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SUMMARY

A three-dimensional nonlocal multiscale discrete-continuum model has been developed for modeling
mechanical behavior of granular materials. In the proposed multiscale scheme, we establish an information-
passing coupling between the discrete element method, which explicitly replicates granular motion of
individual particles, and a finite element continuum model, which captures nonlocal overall responses of
the granular assemblies. The resulting multiscale discrete-continuum coupling method retains the simplicity
and efficiency of a continuum-based finite element model, while circumventing mesh pathology in the post-
bifurcation regime by means of staggered nonlocal operator. We demonstrate that the multiscale coupling
scheme is able to capture the plastic dilatancy and pressure-sensitive frictional responses commonly observed
inside dilatant shear bands, without employing a phenomenological plasticity model at a macroscopic level.
In addition, internal variables, such as plastic dilatancy and plastic flow direction, are now inferred directly
from granular physics, without introducing unnecessary empirical relations and phenomenology. The simple
shear and the biaxial compression tests are used to analyze the onset and evolution of shear bands in granular
materials and sensitivity to mesh density. The robustness and the accuracy of the proposed multiscale model
are verified in comparisons with single-scale benchmark discrete element method simulations. Copyright ©
2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

While the macroscopic response of granular materials may appear to be similar to those of continua,
it essentially represents a collective behavior of interacting particles. For example, the rearrange-
ment and crushing of particles, collapse of void space, buckling and splitting of force chains, may
result in path-dependent responses of granular materials at macroscale, such as plastic dilatancy,
nonassociative plastic flow and strain localization.

Over the last three decades, computer simulations of granular motion have gained increasing
attention. Several classes of models have been proposed to replicate the behavior of the granular
media including:

(i) discrete approaches that explicitly model the particulate interactions among particle contacts
at the grain scale

(ii) continuum approaches that characterize path-dependent responses with internal variables and
constitutive laws at macroscopic scales, and

(iii) multiscale approaches that concurrently or by means of information-passing that link both (i)
and (ii).
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The continuum approach has been widely used in mining, petroleum, and geotechnical engi-
neering problems to approximate the collective behavior of granular media at the field scale.
Phenomenological plasticity models that successfully resolve macroscopic behavior of specific types
of granular materials such as sand, silt, and powder have been extensively reported in the literature
[1–10]. However, if no length scale is introduced in the phenomenological plasticity models, spuri-
ous mesh dependence may still occur at the post-bifurcation regime. Furthermore, phenomenological
model relies on the usage of internal variables to replicate path-dependent behaviors. It remains a dif-
ficult task to directly link or even replicate all different dissipation mechanisms originating from the
grain scales, such as granular vertex and force chain buckling [11–13], by the evolution of internal
variables alone.

The discrete element method (DEM) provides a simple but computationally intensive solution to
resolve the aforementioned deficiencies of continuum approaches for granular materials. In DEM,
motion of grains is explicitly resolved based on contacts and long-range interactive mechanisms
among particles [14–19] Nevertheless, because DEM explicitly models and tracks the motion of
each individual particle in the grain assembly, the computational cost is often too high for practical
engineering problems that are in large spatial and time scales.

To overcome this issue, various concurrent and information-passing multiscale methods have been
proposed to couple grain-scale simulations with macroscopic continuum-scale finite element analy-
ses [20–29]. For instance, Wellmann and Wriggers [20] introduced an Arlequin DEM–FEM model
that divides the spatial domain into discrete and continuum subdomains. Parts of the discrete and con-
tinuum subdomains are overlapped with each other to create a handshake region such that spurious
reflection can be suppressed. Li and Wan [21] and Regueiro and Yan [22] proposed bridging scale
method, which uses a handshake domain to couple particulate model with higher-order continua.

The homogenization-based multiscale discrete-continuum coupling technique is pioneered by
Miehe and Dettmar [23, 24] in which a micro-macro transition is established by locally attaching
microstructures with macro-continuum at finite strain. Macroscopic stress tensor is then obtained
from the DEM by deforming a periodic Lagrangian frame that contains the granular microstructures.
Miehe et al. [23, 24] extended Hill-Mandel microhomogeneity condition from continuous heteroge-
neous systems to granular materials. These studies reveal that the responses obtained via the linear
displacement and uniform stress boundary conditions represent the upper and lower bounds of the
stiffness, while the periodic boundary condition is the optimal choice at which coarse-scale properties
converges faster with respect to the representative volume element (RVE) size.

Stránský and Jirásek [25], Nguyen et al. [26] and Guo and Zhao [27] proposed a conceptually
similar approach where homogenized stress measures and the tangent operator inferred from peri-
odic discrete element simulations conducted on a RVE are directly used to update an otherwise
conventional small strain implicit finite element model [30–33]. Andrade and Tu [28] proposed a
staggered multiscale constitutive model in which evolutions of the yield surfaces and plastic poten-
tial are governed by DEM simulations or meso-scale experiments. This multiscale constitutive model
is then used to update the Cauchy stress and consistent tangent operator of an implicit small strain
finite element model. These information-passing DEM–FEM coupling approaches have proven to
be stable. Nevertheless, both Nguyen et al. [26] and Guo and Zhao [27] concluded that the implicit
DEM–FEM coupling model suffers two drawbacks – (i) a large number of DEM iteration steps is
required to reach local convergence, and (ii) the post-bifurcation responses obtained from such an
information-passing coupling model may exhibit strong mesh dependence. Furthermore, while the
computational cost of the information-passing DEM–FEM coupling model is substantially lower
than of a single-scale DEM, the Newton–Raphson scheme used to update the finite element solution
often requires multiple DEM simulations to achieve convergences. This can be a significant issue
in the post softening regime where stress–strain curves obtained from DEM are typically bumpy
and sensitive to perturbations. According to Guo and Zhao [27], the information-passing multiscale
scheme may require as much as 48 DEM simulations for each quadrature point. Except [23, 24], the
aforementioned hierarchical DEM–FEM coupling methods are all formulated in the geometrically
linear regime and thus may not be suitable for shear-banding problem where significant plastic spin
may develop [34].
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In the present manuscript, we develop a nonlocal multiscale discrete-continuum model based on
the Generalized Mathematical Homogenization (GMH) originally developed for linking atomistic-
continuum scales [30–33]. GMH belongs to the category of information-passing multiscale methods,
which evolve a coarse-scale model by advancing a sequence of fine-scale models in small windows
(or RVEs) placed at the quadrature points of the finite element model. Consequently, GMH gives rise
to constitutive law-free coarse-scale equations where the coarse-scale continuum model is directly
driven by discrete element simulations at the grain scales. The primary goal of the present work is
to develop an information-passing DEM–FEM coupling scheme that (i) satisfactorily resolves both
the overall and fine-scale responses of the granular media, (ii) is computationally efficient, and (iii)
overcomes pathological mesh sensitivity in the post-bifurcation regime. The contributions of the
present work are summarized as follows:

(i) Alleviating mesh sensitivity in post-bifurcation regime. Previous hierarchical DEM–FEM
coupling schemes have proven to be mesh dependence in [26, 27] after the onset of strain
localization. The proposed multiscale approach remedies this issue by applying a modified
staggered nonlocal approach proposed in [35, 36] to define the unit cell problem for the stress
homogenization.

(ii) Formulating the two-scale discrete-continuum problem via the GMH framework. This treat-
ment allows us to derive the Cauchy stress expression directly from the equilibrium equations
of particles and provide a consistent framework that links the continuum (coarse-scale) and
discrete (fine-scale) representations of the granular assemblies based on the multiscale asymp-
totic analysis. We also establish the connection between the GMH and the Hill–Mandel
condition and prove that the latter is a specific case of GMH in which coarse and fine scales
are in the same temporal scales [37–39].

The rest of the paper is organized as follows. In Section 2, the governing equations at a
scale of particles are briefly reviewed. The theoretical background established via GMH to obtain
constitutive-law free coarse-scale equations is then described, followed by the computational aspects
of the proposed nonlocal multiscale scheme. Numerical examples, including a cyclic simple shear
test, the monotonic simple shear test, and the biaxial compression test, are presented in Section 3 to
verify the model against a single-scale DEM simulation. Observations and conclusions are presented
in Section 4.

2. METHOD

In this section, we provide the theoretical basis for the nonlocal multiscale scheme that couples
the grain-scale discrete mechanics simulations and the macroscopic continuum model via a modi-
fied version of GMH, as depicted in Figure 1. We first formulate the micro-macro transition for the
granular assemblies via a multiscale asymptotic analysis. This treatment allows one to associate the
macroscopic quadrature point with unit cell consisting of particles. We then provide a brief descrip-
tion of the coarse-scale finite element model that replicates the continuum scale behaviors, and the
unit cell discrete element method that replaces the macroscopic phenomenological internal variables
to provide incremental constitutive update to the macroscopic problem. Because of the usage of
the conditionally stable explicit scheme, we analyze the relations of the coarse-scale and fine-scale
critical time steps. The staggered scheme used to integrate the nonlocal quadrature is also discussed.

