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A LINEAR-TIME-VARYING APPROACH FOR EXACT
IDENTIFICATION OF BILINEAR DISCRETE-TIME SYSTEMS

BY INTERACTION MATRICES

Francesco Vicario∗, Minh Q. Phan†,
Richard W. Longman‡, and Raimondo Betti§

Bilinear systems offer a promising approach for nonlinear control because a broad
class of nonlinear problems can be reformulated in bilinear form. In this paper sys-
tem identification is shown to be a technique to obtain such a bilinear approximation
of a nonlinear system. Recent discrete-time bilinear model identification methods
rely on Input-Output-to-State Representations. These IOSRs are exact only for a
certain class of bilinear systems, and they are also limited by high dimensionality
and explicit bounds on the input magnitude. This paper offers new IOSRs where
the bilinear system is treated as a linear time-varying system through the use of
specialized input signals. All the mentioned limitations are overcome by the new
approach, leading to more accurate and less computationally demanding identifica-
tion methods for bilinear discrete-time models, which are also shown via examples
to be applicable to the identification of bilinear models approximating more general
nonlinear systems.

INTRODUCTION

Bilinear systems have the property that they are linear in the state variables if the input is held constant
and are also linear in the input if the state is held constant. In other words, the nonlinearity in bilinear sys-
tems is due to the presence of products between the state and the input. Bilinear models are important per
se since several phenomena in engineering (in particular chemical processes), biology, physiology, sociology
and other fields (Reference 1) are inherently bilinear. More interestingly, by increasing the state dimension
a bilinear model can be used to approximate more general nonlinear systems, namely input-affine dynamical
systems (References 2,3,4). Interest in bilinear systems has recently grown after a technique formally known
as Carleman linearization was found to achieve such an approximation (References 5, 6, 7). Given a specific
nonlinear model, the construction of a corresponding bilinear model by Carleman linearization is a fairly
complicated and tedious process. System identification can be a tool to find such a bilinear approximation in
an automated fashion, by generating simulated data from the nonlinear equation and using it for identifica-
tion. Even more importantly, system identification can be used to identify the bilinear model approximating
the nonlinear system directly from the input-output measurements of the (unknown) nonlinear system. One
can then think of bilinear system identification as a way to obtain from measured input-output data a mathe-
matical model providing better than linear approximation to unknown nonlinear systems. At the same time,
bilinear models have sufficient mathematical structure to aim to develop state estimators and control design
techniques, therefore they represent a promising approach to handle nonlinear control problems such as, for
example, the satellite attitude control.
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Although well-established techniques exist for the identification of linear systems, this is not the case for
bilinear systems. Recently interaction matrices were successfully introduced in discrete-time bilinear system
identification (References 8, 9). Drawing inspiration from the technique at the basis of the Observer-Kalman
filter Identification (OKID) method originally developed for lightly damped linear structures and at the core
of the software package distributed by NASA with title SOCIT (References 10,11), interaction matrices were
used to derive linear Input-Output-to-State Representations (IOSRs) for bilinear systems, i.e. relationships
expressing the state at any time step as a linear function of a superstate defined in terms of only input-output
data (typically from the p past time steps or from the p future time steps). The so derived IOSRs were then
used to develop identification algorithms for bilinear systems known as Equivalent Linear Model (ELM) and
Intersection Subspace (IS) methods (References 8,9,12). Interaction matrices giving rise to exact IOSRs exist
however only for very specific bilinear models. In Reference 9 a theorem was proven ensuring the existence
of interaction matrices such that the resulting IOSRs converge to exact relationships as the IOSR order p
is increased. Unfortunately, the dimension of the superstate, and hence the required computational effort,
increases exponentially with p. The drawback becomes more relevant when one wants to identify high-order
bilinear systems, as is the case in the use of bilinear models to approximate more general nonlinear systems
as mentioned above. Another drawback of the methods presented in References 8, 9 is that convergence
of IOSRs as p increases is guaranteed only if the input magnitude is kept within a certain bound, which
additionally is unknown before system identification is performed. This is a source of uncertainty in the
choice of the input excitation for the identification and can also be a potentially severe limitation if it turns
out that the bound is too small for the given application.

In this paper, a new approach is presented to derive small-dimension IOSRs which are exact for any ar-
bitrary bilinear model and any input magnitude, overcoming the above-mentioned difficulties of previous
algorithms. The new approach exploits the fact that a bilinear system can be seen as a linear-time-varying
(LTV) model in state-space form whose system matrix A changes over time. Being the product of the state
and the input, the additional term Nx(k)u(k) characterizing bilinear systems can be lumped with the linear
term Ax(k) to rewrite the bilinear system as a linear model with time-varying system matrix A + Nu(k).
Interaction matrices are then used on the LTV formulation of a bilinear system to derive exact time-varying
IOSRs of minimum order and even minimum dimension for the given order. The computational benefit is
twofold. Not only is the time-varying IOSR exact with minimum order p (less than or equal to the order n
of the bilinear model) but also the dimension of the corresponding superstate is increasing linearly with p
instead of exponentially, making the approach very attractive when dealing with high-order bilinear models.
Also, the LTV approach requires that the input takes at each time step any value from a finite set whose values
must be specified a priori but are not subject to any constraint (not even on magnitude) for the algorithm to
work. For the application of ELM or IS identification methods, the time-varying IOSRs need to be trans-
formed into time-invariant IOSRs. This operation is crucial since, if performed naively, it generally leads to
a fast increase in the dimension of the time-invariant IOSR. In this paper we also address this problem and
show how thoughtful design of the input excitation preserves the algorithm computational efficiency obtained
with the LTV approach. We provide a method to generate an input sequence which is sufficiently rich for
identification and at the same time keeps under control the computational requirements of the algorithm.

All these advantages make of the proposed method a crucial step towards the realization of the above men-
tioned bridge between linear and nonlinear systems, where the identification of high-order bilinear models is
usually expected. For the purpose of illustrating the potential of the method, detailed examples are given on
(input-affine) nonlinear dynamic systems of practical interest, such as the mechanical oscillator with cubic
spring, also known as Duffing’s equation, and the rotation of a rigid body in a reference frame fixed to the
rotating body, typically referred to as Euler’s equations.

PROBLEM STATEMENT

Consider an n-state, single-input, q-output bilinear system in state-space form

x(k + 1) = Ax(k) +Nx(k)u(k) +Bu(k) (1a)
y(k) = Cx(k) +Du(k) (1b)
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A single set of length l of input-output data that starts from some unknown initial state x(0) is given

{u(k)} = {u(0), u(1), u(2), ..., u(l − 1)} (2a)
{y(k)} = {y(0), y(1), y(2), ..., y(l − 1)} (2b)

The objective is to identify the system of Eq. (1) with the input-output data provided in Eq. (2). The data is
assumed to be of sufficient length and richness so that the system of Eq. (1) can be correctly identified. For
simplicity, we focus on the single-input case in this paper. Extension to the multi-input case can be made
without conceptual difficulties and is demonstrated in this paper by an example of Euler’s equations.

