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ABSTRACT 

ON THE ELECTRONIC STRUCTURE AND THERMODYNAMICS OF ALLOYS· _ 

CHRISTOPHE H. SIGLI 

A free energy formalism is developed in order to describe phase 

equilibria in binary alloys. The proposed phenomenological approach 

uses a limited number of experimental data to provide a global 

thermodynamic description of a system including its equilibrium and 

metastable phase diagrams. Emphasis is placed on the description of 

short range order by means of the cluster variation method. 

A microscopic theory is also developed in order to predict the 

enthalpies of formation of transition metal alloys as well as the 

short range order dependence of these enthalpies. The theory uses a 

tight-binding Hamiltonian together with the generalized perturbation 

method. Off-diagonal disorder is taken into account, and charge 

transfer is treated self-consistently in the random alloy. All input 

parameters to the theory are obtained from ab-initio calculations for 

the pure elements. In this regard, the model can be considered 

parameter free. 

The phenomenological approach has been used to analyzed the AI-Ni, 

Ni-Cr, and Al-Li systems. It is found that the vibrational entropy of 

formation plays an important role in the thermodynamics of the AI-Li 



and Ni-Cr alloys. The approach allows an accurate description of 

stable and metastable order-disorder or order-order equilibria 

existing in the Ni-Al or AL-Li systems. The model is used to' predict a 

metastable clustering tendency in Al-Li alloys which appears to have 

been recently confirmed by experiment. 

The microscopic theory has been applied to the VB-VIB and IVB

VIIIB (Ni, Pt, Pd) alloys. The calculations are in good agreement with 

the available experimental data and phase diagram information. It is 

shown that off-diagonal disorder and electronic self-consistency play 

a crucial role in the accuracy of the results. 
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1. INTRODUCTION 

An important factor in the development of new alloys is th& 

detailed knowledge of phase diagrams of stable and metastable phases. 

Until the beginning of this century, a considerable amount of effort 

has been invested in increasing the body of experimental thermodynamic 

data on phase diagrams. However, experimental phase diagram 

determination is cumbersome, and many systems are not yet well 

characterized. For example, the lack of experimental data has led to 

the proposal of five different phase diagrams for the Cr-Ni system. A 

theoretical approach is therefore recognized to be a very important 

complementary tool to guide, understand and unify the experimental 

data. 

The main objective of this thesis is to develop reliable 

phenomenological methods for the calculation of thermodynamic 

potentials and phase diagrams in binary alloys. In addition, 

microscopic electronic theories are investigated and used to compute 

the energy of alloy formation for transition metals. 

By far, most investigations of phase equilibria performed in the 

past are based on phenomenological models which rely heavily on 

existing phase diagrams and thermochemical data. A semi-empirical 

approach along such lines has been successfully implemented by Kaufman 

et al. [1-4] who developed an extensive free energy data-base for 

transition metal alloys. The general procedure consists in using a 

subregular solution model to fit experimental thermodynamic data and 
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available phase diagram information. In addition to equilibrium free 

energies, the data-base provides lattice stability energies for the 

pure elements in their metastable phases. With the exception of 

ordered phases, which are treated by Kaufman and co-workers as . 

stoichiometric compounds, the overall agreement between experimental 

phase diagrams and those obtained from the semi-empirical free 

-energies is excellent. The sub regular solution model and its 

generalization to ordered compounds, the Bragg-Williams approximation, 

has also been used extensively to characterize alloy free energies and 

to compute equilibrium phase diagrams [5-9J. This semi-empiricaL 

approach tends to produce a more realistic description of 

non-stoichiometric ordered compounds due to the improved treatment of 

the configurational entropy of ordered phases by means of sublattices 

[5,7J. 

A feature common to free energy functions based on the sub regular 

solution model and/or the Bragg-Williams approximation is that Short 

Range Order (SRO) is not explicitly included in the configurational 

entropy. It must be emphasized that SRO plays a significant role on 

phase equilibria although its contribution to the alloy's total free 

energy of mixing is usually small. Thus, SRO effects are commonly 

incorporated into the Bragg-Williams models by means of a 

phenomenological expansion of the excess free energy in powers of 

temperature and composition. This essentially empirical approach to 

the description of the configurational free energy has, however, some 

important limitations. Among the most significant of such limitations 

is the fact that the configurational entropy cannot be properly 



approximated by a polynomial expansion over extended temperature and 

composition ranges. In addition, the Bragg-Williams approximation, 

when applied to a simple FCC model alloy with nearest neighbor 

interactions, fails to describe general features of the equili~rium 

phase diagram [10,11]. Consequently, free energy functions obtained by 

fitting equilibrium data in binary alloys cannot be extrapolated with 

confidence to treat, for example, metastable phases or multicomponent 

systems. 

A relatively straightforward and computationally efficient ~ay of 

introducing SRO in the description of binary and multicomponent alloys 

is by means of the Cluster Variation Method (CVM) [12J. The CVM, 

investigated extensively over the last ten years or so, has been shown 

to be a reliable and powerful statistical mechanics approximation for 

the study of short- and long-range order in alloys [13-22J. The method 

has also been used to compute phase diagrams for model binary 

[11,19,20] and ternary [21 ,22J systems. Most of the implementations of 

the CVM, however, are based on internal energy approximations in which 

pair and many-body interactions are assumed to be concentration 

independent. Thus, the resulting ordering phase diagrams can only 

describe equilibrium between superstructures based on a unique crystal 

lattice. Recently, the more general problem of incoherent equilibrium, 

i.e. equilibrium between phases based on different crystal structures, 

has been investigated with the CVM by Sigli and Sanchez using lattice 

parameter dependent pair potentials [20]. 

First principle characterization of the internal energy of alloys, 
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and in particular of the effect of SRO in alloy cohesion, has also 

been the subject of considerable interest during the last decade. Some 

techniques are based on truly ab-initio electronic structure . _ 

calculations. For example, Connolly and Williams [23J have deduced 

pair and many-body interactions from the cohesive energies of ordered 

compounds calculated using the density-functional theory. These 

interactions could then be used to describe the enthalpy of formation 

of disordered alloys. This approach, which relies strictly on 

localized interactions for the description of the enthalpy of 

formation, has not been put to a quantitative test against 

experimental thermodynamic data or phase diagram calculations. Another 

ab-initio approach has been proposed which consists in calculating the 

energy of the random alloy by means of the Korringa-Kohn-Rostoker 

Coherent-Potential-Approximation (KKR-CPA). The KKR-CPA approach uses 

a muffin-tin potential [24J and has recently been made charge 

self-consistent within the framework of the local density functional 

theory [25J. Although the KKR-CPA appears to be a very promising 

method for future applications, it still needs further improvement in 

order to achieve sufficient accuracy in the calculation of the 

enthalpy of formation. Recently, Hawkins, Robbins, and Sanchez have 

used the Cluster-Bethe-Lattice Method (CBLM) together with a model 

tight-binding Hamiltonian (TB-CBLM) in order to investigate the 

thermodynamic properties of the bcc based systems Cr-Mo, Cr-W and Mo-W 

[26-27J. Their results are in general agreement with the experiments 

and have shown that, in order to obtain accurate enthalpies of 

formation, one must include off-diagonal disorder in the tight-binding 

Hamiltonian and, in addition, carry out a self-consistent treatment of 

4 



charge transfer. The CBLM, however, replaces the real lattice by a 

fictitious topological structure (Cayley Tree) that reflects the 

actual coordination number of the lattice but has no closed rings 
. -

[26-30J. 

An alternative way of describing SRO in alloys has been proposed 

by Gautier, Ducastelle and co-workers, who describe the ordering 

energy of transition metal alloys by expanding the energy of the 

random mixture, calculated with a tight-binding Hamiltonian and the 

single site Coherent Potential Approximation (TB-CPA), in power ~f 

concentration fluctuations. This approach, known as the Generalized 

Perturbation Method (GPM), suggests that the alloy enthalpy of 

formation may be conveniently written as the sum of a non-local energy 

term (associated with the random alloy) plus a strictly local ordering 

energy contribution which itself can be accurately approximated in 

terms of localized pair and/or many-body interactions [31-36J. Unlike 

the TB-CBLM, the TB-CPA-GPM method can be applied to the actual 

structure of the alloy and should provide a more accurate description 

of the bulk thermodynamic properties of alloys. The enthalpies of 

formation calculated with the TB-CPA-GPM have been, until now, too 

inaccurate to be used in the calculation of a phase diagram. It should 

be noticed, however, that the effects of off-diagonal disorder and 

electronic self-consistency have been generally neglected in such 

calculations. In the light of the recent TB-CBLM results [26-27J, the 

inaccuracies observed in the TB-CPA-GPM calculations should be 

explained, in most cases, by off-diagonal disorder and electronic 

self-consistency effects. 



2. OBJECTIVES AND STRATEGY 

The main objective of this thesis is to develop a realist.ic model 
. 

for the free energy functions of solid phases in binary alloys. The 

emphasis is placed on the calculation of phase diagrams and on the 

description of order-disorder reactions. For the reasons mentioned in 

the introduction, the free energy formalism must include explicitly 

short- and long-range order. In general, the free energy of a binary 

alloy is given by: 

F = x F + 
1 1 

(-1) 

where xi and Fi are, respectively, the atomic concentration and the 

free energy of pure element "i", where llHf is the alloy enthalpy of 

formation (function of SRO), and where IlSf is the alloy entropy of 

formation (function of SRO). In addition, ~Sf can be written as the 

sum of a configurational entropy (~S f) plus a vibrational entropy con 

of formation (~SVib): 

(2) 

The cluster variation method, which provides an accurate description 

of short- and long-range order in alloys, has been used to calculate 

the configurational entropy. The other terms in Eq.(l) can be 

determined from experimental data by means of a phenomenological 

model, or they can be calculated from first principles. A first 

principle calculation has advantages over a phenomenological approach 

since it does not rely on the existence and the accuracy of 

experimental data, and it gives deep physical insights into the 
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different contributions to the free energy. 

The first part of this thesis is devoted to the global description 

of binary alloy phase diagrams. Due to the major difficulties fnvolved 

in a first principle calculation of all the energy contributions to 

the free energy, we have used a strictly phenomenological approach 

where the energy parameters are determined by reproducing a few 

experimental data points. Some typical applications of the approach 

are given for the Li-Al, AI-Ni, Ni-Cr systems for which the complete 

equilibrium phase diagram is calculated. In addition, the method is 

used to describe metastable equilibria in the AI-Li system where a 

metastable clustering reaction is predicted at low temperature. 

As already mentioned, a first principle calculation of all the 

energy parameters entering the free energy expression of Eq.(l) is a 

very difficult task. However, the recent results obtained by Hawkins 

et al. have shown that it is feasible, using a TB Hamiltonian, to 

calculate enthalpies of formation for the VIB binary alloys which are 

in fair agreement with experiments. In the second part of this thesis, 

we present calculations of the enthalpy of formation of transition 

metal alloys based on the TB-CPA-GPM method. The local electronic 

density of states is obtained by means of the recursion method. We 

show that accurate enthalpies of formation can be calculated by 

treating electronic self-consistency and off-diagonal disorder in the 

TB-CPA-GPM approach. 

7 



3. FREE ENERGY FORMALISM 

3.1 Free Energy of The Pure Elements 

The free energy of a pure element in a given structure ~ is 

written as a linear function of temperature (T): 

F~ 
1 

HI; - T S~ 
i 1 

where both the enthalpy HI and the vibrational entropy sf are 

temperature independent. It is convenient to refer Ff to the free 

energy of the same element in a reference structure e: 

e-> I; e->~ T e->~ 
Fi H. - S. 

1 1 

where: 

e->I; H. 
1 

= HI; - He 
i i 

6->1; S~ _ S6 
Si 1 i 

The reference structure is generally chosen to be a structure for 

(4) 

(5) 

(6) 

which the element is stable in a given range of temperature. Note that 

the reference structure does not need to be the same for the two 

elements "1" and "2". Values of H6->Z; and S6->Z; are generally 
i i 

available; they can be taken from experimental data (see for example 

Hultgren et al [37J) when the pure element is in a stable structure, 

or from the data base of Kaufman and Nesor [31,36] when it is in a 

metastable or unstable structure. 

s 



3.2 Energy of Formation 

The form for the alloy enthalpy of formation to be adopted- in this 

work has been suggested by the recent CPA-GPM calculations of Gautier, 

Ducastelle and co-workers [31-36J. In this approach, the total 

enthalpy of formation is written as the sum of the random alloy 

enthalpy of formation (Erand ) plus the ordering energy (Eord ) which 

includes both short- and long-range order. The ordering energy takes 

the form of a cluster expansion involving concentration dependent 

-effective interactions for pairs, triplets, etc ••• [33,36J. Thus, the 

energy of alloy formation per lattice point, ~Hf,is written as: 

~Hf = E + E rand ord 

Although the total enthalpy of formation of transition metal 

alloys cannot be expressed as a sum of pair and/or many-body 

interactions, the GPM results indicate that the ordering energy may be 

approximated very accurately in terms of localized interactions. 

Moreover, for the case of the non magnetic transition metals, the 

leading contributions to the ordering energy are given by pair 

interactions which extend to first nearest neighbors in the FCC 

lattice [33,34,36] and to first and second nearest neighbors in the 

BCC lattice [34,36]. 

In what follows, only pair interactions will be included in the 

expression of the ordering energy [34J. The ordering energy takes then 

the form: 

9 



E ord (1/2) I 
k 

L 
ij 

W
k 

( Y ~ ~) - x" x
J
") 

1J 1 
(8) 

where wk is the 

and where / ~) 
1J 

coordination number for the kth nearest neighber pair, 

and V~~) are respectively the pair probability 
1.J 

and the pair interaction of the k-pair in the configuration {ij} 

(i,j=1,2). Note that for a random alloy, we have: 

(9) 

and, as expected, the ordering energy vanishes. Eq.(8) can be written 

in a more compact form using correlation functions [15,38]. 

= (1/2) I 
k 

(10) 

where the pair correlation function ~~k) and the point correlation 

function ~1 are defined respectively by: 

~(k) 
2 

~1 = 

th and where the effective pair interaction (EPI), Vk, for the k 

nearest neighbor pair is defined by: 

The magnitude of the EPIs decreases very rapidly as the 

(11) 

( 12) 

(13 ) 

inter-atomic distance increases, ahd accordingly, only a few neighbor 

pair interactions must be considered in Eq.(10). In practice, the 

first nearest neighbor EPI will be retained for FCC-based phases (A
l

, 
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L1 2 , L10' •.• ), whereas first and second nearest neighbor EPIs will be 

considered for BCe-based phases (A2 , B2, B32 , .•• ). 

For a given concentration, the relative magnitude and sign 'of the 

EPIs determine which ordered structure is the most stable at 0 K 

[39-43]. For finite temperature calculations, the alloy entropy of 

formation must also be taken into account in the analysis. It should 

be noticed that in the absence of second nearest neighbor pair 

interaction (V 2), the L'2 and D022 structures are degenerate in energy 

Since, as shown by the ground state analysis [39,40], these pha~es are 

stable for, respectively, V2/V, < 0 and ° < V2/V , < 112. This 

degeneracy, however, is lifted at non zero temperatures by the 

configurational entropy, and the L12 phase is the stable structure. 

The random alloy enthalpy of formation, E d' can be expressed ran 

using the following polynomial expansion in the point correlation ~, 

E rand [ l hn ~,n ] 
n=O,p 

( 111 ) 

The phenomenological expansion of Eq.(111) is such that Erand 

vanishes when ~1 equals 1 (pure component 1) or -1 (pure component 2). 

