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Soluble or particle-bound immune complexes containing the Fc domains of certain 
antibody subclasses, and cleavage products of the third component of complement 
interact with highly specific Fc and complement receptors on the surfaces of cells of 
the immune system. When these interactions occur on the surfaces of phagocytic 
leukocytes, they stimulate the selective release of lysosomal enzymes (1, 2), the 
expression of cell-mediated cytotoxic effects (3, 4), and the attachment and ingestion 
of particulate materials (5, 6, 7). 

During phagocytosis of antibody- or complement-coated particles, the advancing 
plasma membrane of the phagocyte is guided by the interaction of its receptors with 
ligands on the surface of the particle (8, 9). The advancing membrane pseudopods 
and the resulting phagocytic vacuole conform precisely to the geometry of the 
particle's surface. These findings suggest that there is an excellent correspondence 
between the distribution of receptors on the membrane of the phagocyte and ligands 
on the surface of the particle. Particles with rigid cell walls such as bacteria or yeast, 
provide an immobile framework for antibody or complement molecules bound to 
them. The efficient interaction of membrane receptors with such immobilized ligands 
requires that the receptors have considerable lateral mobility within the plane o f  the 
phagocyte's membrane. 

By using muhivalent ligands such as antibodies or lectins, the movement of cell- 
surface molecules into caps has been demonstrated (10-13). Similarly, the attachment 
of antibody- or complement-coated particles to lymphocytes and monocytes results in 
the redistribution of the corresponding receptor sites (14, 15). Although the mecha- 
nism(s) that govern the movements of externally disposed membrane proteins are 
incompletely understood, there is evidence that the lateral movement of these mem- 
brane proteins is regulated by the contractile proteins of the cell (16, 17, 18). In 
addition, transmembrane associations of surface proteins with cytoskeletal elements 
are probably important for cell motility and cell spreading, and the remodeling of the 
plasma membrane during these activities (19, 20). 

The spreading of a phagocyte on ligand-coated surfaces is analogous in many 
respects to the ingestion of ligand-coated particles (21, 22). The surface may be 
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608 EFFECTS OF IMMOBILIZED IMMUNE COMPLEXES 

considered a giant particle for this purpose. Geometrically fixed ligands such as 
ant ibody-ant igen complexes or complement  on a culture-dish surface should induce 
cellular responses similar to those occurr ing during ingestion of  particles coated with 
the same ligands. Moreover,  the l igand-coated surface provides an oppor tuni ty  to 
functionally polarize the cell's membrane  into two domains:  a surface-adherent 
domain  within which specific receptors may  be focused and  engaged by the corre- 
sponding ligands on the dish surface, and a nonadherent  domain whose composition 
may  be altered as a result of  l igand-receptor interaction in the adherent  domain.  By 
s tudying the properties o f  the nonadherent  portion of  the cell surface, it should be 
possible to analyze the effects of  surface-adherent ligands on receptor localization and 
mobility. Tha t  such effects occur was first reported by Rabinovi tch  et al. (23) who 
showed that macrophages plated on ant ibody-ant igen complexes lose the capaci ty to 
ingest, but  not to bind, IgG-coated erythrocytes. The  presence of  complement  in the 
substrate adherent  immune  complexes, however, did not appear  to alter the capaci ty 
of  macrophages to bind complement-coated erythrocytes (24, 25). 

We have developed a simple technique for homogeneously coating glass coverslips 
and plastic Petri dishes with a variety of  immune  complexes containing antibodies, or 
antibodies and complement.  Macrophages  plated on these surfaces exhibit ligand- 
specific modula t ion  of  their membrane  receptors for immunoglobul ins  and for com- 
plement. Our  results indicate that  surfaces coated with these ligands are powerful 
tools for dissecting the mechanisms that  control receptor movement ,  and the config- 
urat ion of  the ligands that  regulate these activities. They  further show that  the 
membranes  of  macrophages plated onto such l igand-coated surfaces are functionally 
polarized into substrate-adherent and nonadherent  domains. 

M a t e r i a l s  a n d  M e t h o d s  
Macrophages. Peritoneal macrophages were obtained as described (26) from NCS mice 

(Laboratory Animal Research Center, The Rockefeller University, New York) either by 
injecting phosphate-buffered saline deficient in Ca ++ and Mg ++ ions (PD) x (27) intraperitone- 
ally and collecting the cells (PC) immediately thereafter (resident macrophages), or by injecting 
2 ml brewer's thioglycollate (Difco Laboratories, Detroit, Mich.) intraperitoneally and collectin~ 
the peritoneal exudate cells (PEC) after 4-5 d (thioglycollate-elicited maerophages). 4 × 10 
PC or 2 × 105 PEC were seeded into each 16-mm well of Costar plates (Costar, Data Packaging, 
Cambridge, Mass.). Each well contained a glass coverslip treated as described below, and 0.5 
ml Eagle's minimum essential medium with Earle's salt solution (MEM) (Grand Island 
Biological Co., Grand Island, N. Y.). The Costar plates were maintained for 30-60 min at 37°C 
in a 5% CO2-95% air mixture. The coverslips were washed free of nonadherent peritoneal cells, 
and transferred into 0.5 ml MEM in fresh Costar plates. 