INPUT-OUTPUT-TO-STATE REPRESENTATIONS

Two different approaches to bilinear system identification are used in this work, namely the Equivalent
Linear Model (ELM) method (References 8,9,12) and the Intersection Subspace (IS) method (Reference 9).
Their detailed descriptions are given in the provided references. For the purpose of the present paper, it is
sufficient to remark that at the core of both approaches is the following linear relationship between the state
x(k) of the bilinear system and a superstate z(k) made of input-output data only

x(k) = Tz(k) (3)

where T is a constant matrix. Relations of the form of Eq. (3) play a central role and are referred to as
Input-Output-to-State Representations (IOSRs). Defining the matrices

X =
[
x(ki) x(ki + 1) x(ki + 2) ... x(kf )

]
(4a)

Z =
[
z(ki) z(ki + 1) z(ki + 2) ... z(kf )

]
(4b)

where ki and kf are the initial and final time steps for which Eq. (3) holds, it is possible to write the IOSR in
matrix form

X = TZ (5)

Depending on the specific choice of IOSR or, equivalently, on the specific definition chosen for the superstate
z(k), several identification algorithms of ELM and IS type can be devised. Also notice that the implementa-
tion of the IS method requires the existence of two independent IOSRs, while for the ELM method one IOSR
is sufficient.

As a note on the richness of excitation required for bilinear system identification, it is worth mentioning
that it is method dependent. On top of the general conditions for bilinear system identifiability (Reference 13),
the chosen identification method will add further richness requirements. Also, the adequacy of input richness
can be assessed at the last step of the chosen method, when the reconstructed state history is used to build the
least-squares problem whose solution yields the estimate of the matrices A, B, N , C, D. A sufficient input
richness condition is that the state-input matrix to be pseudo-inverted is full-rank (Reference 9).

In Reference 9 several IOSRs were presented. The key concept behind their derivation is that of interaction
matrix (Reference 11). The interaction matrices were originally formulated by Minh Q. Phan in the context of
linear system identification of lightly-damped large flexible space structures. The interaction matrix provides
a mechanism to find a compressed but equivalent dynamic representation of such structures. The compression
can be exact and extremely efficient. Later development revealed that the interaction matrix in the state-space
system identification problem could be interpreted as a Kalman filter gain that is optimal with respect to the
system and the (unknown) process and measurement noise statistics embedded in the input-output data. This
development led to the Observer/Kalman filter Identification (OKID) algorithm (Reference 10).

In this section, two of the IOSRs from Reference 9, here referred to as Time-Invariant (TI) IOSRs, are
briefly reviewed and then it is shown in more details how the interaction matrices can also be applied (with
a different approach with respect to Reference 9) to derive the Time-Varying (TV) IOSRs at the core of the
present paper.
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Time-Invariant IOSRs

For the detailed derivation and analysis of the following TI IOSRs, the reader is referred to Reference 9.
Here only a brief presentation is provided, for the purpose of comparison with the TV IOSRs introduced later
in this paper.

TI Causal IOSRs

A causal IOSR is here defined as a representation of the form of Eq. (3) where the state depends on past
(and current, at most) input-output data only, i.e. x(k) depends on u(i) and y(i) with i ≤ k. In the following
equations, the subscript c remarks the causality of the representation. By introducing two interaction matrices
M ′c and M ′′c , Eq. (1a) can be written as

x(k + 1) = Ācx(k) + N̄cx(k)u(k) + B̄cv(k) (6)

where

Āc = A+M ′cC N̄c = N +M ′′c C (7a)

B̄c =
[
B +M ′cD −M ′c M ′′c D −M ′′c

]
vc(k) =


u(k)
y(k)
u2(k)

y(k)u(k)

 (7b)

Propagating Eq. (6) forward in time by p− 1 steps, the following IOSR of order p is obtained

x(k) = Tp,czp,c(k) (8)

where the superstate zp,c(k) is made of input-output data at steps k − 1, k − 2, ... , k − p only. Letting
nCk =

(
n
k

)
denote the combinations of k out of n terms, commonly referred to as n-choose-k, the general

pattern for the entries of the column vector zp,c(k + p) is:

− vc(k), vc(k + 1), ..., vc(k + p− 1)

− vc(k) multiplied with products of u(k + 1) to u(k + p − 1) in all possible combinations (p − 1)C1,
(p− 1)C2, ..., (p− 1)C(p− 1) of {u(k + 1), u(k + 2), ..., u(k + p− 1)}

− vc(k+ 1) multiplied with products of u(k+ 2) to u(k+p−1) in all possible combinations (p−2)C1,
(p− 2)C2, ..., (p− 2)C(p− 2) of {u(k + 2), u(k + 3), ..., u(k + p− 1)}
.
.

− vc(k + p− 3) multiplied with products of u(k + p− 2) and u(k + p− 1) in all possible combinations
2C1, 2C2 of {u(k + 3), u(k + 4), ..., u(k + p− 1)}

− vc(k + p− 2) multiplied with 1C1 of u(k + p− 1), which of course is u(k + p− 1)

To obtain an expression for zp,c(k), we simply shift the time indices of zp,c(k+p) backwards by p time steps.
For example, for p = 2, T2,c and z2,c(k) become

T2,c =
[
ĀcB̄c N̄cB̄c B̄c

]
z2,c(k) =

 vc(k − 2)
vc(k − 2)u(k − 1)

vc(k − 1)

 (9)
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TI Anticausal IOSRs

An anticausal IOSR is here defined as a representation of the form of Eq. (3) where the state depends on
future (and current, at most) input-output data only, i.e. x(k) depends on u(i) and y(i) with i ≥ k.

Rewrite Eq. (1) as

x(k) = A−1x(k + 1)−A−1Nx(k)u(k)−A−1Bu(k) (10a)
y(k) = Cx(k) +Du(k) (10b)

and introduce another pair of interaction matrices, M ′a and M ′′a , where the subscript a stands for anticausal.
Equation (10a) can then be written as

x(k) = Āax(k + 1) + N̄ax(k)u(k) + B̄ava(k + 1) (11)

where

Āa = A−1 +M ′aC N̄a =−A−1N +M ′′aC (12a)

B̄a = −
[
A−1B −M ′aD M ′a −M ′′aD M ′′a

]
va(k + 1) =


u(k)

u(k + 1)
y(k + 1)
u2(k)

y(k)u(k)

 (12b)

The resulting anticausal IOSR of order p is denoted by

x(k) = Tp,azp,a(k) (13)

where the superstate zp,a(k) is defined as the column vector with the following entries

− va(k + 1)ui(k) for all i = 0, 1, ..., p− 1

− va(k + 2)ui1(k)ui2(k + 1) for all i1, i2 ≥ 0 and i1 + i2 ≤ p− 2
.
.

