement of the right (affected) arm” (Holmes 1939). Based on these types of deficits and the 

observed differences between mossy fiber and CF pathways, Marr and Albus postulated theories 

that the unique organization of cerebellar circuitry learns to automate smooth motor responses to 

learned sensory contexts. Specifically, they proposed that a CF teaching signal adjusts the 

weights of a basis of contextual information, provided by parallel fiber inputs, to sculpt desired 

motor responses to particular sensorimotor contexts. 

The crux of this theory of the cerebellum has been likened to a theoretical pattern 

associator called an associative net (Tyrrell and Willshaw 1992). At its most basic, an associative 

net consists of a set of input lines carrying distinct pieces of sensory information and a set of 

output lines controlling individual components of motor responses (Fig. 2). During a training 

period, analogous to conscious learning, a teaching signal activates the appropriate output lines 

to generate a desired motor response. Any input lines that happen to be simultaneously activated 

by the current sensory context will have their connections to the activated output lines 

strengthened. As a result, the sensory context that was present during training will now be 

sufficient to drive the desired combination of motor outputs without supervision by the teaching 

signal. In short, each output line receives a full basis of contextual information from which 

appropriate input combinations can be chosen to drive automatic activation of that output line in 

the future. In terms of motor-learning, this framework could allow supervised-automation of 

motor responses to sensory contexts. 

 



7 

 

 

 

Figure 1.1 An associative net model of learning. 
Marr’s original proposal of the learning algorithm of carried out in the cerebellum was similar to a theoretical 
pattern associator called an associative net that learns to generate specific patterns of output in response to specific 
input pattern contexts. This can theoretically be accomplished by a positive or negative reinforcement teaching 
signal. In the case of the former (top row), the teaching signal acts as an example, as was theorized by Marr. Before 
training, the basis of input signals has no ability to drive the outputs, which are driven instead directly by the 
teaching signal. During training, inputs that are coactive with the output lines driven by the teaching signal have 
their connections to those outputs activated. After training the learned input pattern contexts can drive the 
appropriate output automatically without need for the direct teaching signal activation.  A complimentary series of 
events can accomplish learning via a negative teaching signal (bottom row). A network in which input lines initially 
drive all output lines indiscriminately receives an error signal that indicates whenever this results in an inappropriate 
activation of an output line. Any input lines that are active at the time of erroneous output line activations have their 
connections to those lines removed. After training this results in input patterns driving only the desired output 
patterns. Albus hypothesized that the teaching signal was of the latter, error-indicating variety, though his model 
differed from the simple associative net model in a number of other ways, including weighted synapses and 
proportional rather than binary plasticity. 

 

Validating theories of cerebellum 

Because Marr and Albus’s theories were grounded in the actual biology of the 

cerebellum, they made remarkably concrete predictions about how the various components of the 
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cerebellum should behave. This began a history in cerebellar research of testing biologically 

grounded theories and modifying them to account for new data. 

For example, Marr initially predicted that the proposed teaching signal should serve as an 

“example signal” in the manner described above (i.e. any incoming fibers simultaneously active 

with the teaching signal should be strengthened). Conversely, Albus predicted the signal would 

be an error signal that signifies when an output line should NOT have been active and would 

therefore weaken inputs proportionate to their activity at the time of the error (Albus 1971). In 

this manner an appropriate PC output could be carved out from a basis of contextual information 

provided on the parallel fibers. (For simplicity, both the “example signal” and “error signal” 

trained circuits shown in figure 2 use binary synapses that are either active or inactive as in 

Marr’s original model, although Albus’s non-binary synaptic weights are more biologically 

accurate). Marr and Albus’s theories thus differed in their predictions of whether incoming 

contextual fibers simultaneously active with the CF should be strengthened or weakened. A 

seminal experiment by Ito (Ito et al. 1982) demonstrated that stimulation of the CF drove long 

term depression (LTD) in co-active parallel fibers, supporting a role for CFs as an error signal 

rather than as an example signal, 

Today, parallel fiber LTD-mediated supervised learning of input-output associations is 

often referred to as the Marr/Albus/Ito model of the cerebellum’s function and remains an 

underlying pillar of many modern theories. However the concretely testable postulates of this 

classic model have continued to support data-driven questioning and modification of its tenants. 

Despite the proven existence of parallel fiber LTD, for example, there is evidence that the nature, 

locations, and interplay of all of the plasticity driving cerebellar learning is most likely much 

more complex than this single factor. 
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The VOR as a case example 

One behavioral paradigm in which cerebellum has been extensively studied is gain 

adaptation of the vestibulo-ocular reflex (VOR). The VOR is a visual stabilization reflex that 

counters head movements with rapid and proportionate eye movements in the opposite direction 

to keep visual targets fixed on the retina (Boyden et al. 2004; Broussard and Kassardjian 2004; 

du Lac et al. 1995; Ito 2013). Successful stabilization depends on properly transforming head 

movements to compensatory eye movements. The scalar for this transformation, defined as the 

ratio between eye and head velocities, is called the VOR gain. Too low of a gain results in 

insufficient eye movement to fully counteract the effects of head movement and a residual slip of 

the image across the retina in the opposite direction of head movement. Too high of a gain over-

corrects, causing slip of the image across the retina in the same direction as head movement. 

The appropriate gain setting can change over both long timescales, as an organism grows, 

and over short timescales, due to fatigue, injury, or, in the case of humans, a new glasses 

prescription that changes the magnification of the field of view. VOR-gain adaptation therefore 

allows organisms to adjust their gain setting when visual feedback indicates that it has become 

too low or too high. Adaptation can be triggered artificially by moving the visual scene at the 

same time as the head. If the scene is moved in the opposite direction from the head, the 

appropriate amount of compensatory eye movement increases, and the image initially slips 

somewhat on the retina until the higher gain is learned. Conversely, if the image is moved in the 

same direction as the head, the amount of compensatory eye movement that is necessary 

decreases, causing an initial overshoot slip until the gain decreases accordingly. 
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At its most basic then, the task of VOR gain machinery is to learn to drive the appropriate 

adjustment of oculomotor output in response to information about head movement. Such an 

undertaking aligns remarkably well with the theorized capabilities of the classic Marr/Albus/Ito 

model. Indeed, in 1972 Ito proposed an explicit mapping of the components of the 

Marr/Albus/Ito model onto the circuitry of the cerebellar floccular complex, known to be 

involved in VOR adaptation (Ito 1982; 1972). 

 

 

Figure 1.3 Vestibulo-ocular reflex adaptation circuitry. 
Head movement velocity drives vestibular inputs, which influence eye movements via a direct route through the 
brainstem and an indirect side-loop through the cerebellum. In addition to vestibular information, Purkinje cells in 
the floccular complex of the cerebellum receive oculomotor corollary discharge information as well as retinal slip 
information via climbing fiber inputs from the inferior olive. Vestibulo-ocular reflex adaptation was originally 
thought to be mediated by LTD at the synapses between vestibular parallel fibers and Purkinje cells, driven by an 
error signal conveyed by the climbing fiber. This hypothesis has since been complicated by identification of various 
sites of plasticity with different apparent contributions to vestibule-ocular reflex adaptation. PC: Purkinje cell, CF: 
climbing fiber, g: granule cell. 

 

The floccular complex is situated as a side loop relative to a direct pathway responsible 

for carrying out the VOR. The direct pathway consists of a simple three synapse arc. The 

vestibular nerve sends information about head movement to brainstem vestibular nuclei. These 
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neurons from the vestibular nuclei contact downstream oculomotor neurons responsible for eye 

movements. The vestibular nerve also contacts the vestibular nuclei indirectly via the cerebellar 

side loop. The same vestibular information is provided via mossy fibers to the floccular complex, 

which sends inhibitory output, via PCs, to the neurons of the vestibular nucleus, called floccular 

target neurons (FTNs). 

Ito proposed that PC inhibition appropriately modulates FTNs during VOR gain by 

increasing inhibition in gain-down adaptation and decreasing it during gain-up (Ito 1982; 1972). 

This was theorized to occur via a classic Marr-Albus-Ito mechanism in which image retinal slip 

provides an error signal that drives CF activity, which in turn drives LTD in coincidentally active 

parallel fibers carrying vestibular information. This decreases the strength with which PCs were 

driven by that context in the future. 

Observed changes in PC activity after VOR gain training aligned with the idea that 

learned changes in PC firing modify FTN activity appropriately to adjust the gain of downstream 

eye movements. After VOR gain-down training, for example, PCs fired in phase with vestibular 

neurons, thereby providing counteracting inhibitory drive to the FTNs driving oculomotor 

neurons (du Lac et al. 1995; Watanabe 1984; 1985) 

However, other data called a contribution of parallel fiber LTD to VOR adaptation into 

question (Miles et al. 1980; Miles and Lisberger 1981). In 1980, Miles et al. attempted to isolate 

the effect of head movement inputs to PCs, Ito’s presumed site of motor learning, on PCs with 

the clever use of a behavioral paradigm known as VOR cancellation. In this paradigm monkeys’ 

heads were rotated with the same dynamics that would usually induce the VOR, but their trained 

visual fixation point was moved coincidentally such that to stay fixated monkeys had to keep 

their eyes directed forward in their heads, overriding or cancelling the VOR. After monkeys had 
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been trained using a VOR gain up or gain down protocol, Miles et al. recorded from PCs during 

cancellation of the VOR to probe for changes in the drive of head movement neurons to PCs. 

They found activity modulations in response to head movements, but in the wrong direction to 

cause the observed changes in the VOR. That is, after gain-down training, PC responses to 

isolated head velocity during VOR cancellation was actually modulated OUT of phase with the 

vestibular inputs, suggesting that vestibular-driven PC inhibition of FTNs not only don’t mitigate 

vestibular drive directly onto FTNs after gain-down training, but exacerbate it compared to pre-

training.  

Miles et al. therefore concluded that LTD at vestibular parallel fibers onto PCs cannot be 

the primary mechanism underlying VOR gain change. They suggested that changes in PC 

activity during the adapted-VOR that appear appropriate to drive the gain change in this behavior 

can be explained by changing drive from a second mossy fiber input that had been recently 

identified, which carries oculomotor corollary discharge (Lisberger and Fuchs 1978). They 

further suggested that the change in drive from this input isn’t due to plasticity of its weights, or 

indeed to plasticity in the cerebellar cortex at all. Rather, they posited that it is a side-effect of 

plasticity occurring outside of the cerebellum in the direct pathway, from vestibular inputs onto 

FTNs. The resulting changes in eye movements would feed back onto PCs via oculomotor 

corollary discharge inputs; they would drive corresponding changes in the PC’s activity rather 

than vice versa -- a classic chicken-and-the-egg mix-up. 

Since then understanding sites of plasticity in the cerebellar cortex and vestibular nuclei 

has been the subject of much research. A comprehensive picture has yet to emerge, but a variety 

of plasticities has been definitively demonstrated at multiple synapses in the cerebellar cortex 

and vestibular nuclei. Both LTD (Ito and Kano 1982) and LTP (Lev-Ram et al. 2002; Salin et al. 
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1996) can occur at parallel fiber to PC synapses as well at other locations in cerebellar cortex, 

including from inhibitory molecular layer interneurons to PCs (Kano et al. 1996; Kawaguchi and 

Hirano 2002) and even from mossy fibers to granule cells (D'Angelo et al. 2005). In the 

vestibular nuclei, various forms of plasticity have also been demonstrated including at the mossy 

fiber to FTN neurons as was first surmised by Miles and Lisberger (Gittis and du 2006; 

McElvain et al. 2010). 

There is little consensus about the contribution of, or necessity for, any of these sites in 

VOR adaptation, including the classic CF-mediated LTD of parallel fibers. For example, a 

cleverly designed behavioral paradigm, using opposing target and background motion to null out 

a visual scene’s net retinal slip, can drive VOR learning without engaging the CF (Ke et al. 

2009), suggesting that the CF is not necessary for learning at all. Yet, mice with multiple CF 

inputs to cerebellar PCs exhibit impaired VOR adaptation, indicating that the CF can influence 

learning regardless of whether it is necessary for it (Kimpo and Raymond 2007). Similarly, it has 

been demonstrated that optogenetic activation of the CF paired with vestibular input can induce 

VOR gain increases. Yet it was not found possible to drive VOR gain in the decreased direction, 

signifying that different sites of plasticity may be engaged in different aspects of VOR learning 

(Nguyen-Vu et al. 2013). 

Current theories tend to surmise that multiple sites of plasticity work synergistically and 

perhaps in some instances redundantly to achieve VOR adaptation. An experiment using mice 

with impaired parallel fiber to PC LTD found that these animals did not demonstrate short-term 

VOR adaptation, but could learn some amount of adaptation over an extended 8 day detraining 

period (van Alphen and De Zeeuw 2002), raising the possibility that parallel fiber to PC LTD 

may be required for rapid VOR adaptation while other independent plasticity mechanisms work 
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on a longer timescale. Although cerebellar mice with impaired and likely more specific mossy 

fiber to PC LTD have shown no deficits in VOR adaptation at all (Schonewille et al. 2011), there 

remains considerable interest in the theory that initial learning of a VOR gain change is carried 

out in the cerebellar cortex, but then transferred to the vestibular nuclei over a longer time course 

of training (Anzai et al. 2010; Galiana 1986; Kassardjian et al. 2005; Nagao and Kitazawa 2003; 

Peterson et al. 1991; Titley et al. 2007). 

A time varying role of the dependence of learning on cerebellar cortex would help 

explain discrepant findings regarding the effect of cerebellar inactivation on VOR adaptation as 

there has been considerable variability in training time across experiments (Luebke and 

Robinson 1994; McElligott et al. 1998; Nagao and Kitazawa 2003; Partsalis et al. 1995; Pastor et 

al. 1994; Robinson 1976). A number of studies have addressed this time course explicitly. In 

cats, pharmacological inactivation of excitatory transmission in the cerebellum, by injecting the 

glutamate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) into the flocculus, reversed 

gain adaptation if applied after 60 minutes of gain-decrease VOR training, but not when it was 

applied after 3 days of learning (Kassardjian et al. 2005). Interestingly, it has been shown that 

after 60 minutes of training, VOR adaptation could also be undone by continued VOR 

performance in the dark with no visual feedback, but an hour of no VOR movement in the 

interim prevented VOR adaptation loss by performance in the dark (Titley et al. 2007). More 

recently, in monkeys it was demonstrated that injection of lidocaine, a blocker of neuronal 

activity, into the flocculus after 2 hours of gain-decrease VOR training caused the VOR to revert 

to baseline but had little effect when administered after 3 days of VOR training (Anzai et al. 

2010). 
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Methodological challenges in studying cerebellar learning 

While there is good general evidence of differential engagement of multiple sites of 

plasticity in the cerebellum and its target nuclei, it has been challenging to arrive at a 

comprehensive understanding of how specific sites and mechanisms of plasticity are engaged 

and interact to exert their effect on VOR adaptation. For example, if indeed plasticity in the 

cerebellum is necessary for short term memory, while plasticity in the vestibular nucleus is 

necessary for long term consolidation, a question will be whether this latter plasticity depends on 

the former.  If so, this would be in agreement with a trigger-and-storage model of cerebellar 

motor learning (Medina et al. 2002). Alternatively, the two could proceed independently, as 

suggested by evidence that VOR adaptation can occur without instructive CF input (Ke et al. 

2009) and by the fact that mice with impaired mossy fiber to PC LTD do not demonstrate short-

term VOR adaptation, but can learn some amount of adaptation over extended 8 days training 

(van Alphen and De Zeeuw 2002). 

Part of the challenge in teasing apart the various plasticity mechanisms implicated in 

VOR adaptation arises from methodological limitations in monitoring and precisely 

manipulating the circuit. For example, though learning is an extended process that unfolds over 

time, historically using electrophysiological techniques to monitor large numbers of cells and 

their interaction throughout this time course has been prohibitively difficult. Instead, researchers 

have tended to compare states of the circuit before and after learning to deduce the possible ways 

by which such changes might have occurred. Such an approach makes it difficult to tightly 

constrain explanations for observed changes or conversely to resolve apparently paradoxical 

outcomes from insights that could be gleaned from direct observation of dynamics. 
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A second methodological challenge has concerned how to selectively monitor and 

manipulate one site of plasticity without affecting other processes in vivo. It is difficult to restrict 

the effects of pharmacological manipulation to plasticity at specific sites, without affecting other 

cellular processes or sites of plasticity. Genetic manipulations offer greater control, but even 

when manipulations have been made specifically to LTD (Schonewille et al. 2011), removal of 

one type of plasticity could push another source of plasticity into a compensatory role, 

obfuscating the one that the abolished plasticity would normally play. Therefore, the power to 

monitor site-specific plasticity during regular VOR adaptation, not just observe the effects when 

it is removed, could provide critical traction in untangling the various contributions of different 

sites of plasticity. 

I have focused on sites of plasticity in cerebellar learning as one example of the 

ambiguity that has arisen from efforts to validate the original theories of the Marr/Albus/Ito 

model. But similar ambiguity pervades understanding of the rest of the cerebellar circuit and 

resolving it faces similar methodological challenges. Another example, which will be discussed 

in depth in chapter 2, is the massive recoding in granule cells of mossy fiber information en route 

to PCs. Briefly, Marr and Albus proposed concrete theories regarding the purpose of this 

expansion (Albus 1971; Marr 1969), but electrophysiological recordings from these cells have 

been equivocal in validating or refuting their hypotheses. A complete answer to such a 

population based question may require the ability to sample activity in a larger fraction of the 

enormous granule cell population than can practically be done by traditional electrophysiological 

means. 

In efforts to resolve questions like the purpose of multiple sites of plasticity or granule 

cell expansion, researchers have pushed the numbers of cells that can be recorded from 
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electrophysiologically to impressive limits and have paired them with clever manipulations of 

behavioral paradigms in combination with lesions and pharmacological manipulations as well as 

in vitro examination of detailed physiological mechanisms. They have succeeded in both 

supporting aspects of the theorized Marr-Albus-Ito circuit, while convincingly demonstrating 

that it is not the whole story in cerebellar learning. But the challenge remains to fully elucidate 

the individual contributions of circuit elements and sites of plasticity and to determine how they 

do interact to achieve the cerebellum’s algorithm. 