3.3 Vibrational Entropy of Formation 

The vibrational entropy of formation is, in general, a function 

of both short range order (SRO) and long range order (LRO) [44-46J. 

However, the concentration dependence of ~Svib is expected to be 
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predominant and will be the only one considered in our treatment. 

In practice, we will express dS "b by the following phenomenological 
Vl 

expansion in powers of the point correlation: 

[ L s ~ n ] 
n 1 n=O,p 

3.4 Configurational Entropy 

(15) 

In the present model, different approximations will be used for 

the configurational entropy depending on the nature of the phas~ being 

studied. Three families of phases are distinguished: the strictly 

stoichiometric compounds for which the configurational entropy is 

taken equal to zero, the liquid phase for which an ideal entropy of 

mixing is used, and solid solutions or ordered phases stable over 

extended concentration range. For the latter phases, which is referred 

to as SRO-phases, the configurational entropy is described by means of 

the CVM. 

3.4.1 Stoichiometric Compounds 

A stoichiometric compound CC) will be assumed to be perfectly 

ordered. Within this approximation, the compound configurational 

entropy is equal to zero, and the compound free energy is written as: 

FCC) = A 
c + B T c 

where the coefficients Ac and Bc are temperature independent. 

(16) 
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3.4.2 Liquid Phase 

In our analysis, we neglect SRO in the liquid phase, which 

implies: 

~(k) 
2 

~ 2 
1 

(17) 

Accordingly, the ordering energy of the liquid phase vanishes (see 

Eq.(10)) and the configurational entropy of the liquid (S(L)) is g1ven 

by: 

(18) 

where kB is the Boltzmann's constant. 

3.4.3 SRO-Phases 

The configurational entropy of SRO-phases is calculated via the 

CVM. In the CVM, the entropy is written as a function of the 

probabilities of arranging different atomic species on a set of 

lattice pOints included in one or several maximum clusters. Although 

the accuracy of the CVM increases with the size of the maximum 

cluster, reliable results are obtained with relatively small clusters. 

In this study, we will use the tetrahedron approximation of the CVM, 

i.e. the maximum cluster is a compact tetrahedron. The derivation of 

the configurational entropy equation within the CVM formalism has been 

the subject of numerous articles in the literature [12,15,47-49]. We 

will simply give here, without any derivation, the equations of the 

configurational entropy in the tetrahedron approximation for the BCC 
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and FCC solid solutions. In the BCC structure, the tetrahedron 

(irregular) is composed of four first nearest neighbor pairs and two 

second nearest neighbor pairs (see Fig.3.1.a), whereas, in the FCC 

structure the tetrahedron (regular) contains six nearest neighb'or 

pairs (see Fig.3.1.b). 

In the tetrahedron approximation, the configurational entropy per 

lattice point of a disordered FCC structure is given by [12J: 

~S(FCC)= -k {2 2 L(Zl'J'kl) - 6 2 L(Y~:» + 5 L LCx
1
.) } (19) 

conf B ijkl ij lJ i 

where Zijkl is the probability of finding a regular tetrahedron in the 

configuration {ijkl} (i,j,k and 1 take values 1 or 2 as we are dealing 

with binary alloys), and L(x)= x In(x). 

For a BCC structure, the configurational entropy takes the form 

[50]: 

~S(BCC)= -k { 6 2 L(zi'kl) - 12 2 L(t ijk ) conf B ijkl J ijk 

+ 4 2 L(/~» + 3 L L(/~» - L L (x i) } (20) 
ij lJ ij lJ i 

where t ijk is the probability of finding an irregular triangle in the 

configuration {ijk}. 

The cluster probabilities are related by the following 

consistency relations: 
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Fig. 3.1 The basic tetrahedron cluster for the BCC (A), and FCC (B) 
structures. 
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t ijk I Zijkl (21) 
1 

Yij I t ijk (22) 
k 

x. I Yij (23) 
1 j 

The equilibrium state of the system and the degree of SRO in the 

alloy is obtained at any given concentration and temperature by 

minimizing the total free energy with respect to a set of independent 

configurational variables. In the case of the tetrahedron 

approximation, the minimization is conveniently carried out using the 

Natural Iteration (NI) method developed by Kikuchi [14,27J. A brief 

summary of this method is given in section 3.6. 

3.4.4 Ordered Phases 

In the case of an ordered phase (FCC- or BCC- based), long range 

order is described in the usual manner by means of sUblattices 

reflecting the symmetry of the ordered structure. In a CU
3

AU compound, 

for example, Cu atoms occupy preferentially a given sublattice a, 

whereas Au atoms are located preferentially on a different sublattice 

tL 

For ordered phases, a given cluster may strand pOints in the 

crystal belonging to different sublattices, and its probabilities must 

be distinguished accordingly (see for example Ref.[14]). Concerning 

the point probability for example, we distinguish the point 

16 



probability on a n sublattice (x~), i.e. the probability of finding 
1 

an "i" atom on a sublattice n, and the point probability on a S 

sublattice (X~)~ For an ordered phase, x~ is different from x.~~ and 

the long range order parameter may be defined as: 

n (24) 

3.5 Grand Potential and Effective Chemical Potential 

In order to determine a phase equilibrium, it is convenient to 

introduce the grand potential n. In what follows, we give some useful 

equations relating the grand potential to the more commonly used free 

energy and chemical potentials. 

For a given temperature and pressure, the equilibrium conditions 

between two phases nand B are given in terms of the chemical 

potentials by the equations: 

where ll~ is the chemical potential of element "i" in phase a. We 

recall that lIi can be written as: 

(25) 

(26) 

where a i is the activity of element "i" • Note that Fi and a
i 

are, in 

general, temperature and concentration dependent. 
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As already mentioned, it is convenient to refer the free energy of 

a pure metal in the structure of phase ~ to the free energy of the 

same element in a reference structure 6. The chemical potential of 

element Hi" is then written as: 

(28) 

Defining the grand potential Q and the effective chemical potential ~ o 

as: 

Q~ ('/2) ( ~ + 
III 

~ (1/2) (Il~ -Ilo 2 

the equilibrium 

~ 1l2 ) 

~ 

111 ) 

conditions become: 

(29) 

(0) 

We will now relate nand Ilo to the free energy of formation Ff • By 

definition of the chemical potential, we have: 

111 F
f 

+ 
_~:f_ 

(1-X, ) 
dX 1 

112 = F
f 

- _~:f_ 
x, 

dx, 
(4) 

where the free energy of formation, Ff , is obtained by subtracting 

from the total alloy free energy the free energy of the pure elements 

in their reference structures weighted by their respective atomic 

concentrations. Combining Eqs.(29, 30, 33, 34), we obtain the 

following relations for Il and Q: o 
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- (1/2) 
dFf 

Ilo == 
dX 1 

0 Ff + Ilo ( x -
1 

X
2

) (36) 

For a given phase a, the activities of each element can be 

expressed in terms of 0 and Il o ' Taking the reference structure of the 

pure elements to be the structure of phase a, it follows from Eq.(28) 

that: 

a a Il i == kB T In(ai ) 

and the activities are given by (see Eqs.(29-30)): 

exp[ (Oa - Il~ )/k
B 

T ) 

a~ == exp[ (n
a 

+ Il~ )/kB T ) 

3.6 Natural Iteration Method 

The Natural Iteration (NI) Method (14) is used to minimize the 

grand potential at a given temperature, T, and effective chemical 

(37) 

(38) 

(39) 

potential, Ilo ' In this method, the minimization is carried out with 

respect to the maximum cluster probabilities (here the tetrahedron 

probabilities z ). A Lagrange multiplier, A, is introduced in order uvws 

to take into account the normalization constraint: 

L z .. kl == 1 
ijkl lJ 

Accordingly, the equation to be solved is: 

oz uvws 
{ F + Ilo ~1 + A ( L 

ijkl 
Zijkl- 1 ) } = 0 

(40 ) 

(41) 
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3.6.1 FCC solid solution 

In order to write the NI equations for an FCC solid solution, it 

is convenient to define M such that: 

F = M - T b.S conf 

It can then be shown that Eq.(41) becomes: 

z = C exp[ -(8/2) E ] y1/2 x-5/8 
uvws uvws 

where C is a normalization constant. and where: 

8 = 1/( kB T) 

y 

(42) 

(44) 

x = x x x x (46) 
u v w s 

E = V (P +P +P +P +P +P - 6) + ~ (p +p +P +P )/4 (47) uvws 1 uv uw us vw vs ws u v w s 

~ = ~o + aM/a~, (48) 

P = (-1) (u+1)· (49) 
u . 

3.6.2 BCC Solid Solution 

For a BCC solid solution Eq.(41) becomes: 

z = C exp[ -(8/6) E ] T'/2 y-1/6 y-1/4 x '/24 
uvws uvws s 1 

where: 

T = t t t t uvw uvs uws vws (52) 

y (1) (1) (1) (1) 
= Yuv Yuw Ysv Ysw s 

Yl 
y(2) (2) 
us Yvw (54) 

E V, (P +P +P +P - 4) uvws uv uw sv sw 

+ V (P +P - 2) (3/2) + V (p +P +P +P )/4 2 us vw u v w s (55 ) 
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In order to find the set of tetrahedron probabilities that 

minimize the free energy, it is necessary to iterate Eq.(43) or· 

Eq.(51). After each iteration step, the consistency equations (21-23) 

are used to deduce the triplet, pair, and pOint probabilities entering 

Eqs.(43,51). The iteration process is stopped when the values of the 

tetrahedron probabilities do not change appreciably from one iteration 

to another. 
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4. PHENOMENOLOGICAL APPROACH 

4.1 Preamble 

In general, the experimental information needed to evaluate the 

effective pair interactions (EPls) is not available. This fact 

underlines the need for a microscopic theory which gives information 

about the EPIs. We return to that consideration in the second part of 

the thesis where we present a microscopic theory based on the 

generalized perturbation method (GPM) that enables the calculation of 

pair interactions. Although the GPM indicates that the EPls are, in 

general, concentration dependent, we have assumed in the 

phenomenological approach that, within the concentration range of 

stability of a given phase, the concentration dependence of the pair 

interactions can be neglected. 

4.2 Determination of The Energy Parameters 

The free energy parameters that must be evaluated for a phase 

diagram calculation are the EPls, the coefficients hn and sn in the 

phenomenological expansions of Eqs.(14-15), and the compound 

parameters A and B in Eq.(16). These parameters are obtained c c . 

according to the following procedure. We begin by estimating trial 

values of the effective pair interactions for each SRO-phase. The 

estimation of an EPI can be done using an experimental ordering energy 

(generally not available) or a congruent order-disorder temperature in 

the phase diagram. Selected isothermal two-phase boundary points (i.e. 
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concentrations for each pair of phases in equilibrium at a given 

temperature), experimental enthalpies of formation and experimental 

entropies of formation are then used, as explained in subsection 

4.2.2, in order to determine values of the other unknown energy 

parameters (h , s , A , B ). Finally, the phase diagram as well as the n n c c 

thermodynamic potentials are calculated and compared with experimental 

results. If necessary, the guessed values of the EPIs are readjusted 

and the complete fitting procedure is repeated until a satisfactory 

global agreement is obtained with the experimental phase diagram and 

thermodynamic data. 

4.2.1 Effective pair interactions 

In general, the effective pair interactions cannot be uniquely 

obtained from the phase diagram. However, knowledge of the equilibrium 

low temperature phases (ground states) provides important information 

concerning the range of values that such effective pair interactions 

may take [39-43]. In addition, if the phase of interest presents an 

experimental congruent order-disorder transformation with no 

structural change, it is possible to obtain accurate estimates of the 

effective pair interactions from the order-disorder temperature. Under 

such conditions, it is reasonable to assume that the energy parameters 

for the alloy enthalpy of formation (hn,Vk) are the same for the 

ordered and disordered phases. We further assume in this study that 

the vibrational entropies of formation of the disordered and ordered 

phases are identical. This approximation is rather crude but appears 

to produce results which are in good agreement with experimental data 
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(i.e. phase diagram and energies of formation). For more details, the 

reader is referred to the studies involving the A13Li and Ni3Al phases 

which are presented in sections 4.3.1 and 4.5.4 • 

As a result, the investigation of the equilibrium between an 

ordered phase and the corresponding disordered phase at the 

order-disorder congruent pOint is reduced to the study of an Ising 

model for which the relation between the effective pair interactions 

and the ordering temperature To is well known. For example, the 

ordering temperature of an FCC lattice with first nearest neightror 

interactions V, (V 1 > 0) is given by: 

(56) 

where the constant 1 equals 1.9248 and 1.8924 for, respectively, the 

L12 and L~O transitions in the tetrahedron approximation of the CVM 

[51]. 

4.2.2 Random Energy, Vibrational Entropy of Formation and 

Compound Parameters 

The values of h , s , A , and B defined in Eqs.(13-16) are n n c c 

determined by fitting a limited set of isothermal equilibrium 

two-phase boundary points, experimental energies, and/or vibrational 

entropies of formation. As mentioned in section 3.5, the equilibrium 

condition between two phases a and ~ is given by the equality of the 

effective chemical potential ~ and the grand potential Q in each o 

phase. The expressions for the energy of formation, vibrational 
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entropy of formation, effective chemical potential, and grand 

potential are linear in h , s , A , and B • Accordingly, the n n c c 

determination of these parameters is simply reduced to solving a 

system of linear equations. We recall in Table 4.1 the expressions of 

the enthalpy and entropy of formation for each type of phase 

(SRO-phase, liquid, compound). 

As will be shown in section 4.3-5, the introduction of SRO into 

the free energy formalism via the Cluster Variation Method allows an 

accurate description of stable and metastable order-disorder 

equilibria in binary alloys. It should be emphasized here that a 

subregular solution model applied to solid phases would not provide 

the accuracy needed to investigate stable and metastable 

order-disorder equilibria. The phenomenological approach presented in 

this chapter has been used to investigate the Ni-Al, Ni-Cr and Al-Li 

systems and we report hereafter the results of this investigation. 

Aside from their metallurgical importance, these alloys provide good 

test studies for the approach. 

The Ni-AI system includes the three different types of phases we 

have distinguished (liquid, compound, and SRO-phase) but presents a 

negligible vibrational entropy of formation at all concentrations. As 

a result, the Ni-Al phase diagram is relatively complicated in shape, 

but can be modeled with a minimum number of energy parameters. 

The Ni-Cr system has a simple phase diagram which includes a 

liquid phase, a Ni-rich FCC solid solution and a Cr-rich BCC solid 



Table 4.1 

Equations of the enthalpies and entropies of formation. 

2 
~Hf 2: x. 

. 1 1 1= 

2 
~Sf 2: x. 

. 1 1 1= 

2 

~f 2: xl 
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~Sf 2: x. 
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~H = A 
f c 
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solution. In contrast to the Ni-Al alloys, the Ni-Cr alloys show, 

experimentally, a non-negligible vibrational entropy of formation • 

. 
The A1-Li system includes in its phase diagram the three different 

types of phases we have distinguished, metastable order-disorder 

equilibria, and a non negligible vibrational entropy of formation. 

Accordingly, this system is a typical case for which we can test the 

power and the accuracy of the proposed phenomenological approach. 