Trypsinization o f  Peritoneal Cells. Peritoneal cells (4 × 106 cells/ml) in warm phosphate- 
buffered saline with Ca ++ and Mg ++ ions (PBS) (27), and containing 0.75 mg/ml trypsin 
(Worthington Biochemical Corp., Freehold, N.J.) and 0.025 mg/ml DNAase (Sigma Chemical 
Co., St. Louis, Mo.) were incubated in a plastic tube (Falcon No. 2057; Falcon Labware, Div. 
of Becton, Dickinson & Co., Oxnard, Calif.) at 37°C for 20 min on a rotating wheel (20 rpm). 

1 Abbreviations used in this paper: BSA, bovine serum albumin; DNP, dinitrobenzene; E, sheep erythrocytes; 
E(IgG), E coated with rabbit anti-E IgG; E(IgG2a), E coated with monoclonal mouse anti-E IgG2a;. 
E(IgM)C, E coated with rabbit anti-E IgM and mouse complement; hFBS, heat-inactivated fetal bovine 
serum; HRP, horseradish peroxidase; HRP-GaR IgG, HRP-labeled goat IgG against rabbit IgG; MEM, 
Eagle's minimum essential medium with Earle's salt solution; PBS, phosphate-buffered saline with Ca ++ 
and Mg ++ ions; PC, resident mouse peritoneal cells; PD, PBS deficient in Ca ++ and Mg ÷÷ ions; PEC, 
mouse peritoneal exudate cells; PLL, poly-L-lysine; RaBSA IgG, rabbit anti-BSA IgG; RaDNP F(ab')2, 
F(ab')2 fragments of RaDNP IgG; RaDNP IgG, rabbit anti-DNP IgG; RaHRP IgG, rabbit anti HRP 
IgG; VBG, Veronal-buffered glucose with divalent cations 
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The digestion process was stopped with an equal volume of cold PD and 10% heat-inactivated 
(30 min, 56°C) fetal bovine serum (hFBS) (Flow Laboratories, Inc., Rockviile, Md.). The cells 
were washed once with PD and 10% hFBS, and once in PD alone, all at 2.5°C, and resuspended 
in cold MEM at a concentration of 4 × 106 PC/ml or 2 × 106 PEC/mi. Cells were >95 viable 
as examined by trypan blue (Grand Island Biological Co.) (28) exclusion after each trypsini- 
zation. The average cell recovery of trypsinized cells was 60%. Cells exposed to the same 
treatments in absence of trypsin showed an average cell recovery of 82% with >95% of the cells 
viable. 

Preparation of Coverslips. Glass coverslips of 12-mm Diam (SGA Scientific, Inc., Bloomfield, 
N. J.) were treated overnight at room temperature with chromerge (Manostat Corp., New 
York) dissolved in concentrated sulfuric acid, and washed for 2-4 h in running water followed 
by 1 h in distilled water. At this point, the coverslips were either dried, and stored as ready for 
use, or dried, and incubated in PD containing 0.1 mg/ml poly-L-lysine (PLL) (mol wt, ~70,000; 
Miles Laboratories Inc., Miles Research Products, Elkhart, Ind.) for 30 min at room tempera- 
ture. The PLL-coated coverslips were washed with PD, drained, and reacted with 16.8 mg/ml 
2,4-dinitrobenzene (DNP) sulfonate (Eastman Kodak Co., Rochester, N. Y.) in 0.15 M sodium- 
carbonate buffer (pH 11.6) for 30 min at room temperature. To bind bovine serum albumin 
(BSA) (Sigma Chemical Co.) or horseradish peroxidase (HRP) (Sigma Chemical Co.) the PLL- 
coated coverslips were first treated with 2.5% glutaraldehyde in PD for 15 rain at room 
temperature, washed extensively in distilled water followed by PD, and then reacted with 1 
mg/ml BSA or 10 mg/ml HRP in PD for 30 min at room temperature. To quench unreacted 
aldehyde groups, the coverslips were treated overnight at room temperature with 0.2 M glycine 
in 0.01 M sodium-phosphate buffer (pH 7.2). Samples of coverslip preparations that were 
assayed for bound HRP as described (29), demonstrated from 55 to 89 ng HRP linked to the 
surface of the coverslips. More than 90% of macrophages cultured in MEM on these coverslips 
for up to 4 h at 37°C in absence of serum excluded trypan blue (28). 

Substrate-adherent antibody-antigen complexes were formed by incubating PLL-DNP- 
coated coverslips with 9-13/~g of rabbit anti-DNP IgG (RaDNP IgG) in 60/~1 PBS for 30 min 
at room temperature. The coverslips were then washed with PD and used on the same day. In 
experiments to be reported elsewhere (J. Michl, M. M. Pieczonka, J. C. Unkeless, and S. C. 
Silverstein. Manuscript in preparation.), we found that this amount of Rc~DNP IgG had a 
maximal effect on Fc-receptor function. Untreated coverslips, and coverslips incubated with 
rabbit anti-BSA IgG (RaBSA IgG), RctDNP IgG, or with DNP alone served as controls. 
RaDNP IgG was produced in rabbits immunized with DNP-keyhole limpet hemocyanin in 
complete Freund's adjuvant, and was purified by affinity chromatography by the method of 
Eisen et al. (30), modified as described (31). F(ab')2 fragments of this antibody (RaDNP 
F[ab']2) were obtained by pepsin digestion of RaDNP IgG as described (32). RaBSA IgG was 
purified by DEAE-cellulose chromatography (33), and used at a concentration of 10-16/tg per 
coverslip. Rabbit anti-HRP IgG (Rc~HRP IgG) was a gift of Dr. M. L. Yarmush, The 
Rockefeller University. Immobilized BSA-RtxBSA IgG and HRP-RaHRP IgG complexes, 
respectively, were prepared following the procedure described above for the formation of 
substrate-adherent DNP-RaDNP IgG complexes. 