 

Methodological advantages of alternative cerebellar model systems 

A historically profitable biologist trick of the trade has been to make use of model 

systems with unique features that are especially conducive to particular methods of inquiry. A 

push to study VOR in mice for example was motivated in part by the promise of genetic tools not 

available in monkeys (Koekkoek et al. 1997). Today genetic control combined with modern 

optical tools for monitoring and manipulating cellular activity offer a powerful means of 

contending with some of the issues noted above, including precisely and reversibly activating 

and inactivating identified circuit components, selectively interfering with plasticity within these 

components, monitoring their activity at the population level over long periods of time, and even 

monitoring subcellular plasticity at the molecular level in real time. While some of these tools 

can be employed in mice, some less commonly studied cerebellar model systems have features 

that are particularly suited to these methods. In the remainder of this thesis I will discuss two 

such model systems with uniquely accessible anatomies as well as a number of other 

methodological advantages for studying the cerebellum. 
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In particular, in Chapter 2, I will introduce the mormyrid Gnathonemus petersii, a teleost 

fish. The layered structure of the cerebellum is inverted in mormyrids, placing granule cell 

bodies, which are usually located below PCs, on the surface of the brain where they may be 

amenable to population imaging. In addition, this granule cell population projects not only to 

PCs of the cerebellum, but also to Purkinje-like cells of a nearby cerebellum-like structure, the 

electrosensory lobe. A Marr/Albus/Ito style coding strategy that uses contextual sensory motor 

information to learn to cancel out self-generated electrosensory afference has been largely 

substantiated in this structure. This unusually well characterized circuit could provide a 

convenient framework for addressing the use of the processing of mossy fiber inputs carried out 

by granule cells for Marr/Albus/Ito systems (Bell et al. 2008; Kennedy et al. 2014; Requarth and 

Sawtell 2011; Sawtell 2010). I will discuss the mixed results of my efforts to establish a method 

for population imaging of these granule cells. 

In Chapter 3, I will introduce a second teleost, the larval zebrafish, on which I’ve focused 

the majority of my research efforts. The zebrafish is broadly recognized as a methodologically 

tractable system, well-suited to approaching questions that require population imaging and 

optogenetic control. In Chapter 4, I will detail my work probing the sensory and motor properties 

of PC activity during optomotor behavior in this fish. And, in Chapter 5, I will discuss the 

immediate challenges of continuing this work in zebrafish cerebellum as well as the exciting 

future prospects in this system if such challenges can be surmounted. 
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CHAPTER 2: CALCIUM IMAGING IN CEREBELLAR GRANULE CELLS IN 
WEAKLY ELECTRIC MORMYRID FISH 

 
Introduction 

Marr and Albus proposed that mossy fiber inputs to the cerebellum provide contextual 

sensory and motor state information that can be used by Purkinje cells (PCs) to sculpt 

appropriate motor responses (Albus 1971; Marr 1969). However en route to the PCs, information 

carried in on mossy fibers undergoes expansive recoding by cerebellar granule cells (GCs), an 

enormous population of cells that outnumbers their mossy fiber inputs 200 to 1. The expanded 

GC representation then reconverges on the much smaller population of PCs. A number of 

intriguing theories have been postulated about the purpose of the GC’s massive expansion 

(Albus 1971; Fujita 1982; Marr 1969; Medina and Mauk 2000). But, the striking abundance of 

GCs, which represent more than half of all the cells in the entire brain, and their associated small 

size and dense-packing makes them difficult to study by in vivo electrophysiological methods. 

Furthermore, while a few labs have published data using such challenging and time-consuming 

approaches (Chadderton et al. 2004; Jorntell and Ekerot 2006; Kennedy et al. 2014; Sawtell 

2010), sampling one cell at a time is not ideal for evaluating hypotheses of GC function which 

tend to be population-focused. 

Two-photon calcium imaging would be an ideal alternative method for studying GCs and 

indeed there have been two reports of calcium transients recorded in vivo from these cells in 

mammals: one in the granule cell axons (parallel fibers) of anesthetized mice (Wilms and 

Hausser 2015), which in mammals course through the uppermost layer of the cerebellum, and 

one in the putative GC bodies of awake, locomoting mice (Ozden et al. 2012). However, in 

mammalian model systems, GCs lie deep in the cerebellum below highly light scattering tissue, 
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which may account for the relative paucity of calcium imaging studies of GC bodies in mammals 

in vivo. I therefore sought, with mixed results, to establish methods of GC population imaging in 

the mormyrid electric fish, a model system in which GCs are located right at the surface of the 

brain, making high resolution calcium imaging potentially more straight-forward. 

Of note, since the time that I began this work, there has also been an initial report of GC 

imaging in zebrafish during optomotor behavior (Sylvester et al. 2011). As the entire brain is 

quite accessible in zebrafish, this represents an exciting development in the direction of 

establishing GC imaging with optimal optical accessibility. This is especially true given the 

genetic tractability of this organism, which opens up additional tools for studying GC function. 

Indeed, my work in subsequent chapters is directed towards building foundational 

electrophysiological knowledge of cerebellar activity in zebrafish to support the further use of 

complementary optical methods. However, GC imaging in mormyrid has unique advantages as 

well. Most notably, the characterization of cerebellum and cerebellum-like circuits in which 

mormyrid GCs participate is quite advanced, especially compared to our current knowledge in 

zebrafish. This could provide a helpful framework for interpreting imaged GC activity, as will be 

described in more detail below. 

 

Theories of GC expansion 

The early models of Marr and Albus suggested that GCs might transform incoming 

contextual information into a higher dimensional space that could be advantageous for 

subsequent processing by PCs (Albus 1971; Marr 1969). Each GC has on average 3-4 short 

dendrites (Eccles et al. 1967; Kennedy et al. 2014)—with claw-like endings—and most likely 

receives only a few mossy fiber excitatory inputs. Based on this morphology, GCs were surmised 
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to combine small numbers of mossy fiber inputs carrying different contextual information. This 

would allow PCs to learn responses to particular multimodal contexts that could be different than 

a linear sum of responses to the separate comprising inputs. This would allow the significance of 

the activity of a given mossy fiber input to vary depending on the greater multimodal sensory 

context. 

In the years since GC combinatorial encoding was first proposed, a different type of 

higher dimensionality stimulus recoding has been hypothesized based on the notion that a 

response to a particular stimulus may be desired at some delay relative to that stimulus. For 

example, rabbits exposed to a training paradigm in which a tone is followed by a puff of air (a 

stimulus that causes them to blink in the manner of an unconditioned stimulus) can learn to blink 

at variable delays after the tone in a good prediction of when the air puff will occur. Research 

has shown that this learning depends on the cerebellum (McCormick and Thompson 1984) and it 

has been hypothesized that in order for PCs to respond at a delay, GCs must copy the incoming 

stimulus into many different time frames, providing the PC with a temporal basis from which to 

sculpt a response (Medina and Mauk 2000). In this case, rather than aiding PCs to respond 

differently to different stimulus patterns, this type of recoding would allow different responses to 

the same original stimulus by recoding it into a series of different timeframes. 

 

The mormyrid as a model system for studying GCs 

The mormyrid has a number of biological features that make it particularly amenable to 

probing theories of GC expansion. The connectivity of its cerebellar components appears quite 

similar to that of mammals, other than the observation that its Golgi cells may not send dendrites 

into the parallel fibers and an apparent lack of basket cells. However the physical layout of these 
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components differs from that of mammals. The output cells of the cerebellum are located in the 

same layer as PCs, rather than in the deep cerebellar nuclei. And, most notably for the purposes 

of this chapter, the GC layer is located right on the surface of the brain, rather than below the PC 

bodies as in mammals. This superficial location could make population imaging of GCs more 

straight-forward than in mice, where cell bodies lie near to the limits of optical accessibility, or 

in even larger animals where they cannot be imaged at all. 

In addition to its purely anatomical appeal, the mormyrid has a unique, cerebellum-like 

sensory structure, the electrosensory lobe (ELL). An evidently Marr-Albus based information 

processing task carried out in ELL is much better understood than in cerebellum. Furthermore, 

ELL receives projections from the same population of GCs as the cerebellum proper, thereby 

providing a well-studied framework for exploring the purpose of GC processing. These GCs 

encode diverse sensory and motor corollary discharge information that is used by Purkinje-like 

cells to predict and cancel out electrosensory effects driven by the fish’s own behavior (Bell et 

al. 1997; Kennedy et al. 2014; Sawtell 2010). 

In particular, it has been shown that Purkinje-like cells in ELL, called medium ganglion 

(MG) cells, can learn to predict electrosensory stimuli if delivered yoked to a fish’s own electric 

organ corollary discharge (EOCD), which normally drives generation of an electric field used for 

active electrolocation and communication (Bell 1981; Bell et al. 1993; Sawtell and Williams 

2008). The experimentally controlled paired electrosensory stimulation drives responses in these 

MG cells initially, which fade over time. Removal of the electrosensory stimulation at this point 

reveals a learned response to the EOCD that is a “negative image” of the original electrosensory 

response. There is good evidence that this process occurs in a Marr/Albus manner in which LTD 

driven by a teaching signal sculpts the negative image from a basis of granule cell inputs about 
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the current sensorimotor state (Requarth and Sawtell 2011). The major difference between this 

structure and the fish’s cerebellum proper is that the putative teaching signal in this process takes 

the form of an electrosensory input from the periphery rather than a climbing fiber from the 

inferior olive. Understanding the nature of the types of negative images that can be formed in 

ELL can provide a helpful context for understanding the types of processing that is likely to 

occur in granule cells (Kennedy et al. 2014; Requarth et al. 2014; Sawtell 2010). 

 

Combinatorial expansion in mormyrids 

Electrophysiological recordings from GCs have provided mixed evidence regarding the 

existence of combinatorial encoding. In decerebrate cat, in-vivo whole cell recordings have 

demonstrated that mossy fibers of a given somatosensory or joint-related type innervate separate 

GCs (Bengtsson and Jorntell 2009; Jorntell and Ekerot 2006).  In contrast, a study in mormyrids 

provided the first clear demonstration of multimodal integration in GCs, showing that many GCs 

receive both proprioceptive and EOCD inputs (Sawtell 2010).  However the full extent of 

multimodal integration in mormyrids has not been probed, as this study focused exclusively on 

these two inputs. Furthermore, a number of second order questions about this multimodal 

integration remain, such as whether activation of multiple distinct mossy fiber inputs is required 

for GCs to fire action potentials. 

 

Temporal expansion in mormyrids 

The EOCD in mormyrids drives short pulses of electric organ discharge (EODs) used for 

active electrolocation. This discharge can interfere with the electroreceptors of a separate, 

passive electrosensory system, causing a ringing pattern that lasts much longer than the initial 
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EOD (Bell and Russell 1978). Negative images of the ringing can be learned with temporal 

specificity in order to mitigate these interference effects (Bell 1981). A recent study in mormyrid 

demonstrated convincingly that GC activity in response to the brief motor commands that drive 

the EOD provide MG cells with a temporally expanded basis from which to sculpt negative 

images of the ringing interference that can extend long after the initial corollary discharge signals 

have ended (Kennedy et al. 2014). In that study a heroic number of GCs was recorded from 

intracellularly. Population imaging could greatly facilitate follow-up experiments, addressing 

such issues as the distribution of electric organ corollary discharge response timings amongst the 

population of GCs as well as temporal expansion in other modalities and their interaction with 

any combinatorial coding discussed above.  

 

Calcium imaging of GCs in mormyrids 

Combinatorial encoding and temporal expansion hypotheses both propose that GCs 

transform raw contextual material into higher dimensional inputs better suited to driving the 

desired downstream activity. These hypotheses are by no means mutually exclusive and neither 

has been proven. Because these hypotheses are highly population based, monitoring activity in 

large number of GCs simultaneous could greatly facilitate progress in their evaluation. 

Currently, spiking activity in populations of neurons is most effectively imaged by the 

proxy signal of changes in calcium concentration in active cells because direct indicators of 

voltage have, amongst other issues, relatively poor signal to noise ratios. Calcium changes can be 

read out using fluorescent indicators composed of calcium-selective chelators hybridized to 

fluorescent chromophores. 
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Though population-based imaging of mormyrid GCs would offer a powerful means of 

addressing the hypotheses explored above, a protocol for loading and imaging these cells has yet 

to be reported. I therefore sought to establish such a method, with mixed results. I succeeded in 

bulk loading GCs with calcium indicator and was able to see evoked transients. I also observed 

spontaneous fluorescence modulation in response to a sensory stimulus in two cells. However, I 

never saw wide spread spontaneous activity in loaded GCs. I will discuss the possible 

methodological and physiological explanations for this as well as possible avenues for evaluating 

and addressing them. 

 

Results 

Loading granule cells 

A number of dye-loading methods have been successful in various brain regions and 

model systems. These include different types of dyes as well as different methods of 

administering the dyes (Adams 2010; Eilers and Konnerth 2009; Garaschuk and Konnerth 2010; 

Helmchen and Nevian 2007). Acetoxymethyl ester (AM) dyes are particularly suited to loading 

large numbers of cells locally, as they are engineered to allow simple passive transport of 

normally hydrophobic indicator across the cell membrane (Kimura 2007; Tsien 1981). 

Conjugating an acetoxymethyl ester group to the dye confers a sufficient degree of 

hydrophobicity on the molecule, which upon entry to the cell is reversed by intracellular 

esterases that cleave the AM group, trapping the dye inside. I found that it was possible to label 

large populations of GCs with AM-dye via multicell bolus loading, a well-established method for 

loading cells in vivo (Fig. 2.1) (Stosiek et al. 2003).  
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In particular for bolus loading I used a modified version of Ohki and Reid’s bolus loading 

protocol (Ohki and Reid 2014). To make the dye, I added 6 µL of freshly prepared 20% pluronic-

F127 solution in DMSO, to a 50 µg tube of Oregon Green 488 BAPTA-1 AM dye. After 

vortexing for 1 min, I added 72 µL of calcium-free ACSF and 2 µL of 2 mM sulfrhodamine 101. 

Just before use, the entire solution was sonicated for 5 minutes and filtered through 0.45 µm 

Millex filter (#SLHVR04NL). I found sonication and filtration was a critical step for preventing 

pipette clogs during injection and needed to be done in close proximity to when the dye was to 

be used. Dye was loaded into a glass patch pipette with tip broken to 5-10 µm. 

The injection itself was made under visualized control on a 2-photon microscope. I 

followed Ohki and Reid’s protocol for navigating to 100 µm below the surface of the GC body 

region (EGp). Low continuous pressure (usually 7 psi applied for 7 min) resulted in the best 

labeling, although short higher pressure pulses could work as well (5 psi applied in 25-50 pulses 

of 200-300 ms each). Importantly, sulfrhodamine-101 allowed visualization of the injection in 

real time as OGB does not become highly visible until it is taken up and hydrolyzed by cells. 

Approximately 90 minutes after injection, this resulted in labeling of densely packed GCs 

(Fig 2.1). Cell bodies were individually distinguishable in the first 1-2 layers of cells. Below that, 

labeling appeared a more diffuse green, which might be due to the highly light scattering 

properties of GC tissue. 

For surface loading of GCs, I used the same recipe as above and applied it directly to the 

surface of EGp. Again, 90 minutes after labeling densely packed GCs were apparent, though this 

resulted in a broader but shallower labeled region of GCs as compared to bolus loading. 



28 

 

 
Figure 2.1 Granule cells loaded with calcium indicator. 
A dense field of granule cells loaded with OGB-1 (green). Red counter-labeling represents sulfrhodamine-101, 
which allows visualization of the dye during loading and preferentially labels astrocytes. 

 

Positive control for proper function of dye and imaging apparatus 

As a positive control to verify that our imaging apparatus and dye were capable of 

capturing known action potential activity, we recorded intracellularly from a Purkinje cell in the 

caudal lobe of mormyrid cerebellum. These cells are known to fire calcium-mediated dendritic 

spikes at approximately 1 Hz in response to all-or-none activation of CF synapses. After filling a 

patched PC dendrite with OGB 1, we observed large fluorescence transients synchronous with 

the recorded calcium spike (Fig. 2.2). 
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Figure 2.2 Purkinje cell transients. 
Whole cell recording (top row) was conducted simultaneously with imaging of a filled Purkinje cell. Spontaneous 
climbing fiber activity corresponded to large transients in imaged fluorescence. 

 

Evoked transients in GCs 

Using stimulation protocols similar to those that evoke GC synaptic activity and spiking 

in vitro in cerebellar slices26, I was able to reliably evoke large transients in single trials in 

nearby GCs (Fig. 2.3). A glass electrode with the tip broken to 4-5 µm was placed approximately 

50 µm away from the imaging window. 10-50 µA current pulse trains drove strong and reliable 

transients in many GCs. The stimulating electrode was grounded against muscle tissue in the 

rostral trunk of the mormyrid. ROIs were imaged at a frame rate of 40 Hz using 920 nm 

illumination throughout. Transients in neighboring cells could be of quite different amplitudes, 

suggesting that firing was driven synaptically via activation of mossy fiber inputs rather than by 

direct electrical activation. 
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Figure 2.3 Evoked calcium transients in granule cells. 
Electrical stimulation evoked calcium transients in granule cells up to 50 µm away. Amplitudes of transients varied 
suggesting activation occurred synaptically via activation of mossy fiber inputs rather than by direct electrical 
activation. 

 

Spontaneous transients 

In my initial search for more naturalistic activity in GCs, I initially monitored the fish’s 

EOCD during simultaneous imaging. I did not observe fluorescence modulations locked to the 

EOCD, despite knowledge from published whole cell recordings that many GCs receive inputs 

from mossy fibers carrying this information and that in at least some GCs, though not the 

majority, this input is sufficient to drive action potentials (Kennedy et al. 2014; Sawtell 2010). 

Specifically in one quantitative study, approximately 15% of recorded GCs fired action 

potentials time-locked to the EOCD (Sawtell 2010). 

I next tried to drive GC responses using a low frequency electrosensory stimulus of the 

variety known to engage passive (ampullary) electrosensory mossy fibers. In comparison to the 

brief, pulsatile input from EOCD mossy fibers, low frequency electrosensory stimuli might drive 

more sustained depolarization and spiking in GCs, which could allow summation of calcium 
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from multiple action potentials, resulting in a stronger fluorescence signal. Two cells in one fish 

exhibited fluorescence modulations of a frequency that graded with the frequency of a 5 µA 

sinusoidal stimulus, ranging from 0.125 to 0.5 Hz, grounded against an electrode in the 

mormyrid’s stomach (Fig. 2.4). However, no further cells with such response properties were 

observed across hundreds of cells. 

 

 
Figure 2.4 Sensory-evoked calcium transients in granule cells. 
Example traces from a GC with apparent responses to electrosensory stimulation. Low frequency stimulation, 
known to activate ampullary electroreceptors, corresponded to fluorescence modulation of the same frequency. 
Amplitude of sinusoidal stimulation was 5uA amp applied to an electrode in the tank, grounded against an electrode 
in the fish’s stomach. 
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Discussion 

It is possible that the observed paucity of fluorescence modulation associated with the 

EOCD or ampullary electrosensory stimulation was a true reflection of extremely sparse activity 

in GCs. However, it is more likely that a significant fraction of the GCs observed were indeed 

firing action potentials, as suggested by whole cell recordings (Sawtell 2010), but that this 

activity could not be detected in the fluorescence signal. 

