
Embedded System Security: A Software-based
Approach

Ang Cui

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2016

c©2016

Ang Cui

All Rights Reserved

ABSTRACT

Embedded System Security: A Software-based
Approach

Ang Cui

We present a body of work aimed at understanding and improving the security posture

of embedded devices. We present results from several large-scale studies that measured

the quantity and distribution of exploitable vulnerabilities within embedded devices in the

world. We propose two host-based software defense techniques, Symbiote and Autotomic

Binary Structure Randomization, that can be practically deployed to a wide spectrum of

embedded devices in use today. These defenses are designed to overcome major challenges

of securing legacy embedded devices. To be specific, our proposed algorithms are software-

based solutions that operate at the firmware binary level. They do not require source-code,

are agnostic to the operating-system environment of the devices they protect, and can work

on all major ISAs like MIPS, ARM, PowerPC and X86. More importantly, our proposed

defenses are capable of augmenting the functionality of embedded devices with a plethora of

host-based defenses like dynamic firmware integrity attestation, binary structure randomiza-

tion of code and data, and anomaly-based malcode detection. Furthermore, we demonstrate

the safety and efficacy of the proposed defenses by applying them to a wide range of real-

time embedded devices like enterprise networking equipment, telecommunication appliances

and other commercial devices like network-based printers and IP phones. Lastly, we present

a survey of promising directions for future research in the area of embedded security.

Table of Contents

List of Figures vi

List of Tables xii

I Introduction 1

1 Motivation 2

1.1 What is an embedded device? . 4

2 Hypothesis 5

3 Contributions 6

4 Related Work 8

4.1 Quantification and Qualification . 8

4.1.1 Large-Scale Evaluation of Firmware Vulnerabilities 8

4.1.2 Embedded Exploitation in the Wild 9

4.2 Embedded Exploitation . 10

4.2.1 Cisco Router Exploitation . 11

4.3 Embedded System Defense Technologies . 11

4.4 Software Compaction . 13

4.5 Defensive Randomization . 14

5 Problem Description 16

i

5.1 Real-world quantification of embedded system vulnerability and exploitability 16

5.2 Generalized firmware analysis and modification 16

5.3 Generalized software environment agnostic defense 17

II The Embedded Threatscape 19

6 Quantitative Assessment of Real-World Embedded Vulnerability 20

6.1 Real-world quantification of embedded device vulnerability 20

6.2 Analysis of Results . 26

6.2.1 Breakdown of Vulnerable Devices by Functional Categories 27

6.2.2 Breakdown of Vulnerable Devices by Geographical Location 29

6.2.3 Breakdown of Vulnerable Devices by Organizational Categories . . . 30

6.2.4 Community Response to Default Credential Scanner Activity 31

6.2.5 Preliminary Longitudinal Results . 32

6.3 Remediation Strategy . 33

6.4 Ethical Considerations of Such Studies . 33

6.5 Concluding Remarks . 34

7 Qualitative Assessment of Real-World Embedded Vulnerability 35

7.1 Case-Study: Reliable Cisco IOS Exploitation 36

7.1.1 Motivation . 39

7.1.2 Cisco Exploitation Timeline . 41

7.1.3 Two-Stage Shellcode Execution Strategy 42

7.1.4 Cisco IOS DISASM Shellcode . 42

7.1.5 Interrupt Hijacker Shellcode . 44

7.1.6 Stealthy Data Exfiltration . 49

7.1.7 Experimental Data . 51

7.1.8 Defense . 52

7.1.9 Concluding Remarks . 53

7.2 Case-Study Firmware Modification: HP-RFU 55

7.2.1 Overview . 55

ii

7.2.2 Firmware Modification Attack . 59

7.2.3 Case Study: HP LaserJet Exploitation 61

7.2.4 Discovery Process . 63

7.2.5 Proof of Concept Printer Malware 65

7.2.6 Threat Model and Assessment . 67

7.2.7 Vulnerable Device Population Analysis 71

7.2.8 Vulnerable Third-Party Libraries . 74

7.2.9 Recommended Defenses . 77

7.3 Concluding Remarks . 78

7.3.1 Poly-species propagation of advanced persistent embedded implants 78

7.3.2 Large-scale exploitation . 81

III Embedded Defense 82

8 Symbiotic Embedded Machines 83

8.1 Introduction . 84

8.2 Threat Model . 86

8.3 Symbiotic Embedded Machines . 87

8.3.1 Doppelgänger: A Symbiote Protecting Cisco IOS 89

8.3.2 Live Code Interception with Inline Hooks 91

8.3.3 SEMM and Execution Context Records 92

8.3.4 SEM Memory Management . 93

8.3.5 Automatically Locating Control-Flow Intercept Points 94

8.3.6 Injecting Symbiotic Embedded Machines into Firmware 95

8.3.7 Rootkit Detection Payload . 96

8.4 Computational Lower Bound of Successful Software-Only Symbiote Bypass 97

8.5 Symbiote Performance and Computational Overhead 99

8.5.1 Experimental Results: Doppelgänger, IOS 12.2 and 12.3, Cisco 7121 101

8.5.2 Doppelgänger, Linux 2.4.18, ARM and Qemu 103

8.6 Concluding Remarks . 103

iii

9 Autotomic Binary Structure Randomization 105

9.1 Motivation . 105

9.1.1 Software Diversification . 106

9.1.2 Attack Surface Reduction . 107

9.1.3 A Hybrid Approach . 108

9.2 Threat Model . 110

9.3 Autotomic Binary Reduction . 111

9.3.1 Generalized FetEM Extraction . 112

9.3.2 General Autotomy Algorithm . 114

9.4 Code Autotomy Algorithm . 118

9.4.1 Return instruction injection . 120

9.4.2 Fast Code Autotomy Algorithm . 121

9.5 Binary Structure Randomization . 122

9.5.1 Primitive Transforms . 124

9.5.2 Complex BSR Transforms . 126

9.5.3 ABSR: Code Execution Detection (XDpad) 128

9.5.4 Functional Preservation . 129

9.6 Applied ABSR . 129

9.6.1 ABSR in ARM BusyBox . 130

9.6.2 ABSR in PowerPC Cisco IOS . 137

9.6.3 ABSR in MIPS Cisco IOS . 145

10 Case-Study: Symbiote and ABSR Defense 148

10.1 Case-Study: Symbiote and Cisco Routers 148

10.1.1 Symbiote Performance and Overhead 148

10.1.2 Computational Overhead . 151

10.1.3 Detection Performance . 152

10.1.4 Control-Plane Latency . 152

10.1.5 Discussion . 154

iv

IV Conclusion 155

11 Future Work 156

11.1 Qualification and Quantification . 156

11.2 Symbiote . 157

11.2.1 Embedded Self-Healing . 158

11.2.2 Embedded Anomaly Detector . 159

11.2.3 Large-Scale Embedded Sensor Grid 159

11.3 Autotomy Binary Structure Randomization 159

12 Concluding Remarks 161

12.1 Conclusion . 161

V Bibliography 165

Bibliography 166

VI Appendices 178

A Appendix A 179

A.1 Appendix: List of Embedded Device Profiles Supported by Default Creden-

tial Scanner . 179

B Appendix B 180

B.1 Cisco IOS Rookit . 180

B.1.1 Disassembling Shellcode . 180

B.1.2 Interrupt Hijacking Shellcode . 180

C Appendix C 181

C.1 CVE-2011-4161: HP LaserJet Firmware Modification Vulnerability 181

D Appendix D 184

D.1 Symbiote Performance . 184

v

List of Figures

4.1 Spectrum of proposed software diversification techniques 14

6.1 Distribution of Vulnerable Embedded Devices in IPv4 Space. Total Number

of Vulnerable Devices Found: 540,435. 21

6.2 Distribution of Vulnerable Devices Across Unique Device Types. The Top 3

Device Types Constitute 55% of the Entire Vulnerable Device Population. . 25

6.3 Embedded Device Vulnerability Rates of Monitored Countries (Threshold =

2%). 27

6.4 Discovered Candidate Devices (Left) and Vulnerable Devices (Right) by Functional

Category. 27

6.5 Discovered Candidate Devices (Left) and Vulnerable Devices (Right) By Geograph-

ical Distribution. 29

6.6 Discovered Candidate Devices (Left) and Vulnerable Devices (Right) by By Orga-

nization Type. 30

6.7 Daily Page Access Analytics For Scan Project Information Page [url anonymized].

Oct 19, 2009 - April 12, 2010. 31

7.1 Timeline of two-stage attack against vulnerable IOS router of unknown hard-

ware platform and firmware version. Attacker launches exploit with reliable

shellcode (1.a). Shellcode installs rootkit and exfiltrates victim device’s IOS

fingerprint (1.b). The attacker finds exact IOS version from fingerprint by

consulting offline database (2.a). The attacker then creates a version specific

rootkit for victim and uploads it using 1.b rootkit (2.b). 38

vi

7.2 The disassembling shellcode first locates a known string (A), then locates a

xref to this string (B). Once this xref location is found, the attacker can patch

the function containing the xref. This shellcode requires two linear scans of

IOS memory, one through the .data section, and a second one through the

.text section. 43

7.3 A disassembly of a typical f chkpasswd. The string xref is the first highlighted

block. The second highlighted block is the single instruction, which can

disable password authentication in IOS. While these addresses vary greatly,

they can be reliably computed at exploitation time by the disassembling

shellcode. 44

7.4 The interrupt hijack shellcode first locates all eret (exception return) instruc-

tions within IOS’s .text section. The second-stage rootkit is then unpacked

inside the $gp memory area (which is unused by IOS). All eret instructions,

and thus all interrupt service routines are hooked to invoke the second-stage

code. We now have reliable control of the CPU by intercepting all interrupt

handlers of the victim router. 45

7.5 Interrupt hijack second-stage rootkit. Each time any ISR (interrupt service

routine) is invoked, the rootkit will seek through the latest punted packets

within IOMEM for specially crafted command and control packet payloads. 47

7.6 Highlighted words, left to right, top to bottom. 1: Pointer to previous packet

data node. 2. Pointer to next packet data node. 3. Exfiltration request magic

pattern. 4. Beginning of next packet data entry, pointed to by 2. 48

7.7 Data exfiltration through forwarded packet payload. 1: The attacker crafts a

packet with a magic pattern in its payload indicating exfiltration request. 2:

Packet payload is copied into a *packet data* structure. 3: Rootkit locates

magic pattern, overwrites remaining packet with exfiltrated data. 4: Packet

is process-switched. The packet data entry is linked to the TX queue. 5: The

requested data is sent back to the attacker inside an ICMP response packet. 50

vii

7.8 Distribution of the location of the password authentication function. This

location varies greatly across the IOS .text segment, forcing the disassembling

shellcode to search a large region. 53

7.9 Distribution of the location of eret instructions over 162 IOS images. These

locations mark the end of all interrupt service routines in IOS, and tend to

be concentrated within a predictable region of IOS. 54

7.10 CPU utilization of 7204 router during the first-stage execution of both the

disassembling and intercept hijack shellcodes. Note that the interrupt hi-

jack shellcode is simpler, requires less CPU and thus avoids watchdog timer

exceptions. 54

7.11 CPU intensive shellcodes will be caught by Cisco’s watchdog timer, which

terminates and logs all long running processes. The disassembling shell-

code, although reliably bypasses password verification, consistently triggers

the watchdog timer, generating the above logs, which give precise memory

location of the shellcode. 55

7.12 Byte value distribution histogram of a typical RFU file. Distribution suggests

that the data is compressed and not encrypted. 62

7.13 Formatter board for LaserJet P2055DN. Dump of the onboard SPI flash

revealed RFU format and integrity checking algorithm. 63

7.14 Logical block diagram of the major components used on the LaserJet P2055DN

formatter board. The Spansion boot flash was key to our reverse engineering

effort. 64

7.15 The SPI flash chip was physically removed then connected to an Arduino for

boot code extraction. 65

7.16 Boot image layout on the SPI flash chip. The level-1 boot loader contains

code that validates, unpacks and decompresses the factory reset RFU allow-

ing us to reverse engineer the binary RFU format and compression algorithm. 65

7.17 Typical advanced persistent threat attack scenario involving compromised

printers. 69

viii

7.18 Percentages of RFUs for each printer model containing known zlib and OpenSSL

vulnerabilities. 76

7.19 Anatomy of a plausible poly-species malcode propagation scenario 79

8.1 Logical overview of SEM injected into embedded device firmware. SEM main-

tains control of CPU by using large-scale randomized control-flow intercep-

tion. The SEM payload executes alongside original OS. Figure 6 shows a

concrete example of how the SEM payload can be injected into a gap within

IOS code. 85

8.2 Generic end-to-end process of fortifying an arbitrary host program with a

Symbiote. Our proof-of-concept Symbiote for Cisco routers, Doppelgänger,

is completely implemented in software and can execute on existing commodity

systems without any need for specialized hardware. 88

8.3 Rendering of Symbiote structure inside a typical IOS firmware. The top of

the graph shows large numbers of control-flow interceptors diverting the CPU

to the SEM manager and payload, which can be seen as the small vertical

structure at the bottom of the graph. 90

8.4 Live Code Regions (White) Within IOS 12.4 Firmware (Black). Code Range:

0x80008000-0x82a20000 . 95

9.1 Autotomic Binary Reduction . 111

9.2 Generalized code structure useful for identifying Feature Entry-Point Maps

in embedded firmware. 113

9.3 Typical finite graph representation of Feature Entry Map logic 114

9.4 Autotomy of Feature Entry Point A. The red areas denote code regions which

can be safely removed. 116

9.5 Three example flow-graphs to illustrate the Dominator function 117

9.6 Three example flow-graphs to illustrate the Inverse Dominator function . 118

9.7 Autotomy of both code and data of Feature Entry Point A. The red areas

denote code regions that can be safely removed. 119

9.8 Feature Entry-Point Return Value Identification 120

ix

9.9 Binary Structure Randomization . 122

9.10 General . 123

9.11 Binary Structure Randomization: Primitive Transform 124

9.12 Binary Structure Randomization: Basic block Relocation 125

9.13 Binary Structure Randomization: Basic block splitting 127

9.14 Binary Structure Randomization: Basic block swapping 127

9.15 Code Execution Detection Detector Pads 128

9.16 Feature selection control-flow structure for Busybox 131

9.17 Data associated with feature selection control-flow structure for Busybox . 131

9.18 BusyBox FetEM Enumeration . 131

9.19 ABR applied to busybox. Non-black regions represent removed code regions. 132

9.20 ABR applied to busybox, feature-set size=1 133

9.21 ABR applied to busybox, feature-set size=3 133

9.22 ABR applied to busybox, feature-set size=5 134

9.23 ABR applied to busybox, feature-set size=7 134

9.24 ABR applied to busybox, feature-set size=9 135

9.25 ABR applied to busybox, feature-set size=11 135

9.26 ABR applied to busybox, feature-set size=13 136

9.27 ABR applied to busybox, feature-set size=353 136

9.28 Binary Diff Rate vs Original Busybox Binary 137

9.29 Binary Diff Rate vs Original Busybox Binary 137

9.30 BusyBox unzip utility runtime over 1MB random data 138

9.31 BusyBox unzip utility runtime over 1MB random data 139

9.32 BusyBox sha512 utility runtime over 1MB random data 140

9.33 BusyBox sha512 utility runtime over 10MB random data 141

9.34 BusyBox sha512 utility runtime over 100MB random data 142

9.35 IOS Create Process function . 142

9.36 IOS Create Process function call-graph . 142

9.37 ABR applied to Cisco 3750 IOS 12.1, feature-set size = 1 143

9.38 ABR applied to Cisco 3750 IOS 12.1, feature-set size = 3 143

x

9.39 ABR applied to Cisco 3750 IOS 12.1, feature-set size = 5 144

9.40 ABR applied to Cisco 3750 IOS 12.1, feature-set size = 248 144

9.41 IOS Create Process function . 145

9.42 ABR applied to Cisco 2821 IOS 12.3, feature-set size = 1 146

9.43 ABR applied to Cisco 2821 IOS 12.3, feature-set size = 3 146

9.44 ABR applied to Cisco 2821 IOS 12.3, feature-set size = 3 146

9.45 ABR applied to Cisco 2821 IOS 12.3, feature-set size=669 147

10.1 Symbiote-based Cisco IOS Detector Testing and Verification Environment . 149

10.2 CPU Utilization : Fixed Burst-Rate SEM Manager 151

10.3 CPU Utilization : Inverse-Adaptive SEM Manager 152

10.4 Detection Latency : Fixed Burst-Rate SEM Manager 153

10.5 Detection Latency : Inverse-Adaptive SEM Manager 153

10.6 Ping Latency : Fixed Burst-Rate SEM Manager 154

10.7 Ping Latency : Inverse-Adaptive SEM Manager 154

C.1 Hex dump of a typical HP-RFU. For P2055DN, using the undocumented

PJL/ACL language. 181

C.2 “UAT” table structure. Contains a checksum value, followed by a directory

manifest describing various compressed components of the binary update

package. 182

C.3 RFU binary embedded inside a typical PostScript file. This illustrates the

most straightforward reflexive attack. 182

D.1 CPU Utilization on Cisco 7121 Router Using Different SEM Payload Exe-

cution Bursts Rates (g(αi, τq)) for IOS 12.2 and 12.3. Note the Direct Re-

lationship Between g(αi, τq), SEM Payload Execution Time and Total CPU

Utilization. Terms Low, Med, High, and Really High Utilization Corresponds

to Varying SEM Payload Burst Rates, g(αi, τq). 185

D.2 Inverse Relationship between SEM Payload Burst Rate (g(αi, τq)) and De-

tection Latency. 185

xi

List of Tables

6.1 Scale and Result of the Latest Global Default Credential Scan. 21

6.2 Vulnerability Rate by Device Category. 28

6.3 Total Discovered Candidate Embedded Devices and Corresponding Vulnera-

bility Rates By Geographical Location (Continental). 28

6.4 Vulnerability Rate By Organization Type. 30

6.5 Email Correspondences Received from Network Operators Regarding Scan-

ning Activity. 32

6.6 Preliminary Longitudinal Study Tracking 102,896 Vulnerable Devices Over

4 Months. 32

7.1 Reliability of the disassembling shellcode and interrupt hijack shellcode when

tested on 159 IOS images. 51

7.2 Reliability of exfiltration mechanism when the number of packet-data nodes

searched per invocation varies. Searching more than 64 nodes caused the test

router to behave erratically. 52

7.3 Observed population of printers vulnerable to the HP-RFU attack on IPv4. 72

7.4 Observed population of printers vulnerable to attacks other than HP-RFU

on IPv4. 73

7.5 Organizational distribution of vulnerable printers. 73

7.6 Geographical distribution of vulnerable printers. 74

7.7 Lifespan of vulnerabilities in third-party libraries used by LaserJet firmware. 76

7.8 Third-party library vulnerability analysis observations. 77

xii

8.1 Doppelgänger Implementation Stats . 101

8.2 Detection Latency at Different SEM Payload Burst Rates IOS 12.2 102

B.1 MIPS-based disassembling rootkit statistics. 180

B.2 MIPS-based interrupt hijack rootkit statistics. 180

C.1 Printer models and firmware images analyzed for vulnerable libraries. . . . 183

xiii

Acknowledgments

I thank my advisor, Salvatore J. Stolfo, for a great number of things. I thank him

for giving me the opportunity to embark on the intellectual journey that culminated in the

findings presented in this dissertation. I am grateful for his ever-present support throughout

my time at Columbia University. I am also thankful for Sal’s reverend guidance in all

matters scientific. Most importantly, I am thankful for his confidence in my endeavors and

his friendship.

I thank Joel Rosenblatt and the entire Columbia University Information Security team.

Without their support, the world-wide quantification of embedded device vulnerability rates

would not have been possible.

I must also thank Daisy Nguyen and the Columbia University Computing Research

Facilities team. Daisy’s constant encouragement, kind advice, and spare parts pushed me

through many difficult times. I am grateful for Daisy’s support and friendship.

I thank all the dedicated researchers and students who helped me with the difficult

task of turning the ideas presented in this dissertation into reality, of which two must be

mentioned specifically. Thank you, Jatin Kataria and Michael Costello, for all your help in

overcoming the innumerable technical challenges we faced together.

I also thank my labmates, Nathaniel Boggs, Yingbo Song, Malek Ben Salem, Gabriella

Cretu-Ciocarlie, Peter Du, Jon Voris, Jill Jermyn and David Tagatac for your companion-

ship, your open ears and brilliant open minds. Thank you for all your insightful input,

suggestions and inspirations that shaped my research. Thank you for putting up with me

as an officemate.

Thank you, Adrian Grabicki, for your constant friendship and much needed support.

I am also grateful for the comments and suggestions of many anonymous reviewers of

the various papers I have published while at Columbia University. Much of the materials

xiv

presented in this dissertation is based on work supported by DARPA, IARPA and DHS.

Lastly, and most importantly, I thank my parents Ran Zhao and Zidu Cui for their

life-long support, constant encouragement and love.

xv

For my parents.
-

For the breath in my breath.

xvi

1

Part I

Introduction

CHAPTER 1. MOTIVATION 2

Chapter 1

Motivation

The world is monitored, powered, supported, and controlled by billions of embedded com-

puters. These devices constitute the substrate of our modern technological infrastructure.

Embedded computers are used to control the production and distribution of energy, the op-

eration of modern vehicles, the functions of devices that range from miniature implantable

medical devices to grand weapon systems that operate over land, air, sea, and space.

Cyber attacks against embedded systems can have profound consequences. Successful

exploitation of embedded systems can allow the attacker to manipulate financial markets,

conduct espionage, disrupt global communication, damage critical infrastructure, and im-

pact the outcome of armed conflicts.

Is it possible, in our increasingly connected and automated world, that software vulner-

abilities in black-box embedded devices can be used to cause disruption and destruction in

the physical world? Can embedded systems be exploited? If so, do vulnerable devices exist

in significant quantity or perform significantly critical functions such that the exploitation

of such devices should be considered a real threat? Can we trust that the embedded de-

vices we depend on today have not already been compromised? Can we reliably detect the

consequence of exploitation after the fact? Most importantly, what can be done to improve

the security of embedded systems given their unique and constrained nature?

The remainder of this thesis represents a body of scientific study aiming to answer these

questions. In short, embedded systems can be, and have been, exploited. They exist in

vast numbers and perform critical functions in the world. The exploitation of embedded

CHAPTER 1. MOTIVATION 3

systems should be considered a real and present threat. Most importantly, we propose

several techniques in this thesis that can be applied to real-world embedded systems to

make them more secure against cyber attack.

To better understand the nature of embedded security, we first present quantitative

and qualitative evidence of the existence of vulnerable embedded devices in the world.

Specifically, a internet-wide scan was carried out to study the make-up and measure the

lower-bound on the quantity of vulnerable embedded devices accessible over the public

internet. We discovered that approximately 20% of all embedded devices on the internet

was configured with a well-known default root credentials, making them trivially vulnerable

to attack. Furthermore, we predicted, through quantitative measurements and qualitative

analysis, that the size of an embedded device botnet would most likely be around 540,000

devices. This prediction was validated two years after the initial publication of our work by

the public announcement of the Carna botnet [5], which compromised over 480,000 devices.

Next, we present a series of case-studies of exploitation against ubiquitous embedded

devices to gain greater insight into the nature of common embedded vulnerabilities. These

case-studies resulted in the public disclosures of 4 vulnerabilities that affected millions

of devices in the world; CVE-2012-5445, CVE-2013-6685, ASA-2014-099, CVE-2011-4161.

While the exact vulnerabilities varied from device to device, several common traits can

be extracted about their nature. These vulnerabilities have existed for many years, the

complexity of the vulnerabilities are low, and successful exploitation can be done using

offensive techniques that can be considered obsolete by modern exploitation standards. As

we begin to define and analyze the nature of embedded systems, we will see that devising

effective host-based defenses is uniquely challenging. Chapter 5 of this thesis discusses these

challenges in detail.

Lastly, we propose and discuss two software-based defensive techniques, Software Sym-

biote and Autotomic Binary Structure Randomization, that are designed to improve the

security posture of embedded devices. We demonstrate the efficacy of these two defensive

techniques by applying them to real-world embedded devices that are known to be vulner-

able. We present experimental data confirming the safety of our prosed defenses, as well as

their efficacy against real-world exploitation.

CHAPTER 1. MOTIVATION 4

1.1 What is an embedded device?

Before we begin, we present a definition of what an embedded device is. Embedded devices

cannot be categorically defined by the architecture of their CPU, the computing power of

the device, the device’s cost, size, shape, color, weight, power consumption, manufacturer,

the device’s operating system, or the language in which the device’s software is written.

Instead, we propose a qualitative definition for what an embedded device is.

An embedded device is a general purpose computer who’s software is intended to function

in a specific and confined way.

Unlike general-purpose computers, an embedded device is expected to perform a narrow

range of functions. This range of functionality is confined by hardware and software, and

for both technical and non-technical reasons. Generally speaking, users and operators of

commercial embedded systems may reconfigure the behavior of the device, but are pro-

hibited from adding, deleting, or modifying the firmware of the device. In other words,

operators of embedded systems typically cannot install or uninstall code from the device.

This constraint is enforced at a contractual level through EULAs and warranty agreements.

More importantly, this constraint is enforced at a software design level. Thus, embedded

systems typically lack the technical mechanisms necessary for operators of these devices to

install custom programs, which makes the implementation of third-party security solutions

uniquely challenging.

CHAPTER 2. HYPOTHESIS 5

Chapter 2

Hypothesis

Embedded devices are vulnerable to large-scale exploitation. The use of software defensive

techniques that take into consideration the hardware and software constraints imposed by

such systems can provide effective and efficient detection of and defense against the ex-

ploitation of several classes of software vulnerabilities, as well as the injection of persistent

software implants in legacy embedded devices. Such software-based defensive techniques

can be automatically realized by making modifications to the firmware that do not alter the

original functionality of the firmware but introduce various security capabilities to the em-

bedded device at a cost of an acceptable level of resource overhead. Most importantly, such

software-based defenses should be realizable at the binary level, without requiring access or

modification to source-code, and should not require any hardware modification.

CHAPTER 3. CONTRIBUTIONS 6

Chapter 3

Contributions

The body of scientific study presented in this thesis makes the following contributions to

the study of the security of embedded devices:

• Established measurements of embedded insecurity through large-scale quantitative

data collection and analysis.

• Systematically analyzed significant bodies of embedded system firmware for vulnera-

bility and exploitability.

• Identified and analyzed several prototypical embedded vulnerabilities, and collabo-

rated with device manufacturers to produce the appropriate security patches.

• Devised the theoretical operation of Software Symbiote, a software and hardware

agnostic software construct that can provide host-based defenses to many embedded

devices.

• Validated the safety and efficacy of Software Symbiote implementations on real-world

embedded devices.

• Devised the theoretical operation of Autotomic Binary Structure Randomization, a

binary-level, non-localized, in-place code randomization technique that requires no

operating system or hardware support.

• Validated the safety and efficacy of Autotomic Binary Structure Randomization on

real-world embedded devices.

CHAPTER 3. CONTRIBUTIONS 7

We hope this line of research will lead to substantial future research in the area of

understanding and improving the security posture of embedded systems, and ultimately, of

our computational and communications infrastructure as a whole.

CHAPTER 4. RELATED WORK 8

Chapter 4

Related Work

We examine a body of work related to embedded security through several perspectives.

First, we present prior studies aimed at the quantification and qualification of the feasibility

of embedded exploitation. Next, we present a selection of prior academic and real-world

studies of the exploitation of embedded devices. Lastly, we survey prior works related to

the defense of embedded devices.

4.1 Quantification and Qualification

Accurate quantification and qualification of the security posture of existing embedded de-

vices in the wild is crucial to the science of embedded security. However, the collection of

reliable and accurate data is challenging. Nonetheless, several large-scale studies have shed

light on the level of insecurity of existing embedded devices.

4.1.1 Large-Scale Evaluation of Firmware Vulnerabilities

One way to measure the level of vulnerability within embedded devices is to analyze the

firmware content of devices for known vulnerabilities. For example, vulnerabilities found

within common software components within general-purpose computers [20, 95] can some-

times be used to exploit embedded devices that also use such components [10]. A quantita-

tive study [25] scanned 32,356 firmware images for software components containing known

vulnerabilities. The study found that approximately 2.14% of analyzed firmware instances

CHAPTER 4. RELATED WORK 9

contained at least one known vulnerability. [31] presented a similar analysis within a more

specific corpus of firmware instances yielded a vulnerability of over 65%. While vulnera-

bility rate reported by [25] appears to be relatively low, realistic data on the quantitative

distribution of embedded device types is required to deduce the real-world impact of this

study.

4.1.2 Embedded Exploitation in the Wild

The ”Internet Census of 2012” [5] is perhaps the most well-documented example of real-

world, large-scale exploitation of embedded devices. The size and scope of this exploitation

was largely predicted by our quantitative study [36] published several years prior.

This work was done by an anonymous party. The stated purpose of the research was

to map the scale and structure of the Internet. To this end, the author(s) engineered

and deployed a botnet that targeted OpenWRT-based devices. The malware implantation

process involved an internet-wide scan in order to identify vulnerable embedded devices

with well-known default passwords, followed by the injection of malcode binary previously

built for the device’s hardware architecture. The malicious payload was reportedly written

in C and compiled to execute within 9 hardware variants of OpenWRT devices.

This work provided definitive proof that large-scale exploitation of heterogenous bodies

of embedded devices is occurring in the world in several ways. First, the documented

quantifications of this work closely correlates to predictions made by previous work [37].

Second, the authors of this work inadvertently discovered a second botnet already present

on a small population of embedded devices called Aidra [47]. This evidence further proves

that large-scale exploitation of embedded devices has taken place even prior to 2012.

In recent years, numerous attacks once demonstrated by the security community as

hypothetical, or proof-of-concept against embedded systems have been seen in the wild.

For example, evidence [4] suggests that persistent malware implants that reside in Cisco

routers, leveraging the ROMMON region, have been used and recently discovered in real-

world scenarios. The actual malware samples and detailed technical information related to

such attacks are currently being withheld from the general security community. However,

judging from the information released by the device vendor, it is likely that such exploits

CHAPTER 4. RELATED WORK 10

have been predicted and demonstrated by [80] and others for nearly a decade.

4.2 Embedded Exploitation

There exists a large body of work describing the exploitation of embedded devices. While it

is likely that the rate of proliferation of offensive embedded technology outpaces that of de-

fensive embedded technology, relatively few bodies of offensive work have been scientifically

documented. The following list is a representative sample of publicly documented studies

of the exploitation of embedded devices.

1. Medical Devices: [52, 65]

2. Peripherals and COTS components: Network Cards [109], Smart Battery Controller

[86], Keyboard [21]

3. Computer Peripherals: [21, 40, 120]

4. Networking Equipment: [34, 77, 93]

5. Voting Machines: [8]

6. GSM Baseband: [118]

7. Consumer Electronics: Gaming Console: [13]

8. Office appliances: [27, 28, 29, 31]

9. Industrial Control Systems: [50, 90]

10. Financial/Commercial Systems: [64]

11. Cars: [111]

Network Bluepill, also known as ’psyb0t’, is perhaps the most direct evidence of the

feasibility of large scale exploitation of network embedded devices. According to dronebl.org

[42], this home router-based botnet, which principally targets MIPS-based devices running

OpenWRT and DD-WRT, was discovered after dronebl.org became the victim of a DDOS

attack levied by the same botnet. This botnet uses password guessing as the principal attack

vector, contains shell codes for several popular MIPS-based network embedded devices, and

is packed with UPX for binary obfuscation. Once compromised, the router or DSL modem

is used to sniff user credentials, scans for vulnerable network embedded devices as well

CHAPTER 4. RELATED WORK 11

as exploitable phpMySQLAdmin and MySQL installations, and carries out DDOS attacks.

While no detailed analysis of the malicious code was released, it is suspected that the psyb0t

botnet observed in 2008 was merely a proof of concept test of the technology [3], as the

botnet was quickly shutdown by its operators following dronebl.org’s public announcement

of its existence. Evidence suggests that a recent incarnation of psyb0t now contains shellcode

for over 55 different home router models as well as a list of 6,000 usernames and 13,000

passwords [2].

4.2.1 Cisco Router Exploitation

As a demonstrative example, we present the timeline of published offensive works against

Cisco routers.

FX, 2003: FX analyzes several IOS vulnerabilities and various exploitation techniques

[78].

Lynn, 2005: Lynn described several IOS shellcode and exploitation techniques, demon-

strating VTY binding shellcode [85].

