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BILINEAR SYSTEM IDENTIFICATION
BY MINIMAL-ORDER STATE OBSERVERS

Francesco Vicario∗, Minh Q. Phan†,
Richard W. Longman‡, and Raimondo Betti§

Bilinear systems offer a promising approach for nonlinear control because a broad
class of nonlinear problems can be reformulated and approximated in bilinear
form. System identification is a technique to obtain such a bilinear approximation
for a nonlinear system from input-output data. Recent discrete-time bilinear model
identification methods rely on Input-Output-to-State Representations (IOSRs) de-
rived via the interaction matrix technique. A new formulation of these methods
is given by establishing a correspondence between interaction matrices and the
gains of full-order bilinear state observers. The new interpretation of the identifi-
cation methods highlights the possibility of utilizing minimal-order bilinear state
observers to derive new IOSRs. The existence of such observers is discussed and
shown to be guaranteed for special classes of bilinear systems. New bilinear sys-
tem identification algorithms are developed and the corresponding computational
advantages are illustrated via numerical examples.

INTRODUCTION

System identification has proven to be a powerful technique to develop a mathematical model of
a dynamic system, to be used for example for analysis or controller design. It has found applications
in many fields and in particular in aerospace engineering. A notable example is Observer/Kalman
filter IDentification (OKID), originally developed for the identification of lightly-damped linear
structures and distributed by NASA (see for example References 1, 2). Although well-established
techniques exist for linear systems, this is not the case for nonlinear systems. Bilinear models are
a particular class of nonlinear models. Some dynamical systems are inherently bilinear, e.g. those
that involve the regulation of thermal energy by fluid flow (References 3, 4, 5). More importantly,
by increasing the state dimension a bilinear model can be used to approximate a more general non-
linear system (References 6, 7, 8). This property, together with their relatively simple mathematical
structure, makes bilinear models an appealing bridge between linear and nonlinear systems. Interest
in bilinear systems has recently grown after a technique formally known as Carleman lineariza-
tion was found to achieve such an approximation (References 9, 10). One can then address more
general nonlinear control problems by designing simpler bilinear state estimators and controllers.
System identification can also be a tool to find the bilinear approximation of a nonlinear system
from measured input-output data.
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Bilinear systems can also mean systems having multiple variables, and having the property that
they are linear in each variable if the remaining variables are held constant. In satellite attitude
dynamics, the Euler equations for the satellite angular velocity as a function of applied torque are
bilinear equations in this sense. One needs to add to these equations, additional equations that rep-
resent the kinematics of rigid body motion, which then give the satellite attitude as a function of
time that results from the angular velocity history. There are various choices for these kinematic
equations: one can use 9 direction cosine matrix elements, or 6 direction cosine matrix elements,
or 4 parameter representations such as quaternions, Rodriguez parameters, and Euler Rodriguez pa-
rameters, or 3 parameter sets of Euler angles. The first few of these choices also produce bilinear
equations in this sense, so that the satellite attitude control problem can be thought of as a set of
12 or 9 bilinear equations. The literature on bilinear systems usually makes use of a different form
of bilinear equation that only contains nonlinear terms that are products of a state variable with
the input. Carleman linearization will convert the satellite attitude dynamics bilinear problem into
this form of bilinear equations (References 10,11). Alternatively, bilinear system identification will
provide a bilinear model directly from input-output data. One can then think of system identifica-
tion, state estimators, and control methods for bilinear systems as an approach to handle the satellite
attitude control problem.

Recently two novel approaches were presented for bilinear system identification. References 12,
13 proposed the identification of a bilinear system via an Equivalent Linear Model (ELM). Refer-
ences 14,15 introduced an Intersection Subspace (IS) method to identify the bilinear system via the
reconstruction of the bilinear state, obtained by intersecting two data matrices. At the core of both
approaches are relationships expressing the bilinear state as a linear combination of input-output
data. References 13, 14 formalized the concept by calling such relationships Input-Output-to-State
Representations (IOSRs). Reference 12 developed IOSRs via perturbation theory based on an ex-
citation made of a special combination of sinusoidal inputs. References 13, 14 derived IOSRs via
interaction matrices with the aim of developing an identification method that can be used with ar-
bitrary excitation input. Reference 15 relied on interaction matrices as well but in conjunction with
a specialized input, making the most of the linear-time-varying properties of bilinear models. De-
pending on which IOSRs are used in the implementation, the ELM and IS approaches give rise to
different identification algorithms for bilinear systems.

References 16, 17 formulated a full-order bilinear state observer and established a fundamental
link between the observer gains and the interaction matrices at the core of the IOSRs developed in
References 13, 14. Not only this link inspired a method for bilinear observer gain design based on
system identification techniques, but it also provided a new interpretation of the identification meth-
ods presented in References 13, 14. In this paper we formulate such methods relying on bilinear
observers instead of interaction matrices. Additionally, we develop new IOSRs by exploiting the
new formulation, which can be based on full-order bilinear observers as well as minimal-order bilin-
ear observers. Indeed, interesting results on the latter already exist in the literature (Reference 18)
and are now applied for the first time to bilinear system identification. Numerical examples are
provided to validate the theoretical development and illustrate the advantages of the new identifica-
tion algorithms. As a last note, we focus on discrete-time methods that are particularly suitable for
digital implementation although physical dynamical systems are in continuous time. Reference 11
shows how a continuous-time bilinear state-space model can be approximated by a discrete-time
version without losing the simple bilinear structure. Direct identification of continuous-time bilin-
ear models for a continuous-time bilinear or nonlinear system is another track of research that is
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being vigorously pursued (References 10, 19, 20, 21, 22).

