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Abstract

The recognition that oxidative stress is a major component of several chronic diseases has
engendered numerous trials of antioxidant therapies with minimal or no direct benefits.
Nanomolar quantities of nitric oxide released into the circulation by pharmacologic stimula-
tion of eNOS have antioxidant properties but physiologic stimulation as through increased
pulsatile shear stress of the endothelium has not been assessed. The present study utilized
a non-invasive technology, periodic acceleration (pGz) that increases pulsatile shear stress
such that upregulation of cardiac eNOS occurs, We assessed its efficacy in normal mice
and mouse models with high levels of oxidative stress, e.g. Diabetes type 1 and mdx (Duch-
ene Muscular Dystrophy). pGz increased protein expression and upregulated eNOS in
hearts. Application of pGz was associated with significantly increased expression of endog-
enous antioxidants (Glutathioneperoxidase-1(GPX-1), Catalase (CAT), Superoxide, Super-
oxide Dismutase 1(SOD1). This led to an increase of total cardiac antioxidant capacity
along with an increase in the antioxidant response element transcription factor Nrf2 translo-
cation to the nucleus. pGz decreased reactive oxygen species in both mice models of oxida-
tive stress. Thus, pGz is a novel non-pharmacologic method to harness endogenous
antioxidant capacity.

Introduction

Redox signaling, defined as the reversible oxidation/reduction modification of cellular signal-
ing pathways by reactive species is an important process in many physiological and pathophys-
iological states [1]. In the heart and vasculature, redox signaling is involved in excitation-
contraction coupling (ECC), cell differentiation, stress response pathways, e.g., adaptation to
hypoxia/ischemia and pathological processes, adverse cardiac remodeling, fibrosis, and athero-
sclerosis [2-4]. Reactive oxygen species (ROS) include free oxygen radicals, oxygen ions and
peroxides. ROS at low to moderate concentrations regulate vascular tone, oxygen sensing, cell
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growth and proliferation, apoptosis, and inflammatory responses. Excessive or sustained ROS
production, when exceeding the available antioxidant defense systems, produces oxidative
stress that damages cell structure and disrupts function through lipid peroxidation of cell mem-
branes, degrades nucleic acids [5]. Oxidative damage to cells and tissues is involved in the
aging process and in chronic diseases including atherosclerosis, heart failure and cancer among
others. Endogenously occurring protective antioxidants Glutathioneperoxidase-1 (GPX1),
Superoxide Dismutase-1 (SOD-1, Cu-Zn SOD), and Catalase (CAT) maintain the balance of
oxidizing chemicals, thereby playing a vital role in reduction of oxidative stress [1]. Epidemio-
logical data suggest that diets rich in antioxidants have a protective effect on the development
of cardiovascular disease. However, clinical trials and large meta-analysis have failed to show
evidence for support of antioxidant supplements for prevention of cardiovascular disease and
suggest potential deleterious effects [6-8]. Thus, upregulation of endogenous protective antiox-
idants might be more clinically relevant.

In-vitro and in-vivo (e.g. exercise) experiments show that shear stress to the endothelium
increases endogenous antioxidants and activates endothelial nitric oxide synthase (eNOS) [9-
13]. eNOS activation produces nanomolar quantities of nitric oxide (NO) which elicit endothe-
lial dependent pulmonary and systemic vasodilation, increase blood flow, and signal increased
expression of cytoprotective genes such as antioxidant enzymes [14-16]. Shear Stress induced
antioxidant response has been associated with upregulation of the nuclear factor erythroid
2-related factor (Nrf2) a transcription factor that functions as the key controller of the redox
homeostatic gene regulatory network.