− va(k + r)ui1(k)ui2(k + 1)...uip(k + p− r) for all ij ≥ 0 and
∑r

j=1 ij ≤ p− r
.
.

− va(k + p)

and depends on input-output data at steps k, k + 1, ... , k + p only. For example, for p = 2, T2,a and z2,a(k)
become

T2,a =
[
ĀaB̄a N̄aB̄a B̄a

]
z2,a(k) =

 va(k + 2)
va(k + 1)u(k)
va(k + 1)

 (14)

Note that the above definition of superstate zp,a(k) with va(k) given by Eq. (12b) leads to some redundancy
in the entries of zp,a(k), which is suggested to be eliminated when implementing the desired identification
algorithm.

Drawbacks of the TI IOSRs

The two main drawbacks of the TI IOSRs are their approximate nature and the exponential growth in
dimension as their order p is increased to reduce the approximation error.
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The conditions for the TI IOSRs, Eqs. (8) and (13), to be exact relationships are indeed very restrictive.
For the causal IOSR, it is necessary that all the possible products of overall power p of matrices Āc and N̄c

are zero, which in this paper is more compactly indicated as

Cp
(
Āc, N̄c

)
= 0 (15)

For instance, for a causal IOSR of order p = 2, the condition of Eq. (15) becomes

Ā2
c = ĀcN̄c = N̄cĀc = N̄2

c = 0 (16)

Similarly, for the anticausal IOSR, it is necessary that

Cp
(
Āa, N̄a

)
= 0 (17)

Bilinear systems satisfying either of the above conditions for some p are referred to as ideal in forward or
backward sense, respectively. In practice, ideal bilinear systems are rare. However, in Reference 9 a theorem
was proven ensuring that there exist interaction matrices to make the above IOSRs asymptotically exact for
any bilinear system, i.e. the TI IOSRs converge to exact relationships as p is increased. Additionally, the
convergence is ensured only if the excitation input magnitude is bound by a value γ, which is unknown
before the identification itself.

In order to increase the accuracy of the above IOSRs, it is therefore necessary to increase p. However, from
the definition of zp,c(k) and zp,a(k) it is possible to notice that their dimension grows exponentially with p.
The combination of the two drawbacks is detrimental, leading to considerable computational effort, especially
when the order n of the system to be identified is large. The problem becomes of paramount importance when
the bilinear model to be identified is meant to approximate a more general nonlinear system, and therefore
features a relatively large value of n.

In the present paper, we derive new IOSRs to overcome both the approximation issue and the curse of
dimensionality. The key differences with respect to the approach taken in Reference 9 are the use of a
Linear-Time-Varying (LTV) formulation of the bilinear system of Eq. (1) and an alternative application of the
interaction matrices.

Time-Varying IOSRs

Any bilinear system of the form of Eq. (1) can be rewritten as a linear system with time-varying system
matrixA or time-varying influence matrixB, depending on how the bilinear termNx(k)u(k) is lumped with
one of the other two terms. In this work we use the time-varying system matrix formulation

x(k + 1) = A(k)x(k) +Bu(k) (18)

where
A(k) = A+Nu(k) (19)

TV Causal IOSRs

Propagate Eq. (18) forward in time and get

x(k + 2) = A(k + 1)x(k + 1) +Bu(k + 1)

= A(k + 1)
(
A(k)x(k) +Bu(k)

)
+Bu(k + 1)

= A(k + 1)A(k)x(k) +
[
A(k + 1)B B

] [ u(k)
u(k + 1)

]
(20)

From Eq. (1b), we can also write

y(k + 1) = Cx(k + 1) +Du(k + 1)

= CA(k)x(k) + CBu(k) +Du(k + 1) (21)
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and put Eqs. (1b) and (21) together in matrix form[
y(k)

y(k + 1)

]
=

[
C

CA(k)

]
x(k) +

[
D 0
CB D

] [
u(k)

u(k + 1)

]
(22)

Add and subtract Mc(k + 2)

[
y(k)

y(k + 1)

]
in Eq. (20) and, plugging Eq. (22) in, obtain

x(k + 2) = A(k + 1)A(k)x(k) +
[
A(k + 1)B B

] [ u(k)
u(k + 1)

]
+Mc(k + 2)

[
C

CA(k)

]
x(k)

+Mc(k + 2)

[
D 0
CB D

] [
u(k)

u(k + 1)

]
−Mc(k + 2)

[
y(k)

y(k + 1)

]
=
(
Ã2,c(k + 2) +Mc(k + 2)C̃2,c(k + 2)

)
x(k) + T̃2,c(k + 2)z̃2,c(k + 2) (23)

where

Ã2,c(k + 2) = A(k + 1)A(k) C̃2,c(k + 2) =

[
C

CA(k)

]
z̃2,c(k + 2) =


u(k)

u(k + 1)
y(k)

y(k + 1)

 (24a)

T̃2,c(k + 2) =

[[
A(k + 1)B B

]
+Mc(k + 2)

[
D 0
CB D

]
−Mc(k + 2)

]
(24b)

and the subscript c stands for causal. Indeed, the superstate z2,c(k + 2) is defined solely in terms of past
input-output data, producing a causal representation. Mc(k + 2) is a time-varying interaction matrix.

For Eq. (23) to be an IOSR, the state-dependent term on the right-hand side must vanish for any x(k). For
a system of order n = 2, it is sufficient that C̃2,c(k) is of rank 2 at every time step k to guarantee that there
exists an interaction matrix Mc(k+ 2) such that Ã2,c(k+ 2) +Mc(k+ 2)C̃2,c(k+ 2) = 0. Such a condition
is generally met if (A,C) is an observable pair ∗, which is often true in real systems, and hence the condition
is much milder than Eqs. (15) or (16). This represents a crucial advantage of the resulting causal IOSR over
the one presented in Reference 9, as will be discussed in the next section. Assuming C̃2,c is of rank 2 for
every k and shifting Eq. (23) backward by 2 time steps, we can write the IOSR of order p = 2 as

x(k) = T̃2,c(k)z̃2,c(k) (25)

To derive the TV causal IOSR of order p, Eq. (18) generally has to be propagated p− 1 steps forward in time
and then the following term needs to be added and subracted

Mc(k + p)


y(k)

y(k + 1)
...