PROBLEM STATEMENT

Consider an n-state, single-input, q-output bilinear system in state-space form

x(k + 1) = Ax(k) +Nx(k)u(k) +Bu(k) (1a)

y(k) = Cx(k) +Du(k) (1b)

where x ∈ Rn×1 is the state vector, u ∈ R is the input, y ∈ Rq×1 is the output vector and
A,N ∈ Rn×n, B ∈ Rn×1, C ∈ Rq×n, and D ∈ Rq×1 are the matrices governing the dynamics
of the bilinear system. A single set of length l of input-output data that starts from some unknown
initial state x(0) is given

{u(k)} = {u(0), u(1), u(2), . . . , u(l − 1)} (2a)

{y(k)} = {y(0), y(1), y(2), . . . , y(l − 1)} (2b)

The objective is to identify the system of Eq. (1), i.e. the system matrices A, N , B, C, and D, with
the input-output data provided in Eq. (2). The data is assumed to be of sufficient length and richness
so that the system of Eq. (1) can be correctly identified. For simplicity, we focus on the single-input
case in this paper. Extension to the multi-input case can be made without conceptual difficulties.

APPROACH

References 12, 13, 14, 15 proposed two new approaches to bilinear system identification, namely
the Equivalent Linear Model (ELM) method and the Intersection Subspace (IS) method. At the core
of both approaches is the following linear relationship between the state x of the bilinear system
and a superstate z defined solely in terms of input-output data

x(k) = Tz(k) (3)

where T is a constant matrix. Relations of the form of Eq. (3) are referred to as Input-Output-
to-State Representations (IOSRs). Depending on the specific choice of IOSR (see next section),
different algorithms of ELM and IS type can be devised. To keep the presentation as self-contained
as possible, the IS method is not illustrated via examples, since it requires IOSRs presented in
previous papers (References 14, 15). Nevertheless, a quick overview if the IS method is provided
to emphasize how the new IOSR developed in the present work can also be applied to implement
IS-based algorithms for bilinear system identification, extending the range of algorithms presented
in References 14,15. Additionally, the IS method in its linear version is used in the examples at the
end of this paper to identify the ELM.

Equivalent Linear Model (ELM) Method

If a relation like Eq. (3) is available, the bilinear identification problem is dramatically simplified
by rewriting the original bilinear system of Eq. (1) in the form of a linear system. Substituting
Eq. (3) into Eq. (1a) we obtain the following Equivalent Linear Model (ELM)

x(k + 1) = Ax(k) +BELMw(k) (4a)

y(k) = Cx(k) +Du(k) (4b)
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where

BELM =
[
B NT

]
(5a)

w(k) =

[
u(k)

z(k)u(k)

]
(5b)

The ELM is a linear state-space model with known input {w(k)} and output {y(k)} history. Thus
it can be identified by any linear identification method and then used to recover the original bilinear
system matrices. Reference 13 suggests to use the identified ELM to reconstruct the bilinear state
history and then estimating N by classic least squares (Moore Penrose pseudoinversion)on Eq. (1a)

N =
[
h(kss + 1) . . . h(l − 1)

] [
x(kss)u(kss) . . . x(l − 2)u(l − 2)

]† (6)

where
h(k + 1) = Nx(k)u(k) = x(k + 1)−Ax(k)−Bu(k) (7)

The matrices A, B, C, and D of the bilinear system can be directly read from the identified ELM,
as per Eqs. (4) and (5a). Note that the identified model is not necessarily in the original coordinate
system. As usual with state-space formulation, the change in coordinate system does not affect the
identified model validity.

Intersection Subspace (IS) Method

Assume two IOSRs are available for the bilinear system of Eq. (1)

x(k) = Taza(k) x(k) = Tbzb(k) (8)

and define the following matrices

X =
[
x(ki) x(ki + 1) x(ki + 2) . . . x(kf )

]
(9)

Za =
[
za(ki) za(ki + 1) za(ki + 2) . . . za(kf )

]
(10)

Zb =
[
zb(ki) zb(ki + 1) zb(ki + 2) . . . zb(kf )

]
(11)

where ki and kf are the initial and final time steps for which Eq. (8) holds. Then we can write

X = TaZa X = TbZb (12)

The row space of the (minimum-dimension) state X is a subspace of the row space of Za and also
a subspace of the row space of Zb. The row space of X must then lie in the intersection between
the row spaces of the two superspaces Za and Zb. The problem of reconstructing the state history
{x(k)} is therefore reduced to finding the intersection of two vector spaces, which can be done by
two singular value decompositions (SVDs), as shown in Reference 14. Having reconstructed the
bilinear state history, the identification problem is dramatically simplified and from Eq. (1) we can
estimate the matrices by classic least-squares (Moore-Penrose pseudo-inversion)