2.1. Micro-macro transition for granular assemblies via asymptotic expansion

We consider a unit cell consisting of n particles. With the interior domain of the unit cell, these
particles may exert contact force and torque on their neighboring particles. The initial position of
particle I is denoted as 𝐗I , and its displacement is denoted as 𝐮I . Thus, the current position of the
Ith particle is as follows:

𝐱I = 𝐗I + 𝐮I . (1)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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Figure 1. Information flow in the nonlocal two-scale discrete-continuum model.
⟨
Δ𝜺ℜ
⟩

R
is the nonlocal

coarse-scale corotational strain increment; 𝝈c is the coarse-scale Cauchy stress.

The distance of two particles I and J in the initial configuration is as follows:

𝐗IJ = 𝐗J − 𝐗I , (2)

and in the current configuration, the distance is as follows:

𝐱IJ = 𝐱J − 𝐱I = 𝐗IJ + 𝐮J
(
𝐗J , t
)
− 𝐮I
(
𝐗I , t
)

(3)

Given the interaction between particles I and J, the equations of motion for particle I can thus be
expressed by the following:

mI �̈�I =
∑
J≠I

𝐟 IJ
(
𝐱IJ
)
+ FI

ext (4)

where mI is the mass of particle I; �̈�I and �̇�I are the acceleration and velocity of particle center of
mass, respectively. 𝐟 IJ is the internal contact force applied to particle I by particle J; FI

extis resultant
external force applied to particle I, such as boundary force or body force. The superscript J denotes
the neighboring particles that interact with particle I, such that ||𝐱J − 𝐱I|| < rc, with rc being the cutoff
radius. The mass of the I-th particle mI , interval force 𝐟 IJ , and external force FI

ext are assumed to be
periodic functions because of local periodicity of the grain assembly.

A particle moves against its neighboring particles by indenting, sliding and/or rolling at contact
points. While the dominant role of sliding was considered in classical theories of strength and dila-
tancy of granular materials [40], previous research, such as Oda and Iwashita [41], suggests that
rolling, rather than sliding, is a dominant micro-deformation mechanism leading to extensive dila-
tancy of granular media . Mühlhaus and Vardoulakis [42] conducted a bifurcation analysis based on a
micropolar theory and successfully predicted the thickness of a shear band, as well as the shear band
direction. Brown and Evans [43] questioned the need to incorporate micropolar terms for granular
media, based on the fact that the coupled stress might be extremely small in most circumstances. In
this paper, we do not incorporate the rolling and torsional resistances. Because rotational stiffness is
not introduced in our DEM model, higher-order kinematic measures, such as particles rotation gra-
dient, are not incorporated in the homogenized responses. The homogenized Cauchy stress tensor
components are assumed to be symmetric, and no couple stress is used to formulate a complete set
of the governing equations.
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In the multiscale discrete-continuum method, two distinct spatial coordinates are employed to
describe the heterogeneity at a grain level as follows: (i) the coarse-scale coordinate, denoted by𝐗, in
the coarse-scale domain 𝛀, at which the grain scale features are invisible, and (ii) the grain-scale or
fine-scale coordinate, denoted by𝐘, in the discrete unit cell domain𝚯. Assuming that the dimension
of heterogeneity is significantly smaller than the characteristic size of the macroscopic problem, the
macro-scale and micro-scale coordinate systems of the reference configuration are related by:

𝐘 = 𝐗∕𝜉 (5)

where 𝜉 is a small positive scaling parameter that 0 < 𝜉 ≪ 1. The corresponding spatial scales in the
current configuration are denoted by x and y, respectively, and are related by 𝐲 = 𝐱∕𝜉. We assume
that the coarse-scale coordinate 𝐗 takes continuous series of values, and displacements 𝐮 (𝐗,𝐘, t)
are continuous and differentiable in 𝐗, while the fine-scale coordinate Y is discrete.

We follow the derivation steps in [30–33] to derive the two-scale formation. However, unlike
atomistic simulations that involve multiple time scales due to atomistic vibrations, a single time scale
is considered. The first two material time derivatives of the displacement field are given by:

d𝐮
(
𝐗,𝐘I , t

)
dt

= �̇�I
d2𝐮
(
𝐗,𝐘I , t

)
dt2

= �̈�I . (6)

Prior to carrying out the multiple scale asymptotic analysis, it is necessary to rescale Equation (4).
We start by considering continuum equations of motion 𝜌0�̈� (𝐗, t) −∇𝐗 ⋅P = 0 where 𝜌0 is the mass
density; P is the first Piola-Kirchhoff stress tensor and ∇𝐗 ⋅P denotes the divergence of stress tensor
P. For homogeneous media, stress derivatives are of order one, whereas for heterogeneous media, for
which certain components of stresses are discontinuous, stress derivatives are of O

(
𝜉−1
)
. Assuming

that the material density is 𝜌0 ∼ O(1) and the characteristic size of the unit cell is l ∼ O(𝜉), the
volume of the unit cell is Θ0 ∼ O

(
𝜉3
)
. Thus, the mass m ∼ 𝜌0Θ0 ∼ O

(
𝜉3
)
. Dividing Equation (4)

by volume of the unit cell yields the following:

k1𝜌0�̈�
I = 1

k2𝜉
3

∑
J≠I

𝐟 IJ(𝐱IJ) + 1
k3𝜉

3
FI

ext (7)

where k1, k2 and k3 are order one constants. Comparing Equation (7) to the continuum equations of
motion, we obtain the following:

𝐟 IJ
(
𝐱IJ
)
∼ O
(
𝜉2
)
, Fext ∼ O

(
𝜉2
)
. (8)

Then we introduce the following O (1) normalized quantities

m̄ = m
/
𝜉3 ∼ O(1); 𝐟 IJ = 𝐟 IJ

/
𝜉2 ∼ O(1); �̄�ext = Fext

/
𝜉2 ∼ O(1). (9)

Therefore, Equation (4) can be rewritten as:

m̄�̈�I = 1
𝜉

∑
J≠I

𝐟 IJ + 1
𝜉
�̄�ext (10)

A multiscale asymptotic expansion is employed to approximate the displacement field as:

𝐮 (𝐗,𝐘, t) = 𝐮(0) (𝐗, t) + 𝜉𝐮(1) (𝐗,𝐘, t) + ... (11)

where the leading order displacement 𝐮(0) is termed the coarse-scale displacement, 𝐮c ≡ 𝐮(0). It is
assumed to be independent of the fine-scale coordinate. Inserting Equation (11) into Equation (6)
yields the following:
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�̇�I = �̇�c + O(𝜉)
�̈�I = �̈�c + O(𝜉).

(12)

We denote the displacement of the I-th particle by uI
i = ui

(
𝐗,𝐘I , t

)
with 𝐗 = 𝐗I . The displace-

ments of the neighboring particle uJ
i

(
𝐗J ,𝐘J

, t
)

can be expanded using a Taylor series around point𝐗
as follows:

uJ
i = ui

(
𝐗,𝐘J , t

)
+

𝜕ui

(
𝐗,𝐘J , t

)
𝜕Xj

XIJ
j +

1
2

𝜕2ui

(
𝐗,𝐘J , t

)
𝜕Xj𝜕Xk

XIJ
j XIJ

k + ... (13)

From Equation (13), we have:

uJ
i − uI

i = ui

(
𝐗,𝐘J , t

)
− ui

(
𝐗,𝐘I , t

)
+

𝜕ui

(
𝐗,𝐘J , t

)
𝜕Xj

XIJ
j +

+ 1
2

𝜕2ui

(
𝐗,𝐘J , t

)
𝜕Xj𝜕Xk

XIJ
j XIJ

k + ....

(14)

Inserting Equation (5) into Equation (14) yields

uJ
i − uI

i = ui

(
𝐗,𝐘J , t

)
− ui

(
𝐗,𝐘I , t

)
+ 𝜉

𝜕ui

(
𝐗,𝐘J , t

)
𝜕Xj

YIJ
j

+1
2
𝜉2
𝜕2ui

(
𝐗,𝐘J , t

)
𝜕Xj𝜕Xk

YIJ
j YIJ

k + ....

(15)

Inserting the asymptotic expansion Equation (11) into Equation (15) yields:

uJ
i − uI

i = 𝜉

(
u(1)i

(
𝐗,𝐘J , t

)
− u(1)i

(
𝐗,𝐘I , t

)
+

𝜕uc
i (X, t)
𝜕Xj

YIJ
j

)
+ 1

2
𝜉2

(
𝜕u(1)i

(
𝐗,𝐘J , t

)
𝜕Xj

YIJ
j + 1

2

𝜕2uc
i (𝐗, t)

𝜕Xj𝜕Xk
YIJ

j YIJ
k

)
+ ....

(16)

Inserting Equation (16) into Equation (3) yields the following:

𝐱IJ = 𝐗IJ + 𝐮J − 𝐮I = 𝜉𝛗IJ + 𝜉2𝛙IJ + ...

𝐲IJ = 𝐱IJ
/
𝜉 = 𝛗IJ + 𝜉𝛙IJ + ...

(17)

where

φIJ
i = Fc

ij (𝐗) YIJ
j + u(1)i

(
𝐗,𝐘J , t

)
− u(1)i

(
𝐗,𝐘I , t

)
ψIJ

i =
𝜕u(1)i

(
𝐗,𝐘J , t

)
𝜕Xj

YIJ
j + 1

2

𝜕2uc
i (𝐗)

𝜕Xj𝜕Xk
YIJ

j YIJ
k .

