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Abstract

During the last decade, Bayesian probability theory has emerged as a framework in cogni-
tive science and neuroscience for describing perception, reasoning and learning of mam-
mals. However, our understanding of how probabilistic computations could be organized in
the brain, and how the observed connectivity structure of cortical microcircuits supports
these calculations, is rudimentary at best. In this study, we investigate statistical inference
and self-organized learning in a spatially extended spiking network model, that accommo-
dates both local competitive and large-scale associative aspects of neural information pro-
cessing, under a unified Bayesian account. Specifically, we show how the spiking dynamics
of a recurrent network with lateral excitation and local inhibition in response to distributed
spiking input, can be understood as sampling from a variational posterior distribution of a
well-defined implicit probabilistic model. This interpretation further permits a rigorous analyt-
ical treatment of experience-dependent plasticity on the network level. Using machine
learning theory, we derive update rules for neuron and synapse parameters which equate
with Hebbian synaptic and homeostatic intrinsic plasticity rules in a neural implementation.
In computer simulations, we demonstrate that the interplay of these plasticity rules leads to
the emergence of probabilistic local experts that form distributed assemblies of similarly
tuned cells communicating through lateral excitatory connections. The resulting sparse dis-
tributed spike code of a well-adapted network carries compressed information on salient
input features combined with prior experience on correlations among them. Our theory pre-
dicts that the emergence of such efficient representations benefits from network architec-
tures in which the range of local inhibition matches the spatial extent of pyramidal cells that
share common afferent input.
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Introduction

Humans and animals perceive their environment through a stream of data from various high-
dimensional sensory modalities. Successful behavior requires that the individual dimensions of
this data stream are aligned with one another and integrated into a compact representation
that promotes rapid decision making and generalization. Typically, the available sensory infor-
mation on which decisions have to be based is noisy, unreliable and incomplete. Hence, it is
essential that such representations respect the statistical nature of sensory data and that knowl-
edge about statistical and causal relations among events in the external world are taken into
account when a representation is generated. In recent years, Bayesian inference has been identi-
fied in cognitive science as a powerful normative framework for the description of cognitive
processes in face of uncertainty in humans [1-3] and animals [4]. The Bayesian framework has
also been successfully employed for a formal description of learning, for instance in perceptual
[5, 6] and sensorimotor [7, 8] learning tasks.

In the Bayesian framework, quantities of interest are formally treated as random variables
(RVs), and beliefs about their current values are formalized as probability distributions over
these RVs [9]. Typically, one distinguishes between observations y;, i = 1, .., N, representing
directly observable variables, and latent variables z;, k = 1, .., K which cannot be observed
directly. Latent variables represent abstract features and concepts that allow to structure and
conceive the given input. As an everyday example, the high dimensional vector y = (1, .., yx)"
of input RVs could summarize the entire sensory stream from the visual, auditory, and vestibu-
lar system while driving by bike in a city during rush hour. Latent variables z = (z,, .., zg)'
could represent streets, cars, and pedestrians, or even more abstract features, such as estimated
velocities, potential threats or anticipated actions. Thus, the latent variables z form a compact
representation of relevant aspects of the scene which is typically more stable and informative
than individual local observables y;. In this manner, local observations y;, which are often unre-
liable, e.g., due to noise or an occluding obstacle, can be integrated into a consistent global
interpretation.

In a Bayesian framework, all knowledge about statistical dependencies between RVs is rep-
resented in terms of a probability distribution p (z, y | 6), where the parameter vector 8 shapes
the statistical model of the environment. The aim of Bayesian inference is to infer a belief over
the possible states of the latent variables z for the given observations y. More precisely, Bayesian
inference is the calculation of the posterior distribution p (z | y, 8) over the latent variables z
given the input y. In ambiguous situations (e.g. when estimating the speed of a car), the poste-
rior p (z| y, ) provides not only the most likely interpretation of the input, but rather the prob-
abilities of the most likely and all alternative interpretations. Finally, p (z| y, 0) can also capture
correlations among hidden variables (e.g. different drivers will maintain roughly the same
speed level).

During recent years, several modeling approaches explored how Bayesian computations can
be performed by spiking networks, and how the involved probability distributions can be rep-
resented by the neuronal spike response [10-22]. Two major lines of research regarding the
neural representation of probability distributions can be distinguished: distributional (probabi-
listic) population codes [10, 13] and sample-based representations [23, 24]. In sample-based
representations, spike responses are interpreted as samples z from the posterior distribution as
illustrated in Fig 1 A: Through its inherent dynamics, the network trajectory visits states z(t)
proportionally to p (z | y, 8). Thus, neural activity is hypothesized to encode distributions in
the sequence of network states. Sample-based representations are particularly appealing for
theoretical considerations, since they are highly versatile and naturally support the representa-
tion of complex, potentially multimodal distributions over large numbers of variables [18, 24].
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Fig 1. Neural sheet model with local inhibition for distributed Bayesian inference and self-organized learning. (A) The sampling hypothesis proposes
that probability distributions are represented in the brain such that the time the network spends in state z is proportional to the probability p(z). (B) In [17] it was
shown that recurrent networks of stochastic spiking neurons can implement Markov chain Monte Carlo sampling in a well-defined graphical model (inset).
Each neuron is identified with a binary random variable (RV). The state of the RV at time t encodes whether the neuron has fired shortly before (right). (C) In
[25] it was shown that a local population of neurons (orange), organized in a Winner-Take-All (WTA) architecture, can learn an implicit probabilistic model of
spiking input (green) through STDP-type plasticity. In [25], competition between the neurons was established via a global inhibitory current. Inset:
Corresponding graphical mixture model. (D) We propose a spatially structured neural sheet model with lateral inhibition and recurrent excitation for
distributed Bayesian computation and self-organized learning. The network model unites the benefits of [17] and [25]. Strong inhibitory connections (dashed
blue) between nearby network neurons establish local competition. Sparse recurrent excitatory synapses (red) connect more distant neurons. In addition,
each network neuron integrates spiking input from a local subset of input neurons (green). (E) Graphical model of the neural sheet in D. Nearby binary
network RVs z, (orange nodes) maintain competitive links (blue) while more distant variables can maintain associative links (red). Bottom-up input synapses
in D give rise to generative downward arrows to the input RVs y; (green nodes).

doi:10.1371/journal.pone.0134356.9001

Recently, a generic spiking network model that samples from a known probability distribu-
tion was proposed by Buesing et al. [17]. The underlying theory describes the dynamics of net-
works of idealized stochastic spiking neurons as a Markov chain Monte Carlo (MCMC)
sampling algorithm. In this model, each binary RV z; € {0,1} is associated with one spiking neu-
ron in the network, and spikes of these neurons are interpreted as realizations of the correspond-
ing RV, see Fig 1B. After a spike of the k-th neuron at time ', the associated RV z; turns active,
i.e. z; = 1, for a fixed duration T, typically on the order of 10 milliseconds. At time # + 7, the RV
switches back to the inactive ground state z; = 0. This interpretation of neuronal spike patterns
as realizations of RV defines the vector z = (zy, .., zx) of all associated RV at any time ¢:

z,(t) = 1 & Neuron k fired in (¢t — 7, ]. (1)

Based on this link between random variables and neuronal spike responses, the authors of [17]
identified a sufficient condition for a population of stochastic spiking neurons to sample from a
well-defined probability distribution p(z | 6), i.e., the relative occurrences of states z(f) visited by
the network trajectory are distributed according to p(z | €) in the limit  — co. This implementa-
tion of MCMC sampling in networks of spiking neurons was termed neural sampling. The inset
of Fig 1B depicts the graphical model of the distribution p(z | 8) which the small neural network
in the figure samples from. Notably, the links in the graphical model mirror the structure of syn-
aptic network connections.

The neural sampling theory explains how networks of spiking neurons can sample from a
given distribution p(z | ) over latent variables z for given parameters 6. It does, however, not
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cover the question how these latent variables enter the network in the first place, i.e., how
observed input y can be integrated and represented through latent variables z and how this
representation can be learned from the statistics of observables y. This question is addressed in
the current article. In particular, we exhibit a network architecture for sheets of stochastically
spiking neurons for which

o the spike response can be understood as neural sampling from the Bayesian posterior distri-
bution of a well-defined probabilistic model,

o local synaptic plasticity rules can be derived for self-organized model optimization of the
parameters 6 using machine learning theory, and

« emerging recurrent connections store correlations between latent variables z and help to
maintain coherent network states for resolving ambiguous input.