y(k + p− 1)

 (26)

For p = 3 one obtains

x(k) =
(
Ã3,c(k) +Mc(k)C̃3,c(k)

)
x(k − 3) + T̃3,c(k)z̃3,c(k) (27)

∗In some rare cases, specific values of u(k) might make (A+Nu(k), C) a non-observable pair even when (A,C) is an observable
pair (if that occurred, the identification experiment would have to be performed again avoiding those input values); in other cases, the
term Nu(k) can help make C̃ full-rank by an appropriate choice of the input, even when (A,C) is not an observable pair.
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where

Ã3,c(k) = A(k − 1)A(k − 2)A(k − 3) C̃3,c(k) =

 C
CA(k − 3)

CA(k − 2)A(k − 3)

 (28a)

z̃3,c(k) =
[
u(k − 3) u(k − 2) u(k − 1) yT (k − 3) yT (k − 2) yT (k − 1)

]T
(28b)

T̃3,c(k) =

A(k − 1)A(k − 2)B A(k − 1)B −Mc(k)

 D 0 0
CB D 0

CA(k − 2)B CB D

 (28c)

If C̃3,c(k) is of rank 3 for any k and n ≤ 3, Eq. (27) becomes

x(k) = T̃3,c(k)z̃3,c(k) (29)

The generalization of the TV causal IOSR for any p follows the same lines and allows us to write

x(k) =
(
Ãp,c(k) +Mc(k)C̃p,c(k)

)
x(k − p) + T̃p,c(k)z̃p,c(k) (30)

which reduces to
x(k) = T̃p,c(k)z̃p,c(k) (31)

for bilinear systems such that C̃p,c(k) is of rank n for any k. The superstate z̃p,c(k) is defined as

z̃p,c(k) =
[
u(k − p) u(k − p+ 1) ... u(k − 1) yT (k − p) yT (k − p+ 1) ... yT (k − 1)

]T
(32)

From Eqs. (24b) and (28c) it is very clear that the matrix relating the superstate and the state is not constant.
The time dependence of the system matrix A(k) makes the above IOSR matrix T̃p,c time-varying as well,
from which the name TV IOSR. It is worth remarking that the interaction matrix Mc(k) is time-varying
because at each time step the pair

(
Ãp,c(k), C̃p,c(k)

)
takes a different value and therefore requires a different

interaction matrix to make Ãp,c(k)+Mc(k)C̃p,c(k) = 0. The time dependence of T̃p,c(k) is then due to both
A(k) and Mc(k) appearing in its definition and T̃p,c(k) turns out to be a function of the ordered sequence(
u(k − p+ 1), u(k − p+ 2), ..., u(k)

)
.

It is worth noting that when the output vector y(k) has more than one entry (q > 1), it is generally not
needed to construct the entire vector in Eq. (26) with outputs at p different time steps. The condition for
Eq. (31) to hold is indeed that C̃p,c(k) is always of rank at least equal to n, and for a multiple-output system
this can be achieved by stacking fewer than p output vectors in Eq. (26). This implies that the order p of the
TV causal IOSR can be less than n for a multiple-output system. The extreme case is when n outputs are
measured, making it possible to construct an exact TV causal IOSR of order as low as p = 1.

TV Anticausal IOSRs

The anticausal version of the TV causal IOSR can be derived in a similar fashion. Rewrite Eq. (18) as

x(k) = A−1(k)x(k + 1)−A−1(k)Bu(k) (33)

and propagate it backward by plugging

x(k + 1) = A−1(k + 1)x(k + 2)−A−1(k + 1)Bu(k + 1) (34)

into Eq. (33)

x(k) = A−1(k)
(
A−1(k + 1)x(k + 2)−A−1(k + 1)Bu(k + 1)

)
−A−1(k)Bu(k)

= A−1(k)A−1(k + 1)x(k + 2)−A−1(k)A−1(k + 1)Bu(k + 1)−A−1(k)Bu(k) (35)
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Similarly to Eq. (22), we can write (backward)[
y(k + 2)
y(k + 1)

]
=

[
C

CA−1(k + 1)

]
x(k + 2) +

[
D 0
0 −CA−1(k + 1)B +D

] [
u(k + 2)
u(k + 1)

]
(36)

Adding and subtracting Ma(k)

[
y(k + 2)
y(k + 1)

]
in Eq. (33) and, plugging Eq. (36) in it, get

x(k) = A−1(k)A−1(k + 1)x(k + 2)−
[
A−1(k)A−1(k + 1)B A−1(k)B

] [u(k + 1)
u(k)

]
+Ma(k)

[
C

CA−1(k + 1)

]
x(k + 2) +Ma(k)

[
D 0
0 −CA−1(k + 1)B +D

] [
u(k + 2)
u(k + 1)

]
−Ma(k)

[
y(k + 2)
y(k + 1)

]
=
(
Ã2,a(k) +Ma(k)C̃2,a(k)

)
x(k + 2) + T̃2,a(k)z̃2,a(k) (37)

where

Ã2,a(k) = A−1(k)A−1(k + 1) C̃2,a(k) =

[
C

CA−1(k + 1)

]
z̃2,a(k) =


u(k + 2)
u(k + 1)
u(k)

y(k + 2)
y(k + 1)

 (38a)

T̃2,a(k) =

[
−
[
0 A−1(k)A−1(k + 1)B A−1(k)B

]
+Ma(k)

[
D 0 0
0 −CA−1(k + 1)B +D 0

]
−Ma(k)

]
(38b)

and the subscript a stands for anticausal to indicate that the superstate z̃2,a(k) depends only on current and
future input-output data.

Again, if the first term in Eq. (37) canceled for any x(k + 2), a time-varying IOSR analogous to Eq. (25)
would be obtained. Similar to the latter, for n = 2 the condition to be satisfied is that C̃2,a(k) is of rank 2 at
every time step k.

Equation (37) refers to p = 2. Propagating Eq. (33) backward by p− 1 time steps and following the same
approach as for the TV causal IOSR derivation allows us to generalize Eq. (37) to any p. We obtain

x(k) =
(
Ãp,a(k) +Ma(k)C̃p,a(k)

)
x(k + 2) + T̃p,a(k)z̃p,a(k) (39)

which reduces to
x(k) = T̃p,a(k)z̃p,a(k) (40)

for bilinear systems such that C̃p,a(k) is of rank n for any k. The superstate z̃p,a(k) is defined as

z̃p,a(k) =
[
u(k + p) u(k + p− 1) ... u(k) yT (k + p) yT (k + p− 1) ... yT (k + 1)

]T
(41)

Again, it is worth remarking that the IOSR matrix T̃p,a(k) relating the superstate and the state is not
constant due to the presence of A(k) and Ma(k) in its definition. Additionally, the same comment made
for TV causal IOSRs of multiple-output systems holds for TV anticausal IOSRs as well, allowing for exact
anticausal state representations even with p < n.