Such a situation could arise for a number of reasons. Fluorescence changes are the result 

of circuit intrinsic dynamics that determine how many action potentials fire and cell intrinsic 

dynamics that determine how much free calcium becomes available when they do, combined 

with properties of the loaded indicator, which govern the size of the fluorescence signal that an 

action potential-mediated calcium fluctuation generates. Strategies to increase stimulus-driven 

activity or indicator responsiveness  are both potentially viable approaches for achieving 

visualization of spontaneous activity in mormyrid GCs. 

 

Driving increased activity in GCs 

My ability to reliably evoke transients in GCs with a stimulating electrode suggests that 

some level of activity can be monitored using my stated loading parameters. However mossy 

fiber inputs must not be adequate to drive GCs this strongly under the experimental conditions 

described. Engaging more sensory modalities could increase levels of activity in GCs. For 

example, proprioceptive inputs activated by tail movement are known to drive mossy fibers (Bell 

et al. 2008; Requarth et al. 2014). Perhaps GCs that receive EOCD, proprioceptive and 

electrosensory inputs on different dendrites would fire more strongly to a combination of these 
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inputs.  A caveat to this approach is that some theories hold that inhibitory interneurons work to 

maintain GC firing rates in a fixed regime, independent of variation in the numbers of active 

innervating mossy fibers (Albus 1971; Marr 1969). Furthermore, if engagement of multiple 

modalities is necessary to see activity, this will limit the types of experiments that can be 

conducted. 

 

Optimizing loading concentration 

Increasing the sensitivity of the loaded indicator so as not to require extremely high levels 

of activity for detection would be a preferable approach. The major determinants of a loaded 

indicator’s signal size stem from inherent properties of the selected indicator and the 

concentration at which it is loaded. The effect of loading concentration is not monotonic. 

Initially, increasing indicator increases the resulting signal to noise ratio (SNR). Ultimately 

though, the change in fluorescence to change in calcium ratio follows a saturation function 

because as all calcium becomes bound, continuing to increase indicator cannot continue to 

increase signal. On the other hand, baseline noise, which is a direct property of dye 

concentration, can continue to increase. Once the growing noise outpaces the slowing 

fluorescence to calcium ratio, SNR peaks and begins to descend (Gobel and Helmchen 2007). 

At optimal SNR, exogenous calcium buffering capacity from the loaded dye is 

approximately equal to that of endogenous calcium buffers. Without knowing the calcium 

buffering properties of mormyrid GCs though, this can’t be calculated precisely. But, 

electrophysiological recordings from GCs combined with simultaneous imaging of cells loaded 

directly via patch pipette could be used to empirically evaluate signal responses to evoked simple 

spikes. This could be done in vivo, or in slice. The latter would allow for convenient visualized 
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targeting of whole cell recordings, but comes with the added challenge of generating slices, 

which can be tricky in mormyrids, and wouldn’t guarantee the same loading concentrations as in 

vivo. 

Unfortunately, the concentration of AM-dyes achieved via bolus loading is not easy to 

finely control. Cellular concentration of indicator is generally much higher than, and not directly 

determined by, extracellular loading concentration. A recent paper however suggests that loading 

concentration can be affected at least bluntly by varying the concentration of pluronic F-127 and 

DMSO (Hamad et al. 2015). 

 

Optimizing indicator selection 

Different calcium indicators have characteristics that render them better suited for 

visualizing signals with different requirements. Two important characteristics are an indicator’s 

calcium binding affinity and its dynamic range. Binding affinity is a measure of the attraction 

between the indicator and the desired ligand, in this case calcium. A quantitative metric for this, 

the indicator’s calcium  dissociation constant (Kd), is defined as the concentration of intracellular 

calcium necessary for 50% of indicator molecules to bind a Ca2+ ion at equilibrium. 

Fluorescence changes in response to changing Ca2+ concentrations, [Ca2+], are most robust when 

an indicator has a Kd within one order of magnitude of resting [free Ca2+]. This balances a high 

enough affinity to capture small calcium influxes with sufficient signal to noise (STN) with a 

low enough affinity to avoid saturation of indicator in response to large calcium influx (Yasuda 

et al. 2004). 

In the case of GCs, where spiking activity may be low enough that detection of single 

action potentials is critical, biasing this balance toward higher-affinity indicators might be 
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justified, despite the converse possibility of saturation in the face of trains of APs. The resting 

[Ca2+] concentration of mormyrid GCs is not known, which makes precise calculation of the 

appropriate Kd impossible. However, at rest, most neurons have an intracellular calcium 

concentration in the range of 50–100 nM that can rise transiently during electrical activity to 

levels that are ten to 100 times higher (Berridge et al. 2000). In good accordance, [Ca2+] 

measured in GCs in slices from 5 day old mice have been estimated in the 40-50 nM range 

(Harkins et al. 2000; Womack et al. 1998). Conservatively, an indicator with a Kd of 5-500 nM 

would be appropriate. The Kd of OGB-1 , a particularly high-affinity calcium indicator,  is 

around 200 nM (the precise value depends on the particulars of parameters like pH, and 

temperature), which is well within these limits (Russell 2011; Yasuda et al. 2004). Indeed OGB-

1 has proven a popular choice for measuring activity in vivo in many organisms and cell types 

(Dombeck et al. 2010; Ohki et al. 2005; Sullivan et al. 2005; Sumbre et al. 2008; Wachowiak et 

al. 2004). 

Importantly, indicator binding affinity has other effects that should not be overlooked. An 

indicator, like OGB-1, with higher binding affinity, can have effects on a cell’s calcium 

dynamics by operating as an exogenous calcium buffer. High binding affinity can also adversely 

affect the linearity of the relationship between [Ca2+] and fluorescence, preventing quantitative 

read out of spiking activity from fluorescence. However these are perhaps secondary 

considerations to be dealt with after finding appropriate parameters for visualizing GC spiking at 

all. 

A second important factor to consider is the dynamic range of an indicator, determined 

by its basal fluorescence and its change in fluorescence upon binding calcium. This affects its 

signal to noise. Fluo4, which has very low baseline fluorescence, has a better dynamic range in 
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this sense than OGB (Paredes et al. 2008) and may be a fruitful dye to use. I did in fact load GCs 

with Fluo4 via bolus and surface loading in a number of experiments, but didn’t have noticeably 

improved results. 

 

An alternative approach 

An alternative strategy to pursue population imaging of GCs would be to make use of an 

even more methodologically tractable model system. While the mormyrid fish has an enticing 

population of GCs right on the surface of the brain, it is not currently a genetically tractable 

system, limiting some approaches to labeling. For example, the genetically encoded calcium 

indicator, GCaMP6, was recently shown to read out action potentials with higher fidelity than 

OGB-1 (Chen et al. 2013). GCaMP6 could possibly be introduced into mormyrid GCs, but 

would have to be done virally, an approach that has not been established in this organism. It is 

also not clear how deep we will ultimately be able to see into the highly light-scattering tissue 

where granule cells are located, as the loading achieved thus far suggests discriminating cell 

bodies more than a couple of cell layers beneath the surface may be challenging. 

In another model organism, the larval zebrafish, which is small and clear, it has been 

shown possible to  genetically label and image throughout the entire brain using pan-neuronal 

expression of GCaMP (Ahrens et al. 2012). Furthermore, as noted above, a first account of 

calcium imaging specifically in the granule cells of this organism has already been reported 

(Sylvester et al. 2011). 

In the remainder of this thesis I explore the potential for zebrafish as a model system for 

studying the cerebellum. However, there are compelling reasons to continue pursuing imaging of 

GCs in mormyrids in parallel. The inputs to mormyrid GCs are already well characterized in this 
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system as are many of their downstream targets. In particular, the mormyrid’s cerebellum-like-

structure, the ELL, receives inputs from cerebellar GCs and a theory of Marr-Albus based 

processing in it is largely substantiated. Studying GCs in the context of this well characterized 

ELL circuit would provide a helpful framework for interpreting the purpose of the massive 

coding expansion in GCs. 
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CHAPTER 3: THE ZEBRAFISH AS A CEREBELLAR MODEL 

 

The tools considered requisite for reverse-engineering a circuit include a well-described 

wiring diagram and the ability to monitor and separately manipulate the activity of identified 

components within it. Neuroscientists generally have had to make do with a severely restricted 

version of this toolkit, but advances in imaging and genetic techniques are changing that. The 

small size and genetic tractability of the zebrafish, Danio rerio, make it particularly compatible 

with these techniques and have increased its prominence as a model organism for studying neural 

circuits (Baier and Scott 2009; Del and Wyart 2012; Friedrich et al. 2010; Portugues et al. 2013; 

Sumbre and de Polavieja 2014). In this chapter I introduce the cerebellar circuit in zebrafish and 

discuss the methodological capabilities available for studying it as well as some of the challenges 

that will need to be overcome to use the zebrafish as a standard model organism for cerebellar 

studies. 

 

Comparison of zebrafish versus mammalian cerebellum 

The structure of the cerebellar circuit is largely conserved between mammals and 

teleosts, like the zebrafish, though there are a number of differences (Hibi and Shimizu 2012; 

Meek 1992). The teleost cerebellum is divided into three lobes:  the valvula, the vestibulolateral 

lobe, and the corpus cerebella. The valvula is a unique teleost specialization and the 

vestibulolateral lobe is a region thought to be homologous to the vestibulocerebellum of 

mammals. The corpus represents the remaining, and in zebrafish the largest, part of the 

cerebellum. The corpus is a three-layered structure. GCs occupy the deepest layer, Purkinje cells 

the middle, and the molecular layer, where parallel fibers and stellate cells contact Purkinje cells, 
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occupies the top. As in mammals, mossy fiber and climbing fiber pathways converge on Purkinje 

cells, with the former contacting Purkinje cells indirectly via GC and stellate cell axons, after 

being processed in the GC layer by a network of GCs, Golgi cells, and unipolar brush cells (Hibi 

and Shimizu 2012). 

Some differences from the mammalian circuit include a lack of inhibitory basket cells 

projecting to Purkinje cell somas, a lack of Golgi cell dendrites in the molecular layer, and a 

different anatomical location of the cerebellum’s output cells. Similar to the deep cerebellar 

nucleus neurons in mammals, the glutamatergic efferent cells of the zebrafish cerebellum, called 

eurydendroid cells, are the targets of Purkinje cell inhibition; however, these cells are located in 

the vicinity of Purkinje cells rather than in a separate nucleus (Alonso et al. 1992; Meek et al. 

1992). They also receive parallel fiber input rather than direct mossy fiber input as is the case for 

deep cerebellar nuclear cells in mammals. 

The time course over which the cerebellum matures in larval zebrafish has not been 

entirely characterized, but it is known that cerebellar cell types have begun differentiating by 3 

days post fertilization (dpf) and the layered structure of the cerebellum forms by 5 dpf (Bae et al. 

2009). Also by 5 dpf, Purkinje cells fire two types of action potentials, simple spikes and 

climbing fiber responses, which can be modulated by sensory stimulation in the form of 

luminance changes, indicating the existence of functional sensory inputs to the cerebellum  

(Hsieh et al. 2014). Climbing fiber rates increase until 5 dpf and then decrease to a steady state 

over the next couple of days, suggesting that multiple climbing fiber innervations of Purkinje 

cells are pruned over this period (Hsieh et al. 2014). The sources of mossy fiber afferents to the 

zebrafish cerebellum are not all known, but inputs from the dorsal tegmental nuclei (Bae et al. 

2009) and pretectal nuclei have been reported (Volkmann et al. 2010). 
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Comparison of  mammalian vestibulo-ocular reflex response and zebrafish optomotor 
response 

In chapter 1, I described a mammalian cerebellar-dependent behavioral paradigm, the 

vestibulo-ocular reflex (VOR), in which an image is kept steady on the retina, despite head 

movements, by compensatory eye movements driven by vestibular input from semicircular 

canals. Zebrafish also exhibit the VOR (Beck et al. 2004; Moorman et al. 1999), though the role 

of the cerebellum in it has not been well-studied. A different visual stabilization behavior in 

zebrafish for which the cerebellum has received some attention is called the optomotor response 

(OMR) (Ahrens et al. 2012). 

The OMR shares some algorithmic requirements with the VOR. In this behavior, 

zebrafish swim in the direction of whole field motion, stabilizing themselves relative to their 

visual surroundings (Portugues and Engert 2009). Forward visual motion drives forward 

swimming, while other directions first cause turning to orient along the axis of motion, followed 

by forward swimming (Orger et al. 2008; Orger et al. 2000). Such a behavior could be useful for 

these aquatic creatures to maintain their position in the face of water currents. In both the VOR 

and the OMR, the brain is faced with the need to translate sensory information about a 

displacement (vestibular information about displacement of the eyes by head movement in the 

case of the VOR and visual information about displacement of the body by an external current in 

the case of the OMR) into compensatory stabilizing movements. 

The appropriate motor response to sensory destabilization information can change over 

time as an organism’s size and strength change. Just as the gain of the VOR can change in 

response to errors indicating a need for sensorimotor recalibration, it has recently been shown 

that the gain of the OMR can be adjusted by manipulating the relationship between sensory 
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information about drift velocity and the appropriate magnitude of compensatory response to 

achieve stabilization (Ahrens et al. 2012; Portugues and Engert 2011). This has been 

demonstrated in virtual OMR paradigms in which an immobilized larva can control a visual 

stimulus projected onto a screen beneath it. In one study, fish were held in place by partial 

embedding in agar, but their tails were left free to move (Portugues and Engert 2011). The 

amount of tail movement was then quantified and fed into a computer program to allow the fish 

to control movement of the visual stimulus. In a subsequent study, fish were paralyzed and 

recordings from their motor nerves were used to drive entirely fictive swimming (Ahrens et al. 

2012). 

When the relationship between motor output in these studies and its effect on the velocity 

of the visual stimulus was increased or decreased, fish initially overshot or undershot their 

previous level of stabilization, but subsequently adjusted their motor output in the direction that 

would reestablish the previous level of stability. It is important to note that “increased gain” in 

OMR terminology is used to connote the opposite of its meaning in VOR terminology. 

Specifically, an increased gain in the VOR means larger eye movements in response to the same 

vestibular input. In OMR terminology, an increased gain means an increased effect of motor 

output on drift velocity, which actually necessitates smaller swim movements in response to the 

same visual drift input. 

One study has suggested that the cerebellum may play an analogous role in this behavior 

to its role in VOR gain-adaptation (Ahrens et al. 2012).  Calcium imaging in this study revealed 

strong engagement of the cerebellum during the OMR, including some cells that were 

specifically active during gain changes. Consistent with this hypothesis, when the climbing fiber 

input to the cerebellum was inactivated by lesioning of the inferior olive, OMR gain changes 
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were prevented, while sparing the OMR itself (Ahrens et al. 2012). Lesions are not a highly 

specific means of inactivating a region as processes passing through the region will also be 

inactivated, so the effects of lesioning on OMR gain could have been due to damage of neurons 

other than the inferior olive. However, if  OMR gain change is cerebellum-dependent, it could 

provide a useful framework for studying cerebellar learning in the zebrafish. 

 

A hypothetical mechanism for OMR gain change 

While similar to the VOR in some respects, the OMR also has some clear differences. To 

begin with, the likely purpose of the OMR requires considerably less precision than the VOR. In 

the VOR, preventing blurred vision requires very tight moment-to-moment coupling of 

compensatory eye movements to destabilizing head movements. The OMR is a much less 

temporally precise behavior. Fish swim in the direction of whole field motion on average, but not 

in a tightly locked manner. This makes some ethological sense as displacement due to current 

drift can be prevented with swimming that is only counteractive on average. 

The looseness of coupling between sensory motion and motor response is further 

compounded in larval zebrafish by the structure of swimming at this immature stage. Larval 

zebrafish swim in discrete units, called bouts, each of which consists of a series of generally less 

than 10 tail beats carried out over brief periods, generally less than 200 ms, interspersed with 

pauses in movement of similar or slightly longer duration (Severi et al. 2014). The average speed 

of a sequence of bouts can be adjusted by changing tail beat frequency, bout duration, or bout 

frequency (Severi et al. 2014). This allows larval zebrafish to adjust average swim speed in 

response to OMR whole-field motion stimuli of varying drift velocities. However, even with 

average swimming perfectly tuned to cancel out drift over long time periods, at any given 
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moment during the OMR the fish either overshoots the instantaneous rate at which the visual 

stimulus moves (during bouts) or undershoots it (between bouts). 

The equation relating instantaneous sensory input to motor output is thus quite different 

during performance of the OMR compared to the VOR. Theoretically, the desired eye velocity in 

the VOR is simply equal to the sensory information about head velocity scaled by some gain 

factor, g, and inverted such that: 

!!"! = −! ∗ !!!"# 

During the OMR, however, calculating the appropriate swim velocity of a bout from 

visual drift velocity information requires integrating the total displacement that has been incurred 

since the previous bout terminated to produce a counteracting displacement over the duration of 

the current bout. Assuming for simplicity a bout with a square pulse of uniform velocity Vbout , 

then for the nth bout with duration dn and start time tn, the desired velocity would be: 

 

!!"#$ ! = −
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!

 

The gain of such a calculation could be scaled before integration, which could be 

interpreted as adjusting the transformation between perceived drift and actual drift. 

 

!!"#$ ! = −
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Or it could be scaled at the end, which could be interpreted as adjusting the 

transformation between intended velocity and achieved velocity. (Though both formulations are 

mathematically equivalent, they could suggest different biological locations of implementation). 

 

!!"#$ ! = −!×
!!"#$% ! !"!!

!!!!
!!

!

 

In the simplest Marr/Albus/Ito model, adjusting VOR gain was proposed to occur by 

simply adjusting the strength of vestibular drive onto Purkinje cells in the opposite direction 

from the desired gain. Since Purkinje cells inhibit the vestibular nuclei, which drive the VOR, 

modulating their output in one direction was theorized to drive the strength of the VOR in the 

other. Such a simple process requires that the input to Purkinje cells be directly proportional to 

the desired output. As can be seen in the equation above, the integration step and the division by 

the bout duration, dn, which varies over bouts, breaks this requirement for Vbout’s relationship to 

Vdrift. 

However, one can imagine small modifications that would resolve this issue, if 

stabilization did not need to be precise on a bout to bout timescale. Indeed, as discussed above, 

the OMR is not executed with bout to bout precision. Vdrift could be integrated upstream of 

parallel fibers onto Purkinje cells. A structure that carries out integration of eye velocity to 

generate an eye position signal, called the oculomotor integrator,  demonstrates that this type of 

mathematical integration can be carried out by neural circuitry and mechanisms for how have 

been proposed  (Aksay et al. 2001; Aksay et al. 2007; Arnold and Robinson 1997; Joshua and 

Lisberger 2015; Robinson 1989).  The quantity specified by the integral above is not simply a 
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general position signal however, but the specific change in position, or displacement, incurred 

since the termination of the previous bout. Using the oculomotor integrator as an example, the 

zero point from which it measures displacement is determined by its time constant, which 

interestingly has been shown to depend on cerebellum (Chelazzi et al. 1990; Robinson 1974). 