For the self-organized adaptation of network parameters 8 based on the statistics of observa-
tions y, we adopt a “generative perspective” which is often used in Bayesian modeling [9, 25-
27]. In the generative perspective, we interpret the latent variables z as so-called hidden causes
of the inputs y. This view permits to identify a conditional distribution p (y | z, 0) (called “likeli-
hood”) which describes the distribution over inputs if the network would (hypothetically) gen-
erate its own spiking inputs based on its current network state z. The conditional distribution p
(y | z, 6) describes how likely an observation y is under the assumption that it was generated by
the hidden cause z. In a complementary, reversed perspective, by holding the observation y
fixed and viewing p (y | z, ) as a function of z, this allows to assess how well different z-config-
urations could serve as explanations for the given observation. This reversed perspective is for-
malized in Bayes rule

22|y, a)zp(yIZ, 0)p(z10) 2)

p(r10)

Bayes rule (2) tells us how to infer the statistically optimal posterior distribution p (z | y, 8) of
network responses z to any stimulus y. For this inference, two components are essential. The
prior p(z | 0) encodes that some combinations of latent variables are generally more likely than
others (e.g. driving speeds of cars are highly correlated during rush hour). The likelihood p (y |
z, 0) formalizes the constraint that the values of latent variables z should be such that the cur-
rent observations y are probable under the generative probabilistic model. Note that the shape
of both distributions is determined by the network parameters 6. The denominator p(y | 6) can
often be ignored since it just provides a normalizing factor for the posterior. A key benefit of
the generative perspective is that it provides a theoretically well-founded approach to self-orga-
nized (unsupervised) learning. This is because inference of hidden causes works best when the
parameters 6 are tuned such that the hypothetical generative distribution of the network p(y |
6) matches the true distribution of observables p*(y). The process of minimizing the mismatch
between the probabilistic model and the input statistics is known as “maximum likelihood
learning”.

Adopting the generative perspective, Nessler et al. [25] recently developed a model for infer-
ence and learning in local populations of stochastic spiking neurons with lateral inhibition, see
Fig 1C. Network neurons in this model receive all-to-all connections from a set of input neurons,
and each network neuron maintains a set of afferent synaptic weights that render it an expert for
detecting certain input patterns. A global inhibitory current enforces competition among the
network neurons. Nessler et al. showed that the spiking activity of such a network with K neu-
rons in response to input can be understood as Bayesian inference in an implicit probabilistic
mixture model with K hidden causes (see inset of Fig 1C). Furthermore, it was shown that

PLOS ONE | DOI:10.1371/journal.pone.0134356 August 18,2015 4/51



@’PLOS ‘ ONE

Distributed Bayesian Computation in Spiking Neural Sheets

maximum likelihood learning in this model gives rise to synaptic update rules that appear com-
patible with experimental data on spike-timing dependent plasticity (STDP) [25, 28].

In this article, we combine the benefits of maximum likelihood learning in networks with
lateral inhibition with the general theory of neural sampling. We consider a spatially structured
network architecture (see Fig 1D) where network neurons represent latent variables z. The spa-
tially extended architecture generalizes the network motif considered in [25] in that network
neurons inhibit each other locally through lateral inhibition [29] and, in addition, may form
sparse excitatory connections beyond the range of lateral inhibition [30, 31]. Afferent connec-
tions from input neurons, that represent observables y, branch and synapse locally in the sheet
of network neurons. Lateral inhibition structures the network in local WTA-like subcircuits
similar to [25] such that network neurons that receive input from overlapping sets of input
neurons are subject to strong lateral inhibition. This constraint ensures that theoretically cor-
rect inference and learning can be implemented through simple local neural operations (see
Results and Discussion). In contrast to [25] however, which considered only a single WTA cir-
cuit motif, each network neuron in the architecture proposed here can participate in several
WTA-subcircuits, and multiple network neurons with disjoint input can be recruited in paral-
lel to cooperatively explain the spatially distributed input. Building on the neural sampling the-
ory [17], we show that the response of this network architecture to spiking input can be
understood as neural sampling-based Bayesian inference in the structured graphical model
shown in Fig 1E. The graphical model has two main components: recurrent links between net-
work nodes, and generative input links pointing from network nodes to input nodes. The
recurrent links encode statistical correlations between latent variables z by shaping the prior
distribution p(z | ) in Bayes rule Eq (2). The generative input links encode the likelihood
model p (y | z, 8). We show that both these components of the probabilistic model can be opti-
mized concurrently through local synaptic plasticity rules in this network architecture. In par-
ticular, we derive iterative update rules for maximum likelihood learning which give rise to
Hebbian-type synaptic and homeostatic intrinsic plasticity rules in the neural network. The
joint application of these rules can be understood as Stochastic Online Expectation-Maximiza-
tion [32], a powerful machine learning algorithm for unsupervised model optimization. While
a theoretically optimal STDP-type plasticity rule can be derived for afferent connections that
define the likelihood model p (y | z, 6), an approximate solution is proposed for recurrent con-
nections that define the prior distribution p(z | 8) over latent variables. In computer simula-
tions, we verify that the spiking network can calculate and represent the theoretically correct
Bayesian posterior distribution with high accuracy. We demonstrate how synaptic plasticity
shapes the network response to extract and convey the most salient features of the input in a
sparse distributed spike code, and how recurrent connections capture correlations between
latent variables z to maintain a coherent network-wide interpretation. These simulations also
reveal how the sampling network calculates and represents uncertainty in case of ambiguous or
uninformative input. When the presented input appears consistent with multiple possible (but
mutually incompatible) explanations, the network response encodes the associated multimodal
posterior distribution p (z | y, 8) by switching iteratively between different coherent network
states. Finally, our theoretical analysis points to an integral role of lateral inhibition during
learning: it is the local inhibition network motif that gives rise to local synaptic plasticity rules
and that facilitates the emergence of probabilistic local experts. The resulting well-adapted net-
work transforms high-dimensional spiking input streams into an efficient sparse code.

The remainder of the manuscript is structured as follows. We first introduce the probabilis-
tic model and show how the resulting posterior distribution p (z| y, 6) can be calculated and
represented by a spiking neural network with local afferent connections, lateral inhibition and
sparse recurrent excitation through neural sampling. We then investigate synaptic learning of
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afferent connections and recurrent connections in separate subsections. Finally, we apply the
complete spiking network architecture to a two-dimensional model of neural tissue in which
we observe the emergence of excitatory subnetworks through the interplay of afferent and
recurrent synaptic plasticity.

Results
Probabilistic inference in spatially extended spiking networks

In this section, we derive how the spike response of the neural sheet model with the architec-
ture in Fig 1D can be understood as an ongoing sampling process from a Bayesian posterior
distribution p (z| y, 0) that arises from the graphical model in Fig 1E.

Spiking neural network model. The network architecture in Fig 1D comprises network
neurons and input neurons. The spiking activity of input neurons is fed externally into the net-
work. For the network neurons, we employ the stochastic spike response neuron model from
Buesing et al. [17] that describes the state of each network neuron by a binary variable z,(t) €
{0,1} according to Eq (1): After a spike of the k-th network neuron, z(f) turns active for dura-
tion 7. After that period, the variable switches back to the inactive state z;(t) = 0. Similarly, the
state of the i-th input neuron is described by a binary variable y,(t) € {0,1} with y,(t) = 1 for
duration 7 after a spike of the i-th input neuron. The membrane potential of the k-th network

neuron is given by
K N
WS+ Y W0+ ) Vo). (3)
=t i=1

Here, by, denotes a neuron’s intrinsic excitability and captures, for instance, the influence of the

K

voltage gap between resting and threshold potential in more detailed neuron models [19, 33].
Wi and W,‘q‘?h are recurrent synaptic weights between network neurons to instantiate sparse
recurrent excitation [30] and local lateral inhibition [34]. For simplicity, we model the effect of
inhibition as direct negative connections W,i" between network neurons, i.e., we do not model
interneurons explicitly. The afferent weights V}; denote the strength of synapses from the i-th
input to the k-th network neuron. For notational convenience, weight 0 is assigned to non-
existing connections. As in [17], neurons communicate via rectangular post-synaptic potentials
(PSPs) of duration 7 and with amplitude W, W};}‘ and Vy; respectively. Throughout this
work, we chose 7= 10 ms as an estimate for PSP durations. Thus, the membrane potential u(t)
integrates the current value of all presynaptic variables z;(t) and y,(t) at any time.

Network neurons emit spikes stochastically with instantaneous firing probability

p (1) = %}E}) %p(Neuron k fires in [t 4+ Jt)) = %e"k(t)(l —z(1)). (4)
Here, (1 — zi(t)) describes a refractory period that is inversely related to the state z;(t), i.e.,
when z;(f) is active, the neuron is refractory and cannot emit another spike. The exponential
dependence of the firing probability p; on u; was confirmed to be a reasonable modeling
assumption for neurons in a noisy environment [19, 33].