Periodic acceleration (pGz) in humans and animal models (pigs and rodents) adds low
amplitude pulses to the circulation. pGz is produced by a motorized platform that rapidly and
repetitively moves the horizontally oriented body sinusoidally in a head to foot direction. Iner-
tia of fluid as the body accelerates and decelerates adds a small amplitude pulse to the circula-
tion that is superimposed upon the natural pulse thereby increasing pulsatile shear stress to the
endothelium. Pulsatile shear stress induced by pGz releases eNOS derived NO into the circula-
tion in amounts that are physiologically meaningful and long lasting [17, 18]. We recently
found that pGz ameliorates muscle pathology in mdx mice [19] and reduces myocardial dam-
age after ischemic insult [20] both pathologies are associated with elevated oxidative stress. The
purpose of this study was to determine whether pGz upregulates endogenous antioxidants in
hearts of normal mice and decreases oxidative stress in mice models characterized by high oxi-
dative stress, e.g. Type 1 Diabetes and mdx (Duchene Muscular Dystrophy).

Materials and Methods
2.1 Animal Procedures

The experimental protocol No. 14-22-A-04 was approved by the Mount Sinai Medical Center
Animal Care and Use Committee and conforms to the Guide for the Care and Use of Labora-
tory Animals published by the National Institutes of Health (NIH Publication No. 85-23,
revised 1996). Male mice C57BL/6 and dystrophic (mdx) (C57BL/ 10ScSn-Dmd™*/]) (Total
n = 250) weighing between 20 and 25 g (Harlan Laboratories, Indianapolis, IN and Jackson
Laboratory (Bar Harbor, Maine), were used for these experiments.

pGz was applied with a platform that moved with a linear displacement direct current
motor (Model 400, 12V; APS Dynamics, Carlsbad, CA) powered by a dual mode power ampli-
fier (Model 144, APS Dynamics), connected to a sine wave controller (Model 140-072; NIMS,
Miami, FL). The controller allows control of frequency and travel distance of the platform with
a read-out of acceleration from an accelerometer. The platform has a maximum weight capac-
ity of 30 kg, operates at a frequency from 30-720 cycles/min (cpm) and achieves accelerations
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ranging from +0.1 to +14.7m/sec’. Optimum frequency of pGz in mice was determined as pre-
viously reported [18]. (S1 File) pGz treatment was performed on unanesthetized, restrained
mice using the above described platform (1 hr. per day f = 480cpm and Gz +3.0 mt/sec’) for 14
consecutive days for both diabetic and mdx mice models and their respective controls.

2.2 Determination of Total Antioxidant Capacity and Antioxidant Protein
Expression

Mice (n = 60) received daily pGz (1 hr per day f = 480cpm and Gz +3.0 mt/sec?). Myocardial
tissue was harvested at baseline (BL) and twenty four hours after 1, 2, and 4 wk. of daily pGz.
Protein expression of Glutathioneperoxidase-1 (GPX1), Superoxide Dismutase-1 (SOD-1, Cu-
Zn SOD), and Catalase (CAT) were measured in myocardial tissue by western blot. Total Anti-
oxidant Capacity (TC) was measured in myocardial tissue after 4 wk. of pGz or in time control
mice (CONT) by ELISA (Abcam, Cambridge, MA) (S1 File).

2.3 Protein Expression and Genomic upregulation of Antioxidant
Response Element (ARE) Transcription Factor Nrf2

We measured protein expression and genomic upregulation (RT-PCR) of Nrf2, and cytosolic
to nuclear translocation of Nrf2 in mice (n = 20) hearts exposed to 4 wk. of pGz (1 hr/day) or
time control (Qiagen, Valencia CA). Homogenates where fractionated to cytoplasmic and
nuclear fraction by subcellular protein fractionation method (Life Technologies, Thermo
Fisher Scientific, Rockford, IL.).

2.4 Oxidative Stress Mice Models

Type 1 Diabetes Model. C57BL/6] male mice (n = 20), 3 months of age, were injected
with a single intraperitoneal (IP) dose of streptozotocin (STZ) (150 mg/kg body weight, in
0.1 mol/L sodium citrate buffer, pH 4.5) (Sigma-Aldrich, St. Louis, MO, USA). Aged-matched
control mice received a single equal volume IP injection of sodium citrate buffer. Determination
of plasma glucose 4 days after injection confirmed hyperglycemia with glucose of > 250mg/dl
Diabetic and age-matched controls mice were randomly divided into four groups of animals
(n =5 per group): i) control (CONT), ii) control pGz (CONT-pGz), iii) diabetic (Diab) and iv)
diabetic-pGz (Diab-pGz) groups.