Unless an integration time constant could vary substantially on a bout to bout timescale it would 

not allow precise integration over varying interbout intervals. However, because the OMR need 

not be precise on this timescale, the time constant could be set to some constant value that would 

overestimate the drift displacement in some bout instances and underestimate it in others, but the 

sum of these estimates would approach the correct accumulated displacement with time. 

The issue of division by a bout duration that varies with time can be resolved similarly by 

accepting division by an average bout duration, which would result in overshooting of 

compensatory displacement by longer-than-average bouts and undershooting by shorter ones, but 

again should achieve accuracy on longer timescales. Bout duration then becomes a simple 

constant and the new equation for bout velocity becomes: 

 

!!"#$ ! = −! ∗ !!! !

 

This equation could now be carried out as simply as the basic VOR model described 

above. Change in position during approximately the interval between the current and previous 

bouts, Pn, calculated by a visual drift velocity integrator, would arrive via parallel fibers. The 

strength with which these parallel fibers drive Purkinje cells would be determined by the 

combined value of a fixed “bout duration”  scalar, d, and an adjustable “gain” scalar, g. In a low 

gain paradigm (which for the OMR means a decreased effect of motor output on drift velocity), 



47 

 

decreasing the weight of integrator inputs to Purkinje cells would decrease Purkinje cell 

inhibition of downstream motor control apparatus, increasing motor output appropriately to 

regain stability under the new “decreased strength” conditions of the lower gain paradigm. 

There are some additional issues that would need to be addressed for this simple model to 

successfully learn to adjust VOR gain. Purkinje cells should only affect motor apparatus during 

swim bouts for example. This could be addressed by a gating mechanism that only allows this 

drive to reach motor apparatus during bouts, presuming bouts are initiated outside of the 

cerebellum as is the case for head movements in the VOR. Similarly, the change in position to be 

stabilized should only be evaluated during interbout intervals, but should be acted upon during 

bouts. An expanded temporal representation of the interbout displacement, perhaps in the granule 

cells, could allow use of this signal at a variety of delays. 

Another issue would be defining an appropriate teaching signal. In the case of the VOR 

there is controversy about what the teaching signal actually encodes, but at least theoretically a 

simple slip signal would be sufficient to indicate to a Purkinje cell that an error in stabilization 

had occurred. In the OMR, even perfect execution would still be associated with slip due to the 

discrete bout nature larval of swimming. An error then should be evaluated over the timescale of 

at least one bout. A possible error signal would be the integration of velocity over the preceding 

interbout interval through the termination of the current bout. If this were 0 it would indicate 

perfect stabilization, whereas a negative value would indicate too low of bout strength and a 

positive value too high of one. To be effective, a teaching signal occurring at the end of a bout 

would have to affect the weights of inputs that drove the bout itself over a window of 

approximately 150 – 200 ms prior to the teaching signal. Notably, in mammals, it has been 

demonstrated that parallel fiber to Purkinje cell LTD driven by activation of parallel fibers and 
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climbing fibers is greatest when climbing fiber activation followed parallel fiber activation by 50 

– 200 ms (Wang et al. 2000). This timing also aligns wells with observations that timing of gain 

adaptation during the VOR can be predicted from the correlation between complex spike firing 

and the simple spike firing rate 100 ms before (Raymond and Lisberger 1998). 

As addressed above, it has not been definitively proven that the cerebellum is involved in 

OMR gain change, but if it is, the algorithmic requirements to drive OMR gain change behavior, 

suchas those outlined above, could provide a rich territory for evaluating theories of cerebellar 

processing. Furthermore, whether this behavior or another turns out to be cerebellum-dependent, 

there is strong motivation to pursue understanding of cerebellar processing in zebrafish behaviors 

because of the methodological advantages in this system that could provide powerful approaches 

for experimental evaluation of these sorts of theories. 

 

Methodological advantages of zebrafish 

A small organism 

The advantages proffered by the larval zebrafish stem from its minute size as compared 

to other vertebrate model organisms. The brain of a larval zebrafish has less than 100,000 

neurons at 7 dpf (Hill et al. 2003) as compared to 70,000,000 in mouse (Herculano-Houzel et al. 

2006). The motor control apparatus of the zebrafish is similarly relatively simple compared to 

higher vertebrates. The reticulospinal neurons, which channel information from the brain to the 

spinal cord, comprise only about 300 neurons, including many that can be individually identified 

across animals (Kimmel et al. 1982).  Such minimal circuits may be easier to dissect than those 

of more complex model systems. For example, high speed swimming during the optomotor 

response was recently demonstrated to depend on a particular subset of about 20 reticulospinal 
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neurons, located in the nucleus of the medial longitudinal fasciculus. Furthermore, activity in two 

distinct sets of two nMLF neurons corresponded to specific speed-related parameters: tail beat 

frequency and bout duration (Fig. 2.1). In addition to such opportunities for simple direct 

observation of activity, small numbers of neurons present the potential for modeling of 

interconnected populations to understand network dynamics using biologically accurate numbers 

of neurons. This is a significant consideration as the importance of population level dynamics to 

circuit function often cannot be addressed at full scale in models. 

 

 
Figure 3.1 Individually identifiable neurons of the nMLF. 
A: labeled reticulospinal neurons including those of the nMLF (magenta box) superimposed in their location over an 
image of a zebrafish larva. B: The neurons of the nMLF (approximately 20 in total), including 4 pairs of 4 
individually identifiable cells (MeLr, MeLm, MeM, MeLc), some of which appear to have unique roles in 
controlling tail beat frequency or bout duration of high speed swim responses to optomotor response-driving visual 
stimulation. Reproduced from (Severi et al. 2014). 

 

Imaging Activity 

Beyond the intrinsic value of simpler circuits, small size is a physical trait of great value 

in the context of modern neuroscience’s potent optical tools for monitoring and manipulating 

neural activity. Advances in noninvasive optics-based techniques have made it possible to image 

activity in large populations of genetically identifiable cells and to activate and inactivate them 
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using directed light. These techniques are powerful, but depend on illumination of the neurons in 

question. 

Under two-photon microscopy, imaging at depths up to 600 µm is fairly standard and can 

be pushed up to 1 mm with appropriate methods in some brain regions (Helmchen and Denk 

2005; Kleinfeld et al. 1998; Svoboda and Yasuda 2006). In other vertebrate model systems this 

range severely limits the regions of the brain that can be non-invasively imaged and optically 

stimulated. For example, recent studies involving chronic imaging of hippocampal cells in mice, 

which are more than 1 mm below the brain surface in mice, required aspiration of the cortex for 

visualization (Dombeck et al. 2010; Kaifosh et al. 2013). The accessibility of cerebellar circuitry 

in mouse varies, with neurons of the deep cerebellar nuclei at one extreme, on the order of 2 mm 

below the brain surface (Lu et al. 2013). 

In contrast, the brain of the small, transparent zebrafish is only 0.5 mm thick at 5 dpf, 

rendering all brain regions accessible to functional imaging at single cell or even subcellular 

resolution. For example, a recently published method for monitoring internalization of GFP-

labeled AMPA receptors in vivo (Zhang et al. 2015) could allow direct observation of plasticity 

in sub-cellular structures. This would offer a particularly elegant way to evaluate hypotheses of 

multiple sites of plasticity in cerebellum that, as described in Chapter 1, have been historically 

difficult to test. 

While optical imaging allows monitoring of activity in whole populations of cells, the 

rate of scanning limits the temporal resolution with which these data can be acquired. Much 

progress has been made in recent years in increasing the speed at which populations of neurons 

can be imaged. In 2014, light-sheet imaging made it possible to image more than 80% of the 

larval zebrafish brain with single cell resolution at a rate of 0.8 Hz (Ahrens et al. 2013). In 2014 
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light-field imaging was used to image a similar proportion of the zebrafish brain at 20 Hz, 

though with slightly lower resolution and substantial computational time required for the 

reconstruction techniques necessary to process the data (Prevedel et al. 2014). Focusing imaging 

on just the cerebellum, rather than whole brain, should allow an order of magnitude increase in 

this rate and the rapid improvements in these methods in recent years bode well for further 

increase as well. 

 

Manipulating Activity 

The genetic tractability and optical accessibility of zebrafish also make it possible to use 

optogenetic actuators to manipulate the activity of cells. A variety of light-gated ion channels can 

be expressed in genetically targeted cells, resulting in luminance-controlled electrical excitability 

of neuronal subtypes. When cells expressing channelrhodopsin-2 (Nagel et al. 2003) are exposed 

to blue light, the light-gated ion channel permits influx of non-specific cations. The neuronal 

firing that results from this luminance activation can be controlled with temporal precision 

(Boyden et al. 2005; Li et al. 2005). Conversely, halorhodopsin, a light-driven chloride pump, 

causes hyperpolarization when activated by light in cells in which it is expressed (Gradinaru et 

al. 2008; Zhang et al. 2007). 

Critically, the ability to transiently turn on and off populations of identified cells makes it 

possible to test theories of causality involving the necessity and sufficiency of circuits and circuit 

components for controlling behaviors. These methods have been successfully applied to show 

causal roles for neurons in zebrafish behavior. For example, a region at the boundary between 

the spinal cord and hindbrain has been demonstrated to drive swimming when activated via 

channelrhodposin-2 (Arrenberg et al. 2009). Interestingly, discovery of this region’s involvement 
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began with an observation of swimming after a release from inhibition of the entire brain driven 

by pan-neuronal expression of halorhodopsin. The authors were thus initially agnostic about 

what regions of the brain might be causing this response. Using a fiber optic to focus light on 30 

µm ROIs, they were able to zero in on the responsible region, the commissura infima Halleri, 

which drives swimming when released from inhibition or activated directly by 

channelrhodopsin-2. Activating spatially segregated subsets of cells in this manner is an 

important capability for circuit dissection and a number of approaches exist for realizing it. For 

example, digital mirror devices (Wyart et al. 2009) and holographic pattern illumination (Vaziri 

and Emiliani 2012) have been employed in addition to fiber optic control. 

 

Genetic Targeting 

Calcium indicators and optogenetic actuators can be introduced to cells via the injection 

loading techniques described in chapter 2 (Daie et al. 2015), but the genetic tractability of 

zebrafish makes genetic introduction of calcium sensors, and light-gated ion channels possible as 

well. This facilitates targeting of indicator to specific, identified cell types in addition to 

obviating the need to manually label individual organisms once a line is created with a desired 

expression pattern. 

Currently there are a number of methods for introducing genetic material into identified 

cell types. Transgenesis is commonly achieved in zebrafish using the Tol2 transposon system 

(Daie et al. 2015; Kawakami et al. 2004). Briefly, mRNA for the transposase, Tol2, is injected 

into zebrafish embryos along with plasmid DNA containing the protein to be expressed, for 

example GFP. Tol2 inserts in the zebrafish genome in a stochastic manner. If it is inserted in 
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such a way that it can hijack or “trap” an enhancer from an existing gene, the result is a trap line 

with unique expression patterns depending on the enhancer that was trapped. 

Tol2 transgenesis has been used powerfully in combination with the combinatorial Gal4-

UAS system, which allows for mixing and matching of lines in which the location for transgene 

expression has been defined and lines that define which protein to express (Asakawa et al. 2008; 

Ogura et al. 2009; Scott et al. 2007). This is accomplished by separating Gal4, a yeast 

transcription activator protein from the enhancer that it binds to, Upstream Activation Sequence 

(UAS), which itself drives transcription of a desired gene. Trap lines with unique Gal4 

expression lines can be made as detailed above. Separate “reporter lines” contain the UAS region 

adjacent to a desired gene expressed pan-neuronally in all cells. When a Gal4 trap line is crossed 

with a reporter line for a protein of interest, the resulting progeny express the desired protein 

only in the subset of cells specified by the Gal4 trap line. 

Large numbers of Gal4 lines can be made using Tol2 as described above and then 

screened for desired expression patterns by crossing with a UAS:GFP reporter line to visualize 

the distribution of affected cells. The combinatorial nature of the Gal4-UAS systems can confer 

Gal4 expression patterns on any desired protein for which a UAS reporter line exists, thereby 

maximizing the utility garnered from each trap line. Extensive collections of Gal4 lines have 

been created in this manner (Asakawa et al. 2008; Ogura et al. 2009; Otsuna et al. 2015; Scott et 

al. 2007). 

The stochastic nature of Tol2 transgenesis can make the development of a line with a 

given particular expression pattern arduous. More recent methodological developments, such as 

TALENs (Sander et al. 2011) and CRISPR (Hwang et al. 2013) allow targeted DNA sequence 

mutations. CRISPR has recently been used to begin converting established zebrafish lines 
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expressing GFP to express Gal4 instead, opening these expression lines to the combinatorial 

power of the Gal4-UAS system (Auer et al. 2014). CRISPR can also be used to introduce 

transgenes directly into the genetic material of naïve zebrafish (Hisano et al. 2015; Kimura et al. 

2014). 

 
Additional Genetic Tools 

Calcium activity monitoring and optogentically-controlled transient gain of function and 

loss of function experiments are two of the most heralded methods that can make use of the 

zebrafish’s small size and genetic tractability. However, additional tools for more specialized 

tasks exist as well. 

Long term suppression of synaptic output can be achieved by expression of tetanus toxin 

light chain (TeTxLC), a permanent blocker of synaptic vesicle release. UAS-Gal4 driven 

expression of TeTxLC in different brain regions has successfully demonstrated effects on 

mechanosensory and olfactory behaviors (Asakawa et al. 2008; Koide et al. 2009). 

Monitoring intracellular calcium levels without requiring external illumination can be 

realized by expressing the Calcium-sensitive photoprotein (GFP)-Aequorin (Baubet et al. 2000) 

in defined cell populations. Aequorin emits photons in the presence of increased calcium. The 

emitted light signal does not provide spatial information about the location of active cells, but 

can provide information about overall levels of activity in the labeled cells. This has been used to 

monitor activity levels in free swimming fish during behaviors like the startle response or 

spontaneous swimming (Naumann et al. 2010). 

Tagging cells at distinct points in development is possible in chx10:Kaede transgenic 

animals (Ando et al. 2002). Kaede is a fluorescent protein that can be photo-converted from 
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green to red, thereby marking any cells that were present at the time of the conversion event red, 

while leaving cells that develop subsequently green. This approach has been used to study 

developing glutamatergic hind brain cells that likely drive motor output. Researchers found that 

older neurons were located more ventrally and were involved in different types of swimming 

than those that were more dorsal (Kinkhabwala et al. 2011; Koyama et al. 2011). The ability of 

kaede to label cells of different ages could be a particularly important tool given that studying 

zebrafish larva means studying an animal that is not fully developed. I discuss this challenge 

further below, but the existence of tools like kaede should be helpful in determining the 

timeframe of maturation of the cerebellum in zebrafish. 

 

Challenges in zebrafish 

Technological challenges 

Despite the impressive array of tools available for use in research conducted on zebrafish, 

such work comes with a number of challenges. One class of hurdles to be surmounted derives 

from the new tools themselves. The power of optical imaging and stimulation is remarkable, but 

it is not immediately clear how the signals measured and driven relate to the spiking activity of 

targeted cells. Electrophysiological recording from cells in tandem with optical stimulation or 

calcium imaging should be helpful in calibrating this relationship. 

A related problem is that we don’t know what signals will be possible to image using 

calcium indicators. While calcium sensitive dyes allow monitoring of individual cells, their slow 

dynamics do not provide as sensitive a read out of neuronal activity as traditional 

electrophysiological voltage recordings. Furthermore, the amount of calcium fluctuation caused 

by spiking varies by cell type. In mammalian Purkinje cells, the calcium influx caused by simple 
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spikes has not appeared to be substantial enough to read out in fluorescence traces so only 

monitoring of climbing fiber responses via calcium imaging has been reported in these cells 

(Kitamura and Hausser 2011; Najafi et al. 2014; Schultz et al. 2009; Sullivan et al. 2005). 

However, the sensitivity of genetically encoded calcium indicators (GECIs) has improved 

continuously in recent years (Akerboom et al. 2012; Zhao et al. 2011). The latest GECIs, while 

still not capable of capturing simple spikes in Purkinje cells, are nearing reliable, single spike 

sensitivity in other neurons, though slow kinetics restrict them to detecting action potentials that 

are temporally sparse (Akerboom et al. 2012; Chen et al. 2013). 

Genetically encoded voltage indicators (GEVIs) represent a more distant but potentially 

promising avenue for directly monitoring membrane potential voltage some day. This would 

side-step the issue of insufficient calcium influx for some action potential types and would also 

allow observation of subthreshold activity. Practical use of GEVIs still appears to be quite a 

ways off. Achieving sufficient signal to noise, for example, is a challenge in voltage sensors, 

which tend to be membrane bound and so cannot provide the larger cytosolic signal available 

with calcium sensors. But when and if this method does overcome the various hurdles currently 

before it, the zebrafish would be an ideal organism in which to put its power to use.   

 

Behavioral Challenges 

A second class of challenges in the larval zebrafish has to do with the developmental 

state of the animal. The larval zebrafish is generally studied within two weeks of fertilization. It 

is not clear how sophisticated of a behavioral repertoire such an immature animal can be 

expected to have. The cerebellum tends to wield a subtle role in behavior, contributing to the 

gain settings of a motion initiated elsewhere, for example, rather than exerting absolute control 
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of the movement. It’s conceivable that at this early stage in development, zebrafish larvae may 

not yet engage in sufficiently complex behaviors to require the cerebellum. On the other hand, 

even at the larval stage, zebrafish face stringent demands on their motor skills as pressures to 

hunt and avoid predation begin within the first week of life. 

Two larval zebrafish behaviors have so far been described with evidence of cerebellar 

contribution. OMR gain adaptation and the evidence for a cerebellar role in it were described  

above. Another potentially cerebellar behavior involves an associative conditioning task in which 

a conditioned visual stimulus drives an enhanced motor response after pairing with an 

unconditioned touch stimulus (Aizenberg and Schuman 2011). In parallel with this behavioral 

change the authors observed facilitation of luminance responses in cerebellar neurons after 

conditioning. Interestingly, laser ablation of the cerebellum arrested acquisition and extinction 

(dependent on when during training the lesion was made) but not retention of the learned 

response. The activity in this experiment was visualized using bolus loading of synthetic dye, so 

it is not known which cerebellar cell types were involved in the observed responses. 

Furthermore, as noted above, laser ablations are not cell type specific, allowing for the 

possibility that non-cerebellar processes in the vicinity could have been affected. Nevertheless, 

this paradigm is a promising one given its similarity to mammalian cerebellar-dependent 

classical eyelid conditioning paradigms (Thompson and Steinmetz 2009). 