The network response as the result of a meaningful Bayesian computation. We aim to
understand the activity of the network neurons in response to spiking input as the result of a
Bayesian computation. To establish a link between the stochastic spike response properties of
individual neurons and the joint activity distribution of the entire network, we build upon the
neural sampling theory [17] where states z(f) and y;(t) of the neurons are formally treated as
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random variables z; and y;. This probabilistic description of stochastic network activity in
response to given input amounts to a conditional probability distribution p (z| y, 0) for each
possible input configuration y. In order to assign a computational meaning to the conditional
distributions p (z | y, 8), we will identify a generative model, consisting of prior p(z | 6) and like-
lihood p (y | 2, 0), for which the conditional distributions p (z | y, ) arise from Bayes rule (2) as
the correct posterior. The network’s spike response can then be understood as probabilistic
inference through sampling from the posterior p (z | y, 6).

To decide whether the posterior distribution of a generative model is compatible with the
neural dynamics of the spiking network, we make use of a sufficient condition, called neural
computability condition [17], which connects the membrane potentials u; of individual spike
response neurons (4) with the activity distribution of the recurrent network. For our case of a
posterior distribution p (z | y, 0) with arbitrary (but fixed) input y, the neural computability
condition reads:

bt logp (ze =1z, », 0)
¢ p(z :0|z\kay; 0)

forallk=1,.,K (5)

with 2y = (21, . Zk_1> Zk + 1> - 2x) denoting the state of the remaining network. If the condition
holds for all possible input states y and all possible network states z, the trajectory of network
states z(t) is guaranteed to be distributed according to p (z| y, 6) in the limit ¢ — oo for any
fixed input y, i.e., the spiking network samples from p (z | y, 6).

To establish the equivalence between the spiking network in Fig 1D and the Bayesian model
in Fig 1E, we introduce prior p(z| ) and likelihood distributions p (y | z, 8) which are shaped
by parameters 0 and match the graphical model in Fig 1E. From these distributions, we then
calculate the posterior p (z | y, 0) according to Bayes rule (2). Finally, we apply the sufficient
condition (5) to decide under what conditions the spiking network will sample from the correct
posterior. In particular, this will allow us to determine the connectivity structure of the network
in detail, and furthermore, to precisely map the parameters of the generative model to the syn-
aptic efficacies and intrinsic excitabilities of the neural sheet model.

We set out with a class of prior distributions p(z | 6), namely Boltzmann distributions, that
have been shown [17] to be compatible with the neural sampling dynamics of the recurrent
spiking network model (without input):

1

1 . 1, .
p(2]8) =7 exp |5 WS s+ S W+ b, (6)

where z is a normalizing factor. The distribution assigns probabilities to binary random vectors
z=(zy, .., zx)" with z; {0,1}. The parameters I;, We"c, p/inh shape the distribution and consist of

a real-valued bias vector b = (b,, ..., b,)" and symmetric, zero-diagonal K x K coupling
matrices W and W™ We endow the prior (6) with the spatial structure sketched in the
upper row of Fig 1E. Orange circles depict the random variables z; that correspond to network
neurons. The random variables z; maintain sparse excitatory recurrent connections Wi}“ (red
links) on an intermediate range. Excitatory links between variables make their coactivation
more probable in the prior (6) and thus encode network-wide state combinations z that are
more likely to occur than others. This associative memory aspect will turn out to be particularly
powerful in the context of recurrent learning where structural knowledge is integrated by the
prior and will allow the network to maintain coherent network states even in face of ambiguous
input. The sparse excitatory links on intermediate distances are complemented with strong

negative connections Wik‘;.h (theoretically Wz.‘“ — —00, blue links) on a local scale among
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nearby network neurons. These negative connections will correspond to local lateral inhibition
in the network and, as we will see in the context of learning, facilitate self-organized statistical
model optimization through synaptic plasticity.

The likelihood distribution p (y | z, 8) establishes the connection between the network vari-
ables z; and the input variables y;. We adopt a generative perspective in order to identify the
likelihood distribution p (y | z, 8) and view the network variables z; as “hidden causes” of their
inputs y;. Thus, we assume that each input y; is (hypothetically) generated by the corresponding
subset of connected network variables z. This amounts to the downward arrows in Fig 1E
where each input y; (green circles) receives converging arrows only from nearby network vari-
ables z;, the so-called parents of y;. For our idealized architecture, we further assume that no
two parents z; and z; of an individual input y; can be active simultaneously. This is ensured by

zi and z; sharing strong negative connections W}(‘]‘.h, i.e., the parents of y; are assumed to lie

within the range of lateral inhibition (blue links in Fig 1E). As a consequence, each input y; is
generated by at most one of its parents at a time. We denote the probability of y; to be active by
i (with 0 < 7y; < 1) given that it is generated by the active hidden cause z;. If none of its
parents is active, the chance of activity is assigned a constant default value 7,;. This is summa-
rized in the following Bernoulli distribution:

p=1]z,0) = (7)

n,;  ifz, = O for all parents of y,.

i

{ m,  ifz, = 1lfor a parent z,of y,

To obtain the full likelihood distribution p (y | z, 8) over all N input variables, we note that the
y;’s are conditionally independent and, hence, p(y | z, @) = [[, p(; | 2, @). This completes
the definition of prior and likelihood distributions that match the graphical model sketched in
Fig 1E. A formal definition of the probabilistic model is provided in Generative model in Meth-
ods. There we also describe extensions of the likelihood distribution to support natural and
real-valued inputs, i.e,, to y; € Nand y; € R.

The neural network can sample from the posterior of the generative model. From the
prior (6) and the likelihoods (7), the posterior distribution p (z| y, 8) can be calculated in
closed-form using Bayes rule. By applying the neural computability condition (5), a straightfor-
ward derivation reveals that the membrane potential (3) is compatible with the posterior p (z |
¥, 0) of the generative model. The closed-form posterior and the derivation are provided in
Inference in the generative model in Methods. Furthermore, the calculation yields a translation
between the network parameters by, Wi, W3, V,; and the abstract parameters

?),ﬁ WZ;.‘“, W};h, m,; (and the constants 77;), and results in the following corollary:

Corollary 1 (Inference). Let network parameters and abstract parameters be identified via

bk = bk — Ay (8)

T, . T,
V. =1 ) —log(-—Y%— 9
“ o8 (1 - nki) o8 (1 - nm) ( )
Wee= Wi W= Wy (10)

with A= 3" log[l + m,, - (e"s — 1)), and let the recurrent weights W and W™ be symmet-
ric matrices with zero diagonal. Then, for any fixed input instantiation y(t) = y, the response z(t)
of a recurrent spiking network consisting of stochastic neurons (4) with linear membrane
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potential (3) is distributed according to
z(t) ~p(z]y, 0)

in the limit t — o0, i.e. the network samples from the posterior distribution of the probabilistic
model defined by the prior (6) and the likelihoods (7).

Corollary 1 explains the structural similarity of the graphical model in Fig 1E and the net-
work architecture in Fig 1D: Each red (blue) recurrent link between latent variables z; and z; in
the graph corresponds to a symmetric reciprocal excitatory (inhibitory) synaptic connection
between the k-th and j-th network neuron; and each downward arrow from z; to y; in the
graph gives rise to a synapse V; from the i-th input neuron to the k-th network neuron. In par-
ticular, the assumption in the abstract model, that at most one parent z; explains a dependent
input variable y; at a time, translates to a local lateral inhibition motif in the spiking network:
Any two network neurons, that share common input, inhibit each other through lateral inhibi-
tion. This theoretically derived network motif is reminiscent of cortical lateral inhibition fre-
quently reported across areas and species [29]. In the neural sheet model, local lateral
inhibition introduces Winner-take-all (WTA) competition among nearby network neurons
which thus play the role of local feature detectors. However, the local WTA circuits are not sep-
arated in the sheet, but rather interwoven such that each network neuron can participate in
multiple overlapping WTA sub-circuits. In addition, lateral excitatory connections W
encode associations between spatially distant feature combinations. This generalized concept
of WTA circuits in the continuous sheet contrasts with existing models of interacting WTAs
[35] which investigated disjoint non-overlapping WTA sub-circuits that operate in parallel.
The full probabilistic model p(y, z | 8) of the neural sheet can thus be understood as a spatially
extended reservoir of contiguous competing local feature detectors (corresponding to the likeli-
hood p (y | z, 0)) and an associative memory over the feature set (corresponding to the prior p
(z] 0)).

The implementation of Bayes rule (2) by the spiking network is illustrated in Fig 2A and 2B
for the minimal example of two neighboring neurons with an overlapping, but not identical,
subset of inputs y;. Both neurons z; and z, maintain an implicit likelihood model for their
respective local inputs (top-down arrows in A, bottom-up synapses in B). Additionally, the
prior installs competition between the neurons via negative reciprocal connections W™ (blue
edge in A, blue synapses in B). Consequently, the neurons z; and z, preferentially fire to differ-
ent input patterns y. Corollary 1 guarantees that the frequency of occurrence of each network
state (21, z,) will be proportional to p (23, z, | ¥, 0) for any input instantiation y. This property
is particularly important for inputs y that are roughly equally compatible with the preferred
activity patterns of both network neurons. In such ambiguous cases, the network trajectory will
sample the posterior states (z1, z,) = (0,0), (0,1) and (1,0) in accordance with Bayes rule. As a
consequence, the network response carries information on not only the most likely solution
but also on the (un-)certainty of all possible outcomes—a pivotal aspect of Bayesian informa-
tion processing.

