
An All-Interaction Matrix Approach to Linear
and Bilinear System Identification

Minh Q. Phan, Francesco Vicario, Richard W. Longman, and Raimondo Betti

Abstract This paper is a brief introduction to the interaction matrices. Originally
formulated as a parameter compression mechanism, the interaction matrices offer
a unifying framework to treat a wide range of problems in system identification
and control. We retrace the origin of the interaction matrices, and describe their
applications in selected problems in system identification.

1 Introduction

The interaction matrices were originally motivated by the system identification of
large flexible space structures [1]. Because such structures are lightly damped, a
very large number of system Markov parameters need to be solved for. The inter-
action matrix was first formulated by the first author as a mechanism to compress
an infinite sequence of system Markov parameters into a finite sequence which can
be identified more easily [2,3]. The system Markov parameters are then recovered
from the compressed Markov parameters, and the recovery can be achieved with-
out having to know the interaction matrix that performs the compression in the
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first place. Since this original development, utilities of the interaction matrices in
a wide range of applications have been discovered due to their versatility in con-
necting the state-space model to various input-output output representations. This
paper explains some of our own work in this area. Applications of the interaction
matrices have been found in Observer/Kalman filter identification (OKID) [4]-[10]
including its output-only version (O3KID) [11], closed-loop system identification
[12],[13], modal discrimination [14], multi-step ahead state estimation [15],[16],
system identification in the presence of periodic disturbances [17]-[20], structural
damage monitoring [21], actuator failure detection [22], data-based, model-based,
and decentralized model predictive control [23],[24], tracking control of unmea-
sured outputs [25], control of vehicle formations [26],[27], iterative learning control
[28], linear time-varying system identification [29],[30], identification of discrete-
time bilinear systems by equivalent linear models [31], [32], nonlinear ARX models
[33], superspace methods [34], [35], subspace intersection and subspace projection
methods via switched linear systems [36]-[39], and optimal bilinear observers and
bilinear OKID [40]-[42] in the presence of noisy measurements. This paper explains
the interaction matrices in selected system identification problems. The role of the
interaction matrices in the control problems is explained in more details in [43].

2 The System Markov Parameters in Context

The system Markov parameters naturally arose in the problem of identifying a linear
state-space system of the form:

x(k+1) = Ax(k)+Bu(k)
y(k) =Cx(k)+Du(k) (1)

Given a set of sufficiently rich and long input-output data record denoted by {u(k)}
and {y(k)} starting from some unknown initial state x(0), we seek a realization of
the original A, B, C, D model whose input-output relationship is

y(k) =CAkx(0)+Du(k)+
k

∑
i=1

CAi−1Bu(k− i) (2)

The combinations D, CB, CAB, CA2B,... are called the system Markov parameters.
If a sufficient number of systems Markov parameters is known, they can be factored
to find a realization of A, B, C. Although the factorization problem is non-linear, it
has an exact analytical solution. Because the Markov parameters are linearly related
to input-output data, it might appear that their direct identification is trivial, but this
initial impression is false. Writing Eq. (2) for k = 0,1,2, ... produces

y(0) =Cx(0)+Du(0)
y(1) =CAx(0)+Du(1)+CBu(0)
y(2) =CA2x(0)+Du(2)+CBu(1)+CABu(0), ...

(3)
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The number of equations to be written is a function of the number of system Markov
parameters that one wishes to solve for. Treating the scalar elements of the combi-
nations Cx(0), CAx(0), CA2x(0) and D, CB, CAB as unknowns, simple counting
reveals that the number of unknowns exceeds the number of linear equations. Thus
the Markov parameters cannot be solved from these linear equations alone. The ad-
ditional equations which describe the relationship among the Markov parameters
are non-linear (k ≥ 0),

CAk+nB+an−1CAk+n−1B+ · · ·+a1CAk+1B+a0CAkB = 0 (4)

because they involve the product of the Markov parameters and the n unknown
coefficients of the characteristic equation of A (where n itself is unknown),

λ
n +an−1λ

n−1 + · · ·+a1λ +a0 = 0 (5)

Thus the mathematical problem of finding the Markov parameters directly from
input-output data is surprisingly more challenging than one would expect. Other
approaches would solve for the Markov parameters indirectly via an infinite im-
pulse response (IIR) model (an exact method), or the Fast Fourier Transform (FFT)
technique (an approximate method).