(18)

Herein, Fc
ij (𝐗, t) denotes the coarse-scale deformation gradient, i.e.,

Fc
ij (𝐗) = 𝛿ij +

𝜕uc
i (𝐗)
𝜕Xj

. (19)

The contact force 𝐟 IJ is a function of 𝐱IJ so that

f̄ IJ
i = f̄ IJ

i

(
𝜉yIJ
)
= f̄ IJ

i

(
𝜉𝛗IJ + 𝜉2𝛙IJ + ...

)
= f̄ IJ

i

(
𝜉𝛗IJ
)
+

𝜕f̄ IJ
i

𝜕yIJ
k

𝜕yIJ
k

𝜕xIJ
j

||||||yIJ=𝛗IJ

𝜉2ψIJ
j + O

(
𝜉2
)

= ̂̄f IJ
i + 𝜉

𝜕f̄ IJ
i

𝜕yIJ
j

||||||yIJ=𝛗IJ

ψIJ
j + O

(
𝜉2
) (20)
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where

̂̄f IJ
i = ̂̄f IJ

i

(
𝜉𝛗IJ
)
. (21)

Inserting Equations (12) and (20) into Equation (10) yields the following:

m̄I üc
i (𝐗, t) =

1
𝜉

∑
J≠I

⎛⎜⎜⎝ ̂̄f IJ
i + 𝜉

𝜕f̄ IJ
i

𝜕yIJ
j

||||||𝐲IJ=𝛗IJ

ψIJ
j

⎞⎟⎟⎠ + 1
𝜉

F̄ext,i

(
𝐮I
)
. (22)

Collecting terms of equal power of 𝜉 gives the equations of motion at different scales

O
(
𝜉−1
)
∶
∑

J

f̂ IJ
i + F̄ext,i

(
𝐮I
)
= 0 (23)

O(1) ∶ müc
i (𝐗, t) =

∑
J

⎛⎜⎜⎝
𝜕f IJ

i

𝜕yIJ
j

||||||𝐲IJ=𝛗IJ

ψIJ
j

⎞⎟⎟⎠. (24)

Equation (23) is a quasi-static unit cell problem. We now focus on the coarse-scale problem.
Summation over all the particles and then dividing Equation (24) by the volume of the unit cell||Θ0
|| for the initial configuration give the following:

1||Θ0
||
∑

I

mIüc
i (𝐗, t) =

1||Θ0
||
∑

I

∑
J

𝜕f IJ
i

𝜕yIJ
j

||||||𝐲IJ=𝛗IJ

ψIJ
j . (25)

It is noted that the density is defined as:

𝜌c
0 =

1||Θ0
||
∑

I

mI (26)

so that

𝜌c
0üc

i (𝐗, t) =
1||Θ0
||
∑

I

∑
J

𝜕f IJ
i

𝜕yIJ
j

||||||𝐲IJ=𝛗IJ

ψIJ
j (27)

Considering Equations (17) and (18), we have the following:

f IJ
i,Xj
=

𝜕f IJ
i

𝜕yIJ
k

𝜕yIJ
k

𝜕Xj
=

𝜕f IJ
i

𝜕yIJ
k

𝜕φIJ
k

𝜕Xj
+ O(𝜉)

=
𝜕f IJ

i

𝜕yIJ
k

(
𝜕2uc

k (𝐗, t)
𝜕Xm𝜕Xj

YIJ
m +

𝜕u(1)k

(
𝐗,𝐘J , t

)
𝜕Xj

−
𝜕u(1)k

(
𝐗,𝐘I , t

)
𝜕Xj

)
+ O(𝜉).

(28)

In the RHS of Equation (27), we have
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𝜕f IJ
i

𝜕yIJ
j

||||||yIJ=𝛗IJ

ψIJ
j =

𝜕f IJ
i

𝜕yIJ
j

||||||yIJ=𝛗IJ

⎛⎜⎜⎝
𝜕u(1)j

(
𝐗,𝐘J , t

)
𝜕Xm

+ 1
2

𝜕2uc
j (𝐗)

𝜕Xm𝜕Xk
YIJ

k

⎞⎟⎟⎠YIJ
m

= 1
2

𝜕f IJ
i

𝜕yIJ
j

||||||yIJ=𝛗IJ

⎛⎜⎜⎝
𝜕u(1)j

(
𝐗,𝐘J , t

)
𝜕Xm

−
𝜕u(1)j

(
𝐗,𝐘I , t

)
𝜕Xm

+
𝜕2uc

j (𝐗)
𝜕Xm𝜕Xk

YIJ
k

⎞⎟⎟⎠YIJ
m

+ 1
2

𝜕f IJ
i

𝜕yIJ
j

||||||yIJ=𝛗IJ

⎛⎜⎜⎝
𝜕u(1)j

(
𝐗,𝐘J , t

)
𝜕Xm

+
𝜕u(1)j

(
𝐗,𝐘I , t

)
𝜕Xm

⎞⎟⎟⎠YIJ
m

= 1
2

𝜕

𝜕Xj

(
f IJ
i YIJ

j

)
+ 1

2

𝜕f IJ
i

𝜕yIJ
j

||||||yIJ=𝛗IJ

⎛⎜⎜⎝
𝜕u(1)j

(
𝐗,𝐘J , t

)
𝜕Xm

+
𝜕u(1)j

(
𝐗,𝐘I , t

)
𝜕Xm

⎞⎟⎟⎠YIJ
m

= 1
2𝜉

𝜕

𝜕Xj

(
f IJ
i XIJ

j

)
+ 1

2

𝜕f IJ
i

𝜕yIJ
j

||||||𝐲IJ=𝛗IJ

⎛⎜⎜⎝
𝜕u(1)j

(
𝐗,𝐘J , t

)
𝜕Xm

+
𝜕u(1)j

(
𝐗,𝐘I , t

)
𝜕Xm

⎞⎟⎟⎠YIJ
m .

(29)

Inserting Equation (29) into Equation (27) yields

𝜌c
0üc

i (𝐗, t) =
∑

I

∑
J

1||Θ0
|| 12 𝜕

𝜕Xj

(
f IJ
i XIJ

j

)
+
∑

I

∑
J

1||Θ0
|| 12 𝜕f IJ

i

𝜕yIJ
j

||||||yIJ=𝛗IJ

⎛⎜⎜⎝
𝜕u(1)j

(
𝐗,𝐘J , t

)
𝜕Xm

+
𝜕u(1)j

(
𝐗,𝐘I , t

)
𝜕Xm

⎞⎟⎟⎠YIJ
m .

(30)

It can be shown that the second term of Equation (30) will vanish. Recalling Equation (3) yields
the following:

𝐱JI = 𝐱I − 𝐱J = 𝐗I − 𝐗J + 𝐮I − 𝐮J = −𝐱IJ = 𝜉𝛗JI + 𝜉2𝛙JI (𝐗,𝐘, t) + ... (31)

where

φJI
i = Fc

ij (𝐗, t) YJI
j + u(1)i

(
𝐗,𝐘I , t

)
− u(1)i

(
𝐗,𝐘J , t

)
= −φIJ

i

ψJI
i =

𝜕u(1)i

(
𝐗,𝐘I , t

)
𝜕Xj

YJI
j + 1

2

𝜕2uc
i (𝐗)

𝜕Xj𝜕Xk
YJI

j YJI
k = −ψIJ

i .
(32)

According to Newton’s third law, we have:

𝐟 IJ = −𝐟 JI (33)

From Equations (32) and (33), we have the relationship

𝜕f IJ
i

𝜕yIJ
j

= −
𝜕f JI

i

𝜕yIJ
j

= −
𝜕f JI

i

𝜕

(
−yJI

j

) = 𝜕f JI
i

𝜕yJI
j

. (34)

The summation of the second term of Equation (30) gives the following:

∑
I

∑
J

1||Θ0
|| 12 𝜕f IJ

i

𝜕yIJ
j

||||||yIJ=𝛗IJ

⎛⎜⎜⎝
𝜕u(1)j

(
𝐗,𝐘J , t

)
𝜕Xm

+
𝜕u(1)j

(
𝐗,𝐘I , t

)
𝜕Xm

⎞⎟⎟⎠YIJ
m

=
∑
I

∑
J

1||Θ0
|| 12 𝜕f IJ

i

𝜕yIJ
j

||||||yIJ=𝛗IJ

⎛⎜⎜⎝
𝜕u(1)j

(
𝐗,𝐘J , t

)
𝜕Xm

+
𝜕u(1)j

(
𝐗,𝐘I , t

)
𝜕Xm

⎞⎟⎟⎠
(
YJ

m − YI
m

)
.

(35)
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For any pair (I, J), which participates the summation, we have

1
2

𝜕f IJ
i

𝜕yIJ
j

||||||yIJ=𝛗IJ

⎛⎜⎜⎝
𝜕u(1)j

(
𝐗,𝐘J , t

)
𝜕Xm

+
𝜕u(1)j

(
𝐗,𝐘I , t

)
𝜕Xm

⎞⎟⎟⎠
(
YJ

m − YI
m

)
+ 1

2

𝜕f JI
i

𝜕yJI
j

||||||yJI=𝛗JI

⎛⎜⎜⎝
𝜕u(1)j

(
𝐗,𝐘I , t

)
𝜕Xm

+
𝜕u(1)j

(
𝐗,𝐘J , t

)
𝜕Xm

⎞⎟⎟⎠
(
YI

m − YJ
m

)
=1

2

𝜕f IJ
i

𝜕yIJ
j

||||||yIJ=𝛗IJ

⎛⎜⎜⎝
𝜕u(1)j

(
𝐗,𝐘J , t

)
𝜕Xm

+
𝜕u(1)j

(
𝐗,𝐘I , t

)
𝜕Xm

⎞⎟⎟⎠
(
YJ

m − YI
m

)
+ 1

2

𝜕f IJ
i

𝜕yIJ
j

||||||yIJ=𝛗IJ

⎛⎜⎜⎝
𝜕u(1)j

(
𝐗,𝐘I , t

)
𝜕Xm

+
𝜕u(1)j

(
𝐗,𝐘J , t

)
𝜕Xm

⎞⎟⎟⎠
(
YI

m − YJ
m

)
=0.