Demonstration of sample-based inference on transient spiking input. Corollary 1
ensures that the network will sample from the correct posterior distribution p (z| y, 6) in arbi-
trarily large network architectures for any fixed input configuration y(t) = y. However, Corol-
lary 1 offers no strict guarantees in case of time-varying input since it only ensures that the
network activity converges to the equilibrium distribution p (z| y, 0) in the limit t — co. For
transient spiking input, the underlying Markov chain cannot fully converge to its equilibrium
distribution and the sampling network will “lag behind” the transient posterior p (z | y(t), 0).
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Fig 2. Sheets of spiking neurons can perform Bayesian inference on distributed spiking input. (A) Local generative model with two competing hidden
causes and five inputs. Each hidden cause stores a specific input pattern in the top-down parameters ;. (B) Corresponding local neural network. Top-down
parameters 1, translate to bottom-up synaptic weights V/;, turning each network neuron into a probabilistic expert for a specific local input pattern. (C)
Example network with six network neurons. Neighboring neurons with overlapping input inhibit each other (dashed line: range of lateral inhibition for red
neuron). The spiking network is linked to a generative model p (y, z | 6) according to Corollary 1. (D) The network in C performs sample-based inference of
hidden causes z under time-varying input y(t) in the associated generative model. Comparison of posterior marginals p (z = 1 | y(t), 6) between the
analytically calculated exact posterior (top) and the average network response (bottom, estimated from 1000 simulation runs) under the time-varying inputy
(t) in panel E. All traces were smoothed with a 20ms box kernel for visual clarity. (E) Top: Network spike response in a single simulation run. Bottom: Input
spike trains (colored: structured input, gray: background activity). The network response is an ongoing sampling process from the posterior p (z | y(t), 6). Time
points marked by a ‘*’ exemplify characteristic properties of sample-based Bayesian information processing. (F) Top: Bottom-up weights V;; of the red
neuron. Bottom: Average input activity while the matching pattern is presented (during the 300ms period marked in E).

doi:10.1371/journal.pone.0134356.9002

We therefore assessed the network’s ability to sample from the analytically correct posterior
distribution in case of time-varying input y(f) in a computer simulation. The computer simula-
tion was performed in the setup of the small, analytically tractable network architecture shown
in Fig 2C. This 6-neuron network will furthermore serve to illustrate salient response properties
of the neural sheet during neural sampling-based inference. The prior features both sparse excit-
atory connections and local lateral inhibition such that neighboring neurons compete with each
other through inhibitory connections. More distant neurons maintain excitatory connections
(red links: W} = 1), representing knowledge that these two hidden causes are likely to co-
occur. Furthermore, each neuron has a (randomly generated) preferred local input pattern
stored in its synaptic weights V},. For instance, the top panel of Fig 2F shows the afferent weights
of the red neuron. A demonstration of neural sampling by this circuit in response to time-vary-
ing input y(¢) is shown in Fig 2E: High-dimensional (N = 108) input spike trains are presented
to the network (bottom). Input spikes consist of uninformative background spikes (gray), inter-
leaved with periods of more structured inputs (colored spikes). Uninformative background
spikes are Poisson spike trains with a uniform rate chosen such that the average activation of
input neurons is { y; ) = 0.2 (ca. [20]Hz). Structured input spikes are Poisson spike trains with
rates that were chosen to match the activity patterns stored in the afferent weights V}; of the net-
work neurons. For example, the red neuron is particularly good at detecting the red spike pat-
tern. Fig 2E (top) shows the network response to the input spike pattern (bottom) during a
single simulation run. Whenever a structured local input pattern occurs, the corresponding
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network neuron starts firing. Yet, the network response is not deterministic: sometimes network
neurons elicit spikes even when presented with unstructured input (see e.g. at the 1% time point
marked by a ’); in other cases, a competing neighboring neuron emits a spike (see e.g. at the
2" time point marked by a ). Due to the stochastic nature of the network response, the exact
spike pattern of the network will be slightly different in each simulation run. This apparent
trial-to-trial variability is an inherent feature of sample-based representations.

We next turn to the question how well the network trajectory z(¢) approximates the correct
Bayesian posterior p (z | y(t), 0) at any time £. A quantitative comparison addressing this ques-

(8]

(5]

tion is provided in Fig 2D. From many repetitions of the experiment—all with the same input
spike pattern y(f)—we can estimate the distribution the network actually samples from. The
top row of Fig 2D shows the exact marginal probabilities pi,eo (zx = 1 | y(£), 0) at any time ¢,
analytically calculated from Bayes rule. The bottom row shows the average network response
Pret (zx = 1| (), 0), estimated from the samples from 1000 repetitions of the experiment. The
comparison indicates that the sampling network approximates the correct posterior probabili-
ties with high accuracy at almost any time, capturing not only qualitative aspects of the tran-
sient posterior distribution but also the quantitative composition of the distribution in face of
input fluctuations. Only for particularly rapid input fluctuations, which lead to sharp peaks in
the posterior, the network shows a slightly delayed and sometimes inaccurate response. A
more detailed statistical evaluation of the sampling quality is provided in Details to the com-
puter simulations in Methods, along with a brief discussion on the origins of stochastic and sys-
tematic deviations in the sampled distribution. In conclusion, the quantitative comparison in
Fig 2D shows that the stochastic network response z(t) can be understood as an ongoing Bayes-
ian inference process, even in case of time-varying input y(f).

Fig 2D and 2E also exemplify characteristic properties of sample-based Bayesian information
processing. At times, input instantiations y(f) may be noisy or ambiguous such that the hidden
causes of the presented input cannot be inferred with certainty. Two typical examples are marked
” symbol: At the first time point marked, the unstructured background input accidentally
bears some resemblance to the red and the yellow input patterns, such that the posterior proba-
bility for inferring the red/yellow patterns temporarily jumps to p (zx = 1| y(¢), 0) ~ 1/2 for k=3
and k = 5. This brief moment of uncertainty due to stochastic fluctuations in the input is repre-
sented by the network via a small number of spikes of the red (k = 3) and the yellow (k = 5) net-
work neurons. While the exact timing of the spikes is a stochastic process, the instantaneous
spiking probability in the sampling network is well in line with the analytically calculated poste-
rior. At the second time point marked, two competing neurons (dark blue and green) could

*

witha

explain their local input well, as can be seen from the marginal posterior p (z = 1|y, ). In such
ambiguous situations, both neurons are eager to fire, yet they compete due to lateral inhibition.
As a result, network activity switches between two local interpretations where either one of the
two hidden causes is active. Due to the stochastic nature of the sampling process, the particular
switching times between the competing network states change with each repetition of the experi-
ment, leading to trial-to-trial variability from the perspective of an external observer.

Emergence of local experts through synaptic plasticity

Animals and humans possess the ability not only to infer hidden causes of their perceptions,
but also to adapt their internal model, that underlies these inferences, to their specific environ-
ment. From a Bayesian perspective, this amounts to reshaping the parameters of the internal
model p (y, z| 0) to better suit the true input statistics. For our analysis of plasticity, we keep
the lateral inhibition structure, i.e, the effect of interneurons, fixed, and focus on plasticity of
excitatory synapses. The guiding questions for the following two subsections are:
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o How can the afferent weights V};, recurrent weights W,fj"c and neuronal excitabilities by be

adapted to support inference in a statistically optimal manner?

o To what extent can this network-wide optimization be accomplished with only local plastic-
ity rules?