Comparison

The TV IOSRs overcome all the above mentioned problems of the TI IOSRs, as summarized below:
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1. The TV IOSRs are exact for any arbitrary bilinear system, whereas the TI IOSRs are in general ap-
proximate, although asymptotically convergent.

2. No specific bound on the input is necessary for the TV IOSRs to be exact, as opposed to the TI IOSRs.

3. The TV IOSRs are exact for minimum p (p ≤ n).

4. The dimension of the superstate of the TV IOSRs grows linearly with p, whereas for the TI IOSRs it
grows exponentially.

In particular, it is worth remarking how, beyond the obvious advantage in terms of accuracy, the dimensional-
ity benefit is twofold for the TV IOSRs. Not only grows the state dimension slowly with p, but it is not even
necessary to choose a large p.

However, in order to be able to use the TV IOSRs in the ELM or IS identification methods, the time
dependence of T̃p,c (and T̃p,a) must be eliminated. A form like Eq. (3), with constant T , is needed and in the
next section it is shown how to transform the IOSRs of Eqs. (31) and (40) into such form.

INPUT DESIGN

As already noticed, T̃p,c(k) depends on the values that the ordered sequence
(
A(k − p), A(k − p +

1), ..., A(k − 1)
)

takes. In turn, the time dependence of A(k) is due to u(k) only. The ordered input se-
quence

(
u(k−p), u(k−p+ 1), ..., u(k−1)

)
then determines how T̃p,c(k) changes over time. Therefore, we

can think of designing the excitation input sequence so that T̃p,c(k) changes in a convenient way. Note that
the above reasoning and the analysis in this section all refer to the TV causal IOSR but they are applicable to
the TV anticausal IOSR in the same exact fashion and with analogous benefit.

From time-varying to time-invariant T

The first requirement that the excitation input sequence has to satisfy is to allow us to transform the TV
IOSR of Eq. (31) into the constant-T form of Eq. (3). This can be done by limiting the values that u(k)
can take to a finite set U = {u1, u2, ..., uL}. As a consequence A(k) can take L possible matrix values and
therefore also the number of possible ordered sequences

(
A(k−p), ..., A(k−1)

)
, which uniquely determine

T̃p,c(k), is finite. The last observation allows us to construct the following finite-dimensional extended matrix
Tp,c and extended superstate ζp,c(k)

Tp,c =
[
T̃ (1)
p,c T̃ (2)

p,c ... T̃
(N)
p,c

]
ζp,c(k) =



0
...
0

z̃p,c(k)
0
...
0


(42)

z̃p,c(k) is placed in the jth block row of ζp,c(k), where j is the index of the actual matrix value that T̃p,c takes
at time k (among the N possible values), and all the other block rows are zeros (each block row has as many
entries as the dimension of the superstate z̃p,c(k)). The following relationship formally equal to Eq. (3) can
now be written

x(k) = Tp,cζp,c(k) (43)

and used to implement the ELM or IS identification methods. The same technique can be used to derive the
anticausal version of the IOSR of Eq. (43)

x(k) = Tp,aζp,a(k) (44)

Equations (43) and (44) are formally two time-invariant IOSRs but in this paper we continue referring to the
them as TV IOSRs to emphasize that they directly stem from the time-varying IOSRs of Eqs. (31) and (40).
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(a) ζp,c derived from 2-level random input.
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(b) ζp,c derived from optimal pulsed input.

Figure 1: Dimension increase for zp,c and for ζp,c for a single-output system.

If the input value at any time step is randomly drawn from the set U , the total number of possible matrix
values that T̃p,c(k) can take is Lp. The dimension of the extended state ζp,c is then (q + 1)pLp. As shown in
Figure 1a, even choosing the minimum possible L (i.e. L = 2), the resulting growth in size of the extended
superstate ζp,c is actually faster than the growth of the superstate zp,c of Eq. (8). Nevertheless, the exact nature
of the superstate ζp,c allows the system identification engineer to select a smaller value of p with respect to
the one that would be chosen if using TI IOSRs. The following example shows how the proposed algorithm
indeed leads to exact identification.

Example 1. Consider the following arbitrary bilinear system from Reference 9

A =

[
0 0.5

0.5 −0.5

]
B =

[
1
2

]
N =

[
0.3 1
−1 1

]
C =

[
0 1

]
D = 0 (45)

and generate an input sequence (and the corresponding output) by randomly drawing at each time step k a
value from the set U = {0, 0.2}, k = 0, 1, ..., 1000. Applying the ELM method based on the TV causal
IOSR of Eq. (43) and the IS method based on the TV causal IOSR of Eq. (43) and the TV anticausal IOSR of
Eq. (44), the results summarized in Table 1 are obtained. In all cases the identified order is correct (nid = 2)
and the output prediction error, verified on the response to a random unconstrained (i.e. u(k) not restricted to
take values from U only) input sequence, is close to numerical zero (10−14). Notice that the identification is
exact both when p is chosen to be equal to the true order n of the system and when it is assumed p > n (more
realistic in real applications, where the exact order of the system is not precisely known a priori). It is worth
mentioning here that if 0 is not included in the allowed input levels, the input richness condition turns out not
to be satisfied for the IS method and leads to an identified model of larger order (an additional step then has to
be performed to reduce the model and recover the correct bilinear system matrices). It is remarkable how the
proposed method can achieve very accurate identification with reduced computational effort. In Reference 9,
to achieve an output prediction error of order 10−7 with the IS method, it was necessary to know the true
order of the system (n = 2) and increase the order of the causal IOSR to p = 6, with a corresponding number
of columns of 253 for R (the matrix to be decomposed by Singular Value Decomposition in the IS method,
see Reference 9). When using the TV IOSRs of order p = 2, the same matrix R has only 36 columns and
provides better identification accuracy. Additionally it is worth noting that due to the large number of zeroes
in the definition of ζp,c, it is generally beneficial to perform a preliminary SVD on the correspondingZ matrix
to reduce its number of rows (the same applies to ζp,a) and make the number of columns of R even smaller
(28 in this example with p = 2).
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Table 1: Identification of the system of example 1 by random 2-level excitation.

p A eigenvalue 1 A eigenvalue 2 N eigenvalues

True - -0.8090169943749475 0.3090169943749474 0.6499999999999999 ± 0.9367496997597599i

2 -0.8090169943749478 0.3090169943749524 0.6499999999999947 ± 0.9367496997597534i

ELM 3 -0.8090169943749496 0.3090169943749490 0.6500000000000010 ± 0.9367496997597594i

4 -0.8090169943749462 0.3090169943749483 0.6499999999999801 ± 0.9367496997597613i

2 -0.8090169943749470 0.3090169943749478 0.6499999999999941 ± 0.9367496997597653i

IS 3 -0.8090169943749458 0.3090169943749453 0.6500000000000055 ± 0.9367496997597589i

4 -0.8090169943749492 0.3090169943749483 0.6499999999999946 ± 0.9367496997597634i

Figure 2: Input form for optimal excitation input design.

