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Abstract. Cultured microvascular endothelial cells 
isolated from fenestrated capillaries have been shown 
to express many properties of their in vivo differen- 
tiated phenotype, yet they contain very few dia- 
phragmed fenestrae. We show here that treatment of 
capillary endothelial cells with the tumor promoter, 
4B-phorbol 12-myristate 13-acetate, induces more 
than a fivefold increase in the frequency of fenestrae 

per #m 2 of cell surface, as determined from a quanti- 
tative evaluation on freeze-fracture replicas. In quick- 
frozen, deep-etched preparations, the endothelial fe- 
nestrae appeared to be bridged by a diaphragm com- 
posed of radial fibers interweaving in a central mesh, 
as previously observed in vivo. These results.indicate 
that diaphragmed fenestrae are inducible structures, 
and provide an opportunity to study them in vitro. 

T 
HE endothelium of visceral capillaries is perforated by 
numerous circular windows, or fenestrae, ~70 nm in 
diameter, which are usually closed (except in glomer- 

ular endothelium) by a thin, single-layered diaphragm (1, 9, 
17, 20), and are believed to participate in the transcapillary 
exchange of substances between blood and tissues (18). The 
mechanism of formation of these openings is not known, nor 
is it known whether they are permanent specializations of the 
endothelial cell, or labile structures able to respond dynami- 
cally to environmental changes. Finding answers to these 
questions requires the development of a suitable in vitro 
model, in which fenestrae can be experimentally induced. 
Cultured microvascular endothelial cells isolated from fenes- 
trated capillaries have been shown to express many properties 
characteristic of their in vivo differentiated phenotype (4, 6, 
13), yet they contain very few fenestrations (4, 11). However, 
an increased number oftransendothelial openings has recently 
been observed in endothelial cells grown on the extracellular 
matrix laid down by Madin-Darby canine kidney cells (11). 
In this report, we show that the tumor promoter, 4fl-phorbol 
12-myristate 13-acetate (PMA) ~, markedly enhances the for- 
mation of diaphragmed fenestrae in cloned bovine microvav 
cular endothelial cells. This observation represents the first 
evidence for the modulation of endothelial fenestrae by a well- 
defined chemical signal, and provides an opportunity for the 
in vitro study of these specialized structures. 

Materials and Methods 

Bovine microvascular endothelial cells (BMEC) were isolated from bovine 
adrenal cortex according to Folkman et al. (5) and cloned as previously 
described (6). The cells were routinely subcultured in gelatin-coated tissue 

1. Abbreviations used in this paper: BMEC, bovine microvascular endothelial 
cells; PMA, 4~-phorbol 12-myristate 13-acetate. 

culture flasks (Falcon Labware, Becton, Dickinson & Co., Oxnard, CA) in 
minimal essential medium, alpha modification (Gibeo Laboratories, Grand 
Island, NY) supplemented with 15% heat-inactivated donor calf serum (Flow 
Laboratories, Irvine, Ayrshire, Scotland), penicillin (500 U/ml), and strepto- 
mycin (100 #g/ml). For experimentS, the endothelial cells were seeded either 
into 35-ram plastic dishes (Falcon Labware) (for thin section electron micros- 
copy), or in 35-ram dishes containing 25-ram round plastic coverslips (Ther- 
manox, Lux Scientific Inc., Newbury Park, CA) (for freeze-fracture), and grown 
to confluence before treatment with 20 ng/ml PMA (Sigma Chemical Co., St. 
Louis, MO). 

For thin section electron microscopy, control and PMA-treated cultures 
were fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4. After 
a rinse in cacodylate buffer, they were postfixed for 20 rain in 1% osmium 
tetroxide in veronal acetate buffer, treated quickly (~1 min) with 0.1% tannic 
acid (Mallinckrodt Inc., St. Louis, MO) in 50 mM cacodylate buffer, pH 7.0, 
washed, stained en bloc with 0.5% uranyl acetate in veronal acetate buffer for 
20 rain, dehydrated in graded ethanols, and embedded in Epon. Thin sections 
were cut perpendicular to the plane of the monolayer and stained with uranyl 
acetate and lead citrate. 