To address these questions we employed a standard objective function [9] for statistical
model optimization, namely the log-likelihood of the input under the model:

L(0) = (log p (¥]0)):(y): (11)

where p*(y) denotes the true distribution of inputs y actually presented to the network. Eq (11)
makes use of a conceptual advantage of the Bayesian approach: So far we were only interested
in the posterior distribution p (z | y, 8) which describes the stochastic network response z
under a given stimulus y; now we switch to the complementary generative view and examine
the distribution p (y | 8) = X_p (3, z | 6) of data hypothetically generated by the model. The dis-
tribution p (y | 6) can be viewed as the outcome when the probabilistic model would “dream”
its own environment. Adopting the complementary view is only possible because a full proba-
bilistic model p (y, z | 6) of the network is available. The function £(6) then measures the likeli-
hood of the actually presented input y ~ p*(y) to occur in p (y | 8). Since £(6) = ~Dx1(p™ || p)
+ const., increasing £(0) is equivalent to reducing the Kullback-Leibler divergence Diy (p* || p)
that measures the dissimilarity between the two distributions. Therefore, maximizing £(6)
means to align the internal model p (y | 8) with the true input distribution p*(y). This objective
is commonly known as “maximum likelihood learning” in the machine learning literature [9].
In a first step, we investigated the maximization of £(6) with respect to V, i.e., we examined
the role of plastic afferent synapses Vj;. Plastic recurrent connections Wi will be addressed in

a separate subsection, and we set W = 0 for now. Update rules for the afferent weights Vj;
can be directly derived from the probabilistic model using the mathematical framework of gen-
eralized online Expectation Maximization [25, 36]. The derivation is provided in Model optimi-
zation via Generalized Expectation Maximization in Methods, and yields the following
plasticity rules for synaptic weights Vj; and intrinsic excitabilities by:

O V=2l 1) — o(Vig + i) (12)
O b=, (m — 2,(0)). (13)

Here, 1 and 17, denote small learning rates, o(x) == 1/(1 + exp(—x)) is the logistic function,
Voi = log(my;/(1-71;)) is a constant in order to respect the default activity my;, and my is a long-
term average target response ( z; ) of the k-th network neuron. Importantly, both plasticity
rules only rely on information that is locally and instantaneously available to the neurons and
synapses: Each afferent synapse V; adapts its weight in a Hebbian-type update based on pre-
(y;) and post-(z;) synaptic activity through the weight-dependent plasticity rule (12); each neu-
ron changes its intrinsic excitability by in a homeostatic fashion based on its current spike
response z;. The joint application of the rules (12) and (13) can be shown to implement unsu-
pervised statistical model optimization in the sense of the following corollary:

Corollary 2 (Learning of afferent synapses). The implicit probabilistic model defined by
(6) and (7) can be optimized with respect to the afferent synaptic parameters Vy; by a
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Generalized Expectation Maximization algorithm which continuously increases a lower bound
F < L(0)

of the log-likelihood L(0) until a local optimum of F is reached. The concurrent application of
the learning rules (12) and (13) implements an online approximation of this optimization
algorithm.

The approximate character of the network implementation only arises from incomplete con-
vergence of the network’s Markov chain during inference and from the non-infinitesimally small
learning rates 7y, and 7. Ignoring these effects, i.e., in the limit of small learning rates (17, — 0
and 17y/n, — 0) and assuming instantaneous convergence of the Markov chain, we find that the
plasticity rules become exact. Then, the direction of the expected learning update is given by,

0
(o (= oV + Vo)) = g forallk (14)

ki

where the expectation () is taken with respect to the presented input y(¢) and the network
response z(t). In other words, plastic changes in the synaptic weights V}; point on average in the
direction of increasing F. Maximizing a lower bound F on £, instead of direct optimization of
L, is a common trick [37] in machine learning to obtain a tractable learning problem. In our
model this approach serves to obtain a spiking network implementation of maximum likelihood
learning in which all required information is available locally at the neurons and synapses. The
local availability of information during learning comes at a cost. The network does not sample
from the exact posterior anymore, but from a well-defined variational posterior [36]: The varia-
tional posterior, the network samples from, is the closest distribution to the analytically exact
posterior (measured in terms of the Kullback-Leibler divergence) that satisfies the homeostatic
long-term target activations my. A full derivation of the plasticity rules (12) and (13), including
a precise definition of the lower bound F and the variational posterior distribution, is provided
in Model optimization via Generalized Expectation Maximization in Methods.

Demonstration of self-organized learning in the neural sheet. We tested the derived
learning rules for afferent weights Vy; and intrinsic excitabilities by in a computer simulation of
a sheet of 7x3 network neurons (Fig 3A). The sheet model receives synaptic input from a total
21x6 afferent cells. Each network neuron receives input from a subset of 6x6 inputs. The net-
work neurons are arranged such that in each column there are three neurons sharing the same
6x6 input (such as the green/red/blue neuron in Fig 3A). Neighboring columns of network
neurons receive inputs from an overlapping subset of afferent cells (6x6 input subset shifted by
three columns of input neurons to the left and right respectively). Neurons in the same column
as well as neurons in neighboring columns inhibit each other. The input data was generated in
a similar manner as in Fig 2, by interleaving a background Poisson spike train with periods of
structured Poisson spikes generated from a small number of stereotypical rate patterns. At
each 6x6 input field there are three such recurring activity patterns. At any moment, at most
one such pattern is presented at any spatial position in the input. The resulting spike trains
have complex spatio-temporal structure, as shown in Fig 3G (bottom).

Initially all afferent weights are set to Vj; = 0. Afferent weights are plastic and follow Eq
(12). For the purpose of neuroscientific modeling, synaptic weights Vy; were restricted to posi-
tive values. The theory for inference and learning would support positive and negative weights,
including sign changes. Excitabilities are uniformly initialized at by = —2 and follow Eq (13)
with the average target response (z;) of each network neuron set to m; = 6.5%. Whenever a net-
work neuron spikes, synaptic plasticity is triggered and the current activity of the local 6x6
input field, that is connected to the active network neuron, leaves a small trace in the afferent
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Fig 3. Emergence of probabilistic local experts through synaptic plasticity. (A) Network architecture with 21x6 inputs and 7x3 network neurons. The
green, red and blue neuron receive input from the same 6x6 subset of input neurons. The input subsets of neighboring groups are shifted by three. The
dashed line indicates the range of lateral inhibition. (B) At each of the overlapping 6x6 locations, three randomly drawn activity patterns can occur. Shown are
the activity patterns for the location highlighted in A. (C) Synaptic and intrinsic plasticity shape the probabilistic model that is encoded by the network. The log-
likelihood function £(8) measures how well the network is adapted to the presented input. (D) One-to-one comparison of the synaptic weights Vj; to
analytically calculated optimal weight values, at the end of learning (T =[10, 000] s). (E) 2-dimensional projection of the local input distribution p*(y). Each dot
is one input instantiation y(t) at the 6x6 input field in A. Dots are colored according to which of the three neurons (green/red/blue) fired in response (gray:
none fired). The neural plasticity rules achieve a clustering of local inputs into local categories. (F) Evolution of synaptic weights V; of the green/red/blue
neuron over the course of learning. Each neuron becomes a probabilistic local expert for a certain input pattern (cp. panel B). (G) The plastic network
develops a sparse, structured spike code that conveys compressed information about the presented input. Bottom: input spike trains. Top: Network response
at different stages of learning.

doi:10.1371/journal.pone.0134356.9003

synaptic weights of that neuron. As a result, the same neuron is more likely to fire again when a
similar input pattern occurs in the future, which leads to further strengthening of the synaptic
weights. Due to the combined effect of synaptic plasticity and local competition among neu-
rons, network neurons start specializing on different salient input patterns of their respective
6x6 input fields (Fig 3F). Homeostatic intrinsic plasticity ensures during this learning process
that neurons which specialize on weak patterns (weak synaptic weights) are not disadvantaged
compared to neurons which focus on strong patterns (strong synaptic weights), by regulating
intrinsic excitabilities such that all network neurons maintain their long-term average activity
my. An example that illustrates how homeostatic intrinsic plasticity contributes to synaptic
learning of input patterns with different intensities is provided in Illustration of learning with
homeostatic intrinsic plasticity in Methods.
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A direct consequence of the gradual specialization of network neurons on local salient input
patterns is that the network response becomes increasingly more structured and reliable during
learning (Fig 3G, top): each network neuron becomes a probabilistic local expert for one of the
salient activity patterns in its local 6x6 input field. This assigns a particular meaning to each of
the random variables z; of the network: The activity of neuron z; represents the presence or
absence of the salient local input feature which is encoded in its afferent weights V},. Nearby
network neurons (such as the blue/red/green neurons in Fig 3A) are in competition due to lat-
eral inhibition. Therefore, whenever an input is presented to the network, the activity in the
local 6x6 input field is effectively categorized by similarity to the preferred patterns of the three
neurons. This is visualized in Fig 3E: Each dot in the 2D-projection represents one instantiation
of the local 6x6 input field highlighted in Fig 3A. Grey dots indicate that none of the three neu-
rons (green/red/blue) fired in response to the local input (= 80% of the time in accordance
with the targets m;). Colored dots indicate that the respective network neuron fired (colors as
in Fig 3A). After learning, the input space is segmented into three regions (Fig 3E, right).
Ambiguous input instances at borders between regions evoke probabilistic responses (e.g.
between blue and red region). In this case, the network stochastically responds with one of the
two (or three) possible interpretations in order to approximate the posterior probabilities of
each hidden cause. The resulting representation on the network level is a sparse structured
spike response that conveys highly compressed information about the input.