[
A B N

]
=
[
x(ki + 1) . . . x(kf )

]  x(ki) . . . x(kf − 1)
u(ki) . . . u(kf − 1)

x(ki)u(ki) . . . x(kf − 1)u(kf − 1)

† (13a)

[
C D

]
=
[
y(ki) . . . y(kf )

] [x(ki) . . . x(kf )
u(ki) . . . u(kf )

]†
(13b)
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INPUT-OUTPUT-TO-STATE REPRESENTATIONS VIA STATE OBSERVERS

Reference 12 first introduced the ELM method via an approximate IOSR obtained by perturbation
theory and requiring special combinations of sinusoidal inputs. References 13, 14 developed more
general IOSRs that can be used for any excitation input. The key concept behind their derivation
is that of interaction matrix. The interaction matrices were originally formulated by Minh Q. Phan
in the context of linear system identification of lightly-damped large flexible space structures. The
interaction matrices provide a mechanism to find a compressed but equivalent dynamic representa-
tion of such structures. The compression can be exact and extremely efficient. Later development
revealed that the interaction matrix in the state-space system identification problem could be inter-
preted as an observer gain. In the absence of noise the gain corresponds to a deadbeat observer.
In the presence of noise it corresponds to the Kalman filter that is the optimal state observer with
respect to the system and the (unknown) process and measurement noise statistics embedded in the
input-output data. This development led to the Observer/Kalman filter IDentification (OKID) algo-
rithm (Reference 1). Afterwards, interaction matrices found applications in many other contexts,
e.g. in model predictive control and iterative learning control (Reference 23).

Following the intuition provided by the linear case, References 16, 17 formulated a full-order
bilinear state observer and rigorously established the connection between the interaction matrices
in bilinear system identification and the gains of the full-order bilinear observer. The IOSRs de-
veloped in References 13, 14 can now be explained via full-order bilinear observers, providing an
interpretation of the existing bilinear system identification methods that is more intuitive especially
for engineers and researchers familiar with control theory and state estimation. The derivation of
the IOSRs via full-order bilinear state observers is presented below.

IOSRs via Full-Order Bilinear State Observers

The fact that the system state history is unknown represents a typical challenge in state-space
model identification. Only input and output are measured. Therefore, in the state-space equations
the unknown state multiplies unknown matrices, making the identification problem nonlinear. For
the bilinear state-space model in Eq. (1a), the nonlinear terms are Ax(k), Nx(k)u(k), and Cx(k).
As illustrated in Reference 24, the key intuition of the OKID approach is to use an observer to find
an estimate for the state history and exploit such an estimate to turn the identification problem into
linear in the unknown system matrices. The concept can be applied to bilinear systems as follows.

Let us introduce the following state observer with bilinear structure (References 16, 17)

x̂(k + 1) = Ax̂(k) +Nx̂(k)u(k) +Bu(k)

+M1 (y(k)− ŷ(k)) +M2 (y(k)− ŷ(k))u(k) (14a)

ŷ(k) = Cx̂(k) +Du(k) (14b)

where ŷ(k) ∈ Rq×1 is the observer output based on the observer state or system estimated state

5



x̂(k) ∈ Rn×1, and M1,M2 ∈ Rn×q are the observer gains. Defining

Ā = A−M1C N̄ = N −M2C (15a)

B̄ =
[
B −M1D M1 −M2D M2

]
(15b)

v(k) =


u(k)
y(k)

u2(k)
u(k)y(k)

 (15c)

the bilinear observer in equation (14) can be written in the following equivalent form

x̂(k + 1) = Āx̂(k) + N̄ x̂(k)u(k) + B̄v(k) (16a)

ŷ(k) = Cx̂(k) +Du(k) (16b)

The bilinear observer can be used to obtain an estimate of the state of the bilinear system in Eq. (1)
at the future time step (k + 1) from the current input and output values. However, the estimate of
the state at the time step k is also needed to directly use Eq. (16). To eliminate the need to know the
current value of the state, Eq. (16a) can be propagated forward in time. In the following, for brevity
of presentation, we will terminate the propagation of Eq. (16a) at time step k + 2, but it is possible
to generalize the termination at any time step k+ p. Propagating Eq. (16a) one step forward, we get

x̂(k + 2) = Āx̂(k + 1) + N̄ x̂(k + 1)u(k + 1 + B̄v(k + 1)

= Ā2x̂(k) + ĀN̄ x̂(k)u(k) + ĀB̄v(k) + N̄Āx̂(k)u(k + 1)

+ N̄2x̂(k)u(k)u(k + 1) + N̄B̄v(k)u(k + 1) + B̄v(k + 1) (17)

Equation (17) can be written more conveniently as

x̂(k + 2) = T2z2(k + 2) + S2(k + 2)x̂(k) (18)

by defining

T2 =
[
ĀB̄ N̄B̄ B̄

]
(19a)

z2(k + 2) =

 v(k)
v(k)u(k + 1)
v(k + 1)

 (19b)

S2(k + 2) = Ā2 + ĀN̄u(k) + N̄Āu(k + 1) + N̄2u(k)u(k + 1) (19c)

where the subscript 2 remarks that the state estimate depends on input-output data 2 steps back in
time.