Lynn, 2005: Cisco and ISS Inc. files injunction against Michael Lynn [1].

Uppal, 2007: Uppal releases IOS Bind shellcode v1.0 [110].

Davis, 2007: Davis releases IOS FTP server remote exploit code [38].

Muniz: 2008 Muniz releases DIK (Da IOS rootKit) [87].

FX, 2009: FX demonstrates IOS diversity, demonstrates reliable disassembling shellcode

and reliable execution methods involving ROMMON [80].

Muniz and Ortega, 2011: Muniz and Ortega releases GDB support for the Dynamips

IOS emulator, and demonstrates fuzzing attacks against IOS [89].

4.3 Embedded System Defense Technologies

Relatively little work has been done to detect and capture sophisticated attacks against

embedded devices. However, such problems have been well studied for general purpose com-

puters and operating systems. A multitude of rootkit and malware detection and mitigation

mechanisms have been proposed in the past but largely target general purpose computers.

CHAPTER 4. RELATED WORK 12

Sophisticated detection and prevention strategies have been proposed by the research com-

munity. Virtualization-based strategies using hypervisors, VMM’s and memory shadowing

[96] have been applied to kernel-level rootkit detection. Others have proposed detection

strategies using binary analysis [71], function hook monitoring [117] and hardware-assisted

solutions to kernel integrity validation [112].

Numerous rootkit and malware detection, and mitigation mechanisms have been pro-

posed for general purpose computers and operating systems (virtualization-based[96], binary

analysis [71], function hook monitoring [117], etc.). Traditional anomaly detection methods,

such as monitoring sys-call patterns [46] have also been applied to embedded devices [119] .

These strategies may perform well within general purpose computers and well-known

operating systems, but they have not been adapted to operate within the unique characteris-

tics and constraints of embedded device firmware (limited storage, memory and processing;

absence of memory management units; real-time operating systems; etc.). Effective preven-

tion of binary exploitation of embedded devices requires a rethinking of detection strategies

and deployment vehicles.

DynamoRIO [44] is a runtime code manipulation system that supports code transfor-

mations on any part of program. An application launched by DynamoRIO can be analyzed

and manipulated through its API. DynamoRIO is designed for general purpose operating

systems like Windows and Linux on the X86 architecture.

Much work has been done in the area of remote software attestation as a defense against

firmware modification. SWATT: Software-Based Attestation for Embedded Devices, pro-

posed by [101], and SBAP: Software-Based Attestation for Peripherals, proposed by Li et

al.[74], involve the external validation of embedded devices through the use of a challenge-

response protocol. VIPER, proposed by Li et al.[76], can be applied directly to mitigate

a real-world firmware modification attack against keyboards[22]. While promising, timing-

based attestation techniques tend to be vulnerable to hardware over-clocking and time of

check vs time of use (TOCTTOU) attacks. Most importantly, such defense mechanisms

are generally stop-the-world algorithms, requiring a full halt of the system while remote

attestation is in progress. While perhaps adequate for keyboards, it would be difficult to

directly apply such techniques to embedded devices with hard real-time requirements, like

CHAPTER 4. RELATED WORK 13

routers and firewalls, which must deliver uninterrupted availability.

Guards, originally proposed by Chang and Atallah[19], are simple pieces of code that

are injected into the protected software using binary rewriting techniques. Once injected,

a guard can perform tamper-resistance functionality like self-checksumming and software

repair. Guards are localized modifications that monitor control-flow and data-flow integrity

of the immediate predecessors of each modification. Symbiote, on the other hand, takes a

non-localized approach and performs integrity verification checks that are not in-line to the

execution of the host program. In a sense, if Guards can be thought of as inline monitors,

Symbiote can be thought of as orthogonal monitors.

Furthermore, the following bodies of prior work discusses defensive techniques and ap-

proaches that may be applied to some sub-classes of embedded devices:

Software-only binary rewriting-based defenses: [19, 45]

Co-processor and hypervisor-based defenses: [43, 67, 116]

Dynamic binary translation-based defenses: [12, 48, 70]

Static firmware attestation defenses: [14, 75, 76, 99, 100, 101, 106]

Medical device senses and its technical and legislative consequences: [23, 41]

4.4 Software Compaction

A large body of work exists that deals with software optimization and compaction tech-

niques. These techniques largely focus on the reduction of software size and the enhancement

of software efficiency ([39]).

[97] posits that security vulnerabilities are frequently the consequence of unwanted fea-

tures in a software system, which results from overly general (bloated) software, feature

accretion, subsystem reuse and development errors on the part of designers and imple-

mentors and vulnerability insertion on the part of attackers. Rinard also outlined several

potential remedies, including feature replacement or excision, input rectification and dy-

namic modification. Furthermore, [83] proposed techniques to manipulate and shift the

attack surface of computer systems in a game theoretic framework.

CHAPTER 4. RELATED WORK 14

So
u
r
c
e-

c
o
d
e

le
vel

r
an

d
o
m

iz
at

io
n

Sy
st

em
 l

ev
el

r
an

d
o
m

iz
at

io
n

In
st
al
l

Lo
ad

Ex
ec
ut
e

B
in

ar
y

Le
vel

r
an

d
o
m

iz
at

io
n

Eq
ui
v.
 I
ns
tr

Re
gi
st
er

Co
de
 R
eo
rd
er

Ra
nd
 C
od
e
In
je
ct
io
n

[In-place Binary techniques]

Figure 4.1: Spectrum of proposed software diversification techniques

4.5 Defensive Randomization

Randomization techniques have been applied to numerous aspects of software to increase

its resiliency against reliable exploitation of known vulnerabilities. For a comprehensive

systemization of knowledge paper surveying the spectrum of known software diversification

techniques, we refer the reader to [72]

Figure 4.1 shows the general spectrum of randomization techniques. Given the con-

straints of embedded systems, in-place binary-level randomization techniques are the most

promising. However, the space and locality constraints caused by making only localized

in-place modifications limit the effectiveness of such techniques.

If source-code is available, a plethora of randomization techniques can be added to the

compilation process. Such techniques include the randomization of static data layout, heap

and stack randomization as well as instruction-level techniques involving register reassign-

ment, instruction reordering and randomized nop injection [66]. Similar techniques can also

be applied to JIT compilers [54].

When source-code is not available, system-level randomization techniques can be used,

provided that the operating-system can provide support for such techniques. System-level

diversification techniques include Address Space Layout Randomization (ASLR) and In-

struction Set Randomization (ISR). ASLR aims to randomize the in-memory base-address

CHAPTER 4. RELATED WORK 15

layout of code and data at execution time [102]. ISR aims to randomize the encoding of

the op-codes during execution[68].

When source-code is not available and operating-system-level support does not exist,

some in-place instruction-level randomization techniques have been demonstrated to be

feasible by applying standard static analysis on disassembled executable binary. Such

prior works were largely limited to making small localized alterations, such as instruc-

tion re-ordering and register reassignments. Prior work has demonstrated the feasibility

of randomization techniques such as randomized nop-instruction injection[66], randomized

instruction reordering and register reassignment[92]. While this is effective against code

reuse techniques like ROP, much of the the binary structure of the diversified binary re-

mains unchanged. As a result, targeted patching of known memory-locations can still have

reliable effect. The Cisco IOS attack presented in Section 7.1 is a good demonstration of

why instruction-level diversification alone is insufficient to prevent reliable exploitation.

[49] and others have proposed the injection of functionality preserving instructions into

software as a defensive technique against reliable shellcode execution.

CHAPTER 5. PROBLEM DESCRIPTION 16

Chapter 5

Problem Description

5.1 Real-world quantification of embedded system vulnera-

bility and exploitability

While embedded systems are anecdotally believed to be vulnerable to attack, empirical

data to support this belief is lacking. Large-scale survey of existing embedded devices for

vulnerabilities and exploitability is needed to quantify the state of embedded insecurity in

real-world environments. Large scale analysis of embedded firmware images for vulnerabil-

ities is needed to quantify and qualify the exploitability of bugs within embedded device

software. This is currently difficult because the unpacking of firmware binaries of unknown

formats have not been automated, making large-scale analysis of embedded firmware labor

intensive and error-prone.

5.2 Generalized firmware analysis and modification

The proprietary and non-standard nature of embedded device firmware makes the analy-

sis a largely manual and labor intensive process. Furthermore, making modifications to

embedded device firmware for the purpose of testing on actual embedded hardware poses

numerous challenges. For example, the modified binary must be re-packed into the vendors

proprietary format before the new embedded firmware can be loaded onto the intended

device. In order to overcome these challenges, embedded security researchers must spend a

CHAPTER 5. PROBLEM DESCRIPTION 17

large amount of time to painstakingly reverse-engineer proprietary compression, encryption,

integrity-checking and signature verification algorithms before any actual security analysis

can be done. Software integrity features such as trusted boot and firmware signing can even

hinder the development, testing and deployment of host-based security features in physical

embedded devices.

5.3 Generalized software environment agnostic defense

Commercially viable embedded device fortification technology does not currently exist.

While third-party end-point protection software exists for general-purpose computers, no

host-based solution exists which allows the operators of embedded devices to defend these

devices against exploitation. Furthermore, no solution exists which will alert the opera-

tors when these devices have become compromised. For example, Cisco IP phones and

HP printers are ubiquitous fixtures within the modern office environment. Serious security

vulnerabilities have been found in these devices. The currently accepted practice in the op-

erational embedded security field is to rely entirely on the device vendor to identify and fix

vulnerabilities. The operators of embedded devices have no real method of protecting these

devices against exploitation or to audit these devices to ensure that they have not been

compromised. Bringing effective host-based security into embedded systems is challenging

for at least the two reasons.

The manufacturer problem: Embedded systems are typically not designed with security

as a significant focus. Vendors of embedded systems typically do not have sufficient

expertise to engineer secure devices. Furthermore, when security flaws are identified,

vendors will typically attempt to fix the immediate issue to the best of their ability.

Since their security expertise is limited, these fixes take a significant amount of time to

reach their customers; they are likely to be stop-gap fixes that do not address the root

cause of the vulnerability and may even introduce additional bugs and vulnerabilities

into their product.

The operator problem: No existing technology allows the operator of embedded devices

to fortify these devices according to their own internal policy. Furthermore, no com-

CHAPTER 5. PROBLEM DESCRIPTION 18

mercially available technology allows the operator to audit embedded devices to en-

sure that the software running in each device has not been altered or compromised.

While enterprise security professionals have the expertise and ability to lock down and

harden embedded systems according to their own internal environment and security

policy, the necessary technology and tools that can make the application of security

expertise possible do not exist.

In order for an embedded defense technology to be viable, it must be able to defend

a diverse set of proprietary software running within unknown software environment on

diverse types of resource-constrained black-box hardware. For a defense to be practical and

economical, it needs to perform its defensive functions without requiring source code or

intellectual property from the vendor. It must not require major rewrite of the software

and it cannot require any modification of existing hardware.

In other words, what is required is a software environment agnostic structure that can

be injected into embedded device firmware of unknown design at the binary level. Such a

defense must be able to execute properly and safely on a wide range of software environments

and hardware platforms using only existing commodity hardware capabilities. It must also

operate in a way that does not significantly impact the real-time responsiveness of the

protected device and in a way that does not impact existing functionality in a negative way.

The two host-based defensive techniques presented in this thesis, Symbiote and Auto-

tomic Binary Structure Randomization, are designed to satisfy the above requirements in

an automated fashion.

19

Part II

The Embedded Threatscape

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 20

Chapter 6

Quantitative Assessment of

Real-World Embedded

Vulnerability

6.1 Real-world quantification of embedded device vulnera-

bility

We seek to quantify and trend the level of insecurity of embedded devices currently in the

wild. To this end, we first establish an observed lower bound on the number of trivially

vulnerable embedded devices on the Internet. We do this by assuming the role of the least

sophisticated malicious attacker, who only tries to log into publicly reachable embedded

devices using well known default root credentials. The default credential scanner, which

we we developed using standard tools such as nmap, positively identified over 540,000

wide open embedded devices.

Vulnerable devices were detected in 144 countries, in enterprise, ISP, government,

educational, satellite provider as well as residential network environments1. We discov-

ered vulnerable devices across a diverse spectrum of product types, including consumer

appliances, home networking devices, office appliances, enterprise and carrier networking

1US Military networks are intentionally excluded from our scan.

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 21

Total IPs Scanned Devices Targeted Vulnerable Devices Found Overall Vulnerability Rate

3,223,358,720 3,954,620 540,435 13.67%

Table 6.1: Scale and Result of the Latest Global Default Credential Scan.

equipment, data-center power management devices, network security appliances, server

lights-out-management controllers, IP camera surveillance systems, VoIP devices, video

conferencing appliances, ISP issued modems, and set-top boxes.

Figure 6.1: Distribution of Vulnerable Embedded Devices in IPv4 Space. Total Number of

Vulnerable Devices Found: 540,435.

While the observed quantity and distribution of embedded devices configured with de-

fault root passwords demonstrate a global, pervasive phenomenon, we believe the data

presented in this chapter represent a conservative lower bound on the actual population of

vulnerable devices in the wild.

We present the first quantitative measurement of embedded device insecurity on a global

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 22

scale, along with preliminary results from an ongoing longitudinal study of the same subject.

By assuming the role of the least sophisticated attacker, we present an observed lower

bound on the distribution of trivially exploitable network embedded devices over functional

(Section 6.2.1), spatial (Section 6.2.2), organizational (Section 6.2.3), and temporal (Section

6.2.5) domains.

The embedded device default credential scanner created for this experiment is designed

to identify efficiently and safely the vulnerable embedded devices on the network. It does

this by testing whether one can remotely log into a device using well known default root

credentials. The verification process is designed to use minimal resources on the target em-

bedded device. The scanner currently supports 73 unique embedded device types including

consumer appliances, home networking devices, office appliances, enterprise and carrier net-

working equipment, data-center power management devices, network security appliances,

server lights-out-management controllers, IP camera surveillance systems, VoIP devices,

video conferencing appliances , ISP issued modems and set-top boxes.

While the embedded security threat has been generally known for some time, the data

presented in this chapter provides a real-world quantitative assessment of the scale and scope

of the embedded threat on a global level. Analysis of our results yields several interesting

features within the observed vulnerability distributions. The features presented in Section

6.2 presents insights into the root causes of the existence of vulnerable embedded devices.

By combining the observed vulnerability distributions and its potential root causes, we

formulate a set of mitigation strategies and hypothesize about its quantitative impact on

reducing the global vulnerable device population.

Many forces will undoubtably change the observable lower bound of embedded device

insecurity as time goes on. For example, the out-of-the-box security of new embedded

products may change. Network operators controlling large homogeneous sets of devices

may improve their security, as may small and medium size organizations like private enter-

prises and educational organizations. The level of malicious exploitation will also indirectly

contribute to the overall effort dedicated to improving embedded device security. Lastly, it

is our hope that the data and mitigation strategies reported in this chapter will generate

more awareness of this pervasive threat. In order to quantify the scope of the embedded

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 23

device insecurity threat over time and detect such forces at work, we plan to continue our

scanning activities to conduct an ongoing longitudinal study over the next year. Section

6.2.5 discusses the preliminary results of our longitudinal study over the past four months.

The default credential scanner is designed to quickly sweep large portions of the Internet.

Each scan takes approximately four weeks and involves two or three sweeps of the entire

monitored IP space.

Multiple sweeps across the same IP space is desirable for two reasons. First, embedded

devices on residential networks have unpredictable availability. Therefore, multiple sweeps

increase the scanner’s probability of observing a vulnerable device when it is connected to

the network. Second, multiple sweeps across the same address space over months and years

allow us to conduct a longitudinal study on the vulnerability rates of embedded devices

around the world.

In Section 6.2, we present the results of our latest scan, containing over 540,000 ob-

served vulnerable devices as well as the analysis of preliminary data gathered by tracking

approximately 102,000 vulnerable embedded devices over a span of four months. This is an

ongoing study, and we plan to publish the results of a detailed longitudinal study over the

next year when the data becomes available.

For the sake of establishing a lower bound on the state of embedded device insecurity

in the wild, we assume the role of the least sophisticated malicious attacker. The attacker

has unrestricted access to the Internet but is unable to exploit any vulnerabilities found on

any devices. Instead, the attacker has access to the network scanner nmap and a list of well

known factory default root credentials for popular network embedded devices.

For the remainder of the chapter, we define a vulnerable device as any device that is

reachable on the Internet and allows the attacker to gain root privileges by using factory

default credentials.

The default credential scan process is straightforward and can be broken down into three

sequential phases: recognizance, identification, and verification.

Recognizance: First, nmap is used to scan large portions of the Internet for open TCP

ports 23 and 80. The results of scan is stored in a SQL database.

Identification: Next, the device identification process connects to all listening Telnet and

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 24

HTTP servers to retrieve the initial output of these servers2. The server output is

stored in a SQL database then matched against a list of signatures to identify the

manufacturer and model of the device in question.

Verification: Once the manufacturer and model of the device are positively identified, the

verification phase uses an automated script to attempt to log into devices found in

the identification phase. This script uses only well known default root credentials for

the specific device model and does not engage in any form of brute force password

guessing. We create a unique device verification profile for each type of embedded

device we monitor. This profile contains all information necessary for the verification

script to automatically negotiate the authentication process, using either the device’s

Telnet or HTTP administrative interface. Each device verification profile contains

information like the username and password prompt signatures, default credentials

as well as authentication success and failure conditions for the particular embedded

device type. Once the success or failure of the default credential is verified, the TCP

session is terminated, and the results are written to an encrypted flash drive for off-line

analysis.

6.1.0.1 Malicious Potential of Embedded Device Exploitation

The heterogeneous nature of embedded administrative interfaces makes orchestrating large

DDOS attacks using embedded devices a logistic challenge. Vulnerable embedded devices

clearly exist in large numbers in the wild. However, it is often believed that embedded

operating systems are too diverse, and capturing the long tail of this diversity is required to

carry out large scale exploitation. Data gathered by our default credential scanner reveal

that many large vulnerable homogenous device groups exist in the wild. In fact, the top 3

most vulnerable device types represent over 55% of all vulnerable devices discovered by our

latest scan. In other words, there exists at least 300,000 vulnerable embedded devices that

can be controlled via 3 similar Telnet-based administrative interfaces. Figure 6.1.0.1 shows

the distribution of the top 12 most frequently encountered vulnerable embedded device

types.

2In case of HTTP, we issue the ’get /’ request

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 25

Figure 6.2: Distribution of Vulnerable Devices Across Unique Device Types. The Top 3

Device Types Constitute 55% of the Entire Vulnerable Device Population.

6.1.0.2 VoIP Appliance Exploitation

VoIP adapters like the Linksys PAP2, Linksys SPA and Sipura SPA are consumer ap-

pliances, which provide a gateway between standard analog telephones and VoIP service

providers. In many cases, the publicly accessible HTTP interface of such devices will display

diagnostic information without requiring any user authentication. This information usually

includes the name of the customer, their phone number(s), a log of incoming and outgoing

calls, and relevant information regarding the SIP gateway to which the device is config-

ured to connect. Once authenticated as the administrative user, an attacker can usually

retrieve the customer’s SIP credentials, either by exploiting trivial HTTP vulnerabilities3

or redirecting the victim to a malicious SIP server.

6.1.0.3 Data Leakage via Office Appliance Exploitation

Enterprise printers servers and digital document stations are ubiquitous in most work envi-

ronments. According to our data, network printers also constitute one of the most vulnera-

ble types of embedded devices. For example, our default credential scanner identified over

3Credentials are sometimes displayed in clear-text within HTML password fields. While this appears to

hide the passwords in the web browser, it does not hide it in the HTML source.

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 26

44,000 vulnerable HP JetDirect Print Servers in 2,505 unique organizations worldwide.

Since high-end print servers and document stations often have the capability of digitally

caching the documents it processes, we posit that an attacker can use such devices not only

to monitor the flow of internal documents but also to exfiltrate them as well.

6.1.0.4 Enterprise Credential Leakage via Accidental Misconfiguration

It is a common practice for organizations that operate large homogenous collections of

networking equipment to apply the same set of administrative credentials to all managed

devices. While this significantly reduces the complexity and cost of managing a large net-

work, it also puts the network at risk of total compromise. Using a single master root

password for all networking devices is safe so long as every device is correctly configured

at all times, and the master password is not leaked. If an enterprise networking device

is brought online with both factory default credentials, as well as the master credentials

of the organization, an attacker can easily obtain the master root password for the entire

network. While this event is unlikely, the probability of such a misconfiguration quickly

increases with the size and complexity of the organization, specially when human error is

taken into account. We have not verified that such an attack is feasible; however, our data

indicate that enterprise networking devices residing within large homogenous environments

have been misconfigured with default root credentials.

6.2 Analysis of Results

In this section we present latest data gathered by our default credential scanner and prelimi-

nary results from our ongoing longitudinal study, tracking approximately 102,000 vulnerable

devices over a span of four months. We also present statistics on the level of human and or-

ganizational responses received by the University regarding our scanning activities. Figure

6.3 shows a heat map of embedded device vulnerability rates across monitored countries.

Section 6.2.1 shows the breakdown of vulnerable embedded devices across 9 functional

categories: Enterprise Devices, VoIP Devices, Home Networking Devices, Camera/Surveil-

lance, Office Appliances, Power Management Controllers, Vendor Issued Equipment, Video

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 27

Figure 6.3: Embedded Device Vulnerability Rates of Monitored Countries (Threshold =

2%).

Conferencing Units, and Home Brew Devices. Section 6.2.2 shows the breakdown of vul-

nerable embedded devices across 6 continents. Section 6.2.3 shows the breakdown of vul-

nerable devices across 5 types of organizations: Educational, ISP, Private Enterprise,

Government, and Unidentified.

6.2.1 Breakdown of Vulnerable Devices by Functional Categories

Figure 6.4: Discovered Candidate Devices (Left) and Vulnerable Devices (Right) by Functional

Category.

We organized 73 unique embedded device types monitored by our scan into 9 functional

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 28

Enterprise Devices VoIP Devices Home Networking

Vul. Rate 2.03% 15.34% 7.70%

Total Devices 1,689,245 104,827 445,147

Camera / Surveillance Office Appliances Power Management

Vul. Rate 39.72% 41.19% 7.23%

Total Devices 5,080 132,991 7,429

Vendor Issued Equipment Video Conferencing Home Brew

Vul. Rate 27.02% 55.44% 4.93%

Total Devices 1,362,347 43,349 122,159

Table 6.2: Vulnerability Rate by Device Category.

Africa Asia Europe North America South America Oceania

Vul. Rate 5.36% 21.69% 4.76% 4.12% 0.37% 17.98%

Total Devices 19,363 1,731,089 450,019 1,335,575 402,163 85,941

Table 6.3: Total Discovered Candidate Embedded Devices and Corresponding Vulnerability

Rates By Geographical Location (Continental).

categories. Appendix A.1 contains the details of this categorization. Figure 6.2.1 shows the

distribution of all discovered candidate embedded devices (left) and the distribution of vul-

nerable embedded devices (right) across the different functional categories. Table 6.2 shows

the total number candidate embedded devices discovered within each functional category

as well as their corresponding vulnerability rate.

• While Vendor Issued Equipment accounts for only 35% of all discovered candidate

embedded devices, it represents 68% of all vulnerable embedded devices.

• While Enterprise Networking Equipment accounts for 43% of all discovered can-

didate embedded devices, it only represents 6% of all vulnerable embedded devices.

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 29

Figure 6.5: Discovered Candidate Devices (Left) and Vulnerable Devices (Right) By Geographical

Distribution.

6.2.2 Breakdown of Vulnerable Devices by Geographical Location

Using the MaxMind GeoIP database, we categorized all discovered candidate and vulner-

able embedded devices according to the continent in which they are located. Figure 6.2.2

shows the distribution of all discovered embedded devices (left) and the distribution of vul-

nerable embedded devices (right) across 6 continents. Table 6.2.2 shows the total number

of candidate embedded devices as well as the corresponding vulnerability rate within each

continent.

• Asia represents the continent with the most number of candidate embedded devices

and contains over 70% of all discovered vulnerable embedded devices.

• South Korea contains the most number vulnerable embedded devices out of all

monitored nations.

• While 34% of all discovered candidate embedded devices reside within North Amer-

ica, only 10% of all vulnerable embedded devices are found there.

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 30

Educational ISP Private Enterprise Government Unidentified

Vulnerability Rate 32.83% 17.43% 16.40% 10.38% 2.54%

Total Devices 156,992 2,095,292 554,101 44,460 1,103,775

Unique Organizations 1371 2374 4070 494 9118

Table 6.4: Vulnerability Rate By Organization Type.

6.2.3 Breakdown of Vulnerable Devices by Organizational Categories

Figure 6.6: Discovered Candidate Devices (Left) and Vulnerable Devices (Right) by By Organiza-

tion Type.

Using the MaxMind GeoIP Organization database, we categorized all monitored net-

work ranges into 17,427 individual organizations. This was then divided into 4 general

organization types: Educational, Internet Service Provider (ISP), Private Enterprise, and

Government. 9118 organizations could not be accurately classified and were left in Uniden-

tified category. Figure 6.2.3 shows the distribution of all discovered embedded devices

(left) and the distribution of vulnerable embedded devices (right) across the 5 organization

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 31

types. Table 6.2.3 shows the total number of candidate embedded devices as well as the

corresponding vulnerability rate within each organization type.

• ISP networks contain the most number of candidate embedded devices and house

over 68% of all discovered vulnerable embedded devices.

• While Educational networks contain only a modest number of candidate embedded

devices, they have the highest per category vulnerability rate of 32.83%

Figure 6.7: Daily Page Access Analytics For Scan Project Information Page [url

anonymized]. Oct 19, 2009 - April 12, 2010.

6.2.4 Community Response to Default Credential Scanner Activity

The default credential scanner is designed to direct interested parties to a public webpage

which describes the intent and methodology of our project4. Each IP address used by

the scanner also hosts a public HTTP server which redirects visitors to the public project

webpage. We tracked access to this webpage using Google Analytics as a way to gauge the

global community’s awareness of our scanning activities. Figure 6.7 shows the number and

geographical distribution of visitors over the past six months. The initial spike of visitors

in October 2009 coincided with the publication of an article regarding preliminary results

of our project. Since then, our continuous scanning activity attracted 87 visitors over the

last 5 months.

4http://hacktory.cs.columbia.edu

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 32

Total Conversations Opt-Out Requests Request for Information, but Not Opt-Out

36 14 22

Tone of Counter-Party

Supportive Neutral Hostile

14 15 7

Table 6.5: Email Correspondences Received from Network Operators Regarding Scanning

Activity.

Devices Tracked Currently Online Tracked, Currently Vulnerable

102,896 54,429 52,661

Table 6.6: Preliminary Longitudinal Study Tracking 102,896 Vulnerable Devices Over 4

Months.

Table 6.5 shows a breakdown of all communications between the operators of the net-

works monitored by our scanner and our research team. The conversations were all initiated

by the counter-party via email, usually requesting further information or to be excluded

from the scan. We answered 36 conversations in total, 14 of which requested certain IP

ranges to be permanently excluded. 1,798 /24 networks were excluded as a result of these

requests. 61% of all interested parties that detected our scanning activity decided to allow

the scan to continue. The geographical location of the counter-parties correlates closely to

the heat map in Figure 6.7. We did not receive any correspondence from ISP organizations

or organizations from Asia, even though the majority of vulnerable devices were discovered

within such IP ranges.

6.2.5 Preliminary Longitudinal Results

Table 6.6 shows the preliminary results of our longitudinal study. We retested 102,896

vulnerable embedded devices discovered at the end of December, 2009. As of April 20,

2010, 54,429 of the retested devices are still publicly accessible; out of which 52,661 devices

remain vulnerable.

In other words, approximately 96.75% of accessible vulnerable devices are still vulner-

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 33

able after a 4 month period, and factory default credentials have been removed from only

3.25% of the same set of devices.

6.3 Remediation Strategy

The least sophisticated attacker modeled in this experiment can be defeated by simply

discontinuing the use of well-known default credentials on embedded devices. However,

the overall cost of implementing this naive mitigation strategy will likely be quite high in

reality. In the unlikely event that all embedded device manufacturers universally agree to

discontinue the use of well-known default passwords henceforth, we are still faced with the

challenge of retroactively fixing the vulnerable legacy embedded devices in use throughout

the world today. Therefore, it is reasonable to assume that the embedded security threat

will likely persist and grow endemically for the near future. In order to effectively reduce the

total population of vulnerable embedded devices in the wild, we must carefully consider the

best methods for securing existing legacy devices. Since existing devices are by definition

under the administrative control of some individual or organization, successful mitigation

strategies must actively engage these network operators in order to fix the problem.

According to the data presented in Section 6.2, a few groups of network operators

contribute disproportionally large numbers of vulnerable embedded devices to the global

population. For example, we discovered over 300,000 vulnerable embedded devices operating

in homogenous environments within two ISP networks in Asia. Overall, embedded devices

operated by residential ISPs constitute over 68% of the entire vulnerable population. Since

ISPs centrally manage large numbers of vulnerable embedded devices, they are the ideal

candidates to engage to mitigate the embedded security threat.

6.4 Ethical Considerations of Such Studies

The scientific value of accurate, large-scale quantification of emerging threats in cyber-

security is self-evident. In order to devise effective defenses against emerging security

threats, such as the one presented in this section, one must first have an accurate un-

derstanding of the nature, scale and scope of the underlying causes of the problem. The

CHAPTER 6. QUANTITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 34

collection of such data raises numerous questions about how the security community should

conduct such studies in a way that is both ethnical and legal.

For a more in-depth discussion of such matters, we refer the reader to [84].

6.5 Concluding Remarks

We presented the first quantitative measurement of embedded device insecurity on a global

scale as well as a preliminary longitudinal study tracking vulnerable embedded devices over

a 4 month period. We developed an embedded device default credential scanner capable of

efficiently and safely identifying vulnerable embedded devices on the network. The scan-

ner does this by testing whether one can remotely log into a device using its well-known

manufacturer supplied default credentials. Using this scanner, which currently monitors 73

common embedded device types, we identify over 540,000 publicly accessible vulnerable

devices in 144 countries. Vulnerable embedded devices were discovered in 17,427 unique or-

ganizations on 6 continents including government, ISP, private enterprise, educational and

satellite provider networks. Preliminary results from our longitudinal study that tracked

102,896 vulnerable devices discovered in December 2009. Out of the 54,429 devices currently

online from the original population, 96.75% such devices still remain vulnerable today. By

breaking down the observed vulnerable embedded device population across functional, geo-

graphical and organizational categories, we were able to identify key groups that contribute

a disproportionately large number of vulnerable devices to the global population. Lastly,

using observations derived from the presented data, we proposed a set of realistic mitigation

strategies to effectively reduce the total population of vulnerable embedded devices. This

study demonstrates that there is a very large population of trivially vulnerable embedded

devices available for exploitation by the least sophisticated adversary. We posit that the

size of this vulnerable population can be significantly increased by escalating the level of

sophistication of the assumed attacker. Since no widely available host-based defenses exist,

vulnerable embedded devices constitute a serious and pervasive security problem.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 35

Chapter 7

Qualitative Assessment of

Real-World Embedded

Vulnerability

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 36

7.1 Case-Study: Reliable Cisco IOS Exploitation

Over the past decade, Cisco IOS has been shown to be vulnerable to the same types of

attacks that plague general purpose computers [78, 85]. Various exploitation techniques

and proof-of-concept rootkits [80, 88] have been proposed. However, all current offensive

techniques are impeded by an unintended security feature of IOS: diversity. As Felix “FX”

Linder points out, Cisco IOS is not a homogenous collection of binaries, but a collection of

approximately 300,000 diverse firmwares [80]. Although never intended as a defense against

exploitation, this diversity makes the creation of reliable exploits and rootkits difficult.

Known proof-of-concept rootkits operate by patching specific locations within IOS. In

the case of DIK [88], the rootkit intercepted a specific function responsible for checking

password. The major drawback of this approach is that it relies on a priori knowledge of

the location of this function. As previously noted, this knowledge is generally difficult to

obtain with accuracy prior to attack. Therefore, any rootkit that depends on specific mem-

ory locations cannot be used reliably in large-scale attacks against the Internet substrate.

Conversely, version-agnostic shellcode, combined with known vulnerabilities in IOS, makes

such large-scale attacks against Cisco routers a feasible reality.