A sizable number of other behaviors have been described in zebrafish, perhaps reflecting 

the motor demands larvae face from the earliest stages. These behaviors, in which a role for 

cerebellum has not been probed, include a variety of locomotor maneuvers such as slow forward 

swims, routine turns, and escape responses (Budick and O'Malley 2000; Fetcho and O'Malley 

1995; Gahtan et al. 2002). An assortment of visually driven behaviors have been described 
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including the dorsal-light response, in which the dorsal surface is tilted towards a light source 

(Nicolson et al. 1998), the optokinetic response, in which eyes track rotational field motion (Daie 

et al. 2015; Easter and Nicola 1996; Mueller and Neuhauss 2010; Rinner et al. 2005) and prey 

capture (Bianco et al. 2011; Borla et al. 2002; Gahtan et al. 2005; McElligott and O'Malley 2005) 

in which larvae enact a stereotyped sequence of maneuvers in response to a paramecium-like 

visual stimulus or in the presence of live paramecium. 

Beyond visuomotor behaviors, larvae have been shown to exhibit other sensory behaviors 

including rheotaxis (Olszewski et al. 2012) olfactory (Mathuru et al. 2012) and taste (Boyer et al. 

2013) induced behaviors. Finally they have demonstrated learning and memory capabilities 

(Roberts et al. 2013; Valente et al. 2012), and also exhibit circadian rhythms and sleep (Chiu and 

Prober 2013; Elbaz et al. 2013; Naumann et al. 2010), Thus a wide assortment of behaviors are 

enacted by zebrafish even at the larval stage, though it remains to be seen if any are definitively 

cerebellar dependent. 

 

Developmental Challenges 

The immaturity of the larval zebrafish also raises the issue of whether circuit function can 

be properly studied during development, when rapid changes in immature circuits might not 

provide enough stability to study a circuit’s steady state function effectively. As detailed above, 

basic circuitry of the cerebellum is wired up and active by 6 dpf. Nevertheless additional cells 

continue to be incorporated into the circuit well beyond this age. Indeed, at one extreme, GC 

production continues at quite substantial levels through adulthood (Kaslin et al. 2013). Kaede 

studies should be helpful in determining the time course of cerebellar development so that an 
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optimal age for studying this circuit can be selected that balances the retention of optical 

accessibility with a sufficiently mature cerebellum. 

 

Foundational knowledge challenges 

A final class of challenge has to do with the simple lack of foundational knowledge about 

the cerebellum in larval zebrafish as compared to established cerebellar model systems. Beyond 

anatomical information about the major circuit components, our knowledge is limited. In 

particular, there have been only two published papers with electrophysiological recordings in 

zebrafish cerebellum at the time of writing (Hsieh et al. 2014; Sengupta and Thirumalai 2015) 

and only a handful of imaging studies that have focused on it (Ahrens et al. 2012; Aizenberg and 

Schuman 2011; Matsui et al. 2014; Sylvester et al. 2011) so we know very little about the 

spiking properties of cerebellar components or how spiking is engaged by sensory and motor 

stimuli. We know similarly little about the nature of the information carried by the inputs into the 

cerebellum or by its outputs to downstream targets or about how activity in the inputs, outputs, or 

cerebellum proper relates to behavior. 

My work aims to build some of this foundational knowledge to help provide a context 

from which the full power of tools available in zebrafish can be brought to bear on dissection of 

the cerebellar circuit in this animal. In the following chapter, I use electrophysiological 

recordings to evaluate the activity of larval zebrafish Purkinje cells in the context of the 

optomotor response.  
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CHAPTER 4: ELECTROPHYSIOLOGAL CHARACTERIZATION OF PURKINJE 
CELL ACTIVITY DURING OPTOMOTOR BEHAVIOR 

 

Introduction 

Despite decades of intensive investigation, links between the highly-ordered and 

relatively simple circuitry of the cerebellum and its function remain elusive. Though the majority 

of work on the cerebellum has focused on mammals, core features of cerebellar circuitry are 

conserved across vertebrate phylogeny (Finger 1983; Hibi and Shimizu 2012; Larsell 1967; 

Meek 1992; Nieuwenhuys 1967). Hence studies of simpler vertebrates may provide a useful 

perspective on cerebellar function.  The larval zebrafish is particularly promising as a model 

organism for studying the cerebellum.  First, the number of cerebellar neurons is far smaller than 

in other systems in which the cerebellum has traditionally been studied.  There are roughly 300 

Purkinje cells in the 7 days post fertilization (dpf) larval zebrafish cerebellum (Hamling et al. 

2015) compared to 1 to 2 million in adult cat (Mwamengele et al. 1993; Palkovits et al. 1971) 

and roughly 100,000 in adult mice (Herrup and Trenkner 1987). These small numbers together 

with the optical transparency of the larval zebrafish offer the potential to monitor the activity of 

all of the neurons in the cerebellum (together with activity in other brain regions) simultaneously 

during behavior (Ahrens et al. 2012; Ahrens et al. 2013). This unique potential for large-scale 

activity monitoring along with rapidly emerging technologies for mapping circuits and 

manipulating genetically identified cell types make the larval zebrafish a uniquely attractive 

model organism for cerebellar studies (Okamoto 2014). 

Core features of cerebellar circuitry are shared between mammals and larval zebrafish, 

including the presence in both of mossy fibers, granule cells, parallel fibers, Purkinje cells, 
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climbing fibers, molecular layer interneurons and Golgi cells (Aizenberg and Schuman 2011; 

Bae et al. 2009; Takeuchi et al. 2015).  A difference between the cerebellum in mammals and 

teleost fish, including zebrafish, is the location of the glutamatergic neurons that receive input 

from Purkinje cells and project to brain regions outside the cerebellum. Whereas in mammals 

such neurons are located in separate deep cerebellar or vestibular nuclei, in fish the large 

majority are located adjacent to Purkinje cells (Bae et al. 2009; Finger 1978; Heap et al. 2013). 

This proximity could, in fact, be a major advantage for understanding how Purkinje cells shape 

cerebellar output—a question that has been extremely difficult to address in mammals.  

Several lines of evidence suggest that the cerebellum is functional at larval stages. 

Developmental studies have shown that by 5 dpf Purkinje cell and granule cell layers have 

formed and that the two major input pathways to Purkinje cells—the mossy fiber-granule cell-

parallel fiber pathway and the olivocerebellar climbing fiber pathway--are in place (Bae et al. 

2009; Takeuchi et al. 2015). An electrophysiological study has shown that larval zebrafish 

Purkinje cells exhibit both simple spikes and climbing fiber responses (CFRs) with firing 

patterns that change little after 6 dpf (Hsieh et al. 2014). Optogenetic activation or silencing of 

larval Purkinje cells alters swimming movements during the OMR (Matsui et al. 2014). Finally, 

lesioning of the olivocerebellar pathway prevents motor adaptation in a closed-loop, fictive 

OMR paradigm (Ahrens et al. 2012; Sengupta and Thirumalai 2015). 

Though calcium imaging studies have revealed that cerebellar neurons are active during 

the OMR (Ahrens et al. 2012; Matsui et al. 2014), the nature of the signals they convey remains 

unclear. For example, the limited temporal resolution of calcium imaging has not allowed for a 

detailed analysis of how cerebellar activity relates to the structure of swimming behavior in 

larval zebrafish, which consists of rapid tail beats organized into discrete bouts. Moreover, 
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calcium responses in Purkinje cells could be due to simple spikes, CFRs, or some combination of 

both.   

 To address these issues, we used whole-cell and cell-attached recordings to characterize 

activity in genetically identified Purkinje cells during the fictive OMR.  Though subthreshold 

membrane potential and simple spikes were modulated by an OMR-inducing visual stimulus, 

such responses generally did not exhibit the direction or velocity sensitivity that would be 

appropriate to drive the OMR. On the other hand, most Purkinje cells exhibited prominent 

subthreshold membrane potential and simple spikes modulations during fictive swim bouts. 

Temporal characteristics of these responses suggest that they could play a role in encoding 

and/or controlling aspects of swimming behavior, such as swim speed. CFRs were most common 

during fictive swim bouts and could also be driven by visual stimuli but did not appear to encode 

a visual error signal during bouts that would be appropriate for adjusting the gain of the OMR. 

Finally, individual Purkinje cells exhibited diverse relationships between simple spikes and 

CFRs, highlighting the importance of distinguishing between these responses in calcium imaging 

experiments.   

 

Methods 

All experiments performed in this study were approved by the Columbia University 

Institutional Animal Care and Use Committee. Most experiments were conducted in transgenic 

aldoca:gap43-Venus fish to allow visualization of Purkinje cells (Takeuchi et al. 2015; Tanabe et 

al. 2010) or in Nacre or Casper strains to facilitate visualized recordings and imaging.  

Experimental preparation  
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6-10 days post fertilization (dpf) larva were embedded in a small block of low gelling 

temperature agarose (Sigma-Aldrich #A0701), which was then glued to the glass-bottom of a 

slice recording chamber. Agar was removed from above the head and adjacent to the right side of 

the trunk, from muscle segments 7 to 24, to allow placement of the neural and motor recording 

electrodes. Fish were paralyzed using 1 mg/mL alpha-bungarotoxin (Tocris) applied for one 

minute locally to the exposed portion of the trunk, where a small nick in the skin around muscle 

segment 23 facilitated paralysis. The skin over the cerebellum was gently removed using a bent 

tungsten dissecting needle (Roboz Surgical Instrument #RS-6063). During the experiment, the 

recording chamber was continuously perfused with aerated Evans solution containing, in mM: 

NaCl (134);KCl (2.9); CaCl2 (2.1); MgCl2 (1.2); HEPES (10); (pH 7.8, 280-290 mOsm).  

 

Visual Stimuli  

Visual stimuli were presented on a screen beneath the fish (approximately 1 cm). In 

luminance experiments (Fig. 4.5 and 4.10), movies showed alternating 3-6 second presentations 

of all- black and all-white screens. In the OMR open-loop experiments (Figs. 4, 8, 9 and 10), 

movies showed a square wave grating with spatial period 20 mm that moved alternately in 10-25 

second periods of “OMR-inducing drift” (tail-to-head motion) and “OMR-suppressing drift” 

(head-to-tail motion), with a 5 second period of no drift between each drift period. Each trial 

consisted of four rounds of this alternating drift with increasing speed 0.4 cm/s to 1.2 cm/s. 

There were 2-6 trials per cell.  

 

Closed loop/Playback experiments  
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In the OMR closed loop/playback experiments (Figs. 4.3 and 4.8), we based our methods 

on a published fictive swimming paradigm (Ahrens et al. 2012). Fish were again presented with 

trials containing four rounds of OMR-inducing and OMR-suppressing drift, however this time 

the baseline drift was combined with a “virtual swimming” drift component, driven by the fish’s 

recorded motor nerve output. 

The magnitude of the underlying drift in these experiments was kept constant at 1 cm/s 

and alternated directions. The virtual swimming drift component was always in the head-to tail 

direction (i.e. the direction of visual drift that results from forward swimming), defined here as 

positive, and was added linearly to the underlying drift. The magnitude of the virtual swimming 

drift component was calculated based on the recorded motor nerve signal. 

Fish swim in discrete units of swimming called bouts, which are apparent in the recorded 

motor signal as transient increases in variance. The motor signal was processed by first taking 

the standard deviation of the raw motor trace over a sliding window of 10 ms. During a bout 

(detected automatically when the processed motor signal crossed a baseline threshold, set 

manually during periods of no swimming) the swim-related component of the grating’s velocity, 

vs, was calculated as the average of the processed motor signal since the last update, mav, minus 

the baseline threshold, multiplied by a constant of proportionality, k, such that Vs = k · (mav - b). 

The constant of proportionality was set experimentally for each fish such that the fish was able to 

roughly stabilize the grating during OMR-inducing periods. After each bout, the swim related 

component decayed back to zero at a rate of -15 cm/sec2. 

The total grating velocity experienced by the fish was equal to this swim velocity plus the 

baseline drift (±1 cm/s or 0 cm/s). This total grating velocity was updated on average at greater 

than 200 Hz and was smoothed at each update so that (effective drift velocity) = α · (calculated 
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velocity) + (1 − α) · (previous effective drift velocity), with α = 0.3. The change in grating 

position at each update was equal to the total grating velocity multiplied by the time since the 

last update.  

Each of these closed loop trials generated a unique visual stimulus movie resulting from 

the combination of the preset underlying drift and the fish-controlled virtual swim component. 

After a closed loop trial, a playback period was initiated in which this same visual stimulus 

movie was played again, now entirely unyoked from the fish’s motor output, in order to be able 

to dissect the visual and motor components of any activity modulations seen in closed loop.  

 

Electrophysiology  

Motor nerve recordings were made based on published methods (Ahrens et al. 2012; 

Masino and Fetcho 2005). Briefly, a glass microelectrode filled with Evan’s solution and beveled 

to lay flat against the fish’s side was placed, with light suction, on a myotomal cleft between 

muscle segments 11 and 16. Purkinje cells were targeted for cell-attached or whole-cell 

recordings using Dodt contrast microscopy. Recordings were made using glass microelectrodes 

(8-17 MΩ) filled with internal solution for whole-cell recordings (see below) or Evan’s solution 

for cell-attached recordings. Pipettes were wrapped in parafilm to reduce capacitance. Internal 

solution contained, in mM: K-gluconate (122); KCl (7); HEPES (10); Na2GTP (0.4); MgATP 

(4); EGTA (0.5); and alexa-594 (0.05) (pH 7.2, 280-290 mOsm). The calculated liquid junction 

potential was 15.9 mV and was not corrected for in the figures. Motor nerve and brain recordings 

were digitized at 40 kHz and 20 kHz respectively (CED Micro1401-3 hardware and Spike2 

software; Cambridge Electronics Design, Cambridge, UK). 
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In a subset of cells, which were labeled by alexa-594 in the recording pipette, 

morphology and location within the cerebellum were visualized on a 2-photon microscope 

(Chameleon Ultra II, Coherent laser at 850 and 920 nm wavelength and for data collection 

PrairieView software, Prairie Technologies). In these experiments, Purkinje cell identity was 

verified by visualization of Venus fluorescence around the soma of the recorded cell. In 

experiments in wild-type fish, Purkinje cell identity was established electrophysiologically by the 

presence of two distinct spike types (see Results).  

 

Data analysis and statistics 

Data were analyzed off-line using Spike2, Matlab (MathWorks, Natick, MA), and SPSS 

(IBM Corp., Armonk, NY). Only cells recorded in fish that swam in response to OMR-inducing 

stimuli were analyzed. 

A cell was determined to have a simple spike (extracellular) or membrane potential 

(intracellular recordings) motor bout response if the extreme in a response window 0-150 ms 

after bout onset was more than three standard deviations larger than the extreme in the same 

direction in a baseline window 75 to 225 ms before the bout onset (Fig. 4.6-7). This criterion was 

used for assessing closed-loop and playback (motor and visual) responses as well (Fig. 4.3). 

Student’s t- tests were used to evaluate statistical significance (alpha=0.01). Spike train data used 

in this analysis was first transformed into a smoothed waveform by convolving with a triangular 

kernel of width 50 ms.  

When evaluating correlation with speed of OMR-inducing drift, measurements of simple 

spike rates and membrane potential were taken from a 0.1 s period before each swim bout 

executed during OMR-inducing drift (Fig. 4.4). This ensured that measurements were taken 
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during the same conditions across all drift speeds and were relatively uncontaminated by motor 

responses.  

Assessments of simple spike rate or membrane potential during drift as compared to no 

drift were based on an ANOVA for each cell comparing the simple spike rate or membrane 

potential (average over a 0.1 s window) measured at 2 second intervals during drift periods 

(OMR-inducing or OMR-suppressing) to the same measurements during pauses in grating drift 

(Fig. 4.4).  To contend with the possibility that significant differences during OMR-inducing 

drift as compared to pause periods could be due to differences in motor activity, a significant 

increase in activity during both OMR-inducing and OMR-suppressing drift was required for a 

cell to be considered to have a drift response. 

Cells were evaluated for CFR motor bout responses by evaluating whether the extreme in 

the response window 0 - 150 ms after bout onset was more than 3 standard deviations larger than 

the extreme in the same direction in the baseline window 75 to 225 ms before the bout onset 

(Fig. 4.8). This criterion was used for assessing closed-loop and playback (motor and visual) 

responses as well (Fig. 4.8). Student’s t- tests were used to evaluate statistical significance 

(alpha=0.01). Spike train data used in this analysis was first transformed into a smoothed 

waveform by convolving with a triangular kernel of width 150 ms. 

The effect of OMR-inducing drift speed on identified CFR bout responses was evaluated 

by counting the number of bouts at each drift speed in which a CFR did or did not occur (Fig. 

4.8). Binary logistic regression was then used to assess whether the likelihood of a CFR 

occurring during a bout was affected by drift speed. 

A cell was determined to have a transient CFR drift response based on an ANOVA 

comparing the peak response in a 1 second window after drift (OMR-inducing or OMR-
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suppressing) to the peak response in a 1 window second after pause onset. Cells with responses 

that were significantly different (p < .01) for one or both drift directions, as compared to the 

pause periods, were considered to have CFR responses (Fig. 4.9). 

 

Results 

We obtained visualized recordings (n= 28 whole-cell; n=10 cell-attached) from Purkinje 

cells in the corpus cerebelli of 6-10 dpf zebrafish. Consistent with previous studies of Purkinje 

cells in a wide variety of species, including larval zebrafish (Hsieh et al. 2014), Purkinje cell 

recordings exhibited two types of action potentials that differed in their waveforms, rate of 

occurrence, and dependence on the underlying membrane potential (Fig. 4.1A-D). The smaller, 

more frequent events likely correspond to simple spikes and the larger, infrequent events to 

olivary climbing fiber responses, referred to here as CFRs (for cell-attached recordings: 10.4 ± 

7.7 Hz for simple spikes versus 0.55 ± 0.50 Hz for CFRs; n=10) (Fig. 4.1C). In whole-cell 

recordings we observed that simple spike firing could be abolished by injection of small 

hyperpolarizing currents, with no apparent effect on CFR rates (Fig. 4.1A), consistent with the 

separate origins of simple spikes and CFRs. Finally, the amplitude of CFRs was always larger 

than the amplitude of simple spikes.  Though different from the complex spikes evoked by 

climbing fiber activation in mammalian Purkinje cells, most notably in their lack of multiple 

spikelets, the appearance of CFRs in our in vivo recordings is consistent with that reported 

previously for fish, including larval zebrafish (Hsieh et al. 2014; Sengupta and Thirumalai 2015) 

and mormyrid fish (Alvina and Sawtell 2014; de Ruiter et al. 2006; Han and Bell 2003; Zhang 

and Han 2007).  
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Figure 4.1 Electrophysiological properties of zebrafish Purkinje cells. 
A: Intracellular trace from a Purkinje cell held at two different resting membrane potentials (left: -9 pA, right: -7 
pA). Simple spike (SS) rate is strongly modulated by resting membrane potential while climbing fiber response 
(CFR) rate is relatively independent and consistently low. B: Average CFR (left) and SS (right) waveforms from 
recording in A (10 events each, grey traces indicate 1 SEM) C: Extracellular cell-attached recording from a Purkinje 
cell exhibiting spontaneous SSs and CFs. D: Average CF (left) and SS (right) waveforms from recording in C (10 
events each, grey traces indicate 1 SEM). 