The qualitative changes in network behavior described above are paralleled by a quantitative
improvement of network performance measured by the log-likelihood £(0) (Fig 3C), as pre-
dicted by Corollary 2: From the perspective of statistical model optimization, the learning
dynamics due to synaptic and homeostatic plasticity guide a local stochastic search in parame-
ter space which on average increases the lower bound F of the log-likelihood £(0). At the end
of learning, after T'= [10, 000] s, the network has identified a faithful representation of the actu-
ally presented local activity patterns (see Fig 3D). For the shown comparison, theoretically
optimal weights were calculated from the presented activity patterns according to Eq (9). The
reason for the small but systematic differences (learned weights are a bit stronger than pre-
dicted) can be found in the facts that the network samples from a variational posterior distribu-
tion and that the plasticity rules (12) and (13) optimize a low bound F instead of the log-
likelihood L.

In summary, we have demonstrated in this subsection how a neural-sampling network can
adapt its internal parameters to perform probabilistic inference on distributed spiking input
streams. The theoretically derived plasticity rules (12) and (13) enable the sampling network to
develop a sparse and reliable spike code that carries the most salient information of the input
stream. This statistical optimization process evolves in a fully self-organized manner by turning
network neurons into probabilistic local experts that compete in explaining the presented spike
input according to the rules of probability theory.

The distinct role of lateral inhibition for synaptic learning. Before we address plasticity
of recurrent synapses, an important contribution of inhibition to synaptic learning deserves a
brief discussion. The simplicity of the synaptic plasticity rule (12) arises from the salient lateral
inhibition network motif. To identify the role of lateral inhibition for synaptic learning, it is
instructive to review the derivation of (12) in the absence of inhibition. By repeating the deriva-
tion with W™ = 0, we obtain:

% Vi =1y - z(t) - |}’i(0 -0 <V0i + ; ‘/ji Zj(ﬂ)] . (15)

The sum on the right-hand side in (15) depends on the activity of neighboring cells z;, j # k, as
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well as on their afferent weights Vj;, thereby rendering statistically optimal learning non-local.
In contrast, local inhibition introduces competition among nearby neurons such that each
input variable y; is explained by at most one hidden cause z; at a time, and, as a consequence,
the complex non-local term in Eq (15) vanishes. Notably, this outcome is not an artifact of the
specific probabilistic model we use, but rather is a general consequence of explaining away
effects in any graphical model with converging arrows. This finding suggests that lateral inhibi-
tion among nearby neurons assists synaptic learning in a Bayesian framework of model optimi-
zation. On the other hand, when lateral inhibition extends beyond neurons with shared
afferent input, the expressive power of the probabilistic model is reduced since less hidden
causes zj are allowed to be active simultaneously. These theoretical considerations suggest that
the emergence of efficient representations benefits from network architectures in which the
range of local inhibition matches the spatial extent of excitatory cells that share common affer-
ent input.

Plastic recurrent synapses integrate structural knowledge

We have demonstrated how synaptic plasticity can guide statistically optimal learning of affer-
ent connections Vy,. This learning process led to the emergence of probabilistic local experts.
As a result, the configuration z(t) of active network neurons indicates the subset of currently
present local features in the spiking input y(t). In most biologically relevant scenarios, these
local input features are unlikely to be statistically independent. For early visual areas, for
instance, we can expect the input in nearby spatial receptive fields to exhibit some degree of
correlation. Similarly, across sensory modalities certain visual, auditory or tactile stimuli will
often occur together. These statistical correlations among local features give rise to non-vanish-
ing covariances (2 z;) — (2) (z;) in the network. In the probabilistic model p (y, z| 6), the
covariance between network neurons is determined by the recurrent weights W which shape
the prior distribution p(z | ). Since a probabilistic model supports inference best if its prior p(z
| ) reflects the input-evoked correlation structure [38], we extend our investigation of statisti-
cally optimal learning to plastic recurrent synapses W;i. For the derivation, we can follow the

same approach that has already afforded the plasticity rule Eq (12) for afferent synapses. The
key idea is to identify a synaptic plasticity rule that points on average in the direction of

OF |OW¥, Le., in the direction of increasing 7. The derivation is provided in Model optimiza-
tion via Generalized Expectation Maximization in Methods and yields the following theoreti-
cally optimal plasticity rule for recurrent weights:

8 O] J/exc  [j/in 7
o Wi = - (@l0) (1) = gF (WSS, W, b)) (16)

with learning rate 7y and ;" ( Wese ik by = (22)) (- | - The plasticity rule Eq (16) features
a long-term potentiation (LTP) and a long-term depression (LTD) term: Concurrent activation
zi(t) z(t) of network neurons in response to the input strengthens the synapse in a local Heb-

opt

bian LTP update. Depression, however, turns out to be non-local since the term ¢ depends

on all parameters W, W™ and b of the prior distribution p(z | ). This increased complexity

of learning in recurrent systems is well-known in machine learning theory [39], and we can
opt
4

sleep phase. This algorithmic approach is known as wake-sleep learning in the literature [40].

employ (non-local) machine learning techniques to determine the value of ¢} in a so-called

Since the calculation of (bi;’t is often computationally costly, the development of approximate

solutions (such as contrastive divergence [41, 42]), which are tailored to particular network
architectures and learning tasks, turned out beneficial in machine learning. The question,
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whether the brain makes use of similar learning strategies, is subject of ongoing theoretical and

experimental research (see e.g. [43, 44], or [45] for a recent review), and it appears indeed con-
opt
ki -

In the present study, we contribute to this intriguing hypothesis by exploring to what extent
even simple plasticity rules could be sufficient to approximate the non-local plasticity dynamics
of Eq (16) in the neural sheet model. Specifically, we are interested in plasticity rules which (i)
rely on only local information, (ii) can be applied uniformly to all recurrent synapses, and (iii)
are shaped by only a small set of parameters. In case of the architectures often considered in
the machine learning literature (stacked Restricted Boltzmann Machines (RBMs) and variants
thereof) this would likely be a hopeless endeavor. However, the network architecture of the
neural sheet is fundamentally different from stacked RBM architectures, and the local integra-
tion of input may further ease the complexity of recurrent learning. The conceptual separation
of feature detection (through plastic afferent weights V};) on the one hand, and feature struc-
ture (through plastic recurrent weights W) on the other hand, can be expected to facilitate

ceivable that nature found ways to estimate ¢

learning in that—once the essential features have been identified—the complexity of learning
the prior shows some resemblance to the reduced complexity of training a fully visible Boltz-
mann machine [46]. Thus, the emergence of probabilistic local experts may provide a guidance
for learning of recurrent connections. Inspired by the structure of Eq (16) and the weight
dependence of the LTD term in Eq (12), we make the following ansatz for a local synaptic plas-
ticity rule:

O W=y - (050 — 60(Wg)) (17)

where the LTD-term ¢3 (W) only depends on the weight of the respective synapse, and the
parameters 9 of ¢g are to be determined for the given learning task. Ideally, the LTD function
¢9 should be chosen such that Eqs (16) and (17) lead to the same weight values Wi under
given neuronal spike patterns. In the simple rule, plasticity is governed by two antagonistic
terms: LTP is proportional to the average coactivation (z; z;) of a synapse’s pre- and post-syn-
aptic neurons; LTD is proportional to q{)s(W,f]?‘C). Hence, if ¢g is a continuous and monotoni-
cally increasing function in Wi, there exists an equilibrium weight W< for each value of the
coactivation (zj z;). Based on this observation, a principled approach to identify a suitable
LTD function ¢y is to first determine optimal weights W for a given learning problem using
the theoretically optimal wake-sleep rule (16), and then to fit ¢y (W) such that the identified
optimal weights are approximately reproduced under given coactivations (z z;) by the simple
rule (17). In Approximate plasticity rule for recurrent synapses in Methods, we show how for a
set of optimal weights W and corresponding coactivations (zj z;) an LTD function
dg(W;) can be constructed that features the desired convergence points W;;". It must be
noted that the local plasticity rule (17) can only serve as a heuristic for approximating the plas-
ticity dynamics of the theory-based wake-sleep rule (16). As such, the parameters 9 need to be
adjusted for every learning scenario and there exists no strict guarantee of stable plasticity
dynamics. Therefore, we explored the suitability of the local recurrent plasticity rule in com-
puter simulations by comparing the learning results of the local rule with the outcome of
wake-sleep learning.