(36)

Finally, the coarse-scale equation of motion is expressed as follows:

𝜌c
0üc

i (𝐗, t) =
∑

I

∑
J

1||Θ0
|| 12 𝜕

𝜕Xj

(
f IJ
i XIJ

j

)
. (37)

One can rewrite Equation (37) as

𝜌c
0üc

i (𝐗, t) −
𝜕Pij (𝐗, t)

𝜕Xj
= 0

Pij (𝐗, t) =
1

2 ||Θ0
||
∑

I

∑
J

f IJ
i XIJ

j .

(38)

Alternatively, we have the following:

Pij (𝐗, t) =
1||Θ0
||

n∑
I=1

∑
J > I

f IJ
i XIJ

j (39)

where n denotes the total number of particles in the unit cell. Equation (39) can be also derived in
the current configuration. Considering the relationship between the first Piola-Kirchhoff stress and
Cauchy stress, we have the following:

P = J𝝈 ⋅ F−T

𝝈 = P ⋅ FT/J
(40)

where J is the determinant of deformation gradient. Inserting Equation (39) into Equation (40) yields
the following:

𝜎ij =
1
J

PikFjk =
1
J

1||Θ0
||

n∑
I=1

∑
J > I

f IJ
i XIJ

k Fjk

= 1|Θ| n∑
I=1

∑
J > I

f IJ
i

(
FjkXIJ

k

) (41)

where |Θ| denotes the volume of the unit cell in the current configuration. From Equations (17) and
(18), we have the following:

𝐱IJ = 𝜉

(
Fc ⋅ 𝐘IJ + 𝐮(1)

(
𝐗,𝐘J , t

)
− 𝐮(1)

(
𝐗,𝐘I , t

))
+ O
(
𝜉2
)

= Fc ⋅ 𝐗IJ + O(𝜉).
(42)
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Inserting Equation (42) into Equation (41) yields the following:

𝜎ij =
1|Θ| n∑

I=1

∑
J > I

f IJ
i

(
FjkXIJ

k

)
= 1|Θ| n∑

I=1

∑
J > I

f IJ
i xIJ

j + O(𝜉). (43)

According to Equations (39) and (41), both the first Piola-Kirchhoff stress and Cauchy stress
can be derived from the multiscale asymptotic analysis. The coarse-scale problem that gov-
erns macroscopic continuum behavior and the unit cell problem that replaces the macroscopic
phenomenological constitutive laws can be expressed in the current configuration, which read,

a. Coarse-scale problem

𝜌c�̈�c (𝐱, t) − ∇𝐱 ⋅ 𝝈c = 0

𝝈
c (𝐱, t) = 1|Θ| n∑

I=1

∑
J > I

𝐟 IJ𝐱IJ (44)

b. Unit cell problem ∑
J

𝐟 IJ
i + 𝐅ext,i

(
𝐮I
)
= 0 (45)

where �̈�c denotes the coarse-scale acceleration; 𝜌c = 1|Θ| ∑
I

mI and |Θ| are the coarse-scale density,

and the unit cell volume in the current configuration, respectively. n is the number of particles in the
unit cell; 𝝈c is the coarse-scale Cauchy stress, and 𝐱IJ is the vector connecting the centers of two
particles. (∇⋅) denotes the divergence operator, and superscript c denotes the coarse-scale features.
The Cauchy stress obtained in Equation (44)b is identical to the classical homogenized Cauchy stress
obtained using the principle of virtual work [18, 37–39].

Note that the inertia term in Equation (4) only enters the coarse-scale equation of motion, whereas
the unit cell problem remains quasi-static. This is because the coarse-scale wave length is assumed
to be much larger than the RVE size. This approach is commonly used for low rates of loading and
for short observation times [30, 44]. However, in those problems with high rates of loading and long
observation times, particle interfaces in a granular media may cause reflection and refraction of stress
waves, giving rise to dispersion and attenuation of waves within material microstructure [45], which
cannot be accounted for by the approach developed in this paper.

2.2. Coarse-scale problem: FEM

In the macroscopic continuum scale, the trajectories of individual particles are not considered.
Instead, we associate each coarse-scale material point with a representative elementary volume or
unit cell in which effective continuum properties can be derived. As a result, the coarse scale dis-
placement field is interpolated by the finite element basis function and possesses C0 continuity.
The initial and boundary conditions for the coarse-scale problem described by Equation (44) are
given as:

𝐮c (𝐱, 0) = 0; �̇�c (𝐱, 0) = 0 (46)

𝐮c (𝐱, t) = �̄� (𝐱, t) on 𝜕Ωu; 𝝈
c ⋅ 𝐧 = �̄� on 𝜕Ωt (47)

where the essential (displacement) boundary 𝜕Ωu and the natural (traction) boundary 𝜕Ωt satisfy
𝜕Ωu∪𝜕Ωt = 𝜕Ω and 𝜕Ωu∩𝜕Ωt = 0, as shown in Figure 2; �̇�c is the velocity vector; �̄� and 𝐭 represent
prescribed displacements and tractions on 𝜕Ωu and 𝜕Ωt, respectively. And n is the unit outward norm
of the boundary.

By applying the weight-residual method, the weak form corresponding to the coarse-scale problem
in Equation (44)a can be written as follows.
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Find 𝐮c (𝐱, t) ∈ 𝒰 in Ω such that

∫Ω
(
∇𝐱wc

)
∶ 𝝈cdΩ = ∫

𝜕Ωt

wc ⋅ t̄dΩ − ∫Ω 𝜌
cwc ⋅ ücdΩ ∀wc ∈𝒲 (48)

where the trial and test function spaces are defined as follows:

𝒰 =
{
𝐮c|𝐮c ∈ℋ 1, 𝐮c = ūc on 𝜕Ωu

}
𝒲 =

{
wc|wc ∈ℋ 1, wc = 0 on 𝜕Ωu

} (49)

where 𝐮c and 𝐰c are the coarse-scale trial and test functions, respectively, and 𝒰1 is the Sobolev
space of order one. The Galerkin form is obtained by specifying the finite dimensional space for both
the trial function and interpolated coarse displacement field. Here, we consider the case in which
both the trial function and the displacement field are spanned by the same basis function. As a result,
the coarse-scale trial and test functions

h𝐮c (𝐱, t) =
∑
A∈N

𝐍A (x) dc
A(t)

hwc (𝐱, t) =
∑
A∈N

𝐍A (x)wc
A(t)

(50)

which yields a semidiscrete momentum equation as follows:

𝐌𝐝c(t)=𝐟 ext(t) − 𝐟 int (dc(t)) (51)

where𝐍Ais the basis function corresponding to nodeA; N represents the set of nodes in the mesh and
dc
A(t) and wc

A (t) denote the nodal degrees-of-freedom of trial and test functions, respectively. The
superscript h represents the discretized quantities; dcand 𝐝c are the coarse-scale nodal displacements
and accelerations, respectively, and M, fint, and 𝐟 extare the coarse-scale mass matrix, internal force,
and external force vectors, respectively. In the numerical implementation, we employ the Voigt’s
notation such that second-order tensors are stored as column vectors. As a result, the internal and
external force vector and the mass matrix can be written as a function of the shape function N, and
the discrete symmetric gradient operator B, that is as follows,

𝐌 = ∫Ω 𝜌
c𝐍T𝐍dΩ; 𝐟 int = ∫Ω 𝐁

T
𝝈

cdΩ; 𝐟 ext = ∫Ω𝐍
T t̄cdΩ (52)

where 𝛔c is the coarse-scale Cauchy stress defined by Equation (44b) but stored in the Voigt
form. In the present work, the continuum coarse-scale problem in Equation (51) is integrated using
explicit central difference method [46]. Lumped mass is used in the coarse-scale simulations. Unlike
the conventional macroscopic finite element approach, the constitutive responses are not obtained
from macroscopic constitutive law but rather from homogenized responses of particle assemblies
associated with every quadrature point in the finite element mesh.

Figure 2. Schematics of the coarse-scale boundary value problem (in the initial configuration).

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
DOI: 10.1002/nme



Y. LIU ET AL.

2.3. Discrete element unit cell problem

Consider a collection of particles within the interior domain of a cuboidal unit cell. This collection of
particles is surrounded by an exterior layer of one-particle thickness. This exterior layer deforms peri-
odically in space and may interact with the particles inside the unit cell, but its motion is completely
controlled by the prescribed periodic boundary conditions provided by the coarse-scale problem.
The particle-to-particle and particle-to-boundary interactions are both simulated via discrete element
method, and the quasi-static macroscopic responses of the unit cell are subsequently homogenized
from each unit cell and passed to the coarse-scale solver.

