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Abstract Real-time noninvasive estimation of respiratory mechanics in sponta-
neously breathing patients is still an open problem in the field of critical care. Even
assuming that the system is a simplistic first-order single-compartment model, the
presence of unmeasured patient effort still makes the problem complex since both
the parameters and part of the input are unknown. This paper presents an approach
to overcome the underdetermined nature of the mathematical problem by infusing
physiological knowledge into the estimation process and using it to construct an
optimization problem subject to physiological constraints. As it relies only on mea-
surements available on standard ventilators, namely the flow and pressure at the pa-
tient’s airway opening, the approach is noninvasive. Additionally, breath by breath,
it continually provides estimates of the patient respiratory resistance and elastance
as well as of the muscle effort waveform without requiring maneuvers that would
interfere with the desired ventilation pattern.

1 Introduction

The need for estimation of the respiratory mechanics is well-known in the medical
community [6, 9]. The mechanical properties of the respiratory system are typically
described via two parameters, the resistance (R) and the elastance (E). Quantita-
tive assessment of R and E can aid the clinician to diagnose a respiratory disease,
monitor the progression of the disease and the effect of treatment, and optimize
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the ventilator settings to the patient specific needs. The force exerted by the patient
to breathe is usually represented as an equivalent pressure generated by the respi-
ratory muscles (Pmus). The clinical parameter commonly used to assess the effort
made by the patient’s muscles at each breath is known as work of breathing (WOB).
WOB is defined as the mechanical work done by the respiratory muscles during
inhalation. It can be computed for every breath as the integral of Pmus(t) over the
inhaled volume of air. Knowing the patient WOB is especially important in partially
assisted mechanical ventilation modes such as pressure support ventilation (PSV),
where patient and ventilator share the mechanical work performed on the respira-
tory system [4, 12]. The state of the art for a complete assessment of the respiratory
mechanics requires measurement of the esophageal pressure via the insertion of a
balloon-tipped catheter in the patient’s esophagus [3]. Not only is this technique in-
vasive, but it also needs characterization of the mechanical properties of the chest
wall. This generally requires the patient to be made passive (e.g., via sedation or hy-
perventilation). A well-established technique to assess R and E requires a ventilator
maneuver (end inspiratory pause) [8]. Although noninvasive, the maneuver inter-
feres with the normal operation of the ventilator. It is then not suitable for continual
monitoring of respiratory mechanics. This is a severe limitation, as in critically ill
patients the mechanical properties of the respiratory system can rapidly change. A
common noninvasive and maneuver-free method to estimate R and E consists of
using the Least Squares (LS) method to fit a suitable mathematical model of the
respiratory system to the pressure and flow measurements obtained noninvasively at
the patient airway opening [2, 7]. However, the LS method provides accurate results
only if the patient is fully passive. During spontaneous breathing Pmus is no longer a
negligible driving force and causes bias in the LS estimates.

The main difficulty in model-based estimation of the respiratory mechanics in
spontaneously breathing patients lies with the underdetermined nature of the prob-
lem. Besides the model parameters, also part of the input (Pmus) is unknown. This
paper presents an approach to overcome the existence of multiple solutions by con-
structing an optimization problem subject to physiological constraints to the un-
knowns to be estimated. Two methods are described, namely constrained optimiza-
tion (CO) and parametric optimization (PO), and illustrated via an example on ani-
mal data.

2 Description of the Estimation Problem

2.1 Mathematical Model of Respiratory Mechanics

The lungs are traditionally represented as an elastic compartment served by a sin-
gle resistive pathway. Despite its simplicity, this lumped model is representative of
the real lung mechanics and widely accepted in the respiratory research community.
The pressure at the entrance of the resistive pathway represents the airway opening



Simultaneous Parameter and Input Estimation of a Respiratory Mechanics Model 3

Fig. 1 Representation of respiratory mechanics by electrical analogues.