Cisco IOS firmware diversity, the unintended consequence of a complex firmware com-

pilation process, has historically made reliable exploitation of Cisco routers difficult. With

over 300,000 unique IOS images in existence, a new class of version-agnostic shellcode is

needed in order to make the large-scale exploitation of Cisco IOS possible. We show that

such attacks are now feasible by demonstrating two different reliable shellcodes that will

operate correctly over many Cisco hardware platforms and all known IOS versions. We

propose a novel two-phase attack strategy against Cisco routers and the use of offline anal-

ysis of existing IOS images to defeat IOS firmware diversity. Furthermore, we discuss a

new IOS rootkit that hijacks all interrupt service routines within the router and its ability

to use intercept and modify process-switched packets just before they are scheduled for

transmission. This ability allows the attacker to use the payload of innocuous packets, like

ICMP, as a covert command and control channel. The same mechanism can be used to

stealthily exfiltrate data out of the router, using response packets generated by the router

itself as the vehicle. We present the implementation and quantitative reliability measure-

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 37

ments by testing both shellcode algorithms against a large collection of IOS images. As our

experimental results show, the techniques proposed in this chapter can reliably inject com-

mand and control capabilities into arbitrary IOS images in a version-agnostic manner. We

believe that the technique presented in this chapter overcomes an important hurdle in the

large-scale, reliable rootkit execution within Cisco IOS. Thus, effective host-based defense

for such routers is imperative for maintaining the integrity of our global communication

infrastructures.

For reliable, large-scale payload execution in IOS to be feasible, we must construct

attacks and shellcodes that are version and platform agnostic. Towards this end, we outline

a two-stage attack methodology as follows:

Stage 1: Leverage some IOS invariant to compute a host fingerprint. Using computed

information, inject stage-2 shellcode. Furthermore, exfiltrate host fingerprint back to

attacker.

Stage 2: Persistent rootkit with covert command and control capability. The attacker will

use exfiltrated fingerprint data to construct a version specific rootkit, which is loaded

via the second-stage shellcode.

The attacker is at a disadvantage when attempting an online attack. However, since all

IOS images can be obtained, and since such images are not polymorphically mutated, an

attacker can construct a large collection of version specific rootkits offline. If the attacker

is able to simultaneously inject a simple rootkit and exfiltrate a host-environment finger-

print during the first phase of the attack, the attacker can then load a rootkit specifically

parameterized for the exact IOS version of the victim router. Figure 7.1 shows the timeline

of our proposed attack, which is intentionally broken into two phases to shift the advantage

towards the attacker.

The two requirements of our first-stage shellcode, the need to reliably inject a basic

second-stage rootkit and the need to accurately fingerprint the victim device, can be satisfied

simultaneously. Both shellcodes presented in this chapter compute a set of critical memory

locations within IOS’s .text section. These memory addresses are used both as intercept

points for our second-stage code, but also used to uniquely identify the exact micro-version

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 38

Attacker

Victim

IOS Device

IOS Database

Phase 1.a

Phase 1.b

Phase 2.a
Phase 2.b

Figure 7.1: Timeline of two-stage attack against vulnerable IOS router of unknown hardware

platform and firmware version. Attacker launches exploit with reliable shellcode (1.a).

Shellcode installs rootkit and exfiltrates victim device’s IOS fingerprint (1.b). The attacker

finds exact IOS version from fingerprint by consulting offline database (2.a). The attacker

then creates a version specific rootkit for victim and uploads it using 1.b rootkit (2.b).

of the victim’s firmware. As figure 7.1 shows, this fingerprint data is exfiltrated back to

the attacker and compared to a database of pre-computed fingerprints for all known IOS

firmwares. As Section 7.1.7 shows, the fingerprints can be computed using simple linear-

time algorithms and efficiently stored in a database. Pre-computing such fingerprints for

all 300,000 IOS images should not take more than a few days on a typical desktop.

We present two different techniques for implementing this two-stage attack. The dis-

assembling shellcode is discussed in Section 7.1.4. A novel interrupt hijack shellcode is

discussed in Section 7.1.5. A stealthy exfiltration technique that modifies process-switched

packets just before it is scheduled for transmission is discussed in Section 7.1.6. The in-

tercept hijacking shellcode and the exfiltration mechanism built on top of it has several

interesting advantages over existing rootkit techniques. First, the command and control

protocol is built into the payload of incoming packets. No specific protocol is required, as

long as the packet is punted to the router’s control-plane. This allows the attacker to access

the backdoor using a wide gamut of packet types, thus evading network-based intrusion

detection systems. Hiding the rootkit inside interrupt handlers also allows it to execute

forever without violating any watchdog timers. Furthermore, the CPU overhead of this

shellcode will be distributed across a large number of random IOS processes. Unlike with

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 39

shellcodes that take over a specific process, the network administrator can not detect un-

usual CPU spikes within any particular process using commands like show proc cpu, making

it very difficult to detect by conventional means.

The remainder of this chapter is organized as follows: Section 7.1.1 outlines the chal-

lenges of reliable IOS rootkit execution and provides motivation for the need for version-

agnostic shellcodes. Section 7.1.2 presents a survey of advancements in Cisco IOS ex-

ploitation over the past decade and provides a timeline of public disclosures of significant

vulnerabilities and exploitation techniques. Section 7.1.3 outlines a general two-stage at-

tack strategy against unknown Cisco devices. Section 7.1.4 presents our first reliable IOS

shellcode, a disassembling shellcode, which was first proposed by Felix Linder for PowerPC

based Cisco devices. Section 7.1.5 presents our second reliable IOS shellcode. This shell-

code hijacks all interrupt handler routines within the victim device and is faster, stealthier,

and more reliable than our first shellcode. Experimental data, performance, overhead, and

reliability measurements are presented in Section 7.1.7. Potential defenses against our pro-

posed shellcodes are discussed in Section III. Concluding remarks are presented in Section

8.6. Lastly, the full source code of both shellcodes are listed in Appendix A.

Please note that the remainder of this chapter will focus on MIPS-based Cisco IOS. All

code examples will be shown in MIPS. However, the techniques presented can be applied

to PowerPC, ARM and even x86-based systems.

7.1.1 Motivation

Consider the availability of proof-of-concept exploits and rootkits, the wide gamut of high-

value targets that can be compromised by the exploitation of devices like routers and fire-

walls, and the lack of host-based defenses within close-source embedded device firmwares.

Such conditions should make the vast numbers of vulnerable embedded devices on the In-

ternet highly attractive targets. Indeed, we have observed successful attempts to create

botnets using Linux-based home routers [42]. As Section 7.1.2 shows, the necessary tech-

niques of exploiting Cisco IOS and installing root-kits on running Cisco routers are well

understood. However, an obstacle still stands in the way of reliable large-scale exploitation

of Cisco devices: firmware diversity.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 40

As Felix Linder and others have pointed out [80], there are over 300,000 unique versions

of Cisco IOS. Diverse hardware platforms, overlapping feature-sets, cryptography export

laws, licensing agreements and varying compilation and build procedures all contribute to

create an operating environment that is highly diverse. Although unintentional and not

strictly a defense mechanism, this firmware diversity has made the deployment of reliable

attacks and shellcodes difficult in practice. Therefore, in order for IOS exploitation to be

feasible and practical, reliable shellcode that operate correctly across large populations of

IOS versions is needed.

As Lindner [80] demonstrates, certain common features within Cisco routers can be

used to improve the chances of reliable execution of IOS shellcode. The disassembling

shellcode concept was proposed in the same work. Building off this insight, we first tested

the reliability of the proposed disassembling shellcode. While this technique works smoothly

across all versions of IOS for several major hardware platforms, it failed on all versions of

IOS for several popular platforms, including the Cisco 2800 series routers. Furthermore,

its computational complexity frequently triggered watchdog timer exceptions, which logs a

clear trace of the shellcode. Section 7.1.4 discusses the reason for this failure and several

other drawbacks of this disassembling approach.

Looking to improve reliability and performance, we constructed a different shellcode by

leveraging a common invariant of not only Cisco IOS, but all embedded systems, interrupt

handler routines. Hijacking interrupt handlers is advantageous for several reasons. First,

such routines can be identified by a single 32-bit instruction, eret, or exception return.

The search for a single eret instruction reduces the computational complexity of the first-

stage shellcode. Whereas the disassembling shellcode frequently causes watchdog timer

exceptions on busy routers (See Section 7.1.4), the interrupt-handler hijacking first-stage

shellcode executes quickly enough to avoid such timer exceptions, even on heavily utilized

routers. Second, there are approximately two dozen interrupt handler routines on any IOS

image, all of which are clustered around a common memory range. By using offline analysis

of large numbers of IOS images, we can safely reduce the memory range searched by the

first-stage shellcode to a small fraction of IOS’s .text section, further improving the efficiency

of the shellcode (See Figures 7.8 and 7.9).

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 41

As our experimental data shows, the two proposed shellcodes, along with our proposed

data exfiltration mechanism presented in Section 7.1.6, combined with available vulnerabili-

ties of Cisco IOS makes the large-scale of Cisco routers feasible. Weaponizing the techniques

presented in this chapter to create worms that target routers is possible and can seriously

damage the Internet substrate. Therefore, the development of advanced host-based defense

mechanisms to mitigate such techniques should now be considered a necessity. Section III

discuss potential host-based defenses for Cisco IOS and other similar embedded devices.

7.1.2 Cisco Exploitation Timeline

A timeline of significant advancements in offensive technologies against Cisco IOS is listed

below.

FX, 2003: FX analyzes several IOS vulnerabilities and various exploitation techniques

[78].

Lynn, 2005: Lynn described several IOS shellcode and exploitation techniques, demon-

strating VTY binding shellcode [85].

Lynn, 2005: Cisco and ISS Inc. files injunction against Michael Lynn [1].

Uppal, 2007: Uppal releases IOS Bind shellcode v1.0 [110].

Davis, 2007: Davis releases IOS FTP server remote exploit code [38].

Muniz: 2008 Muniz releases DIK (Da IOS rootKit) [88].

FX, 2009: FX demonstrates IOS diversity, demonstrates reliable disassembling shellcode

and reliable execution methods involving ROMMON [80].

Muniz and Ortega, 2011: Muniz and Ortega releases GDB support for the Dynamips

IOS emulator, and demonstrates fuzzing attacks against IOS [89].

The techniques presented in this chapter extend the above line of work by introducing

novel methods of constructing reliable IOS shellcodes and stealthy exfiltration, making

large-scale exploitation feasible across all IOS-based devices.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 42

7.1.3 Two-Stage Shellcode Execution Strategy

Sections 7.1.4 and 7.1.5 discusses two reliable shellcode techniques. Unlike existing IOS

shellcodes, these two examples are designed to work in a two-phase attack. Figure 7.1

illustrates the attack process. In general, this attack first computes a series of memory

locations that the second-stage shellcode will intercept to obtain minimal rootkit capability.

This series of memory locations is also exfiltrated back to the attacker after the first-stage

rootkit finishes execution. Using this information as a host fingerprint, the attacker queries

a database of pre-computed fingerprints for all known IOS images to determine the exact

micro-version of firmware running on the victim router. Once this is known, a version

specific rootkit can be constructed automatically, then loaded onto the victim router via

the rootkit installed by the first-stage shellcode.

Each shellcode computes a different set of features. In the case of the disassembling

shellcode, a 2-tuple is computed: the address of an invariant string and the address of

the password authentication function. In the case of the interrupt hijacking shellcode, a

n-tuple is exfiltrated, containing a list of memory address for all interrupt handler routines

on the victim device. Section 7.1.7 will discuss how accurately each feature-set can uniquely

identify the micro-version of the victim IOS environment.

7.1.4 Cisco IOS DISASM Shellcode

First proposed by Felix Linder [80] for PowerPC-based routers, the disassembling shellcode

scans the victim router’s memory twice in order to locate and patch a target function based

on some functional invariant, and works as follows:

A. Find String Addr: Scan through memory, looking for a specific string pattern. For

example, ‘%Bad Secrets’.

B. Find String-Xref: With the string’s memory location known, construct the instruc-

tion that loads this address. Rescan through memory, looking for code that references

this string.

C. Patch Function: The data reference is located within the function we wish to find.

Search within this function for the desired intercept point. For example, the function

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 43

.text .data

f_
ch
kp
sw
d

"%
Ba
d
Se
cr
et
s"

A: strB: xref

Figure 7.2: The disassembling shellcode first locates a known string (A), then locates a

xref to this string (B). Once this xref location is found, the attacker can patch the function

containing the xref. This shellcode requires two linear scans of IOS memory, one through

the .data section, and a second one through the .text section.

entry point, or a specific branch instruction.

Any function that prints a predictable string can be identified and patched in this

manner. A particularly useful function is the credential verification function, which prints

‘%Bad Secrets’ when the wrong enable password is entered 3 times.

Figure 7.3 shows the disassembly of this function. We can bypass password authentica-

tion by overwriting a single move instruction, highlighted in red.

As experimental results in Section 7.1.7 shows, this first-stage shellcode reliably disables

password authentication for all versions of Cisco 7200 and 3600 IOS images tested. However,

it failed for all Cisco 2800 series IOS images.

In general, this type of disassembling shellcode is suitable for finding direct data refer-

ences, and will fail to find indirect references. Indirect references can be identified at the

price of computational complexity. In the case of Cisco routers, this limit is a very practical

one. A watchdog timer constantly monitors every process within IOS, terminating any pro-

cess running for longer than several seconds.1 As Figure 7.11 shows, our implementation

of the disassembling shellcode frequently caused watchdog timer exceptions to be thrown,

leaving clear evidence of the attack in the router’s logs.

Once the first-stage completes execution, the attacker can connect to the victim router

with level 15 privilege, bypassing authentication. The attacker can then identify the exact

1The default watchdog timer value is 2 seconds.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 44

Figure 7.3: A disassembly of a typical f chkpasswd. The string xref is the first highlighted

block. The second highlighted block is the single instruction, which can disable password

authentication in IOS. While these addresses vary greatly, they can be reliably computed

at exploitation time by the disassembling shellcode.

IOS version with a number of methods by using the router’s administrative interface. While

this backdoor gives the attacker persistent control of the device, it is not covert. Section 7.1.5

shows our interrupt hijack shellcode, which installs an equivalent backdoor through a covert

channel, using payloads of IP packets punted2 to the router’s CPU. In our demonstration,

we use a large collection of arbitrary UDP and ICMP packets to load complex rootkits into

the router’s memory.

The video demonstration of the disassembling shellcode running on a Cisco 7204 and

12.4T IOS can be found at [30].

7.1.5 Interrupt Hijacker Shellcode

As Section 7.1.4 shows, the disassembling shellcode can be used reliably, at least for sev-

eral major hardware platforms, to locate and intercept a critical function, which handles

credential verification in IOS. However, this shellcode must search through large portions

of the router’s memory twice in order to identify the target string reference and the tar-

get function. This required computation frequently triggered the router’s watchdog timer,

2A packet is punted to a router’s CPU when it cannot be handled by its linecards, and must be inspected

and process-switched.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 45

.text ...

$GP

2n
d-
st
ag
e
co
de

IS
R
-H
oo
k
1

IS
R
-H
oo
k
2

IS
R
-H
oo
k
3

IS
R
-H
oo
k
4

IS
R
-H
oo
k
N

Figure 7.4: The interrupt hijack shellcode first locates all eret (exception return) instruc-

tions within IOS’s .text section. The second-stage rootkit is then unpacked inside the $gp

memory area (which is unused by IOS). All eret instructions, and thus all interrupt service

routines are hooked to invoke the second-stage code. We now have reliable control of the

CPU by intercepting all interrupt handlers of the victim router.

leaving evidence of the shellcode in the router’s log. In general, we want to minimize the

amount of computation required by the first-stage shellcode to evade the watchdog timer

and avoid any perceivable CPU spike or performance degradation.

7.1.5.1 First-stage shellcode

The interrupt hijacking shellcode performs a single scan through the router’s .text section,

locating and intercepting the end of all interrupt handler routines, and works as follows:

Unpack second-stage: The second-stage shellcode, which contains a basic rootkit, is un-

packed and copied to the location pointed to by $gp, the general purpose register.

Locate ERET instructions: Scan through memory, looking for all [eret] instructions.

All such addresses are stored and exfiltrated for offline fingerprinting (See Section

7.1.6).

Intercept all interrupt handler routines: Hijack all interrupt handler routines by re-

placing all eret instructions with the [jr $gp] instruction.

The eret, or exception return instruction takes no operands, and is represented by the

32-bit value [0x42000018]. As the name suggests, eret is the last instruction in any interrupt

handler routine, and returns the CPU context back to the previous state before the interrupt

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 46

was serviced. Once intercepted, any interrupt serviced by the CPU will invoke our second-

stage code, giving us persistent, perpetual control of the CPU to execute our second-stage

rootkit.

7.1.5.2 Second-stage shellcode

The second-stage is essentially a simple code loader, which continuously monitors the

router’s IOMEM range, looking for incoming packets with a specific format. The second-

stage rootkit locates packet payloads marked with a 32-bit magic-number. Such packets

contain a 4-byte target address value, a 1-byte flag and variable length data (up to the

MTU of the network).

When such a packet is found, the second-stage either copies the variable length data

to the 4-byte memory location as indicated by the packet, or jumps the PC to a specified

location. In order to load such packets into the victim router’s IOMEM, the attacker simply

needs to craft IP packets that will be punted to the router’s CPU. Any packets that must be

inspected by the router’s control-plane will suffice.3 For demonstration purposes, we used a

variety of UDP and ICMP packets. Such packets need not even be destined to the router’s

interface. Various malformed broadcast and multicast packets are automatically punted to

CPU and copied to the router’s IOMEM region (on the 7200 platform).

When the first-stage shellcode completes, the attacker has:

Host fingerprint: The list of eret addresses is exfiltrated to the attacker, and will uniquely

identify the micro-version of the victim’s IOS (See Section 7.1.7).

Perpetual CPU control: The second-stage code, copied to the global-scope memory

area, is invoked each time an interrupt is serviced by IOS.

We now present a second-stage rootkit that monitors all incoming packet-data entries,

or payloads of packets that have been punted to the router’s control-plane for process

switching, continuously scanning incoming packets for commands from the attacker. Using

3Different router platforms have different packet handling capabilities, trying to reduce the number of

packets that must be punted to CPU. However, packets destined to routing processes, like BGP, OSPF,

along with ICMP and SNMP packets are typically punted to CPU.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 47

ISR #1 ISR #2 ISR #3 ... ISR #N

2nd-stage shellcode: init

IOMEM Packet

Scrubber

2nd-stage shellcode: exit

eret

Load Code

Execute Code

Figure 7.5: Interrupt hijack second-stage rootkit. Each time any ISR (interrupt service

routine) is invoked, the rootkit will seek through the latest punted packets within IOMEM

for specially crafted command and control packet payloads.

the second-stage rootkit presented below, the attacker can load and execute arbitrary code

by crafting command and control packets in the payload of any IP packet that will be

punted to the router’s CPU. The attacker can stealthily assemble large programs within

the router’s memory by using a wide spectrum of different packet types, like ICMP, DNS,

mDNS, etc.

Since we intercept all interrupt handlers, the second-stage code is invoked whenever any

interrupt is serviced, including timer interrupts, interrupts from linecards, etc. Therefore, a

very limited amount of computation (under a hundred instructions) can be done inside in-

terrupt handlers without seriously impacting the router’s stability and performance. Figure

7.5 illustrates a second-stage rootkit that is designed specifically for high-frequency execu-

tion within interrupt handlers. Each time the second-stage code is invoked, the rootkit scans

through the linked-list of packet data entries located within IOMEM. Figure 7.6 shows a

snapshot of this data structure in IOMEM. Each time the second-stage code is invoked, it

scans through a fixed number of packet-data entries, looking for specially marked packets

containing a 32-bit magic number. The number of packet data entries scanned at each

iteration directly impacts the reliability of this method (See Section 7.1.7).

Once such an entry is found, the second-stage code does the following:

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 48

Figure 7.6: Highlighted words, left to right, top to bottom. 1: Pointer to previous packet

data node. 2. Pointer to next packet data node. 3. Exfiltration request magic pattern. 4.

Beginning of next packet data entry, pointed to by 2.

Parse OpCode: Parse the packet data entry, looking for a 1-byte opcode, along with a

4-byte target address value.

If OpCode = Load: The second-stage code will copy the content of the remainder of the

packet-data entry to the 4-byte address indicated by the packet.

If OpCode = Run: The second-stage code will jump the PC to the target address indi-

cated by the packet.

The second-stage code is designed to execute with high frequency, but in small bursts. It

will execute approximately 100 instructions each time it is invoked, which allows us to scan

through several dozen packets before returning control of the CPU back to the interrupt

handler, and thus the preempted IOS code.

Note that the head of the packet-data linked-list structure is located in a well-known

address within the IOMEM region, which is mapped to the same virtual-memory address

regardless of router model or IOS version [11], making this packet-scrubbing technique

reliable across all IOS versions on many router platforms.

The intercept hijacking shellcode has several interesting advantages over existing rootkit

techniques. First, the command and control protocol is built into the payload of incoming

packets. No specific protocol is required, as long as the packet is punted to the router’s

control-plane. This allows the attacker to access the backdoor using a wide gamut of packet

types, thus evading network-based intrusion detection systems. Hiding the rootkit inside

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 49

interrupt handlers also allows it to execute forever without violating any watchdog timers.

Furthermore, the CPU overhead of this shellcode will be distributed across a large number

of random IOS processes. Unlike with shellcodes that take over a specific process, the

network administrator cannot detect unusual CPU spikes within any particular process

using commands like show proc cpu, making it very difficult to detect by conventional

means.

7.1.6 Stealthy Data Exfiltration

After the first-stage shellcode completes, it yields a sequence of memory addresses where the

eret instruction is located. As Section 7.1.7 shows, this data can serve as a host fingerprint,

allowing the attacker to identify the exact micro-version of the victim’s IOS firmware.

Several known methods can be used to exfiltrate this fingerprint back to the attacker. Note

that the entire memory sequence need not be transmitted, as a simple hash of the data will

suffice. The attacker can carry out a VTY binding [110] to open a reverse shell back to

the attacker, or simply use the console connection to generate an ICMP packet back to the

attacker. Depending on which services are publicly accessible on the router, the attacker

can inject the fingerprint data into the server response. For example, the HTTP server’s

default HTML can be modified.

These methods will most likely leave some detectable side-effect that can trigger standard

network intrusion detection system. We present a new exfiltration technique that modifies

the payload content of process-switched packets just prior to transmission. The data is

exfiltrated using packets generated by router itself, thus making the detection of this covert

channel more difficult.

Once a packet is punted to the router’s control-plane, it is copied from the network

interface hardware to the router’s IOMEM region. For efficiency, when such a packet is

process-switched, the packet-data entry is not copied. Instead, the pointer to this data

is simply moved from the router’s RX queue to its TX queue. Once there, the packet is

scheduled for transmission, then forwarded appropriately. If the attacker can modify the

contents of the packet-data entry before it is transmitted, such payloads can be used as a

vehicle for stealthy exfiltration. Figure 7.7 illustrates this exfiltration process.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 50

Victim Router

RX Queue

icmp
request

TX Queue

icmp
reply

Packet Data

...magic-pattern...

Interrupt
Hijack

Shellcode

{Exfiltrated Data}

Attacker

1: Attacker

sends ICMP

request with

magic pattern in

payload.

2: Packet data

copied to IOMEM.

3: Shellcode

locates magic-

pattern, overwrites

payload with

exfiltrated data.

4: ICMP

request

serviced by

CPU. Packet

Data linked to

TX Queue.

5: Exfiltrated data

sent via ICMP

response back to

attacker. Win!

Figure 7.7: Data exfiltration through forwarded packet payload. 1: The attacker crafts a

packet with a magic pattern in its payload indicating exfiltration request. 2: Packet payload

is copied into a *packet data* structure. 3: Rootkit locates magic pattern, overwrites

remaining packet with exfiltrated data. 4: Packet is process-switched. The packet data

entry is linked to the TX queue. 5: The requested data is sent back to the attacker inside

an ICMP response packet.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 51

Hardware Platform Sample Size Reliability

xref 7200 76 100%

eret 7200 76 100%

xref 3600 52 100%

eret 3600 52 100%

xref 2800 31 0%

eret 2800 31 100%

Table 7.1: Reliability of the disassembling shellcode and interrupt hijack shellcode when

tested on 159 IOS images.

This type of manipulation is highly time-sensitive, as the attacker will typically only

have a few milliseconds after the packet’s arrival to locate and manipulate its payload,

before the packet is transmitted. However, since the second-stage rootkit is invoked with

every interrupt, it can precisely intercept the desired packet before it is placed on the TX

queue, allowing the attacker to use the same covert command and control channel for data

exfiltration. Section 7.1.7 discusses the performance of this exfiltration method. Due to

the timing constraints of the interrupt hijack shellcode and various race conditions related

to process-switching and CEF, not all exfiltration requests sent by the attacker will be

processed. In practice, approximately 10% of exfiltration requests are answered by the

rootkit when tested on an emulated 7204VXR/NPE-400 router.

The video demonstration of this exfiltration method can be found at [30].

7.1.7 Experimental Data

The reliability of the disassembling shellcode, presented in Section 7.1.4 and the interrupt

hijack shellcode, presented in Section 7.1.5, are shown in Table 7.1. Three major Cisco

router platforms, the 7200, 3600, and 2800 series routers are tested. The two proposed

shellcode algorithms are tested against 159 IOS images, ranging from IOS version 12.0 to

15.

The computational overhead of both shellcodes are shown in Figure 7.10 for a typical

7200 IOS 12.4 image. In some instances, the disassembling shellcode does not terminate

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 52

2 4 8 16 32 64

reliability 0% 0.67% 1.29% 4.67% 5.38% 10.10%

Table 7.2: Reliability of exfiltration mechanism when the number of packet-data nodes

searched per invocation varies. Searching more than 64 nodes caused the test router to

behave erratically.

in time, which triggers a watchdog timer exception to be thrown and logged (See Figure

7.11). The interrupt hijack shellcode consistently completed first-stage execution without

triggering any watchdog timer exception.

Table 7.2 shows the reliability of the exfiltration mechanism presented in Section 7.1.6,

as the number of packet-data nodes searched during each interrupt-driven invocation. The

reliability rate is calculated by counting the number of exfiltration requests the rootkit

successfully answered out of 150 ICMP requests. Searching more than 64 nodes at each

invocation caused the router to behave erratically, sometimes leading to crashes.

Figure 7.8 and 7.9 shows the distribution of features found by the disassembling shellcode

and interrupt hijack shellcode respectively across 159 tested IOS images. Note that while

the string reference tends to be more widely distributed, interrupt handler routines are

typically found in a much smaller area. While the exact location of interrupt handlers still

remain unpredictable, this concentration allows the interrupt hijack first-stage shellcode to

search through a relatively small range of memory when compared to the disassembling

shellcode.

7.1.8 Defense

In order to categorically mitigate against the offensive techniques described in this chapter,

host-based defenses must be introduced into the router’s firmware. Since persistent rootkits

must modify portions of the router’s code, a self-checksumming mechanism can be injected

into IOS to detect and prevent unauthorized modification of IOS itself. This can be gener-

alized to all regions of the router, which should remain static during normal operation of

the router, and can include large portions of the .data, ROMMON, and .text sections.

Such a defensive mechanism, called Software Symbiote, has been proposed by the author

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 53

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

50

100

150

200

250

0
x
0

0
 −

 0
x
ff

Distribution of "Bad Secrets" string x−ref in IOS (32−bit memory space)

0x000 − 0xfff0x000 − 0xfff

Figure 7.8: Distribution of the location of the password authentication function. This

location varies greatly across the IOS .text segment, forcing the disassembling shellcode to

search a large region.

to solve this problem. Software Symbiote is discussed in Chapter 8. We have shown that

Symbiotes can be injected into Cisco IOS in a version-agnostic manner to provide continuous

integrity validation capability to the host router. Our experimental results show that such

Symbiotes can detect unauthorized modification to any static region of IOS in approximately

300ms. Symbiotic defenses of this type is the focus of ongoing research.

7.1.9 Concluding Remarks

We present a two-stage attack strategy against Cisco IOS, as well as two unique multi-stage

shellcodes capable of reliable execution within a large collection of IOS images on differ-

ent hardware platforms. The disassembling shellcode, first proposed by Felix Linder [80]

operates by scanning through the router’s memory, looking for a string reference, allowing

the attacker to disable authentication on the victim router. The interrupt hijack shell-

code injects a second-stage shellcode capable of continuously monitoring incoming punted

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 54

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

50

100

150

200

250

0
x
0

0
 −

 0
x
ff

Distribution of ERET instruction in IOS (32−bit memory space)

0x000 − 0xfff0x000 − 0xfff

Figure 7.9: Distribution of the location of eret instructions over 162 IOS images. These

locations mark the end of all interrupt service routines in IOS, and tend to be concentrated

within a predictable region of IOS.

Figure 7.10: CPU utilization of 7204 router during the first-stage execution of both the

disassembling and intercept hijack shellcodes. Note that the interrupt hijack shellcode is

simpler, requires less CPU and thus avoids watchdog timer exceptions.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 55

Figure 7.11: CPU intensive shellcodes will be caught by Cisco’s watchdog timer, which

terminates and logs all long running processes. The disassembling shellcode, although

reliably bypasses password verification, consistently triggers the watchdog timer, generating

the above logs, which give precise memory location of the shellcode.

packets for specially crafted command and control packets from the attacker. The attacker

can use this covert backdoor by sending a wide gamut of packet types, like ICMP and

UDP, with specially crafted payloads. In both shellcodes, when the first-stage completes

execution, a host fingerprint is computed and exfiltrated back to the attacker. Using this

data, the attacker can accurately identify the exact micro-version of IOS running on the

host router. Using the second-stage rootkit, the attacker can then upload a version specific

rootkit, which can be pre-made a priori for all IOS images, onto the victim router. This

two-stage attack scenario allows the attacker to compromise any vulnerable IOS router as if

the specific version of the firmware is known, bypassing the software diversity hurdle which

has obstructed the reliable, large-scale rootkit execution within Cisco routers.

7.2 Case-Study Firmware Modification: HP-RFU

7.2.1 Overview

The ability to update firmware is a feature that is found in nearly all modern embedded

systems. We demonstrate how this feature can be exploited to allow attackers to inject

malicious firmware modifications into vulnerable embedded devices. We discuss techniques

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 56

for exploiting such vulnerable functionality and the implementation of a proof of concept

printer malware capable of network reconnaissance, data exfiltration and propagation to

general purpose computers and other embedded device types. We present a case study of

the HP-RFU (Remote Firmware Update) LaserJet printer firmware modification vulnera-

bility, which allows arbitrary injection of malware into the printer’s firmware via standard

printed documents. We show vulnerable population data gathered by continuously tracking

all publicly accessible printers discovered through an exhaustive scan of IPv4 space. To

show that firmware update signing is not the panacea of embedded defense, we present

an analysis of known vulnerabilities found in third-party libraries in 373 LaserJet firmware

images. Prior research has shown that the design flaws and vulnerabilities presented in

this chapter are found in other modern embedded systems. Thus, the exploitation tech-

niques presented in this chapter can be generalized to compromise other embedded systems.

Modern embedded devices exist in large numbers within our global IT environments and

critical communication infrastructures. Embedded systems like routers, switches and fire-

walls constitute the majority of our global network substrate. Special purpose appliances

like printers, wireless access points and IP phones are now commonplace in the modern

home and office. These appliances are typically built with general purpose, real-time oper-

ating systems using stock components. They are capable of interacting with general purpose

computers as general purpose computers themselves.

The diverse and proprietary nature of embedded device hardware and firmware is

thought to create a deterrent against effective wide-spread exploitation. While such claims

of embedded security fundamentally reduce to security through obscurity, it is nonetheless

claimed by embedded device vendors to provide security for their products[56].

To demonstrate that such claims of embedded security are overly optimistic and that

emerging embedded exploitation techniques and embedded system malware pose a threat

to the security of our existing networks, we present the following four contributions:

General firmware modification attack description: We present firmware modification

attacks, a general strategy that is well-suited to the exploitation of embedded devices. This

strategy aims to make arbitrary, persistent changes to victim devices’ firmware by leveraging

design flaws commonly found within embedded software. Firmware modification attacks

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 57

can affect entire families of devices adhering to the same system design flaw, transcending

operating system versions and instruction set architectures. The HP-RFU vulnerability

presented in this chapter affects MIPS- and ARM-based printers alike, regardless of their

underlying software implementation. We discuss the general preconditions for and the

process of leveraging firmware modification attacks against modern embedded devices.