 

In a subset of recordings (n=20) performed in transgenic fish (aldoca:gap43-Venus) in 

which the fluorescent protein Venus was selectively expressed in Purkinje cells (Tanabe et al. 

2010), we were able to confirm Purkinje cell identity based on a halo of Venus fluorescence 

around the cell body (inset, Fig. 4.2A). An additional 7 cells exhibited only a single type of spike 

and were not Venus-positive (data not shown). During recording, we filled cells with a 

fluorescent dye to visualize their morphology and position within the cerebellum. Purkinje cells 

had extensive dendritic arbors, which appeared to be densely studded with spines (Fig. 4.2B). In 

some cases a thinner beaded process was also visible, likely the Purkinje cells axon. To map the 

relative location of Purkinje cells within the cerebellum across fish, we used the Venus 

expression in the Purkinje cell population to make a standard image of the shape and extent of 
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the Purkinje cell region and then used a point transformation to map individual recorded cells 

onto it (Fig. 4.2C). For cells whose locations could not be visualized using fluorescence (e.g. 

cells recorded extracellularly or not in transgenic aldoca:gap43-Venus fish), the location of the 

recording pipette tip was noted manually under Dodt visualization when possible (Fig. 4.2C, 

dotted outlines). A majority of Purkinje cells were recorded from the corpus cerebelli, though 

one or two cells may have been recorded at the edge of the valvula (Fig. 4.2C).  

 
Figure 4.2 Morphological properties of zebrafish Purkinje cells 
A: Purkinje cell visualized against Venus-labeled Purkinje cell population. Inset of z-stack through center of nucleus 
shows Venus localized to cell membrane (scale bar: 5 microns). B: Purkinje cells filled with Alexa-594 C: 
Recording locations of recorded cells mapped onto a standardized hemisphere of Venus-labeled cerebellum. Solid 
outlined cells were mapped using a point transformation of each filled cell relative to Venus background. Dotted-
outlined cells could not be fluorescence-visualized for point transformation and were instead plotted based on 
manually noted coordinates of pipette tip under Dodt visualization. 

 

Subthreshold and simple spike responses during closed loop optomotor behavior 

A previous study using whole-brain calcium imaging revealed responses in the 

cerebellum during a closed loop OMR paradigm in which motor commands related to swimming 

(monitored in paralyzed fish by recordings from trunk motor nerves) are used to control the 

motion of a visual display (Ahrens et al. 2012). Under these conditions, fish can transiently 

stabilize the position of a tail-to-head drifting grating by emitting swim commands. However, 

this study could not distinguish which cell types were responsible for the calcium responses or 

whether calcium responses were due to simple spikes, CFRs, or both.  Furthermore, the temporal 
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resolution of whole-brain calcium imaging in this study was not sufficient to relate activity to the 

detailed structure of larval zebrafish motor behavior, which is composed of rapid tail beats (~30 

Hz) organized into discrete bouts of swimming lasting on the order of a few hundred 

milliseconds. We took a complementary approach by recording subthreshold, simple spike, and 

CFRs from individual Purkinje cells in the context of a similar closed loop fictive OMR 

paradigm. 

Purkinje cell activity during the OMR could relate to the visual stimulus, the fish’s swim 

commands, or to both. To differentiate between these possibilities we compared Purkinje cell 

activity in closed loop conditions in which fictive swim bouts controlled the position of a grating 

stimulus (Closed loop, Fig. 4.3A) to activity recorded when the same visual stimulus was played 

back independent of the fish’s motor commands (Playback, Fig. 4.3B). We focus initially on 

subthreshold and simple spike responses. CFR responses will be discussed in a later section. 

Under closed loop conditions, most Purkinje cells exhibited strong subthreshold (6 of 7) and 

simple spike (3 of 4) modulations with onsets similar to individual fictive swim bouts (Fig. 

4.3A). Responses to bouts under playback conditions were similar to those observed under closed 

loop conditions (Fig. 4.3B). On the other hand, not a single cell exhibited clear visual responses 

(i.e. membrane potential responses triggered on the onset of visual motion) during playback 

(Visual-triggered, Fig. 4.3C). These observations strongly suggest that the bout responses 

observed under closed loop conditions were largely motor (as opposed to visual) responses.  

In some cases, small differences in bout responses were observed between closed-loop 

and playback (Fig. 4.3C, Cell 1). Such differences could reflect interactions between visual and 

motor signals, e.g. a component of Purkinje cell responses related to a mismatch between actual 

and expected visual input related to motor bouts. However given our limited read-out (i.e. a 
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motor nerve recording at a single site), we cannot rule out the possibility that differences in 

neural responses are due to differences in the fish’s fictive swim behavior under closed loop 

versus playback conditions.  

 
Figure 4.3 Visual and motor activity during closed loop OMR behavior. 
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A: Example cells with responses to motor bouts during Closed loop (CL) stimulus. In CL trials, fictive backwards 
displacement (simulated by a grating drifting in the tail to head direction) can be transiently stabilized by the fish's 
motor nerve output. Under these conditions membrane potential responses during bouts (row 3), could be related to 
either motor nerve activity (row 2) or its visual consequences (row 1). B: Responses during Playback (PB). In PB 
trials the visual stimulus that was generated by motor nerve activity during CL is played back independent of 
ongoing motor nerve activity. Therefore, motor bouts executed in PB (row 2) are not yoked to the played back visual 
consequences of bouts executed in CL (row 1), allowing us to separately probe the motor and visual-related 
components of neural activity (row 3). C: Average membrane potential (+/- 1 SEM) during bouts in CL, motor bouts 
in PB, and the visual consequences of bouts replayed during PB trials. Both cells have modulations during bouts in 
CL (dotted line) and in PB show similar modulation to bouts (solid line, left), but not to the bout-driven visual 
consequences replayed from CL (solid line, right). The motor bout driven responses were similar in shape between 
CL and PB, but could have somewhat different amplitudes. 
 

Subthreshold and simple spike responses to sustained visual motion 

OMR behavior allows larval zebrafish to maintain their position relative to a visual 

stimulus, however such stabilization is not instantaneous but rather is achieved on a timescale 

substantially longer than that of individual swim bouts. Hence the presence of sustained visual 

motion might be a relevant signal for controlling the OMR.  To test whether such signals were 

present, we examined 29 Purkinje cells in the context of a simple open loop visual stimulus in 

which drift velocity was held constant at different values. Specifically, we presented fish with 

alternate periods of tail-to-head (OMR-inducing) and head-to-tail (OMR-suppressing) drift. Drift 

periods were interposed by periods in which the grating was stationary (Fig. 4.4A). There were 4 

rounds of forward-backward drift pairs per trial, with drift speed increasing successively across 

rounds (0.4cm/s, 0.8 cm/s, 1.2 cm/, 1.4 cm/s), and 2-6 trials presented per cell. Consistent with 

previous observations, fictive swim bouts were most frequent at the onset of OMR-inducing drift 

and were quite rare during pauses in drift or OMR-suppressing drift (data not shown).  

Surprisingly, we did not observe marked sensitivity to the velocity or direction of grating 

drift in Purkinje cells. Only 4/29 cells exhibited even a modest grading of membrane potential or 

simple spike responses to drift velocity (3/24 intracellular, 1/ 5 extracellular, R>.3, p<.05) (Fig. 

4.4A,B). In some cells however, we noted a dramatic shift in the membrane potential at 
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transitions between periods of drifting versus stationary gratings (Fig. 4.4A,C). When we 

evaluated this effect quantitatively, we found 14/29 Purkinje cells exhibited sustained membrane 

potential depolarization and simple spike rate increases in response to drift in both directions as 

compared to a stable grating velocity (13/24 intracellular, 1/5 extracellular, ANOVA p<0.05) 

(Fig. 4.4C). These responses were present in the OMR-inhibiting as well as inducing direction, 

indicating they were not a simple result of the motor responses in the OMR-inducing direction. 

In some of the cells with particularly strong drift responses we noted oscillations in the 

membrane potential that increased in frequency with increasing speed of visual motion (Fig. 

4.4D). Given that the frequency of the oscillations were similar to the spatial frequency of the 

grating stimulus, such responses could simply be due to changes in luminance. Indeed responses 

to luminance change have been reported previously in larval zebrafish Purkinje cells (Hsieh et al. 

2014).  
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Figure 4.4 Visual modulation of membrane potential. 
A: Example of long timescale membrane potential data at various speeds during three drift states: OMR-inducing, no 
drift, and OMR-suppressing. Drifting in either direction and at all speeds strongly drives activity as compared to no 
drift periods. B: Summary of membrane potential responses to graded OMR-inducing drift velocities. Only four 
cells (solid lines) exhibited even a moderate grading in response (3/24 intracellular, 1/ 5 extracellular, R>.3, p<.05) 
C: Summary of membrane potential responses to OMR-inducing and suppressing drift (irrespective of speed) as 
compared to no drift. Many cells were significantly modulated by drift in both directions (solid lines) (13/24 
intracellular, 1/5 extracellular, ANOVA p<0.05), suggesting the modulation is not an artifact caused by responses to 
the motor activity during OMR-inducing drift. D: Oscillations in membrane potential (smoothed) of cell from A at 
different OMR-inducing drift speeds. Frequency of oscillation scales with magnitude of drift velocity. This would be 
consistent with activity driven by the luminance changes caused by the alternating black and white bars of the 
OMR-inducing stimulus. 
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Luminance responses were tested directly using a full-field visual stimulus that alternated 

from black to white with a period of 3-5 seconds (Fig. 4.5A-C). 23/31 Purkinje cells showed 

clear modulations of simple spikes or membrane potential related to luminance changes. 

Responses varied across cells both in terms of their polarity (whether cells were excited by light 

onset and/or offset) and their temporal profiles (whether they were relatively sustained or quite 

transient). In addition to explaining the observed frequency-dependent membrane potential 

oscillations, these luminance responses likely account for some portion of the drift responses we 

observed due to increases in activity as the grating’s darker or lighter regions moved past.  In 

theory, a large enough luminance response with an appropriate decay constant could result in 

speed modulation as well as a general sensitivity to motion, but any such effect did not appear to 

be strong in our data. Taken together these results suggest that although individual Purkinje cells 

receive strong visual input, they do not encode drift direction or velocity signals that would be 

appropriate for controlling the OMR.  
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Figure 4.5 Luminance modulation of membrane potential. 
A: Luminance response of cell with graded oscillation frequency response shown in Fig 4 D. Cell exhibits transient 
response to changes in luminance (both onset and offset). B: Example cell with membrane potential depolarization 
and increased simple spikes in response to dark. C: Example cell with membrane potential depolarization and 
increased simple spikes in response to light. (Gray traces indicates 1 SEM). 
 

Subthreshold and simple spike responses to fictive swim bouts 

Larval zebrafish control swim speed, including stabilization in the context of the OMR, 

by adjusting a small number of swim bout parameters, namely: bout frequency, bout duration, 

and tail beat frequency (Budick and O'Malley 2000; Buss and Drapeau 2001; Masino and Fetcho 

2005; Severi et al. 2014). The high temporal resolution afforded by electrophysiological 

recording allowed us to look in more detail at how Purkinje cell membrane potential and simple 

spiking responses related to parameters of swim bouts. We examined the bout responses of 28 

Purkinje cells (including the 11 cells initially examined in the closed loop OMR paradigm) and 

found that a majority of Purkinje cells had significant modulations of membrane potential (16 of 

19 whole-cell recordings) or simple spikes (7 of 9 cell-attached recordings) (Student’s T-test, 

p<0.01). 18 of the 23 bout responding cells had membrane potential depolarizations or increases 

in simple spike firing responses during bouts (Fig. 4.6A). The onsets of these responses were 

closely tied to the onset of the bout itself, recorded at the motor nerve (Fig. 4.6B). The average 

response onset preceded the first recorded motor burst by 39.8 ± 4.27 ms, consistent with the 

possibility that Purkinje cell activity participates in initiating and or shaping swim bouts. Bout 

responses had a variety of time courses (Fig. 4.6A,C). In some instances responses did not peak 

until after bout termination (Fig. 6C, left panel). Even in instances where the peak occurred early 

after bout onset, responses tended not to return all the way to baseline until after bout termination 

(Fig. 4.6C, right panel). Finally, three Purkinje cells exhibited bout-related simple spike firing 

that was clearly time-locked to the simultaneously recorded motor nerve bursts, the frequency of 
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which corresponds to the tail beat frequency in freely swimming fish (Fig. 4.6D). Hence, these 

Purkinje cells could participate in signaling or controlling tail-beat frequency, which relates 

directly to swim power.  

 
Figure 4.6 Bout-related increases in membrane potential and simple spike activity. 
A: Heat map of normalized bout-triggered responses shows time course of increased membrane potential and simple 
spike responses (sorted by time of peak response). Black line shows bout onset recorded at motor nerve. Asterisks 
indicate extracellular recordings. B: Response onset relative to bout onset recorded at motor nerve (t=0). Response 
onset preceded recorded motor onset in most cells. C: Examples of bout response activity triggered off of 
termination of motor nerve bout activity. Top: Average motor nerve traces processed with a 5 ms RMS sliding 
window.  Bottom: average membrane potential. Many bout responses extended well beyond the termination of motor 
nerve bout activity. D: Two examples of tail-beat frequency substructure in bout responses. Top: Average motor 
nerve traces processed with a 5 ms RMS sliding window, which is necessary for resolving bursts in multi-bout 
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averages. Bursts correspond to individual tail beats. Bottom: simple spike histogram triggered on final burst in a 
bout. Simple spike frequency exhibits modulation at same frequency as motor bursts. 

 

A smaller subset (n=5) of the bout-responsive cells exhibited membrane potential 

hyperpolarization or simple spike rate decreases during motor bouts (Fig. 4.7). Unlike the varied 

timing of the peaks of the bout responses with opposite polarity, the troughs of these cells were 

generally near bout termination (Fig. 4.7A). In two cells we recorded enough bouts to subdivide 

Purkinje cell subthreshold responses according to the number of tail beats per bout, which is 

directly related to bout duration. When we compared response timing across these groups we 

found a strong correlation between the number of tail beats per bout and the time of the response 

trough (Fig. 7B; R=0.95 and R=0.96, p<0.005). Hence these cells could participate in signaling 

or controlling the timing of bout termination. 
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Figure 4.7 Bout-related decreases in membrane potential and simple spike activity. 
A: Processed motor nerve recording (top) and membrane potential (bottom) triggered on final burst in a bout in two 
example cells. Membrane potential recordings (shown as average +/-  1 SEM) exhibit troughs coincident with bout 
terminations. B: Motor bout duration (binned by number of bursts per bout) vs. time of membrane potential trough 
in the example cells from A. As bout duration increases, time of trough increases linearly in both cells. 

 

Climbing Fiber Responses during OMR behavior 

Theories of cerebellar function posit that climbing fiber input to Purkinje cells conveys a 

teaching or error signal that serves to sculpt appropriate patterns of simple spike firing via 

plasticity at parallel fiber synapses (Albus 1971; Ito 1972; Marr 1969). If motor command 

signals related to swim bouts are subject to this type of error-driven correction, CFRs should 

preferentially occur during or following swim bouts.  Indeed, we found that most Purkinje cells 

(17/28) had CFRs that were modulated during fictive swim bouts (Student’s T-test, p<.01) (Fig. 

4.8A). 

A potentially relevant teaching signal for adjusting swimming in the context of the OMR 

would be one that grades based on the stabilization success of a swim bout. If this were the case, 

the probability of a CFR occurring during a bout would be expected to grade with the magnitude 

of tail-to-head drift (lack of stabilization) that occurred over its duration. However, when we 

examined the probability of a CFR during bouts in the context of open loop graded drift 

velocities, we saw little evidence of corresponding CFR grading. A binary logistic regression 

was performed to ascertain the effect of velocity on the likelihood that a CFR would occur 

during a bout. In only 2 of 11 cells with CFR bouts responses was the logistic regression model 

statistically significant (p < 0.05) and even in those cases the model explained only 9 and 13 % 

(Nagelkerke R2) of the variance in CFR firing across bouts (Fig. 4.8B). 

Consistent with this apparent lack of effect of drift velocity on CFR bout responses, 

examination of CFRs of cells recorded under closed loop/playback conditions showed that all 



82 

 

cells with increased CFR activity during motor bouts in closed loop (7 of 11) had similar 

responses to motor bouts in playback (Motor-triggered, Fig. 4.8C). Furthermore, no cells had 

CFR responses to the closed loop visual stimulus played back independent of the fish’s motor 

commands (Visual-triggered, Fig. 4.8C).  

 
Figure 4.8 Bout-related modulations of climbing fiber response rate. 
A: Examples of bout-related modulations of climbing fiber response (CFR) rate. Top: Processed motor nerve 
recording. Bottom: CFR histogram triggered on bout onset recorded at motor nerve. B: Probability of CFR during 
bouts across graded OMR-inducing drift velocities. Drift velocity did not substantially affect CFR probability during 
bouts in most cells with CFR bout responses (9/11 cells, binary logistic regression, p < 0.05) and in the remaining 
cells (bolded traces) explained less than 15% of the variance in CFR firing across bouts (Nagelkerke R2). C: 
Comparison of CFR rate during bouts in Closed loop (CL), motor bouts in PB, and the visual consequences of bouts 
replayed during Playback (PB) trials. Cell exhibits CFR modulation during bouts in CL (shaded histogram) and in 
PB shows similar modulation to bouts (solid line, top), but not to the bout-driven visual consequences replayed from 
CL (solid line, bottom). 

 

Although we detected no image velocity-related modulation of CFR bout responses or 

CFR responses to visual motion on the timescale of motor bouts, we did observe a number of 
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non-bout related visual signals in the CFR, indicating that it is not purely a motor signal. 

Consistent with a previous study (Hsieh et al. 2014), we observed increased CFR activity in 

response to luminance changes in many cells (23/31) (Fig. 4.9A). CFRs were also strongly 

modulated by onset of visual drift in most cells (21/29) (Fig. 4.9B). These drift-related CFR 

modulations were most often (20/21 cells) selectively driven by one of the two drift directions 

and were transient compared to the drift responses observed in the membrane potential and 

simple spike firing rates (Fig. 4.4A). Since fish rarely swam at the onset of head-to-tail motion, 

CFR responses to drift, in this direction at least, are unlikely to be due to motor signals.  

Finally, the observation of transient CFR modulation in response to drift onset raise the 

question of why bout timescale visual responses were not observed in our closed loop data (Fig. 