Complement-coated coverslips were prepared by incubating the PPL-DNP-RctDNP IgG- 
coated coverslips for 10 min at 37°C with 0.075 ml per coverslip of NCS mouse serum diluted 
1:1 in Veronal-buffered glucose (VBG) with divalent cations (34). The coverslips were then 
rinsed with PD (2.5°C) and used immediately for the seeding of peritoneal ceils. In control 
preparations heat-inactivated (30 min, 56°C) mouse serum was used instead of fresh mouse 
serum. 

Preparation of Particles. Sheep erythrocytes (E) (Laboratory Animal Research Center, The 
Rockefeller University) were coated with either rabbit anti-E IgG (Lot 50767, Cordis Labora- 
tories, Inc., Miami, Fla.) (E[IgG]) or with rabbit anti-E IgM (Lot 90906, Cordis Laboratories, 
Inc.) (E[IgM]) as described (7). The rabbit IgM was absorbed with Staphylococcus aureus to 
remove residual IgG (35). To prepare complement-coated E (E[IgM]C) the E(IgM) were further 
incubated with freshly thawed mouse serum (stored at -75°C) diluted 1:5 in VBG is described 
(7). Monoclonal mouse anti-E IgG2a, which was used to make E opsonized with a subagglutin- 
ating dose of monoclonal mouse anti-E IgG2a (E[IgG2a]), was prepared and kindly given to us 
by Diamond et al. (The Albert Einstein College of Medicine, Yeshiva University, New York) 
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(36). E(IgG), E(IgG2a), and E(IgM)C were adjusted to a final concentration of 2.5 X 10SE/ml 
PD by measurement of the hemoglobin concentration and the use of a standard curve. 

Binding and Phagocytosis Assay. Macrophages on coverslips were placed into 0.5 ml MEM in 
Costar wells. 0.1 ml of E(IgG) or E(IgM)C was added to each well and the complexes were 
incubated for 60 min at 37°C. The coverslips were then removed from the wells, dipped into 
PD to remove nonattached E from the macrophages, or treated with hypotonic buffer to lyse 
E that were attached but not ingested, and fixed in 1.25% glutaraldehyde in PD. The n.umber 
of E attached or ingested was determined by phase-contrast microscopy. At least 100 macro- 
phages in random fields were counted. The percentage of macrophages that attached or 
ingested E multiplied by the average number of E attached or ingested per macrophage is 
expressed as attachment and ingestion index, respectively. 

Electron Microscopy. 35-mm tissue-culture dishes (Falcon No. 3001; Falcon Labware, Div. of 
Becton, Dickinson & Co.) were coated with PLL-DNP as described above for cover slips 
omitting the chromerge-sulfuric acid treatment, and then incubated with 1 ml of PBS 
containing 0.28 mg of RaDNP IgG. To visualize the surface-adherent immune complexes these 
dishes were further incubated for 30 min at 2.5°C with HRP-labeled goat IgG against rabbit 
IgG (HRP-GaR IgG) (lot No. 11059, N. L. Cappel Laboratories Inc., CochranviUe, Pa.). The 
Petri dishes were washed by repeated dipping into cold PD. For controls, dishes coated with 
PLL alone or with PLL and DNP were overlaid with HRP-GaR IgG or the HRP-GaR IgG 
treatment was omitted. Staining for HRP was performed according to the method of Graham 
and Karnovsky (37) using diaminobenzidine (Sigma Chemical Co.) as substrate. 

For electron microscopy, 4 × 10 n PEC or 6-8 × 106 PC were plated for 30 rain at 37°C. 
The samples were processed as described (38), and the sections examined in a Philips 201 
electron microscope (Philips Electronic Instruments, Inc., Mahwah, N. J.). In some preparations 
the cells were embedded in situ and sectioned perpendicularly to the dish surface to provide 
optimal views of the contact zone between macrophages and the immune-complex substrate, 
and of the macrophage surfaces not adherent to the dish. 

In parallel preparations, 2 × 106 PEC or 6 × 106 PC in MEM were cultured on control or 
immune complex-coated dishes, and the effect on attachment and ingestion of E(IgG) was 
examined. It was found that the results resembled the findings on the glass-coverslip prepara- 
tions. 