As previously mentioned, Eq. (17) can be propagated further in time, leading to a higher-order
(p > 2) representation of the form

x̂(k + p) = Tpzp(k + p) + Sp(k + p)x̂(k) (20)

By shifting the time index backward by p steps, we obtain

x̂(k) = Tpzp(k) + Sp(k)x̂(k − p) (21)
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As will be proven later, suppose the sum of all the terms in Eq. (21) depending on the state estimate
x̂(k − p) vanishes. Equation (21) can then be written in the following form, similar to Eq. (3)

x̂(k) = Tpzp(k) (22)

In Reference 13, the general pattern to construct the superstate zp(k) from input-output data is
derived. Letting Cn

k =
(
n
k

)
denote the combinations of k out of n terms, commonly referred to as

n-choose-k, the general pattern for the entries of zp(k) is

− v(k − p), v(k − p+ 1), . . ., v(k − 1)

− v(k − p) multiplied with products of u(k − p + 1) to u(k − 1) in all possible combinations
C
(p−1)
1 , C

(p−1)
2 , . . ., C

(p−1)
(p−1) of {u(k − p+ 1), u(k − p+ 2), . . ., u(k − 1)}

− v(k−p+1) multiplied with products of u(k−p+2) to u(k−1) in all possible combinations
C
(p−2)
1 , C

(p−2)
2 , . . ., C

(p−2)
(p−2) of {u(k − p+ 2), u(k − p+ 3), . . ., u(k − 1)}

...

− v(k − 3) multiplied with products of u(k − 2) to u(k − 1) in all possible combinations C2
1,

C2
2 of {u(k − p+ 3), u(k − p+ 4), . . ., u(k − 1)}

− v(k − 2) multiplied with C1
1 of u(k − 1), which of course is u(k − 1)

The condition to be satisfied to obtain Eq. (22) is that the sum of all the terms depending on
x̂(k − p) in the propagated equation vanishes. This condition is symbolically indicated as

Sp(k)
(
Ā, N̄ , {u(k − p) . . . u(k − 1)}

)
= 0 (23)

and for p = 2 it takes the explicit form

Ā2 + ĀN̄u(k − 2) + N̄Āu(k − 1) + N̄2u(k − 2)u(k − 1) = 0 (24)

In Reference 14 it was shown how there exist bilinear systems that satisfy Eq. (23) exactly for
p ≥ n (referred to as ideal bilinear systems). It was also proven that for arbitrary bilinear systems
with observable linear part∗ Eq. (23) is asymptotically satisfied as p � n, provided the magnitude
of the input u is bounded. The following theorem summarizes the result.

Theorem 0. Given any bilinear system of the form of Eq. (1), if (A,C) is an observable pair then
there exist gains M1 and M2 and a value γ such that, for |u(k)| < γ for all k, Eq. (23) is asymptot-
ically satisfied as p increases.

In order to use Eq. (22) as an IOSR, we still need to prove that the state estimation error

e(k) = x(k)− x̂(k) (25)

∗A bilinear system is said to have observable linear part if (A,C) is an observable pair, in accordance with linear
system theory.
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converges to 0 as more input-output data are collected. In References 16, 17 it was proven that the
dynamics of the state estimation error directly depends on Sp(k). Indeed, starting the observer at
time step k − p, the estimation error evolves as

e(k) = Sp(k)e(k − p) (26)

Therefore, Theorem 0 also ensures that if a sufficiently large∗ number p of time steps elapses, then
e(k)→ 0. More generally,

x̂(k)→ x(k) for p ≥ n (27)

Therefore x̂(k) = Tpzp(k) in Eq. (22) can be rewritten as an IOSR, i.e. as x(k) = Tpzp(k). The
IOSR derived via the bilinear observer in Eq. (14) can then be used to implement the ELM or IS
methods to identify the matrices A, N , B, C, and D from measured input-output data.

IOSRs via Minimal-Order Bilinear State Observers

Generally a state-space model is defined with fewer outputs than states, i.e. q < n. As the choice
of the state variables is defined within a coordinate transformation, without loss of generality we
can choose

x1 = y1

x2 = y2
...

xq = yq

xq+1, . . ., xn are unmeasured state variables. For convenience, by partitioning the state vector in its
measured (xm ∈ Rq) and unmeasured (xu ∈ Rn−q) subsets

x(k) =

[
xm(k)
xu(k)

]
=

[
y(k)
xu(k)

]
(29)

we can rewrite Eq. (1) in the following block matrix form[
xm(k + 1)
xu(k + 1)

]
=

[
Amm Amu

Aum Auu

] [
xm(k)
xu(k)

]
+

[
Nmm Nmu

Num Nuu

] [
xm(k)
xu(k)

]
u(k) +

[
Bm

Bu

]
u(k) (30a)

y(k) =
[
I 0

] [xm(k)
xu(k)

]
+Du(k) (30b)

where I is the identity matrix of dimension q and 0 indicates a null matrix of appropriate dimension,
in this specific case q × (n− q).