HP LaserJet firmware modification case study: We use a firmware modification

vulnerability recently discovered by the authors in nearly all HP LaserJet printers[60] to

present a real-world case study of the development cycle of such attacks against common

embedded devices. We present the threat model characterization, vulnerability analysis and

threat assessment of HP-RFU and show a full exploit against the vulnerability. The entire

process, from discovery to the implementation of the final attack and malware package, took

approximately two months, and was carried out using public vendor information readily

available on the Internet and required a hardware budget of under $2,000. This attack is

effective against the majority of LaserJet printers currently in production and affects a large

number of installed devices. While it is difficult to divine the actual size of the vulnerable

device population, HP shipped 11.9 million such units in a single quarter of 2010 alone[63].

The design flaws identified in the HP remote firmware update functionality can be seen

in other modern embedded systems. Thus, the attack strategy we present can be generalized

and applied to other vulnerable embedded device types. We discuss the offensive potential

of our proof of concept printer malware and its impact on the efficacy of traditional network

defense doctrine.

Vulnerable population / patch propagation analysis: The severity of the HP-RFU

attack is further increased due to the ubiquitous nature of the vulnerable population. While

firmware fixes have been released by the vendor, mitigation of the vulnerability discussed

in this chapter ultimately depends on end-users diligently updating firmware. Applying

firmware updates on mission-critical embedded systems can be cumbersome and daunting[9].

It is not surprising that we have found that this diligence is lacking, which favors the

attacker.

We present the results of exhaustive scans of IPv4 to show the distribution of all pub-

licly accessible, vulnerable LaserJet printers on the Internet. We have identified over 90,000

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 58

unique vulnerable printers inside numerous government organizations, educational institu-

tions and other sensitive environments. We periodically fingerprint the specific firmware

version of each tracked device in order to analyze the rate and pattern of firmware patching

throughout the world. We believe this data will shed light on the inefficacy of the patch

cycle for large populations of embedded devices as compared to patch propagation patterns

within general purpose computer populations. Firmware patch propagation data for the

first two months following the official release of firmware updates for 53 printer models[59]

is presented in this chapter. Initial data indicates a global patch level of approximately

1.08%. Furthermore, 24.8% of all patched printers still have open telnet interfaces with no

root password configured (a default setting).

Vulnerable third-party library analysis: Mandatory firmware update signature verifi-

cation was introduced by the vendor on some vulnerable LaserJet printer models following

the disclosure of the HP-RFU vulnerability. This mitigates the specific vulnerability dis-

covered by the authors. However, mandatory firmware signature verification allows known

vulnerable code to be signed and verified. It does not remove the actual vulnerabilities

within the signed firmware, nor will it detect or mitigate the exploitation of the actual

vulnerability.

We present the results of automated analysis of a large collection of LaserJet printer

firmwares released over the last decade, including the latest firmwares released in response

to the HP-RFU disclosure. We analyzed all publicly available firmware images for 63 models

of HP LaserJet printers. By cross-referencing the specific version numbers of third-party

libraries like OpenSSL and zlib found within firmware updates with known vulnerabilities for

those specific library versions, we conclude that a large number of vendor-issued firmwares

are released with multiple known vulnerabilities. In some cases, we identified recently

released firmware updates containing vulnerabilities in third-party libraries that have been

known for over eight years. We identified third-party libraries with known vulnerabilities

in 80.4% of all firmware images analyzed.

The remainder of this section is organized as follows: Section 7.2.2 describes the general

firmware modification attack strategy and surveys such existing attacks against embed-

ded devices. Section 7.2.3 discusses the discovery of the HP-RFU vulnerability and the

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 59

subsequent proof of concept attack and malware development. Section 7.2.6 discusses the

real-world offensive potential of our proof of concept attack. The distribution of publicly

accessible vulnerable LaserJet printers and initial firmware patch propagation telemetry

is presented in Section 7.2.7. Vulnerable third-party library analysis of 373 vendor-issued

firmware updates is presented in Section 7.2.8. Lastly, we survey related works and ongoing

work in the area of host-based embedded defense and vulnerability analysis in Section 7.1.2.

7.2.2 Firmware Modification Attack

Firmware modification attacks aim to inject malware into the target embedded device.

Predictions of firmware modification attacks against printers are almost a decade old[6].

Firmware modification attacks can be carried out either as standalone attacks or as sec-

ondary attacks following initial exploitation using traditional attack vectors.

Standalone firmware modification attacks manipulate firmware update features instead

of exploiting flaws in the victim software. For example, the firmware modification case

study presented in Section 7.2.3 utilizes the remote firmware update feature within HP

LaserJet printers. This attack vector is not unique to the vulnerable devices discussed

in this chapter. Other ubiquitous embedded systems like ATM machines, smart battery

controllers, keyboards, enterprise routers and PBX equipment are also vulnerable to such

attacks. Similar standalone firmware modification attacks [22, 24, 51, 64, 86, 93] have

recently been reported.

The standalone firmware modification strategy is well-suited to embedded exploitation

in general for the following reasons:

Feasibility: Firmware update is an ubiquitous feature found in modern embedded devices.

Previous work[8, 36, 51] shows that a large number of embedded devices have firmware

update features that are not sufficiently protected by proper user authentication. Many

devices that require authentication before allowing firmware updates are vulnerable to trivial

administrative interface bypass attacks[107]. Furthermore, net-booted embedded devices

that use insecure protocols like TFTP to retrieve their configurations and firmware are

vulnerable to standard OSI Layer 2 attacks.

Fail-Safe: Firmware update mechanisms usually mandate integrity and model verification

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 60

prior to execution of the actual firmware modification. Malicious firmware update packages

sent to incompatible embedded devices are rejected and ignored. This relaxes the reconnais-

sance and accuracy requirements for the attacker and reduces the penalty of a misdirected

attack. For example, the final malicious binary described in Section 7.2.3 contains a single

RFU image targeting a precise printer model. However, if the exact model of the victim

printer is unknown, multiple malicious RFU commands covering all potential printer models

can be sent sequentially without damaging the printer. Furthermore, each RFU command

need not contain a full printer OS image, which is at least several megabytes in size. A

bare-bones OS boot loader can be sent instead. Such a loader could be implemented to

be at most several hundred kilobytes in size (the development of this offensive technique is

outside the scope of this chapter).

Platform Independence: Attacks that manipulate firmware update features within the

vulnerable device do not need to depend on specific software vulnerabilities in the victim and

will generally work across many models of the same device, even across different machine

architectures. For example, the HP-RFU vulnerability manipulates a feature of the LaserJet

firmware, which is supported across nearly all printer models and is common among MIPS-

and ARM-based devices.

While mandatory firmware signature verification can mitigate standalone firmware mod-

ification attacks, this countermeasure is not the panacea of embedded security. Firmware

modification attacks can be carried out as a secondary payload following the successful ex-

ploitation of the embedded device via traditional vectors like memory modification attacks.

Firmware content is typically stored in rewritable, nonvolatile memory like flash. Embedded

operating systems generally lack the fine-grain privilege separation and execution isolation

found in modern operating systems; even when available in later builds, vendors oftentimes

choose to not utilize these memory isolation features. Furthermore, for embedded operating

systems with process and memory isolation, vulnerabilities within the kernel or privileged

processes can still allow an attacker to make persistent changes to the device. For exam-

ple, prior research has demonstrated that it is possible to make persistent modifications

to the boot ROM portion of enterprise routers using only software operations[35]. Thus,

countermeasures like authentication and firmware signature verification cannot fully prevent

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 61

firmware modification attacks on embedded systems with vulnerable attack surfaces.

Section 7.2.3 illustrates the development cycle of a typical firmware modification attack

and embedded malware. Section 7.2.8 presents vulnerable third-party library analysis for a

large corpus of HP LaserJet firmware images.

7.2.3 Case Study: HP LaserJet Exploitation

The HP-RFU firmware modification vulnerability[60] was discovered unintentionally when

the authors attempted to inject host-based defenses into network printers. The HP LaserJet

family was chosen because of its popularity and commanding market share[63]. The LaserJet

P2055DN model was chosen as our initial target device.

Analysis of the HP LaserJet firmware revealed a reliably exploitable design flaw that al-

lows remote attackers to make persistent modifications to the printer’s firmware by printing

to it.

In order to inject host-based defenses into any target hardware, the original firmware

must be unpacked and analyzed. In the case of prior work on Cisco IOS routers, this

process was straightforward4. However, unpacking and analyzing HP LaserJet firmware

images presented several challenges. Figure C.1 of the Appendix shows the hex dump of a

RFU file.

The remote firmware update for the P2055DN printer begins with standard PJL (Printer

Job Language) but enters into an undocumented language called ACL. Approximately 7 MB

of binary data follow. Initial static analysis5 revealed no recognizable filesystem headers

and no function preambles for any known machine architecture inside the RFU binary.

Without further analysis, a key design flaw became apparent: the firmware modifica-

tion mechanism is coupled with the printing subsystem, which must accept incoming re-

quests in an unauthenticated manner as per general specification. As confirmed by vendor

documentation[55], the RFU file is printed to the target device via the raw-print protocol

over standard channels like TCP/9100, LPD and USB. Various other vendors also use the

4IOS images are simple ZIP files with slightly non-standard headers.

5We used standard industry practices of loading the image into IDA Pro, fixing the memory mapping,

and so forth. A detailed discussion of reverse engineering is outside the scope of this chapter.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 62

same update strategy.

When a print job is received by the printer’s job-parsing subsystem, a proprietary mech-

anism is used to determine the presence of a valid firmware update package. If a PJL

command containing a valid RFU package is present, the integrity of the RFU payload is

verified and decompressed. The payload’s unpacked binary data is then written to persistent

storage within the target printer, thereby modifying the printer’s firmware.

Once the RFU binary structure was obtained through standard hardware and software

reverse engineering methods, we discovered that it was possible to pack arbitrary executable

code back into a legitimate RFU package in a PJL command. This command can then be

embedded into a malicious document or sent directly to the victim printer to arbitrarily

and persistently modify its firmware. Such an attack does not affect the printing of the

legitimate carrier document and only makes the printer unavailable for approximately 90

seconds. The printer will continue to respond to network requests throughout most of the

firmware update process. Thus, the attack will likely go completely unnoticed by users and

network monitoring systems.

Figure 7.12: Byte value distribution histogram of a typical RFU file. Distribution suggests

that the data is compressed and not encrypted.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 63

7.2.4 Discovery Process

Initial static analysis of the original RFU binary revealed no printable strings, no known

filesystem headers and no recognizable executable binaries. We concluded that the binary

payload was likely either encrypted or compressed. Figure 7.12 shows the byte distribution

histogram for a typical RFU binary payload for the P2055DN printer. The histogram

suggests that the binary blob is compressed and not encrypted as common encryption

algorithms typically generate high-entropy ciphertext, which was not observed.

Manual inspection of the binary revealed a simple package header structure containing

a short checksum field followed by multiple entries of the same data structure, containing

the compressed and uncompressed size of each firmware component and its target address

within the printer’s persistent storage address space. This header is shown in Figure C.2 of

the Appendix.

Figure 7.13: Formatter board for LaserJet P2055DN. Dump of the onboard SPI flash re-

vealed RFU format and integrity checking algorithm.

The printer’s formatter board hardware components were desoldered and reverse engi-

neered. Figure 7.13 shows the actual formatter board inside the target device. Figure 7.14

illustrates the main components found on the P2055DN’s primary control (formatter) board.

Manual inspection revealed that the system was powered by a Marvell SoC. Aside from the

machine architecture (ARM), no other information was publicly available due to the propri-

etary nature of the chip. However, the SPI flash chip is a stock component with a publicly

available datasheet.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 64

ELPIDA
E1116AL

DDR Memory

MARVELL
88e11118

Gigabit Ethernet

SPANSION
FL064P

SPI-Flash (boot)

NEC
RH4-0214-05

Engine Controller

Marvell
88PA2AL2-TAH1

ARM SoC

Formatter Board

Figure 7.14: Logical block diagram of the major components used on the LaserJet P2055DN

formatter board. The Spansion boot flash was key to our reverse engineering effort.

The main SoC on the formatter board uses the Spansion flash chip as a boot device.

This chip has 8 MB of storage and communicates with the main Marvell SoC via a Serial

Peripheral Interface (SPI) using a simple command protocol defined in its datasheet. In

order to extract the contents of the flash chip, a SPI chip dumper was implemented using

an Arduino[7] to perform the actual I/O. Figure 7.15 shows the physical hardware setup

connecting the SPI boot flash chip to the Arduino board.

Analysis of the boot loader code revealed the binary structure and compression algorithm

used in the RFU format. Manual inspection of the flash chip content revealed a boot image

layout shown in Figure 7.16.

A factory reset RFU image was found inside the boot flash. This image is immediately

preceded by a boot loader containing the code that validates and parses RFU images. IDA

Pro[62] disassembled the boot loader binary. The resulting assembly code revealed that the

RFU image is validated using a trivial checksum function and compressed using a common

algorithm.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 65

Figure 7.15: The SPI flash chip was physically removed then connected to an Arduino for

boot code extraction.

Furthermore, the specific version of the compression library used to process RFU im-

ages appear to have several known arbitrary code execution vulnerabilities[15, 16, 17]. Sec-

tion 7.2.8 presents an analysis of vulnerable third-party libraries found in a large number

of firmware images released by the vendor.

P2055DN Boot-Flash Layout

0x000000 - 0x800000

L1-BootLoader

Factory-Reset RFU

SecStore Area

Figure 7.16: Boot image layout on the SPI flash chip. The level-1 boot loader contains

code that validates, unpacks and decompresses the factory reset RFU allowing us to reverse

engineer the binary RFU format and compression algorithm.

7.2.5 Proof of Concept Printer Malware

Static analysis of the extracted boot flash code revealed the precise RFU binary structure,

checksum and compression algorithms used. This information allowed the authors to write

HPacker, a tool that takes an uncompressed ARM ELF image as input and returns a valid

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 66

compressed PJL update command as output.

The malicious PJL command can be printed directly to the target printer or embedded

within various document formats (an example is included in Figure C.3 of the Appendix).

Either way, once the PJL command is sent to the victim printer, it will recognize the

print job as containing a valid firmware update and allow the attacker to make arbitrary

modifications to the victim’s firmware storage area.

The unpacked RFU package for the P2055DN contains over a dozen files. The main

file of interest is the binary OS image, a single 14 MB ELF image containing the VxWorks

operating system and various other vendor-specific additions.

The creation of the proof of concept malware essentially reduced to creating a VxWorks

rootkit capable of:

• Command and control via covert channel

• Print job snooping and exfiltration

• Autonomous and remote-controlled reconnaissance

• Multiple device type infection and propagation to the Windows operating system and

other embedded devices

• Reverse IP tunnel to penetrate perimeter firewalls

• Self-destruction

A video discussing the technical mechanics of this rootkit and a demonstration of its

capabilities is publicly available[32].

The VxWorks OS image found within the RFU binary contains a complete socket

library[114] and direct access to the underlying network transceiver hardware. The cre-

ation of the proof of concept code was mainly an exercise in identifying and intercepting

the proper pieces of binary within the VxWorks image.

No host-based security mechanism exists within the firmware image. Thus, the attacker

is free to make arbitrary changes to the victim device. As long as the functionality and

general performance of the device is not altered, detection of firmware modification is not

possible without careful removal and inspection of the hardware inside the printer.

Several challenges arose during the construction of the proof of concept code. The Vx-

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 67

Works image extracted from the RFU package contained no symbol information. Locating

the appropriate socketlib, print job processing and raw network I/O binary interfaces within

the binary proved non-trivial.

We developed a set of IDA-Python scripts to perform standard control-flow analysis of

the target binary around code that we manually identified as network-facing. This effort

was expedited by a patch made to the VxWorks kernel, which redirected debug messages

destined for the UART to a TCP connection. Using these two mechanisms, a dynamic

analysis environment was created to probe network-facing code, which eventually yielded

a small set of functions likely to be libraries used by multiple pieces of unrelated code.

Function prototype data was taken from available VxWorks documentation and used as a

final check to positively identify each library function.

Typically, the malware would be optimized, compressed, packed and broken up to fit

within gaps inside the original firmware or placed within dynamically allocated memory.

However, since the attacker controls the firmware storage area absolutely, we added a new

section within the ELF header marked with rwx privileges. This gave us more than sufficient

space to implement all the previously mentioned malware functionality. In total, 2,800 lines

of assembly were written to create the proof of concept malware.

7.2.6 Threat Model and Assessment

We present the threat model and assessment analysis for the HP-RFU vulnerability pre-

sented in Section 7.2.3.

7.2.6.1 Threat Model Characterization

The HP-RFU vulnerability exploits a design flaw in the firmware update mechanism found

in nearly all LaserJet printers. In order to achieve persistent firmware modification on

the victim device, the attacker must deliver a malicious PJL command to the raw-printing

processing subsystem of the target. This can be done by using the following attack types:

Active Attacks require the attacker to directly trigger the firmware update process by

actively connecting to the printer and sending it the malicious PJL command over the

printer’s raw-printing port.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 68

Reflexive Attacks are akin to reflexive cross-site scripting attacks where malicious firmware

update commands are embedded in passive data that is passed along to the user of the vic-

tim device. For example, the final binary package of the HP-RFU attack can be embedded

inside innocuous-looking documents and sent to unwitting users, perhaps in the form of an

academic paper or resume. In this reflexive attack scenario, the actual attack is launched

when the malicious document is printed.

7.2.6.2 Threat Assessment

Figure 7.17 illustrates an advanced persistent attack scenario where a compromised printer

is used as a reconnaissance tool and offensive asset. Once the malware package is delivered

to the victim printer, it can be used to carry out firmware modification attacks against

other embedded devices like other printers, IP phones, and video conferencing units. Com-

promised embedded devices can be used to establish reverse IP tunnels back out to the

Internet, giving the attacker direct access to the secured internal network. These devices

can also be used to carry out standard network attacks like ARP cache poisoning and act

as offensive assets to further compromise general purpose computers and other embedded

devices behind the victim’s perimeter defenses.

No host-based security mechanisms exist on the compromised printer. Thus, the pres-

ence of malware on this device will most likely go undetected if the functionality of the

device is not affected. The compromised printer is an ideally situated stealthy asset that

can be used as a fail-safe device allowing the attacker re-entrance into the victim network

even if all compromised general purpose machines are neutralized. Contrary to the sensa-

tionalized media coverage regarding the HP-RFU vulnerability, it would be unwise for the

attacker to destroy a compromised printer physically6.

The HP-RFU vulnerability disclosure is described in CVE-2011-4161[18]. As Section 7.2.7

shows, there are currently over 90,000 vulnerable LaserJet printers publicly accessible over

the IPv4 Internet.

6While it has been demonstrated and stated in the initial reports that using the printer’s fuser as an

ignition source to create fire is not possible, physical destruction of the printer is possible via multiple

methods.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 69

Firewall

Network Printer

Attacker

Server

1. Reverse Proxy
Printer -> Attacker

2. Reverse Proxy
Printer -> Victim

3. Attacker -> Server
Via Reverse Proxy

4. Win: Reverse Shell
Server -> Kitteh

Figure 7.17: Typical advanced persistent threat attack scenario involving compromised

printers.

7.2.6.3 Compounding Factors

The following factors compound the severity of the HP-RFU vulnerability:

No authentication prior to firmware update: The PJL/RFU mechanism is coupled

with the raw-printing protocol, a cleartext protocol that does not support authentication.

Any party who is allowed to use the victim printer can carry out a firmware modification

attack against the printer. Therefore, the attacker does not need to have direct IP connec-

tivity to the victim printer even in the active attack scenario because the malicious payload

can be relayed by intermediate print servers.

RFU feature enabled by default: The majority of the firmwares we analyzed enable

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 70

the remote RFU update feature by default. Network-printing typically requires the printer

to be reachable via TCP/9100. Since arbitrary binary traffic is allowed in the raw-printing

protocol by specification, it is difficult to detect and stop malicious PJL commands at

the network layer. Recent research suggests that it may be possible to use languages like

PostScript to compute a valid, malicious PJL command on the victim printer when the

malicious document is processed[24]. If so, this will significantly increase the difficulty of

detection of this type of attack on the network level or within print servers.

Poor and incomplete configuration interface: The configuration interface of many

“advanced” security features does not exist on the printer’s HTTP or Telnet administrative

interfaces. For example, disabling the remote RFU feature and setting PJL passwords

can only be done through a separate enterprise printing management tool called HP Web

Jetadmin (WJA)[61]. This is a 315 MB program that requires the installation of Windows-

based web and SQL servers and is generally not practical for average users without enterprise

IT support.

RFU feature cannot be disabled: Several LaserJet models, including the P2055DN

used in our initial experimentation, do not support any way to disable the remote RFU

feature, even through Web Jetadmin. As far as the authors are aware, prior to the release

of the second version of the security bulletin[58], no combination of available configurable

settings could disable the vulnerable feature on these printers. Furthermore, these models

were not included in the first release of the security bulletin[57], since security bulletins

released by the vendor must contain an acceptable mitigation method. Since no firmware

fix was available, the devices most affected by the HP-RFU vulnerability were not listed in

the initial vendor disclosure document.

Potential for irreversible, permanent malware injection: The SPI boot flash chip

used on the P2055DN formatter board supports a One-Time-Programmable (OTP) feature[104]

that allows areas of memory within the chip to be programmed and locked permanently.

This is an irreversible operation that is typical for similar flash components. If the mali-

cious malware package injected into the boot flash chip of the printer took advantage of

this feature, removal of the malware would be impossible without physical removal of the

compromised component.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 71

7.2.7 Vulnerable Device Population Analysis

Vendors of general purpose operating systems and popular applications have deployed large-

scale distribution networks to automatically update host software with little to no user

interaction. However, no such widely deployed distribution exists to push patches and

firmware updates to embedded systems.

The results presented in this section indicate that approximately 1.08% of vulnerable

HP LaserJet printers have been patched worldwide, despite the public announcement of

the HP-RFU vulnerability and the rapid release of firmware updates by the vendor (see

Table 7.3).

This highlights the ineffectiveness of simple public release of firmware updates for vul-

nerable embedded devices. Empirical evidence suggests that vulnerable embedded devices

will persist for a long period of time as compared to vulnerable general purpose comput-

ers. The threat will persist unless proactive firmware update mechanisms are developed

for legacy embedded systems. However, a more proactive firmware update mechanism may

also be exploited in firmware modification attacks.

7.2.7.1 Methodology

In order to quantify the number of printers that are vulnerable to the HP-RFU attack, we

scanned the IPv4 Internet for publicly accessible HP printer web, telnet, SNMP and raw-

print server sockets. Model numbers and firmware datecodes were gathered by employing

the following methods:

• “@PJL INFO ID” command over TCP/9100

• “@PJL INFO CONFIG” command over TCP/9100

• “@PJL INFO PRODINFO” command over TCP/9100

• SNMP GET using “public” as the community string

• Model-specific banner scraping over TCP/23,80

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 72

7.2.7.2 Findings

In the two months following the official release of firmware updates for the HP-RFU vulner-

ability, we identified 90,847 unique HP printers that are publicly accessible over the IPv4

Internet. Firmware version data is collected periodically for each device. Table 7.3 shows

our findings.

Potentially vulnerable printers 90,847

Printers with identifiable

firmware datecode 74,770

Number of patched printers 808

Overall patch rate 1.08%

Table 7.3: Observed population of printers vulnerable to the HP-RFU attack on IPv4.

Patching vulnerable printers to the latest firmware does not necessarily secure the

printer. We probed each printer for other well-known vulnerabilities and common mis-

configurations that can result in unrestricted root-level access to the printer. Table 7.4 lists

the vulnerabilities, including a ChaiVM vulnerability FX exploited in 2003[79] (this talk

also discussed the potential for firmware modification).

Vulnerable printers are grouped into five general organizational types: educational, pri-

vate enterprise, military, civilian government and Internet service providers. Tables 7.5

and 7.6 show the distributions of the average age of the firmware images currently installed

across different organization types and continents, respectively. The firmware age is taken

from the datecode in the response from the devices’ administrative interfaces. Organiza-

tional and geographic data were gathered though the DNS, Internet Routing Registry (IRR)

whois or commercial geolocation databases.

The above data is a lower bound on the number of vulnerable LaserJet printers on

the Internet since it does not include devices behind firewalls or NATs or in other private

networks..

7The ChaiVM EZLoader allows unsigned .jar files to be installed[98].

8A remote crash vulnerability exists in Virata EmWeb R6.0.1[91].

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 73

Unrestricted Telnet 50,500

Unrestricted ChaiVM7 27,570

Vulnerable Virata EmWeb8 2,740

Table 7.4: Observed population of printers vulnerable to attacks other than HP-RFU on

IPv4.

Avg Age Oldest

Count (years) Firmware

Education 48,626 4.13 1993-08-20

ISP 4,650 3.70 1994-10-12

Enterprise 2,842 4.02 1992-12-16

Military 201 4.63 1999-10-30

Government 126 4.33 1996-12-20

Table 7.5: Organizational distribution of vulnerable printers.

In the months following the HP-RFU vulnerability disclosure, we observed 808 unique

vulnerable printers that have been updated to firmware versions that mitigate the problem.

We also observed 211 printers that did not require updated firmware to be invulnerable

to the HP-RFU. However, out of these 1,019 devices, 24.8% (253) of them still have open

telnet interfaces with no root passwords configured.

Approximately 64% of all vulnerable printers were located in North America. Over

65% of all vulnerable printers were found within the networks of educational institutions

world-wide.

We also identified the following populations of vulnerable printers within two notable

organizations:

• United States Department of Defense: 201 printers

• Hewlett-Packard: 6 printers

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 74

Avg Age Oldest

Count (years) Firmware

N. America 47,840 4.46 1992-12-16

Europe 14,196 4.16 1993-08-20

Asia 10,353 3.77 1998-09-02

Oceania 1,081 4.79 1998-09-02

S. America 673 3.43 1999-01-27

Africa 60 4.56 2001-04-26

Table 7.6: Geographical distribution of vulnerable printers.

7.2.8 Vulnerable Third-Party Libraries

Mandatory firmware signature verification was introduced by the vendor[59] in response to

the disclosure of the HP-RFU vulnerability. While this effectively mitigates the specific

attack presented in Section 7.2.3, we believe this response is inadequate for at least two

reasons:

Signed firmware 6= secure firmware: Firmware signature verification guarantees that

the binary data to be processed at firmware update time originated from a trusted source

within the vendor’s organization. Vulnerable code that is signed by the vendor remains

vulnerable to exploitation. This mechanism does not prevent firmware or memory modifi-

cation attacks in general and thus contributes little to the overall security of the embedded

device.

Signed firmware prevents independent third-party defense development: Manda-

tory signature verification that only accepts firmware updates signed by the vendor will

categorically prevent all non-vendor issued code from running. This makes the injection of

legitimate third-party host-based defenses into vulnerable firmware images impossible.

In order to show that firmware signing as the sole security mechanism is inadequate, we

present the results of the automated analysis of the third-party library vulnerabilities in a

set of 373 firmware update packages issued by the vendor over the last decade. The dataset

includes 358 RFUs released prior to the disclosure of HP-RFU as well as 15 RFUs released

as part of SSRT100692 rev.3. The printer models and firmware images analyzed are listed

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 75

in Table C.1 of the Appendix.

7.2.8.1 Methodology

All RFU images were unpacked and decompressed. Embedded filesystems (LynxFS) were

extracted from the decompressed data. Extracted executables and shared objects were

pattern-matched against known ASCII and binary signatures to detect the presence of

specific versions of two specific third-party libraries: zlib and OpenSSL.

While this process suggests the presence of specific versions of third-party libraries in

the analyzed firmware updates, no analysis was performed to check whether the libraries

can be invoked by the attacker, or that the known vulnerabilities are reliably exploitable

on the printers’ machine architectures. This is the topic of ongoing research.

We present findings for the following third-party library vulnerabilities found in 373

vendor-issued firmware updates:

zlib: CA-2002-07, CERT-{68062, 238678} Discovered in 2002, zlib ver. 1.1.3 and earlier

have a double free bug that allows arbitrary code execution[15]. In 2005 the vendor was

notified of a buffer overflow in zlib ver. 1.2.1 and 1.2.2[17]. The vendor was notified of a

DOS condition in zlib ver. 1.2.0.x and 1.2.x in 2004[16].

OpenSSL: CVE-{2009-3245, 2006-3738, 2006-4339} There are over 100 known vulnerabil-

ities in various versions of OpenSSL. We scanned for the above three critical vulnerabilities

in our firmware update dataset because they involve features that are likely to be reachable

via network attack. The first two vulnerabilities can lead to arbitrary code execution. The

last vulnerability can bypass x.509 certificate verification.

7.2.8.2 Findings

Figure 7.18 shows the percentage of vendor released firmware images that use versions of

zlib and OpenSSL library containing known vulnerabilities for a subset of LaserJet models.

Table 7.7 shows the duration of which known vulnerabilities that have existed for in various

models of LaserJet printers.

Overall, we made the following observations:

Mandatory firmware update signature verification is not an adequate defense mechanism

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 76

Figure 7.18: Percentages of RFUs for each printer model containing known zlib and

OpenSSL vulnerabilities.

Model Lib Earliest RFU Latest RFU

2055
ssl Unknown Unknown

zlib 2009-04-30 Present

4005
ssl 2010-02-11 Present

zlib 2009-06-05 Present

4250
ssl 2004-09-02 Present

zlib 2004-09-02 Present

4700
ssl 2009-09-14 Present

zlib 2009-06-05 Present

9050
ssl 2004-06-30 Present

zlib 2004-06-30 Present

Table 7.7: Lifespan of vulnerabilities in third-party libraries used by LaserJet firmware.

against vulnerabilities that exist in the codebase of existing printers. Therefore, a large

population of network printers is still potentially vulnerable to exploitation, despite the

firmware updates released by the vendor.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 77

Printer models analyzed 63

RFU images analyzed 373

All RFUs w/ at least 1 vulnerability 300

Latest RFUs w/ at least 1 vulnerability 41 (65.1%)

Most common zlib version 1.1.4

Most common OpenSSL version 0.9.7b

Table 7.8: Third-party library vulnerability analysis observations.

7.2.9 Recommended Defenses

We present two host-based defense techniques developed by the authors to mitigate the

vulnerabilities described in Chapters 8 and 9. The vulnerable firmware update feature

found in HP LaserJet printers is rarely used and should be disabled until it is needed.

However, we found that disabling this feature was not trivial and at times impossible, as was

the case with the LaserJet P2055DN. We propose a technique, which we call Autotomic10

Binary Structure Randomization (ABSR): it not only disables unnecessary features but also

removes the unused binary from the firmware image. This technique simultaneously reduces

the attack surface of the embedded device as well as the amount of code and data that can

be used as part of any shellcode.

Disabling unused features on the embedded device is helpful, but it does not guard

against exploitation via attack vectors within necessary features that cannot be removed.

For example, vulnerable third-party libraries like ones identified in Section 7.2.8 may be

pivotal to the functionality of the embedded device. We believe techniques like ABSR

should be used in conjunction with other host-based defenses to detect and mitigate the

consequences of successful exploitation. Software Symbiotes have been demonstrated as

a viable dynamic firmware integrity attestation technique on embedded systems such as

enterprise routers.

Despite proper software and security engineering practices by vendors, firmwares will

continue to be released with bugs and vulnerabilities. ABSR and Symbiotes are aimed at

10Autotomy - The spontaneous casting off of parts is a (biologically) viable security mechanism.

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 78

securing devices that run such firmware.

7.3 Concluding Remarks

In this section, we have qualified and quantified the nature and scope of the exploitability

of embedded devices. We have established a quantitative lower-bound on the number of

trivially vulnerable embedded devices in the world, which likely numbers in millions. We

have devised several exploitation techniques aimed at overcoming challenges of carrying

out reliable shell-code execution across heterogeneous populations of embedded devices.

We have surveyed the exploitability of a collection ubiquitous embedded devices, which

resulted in the public disclosure of several high impact vulnerabilities effecting hundreds

of million devices. In short, we have demonstrated, through quantitative and qualitative

analysis, two important findings about the current security posture of embedded devices.

First, vulnerable embedded devices exist in large numbers in the world. Second, vulnerable

embedded devices can be reliably exploited in similar ways as general-purpose computers.

We conclude this chapter of offensive study of embedded devices by drawing the following

conclusions:

1. Exploitation of embedded devices is possible.

2. Reliably large-scale exploitation of embedded devices is feasible.

7.3.1 Poly-species propagation of advanced persistent embedded implants

Consider the embedded exploitation scenario illustrated in Fig. 7.19. By leveraging the

vulnerabilities presented in this chapter, an attacker can compromise several classes of

ubiquitous embedded devices, such as phones, printers and routers, in an automated fashion.

