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Abstract This paper presents a generalization of observer/Kalman filter identifica-
tion (OKID). OKID is a method for the simultaneous identification of a linear dy-
namical system and the associated Kalman filter from input-output measurements
corrupted by noise. OKID was originally developed at NASA as the OKID/ERA al-
gorithm. Recent work showed that ERA is not the only way to complete the OKID
process and paved the way to the generalization of OKID as an approach to linear
system identification. As opposed to other approaches, OKID is explicitly formu-
lated via state observers providing an intuitive interpretation from a control theory
perspective. The extension of the OKID framework to more complex identification
problems, including nonlinear systems, is also discussed.

1 Introduction

The goal of system identification is to find a mathematical model of a dynamic sys-
tem from measured input and output data. Over the last decades, it has found many
applications in many areas of engineering, for example in control systems, where
the system model is needed for controller design, and structural health monitoring,
where the structure model is monitored over time to detect damage. More gener-
ally, system identification plays a crucial role wherever a mathematical model of a
dynamic system is needed. State-space models are particularly appealing since they
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lend themselves to analysis via linear algebra techniques, robust numerical integra-
tion, and modern control design methods.

Many researchers have developed algorithms for state-space model identifica-
tion. Connections between the available methods is a complex task and the lack
of a general theory for system identification represents a barrier when an engineer
or a researcher attempts to enter the field. Many of the available algorithms have
been explained in a general framework known as subspace identification (SID) [10].
However, SID does not encompass all the available methods. Additionally, the SID
framework is purely based on linear algebra, which makes the derivation and de-
scription of the resulting algorithms lack intuition and interpretation.

One of the algorithms that do not belong to the SID family is OKID/ERA (ob-
server/Kalman filter identification followed by eigensystem realization algorithm)
[1, 5]. OKID/ERA was originally developed at NASA for the purpose of identifying
lightly-damped structures [4]. Nevertheless it is applicable to any linear system and
as such it found countless applications. The strength of OKID/ERA is that, under
the standard assumptions of Kalman filter theory (zero-mean and white process and
measurement noise), it optimally handles the noise inevitably present in the data.
In contrast, other algorithms for system identification do not address noise (hence
they are referred to as deterministic algorithms) and the model they identify gener-
ally results biased. Recently it was demonstrated how ERA is not the only way to
complete the OKID process. More specifically, ERA can be replaced by any deter-
ministic algorithm for state-space model identification [12, 15].

In the light of these recent findings, this paper shows how OKID can now be
viewed as a general approach to linear system identification. The OKID framework
explains many algorithms for state-space model identification, in a way similar to
what SID does for other algorithms. In contrast to SID, OKID lends itself to an
intuitive interpretation in terms of state observers, which is emphasized in this paper.
Extension of OKID to more complex problems such as output-only and nonlinear
system identification is briefly discussed in the last section.

2 Problem Statement

Consider the following linear-time-invariant (LTI) system in state-space form

x(k+1) = Ax(k)+Bu(k)+wp(k) (1a)
y(k) =Cx(k)+Du(k)+wm(k) (1b)

where x ∈ Rn×1 is the state vector, u ∈ Rm×1 is the input vector, y ∈ Rq×1 is
the output vector, A ∈ Rn×n is the system matrix, B ∈ Rn×m is the input matrix,
C ∈ Rq×n is the output matrix, and D ∈ Rq×m is the direct influence matrix.
Additionally, the vectors wp ∈ Rn×1 and wm ∈ Rq×1 represent the zero-mean
white process and measurement noise, with covariance matrices Q ∈ Rn×n and
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R ∈ Rq×q, respectively. They are uncorrelated with u and y but they can be mutually
correlated with cross-covariance matrix S ∈ Rn×q.

The objective is to identify the system in Eq. (1), i.e., find the matrices A, B,
C, and D, from a dataset of input-output measurements. The data are assumed to
be of sufficient length and richness so that the system in Eq. (1) can be correctly
identified. Neither the noise sequences wp and wm nor their covariance matrices Q,
R, and S are known.

It would be ideal to extract from the measured input-output data also the gain
of the optimal linear observer of the system state, to be used for instance to imple-
ment state-feedback control laws. Note that the optimal observer gain is uniquely
determined by the system and noise covariance matrices. Whereas the measurement
noise covariance can usually be estimated via dedicated experiments on the sensors,
the process noise covariance is harder to assess. Extracting the gain directly from
measured input-output data is then particularly useful.

3 State Observers

At the core of OKID is the concept of state observer. More specifically, OKID relies
on the existence of an optimal LTI one-step-ahead state predictor. In the presence of
zero-mean, white process and measurement noise, such an optimal observer is the
well-known steady-state Kalman filter. It is worth pointing out that in this paper the
term steady-state will be often omitted for brevity.