Demonstration of self-organized integration of structural knowledge. We tested the
learning capabilities of the simple plasticity rule (17) and compared it with the theoretically
optimal wake-sleep rule (16) in a computer simulation with seven spatially separate network
populations (see Fig 4A). Each population consisted of three neurons and received spiking

PLOS ONE | DOI:10.1371/journal.pone.0134356 August 18,2015 17/51



Distributed Bayesian Computation in Spiking Neural Sheets

B (¢}
Li i
LELEELHLELEIE
[N [ I N N N RQ 7’
1 (1 [ | [ | Ay, -
I N N O ) | LQ RQ
| [ |
D E , F
g -115 I L
2 " —
§ 120 i
T / — Simple rule -
§) 1251 [ . Wake-sleep —
-130 -- Wi/o rec. exc. I o e LT " N
0 4000 8000 | 300 ms [ [—
Learning time [s] (z) 1

Fig 4. Plastic recurrent synapses integrate structural knowledge. (A) Network architecture with seven recurrently connected local populations (all-to-all
beyond inhibition). Input weights Vi; and recurrent excitatory weights W are plastic. One of three stripe activity patterns (visualized as red/green/blue) is
presented as spiking input to each local population. (B) Examples of the input structure. Top: input activity of the strip patterns (250 ms average). Bottom: The
two outer locations serve as left and right cue (LQ,RQ). Cue input patterns are chosen independently. The cues determine the type (“color”) of the inner
patterns in that the inner inputs are always different from both cues. In addition, inner patterns are always consistent. Hence, inner network neurons must
consider both cues and the state of the other inner network neurons to infer their own state. (C) Recurrent weights of the highlighted blue-tuned neuron after
25, 000 s of learning with the simple local plasticity rule (17). Network neurons are colored according to the local pattern they have become experts for. Line
width encodes the synaptic weight W (min. line width 0.2 for Wi = 0). In accordance with the input structure, the inner blue neuron has developed strong

excitatory connections to the other inner blue neurons and moderately strong connections to the red and green cue neurons. (D) Comparison of the log-
likelihood over the first 10, 000 s of learning for three recurrent plasticity conditions: with the simple recurrent plasticity rule (red), with the wake-sleep
algorithm (dashed black), and without recurrent excitation (dashed gray). Recurrent plasticity significantly enhances the network’s learning capabilities. (E)
The knowledge on the input structure, that was learned by the recurrent synapses Wg°, enables inference of correct global network states in face of
incomplete input. Only the outer cues are presented while all inner inputs show an uninformative (“gray”) pattern. With red and green cues, the network
correctly infers that the inner hidden causes should be blue, most of the time. Horizontal bars: mean activity ( z, ) of network neurons (average over 100 s).
(F) When both outer cues are blue, the already incomplete input is furthermore ambiguous. During inference, the network switches stochastically between
the two consistent global interpretations.

doi:10.1371/journal.pone.0134356.9004

input from a group of 6x6 inputs. Within each population neurons are subject to lateral inhibi-
tion. Neurons from different populations are linked via all-to-all recurrent excitatory connec-
tions. At each spatially separate 6x6 input location one of three local activity patterns may
occur. The local activity patterns are simple stripe patterns (see Fig 4B top) that can easily be
learned by the afferent weights Vy;. For brevity, we refer to the three activity patterns as the
‘red’, ‘green’ and ‘blue’ pattern in the following.

In order to assess the network’s ability to detect and integrate highly interdependent correla-
tion structures among features at different locations, we introduced complex dependencies
between the input presented to the seven populations: While the two outer input locations
served as a left cue (LQ) and right cue (RQ), and were chosen independently, the five inner
locations were chosen to be (a) different from the cues, and (b) consistent with each other. For
instance, if the outer cue patterns were red and green, all inner input patterns were blue. If,
however, both cues showed the same pattern (e.g., both blue), an ambiguous situation arose: In
this case, the inner patterns were still chosen to be different from the cue, but additionally all
inner patterns were consistently of the same type (either all red or all green). Several examples
illustrating this correlation structure are sketched in Fig 4B. As a consequence, an inner net-
work neuron, that is tuned to one of the three local patterns, has to consider both cues and the
state of all other inner network neurons in order to infer its own state correctly.

We tested the network’s ability to recover the statistical structure of the input in a simula-
tion with concurrent learning of afferent weights and recurrent weights (initial values: V,; =

Wi = 0 and restricted to positive values). In a first simulation run, recurrent synaptic
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plasticity followed the theoretically optimal wake-sleep plasticity rule (16). As expected from
the theory, all network neurons developed a tuning to one of the local input patterns, and
recurrent weights correctly reflected the correlation structure of the task after 25, 000 s of learn-
ing: Similarly tuned inner network neurons formed strong excitatory recurrent links W;; in
addition, inner neurons developed excitatory connections with compatible cue neurons (e.g.
with the red and green cue for a blue-tuned inner neuron). The ongoing adaptation of the net-
work is reflected in the log-likelihood function £(8) shown in Fig 4D. The black dashed line
shows the learning progress with the theoretically optimal learning rule. For comparison, we
performed an independent simulation with recurrent plasticity switched off (dashed gray, all
W fixed at zero). Without recurrent excitation, the log-likelihood settled at a significantly
lower value. The gap in £ between the two simulations corresponds to the structural informa-
tion stored in the prior p(z | 9).

Building on the theory-based learning result, we constructed a suitable LTD function ¢g to
obtain a simple plasticity rule. The set of target weights W,‘(’jpt‘, that emerged during the first sim-
ulation run, and the set of coactivations ( zxz; ), that had led to these weights, are provided in
Details to the computer simulations in Methods. Based on the observed functional dependence
between W, and ( ziz; ), we chose the following LTD function:

Lo (* W
So(W) = my -+ 2ran (500 (18
with parameters 9 = (W™ = 1.41, y = 31.6) fitted to the data. The LTD function (18) has two
components: The term . - m; describes the expected coactivation (z.z;) if the neurons were
statistically independent. This case is associated with weight W = 0 when synaptic plasticity
follows Eq (17). The second term accounts for positive correlations between z; and z; through a
stabilizing weight dependence. While the specific tangent-shape is a heuristic, the functional
form has some properties that are generally expected for Hebbian-type plasticity: The LTD
function is strictly monotonically increasing such that higher coactivations settle at stronger effi-
cacies; and, the maximum efficacy of a synapse is bounded since the LTD contribution goes to
infinity as W}y approaches W™**. The scaling parameter y sets the strength of LTD.

In a second simulation run, all recurrent and afferent weights were reset to zero, and recur-
rent synaptic plasticity followed the simple local plasticity rule given by Eqs (17) and (18). As
seen in Fig 4D, the simple rule is virtually indistinguishable from the theoretically optimal rule
in terms of the log-likelihood. The resulting recurrent connectivity structure after 25, 000s of
learning is shown in Fig 4C for the example of an inner network neuron that has specialized on
the blue input pattern: The neuron developed strong recurrent weights with all other inner
neurons of similar tuning, and moderately strong weights with red- and green-tuned cue neu-
rons. This connectivity matrix mirrors the connectivity structure obtained with theoretically
optimal wake-sleep learning (see Details to the computer simulations in Methods for numerical
values).

The learned structural knowledge can be exploited by the sampling network during infer-
ence. Most distinctly, the benefits of well-adapted recurrent excitatory connections become
apparent in response to incomplete, or even ambiguous, stimuli (Fig 4E and 4F). To emulate a
scenario of incomplete observations, only outer cues were presented to the network while all
inner inputs showed uninformative, uniform activity (indicated as gray). For example, when
the cues are set to red and green, as shown in Fig 4E, the network correctly infers that all inner
features should be blue most of the time. In the given experimental protocol, this knowledge
can only be communicated via recurrent excitatory synapses. In a second example shown in
Fig 4F, the already incomplete input is furthermore chosen to be ambiguous by presenting a
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both-blue cue. Hence, the inner features should be either all red or all green. In this case, the
network activity stochastically switches between the two inferred consistent interpretations
(note that the switching of network neurons at inner locations is synchronized), as expected for
sampling from a bi-modal posterior distribution p (z| y, 6).

In conclusion, the computer experiment in Fig 4 demonstrates that the sampling network
model can concurrently identify salient features of its input stream and recover complex corre-
lations among spatially distributed features through synaptic plasticity. Self-organized learning
of recurrent excitatory connections can be understood as an ongoing refinement of the prior
distribution in the network’s internal model of presented input. The obtained structural knowl-
edge on the input distribution significantly enhances the network’s ability to maintain globally
coherent network states in face of incomplete and ambiguous observations. For the examined
inference task, which required integration of two independent cues as well as the state of multi-
ple other network neurons, we observed that even the simple local plasticity rule (17) + (18)
endowed the network with close-to-perfect learning capabilities. This observation indicates
that the architecture of the neural sheet model eases the complexity of recurrent learning in
that the local input integration through probabilistic experts can guide learning of recurrent
connections. However, as a word of caution, owing to theoretical considerations it is unlikely
that such simple plasticity rules will be sufficient to solve arbitrarily sophisticated learning
problems. For instance, probabilistic causal relations of the type “A often implies B” but “B
does not cause A” lie beyond the expressive power of the employed single-layer associative
prior (6). Yet, as shown in [47], it is possible to implement such probabilistic relations into
spiking neural networks by using complex connectivity structures and asymmetric recurrent
weights. Regarding the ability of the local plasticity rule (17) to approximate the theoretically
optimal rule (16), it can be expected that reliable learning is limited to scenarios where only
few recurrently connected neurons are typically active simultaneously. For instance, it is
unlikely that deep learning architectures with additional hidden units (without synaptic input
connections) could be trained with the simple plasticity rule.