Such an automated attack has been demonstrated in real-time11.

During exploitation stage 1, the attacker can leverage CVE-2011-4161 to inject persistent

malware into common network printers within the secured network. This can be done by

sending a specially crafted document to an user within the secured network. The attack is

triggered when the document is printed.

11aesop.redballoonsecurity.com

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 79

Secured Network

External Network
(Internet)

Gateway
Firewall

Attacker

Network
Printer

Network
Printer

VoIP
Phone

VoIP
Phone

VoIP
Phone

Router / Switch

Network
Printer

Router / Switch

Desktop

General
Purpose
Server

1

22

3

4

4

5

5

Exploitation Stage

General Purpose
Computers

Embedded
Computers

Figure 7.19: Anatomy of a plausible poly-species malcode propagation scenario

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 80

Once compromised, the malicious payload running within the network printer creates a

reverse-ip tunnel through the gateway firewall back to the attacker. This effectively grants

the attacker, located outside the secured network, layer-2 access and persistent presence

within the secured network.

Using the compromised printer as an advanced persistent asset, the attacker carries out

layer-2 and layer-3 reconnaissance within the secured network in order to identify other vul-

nerable embedded devices. During exploitation stage 2, the compromised printer identifies

and compromises other vulnerable printers within the victim network.

During exploitation stage 3, the compromised printers leverage CVE-2012-5445, CVE-

2013-6685 and ASA-2014-099 to exploit vulnerable VoIP endpoints identified through typ-

ical network reconnaissance.

During exploitation stage 4, the compromised VoIP endpoints are leveraged to identify

and exploit other similarly vulnerable devices.

Lastly, during exploitation stage 5, the routers and switches themselves are exploited.

The pattern of reconnaissance, exploitation and malcode propagation is similar to that

which have been observed within populations of general-purpose computers. However, the

ability for a functionally cohesive piece of malcode to propagate across and operate stealthily

within a heterogeneous collection of embedded devices running many different operating

systems and ISA’s can give the attacker novel channel of persistent access to the secured

network via various compromised embedded devices.

Since individual embedded devices lack host-based defense capabilities, the secured net-

work lacks the ability to detect the presence of embedded malcode as a whole. In the

absence of host-based detection capabilities, the presence of malcode propagation can only

be detected using methods that rely on phenomenons external to the compromised devices,

such as network-based intrusion detection. However, such techniques will likely have limited

efficacy in the context of embedded exploitation scenarios such as the one presented in this

section.

Consider the fact that several stages of the above malcode propagation scenario can

be carried out via direct network connections between devices. In such cases, traditional

network-based intrusion detection techniques will be rendered nearly useless, especially if the

CHAPTER 7. QUALITATIVE ASSESSMENT OF REAL-WORLD EMBEDDED
VULNERABILITY 81

routers and switches, which constitute the networking substrate, is themselves compromised.

7.3.2 Large-scale exploitation

We conclude this chapter of offensive study of embedded devices by asserting that host-

based defense within each embedded device endpoint is crucial to the defense of modern

computer networks. The next chapter will discuss several such defensive mechanisms, and

the core contributions of this thesis.

82

Part III

Embedded Defense

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 83

Chapter 8

Symbiotic Embedded Machines

Large numbers of legacy embedded devices on the Internet, such as routers, are ripe for

exploitation. However, little to no host-based defensive technology like antivirus and IDS’s

are available to protect these devices, thus leaving vast portions of the Internet substrate

vulnerable to attack. We propose a host-based defense mechanism, which we call Symbi-

otic Embedded Machines (SEM), that is specifically designed to inject intrusion detection

functionality into the firmware of existing embedded devices. A SEM or simply a Symbiote,

may be injected into deployed legacy embedded systems with no disruption to the operation

of the device. A Symbiote is a code structure embedded in situ into the firmware of an

embedded system. The Symbiote tightly co-exists with its host executable in a mutually

defensive arrangement, sharing computational resources with its host while simultaneously

protecting the host against exploitation and unauthorized modification. The Symbiote is

stealthily embedded in a randomized fashion within an arbitrary body of firmware to pro-

tect itself from removal and unauthorized deactivation. We demonstrate the operation of

a generic whitelist-based rootkit detector Symbiote injected in situ into Cisco IOS with

little performance penalty and without impacting the routers functionality. The proposed

Symbiote can detect unauthorized modification of IOS memory in approximately 300 ms

on a physical Cisco 7121 router. We present the performance overhead of a Symbiote on

physical Cisco hardware. A MIPS implementation of the proposed Symbiote is also ported

to ARM and injected into a Linux 2.4 kernel, allowing the Symbiote to operate within An-

droid and other mobile devices. The use of Symbiotes represents a practical and effective

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 84

protection mechanism for a wide range of devices, especially widely deployed, unprotected,

legacy embedded devices.

8.1 Introduction

We propose to use the Symbiote to inject intrusion detection functionality into the firmware

of legacy embedded systems. The Symbiote structure should allow an integrity verification

payload to detect unauthorized modification of the static regions of memory of the protected

device. Symbiote injection may be randomized so that each instance is distinct from all

other injected systems in order to thwart attempts by an adversary to disable the injected

Symbiote. In general, we aim to create an injectable software construct that provides the

following four fundamental security properties:

1. The Symbiote has full visibility into the code and execution state of its host program,

and can either passively monitor or actively react to the observed events at runtime.

2. The Symbiote executes along side the firmware or host program. In order for the host

to function as before, its injected SEM must execute, and vice versa.

3. The Symbiote’s code cannot be modied or disabled by unauthorized parties. Such

attempts will either be detected by the Symbiote or will render the host program

inoperable.

4. No two instantiations of the same Symbiote is the same. Each time a Symbiote

is created, its code is randomized and mutated by a polymorphic engine, rendering

signature based detection methods and attacks that require predictable memory and

code structures within the Symbiote ineffective.

An immediate application of the system presented in this chapter is the fortification of

existing vulnerable network routing devices. Network embedded devices like routers and

firewalls are vulnerable to the same attacks as general purpose computers, but generally

do not have the facility to execute third-party host-based defenses like anti-virus. Using

the Symbiote, we have successfully injected a host-based root-kit detection mechanism into

a closed-source proprietary operating system, Cisco IOS. We believe that the techniques

discussed in this chapter can be used to fortify existing vulnerable devices within the critical

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 85

Symbiote Manager

Host Program

Symbiote Payload

= intercept point

Figure 8.1: Logical overview of SEM injected into embedded device firmware. SEM main-

tains control of CPU by using large-scale randomized control-flow interception. The SEM

payload executes alongside original OS. Figure 6 shows a concrete example of how the SEM

payload can be injected into a gap within IOS code.

infrastructure, like smart power meters, machine to machine control systems, as well as

everyday embedded devices like VoIP phones, home routers and mobile computers.

Figure 8.1 shows how a Symbiote is typically injected into a host program. A large

number of control-flow intercepts are distributed randomly throughout the body of the host

program, allowing the Symbiote Manager to periodically regain control of the CPU. Once

the Symbiote Manager is invoked, it executes a small portion of its defensive payload before

saving its execution context and returning control back to the host program. This allows

the Symbiote and host program to execute in tandem and in a time-multiplexed manner

without altering the original functionality of the host program. The Symbiote injection

process provides a probabilistic lower bound on the frequency in which the Symbiote will

be invoked at runtime as an adjustable parameter. The Symbiote resides within the same

execution environment as the host program. It has the ability to passively monitor or

proactively alter the host program’s behavior at runtime. Since the Symbiote is deeply

intwined with its protected host program, attempts to corrupt or alter the Symbiote binary

will either be detected by the Symbiote or cause the host program to crash as described in

Section 8.4.

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 86

As we see in Section 8.3, Symbiotes can defend any arbitrary executable, even other

Symbiotes. Unlike traditional anti-virus and host-based defense mechanisms, which install

into and depend heavily on facilities provided by the vulnerable systems they are meant to

protect, the Symbiote treats its host program as an external and untrusted entity. Sym-

biotes do not depend on functionality provided by its host, giving it several advantages.

The Symbiote:

Is agnostic to its operating environment. Since the Symbiote injects itself into its

host program, it does not need to conform to any executable format. The Symbiote

will execute as long as its host program is a valid executable, regardless of operating

system type or version.

Can be injected into proprietary black box operating systems. Since Symbiotes are

agnostic to the inner workings of its host program and execution environment, deploy-

ing Symbiotes on proprietary systems is as easy as deploying them within well known

ones.

Is entirely self-contained and does not depend on facilities provided by its host program.

The Symbiote treats its host program as an untrusted and foreign entity. It does not

use any external code to protect the host program. Therefore, vulnerabilities within

the host program will not be shared by its Symbiote.

Is self-protecting and stealthy and thus is difficult to detect and deactivate by an ad-

versary.

Is lightweight. The Symbiote does not require hardware virtualization support. It exe-

cutes natively on its host program’s hardware and does not perform JIT compilation.

This efficiency makes the use of Symbiotes in resource-constrained embedded devices

feasible.

8.2 Threat Model

We assume the attacker is technically sophisticated and has access to both zero-day vulner-

abilities and compatible exploits allowing reliable execution of arbitrary code. We further

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 87

assume that the attacker executes the attacks in an online fashion. In other words, the

attacker must carry out the attack remotely against a running device without interfering

with its function or causing it to crash or reboot. Attacks involving configuration changes

or replacement of the entire firmware image (that requires a reboot) are excluded from our

model because they can be detected by conventional methods like network-based monitor-

ing and filtering. We also assume that the attacker has access to the original host program

image, before any Symbiotes are injected into it.

Online attacks against the Symbiote-protected host program can be divided into two

categories: those attacks that attempt to disable or evade the Symbiotes protecting the

host program, and those that do not. We first address existing attacks that target the

host program and show how Symbiotes can prevent such attacks. Section 8.4 discusses

multi-stage attacks that attempt to disable Symbiotes prior to executing their malicious

payloads.

With respect to Cisco routers, we focus on rootkit techniques that make persistent

changes to the IOS operating system. The SEM mechanism introduced in this chapter is

used to detect injected code that changes portions of the device that are otherwise static

during the life time of the device. The Symbiote payload presented in this chapter is

designed to detect unauthorized code modification and cannot defend against exploits that

do not make persistent change to the router’s code. However, the SEM approach can also

be used to detect exploitation in dynamic areas of the target embedded device like the stack

and heap. Symbiote control-flow interception methods and payloads that defend against

return-to-libc, return oriented and heap related attacks are currently under research.

8.3 Symbiotic Embedded Machines

The Symbiote is a self-contained entity and is not installed onto the host program in the

traditional sense. It is injected into its host program’s code in a randomized fashion. Anti-

virus and other host-based defenses are typically installed onto or into the operating system

it protects. This places a heavy dependence on the features and integrity of the operating

system. In general, this arrangement requires a strong trust relationship with the very

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 88

software (often of unknown integrity) it tries to protect. In contrast, the Symbiote treats

its entire host program as an external and untrusted entity, and therefore eliminates the

unsound trust on traditional legacy systems.

Symbiotically Protected Host Program

Symbiote Injection Engine

Live Code Analysis,

Randomized

Injection Site

Selection

Usable SEM

Memory

Identification

Binary Rewrite

Randomization & Mutation Engine

Host Program Randomization Symbiote Randomization

Host

Program

Symbiote

Symbiote

Manager

Symbiote

Payload

User Defined

Policy Engine

Figure 8.2: Generic end-to-end process of fortifying an arbitrary host program with a Sym-

biote. Our proof-of-concept Symbiote for Cisco routers, Doppelgänger, is completely imple-

mented in software and can execute on existing commodity systems without any need for

specialized hardware.

Figure 8.2 shows the process in which a Symbiote is instantiated and injected into a host

program, producing a symbiotically protected host program. First, a Symbiote is instanti-

ated by combining a Symbiote Manager with a Symbiote Payload. The resulting Symbiote

binary, along with the host program binary, can be optionally passed to the Randomization

and Mutation Engine. The resulting pair of binaries are passed to the Symbiote Injection

Engine. Here, the host program is analyzed. Using a combination of automated static

and dynamic analysis, a large number of control-flow interception points within the host

program is chosen in a randomized fashion. The Symbiote is finally injected into the host

program using standard binary rewriting techniques, yielding a new symbiotically protected

executable binary that is functionally equivalent to the original host program.

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 89

If the Randomization and Mutation Engine is used, each instantiation of a Symbiote

is polymorphically mutated and randomized during the injection process. In this case,

studying and reverse engineering one instance of a particular Symbiote provides the attacker

with little to no useful information about the specifics of any other instantiation of the same

Symbiote.

The Symbiotic Embedded Machine structure creates an independent execution context

from the native operating system at runtime. SEM uses the newly created context to execute

its Symbiote payload. Payloads are interchangeable and can be written in any high level

language. As the host program executes, its SEM periodically diverts CPU to its Symbiote

payload in brief bursts before returning control back to the host program. It is important

to note that SEM does not use traditional virtualization techniques. As most network

embedded devices do not have hardware hypervisors or virtualization support, the methods

we use to achieve execution context separation use only standard CPU instructions.

8.3.1 Doppelgänger: A Symbiote Protecting Cisco IOS

Figure 8.3 shows the rendering of a typical Symbiote when injected into Cisco IOS. Note

that the Symbiote payload portion is shown as a contiguous block for clarity. In practice,

the Symbiote payload should be randomly distributed across many noncontiguous segments.

For generality, SEM does not rely on firmware specific code features like system calls or

standard libraries. The Control-Flow Interceptor component uses inline hooks to intercept

a large number of functions within the target firmware. Upon invocation of an intercepted

function, control of the CPU is redirected to the Symbiotic Embedded Machine Manager

(SEMM), which executes a small portion of the SEM payload. Once invoked, the SEMM

manages the execution of injected SEM payload as follows:

1. Store the execution context of the native OS (i.e. IOS).

2. Load the context of the SEM payload.

3. Compute how long the SEM payload can run, based on current native OS system

utilization.

4. Execute the SEM payload for a fixed amount of time.

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 90

Figure 8.3: Rendering of Symbiote structure inside a typical IOS firmware. The top of

the graph shows large numbers of control-flow interceptors diverting the CPU to the SEM

manager and payload, which can be seen as the small vertical structure at the bottom of

the graph.

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 91

5. Store the execution context of the suspended SEM payload.

6. Load the execution context of the native OS at the time the SEMM assumed control.

7. Restore CPU control to the invoked function.

8.3.2 Live Code Interception with Inline Hooks

First, analysis is performed on the original host program in order to determine areas of live

code, or code that will be run with high probability at runtime. Next, random intercept

points are chosen out of the live code regions found. Lastly, each Symbiote Manager,

Symbiote payload, and a large number of control-flow intercepts are injected into the host

program binary, yielding a Symbiote protected host program.

Control-flow intercepts are distributed in a randomized fashion throughout the host

program’s binaries in order to ensure that the Symbiote regains control of the CPU peri-

odically. We would like to ensure that these randomly chosen intercept points are located

within regions of code that will be frequently executed at runtime. This problem is difficult

to solve with high accuracy in the general case. However, our purposes do not require the

classification mechanism to be absolutely accurate. In reality, implementing a sufficient so-

lution for real-world host programs is not too difficult. Section 8.3.5 discusses the methods

used in our experiments for live code classification.

Once regions of code within the host program are chosen for control-flow interception,

the Symbiote injection process imbeds interceptors as well as the Symbiote binary into the

host program. The Symbiote implementation presented in this chapter uses a Detour [115]

style inline function hooking mechanism for control-flow interception. While we injected

our intercepts within the function preamble in the current Symbiote implementation, this is

not a requirement. Control-flow intercepts can be embedded in arbitrary positions within

the host program using existing binary instrumentation techniques.

Detour [115] style inline hooking is a well known technique for function interception.

However, SEM uses function interception in a different way. Instead of targeting specific

functions for interception that requires precise a priori knowledge of the code layout of

the target device, SEM randomly intercepts a large number of functions as a means to

periodically and consistently re-divert a small portion of the device’s CPU cycles to execute

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 92

the SEM payload. This approach allows SEM to remain agnostic to operating system

specifics while executing its payload alongside the original host program. The SEM payload

has full access to the internals of the original firmware but is not constrained by it. This

allows the SEM payload to carry out powerful functionality that are not possible under

the original OS. For example, the IOS rootkit detection payload presented in Section 8.3.7

bypasses the process watchdog timer constraint, which terminates any IOS process running

for more than several seconds, because the detector operates outside the control of the OS.

Stealth is a powerful byproduct of the SEM structure. In the case of IOS, no diagnostic

tool available within the OS (short of a full memory dump) can detect the presence of the

SEM payload because it manipulates no OS specific structure and is effectively invisible to

the OS. The impact of the SEM payload is further hidden by the fact that CPU utilization of

the payload is not reported within any single process under IOS and is distributed randomly

across a large number of unrelated processes.

Note that the mechanism of action used by our current Symbiote is designed specif-

ically for resource-constrained real-time embedded devices. The Symbiote approach can

be migrated to general purpose computers in standard operating systems running on x86.

However, because of the plethora of dynamic instrumentation mechanisms available in these

environments, the x86 version of the Symbiote can use a wide variety of control-flow in-

terception mechanisms not available and not suitable for embedded devices. For example,

instead of using Detour style hooks, the Symbiote can leverage existing tools like Pin. While

each component of the Symbiote may be implemented differently to take advantage of the

underlying hardware architecture, the structure and interfaces between each component will

remain the same.

8.3.3 SEMM and Execution Context Records

The SEM Manager (SEMM) is responsible for managing all necessary state information to

ensure that the SEM payload and the native OS can safely execute in a time multiplexed

manner. This information is saved and loaded each time the SEMM switches CPU control

between the SEM payload and the native OS. The major challenge of the SEMM is pre-

serving the integrity of the saved execution contexts. Any corruption to this data will very

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 93

likely cause unintended behavior or a system crash when the context is loaded into CPU.

Since the SEM payload is under our control, it will not accidentally modify the saved con-

text record of the native OS. Therefore, one of the SEMM’s critical goals is to prevent the

native OS from overwriting the memory chunks used to store the SEM payload’s execution

context record.

This seems like a difficult task, as the native OS has no knowledge of the existence of the

SEM and has legitimate access to all addressable memory on the target device. However,

the size of each execution context record is approximately 256 bytes. In practice, finding

small, usable chunks of memory which can be safely used by the Symbiote is fairly simple.

The next section discusses how usable memory is identified in Cisco IOS to support our

proposed Symbiote. Note that many other methods of locating or creating usable Symbiote

memory exists. We chose a simple and noninvasive allocation method for the purposes

of the Symbiote payload presented in this chapter. However, as the size and memory

requirements of payloads increase, we may explore other ways of allocating usable memory

for the Symbiote. This is a topic of ongoing research.

8.3.4 SEM Memory Management

In order for SEM to execute safely along the native OS, it must have access to memory

that the native OS will not modify. Using SEM’s small memory footprint to our advantage,

we locate small chunks of usable memory located in areas of the binary which will not be

used by the native OS. We have identified several methods of finding such unused memory.

The most successful strategy looks for “gaps” within various structures in the firmware.

Small gaps between chunks of binary executables, strings, and other static structures are

often intentionally introduced for optimization and alignment purposes. Given that the

native OS uses these gaps only as space holders, SEM can safely use these small chunks

of memory. It is important to note that usable memory identified through this method

constitutes unused address space, rather then unlikely to be used address space.

Usable memory can be identified with a single linear sweep of the firmware image.

While this approach places an upper bound on the amount of usable space available to the

SEM, experimental results have shown that this is more than adequate. For example, we

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 94

identified 290Kb and 130Kb of usable space trivially inside the .data and .text sections

of the 12.2(27c) IOS image respectively. This space is more than sufficient for our current

SEM memory requirements (Section 8.5, Table 8.1). Furthermore, much larger amounts

of usable space exist within dynamic sections of memory like the stack and heap. Safely

locating usable memory chunks within these areas is currently under research.

Our proof of concept Symbiote implementation places the SEMM and SEM payload

binaries within the large alignment gap at the end of the .text section of the firmware.

This static placement advertises to an adversary where to look for a Symbiote, so in an

actual deployment, the SEMM and payload binaries would be distributed across many non-

contiguous segments in memory. In addition, we use a pool of gaps in the .data section for

storing the stack and execution context records of the SEM payload

8.3.5 Automatically Locating Control-Flow Intercept Points

Control-flow intercept points are chosen randomly out of candidate live code regions within

the host program. The way code regions are classified as live, and the number of intercepts

chosen from each region directly affects the frequency in which the Symbiote will gain control

of the CPU. This in tunr directly affects the performance and overhead of the Symbiote.

Both dynamic and static methods of live code classification are considered for our exper-

iments. First, the host program is executed under a profiler in order to observe live code, or

code coverage under normal operating conditions1. Using code coverage analysis to classify

live code is advantageous because it cannot produce false positives, i.e. dead code cannot

be classified as live code. However, this dynamic approach cannot classify regions of code

that are reachable only through rare or malformed program input. Therefore, we augment

our code coverage based live code classifier with static analysis of the control-flow graph of

the host program. Figure 8.4 shows the live code regions of a typical IOS router firmware

image after our initial analysis. Control-flow intercept points will be chosen randomly out

of these code regions (shown in white) to periodically divert CPU control to the injected

Symbiote. Note that intercept points can, and should also be placed in the binary outside

of the detected live code regions.

1In the case of IOS, we profiled the router image using Dynamips under various workloads.

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 95

Figure 8.4: Live Code Regions (White) Within IOS 12.4 Firmware (Black). Code Range:

0x80008000-0x82a20000

8.3.6 Injecting Symbiotic Embedded Machines into Firmware

The general injection process for any embedded device may be represented as a transform

function from the original binary of the devices software to a new binary safely modified

with new functionality:

ISEM (Bi, Xarch, SEMarch, PSEM)− > Bo

Given a binary firmware Bi, which executes on a CPU architecture Xarch, a SEM imple-

mentation SEMSEM and a chosen payload PSEM written in C, the SEM injection function

ISEM outputs a new binary firmware Bo such that it:

• Retains the same size and functionality as Bi.

• Contains both SEMarch and a cross-compiled binary of PSEM .

• Redirects a share of CPU time to the execution of PSEM .

The injection function ISEM does the following:

• Cross-compile PSEM into executable binary for Xarch.

• Identify “live” code regions within the host program.

• Identify a sufficiently large set of control-flow intercept points.

• Identify a sufficiently large usable memory chunks within Bi.

• Creates a new image Bo.

• Inject SEMarch and the cross-compiled payload PSEM into suitable memory chunks

in Bo.

• Install inline hooks to redirect CPU control to the embedded SEMarch.

• Output Bo.

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 96

As the injection process uses only gap memory chunks in situ, the lengths of Bi and Bo are

identical.

8.3.7 Rootkit Detection Payload

To detect IOS malcode and rootkits described in the previous section, we implement a white-

list strategy. Known rootkits operate by hooking into and altering key functions within IOS.

To do this, specific binary patches must be made to executable code. Therefore, a continuous

integrity check on all static areas of Cisco IOS will detect all function hooking and patching

attempts made by rootkits and malware. The rootkit detection payload described below is

not specific to IOS, and can be used on other embedded operating systems as well. For the

white-list strategy to be effective, the protected kernel code must either remain static during

legitimate operation, or only be allowed to change in predictable ways. For example, while

some embedded operating systems support legitimate mechanisms to dynamically update

the kernel, the contents of those updates are static and known a priori. Therefore, the

checksums of approved updates can be calculated and distributed to SEM ahead of time.

Formally, let

Hc = Fhash(Sc)

where {Sc} is a set of contiguous code segments we wish to monitor within B, a binary

host program. If Hc outputs a cryptographically secure hash function over all monitored

code segments, a change in Hc, then, indicates a change within at least one code segment

in {Sc}.

Hc = {x|x ∈ Sc, Fhash(x)}

Further, we can compute and monitor multiple hash values {Hci} over any arbitrary subset

of {Sc}. By doing so, we gain arbitrary resolution on the location of code modification at

cost of increased memory and computational overhead.

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 97

8.4 Computational Lower Bound of Successful Software-Only

Symbiote Bypass

This section discusses multi-stage attack strategies, which attempt to disable the Symbiote

prior to executing their malicious payload. We provide an intuitive lower bound of the

computational cost of a successful attack against software-only Symbiotes. We also discuss

ways of detecting and defending against such multi-stage attacks.

Generally, software-only Symbiotes can be successfully bypassed in two ways:

Attack 1: Remove control-flow intercepts. If the attacker can remove all control-

flow intercepts within all live code regions before the Symbiote’s detection latency, the

attacker can prevent the Symbiote from ever regaining control of the CPU.

Attack 2: Deactivate the SEMM or Payload. If the attacker can locate and patch

the Symbiote’s manager or payload code, the Symbiote can be completely disabled.

The Symbiote control-flow intercepts are randomly distributed within the live code

region, while the Symbiote Manager and Payloads are distributed randomly throughout the

entire host program2.

Both attacks reduce to a general problem of identifying all P out of N bytes, P being

the bytes belonging to the Symbiote component under attack, N being the bytes of the

host program in which P can exist. In the case of attack 1, the attacker must identify and

remove all control-flow intercepts, P injected into all live code regions, N (assuming that

this is known). Since the Symbiote binary is polymorphically mutated at injection time, the

attacker cannot search for a well-known Symbiote signature through the binary. Instead,

the attacker must compare an unmodified copy of the host program with the victim host

program during an online attack. This is essentially equivalent to at least a linear operation

over the size of all live code regions.

Similarly, since the Symbiote binary is distributed randomly throughout the host pro-

gram, an attacker must identify all code regions belonging to the Symbiote. There are many

2While the Symbiote is distributed randomly throughout the binary of the host program, the injection

process ensures that the Symbiote code cannot be inadvertently executed by the host program. In other

words, the control-flow intercepts are the only mechanism in which the Symbiote code will be invoked.

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 98

ways to do this. However, since no well-known signature exists for the Symbiote code, the

attacker must perform dynamic disassembly in order to follow control-flow intercepts to a

piece of Symbiote code. Alternatively, the attacker can perform a linear comparison of the

entire host program to identify all injected Symbiote code. In the former case, the attacker’s

problem is reduced to attack 1, because unless all control-flow intercepts are removed, the

attacker cannot be sure that all Symbiotes are removed. In the latter case, the attacker

must use a linear amount of CPU and network I/O, which again reduces to the problem of

identifying P bytes out of N.

To put these attacks into perspective, the average size of the host programs analyzed in

our experiments is approximately 35 MB, the size of live code regions considered for control-

flow interception is approximately 10 MB. Each host program contains approximately 75,000

functions, all of which can be intercepted. (Note that control-flow interception need not

take place only at the function preamble, but can exist anywhere within the function body.)

If the attacker attempts to perform a linear comparison, portions of the unmodified host

program will have to be transferred over the network during the online attack. The attacker

can also attempt to dynamically disassemble the 10 MB of live code. Both attack strategies

require a very large amount of network I/O or CPU which raises the bar quite high for

the attacker to overcome without being noticed. If an attacker is able to successfully carry

out either attacks in an online fashion faster then the Symbiote’s detection latency, the

self-monitoring Symbiote arrangement will still be able to detect the attack.

To further raise the necessary complexity of a successful attack, multiple Symbiotes can

be arranged in a self-monitoring monitor arrangement. As proposed by Stolfo, Greenbaum

and Sethumadhavan [105], a network of monitors can be constructed in a way such an alarm

will be raised if any subset of monitors are compromised or deactivated, or if any critical

condition monitored by the system is violated. Multiple mutually protected Symbiotes

can be injected into the same host program. Networks of Symbiote-protected devices, like

routers, can also be arranged in this self-protecting manner.

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 99

8.5 Symbiote Performance and Computational Overhead

Once a Symbiote is injected into its host program, it is important to bound the frequency and

duration which the Symbiote will control the CPU as well as the aggregate computational

overhead the Symbiote system imposes on the original host program.

We randomly choose a set of control-flow intercept points within live regions of the

target host program. The method and parameters used to determine live regions, as well

as the number of intercept points chosen gives us fine grain control of p(αi, δ, τq), and gives

us a probabilistic bound on the frequency in which the Symbiote will gain control of the

CPU. Section 8.3.5 discusses the methods we used to extract “live” regions from the host

program.

Consider the computational cost of an injected SEM during some time period τq.

Let {α1...αn} be the set of all functions in binary firmware β.

Let g(αi, τq) be the cost of SEM per invocation at time period τq.

Let h(αi) be the binary function representing whether function αi is “intercepted” by

the SEM.

Let p(αi, δ, τq) be the number of times function αi will be invoked during time period

τq, given some probability distribution δ.

Note that the probability distribution δ is derived from the live code analysis performed

during the Symbiote injection process. Supposing a control-flow intercept is inserted into a

piece of live code which is known to execute with some probability according to the normal

execution model of the host program, we can claim that the Symbiote control-flow intercept

will also be invoked with at least this probability. Thus, the ”live” code analysis gives us

a probabilistic lower bound on the frequency in which the Symbiote will regain control of

the CPU over any time period τq.

Let the SEM cost function g(αi, τq) be:

g(αi, τq) = OSEMM +Opayload(αi, τq) (8.1)

Where OSEMM is the (constant) cost of invoking the SEMM and Opayload(αi, τq) is the

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 100

amount of the SEM payload to execute (variable), given function αi and time period τq.

The Lower bound on SEM cost Cq, over time period τq can be expressed as:

Cq = ΣiOSEMM ∗ p(αi, δ, τq) (8.2)

= OSEMMΣip(αi, δ, τq) (8.3)

Intuitively, the lower bound on the SEM cost is simply the overhead of invoking the

SEMM multiplied by the expected number of times that the SEMM will be invoked over

time period τq.

The computational cost of SEM Cq, over time period τq is:

Cq = Σig(αi, τq) ∗ h(αi) ∗ p(αi, δ, τq) (8.4)

The Upper bound on SEM cost Cq over time period τq. is a function of the

number and distribution of functions intercepted in order to execute the SEMM and the

cost of the payload execution the SEMM manages. Let h(αi) = 1 for all functions α), then

Cq = Σig(αi, τq) ∗ p(αi, δ, τq) (8.5)

= Σi(OSEMm +Opayload(αi, τq)) ∗ p(αi, δ, τq) (8.6)

= OSEMmΣip(αi, δ, τq) + ΣiOpayload(αi, τq) ∗ p(αi, δ, τq) (8.7)

Observations

• The distribution δ, and therefore, p(αi, δ, τq) cannot be changed (without changing the

host’s original functionality), and varies with respect to different devices, firmware,

and input.

• The function h(αi) can be used to control SEM CPU utilization but is binary and

imprecise.

• The function g(αi, τq) can be used to control SEM CPU utilization3 precisely.

3In practice, OSEMm is much smaller than Opayload(); therefore, the second summation in equation 8.7

dominates over the first (Section 8.5.1).

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 101

Doppelgänger SEMM Size Payload Size

1048 Bytes 336 Bytes

Payload Memory Footprint IOS 12.2 Image

2240 Bytes and 1,936 Inline Hooks c7100-is-mz.122-27c.bin

IOS 12.2(27c) Size Router Model

25,922,308 Bytes Cisco 7120-AT3

Router CPU Router Memory

MIPS R527x @ 225Mhz 57344K

Table 8.1: Doppelgänger Implementation Stats

We can vary the number of control-flow interceptions (h(αi)) and the amount of SEM

payload that is executed at each invocation (g(αi, τq)) to control precisely the amount of

CPU time used by the SEM. We can implement these two mechanisms in the SEMM

to divert more CPU cycles to the SEM during periods of low CPU utilization and divert

less during periods of high CPU utilization. Figure 6 shows actual CPU utilization when

Doppelgänger and our rootkit detection payload are installed on a physical Cisco 7120 router

with g(αi, τq) set to several fixed values. This parameter directly affects the portion of the

CPU that is diverted to executing the SEM payload. Figure 7 and Table 8.2 shows an inverse

relationship between g(αi, τq) and the amount of time required to detect a modification of

IOS, which we call the detection latency.

8.5.1 Experimental Results: Doppelgänger, IOS 12.2 and 12.3, Cisco

7121

Doppelgänger, our proof of concept SEM implementation is injected into IOS 12.2(27c) and

IOS 12.3(3i) on the a Cisco 7120 router. The rootkit detection payload is implemented in C

and calculates a single hash covering the .text memory range 0x60008000 to 0x61662000.

As a proof of concept, we implemented CRC-32 as the hashing function used by the rootkit

detection payload.