pressure (Pao), whereas the pressure inside the elastic compartment corresponds to
the alveolar pressure (Pal). The alveolar space, in turn, is enclosed in the chest wall
that is represented as an additional elastic compartment whose internal pressure cor-
responds to intrapleural pressure (Ppl). The system is subject to an external pressure
(Pmus) that represents an equivalent pressure of the force exerted by the respiratory
muscles. The electrical analogue corresponding to this simplified representation of
the respiratory system is shown in Fig. 1a. Raw and El denote the airways/lungs re-
sistance and elastance, respectively, whereas Ecw denotes the elastance of the chest
wall. Mechanical dissipation (friction) within the chest wall is taken into account
by an additional resistance Rcw. The simplest model assumes that the resistive and
elastic elements in the above electrical analogue are described by constant parame-
ters (linear model). The number of parameters in the electrical analogue in Fig. 1a
can be reduced to two, namely the overall resistance R = Raw +Rcw and elastance
E = El +Ecw of the respiratory system (Fig. 1b) to obtain what is known in the
literature as the linear first-order single-compartment model of respiratory mechan-
ics [2]. The air flow Q(t) through the resistive and elastic elements is driven by the
pressure difference Pao(t)−Pmus(t). The equation governing its dynamics, known
as the equation of motion of the respiratory system, is

Pao(t) = RQ(t)+EV (t)+Pmus(t)+P0 (1)

where V (t) represents the volume of air inhaled from the beginning of the breath
(t = 0), and P0 is a constant pressure term balancing the pressure at the airway
opening at t = 0 (V (0) = Q(0) = Pmus(0) = 0).

2.2 Problem Statement

The problem addressed in this paper can be stated as follows. Given measurements
of pressure and flow at the patient airway opening (i.e., at the mouth or, for patients
ventilated with an endotracheal tube, at the so-called Y-juncture), estimate R, E,
and Pmus(t) in Eq. (1) at each breath. Pressure and flow waveforms are typically
available for mechanically ventilated patients, hence the solution to this problem
is noninvasive. Also, the waveforms are supposed to come from breaths in normal
operative conditions of the ventilator. No additional maneuvers or changes in the
ventilation pattern are assumed.
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2.3 Main Challenges

As explained in detail in [10], the simultaneous estimation of R, E and Pmus(t) is
an underdetermined problem, i.e., there exist infinitely many solutions of triplets R,
E, Pmus(t) satisfying Eq. (1). Only one of them is the physiological solution that
we are after. Indeed, fixing R and E equal to any two values, it is possible to find
a pressure waveform Pmus(t) perfectly fitting the data over one breath simply by
solving Eq. (1) for Pmus. By looking at Pao −Pmus as the input and V or Q as the
output of the dynamic system in Fig. 1b, another way to see the underdetermined
nature of the estimation problem presented above is that not only are the parameters
(R and E) to be estimated, but also part of the input (Pmus). This makes the problem
particularly complex.

Another challenge is given by the fact the excitation of the dynamic system in
Fig. 1b cannot be arbitrarily chosen to facilitate the estimation. The problem has to
be solved in operational conditions, with the ventilator supporting a patient accord-
ing to his/her specific needs. In the above-mentioned PSV mode, the patient initiates
the breath by generating a negative Pmus. Once the ventilator detects the patient’s ef-
fort, it triggers and provides pressure at the airway opening trying to match a profile
that exponentially approaches the selected PSV pressure level. The ventilator then
cycles off (i.e., it stops supporting the patient) typically when the inhaled flow falls
below a certain threshold often specified as a fraction of the maximum flow during
inhalation. The instant at which the ventilator cycles off is commonly called start of
exhalation (SOE).

3 Approach

To overcome the underdetermined nature of the mathematical problem, we intro-
duce physiological information on the unknowns to be estimated and exploit it to
make the solution to the problem unique. In particular, the signal profile of the pres-
sure exerted by the respiratory muscles does not change arbitrarily over one breath.
The patient typically pulls down the diaphragm to inhale, then releases the respira-
tory muscles to let the diaphragm return to the rest position and no more effort is
made until the start of a new breath. This physiological knowledge can be infused
in the estimation algorithm in the form of regional constraints on Pmus(t). In this
section, we present two methods developed by formulating constraints on Pmus(t) in
the three regions of the breath mentioned above: inhalation, muscle relaxation, and
rest.