4.3 Ni-AI System [52] 

In what follows, we describe five intermediate phases observed in 

the equilibrium phase diagram of the Ni-Al system. In the commonly 

used structurbericht notation, these phases are called the D020 

(A1
3
Ni), 05

13 
(AI

3
Ni 2), B2 (AINi), L12 (AINi

3
), and Al (FCC solid 

solution) phases [53J. The 0020 phase is found experimentally to be a 

stoichiometric compound and consequently, it is treated as such in the 

present work. Although the 05'3 phase is experimentally reported to be 

stable over a small concentration range, it is described as a 

stoichiometric compound in the present analysis. The Al, 82 and L12 

phases are stable over an extended concentration range and are 

described as SRO-phases. 

4.3.1 A1 and L12 Phases 

The effective pair interaction of the A1 and L12 phases has been 

evaluated by extrapolating the A1-L1 2 two phase boundary into the 

liquid high temperature region. A metastable congruent point at 1857 K 

was estimated which corresponds to an effective pair interaction of 

1.92 kcal/g-at. This result is in very good agreement with the values 

of 1.85 kcal/g-at [19J and 2.11 kcal/g-at [20] previously estimated 

using 8-4 Lennard-Jones pair interactions. The values of hO' h1, and 

h2 (see Table 4.2) were calculated by reproducing the experimental 

enthalpy of formation {-9.l kcal/g-at, for xNi = O~75} of the L12 

phase measured at 298 K [53], and a set of two equilibrium 

concentrations at 800 K belonging to the A1-L1 2 two-phase boundary. 
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Table 4.2 

Energy parameters caracterizing the Ni-AI system. The lattice 
stability parameters H. and S. refer to the fcc structure. They are 
taken from ref.[37] fo~ the lIquid phase, and from ref.[2] for the B2 
phase. Energies are expressed in kcal/g-at. 

PHASE V, V2 hO h1 h2 HNi SNi HAl SAl 

103 103 

-
A1 1.92 ---- - 9.60 3.56 -2.07 0.00 0.00 0.00 0.00 

L'2 1.92 ---- - 9.60 3.56 -2.07 0.00 0.00 0.00 0.00 

B2 2.11 1.05 - 9.42 -.4lJ 0.00 1.33 0.25 2.41 1.15 
\ .. 

Liquid ---- ---- -10.03 0.00 2.37 4.17 2.42 2.58 2.76 

COMPOUND PARAMETERS
3 A B 10 c c 

D020 - 9.89 1.2lJ 

D513 -13.83 1.10 
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In Fig.(4.1) we present a detailed comparison between the 

calculated A1-L'2 two phase boundary (full line) and the compilation 
. 

of experimental data taken from ref.[19J (dashed line). As can be 

seen, the present model closely reproduces the phase equilibrium 

between the A' and L'2 phases, a fact particularly remarkable since 

both phases are described by a unique free energy function which 

itself depends on only four physical parameters (V1, hO' h" h2). 

4.3.2 82 Phase 

For the B2 phase, values of 2.11 kcal/g-at and 1.05 kcal/g-at for, 

respectively, the first and second nearest neighbor effective pair 

interactions, were found to give a good overall agreement between the 

calculated and the experimental phase diagrams. The agreement can be 

seen in Fig.(4.2) where the calculated phase diagram is indicated in 

full line, and the experimental phase diagram [53J is indicated in 

dashed line. For the sake of clarity, the same calculated phase 

diagram is presented alone in Fig.(4.3). The parameters hO and h1 

have been determined by reproducing the experimental equilibrium 

concentrations of the B2-L'2 two phase-boundary a.t 1000 K. The 

vibrational entropy of the B2 phase was found to be negligible. 
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Fig. 4.1 Detailed comparison between the calculated (full line) and 
the experimental [19] (broken line) L1 2-A1 two-phase 
boundary in the Ni-Al system. 
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Fig. 4.2 Comparison between the calculated (full line) and the 
experimental [53] (broken line) phase diagram for the Ni-Al 
system. The parameters used in the phase diagram 
calculation are shown in Table 4.2. 
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Fig. 4.3 The calculated Ni-Al phase diagram using the energy 
parameters of Table 4.2. 
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4.3.3 Liquid Phase and Compounds 

For the liquid phase, the value of hO was obtained by reproducing 

the congruent temperature between the liquid phase and the B2 phase at 

1900K. The value of h1 was set equal to zero and the value of h2 was 

obtained by reproducing the equilibrium concentration of the B2 phase 

with the liquid phase at 1400 K. The excess entropy of the liquid 

phase was found to be negligible. 

The energy parameters of the D5
13 

compound have been obtained ~y 

reproducing the peritectic temperature at 1406 K, and the experimental 

enthalpy of formation at 298 K (-13.5 kcal/g-atom) [53J. The energy 

parameters of the D020 compound were determined by reproducing the 

peritectic temperature at 1127 K and the eutectic temperature (913K). 

4.3.4 Comparison With Experimental Results 

The calculated and experimental [53J enthalpies of formation of 

the ordered phases stable at 298 K are reported in Table 4.3. We also 

give in Table 4.4 a comparison between the predicted and the 

experimental free energy of formation of the phases stable at 1273 K. 

The energy parameters describing the thermodynamic potentials of the 

Ni-AI system are given in Table 4.2. 

Note that the enthalpies of formation of the A1 and D5
13 

phases 

are the only thermodynamic potentials used as input in the 

calculations, the remaining enthalpies of formation in Table 4.3 are a 
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Table 4.3 

Comparison of the available experimental enthalpies of formation for 
the intermediate phases of the Ni-Al system (T=298 K) [53], with the 
values calculated by Kaufman and Nesor [3], and with the values 
calculated in the present work • 

phase atomic enthalpy of formation 
concentration based on fcc Ni and fcc Al 

of Ni (kcal/g-at) 
experimental present work ref.[3] 

[53] 

L12 0.725 - 9.80 ------ ..... _----
* 0.750 ------ - 9.10 - 9.79 

0.770 - 8.25 -........ _-- -------

82 0.500 -14.05 -13.03 -13.45 

* D5'3 0.400 -13.50 -13.50 -12.45 

D020 0.250 - 9.00 - 9.50 - 8.50 

* for : used as input data the analysis 
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Table 4.4 

Comparison of the available experimental free energies of formation 
for the Ni-Al system (T=1273 K) [53J. with the values calculated by 
Kaufman and Nesor [3J, and with the values calculated in the present 
work. 

phase 

A1 

B2 

atomic 
concentration 

of Ni 

0.950 
0.900 
0.857 
0.851 

0.770 
0.765 
0.750 
0.725 

0.643 
0.637 
0.600 
0.550 
0~500 

0~445 
0.439 

0.410 
0~400 

0.396 

free energy of formation 
based on fcc Ni and fcc Al 

(kcal/g-at) 

experimental present work ref.[3] 
[53J 

- 2.13 - 2.11 ------
- 3~85 - 4.00 - 5.07 
- 5.09 ------- ---~--

------ - 5.73 ------

- 7.38 ----_ ...... ------_ .. _--- - 8.65 ------
.... _--_ ..... -_ ......... _- --11.52 
- 8.51 - 9.59 ...... _..;... ..... _-
-_ ......... _- -11.40 _ ........ ---
-10.56 ------ ------
-lL38 --12.20 ..... _----
-12.35 -1 3 ~ 10 ------
-12.96 .... 13;71 -11 .05 
-12.46 ------ --_ ....... --_ ............ - --12.82 -- ..... -_ .... 
-11.99 ------ --_ .... _-_ ........ _-- .... 12.43 -11.95 
-11 .77 ..... --...:..-.... -------
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prediction of the model resulting from the fitting of ten points in 

the phase diagram. 

As can be seen from Table 4.3-4 and Fig.(4.1-3), our results 

closely reproduce the experimental phase diagram as well as the 

experimental thermodynamic data. The study of the Ni-Al system has 

shown that it is possible to describe complex phase equilibrium with a 

small number of physically meaningful parameters (Vk , hn). 

Furthermore, the study has shown that SRO plays an important role in 

the description of order-disorder reactions (Al-L1 2) and order-order 

reactions (B2-L12)~ 

In the Ni-Al system, we have found that the vibrational entropy of 

formation is negligible. This is not always the case, and in general 

one must include a vibrational entropy of formation in order to obtain 

a reliable description of the alloy thermodynamic potentials and phase 

diagram. This point is illustrated in the next sections which are 

devoted to the thermodynamic investigation of the Ni-Cr and AI-Li 

systems. 
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4.4 Cr - Ni System 

4.4.1 Introduction 

The commonly accepted Ni-Cr phase diagram is presented in 

Fig.(4.4). This phase diagram includes a solid BCC solid solution (A2) 

and an FCC solid solution (A1) with a eutectic transformation at 1618 

K [54,55]. A CrNi 2 phase having a Pt2MO structure is also reported to 

exist below 830 K [54,56-58]. Three other proposed phase diagrams can 

be found in the literature. One includes the presence of a high 

temperature allotropic form (8) for pure chromium above 2100 K which 

leads to the presence of an additional eutectoid reaction [59-60]. 

Another alternative includes, in addition to B chromium, the presence 

of a sigma phase at about 0.60 Cr. As a result, the proposed phase 

diagram [61] contains one eutectic, two eutectoids and one peritectic 

reaction. A phase diagram including one eutectic and four eutectoids 

can also be found in the literature [62]. 

Following Raynor and Rivlin [63], we have ignored the 

controversial B chromium as well as the sigma phase, and we have 

concentrated our attention on the thermodynamic investigation of the 

A1, A2, and liquid phases above 900 K. For reasons explained in the 

next sub-section, the CrNi 2 phase is not analyzed in this study. 
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4.4.2 FCC Solid Solution CAl) 

The existence of the CrNi 2 phase indicates an ordering tendency in 

the FCC solid solution at a Ni concentration of 0.66. The CrNi 2 phase 

has a Pt2Mo structure which is stable for { O~Vl and 0~V2~Vl/2 }. The 

approach adopted in this study uses the tetrahedron approximation of 

the CVM to model the alloy configurational entropy. In that case, the 

ordering energy does not include the second neighbors required for the 

stability of CrNi 2 , and the CrNi 2 phase is degenerate with a mixture 

of the L12 and L10 phases~ It would therefore be necessary to use a 

larger cluster approximation in order to describe correctly the CrNi 2 

phase. 

The value of V1 was set equal to 0.85 kcal/g-at. The sign of V1 is 

positive indicating an ordering tendency, and its magnitude is 

compatible with the temperature range of stability of the CrNi 2 phase. 

The energy parameters (hO' h1 , sO' and s1) reported in Table 4.5 have 

been obtained by reproducing the experimental enthalpy and entropy of 

formation of the Al phase [54J. A comparison between the experimental 

and fitted thermodynamic potentials is given in Fig.(4.5). 

The lattice stability parameters of Cr in the FCC structure, 

have been obtained by fitting the Al boundary describing the Al-A2 two 

phase equilibrium. The resulting values , 0.93 kcal/g-at. for 

HCbCC->fCC and -0.1 cal/g-at. for SbCC->fcc differ from the values 
r . ~' 

of 2.5 kcal/g-at and -0.15 cal/g-at/K given by Kaufman in Ref.[2J. 
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Table 4.5 

Energy parameters caracterizing the Ni-Cr system. HN" and SN" refer 
to the fcc structure; they are taken from ref.[37] fOf the ll&uid 
phase and from ref.[2] for the bcc structure. The lattice stability 
parameters of Cr refer to the bcc structure; for the liquid phase, 
they are taken from ref.[37], whereas for the fcc structure, they have 
been evaluated in order to obtain a good overall agreement with 
experimental results. Energies are expressed in kcal/g-at. 

PHASE V
1 

V2 hO hl So s1 s2 HNi SNi HCr SCr 
3 <----10 ----) 103 103 

--
Al 0.86 ---- 1.79 -2.70 1.09 -1.4 0.3 0.00 0.00 0.93 -.10 

A2 -.25 -.25 2.34 -0.55 1. 50 0.0 0.0 1.33 0.25 0.00 0.00 

Liq. ---- ---- 1.17-0.34 1.00 0.0 0.0 4.18 2.42 4.05 1.90 
" " 
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4.4.3 BCC Solid Solution 

Due to a lack of information, we have taken V1 and V2 to .be equal. 

A value of -0.25 kcal for V1 (and V2) gives a very good overalI 

agreement between the experimental and the calculated A2-boundary 

describing the A2-Al equilibrium. Note that the value of V1 is 

negative and indicates a clustering tendency. The values of hO' h1, 

and So (see Table 4.5) have been calculated by reproducing the 

equilibrium concentration of the A2 phase (xNi =0.37) with the Al phase 

(xNi = 0.50) at the eutectic temperature (1618 K), as well as the 

enthalpy of formation of the A2 phase (1940 ± 150 cal/g~at, xNi =0.2) 

at 1550 K [54J. 

4.4.4 Liquid Phase 

The energy parameters of the liquid phase (hO,h1 , and so) have 

been estimated by reproducing the equilibrium concentration of the 

liquid phase (xNi 0.26) with the Al phase (XN,=0.5) at the eutectic 
1 . 

concentration (1618 K), and the slope of the liquidus in the 

concentration range {~i=0-0.45}. 

4.4.5 Calculated Cr-Ni Phase Diagram 

The parameters describing the different contributions to the free 

energy of the A1, A2, and liquid phases are summarized in Table 4.5. 

They have been used to calculate the Cr-Ni phase diagram which is 

compared in Fig.(4.6) with the experimental data [56,58,60,64-65J. A 
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very good agreement is obtained between the calculated and 

experimental phase diagrams. This agreement indicates that the 

experimental temperature-concentration data pOints given in Fig.(4.6) 

are consistent with the experimental thermodynamic data plotted in 

Fig.(4.5). 

As seen from the parameters listed in Table 4.5, the vibrational 

entropy of formation for Cr-Ni alloys is quite important. In fact, we 

were unable to reproduce the experimental data (phase diagram and 

thermodynamic data) without taking into account ~S 'b' The same -
Vl 

conclusion has been reached for the Al-Li system which is investigated 

in the next section. In the case of the Al-Li system, we also 

illustrate the importance of SRO for the description of metastable 

order-disorder equilibria. 

• 

45 



4.5 Al-Li System [66J 

4.5.1 Introduction 

Saboungi and Hsu [67J have recently proposed a thermodynamic 

description of the Al-Li system based on a numerical method developed 

by Kaufman and Nesor [1J. In their description, however, ordered 

phases are systematically considered as stoichiometric compounds. This 

approximation is not valid for the AlLi phase (a) which is stable over 

a wide range of concentration (45-55 at% Li) [68J. This discrepancy is 

removed in the thermodynamic description of McAlister [68J who used a 

Wagner-Schottky free energy function for the a phase. The free energy 

formalism for the other phases in both models is otherwise similar. 

Both models, although successful in the overall description of 

equilibrium phase diagrams, provide little insight into the different 

contributions to the free energies. In particular, these methods fail 

to describe stable and metastable order-disorder equilibria. 

A comprehensive review of the thermodynamic data and equilibrium 

temperature-concentration phase diagram for AI-Li alloys can be found 

in Ref.[68J and Ref.[69J. The different stable phases appearing in the 

updated phase diagram of Ref.[68J are the liquid phase, the fcc 

AI-rich solid solution (0), the bcc Li-rich solid solution, the 

ordered AILi phase (a), which has a NaTI-type structure, the A12Li3 

phase (y) based on a rhombohedral structure and reported to have a 

very narrow range of solubility [70J, and the Al4Li9 phase (6) based 

on a monoclinic structure below 548 K and reported by Myles et ala to 
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transform to a different, yet undetermined, structure (6') above 548 K 

[71J. 