R e su l t s  a n d  Di scuss ion  

Effects of Immobilized Antibody-Antigen Complexes on Fc-Receptor Function. Thio-  
glycollate-elicited macrophages plated on coverslips coated with DNP-Rc~DNP IgG 
complexes exhibited a 68% reduct ion in a t t achment  and  a 97% reduct ion in ingestion 
of E(IgG). No inhibi t ion  of a t t achment  or ingestion of E(IgG) was seen when 

macrophages were cul tured on coverslips coated with PLL-DNP alone, or with PLL- 
DNP and  R a D N P  F(ab')2 (Table I). No significant al terat ion in Fc-receptor funct ion 
was noted when macrophages were cul tured on PeL-coated coverslips that had been 
incubated  with R a D N P  IgG, or on PeL-DNP-coated coverslips that  had been 
incubated  with RaBSA IgG. Qual i ta t ively  similar results were ob ta ined  when resident 
macrophages were subst i tuted for thioglycollate-elicited macrophages in a parallel  
series of experiments.  

These results confirm the requirement  for the Fc port ion of antigen-specific IgG in 
the substrate-adherent  i m m u n e  complexes to induce paralysis of Fc-receptor-mediated 
phagocytosis (23). In addit ion,  the decreased capacity of macrophages plated on 
an t ibody-an t igen  complex-coated surfaces to b ind  E(IgG) suggests that  Fc receptors 
have been removed from, or inact ivated on, the port ion of the macrophage m e m b r a n e  
not in contact with the substrate. 

Localization of Antibody-Antigen Complexes. One  source of error in experiments with 
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TABLE I 

Effect of Immobilized Antibody-Antigen Complexes on Fc- and Complement-Receptor-mediated Phagocytosis 
by ThioglycoUate-elicited Mouse Macrophages 

E(IgG) E(IgM)C 

Percent- Percent- Percent- Percent- 
Treatment of cover- age of age of age of age of 

slips coated with Attach- Inges- Attach- Inges- macro- macro- macro- macro- PLL-DNP ment in- tion in- ment in- tion 
phages dex phages dex phages dex phages index 
attach- ingest- attach- ingest- 

ing ing ing ing 
% % % % 

None 62 930 90 1,332 98 1,470 64 653 
RaDNP IgG 31 295 7 32 99 1,980 60 342 
RaDNP F(ab')2 90 744 93 791 ND ND 
RaBSA IgG 82 1,054 85 638 ND ND 

Preparation of coverslips, culture conditions, binding, and phagocytosis assays as described in Materials 
and Methods. 
ND, not done. 

immobi l i zed  l igands  is tha t  the  effects observed m a y  be due to the  removal  of  the 
l igand  from the substrate.  Proteases secreted by  macrophages  might  release i m m u n e  
complexes  from the coverslips into the med ium.  These  soluble i m m u n e  complexes 
might  b ind  to and  block the Fc receptor  on the nonadhe ren t  m e m b r a n e  surface. 

Moreover ,  the i m m u n e  complexes tha t  b ind  ini t ia l ly  to m e m b r a n e  receptors  on the 
subs t ra te -adheren t  surface might  move in the  p lane  of  the  m e m b r a n e  to the  nonad-  
herent  surface of  the  macrophage .  Using  a s imi lar  system, R a b i n o v i t c h  et al. (23) 
demons t r a t ed  tha t  i m m u n e  complexes were not  released into the  me d ium,  a n d  tha t  
soluble i m m u n e  complexes a d d e d  to the cu l tu re  vessel were not  responsible for the  
inh ib i t ion  observed.  However ,  they d id  not examine  the possibi l i ty of  movemen t  of  
i m m u n e  complexes  in the  p lane  of  the  membrane .  T o  resolve these issues u n a m b i g -  
ously we t rea ted  D N P - R a D N P  IgG-coa ted  Petr i  dishes wi th  H R P - G a R  IgG. After  
vigorous washing  to remove loosely adsorbed  IgG from the surfaces of  the cul ture  
dishes, macrophages  were p l a t ed  on them,  and  incuba ted  for 30 min  at  37°C. As 
shown in the  e lect ron micrographs  in Fig. 1, H R P - G a R  IgG was found exclusively on 
the subs t ra te -adheren t  cell surface. No peroxidase  label was observed on the upper  
surface of  the macrophages ;  in a few sections peroxidase  label was seen in the 
mac rophage  cy top lasm in vacuoles di rect ly  ad jacent  to the subs t ra te -adheren t  p l a sma  
membrane .  These  exper iments  demons t r a t e  tha t  the  i m m u n e  complexes are  not 
released from the substrate ,  tha t  they are  not  present  on the  uppe r  surface of  the 
mac rophage ,  and  tha t  they are  not moved  to o ther  cel lular  c o m p a r t m e n t s  dur ing  the 
course of  these exper iments .  Thus ,  loss of  Fc- receptor  ac t iv i ty  in macrophages  p l a t ed  

on D N P - R a D N P  IgG-coa ted  surfaces is not a result of  Fc-receptor  b lockade  by  
i m m u n e  complexes  b o u n d  to the  por t ion  of  the ma c ropha ge  m e m b r a n e  tha t  is not in 
contac t  wi th  the substrate.  