Simultaneous Parameter and Input Estimation of a Respiratory Mechanics Model 5

3.1 Constrained Optimization (CO)

Pmus(t) typically monotonically decreases at the beginning of a spontaneous breath,
then monotonically returns to zero as the muscles relax. Finally, in conditions of pas-
sive exhalation, this pressure remains zero until the next breath is initiated. These
monotonicity regional constraints can be written in the form of inequalities and
equalities. For simplicity, the estimation algorithm is formulated below replacing
Pmus(t) with P̃mus(t) = Pmus(t)+P0, since P0 is constant over the breath. The esti-
mation problem can then be cast as a constrained optimization problem with cost
function

J =
tk=(N−1)∆ t

∑
tk=0

(
Pao(tk)−

(
RQ(tk)+EV (tk)+ P̃mus(tk)

))2 (2)

to be minimized subject to the following constraints

P̃mus(tk+1)− P̃mus(tk)≤ 0 for tk = 0,∆ t, . . . , tm −∆ t (3a)
P̃mus(tk+1)− P̃mus(tk)≥ 0 for tk = tm, tm +∆ t, . . . , tq −∆ t (3b)
P̃mus(tk+1)− P̃mus(tk) = 0 for tk = tq, tq +∆ t, . . . , tN−1 (3c)

where tk = k∆ t denotes the (k+1)th time sample, since the data are typically col-
lected via sampling devices, and N is the total number of time samples in the breath
(k = 0,1, . . . ,N − 1). The parameters tm and tq define the borders of the three re-
gions with different monotonicity (Fig. 2a). The cost function is of LS type, since
the squared terms correspond to the difference between the measured Pao and the
one estimated from the model in Eq. (1) at each time sample. The unknowns over
which J is minimized are R, E, P̃mus(t0), P̃mus(t1), . . . , P̃mus(tN−1). The constrained
optimization problem in Eqs. (2)-(3) is characterized by a quadratic cost function
and linear constraints. It belongs to the class of so-called quadratic programs. Well-
established algorithms such as the interior-point and active-set methods exist to
solve this class of optimization problems and routines are available in most com-
mercial software, e.g., Matlab. In the quadratic program in Eqs. (2)-(3), the time
parameters tm and tq need be specified. A search for the optimal tm and tq is then
necessary. Because in normal conditions the ventilator cycles off when or after the
patient effort terminates, we fix tq = SOE and perform a search for tm over the inter-
val 0 < tm < SOE. For each candidate value for tm, we solve a quadratic program in
the form of Eqs. (2)-(3) and obtain a corresponding minimized value J(m) of the cost
function in Eq. (2). The solution arising from the value of tm giving the minimum
among all the minimized J(m)’s provides the desired estimates of R, E, and P̃mus(t).
Finally, the estimate of Pmus(t) is extracted from P̃mus(t) by shifting the latter so that
the estimate of Pmus(t) is zero in the rest region of the breath (the shift corresponds
to P0 in Eq. (1)).
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3.2 Parametric Optimization (PO)

In the literature on respiratory mechanics, several attempts have been made to de-
scribe Pmus(t) over a breath via an explicit mathematical function of time, for in-
stance for the purpose of simulation [1] or emulation [5]. This is a significant sim-
plification of the complex neuronal and physiological phenomena behind the gener-
ation of the muscle force responsible for spontaneous breathing. Nevertheless, from
an estimation perspective, such attempts inspired simple yet realistic mathematical
templates that can be used to represent Pmus(t) with a small number of parameters.
Parametrization of Pmus(t) provides another way to overcome the underdetermined
nature of the estimation problem addressed in this paper.

As an example, let us assume that Pmus(t) changes linearly with time during
inhalation as well as during muscle relaxation (with a different slope) and then
remains constant until the next breath initiates. Also assume that the switching
time between the three regions, namely tm and tq, are known. We can then write
P̃mus(t) = Pmus(t)+P0 as the following piecewise linear function

P̃mus(t) =


Pq

(
1− t

tm

)
+Pm

t
tm

0 ≤ t < tm

Pq

(
1+ t−tq

tq−tm

)
+Pm

(
1− t−tm

tq−tm

)
tm ≤ t < tq

Pq tq ≤ t ≤ tN−1

(4)

For the sake of clarity, Pq corresponds to P0 in Eq. (1). Equation (4) provides a fam-
ily of linear piecewise templates for P̃mus(t). Every different pair of tm and tq such
that tm < tq ≤ SOE provides a template parameterized via the parameters Pm and Pq

(Fig. 2b). For a given pair (tm, tq)(i), the estimation of R,E, P̃mus(t0),Pmus(t1), . . . ,Pmus(tN−1)
over the breath reduces to the estimation of R,E,Pm,Pq. The following set of equa-
tions can be written for the entire breath

Pao(0)
...