3 Origin of the Interaction Matrix

The interaction matrix offers another approach to solve for the Markov parameters
that is both intuitively and mathematically attractive. A matrix M, referred to as
an interaction matrix [2,3], was introduced as a mechanism to compress an infinite
sequence of Markov parameters of the original system,{

D, CB, CAB, CA2B, . . .
}

to a finite sequence, {
D, CB̄, CĀB̄, ..., CĀp−1B̄

}
where Ā and B̄ are related to the original A and B via M,

Ā = A+MC B̄ =
[

B+MD −M
]

(6)

The parameter p, which controls the number of compressed Markov parameters,
must satisfy the condition pm ≥ n, where m is the number of independent outputs
and n the dimension of the state of the system being identified. The compression
mechanism by the interaction matrix M limits the number of unknowns. Once the
compressed Markov parameters are identified from input-output data, they can be
uncompressed to recover any number of original Markov parameters. Moreover, the
uncompression can be done without having to find the interaction matrix M that
provides the compression in the first place. To see how the interaction matrix is
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introduced to (1), add and subtract My(k) to the state equation,

x(k+1) = Ax(k)+Bu(k)+My(k)−My(k)
= (A+MC)x(k)+(B+MD)u(k)−My(k) (7)

Define a new “input” vector v(k) as v(k) =
[

u(k) y(k)
]T the original state-space

model (1) becomes
x(k+1) = Āx(k)+ B̄v(k)

y(k) =Cx(k)+Du(k) (8)

The input-output map of the modified state-space model can be expressed in terms
of their own Markov parameters as

y(k) =CĀkx(0)+Du(k)+
k

∑
i=1

CĀi−1B̄v(k− i) (9)

The interaction matrix M alters the dynamics of the original system from A to
Ā = A+MC. The freedom introduced by M is now used to impose the condition
(A+MC)p = 0 so that, for k ≥ p, the input-output map becomes

y(k) = Du(k)+
p

∑
i=1

CĀi−1B̄v(k− i) (10)

To produce (10) from (9) the interaction matrix M eliminates the explicit depen-
dence on the unknown initial condition x(0), and at the same time causes the number
of Markov parameters of the modified system to become finite because CĀi−1B̄ = 0
for i ≥ p+ 1. We are not solving for M given A and C to satisfy (A+MC)p = 0
because both A and C are unknown. We are only concerned with the existence of M
such that (A+MC)p = 0. For an observable system, the existence of M is guaran-
teed, e.g., one that would place all eigenvalues of A+MC at the origin.

The Markov parameters of the original system can be recovered from the com-
pressed Markov parameters without the need to find M. Each compressed system
Markov parameter CĀi−1B̄, i = 1,2, ..., p, has two parts, e.g.,

[
C (B+MD) , −CM

]
,[

C (A+MC)(B+MD) , −C (A+MC)M
]
, etc. By working these two parts against

each other (together with D which can be directly identified), it is possible to re-
cover any number of system Markov parameters without actually knowing M. For
example, the first two system Markov parameters can be solved as follows,

CB =C (B+MD)− (CM)D (11)

CAB =C (A+MC)(B+MD)−C (A+MC)MD− (CM)(CB) (12)

Any number of system Markov parameters beyond CAp−1B can be recovered by
using the condition CĀiB̄ = 0 for i≥ p.
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4 Relationship to ARX and ARMAX Models

The interaction matrix reveals a very useful connection between the state-space
model and well-known input-output models such as ARX (Auto-Regressive with
eXogenous input) and ARMAX (Auto-Regressive Moving Average with eXoge-
nous input) models. An ARX model has the form

y(k) =
p

∑
i=1

αiy(k− i)+
p

∑
i=0

βiu(k− i) (13)

The coefficients of the ARX model are related to the state-space model matrices
according to αi = −C (A+MC)i−1 M, βi = C (A+MC)i−1 (B+MD), β0 = D. In
the presence of process and measurement noises (Gaussian, white, zero-mean, un-
correlated) with unknown covariances, it can be shown that when p is sufficiently
large such that (A+KC)p ≈ 0, the ARX model coefficients, identified by simple
least-squares from a sufficiently long input-output data record, subsumes a Kalman
filter with gain K, and the ARX model residual converges to the Kalman filter
residual. The interaction matrix M in this case plays the role of the steady-state
Kalman filter gain K. The above relationship is the theoretical basis for the orig-
inal Observer/Kalman filter Identification (OKID) algorithm which finds a state-
space model and an optimal observer/Kalman filter gain from noise-corrupted input-
output data alone without knowing the process and output noise covariances [4]