4.8C). Closer inspection revealed that most swim bouts reach completion before the average 

onset of CFR modulation due to drift (Fig. 4.9C). This suggests that these drift-related CFRs 

would not be triggered by drift on the timescale of a bout, consistent with our earlier 

observations.  
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Figure 4.9 Visual modulation of climbing fiber response rate. 
A: Example cells with transient increases in climbing fiber response (CFR) rate at light offset. Top: Time course of 
luminance states (black fill indicates light off). Bottom: Raster and histogram of CFR rates. B: Example cells with 
transient increases in CFR rate at onset of OMR-inducing or OMR-inhibiting drift Top: time course of OMR-
inducing and OMR-inhibiting drift. Middle: Raster and histogram of CFR rates for cell with transient increase in 
CFR rate in OMR-inducing direction only. Bottom: Raster and histogram of CFR rates for cell with transient 
increase in CFR rate in OMR-suppressing direction only. C: Timing of onset of OMR-suppressing drift-related 
increase in CFR rate (bottom) relative to time course of average bout recorded at motor nerve (top). Bouts are rapid 
compared to increase in CFR rate, consistent with the lack of observed CFR modulation during transient drift in the 
OMR-suppressing direction during Playback of visual stimulus driven by bouts in Closed loop (Fig 8C). 
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Relationship between simple spikes and climbing fibers in individual Purkinje cells 

 Simple spikes and CFRs have distinct origins and likely play different functional 

roles. Though the relationship between simple spikes and complex spikes has been studied 

extensively in Purkinje cells in mammals under a variety of conditions, little is known in 

zebrafish (Hsieh et al. 2014). Though we cannot rule out systematic relationships between 

simples spike and CFRs, such relationships were not obvious in our data. A survey of our 

recordings showed that the strength or polarity of simple spike modulations did not obviously 

correlate with the presence or strength of CFR modulations in the same Purkinje cell. Indeed, no 

systematic relationship between changes in membrane potential/simple spike firing and changes 

in CFR rate was observed in any of our experimental paradigms. Similar bout-related increases 

in CFR rates were associated with simple spike decreases in some cells and increases in others 

(Fig. 4.10A). Similar non-direction selective drift-induced increases in simple spikes could be 

accompanied by highly direction-selective CFR responses (Fig. 4.10B). Finally, similar increases 

in CFR rate in response to a luminance decrease could coincide with either no change or an 

increase in with simple spike firing (Fig. 4.10C).  
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Figure 4.10 Climbing fiber response and simple spike response differences. 
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A: Inconsistent climbing fiber response (CFR) and simple spike (SS) response relationship during motor bouts. Left: 
Cell with opposite simple spike and CFR response polarity. Right: Cell with matching simple spike and CFR 
response polarity. B: Inconsistent CFR and SS response relationship during sustained grating drift. Top: simple 
spike rate is increased for drift in either direction. Bottom: CFR rate is only transiently modulated and only for one 
direction of drift. C: Inconsistent CFR and SS response relationship during luminance changes. Left: Cell has no 
simple spike response, but strong CFR response to light off.  Right: Cell has strong simple spike as well as CFR 
response to light off. 

 

Discussion 

Subthreshold/simple spike responses in relation to visual motion  

During OMR behavior fish adjust the direction and speed of their swimming based on the 

direction and speed of retinal image motion (Neuhauss et al. 1999; Orger et al. 2008). Hence one 

possible role for the zebrafish cerebellum would be to transform image velocity signals into 

swim commands appropriate to stabilize the fish’s position. Such a role would be analogous to 

that played by the cerebellum in the VOR, during which Purkinje cells participate in 

transforming head velocity information (conveyed by mossy fibers) into motor commands to 

counter-rotate the eye (Ito 1982). Direction-selective visual responses have been observed in 

areas of the larval zebrafish brain, including the pretectum, and have been suggested to play a 

role in the OMR (Kubo et al. 2014; Portugues et al. 2014). Although we found that a drifting 

grating stimulus evoked sustained membrane potential depolarization and increases in simple 

spike firing in Purkinje cells, such responses did not grade with image velocity.  Direction-

selective subthreshold and simple spike responses were also uncommon in Purkinje cells. Hence 

our results do not support a role for the zebrafish cerebellum in adjusting the OMR based on 

visual signals analogous to the established role for the mammalian cerebellum in adjusting the 

VOR based on vestibular signals. However, our conclusion that Purkinje cells lack velocity 

sensitivity should be considered in light of the facts that we sampled a relatively small number of 
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cells, only within the corpus cerebelli, within a limited developmental time window, and using a 

restricted set of visual stimuli.  

Subthreshold/simple spike responses in relation to fictive swim bouts  

The majority of recorded Purkinje cells exhibited subthreshold and simple spike 

responses to fictive swim bouts under closed loop conditions. Our playback paradigm showed 

that these are mainly or entirely motor responses, rather than responses to the rapid changes in 

visual input that would normally accompany swim bouts. These results are consistent with a 

previous whole-brain calcium imaging study that found that more cerebellar neurons showed 

activity that was strongly correlated with motor output than visual input during the OMR 

(Ahrens et al. 2012).  

Our electrophysiological recordings also allowed us to examine the timing of motor 

response in Purkinje cells and show that such responses are closely tied to individual motor 

bouts. Though some Purkinje cells responded before motor nerve bouts others responded at the 

same time or shortly after bout initiation. Hence while it is not clear from these results whether 

Purkinje cells are active early enough to participate in initiating bouts, they certainly could 

participate in shaping their amplitude or duration. Consistent with this latter possibility, a recent 

study has shown that optogenetic activation or silencing of larval Purkinje cells could modify, 

but not initiate, swimming movements during the OMR (Matsui et al. 2014).  

Our results provide some initial insights into how motor signals related to swimming are 

encoded in zebrafish Purkinje cells. One subset of cells exhibited a hyperpolarization and/or 

reduction in simple spike firing that was aligned with the termination of motor bouts.  These 

responses clearly graded with bout duration in the cases in which it could be examined. Another 

small subset of cells exhibited structured simple spike firing within each bout that appeared to 
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track tail beat frequency, an important contributor to swim speed in larval zebrafish. Overall, 

however, the responses we observed in individual Purkinje cells were heterogeneous and 

generally did not closely follow the time-course of individual bouts. These findings are 

intriguing in light of a recent study of Purkinje cell encoding of another type of ballistic 

movement—saccades (Herzfeld et al. 2015). The authors showed that while responses of 

individual Purkinje cells did not accurately encode saccade kinematics, appropriately chosen 

populations of Purkinje cell responses did. For example, pooling cells with increases and 

decreases in simple spike firing related to saccades resulted in a temporal profile of activity that 

matched saccade duration.  Bout responses reported here for Purkinje cells are similar to those 

observed for saccades in that both increases and decreases in simple spike firing were observed 

in different cells and that simple spike modulations often outlasted bouts.  Future studies could 

examine this issue in more detail in zebrafish with the added possibility of using voltage-clamp 

recordings from efferent cells to directly isolate the summed response of a local population of 

Purkinje cells. 

Aside from any specific role in controlling the OMR, the strong responses we observed to 

fictive swim bouts suggest that Purkinje cells play a general role in encoding, controlling, and/or 

adjusting parameters of larval zebrafish swimming. Such a generalized role for the cerebellum in 

adapting motor output could be desirable if the need for changes in swim strength was not task- 

or context-specific (as in the case of the OMR), but due to changes in the motor plant, for 

example growth or injury of the organism. In the larval zebrafish such a capacity would seem to 

be particularly important as this developing creature’s body changes dramatically on a rapid 

timescale.  For example, larval zebrafish increase in length by 60% from 15 to 30 dpf and 

undergo dramatic changes in tail, anal, and dorsal fin development over this same time period 
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(Singleman and Holtzman 2014). Studies of “natural” motor adaptation in developing zebrafish 

may provide a valuable complement to the extensive literature on controlled laboratory studies of 

motor adaptation conducted mainly in humans and monkeys (Shmuelof and Krakauer 2011). 

 

Climbing Fiber Responses 

Studies of cerebellar involvement in behaviors such as the vestibulo-ocular reflex and 

smooth pursuit eye movements, have suggested that climbing fibers drive adaptive modification 

of motor gain and timing by instructing synaptic plasticity in cerebellar circuitry, e.g. at synapses 

between parallel fibers and Purkinje cells (Ito 1993; Ito and Kano 1982; Medina and Lisberger 

2008; Simpson et al. 1996). In these contexts complex spikes have been shown to encode “error” 

signals relevant for improving performance, such as unexpected image motion or retinal slip 

(Simpson et al. 1996). Consistent with a role for CFRs in adapting motor performance in 

zebrafish, lesions of the olivocerebellar pathway disrupted the ability of larval zebrafish to 

adaptively modify OMR gain (Ahrens et al. 2012). If CFRs plays a role in adjusting simple spike 

responses to motor bouts, we might expect CFRs to occur selectively during bouts. Indeed, we 

did find that CFRs occur with significantly greater frequency during swim bouts in most cells. A 

key question however, is what, if any, “error” information CFRs encode in relation to bouts. 

During the OMR, image motion information indicates whether a bout was successful in 

stabilizing the fish’s position relative to the visual environment. Net tail-to-head image motion 

indicates that motor output is on average too weak while net head-to-tail image motion indicates 

that motor output is on average too strong. We failed to find clear evidence that CFRs encoded 

the amount of drift that occurred during a bout. Climbing fiber probability during bouts did not 

increase with increasing open loop drift velocity. 
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While we did not find evidence that CFRs encoded error signals appropriate for adjusting 

the OMR, our results do suggest that CFRs can be driven by visual as well as motor signals. 

CFRs often showed transient responses to visual motion onset that were direction-selective and 

were also often responsive to luminance changes. Therefore, CFRs appear to encode both 

sensory and motor information. Clearly, more work is required to understand what signals CFRs 

encode and what functions they serve. 

 

Relationship between simple spikes and climbing fibers in individual Purkinje cells 

We observed diverse relationships between simple spikes and CFRs across Purkinje cells. 

This was true for both visual and motor related responses. As shown in Figure 4.10, the strength, 

polarity, or timecourse of simple spike modulations did not necessarily correspond to that of 

CFR modulations. A recent electrophysiological study of larval zebrafish Purkinje cells reported 

that CFRs evoked sustained depolarizations and bursts of simple spike firing in a subset of 

Purkinje cells (Sengupta and Thirumalai 2015). Though we did not attempt to quantify this 

behavior, we also sometimes observed bursts of simple spikes and transitions between 

quiescence and bursting coincident with CFRs.  However, as noted above we also observed 

many cases in which depolarizations and simple spike occurred in the absence of CFRs. Diverse 

relationships between simple and complex spikes have also been reported in mammalian 

Purkinje cells (see e.g. Yakusheva et al. 2010). However, this observation has special importance 

for studies of zebrafish cerebellum given the amenability of this system to calcium imaging. 

Calcium imaging studies of mammalian Purkinje cells have focused almost exclusively on 

calcium transients related to complex spikes and there have been no clear indications that simple 

spike firing rates can be recovered from calcium imaging data (Gaffield et al. 2015; Kitamura 
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and Hausser 2011; Ozden et al. 2009; Schultz et al. 2009; Sullivan et al. 2005). Studies aimed at 

directly determining how calcium responses relate to simple and complex spikes in larval 

zebrafish Purkinje cells will be needed to take full advantage of the potential power of calcium 

imaging for studying the zebrafish cerebellum. 

 

Conclusion 

The mammalian cerebellum has been intensively studied for many years and though 

much is known, there is no general consensus regarding the core function it performs or even 

whether such a core function exists. Understanding the cerebellum will likely require a variety of 

approaches applied to a variety of systems. In this regard, the larval zebrafish cerebellum is an 

attractive candidate for study given its small size and accessibility to population imaging, 

visualized electrophysiological recordings, and genetic manipulations. Key to such efforts will 

be defining the inputs to the cerebellum and understanding how they are transformed within 

cerebellar circuitry in the context of cerebellar-dependent behavior. The present description of 

the responses of Purkinje cells to visual and motor signals during the OMR provides an initial 

step towards this goal. Though we found little evidence for signals encoded in simple spikes 

and/or CFRs that are specifically suited for controlling or adjusting the OMR, our recordings 

clearly demonstrate that Purkinje cells encode motor signals related to swim bouts. Hence the 

zebrafish cerebellum may play a general role in controlling and/or adjusting swim behavior.  

 Moreover, the rapid and dramatic developmental changes in the motor systems 

and behavior of larval zebrafish may offer a tractable and ethologically-grounded approach to 

understanding how the cerebellum contributes to adapting and optimizing motor performance 

based on experience.  
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CHAPTER 5: FUTURE DIRECTIONS FOR CEREBELLUM IN ZEBRAFISH 

 

Introduction 

In the preceding chapter, I provided an initial characterization of PC activity during 

optomotor behavior in larval zebrafish. The foundation of cerebellar knowledge in zebrafish, to 

which this characterization contributes, is at an infantile stage compared to the vast quantities of 

data amassed about cerebellar function in other model systems. The justification for catch-up 

efforts lies in the smaller number of neurons in the cerebellum and motor control apparatus and 

their compatibility with powerful genetic and imaging tools that could make possible approaches 

not previously available in cerebellar research. However, to realize the full command of these 

tools, they must be customized for cerebellum specific studies and deployed from an informed 

vantage point that includes at least a basic characterization of connectivity and physiology of the 

zebrafish cerebellum and its role in a cerebellum-dependent behavior. 

In the rest of this chapter, I will first itemize the current state of cerebellar methods and 

foundational knowledge in larval zebrafish and the remaining ground to cover. I will then 

proceed to discuss some of the methodological advantages that a fully realized zebrafish 

cerebellar paradigm could offer in the context of the types of experimental questions they could 

help to address. Specifically, I will explore the potential for (1) Broad and unbiased sampling of 

population activity. (2) Optogenetic access to all cells in cerebellum, including output cells. (3) 

Potential to monitor molecular correlates of learning in real time. 

 

Status of cerebellum-specific methods in zebrafish 

Genetic targeting of material to label, monitor, and manipulate cerebellar cell types 



95 

 

Genetically labeling neuronal cell types, monitoring their activity with calcium sensitive 

indicators, exciting them with optogentic tools like channelrhodopsin and inhibiting them with 

with optogentic tools like archaerhodopsin are four of the critical capabilities available for taking 

advantage of the optogenetic accessibility of zebrafish. All of these techniques have been applied 

in zebrafish, but have so far have been effective in different cerebellar cell types to different 

degrees. Achieving these manipulations in GCs, PCs, and efferent cells, as well as ideally in 

some of the major inhibitory interneurons such as Golgi cells and stellate cells, would provide 

great flexibility with which to approach cerebellar experimental design. 

All four of these manipulations have been reported recently in PCs (Matsui et al. 2014). 

Recently published Gal4 lines for targeting arbitrary reporters to GCs and efferent cells also 

exist, but have so far been used only to express GFP (Takeuchi et al. 2015). Theoretically, 

crossing these lines with UAS GCaMP, channelrhodopsin and archaerhodopsin (Arrenberg et al. 

2009; Chen et al. 2013; Umeda et al. 2013) should be straight-forward, but it has not yet been 

reported. As yet there are no known reports of cell-specific expression in zebrafish inhibitory 

interneurons other than PCs. 

In the interim, monitoring neuronal activity in cell types without cell specific expression 

of GCaMP may be possible using fish with pan-neuronal GCaMP expression driven by the 

panneuronal elavl3/HuC promoter (Ahrens et al. 2013; Higashijima et al. 2003) if cell location 

and morphology can be used to identify cell types. Recently developed 

HuC:Gal4FF/UAS:GCaMP6s larvae have sparser mosaic GCaMP6 expression (Chen et al. 2013) 

that may facilitate this. In practice though, similar cell body size and mixing of cell types in the 

layers of cerebellum would likely make identification difficult in most cells, though typically 

larger Golgi cells may be an exception.  
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Critically, as was found in chapter 2, loading cells with calcium indicator does not 

guarantee that spiking activity can be read out in fluorescence signals. Electrophysiological 

recording could be used to calibrate the relationship between spiking and fluorescence signals. 

And, in the event that indicator was not sensitive enough to read out spiking, 

electrophysiological recordings could be used to sample from a large percentage of the relatively 

small number of cells of any given cell types in larval zebrafish cerebellum, albeit not with the 

efficiency of imaging. 

 

Electrophysiological recording in identified cerebellar cell types 

Electrophysiological recording from identified cerebellar cell types will be important for 

calibrating any spiking activity visualized with calcium sensitive indicator. Separately, it also 

represents a means of acquiring subthreshold and higher resolution temporal information. 

Therefore, methods for recording in GCs, PCs, efferent cells, Golgi cells and stellate cells are 

important tools to establish. 

Recording in PCs has been demonstrated herein and in two recently published studies 

(Hsieh et al. 2014; Sengupta and Thirumalai 2015). No electrophysiological recordings in other 

zebrafish cerebellar cell types have been reported. However, from unpublished observations I 

believe recording from efferent cells and GCs should be relatively straight-forward. I obtained a 

handful of putative efferent cell recordings in the course of recording PCs, identified based on 

their location, lack of climbing fiber response, and morphology when filled. I have also observed 

proof-of-principal recording of a GFP-labeled GC. 

 

Characterizing inputs to and targets of cerebellum 
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Understanding the complete input-output transformation of information through zebrafish 

cerebellum will require knowledge of the nature of these inputs and outputs. Visual and likely 

motor inputs must contact cerebellum to drive the motor and visual activity observed in PCs 

during the OMR. Other potential sensory inputs, to which behavioral responses have been 

successfully engaged experimentally in larval zebrafish, include lateral line, vestibular, auditory, 

and olfactory inputs (Bhandiwad et al. 2013; Kermen et al. 2013; Kohashi et al. 2012; Levi et al. 

2015). Only two sources of mossy fiber inputs have so far been identified anatomically, one from 

the dorsal tegmental nuclei (Bae et al. 2009) and the other from pretectal nuclei (Volkmann et al. 

2010). Tracer techniques could be used to identify additional mossy fibers regions of origin. 

Experiments in a number of teleost species have shown a wide array of downstream 

targets of efferent cells ranging from the diencephalon to the medulla based on tracer 

experiments (Ikenaga et al. 2006). More recently, two papers using genetically labeled efferent 

cells have elucidated specific downstream targets in zebrafish. One paper identified two distinct 

subsets of efferent cells terminating in tectum and thalamus (Heap et al. 2013), while another 

observed termination in the tegmentum and rostral hindbrain, where the oculomotor nucleus and 

reticular formation, amongst other structures, are situated (Takeuchi et al. 2015). 

 

Describing cerebellum-dependent behavior 

Marr-Albus based models of cerebellar function are premised on the idea that cerebellum 

serves to learn relationships between current state information and some desired output. 