Pao(tm −∆ t)
Pao(tm)

...
Pao(tq −∆ t)

Pao(tq)
...

Pao(tN−1)


=



Q(0) V (0) 1− 0
tm

0
tm

...
...

...
...

Q(tm −∆ t) V (t−∆ t) 1− tm−∆ t
tm

tm−∆ t
tm

Q(tm) V (tm) 1+ tm−tq
tq−tm

1− tm−tm
tq−tm

...
...

...
...

Q(tq −∆ t) V (tq −∆ t) 1+ tq−∆ t−tq
tq−tm

1− tq−∆ t−tm
tq−tm

Q(tq) V (tq) 1 0
...

...
...

...
Q(tN−1) V (tN−1) 1 0




R
E
Pq
Pm

 (5)

and solved by the ordinary LS method. The so obtained LS estimates, denoted as
R(i),E(i),P(i)

m ,P(i)
q , are associated with the sum of the least squares J(i). Further tem-

plates for Pmus(t) can be constructed by assuming during inhalation and muscle
relaxation profiles other than linear. In the demonstration of the PO method given



Simultaneous Parameter and Input Estimation of a Respiratory Mechanics Model 7

Fig. 2 Regional constraints on respiratory muscle pressure: monotonicity constraints in CO (a)
and linear piecewise cojnstraints in PO (b).

in Section 5, additional parabolic piecewise templates are used for Pmus(t). The pre-
sented PO method involves the solution of many ordinary LS problems similar to
the one in Eq. (5) for each template (i). Finally, and similar to the CO method, the
estimates of R, E, and Pmus(t) for the breath are chosen as those obtained via the
Pmus template corresponding to Jmin = min

(
J(1),J(2), . . . ,J(L)

)
, where L is the total

number of templates.

4 Experimental Results

To verify the effectiveness of the presented estimation approach with real data, the
PO and CO methods have been retrospectively tested on available experimental data.
The data were collected as part of an educational study performed at the Pulmonary
Research and Animal Laboratory at Duke University Medical Center on an adult
male pig. The experimental protocol was approved by the local institutional review
board committee. During the study, a pig was anesthetized, intubated and connected
to an Esprit ventilator with NM3 respiratory monitor (Philips-Respironics). Airway
pressure (Pao) and flow (Q) were measured at the Y-juncture between the breath-
ing circuit and the endotracheal tube, via the standard proximal sensors of the NM3
monitor. An esophageal balloon was used to measure the pressure inside the esoph-
agus (Pes) as a surrogate of intrapleural pressure. Data were acquired and collected
at 100 Hz. The pig was subject to continuous positive airways pressure (CPAP) with
variable levels of pressure support ventilation (PSV mode). The measured Pao and
Q data are shown in Fig. 3 (top graphs). The performance of the presented algo-
rithms was evaluated by comparing the estimates of R, E, and Pmus(t) that were
noninvasively estimated via the CO and PO methods with those that were invasively
calculated from the measured Pes over the same dataset. The latter were considered
the gold standard values of R, E, and Pmus(t). Such invasive estimates were obtained
breath by breath by applying the ordinary LS method to the portion of the system
between Pao and Ppl in Fig. 1a. This yielded the gold standard estimates RGS

aw and EGS
l

of Raw and El . The gold standard estimates of Rcw and Ecw were obtained at the end
of the educational study by hyperventilating the pig to make it passive (Pmus = 0).
This made it possible to find RGS

cw and EGS
cw by applying the ordinary LS method
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Fig. 3 Experimental dataset and comparison of the estimates of R and E from CO and PO methods
vs. the gold standard (GS).

Fig. 4 Comparison of the estimates of Pmus from CO and PO methods vs. the gold standard (GS).

to the portion of the system between Ppl and Pmus (with Pmus = 0) in Fig. 1a. The
values of RGS

cw and EGS
cw were supposed to be constant over the entire dataset. The

invasive (gold standard) estimates of R and E were finally obtained breath by breath
as RGS = RGS

aw +RGS
cw and EGS = EGS

l +EGS
cw .