Two sets of experiments are done to demonstrate both performance characteristics and

accurate IOS code modification detection. To measure CPU utilization, the Cisco 7120

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 102

SEM Payload Burst Rate

0xF 0x1F 0xFF 0x7FF

56s 43s 35s 0.3s

Table 8.2: Detection Latency at Different SEM Payload Burst Rates IOS 12.2

router is put through a standard workload script with varying SEM payload execution

burst rates. The workload script touches a cross section of standard router attack surface

by performing tasks like enabling / disabling routing, generating system status dumps, re-

configuring routing parameters, and advertised routes, etc. The CPU utilization is measured

by SNMP polling.

To demonstrate IOS code modification detection, we simulate the installation of a rootkit

by modifying a SEM protected IOS firmware with added function hooks and code. We

then boot the Cisco router with the altered image and measure the time required for the

SEM payload to detect the modification. We configure the payload detector to halt the

router once the modification is detected. This is also done with varying SEM payload

execution burst rates to demonstrate the relationship between SEM payload execution rate

and runtime detection latency. Performance evaluation data are included in the Appendix.

8.5.1.1 Experimental Results

Figure 6 demonstrates CPU utilization of the 7120 router when the SEM payload execution

burst rate, aka g(αi, τq), is varied. Table 8.2 is the average detection latency. With a fixed

execution burst rate of 0x7FF, the Symbiote payload was able to detect unauthorized code

modification in approximately 0.3 seconds.

8.5.1.2 Experimental Findings

• The Cisco router continues to function with Doppelgänger running concurrently, even

during periods of near maximum CPU utilization.

• SEM CPU utilization can be controlled by varying the payload execution burst rate

within the SEMM.

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 103

• Detection Latency is inversely proportional to SEM CPU utilization (and SEM pay-

load execution burst rate).

As Figure D.1 shows, Doppelganger’s CPU utilization currently increases proportion-

ately to the CPU utilization of its host program. This behavior may be desirable as it directs

more CPU resources to the host’s defense mechanisms when the host is heavily utilized.

However, this may not always be the best approach. For example, we may want to execute

the Symbiote’s payload heavily when the host program is idle and throttle down the Sym-

biote’s payload when the host program is busy. This can be accomplished by implementing

an alternative SEMM, specifically, one which regulates the Symbiote’s CPU utilization by

reacting to current host system utilization.

8.5.2 Doppelgänger, Linux 2.4.18, ARM and Qemu

We have completed a preliminary port of Doppelgänger onto the ARM architecture. We

chose ARM as the second implementation candidate in order to demonstrate the feasibil-

ity of injecting SEM payloads into ARM-based mobile devices running Android and other

Linux-based embedded operating systems. We have successfully injected this port of Dop-

pelgänger into a vanilla Linux 2.4 kernel running on Qemu, a popular ARM processor

emulator.

While the Symbiote manager required a re-implemention using ARM instructions, the

control-flow interception and SEM injection process remained the same for both Cisco IOS

and Linux, as did the Symbiote payload, which was simply cross-compiled.

8.6 Concluding Remarks

We presented a Symbiotic Embedded Machine (SEM), a novel software mechanism that

provides a means of embedding defensive software into existing embedded devices. Using

a specific SEM implementation, which we call Doppelgänger, we automatically inject a

rootkit detection payload into a Cisco 7120 router running multiple firmware images across

two major IOS versions, 12.2 and 12.3. By injecting under 1400 bytes of code into the IOS

firmware, Doppelgänger protects the router from all function hooking and interception at-

CHAPTER 8. SYMBIOTIC EMBEDDED MACHINES 104

tempts. Our white-list based rootkit detection payload does not require a priori knowledge

of IOS internals, or signatures of known rootkits, and can protect the router against any

code modification attempts. Empirical results show that unauthorized code modification

attempts are detected in approximately 300 ms. As the SEM structure operates alongside

the native OS of the embedded device and not within it, it can inject generic defensive

payloads into the target device regardless of itself original hardware or software. Due to the

unique nature of network embedded devices, we posit that retrofitting these widely deployed

vulnerable devices with defensive SEM’s is the best hope of mitigating a significant emerging

threat on our global communication infrastructure. SEM is a generic defensive mechanism

suitable for general purpose host protection. Our ongoing research aims to demonstrate

the advantages of the Defensive Mutualistic paradigm and Symbiotes over traditional AV

solutions. Lastly, using the techniques presented in this chapter, we believe it is feasible

to transform existing routers into exploitation detection sensors in order to monitor and

analyze attacks against the Internet substrate.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 105

Chapter 9

Autotomic Binary Structure

Randomization

9.1 Motivation

Attack surface reduction and software diversification have been applied in many ways to

improve the security posture of software. We outline the benefits of each defensive technique

and propose a novel method of combining the two types of defenses into a hybrid defense

that is suitable for the defense of legacy embedded systems.

We present Autotomic Binary Structure Randomization (ABSR), a hybrid defense that

applies two techniques in a mutualistic manner to enhance the security posture of legacy

embedded systems. An automated attack surface reduction, Autotomic Binary Reduction

(ABR), is used in conjunction with a collection of non-localized in-place binary randomiza-

tion techniques, Binary Structure Randomization (BSR), to simultaneously address multiple

weaknesses in legacy embedded systems while side-stepping multiple technical constraints

that make devising general and effective defenses difficult.

We present the theoretical operation of ABSR in this section. In Section 10 , we discuss

performance, in terms of computational overhead, amount of binary diversity and empirical

proof of safety, of ABSR as applied to three real-world devices, a MIPS-based router, a

PowerPC-based switch, and an ARM computer running Linux and BusyBox. Lastly, we

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 106

present a case-study of ABSR defeating a well-known shell-code on Cisco IOS routers1.

While the automated removal of code and data from firmware might intuitively seem

unsafe at first glance, we demonstrate, in the remainder of this chapter, that the binary

reduction algorithms presented in this dissertation will not negatively impact the function-

ality of the device given the satisfaction of several simple assumptions. This is discussed in

depth in Section 9.1.2.

9.1.1 Software Diversification

Attackers often leverage the predictability of various features of software, like precise mem-

ory layout of code and data, to reliably exploit vulnerabilities. Attacks leveraging memory

corruption, code injection and code reuse can usually be exploited reliably when no software

diversification defenses are applied. A large body of work has demonstrated the efficacy of

software randomization defenses against these common types of attack[72].

Theoretically, software diversification techniques can be applied to embedded device

firmware the same way they are applied to software running on well-known general purpose

operating systems. However, the unique constraints of most embedded systems, such as

the lack of source-code and lack of operating-system level support, make many classes of

software diversification techniques impractical.

Due to the proprietary nature of embedded devices and the general lack of source-code,

compile-time diversification techniques sometimes cannot be practically applied to embed-

ded device firmware. Load-time randomization techniques are also sometimes impractical

for embedded devise due to the proprietary and non-standard nature of operating systems

running within many embedded devices. For Cisco IOS is typically loaded into memory

from non-volatile storage once, at boot time. While randomization mechanisms can be im-

plemented in the boot loader, the distinction between operating system, user-land program,

and libraries can be blurred within embedded firmware. The monolithic nature of special-

purpose embedded software limits what the randomized loader can do, short of treating the

1The ABSR and Symbiote defenses have been formally red-teamed by MITLL. I am seeking permission

to reproduce appropriate parts of their report.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 107

entire firmware image as a single executable.2 Furthermore, base-address randomization

techniques like Address Space Layout Randomization provides minimal protection due to

the fact that the vast majority of embedded devices operates within 32-bit address space,

in which ASLR can be easily defeated due to the lack of address-space entropy.

Like load-time randomization, system level randomization techniques like System Call

Mapping Randomization are impractical due to the monolithic and proprietary nature of

embedded firmware. Recent work have demonstrated the feasibility of using syscall-based

features in anomaly detectors in embedded Linux systems [119]. However, the applicabil-

ity of such techniques within proprietary and non-standard operating-systems is currently

unknown.

Techniques that involve hardware modification Instruction Set Randomization are im-

practical because they cannot be used to secure the large numbers of embedded devices

already in deployment.

Localized in-place binary randomization techniques are promising for embedded systems.

However, they are constrained to small localized changes because the randomized snippet

must be the same size as the original code. Many more code randomization techniques can

be applied if the randomized binary can be larger than its replacement. For example, basic

blocks can be split and relocated with the introduction of unconditional jump statements.

In order to take advantage of more complex binary-rewriting randomization techniques,

we must account for the binary-size increase via some other means. This is, in part, the

purpose of the proposed Autotomic Binary Reduction algorithm.

9.1.2 Attack Surface Reduction

[97] posits that security vulnerabilities are frequently the consequence of unwanted features

in a software system. Such vulnerabilities result from overly bloated software, feature ac-

cretion, subsystem reuse and development errors on the part of designers and implementors

2The practical limitations of randomization techniques implemented within the bootloader of an embed-

ded device can be seen in Cisco IOS. Versions 12.4 and later of the OS implements a memory randomization

technique that shifts the entire IOS binary by a random positive offset from a known base address. This

randomization technique can be easily defeated[35].

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 108

and vulnerability insertion on the part of attackers. For example, Cisco IOS ships with a

full implementation of HTTP and HTTPS servers, hardly of use in most enterprise envi-

ronments. The reduction of available attack-surface is a commonly used means to increase

the security of computer systems. Thus, we propose that the automated reduction of at-

tack surface within firmware binaries through the removal of unused software features can

improve the security posture of embedded devices.

9.1.3 A Hybrid Approach

Modern embedded systems such as IP phones, network printers and routers typically ship

with all available features compiled into its firmware image. A small subset of these features

is activated at any given time on individual devices based on its specific configuration. An

even smaller subset of features is actually used, as some unused and insecure features are

enabled by default and cannot be disabled. As a result, many embedded devices still contain

a significant amounts of code and data that should never be executed or read according to its

current configuration. This unnecessary binary is not simply a waste of memory; it contains

potentially vulnerable code and data that can be leveraged by an attacker to exploit the

system. This unnecessary code provides an ideal attack surface. Automated minimization

of this attack surface will significantly improve the security of the device without any impact

to its functionality. The two components of our proposed technique are:

Autotomic Binary Reduction (ABR): The automated removal of unnecessary bi-

naries from each embedded device according to its current configuration.

Binary Structure Randomization (BSR): The automated randomization of exe-

cutable binary through a series of functionality-preserving transforms that alters the binary

layout of the executable at the sub-basic-block granularity and up.

Autotomic Binary Structure Randomization (ABSR) combines automatic software at-

tack surface reduction with a non-localized in-place binary randomization technique.

First, in the Autotomic Binary Reduction (ABR) phase, the firmware and configuration

of the target device is analyzed together. The configuration of the device is analyzed for

features that have been disabled by the operator. Such features are mapped to regions of

code and data within the firmware binary using a hybrid control-flow and data-flow analysis

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 109

algorithm.

The regions of code and data identified ABR is removed from the original firmware

image using our proposed Autotomy algorithm. Meta-data describing the virtual-memory

and file offset ranges of code and data removed by the Autotomy algorithm is stored for

use in the next phase of ABSR.

The Binary Structure Randomization (BSR) phase of ABSR is a non-local, in-place

binary randomization technique that operates by introducing a large sequence of simple,

localized, and functionality preserving transforms to the code and data content of the pro-

gram it protects. ABSR does not depend on any special hardware capabilities or operating-

system level constructions and does not increase the overall size of the protected binary.

Thus, ABSR is particularly suitable for securing legacy embedded systems. While ABSR is

applicable to all computing systems in general, we will focus specifically on its application

in securing embedded devices in this chapter.

Theoretically, there are several alternative paths to engineering the security properties

offered by ABSR in embedded devices. For example, the hardware of existing embedded

devices can be redesigned to support features like secure boot by introducing TPM hardware

and true ASLR by introducing an MMU that supports 64-bit address space. Similarly, their

software stack can be rewritten to correctly leverage the newly introduced hardware.

Realistically, approaches that require hardware modification or software redesign are

impractical. It is estimated by some commercial trade reports that there will be over

25 billion embedded devices in the world by 2015. Thus, systematic redesign of all such

hardware and software is prohibitively expensive and will remain an academic exercise with

little chance to make material impact to improve the security posture of existing embedded

devices.

The ABSR process generally works as follows. First, the target firmware image is un-

packed. Autotomic Binary Reduction (ABR) is then applied to identify regions of binary

code and data that can be removed given a set of high-level features of the firmware de-

termined to be disabled. The Autotomy algorithm replaces removed code and data with

null-bytes. It also modifies the control-flow graph by inserting return statements in ap-

propriate places to ensure that all removed code regions become dead-code. All removed

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 110

regions are given to a randomized free-pool space allocator and used by Binary Structure

Randomization (BSR). After the application of BSR, Execution Detection Pads (XDpad)

are optionally injected into selected regions of the binary. Finally, the modified unpacked

firmware is repacked into its original format and loaded onto the target embedded device.

FRAK[33], the Firmware Reverse Analysis Konsole, is a generalized firmware unpacking,

analysis, modification and repacking framework. We implemented the three components

presented in this chapter, ABR, BSR and XDpad as modifier components within the FRAK

framework, allowing us to apply ABSR to arbitrary firmware images in an automated fash-

ion.

We first present Autotomic Binary Reduction in Section 9.3 and Binary Structure Ran-

domization in Section 9.5. We then present ABSR, a mutualistically defensive application

of both techniques, in Section 9.6. We discuss the use of XDpad to detect unauthorized

code-execution in Section 9.5.3.

9.2 Threat Model

We assume the following remote exploitation threat model.

• Remote exploitation. Attacker knows the specific model of hardware and version of

firmware of the target device but must remotely exploit the vulnerable device over

the network.

• The attacker is able to obtain the original firmware binary that has not been processed

by ABSR and analyze it statically and dynamically.

• The attacker possesses a typical remotely exploitable vulnerability that allows the

attacker to modify memory and control IP register values.

Furthermore, we assume that the target device is a typical embedded device. The

defender may analyze and modify any portion of the contents of the device’s firmware.

However, the defender does not have access to the source-code of the embedded device. We

assume that the target device is a special purpose device. As such, its configuration and

set of enabled features changes rarely.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 111

9.3 Autotomic Binary Reduction

Autotomic Binary Reduction aims to remove regions of code within a body of software

that can be considered unreachable, given a specific configuration for that firmware. Simi-

lar techniques are commonly used by modern compilers for the removal of dead-code and

unreachable-code [39]. Generally, dead-code elimination aims to identify computation that

is unnecessary, i.e. computation yielding data that is never used. In contrast, unreachable-

code elimination aims to identify portions of code that will never be executed. Broadly

speaking, dead-code elimination is performed inherently on the data-flow graph of a pro-

gram, and aims to improve the efficiency of software by pruning unnecessary computation,

whereas unreachable-code elimination is performed on the control-flow graph of a program,

and aims to reduce the size of software. The proposed ABR algorithm described in this sec-

tion takes a hybrid approach that leverages both the control-flow and the data-flow graph of

a program in order to identify unreachable-code regions given a specific configuration input

to the program.

ABR can be divided into two sub-problems: Feature Entry-Point Map (FetEM) extrac-

tion and generalized Autotomy. The FetEM extraction sub-problem is intractable for the

general case. However, the ABR algorithm presented in this chapter aims to solve only a

Figure 9.1: Autotomic Binary Reduction

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 112

subset of the general problem space. Several common constructs of real-world embedded

device firmware make the Autotomy algorithm presented in this chapter feasible. The pro-

posed Autotomy algorithm identifies and removes binary regions conservatively only when

several constraints are satisfied. These constraints leverage several generalized heuristics

describing common control and data flow patterns and ensure that code and data is removed

only when the execution patterns comport to identifiable execution patterns.

The FetEM is a mapping between high-level descriptions of the firmware’s features to

the low-level code and data that implements those features. Specifically, this mapping is

used to associate each feature of the firmware, such as the HTTP or SSH server, to a set of

functions that are top-level entry-points of the code used to implement each feature. When

a specific feature is selected for ABR, the specific FetEM entry for the feature in question

is given as input to the generalized Autotomy algorithm, which in-turn returns a collection

of code and data regions that is exclusively used by the high-level feature in question.

The FetEM is unique to each specific version of the embedded firmware binary. Exper-

imental data suggests that this mapping can usually be created by analyzing the configura-

tion file of the target embedded device along with its firmware. Straight forward application

of static analysis of the corresponding firmware is typically sufficient to identify the initial

entry point within the firmware executable for each feature identified in the configuration

file. The result of static analysis can be further validated by standard dynamic analysis

techniques.

Once the FetEM is identified for a particular firmware image, a specific device config-

uration file is analyzed to produce a list of features, which are administratively disabled.

The FetEM and the list of disable features are given to the Autotomy algorithm to produce

a unique firmware instance with the code and data associated with the disabled features

removed from the firmware binary.

9.3.1 Generalized FetEM Extraction

For the general case, FetEM extraction of an executable program can be reduced to the

halting problem and is undecidable. However, when the relevant portions of a particular

program’s control-flow can be represented as a finite graph, the FetEM extraction problem

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 113

can be reduced to the finite graph reachability problem, which can be solved in linear

time [108]. Furthermore, the reachability problem for many classes of programs whose

computational states can only be represented by infinite graphs have been proven to be

decidable [26]. This suggests that the FetEM extraction problem can be practically solvable

for categories of executable programs that are less well-formed and containing less meta-data

than the programs that are considered in the context of this current work.

Feature A

Feature B

Feature C

Feature D

Feat_A_EntryPoint

Feat_A_EntryPoint

Feat_A_EntryPoint

Feat_A_EntryPoint

High-Level
"Features"

Low-Level
Executable

Figure 9.2: Generalized code structure useful for identifying Feature Entry-Point Maps in

embedded firmware.

In the context of this document, we consider only programs whose Feature Entry Map

logic can be represented as finite control-flow graphs. In practice, such graphs can be reliably

extracted from most non-obfuscated code adhering to common software design conventions.

To demonstrate feasibility, the FetEM extraction problem was solved three times, once

for MIPS, ARM and PowerPC using three unique code-bases. The implementation of the

three FetEM extractors are presented as case-studies in Section 9.6. The automation of the

FetEM extraction problem is a subject of future research.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 114

ParseLine(Config)

If line = "enable http"

enableHTTP() If line = "enable ftp"

enableFTP() If line = "enable snmp"

enableSNMP() If line = "enable XYZ"

enableFeatXYZ() Return 0

Figure 9.3: Typical finite graph representation of Feature Entry Map logic

9.3.2 General Autotomy Algorithm

We first describe a general Autotomy algorithm in this section. We then present an effi-

ciently computable approximation to this general Algorithm in Section 9.4.2.

Given the FetEM for a specific executable, a set of features to be removed {f}, a control-

flow graph (CFG) gc and a data-flow graph (DFG) gd, the Autotomy algorithm does the

following:

1. Resolve set of executable entry points, {ε}, using FetEM and {f}.

2. Identify set of code regions λ that is exclusively control-flow dependent on {ε} in gc.

3. Identify set of data regions {δ} that is exclusively data-flow dependent to {λ} in gd.

4. Replace the beginning of each region in {λ} and the remainder with either nop in-

structions or XDpad instructions.

5. Replace regions within {δ} with null bytes.

6. Inject return hook at each member of {ε} using the appropriate return value.

Step 1 requires a simple lookup of the FetEM table. As we show in the next section,

steps 2 and 3 can be reduced to the Inverse Dominator (DOM−1) set problem and can

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 115

be solved in polynomial-time[73]. Step 4 and 5 involve in-place binary replacement of code

and data. We discuss step 6 in Section 9.4.1.

Steps 2 and 3 aim to identify code and data regions (λ, δ) that are required if and only if

code regions within f are executed. This can be reduced to the problem of computing the set

(DOM−1) of λ and δ given control-flow and data-flow graphs gc and gd. While polynomial-

time solutions to DOM−1 exist, the practical application of the Autotomy algorithm relies

on the ability to efficiently and accurately extract the control-flow and data-flow graphs from

embedded device firmware, as well as the ability to make approximating compactions to the

flow-graphs to a level of granularity that makes computation of the Autotomy algorithm

feasible for large numbers of firmware images.

For Autotomy to be practical, the representative flow-graphs should be at least finite.

Furthermore, it is desirable to reduce the size of both the representative control and data

flow-graphs without discarding information that may impact the safety of the Autotomy

algorithm. Intuitively, we can apply several types of approximations without violating the

safety of the Autotomy algorithm.

9.3.2.1 Reachability can be over-estimated

The goal of the Autotomy algorithm is to identify portions of the flow-graph that are ex-

clusively reachable through a specific set of nodes. Nodes within the flow-graph that are

labeled as having an Immediate Dominator (iDOM) node that outside the set of nodes

removed by the Autotomy algorithm cannot be removed. Given a CFG x and an approxi-

mate graph x′ whose reachability between nodes are strictly greater than x, iDOM(f, x′) ⊂

iDOM(f, x) must hold for any node in {f}. If we assume that the result of Autotomy(f, x)

is safe, an over-estimation of reachability will cause Autotomy(f, x′) to return a subset of

results. Thus, over-estimation of reachability cannot negatively impact the safety of the

Autotomy algorithm. Note that in the extreme case, an over-estimation of the reachability

of computed branch instructions in the firmware binary can cause all nodes to be marked

as reachable from that instruction. This will cause the Autotomy algorithm to return a

null-set. While undesirable, this does not negatively impact the safety of the resultant

binary.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 116

Feature Entry Point

A

Feature Entry Point

B

Func 1

Func 3

Func 2

Func 5Func 4

Return Patch A Feature Entry Point

B

Func 1

Func 3

X

Func 5X

X

Figure 9.4: Autotomy of Feature Entry Point A. The red areas denote code regions which

can be safely removed.

9.3.2.2 Control-flow graph can be approximated by Function Call Graph

We can approximate the control-flow graph of a program using its Function Call Graph

(CG). While the creation of the exact static call graphs from software is undecidable in

the general case [94], modern disassemblers like IDAPro can efficiently produce accurate

finite call-graphs by opportunistically approximating code reachability. Note that tools like

IDAPro can under-estimate code reachability. This is typically caused by errors in the

disassembling algorithm and computed jumps and calls in the code. Such errors will cause

the control-flow and data-flow graphs to be under-estimated, which will in turn negatively

impact the safety of the Autotomy algorithm. Thus, ABR depends on the accuracy of the

representative flow-graphs to guarantee safety of its operations.

Since over-estimation of this nature does not effect the safety of the Autotomy algorithm,

we propose to apply the call-graph of the program to the Autotomy algorithm. This allows

the Autotomy algorithm to remove code regions at the function level. We discuss an even

more aggressive approximation to this approach in Section 9.4.2.

We first discuss the implementation of binary Autotomy for code (step 2). We then

discuss the extension of this algorithm to remove both code and data (step 3).

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 117

A

B

A

B

Z

Start Start

A

B

Z

Start

I II III

Figure 9.5: Three example flow-graphs to illustrate the Dominator function

9.3.2.3 Dominators and Inverse Dominators

For reference, we first present the Dominator and Inverse Dominator functions in the

context of control-flow and data-flow graphs. [82] originally demonstrated that the Domi-

nator function can be solved in O(N4). [73] has since presented nearly linear-time solutions

to the same problem.

Given a flow-graph g and nodes a, b within that graph, a dominates b, a DOM b iff all

paths from the root of g to b includes a.

Let the Dominator function, DOM(b) = {set of all nodes which dominates b}.

Let the Inverse Dominator function DOM−1(b) ={set of all nodes which b domi-

nates}, {x | b DOM x}.

Figure 9.3.2.3 illustrates the Dominance relationship using three simple flow-graphs. In

graph I, we can say that node A Dominates node B because all possible paths from the

Start node to node B must go through node A. In graph II, an extra node, Z, is added. In

II, neither node A nor Z can be said to Dominate B. In graph III, the nodes A and Z are

collapsed into a single node, AZ. In this case, we can say that node B is Dominated by AZ.

Figure 9.3.2.3 illustrates the Inverse Dominator (DOM−1) function using two simple

flow-graphs. Intuitively, DOM−1(x) is set of nodes in the flow-graph that x dominates. In

graph I, we can say that nodes {1,2,3,4,5} are all dominated by node X. Thus, in graph

I, DOM−1(x) = {1,2,3,4,5}. In graph II, due to the addition of node Z, X no longer

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 118

X

1 2 4

3

5

Z

X

1 2 4

3

5

I II

Figure 9.6: Three example flow-graphs to illustrate the Inverse Dominator function

dominates nodes {4,5}. Thus, in graph II, DOM−1(x) = {1,2,3}

9.4 Code Autotomy Algorithm

The Autotomy algorithm requires the following as input; a control-flow graph g and a set

of nodes f representing entry-points of features to be removed.

Algorithm 1 Code Autotomy Algorithm

Require: CFG g, code entry-point set f

1: function CodeAutotomy(g, f)

2: return f ∪DOM−1(f, g)

9.4.0.4 Data Autotomy Algorithm

Similar computation can be performed on the data-flow graph of the firmware binary to

identify removable data regions.

The Data Autotomy algorithm requires the following as input; a data-flow graph gd,

a control-flow graph g, and a set of nodes f representing entry-points of features to be

removed.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 119

Feature Entry Point

A

Feature Entry Point

B

Func 1

Func 3

Func 2

Func 5Func 4

Data 1 Data 4Data 2 Data 5

Data 3

Return Patch A Feature Entry Point

B

Func 1

Func 3

X

Func 5X

X

Data 1 Data 4Data 2 Data 5

Data 3

Figure 9.7: Autotomy of both code and data of Feature Entry Point A. The red areas denote

code regions that can be safely removed.

Algorithm 2 Data Autotomy Algorithm

Require: CFG g, DFG gd, code entry-point set f

1: function DataAutotomy(gd, g, f)

2: return DOM−1(CodeAutotomy(g, f), gd)

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 120

9.4.1 Return instruction injection

Given a set of Feature Entry-Points {ε}, the Autotomy algorithm identifies all functions

{λ} that are exclusively reachable from only functions within {ε}. Thus, if no functions

within {ε} is called, we conclude that no code regions in {λ} can be executed. Since {λ}

is never executed, it can simply be replaced by no-op instructions. However, the final

removal of functions within {ε} requires the final step of injecting the appropriate return

instruction sequence at the beginning of each member function within {ε}. In practice, this

step involves the construction and injection of a function return instruction, as defined by

the specific function calling convention used by the target program. The function return

instruction should return an appropriate value to indicate a failure condition. While the

problem of identifying the proper return value to use can be reduced to the halting problem

and is undecidable in the general case, commonly used software-engineering conventions

make this problem solvable for many types of executables in practice. We present 3 such

examples in Section 9.6. The methods used to identify proper return values in this chapter

are similar to those proposed by [103] to virtualize error conditions to create self-healing

software.

Figure 9.8: Feature Entry-Point Return Value Identification

Figure 9.8 illustrates the return code of a typical Feature Entry-Point in ARM. Simple

static analysis determined that the return value (stored in register R3) is either 0 or some

integer that adheres to standard Linux exit-code conventions.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 121

9.4.1.1 Randomized Free-Pool Allocator

Regions of code and data removed by the Autotomy algorithm are tracked and managed by

a free-pool allocator. This allocator is responsible for dispensing, in a randomized manner,

newly freed regions of code and data to the Binary Structure Randomization algorithm

described in Section 9.5.

9.4.2 Fast Code Autotomy Algorithm

We present FastCodeAutotomy, an efficiently computable approximation of the Auto-

tomy algorithm presented in Section 9.3.2. The key to a fast Autotomy algorithm imple-

mentation is the reduction of the flow-graph considered and proper constraints on the algo-

rithm’s search-space. For example, the Cisco 2821 IOS firmware image we discuss in Section

10 contains 10,222 functions. A typical firmware binary of this type will potentially contain

millions of basic-blocks. FastCodeAutotomy is designed to be usable as an ”on-demand”

computation. As we show in Section 10, a Python implementation of FastCodeAutotomy

running within IDAPro on standard commodity hardware generally completes computation

within seconds to minutes.

Instead of computing the Inverse Dominator Set by considering the entire flow-graph,

FastCodeAutotomy returns a subset of what the Autotomy function returns by iteratively

reducing an initial set of nodes {β}.

Given a flow-graph g and a set of nodes {f} and an integer d, FastCodeAutotomy builds

the initial node set, {β}, by enumerating all reachable nodes via breadth-first traversal, up to

depth d. FastAutotomy then iteratively reduces {β} until all members of {β} is dominated

by a member of {f}.

Note that the depth value d determines how deeply the FastCodeAutotomy function

will look for potential removable code regions, whereas the set f will determine how many

possible Dominator nodes the algorithm will consider. As we show in Section 10, given

a fixed set f , increasing the value of d will cause FastCodeAutotomy to increase compu-

tation time and will potentially return more code and data regions. Given the same d,

FastCodeAutotomy will potentially return more code and data regions if the functions in f

are functionally related.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 122

Algorithm 3 Fast Autotomy Algorithm

Require: CFG g, code entry-point set f , depth d

1: function BFSEnumerate(g, f, d)

return Set of nodes as enumerated by breadth-first search, starting at node f , to

a depth of d.

2: function FastCodeAutotomy(g, f, d)

3: β ← BFSEnumerate(g, f, depth = d))

4: while True do

5: culled← {}

6: for i in β do

7: if xrefsTo(i, g) 6⊆ β then

8: culled← culled ∪ i

9: β ← β \ culled

10: if culled == ∅ then return β ∪ f

9.5 Binary Structure Randomization

Figure 9.10 shows the general spectrum of software randomization techniques. Given the

constraints of proprietary embedded firmware, in-place binary randomization techniques are

most feasible. However, in-place randomization techniques are restricted to making localized

Figure 9.9: Binary Structure Randomization

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 123

So
u
r
c
e-

c
o
d
e

le
vel

r
an

d
o
m

iz
at

io
n

Sy
st

em
 l

ev
el

r
an

d
o
m

iz
at

io
n

In
st
al
l

Lo
ad

Ex
ec
ut
e

B
in

ar
y

Le
vel

r
an

d
o
m

iz
at

io
n

Eq
ui
v.
 I
ns
tr

Re
gi
st
er

Co
de
 R
eo
rd
er

Ra
nd
 C
od
e
In
je
ct
io
n

[In-place Binary techniques]

Figure 9.10: General

randomizations. For example, individual basic-blocks can be randomized using register-

reassignment or equivalent-instruction replacement. While effective against certain classes

of ROP attacks, the structure and binary layout of the software still remains unchanged.

We aim to develop a non-localized randomization scheme that can change the layout of

software at the binary level.

BSR can be considered as a non-localized, in-place binary randomization technique.

Given a firmware image and a set of free-space regions within the firmware, BSR will

generate a functionally equivalent firmware that is diversified and structurally randomized

at a basic block level. Randomization is done by applying a large sequence of localized

functionality-preserving transforms at the basic-block level. Using code and data regions

freed by Autotomic Binary Reduction, basic blocks can be split and relocated into randomly

selected positions within free-space regions given to the BSR algorithm by the ABR space

allocator (Section 9.4.1.1).

For the purpose of this document, we define functional equivalence of software at an

abstract ISA level. In other words, given the same input, register contents and execution

state, the functionality of two pieces of code is equivalent if and only if the resultant register

contents and execution states are identical after the execution of both pieces of code. Note,

that micro-architectural perturbations, such as changes to the branch-predictors, instruction

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 124

and data caches are out of the scope of our current functionality preservation claim.

In general, BSR applies a series of functionality preserving transformations to a body of

executable binary to yield a functionally equivalent executable that has significantly differ-

ent binary layout. The BSR algorithm repeatedly applies such transforms in a randomized

fashion until the desired binary randomization level is achieved.

We first present a collection of simple basic-block-level transforms or primitive BSR

transforms. Next, we describe the creation of several complex BSR transforms by applying

primitive BSR transforms in specific patterns.

9.5.1 Primitive Transforms

Any binary transform that preserves the functionality of the original executable is compat-

ible with BSR. We first present a collection of BSR transforms, which operates on single

basic blocks. We then discuss the functionality preserving property of each primitive trans-

form as well as techniques for combining multiple primitive BSR transforms into composite

BSR transforms. Unlike localized in-place code randomization techniques, BSR transforms

are not bound by the same space and locality constraints. Due to the prior application

of ABR, BSR can leverage functionality-preserving transforms that increase the size of the

replacement binary and place such replacements in any suitable free-space region within

the firmware image.