3.1 Linear-Time-Invariant (LTI) Observers

A typical problem in system dynamics and control theory is the estimation of the
state x, given the system matrices A, B, C, D and past input-output measurements.
Indeed, in most cases the state is not measured and only a subset (or, more generally,
a linear combination) of the state variables is measured as output.

The state estimation problem for the LTI system in Eq. (1) can be formulated as
follows. Given the system model and the measured values of the input u and output
y from time sample 0 to k, what is the best estimate x̂ that we can get for the state x at
the next time step k+1? Among all the possible state estimators (or state observers),
OKID makes use of LTI observers.

The most general form for a LTI state state observer is

x̂(k+1) = Fx̂(k)+Hu(k)+Gy(k) (2a)
ŷ(k) =Cx̂(k)+Du(k) (2b)

where F ∈ Rn×n, H ∈ Rn×m and G ∈ Rn×q. Equation (2b) is added to provide an
estimate of the true system output as well. Such an estimate is indicated by ŷ, which
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is also known as the observer output. Note that Eq. (2) is the equation of a dynamic
system, whose state is driven by u and y, which are the input and output of the
original system in Eq. (1) but from the point of view of the observer are both inputs.
In other words, an observer is a dynamical system itself, whose state is x̂.

It is well known that in the presence of zero-mean white noise, the Kalman filter
is the optimal linear observer for the system in Eq. (1). Optimality in this context is
defined as minimization of the second moment of the state estimation error at every
time step k. The matrices of the Kalman filter are generally time-varying. However,
after the initial transient and under the assumption of stationary noise, i.e., noise
with constant mean and covariance, the Kalman filter matrices become constant.
At steady state, the Kalman filter is then in the form of Eq. (2). The steady-state
Kalman filter is the optimal LTI observer.

The Kalman filter matrices can be derived in several ways and, remarkably, from
different starting points as there are a few properties that uniquely characterize it.
For examples, [1] defines the Kalman filter as the linear observer minimizing the
second moment of the state estimation error, i.e., E

[
(x(k)− x̂(k))T (x(k)− x̂(k))

]
.

Among the other properties that uniquely define the Kalman filter, there are a few
related to the so-called observer output residuals

ε(k) = y(k)− ŷ(k) (3)

The Kalman filter output residuals are a zero-mean, white random process, with
variance minimized with respect to any other LTI observer and they are orthogonal
to past input-output data.

3.2 Kalman Filter in Predictor Form

x̂(k+1) = Āx̂(k)+ B̄vx(k) (4a)
ŷ(k) =Cx̂(k)+Du(k) (4b)

where B̄ =
[
B−KD K

]
and vx(k) =

[
uT(k) yT(k)

]T. The predictor form expresses
the Kalman filter as a state-space model with input given by the measured system
input and output (u and y). Note that the dynamics of Eq. (4) is governed by Ā =
A−KC instead of A, hence it is sometimes called bar form.
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3.3 Kalman Filter in Innovation Form

x̂(k+1) = Ax̂(k)+B′v′x(k) (5a)
ŷ(k) =Cx̂(k)+Du(k) (5b)

where B′ =
[
B K

]
and v′x(k) =

[
uT(k) εT(k)

]T. The innovation form of the Kalman
filter is driven by inputs different from those in Eq. (4), i.e., u and ε instead of u
and y. ε is also known as the innovation process, hence the name innovation form.
Even more importantly, the dynamics of Eqs. (4) and (5) are governed by different
matrices (Ā and A). Nevertheless, the two forms of the Kalman filter are equivalent
in the sense that both provide the same time histories for x̂ and ŷ. It is worth noting
also how the state-space model in Eq. (5) explicitly includes the matrices A, B, C,
and D of the original system to be identified.

3.4 Deadbeat Observer

In the absence of noise in Eq. (1), there exists a LTI observer that, at steady state,
has zero state estimation error. Such an observer is obviously the optimal observer
in the absence of noise and is called deadbeat because it converges to the exact state
after exactly n time steps (if the system is single-output; more generally, a number
of steps equal to the smallest integer greater than or equal to n/q is needed). A
deadbeat observer is characterized by Ā having all the eigenvalues at the origin. As
a consequence, Āp = 0 for p≥ n/q.

4 Observer/Kalman Filter Identification

As will be explained in section 5 and shown in Fig. 1, the OKID approach is made
of two main steps: first the solution of an equation that is the same for all the OKID-
based algorithms and then the identification of the observer used to derive such an
equation. The second step can be implemented in several different ways, giving
rise to many methods belonging to the same OKID framework. More details about
derivations, proofs, algorithms and examples can be found in [11].