For freeze-fracture electron microscopy, cultures grown on plastic coverslips 
were fixed in glutaraldehyde as above, rinsed in cacodylate buffer, and freeze- 
fractured in a Balzers BAF 301 apparatus (Balzers High Vacuum Corp., Balzers, 
Liechtenstein) according to the method of Pauli et al. (16). Both thin sections 
and freeze-fracture replicas were examined in a Philips EM 300 or Zciss EM 
10 electron microscope. 

A quantitative evaluation of the frequency of endothelial fenestrae in BMEC 
cultures was carried out as follows on freeze-fracture replicas. In each of six 
distinct experiments (passages 15-21 after cloning) three different replicas of 
control BMEC and BMEC treated with PMA for 3 d were separately recovered 
on 150-mesh, square-hole copper grids (hole side, 117 #m) (Veeo, Solingen- 
Hoehscheid, West Germany). On each of the three grids, two holes completely 
filled with an uninterrupted expanse of plasma membrane fracture faces were 
randomly selected, and all clearly identifiable fenestrae present in each grid 
hole were systematically photographed and counted. In this way, the number 
of fenestrae/#m 2 of cell surface could be calculated in each experimental 
condition. 

Results and Discussion 
By phase contrast microscopy, confluent BMEC cultures ap- 
peared as a monolayer of closely apposed, slightly elongated 
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Figures 1 and 2. (Fig. 1) Effect of PMA on BMEC morphology (phase contrast). (a) Control BMEC form a monolayer of closely apposed, 
slightly elongated cells. (b) BMEC after 1 d of treatment with PMA. The cells have an irregular shape with refractile cell borders and long cell 
processes. Bars, 100 tim. (Fig. 2) Portion of a highly attenuated region from a PMA-treated BMEC (thin section perpendicular to the bottom 
of the dish). The endothelial cell cytoplasm is perforated by numerous fenestrae that are bridged by a thin diaphragm with a central knob 
(arrows). Bar, 0.5 gin. 

cells (Fig. 1 a). As previously described (7, 12), within 2-6 h 
after the addition of  20 ng/ml PMA, the endothelial ceils 
became more refractile and took on an irregular shape with 
long cell processes (Fig. I b). In thin sections perpendicular to 
the culture plane, BMEC treated for 3 d with PMA showed 
numerous highly attenuated cytoplasmic regions containing 
diaphragmed fenestrae (Fig. 2). In contrast, both highly atten- 
uated regions and diaphragmed fenestrae were seen only in 
rare instances in control BMEC cultures maintained in nor- 
mal medium during the same time period. To quantitate 
these observations, we turned to the freeze-fracture technique, 
which has the advantage of  providing large en face views of 
the plasma membrane.  In freeze-fracture replicas of  both 
control (Fig. 3) and PMA-treated BMEC (Figs. 4 and 5), 
fenestrae appeared as circular depressions (on the P-face) or 
elevations (on the E-face), which could easily be distinguished 
from plasmalemmal vesicles (caveolae) by their larger diam- 
eter, their shallow, flat floor, and their characteristic occur- 
fence in clusters, as is observed in vivo (15, 19). As Table I 
shows, PMA treatment induced more than a fivefold increase 
in the frequency of the fenestrae/tzm 2 of cell surface. 

Besides clearly recognizable fenestrae, freeze-fracture repli- 
cas of  PMA-treated cells also disclosed localized intramem- 
brane particle clearings (Fig. 6a),  and circular grooves sur- 

Table I. Frequency of  Fenestrae in Control and PMA-treated 
BMEC 

Total num- 
Total cell stir- ber of fe- Number of fenes- 
face examined nestrae trae/100 t~m 2 

i, t m  2 

Control BMEC 492,804* 5,319 1.08 + 0, 19* 
PMA-treated BMEC 492,804* 30,208 6.13 -+ 1, 60 t 

BMEC (passage 15-21) were grown to confluency on plastic coverslips and 
further incubated for 3 d in either normal medium or medium containing 
20 ng/ml PMA. The quantitative evaluation of the frequency of fenestrae 
was carded out on freeze-fracture replicas as described in Materials and 
Methods. The values of number of fenestrae/100 ~m z represent the mean ± 
SEM of six distinct experiments. 