Duchene Muscular Dystrophy (mdx) Model. Male 12 months old C57BL/10 wild type
(Wt) and dystrophic (mdx) (C57BL/ 10ScSn-Dmd™#/]) mice were obtained from Jackson Lab-
oratory (Bar Harbor, Maine). Both mdx and age-matched controls mice were randomly divided
into four groups (n = 4 per group): i) wild type control (Wt), ii) wild type + pGz (Wt-pGz), iii)
mdx (mdx) and iv) mdx+pGz (mdx-pGz) groups.

2.5 Cardiomyocyte isolation

Ventricular cardiomyocytes were isolated using collagenase enzymatic digestion via retrograde
perfusion. The left ventricle was dissected and minced cardiomyocytes were resuspended
sequentially in various concentrations of Tyrode solution, followed by exposure to 1.5 mM
Ca’" for 15 min before being resuspended in normal Tyrode solution supplemented with nor-
mal Ca®* concentration (1.8 mM) (S1 File).
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2.6 Measurement of Reactive Oxygen Species

ROS activity was determined in isolated cardiomyocytes using the fluorescent method of chlor-
omethyl-2,7-dichlorodihydrofluorescein diacetate (CM-DCFDA Molecular Probes, OR, USA).
(S1 File)

2.7 Protein Expression and Phosphorylation

Protein extraction, RNA and subcellular fractionations where performed as previously
described. Protein analysis was performed using Western Blot method and RT-PCR blots visu-
alized by enhanced chemifluorescence (S1 File).

2.8 Euthanasia

After completion of each of the experimental protocols animals were euthanized by a method
approved by the American Veterinary Medical Association Guidelines on Euthanasia (S1 File).

2.9 Statistical Analysis

Statistical analysis of the data was accomplished with software running on a personal computer
Statistica (StatSoft, Tulsa, OK). Results were expressed as mean percent (%) to baseline with
SD or Mean * SD. and comparison of means with 95% confidence levels was carried out using
analysis of variance (ANOVA) followed by post hoc analysis with the Newman-Keuls test. Sta-
tistical significance was established at p<0.05. Sample size was calculated using Statistica based
on power analysis with o. = 0.05 and power 0.80.

Results

3.1 Effects of pGz frequency, on Mean Aortic Pressure, Heart Rate and
a/b in normal mice

pGz at all frequencies from 360 to 600 cpm added pulses visible on the aortic pulse waveform
of 1-3 mmHg as a function of frequency. These added pulses occurred at peaks and troughs of
acceleration of the motion platform. The descent of the dicrotic notch pressure wave (a/b)
cycled downward to upward over periods ranging from 2 to 5 seconds but the overall down-
ward descent was maintained throughout the pGz period. The descent of the dicrotic notch
was greatest at a pGz frequency of 480cpm, decreasing by more than 90% of BL values.

There were no significant changes from BL in mean heart rate with application of pGz at all
frequencies. pGz decreased mean arterial pressure (MAP) within five minutes of its application
but the a/b ratio increased about 25 to 50% from baseline within 2 seconds. MAP progressively
decreased during 30 minutes after pGz. pGz administration decreased MAP from baseline of
67 £3 to 59 +4, 52 £2, 53+5 mmHg after 30 min of pGz at 360, 480, 600 cpm respectively
(p<0.05 Bl vs. pGz) (S1 File).