4.1 OKID Equation

The main difficulty in state-space model identification is that, although the model in
Eq. (1) is linear, from the viewpoint of system identification both the state x and the
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matrices A and C are unknowns. Their products in Eq. (1) make the identification
problem nonlinear. OKID relies on an observer to remove such nonlinearity.

Defining L =
[
H G

]
and vx(k) =

[
uT(k) yT(k)

]T the most general form of LTI
observer, Eq. (2), becomes

x̂(k+1) = Fx̂(k)+Lvx(k) (6a)
ŷ(k) =Cx̂(k)+Du(k)) (6b)

Note the similarity with Eq. (4). Equation (6) is an observer in predictor form.
Propagating Eq. (6a) forward in time by p− 1 time steps and then shifting the

time index backward by p, we obtain

x̂(k) = F px̂(k− p)+T z(k) (7)

where z(k) =
[
vT

x (k−1) vT
x (k−2) . . . vT

x (k− p)
]T and T =

[
I F . . . F p−2 F p−1

]
L.

As will be proven later, the stability of the observer guarantees that F p becomes
negligible for sufficiently large values of p (p >> n). Equation (7) yields then the
following relation expressing the current state as a function of the sole past input
and output values

x̂(k) = T z(k) (8)

Plugging Eq. (8) into Eq. (6b) and recalling the definition of observer output resid-
uals, we obtain

y(k) = Φv(k)+ ε(k) (9)

where v(k) =
[
uT(k) zT(k)

]T and Φ =
[
D CL CFL . . . CF p−2L CF p−1L

]
. Equa-

tion (9) relates the input and output, without the state appearing explicitly. Note
that Φ contains the sequence of Markov parameters of the observer in predictor
form. The Markov parameters of a discrete-time linear model correspond to its unit
pulse response and they have the property of being unique for a given system. Equa-
tion (9) can be written for each time step k ≥ p of the measured data record, to
obtain the following set of equations in matrix form

Y = ΦV +E (10)

where

Y =
[
y(p) y(p+1) ... y(l−1)

]
(11a)

V =
[
v(p) v(p+1) ... v(l−1)

]
(11b)

E =
[
ε(p) ε(p+1) ... ε(l−1)

]
(11c)

and l is the number of collected time samples. Equation (10) is the OKID core
equation. Y and V are known (from measurements), Φ and E are not. By hav-
ing a sufficiently long data record, the set of equations in Eq. (10) is overdeter-
mined. Considering E as an error term, it is possible to find the least-squares (LS)
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solutionΦ̃ = YV †, where † denotes the Moore-Penrose pseudoinverse of a matrix.
Associated with the LS solution are the LS residuals Ẽ = Y − Φ̃V .

The orthogonality property of the LS residuals establishes a fundamental link
between the LS solution to Eq. (10) and the Kalman filter associated with the system
to be identified (Eq. (1)) and the statistics (Q, R, S) of the noise embedded in the data.
The steady-state Kalman filter is the unique LTI observer whose output residuals are
orthogonal to past input-output data. Hence, it can be proven that [11]

1. The LS solution of Eq. (10) is an estimate for the sequence of Markov parameters
of the Kalman filter in the form of Eq. (4).

2. The LS residuals of Eq. (10) correspond to (are an estimate of) the output resid-
uals of the Kalman filter.

In other words, by solving by LS Eq. (10), which was derived from the most gen-
eral form of LTI observer (Eq. (2)), such a LTI observer is made the optimal LTI
observer, namely the steady-state Kalman filter. Hence, Φ̃ is an estimate of

Φ =
[
D CB̄ CĀB̄ ... CĀp−2B̄ CĀp−1B̄

]
(12)

Having established that the observer used in the derivation of Eq. (10) is the
Kalman filter, then its stability is guaranteed and the assumption of F p ≈ 0 for large
p to derive Eq. (8) is justified.