Residual Fc-Receptor Activity. Mouse  per i toneal  macrophages  express two Fc recep- 
tors: a protease-res is tant  Fc receptor  tha t  media tes  b ind ing  and  ingest ion of  part icles  
coa ted  wi th  aggrega ted  rabb i t  IgG or  aggrega ted  mouse IgG of  subclasses 1 and  2b, 
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612 EFFECTS OF IMMOBILIZED IMMUNE COMPLEXES 

Fic. 1. Electron micrographs of unstained sections of resident mouse peritoneal macrophages 
cultured for 30 min at 37°C on DNP-RotDNP IgG and HRP-GaR IgG complexes. The macrophages 
adhere tightly to the peroxidase-labeled and diarninobenzidine-stained antibody-antigen complexes 
on the dish surface. No peroxidase label can be found on the nonadherent surface of the cell body 
(a, b, and c) or on the extending pseudopods (b and d). Note the absence of stimulation of pinosome 
formation on the side of contact between macrophages and dish-adherent antibody-antigen com- 
plexes, and the presence of zones of organelle exclusion (a, arrow) which contain microfilaments 
running mostly parallel to the dish-surface-adherent plasma membrane (c). a and b, × 4,900; c, 
X 27,000; d, x 32,400. 

and  a trypsin-sensitive Fc receptor that  b inds  monomeric  and  aggregated mouse IgG 

of subclass 2a (IgG2a receptor) (36, 39, 40). Particles coated with rabbi t  IgG b ind  to 
both types of receptors (36, 39). Because in our experiments rabbi t  IgG was b o u n d  to 
ant igens on the dish surface (Table I) and  to the E used to assay for receptor activity, 
it was impor tan t  to determine which of these receptors was responsible for the residual 
b ind ing  of E(IgG) by macrophages plated onto D N P - R a D N P  IgG complexes. 

To  answer this question, and  to examine the behavior  of the protease resistant Fc 
receptors in the absence of the IgG2a receptor, macrophages were incuba ted  with 
trypsin before plat ing (Fig. 2). Whereas t rypsinizat ion failed to affect the a t t achment  
of E(IgG) to macrophages on control coverslips, it reduced by >95% the b ind ing  of 
E(IgG) to macrophages plated onto D N P - R a D N P  IgG-coated coverslips (Table II). 
These results indicate that  trypsin-sensitive Fc receptors remain  on the nonadhe ren t  
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+ Trypsin 

A B 
Fic. 2. Model of the effect of trypsin on the Fc-receptor activity of macrophages plated onto rabbit 
IgG-antigen complexes. For further description see text. Symbols (']...1"), trypsin-resistant Fc 
receptor; ("~") trypsin-sensitive Fc receptor; (._~) surface-adherent antigen; ( ,~ ) rabbit IgG 
directed against the surface-adherent antigen. 

surface of macrophages plated onto rabbit antibody-antigen complexes; they suggest 
that these receptors are responsible for the residual binding of E(IgG). When these Fc 
receptors are removed by trypsin treatment, no Fc receptors are left on the nonadher- 
ent surface of the phagocytes. 

To examine directly the presence or absence of the trypsin-sensitive Fc receptor 
that binds mouse IgG2a we used E(IgG2a). As shown in Table II, macrophages plated 
on control coverslips bound and ingested 8-10 E(IgG2a) each. In contrast most of the 
macrophages trypsinized in suspension before plating on control coverslips failed to 
bind or ingest any E(IgG2a), confirming that E(IgG2a) are selectively bound by the 
macrophages' trypsin-sensitive Fc receptors (36). 

Macrophages plated on DNP-RaDNP IgG complexes continued to bind and ingest 
E(IgG2a), albeit in markedly reduced numbers. However macrophages that had been 
trypsinized before plating on similarly coated coverslips neither bound nor ingested 
E(IgG2a). We propose the following model (Fig. 2) and explanation for these results: 
the presence of DNP-RaDNP IgG complexes on the surface of the coverslips induces 
the complete removal of trypsin-resistant Fc receptors from the nonadherent part of 
the macrophage plasma membrane (Fig. 2 B). These receptors mediate the phagocy- 
tosis of E coated with rabbit IgO (E[IgG]), and their removal results in the virtually 
complete inhibition of ingestion of these particles. The trypsin-sensitive Fc receptors 
for mouse IgG2a are incompletely modulated by the RaDNP IgG in the substrate- 
adherent immune complexes (Fig. 2A). Although we cannot explain the lack of 
complete modulation of IgG2a receptors by the substrate-adherent rabbit antibody- 
antigen complexes, it is evident that IgG2a receptors are responsible for the residual 
binding of E(IgG) and the residual ingestion of E(IgG2a) by macrophages plated on 
rabbit antibody-antigen complexes. 

Complement-Receptor Modulation. To determine whether membrane receptors other 
than the Fc receptors are modulated when macrophages are plated on ligand-coated 
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TABLE II 
Effect of Trypsin on the Attachment and Ingestion of E(IgG) and E(IgG2a) by Thioglycollate-elicited 

Mouse Macrophages Cultured on Immobilized DNP-RaDNP IgG Complexes 

E0.gO~a) E(lgG) 

Percent- Percent- 
Percent- Percent- 

Treatment of coverxlips Treatment of age of Attach- age of age of Attach- age of 
coated with PIL-DNP macrophages macro- Ingestion macro- • 

ment in- macro- ment in- macro- 
phages dex phages index phages dex phages 
attach- attach- • 

ing ingesting ing ingesting 

Ingestion 

index 

None - -  86 602 76 707 62 930 90 1,332 

R a D N P  IgG - -  32 173 26 135 31 295 7 32 

None Trypsin 14 70 19 72 74 518 84 924 

R a D N P  IgG Trypsin 3 14 0 0 4 24 2 25 

E(lgG2a) were adjusted to 2~5 × 10 s E/ml  in PD, and 0. l ml of this suspension was added to each Costar well. Trypsinization of macrophages, 

binding, and phagocytosis assays were performed as described in Materials and Methods. 