In the case of an ARMAX model,

y(k) =
p

∑
i=1

ᾱiy(k− i)+
p

∑
i=0

β̄iu(k− i)+
p

∑
i=1

γ̄iε(k− i)+ ε(k) (14)

it can be shown that the ARMAX model coefficients are related to the original state-
space model matrices through both M and K according to ᾱi = −C (A+MC)i−1,
β0 = D, β̄i = C (A+MC)i−1 (B+MD), γ̄i = C (A+MC)i−1 (M−K). The order p
of the ARMAX model needs not be the same as the order p of the ARX model,
M is a deadbeat observer gain, and K is the steady-state Kalman filter gain. Un-
derstanding this structural connection is useful because it allows for the recovery
of a state-space model A,B,C,D, and K (and M) from the identified coefficients of
an ARMAX model of “small” order. This is the basis of the OKID algorithm with
residual whitening [6]. Observe that if the order p of the ARMAX model is suffi-
ciently large, then there exists an interaction matrix M that approaches the Kalman
filter gain K, (A+MC)p ≈ 0. When M = K, all the γ̄i coefficients vanish, and the
ARMAX model (14) reverts back to the ARX model (13). A recent extension of
OKID uses the Kalman residual, which can be computed without having to find the
Kalman filter first, to convert a stochastic system identification problem into a deter-
ministic problem. Any deterministic state-space identification algorithms, including
subspace and non-subspace algorithms, can then be used to find a state-space model
of the system and a corresponding Kalman filter gain [10].
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5 A Generalized Interaction Matrix

The adding and subtracting of My(k) in (7) leads to a condition on the interaction
matrix M that is nonlinear, (A+MC)p = 0. The following generalization produces
an interaction matrix that has a linear condition [16], [17]. Starting with the original
state-space model (1), a p-step ahead state-space model is

x(k+ p) = Apx(k)+Cup(k)
yp(k) = Ox(k)+Tup(k)

(15)

where

up(k) =


u(k)
u(k+1)
...
u(k+ p−1)

 yp(k) =


y(k)
y(k+1)
...
y(k+ p−1)


The matrix C is an extended controllability matrix, O an extended observability
matrix, and T a block-Toeplitz matrix of the system Markov parameters. Adding
and subtracting the product Myp(k) to the p-step ahead state equation in (15), one
obtains

x(k+ p) = (C+MT)up(k)−Myp(k) (16)

if a generalized interaction matrix M exists such that Ap + MO = 0. As long
as p is sufficiently large and the system is observable so that O is full rank,
the generalized interaction matrix M is guaranteed to exist. It can be shown that
the coefficients of the ARX model are related to the state-space model (1) and
the generalized interaction matrix M according to

[
αp · · · α2 α1

]
= −CM and[

βp · · · β2 β1
]
= C (C+MT). Key advantages of the generalized interaction ma-

trix include easy determination of its existence because Ap +MO = 0 is a linear
relationship, simple generalization to multiple-step ahead prediction for Model Pre-
dictive Control (MPC), and straightforward extension to time-varying state-space
models.

6 System Identification in the Presence of Periodic Disturbances

So far the interaction matrices are used to eliminate the state-dependent term in an
input-output equation and to limit the number of unknowns. We now show how it
can be used to eliminate unknown periodic disturbances in an input-output relation-
ship between excitation input and disturbance-corrupted output. Consider the prob-
lem of identifying the disturbance-free model in the presence of unknown periodic
disturbances that appear as additional unknown inputs d(k),

x(k+1) = Ax(k)+Bu(k)+Bdd(k)
y(k) =Cx(k)+Du(k) (17)
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Suppose d(k) is comprised of a finite number of sinusoids with unknown frequen-
cies, amplitudes, and phases. The counterpart of (15) is

x(k+ p) = Apx(k)+Cup(k)+C(d)dp(k)
yp(k) = Ox(k)+Tup(k)+T(d)dp(k)