4.2 Identification of the Observer/Kalman Filter

The Kalman filter at the core of OKID can be identified from its Markov parameter
sequence Φ , whose estimate Φ̃ is obtained from the LS solution of the OKID core
equation. As the sequence of Markov parameters of a dynamic system corresponds
to its unit pulse response, one can identify the matrices Ā, B̄, C, and D of the Kalman
filter in predictor form via algorithms such as ERA [2] or ERA-DC [3] capable of
extracting the model matrices (also known as realization) from the system unit pulse
response. From the so-obtained Kalman filter matrices, A, B, and K can be extracted
from Ā and B̄. Relabeling the matrix blocks in B̄ as B̄ =

[
B̄1 B̄2

]
where B̄1 ∈ Rn×m

and B̄2 ∈ Rn×q, we can recover

K = B̄2 B = B̄1 +KD A = Ā+KC (13)

In the original OKID/ERA and OKID/ERA-DC algorithms (Reference [5]),
a preliminary operation on the sequence of Markov parameters estimated from
Eq. (10) was done. Such an operation can be interpreted as the conversion from
the Markov parameters of the Kalman filter in predictor form into the Markov pa-
rameters of the Kalman filter in innovation form

Ψ =
[
D CB′ CAB′ CA2B′ . . .

]
(14)
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The traditional OKID/ERA and OKID/ERA-DC algorithms complete then the iden-
tification process feeding Ψ to ERA or ERA-DC to extract the matrices A, B, C, D,
and K.

As previously pointed out, the Kalman filter is itself a dynamic system in state-
space form. For instance, consider the innovation form of the Kalman filter, Eq. (5),
with input given by u and ε and output by ŷ. u is known from measurements, ε and ŷ
are estimated via the LS solution to the OKID core equation. Both the input and the
output of the dynamic system in Eq. (5) are then known. Additionally, in Eq. (5) no
(unknown) noise term is present. We have just constructed a new noise-free identifi-
cation problem: given the time histories of u,ε,andŷ, find the matrices A, B′, C, and
D. Thanks to the absence of noise, any deterministic system identification method
capable of identifying a state-space model from its response to an arbitrary input
can be used to solve the new problem. Note that the solution to the new problem is
also the solution to the original identification problem. B and K are readily available
from B′.

This gives rise to many OKID-based identification algorithms, as many as the de-
terministic identification methods from arbitrary input response that one can think
of. For instance, one can use algorithms from the subspace family [10], such as de-
terministic intersection (DI) or deterministic projection (DP), or from the superspace
family (SS) [8]. Following the same nomenclature of OKID/ERA and OKID/ERA-
DC, the resulting methods are indicated as OKID/DI, OKID/DP and OKID/SS. The
DI, DP and SS methods are considered deterministic because their formulation is
based on purely deterministic state-space models, with no process or measurement
noise taken into account.

Similar to the innovation form, Eq. (4) also represents a dynamic system whose
input (u and y) and output (ŷ) are known. Any deterministic system identification
method can be applied to identify the state-space model in Eq. (4), i.e., the matrices
Ā, B̄, C, and D. From the latter, Eq. (13) allows one to recover also the desired
matrices A, B, and K.

It is worth adding that other algorithms can be devised simply by replacing DI,
DP or SS with other deterministic system identification methods. For instance, one
could use any of the subspace algorithms in Reference [10].

5 OKID Framework

The previous sections highlighted how different methods for system identification
can be developed once the OKID core equation is solved by LS. In this section,
we provide an overview of the OKID approach, summarizing the main steps and
alternatives characterizing this generalized framework for state-space model identi-
fication.
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Fig. 1 OKID as a two-step process (a) and two main approaches within its framework (b).

5.1 Overview

All the methods within the OKID framework are made of two main steps (Fig. 1a).
First, they find the LS solution to an equation derived via an observer to obtain some
information about the optimal observer associated with the system to be identified.
Such information is preliminary in the sense that it uniquely characterizes the opti-
mal observer but it is not in a useful model form nor it gives information about the
system to be identified. Further processing is needed. The distinctive characteristic
of the second step is that it is virtually noise-free. Hence it can be performed with
any deterministic state-space model identification method.

Two main alternatives are available for the second step of OKID (Fig. 1b). One
is based on the Markov parameters of the optimal observer, the other on the output
residuals of the same observer, both estimated in the first step of OKID. The for-
mer represent the unit pulse response of the system, hence they can be processed
with state-space model identification methods that receive as an input a unit pulse
response (e.g., ERA or ERA-DC). On the other hand, using the observer residuals
to construct a new deterministic state-space model identification problem requires
an identification method capable of processing the response to arbitrary excitation
(u and ε or u and y are the excitation input to the Kalman filter).

The essence of the second step of OKID is the identification of the optimal LTI
observer (steady-state Kalman filter), from which it is then straightforward to re-
cover the system matrices (i.e., the original objective of the identification) thanks to
the close relationship between the observer model (Eqs. (4) or (5)) and the system
model (Eq. (1)). Regardless of the choice of using observer Markov parameters or
output residuals, in the second step of OKID we can decide to identify the Kalman
filter in innovation or predictor form. This gives rise to the four branches in the dia-
gram in Fig. 2. Such a diagram is meant to provide the big picture of OKID. Some
of the branches further split into different alternatives that are not shown here for
brevity and to not get lost into algorithmic details that would hide the main concepts
behind the generalized framework of OKID.
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Fig. 2 Four main branches of OKID.