Input Optimization

Having proven the feasibility and correctness of the LTV approach for bilinear system identification, we
now propose a technique to minimize the superstate dimension while preserving the excitation richness
needed for the identification.

The chosen general form of input resembles a sequence of pulses and is shown in Figure 2, where uh is
the amplitude of the pulses, and ∆

(i)
h and ∆

(i)
l refer to the duration of the nonzero and zero input application

at the ith pulse. While uh is a fixed (constant) value, ∆
(i)
h and ∆

(i)
l are in general random discrete variables,

whose possible (integer) realizations are constrained as follows

hmin ≤∆
(i)
h ≤ hmax (46)

lmin ≤∆
(i)
l ≤ lmax (47)

In other words, the excitation is a sequence of multiple pulses of fixed amplitude and different (random)
duration, and its design parameters are uh, hmin, hmax, lmin and lmax. Note that such input form satisfies
the conditions established in Reference 13 for continuous-time bilinear system identifiability.

The next step consists in the choice of the input design parameters in order to minimize the dimension of
ζp,c. First notice from Eqs. (32) and (42) that the dimension of the superstate is (q + 1)pN , where N is the
number of combinations that any sequence

(
u(p−k), u(p−k+1), ... , u(k−1)

)
can take. With reference to

Figure 2, it is then convenient to have ∆l ≥ p (i.e. fix lmin ≥ p) so that each p-long input sequence embraces
at most one pulse, dramatically limiting the number of possible combinations. To push the reduction of N
further, one can also impose ∆h = 1 (i.e. hmin = hmax = 1) and get N = p, leaving all the variability of
the pulses to the duration of the zero portions of the input sequence, i.e. ∆l. Having fixed lmin ≥ p, the only
parameter to be arbitrarily chosen is then lmax, which does not have an impact on N . The resulting number
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Table 2: Identification of the system of example 2 by multiple-pulse excitation.

p A eigenvalue 1 A eigenvalue 2 N eigenvalues

True - -0.8090169943749475 0.3090169943749474 0.6499999999999999 ± 0.9367496997597599i

2 -0.8090169943749465 0.3090169943749516 0.6499999999999837 ± 0.9367496997597706i

ELM 3 -0.8090169943749496 0.3090169943749462 0.6500000000000312 ± 0.9367496997598526i

10 -0.8090169943749470 0.3090169943749515 0.6499999993273293 ± 0.9367497010332932i

2 -0.8090169943749468 0.3090169943749468 0.6499999999999113 ± 0.9367496997597923i

IS 3 -0.8090169943749480 0.3090169943749460 0.6500000000011040 ± 0.9367496997602179i

10 -0.8090169943749492 0.3090169943749430 0.6499999993267873 ± 0.9367496981421699i

of rows for the extended superstate ζp,c is then quadratic in p

nrows(ζp,c) = (q + 1)(p+ 1)p (48)

A closer look at Eqs. (42) and (32) suggests a further reduction can immediately be obtained, even though the
growth rate remains quadratic in p. Due to the low level of the pulse sequence being zero, even the jth block
row of ζp,c in Eq. (42) has some entries always equal to zero. With ∆h = 1, among all the possible jth block
rows of ζp,c, p contain p− 1 entries equal to 0, and one has p entries equal to 0. Hence, Eq. (48) becomes

nrows(ζp,c) = qp2 + (q + 1)p (49)

Equation (49) represents the maximum number of rows that can remain after performing an initial SVD to
reduce the dimension of the matrix Z constructed from the time history of ζp,c(k), which can result in an
even further reduction, depending on the actual realization of the input-output sequence.

Figure 1b shows how the maximum number of rows of ζp,c, Eq. (49), grows with p significantly slower
when the optimized input is used. The following example also shows that the identification is still exact.

Example 2. Consider again the bilinear system of Eq. (45) and evaluate its response when subject to an
input as in Figure 2 with uh = 0.2, ∆h = 1, p ≤ ∆l ≤ p + 2 (k = 0, 1, ..., 1000). Table 2 summarizes the
results when applying the ELM method based on the TV causal IOSR of Eq. (43) and the IS method based
on the TV causal IOSR of Eq. (43) and the TV anticausal IOSR of Eq. (44). In all cases the identified order
is correct and the output prediction error, verified on the response to a completely random input sequence, is
close to numerical zero. Notice again that the identification is exact even when the IOSR order p is chosen
larger than the true system order n. It is worth mentioning that, for example, for p = 10 the number of rows
in the raw matrix Z constructed from ζp,c is 220, it goes down to 120 when the all-zero rows are eliminated,
and it decreases to 32 after the SVD for superspace reduction. In contrast, the number of rows of the raw
Z constructed from ζp,c if the input was randomly chosen between two levels would be 20,480 and it would
reach 4,194,300 if Z was built from zp,c.

It is worth noting how the optimization of the input in order to get low-dimension IOSRs has led us to de-
fine an input sequence made of multiple pulses, similar to the one used in Reference 4. Despite using similar
excitation input forms, the two identification approaches significantly differ, addressing different problems
(continuous-time versus discrete-time) with different algorithms derived from different principles (more in-
sight in the key concept underlying the present work is given in the next section). Additionally, the method
presented in this paper does not necessarily need a pulsed input, although that can be computationally very
beneficial when one has to rely on high-order IOSRs.
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INTERPRETATION

The algorithms presented in this paper and in Reference 9 are based on IOSRs derived via interaction
matrices. It turns out that their basic principle has an intuitive explanation in terms of state observers. As
discussed in detail in Reference 14, the interaction matrices of the TI IOSRs can be interpreted as gains
of an observer for the bilinear model to be identified. In the absence of noise, for ideal bilinear models
the resulting observer is deadbeat and leads to exact IOSRs and in turn exact identification algorithms. For
arbitrary bilinear systems the observer is not deadbeat but is convergent (indeed it is the fastest possible
bilinear observer) and makes the identification algorithms asymptotically exact. The TV IOSRs presented
in this paper can still be interpreted as state observers. More specifically, they are time-varying deadbeat
observers, providing the exact estimate of the bilinear state in a finite number of steps p, i.e. only based on
the values that the input and the output took over the past (in the case of causal TV IOSR) p time steps. The
interaction matrix Mc(k) plays then the role of a time-varying observer gain.