3.2 Time Course of Endothelial Nitric Oxide Synthase, Akt and
Expression and Phosphorylation after pGz

One, 4 and 8 days of pGz increased eNOS, p-eNOS, and ratio of p-Akt/Akt. Phosphorylation
of eNOS and Akt was most pronounced after 1 day of pGz. Protein and genomic expression of
eNOS were most pronounced after 8 days of pGz. After 8 days of pGz, upregulation of eNOS
peaked at 48 hrs after the last pGz session and gradually declined as a function of elapsed time
from last pGz session. In a Duchene Muscular Dystrophy mouse model (mdx) eNOS and p-

PLOS ONE | DOI:10.1371/journal.pone.0131392 July 2, 2015 4/13



..@.' PLOS ‘ ONE pGz Increases Antioxidants

eNOS were significantly decreased compared to Wt controls. Four weeks of pGz in mdx signifi-
cantly restored both eNOS and p-eNOS to close to Wt levels (S1 File).

3.3 pGz Induces Antioxidant Expression and Increases Antioxidant
Capacity

Induction of antioxidant enzymes by pGz was measured after 1, 2 and 4 wk. of daily pGz. Peak
effect of enzymatic expression and total antioxidant capacity was seen after 4 wk. of pGz for
GPX1, CAT, SOD1 (Figs 1 and 2). After 4 wk. of pGz, protein expression and upregulation of
the antioxidant response element, transcription factor Nrf2, was significantly increased. Fur-
thermore, pGz induced Nrf2 translocation from cytosol to nucleus (Fig 3).

3.4 Effects of pGz in Models of Oxidative Stress

In order to study whether or not pGz reduces oxidative stress, we studied the effects of pGz on
ROS production in two models of cardiovascular disease associated with elevated oxidative
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Fig 1. Antioxidant Protein Expression is Induced by pGz. This figure depicts the effects of 1, 2, and 4 wk. of daily pGz in normal mice on the expressions
of (A). Glutathioneperoxidase-1 (GPX1), (B). Catalase (CAT), and (C). Superoxide Dismutase 1 (SOD1). The relative protein expressions of GPX1, CAT and
SOD1 over time compared to time of CONT values showed that pGz significantly increased GPX1, CAT, and SOD1 expression at 1, 2 and 4 wk compared to
time CONT (¥p <0.01 1, 2, and 4 wk. pGz vs. CONT). One, 2, and 4 wk. of pGz significantly increased expression of GPX1, CAT, and SOD1 compared to
baseline (BL) values for both CONT and pGz groups (* p< 0.01 1,2, and 4 wk. vs. BL values). Representative Immunoblots of protein expression of GPX1,
CAT, SOD1 and protein quantity loading Glyceraldehyde 3-phosphate dehydrogenase (GADPH) after 4 wk. of pGz, for CONT and pGz groups showing
significant expression of these compared to time CONT.

doi:10.1371/journal.pone.0131392.g001
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Fig 2. pGz Increases Total Antioxidant Capacity. Total antioxidant capacity (Trolox Equivalent Capacity) was expressed as % Inhibition of control values,
measured at baseline (BL) for CONT and pGz groups, and after 1, 2 and 4 wk. of pGz or time CONT. One, 2 and 4 wk. of daily pGz significantly increased
antioxidant capacity compared to time CONT (¥p < 0.01 1, 2 and 4 wk. vs. time CONT). One, 2, and 4 weeks of pGz also significantly increased total
antioxidant capacity compared to baseline (BL)values for both CONT and pGz (* p< 0.01 1,2 and 4 wk. vs. BL values for CONT and pGz groups). Optical

Units =0.U.
doi:10.1371/journal.pone.0131392.9002

stress, type 1 diabetes and mdx. Type 1 Diabetes induces elevated cardiac oxidative stress as
demonstrated in cardiomyocytes, ROS was 3.4 fold higher in diabetic mice than Wt (1017
+28.0 to 298+4.3 O.U. (p< 0.001). Fourteen days of daily pGz application significantly reduced
ROS from 1017+28.0 to 454 +11.7 O.U, (p < 0.001) (Fig 4). The 12 mos age mdx mouse model
of Duchene Muscular Dystrophy, is also characterized by significant amount of oxidative stress
in heart with levels of ROS of 722+11.7 compared to 328+7.1 O.U in Wt, (p < 0.001), pGz also
significantly attenuated oxidative stress in the mdx model from 722+11.7 to 471+15.0 O.U,,

(p < 0.001) (Fig 5).