5.2 Discussion

To summarize, the core of OKID consists in (i) using a LTI observer to implicitly es-
timate the true state of the system to be identified, removing the initial nonlinearity
of the identification problem; (ii) exploiting the LS solution to guarantee that such
an observer is not a random observer with any F , H, and G matrices but the optimal
LTI observer, whose matrices are closely related to the matrices of the system to
be identified. Said link is crucial in OKID. Note how the use of an observer, which
eventually turns out to be the optimal LTI observer, has been defined as implicit
because the matrices of the observer are not even known before identification. Nev-
ertheless, the sole structure of the LTI observer allows one to derive the OKID core
equation, whose LS solution provides some preliminary information on the observer
itself.

An elegant and interesting interpretation of OKID in the presence of noise can be
found in [15]. The Kalman filter underlying the OKID equation filters out the noise
in the measured data rendering the second step of OKID a deterministic system iden-
tification problem. As shown in [15], such filtering is generally not perfect because
of the error due to the approximation of the OKID core equation (F p≈ 0), but can be
made such via a technique called residual whitening [7]. Note how the OKID core
equation can be seen as a converter from stochastic to deterministic system identi-
fication. It allows any deterministic system identification method to operate in the
second step of OKID in noise-free conditions, as assumed in their formulations. It
is also worth noting how the presence of noise prevents direct access to the system
model. The associated Kalman filter has to be identified first and then the system
model is extracted from the identified Kalman filter model. The Kalman filter is the
bridge between noisy data and the system to be identified.
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The Kalman filter can be identified either in innovation or predictor form. How-
ever, the form underlying the OKID core equation is the latter. One feature that
makes the predictor form special is that the stabilizing properties of the Kalman
filter makes Ā more stable than A. Hence the number of time steps p necessary to
neglect the state dependent term in Eq. (7) is generally smaller than if Apx̂(k− p)
were to be neglected. The predictor form is a mechanism to compress the dynamics
of the observer. Such compression is maximum in the absence of noise, in which
case the optimal steady-state observer is deadbeat and p can be as small as the
smallest integer greater than or equal to n/q. As a historical note, the basis for the
development of OKID was indeed the observation that an extremely efficient com-
pression of the dynamics of a system could be obtained via a deadbeat observer.
This was very appealing in the identification of lightly-damped structures, whose
A matrix has eigenvalues close to the unit circle and hence its powers decay very
slowly (large p).

6 Further Extensions

This paper presented OKID as a general framework for the identification of linear
systems from input-output measurements. The same framework has already been
successfully extended to more complex problems. The previous sections empha-
sized how at the core of OKID is the existence of a Kalman filter for the system to
be identified. If the input is not measured but can be assumed to be (or approximated
as) a white random process, the state-space model of the system is usually written
as Eq. (1) without the terms depending on u, which are absorbed by wp and wm. A
Kalman filter exists to optimally estimate the state of such a model that formally
has no deterministic input u. Hence, OKID can be applied to the identification of
systems driven only by unmeasured noise (output-only system identification) with
important applications in structural health monitoring [14]. Another development of
OKID worth mentioning is in linear-time-varying (LTV) system identification [6].

An even more interesting extension made possible by the generalization of OKID
presented in this paper is given by bilinear system identification. Bilinear systems
are defined in state-space form like in Eq. (1) but with some additional terms in
the state equation involving products between the state variables and the input. Bi-
linear systems are then a class of nonlinear systems. By proving the existence of
optimal bilinear observers with properties similar to the ones of the Kalman filter
that led to OKID in the linear case [9], it was possible to develop the first extension
of an OKID-based method to nonlinear system identification [13]. This extension
is particularly important in the light of the following appealing property of bilinear
models. Bilinear models, possibly of high order, can approximate a very broad class
of nonlinear systems, namely input-affine systems. At the same time, bilinear mod-
els have sufficient mathematical structure to develop techniques for controller and
observer design. As a consequence, one can think of bilinear models as a promising
universal way to handle nonlinear control problems and bilinear OKID can be seen
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as a general technique for nonlinear system identification. Additionally, following
the same approach used to extend OKID to bilinear systems [13], it is expected that
OKID-based methods to directly identify some classes of nonlinear systems other
than bilinear could be developed. The generalized framework of OKID outlined in
this paper holds the promise of new interesting results in nonlinear system identifi-
cation.
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