The metastable A13Li (a') phase has a CU
3

AU structure and plays a 

significant role in Al-Li alloys because of its strengthening ability, 

a feature that the stable AILi phase does not have. Consequently, the 

location of the metastable two-phase boundary in the 

temperature-concentration phase diagram has been investigated 

extensively and is well documented between room temperature and 620 K 

[72-76J. In this range of temperature, the concentration difference 

between the a and a' phases in metastable equilibria has been found to 

be quite large and has led to some controversy concerning the location 

of the metastable a-at two-phase boundaries above 620 K [77J. Using 

our free energy model, we have investigated in detail the metastable 

equilibrium between the a solid solution and the ordered at phase. 

Remarkably, our model also predicts a second level of metastable 

equilibrium within the concentration range where the metastable a-at 

two-phase region is observed; namely, it is predicted that alloys with 

a composition of about 10 at% Li and quenched below 400 K show a 

tendency to segregate. This tendency will be discussed in the light of 

available experimental results. 

The A12Li3 (y) and the Al 4Li g (0) phases, experimentally found to 

be stable in a very narrow concentration range, are treated as 

stoichiometric compounds. On the other hand, the fcc AI-rich solid 

solution (a), the AILi phase (e) and the metastable Al3Li (a') phase 

are treated using the tetrahedron approximation of the CVM. Within 
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this approximation, the ordering energies of the a and A13Li phases 

are calculated using first nearest neighbor pair interactions whereas 

the ordering energy of the A1Li phase is calculated using first and 

second nearest neighbor pair interactions. 

A summary of all parameters used in the description of the Al-Li 

system is given in Table 4.6. In the following sections, we indicate, 

for each phase, the selected set of experimental results used in order 

to obtain the free energy parameters of Table 4.6. 

4.5.2 Liquid Phase 

The free energy of the liquid phase has been investigated by 

Hicter et ale using the Knudsen method [79J and by Yatsenko and 

Saltykova using an electrochemical method [80J; their results are in 

good agreement. In addition, Yatsenko and Saltykova give the 

temperature dependence of the free energy. The expansion coefficients 

(hO,h1 , sO' and s1) have been obtained by fitting the experimental 

enthalpy of formation and excess entropy given in Ref.[80J at 1023 K. 

A comparison between experimental and fitted data is given in 

Fig.(4.7). Note that effective pair interactions are not required for 

the liquid phase, for which SRO is neglected. 
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Table 4.6 

Energy parameters caracterizing the AI-Li system. 

PHASE I 
I 

FCC (AI) 

A13Li 

AILi 

LIQ 
I 

STRUCTURE 

FCC 

BCC 

LIQ 

-
Er.and 

(kcali'g-at.) 
t.SVi~ 

(cal/g-a . K) 
E d' 

(kca19~-at) 

hO h, h2 So s, V, V2 

-1 .64 -0.25 -0.27 -1.2 0.0 0.83 ----

-1 .64 -0.25 -0.27 -1.2 0.0 0.83 ----

-3.83 -0.10 0.00 -2.5 0.0 0.76 0.76 

-2.70 -'.24 0.00 -1.5 -0.5 ---- ----
-.. 

COMPOUNDS 

A B 
(kca17g-at.) (ca17g-at K) 
(reference structure: Liquid) 

-7.41 

-8.53 

5.62 

8.90 

LATTICE STABILITY PARAMETERS 
(from ReL[67J) 

ALUMINUM 

I 
LITHIUM 

HAl SAl HLi SLi 

(kcal/g-at. ) (cal/g-at./K) (kcal/g-at.) (cal/g-at./K) 
(reference structure: Liquid) 

-2.560 -2.750 -0.427 -1 .710 

-0.150 -1.600 -0.717 -1.580 

0.000 0.000 0.000 0.000 
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4.5. 3 Al Li Pha se «(3) 

The AlLi phase has a B32 structure (NaTl type). According to a 

ground state analysis based on first and second nearest neighbor pair 

interactions, the following inequalities must be verified for this 

phase to be stable at a K [8'J: 

{ with V2 >0 } 

Equation (57) represents the only available information concerning 

the relative magnitude of V1 and V2• In our analysis we have se~ 

[V,=V2J. The value of V, (and V2) has been determined by noticing that 

the equilibrium solubility limits of the AlLi phase are controlled by 

the magnitude of V1 (and V2). Good agreement with the experimental 

liquid-(3 two-phase boundaries is obtained using a value of 0.76 

kcal/g-at for V1 and V2" The resulting calculated solubility limits 

are 44 at% Li at 869 K, and 55 at% Li at 793 K; they compare well with 

the experimental value of, respectively, 45 at% and 55 at% reported in 

Ref.[68J. With the value of pair interaction used, the calculated AlLi 

phase remains ordered up to its melting pOint as found experimentally 

[71,82J. 

The coefficients So and hO for the f3 phase, defined in Eq.(14-15), 

are obtained by fitting the experimental entropy of formation (-2.54 

cal/g.at/K) reported in Ref.[83J at the 50/50 concentration, and the 

equilibrium congruent point between the liquid phase and the AlLi 

phase «(3) estimated at 973 K (see Fig.(4.8». 
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4.5.4 a and a' Phases 

Since the a and a' phases are both based on an fcc structure, we 

have assumed that the energy parameters in these two phases ar~ equal. 

Note that we have used the same assumption to study the A1-L1 2 

equilibrium in the Ni-Al system, and have obtained a good agreement 

between calculated and experimental data (see section 4.3.1). 

The effective pair interaction V1 for the Al-Li fcc-based 

structure was calculated by reproducing the order-disorder congruent 

temperature To (800 K) evaluated by Tamura et al. [85J for the a' 

phase. This value of T is also suggested by the differential thermal o 

analysis results of Ref.[16J. From equation (64), a value of 0.825 

kcal/g-at. is obtained for V1~ The coefficients hO' h1 , h2 for the fcc 

structure are obtained by reproducing the eutectic concentration of 

the a phase (13.3 at$ Li) at 869 K as well as the experimental a' 

solvus concentration (1.6 at$ Li) measured by Williams and Edington at 

508 K [13]. The coefficient So has been evaluated by reproducing the 

concentration of the a phase (1.5 at$ Li) resulting from the a-a 

equilibrium at 463 K measured by Jones and Das [86J. 

4.5.5 Stoichiometric Compounds 

The energy parameters of A12Li3 (y) and A14Li9 (0) are shown in 

Table 4.6. These parameters have been determined by reproducing the 

two peritectic temperatures (603 K, 193 K), and the eutectic 

temperature (450 K) given in Ref.[68]. Due to a lack of experimental 
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data, the phase transformation (6 -) 6') reported by Myles et al. [71J 

has not been considered in the present thermodynamic analysis. 

Moreover, the thermodynamic description and equilibrium phase diagram 

would not change drastically if one were to take this transformation 

into account. 

4.5.6 Results for Stable Equilibria 

Using the energy parameters of Table 4.6, the entire equilibrium 

phase diagram has been calculated and it is compared in Fig.(4.8) with 

the experimental pOints taken from Ref.[68]. As can be seen, a very 

good overall agreement has been obtained between experimental and 

calculated equilibrium concentrations. In particular, the calculated a 

solvus line compares very well with the different experimental 

concentrations shown in Fig.(4.8). 

Regarding liquid-solid equilibrium, our model predicts a eutectic 

concentration for the liquid phase (22.4 at% Li) very close to the 

calculated value (24.3 at%) of McAlister [68]. The experimental data 

obtained for the liquidus temperature by several investigators (see 

Fig.(4.8) and Ref.[68J) are consistent between 25 and 50 at% Li. 

Furthermore, they compare well with the calculated liquidus 

temperatures. Beyond 50 at% Li, however, discrepancies are found in 

the experimentally determined liquidus temperatures. The calculated 

liquidus in this region agrees well with the experimental data 

reported by Myles et ala [71]. 
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As seen in Fig.(4.8), the predicted concentration of Li in the 

AILi (S) phase in equilibrium with the A12Li3 phase (y) is somewhat 

less than reported experimentally by Wen et al. [70J. The same result 

was obtained by McAlister in his calculation [68J. Further 

experimental investigation on the locus of the S-Y boundaries and on 

the values of free energy for the Y phase would be useful to confirm 

or deny the calculated results. 

In the next sections we investigate metastable equilibria between 

phases based on an fcc structure. It is therefore of primary 

importance to check the accuracy of the free energies for fcc-based 

phases. As mentioned before, the calculated and experimental stable 

a-solvus lines are in good agreement. In Fig.(4.9) we compare the free 

energy of the a phase estimated by Wen [87J using electrochemical 

measurements at 696 K, with the free energies predicted by the present 

model at the same temperature. The calculated free energies for the a 

phase used by McAlister [68J and those used by Saboungi and Hsu [67J 

are also plotted in the same figure. 

The activities of Lithium in the a-8 two-phase region, have been 

determined by several investigators [70,83-84J at different 

temperatures, and have been found to be very consistent [84J. A 

comparison of the experimental data with values obtained from the 

present thermodynamic description is given in Fig.(4.10). As can be 

seen, the temperature dependence of the Lithium activities is 

reproduced well by the model. In addition, we compare in Tables 

55 



O. 0 

-0. 1 

-0.2 

-0.3 
.; 
0 

-0. 4 I 
01 

"-...... -0.5 0 
0 
.r 
-..J -0.6 
>-
L!l 
0:: -0.7 
lJJ 
z 
lJJ -0.8 
lJJ 
lJJ 
0:: -0.9 l.L. 

-1. 0 

-1. 1 

-1. 2 
0 

Fig. !t.9 

2 3 4 5 6 7 8 9 

ATOMIC PER CENT Li 

Comparison of the free energy of the a phase reported by 
Wen et ale [87J (-- - --) ), McAlister [68J ( ), and 
Saboungi and Hsu [67J (- - - -), with the free energy 
predicted in the present work (-- • --). 

56 

10 



10 

9 

8 

'"" 7 ..... 
.-J 

4-
0 5 

>-
I-....... 
> 5 ....... 
I-
U 
< 4 "-.J 

C 
.-J 

3 

2 

1 

0 
1. 00 1. 25 1. 50 1. 75 2.00 

1000 I T O/K) 

Fig. 4.10 Calculated (full line) and experimental [84J (broken 
line) activity of Lithium in the a-8 two-phase boundary as 
a function of temperature. The experimental results are 
given by the equation [84]: In(aLi ) = 2.662 -5302 I T. 

57 



4.7-4.8 the calculated and experimental thermodynamic potentials 

[83,70J of the 8 phase at different temperatures. The experimental and 

calculated results agree within 100 cal/g-at. (3 %). 

A very satisfactory agreement has been obtained between the 

calculated and experimental thermodynamic data and equilibrium 

concentrations. This agreement indicates that the present model is 

quite adequate to describe the thermodynamic properties of the Li-AI 

system and, at the same time, that the free energy parameters of Table 

4.6 are accurate. This is of particular importance in order to predict 

with confidence metastable equilibria for which the available 

experimental data are less numerous and less accurate. 

4.5.7 Metastable a'-a Order-Disorder Reaction. 

As mentioned in section 4.5.1, the character of the metastable 

AI-rich solid solution (a) - Al3Li (a') system has generated some 

controversy in the literature [77J. The large concentration difference 

between the a and a' phases found experimentally between room 

temperature and 620 K, has led some investigators to propose the 

existence of a eutectoid reaction in this region. Thus, in order to 

clarify the topology of the phase diagram, we have used the energy 

parameters of Table 4.6 to investigate the metastable equilibrium 

between the a and a' phases. 

We recall from previous sections that the energy parameters of the 

a and a' phases have been assumed to be the same and that the 
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Table 11.1 

Calculated and experimental enthalpies and entropies of formation of 
the AlLi phase (6) at the equiatomic concentration. 

ENTHALPY OF FORMATION ENTROPY OF FORMATION 

(kcal/g-at.) (cal/g-at. K) 

Experimental Present work Experimental Present Work 

-5.17 [70J -5.16 -2.46 [70J -2.54 

-5.2 [83J -2.54 [83J 

Table 11.8 

Calculated and experimental free energies of the AlLi phase (6) at 
different temperatures. 

TEMPERATURE FREE ENERGY 
(K) (kcal/g-at. ) 

experimental present work 

573 -3.74 [83J -3.10 

623 -3.62 [83J -3.57 

653 -3.55 [83J -3.49 

688 -3.49 [70J -3.39 
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experimental a' solvus concentration (7.6 at% Li) at 508 K [73J has 

been used to evaluate these parameters. This particular equilibrium 

concentration has been retained among others because it agrees very 

well with the a' solvus concentration determined by Noble and Thomson 

at 527 K [72J. 

The effective pair interaction V, plays a key role in the 

modelling of the metastable (a -) a') ordering reaction. Although the 

calculated a-a' two-phase boundary depends on the values of the random 

energy coefficients and on the value of the effective pair interaction 

(V,), the enthalpy of the ordering reaction (a -) a') at a fixed 

concentration depends only on the value of the effective pair 

interaction~ The value of V, calculated from the critical temperature 

given in Ref.[85J has been therefore tested by comparing the 

calculated ordering enthalpy (0.43 kcal/g-at.) of the a phase (with 25 

at.% Li) at 473 K with the estimated ordering enthalpy (0.44 

kcal/g-at.) of Nozato and Nakai based on Differential Thermal Analysis 

[76J. The agreement is quite satisfactory considering the 

approximations involved in the evaluation of Ref.[76J. 

The calculated metastable a-a' two-phase boundaries are shown in 

Fig.(4.11). Due to their metastable character, they fall inside the 

a-B two-phase region. Good agreement is obtained above 500 K between 

the calculated and experimental [72,73J a-a' solvus concentrations; 

below 500 K however, the calculated a-a' two-phase region is wider 

than estimated by Ceresara et al. [75J using low-angle X-ray 

scattering measurements. At present it remains unclear whether the 
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discrepancies are due to deficiencies in the model or to errors in the 

interpretation and analysis of the low-angle X-ray scattering 

measurements. The behavior of the two phase-region is explained within 

our thermodynamic description by the tendency of the a solid solution 

to segregate below 400 K. This extra level of metastability is the 

subject of the next subsection. 

4.5.8 Metastable Miscibility Gap Within The a Phase. 

Our model predicts the existence of a metastable miscibilitr gap 

below 400 K for AI-Li fcc solutions containing small amounts of 

Lithium. The computed miscibility gap is shown in Fig.(4.12). This 

segregation tendency is metastable relative to the a~e and a-a' 

equilibria. Consequently the miscibility gap falls inside the a-a' 

two-phase region. This result indicates that AI-Li alloys with small 

concentrations of Lithium and quenched sufficiently fast, may be 

expected to segregate and form characteristic Guinier-Preston zones. 

To the author's best knowledge, such a microstructure has not yet been 

observed. However, an endothermic reaction occurring in the same range 

of temperature and concentration has been reported by several 

investigators using differential thermal analysis [76,88-89J. 