surfaces, we examined the effects of substrate-bound complement on complement- 
receptor activity of thioglycollate-elicited macrophages. Coverslips coated with DNP- 
R a D N P  IgG were incubated with freshly thawed mouse serum as a complement 
source. Under  these conditions, the immune complexes promote complement fixation 
to the surface of the coverslip. As expected (41), resident and thioglycollate-elicited 
macrophages rapidly spread out on these immune complex- and complement-coated 
coverslips. E(IgM)C were then added to these macrophages. As shown in Table  III, 
line 2 and Table  IV, line 3, there was a marked reduction in binding and ingestion of 
E(IgM)C when thioglycollate-elicited macrophages were plated on complement- 
coated coverslips. No decrease in complement-receptor activity was observed when 
thioglycollate-elicited marcophages were plated on D N P - R a D N P  IgG-coated cover- 
slips that had been incubated with heat-inactivated mouse serum (Table III, line 5), 
or when DNP-coated coverslips were treated with RaBSA IgG or R a H R P  IgG and 
fresh mouse serum (Table III,  lines 5 and 6). Complement-receptor modulation was 
observed when thioglycollate-elicited macrophages were plated on coverslips treated 
with DNP, R a D N P  F(ab')2 and fresh mouse serum. F(ab')2 antibody fragments 
promote complement fixation via the alternate pathway (42). Thus, surface-adherent 
antibody-antigen complexes and an active complement source are required to promote 
complement-receptor modulation in thioglycollate-elicited macrophages. Scharfstein 
et al., (43) have shown that antibody-antigen complexes bind complement components 
C3 and C4, but do not bind the terminal complement components C5-9. Because in 
the presence of fresh serum, both the activator, D N P - R a D N P  IgG, of the classical 
complement pathway and the activator, D N P - R a D N P  F(ab')2, of  the alternative 
complement pathway promote complement-receptor modulation, we suggest that 
C3b bound to immune complexes on the substrate is responsible for this effect. 

Complement Receptors of Resident Macrophages Do Not Modulate. Both resident and 
thioglycollate-elicited mouse peritoneal macrophages possess a trypsin-sensitive mem- 
brane receptor for the third component of complement, C3b. The complement 
receptor of thioglycollate-elicited macrophages promotes both at tachment  and inges- 
tion of E(IgM)C. The complement receptor of resident macrophages mediates only 
the at tachment  of E(IgM)C (44). These differences in function of the complement 
receptors of  resident and thioglycollate-elicited macrophages led us to search for 
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TABLE III 

Effect of Different Coverslip Preparations on the Modulation of the Complement Receptor of Thioglycollate- 
elicited Mouse Macrophages 

Treatment of coverslips coated with PLL-DNP 

Percentage Average 
of macro- 

number of 
phages E(IgM)C at- 
with 

E(IgM)C tached per 
attached macrophage 

Attachment 
index 

RaDNP IgG 
RaDNP IgG + mouse serum (C3b) 
RaDNP F(ab')2 + mouse serum (C3b) 
Mouse serum 
RaBSA IgG + mouse serum 
RaHRP IgG + mouse serum 
RotDNP IgG + mouse serum (30 rain, 56°C) 

% 

84 8 672 
26 6.5 169 
33 8 264 
72 10 720 
82 9.5 779 
78 9 702 
83 8 664 

Preparation of coverslips as described in Materials and Methods. The binding assay was performed with 
0.05 ml E(IgM)C added to each Costar well (concentration 2.5 x 108 E/ml in PD) for 1 h at 37°C. 

TABLE IV 

Effect of Complement-containing DNP-RaDNP IgG Complexes on Complement-Receptor Activity in 
Resident and Thioglycollate-elicited Mouse Macrophages 

Treatment of coverslips 
coated with PLL-DNP 

Resident macrophages Thioglycollate-elicited macrophages 

Percent- Percent- Percent- 
age of age of age of 
macro- Attach- macro- Attach- macro- 
phages ment index phages ment index phages 
with with with 

E(IgM)C E(IgM)C E(IgM)C 
attached attached ingested 

Ingestion 
index 

% % % 

None 85 1,105 91 1,365 84 798 
RaDNP IgG 94 705 96 1,055 80 928 
RaDNP IgG + mouse se- 84 1,176 30 222 31 133 
rum (C3b) 

Assay conditions as described in Materials and Methods. 

d i f ferences  in r ecep to r  m o d u l a t i o n  w h e n  these  m a c r o p h a g e s  were  c u l t u r e d  on  com-  

p l e m e n t - c o a t e d  surfaces.  R e s i d e n t  o r  t h iog lyco l l a t e -e l i c i t ed  m a c r o p h a g e s  were  p l a t e d  

o n t o  c o m p l e m e n t - c o a t e d  covers l ips  a n d  t h e n  i n c u b a t e d  w i t h  E ( I g M ) C .  T h e  c o m p l e -  

m e n t - r e c e p t o r  ac t iv i ty  o f  t h iog lyco l l a t e -e l i c i t ed  m a c r o p h a g e s  was m a r k e d l y  r e d u c e d  