(18)

where C(d) is an extended controllability matrix and T(d) a block-Toeplitz matrix
associated with the disturbance input d(k). A generalized interaction matrix M is
introduced by adding and subtracting the product Myp(k) to the right hand side of
the state equation in (18),

x(k+ p) = Apx(k)+Cup(k)+C(d)dp(k)
+Myp(k)−Myp(k)

= (Ap +MO)x(k)+(C+MT)up(k)

+
[
C(d)+MT(d)

]
dp(k)−Myp(k)

(19)

The freedom introduced by M is used to eliminate both the explicit dependence of
x(k) on the right hand side of (19) and the unknown periodic disturbance input d(k)

by setting Ap +MO = 0 and
[
C(d)+MT(d)

]
dp(k) = 0. If d(k) is made of a finite

number of sinusoidal inputs of unknown frequencies, amplitudes, and phases, and
p is such that pm ≥ n+ 2 f + 1 where f is the number of distinct disturbance fre-
quencies and the 1 accounts for a constant bias if present, then M exists. Therefore,
a model relating excitation input and disturbance-corrupted output exists,

y(k) =C (C+MT)up(k− p)−CMyp(k− p)+Du(k) (20)

for k ≥ p. Equation (20) itself is an ARX model whose disturbance-corrupted co-
efficients absorb the disturbance information. The interaction matrix explains the
relationship between the disturbance-corrupted ARX model coefficients and the
state-space model matrices. This ARX model can be identified from disturbance-
corrupted input-output data [17]. Again, the system Markov parameters of the
disturbance-free model can be recovered from the disturbance-corrupted ARX
model coefficients without having to find the interaction matrix M itself.

7 Interaction Matrices for a Bilinear Model

Bilinear systems have seen a recent spark of interests in the aerospace engineering
community. Although one might view bilinear systems as merely a special case of
nonlinear systems, the importance of bilinear systems is far greater. Whereas some
dynamical systems are inherently bilinear, other nonlinear systems can be converted
into bilinear form by a process known as Carleman linearization [44]. The latter
application of bilinear system is important because it offers an opportunity to present
a very large class of nonlinear systems in a common bilinear form,
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x(k+1) = Ax(k)+Bu(k)+Nx(k)u(k)
y(k) =Cx(k)+Du(k) (21)

Much of the challenge in state-space system identification arises from the fact that
the states are not known. Our approach is to express the bilinear system state in terms
of input-output measurements via an Input-Output-to-State Relationship (IOSR)
which itself can be viewed as an observer. Propagating Eq. (21) one step forward
produces an expression for x(k+2),

x(k+2) = Ax(k+1)+Bu(k+1)+Nx(k+1)u(k+1)
= A2x(k)+ANx(k)u(k)+NAx(k)u(k+1)+N2x(k)u(k)u(k+1)
+ABu(k)+NBu(k)u(k+1)+Bu(k+1)

(22)

Propagating one more step produces an expression for x(k + 3). There is a rapid
build-up of terms involving x(k) in the right hand sides of these expressions. In
general, the bilinear system state at any future time step x(k + p) depends on the
state at the current time step x(k) which is unknown. Yet in (22) it is not possible to
eliminate these state-dependent terms because we have no control over the bilinear
system matrices A and N. In the following a mechanism to alter the dynamics of A
and N is achieved through the use of interaction matrices.

Adding and subtracting M1y(k) and M2y(k)u(k) to the original state equation in
(21) produces

x(k+1) = Ax(k)+Bu(k)+Nx(k)u(k)+M1y(k)−M1y(k)
+M2y(k)u(k)−M2y(k)u(k)

= (A+M1C)x(k)+(B+M1D)u(k)−M1y(k)
+M2Du2(k)−M2y(k)u(k)+(N +M2C)x(k)u(k)

(23)

The interaction matrices M1 and M2 alter the original system dynamics according to

Ā = A+M1C N̄ = N +M2C B̄ =
[

B+M1D −M1 M2D −M2
]

(24)

and v(k) =
[

u(k) y(k) u2(k) y(k)u(k)
]T so that the original system now is:

x(k+1) = Āx(k)+ B̄v(k)+ N̄x(k)u(k)
y(k) =Cx(k)+Du(k) (25)

The freedom introduced by the interaction matrices is used to eliminate the state-
dependent terms. These interaction matrices themselves do not need to be found,
but they create expressions that relate the bilinear system state x(k) in terms of
a known vector consisting of input-output measurements called a superstate vec-
tor z(k), x(k) = T z(k). Other interaction matrices are involved in producing other
IOSR’s including those are non-causal, or mixed causal and non-causal [35]-[42].
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8 Interaction Matrices in Bilinear System Identification