Balmuth has attributed this reaction to the retrogression of fine 

Al3Li precipitates [88J. Conversely Nozato and Nakai have interpreted 

the endothermic reaction to be due to a clustering reaction [76J. Our 

calculation supports the latter interpretation. Using differential 

scanning calorimetry, Papazian, Sigli, and Sanchez [89J have plotted 
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the observed dissolution peak temperatures as a function of the 

lithium content of the alloy. As can be seen in Fig.(4.13), the 

observed peak temperatures agree well with the miscibility gap 

predicted in the present analysis [89J. 
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4.6 Conclusions of the Phenomenological Approach 

A phenomenological model which allows the calculation of 

thermodynamic potentials and phase diagrams is a very valuable tool 

to extrapolate the available experimental data and to have a global 

thermodynamic picture of a given system. In the first part of this 

thesis, we have presented a phenomenological model that describes the 

free energy function in terms of physically meaningful contributions. 

Emphasis is put on the description of SRO in binary alloys by means of 

the cluster variation method. The contributions to the free energy are 

the lattice stability energies of the pure elements, the random alloy 

enthalpy of formation, the ordering energy, the configurational 

entropy, and the vibrational entropy of formation. It must be 

emphasized here that this thesis work represents the first application 

of the CVM to the thermodynamic investigation of real alloys. 

The model has been applied successfully to analyze the Ni-AI, the 

Ni-Cr, and the more complex AI-Li system. It can be noticed that a 

relatively small number of selected experimental data is needed as 

input in the calculations. In the case of the AI-Li system, for 

example, 11 points in the phase diagram and three thermodynamic 

potentials have been used to determine the 19 energy parameters 

entering the model. We were then able to calculate the equilibrium 

Al-Li phase diagram and to investigate the metastable equilibrium 

between the AI-rich fcc solid solution and the AI
3
Li. More remarkably, 

our model predicts a segregation tendency in the AI-Li system which 

seems to be confirmed by experiments [89J. 
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A promising extension of this thesis work is to apply the free 

energy formalism to multicomponent alloys. The approach woulq consist 

in analyzing, first, all the possible binary alloys following the 

procedure described in this thesis. From the analysis, one can 

extract the energy parameters needed for the description of the 

multicomponent alloy. Such calculations would be of particular 

interest to the metallurgical field because very little is known 

experimentally about the thermodynamics and phase diagrams of 

multicomponent alloys. 
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5. A MICROSCOPIC THEORY FOR THE ENTHALPY OF FORMATION OF TRANSITION 

METAL ALLOYS. 

5.1 Introduction 

As demonstrated in previous chapters, the prediction of a phase 

diagram is a difficult task involving the calculation of all the 

contributions to the free energy, namely the free energy of the pure 

elements, the random alloy enthalpy of formation, the ordering energy, 

the configurational entropy, and finally, the vibrational entropy of 

formation. We will not attempt in this thesis to calculate all these 

terms from first-principles. Rather, we would like to focus our 

attention on the modeling of the enthalpy of formation, and test the 

feasibility of making quantitative predictions about the enthalpy of 

formation of transition metal alloys within the tight binding 

formalism. 

The transition metals have been chosen for this analysis because 

their cohesive energy is dominated by the outer shell d-electrons 

[36,93J which are characterized by localized orbitals. These localized 

orbitals, in turn, provide an adequate basis for a tight-binding 

description of the alloy Hamiltonian [36,90-95J. An extension of the 

model including s-, p-, and f-electrons would allow, however, the 

calculation of 6Hf for alloys of non-transition metals. 

In what follows, we present a microscopic theory based on a 

tight binding Hamiltonian for the calculation of ~Hf' In particular we 
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describe: 

-1) The model tight-binding Hamiltonian used to fit the band 

structures of pure metals. 

-2) The recursion method used to compute the density of states (or 

more precisely the Green function) of the pure elements. 

-3) The Coherent Potential Approximation used to determine the energy 

of formation of random transition metal alloys. 

-4) and finally, The General Perturbation Method used to calculate the 

effective pair interactions. 

Following a description of the microscopic theory we present, in 

section 6, the results obtained for some transition metal alloys. 

5.2 Tight-Binding Approximation For Pure Metals 

In the one-electron approximation, the Hamiltonian can be written 

as: 

(58) 

where m is the mass of the electron, h is the Planck's constant, and 

V is the self-consistent Hartree-Fock potential that includes the 

ionic Coulomb potential and the potential arising from the Coulomb 

electron-electron interaction. In the tight-binding approximation, V 

is written as a sum of atomic potentials Vi centered at each lattice 

site i, 



i 
LV. 

1 
(59 ) v 

and the eigenvectors of the Hamiltonian, \$ >, are written as a linear 
n . _ 

combination of atomic orbitals (LeAD) \ q,kA > centered at site k: . 

(60 ) 

where A distinguishes between orbitals centered at the same site k. 

In order to calculate the enthalpy of formation of transition 

metal alloys, we neglect the contribution of the core electrons ~frozen 

core approximation) and consider only the valence electrons, here the 

electrons belonging to the (n-1)d shell and the (n)s shell. In a tight 

binding picture, these valence electrons give rise to a narrow d-band 

crossed by a wide s-band. In this study, we neglect the hybridization 

between these two bands and consider only the d-electrons in the 

calculation of bHf • This approximation has been shown to explain, at 

least qualitatively, the physical properties of transition metal 

alloys [36,90-95J. 

Accordingly, we consider in Eq.(60) 5 atomic d-orbitals per 

lattice site (A = 1, 2, 3, 4, 5). In addition these orbitals are 

chosen such that they verify the orthogonality relationship: 

(61) 

We recall here that, unlike s~orbitals, d-orbitals are not spherically 

symmetric and possess different symmetries depending on the value of 

the orbital quantum number ml associated with them: 
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m =0 
1 

has the symmetry 

m =+1 1 - has the symmetry 

m =+2 1 - has the symmetry 

of 3z 2-r2 

of xy, yz 

of x2_y2 

(A 

(" 

,xy (A 

1) 

2, 3) 

4, 5) 

In this basis of atomic orbitals, the Hamiltonian is written as: 

where 

6 .. \ =L <4>. I Vk I <p.\ > Jjl,l/\ k Jjl 1/\ 

(62) 

(63) 

(64) 

For a pure metal, £lA is the same for all sites and is just 

orbital dependent. If, in addition, we neglect the orbital dependence 

of £1A' then the unique on-site energy EO is the center of gravity of 

the d-band. Concerning the hopping integrals, the three center 

integrals of the 

center integrals 

type <<piAl Vk I<pjjl> are much smaller than the two 

<<p. I V. I<p.\) and are neglected. In general, for the 
Jjl J 1/\ 

FCC lattice, only first nearest neighbor hopping integrals are kept in 

the summation of Eq.(62) (i.e. i and j are first nearest neighbor 

sites), whereas for the BCC lattice both first and second nearest 

neighbor hopping integrals are used. 

Still, for a given transition metal, the number of hopping 

integrals to be evaluated seems to remain very large. However, Slater 

and Koster have shown [96J that the two center integrals, involving 
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sites i and j, can be expressed as a function of the direction cosines 

-+ -+ 
of Cri-rj ), and three independent integrals ddOCdij), dd~(dij) and 

ddoCd .. ), where d .. is the distance between sites i and j. This result 
~J ~J 

is obtained by first considering the hopping integrals e?, . for 
~A ,Jp 

sites i and j sitting along the z axis. In a basis given by five 

orbitals having d symmetry, the matrix 8?, . is then diagonal: 
~A,JP 

e? 
~ 3z2-r2, j 3z2-r 2 ddo (dij ) 

8~ xz j xz dd~ Cdij ) ~ , 
e~ yz j yz dd~ Cdij ) ~ , 
8~ xy j xy2 ddo (dij ) ~ , 
8~ x2_y2 j x2_y2 ddo (dij ) ~ , 

and the following inequalities hold true: 

ddo (dij ) ~ 0 

dd~ (dij ) {; 0 

ddo (dij ) ~ 0 

(65 ) 

(66) 

(67) 

(68) 

(69 ) 

(70 ) 

(71) 

(72 ) 

For an arbitrary bond direction (i-j), the expression for 8., . is 
lA ,J]..l 

obtained by applying a rotational operation that brings the axis oz on 

the direction (i-j). 

The contribution (ET) of the d-electrons to the total energy of a 

pure metal is obtained by adding to the one electron energy E, , the -e 

Coulomb ion-ion energy (E. . ), and subtracting the intra- and lon-Ion 

inter-atomic electron-electron energies (Eintra and Eenter) that 
e-e e-e 

are counted twice in E'_e: 

E, - Eintra - Einter + E. . 
-e e-e e-e lon-Ion 
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The one-electron total energy (E 1 ) is simply given by -e 

integrating up to the Fermi energy Ef the density of states of the 

d-band (pO(E)) multiplied by the energy E: 

E 1-e paCE) E dE 

If we assume that all the d-orbitals on a given site are equally 

occupied with no spin ordering, the intra-atomic electron-electron 

energy (per atom) can be approximated by [26,28,31]: 

with 

u = (9 U - 4 J)/10 

(74) 

(75 ) 

(76 ) 

In Eq.(75-76), nO is the number of d-electrons per atom, whereas U and 

J are the direct and exchange integrals defined as: 

.... .... { -+ .... 1 .... .... 
<$iA Crl) $ip Cr2)\ (1/2) e Z I\r,-r 2\ f l$iA(r2) $ip(r,»= U+J ('-6 Ap ) 

(78) 

.... .... 
where e is the charge of the electron, and where r, and r 2 refer to 

the coordinates of electrons "," and "2". 

To evaluate the inter-site electron-electron interaction we assume 

that d-electrons are spherically distributed around the atoms and 

neglect quadrupolar effects. The following expression is then obtained 

[29] : 
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Einter= 
e-e [e 2 /(2£* N)] L 

i,j 
( -n?) (-n ~ ) / d. . 

1 J lJ 
(79 ) 

where £* is the dielectric constant of the medium, N is the total 

number of lattice sites, and n? is the number of d-electrons on site 
1 

i. 

The Coulomb ion-ion interaction is given by a similar expression: 

E~nte~ 
lon-ion [e 2 /(2£* N)] L Zi Zj/d ij i,j 

where Z. is the charge of an ion on site i. In the case of a pure 
1 

metal, we have {z.=n?=nO}, and Eq.(73) reduces to: 
1 1 

(80) 

(81) 

A value of u equal to 3 eV (per electron) (see for example Ref.[97J) 

is taken for all transition elements. 
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5.3 Density of states of The pure Metals The Recursion Method 

5.3.1 Density of States, Local Density of States and Green's 

Function 

The concept of local density of states was introduced by Friedel 

[98J in order to describe the electronic structure of non~periodic 

solids such as disordered alloys. If IE } is the set of eigenvalues 
n 

of the one-electron Hamiltonian, the local density of states on site i 

and for the orbital X can be written as: 

(82) 

* where aiX is defined by Eq.(60), aiX is the complex conjugate of 

aiX ' and where o(E-En) is a delta function centered at En' The local 

density of states (per orbital) on site i is then given by: 

(1/5) L PiA (E) 
X 

and the total density of states (per orbital and per point) is the 

average over the N lattice sites: 

peE) = (1/5N) L PiCE) 
i 

(84) 

Note that, in the case of a pure metal, the local density of states, 

Pi (E), is the same for all sites. In order to calculate the density of 

states, it is convenient to rewrite Eq.(82-84) in terms of the Green's 

function G(z) [99J defined as: 
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G(z) -1 
(z - H) (85) 

where z is a complex number and H is the Hamiltonian of the system. It 

can be shown that <~IG(z)I~> is an Herglotz function. i.e. 

Im{<~IG(z)I~>} < 0 when Im(z»O. and Im{<~IG(z)I~>} > 0 when Im(z)<O. 

If {~n} is the set of eigenvectors corresponding to the set of 

eigenvalues {E }. the Green's function can be expressed using the 
n 

equation: 

G(z) = L {1/(z-E ) } 
n I~ ><~ I n n 

n 
or 

Using the definition of the delta function, namely. 

(86) 

(87) 

{O(E-En ) = -(1/~) lim + Im{ 1/(E+in-E ) } }, the following identity 
n->O n 

is obtained: 

(-1/~) lim + Im<$kA I G(E+in) l$kA> 
n->O 

or 

(-1/~) lim + Im<$kA I G(E+in) l$kA> 
n->O 

(89) 

In order to determine the local density of states PkA of a pure 

metal, we have used Eq.(89) and the recursion method for the 

calculation of the Green's function. The recursion method has been 

chosen over a reciprocal space integration, because of its wide 

potential applications in material science. Indeed, the recursion 

method applies naturally to non periodic systems such as non 

crystalline solids, surfaces, impurities [100J ••.• , whereas k-space 

calculations require a periodic lattice. 
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5.3.2 The Recursion Method 

The recursion method [36,100-105J consists in constructing 'from 

the LCAO orthogonal basis {1~iA>}' a new orthogonal basis {I~k>' k =1, 

2, ••• } where the tight binding Hamiltonian matrix, (H), is 

tridiagonal: 

a
1 b1 0 0 

b1 a2 b2 0 

(H) = 0 b
2 

a
3 

b
3 

(90) 

0 0 b
3 

a 4 

If 1~1> is made equal to ~iA' it can be shown [36,100-105J, that the 

Green's function of this Hamiltonian is given by the continued 

fraction: 

z - a, - ~l~ ____________ _ 

z - a
2 

- ~g~ __________ _ 

z - a3 - ••• (91) 

In order to apply Eq.(91), it is necessary to calculate the series 

{a } and {b }. In what follows we present an efficient method, n n 

referred to as the recursion method, that allows the calculation of 

the coefficients {a } and {b }. 
n n . 

The first step of the recursion method consists in choosing an initial 
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vector 1~1>' The local density of states at site 1 having the 

character A ( P1A (E) ) is obtained by making 1~1> equal l~lA>' The 

value of a, is then given by: 

(92) 

1~2> is obtained in two steps. A vector 1~2> is constructed such that 

it is orthogonal to I~,>, and then normalized: 

I ~? H "I ~, > - a 1 I ~1 > 

1~2> 1~2> / {<~21~2>1/2} 

Finally the off-diagonal element of H, bl=<~2IHI~,>, is given by: 

b 2 , <~21 H 1~1> 

<~' I~' > 2 2 

(94) 

(95) 

(96 ) 

At the level n of the recursion method we know, from previous steps, 

the values of {a" a2, .~.an-l}' {b1, b2, ~ •• bn--l} and the vectors 

(I~n-l>' I~n»~ The matrix elements, an and bn , and the vector I~n+l> 

are calculated using: 

an = <~nl H I~n> 

I~~+,> = H I~n> - bn- 1 I~n-l> -- an I~n> 

I > I I / {< I I I >1/ 2} ~n+l ~n+l > ~n+l ~n+l " 

bn
2 <~~+1 I H I~n> 

<rl I rl > "n+l "n+l 

(97) 

(98) 

(99 ) 

(100 ) 

(101 ) 

The new vectors I~i> are characterized by their coordinates in the 

LCAO basis l~iA>' i.e. by a matrix (ciA) where i refers to the 

different lattice sites and A refers to the 5 d-orbitals on each site. 

The number 1 is attributed to the site on which the orbital l~l>=I~'A> 

is centered. To optimize the usage of computer memory, one can notice 
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that l~n+1> has coordinates (ciA) equal to zero when the corresponding 

site i cannot be reached from site 1 by less than n nearest-neighbor 

jumps in the case of an FCC lattice, and by less than n nearest-

neighbor or next nearest-neighbor jumps in the case of a BCC la'ttice. 