The quasi-static solution of the unit cell problem in Equation (45) can be obtained by seeking
the steady-state solution of an explicit dynamic relaxation DEM problem with incremental loading
steps or by directly solving the nonlinear system of equations via an implicit scheme. In practice, the
implicit scheme is rarely used for DEM problems. As the nonlinearity of responses may stem from
both the nonlinear and path dependent contact laws and the changes of topologies of grain contacts, it
is easier to implement and use explicit scheme to obtain the quasi-static solution of DEM assemblies.
The dynamic relaxation problem can be viewed as an iterative process in which pseudo-dynamics
processes are emulated in an artificial time scale. This iterative process is considered complete when
a deformed configuration of the granular assembly with all the forces and moment in equilibrium
is found. Using numerical examples to provide evidences, Bardet and Proubet [47] show that both
mass scaling and viscous damping can be used to enhance computational efficiency (by reducing
number of iterative steps) without significantly altering the approximated quasi-static configurations
of the DEM assemblies. In this paper, an explicit central difference leap-frog pseudo-time integrator
and artificial damping are both employed to obtain the quasi-static solution [15].

2.3.1. Contact models for discrete element simulations in unit cells. A simplified contact model,
which employs Hertz-Mindlin contact law and Coulomb’s friction law with viscous damping, is used
to represent the particle contact mechanism. Cohesive bonding and rolling resistance between the
particles are not considered in this paper. Incremental changes to the normal and tangential contact
forces, f f

n and f f
t , at each contact are determined by the particle shear modulus Gf

g, Poisson′s ratio
𝜈 f , radii of the contacting grains R1 and R2, and the fine-scale normal and tangential displacements
at the contact, d𝛿 f and dsf [48] as follows,

df f
n = kf

nd𝛿 f ; kf
n =

√
2Gf

g

√
Re

1 − 𝜈f

(
𝛿 f
)1∕2

(53)

df f
t = k f

t dsf ; k f
t =

2
√

2Gf
g

√
Re

2 − 𝜈f

(
𝛿 f
)1∕2

(54)

where 𝛿f is the indentation at the contact and Re is the effective radius,

Re =
2R1R2

R1 + R2
. (55)

Superscript f denotes fine-scale features. The fine-scale tangential force is governed by the friction
coefficient 𝜇f , such that |||f f

t
||| ⩽ 𝜇f f f

n . For stabilization, a viscous damping force is employed

f f
s,vis = Cf ṡ f (56)

where Cf and ṡf are the viscosity and the tangential sliding velocity at contact. In case of slow,
quasi-static loading conditions, the mass damping cIand contact damping Cf must be sufficient to
dissipate high frequency vibrational modes without impeding particle motion that arise from particle
interactions or the boundary conditions.
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2.3.2. Dynamic relaxation scheme of unit cell problem. For a given unit cell, the stress of the DEM
assemblies depends on the fine-scale material parameters, microstructural attributes, such as parti-
cle size distribution, spatial heterogeneity, and the loading path and history that lead to the current
configuration [49, 50]. If the wavelength of the traveling signal is significantly larger than the dimen-
sions of the particles, then the quasi-static stress homogenized from the forces and branch vectors of
the quasi-static configuration of unit cell can be used to update stress measures of the macroscopic
dynamics problem without introducing significant errors.

Various criteria have been proposed to detect the quasi-static state of DEM dynamic relaxation
problem [49, 50, 51]. In this work, we use the unbalanced force index Iuf introduced by Ng [52],

Iuf =

√√√√√√√√√√
1
np

np∑
1

(unbalanced forces)2

1
nc

nc∑
1

(contact forces)2
(57)

where np and nc denote the number of particles and number of contacts, respectively. The size of the
pseudo-time or load step is calibrated such that the unbalanced force index Iuf is always kept smaller
than a threshold value, for example, 0.01. This treatment ensures that the artificial damping intro-
duced for dynamics relaxation does not significantly affect the simulated friction angle and shear
strength. Mass scaling is also used to enable the usage of larger pseudo-time step and to reduce com-
putational cost. In each pseudo-time step, the incremental displacement is prescribed to the particles
at the boundary of the unit cell such that the unit cell deforms with the strain increment prescribed
by the macroscopic problem. One particular interesting finding from Andrade and Tu [28] is that the
granular assemblies with more particles typically require a small strain increment and more loading
steps to maintain static equilibrium. Notice that if an identical quasi-static boundary value prob-
lem is simulated by both DEM and DEM–FEM models, the pure DEM model will require much
more increment loading steps than the DEM–FEM counterpart [28]. In this sense, the DEM–FEM
model can be considered as a divide-and-conquer tactic tool to coarsen load increments and increase
efficiency of numerical simulations for large scale quasi-static granular mechanics problems.

2.3.3. Numerical algorithms for the nonlocal multiscale discrete-continuum model. The two-scale
problem, consisting of the discrete unit cell problem subjected to periodic boundary conditions and
the coarse-scale equations of motion, is two-way coupled. In this section, we focus on algorith-
mic details. The two-scale problem described by Equations (44) and (45) is solved sequentially
as follows:

(i) Solve the dynamics relaxation problem at coarse scale using a co-rotational finite element
model and compute the coarse-scale strain increment of each local quadrature.

(ii) Obtain the nonlocal coarse-scale strain increment using the staggered nonlocal operator and
evaluate the nonlocal corotational strain increment.

(iii) Prescribing periodic boundary conditions to the unit cells on the nonlocal corotational coarse-
scale strain increment of the corresponding nonlocal quadrature.

(iv) Obtain new static equilibrium states of the granular assemblies compatible to the prescribed
boundary condition via DEM and compute the corotational coarse-scale Cauchy stress by
Equation (44b).

(v) Transform the corotational coarse-scale Cauchy stress to the fixed global frame and compute
residual vector. Go back to (i) for next step.

To account for the geometric nonlinear effect, we employ a corotational formulation [53] where a
local corotational coordinate frame, denoted by, is attached to each finite element quadrature point
and rotated with the deforming material. To preserve the characteristic length scale and eliminate
pathological mesh dependence, we use a staggered nonlocal operator that explicitly introduces an
intrinsic length scale and thus limits the shear band thickness when strain localization occurs. The
interaction radius, denoted by R, is assumed to be an intrinsic material property.
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In step (i), the coarse-scale incremental strain Δ𝛆c
n+1∕2 (𝐱, t) is obtained from the solution of the

coarse-scale problem at each quadrature point, in each time step. Because of strong size dependence
that has been observed in granular materials, we define a nonlocal coarse-scale strain increment
[35, 36]

⟨
Δ𝛆c

n+1∕2

(
xI

)⟩
R
as follows:⟨
Δ𝛆c

n+1∕2(xI)
⟩

R
=
∑
ξJ∈QI

𝛼∗(xI , ξJ)𝜙∗(ξJ)

𝜙∗(ξJ) =
{
Δ𝛆c

n+1∕2(ξI) if ξJ = xI

Δ𝛆c
n+𝛼(ξJ) if ξJ ≠ xI

(58)

where Δ𝛆c
n+𝛼 denotes the coarse-scale strain computed on the fly, that is, 𝛼 is ± (1∕2), which repre-

sents either previous or current time step. Δ𝛆c
n+1∕2 is the coarse-scale strain at the current time tn+1;

xI denotes the position of the current quadrature point I, and QI is a set of quadrature points ξJ ∈ QI
adjacent to point xI that satisfies the following:{

QI
||||xI − ξJ

|| ⩽ R, ∀ξJ ∈ QI

}
(59)

where R denotes the characteristic radius. 𝛼∗(xI , ξJ) is defined in Appendix B.

Prior to exerting
⟨
Δ𝛆c

n+1∕2(xI)
⟩

R
onto the unit cell, it is rotated to the corotational frame, to yield

the nonlocal corotational coarse-scale strain increment
⟨
Δ𝛆ℜ

n+1∕2(xI)
⟩

R
as follows:

⟨
Δ𝛆ℜn+1∕2(xI)

⟩
R
=
(
ℜc

n+1∕2(xI)
)T

⋅
⟨
Δ𝛆c

n+1∕2(xI)
⟩

R
⋅
(
ℜc

n+1∕2(xI)
)

(60)

where ℜc
n+1∕2(xI)denotes the coarse-scale rotation obtained from the polar decomposition of the

coarse-scale deformation gradient 𝐅c
n+1∕2(xI) at a quadrature point xI defined as follows:

𝐅c
n+1∕2(xI) =

𝜕xn+1∕2

𝜕X
, (61)

and 𝐱n+1∕2is the coordinate at the midstep. Instead of directly prescribing the local strain increment
as periodic boundary conditions applied on the boundaries of unit cells, the proposed model employs
the coarse-scale strain increment

⟨
Δ𝛆ℜ

n+1∕2(xI)
⟩

R
obtained from the macroscopic solver to obtain

the corotational coarse-scale Cauchy stress 𝜎ℜ
n+1 (𝐱, t) through Equation (44)b using DEM, which is

then rotated back to the global Cartesian coordinate system as follows.