IDENTIFICATION OF CARLEMAN BILINEAR MODELS OF NONLINEAR SYSTEMS

This section aims to illustrate how the proposed identification algorithms can successfully be used to iden-
tify bilinear models to approximate more general nonlinear systems. Two examples are provided, Duffing’s
equation and Euler’s equations. Being a 2nd-order system, Duffing’s equation is more meaningful than other
examples in the literature of nonlinear system identification by bilinear models (Reference 4 shows exam-
ples on 1st-order systems only). Euler’s equations provide an example of greater interest in the aerospace
engineering community, representing a building block of the satellite attitude dynamics. Additionally Euler’s
equations illustrate how the proposed identification algorithms can be applied to Multiple-Input-Multiple-
Output (MIMO) systems and how for 1st-order systems they allow one to choose the excitation input with
less structure than the form in Figure 2, without incurring in computational issues.

Duffing’s Equation

Duffing’s equation describes the dynamics of a mass-spring oscillator with cubic spring, and is defined as

ÿD(t) + cẏD(t) + by3D(t) + ayD(t) = u(t) (50)

Equation (50) is first bilinearized by the Carleman technique to obtain a continuous-time bilinear model in
the form

ẋ(t) = Acx(t) +Ncx(t)u(t) +Bcu(t) (51a)
y(t) = Ccx(t) +Dcu(t) (51b)

which is then discretized by one of the methods presented in Reference 15 to obtain a bilinear model in the
form of Eq. (1). Defining the primary state variables of Eq. (50) as

x1 = yD x2 = ẏD (52)

Carleman linearization (References 4,5) introduces a state vector made of progressively higher-order products
of the primary state variables. For instance, the second-order Carleman state vector involves quadratic terms

x =
[
x1 x2 x21 x1x2 x22

]T
(53)

and the third-order state vector introduces cubic terms

x =
[
x1 x2 x21 x1x2 x22 x31 x21x2 x1x

2
2 x32

]T
(54)
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As an example, the state-space matrices of the third-order Carleman model of Duffing’s equation, assuming
that the only measured output is the position x1(t), are

Ac =



0 1 0 0 0 0 0 0 0
−a −c 0 0 0 −b 0 0 0
0 0 0 2 0 0 0 0 0
0 0 −a −c 1 0 0 0 0
0 0 0 −2a −2c 0 0 0 0
0 0 0 0 0 0 3 0 0
0 0 0 0 0 −a −c 2 0
0 0 0 0 0 0 −2a −2c 1
0 0 0 0 0 0 0 −3a −3c


(55a)

Nc =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 3 0 0 0 0


Bc =



0
1
0
0
0
0
0
0
0


(55b)

Cc =
[
1 0 0 0 0 0 0 0 0

]
Dc = 0 (55c)

Using Euler’s discretization method (Reference 15) with step size ∆t, the discrete-time bilinear model ma-
trices are

A = I +Ac∆t N = Nc∆t B = Bc∆t C = Cc D = Dc (56)

In order to simulate a realistic hardening spring, the Duffing coefficients in this example are chosen to be
a = c = 1 and b = 0.01. The sampling time is ∆t = 0.002. The objective is to identify the matricesA,N ,B,
C, D of Eq. (56), given input-output data. The excitation input used for identification is of the optimized type
presented in Figure 2, with uh = 2, ∆h ∈ {0.02, 0.04} and ∆l ∈ {0.02, 0.04}. To verify the accuracy of the
identified bilinear model, its predicted output is then compared with the output of the true system when both
are driven by the same sequence of input, independent from the one used for identification. The input used
for verification is shown in Figure 3, and Figure 4 shows the resulting output of the true Duffing’s equation
and of its bilinear approximations derived by 3rd- and 4th-order Carleman linearization and discretized by
Euler’s method. Figure 4 also reports the output of the linear approximation to Duffing’s equation, to show
how the bilinear approximation is more accurate and therefore attractive.

The condition for the TV IOSRs to be exact is that the time-varying matrices C̃p,c(k) and C̃p,a(k) have
rank equal to n and given the specific structure of the matrices A and N of the Carleman model of Duffing’s
equation it turns out that such condition cannot be satisfied for any p. However, by looking at the structure
of the 3rd-order Carleman state, Eq. (54), it is apparent how the knowledge of the primary state variable
corresponding to the position (x1) allows one to infer the higher-order state variables x21 and x31. It is then
reasonable to feed the identification algorithm with such additional information, i.e. assuming the following
output matrix

C =

1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

 (57)

With such C, the rank condition on C̃p,c(k) and C̃p,a(k) is now satisfied. Being n = 9 and q = 3, in principle
p = 3 is sufficient for the IOSRs to be exact. However, the ratio between the largest and smallest singular
values of C̃3,c(k) and C̃3,a(k) can be improved by choosing a higher value of p, e.g. p = 10. The 3rd-order
Carleman bilinear model is identified exactly when the output is generated by the Carleman model itself, as
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demonstrated by its extreme accuracy in predicting the output of the true Carleman model (Figure 5) when
both are driven by the input of Figure 3.

The above example illustrates how the proposed algorithms are capable of identifying relatively large
bilinear models (n = 9). However, in practice one does not know the Carleman bilinear model since the
nonlinear equation itself is unknown. It is then more interesting to feed the identification algorithm with
output data generated (or measured) directly from the nonlinear system and show that the algorithm is still
able to find a valid bilinear model. Since in this case the data are not coming from a bilinear model but from
a general nonlinear system of which a bilinear model is only an approximation, the identification algorithm
operates in approximated conditions, as if there were disturbances in the input-output data. Figure 6 shows
that the algorithm is able to provide an excellent bilinear approximation of Duffing’s equation. In the example
of Figure 6, the output data provided to the identification algorithm is the sequence formed by

y(k) =
[
yD(k∆T ) y2D(k∆T ) y3D(k∆T ) y4D(k∆T )

]
(58)

and the identified bilinear model is therefore of the type of 4th-order Carleman (n = 14).