Since q out of n state variables are directly measured, it makes sense to take the measured outputs
as the estimates for xm and use an observer to estimate xu only. Reference 25 provides a useful
formalization of the concept of low-order state observer for linear systems. Following the same
approach, Reference 18 studied minimal-order state observers for bilinear systems, in particular
those with estimation error dynamics independent on the input†. In this regard, note how the error
∗p ≥ n for ideal bilinear systems, p � n for arbitrary bilinear systems.
†For the sake of clarity, Reference 18 studied minimal-order bilinear observers in the continuous-time case. Never-

theless the results can be extended to the discrete-time case.
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dynamics of the full-order observer in Eq. (14) depends in general on the input, since Sp(k) in
Eq. (26) is a function of u(k−p), u(k−p+ 1), . . ., u(k−1). Because minimal-order observers are
at the core of the new IOSRs (and the corresponding new bilinear system identification algorithms)
developed in this paper, the existence of minimal-order bilinear observers is addressed in a dedicated
section. In this section, we show how to use them to derive IOSRs.

The minimal-order bilinear observer formulated in Reference 18 is∗

x̂u(k + 1) = Ãx̂u(k) + Ñ x̂u(k)u(k) + F̃ u(k) + M̃1y(k) + M̃2y(k)u(k) + H̃u2(k) (31)

Note how the matrices in Eq. (31) are denoted with a tilde to remark how they are analogous to
the matrices in Eq. (16a) only in that they multiply similar terms. However, these matrices are
different even in dimension. For instance, Ã ∈ R(n−q)×(n−q) whereas Ā ∈ Rn×n. To emphasize
the symmetry with Eq. (16a), Eq. (31) can be rewritten as

x̂u(k + 1) = Ãx̂u(k) + Ñ x̂u(k)u(k) + B̃v(k) (32)

where v(k) is defined exactly as in Eq. (15c) and B̃ is given by

B̃ =
[
F̃ M̃1 H̃ M̃2

]
(33)

Equation (32) can now be treated exactly like Eq. (16a). By propagating it p− 1 time steps forward
and shifting back by p steps, we obtain

x̂u(k) = T̃pzp(k) + S̃p(k)x̂u(k − p) (34)

where zp is constructed as shown below Eq. (22), T̃p is formally defined as Tp in Eq. (22), e.g. for
p = 2 it becomes

T̃2 =
[
ÃB̃ ÑB̃ B̃

]
(35)

The unmeasured state-dependent terms, grouped in S̃p(k), vanish for bilinear systems that satisfy
the conditions for the existence of minimal-order state observers (see next section). Equation (22)
then becomes

x̂u(k) = T̃pzp(k) (36)

To obtain an IOSR as defined in Eq. (3), we use Eq. (36) to express the entire vector state. Recalling
Eq. (29), we can write

x̂(k) =

[
I 0

0 T̃p

] [
y(k)
zp(k)

]
(37)

Additionally (see next section), if a deadbeat minimal-order bilinear observer exists, the state esti-
mation error converges to exactly 0 in exactly n− q time steps. If a minimal-order bilinear observer
exists but is not deadbeat, then the state estimation error converges to 0 as p is increased. More
generally,

x̂(k)→ x(k) for p ≥ n− q (38)

∗Actually, Reference 18 did not take into account the possibility of the bilinear system having a non-zero direct
influence matrix D. The latter gives rise to the term Hu2(k) in Eq. (31).
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Existence of Minimal-Order Bilinear Observers

The theoretical foundation of the IOSRs developed in this paper and applied to bilinear system
identification is found in the work from S. Hara and K. Furuta (Reference 18). They studied the
conditions for the existence of minimal-order bilinear observers for bilinear systems, whose error
dynamics does not depend on the input u. The work in Reference 18 refers to continuous-time
bilinear systems and does not take into account the possible of a non-zero direct influence matrix
D. The results can be extended to the discrete-time domain and to the case with D 6= 0. As such,
they are summarized below in the form of three theorems.

Before plunging into such theorems, it is convenient to recall that, similarly to Eq. (26), the state
estimation error dynamics is given by

eu(k) = xu(k)− x̂u(k) = S̃p(k)eu(k − p) (39)

Splitting S̃p(k) into two parts, one depending only on the state and the other one also function of
the input, we can write

eu(k) = Ãeu(k − p) + Q̃p(k)eu(k − p) (40)

where, for p = 2, Q̃p(k) becomes

Q̃2(k) = ÃÑu(k − 2) + ÑÃu(k − 1) + Ñ2u(k − 2)u(k − 1) (41)

As a consequence of focusing on minimal-order observers whose state estimation error dynamics is
independent of the input, Q̃p(k) = 0 for all k. Hence, Eq. (34) becomes

x̂u(k) = T̃pzp(k) + Ãx̂u(k − p) (42)

The matrix multiplying the past state estimate can be expressed as

Ã = Auu − LAmu (43)

where L ∈ R(n−q)×q is interpreted as the gain of the minimal-order observer.