σc
n+1 =

(
ℜc

n+1

)
⋅ σℜn+1 ⋅

(
ℜc

n+1

)T
. (62)

The resulting coarse scale stress σc
n+1 (𝐱, t) is passed back to coarse-scale finite element engine

to continue the iterative process. The aforementioned nonlocal discrete-continuum model is imple-
mented by integrating FOOF [54], a macroscale FEM solver, and OVAL [55], a microscale DEM
solver. The numerical algorithm that links between the macro-scale and micro-scale solvers is shown
in the flow chart in Figure 3. At each nonlocal quadrature point in the FEM mesh, the FEM solver
executes the DEM unit cell problem in the corotational frame subjected to the nonlocal coarse-
scale incremental strain

⟨
Δ𝛆ℜ

n+1∕2(xI)
⟩

R
. The fine-scale DEM solver evolves the discrete unit cell

using explicit time integration to compute the coarse-scale Cauchy stress required to advance the
coarse-scale problem. The particle arrangement, that is, particle positions, velocities, and contact
information, at the end of the coarse-scale time step are stored, to allow the new DEM simulation
to begin from the final state of the previous time step. Each integration point has its own “restart”
out-of-core file. The numerical implementation of the corotational formulations is illustrated in
Appendix B.
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Figure 3. The framework integrating FEM and DEM solvers for the two-scale problem.

2.3.4. Temporal Stability of the coupled explicit DEM–FEM problems. The objective of the unit
cell dynamics relaxation problems is to obtain stress measures from the granular configurations in
the static equilibrium. As a result, both the mass and damping coefficients used in the DEM are not
related to the actual physical quantities but are parameters manipulated by the users to obtain non-
oscillatory overall responses. While the original physical meanings of the mass and damping are lost
in dynamics relaxation problem, both the explicit dynamics and dynamics relaxation problem still
share the same form of governing equations and can be integrated in time by the conditionally stable
explicit scheme. The critical pseudo-time step of the DEM problem therefore takes the same form
as a damped mass-spring system, that is as follows,

Δtf
n ⩽ Δtf

cr =
2

𝜔
f
max

(√
1 + 𝜉f 2 − 𝜉f

)
(63)

whereΔt f
cr denotes the critical time step of the macroscopic problem; 𝜉f denotes the fraction of critical

damping corresponding to the highest natural frequency of the granular system 𝜔
f
max. Assuming that

there is no rotational stiffness introduced in the DEM contact model, the natural frequencies of the
translational and rotational vibration of each particle read as follows (Oñate and Rojek [56]),

𝜔 f
n =

√
k f

n

mf
; 𝜔𝜃 =

√√√√ k f
𝜃

Isphere
=

√
5k f

t

2mf
; kf

𝜃
= k f

t R2; Isphere =
2
5

m f R2 (64)
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where Isphere is the rotational inertia of the spherical particles and mf is the mass of the particle. The
critical time step of the DEM simulation can be obtained via Equation (63) where the highest natural
frequency is approximated by 𝜔

f
max ≈ max(𝜔f

n, 𝜔𝜃). In practice, the DEM dynamics relaxation
problems are often conducted with a fixed time step, while mass of the particles is tuned to ensure
the stability between two pseudo-time steps.

On the other hand, the stable time step for the coarse-scale system is governed by the highest
frequency (𝜔c

max) of the course-scale incremental finite element problem as follows:

Δtc
n ⩽ Δtc

cr =
2

𝜔c
max

(√
1 + (𝜉c)2 − 𝜉c

)
(65)

where Δtc
cr denotes the critical time step of the macroscopic problem; 𝜉cdenotes the fraction of crit-

ical damping corresponding to the highest natural frequency of the macro-scale FEM model. The
critical step defined in Equation (65) also applies to the case where mass scaling and damping are
applied to the macroscopic problem to obtain static equilibrium solution. Nevertheless, the criti-
cal macroscopic time step of the dynamic relaxation DEM–FEM problem is larger than that of the
explicit DEM–FEM dynamics problem, as the damping and mass scaling are likely to filter out high
frequency responses. Note that the critical time step of the fine-scale DEM and coarse-scale FEM
can be related by the following,

Δtc
cr = 𝛼Δtf

cr; 𝛼 = ψ
𝜔

f
max

𝜔c
max
; ψ =

√
1 + (𝜉c)2 − 𝜉c√
1 + (𝜉f )2 − 𝜉f

(66)

where 𝛼 is the optimal time step ratio between the fine-scale and coarse-scale systems. Notice that
because the highest value frequency of the fine system is typically the higher one, 𝛼 is usually larger
than one.

3. NUMERICAL EXAMPLES

In this section, four numerical examples are presented to demonstrate the accuracy, efficiency, and
versatility of the proposed multiscale method in predicting the mechanical behavior of granular mate-
rials. Examples shown in this section provide evidences that the multiscale DEM–FEM model is
able to replicate the single-scale DEM benchmark results. Refinement study indicates that the thick-
ness of shear bands predicted by the nonlocal multiscale model is not sensitive to the mesh sizes of
the continuum model.

3.1. Unit cell

The initial configuration of the unit cell is given in Figure 4. The unit cell was compacted into a dense
and isotropic assembly from an initially sparse random arrangement of particles, which contains
4096 spherical grains with diameters ranging from 0.43 to 1.18 mm. The porosity after compaction
was 0.338, with an initial average coordination number of 5.6 contacts per particle. The initial normal
stresses in all directions were nearly equal to the mean stress of 416 kPa. The initial response of the
unit cell is assumed to be macroscopically homogeneous.

Periodic boundaries were employed on all sides of the unit cell in the numerical examples pre-
sented in this paper. Such boundaries impose kinematic constrains on each boundary particle,
allowing grains to pass from the parallelepiped unit cell domain to a fictitious adjacent one and sim-
ulate an infinitely periodic (repeated) system. Period boundaries are computationally advantageous
over the rigid platens for providing a more uniform particle fabric throughout the assembly [24, 57].
Previous work done by [58–60] has found that homogenized responses inferred from periodic cell
are less sensitive to boundary effects.

The micro-model parameters given in Table I were used as input microscopic parameter in the
following numerical examples, where shear modulus and Poisson’s ratio are the parameters for
Hertz-Mindlin contact model. The mechanical properties of the material were obtained from pure
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DEM tests on the unit cell, for example, the uniform compression test was used to get bulk modu-
lus and the simple shear test to get the shear modulus [61]. The measured mechanical properties are
shown in Table II.

Accuracy and efficiency of the proposed multiscale technique rely crucially on the appropriate
selection of the size of the unit cell so that it remains a RVE. In particular, the unit cell size must
be small enough to ensure computational efficiency but large enough to remain representative. One
common approach to estimate the size of the RVE is to vary the sizes of the unit cells and study
the scale of fluctuation of the coarse-scale properties [30, 62–65]. Meier et al. [66] and Guo and
Zhao [27] applied this approach to discrete element models. Guo and Zhao [27] generated multi-
ple granular assembles composed of different numbers of particles and studied the least amount of
particles required to maintain the isotropy of the fabric tensor. They concluded that at least 400 par-
ticles required to constitute an RVE composed of particles of poorly graded grain size distribution.
In the numerical examples presented in this paper, the grain assembles used to calculate the Gauss
point responses are composed of at least 4000 particles and have been examined in previous study
to ensure the isotropy of the initial fabric tensor.

All simulations presented in this section are conducted with a three-dimensional eight-node hex-
ahedral finite element integrated via the one-point Gaussian quadrature rule. The hour-glass control
stabilization procedure in [67–69] is used to eliminate spurious zero-energy modes in the macro-
scopic finite element model. While the usage of one-point integration rule is a rather simple and
well-known numerical treatment, the benefits for the DEM–FEM coupling scheme are signifi-
cant. It improves both the speed and the accuracy of the multiscale simulations by cutting 87.5%
of the expensive 3D DEM unit cell simulations in [26, 27] that might cause volumetric locking
problems otherwise.

Figure 4. The initial configuration of the unit cell.

Table I. Model parameters for discrete element method computation.

29.0 Shear modulus Gf
g (GPa)

0.15 Poisson ratio vf

0.50 Coefficient of friction at particle contacts

0.00 Viscosity coefficient for translational body damping

0.00 Viscosity coefficient for rotational body damping

0.12 (0.00 for Section 3.5) Viscosity coefficient for contact damping
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Table II. Material properties estimated from unit cell tests [54, 55].

Young’s modulus Poisson’s ratio Bulk modulus Shear modulus

E (MPa) v K (MPa) G (MPa)

584 0.2 335 241

Figure 5. The boundary conditions for single element biaxial compression (left) and simple shear (right) tests.

3.2. One element verification tests

The multiscale model was first verified by comparing the global response of a single element (biax-
ial compression test and simple shear test) against the RVE response from pure DEM tests. This
verification procedure is first introduced in [27] to test the accuracy and robustness of the developed
information-passing DEM–FEM coupling scheme at the material point level.

The single element and its boundary conditions are depicted in Figure 5. In the simple shear test,
the single element was subjected to a shear loading by keeping the confining pressure on the top to be
constant. In the biaxial compression test, a vertical displacement was applied on the top surface, and
constant confining pressure was exerted on the right surface. In both cases, the constant confining
pressures were 416kPa, which was identical with the initial mean stress of the unit cell.

The comparison of stress-strain curves is shown in Figure 6 for the one-element tests using the
multiscale DEM–FEM model and single-scale DEM. It can be observed that the multiscale approach
gives almost identical prediction with those from the DEM simulations. This example verifies that
the proposed multiscale discrete-continuum approach can replicate the elasto-plastic response of
granular material accurately.