Basic Block
A

Jump
A.1

Freed Space
A.FREE

Figure 9.11: Binary Structure Randomization: Primitive Transform

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 125

9.5.1.1 Basic-block relocation

A basic-block of code can be defined as a series of instructions that must be executed

in sequence, starting with the first instruction in the basic block and ending in the last

instruction. Thus, a basic-block can have only a single entry-point and a single exit-point.

The relocation of a basic block β to new location ε involves the following modifications:

• Insert a non-conditional branch instruction to address ε at the entry-point address of

β.

• Copy the contents of β to address ε. Let this new basic block be known as β̂.

• Alter the exit-point branch instruction of β̂ to branch to β.

• Insert the code-region occupied by β, less newly inserted branch instruction, into the

free-space pool.

Basic Block
A

Jump
A.1

Relocated
Basic Block

A.2

Jump
A_X.1

Freed Space
A.FREE

Natural Flow
Exit Point

A_X.1

Conditional
Branch

Exit Point
A_X.2

Conditional
Branch
A_X.2

Natural Flow
Exit Point

A_X.1

Conditional
Branch

Exit Point
A_X.2

Conditional Branch

Unconditional Jump

Figure 9.12: Binary Structure Randomization: Basic block Relocation

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 126

9.5.1.2 Basic-block splitting

Individual basic blocks can be split into two or more basic blocks with the addition of

branches. As with relocation, care must be taken to find free regions of memory for not

only the split basic block but also the addition of the branch instruction. A example of

basic-block splitting is shown in Figure 3.

The split of a basic-block β to two new locations (ε1, ε2) involves the following modifi-

cations:

• Insert a non-conditional branch instruction to address ε1 at the entry-point address

of β.

• Split β into two sub-basic-blocks, β1, β2.

• Copy the contents of β1 to address ε1. Let this new basic block be known as β̂1.

• Copy the contents of β2 to address ε2. Let this new basic block be known as β̂2.

• Insert a non-conditional branch instruction at the end of β̂1 to branch to the first

instruction of β̂2.

• Alter the exit-point branch instruction of β̂2 to branch to β.

• Insert the code-region occupied by β, less newly inserted branch instruction, into the

free-space pool.

9.5.2 Complex BSR Transforms

The above two primitive BSR transforms, basic-block relocate and basic-block split, can be

applied sequentially to form numerous complex BSR transforms.

9.5.2.1 Basic-block swap

Given two basic-blocks β1 and β2, a sequence of primitive BSR transforms can effectively

swap the location of the two basic-blocks.

Note, since the basic-block relocate and split transforms both increase the size of the

basic-blocks under transformation, purely in-place basic-block swap is not possible. As a

result, each basic-block is first split into two sub-basic blocks according to the available size

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 127

Basic Block
A

Natural Flow
Exit Point

A_X.1

Conditional
Branch

Exit Point
A_X.2

Conditional Branch

Unconditional Jump

Jump
A.1

Freed Space
A.FREE

Natural Flow
Exit Point

A_X.1

Relocated
Basic Block

A.2

Jump
A.3

Relocated
Basic Block

A.4

Jump
A_X.1

Conditional
Branch
A_X.2

Conditional
Branch

Exit Point
A_X.2

Figure 9.13: Binary Structure Randomization: Basic block splitting

Basic Block
A

Natural Flow
Exit Point

A_X.1

Basic Block
B

Natural Flow
Exit Point

B_X.1

Basic Block
A.1

Natural Flow
Exit Point

A_X.1

Basic Block
B.1

Natural Flow
Exit Point

B_X.1

Jump
A.1

Jump
B.1

Jump
A.1

Jump
A.1

Basic Block
B.2

Basic Block
A.2

Basic Block Swap

Unconditional Jump

Figure 9.14: Binary Structure Randomization: Basic block swapping

of the other basic-block to be swapped. The first portion of each basic-block is swapped,

while the second portion of each basic-block is randomly located to some other region as

dictated by the ABSR free-space allocator.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 128

Firmware

XD_pad handler

XD_pad (Execution Detection Pad)

XD_handler (Execution Detection Handler)

Figure 9.15: Code Execution Detection Detector Pads

9.5.2.2 Basic-block rotate

Similarly, given a list of n basic-blocks (β1, ...βn), a circular application of basic-block swap

can rotate the location of all basic-blocks, such that β1 is relocated to β2, β2 is relocated to

β3, ..., βn−1 is relocated to βn, and βn is relocated to β1.

9.5.2.3 Complex-block transforms

Let a complex block be defined as a collection of all basic blocks, which constitutes a

subgraph of the control-flow graph of the target firmware executable such that there is only

a single entry point and a single exit point for the control flow subgraph. Intuitively, we

can see that all functions can be seen as complex blocks. However, complex blocks can also

include control flow subgraphs within a function or control flow subgraphs comprising of

multiple functions.

Complex-blocks can be relocated, split, swapped, and rotated by the sequential appli-

cation of primitive BSR transforms.

9.5.3 ABSR: Code Execution Detection (XDpad)

Execution detector pads (XDpad) can be injected into regions of free space generated by

Autotomic Binary Reduction. Such detector pads can be used to detect unauthorized

code execution. Any sequence of executable code that generates an observable side-effect

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 129

can be used as a detector pad. Using a sequence of BSR transforms, namely basic-block

relocation and splitting, detector pads can be placed in virtually any location within the

target firmware binary. Detector pads can be used as a trip-wire mechanism to detect

execution of virtual-memory regions, which should not be executed. Detector pads can be

used to detect any code-reuse attacks, which use payloads that rely on return-to-lib-c or

ROP techniques.

9.5.4 Functional Preservation

Algorithm 4 Unconditional branch in MIPS

1: PC ← nPC;nPC ← (PC&0xf0000000)|(target << 2);

BSR transforms are strictly additive and insert only unconditional branch instructions

into the basic-blocks under transformation. Thus, demonstration of the functionality-

preserving property of all primitive BSR transforms through the demonstration of the

functionality-preserving property of unconditional branch instructions. Since unconditional-

branches are possible in MIPS, ARM, and PowerPC without generating any additional side-

effects in any CPU register or memory location, we claim that primitive BSR transforms

are functionality-preserving in MIPS, ARM and PowerPC instruction sets. Furthermore,

since complex BSR transforms are simply sequential applications of primitive BSR trans-

forms, we further claim that all complex BSR transforms are also functionality-preserving

in MIPS, ARM and PowerPC.

Note, the scope of our functionality-preservation claim is limited to the abstract ISA

level. Micro-architectural perturbations, such as changes to the branch-predictors, instruc-

tion and data caches are out of the scope of our current claim.

9.6 Applied ABSR

We demonstrate two applications of ABSR within real-world devices running MIPS and

ARM. To demonstrate the range of applicability of our technique, two bodies of code running

on two different ISAs were selected. We first describe the application of ABSR within a

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 130

monolithic Busybox image compiled for ARM/Linux. We then describe the application of

ABSR within Cisco IOS in MIPS.

While Busybox is an open-source project, our analysis of the Busybox executable is

performed exclusively on a monolithic binary with debugging symbols stripped. This initial

target was chosen to aid in the testing and evaluation of our techniques. Since the original

source-code is available, the accuracy of our implementation of the Autotomy algorithm

can be validated accurately. We then applied the same implementation of ABSR to Cisco

IOS, a black-box operating system, on a different ISA. As our experimental data shows in

this section, both applications of ABSR yielded stable executables with expected reduction

in available attack surface and increase in binary layout randomization.

The following subsections describe implementation level details of two case-study ap-

plications of ABSR, in MIPS and ARM. Section 10 discusses the empirical performance

overhead analysis of ABSR for each case-study and discusses the experimental methodol-

ogy for validating correctness in each case-study.

9.6.1 ABSR in ARM BusyBox

We describe the specific implementation details use to apply ABSR in a monolithic Busybox

image compiled for ARM/Linux. BusyBox can be described as “The Swiss Army Knife of

Embedded Linux” and is a small executable that implements many common UNIX utilities.

While Busybox does not have a configuration file that allows the user to administratively de-

activate specific utilities (short of recompilation), we can use ABSR to generate randomized

variants of BusyBox with any combinations of utilities disabled.

A BusyBox 2.21.0 binary image is analyzed by FRAK [33] and IDAPro 6.5. The MyNav

1.1.2 IDA plugin was used to assist the auto-analysis of the sample binary.

9.6.1.1 FetEM Extraction

We define each BusyBox utility (passwd, chmod, etc.) as a feature. Identification of each

feature’s main control-flow entry-point was achieved through static analysis. Specifically,

the names and entry-points of all supported utilities can be enumerated by traversing a

single lookup table. This lookup table is easily identifiable through a number of means.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 131

Figure 9.16: Feature selection control-

flow structure for Busybox

Figure 9.17: Data associated with feature

selection control-flow structure for Busy-

box

Figure 9.18: BusyBox FetEM Enumeration

We used a data reference to a string containing a well-known string to reliably identify

the location of the lookup table. Figure 9.18 shows a disassembled and statically analyzed

BusyBox image containing the FetEPM table.

9.6.1.2 Autotomic Binary Reduction

Figure 9.19 is a rendering of ABR applied to the BusyBox binary when all entries of the

FetEM was removed except unzip and sha512. All non-black regions represent code

removed by the ABR algorithm. 51.3% of original code was removed.

ABR was applied using each FetEPM entry iteratively, using input feature sets , {f},

of size varying sizes.

Figure 9.27 shows the output of ABR with a {f} of size 353, containing all identifiable

features. The executable text section of BusyBox used in our analysis is 795,768 bytes in

size. At d = 9, the FastCodeAutotomy algorithm was able to remove 408,766 bytes or

51.3% of code.

9.6.1.3 Binary Structure Randomization

9.6.1.4 Performance and Overhead

We present the user cpu-time required to compute two BusyBox commands: unzip and

sha512, on two sets of binaries; one random, one null of the following sizes: 1MB, 10MB,

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 132

Figure 9.19: ABR applied to busybox. Non-black regions represent removed code regions.

100MB, 1000MB. In order to measure the computational overhead introduced by BSR, we

identified and cumulatively relocated all basic-blocks associated with each feature. The

basic-blocks are identified using a 3 level breadth-first traversal of the call-graph of each

feature’s entry-point.

Figure 9.30 shows the user cpu-time required to run the unzip command on a 1MB

binary composed of random data. Each of the 226 basic-blocks identified were relocated

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 133

Figure 9.20: ABR applied to busybox, feature-set size=1

Figure 9.21: ABR applied to busybox, feature-set size=3

sequentially and cumulatively and executed 15 times over the same input data. Entry 0

represents the baseline measurement, where no modifications were made to the busybox

binary.

Figure 9.30 also plots the average runtime of the same dataset. While the variance of the

runtime data makes exact computational overhead difficult to determine, this figure sug-

gests that the relocation of certain basic-blocks introduces significantly more performance

overhead than others. This aligns with our theoretical model of BSR performance over-

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 134

Figure 9.22: ABR applied to busybox, feature-set size=5

Figure 9.23: ABR applied to busybox, feature-set size=7

head as the total computational overhead is directly related to both the number of BSR

transforms applied, and the frequency at which the transformed code is executed. This

code invocation frequency is directly related to the code coverage probability distribution

function and is input specific.

As we increase the size of data processed, the computational overhead across BSR

transforms becomes more apparent. Figure 9.31 shows the performance data when a 10MB

random binary file is used as input of the unzip utility.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 135

Figure 9.24: ABR applied to busybox, feature-set size=9

Figure 9.25: ABR applied to busybox, feature-set size=11

Figure 9.32 shows the user cpu-time required to run the sha512 command on a 1MB

binary composed of random data. Each of the 149 basic-blocks identified were relocated

sequentially and cumulatively and executed 5 times over the same input data. Entry 0

represents the baseline measurement, where no modifications were made to the busybox

binary.

Figure 9.33 and 9.34 shows the completion times of the sha512 utility over 10MB and

100MB of random data. Unlike the unzip utility, we see that the number of BSR transforms

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 136

Figure 9.26: ABR applied to busybox, feature-set size=13

Figure 9.27: ABR applied to busybox, feature-set size=353

has no statistically significant impact on the completion time of the utility over baseline.

The data collected in this subsection also validates the safety of the ABSR algorithm in

BusyBox. The computational output of every binary variant is tested against the expected

output. The utility returned the correct output for 100% of test-cases.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 137

Figure 9.28: Binary Diff Rate vs Original Busybox Binary

Figure 9.29: Binary Diff Rate vs Original Busybox Binary

9.6.2 ABSR in PowerPC Cisco IOS

We describe the application of ABSR on Cisco IOS 12.1 firmware running on the 3750

layer-3 switch.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 138

Figure 9.30: BusyBox unzip utility runtime over 1MB random data

9.6.2.1 FetEM Extraction

The IOS FetEM extraction algorithm leverages the call-graph associated with the process-

creation process. For readability, we have re-named this function ios startProcess. A map-

ping between the name of each IOS process and its main entry-point is extracted by enu-

merating all invocations of ios startProcess. Figure 9.35 illustrates a specific invocation of

ios startProcess which starts the HTTP server.

The FetEM extraction algorithm identified 248 processes within the specific IOS im-

age processed. Figure 9.36 shows a high-level rendering of a call-graph representing all

invocations of the ios startProcess function.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 139

Figure 9.31: BusyBox unzip utility runtime over 1MB random data

9.6.2.2 Autotomic Binary Reduction

ABR was applied using each FetEPM entry iteratively and using input feature sets of

increasing sizes.

Figure 9.40 shows the output of ABR with a {f} of size 248, containing all identifiable

features. The executable text section of Cisco IOS 12.1 used in our analysis is 11,864,844

bytes in size. At d = 9, the FastCodeAutotomy algorithm was able to remove 759,820 bytes

or 6.4% of code.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 140

Figure 9.32: BusyBox sha512 utility runtime over 1MB random data

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 141

Figure 9.33: BusyBox sha512 utility runtime over 10MB random data

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 142

Figure 9.34: BusyBox sha512 utility runtime over 100MB random data

Figure 9.35: IOS Create Process function

Figure 9.36: IOS Create Process function call-graph

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 143

Figure 9.37: ABR applied to Cisco 3750 IOS 12.1, feature-set size = 1

Figure 9.38: ABR applied to Cisco 3750 IOS 12.1, feature-set size = 3

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 144

Figure 9.39: ABR applied to Cisco 3750 IOS 12.1, feature-set size = 5

Figure 9.40: ABR applied to Cisco 3750 IOS 12.1, feature-set size = 248

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 145

9.6.3 ABSR in MIPS Cisco IOS

We describe the application of ABSR on Cisco IOS 12.3 firmware running on the 2821

router.

9.6.3.1 FetEM Creation

Figure 9.41: IOS Create Process function

The IOS FetEM extraction algorithm leverages the call-graph associated with the

process-creation process. For readability, we have re-named this function ios startProcess.

A mapping between the name of each IOS process and its main entry-point is extracted by

enumerating all invocations of ios startProcess. Figure 9.41 illustrates a specific invocation

of ios startProcess, which starts the HTTP server.

The FetEM extraction algorithm identified 669 processes within the specific IOS image

processed.

9.6.3.2 Autotomic Binary Reduction

ABR was applied using each FetEPM entry iteratively and using input feature sets of

increasing sizes.

Figure 9.45 shows the output of ABR with a {f} of size 669, containing all identifiable

features. The executable text section of Cisco IOS 12.3 used in our analysis is 45,987,892

bytes in size. At d = 9, the FastCodeAutotomy algorithm was able to remove 559,448 bytes,

or 1.2% of code.

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 146

Figure 9.42: ABR applied to Cisco 2821 IOS 12.3, feature-set size = 1

Figure 9.43: ABR applied to Cisco 2821 IOS 12.3, feature-set size = 3

Figure 9.44: ABR applied to Cisco 2821 IOS 12.3, feature-set size = 3

CHAPTER 9. AUTOTOMIC BINARY STRUCTURE RANDOMIZATION 147

Figure 9.45: ABR applied to Cisco 2821 IOS 12.3, feature-set size=669

CHAPTER 10. CASE-STUDY: SYMBIOTE AND ABSR DEFENSE 148

Chapter 10

Case-Study: Symbiote and ABSR

Defense

10.1 Case-Study: Symbiote and Cisco Routers

10.1.1 Symbiote Performance and Overhead

We measure the performance and overhead of our Symbiote-based exploit detector using two

quantitative metrics: computational overhead and detection latency. Figure 10.1 illustrates

the testing and verification environment used to obtain the performance data presented

in this section. The Symbiote-protected router is an emulated Cisco 7200 series router

running IOS 12.3. Two neighbor routers are used to verify that the Symbiote-protected

router’s original functionality is unchanged. One neighbor router is an emulated 7200

series router running standard IOS 12.3. The other neighbor router is a physical Cisco 2921

router running IOS 12.5. Each router is configured to expose a cross-section of functionality

typically seen on production routers. Specifically, a large number of local loopback interfaces

are configured on each router. OSPF routing is enabled on all three routers, along with a

suite of standard services like IP-SLA, SNMP, HTTP{S}, and SSH.

A stress-test script automatically generates network traffic throughout the test environ-

ment and periodically accesses services on all the test routers. All routers are continuously

monitored to ensure that all services operate correctly throughout testing. The workload

CHAPTER 10. CASE-STUDY: SYMBIOTE AND ABSR DEFENSE 149

Symbiote-Protected Router

Neighbor Routers 1 & 2

Test PC

Figure 10.1: Symbiote-based Cisco IOS Detector Testing and Verification Environment

script also periodically forces route-table re-calculations by perturbing the various OSPF

routers on the network. In effect, the stress-test script simulates a typical use profile for the

IOS routers in the test environment. The same stress-test script is run against several vari-

ants of the Symbiote-injected IOS firmware in order to illustrate key performance features

of our system.

The computational overhead and performance of our system is a configurable parameter.

As the figures in this section shows, the scheduling algorithm used within the Symbiote

Manager directly impacts the resource consumption of the Symbiote payload and, thus,

the overall utilization of the host device as well as the detection latency. Two scheduling

algorithms are discussed in this section: fixed burst-rate and inverse-adaptive.

As the name suggests, the fixed burst-rate scheduling algorithm instructs the Symbiote

payload to execute for a fixed burst-rate each time the Symbiote Manager is invoked through

a randomly placed execution intercept. On the other hand, the inverse-adaptive scheduling

algorithm calculates the payload burst-rate based on the elapsed time since the Symbiote

Manager was last invoked; the longer the elapsed time, the longer the burst-rate.

Intuitively, we can expect the fixed burst-rate scheduling algorithm to execute the Sym-

biote payload more frequently as the host system becomes more utilized. This simple al-

gorithm executes the Symbiote payload more frequently when the Cisco router is heavily

utilized and less frequently when the router is idle. In contrast, the inverse-adaptive schedul-

ing algorithm increases Symbiote payload burst-rate when the system is under-utilized and

throttles back the Symbiote payload when the router is under high load.

CHAPTER 10. CASE-STUDY: SYMBIOTE AND ABSR DEFENSE 150

We analyze the performance of 15 Symbiote-injected IOS images under the same stress-

test: 7 variants using the fixed burst-rate Symbiote scheduler and 8 variants using the

inverse-adaptive Symbiote scheduler. As the next three subsections show, the fixed burst-

rate Symbiote scheduler aggressively executes the Symbiote payload and achieves the least

detection latency (approximately 400 ms). However, this aggressive scheduler tends to

amplify CPU utilization of the protected router, causing very high control-plane latency

when the router is under load. Although the higher fixed burst-rate values like 0x7FF and

0xFFF detected IOS modification very quickly, it also caused the router’s control-plane to

be less responsive.

In contrast, the inverse-adaptive Symbiote scheduler produced slightly longer detection

latencies (approximately 450 ms) but was able to significantly reduce the control-plane

latency of the host router, even under high load.

CHAPTER 10. CASE-STUDY: SYMBIOTE AND ABSR DEFENSE 151

10.1.2 Computational Overhead

The same stress-test script is run against various versions of the Symbiote-injected IOS

image in order to show how the Symbiote Manager’s scheduling algorithm affects the CPU

utilization of the router. Two major scheduling algorithms are measured: fixed burst-rate

(Figure 10.2) and inverse-adaptive (Figure 10.3).

Figure 10.2 shows the CPU utilization of 7 variants of the fixed burst-rate Symbiote

scheduler, which unconditionally executes the Symbiote payload for a constant number of

CPU cycles each time the Symbiote is invoked via its many control-flow intercepts. The

units used, burst-rate, is the number of iterations of the checksum Symbiote payload that

is executed each time the Symbiote Manager is invoked.

This Symbiote scheduler disregards the current CPU utilization of the host device. At

higher burst-rate values like 0x7FF and 0xFFF, the router’s CPU utilization tends to remain

above 95% under heavy load, causing large spikes in control-plane latency. (See Figure 10.6)

Figure 10.3 shows the CPU utilization of 8 variants of the inverse-adaptive Symbiote

scheduler, compared with the baseline CPU utilization of the unmodified IOS image under

the same stress-test. The inverse-adaptive scheduler is configured with maximum burst-

rates from 0xFF to 0x3FFFF. Unlike the fixed burst-rate Symbiote scheduler, the inverse-

adaptive scheduler throttles how much the CPU is diverted to the Symbiote based on current

host device utilization. As a result, Symbiotes with inverse-adaptive schedulers can achieve

comparable detection latencies while significantly reducing its impact on the host router’s

control-plane latency. (Compare Figure 10.6 and Figure 10.7).

Figure 10.2: CPU Utilization : Fixed Burst-Rate SEM Manager

CHAPTER 10. CASE-STUDY: SYMBIOTE AND ABSR DEFENSE 152

Figure 10.3: CPU Utilization : Inverse-Adaptive SEM Manager

10.1.3 Detection Performance

In order to measure the detection latency of our exploitation detection Symbiote, a simple

vulnerability that allows arbitrary memory modification is artificially introduced into the

Symbiote-injected IOS image. This vulnerability is triggered using an automated script

and modifies a random byte within monitored memory regions. A timer is simultaneously

started in order to measure the time it takes the Symbiote payload to detect the event.

Figure 10.4 shows a roughly linear relationship between the Symbiote’s fixed burst-rate

value and the Symbiote’s detection latency. As expected, the Symbiote detection latency

decreases as the Symbiote payload’s execution burst-rate increases. However, as Figure 10.6

shows, the fixed burst-rate Symbiote scheduler causes significant increases in the router’s

control-plane latency.

Figure 10.5 shows the Symbiote’s impact on the router’s control-plane is significantly

reduced.

10.1.4 Control-Plane Latency

Control-plane latency is an indicator of how responsive the router is. High control-plane

latency can cause a router to drop routing adjacencies and break various time-sensitive

network protocols. Note, however, this measurement will not significantly affect the latency

of traffic passing through the router, as most modern routers have hardware-accelerated

forwarding engines, which are decoupled from the control-plane.

CHAPTER 10. CASE-STUDY: SYMBIOTE AND ABSR DEFENSE 153

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0
x

F

0
x

3
F

0
x

6
F

0
x

7
F

0
x

9
F

0
x

C
F

0
x

F
F

0
x

3
F

F

0
x

6
F

F

0
x

9
F

F

0
x

C
F

F

0
x

F
F

F

0
x

3
F

F
F

0
x

6
F

F
F

0
x

9
F

F
F

0
x
C

F
F

F

0
x

F
F

F
F

D
et

ec
ti

o
n

 L
at

en
cy

 (
S

ec
o

n
d

s)

Payload Execution Rate

Detection Latency: Fixed Burst−Rate SEM ManagerDetection Latency: Fixed Burst−Rate SEM ManagerDetection Latency: Fixed Burst-Rate SEM Manager

Figure 10.4: Detection Latency : Fixed Burst-Rate SEM Manager

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0
x

1
F

F
F

F

0
x

3
F

F
F

F

0
x

7
F

F
F

F

0
x

F
F

F
F

F

0
x

1
F

F
F

F
F

0
x

3
F

F
F

F
F

0
x

7
F

F
F

F
F

0
x

F
F

F
F

F
F

0
x

1
F

F
F

F
F

0
x

3
F

F
F

F
F

0
x

7
F

F
F

F
F

0
x

F
F

F
F

F
F

D
et

ec
ti

o
n

 L
at

en
cy

 (
S

ec
o

n
d

s)

Maximum Payload Execution Rate

Detection Latency: Inversely Adaptive SEM ManagerDetection Latency: Inversely Adaptive SEM Manager

Figure 10.5: Detection Latency : Inverse-Adaptive SEM Manager

Control-plane latency is measured by sending ICMP-echo messages from the test PC to

the router’s local loopback interface. The round-trip-time is collected and shown in Figure

10.6 for Symbiotes using fixed burst-rate scheduler variants and in Figure 10.7 for Symbiotes

using inverse-adaptive scheduler variants. Clearly, the inverse-adaptive Symbiote scheduler

significantly reduces the Symbiote’s impact on the host router’s control-plane latency while

achieving comparable detection latency values as fixed burst-rate Symbiotes.

CHAPTER 10. CASE-STUDY: SYMBIOTE AND ABSR DEFENSE 154

Figure 10.6: Ping Latency : Fixed Burst-Rate SEM Manager

Figure 10.7: Ping Latency : Inverse-Adaptive SEM Manager

10.1.5 Discussion

Preliminary performance results shown in this section suggests that high performance ex-

ploitation detection is possible in Cisco IOS. Furthermore, an optimized Symbiote schedul-

ing algorithm can greatly improve performance of the overall sensor system by reducing

both detection latency and the Symbiote’s impact on the router’s control-plane latency.

Optimization of the detection latency and the induced control-plane latency is an area of

active research.

155

Part IV

Conclusion

CHAPTER 11. FUTURE WORK 156

Chapter 11

Future Work

The work presented in this thesis arguably raises more questions than it answers. We

present a survey of possible topics for future research in the areas of embedded vulnerability

quantification and qualification, the extension of Symbiote capabilities and the further study

of Autotomic Binary Reduction, and non-localized binary randomization techniques like

Binary Structure Randomization.

11.1 Qualification and Quantification

More large-scale studies are needed to better understand the nature and scope of vulnera-

bilities in embedded firmware. One such study on a body of firmwares [25] found a total

vulnerability rate of 2.14% in a large corpus of diverse firmware binaries while [31] reported

a vulnerability rate of over 65% in a different body of widely used firmware images. Vul-

nerabilities that can plausibly exploitable on both general-purpose computer systems and

embedded devices like [20, 95] will likely have significant impact on the vulnerability rates

reported by both studies. Thus, large-scale, automated, deep analysis into the content of

firmware images can make an important impact on the timely identification and mitigation

of embedded vulnerabilities.

CHAPTER 11. FUTURE WORK 157

11.2 Symbiote

The Symbiote-based sensor presented in this thesis is a first step towards demonstrating

the feasibility and novel capability of Symbiotic defense systems. The Symbiote structure

allows complex payloads to be injected into legacy embedded devices, allowing the payload

to safely execute alongside the original firmware without altering the embedded device’s

functionality. The firmware integrity attestation payload injected into Cisco IOS can be

replaced with a wide range of defensive payloads. Below are several new Symbiote payloads

currently under development. Sophisticated Symbiote payloads can alter the behavior of

the target machine more aggressively.

11.2.0.1 SEM and Reverse Engineering

Symbiotic Embedded Machines can be used to implement powerful reverse engineering

tools for proprietary embedded devices. Using similar inline hook techniques as presented

here, Harbour et al recently demonstrated APIThief [53], a sophisticated API tracing tool

for the Windows environment. By installing inline hooks into the target code, APIThief

can dynamically monitor and alter the behavior of code without succumbing to common

anti-reversing techniques designed to defeat traditional debuggers. Similarly, Symbiotic

Embedded Machines can be used to control and monitor the behavior of proprietary network

embedded devices. As SEM does not require a priori knowledge of the target system’s

implementation and can take complete control of the hardware on which it resides, it is an

ideal platform for deploying reverse engineering tools. For example, SEM can be used to

inject a GDB compatible stub onto the target device. This will, in theory, allow remote

debugging of many proprietary network embedded devices using the GDB debugger over a

standard protocol.

11.2.0.2 SEM and Directed Fuzzing

Symbiotic Embedded Machines can be used to inject monitoring payloads for directed

fuzzing systems. For example, Ganesh et al have demonstrated the use of dynamic taint

tracing to improve the performance of automated fuzzers [113]. Directed fuzzing techniques

CHAPTER 11. FUTURE WORK 158

generally require realtime visibility into the target software and OS environment and are

relatively simple to implement on general purpose computers. Similar techniques are sig-

nificantly more difficult to implement on network embedded devices due to its closed and

proprietary nature. However, since Symbiotic Embedded Machines overcome the challenges

of installing complex code onto network embedded devices, it dramatically lowers the diffi-

culty of augmenting existing devices with functionality and visibility required by directed

fuzzing systems.

11.2.0.3 SEM and Covert Channels

Symbiotic Embedded Machines and their payloads are designed to maximize generality

and portability. Since network embedded devices use a diverse set of I/O hardware, di-

rect network communication must interact with the specific hardware of the target device.

Therefore, using standard protocols like IP for communication has at least two drawbacks.

First, the SEM payload must contain device specific code to interact with I/O hardware like

ethernet controllers, which reduces the generality and portability of the entire system. Sec-

ond, direct communication channels over the network can be detected, monitored, blocked

and intercepted. Communication using covert channels eliminates both drawbacks. Instead

of directly communicating with I/O hardware, the SEM can use many methods to alter

reliably the state of the device in some measurable way for the purpose of transmitting

data. For example, since the SEMM directly controls the CPU usage of the SEM payload,

it can influence both the CPU utilization and power consumption of the device. As recently

demonstrated by Kiamilev et al [69], reliable bi-directional communication can be achieved

through the power supply of general purpose computers. Therefore, it is feasible to ap-

ply similar techniques to network embedded devices using the SEMM to cause measurable

fluctuations of power consumption.

11.2.1 Embedded Self-Healing

The firmware integrity attestation Symbiote payload discussed in Chapter 8 can be ex-

tended to reverse unauthorized modification of memory after it is detected. A self-healing

Symbiote payload can be used to identify and restore regions of memory, which have been

CHAPTER 11. FUTURE WORK 159

maliciously modified.

11.2.2 Embedded Anomaly Detector

Symbiote payloads can implement existing anomaly detection algorithms. For example, be-

havior modeling strategies that monitor resource utilization, control, and data flow patterns

can be injected into embedded devices via Symbiote payloads.

11.2.3 Large-Scale Embedded Sensor Grid

The exploitation detection sensor described in this chapter can be injected into large num-

bers of embedded devices like Cisco routers in order to monitor and analyze 0-day exploita-

tion of embedded devices. We believe the use of Symbiote-based exploitation sensors in

the wild is a feasible and effective way of monitoring and analyzing exploits levied against

the internet substrate. A large-scale Symbiote-based sensor grid can potentially give us

real-time visibility into embedded device exploitation on a global scale.

Furthermore, Symbiotes can be used to transform embedded devices into other kinds of

sensor grids as well. Symbiotes can allow us to use hardware components of embedded de-

vices in novel ways not intended by its original design. For example, many power-consuming,

EM emitting components can be transformed into covert communication channels. Exist-

ing sensors on embedded devices, combined with such covert channels can transform a wide

gamut of innocuous embedded devices into a web of remotely controlled mobile sensors.

11.3 Autotomy Binary Structure Randomization

The general correctness of language and compiler-level software compaction algorithms have

been established. The correctness and safety of binary-level attack-surface reduction algo-

rithms like Autotomic Binary Reduction have only been demonstrated existentially for

specific cases. The solvability of the FetEM extraction problem is central to qualifying the

scope of applicability of the ABSR algorithm. Further research is necessary to establish the

real-world applicability of ABSR in embedded device firmware as well as general-purpose

software.

CHAPTER 11. FUTURE WORK 160

The BSR transform related performance overhead documented in Section 9.5 poses an

obvious optimization question. One way to measure the utility of BSR is through binary

difference. Each BSR transform will contribute to increasing the binary difference of the

resulting binary linearly. However, as we demonstrated, not all BSR transforms will have

the same impact on computational overhead of the resultant program. Thus, multi-variable

optimization should be considered in order to automate the optimization of both BSR binary

difference and overall BSR-induced computational overhead. Since the latter is dependent

on the code-coverage probability distribution function of the program, which varies with

input data, program profiling, symbolic execution and dynamic analysis can be applied to

this problem to make BSR more efficient and effective.