Discussion

The present study demonstrates that one hour daily treatments of pGz to normal mice
increased expression and phosphorylation of eNOS in the heart as a function of the number of
treatments over time. Application of pGz through increased pulsatile shear stress activates
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Fig 3. The Expression and Translocation of Nrf2 Transcription Factor after pGz Treatment. This figure depicts the expression and translocation of Nrf2
transcription factor after 4 wk of daily pGz or no pGz (CONT) (A). pGz significantly increased upregulation of the Antioxidant Response Element transcription
factor Nrf2 compared to CONT (*p< 0.01) (B). Translocation of Nrf2 is expressed as the ratio of Nrf2 in nucleus and cytosol. pGz also significantly increased
Nrf2 translocation to nucleus compared to CONT (*p< 0.01). Representative Immunoblots of Nrf2 in nucleus and cytosol with respective protein loading
controls Anti-Laminin B1 (nucleus) and Anti-a Tubulin (cytosol) in CONT and pGz groups showed increased protein expression of Nrf2 in nucleus of pGz

treated mice. Optical Units = O.U.

doi:10.1371/journal.pone.0131392.9003

eNOS through phosphorylation and genomic upregulation in cells and animal models in part
mediated via the Akt/PI3K pathway [21] [18]. In the mdx model where eNOS and p-eNOS are
decreased compared Wt, pGz also restored both. Further, we have also shown in other animal
models in which eNOS and p-eNOS are also decreased such as whole body ischemia reperfu-
sion injury [22], and focal myocardial ischemia [23] that pGz also significantly restores these.
The clinical importance of increasing and activating eNOS has been reviewed by others [24-
27].

Endogenous antioxidant enzymatic expressions and activity were also increased by pGz.
Various methods to increase shear stress have been used to augment antioxidant levels. In-
vitro studies have shown that pulsatile shear stress on the vascular endothelium increases Cu/
Zn SOD (SOD1) and GPX1 [9, 28-31]. Exercise is an intervention which also increases shear
stress. Aging mice studies have shown that chronic moderate treadmill exercise produces a
mild effect at increasing the activities of Mn-SOD, SOD1, and catalase in brain, heart, liver,
and kidney of mice exercised for 24 to 50 wk. After 24 weeks of aerobic exercise, antioxidant
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Fig 4. The Effects of pGz treatment on Diabetes Induced Oxidative Stress in Cardiomyocytes. The effects of pGz treatment for 14 days on ROS in
cardiomyocytes in Control (CONT-pGz) and Diabetic mice (Diab-pGz) and their respective controls without pGz treatment in non diabetic (CONT) and
diabetic (Diab). ROS was measured using the method of DCF fluorescence. Diabetes significantly increased ROS in cardiomyocytes (*p < 0.001 CONT vs.
Diab). Treatment with pGz significantly reduced the diabetes induced increase in ROS (*p < 0.001 Diab vs. Diab-pGz and CONT-pGz vs Diab-pGz). Optical

Units =0.U.
doi:10.1371/journal.pone.0131392.9004

enzyme increased by 15-20% [13]. Additionally, the beneficial effects of exercise in diseased
animal models have in part been shown to be related to augmentation of antioxidant defenses
[32, 33]. Exercise may or may not be beneficial in mdx mice (model of Duchene Muscular Dys-
trophy, DMD). In this model, mdx mice running for 4 or 10 weeks accelerates ventricular dila-
tation and fibrosis [34-36] whereas another study showed that voluntary wheel running for
one yr. produced positive exercise-induced remodeling in the heart [37].