Theorem 1. A minimal-order state observer for the bilinear system in Eq. (1) exists if and only if
there is a coordinate system where Eq. (1) can be written as[

xm(k + 1)
xu(k + 1)

]
=

[
Amm Amu

Aum Auu

] [
xm(k)
xu(k)

]
+

[
Nmm Nmu

Num 0

] [
xm(k)
xu(k)

]
u(k) +

[
Bm

Bu

]
u(k) (44a)

y(k) =
[
I 0

] [xm(k)
xu(k)

]
+Du(k) (44b)

and there is a matrix L such that LNmu = 0 and all the eigenvalues of Auu − LAmu lie within the
unit circle.

Note that the conditions in Theorem 1 do not guarantee the existence of a deadbeat observer. They
guarantee the existence of a stable (convergent) observer. If L satisfying LNmu = 0 is such that all
the eigenvalues of Auu − LAmu can be arbitrarily chosen, then a deadbeat observer is guaranteed
to exist and is given by the matrix L placing the eigenvalues of Auu − LAmu at the origin. Note
that being able to write the bilinear system in the form of Eq. (44) is a necessary but not sufficient
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condition. The intuition for the necessity is the following. Ñ in Eq. (31) corresponds to Nuu and
the corresponding term Ñ x̂u(k)u(k) needs to vanish for the error dynamics to be independent from
the input. Hence, Nuu must be equal to 0. However, the error dynamics might be unstable, from
which the additional condition on the eigenvalues of the error dynamics matrix Ã = Auu − LAmu.

Theorem 2. If the bilinear system in Eq. (1) is observable and can be transformed into the form[
xm(k + 1)
xu(k + 1)

]
=

[
Amm Amu

Aum Auu

] [
xm(k)
xu(k)

]
+

[
Nmm 0
Num 0

] [
xm(k)
xu(k)

]
u(k) +

[
Bm

Bu

]
u(k) (45a)

y(k) =
[
I 0

] [xm(k)
xu(k)

]
+Du(k) (45b)

a minimal-order bilinear observer exists for it and all its eigenvalues can be arbitrarily chosen.

As a corollary of Theorem 2, for an observable bilinear system that can be written in the form of
Eq. (45), a deadbeat bilinear observer exists.

Theorem 3. If a minimal-order linear observer exists for the bilinear system in Eq. (1), there is a
coordinate system where Eq. (1) can be written as[

xm(k + 1)
xu(k + 1)

]
=

[
Amm Amu

Aum Auu

] [
xm(k)
xu(k)

]
+

[
Nmm Nmu

0 0

] [
xm(k)
xu(k)

]
u(k) +

[
Bm

Bu

]
u(k) (46a)

y(k) =
[
I 0

] [xm(k)
xu(k)

]
+Du(k) (46b)

Note that Theorem 3 only provides a necessary condition. Also, it concerns the existence of a
linear observer, i.e. an observer in the form of Eq. (31) with Ñ , M̃2 and H̃ equal to 0. In such a
case, Tp and zp in Eq. (42) take the following, simpler form

Tp =
[
Ãp−1B̃ . . . ÃB̃ B̃

]
(47a)

zp(k) =



u(k − p)
y(k − p)

...
u(k − 2)
y(k − 2)
u(k − 1)
y(k − 1)


(47b)

where B̃ =
[
F̃ M̃1

]
is also simplified with respect to Eq. (33).

Relationship between IOSRs from Minimal- and Full-Order Observers

The IOSRs derived from full- and minimal-order observers share common features. The super-
state zp(k) in Eqs. (22) and (36) is defined exactly in the same way and the construction of Tp and T̃p
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follows the same pattern (to get the latter from the former, it is sufficient to replace the bar matrices
in Eq. (16a) with the tilde matrices in Eq. (31)). By writing the IOSRs obtained in the two cases in
the following general form

x(k) = TFOzFO(k) (48a)

x(k) = TMOzMO(k) (48b)

where the subscripts FO and MO stand for full-order and minimal-order, respectively, we can
highlight the differences:

TFO = Tp zFO(k) = zp(k) for p ≥ n (49a)

TMO =

[
I 0

0 T̃p

]
zMO(k) =

[
y(k)
zp(k)

]
for p ≥ n− q (49b)

The advantage of minimal-order observers in bilinear system identification is now apparent. As
the IOSRs based on minimal-order observers benefit from the use of the measurements of q state
variables, the parameter p can in general be lower than in the case of IOSRs derived from full-order
observers. To better understand the significance of the advantage, one needs to go back to the pattern
to construct zp, below Eq. (22). As p increases, the dimension (number of entries) in zp(k) grows
exponentially. This leads to the computational issues discussed in References 14, 15, the latter of
which provides a way to avoid the curse of dimensionality to the expense of requiring a specialized
input. Instead, the IOSRs developed in the present paper are valid for arbitrary excitation input,
similarly to the ones from Reference 14. The computational advantage offered by the IOSRs from
minimal-order observers is more significant as more outputs are measured (larger q). In the special
case of Theorem 3, the existence of a linear observer makes the computational advantage even more
striking. As shown in Eq. (47), the dimension of the superstate zp grows linearly with p. The curse
of dimensionality is completely eliminated and high-order bilinear models can be identified using
an arbitrary excitation input.