( T a b l e  IV) .  In  con t ras t ,  t he re  was no  r e d u c t i o n  in the  a t t a c h m e n t  o f  E ( I g M ) C  by  

res ident  m a c r o p h a g e s .  As expec t ed ,  inges t ion  o f  E ( I g M ) C  by  res ident  m a c r o p h a g e s  

was  no t  observed .  T h e  p resence  o f  D N P  or  D N P - R a D N P  I g G  c o m p l e x e s  on  the  

covers l ips  h a d  no  s ign i f ican t  effect  on  the  a t t a c h m e n t  a n d  inges t ion  o f  E ( I g M ) C  by  

th iog lyco l l a t e -e l i c i t ed  m a c r o p h a g e s ,  o r  on  the  b i n d i n g  o f  E ( I g M ) C  by  res ident  mac-  

rophages  ( T a b l e  IV).  
T h e s e  f ind ings  suggest  t h a t  the re  is a close co r r e l a t i on  b e t w e e n  the  c a p a c i t y  o f  

m a c r o p h a g e s  to m o d u l a t e  the i r  m e m b r a n e  recep tors  a n d  the  ab i l i ty  o f  t he  recep tors  
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TABLE V 
Fc-Receptor-mediated Phagocytosis in Thioglycollate-elicited Mouse Macrophages Cultured on Complement- 

containing DNP-RaDNP IgG Complexes 

Treatment ofcoverslips coated with PLL-DNP 

Percent- Percent- 
age of age of 
macro- Attach- macro- 
phages ment index phages 
with with 

E(IgG) E(IgG) 
attached ingested 

Ingestion 
index 

% % 

None 81 705 91 1,411 
RaDNP IgG 51 510 19 152 
RaDNP IgG + mouse serum (C3b) 92 1,215 98 1,353 
RaDNP IgG + mouse serum (30 min, 56°C) 50 530 12 52 

Assay conditions as described in Materials and Methods. 

to mediate phagocytosis. Cells whose Fc receptors are modulated upon presentation 
of immobilized antibody-antigen complexes (resident and thioglycollate-elicited mac- 
rophages), or whose complement receptors are modulated upon presentation of 
complement-coated immune complexes (thioglycollate-elicited macrophages) phago- 
cytose particles coated with the corresponding ligand. However, resident macrophages 
do not modulate their complement receptors in response to complement in the 
immobilized complexes and do not phagocytose E(IgM)C. 

Specificity of Receptor Modulation. To determine whether the effects of plating 
macrophages on one type of immobilized ligand affected binding of test particles 
coated with a different ligand, we examined complement-receptor function in thio- 
glycollate-elicited macrophages plated on DNP-RaDNP IgG complexes. As shown in 
Table I, no reduction in the capacity of these macrophages tO bind E(IgM)C was 
observed, and the proportion of macrophages that phagocytozed E(IgM)C was 
undiminished. The average number of E(IgM)C ingested by each macrophage, 
however, was decreased. Conversely, Fc-receptor function was unaffected when thio- 
glycollate-elicited macrophages were plated on DNP-RaDNP IgG-and-complement- 
coated surfaces; >90% of these macrophages bound and ingested 13-14 E(IgG) each 
(Table V, line 3). Thioglycollate-elicited macrophages plated on DNP-RaDNP IgG- 
coated coverslips that were not further treated, or that were treated with heated 
mouse serum showed marked reduction in binding, and an almost total inhibition of 
ingestion of E(IgG) (Table V, lines 2 and 4). These results indicate that substrate- 
adherent immune complexes affect only those receptors for which they act as ligands. 
Furthermore, they show that immobilized immune ligands do not cause a general 
paralysis of macrophage-receptor function. 

Although we do not know the mechanism(s) by which these receptors are modu- 
lated, it is important to point out that the receptors must move from the upper surface 
of the macrophage membrane before their interaction with ligands on the substrate. 
A similar situation has been described for the movement of surface immunoglobulins 
on motile lymphocytes (45). The capacity of these cells to modulate receptors that 
have not been complexed with ligands distinguishes these phenomena from ligand- 
induced lymphocyte capping (46), or the movement of concanavalin A binding sites 
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Flo. 3. Effect of the concentration of mouse serum used in the preparation of DNP-RaDNP IgG- 
and-complement-coated coverslips on Fc- and complement-receptor-mediated phagocytosis by 
thioglycollate-elicited macrophages. Parallel cultures of macrophages on the different coverslip 
preparations were incubated for 30 min at 37°C before being exposed to E(IgG) or E(IgM)C, 
respectively, as described in the text. (O), ingestion (Ing.) index, E[(IgM)C]; (0) ingestion index, 
lE(SgO)]. 

in dividing macrophage cell lines (47). In these latter systems, receptors are modulated 
only when they are complexed by specific ligands. 