Diabetic cardiomyopathy is a well-known complication of diabetes. Diabetic cardiomyopa-
thy is characterized by early diastolic dysfunction and adverse structural remodeling leading to
heart failure (HF). Pre-clinical studies confirm a major causal role for elevated myocardial ROS
generation in diabetic cardiomyopathy [38]. In a type 1 diabetic rat model, 9 weeks of low
intensity exercise provided protection from cardiomyopathy in part via augmentation of the
antioxidant capacity [39]. Additionally, augmentation of extracellular SOD using a transgenic
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Fig 5. The Effects of pGz treatment on Duchene Muscular Dystrophy Induced Oxidative Stress in Cardiomyocytes. Twelve month of age mdx mice
had a significant increase in oxidative stress in cardiomyocytes compared to age matched wild type (Wt) controls (*p < 0.001). Treatment with pGz (mdx-
pGz) for 14 days significantly reduced the levels of ROS measured by DCF fluorescence (*p<0.001) Optical Units = O.U.

doi:10.1371/journal.pone.0131392.9005

mouse model with type 1 diabetes protects from cardiac hypertrophy, fibrosis and dysfunction
[40]. Thus, reduction of oxidative stress and augmentation of antioxidants could prevent/ame-
liorate the development and progression of diabetic cardiomyopathy [41, 42]. In the current
study pGz increased antioxidant capacity and reduced ROS generation in diabetic cardiomyo-
cytes, thus making it an attractive therapeutic modality.

A possible mechanism whereby pGz increases antioxidant capacity may involve the antioxi-
dant response element (ARE) transcription factor Nrf2 which serves as the key controller of
the redox homeostatic gene regulatory network. This factor was upregulated after pGz and
translocated to the nucleus site of activity. Nrf2 regulates expression of genes containing anti-
oxidant response element in their promoters e.g. heme oxygenase-1(HO-1), NAD(P)H qui-
none oxidoreductase 1(NQOI) [12, 43-49]. The Nrf2/Keap1/ARE signaling pathway has been
used as a pharmacological therapeutic target [50, 51]. Nrf2 activity is reduced in diabetic car-
diomyopathy and its activation has been shown to protect from diabetic cardiomyopathy[52].
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Similarly, Nrf2 induction via sulforaphane has also been shown to improve muscle function
and pathology in mdx [53].

There are limitations to the present work. We did not explore exposure to pGz for longer
than 4 wk. and beneficial effects beyond this time period can only be speculated upon. We also
did not address eNOS uncoupling in this study, the latter is highly unlikely in the setting of
endogenous physiological production of NO in non-diseased mice.

Oxidative stress and vascular inflammation play a pivotal role in cardiovascular health and
particularly in the aging human population [54]. The therapeutic value of enhancing antioxi-
dant capacity for cardiovascular protection has been reviewed by others [51, 54, 55]. pGz is a
noninvasive simple intervention, which does not require subject cooperation, and can be per-
formed in persons with physical and or cognitive impairment. Since pGz has been safely used
in humans with various cardiovascular diseases, our findings in these animal models are very
clinically relevant [56-60]. In addition to the well-known salutary effects produced by activa-
tion and upregulation of eNOS, pGz also increases endogenous antioxidant capacity and
reduces indices of oxidative stress, which have profound therapeutic potential.

Supporting Information

S1 File. This file contains additional information on Materials & Methods used in this
study and expanded Results. The Materials and Methods include; a) method for the determi-
nation of optimum endothelial vasodilatation by pGz in mice, b) methods for the determina-
tion of the time course of protein expression and phosphorylation of eNOS and Akt, c)
methods for the determination of ROS in cardiomyocytes, d) supplemental description for
methods for protein expression and phosphorylation, e) method for animal euthanasia. The
Results section includes; a) representative tracing of the aortic pulse waveform in mice and the
effects of pGz of varying frequency on the position of the dicrotic notch, b) figures for the effect
of pGz frequency on mean arterial blood pressure and the change in a/b ratio, ¢) figures on the
effects of duration of pGz on protein expression of eNOS and the ratio of p-eNOS/eNOS, d)
figures on the effects of pGz on genomic upregulation of eNOS, e) figures on the effects of
duration of pGz on protein expression of Akt and p-Akt/Akt, f) figures on the effect of 4 weeks
of pGz on eNOS and p-eNOS protein expression in control (wt) and Duchenne Muscular Dys-
trophy (mdx) mouse model.

(DOCX)
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