The second limitation of the IOSRs based on full-order observers is that the theorem ensuring
their asymptotic convergence (Theorem 0) requires the magnitude of the excitation input to be
bound within a threshold. Moreover, the threshold depends on the bilinear system itself. Therefore
it is unknown before identification, potentially leading to an iterative process where the level of
excitation needs to be decreased to let the IOSRs at the core of the identification approach converge.
Instead, the minimal-order observers studied in Reference18 have error dynamics independent from
the input. The level of excitation can then be arbitrarily chosen, since the identification method
does not place any constraint on it. The approach to system identification presented in this paper is
therefore suitable for arbitrary excitation, both in the temporal profile and in the amplitude.

EXAMPLES

In order to validate the new IOSRs based on minimal-order observers and their application to
bilinear system identification, they are shown in action via the ELM method. The examples are
based on the system analyzed in Reference 14, together with some variants aiming to illustrate the
three cases arising from the results of Reference 18. In each example, measured input-output data
are simulated by generating a random input sequence {u(k)} of l = 3000 samples (from a uniform
distribution between 0 and 1) and using it to obtain the output history {y(k)} via the state-space
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model equations of the system to be identified. The sequences {u(k)} and {y(k)} are the input to
the following identification algorithm based on the ELM method outlined above.

Algorithm

1. Construction of ELM Input. Form w(k) time history, Eq. (5b), for k = p, p + 1, . . . , l − 1

with z(k) =
[
yT (k) zTp (k)

]
as in Eq. (37). zp(k) is constructed according to the pattern

below Eq. (22). The order p of the IOSR is chosen greater than n− q, the difference between
the assumed order n of the system and the number q of measured outputs.

2. Identification of ELM. Identify the ELM of Eq. (4) by any linear system identification tech-
nique. In the examples below, the intersection subspace method presented above is used,
modified for a linear system (see also Reference 14).

3. Reconstruction of State History. Simulate the identified ELM driven by the input w(k) to
reconstruct the state history x(k) for k = 0, 1, ... , l − 1; since the initial state is unknown,
discard the reconstructed samples corresponding to the initial transient. In the examples be-
low, the first kss = 500 time steps are discarded.

4. Estimation of Bilinear System Matrices. The matrices A, C, and D of the identified ELM di-
rectly provide an estimate of the corresponding matrices of the identified bilinear model. The
B matrix of the bilinear model is extracted from BELM in accordance with the partitioning
in Eq. (5a). Finally, use the reconstructed state history x(k), k = kss, . . . , l − 1, to form and
solve the least-squares problem of Eq. (6) and find the estimate for N .

To validate the identified bilinear model, another random input sequence {u(k)} is generated
(independently from the one used for identification) and used to drive both the original system and
the identified model, starting from the same initial conditions (zero for convenience). The difference
in their outputs, also known as prediction error, is analyzed to gauge how accurate the identification
algorithm was. Among the metrics chosen to rigorously compare different identified model are the
mean and the root-mean-square (rms) of their prediction error.

Example 1

With reference to the following bilinear system

A =

[
−0.5 0.5
0.5 Auu

]
B =

[
2
1

]
N =

[
1 −1
1 0

]
C =

[
1 0

]
D = 0 (50)

consider first the case when Auu = 0. A deadbeat full-order observer exists for the system in
Eq. (50) (References 16, 17). The IOSR in Eq. (48a) is then exact for p ≥ 2 and so is the identifi-
cation via the ELM method based on such an IOSR (Reference 14). The system is also in the form
of Eq. (44). According to Theorem 1 and the associated observer design procedure given in Ref-
erence 18, a minimal-order bilinear observer exists with L = 0. Because L = 0, the dynamics of
the minimal-order observer is given by the eigenvalues of Auu. Since Auu = 0, the minimal-order

13



0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

Time step

O
u
tp

u
t

 

 

actual system identified system

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2
x 10

−14

Time step

O
u
tp

u
t 
e
rr

o
r

 

 

Figure 1: Example 1 with Auu = 0: comparison of output from actual system and identified
model.
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Figure 2: Example 1 with Auu = 0: singular value plots.

observer is deadbeat (estimation error converging to exactly zero in n − q = 1 time steps) and the
IOSR in Eq. (48b) is expected to be exact for p ≥ 1. We can verify this by applying the above
identification algorithm. Setting p = 4, the error between the true system and the identified model
output on the validation dataset can is indeed zero (10−14 is Matlab R© numerical zero, see Figure 1).
Additionally, note how clear the gap between zero and non-zero singular values is in the singular
value decompositions necessary for the identification of the ELM (Figure 2): 15 orders of magni-
tude (small singular values close to Matlab R© numerical zero) are a sign of exact identification. It is
worth adding that plots for validation and singular value decomposition similar to those in Figures 1
and 2 are obtained if the direct influence matrix D is changed to 0.5. This confirms that the results
from Reference 18 can be extended to the case when D 6= 0.