The bottom graphs in Fig. 3 show the estimates of R and E from the presented
CO and PO algorithms and the corresponding gold standard. The match is gener-
ally good over the entire dataset, except for a few breaths at low pressure support
level (between 50 and 80 seconds) where the CO and PO estimates are significantly
different from the gold standard. Also, although not particularly significant, some
bias in the estimates is visible at high pressure support level. These two issues are
discussed in the next section. In the top graph of Fig. 3, also the gold standard



Simultaneous Parameter and Input Estimation of a Respiratory Mechanics Model 9

Pmus is plotted. It is obtained from Rcw and Ecw and the measured Pes signal as
Pes(t)−RGS

cw Q(t)−EGS
cw V (t) (shifted to eliminate the offset in the last part of the

breath, where the muscles are expected to be fully relaxed). Since Pmus is a wave-
form and not a single-valued parameter over a breath like R and E, the comparison
between the invasive gold standard and the noninvasive CO and PO estimates of
Pmus cannot effectively be shown over the entire dataset in a single figure. As an
example, we show the comparison over two representative segments of the dataset,
where the amplitude of Pmus is significantly different (Fig. 4). Both the CO and PO
estimates are able to catch the difference in the depth of the respiratory muscle ef-
fort. The interested reader is also referred to [11] where the estimated Pmus signal is
demonstrated to be valuable in computing the WOB breath by breath.

5 Discussion

The paper presented two methods for the simultaneous estimation of respiratory re-
sistance, elastance and muscle effort in spontaneously breathing patients under me-
chanical ventilation. The two methods follow the same approach based on a phys-
iological model and physiological constraints on the respiratory muscle pressure
signal to be estimated over the breath. As such, they provide the clinicians with
valuable insight into respiratory mechanics. Compared to existing techniques, the
new approach is noninvasive and does not require maneuvers interfering with the
desired ventilation patterns. Continual noninvasive assessment of respiratory me-
chanics holds the promise that clinicians will be able to better provide mechanical
ventilator support with fewer adverse effects and ultimately better outcomes.

The results shown in Figs. 3 and 4 reveal that the performance of the CO and
PO methods is very similar. Although the former is more elegant and has more
solid theoretical foundation, the latter is computationally less demanding. This is a
significant advantage for the envisioned application, where the estimation algorithm
needs to run in quasi real time. After collection of pressure and flow data from a
breath, the corresponding estimates must be computed before the next breath ends.
On average a breath lasts 4 to 5 seconds. On a laptop with 8 GB of RAM and i7
CPU at 2.60 GHz, the Matlab implementation of the CO method cannot run in real
time, since every breath requires on average 10 seconds to be processed. On the
other hand, the PO method takes an average of 2 seconds per breath to run. Despite
potential room for optimization in the implementation of the presented estimation
methods, PO has a significant advantage in (quasi) real-time applications.

Being based on the same approach, PO and CO share similar limitations that are
visible in the dataset in Fig. 3. Between 50 and 80 seconds, there are a few breaths
where both estimates are significantly far from the gold standard. As proven in [10]
for the CO method, the estimation error arises from the constraints not being able to
make the solution to the estimation problem unique when the ventilator cycles off
before the respiratory muscles have completely relaxed. PO shows a behavior simi-
lar to CO. This condition is more likely to occur at low PSV levels, where the venti-
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lator does not sufficiently support the patient. Additionally, again with reference to
Fig.3, one can notice that when the gold standard Pmus signal presents some positive
spikes the estimates of R and E tend to be biased. Indeed, between 100 and 540 sec-
onds (where the pressure support level is highest) and to a lesser extent between 540
and 850 seconds (slightly lower ventilator support), the gold standard Pmus becomes
significantly positive during exhalation. This indicates a condition of active patient
exhalation that violates the assumptions behind the regional constraints formulated
for both the CO and PO methods. As a consequence, bias affects the estimates and
its magnitude depends on how intense the active exhalation is. As discussed in [11],
both early cycling off and active exhalation are forms of asynchrony between the
patient and the ventilator. As such, they are undesired from a clinical point of view
and they should be eliminated regardless of respiratory mechanics estimation. An
appropriate choice of ventilator settings made by the clinician would then be bene-
ficial not only to the patient but also to the CO and PO methods.
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