At the level n of the recursion, it is convenient to define the 

cluster that includes all the points that can be reached, from site 1, 

by less than n near-neighbor jumps for the FCC structure, and by less 

than n near-neighbor or next nearest neighbor jumps for a BCC 

structure. 

Considering the rapid growth of the cluster size with the number 

of levels and the limited amount of memory allocated in a computer, 

the continued fraction expansion must be truncated at a relatively low 

level N (usually 5 to 10). The corresponding density of states is then 

made of N delta functions [36,102J. In addition, it can be shown that 

a level H of the recursion guarantees that the 2N+l first moments of 

the density of states are reproduced exactly [36,100-104J. We recall 

here that the nth moment (~ ) of the density of states is defined by: 
n 

f En peE) dE (102) 

5.3.3 Termination of The Continued Fraction Expansion 

As mentioned in the previous sub-section, the density of states of 

a continued fraction truncated at level N is made of N delta 

functions. It is however possible to obtain a better description of 

the density of states by terminating the truncated continued fraction 

with a complex function L(Z) which approximates the higher level 
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contribution to the green function. 

z - a - b 2 1 _l __ ~ __________ _ 

- b 2 
N-l 

z - aN - I(z) 

where the exact form of the termination I(z) is given by: 

I(z) == 
b 2 

N 

z - a
N

+ 1 - bN+,2 
__________ .J. ____ _ 

('03 ) 

z - a -N+2 - (104) 

In the absence of band gaps, the coefficients {a.} and {b.} have been 
1 1 

shown to converge toward limits [105J, i.e. {lim a == a } and 
n .... )"" n "" 

{lim b == b }. If these limits have been reached at the level N of 
n "" n-)"" 

the recursion then a"" ==~ and b", ==bN- 1 ' and the termination I(z) 

verifies the identity: 

b 2 

I(z) '" (105 ) 
z - a - I(z) 

"" 
By solving this second order equation and retaining the root for which 

Im{G(z)} is negative when Im(z) is positive leads to the equation: 

I(z) == (1/2) { z - a - [ (z - a )2 .... 4 b 2 ]1/2 } 
'" '" "" 

(106 ) 

Note that {(-1hd lim 1m I(E+in)} describes a semi .... elliptical density + 
n-)O 

of states centered at a and of band width 4 b . As a result, 
"" "" 

truncating the continued fraction at level Nand terminating it by 

Eq.(106) is equivalent to embedding the cluster of level N in an 

effective medium characterized by a semi-elliptical density of 

states. 
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When the coefficients a and b have not converged at level N, n n 

some approximation must be made about the values of a and b • For 
~ 00 

arbitrary values of a~ and boo' the termination L(z) is a real number 

outside the interval I=[a -2b ,a +2b J, and so is the continued 
~ ~ ~ 00 

fraction except at some isolated energies corresponding to spurious 

delta functions in the density of states. Inside the interval I, L(z) 

has an imaginary part corresponding to a band of allowed energies. 

Accordingly, if b is underestimated, spurious delta functions are 
00 

obtained in the density of states between the real band limits and the 

interval I. If boo is overestimated then an artificially large band 

width is obtained. However, the additional tail introduced in the 

density of states has a very small spectral weight. A good compromise 

for the determination of am and boo has been proposed by Beer and 

Pettifor [106J, and consists in finding a and b such that density of 
00 00 

states corresponding to the terminated continued fraction has one 

delta function at the band edges E=aoo ±2bm, and no delta function 

outside the band. At the band edges, L(a ± 2 b ) is equal to ± band 
00 00 00 

the terminated continued fraction at level N is given by: 

1 
. . . ----------------

z-(a -a ) - b1
2 

1 00 

-----------~------

where z=2b • The truncated continued fraction given in Eq.(107) 
00 

describes the Hamiltonian: 

(107) 
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2112 b 
N-l 

-For a given a~, the density of states of this Hamiltonian is made of N 

delta functions which are located at the eigenvalues {A 1, A2, AN} 

of the Hamiltonian. In order to get a delta function at both band 

edges and no delta function outside the band, the value of a is 
~ 

varied until \MaX({A i })\ = \ min({A i }) I. Then {2b
oo

} is made equal to 

!Max(Oi})! or ! Min({A i }) I. 

In this thesis we have applied the recursion method to pure 

transition metals in the FCC or BCC structures (the density of states 

of the HCP structure is taken to be equal to that of the FCC 

structure, see section 5.4.2). The continued fraction is terminated 

at the fifth level (11 exact moments in the density of states) and the 

method of Beer and Pettifor is used to calculate a and b • 
~ 0:> 
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5.3.4 Off-diagonal elements of the Green's function 

As we shall see in section 5.7. the values of the off diagonal 

elements of the Green's function must be determined in order to' 

calculate effective pair interactions in the alloy (see Eq.(138) of 

section 5.7). 

The off diagonal element of the green function G., . =<~., IG(z) I~. > 
lA .JJ..I lA Jll 

can be calculated by using the recursion method three times in order 

to obtain the values of <~.,+~. IG(z)lcp.,+~. >. G., '" and G. _ • 
lA JJ..I lA JJ..I lA.1A JJ..I.Jll 

The following expression is then used: 

2 G., . = <~.,+~. I G(z) I<j>.,+~. > - (G., " + G .. ) 
lA .JJ..I lA JJ..I lA JJ..I lA .1A Jl.l.JJ..I 

(108 ) 



5.4 Choice of Tight Binding Parameters for Pure Metals 

The values of the on-site energy £0, and of the Slater-Koster 

parameters ddl (1 = cr, n, 8) are needed as input for the calculation 

of the density of states, whereas the number of d electrons nO is 

needed as input for the determination of the pure metal Fermi energy. 

5.4.1 On-site Energy £0 And Number of d-Electrons nO 

In general, it is difficult to determine the on-site energy of a 

pure metal from band structure calculations, since in such 

calculations, the zero of energy is not well defined and may vary from 

one element to another. This problem is usually circumvented by 

approximating the on-site energy of the d-band (£0) with the d-energy 

level of a free atom. It can be argued however that the electronic 

configuration of the atom in a metal is different from that of the 

2 Z-2 1 Z-l free atom which is s d or, for some elements, s d (see for 

example Ref.[107J). In fact, detailed band structure calculations have 

shown that the configuration of the atom in the metal is close to sl.3 

dZ-l~3 [108J, where Z is the total number of valence electrons. 

Following these results, we have used a number of d-electrons (nO) 

equal to (Z-1.3) for all transition metals. To evaluate £0 , we have 

1 Z-l taken the d-energy level of a free atom in the configuration s d 

calculated by Robbins [109J (see Table 5.1 and Fig.(5.1» and we have 

applied the following configuration correction (see section 5.6.1): 

o 
£ - u 0.3 (109) 
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Table 5.1 

Input parameters for the microscopic theory : d-band width Wd (in eV) 
[ljl]t_fnd tBe d-energy level of the free atom in the configuration 
(s d ) (E ) (in eV) [109]. The value of the number of d electrons 
(nO) as well as the corresponding Fermi energy (Ef) of the pure metal 
in the stable structure are also given for each atom. For all 
elements, a value of u=3 eV is used. 

Sc Ti V Cr l'1n Fe Co Ni Cu 

HCP HCP BCC BCC BCC HCP FCC FCC 
nO 1.7 2.7 3.7 4.7 6.7 7.7 8.7 9.7 

0 
-1. 51 -2~ 1 0 -2~63 -3.14 -4.07 -4.51 -4.93 -5.34 E 

Wd 5~ 13 6.08 6.77 6.56 4;82 4.35 3~78 2.80 

Ef -2.78 -3.24 -3.40 -2.88 -3.30 -3.54 -3.83 -4.39 

y Zr Nb Mo Tc Ru Rh Pd Ag 

HCP HCP BCC BCC HCP HCP HCP FCC FCC 
nO 1.7 2.7 3.7 4.7 5.7 6.7 7.7 8.7 9.7 

0 -1;77 -2.50 -3.22 -3.95 -4.68 -5.42 -6:17 -6.92 -7:68 E 

Wd 6.59 8~37 9.72 9.98 9~42 8:44 6.89 5.40 3~63 

Ef -3.40 -4.08 -4.35 -3.55 -3.91 -4.06 -4.53 -5.33 -6.47 

Hf Ta W Re Os Ir Pt Au 

HCP BCC BCC HCP HCP FCC FCC FCC 
nO 2.7 3.7 4.7 5.7 6.7 7.7 8.7 9.7 

0 
-2.18 -2.86 -3;56 -4.26 -4.98 -5.70 -6.44 -7. '8 £ 

Wd 9:56 11.12 11. 44 11.02 10.31 8.71 7.00 5~28 

Ef -3.97 -4.16 -3.10 -3.34 -3.34 -3.65 -4.36 -5.41 
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Input parameters for the microscopic theo,Y: z2,ener§y level 
of the free atoms in the configuration (s d ) (£ ) 
[109J, and d-band widths (Wd) [111J of the pure transition 
metals in their stable structures at a K. 
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The atomic energies, £0, were calculated [109J for relativistic atoms 

1 Z-l in the configuration s d ,with all d orbitals equally occupied, and 

no spin polarization. Exchange and correlations were included using 

the local-density functional calculated by Ceperley and Alder ['110J. A 

value of u equal to 3 eV is chosen for all elements. 

5.4.2 Slater-Koster Parameters 

As shown by Harrison [111J, the general form of the Slater~Koster 

parameters ddo(d .. ), dd~(d .. ) and dd6(d .. ) can be derived from the 
lJ lJ lJ 

Muffin Tin Orbital theory. The following expressions are obtained: 

(110) 

where the constants nddl (1 = 0, ~. 6) are the same for all transition 

metals, and where the length rd is characteristic of the pure element. 

This equation has the advantage of reducing the number of parameters 

characterizing the hopping integrals to only one parameter (rd) and to 

provide a law of variation with distance for the hopping integrals. 

The inter-atomic distances d .. between different sites are taken 
lJ 

to be the equilibrium ones at room temperature. The temperature 

dependence of the inter-atomic distance is neglected in this analysis. 

The approximation in question has not noticeable effect in our final 

results since we are interested in calculating the alloy enthalpy of 

formation, i.e. the difference between the total energy of the alloy 

and the total energies of the pure elements weighted by their 

concentrations. It must be emphasized, however, that the effect of 
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thermal expansion on total energies is not negligible, although it 

virtually cancels out in the calculation of the alloy enthalpy of 

formation. 

In order to obtain the values of the constants nddm , Harrison has 

fitted the band structure of BCC chromium calculated by Mattheiss 

[112J. To do so, the on-site energy £0 of the Hamiltonian was assumed 

independent of the symmetry of the d-orbitals. In addition,first and 

second nearest neighbor hopping integrals were included in the 

Hamiltonian of BCC Chromium and were used together with Eq.(110)- to 

fit the special points lying at the center of the Brillouin zone 

(k=2~/a (000» and at the edge of the Brillouin zone (k=2~/a (100». 

In this fitting procedure, the value of ddo(d .. ) is always very small 
~J 

in magnitude [36,11~] and was taken equal to zero. The constants nddm 

proposed by Harrison to fit the band structure of BCC chromium are: 

-16.2 

8.75 

o 

These values are assumed to be the same for all elements and 

(111 ) 

( 112) 

(113 ) 

structures. Harrison has obtained the values of rd [111J by 

reproducing the band widths predicted by Andersen and Jepsen [113J 

which are presented in Table 5.1 as well as in Fig.(5.1). 

In the BCC structure the d-band width is given by [111J: 

(114) 
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whereas for the FCC structure Wd is given by: 

(115 ) 

Assuming only first nearest neighbor hopping integrals in the 

Hamiltonian, it can be shown that the first three moments of the 

density of states of an HC? structure are respectively equal to the 

first three moments of an FCC structure [36J. Therefore, in order to 

simplify the calculations we will neglect the difference between 

higher moments for the density of states in the He? and FCC 

structures. 
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5.5 Choice of Tight Binding Parameters for Alloys 

In a binary alloy, a given lattice site can be occupied by either 

an A or a B atom and the on-site energy will equal, respectively, £A 

or £B. This type of disorder is referred to as diagonal disorder. 

Another type of disorder is also present in the alloy and is called 

off~diagonal disorder, corresponding to the fact that the hopping 

integrals can now be of different types, i.e. BAA,Ap' BAA,B~ or 

BBA ,Bp • 

When alloying the pure metals A and B, a certain amount of charge 

transfer takes place between atom A and B. If the Fermi energy of 

metal A is lower than the Fermi energy of metal B, charge transfer 

occurs from B to A. We define here the charge transfer on atom i (~ni) 

as the difference between the numbers of d-electrons on atom "i" 

in the alloy (n.) and in the pure metal "i" (n?): 
1 1 

( 116) 

Any charge transfer changes the self-consistent site potentials 

Vier). In general, a change in the site potentials ~Vi(r) implies a 

change in the on~site energies (£1' i= A,B) and a change in the 

hopping integrals (see Eqs.(63-64)). For Simplicity, we will assume 

that charge transfer affects only the on~5ite energies. 

For a random alloy, the on-site energy is affected by charge 
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transfer through the intra~atomic electron-electron interactions only 

[29J. However, when SRO is present in the alloy, the on-site energy £i 

should also be affected by the inter~atomic electron-electron 

interactions. This second effect on £. has also been neglected 'in the 
1 

present study. The change of the on-site energy (£i) due to a 

charge transfer (~n.) is then given by [31J: 
1 

£ • 
1 

The new on-sites energies will, in turn, define a new charge 

( 117) 

transfer which will change £A and £B ••• The process must be iterated 

until the Hartree-Fock electronic self-consistency is obtained. Note 

that the charge transfers on A and B are not independent and are 

related by the equation: 

(118 ) 

5.5.2 Slater-Koster Parameters 

In general, the inter..:-atomic distance between two "i" (i = A,B) 

atoms in the alloy is a function of their local environment. We have 

assumed here that, on the average, the inter-atomic distance between 

two "i" atoms is the same in the alloy and in the pure metal "i". This 

approximation implies, in turn, that the Slater-Koster Parameters 

between two "i" atoms are the same in the alloy and in pure metal "i". 

Concerning now the Slater-Koster parameters between A and B atoms, 

the Muffin Tin theory predicts that they should scale as the 

geometrical mean of those of pure A and pure B [111 ,113J: 
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( 119) 

where sddl is the sign of the Slater-Koster parameter given by 

Eq.(70-72). This equation was first assumed by Shiba and is often 

referred to as the Shiba's approximation [114J. This result is of 

particular importance because it greatly simplifies the alloy 

electronic structure calculation. 

Indeed, we can now refer all the hopping integrals between A-A, 

A-B, and B-B atoms to the hopping integrals of a reference pure metal 

R of arbitrary band width WR [114,115J: 

8 A A , A 11 X A 8R A , R 11 X A 

8AA ,B11 XA 8RA ,R11 XB 

8BA ,B11 XB 8RA ,R11 XB 

where 

Xi = {ddl(d. )/ddl(d )}1/2 = (W./W )(1/2) 
~i RR ~ R . 