* Surface of 36 grid holes (see Materials and Methods). 
t p <  0.01 (Student's t test). 

rounding flat membrane disks (Fig. 6 b), which we interpret 
as putative steps in the process of  pore formation. Most 
importantly, quick-frozen, deep-etched and rotary-shadowed 
preparations allowed the visualization of fenestral dia- 
phragms. The diaphragms were composed of radial fibers 
interweaving in a central mesh (Fig. 7), as observed in endo- 
thelial cells in vivo (1). 

In our previous study on the effect of  PMA on BMEC 
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Figure 3. Freeze-fracture replica of a control BMEC culture. Fenestrations occur in clusters and are recognized as circular depressions on the 
plasma membrane (P-face). (Inset) P- to E-fracture-face transition showing the matching between the circular depressions on the P-face and 
the corresponding elevations on the E-face. Notice the sharp reduction in the thickness of the cytoplasm at the level of the cluster (arrows). 
Bar, l ttm. 

invasion of  collagen gels (12), diaphragmed fenestrae were 
noticed in sections of  PMA-treated BMEC, whereas they 
appeared virtually absent in control endothelial cells. Subse- 
quent observations on BMEC grown on conventional plastic 
substrata also showed an apparent increase in the frequency 
of  fenestrae after PMA treatment. However, it was difficult to 
obtain reliable quantitative data on the magnitude of  the 
effect of  PMA from the examination of  thin sections. This 
difficulty prompted us to carry out a quantitative evaluation 
on freeze-fracture replicas, which allowed us to examine very 
large expanses o f  cell membranes. Freeze-fracture replicas, 
besides clearly revealing the clustered distribution of  the fe- 
nestrae in the plane of  the plasma membrane, enabled us to 

demonstrate a more than fivefold increase in the number of  
endothelial fenestrae/um 2 of  cell surface in response to PMA. 
Our recent observations that PMA is also able to stimulate de 
novo formation of  fenestrae in cultured endothelial cells from 
the human umbilical vein and the calf pulmonary artery (T. 
Lombardi et al., manuscript in preparation) demonstrate that 
this effect is not peculiar to the particular clone of  bovine 
microvascular endothelial cells we have used. 

Our results, together with the recently reported effect of  
extracellular matrix substrata (11), provide direct evidence 
that fenestrae are inducible structures, and may explain the 
reported appearance of  fenestrations in the continuous en- 
dothelium of some microvessels in abnormal situations (8, 
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Figure 4. Freeze-fracture replica of a PMA-treated BMEC culture showing numerous clusters of fenestrae (P-face). Bar, 1 urn. 

10, 21, 22). Although phorbol esters are not physiologically 
occurring substances, they have been shown to mimic the 
effects of endogenous mediators by activating a key enzyme 
in signal transduction, protein kinase C (14). The induction 
of diaphragmed fenestrae, together with previously described 
effects, such as stimulation of protease secretion (7) and 

formation of capillaryqike tubes inside collagen matrices (12), 
indicate that phorbol esters are able to profoundly modify the 
differentiation program of endothelial cells, as has been shown 
for other cell types (2, 3). 

The availability of simple in vitro systems in which fenes- 
trae can be readily induced makes it possible to study the 
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Figures 5 and 6. (Fig. 5) Large dusters of tightly packed fenestrae in a PMA-treated BMEC culture. Bar, I ~m. (Inset) Higher magnification of 
the region of fracture-face transition outlined by the rectangle. Notice the matching between the circular depressions on the P-face and the 
circular elevations on the E-face. Bar, 0.2 #m. (Fig. 6) Presumptive steps in the formation of fenestme. (a) Rounded particle-free patches in the 
plasma membrane of a PMA-treated endothelial cell (P-face). (b) Circular grooves surrounding flat membrane disks (arrows). Bars, 0.2 ~tm. 

molecular organization of the diaphragm that closes these 
fenestrae and their mechanism of formation. 
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Figure 7. Structure o f  fenestral d iaphragms in quick-frozen, deep-etched and  rotary-shadowed preparat ions (1) o f  PMA-treated BMEC cultures. 
(a)  Survey of  a cluster o f  d iaphragmed fenestrae, Bar, 0.2 ~m. (b -d )  Details o f  fenestral d iaphragms composed  of  radial fibers interweaving in 
a central mesh.  Bar, 0. l ~m. 
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