CHAPTER 12. CONCLUDING REMARKS 161

Chapter 12

Concluding Remarks

12.1 Conclusion

We began our research into the security of embedded devices by asking several simple ques-

tions. Is it possible, in our increasingly connected and automated world, that software

vulnerabilities in black-box embedded devices can be used to cause disruption and destruc-

tion in the physical world? Can embedded systems be exploited? If so, do vulnerable

devices exist in significant quantity or perform significantly critical functions, such that the

exploitation of such devices should be considered a real threat? Can we trust that the em-

bedded devices we depend on today have not already been compromised? Can we reliably

detect the consequence of exploitation after the fact? Lastly, what can be done to improve

the security of embedded systems, given their unique and constrained nature?

To address the question of embedded defense, we presented the following hypothesis:

Embedded devices are vulnerable to large-scale exploitation. The use of software defen-

sive techniques that take into consideration the hardware and software constraints imposed

by such systems can provide effective and efficient detection of and defense against the ex-

ploitation of several classes of software vulnerabilities, as well as the injection of persistent

software implants in legacy embedded devices. Such software-based defensive techniques can

be automatically realized by making modifications to the firmware that do not alter the orig-

inal functionality of the firmware, but which introduce various security capabilities to the

embedded device at a cost of an acceptable level of resource overhead. Most importantly, such

CHAPTER 12. CONCLUDING REMARKS 162

software-based defenses should be realizable at the binary level, without requiring access or

modification to source-code, and should not require any hardware modification.

In this thesis, we presented a body of scientific study, which made significant contribu-

tions towards answering these questions and established the validity of our hypothesis. In

short, embedded systems can be, and have been, exploited. They exist in vast numbers

and perform critical functions in the world. The exploitation of embedded systems should

be considered a real and present threat. Most importantly, we have proposed several tech-

niques in this thesis that can be applied to real-world embedded systems to make them

more secure against cyber attack. These techniques were applied to a range of real-world

devices like network routers, network-based printers and IP phones and have been shown

to be safe to use and effective against several types of common attacks.

In order to better understand the nature of embedded security, we first presented quan-

titative and qualitative evidence of the existence of vulnerable embedded devices in the

world. Specifically, a internet-wide scan was carried out in order to study the make-up and

measure the lower-bound on the quantity of vulnerable embedded devices accessible over

the public internet. We discovered that approximately 20% of all embedded devices on the

internet was configured with a well-known default root credential, making them trivially

vulnerable to attack. Furthermore, we predicted, through quantitative measurements and

qualitative analysis, the size of an embedded device botnet would most likely be around

540,000 devices. This prediction was validated two years after the initial publication of

our work by the public announcement of the Carna botnet ([5]), which compromised over

480,000 devices.

Next, we presented a series of case-studies of exploitation against ubiquitous embed-

ded devices to gain greater insight into the nature of common embedded vulnerabilities.

These case-studies resulted in the public disclosures 4 vulnerabilities that affected millions

of devices in the world; CVE-2012-5445, CVE-2013-6685, ASA-2014-099, CVE-2011-4161.

While the exact vulnerabilities varied from device to device, several common traits can be

extracted about their nature. These vulnerabilities have existed for many years, the com-

plexity of the vulnerabilities are low, and successful exploitation can be done using offensive

techniques that can be considered obsolete by modern exploitation standards.

CHAPTER 12. CONCLUDING REMARKS 163

Lastly, we proposed and discussed two software-based defensive techniques, Software

Symbiote and Autotomic Binary Structure Randomization, that are aimed to improve the

security posture of embedded devices. We demonstrated the efficacy of these two defensive

techniques by applying them to real-world embedded devices that are known to be vulner-

able. We presented experimental data confirming the safety of our prosed defenses as well

as their efficacy against real-world exploitation.

CHAPTER 12. CONCLUDING REMARKS 164

In conclusion, so long, and thanks for all the fish.

165

Part V

Bibliography

BIBLIOGRAPHY 166

Bibliography

[1] Injunction Against Michael Lynn. http://www.infowarrior.org/users/rforno/lynn-

cisco.pdf.

[2] New worm can infect home modem/routers. APCMAG.com, 2009.

http://apcmag.com/Content.aspx?id=3687.

[3] Psyb0t’ worm infects linksys, netgear home routers, modems. ZDNET, 2009.

http://blogs.zdnet.com/BTL/?p=15197.

[4] Evolution in attacks against cisco ios software platforms. Cisco PSIRT Alert 40411,

2015. http://tools.cisco.com/security/center/viewAlert.x?alertId=40411.

[5] Anonymous. Internet Census 2012 port scanning /0 using insecure embedded devices,

2012.

[6] I. Arce. The Rise of the Gadgets. IEEE Security and Privacy, 1(5):78–81, 2003.

[7] Arduino. http://arduino.cc/.

[8] Adam J. Aviv, Pavol Cerný, Sandy Clark, Eric Cronin, Gaurav Shah, Micah Sherr,

and Matt Blaze. Security evaluation of es&s voting machines and election management

system. In David L. Dill and Tadayoshi Kohno, editors, EVT. USENIX Association,

2008.

[9] A. Bellissimo, J. Burgess, and K. Fu. Secure Software Updates: Disappointments and

New Challenges. Proceedings of USENIX Hot Topics in Security (HotSec), 2006.

BIBLIOGRAPHY 167

[10] James T. Bennet and J. Gomez. The Shellshock Aftershock for NAS Administrators,

2014.

[11] Vijay Bollapragada, Curtis Murphy, and Russ White. Inside cisco ios software archi-

tecture. Cisco Press, 2000. Demonstration of Hardware Trojans.

[12] Derek Bruening, Qin Zhao, and Saman P. Amarasinghe. Transparent dynamic instru-

mentation. In Steven Hand and Dilma Da Silva, editors, VEE, pages 133–144. ACM,

2012.

[13] Bushing, Marcan, Segher, and Sven. Console hacking 2010, 2010.

[14] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente. On

the difficulty of software-based attestation of embedded devices. In Ehab Al-Shaer,

Somesh Jha, and Angelos D. Keromytis, editors, ACM Conference on Computer and

Communications Security, pages 400–409. ACM, 2009.

[15] CERT. CERT Advisory CA-2002-07 Double Free Bug in zlib Compression Library.

http://www.cert.org/advisories/CA-2002-07.html, 2002.

[16] CERT. The zlib compression library is vulnerable to a denial-of-service condition.

http://www.kb.cert.org/vuls/id/238678, 2004.

[17] CERT. zlib inflate() routine vulnerable to buffer overflow. http://www.kb.cert.

org/vuls/id/680620, 2005.

[18] CERT. CVE-2011-4161. http://web.nvd.nist.gov/view/vuln/detail?vulnId=

CVE-2011-4161, 2011.

[19] Hoi Chang and Mikhail J. Atallah. Protecting software code by guards. In Digital

Rights Management Workshop, pages 160–175, 2001.

[20] Stephane Chazelas. CVE-2014-6271 shell shock vulnerability, 2014.

[21] K. Chen. Reversing and exploiting an apple firmware update, 2009.

[22] K. Chen. Reversing and Exploiting an Apple Firmware Update. In Black Hat USA,

2009.

BIBLIOGRAPHY 168

[23] Shane S. Clark and Kevin Fu. Recent results in computer security for medical devices.

In International ICST Conference on Wireless Mobile Communication and Healthcare

(MobiHealth), Special Session on Advances in Wireless Implanted Devices, October

2011.

[24] Andrei Costin. Hacking MFPs. In The 28th Chaos Communication Congress, 2011.

[25] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. A large-

scale analysis of the security of embedded firmwares. In Kevin Fu and Jaeyeon Jung,

editors, Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA,

August 20-22, 2014., pages 95–110. USENIX Association, 2014.

[26] BarbaraF. Csima and Bakhadyr Khoussainov. When is reachability intrinsically de-

cidable? In Masami Ito and Masafumi Toyama, editors, Developments in Language

Theory, volume 5257 of Lecture Notes in Computer Science, pages 216–227. Springer

Berlin Heidelberg, 2008.

[27] Ang Cui.

[28] Ang Cui.

[29] Ang Cui.

[30] Ang Cui. http://www.hacktory.cs.columbia.edu/ios-rootkit.

[31] Ang Cui. Print me if you dare: Firmware modification attacks and the rise of printer

malware, 2011.

[32] Ang Cui. Print Me If You Dare: Firmware Modification Attacks and the Rise of

Printer Malware. In The 28th Chaos Communication Congress, 2011.

[33] Ang Cui. Embedded Device Firmware Vulnerability Hunting Using FRAK. In Black

Hat USA, 2012.

[34] Ang Cui, Jatin Kataria, and Salvatore J. Stolfo. Killing the myth of cisco ios diversity:

Recent advances in reliable shellcode design. In David Brumley and Michal Zalewski,

editors, WOOT, pages 19–27. USENIX Association, 2011.

BIBLIOGRAPHY 169

[35] Ang Cui, Jatin Kataria, and Salvatore J. Stolfo. Killing the Myth of Cisco IOS

Diversity: Recent Advances in Reliable Shellcode Design. In Proceedings of the 5th

USENIX conference on Offensive technologies, pages 3–3. USENIX Association, 2011.

[36] Ang Cui and Salvatore J. Stolfo. A Quantitative Analysis of the Insecurity of Embed-

ded Network Devices: Results of a Wide-Area Scan. In Carrie Gates, Michael Franz,

and John P. McDermott, editors, ACSAC, pages 97–106. ACM, 2010.

[37] Ang Cui and Salvatore J. Stolfo. A quantitative analysis of the insecurity of embedded

network devices: Results of a wide-area scan. In Proceedings of the 26th Annual

Computer Security Applications Conference, ACSAC ’10, pages 97–106, New York,

NY, USA, 2010. ACM.

[38] Andy Davis. Cisco ios ftp server remote exploit. In

http://www.securityfocus.com/archive/1/494868, 2007.

[39] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler

techniques for code compaction. ACM Trans. Program. Lang. Syst., 22(2):378–415,

March 2000.

[40] Guillaume Delugre. Closer to metal: Reverse engineering the Broadcom NetExtremes

firmware, 2010. HACK.LU.

[41] Tamara Denning, Kevin Fu, and Tadayoshi Kohno. Absence makes the heart grow

fonder: New directions for implantable medical device security. In Niels Provos, editor,

HotSec. USENIX Association, 2008.

[42] Dronebl. Network Bluepill. http://www.dronebl.org/blog/8, 2008.

[43] Löıc Duflot, Yves-Alexis Perez, and Benjamin Morin. What if you can’t trust your

network card? In Robin Sommer, Davide Balzarotti, and Gregor Maier, editors,

RAID, volume 6961 of Lecture Notes in Computer Science, pages 378–397. Springer,

2011.

[44] DynamoRIO. Dynamic Instrumentation Tool Platform. http://dynamorio.org/.

BIBLIOGRAPHY 170

[45] Úlfar Erlingsson, Mart́ın Abadi, Michael Vrable, Mihai Budiu, and George C. Necula.

Xfi: Software guards for system address spaces. In OSDI, pages 75–88. USENIX

Association, 2006.

[46] Eleazar Eskin, Wenke Lee, and Salvatore J Stolfo. Modeling system calls for intrusion

detection with dynamic window sizes. In DARPA Information Survivability Confer-

ence & Exposition II, 2001. DISCEX’01. Proceedings, volume 1, pages 165–175.

IEEE, 2001.

[47] Federico Fazzi. LightAidra, 2012.

[48] Peter Feiner, Angela Demke Brown, and Ashvin Goel. Comprehensive kernel in-

strumentation via dynamic binary translation. In Tim Harris and Michael L. Scott,

editors, ASPLOS, pages 135–146. ACM, 2012.

[49] Michael Franz. E unibus pluram: Massive-scale software diversity as a defense mech-

anism. In Proceedings of the 2010 Workshop on New Security Paradigms, NSPW ’10,

pages 7–16, New York, NY, USA, 2010. ACM.

[50] Sergey Gordeychik. Scada strange love, 2011.

[51] S. Hanna, R. Rolles, A. Molina-Markham, P. Poosankam, K. Fu, and D. Song. Take

Two Software Updates and See Me in the Morning: The Case for Software Security

Evaluations of Medical Devices. In Proceedings of the 2nd USENIX conference on

Health security and privacy, page 6. USENIX Association, 2011.

[52] Steve Hanna, Rolf Rolles, Andres Molina-Markham, Pongsin Poosankam, Kevin Fu,

and Dawn Song. Take two software updates and see me in the morning: The case

for software security evaluations of medical devices. In Proceedings of 2nd USENIX

Workshop on Health Security and Privacy (HealthSec), August 2011.

[53] Nick Harbour. Win at Reversing: API Tracing and Sandboxing Through Inline Hook-

ing, 2009. Black Hat USA.

[54] Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. Librando: trans-

parent code randomization for just-in-time compilers. In Proceedings of the 2013 ACM

BIBLIOGRAPHY 171

SIGSAC conference on Computer & communications security, CCS ’13, pages

993–1004, New York, NY, USA, 2013. ACM.

[55] HP. Hewlett-Packard LaserJet 4200/4300 Series Printers - Firmware Update/Down-

load Release/Installation Notes. http://ftp.hp.com/pub/printers/software/

lj4200lbreadmefw.txt.

[56] HP. HP Security Solutions FAQ. http://h30046.www3.hp.com/large/solutions/

hp_secsolutions.pdf, 2006.

[57] HP. SSRT100692 rev.1- Certain HP Printers and HP Digital Senders, Remote

Firmware Update Enabled by Default. http://seclists.org/bugtraq/2011/Dec/3,

2011.

[58] HP. SSRT100692 rev.2 - Certain HP Printers and HP Digital Senders, Remote

Firmware Update Enabled by Default. http://seclists.org/bugtraq/2011/Dec/

175, 2011.

[59] HP. SSRT100692 rev.3 - Certain HP Printers and HP Digital Senders, Remote

Firmware Update Enabled by Default. http://seclists.org/bugtraq/2012/Jan/

49, 2012.

[60] HP. SSRT100692 rev.6 - Certain HP Printers and HP Digital Senders, Remote

Firmware Update Enabled by Default. http://h20000.www2.hp.com/bizsupport/

TechSupport/Document.jsp?objectID=c03102449, 2012.

[61] HP WebJet Admin. http://tinyurl.com/ch3g72f.

[62] IDA. The IDA Pro Disassembler and Debugger. http://www.hex-rays.com/idapro.

[63] IDC. Worldwide Hardcopy Peripherals Market Recorded Double-Digit

Year-Over-Year Growth in the Second Quarter of 2010, According to

IDC. http://www.idc.com/about/viewpressrelease.jsp?containerId=

prUS22476810§ionId=null&elementId=null&pageType=SYNOPSIS, 2010.

[64] Barnaby Jack. Jackpotting Automated Teller Machines Redux. In Black Hat USA,

2010.

BIBLIOGRAPHY 172

[65] Barnaby Jack. IMPLANTABLE MEDICAL DEVICES: HACKING HUMANS, 2013.

Blackhat USA.

[66] Todd Jackson, Andrei Homescu, Stephen Crane, Per Larsen, Stefan Brunthaler, and

Michael Franz. Diversifying the software stack using randomized nop insertion. In

Sushil Jajodia, Anup K. Ghosh, V.S. Subrahmanian, Vipin Swarup, Cliff Wang, and

X. Sean Wang, editors, Moving Target Defense II, volume 100 of Advances in Infor-

mation Security, pages 151–173. Springer New York, 2013.

[67] Nick L. Petroni Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copilot

- a coprocessor-based kernel runtime integrity monitor. In USENIX Security Sympo-

sium, pages 179–194. USENIX, 2004.

[68] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering code-

injection attacks with instruction-set randomization. In Proceedings of the 10th ACM

Conference on Computer and Communications Security, CCS ’03, pages 272–280,

New York, NY, USA, 2003. ACM.

[69] Fouad Kiamilev and Ryan Hoover. Defcon 16, 2008. Demonstration of Hardware

Trojans.

[70] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. Secure execution

via program shepherding. In Dan Boneh, editor, USENIX Security Symposium, pages

191–206. USENIX, 2002.

[71] Christopher Krügel, William K. Robertson, and Giovanni Vigna. Detecting Kernel-

Level Rootkits Through Binary Analysis. In ACSAC, pages 91–100. IEEE Computer

Society, 2004.

[72] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. Sok: Automated software

diversity. In Security and Privacy (SP), 2014 IEEE Symposium on, pages 276–291,

May 2014.

[73] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators

in a flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–141, January 1979.

BIBLIOGRAPHY 173

[74] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. SBAP: Software-Based Attes-

tation for Peripherals. In Alessandro Acquisti, Sean W. Smith, and Ahmad-Reza

Sadeghi, editors, Trust and Trustworthy Computing, Third International Conference,

TRUST 2010, Berlin, Germany, June 21-23, 2010. Proceedings, volume 6101 of Lec-

ture Notes in Computer Science, pages 16–29. Springer, 2010.

[75] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. Sbap: Software-based attestation

for peripherals. In Alessandro Acquisti, Sean W. Smith, and Ahmad-Reza Sadeghi,

editors, TRUST, volume 6101 of Lecture Notes in Computer Science, pages 16–29.

Springer, 2010.

[76] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. Viper: verifying the integrity of

peripherals’ firmware. In Yan Chen, George Danezis, and Vitaly Shmatikov, editors,

ACM Conference on Computer and Communications Security, pages 3–16. ACM,

2011.

[77] Felix Lindner. Burning the bridge: Cisco ios exploits, 2001.

[78] Felix Lindner. Cisco Vulnerabilities. In BlackHat USA, 2003.

[79] Felix Lindner. Design Issues and Software Vulnerabilities in Embedded Systems. In

Black Hat Windows Security, 2003.

[80] Felix Lindner. Cisco IOS Router Exploitation. In Black Hat USA, 2009.

[81] Richard Lippmann, Engin Kirda, and Ari Trachtenberg, editors. Recent Advances

in Intrusion Detection, 11th International Symposium, RAID 2008, Cambridge, MA,

USA, September 15-17, 2008. Proceedings, volume 5230 of Lecture Notes in Computer

Science. Springer, 2008.

[82] Edward S. Lowry and C. W. Medlock. Object code optimization. Commun. ACM,

12(1):13–22, January 1969.

[83] PratyusaK. Manadhata. Game theoretic approaches to attack surface shifting. In

Sushil Jajodia, Anup K. Ghosh, V.S. Subrahmanian, Vipin Swarup, Cliff Wang, and

BIBLIOGRAPHY 174

X. Sean Wang, editors, Moving Target Defense II, volume 100 of Advances in Infor-

mation Security, pages 1–13. Springer New York, 2013.

[84] Andrea M Matwyshyn, Ang Cui, Angelos D Keromytis, and Salvatore J Stolfo. Ethics

in security vulnerability research. Security & Privacy, IEEE, 8(2):67–72, 2010.

[85] Michael Lynn. Cisco IOS Shellcode, 2005. In BlackHat USA.

[86] Charile Miller. Battery Firmware Hacking. In Black Hat USA, 2011.

[87] Sebastian Muniz. Killing the myth of Cisco IOS rootkits: DIK, 2008. In EUSecWest.

[88] Sebastian Muniz. Killing the myth of Cisco IOS rootkits: DIK, 2008. In EUSecWest.

[89] Sebastian Muniz and Alfredo Ortega. Fuzzing and Debugging Cisco IOS, 2011. Black

Hat Europe.

[90] Teague Newman, Tiffany Rad, and John Strauchs. Scada & plc vulnerabilities in

correctional facilities white paper, 2011.

[91] Offensive Security. Virata EmWeb R6.0.1 Remote Crash Vulnerability. http://www.

exploit-db.com/exploits/12095/, 2010.

[92] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Smashing the

gadgets: Hindering return-oriented programming using in-place code randomization.

In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12, pages

601–615, Washington, DC, USA, 2012. IEEE Computer Society.

[93] pt. Ooops I hacked My PBX. In The 28th Chaos Communication Congress, 2011.

[94] Thomas Reps. Undecidability of context-sensitive data-dependence analysis. ACM

Trans. Program. Lang. Syst., 22(1):162–186, January 2000.

[95] Riku, Antti, and Matti. CVE-2014-0160 openssl security bug - heartbleed, 2013.

[96] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-Transparent Prevention of Kernel

Rootkits with VMM-Based Memory Shadowing. In Lippmann et al. [81], pages 1–20.

BIBLIOGRAPHY 175

[97] Martin C. Rinard. Manipulating Program Functionality to Eliminate Security Vul-

nerabilities. In Sushil Jajodia, Anup K. Ghosh, Vipin Swarup, Cliff Wang, and Xi-

aoyang Sean Wang, editors, Moving Target Defense, volume 54 of Advances in Infor-

mation Security, pages 109–115. Springer, 2011.

[98] SecurityFocus. Sec. Vulenrability in ChaiVM EZloader. http://www.

securityfocus.com/advisories/4317, 2002.

[99] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doom, and Pradeep K.

Khosla. Pioneer: Verifying code integrity and enforcing untampered code execution on

legacy systems. In Mihai Christodorescu, Somesh Jha, Douglas Maughan, Dawn Song,

and Cliff Wang, editors, Malware Detection, volume 27 of Advances in Information

Security, pages 253–289. Springer, 2007.

[100] Arvind Seshadri, Adrian Perrig, and Leendert Doorn. Using software-based attesta-

tion for verifying embedded systems in cars, 2004.

[101] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep K. Khosla. Swatt:

Software-based attestation for embedded devices. In IEEE Symposium on Security

and Privacy, pages 272–. IEEE Computer Society, 2004.

[102] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and

Dan Boneh. On the effectiveness of address-space randomization. In Proceedings of the

11th ACM Conference on Computer and Communications Security, CCS ’04, pages

298–307, New York, NY, USA, 2004. ACM.

[103] Stelios Sidiroglou, Oren Laadan, Carlos Perez, Nicolas Viennot, Jason Nieh, and

Angelos D. Keromytis. Assure: Automatic software self-healing using rescue points.

SIGPLAN Not., 44(3):37–48, March 2009.

[104] Spansion. SPANSION S25FL064P Data Sheet. http://www.spansion.com/

Support/Datasheets/S25FL064P.pdf, 2011.

[105] Salvatore J. Stolfo, Issac Greenbaum, and Simha Sethumadhavan. Self-monitoring

BIBLIOGRAPHY 176

monitors. Technical Report cucs-026-09, Columbia University Computer Science De-

partment, April 2009.

[106] Frederic Stumpf, Omid Tafreschi, Patrick Rder, and Claudia Eckert. A robust in-

tegrity reporting protocol for remote attestation. In Second Workshop on Advances

in Trusted Computing (WATC ’06 Fall), Tokyo, Japan, November 2006.

[107] Michael Sutton. Corporate Espionage for Dummies: The Hidden Threat of Embedded

Web Servers. In Black Hat USA, 2011.

[108] Robert Tarjan. Depth first search and linear graph algorithms. SIAM Journal on

Computing, 1972.

[109] Arrigo Triulzi. The jedi packet trick takes over the deathstar, 2010.

[110] Varun Uppal. Cisco IOS Bind shellcode v1.0. In http://www.exploit-

db.com/exploits/13292/, 2007.

[111] Chris Valasek and Charlie Miller. Adventures in automotive networks andcontrolunits.

IOActive White Paper, 2013.

[112] Vikas R. Vasisht and Hsien-Hsin S. Lee. Shark: Architectural support for autonomic

protection against stealth by rootkit exploits. In MICRO, pages 106–116. IEEE Com-

puter Society, 2008.

[113] Martin Rinard Vijay Ganesh, Tim Leek. Taint-based directed whitebox fuzzing. IEEE

31st International Conference on Software Engineering, 2009.

[114] VxWorks socklib. http://www-kryo.desy.de/documents/vxWorks/V5.5/vxworks/

ref/sockLib.html.

[115] Redmond Wa, Galen Hunt, Galen Hunt, Doug Brubacher, and Doug Brubacher.

Detours: Binary interception of win32 functions. In In Proceedings of the 3rd USENIX

Windows NT Symposium, pages 135–143, 1998.

[116] Jiang Wang, Angelos Stavrou, and Anup K. Ghosh. Hypercheck: A hardware-assisted

integrity monitor. In Somesh Jha, Robin Sommer, and Christian Kreibich, editors,

BIBLIOGRAPHY 177

RAID, volume 6307 of Lecture Notes in Computer Science, pages 158–177. Springer,

2010.

[117] Zhi Wang, Xuxian Jiang, Weidong Cui, and Xinyuan Wang. Countering Persistent

Kernel Rootkits Through Systematic Hook Discovery. In Lippmann et al. [81], pages

21–38.

[118] Ralf Philipp Weinmann. All your basebands are belong to us, 2010.

[119] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, and Lui Sha. Intru-

sion Detection Using Execution Contexts Learned from System Call Distributions of

Real-Time Embedded Systems. arXiv, 2015.

[120] Jonas Zaddach, Anil Kurmus, Davide Balzarotti, Erik-Oliver Blass, Aurélien Fran-

cillon, Travis Goodspeed, Moitrayee Gupta, and Ioannis Koltsidas. Implementation

and implications of a stealth hard-drive backdoor. In Proceedings of the 29th Annual

Computer Security Applications Conference, ACSAC ’13, pages 279–288, New York,

NY, USA, 2013. ACM.

178

Part VI

Appendices

APPENDIX A. APPENDIX A 179

Appendix A

Appendix A

A.1 Appendix: List of Embedded Device Profiles Supported
by Default Credential Scanner

This section of the appendix details data specific to the work presented in Section 6.

Camera/Survellience
D-Link Web Cams Linksys Web Cams Axis Network Cameras AVTech Web Cams

Enterprise Networking
Huawei SmartAX Huawei NE40E D-Link DES Switches NetSys NV-200

Huawei IAD ZXA10 C220 NetScreen-5GT D-Link DHS-3224
Huawei Routers ALCATEL SR 7750 Huawei A8010 H3C Network Devices

Huawei Quidway AR19 Series CheckPoint Firewall Cisco Network Devices
TopSec Network Devices Ubiquoss Routers and Switches

Home Networking
Siemens DSL Modems Netcomm BCM96348 Huawei Homegateway D-Link Access Points

D-Link DSL, DIR, DGL, DWA Series Linksys WRT HandLink HotSpot
Belkin Routers NetGear 3G MBR624GU MicroTik WebBox

Vendor Issued Equipment
Netwave MNG-5000 D-Link DSL 500G D-Link DSL 500B D-Link DSL 524B

Arris Modem TM402P Globespan Virata GS8100 ADTRAN Total Access 604 Zyxel 645
ZXR10 T1200, T600 ZTE ZXDSL ADSL Modem SpeedStream 5100, 5200, 5400, 5500 Series Ambit U10C022
WaveCast MW-2010R Ubiquoss R3004A WaveCast MW-1700AP, MW-1200AP SKBroadband SI314T

Video Conferencing Devices
Kedacom KDV8000C , TS3610 Hikvision Net Video Server Crestron MP2E Tandberg VC Units

Polycom VC Units
Office Appliances

HP JetDirect Print Server D-Link Print Server Lantronix MSS, MPS Series D-Link DES, DGS, DHS Series
VoIP Appliances

Linksys PAP2 Linksys SPA GaoKe MG6000 GrandStream GXP Series
Sipura SPA

Home Brew Power Management
DD-WRT BusyBox Sentry PDU APC PDU

APPENDIX B. APPENDIX B 180

Appendix B

Appendix B

B.1 Cisco IOS Rookit

This section of the appendix details various details of the Disassembling and Interrupt-

Hijacking Cisco IOS rootkit described in Section 7.1. Source code is available to reputable

researchers upon formal request.

B.1.1 Disassembling Shellcode

Target Platform Tested IOS versions Size

All MIPS (12.0 - 12.4) 200 bytes

Table B.1: MIPS-based disassembling rootkit statistics.

B.1.2 Interrupt Hijacking Shellcode

Target Platform Tested IOS versions Size

All MIPS (12.0 - 12.4) 420 bytes

Table B.2: MIPS-based interrupt hijack rootkit statistics.

APPENDIX C. APPENDIX C 181

Appendix C

Appendix C

C.1 CVE-2011-4161: HP LaserJet Firmware Modification
Vulnerability

This section of the appendix presents data associated with work presented in Section 7.2.1.

Figure C.1: Hex dump of a typical HP-RFU. For P2055DN, using the undocumented
PJL/ACL language.

APPENDIX C. APPENDIX C 182

Figure C.2: “UAT” table structure. Contains a checksum value, followed by a directory
manifest describing various compressed components of the binary update package.

Figure C.3: RFU binary embedded inside a typical PostScript file. This illustrates the most
straightforward reflexive attack.

APPENDIX C. APPENDIX C 183

Model RFUs (qty.) Earliest RFU Latest RFU
2300 2 2004-05-12 2004-12-03
2400 4 2004-09-02 2009-06-24
3000 2 2004-01-06 2008-04-09
3500 3 2004-01-19 2007-02-20
3550 2 2004-09-22 2005-03-07
3600 2 2006-08-07 2006-08-28
3700 3 2004-03-31 2006-12-06
3800 1 2008-04-08 2008-04-08
4100 2 2004-10-08 2005-12-21
4200 2 2004-10-07 2005-06-02
4250 9 2004-09-02 2011-04-06
4300 2 2004-10-07 2005-06-02
4345 10 2005-01-25 2011-04-29
4600 2 2004-10-12 2006-10-10
4650 3 2004-08-27 2007-04-19
4700 7 2009-06-05 2011-05-11
4730 8 2009-06-04 2011-04-29
5100 1 2004-01-15 2004-01-15
5200 9 2009-06-04 2011-12-14
5500 3 2004-10-07 2005-06-02
5550 10 2004-07-29 2011-04-06
8000 1 2010-10-28 2010-10-28
8150 2 2004-01-14 2004-10-14
8500 6 2010-10-25 2011-06-29
9000 3 2004-08-09 2005-12-21
9050 21 2004-06-30 2011-12-13
9055 1 2008-02-20 2008-02-20
9065 5 2004-09-10 2008-02-20
9200 8 2005-01-25 2011-04-19
9250 10 2009-06-04 2011-12-19
9500 12 2004-10-24 2011-05-24
CM1312 5 2010-06-16 2011-12-09
CM1415 6 2010-07-21 2011-12-15
CM3530 9 2009-06-04 2011-12-13
CM4730 11 2009-06-04 2011-12-12
CM6040 8 2009-09-09 2011-12-12
CM80 5 2008-10-28 2010-08-05
CP1518 3 2010-06-16 2011-12-10
CP1525 6 2010-07-21 2011-12-15
CP2024 3 2010-05-12 2011-12-08
CP3505 8 2009-06-04 2011-04-06
CP3525 10 2008-12-04 2011-12-12
CP4005 6 2009-06-05 2011-05-11
CP4525 7 2010-01-20 2011-12-13
CP5225 5 2011-12-20 2011-12-20
CP6015 9 2009-06-04 2011-12-12
M1522 2 2011-03-19 2011-12-12
M1536 5 2010-07-21 2011-12-15
M2727 3 2010-09-02 2011-12-12
M3035 17 2009-06-05 2011-12-12
M4345 15 2009-06-05 2011-12-12
M5035 15 2009-06-05 2011-12-12
M9050 9 2009-06-05 2011-12-12
P2035 4 2011-03-30 2011-12-13
P2055 9 2009-04-30 2011-12-14
P3005 9 2009-06-15 2011-04-06
P3015 8 2009-09-10 2011-12-13
P4015 10 2009-06-04 2011-12-14
Pro 100 1 2011-10-21 2011-10-21
T1200 2 2010-08-31 2011-07-06
T2300 2 2010-08-31 2010-10-28
T7100 4 2011-09-06 2011-11-05
Z6200 1 2011-11-05 2011-11-05

Table C.1: Printer models and firmware images analyzed for vulnerable libraries.

APPENDIX D. APPENDIX D 184

Appendix D

Appendix D

D.1 Symbiote Performance

This section of the appendix presents data associated with the work presented in Chapter

8.

We present the performance metrics of the rootkit detection SEM payload as measured

on a physical Cisco 7271 router running IOS versions 12.2 and 12.3].

APPENDIX D. APPENDIX D 185

Figure D.1: CPU Utilization on Cisco 7121 Router Using Different SEM Payload Execution
Bursts Rates (g(αi, τq)) for IOS 12.2 and 12.3. Note the Direct Relationship Between
g(αi, τq), SEM Payload Execution Time and Total CPU Utilization. Terms Low, Med, High,
and Really High Utilization Corresponds to Varying SEM Payload Burst Rates, g(αi, τq).

Figure D.2: Inverse Relationship between SEM Payload Burst Rate (g(αi, τq)) and Detection
Latency.