It is then possible to define an effective Green function, 

(120 ) 

(121 ) 

(122 ) 

(123 ) 

o G., . , which is related to the actual Green function G., . by the 
~A,J11 ~A,J11 

relation: 

o 
Gi . = X· G., . X

J
. A,J11 ~ ~A,J11 

o The effective Green function G., . corresponds to the effective 
~A , J 11 

Hamiltonian: 

where 

o e:. (E) 
~ 

E + (e:. - E)/X. 2 

~ ~ 

1iJ> . , >< 4>. I 
~A J11 

The new effective Hamiltonian H0 defined in Eq.(125) does not 

(124 ) 

(125 ) 

(126 ) 
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include any off-diagonal disorder, i.e. the hopping integrals are that 

of the reference metal R. This fact greatly simplifies the 

application of the coherent potential approximation to the calculation 

of the random alloy density of states. 
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5.6 Random Alloy Density of States Coherent Potential 

Approximation (CPA) 

The fundamental difficulty in calculating the density of states of 

a disordered alloy is the lack of translational periodicity which 

prevents the use of k-space integration techniques and makes the 

recursion method very cumbersome to use. Indeed, if we were to use the 

recursion method, we would have to apply the method to a very large 

number of alloy configurations and average their respective density of 

states. 

The idea of the CPA is to replace the actual random distribution 

of A and B atoms by a periodic system where each site is occupied by 

the same average atom. This system is referred to as the average CPA 

medium and is symbolically represented in Fig.(5.2.a). The average 

atom is characterized by an on-site energy 0, called the coherent 

potential, which is in general a complex number. 

The Hamiltonian HCPA of the CPA average medium is given by: 

HCPA = I 0 
i,A 

Icp,,><$, I 
1/\ Jll 

(127) 

To this Hamiltonian corresponds a Green's function which is equal to 

t t G (z-cr), where G (z) is the Green's function of the pure reference 

metal R (with £~=O). Gt(z) is calculated using the recursion method 

presented in section 5.3. 
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Fig. 5.2 

(a) 

(b) 

In the CPA. the ensemble of random alloys with all possible 
configurations of atoms (A, B) is represented by a periodic 
system with the average atom (shaded atom) at each site 
(Fig 5.2.a). The average atom is determined such that the 
scattering of an A or B atom surrounded by average atoms 
is, on the average, equal to zero (Fig 5.2.b). This 
represents the self-consistent condition of the CPA. 
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The coherent potential 0 is obtained self-consistently, by 

requiring that the scattering of an "i" atom (i = A, B) placed, for 

example, at the origin (0) of the CPA average medium is, on the 

average, equal to zero (Fig.(5.2.b): 

<t> = cA tA + cB tB = 0 

where the scattering element t. (i= A,B) is related to the 
1 

( 128) 

o 0 perturbation of the on-site energy at the origin, ~Ei= Ei-o, by the 

relation: 

and where we have used the notation: 

G (z) 
00 

1/5 l: <cp \1 G(z) Icp \> 
A 01\ 01\ 

( 129) 

( 130) 

Equation (128) represents the self-consistent condition of the CPA. 

It is conveniently written under the form: 

( 131) 

and is used to find 0 through an iteration procedure at each energy E. 

The projected Green's function on an "i" atom is then calculated using 

the identity: 

( 132) 

and the actual projected Green's function is expressed as (see 

Eq. ( 124) ) : 

( 133) 
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The one-electron energy of the random alloy is obtained by integrating 

the energy multiplied by the density of states of the random alloy 

(p(E)). Note that peE) is expressed as: 

(134) 

The random alloy enthalpy of formation is then calculated using: 

Erand = EallOY - xA EA - xB EB (135) 

where the total energy of the alloy EallOY is obtained by subtracting 

form the one-electron energy the intra-atomic electron-electron energy: 

E alloy 

5.7 Effective Pair Interactions: the Generalized Perturbation 

Method (GPM) 

(136) 

The GPM has been proposed and developed by Gautier, Ducastelle, 

and co-workers [33-36,115J in order to calculate effective pair 

interactions in transition metal alloys. In this method, the EPIs are 

obtained by perturbing the average CPA medium by fluctuations in 

concentration that deviate from randomness. We recall in this 

sub-section the basic results of the GPM. 

We will neglect in this thesis the effect of SRO on charge 

transfer. It can then be shown that the ordering energy per lattice 

point, Eord ' takes the form [33J: 

+ (1/2N) v (137) 
i,j 

where Td is the diagonal part of the scattering matrix (i.e. Td=(t i )), 
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N is the total number of lattice points, Tr stands for the operator 

"trace" , d is the nearest-neighbor distance, and V is equal to 

* (1/4w£ d). The first term in Eq.(137) defines a cluster expansion of 

the ordering energy where the terms for which p equals 2 correspond to 

pair terms, the terms for which p equals 3 correspond to triplet 

terms •.• The second term in Eq.(137) represents an electrostatic 

interactions between ions screened by their respective clouds of 

d-electrons. The net charge on each pseudo-atom i is ~ni' 

It has been shown [34J that the contributions of triplet an~ 

larger clusters to the ordering energy may, in most cases, be 

neglected. Accordingly, we will keep only the pair terms (p=2) in the 

first part of Eq.(137). The corresponding effective pair interactions 

Vij between sites i and j are then given by: 

= .... 
rEf 

11 ( 21f) 1m J dE 
-0:> 

+ V (d/ d .. ) ~ 2 1 4 ( 138) 
lJ 

where Gt(z) is the Green function of pure R (with £~=O), and ~ is 

defined as: 

(139 ) 

In this study, we have used the value of V (V=O.4 eV) adopted by 

Robbins and Falicov [116J. 

In the page 100, we give a flowchart of the microscopic theory 

that includes the input parameters of the theory (i.e. the results of 

calculations for the pure elements), the CPA self-consistency loop, 
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the electronic self-consistency loop, and finally the GPM. At the end 

of the process, the calculated random alloy enthalpy of formation 

(E d) and the EPIs (Vk) are obtained and can be input in the CVM to ran 

calculate the configurational entropy and the amount of SRO in the 

alloy, for a given concentration and temperature. 
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Pure transition metals 

* Tight Binding Hamiltonian 
* Slater-Koster and Harrison's approach 
* on-site energr:3d Z~Tr~y level of the 

free atom (s.· d .) 
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is made equal to zero:-) G (z) 

00 

> 

, 

__ ~I_- _---::--__ --:-__ _ 
calculation of the random 

alloy enthalpy of formation 

CPA self-consistency condition T 
----:---:---:--t~_ 

electronic self-consistency 

__ t __ _ 
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6.RESULTS OF THE MICROSCOPIC THEORY. 

6.1 Approximations in The Model And Range of Applicability_ 

The model presented in section 5 includes two approximations which 

limit its range of applicability among the transition metal alloys. 

Namely, we have neglected spin polarization effects and the 

contributions of s- and p-electrons in the calculation of the enthalpy 

of alloy formation. 

Since spin polarization is not included in our calculations, we 

will not consider alloys of Iron, Cobalt, and Manganese. For these 

systems, the calculations of Moruzzi and co-workers [117J have shown 

that the predicted lattice parameters change noticeably when spin 

polarization effects are taken into account. As a result, the A-A (A = 

Fe, Co, Mn) inter-atomic distance in a paramagnetic alloy is expected 

to be different from that in the (magnetic) pure metals. Consequently, 

the assumption made in section 5.5.2 that the average A-A inter-atomic 

distance is the same in the pure metal and in the alloy is not 

expected to be valid. Our model should provide, however, reasonable 

results for the other magnetic transition metals, FCC-Ni and BCC-Cr, 

since the calculations of Moruzzi and co-workers [117J show that the 

lattice parameter can be accurately predicted when spin polarization 

effects are neglected. 

The contribution of s- and p-electrons to the enthalpy of 

formation is expected to be negligible for alloys with almost 
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half-filled d-bands since, in that case, the d-bonding contribution to 

the total energy is maximum [93J. We will study BCC~alloys obtained by 

mixing elements belonging to the VB and VIB columns in the periodic 

table (V, Nb, Ta, Cr, Mo, and W). At the equiatomic concentration, 

these alloys have an average number of d-electrons equal to 3.7, 4.2, 

or 4.7. We will also study the enthalpy of formation of alloys 

obtained by mixing the hexagonal metals, Ti, Zr, and Hf with the FCC 

metals, Ni, Pd, and Pt. At the equiatomic concentration, the number 

of d-electrons of these alloys is equal to 5.7. Note that, as 

mentioned in section 5.4.2, the density of states of the HCP structure 

will be approximated by that of the FCC structure with the same 

nearest neighbor distance. 

6.2 Results For BCC Alloys [118J 

6.2.1 Random Alloys 

The enthalpies of formation predicted for the selected BCC-alloys 

are summarized in Fig.(6.1). The results are given for random 

equiatomic alloys and are compared with available high temperature 

measurements made in the disordered BCC-solid solution [119-123J. As 

can be seen, a very good agreement between theory and experiment 

[119-121J is obtained for the Cr-Mo, Mo-Nb, and Mo-Ta alloys. 

Discrepancies are obtained for the Cr-V and Ta-W systems. Note however 

that the experimental data reported in Ref.[122J for the Cr-V system 

are very inaccurate and have an estimated experimental error which is 

four times larger than the experimental data themselves. Concerning 
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Cr ALLOYS Mo ALLOYS W ALLOYS 

\ 
V NbTa CrMa W V NbTa CrMaW V NbTa CrMo W 

V ALLOYS Nb ALLOYS To ALLOYS 

V NbTa CrMa W V NbTa CrMa W V NbTa CrMa W 

Random alloy enthalpies of formation calculated for the 
equiatomic BCC binary alloys. The binary alloys considered 
are obtained by mixing Cr, Mo, W, V, Nb and Ta (0). 
Available experimental data are indicated by crosses with 
error bars. 
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the Ta-W system, our result is about twice as large as the only 

available measurement [123J. 

In our model, the enthalpy of formation of a random alloy (AB) 

depends on three parameters characterizing the pure elements: the 

diagonal disorder (~£=£1-£~)' the off-diagonal disorder (~W=WA-WB)' 

and the difference in the number of d electrons between A and B 

(~n=n1-n~). Note that the two other input parameters, the effective 

intra-atomic Coulomb integral (u) and the inter-atomic potential 

(V), are fixed and are equal to 3 eV and 0.4 eV respectively. The 

diagonal disorder and the difference in the number of d*electrons 

represent negative contributions to the enthalpy of formation, whereas 

the off-diagonal disorder represents a positive contribution to the 

enthalpy of formation. 

Off-diagonal disorder and the self-consistent effect of charge 

transfer have often been assumed to contribute negligibly to the 

enthalpy of formation. Our results indicate, however, that both 

effects are as important as that of diagonal disorder. To illustrate 

this pOint, the enthalpy of formation of the random Cr-Mo alloy has 

been calculated at the equiatomic concentration neglecting electronic 

self-consistency and off-diagonal disorder effects. A value of -0.137 

eV was then obtained for Erand • The negative Sign of Erand indicates 

an ordering tendency in the Cr-Mo system which is contrary to 

experiment [119J. By including electronic self-consistency in the 

calculation but still neglecting off-diagonal disorder effects, we 

obtained a value of E d equal to 0.016 eVe In this case, the sign is ran 
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consistent with experiment but the calculation is in poor quantitative 

agreement with the experimental measurement of 0.075±0.010 eV reported 

in Ref.[119J. Finally if both effects are taken into account, a value 

for E d of 0.062 eV is obtained and is in fair agreement with ran 

experiment. 

The effect of off-diagonal disorder can be clearly seen in 

Fig.(6.1) in the case of Chromium alloyed with Molybdenum or Tungsten. 

The positive value obtained for the enthalpy of formation is explained 

by the dominant effect of ~W (see Table 5.1). The increase in E - d ran 

from Cr-Mo to Cr-W is due to an increase in off-diagonal disorder (and 

a small decrease in diagonal disorder). The ~n effect can be seen by 

considering, for example, the Cr-Nb system for which there is nearly 

no diagonal disorder and a noticeable off-diagonal disorder. The 

negative sign obtained for E d is explained by the fact that the ran 

difference in the number of d-electrons (~n) offsets the positive 

contribution arising from the difference in band-width (~W). With 

reference to Fig.(6.1), we can distinguish a family of alloys for 

which ~n=O, and a family of alloys for which ~=±1 (alloys in a family 

are connected by a solid line in Fig.(6.1». As expected, we see from 

the figure that the enthalpies of formation for alloys with ~=±1 are 

systematically lower than for alloys with ~n=O. 

There have been some attempts in the literature [90-92J to use the 

tight-binding model in order to fit directly experimental enthalpies 

of formation. This procedure is to be distinguished from the one used 

in this thesis where the input parameters of the model are the results 
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of pure element ab-initio calculations. For example, Colinet, 

Pasturel, and Hicter (CPH) [91J have used a tight-binding Hamiltonian 

to calculate the enthalpy of formation of random transition meh-al 

alloys by reproducing only the first two moments of the density of 

states. These authors took into account intra-atomic electron-electron 

interactions using a value of the effective Coulomb integral u equal 

to 6 eV. The input parameters of their model (i.e. on-site energies 

and band widths) were obtained by fitting available experimental 

enthalpies of formation. The band widths obtained by their fitting 

procedure are compared in Fig.(6.2) with Andersen's and Jepsen's 

predictions which are used in the present work. The striking 

discrepancies which are observed between CPH's and Andersen's band 

widths cast some doubts about the overall physical meaning of the 

fitting procedure developed by CPH. 

Watson and Bennett (WB) [90,92J have used a square-band model to 

calculate the enthalpy of transition metal alloys at the equiatomic 

concentration. They have estimated d on~site energies from first 

principle calculation [90J and have obtained d-band fillings and 

d-band widths by fitting a large set of experimental enthalpies of 

formation. The fitted band-width of BW are in general agreement with 

Andersen's and Jepsen's predictions (see Fig.(6.3». Nevertheless, 

significant discrepancies remain. 

In Table 6.1, we compare our results with the data obtained by CPH 

[91J and BW (BWl [90J & BW2 [92J). As can be seen CPH and BW fail to 

reproduce the segregation tendency observed experimentally in the 
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values are used as input parameters in the present work. 
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Table 6.1 

Comparison of the present work's results, with the results of BW 
[90,92J and CPH [91J, and with the experimental results. The 
comparison is made for those bcc alloys which have an experimental 
enthalpy of formation or phase diagram information. All enthalpies are 
given in eV at the equiatomic concentration. 

ALLOY EXPERIMENTAL PHASE D I AGR AM PRESENT BWl BW2 CPH 
ENTHALPY INFORMATION WORK [90] [92] [91] 

Erand 

Cr .... Mo +0.075 Miscibili ty +0.062 -0.014 0.006 0.0 
Gap below 1200 K 

[119J [119] 

Miscibility 
Cr-W -------- Gap below 1950 K+O.151 0.001 -0.02 0.0 

[124] 

Mo-Nb -0.097 Solid Solution -0.102 -0.023 -0.03 -0.031 
[120J above 1200 K 

Mo-Ta -0.110 Solid solution -0.110 -0.027 -0.05 +0.010 
[121 J above 1200 K 

Ta-W -0.069 Solid solution -0.121 -0.026 -0.09 +0.021 
[123J above 1200 K 

Cr-V -0.02 ? Solid solution -0.070 -0.020 -0.01 +0.010 
[122J above 1200 K 
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Cr-Mo and the Cr-W alloys. Concerning the ordering systems (Mo-Nb, 

Mo-Ta, Ta-W) , our calculated enthalpies agree better with the 

experimental data than the results of BW or CPH. 

The observed discrepancies in the results of BW or CPH are 

explained by several flaws in their fitting procedure. In particular, 

they have neglected the ordering energy and proceeded to fit the 

experimental enthalpy of ordered phases with a random alloy enthalpy. 