There are at least five different strategies that these IOSRs can be used to produce
a large number of bilinear system identification methods. First, they can convert the
bilinear model to an equivalent linear model (ELM) [32]. The known superstate z(k)
combined with u(k) in the product z(k)u(k) can be treated as an additional input to
a linear model which can be identified by linear system identification techniques,

x(k+1) = Ax(k)+
[

B NT
][ u(k)

z(k)u(k)

]
y(k) =Cx(k)+Du(k)

(26)

Second, the IOSR’s can be used to create a nonlinear ARX (NARX) model [33]

y(k) =CT z(k)+Du(k) (27)

The coefficients of the NARX model contained in CT and D can be identified from
input-output data as packaged in z(k) and u(k). From these coefficients, the Markov
parameters of the bilinear model can be recovered (without having to find the in-
teraction matrices) from which a bilinear state-space model is found using standard
realization theory. Third, certain superstates z(k)’s associated with these IOSRs can
be used directly to identify a non-minimum order bilinear state-space model of the
system with z(k) treated as a known state variable [34], [38],

z(k+1) = Arz(k)+Bru(k)+Nrz(k)u(k)
y(k) =Crz(k)+Du(k) (28)

The identification of the bilinear state-space model becomes a simple linear prob-
lem if the bilinear state is known. Model reduction then follows to reduce identified
bilinear model to the minimum dimension. This is a superspace method. Fourth,
different representations of the superstates can be intersected to find the bilinear
system state from which simple least-squares method can be used to identify a bi-
linear state-space model [36]-[38]. This is a subspace intersection method which
can be explained as follows. Consider two suitable IOSR’s, x(k) = T1z1(k) and
x(k) = T2z2(k). Let X denote a matrix whose columns are the bilinear system state
at different time steps,

X =
[

x(k) x(k+1) x(k+2) · · ·
]

(29)

and Z1 and Z2 are matrices whose columns are the corresponding superstates,

Z1 =
[

z1(k) z1(k+1) z1(k+2) · · ·
]

(30)

Z2 =
[

z2(k) z2(k+1) z2(k+2) · · ·
]

(31)

If the rows of X reside in the row spaces of Z1 and of Z2, then they must reside in
the intersection of the row spaces of Z1 and Z2. By finding the intersection subspace
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of Z1 and Z2, we can find X . Fifth, the IOSR’s can also be used to produce subspace
projection algorithms [39] by rewriting the bilinear state-space model as,

x(k+1) = AT1z1(k)+
[

B NT2
][ u(k)

z2(k)u(k)

]
(32)

With proper choices for the two IOSR’s, it is straightforward to derive subspace
projection algorithms that find the combination Γ X , a product of an observability
matrix Γ and the state history matrix X , as an oblique projection of the rows of an
output data matrix onto the subspace defined by z1(k) along the subspace defined by
u(k) and z2(k)u(k). A factorization of Γ X then produces the bilinear system state
history X . Yet another approach to bilinear system identification views it as a linear
system with an input-dependent system matrix. If the input is restricted to a finite
set of values, the bilinear system becomes a switched linear systems [37]-[39]. The
generalized interaction matrices which are suitable for linear time-varying systems
can be used in these switched linear systems to produce IOSR’s from which any
of the five strategies described previously can be employed. The switched linear
system approach produces methods that identify a discrete bilinear system exactly.

9 Conclusions

This paper is a brief introduction to the interaction matrices as related to our own
work in linear and bilinear system identification. The interaction matrices that ap-
pear in various applications share a unifying theme. Certain input-output models
or input-output-to-state models are needed for a specific application. The interac-
tion matrices provide a mechanism to determine if such models exist, and how they
can be derived from a given state-space model, or identified from input-output mea-
surements. In most applications, the interaction matrices can remain implicit, and
only their existence need to be assured. In other applications, they carry specific
interpretations such as observer or Kalman filter gains that can be recovered from
the identified input-output model coefficients. Input-output or input-output-to-state
models are integral to the solution of many problems. The ability of the interaction
matrices to tailor these models to specific needs makes them very useful in a wide
range of system identification and control applications.
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