Therefore to determine whether and how the cerebellum carries out such algorithm will require a 

learning behavior in zebrafish with a demonstrated cerebellar-dependency. 
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OMR gain adaptation represents one possible such behavior. As described in chapter 3, in 

a set of experiments in which the inferior olive was lesioned, zebrafish lost the ability to instigate 

OMR gain adaptations in a fictive closed loop paradigm (Ahrens et al. 2012). Given that the 

olive is the source of all CF inputs to the cerebellum, the cerebellum could be the means by 

which the olive’s role in gain change adaptation is carried out. However, lesion manipulations 

are an imprecise means of selectively eliminating a structure’s contribution to behavior as 

processes from other brain regions can pass through the lesioned area and be unintentionally 

inactivated as well. 

A more precise evaluation of the contribution of the cerebellum to OMR adaptation could 

be achieved using archaerhodopsin to silence efferent cell output in a gain change learning 

paradigm. Fish that were able to learn gain changes under control conditions, but not during 

archaerhodopsin inactivation of efferent cell activity would provide strong evidence that the 

cerebellum is involved in OMR gain change adaptation. 

Of note, after considerable effort I was not able to reliably initiate OMR learning in 

zebrafish using my fictive OMR paradigm. This may have been due to intrinsic variability 

between fish or it may have been due to differences between my experimental setup or animals 

as compared to those used in published studies of OMR gain-adaptation (Ahrens et al. 2012; 

Portugues and Engert 2011). Most notably, my fish were of a different genetic background (AB 

vs. WIK) and had their brains exposed to an artificial cerebrospinal fluid for electrophysiological 

recordings. These two major variables would not be necessary in the archaerhodopsin 

experiment described above. 

It is possible that it will turn out that the cerebellum is not clearly involved in OMR 

adaptation. In this case it would be necessary to delineate a different behavior in which 



99 

 

cerebellum is critically involved. One promising study, also described in chapter 3, suggests that 

the cerebellum plays a role in an associative conditioning task in which a conditioned visual 

stimulus drives an enhanced motor response after pairing with an unconditioned touch stimulus 

(Aizenberg and Schuman 2011). This behavioral change was paralleled by facilitation of 

luminance responses in cerebellar neurons after conditioning. Interestingly, laser ablation of the 

cerebellum arrested acquisition and extinction (dependent on when during training the lesion was 

made) but not retention of the learned response. As noted above laser ablations allow for the 

possibility that non-cerebellar processes in the vicinity can be affected. Nevertheless, this 

paradigm is a promising one given its similarity to mammalian cerebellar-dependent classical 

eyelid conditioning paradigms (Thompson and Steinmetz 2009) and its cerebellar dependence 

could be explored more precisely using optogenetic silencing. 

Another interesting behavioral paradigms, prey capture, has not been evaluated for 

cerebellar dependence, but it is easy to imagine that the sensorimotor demands of this behavior 

that requires precisely time movements could make use of cerebellar apparatus (Bianco et al. 

2011; Gahtan et al. 2005). 

 

Monitoring molecular correlates of learning in cerebellum 

As discussed in chapter 1, disentangling the roles of diverse sites of plasticity in the 

cerebellum has been a long-standing challenge. Inactivating sites of plasticity with good 

specificity is difficult, and even if accomplished may alter the dynamics of plasticity compared 

to their interplay in an unmanipulated state. A recently published method demonstrating the 

ability to monitor internalization of GFP-labeled AMPA receptors in mouse barrel cortex vivo 

(Zhang et al. 2015) could make it possible to directly monitor plasticity in naive animals in real 
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time. Such a method is not yet established in zebrafish but should be feasible using similar 

methods of in utero electroporation (Hoegler and Horne 2010). The optical accessibility of the 

zebrafish makes it particularly amenable to this approach as all relevant synapses could likely be 

visualized, in comparison to mice where synapses onto the deep cerebellar nuclei could not be 

accessed noninvasively. 

 

Zebrafish experimental possibilities on the horizon 

In the remainder of this chapter I discuss some areas of cerebellar research that could 

particularly benefit from the methodological capabilities that are made possible by the larval 

zebrafish’s small size and genetic tractability. Because the particulars of any of these 

experiments will depend on the success of development of the tools outlined above, I will not go 

into great detail about how to carry out actual experiments. Instead I focus on the nature of the 

challenges in each area of inquiry and why the types of methodological approaches that can be 

realized in zebrafish could offer a powerful means of contending with them. 

 

Accessibility of population data 

The comparatively small number of neurons in the zebrafish cerebellum makes it possible 

to acquire data from complete populations using imaging, and to obtain higher resolution 

visualized electrophysiological recordings with an expectation of unbiased and comprehensive 

sampling. This potential for broad sampling affords a number of advantages. It can obviate 

concerns that conflicting data from different experiments stem from sampling of different 

populations. It also allows the role of network dynamics to be examined directly rather than 

inferred from observations of small subsets of neurons. 
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The dramatic coding expansion that occurs in GCs, discussed in chapter 2, exemplifies a 

region where broad sampling could provide insights about the information and processing these 

cells supply to PCs. Indeed population characterization of sensory responses in these cells has 

already begun. In the first report of imaging in GCs (Sylvester et al. 2011), researchers found GC 

activity in response to visual motion clustered into two groups, direction selective and non-

selective. These findings are interesting in light of the surprising largely direction insensitive 

responses of PCs I observed during the OMR. 

 As noted, existing accounts of GC response properties from published whole-cell 

recordings in other organisms provide conflicting evidence for the combinatorial encoding that 

has long been theorized to occur in GCs. Recordings in mormyrid have indicated that individual 

granule cells do receive multimodal proprioceptive and corollary discharge inputs (Sawtell 

2010), a finding that is complimented by anatomical work in mouse finding a convergence on 

granule cells of a pathway carrying upper body proprioceptive information and a basilar pontine 

pathway, thought to carry upper body motor corollary discharge information (Huang et al. 2013). 

Recently published whole cell recordings in mouse have similarly demonstrated GC integration 

of vestibular and visual information (Chabrol et al. 2015). On the other hand, whole cell 

recordings in cat have indicated that granule cells receive only unimodal cutaneous or joint-

related information with similar receptive fields at all inputs (Jorntell and Ekerot 2006). It is 

possible that these divergent results stem from different properties in different GC populations. 

Sampling uniformly across the entire GC population in response to multiple sensory stimuli 

would allow assessment of whether, at least in one organism, multi-modal GCs are the 

exception, the rule, or somewhere in between.  
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Beyond addressing discrepancies that could result from under sampling, monitoring 

population activity could make it possible to address inherently population level questions that 

could be difficult to answer in larger systems. For example, combinatorial encoding in GCs has 

been theorized to result in sparse encoding that allows PCs to assign different significance to a 

given mossy fiber input depending on the identity of the other mossy fibers with which it is co-

active. In population terms, overlapping patterns of mossy fiber inputs are separated into distinct 

GC patterns with stricter, and thus less frequently engaged, activation requirements. Sparse 

encoding thus allows specificity of learned responses, but it has been pointed out that a trade-off 

for sparseness could be a hindered ability to generalize learning across related contexts (Spanne 

and Jorntell 2015). Therefore, the ideal as well as actual proportion of activity in the granule cell 

population at any given time is an open question that is likely best addressed by sampling 

activity at a population level. 

Even with massive expansion, it’s likely not possible to represent all potential 

combinations of mossy fibers distinctly in GCs. A further question then is whether there is 

behaviorally-relevant logic to the combinations that are represented or if they are the result of 

random mixing (Barak et al. 2013). Broad sampling would be critical in addressing this question 

across the many types of inputs GCs can receive, which may be represented to different extents 

and mix with different degrees of randomness.  

For instance, there is evidence in mormyrid that parallel fibers provide randomly mixed 

proprioceptive and corollary discharge signals, although at least some of this mixing occurs 

presynaptic to GCs (Requarth et al. 2014). The paper in which these results were published 

makes a good case for why such mixing would be desirable for downstream processing. 

However, mixing of other inputs might be less plausibly useful. For example, in chapter 2, I 
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discussed a second but not at all mutually exclusive theory of GC processing that GC and 

interneuronal circuitry provide temporally expanded representations of transient outputs to which 

delayed responses might be desired. There is evidence that such temporal expansion occurs in 

mormyrid granule cells, where multimodal encoding has also been demonstrated (Kennedy et al. 

2014; Sawtell 2010). Therefore a question is whether temporal expansion and multimodal 

encoding occur in the same cells and if so whether sensory information from different time 

windows is randomly mixed. Natural stimuli often engage more than one sense so it seems likely 

that combining multimodal sensory information conveying information from the same time 

window would be more useful than combining information from two random delays. It’s 

possible then that we would see a blend in GC encoding of random mixing of modality with 

ordered mixing of temporal delay. 

Concrete theories exist regarding the benefits that combinatorial or temporal expansion in 

GCs, and related levels of sparseness, could provide in terms of learning capabilities. In larval 

zebrafish, population data regarding granule cell activity in various sensorimotor contexts could 

be used in models with biologically accurate numbers of interconnected neurons to assess the 

computational power and trade-offs of observed granule cell encoding in terms of such criteria as 

accuracy and generalization of pattern learning. 

 

Accessibility of all cell types 

 The layered structure of the cerebellum means different stages of processing are different 

amounts accessible to imaging and optogenetic stimulation in other organisms. The ability to 

visually access every cell in the zebrafish brain confers depth of sampling as well as breadth. In 

particular, in mammals cerebellar efferent cells are located in the deep cerebellar nuclei, well 
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beneath the limits of optical access without surgical manipulation. In zebrafish these cells are 

quite accessible. Furthermore in teleost cerebellums, cerebellar efferent cells are scattered 

amongst the PCs that innervate them, making simultaneous monitoring of activity in connected 

cells feasible through both imaging and electrophysiological approaches. 

As discussed in chapter 1, the significance in the processing that occurs downstream of 

PCs has become a hotly debated topic since the early days when they were treated largely as 

relay neurons that simply conferred a sign flip. Though PCs do inhibit efferent cells, efferent cell 

activity does not necessarily look like an inversion of PC activity see e.g. (McDevitt et al. 1987). 

In the vestibular nucleus, linear summation of PC input rates by vestibular neurons has been 

demonstrated (Medina and Lisberger 2009). Accordingly, in dynamic clamp studies, simulation 

of asynchronous PC input inhibited cells of the deep cerebellar nuclei in a fairly straight-forward 

manner (Person and Raman 2012). However, simulation of synchronous inputs to these cells 

resulted in entrainment of nuclear cell firing to their synchronous firing. Furthermore, partial 

synchrony drove entrainment with the subset of synchronized Purkinje cells, revealing a 

synchrony-based nonlinear interaction between population PC activity and its effect on efferent 

cell firing. In this same study, in vivo stimulation trains in the molecular layer could also entrain 

nuclear cell firing. 

Synchronous pausing of PC activity has also been implicated in another type of non-

linear encoding in efferent cells: rebound spiking triggered by strong inhibition (Aizenman and 

Linden 1999; Gardette et al. 1985a; b; Tadayonnejad et al. 2010). Rebound spiking has been 

theorized to provide a timing signal that can be used for various purposes (Steuber and Jaeger 

2013). Though while rebound firing has been demonstrated robustly in vitro, its prevalence in 

vivo is not clear and the purpose and conditions under which it occurs are under active debate 



105 

 

(Alvina et al. 2008; Bengtsson et al. 2011; Tadayonnejad et al. 2010; Tadayonnejad et al. 2009). 

Rebound discharge requires sudden release from strong inhibition, which would likely require 

synchronous pausing across groups of innervating PCs. Complex spikes in PCs are followed by a 

pause in simple spiking, so it’s been theorized that synchronized complex spike inputs across 

groups of PCs could be a mechanism by which rebound discharge is triggered (Bengtsson et al. 

2011; Steuber and Jaeger 2013).  

In short, synchrony of activity across groups of PCs could provide strong modulation of 

efferent cell activity, but it is not clear whether such a mechanism is regularly engaged in vivo 

and to what effect. The optical accessibility of efferent cells in larval zebrafish could allow direct 

monitoring of efferent cell activity concurrent with PC activity. Furthermore paired patching of 

these two cell types would allow direct assessment of the effect of an individual PC’s spiking 

output on efferent cell activity. The effects of synchronous PC pauses could be explored by 

optogenetically driving direct transient inactivation of PCs, or indirect inactivation via activation 

of climbing fiber inputs from the inferior olive. Of note, while optogenetic activation of PCs is 

possible in mouse, and could conceivably be combined with electrophysiological recording from 

cells in the deep cerebellar nucleus, only a subset of PCs can be stimulated by non-invasive 

measures due to light attenuation caused by tissue fissures and obstruction of parts of the 

cerebellum by other parts of the brain (Tsubota 2013). 

As interesting as is the effect exerted by PCs on efferent cells, the effect exerted by 

efferent cells on cerebellar targets is arguably an even more critical piece of the puzzle, as it 

represents the net outcome of the various levels of processing in the cerebellum. The ability to 

monitor and manipulate efferent cell outputs in larval zebrafish, along with their small number 

(well below the  approximately 300 Purkinje cells amongst which they are interspersed) and the 
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relatively simple motor apparatus in this organism justifies optimism that some of the effects of 

efferent cells on motor behavior could be untangled in this system. 

Efferent cells in the zebrafish have been characterized as targeting a number of brain 

regions (Heap et al. 2013; Matsui et al. 2014; Takeuchi et al. 2015), including the nMLF (Matsui 

et al. 2014). As noted in chapter 1, the nMLF consists of a cluster of about 20 neurons that is part 

of the reticulospinal cell population that projects to spinal cord. Particular cells (MeLc and 

MeLr) have been implicated in sensorimotor behavior, such as prey capture and high speed 

optomotor responses (Gahtan et al. 2005; Severi et al. 2014). Interestingly activity in these cells 

appears to correspond differentially to tail beat frequency and bout duration. Given the tail beat 

frequency and bout duration information I observed in PC recordings, it would be interesting to 

assess the relationship between efferent cell outputs and these identified neurons both 

anatomically and by driving activity in efferent cells optogenetically and observing effects in 

these cells. The effects of efferent cell activation on tail beat frequency and bout duration could 

also be evaluated directly by observation of swim statistics in the presence or absence of 

optogenetic manipulation. 

 

Ability to monitor molecular correlates of learning in real time 

As discussed in chapter 1, climbing fiber mediated learning is not likely to be the only 

mechanism of learning in the cerebellum. Dissecting the different and likely overlapping 

contributions of diverse sites of plasticity in the cerebellum has faced a number of challenges. 

The difficulty of monitoring neural activity over long periods of time has meant that often 

inferences about plasticity have had to be made based on comparison of activity before and after 

training rather than being able to monitor the time course with which these changes happen. To 
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limit the possible routes by which the observed changes could occur, manipulations of sites of 

plasticity has been attempted. However such manipulations can be fraught with non-specific 

effects -- for example disruption of molecules involved in signaling cascades for plasticity can 

also disrupt signaling cascades that are important for other pathways as well (Boyden et al. 2004; 

Schonewille et al. 2011) – and must also contend with the possibility that that mechanisms of 

plasticity might substitute for one another when disruption occurs, taking on roles that don’t 

reflect  normally plasticity in the unmanipulated condition. 

In the larval zebrafish it may be possible not only to monitor the time course of changes 

in activity noninvasively during learning, but also to monitor the actual molecular components of 

plasticity as it occurs during learning in unmanipulated systems. A recently published study 

demonstrated the ability to monitor internalization of GFP-labeled AMPA receptors in mouse 

barrel cortex vivo (Zhang et al. 2015). If such a method can be established in zebrafish, the 

optical accessibility of PCs and efferent cells could allow direct observation of subcellular level 

AMPA trafficking processes underlying the existence and timescales of  LTP and LTD at 

parallel fibers to PCs vs parallel fibers to efferent cells for example. 

Uncertainty about the roles of different locations of plasticity exists even across different 

inputs to the same cell and could also be resolved by direct observation of plasticity. For 

example, many modern Marr-Albus based models of cerebellum share central computational 

features with an engineering control theory mechanism called an adaptive-filter (Dean et al. 

2010; Fujita 1982). In essence, a basis of component signals extracted from mossy fiber inputs 

are conveyed to PCs. An error signal then weakens any inputs with which it is correlated, while 

any inputs not correlated with this error signal have their weights increased. Assuming these 

correlations reflect causation, this approach to sculpting a PC output driven by contextual inputs 
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that are maximally decorrelated with error will result in optimal PC performance. In engineering 

applications however, the weights used in simple adaptive filters can be both positive and 

negative. Such a capacity could not be achieved by LTD of parallel fiber inputs alone, but Dean 

and Porrill propose that if the weights of parallel fiber innervations of inhibitory stellate and 

basket cells that synapse on PCs could be adjusted by CF activity in the opposite direction from 

its effect on parallel fiber inputs, they could offer a sign-flip that would effectively provide 

indirect negative weights from parallel fibers onto PCs via inhibitory interneurons. Indeed CFs 

contact and can influence stellate cell activity (Barbour 1993; Jorntell and Ekerot 2002; Sugihara 

et al. 1999) 

 An interesting set of in vivo experiments demonstrated a role of climbing fiber to stellate 

cell plasticity by co-opting the CFs teaching signal to drive artificial learning in stellate cells. 

Using stimulating electrodes to co-activate parallel fibers and CFs, the authors caused the 

cutaneous receptive fields of stellate cells expand, suggesting strengthening of a broader range of 

cutaneous mossy fiber inputs onto stellate cells (Jorntell and Ekerot 2002). After this 

manipulation, electrical recordings from stellate cells demonstrated increased active parallel fiber 

synapses (Jorntell and Ekerot 2003). These results credibly suggest that stellate cells input to PCs 

can provide negative weighting of parallel fiber information to PCs, but how concurrent 

weakening of the parallel directly onto PCs  might interact with stellate cells carrying the same 

information with a flipped sign is not known. 

Given evidence that in some systems gain up and gain down learning appear to proceed 

with different time courses and by different mechanisms (Boyden and Raymond 2003; Miles and 

Eighmy 1980; Robinson et al. 2003; Straube et al. 1997), it’s possible that stellate cell inputs to 

PCs could learn at a different rate from direct parallel fiber inputs, resulting in a more nuanced 
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relationship between stellate cell and parallel fiber counterparts than simple extension of the 

spectrum of possible weights into a negative domain. The ability to visually monitor plasticity 

could be helpful in dissecting this relationship.  

 

Concluding Remarks 

There are any number of questions that remain about the canonical algorithm of the 

cerebellum. In many ways the minimal, optically accessible and genetically tractable cerebellar 

circuit of the larval zebrafish is ideally suited to get at some of them. However, as the rapid 

development of these methods has only recently pushed the larval zebrafish forward as a natural 

model for studying cerebellum, our relevant knowledge is still quite basic. With this dissertation 

I aim to outline some of our current knowledge as well as to contribute a preliminary 

characterization of Purkinje cell activity during optomotor behavior to the foundational 

knowledge that will be necessary to fully capitalize on the promise of the larval zebrafish as a 

model to understand cerebellar function.  
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