They have also tried to reproduce experimental data which have large 

uncertainties. This explains the differences that can be seen io Table 

6.1 between the results of BW1 [90J and BW2 [92J. In Ref.[92J, Bennett 

and Watson have updated some of the experimental results used to 

calculate the input parameters of the model. The modification in the 

input parameters changes, in turn, the calculated enthalpies of 

formation. We can see in Table 6.1 that BW2 agrees slightly better 

with the experiment than BW1 does. Finally, BW and CPH have attempted 

to fit experimental measurements outside the range of applicability of 

the model: Fe-, Co-. or Mn-alloys. or alloys with a nearly empty or a 

nearly full band. 

6.2.2 Ordered phases and Short Range Order 

We present in Fig.(6.4) through Fig.(6.18) the calculated 

enthalpies of formation for the random alloy (E d) together with the ran 

first and second nearest neighbor pair interactions (V, and V2). It 

should be noted that the effective pair interactions (EPI) are almost 

concentration independent, due to the fact that ~n is small for this 
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set of alloys. At a given temperature and concentration, the random 

alloy enthalpy of formation and the EPIs can be input to the CVM in 

order to calculate the configurational entropy and the amount-of SRO 

in the alloy. Furthermore, if we neglect the vibrational entropy of 

formation, we can use the configurational entropy given by the CVM and 

calculate phase diagrams for the systems under consideration. We will 

discuss here the set of alloys for which experimental enthalpies of 

formation are available (i.e. Cr-Mo, Cr-V, Mo-Nb, Mo-Ta, Ta-W). The 

experimental data were obtained at high temperatures (above 1200 K) in 

the BCC solid solution. At these temperatures, our calculation 

indicates that the SRO contribution (i.e. the ordering energy) to the 

enthalpy of formation is approximately one tenth of E d' As explains ran 

below, the ordering energy becomes more significant at lower 

temperatures. 

The first nearest neighbor pair interaction (V1) is negative for 

the Cr-Mo system indicating a clustering tendency, whereas the sign of 

V1 for Mo-Nb, Mo-Ta, Cr-V, and Ta-W is positive indicating an ordering 

tendency. In fact, our model predicts the presence of a miscibility 

gap for Cr-Mo below 1310 K. This result is in fair agreement with the 

experimental results of Kubaschewski and Chart indicating the presence 

of a miscibility gap below 1200K. For the W-Ta, Ta-Mo, Mo-Nb, and Cr-V 

we predict the existence of a CsCl (B2) ordered phase below 920 K, 

1040 K, 800 K, and 590K respectively. These results are consistent 

with the complete solubility found in these alloys above 1200 K. To 

the author's best knowledge, however, no experimental evidence is 

currently available concerning the existence of a low temperature B2 



phase. 

Williams, Gelatt, and Moruzzi [125J have used the local density 

approximation together with a Muffin-Tin Hamiltonian in order to 

predict the enthalpy of formation of the MoNb compound in the CsCl 

structure. Our result (-146meV), obtained by adding E d (-102meV) ran 

and E d (-44meV), is in remarkable agreement with their calculation or 

(-152meV). Our analysis however enables us to describe the disordered 

phase and to calculate a disordering temperature (800 K) for the 

compound MoNb in the CsCl structure. Note that the ordering energy of 

MoNb (CsCl) represents an important contribution to the total enthalpy 

of formation (about one third). This observation emphasizes once more 

the important role played by SRO in the enthalpy of alloy formation. 
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Bee Cr-Mo system. The calculated enthalpy of formation for 
the random alloy (E d) is shown in full line together 
with the first and ~~ond nearest neighbor effective pair 
interactions (V1t V2). The experimental enthalpy of 
formation measured at 1471 K [119] is indicated by crosses 
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interactions (V" V2). 

114 



0.05,-----------------------------------------------~ 

0.04 

0.03 

0.02 

0.01 

O.OO~~--------------------------------------------~ 
-0.01 

"..... 

E -0.02 
o o -0.03 

;;:- -0.04 

..!. -0.05 

G -0.06 

ffi -0.07 
Z -0.08 w 

-0.09 

-0.10 
-0.11 

-0.12 

-0.13 

-0.14 

V2 x 3 

V1 x 4 

-0.15;---~----r_--~--~----r_--~--~----~--~--~ 

0.0 0.2 0.4 0.6 0.8 1.0 

CONCENTRATION OF Cr 

Fig. 6.6 BCC Cr-Ta system. The calculated enthalpy of formation for 
the random alloy (E d) is shown in full line together 
with the first and ~~gond nearest neighbor effective pair 
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BCC Cr-W system. The calculated enthalpy of formation for 
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with the first and ~~2ond nearest neighbor effective pair 
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BCG Mo-Nb system. The calculated enthalpy of formation for 
the random alloy (E . d) is shown in full line together 
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Fig. 6.10 Bee Mo-Ta system. The calculated enthalpy of formation for 
the random alloy (E d) is shown in full line together 
with the first and ~~gond nearest neighbor effective pair 
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BCC Mo-V system. The calculated enthalpy of formation for 
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BCe Mo-W system. The calculated enthalpy of formation for 
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Fig. 6.13 Bee Nb-Ta system. The calculated enthalpy of formation for 
the random alloy (E d) is shown in full line together 
with the first and ~~gond nearest neighbor effective pair 
interactions (V 1' V2). 
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BCC Nb-V system. The calculated enthalpy of formation for 
the random alloy (E d) is shown in full line together 
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Fig. 6.15 BCC Nb-W system. The calculated enthalpy of formation for 
the random alloy (E d) is shown in full line together 
with the first and ~~gond nearest neighbor effective pair 
interactions (V 1' V2). 
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BCC Ta-W system. The calculated enthalpy of formation for 
the random alloy (E d) is shown in full line together 
with the first and ~~gond nearest neighbor effective pair 
interactions (V1' V2). The experimental enthalpy of 
formation measured at 1200 K [123J is indicated by crosses 
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6.3 Results For The IVB-VIIIB Closed Packed (CP) Alloys 

The set of closed packed (FCC OR HCP) alloys we have studieu are 

the alloys obtained by mixing Ni, Pd, Pt (VIlIS elements), with Ti, 

Zr, Hf (IVS elements). We summarize in Fig.(6.19) the results obtained 

for the random alloys at the equiatomic concentration (squares in the 

plot). In the same figure, we also indicate the calculated enthalpy of 

formation of the perfectly ordered CuAu (Lla) structure (diamonds in 

the plots). For a given alloy, the difference in energy between a 

square and a diamond represents the maximum ordering energy that can 

be obtained using first nearest neighbors EPls only. Available 

experimental measurements of enthalpies of formation are indicated by 

crosses. One can notice that, for a given alloy, the scattering of the 

experimental data is generally larger than the ordering energy. Within 

this uncertainty, our results agree well with experiment. Note that 

the enthalpies of formation of these alloys are much more negative 

than that of the BCC-alloys presented in the last section. Within our 

model, this is well explained by the fact that the ~£ and ~n values 

for the CP alloys are larger than that for the BeC alloys studied in 

section 6.2. 

The Ni-alloys have a smaller diagonal disorder than Pt- or 

Pd-alloys (see Fig.(5.l». Accordingly, the enthalpies of formation 

calculated for the Ni-alloys are smaller than the ones calculated for 

the Pt- or Pd-alloys (see Fig.(6.19». The off-diagonal disorder 

effect is small but can still be seen when going from Ni-Ti, to Ni-Zr, 

to Ni~Hf where the increase in ~W is manifested by an increase in the 
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enthalpies of formation of the random and perfectly ordered alloys. 

We have plotted in Fig.(6.20) through Fig.(6.28) the entha,lpies 

of formation of the random alloys and the first nearest neighbor pair 

interactions (V1) as a function of concentration. The calculations are 

performed in the FCC structure. Results for the random alloy 

enthalpies are given in full lines. The calculated enthalpies for the 

ordered phases (CuAu (L10) and CU
3

AU (L1 2» are indicated by 

triangles, whereas the available experimental results are indicated by 

crosses. In general, the alloys under study have complex ordered 

structures at low temperatures, whereas our calculations are carried 

out in the FCC structure. Thus, our analysis and comparison with 

experimental data neglect the structural energy involved in going 

from the FCC to the actual complex ordered structures. 

The Pt-Ti system provides an interesting case for comparison with 

our results since an ordered TiPt
3 

phase having the CU
3

AU structure 

(L1 2) exists experimentally [138J and its enthalpy of formation has 

been measured [134J. We recall here that the L12 phase is based on an 

FCC structure. Accordingly, no structural energy is involved, and we 

expect the model to describe accurately the energy of formation of the 

TiPt
3 

phase. Furthermore, Ref.[134J provides a measured enthalpy of 

formation for the disordered FCC-solid solution (Al). Accordingly, the 

accuracy of the model to describe SRO-effects can be tested in the 

Pt-Ti alloys by comparing the calculated and experimental enthalpies 

of formation of the A1 and L12 phases. We have used the CVM and 

minimized the free energy of the Al and L12 phases at the experimental 
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concentration and temperature. We report in Table 6.2 the results of 

the analysis and compare them with experimental data. The good 

agreement between calculated and experimental results indicates that 

ordering effects are well described by the theory, at least for'the 

case of simple ordered phases such as the L12 structure. For the other 

alloys investigated here, the detailed analysis of the results is 

complicated by the scattering of the experimental data and the 

structural energy associated with the complex ordered structures 

observed experimentally. Nevertheless, within the scattering of the 

experimental measurements, our results are in good agreement with 

experimental data 

The variation of the first nearest neighbor EPI (V,) with 

concentration is qualitatively the same for all the IVB-VIIIB alloys: 

an increase in magnitude of V1 as the concentration of the VIIIB 

element increases up to about 0.75, fallowed by a slight decrease in 

magnitude. Experimentally, the dependence of V1 with concentration is 

not well known. However, the phase diagrams of these alloys [139J show 

that the temperatures of the congruent pOints between ordered phases 

and the liquid phase increase as the content of the VIIIB element 

increases. A plausible explanation for this behavior is that V1 (or 

equivalently the ordering energy) increases, as the content of the 

VIIIB element increases. As a result, the ordered phases are much more 

stabilized relative to the liquid phase for high contents of the VIIIB 

element. 
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Table 6.2 

Comparison of the calculated enthalpies of formation for the Pt
3
Ti 

and A1 phases (Xpt=0.9) with the available experimental data 
[134J(energies in eV). 

Calculated Calculated Calculated Measured 
PHASE Random Alloy Ordering Enthalpy Enthalpy 

Enthalpy Energy of of -E rand E ord Formation Formation 

at T=1300 K at T=1300 K [134J (1300 K) 

Pt
3

Ti 

(L'2) -0.653 -0.245 -0.898 -0.886 ± .034 

(An 
-0.318 -0.034 -0.352 -0.407 ± .034 

Xpt=0.9 
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Fig. 6.22 FCC Ni-Zr system. The calculated enthalpy of formation for 
the random alloy (E' d) is shown in full line together 
with the first near~~e neighbor effective pair 
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FCC Pd-Hf system. The calculated enthalpy of formation for 
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Fig. 6.24 FCC Pd-Ti system. The calculated enthalpy of formation for 
the random alloy (E d) is shown in full line together 
with the first near~~£ neighbor effective pair 
interactions (V,). Calculated enthalpies of formation for 
alloys in the L1 2 0r L10 configuration are indicated by 
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FCC Pd-Zr system. The calculated enthalpy of formation for 
the random alloy(E d) is shown in full line together 
with the first near~g~ neighbor effective pair 
interactions (V,). Calculated enthalpies of formation for 
alloys in the L12 or L10 configuration are indicated by 
triangles. Available experimental data are indicated by 
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Fig. 6.26 FCC Pt-Hf system. The calculated enthalpy of formation for 
the random alloy'(E d) is shown in full line together 
with the first near~~£ neighbor effective pair 
interactions (V

1
). Calculated enthalpies of formation for 

alloys in the L2 or L10 configuration are indicated by 
triangles. Available experimental data are indicated 
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FCC Pt-Ti system. The calculated enthalpy of formation for 
the random alloy"(E d) is shown in full line together 
with the first near~~ neighbor effective pair 
interactions (V1). Calculated enthalpies of formation for 
alloys in the L1 2 "Or L10 configuration are indicated by 
triangles. Available experimental data are indicated by 
crosses with error bars (+1 [131J, and +2 [134J). 
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Fig. 6.28 FCC Pt-Zr system. The calculated enthalpy of formation for 
the random alloy" (E" d) is shown in full line together 
with the first near~~ neighbor effective pair 
interactions (V,). Calculated enthalpies of formation for 
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6.4 Discussion of The Microscopic Theory And Extensions Of The 

Thesis Work 

142 

In the second part of this thesis we have presented a microscopic 

theory for the calculation of the enthalpy of formation of transition 

metals which is based on a tight binding hamiltonian. Significant 

improvements over previous calculations have been implemented by 

combining the three following features: 

i) the topological approximation of the cluster Bethe lattice 

method is lifted using the CPA-GPM method together with the recursion 

method. 

ii) off-diagonal disorder is included in the tight binding 

Hamiltonian 

iii) the effects of charge transfer in the random alloy are treated 

self-consistently within the Hartree-Fock approximation. 

The overall accuracy achieved by our calculations follows from the 

fact that we have included off-diagonal disorder and treated charge 

transfer self-consistently in the random alloy. For example, if we 

were to neglect those two effects, the model would predict a negative 

enthalpy of formation in the Cr-Mo alloys which contradicts 

experimental results. Although the microscopic theory we use is not 

ab-initio, it only requires the results of pure element ab-initio 

calculations as input parameters. In this regard, the model can be 

considered parameter free. 

We have concentrated our attention on two different classes of 



alloys: the BCC-isomorphic alloys and the IVB-VIIIB alloys. Within 

our approach, the small values of the diagonal disorder (bE) and of 

the difference in the number of d-electrons (bn) explain well the 

small enthalpies of formation observed experimentally for the BCC 

alloys. The off-diagonal disorder is responsible for the segregation 

tendency observed for some of the systems. On the other hand, the 

IVB-VIIIB alloys have large bE and bn values which results in very 

negative enthalpies of formation. The off-diagonal disorder, though 

not negligible, plays here a less significant role. 'For the two 

classes of alloys, the calculated enthalpies of formation show good 

agreement with experiment. 

The value of the ordering energy (i.e. the value of the EPIs) has 

been tested in the case of TiPt
3 

(CU
3

AU structure) for which the model 

should apply without caveats. The enthalpy of formation (E d + E d) ran or 

as well as its SRO dependence agree well with the experimental data. 

We have also found remarkable agreement between the total enthalpy of 

formation predicted for NbMo in the esCl structure and the result 

predicted by Moruzzi and co-workers for the same compound [125]. 

The investigated alloys are characterized by a nearly half filled 

d-band at the equiatomic concentration. In that case, the d-bonding 

effects are the strongest, and having neglected of s- and p-electrons 

is expected to be unimportant. One possible extension of this thesis 

work is to generalize the model to other alloy systems by including s-

and p-electrons. The model should then be able to describe accurately 

the enthalpy of formation of nearly empty or nearly filled d-band 



alloys. Another possible extension of this thesis work is to 

incorporate in the model spin polarization effects in order to 

describe magnetic alloys such as Fe-, Co-, or Mn-alloys. A more 

satisfactory description of the magnetic Ni- and Cr-alloys would also 

be obtained by this extension. 
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