It is remarkable that bilinear models of order 9 or 14 could not be identified with the algorithms presented
in Ref.[9] due to the excessive computational effort required by the high dimensionality of the TI IOSRs.
Another point worth mentioning is that the identification of the above Carleman models is obtained without
assuming knowledge of the complete Carleman state vector, as is instead done in the examples in the litera-
ture. Reference [4] only deals with 1st-order systems, for which it is possible to assume that all the Carleman
state variables are measured, i.e. the output vector has dimension equal to n. Under such conditions, the ma-
trices A, N and B can be identified by applying standard least-squares techniques to the state equations, and
there is no need for an identification approach specialized to bilinear systems. Such extreme simplification
of the bilinear identification problem when the full state is measured is reflected in the algorithms proposed
in this paper by the fact that C̃1,c(k) and C̃1,a(k) would be of rank n for p as low as 1. Therefore the growth
in dimension of the extended superstates ζp,c and ζp,c with p would be linear even for an unstructured input
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Figure 3: Input for the verification of the identified bilinear models.
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Figure 4: Output of the true Duffing’s equation, its linear approximation and theoretical Carleman
bilinear approximations.
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Figure 5: Prediction accuracy of the bilinear model identified from input-output data generated by the
3rd-order theoretical Carleman bilinear model of Duffing’s equation.
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Figure 6: Prediction accuracy of the bilinear model identified from input-output data generated by the
true Duffing’s equation.

such as the one used in example 1. One can then choose a large number of allowed input levels L without
incurring the curse of dimensionality, and use a completely random (quantized) input sequence. All this is
illustrated by the next example.

Euler’s Equations

Consider Euler’s equations, which describe the rotation of a rigid body in a reference frame fixed to the
rotating body and having axes coincident with the principal axes of inertia

I1ω̇1(t) + (I3 − I2)ω2(t)ω3(t) = τ1(t)

I2ω̇2(t) + (I1 − I3)ω3(t)ω1(t) = τ2(t) (59)
I3ω̇3(t) + (I2 − I1)ω1(t)ω2(t) = τ3(t)

where ωi’s are the angular velocities along the principal axes, Ii’s are the principal moments of inertia and
τi’s are the applied torques, i = 1, 2, 3. Letting the driving torques be the sum of a feedback term −biωi and
a feedforward term fi

τi = −biωi + fi (60)

and defining

a1 =
I3 − I2
I1

a2 =
I1 − I3
I2

a3 =
I2 − I1
I3

ci =
bi
Ii

ui =
fi
Ii

(61)

Eq. (59) becomes

ω̇1(t) = −a1ω2(t)ω3(t)− c1ω1(t) + u1(t)

ω̇2(t) = −a2ω3(t)ω1(t)− c2ω2(t) + u2(t) (62)
ω̇3(t) = −a3ω1(t)ω2(t)− c3ω3(t) + u3(t)

Defining the Carleman state as

x =
[
ω1 ω2 ω3 ω2

1 ω2
2 ω2

3 ω1ω2 ω1ω3 ω2ω3

]T
(63)
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a 2nd-order bilinear model is obtained

ẋ(t) = Acx(t) +

3∑
i=1

Ncix(t)ui(t) +Bcu(t) (64a)

y(t) = Ccx(t) +Dcu(t) (64b)

where

Ac = −



c1 0 0 0 0 0 0 0 a1
0 c2 0 0 0 0 0 a2 0
0 0 c3 0 0 0 a3 0 0
0 0 0 2c1 0 0 0 0 0
0 0 0 0 2c2 0 0 0 0
0 0 0 0 0 2c3 0 0 0
0 0 0 0 0 0 c1 + c2 0 0
0 0 0 0 0 0 0 c1 + c3 0
0 0 0 0 0 0 0 0 c2 + c3


(65a)

Bc =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


Nc1 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(65b)

Nc2 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


Nc3 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0


(65c)

Cc =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

 Dc =

0 0 0
0 0 0
0 0 0

 (65d)

By Eq. (56) the following discrete-time model with 3 inputs is obtained

x(k + 1) = Ax(k) +

3∑
i=1

Nix(k)ui(k) +Bu(k) (66a)

y(k) = Cx(k) +Du(k) (66b)

The excitation input of Figure 7 generates the output history ω1(t), ω2(t), ω3(t) in accordance with Eq. (62)
assuming I1 = 30, I2 = 20, I3 = 10, b1 = b2 = b3 = 3 and sampling with ∆t = 0.002s. Note that following
the same reasoning as for the example of Duffing’s equation, the output data fed to the identification algorithm
is

y(k) =
[
ω1(k) ω2(k) ω3(k) ω2

1(k) ω2
2(k) ω2

3(k) ω1(k)ω2(k) ω1(k)ω3(k) ω2(k)ω3(k)
]T
(67)
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Figure 7: Excitation input for the identification of Euler’s equations.
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Figure 8: ω1(t) of the true Euler’s equations and comparison with its theoretical and identified 2nd-
order Carleman bilinear approximation.

i.e. the number of measured outputs from the point of view of the Carleman model to be identified is q = n
and p can be set to a value less than n, in this example p = 1. This allows us to choose a less structured input,
possibly simpler to implement in some applications, without incurring in computational issues.

The identified bilinear model has the correct order nid = 9 and accurately predicts the output of both the
true Euler equations and their Carleman approximation of 2nd order. For verification, all the three models are
driven by an input sequence independently generated from the one used for identification and as an example
the comparison of their output ω1 is shown in Figure 8.

CONCLUSION

This paper has extended the family of Input-Output-to-State Representations (IOSRs) for bilinear systems,
i.e. relationships expressing the bilinear state as a linear combination of input-output data only. The new
IOSRs feature crucial benefits over the ones presented in Reference 9. In particular they are exact for any
arbitrary bilinear system satisfying minimum observability conditions, and without imposing restrictions on
the magnitude that the excitation input can take. These characteristics have been obtained by exploiting the
linear-time-varying nature of bilinear systems and by designing an optimal excitation input form in terms
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of richness and reduced complexity. The resulting algorithms can be applied to identify systems which are
inherently bilinear (Reference 1) as well as bilinear models approximating more general nonlinear systems
(Reference 4). Numerical examples have been given for both cases, showing how the approach offers benefits
over existing methods. In particular, the identification algorithms are exact for arbitrary bilinear systems and
the computational effort is sufficiently reduced to allow one to identify relatively large bilinear models. For
these reasons, the proposed approach to bilinear discrete-time system identification can play an important role
in the identification of high-order bilinear models, as is typically the case when using bilinear models as a
bridge between linear and nonlinear systems. The examples of Duffing’s equation and Euler’s equations have
illustrated how the identification method can be used to find bilinear models approximating more general
nonlinear systems without going through the tedious process of Carleman linearization. The method can
also be applied directly to the identification of unknown nonlinear systems, whose input-output data only are
known (from measurements).

Although the proposed method has been proven to achieve the exact identification of high-dimensional
models arising from Carleman linearization of nonlinear systems, further research will focus on how to
reduce the order of the identified bilinear models and on how to explicitly and optimally take into account the
inevitable noise in the experimental input-output data in the formulation of the discrete-time bilinear system
identification algorithms.
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