3.3. One-dimensional wave propagation in a dry granular column

The modeling of wave propagation in granular materials, such as wave attenuation and dispersion, is
an active research area with implications for seismic soil-structure interaction and foundation vibra-
tion [70–74]. Continuum-based analytical and computational modeling techniques have been widely
used to investigate the seismic wave propagation [75, 76]. The path dependent responses of soil are
often captured via macroscopic phenomenological models [7, 73, 74, 77]. While the cost of the con-
tinuum simulations is relatively low, the physical underspin of the phenomenological approach in
the softening regimes is weak. On the other hand, dynamics discrete element simulations are also
utilized by a number of researchers to study the micromechanics of wave propagation in granular
matters [78–81]. The upshot of the discrete element approach is the availability of microstructural
information. However, the high computational cost of DEM often limits the size of the simulations
and thus making DEM not feasible to simulate field-scale site responses.

This numerical example is designed to demonstrate the potential of using the newly estab-
lished DEM–FEM method to overcome the shortcomings of both continuum and discrete element
approaches. To the best knowledge of the authors, this is the first time that information-passing
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(a) Biaxial Compression (b) Simple Shear
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Figure 6. The comparison of stress-strain curves between the multiscale simulation and DEM reference in
the one element tests: (a) biaxial compression and (b) simple shear.

DEM–FEM scheme was being used to simulate dynamics responses of granular layers. The
boundary value problem used in this example is commonly used for predicting site responses in
geotechnical earthquake engineering and often referred as the (one-dimensional) soil column prob-
lem [71, 73, 74]. It consists of a stratified granular layer rests on a bedrock that is assumed to
be rigid at x1 = 0. Assume that the in-place dimensions (x2 and x3) are infinite relative to the
granular layer thickness, body wave emanating from the dynamic excitation of the bedrock will
propagate along the x1axis in a one-dimensional fashion [73, 74]. As a result, we impose kinematic
constraints 𝜀22 = 𝜀33 = 𝜀23 = 0 to enforce the wave propagating only along the x1direction. In the
numerical simulation, we discretize a spatial domain of 100mm ×10mm ×10mm with equal-sized
eight-node trilinear brick element, as shown in Figure 7. The left hand side boundary of the model
was totally fixed, and two pairs of periodic boundaries were applied to the two opposite faces of the
one-dimensional soil column orthogonal to the x2 and x3 directions, while the kinematic constraints
𝜀22 = 𝜀33 = 𝜀23 = 0 are imposed by enforcing zero in-plane relative displacement on plane original
to the x1axis (cf. [73, 74]). At the macroscopic scale, the geometric domain was discretized by 10
finite elements of equal sizes. The density of the model was 𝜌 = 1650 kg/m3. The right hand side of
the model was subjected to a vertically displacement-controlled sinusoidal cyclic load with frequency
of f = 10kHz and maximum shearing displacement amplitude of a = 0.1mm. The time duration of
the whole simulation was 1 ms, and the coarse-scale time increment was taken as Δt = 1𝜇s.

The homogenized shear and compressive stress–strain responses of the quadrature point of
Element 9 are shown in Figure 8(a). We observe that the hysteresis and the dissipative responses
of non-cohesive frictional granular materials are captured. Unlike previous macroscopic approaches
where microstructural attributes are only taken into account indirectly via the evolution of internal
variables, the multiscale approach is able to provide important microstructural measurements, such
as coordination number and porosity of each unit cell as shown in Figure 8(b). This numerical exper-
iment suggests that the proposed multiscale model is capable of modeling the dynamic responses
of granular materials subjected to cyclic loadings within limited computational resources. This is a
major departure from the previous DEM modeling efforts, in which particles are enlarged artificially
for the sake of reducing the computational cost [82].
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Figure 7. The boundary condition and macroscopic mesh of the sample for wave propagation in a dry granular
column.

(a) Stress-strain curves

(b) Porosity and coordinate number of grain contacts versus time
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Figure 8. Dynamic responses of RVE associated with the Gauss point at Element 9:(a) Stress-strain curves
and (b) Porosity and coordinate number of grain contacts versus time.

3.4. Shear band in a simple shear simulation on a dense grain assembly

In this example, the proposed model was further validated by a simple shear test on a dense grain
assembly. Multiscale simulation results were compared with those from a single-scale DEM simula-
tion conducted in [48]. The geometries and loading conditions are schematically shown in Figure 9.
The model dimensions were 50.6 mm ×118 mm×12.7 mm. It was fixed at its bottom and sheared
horizontally at its top boundary. Periodic boundary conditions were applied to the four surrounding
surfaces in x1 and x3 directions to ensure a shear band develops along the full x1 − x1 width when
passing across the periodic side boundaries. The domain of the numerical specimen was discretized
into a uniform coarse mesh with 12 ×5 ×1 elements. The grain assemblies assigned to all quadrature
points are initially identical, and thus, the numerical specimen is macroscopically homogeneous.
As a result, the shear band in a simple shear test may occur at any height, which makes the loca-
tion of the band unpredictable. The previous DEM simulation results reported in [48] indicate that a
shear band forms along a horizontal plane, which is located at about three-quarters of the assembly
height from its fixed boundary, a result likely to be caused by subtle imperfection within the grain
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assembly. To match the location of shear band in the DEM and DEM–FEM simulations, we artifi-
cially imposed an imperfection inside the shear band to break the symmetry and homogeneity of the
sample. The unit cell with imperfection was created by randomly taking out 25 particles from the
original unit cell. It should be noted that the initial state of the unit cell, for example, mean stress,
porosity, and coordination number, needs to be identical with those of the grain assembly in the
single-scale DEM test. To maintain a quasi-static loading condition, the mass-scaling technique was
used in the coarse-scale finite element method for the entire model throughout the simulation.

Figures 10 to 13 show the macroscopic mechanical behavior of the shear band during shear loading
with constant vertical stress p0 = 416 kPa. In the multiscale simulation results, the overall shear
strain was computed from the horizontal displacement u1 measured at the top surface divided by the
initial height h = 118 mm while the shear stress was obtained from the reaction force at the fixed
end in the direction of shearing divided by the area of the bottom surface. Good agreements are
observed in these figures between the results predicted by both the multiscale model and the DEM.
For example, Figure 10 shows the shear stress–strain response of the grain assembly. Both shear
stress and mean stress (see Figures 10 and 11) reach their peak value and remaining nearly level until
𝜀12 = 6%, followed by an abrupt softening between the strains 𝜀12 = 6% and 𝜀12 = 8%. Then at
𝜀12 = 8% to 20%, shear stress and mean stress fluctuate at the critical state where porosity remains
constant. Plastic dilatancy is observed in Figure 12 where the porosity of the assembly increases
monotonically even as the compressive mean stress increases. As shear loading proceeds, porosity
converges to a constant level after the shear stress reaches to its residual condition. This increase of
volume is ascribed to the re-arrangement of particles in dense spherical packings and dense sands as
they rise up over neighboring particles [48, 83]. Figure 13 shows the average coordination number
of the entire assembly. By comparing the multiscale and pure DEM simulations, we observe that the

Figure 9. Geometry of the domain and the boundary cor x1
ions for the simple shear test [77].
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Figure 10. Shear stress-strain response during simple shear loading.

Figure 11. Mean stress versus shear strain during simple shear loading.

multiscale model is able to replicate the evolution of coordination number, which decreases rapidly in
early, prepeak stress stage, and eases down to a nearly constant in a gently sloping stretch throughout
the subsequent peak, softening, and residual periods.

The deformed configurations and averaged porosity along the assembly height at shear strain
𝜀12 = 12% obtained from multi-scale and single-scale simulations are compared in Figure 14(a). The
porosity curve obtained from the multiscale simulation is composed of 12 discrete points, each of
which is an average of the porosities of a row of macroscopic element. Both the multiscale and DEM
simulations indicate that the shear band thickness is about 13–16 mm, a quantity of great impor-
tance, and will be used as a measure of the characteristic length in the size effect studies in the next
example. The L2 norms of the Euler angles of each particle in the unit cells inside and outside the
shear band are plotted in Figure 14(b) to analyze the evolutions of microstructural attributes inside
the deformation band. Consistent to the finding in the single-scale benchmark, the multiscale model
predicts that particles inside the shear band rotate more than those outside the band. No grain-scale
deformation band was found inside the unit cells of the multiscale model.

Given the same computational resource, the CPU time for the multiscale simulation for the simple
shear test with the current coarse mesh is 22 hours, which is much shorter than the CPU time used
to complete the pure DEM counterpart (about one month). Therefore, it is evident that the proposed
multiscale approach can reduce the computational cost significantly while making accurate predic-
tion of the mechanical behaviors for granular materials. This enormous saving in simulation time is
attributed to (1) the efficient bridging of the different spatial scales, (2) the introduction of multiple
time step scheme, which allows the coarse-scale problem to evolve at a much larger time step without
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Figure 12. Porosity versus shear strain during simple shear loading.