We were surprised to find Fc-receptor function unimpaired when macrophages 
were plated on DNP-Re~DNP IgG-coated coverslips that had been treated with fresh 
serum. To be certain that this reflected a general effect of serum on antigen-antibody 
complexes, we prepared coverslips coated with BSA-RaBSA IgG or with HRP-  
R a H R P  IgG complexes, and incubated them with fresh mouse serum. Similar results 
were obtained. Thioglycollate-elicited macrophages plated on these coverslips ex- 
hibited a marked reduction in complement-receptor activity as measured by E(IgM)C 
ingestion, but retained full Fc-receptor function as measured by phagocytosis of 
E(IgG) (data not shown). Thus, the failure of D N P - R a D N P  IgG complexes treated 
with mouse serum to promote Fc-receptor modulation is not a unique property of this 
IgG preparation. The  inability of heated mouse serum to block Fc-receptor modulation 
by these complexes (Table V, line 4) indicates that complement fixation is required 
to prevent the interaction of the Fc segments of substra{e-adherent antibody-antigen 
complexes with macrophage Fc receptors. 

These results suggested that a reciprocal relationship might exist between the 
amount  of complement fixed by substrate-adherent D N P - R a D N P  IgG complexes 
and the capacity of these complexes to modulate rnacrophage Fc receptors. To 
examine this possibility, thioglycollate-elicited macrophages were plated on DNP- 
R a D N P  IgG-coated coverslips that had been incubated with decreasing concentra- 
tions of  fresh mouse serum. These macrophages were then tested for their ability to 
ingest E(IgG) or E(IgM)C. As shown in Fig. 3, coverslips incubated with high 
concentrations of serum inhibited complement-receptor function and had no effect on 
Fc-receptor activity. At lower serum concentrations, complement-receptor function 
was unimpaired while Fc-receptor activity was inhibited. The reciprocal relationship 
between the activities of the two receptors at intermediate serum concentrations was 
particularly striking. These findings support the concept of an inverse relationship 
between the amount  of complement bound to the substrate-adherent antibody- 
antigen complexes and the capacity of these complexes to modulate Fc- and comple- 
ment-receptor function, and are in agreement with the model proposed in Fig. 4. 
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Thioglycollate macrophages 

@ 
y "< 

A B 
Antibody Antibody + Complement 

Fro. 4. Model for receptor modulation in thioglycollate-elicited macrophaiges: thioglycollate-elic- 
ited macrophages seeded onto immobilized antibody-antigen complexes ( ~ )  modulate their Fc 
receptors (,J-'~) while their complement receptors (.~.a~) remain unperturbed, (A) of the drawing. 
Experimentally, this is indicated by a loss of attachment and ingestion of E(IgG) on the nonadherent 
membrane surface, while the macrophages continue to bind and phagocytize E(IgM)C. (B), the 
binding of complement ( ( ]D)  onto the immobilized immune complexes results in the modulation 
of the macrophages' complement (C3b) receptors from the cells' nonadherent plasma membrane. 
Complement masks the Fc domain of Ig, G ( ~I~ ) so that it cannot be recognized by the cells Fc 
receptors leaving them available throughout the plasma membrane. This is shown experimentally 
by the ability of thioglycollate-elicited macrophages to bind and ingest E(IgG) upon plating onto 
antibody-antigen-and-complement-coated coverslips. 

Scharfstein et al., (43) have shown that when antibody-antigen complexes are 
coated with complement they no longer bind staphylococcal protein A. The amount 
of inhibition of staphylococcal protein A binding was proportional to the amount of 
complement fixed by the complexes. Because staphylococcal protein A binds to the 
Fc portion of IgG (48) their results provide direct evidence that complement compo- 
nents mask the Fc segment. 

These findings raise two issues relevant to immunopathology: first, they suggest 
that in vivo, where complement is present in abundance, the Fc segments of IgG in 
immune complexes will be unavailable for binding to the Fc receptors oflymphocytes, 
macrophages, and polymorphonuclear leukocytes. Under these circumstances many 
of these cells' effector functions may be mediated principally by their complement 
receptors, and not by their Fc receptors. Second, they indicate a possible function for 
subclasses of IgG that do not fix complement. Particle- or antigen-bound noncomple- 
ment fixing antibodies should retain the capacity to interact with leukocyte Fc 
receptors in the presence of complement, and thereby to mediate a specific subset of 
immune effector functions. 

S u m m a r y  

We have examined the Fc- and complement-receptor function of resident and 
thioglycollate-elicited mouse peritoneal macrophages plated on surfaces coated with 
rabbit antibody-antigen complexes and with complement. We derive four major 
conclusions from these studies. (a) The trypsin-resistant Fc receptors of resident and 
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thioglycollate-elicited macrophages  are completely modula ted  when these cells are 
plated on rabbit  ant ibody-ant igen complexes. Residual Fc receptor activity is a result 
of  the incomplete modula t ion  of  trypsin-sensitive IgG2a receptors. (b) The  comple- 
ment  receptors of  thioglycollate-elicited macrophages,  but  not of  resident macro- 
phages, are modula ted  when these cells are plated on complement-coated surfaces. 
T he  capaci ty of  the two cell types to modula te  their complement  receptors is correlated 
with their ability to ingest complement-coated erythrocytes. (c) The  complement  and 
Fc receptors of  both types of  macrophages  move independent ly  of  one another.  (d) 
Complement  masks the Fc segments of  IgG in immune  complexes thereby rendering 
them ineffective as ligands for macrophage  Fc receptors. 

We gratefully acknowledge the expert technical help and patience of Ms. Judy Adams in the 
preparation of the electron micrographs, and we thank Miss Betty Broyles for typing the drafts 
of this manuscript. 
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