It is of interest to analyze what happens when the system in Eq. (50) is modified to Auu = 0.1.
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Table 1: Example 1 with Auu 6= 0: improvement of identification accuracy as the order p of
the IOSR increases.

p 2 3 4 5 6
mean output error 3.7× 10−2 3.4× 10−4 3.4× 10−4 −3.3× 10−4 −5.8× 10−5

rms output error 1.0× 10−1 1.4× 10−2 1.4× 10−2 9.8× 10−4 1.6× 10−4
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(b) p = 6.

Figure 3: Example 1 with Auu 6= 0: singular value plots to find the minimum basis for the
intersection subspace.

The minimal-order observer still exists: L is again null, but the observer eigenvalue is now different
from 0 since so is Auu. Nevertheless, 0.1 lies within the unit circle, hence the observer is stable.
The approximation of the corresponding IOSR is due to a term depending on Ap

uu and so is the
state estimation error. Therefore the approximation x̂u(k) ≈ x(k) is expected to significantly
improve as p is increased. This is shown in Table 1 in terms of mean and root mean square of
the output prediction error of the identified model over the validation dataset Correspondingly,
the gap between zero and non-zero singular values in the SVDs becomes more clear as shown in
Figure 3. The example with Auu = 0.1 is good to illustrate the case where a minimal-order bilinear
observer exists but its eigenvalues cannot be changed to make it deadbeat. This is in contrast with
the previous, more fortunate example (Auu = 0), where the only existing minimal-order bilinear
observer was deadbeat.

Example 2

Consider now the following bilinear system

A =

[
−0.5 0.5
0.5 0.1

]
B =

[
2
1

]
N =

[
1 0
1 0

]
C =

[
1 0

]
D = 0 (51)

which belongs to the class of bilinear systems that can be represented in the form of Eq. (45). Ac-
cording to Theorem 2, a minimal-order bilinear observer exists and its eigenvalues can be arbitrarily
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Figure 4: Example 3: singular value plots to find the minimum basis for the intersection
subspace.

placed. Among all the possible choices, the identification algorithm will automatically use the dead-
beat observer as that is the one minimizing (to zero) the approximation x̂u(k) ≈ x(k). Indeed the
bias and the rms value of the output error between the true and identified models are −9.2× 10−15

and 1.2× 10−13, respectively.

Example 3

Finally, consider the following bilinear system

A =

[
−0.5 0.5
0.5 0.1

]
B =

[
2
1

]
N =

[
1 −1
0 0

]
C =

[
1 0

]
D = 0 (52)

which belongs to the class of bilinear systems that can be represented in the form of Eq. (46).
According to Theorem 3 and the associated observer design procedure given in Reference 18, a
minimal-order linear observer exists and its error dynamics is governed by Auu = 0.1. Since the
observer is linear, the structure of zp is significantly simpler. In particular, as shown in Eq. (47), the
dimension of zp increases linearly with p as opposed to the exponential growth as in the case of a
bilinear observer. The presented algorithm is then implemented with zp constructed as in Eq. (47),
with the advantage of being able to set p as large as desired. As shown in Figure 4, with a value
of p = 15 the identification can already be considered exact. It is worth remarking that a value
of p = 15 is not computationally achievable with standard computing power when constructing
the IOSR with a strictly bilinear observer. Generally, for systems in the form of Eq. (46) like the
one in Eq. (52), a full-order linear observer does not exist. This example emphasizes the advantage
of exploiting the results on minimal-order observers over using the full-order bilinear observers
proposed in References 14, 17.

CONCLUSIONS

At the core of this paper is a new formulation of existing methods for discrete-time bilinear
system identification. Originally formulated by interaction matrices, these methods have now been
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explained in terms of full-order bilinear state observers. The new formulation has the merit of
providing the intuition for the application, for the first time, of minimal-order state observers to
bilinear system identification.

Exploiting results already available in the literature on minimal-order bilinear observers, this pa-
per has extended the family of Input-Output-to-State Representations (IOSRs) for bilinear systems,
i.e. relationships expressing the bilinear state as a linear combination of input-output data only. Such
IOSRs have been used to develop new algorithms for discrete-time bilinear system identification.
The new IOSRs feature some benefits over the ones available in the literature. In particular, they do
not impose any restriction on the excitation input (nor its profile or its magnitude) and offer com-
putational advantages over the IOSRs based on full-order observers. The curse of dimensionality
affecting the latter is completely overcome for a specific class of bilinear systems for which the
minimal-order bilinear observer degenerates into linear.

The proposed approach to bilinear discrete-time system identification can then play an important
role in the identification of bilinear models to approximate more general nonlinear systems, paving
the way for an effective way to handle more general identification and control problems such as
satellite attitude control. Numerical examples have been given to validate the new identification
algorithms and illustrate their main features and advantages.
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