Figure 13. Coordination number versus shear strain during simple shear loading.

causing stability issues, and (3) the usage of the reduced integration elements with hourglass con-
trol, which both reduces solution times substantially and eliminates shear locking while maintaining
spatial stability

3.5. Shear band in a plane strain biaxial compression test

Strain localization is of great importance to engineering applications, as it is often a precursor to
progressive failure in granular materials. If no length scale is introduced, the onset of strain localiza-
tion in numerical simulations may cause the loss of ellipticity (for static cases) or hyperbolicity (for
dynamic cases) of the boundary value problem. This undesired ill-posedness may lead to pathological
mesh dependence. To circumvent this issue in continuum models, various localization limiters have
been introduced. They include (i) nonlocal or gradient models of which the constitutive response is
governed by a gradient or integral of at least one internal variable(s) or strain measure [84–86], (ii)
a ratedependent constitutive law [46], and (iii) formulations that permit displacement discontinuities
[87–91].

Pathological mesh size dependency has also been observed in the previous multiscale DEM–
FEM-coupling simulations [26, 27]. This pathological mesh size dependency is due to the ill-
posedness of the macroscopic finite element model [46].

The proposed multiscale approach remedies this situation via a modified staggered nonlocal
approach. To test whether this staggered nonlocal operator successfully introduces an intrinsic length
scale and limits the shear band thickness when strain localization occurs, two sets of biaxial com-
pression tests were carried out using the local and nonlocal multiscale model, respectively. The
geometry, boundary conditions, and the macroscopic meshes of the model are shown in Figure 15(a).
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(a) Porosity versus height (b) Deformed configuration of RVEs inside and outside the shear band 

Figure 14. Profiles of (a) porosity and (b) deformed configurations of the two RVEs inside and outside the
shear band at strain 𝜀12 = 12%, with color in each particle indicated the magnitude the rotation measured by

the norms of the rotation tensors.

The dimensions of the specimen were 40mm × 80mm × 5mm. A displacement-controlled vertical
load was monotonically applied on the top surface of the model. The confining pressure applied on
horizontal boundaries remained constantly throughout the loading. The asymmetric boundary con-
dition was used at the bottom surface in order to break symmetry and to initiate the localization.
Three finite element meshes depicted in Figure 15(b) were considered. For the nonlocal multiscale
model, the characteristic length was chosen to be 2R = 13.5mm, which is the same with the unit cell
size and is also consistent with the shear band width observed in the previous example.

In order to examine whether the nonlocal staggered scheme regularizes softening responses, we
remove the potential regularizations attributed from the rate-dependence of the contact laws. In other
words, damping parameters for grain contacts are set to be zero in both the local and nonlocal sim-
ulations, as shown in Table I. The global stress–strain responses predicted by local and nonlocal
multiscale models from three different meshes are shown in Figures 16 and 18, respectively. In both
figures, all three meshes yield almost identical pre-peak stress–strain behaviors and similar peak
stresses. The slight kink shown in the elastic regime is due to the wave reflection from the bottom
boundary of the model, which may be removed by reducing the tolerance of the dynamics relaxation
scheme in Equation (57). As loading proceeded, strain localization emerged and finally developed
into a shear band. The constitutive responses obtained from the local multiscale model exhibit obvi-
ous mesh dependence in the post-bifurcation region, as shown in Figure 16. On the other hand, the
post-bifurcation stress–strain responses obtained from the nonlocal multiscale model, as shown in
Figure 18, are nearly mesh independent. The softening responses of the three meshes in the nonlocal
tests are almost identical, and the three curves converge even after shear bands are fully developed.
Figures 17 and 19 compare the contour plots of vertical compressive strain 𝜀22 for three meshes using
local and nonlocal multiscale models, respectively. Figure 17 shows that the local multiscale model
leads to different band thickness when varying mesh size and that the finer meshes lead to narrower
shear bands and higher intensity strains when using the local multiscale model. Meanwhile, the non-
local multiscale model produces shear bands of similar widths, provided that enough degrees of
freedom are used to interpolate the tip of the shear band as shown in the last two cases in Figure 19.
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Figure 15. (a) The spatial domain and boundary conditions; (b) three meshes considered in the biaxial
compression tests.
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Figure 16. Compressive stress versus compressive strain curves for different meshes using local multiscale
model.

By comparing the stress–strain curves and the compressive strain distribution shown in Figures
18–19, one may observe that the nonlocal multiscale scheme is able to deliver more consistent
responses in the refinement study. Notice that the post-peak branch of the finest mesh of the
stress–strain curve not always giving the softest response. This is attributed to the fact that there are
no sufficiently material points in the coarse mesh to obtain an accurate integration for the nonlocal
strain. As a result, the length scale of the coarse mesh is slightly larger than the fine mesh counter-
parts. In all numerical simulations, we found no shear band generated in the DEM assemblies. This
absence of grain-scale shear band can be attributed by the particle shapes, the absence of rotational
stiffness, lack of enrichment mode for the macroscopic finite element, and the usage of periodic
boundary condition as opposed to minimal kinematic boundary conditions. Detail examinations of
these factors are out of the scope of the current study but will be considered in the future.
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Figure 17. Contour plots of compressive strain for three meshes at 𝜀22 = 6% (local multiscale model)
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Figure 18. Compressive stress versus compressive strain curves for different meshes using nonlocal multi-
scale model.

4. CONCLUSIONS

In this paper, we present a nonlocal multiscale discrete-continuum model for granular materials.
The proposed multiscale model effectively bridges two spatial scales, the coarse (continuum) scale
and the fine (discrete) scale, by an information-passing coupling scheme based on the GMH theory.
Each nonlocal quadrature point in the coarse-scale mesh is associated with a unit cell consisting of
a granular assembly. The nonlocal strain obtained from the FEM solvers is converted into periodic
boundary conditions for the grain-scale simulations occurred in the unit cells, which in return provide
the nonlocal constitutive update at the macroscopic level via upscaling. This proposed model is ver-
ified via four benchmark problems. Good agreement has been observed by comparing the numerical
solutions obtained via the multiscale DEM–FEM model with the single-scale DEM benchmark. The
numerical examples demonstrate that the proposed multiscale discrete-continuum model is capable
of reproducing both the dynamic and quasi-static behaviors of granular materials, and simulation
results obtained for bifurcation problems are practically mesh size independent. The multiple spatial
scales and multi-step framework also present a significant cost reduction compared with the direct
DEM simulations.
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Figure 19. Contour plots of compressive strain for three meshes at 𝜀22 = 6% (nonlocal multiscale model).

APPENDIX A.

In the nonlocal DEM–FEM model, the unit cell is constrained by periodic boundary conditions to
be compatible with a macroscopic nonlocal strain measure. This nonlocal strain field is obtained
by a nonlocal operator. This nonlocal operator integrates a local field 𝜙(x) over a spherical domain
and returns the corresponding nonlocal field  (𝜙(x))R as a weighted average over a spatial
neighborhood domain V as follow,

 (𝜙(x))R = ∫V
𝛼′(x, ξ)𝜙(x)dξ (A.1)

where 𝜙(x)is some ‘local’ field in a domain V . The kernel function 𝛼′(x, ξ) is defined as follows:

𝛼′(x, ξ) =
𝛼 (|x − ξ|)

∫V 𝛼 (|x − ξ|) dξ
(A.2)

In Equation (A2), 𝛼 (r) is a monotonically decreasing nonnegative function of the distance
r= |x − ξ| typically described by Gauss-shaped or Bell-shaped function. In the present model, the
Bell-shaped weight function is employed because of its simplicity as follows:

𝛼(r) =
⎧⎪⎨⎪⎩
(

1 − r2

R2

)2

if 0 ⩽ r ⩽ R

0 if r ≥ R
(A.3)

where R denotes the interaction radius, which is an intrinsic material parameter measured in
experiments or calibrated from micro-structural simulations.

For convenience, it is convenient to exploit the information at the element quadrature point, and
thus, approximate Equations (A.1) and (A.2) are given by the following:
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Figure A.1. The spatial neighborhood of the gauss point x with a characteristic radius R.

 (𝜙(xI)
)

R
=
∑
ξJ∈QI

𝛼∗
(
xI , ξJ

)
𝜙
(
ξJ

)
𝛼∗(xI , ξJ) =

𝛼(xI , ξJ)∑
ξJ∈QI

𝛼(xI , 𝜉J)
(A.4)

where xI denotes the position of the quadrature point I; QI is a set of quadrature points ξJ ∈ QI
adjacent to point xI as shown in Figure A.1 that

{
QI
||||xI − ξJ

|| ⩽ R, ∀ξJ ∈ QI

}
(A.5)

where the QI adjacency information for each quadrature point is precomputed in the preprocessing
stage. In the staggered nonlocal algorithm [35], the staggered nonlocal operator ⟨𝜙(xI)⟩R is defined
as follows:

⟨𝜙(xI)⟩R = ∑
ξJ∈QI

𝛼∗(xI , ξJ)𝜙∗(ξJ)

𝜙∗(ξJ) =
{

𝜙n+1(ξI) 𝐢𝐟 ξJ = xI
𝜙n+𝛼(ξJ) 𝐢𝐟 ξJ ≠ xI

(A.6)

where the subscript denotes the time step count, 𝜙n+𝛼 denotes the local field computed on the fly,
that is, 𝛼 is either 0 or 1, which represents either previous or current time step, and 𝜙n+1 is a local
field at the current time step n+1.

APPENDIX B.

The numerical implementation of the co-rotational DEM–FEM scheme for large deformation
problems is as follows:
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