Emergence of excitatory subnetworks in neural sheets

In previous subsections, we have examined how small sheets of spiking neurons with local lat-
eral inhibition and recurrent excitation can perform probabilistic inference by sampling from
the posterior distribution p (z| y, 8) of a well-defined probabilistic model, and how the parame-
ters 0 of the underlying probabilistic model can be adapted to the presented input by plastic
afferent and recurrent synapses. For illustration purposes, network architectures were small
and computer simulations were tailored to highlight specific aspects of sample-based inference
and statistical learning.

In this final subsection, we combine all mechanisms described above and explore Bayesian
information processing and self-organized learning in a spatially extended neural sheet model
that is exposed to multiple local input streams in parallel. The employed network architecture
is shown in Fig 5A. Network neurons are organized in a two-dimensional lamina and integrate
spiking input locally via plastic afferent synapses (initial weight Vy; = 0). Lateral inhibition is
spatially confined for any point of reference (dashed line for the highlighted cell) yet omnipres-
ent in the homogeneous continuous tissue, giving rise to a plethora of interleaved and overlap-
ping competitive subcircuits. Beyond the range of inhibition, network neurons maintain
sparse, plastic excitatory connections (per pair: 25% chance of a reciprocal connection, initial
weight Wi = 0). Note that, due to the sheer amount of possible network states z(¢), a tradi-
tional analytical calculation of the posterior distribution p (z | y, 8) becomes intractable in this
architecture.
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Fig 5. Emergence of excitatory subnetworks in neural sheets. (A) Network architecture with 24x24 inputs and 12x12 network neurons. Each network
neuron receives input from a subset of 6x6 inputs, as illustrated for the highlighted neuron. Input subsets of neighboring neurons are shifted by two. The
dashed line marks the range of lateral inhibition for the highlighted neuron. Additionally, pairs of network neurons, that do not inhibit each other, maintain
sparse recurrent excitatory synapses Wg (25% prob. for a reciprocal connection). All bottom-up weights V; and recurrent weights Wg are plastic. (B) Three
exemplary input activity patterns (top; 500 ms average) and spiking input instantiations y(t) therefrom (bottom). Two of three local input templates (grid/
diagonals/checker) are presented at different random locations at a time. (C) Input spike trains (bottom) and network response (top) after 10, 000s of learning.
Input patterns switch every 500 ms. Only a random subset of 144 inputs is shown to facilitate the comparison of spike density. The network response is
considerably sparser than the input. (D) Reconstruction of the input from the sparse network response. Bottom: Input ( y(t) ) averaged over the highlighted
periods in C. Top: Average network response { z(t) ) during the same periods. Middle: Reconstruction ( y9" ) of the input from the network response by
means of the learned generative model. (E) Emergence of distributed assemblies of local experts. During learning each network neuron becomes a
probabilistic expert for one of the local activity patterns (indicated by red/green/blue color). Input weights Vj; are shown for highlighted neurons. In addition,
the network developed recurrent excitatory connections Wg. Neurons, that are experts for similar patterns, form excitatory subnetworks after learning (line
width proportional to Wg). (F) Recurrent excitatory connections between similarly tuned neurons are on average considerably stronger than connections
between neurons with different specialization (left). In addition, connections between nearby pairs of network neurons are stronger than between distant
pairs (Euclidean distance; based on 4198 recurrent exc. synapses).

doi:10.1371/journal.pone.0134356.9005

We presented spiking input to the network as shown in Fig 5B: Three local activity motifs
(grid, checkerboard, diagonal stripes; top row of Fig 5B) can appear at different locations in the
input space. Each local motif is larger than the diameter of afferent connections Vj; to individ-
ual network neurons (highlighted green neurons in Fig 5A). At any time, two randomly drawn
motifs are presented at different non-overlapping random locations. Inputs y; that are not part
of a local motif maintain a low-activity background firing rate. Poisson spike trains were gener-
ated from the resulting rate patterns (top row of Fig 5B), leading to versatile (and seemingly
noisy) input y(f) that was presented to the network (bottom row of Fig 5B).
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This input mimics some important aspects of cortical information processing: First, input
neurons are tuned to certain input features (the presence/absence of the three input motifs),
but their spiking activity is highly stochastic and the same input neuron y; can be responsive to
multiple different input patterns. Consequently, inputs y; are not very informative when
observed individually. Second, input motifs are too large to be explained by a single network
neuron, and thus multiple network neurons must be recruited in parallel for the explanation.
Finally, multiple independent streams of information can be presented to the network at differ-
ent locations simultaneously.

We tested the capability of the neural sheet to integrate and adapt to this input in a 10, 000 s
learning experiment. All parameters (W}, V,;, b,) were plastic. As before, we first trained the
network with the theoretically optimal recurrent plasticity rule (16). Fitting the parameters 9
for the simple rule (17) + (18) yielded W™®* = 2.70 and y = 734. Note that, even though the two
parameters 9 are tailored to the learning task and are thus assumed to be given to the network,
the resulting plasticity rule ¢g is of drastically reduced complexity compared with wake-sleep
learning. In particular, all recurrent synapses share the same LTD function ¢y (W;). Using
the fully-local plasticity rules for Wi, Vi, and by, the network was then simulated again “from
scratch”. Fig 5C shows spike trains of the input and the network neurons after learning. To
facilitate the comparison of the network response to the input, only a random subset of 144
input neurons is shown. The network response is considerably sparser than the input, with
only few network neurons firing simultaneously at a long-term average firing rate of ca. 2.5Hz.
To examine what aspects of the input are conveyed by the sparse response, we can adopt the
generative perspective, again. From the learned afferent weights V;, the translation to the
input domain as established by Eq (9) and the likelihood model p (y | z, 8), we can reconstruct
the average input ( 8" ) expected from the network response z(f) during a short time window:

to+A

o =5 [ et Y amvir, (19)

fo

where we chose A = 500 ms. This reconstruction is shown in Fig 5D for the two highlighted
time windows of Fig 5C and as a video (S1 video) for a longer time span with A = 100 ms. The
reconstructed (y*") are plotted in gray scale alongside the true average inputs (y(t)) plotted in
green. While small differences, especially at the spatial feature boundaries, are visible, the net-
work response still conveys the most salient information of the presented input. In other
words, the network has developed a code which is not only sparse but also very efficient, carry-
ing highly compressed information about the presented input spike patterns in only few spikes.

Fig 5E provides insight into how this code has been established: Each network neuron has
become a local expert for one of the three local inputs motifs, and together, network neurons
cover the entire input and feature space. The afferent weight values V}; are shown as small col-
orbar insets for the 6x6 input fields of the highlighted network neurons in Fig 5E. Excitatory
connections among network neurons store positive associations, i.e., a strong excitatory weight
between two network neurons indicates that the corresponding local features tend to co-occur
in the input. This co-occurrence mirrors the local nature of the presented input motifs: The
presented motifs are larger than the 6x6 input field of a network neuron. Consequently, multi-
ple nearby network neurons turn active simultaneously in the posterior for explaining a pre-
sented pattern. The systematic co-activation of network neurons triggers LTP in their
recurrent connections. In line with this notion, we observe the emergence of recurrent excit-
atory subnetworks among those neurons that receive input from contiguous spatial domains
and exhibit tuning to similar input features. These learned associations can be used during
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inference for ensuring that more likely configurations of network states are preferentially vis-
ited by the network in case of uncertainty. The qualitative observation of excitatory subnet-
works is further supported by the statistical analysis shown in Fig 5F: Synaptic weights between
network neurons with similar tuning are on average stronger than weights between neurons
with different tuning properties (left). And, synapses between nearby cells are stronger than
connections between distant cells (right), reflecting the local nature of the presented input.

Here, we have demonstrated sample-based inference and self-organized learning in a neural
sheet model with 12x12 network neurons. The rather limited network size in Fig 5 is owing to
the extensive computing time required for simulating long-term learning experiments. Nota-
bly, the theory of the neural sheet model supports networks of arbitrary size. When increasing
the network size, two types of scaling can be distinguished: (a) increasing the spatial area cov-
ered by the neural sheet, and (b) increasing the local density of neurons within the range of lat-
eral inhibition. Scaling the spatial area is expected to not significantly change any of the
network dynamics during inference and learning in most scenarios. In contrast, increasing the
neuron density will lead to a very sparse spike response since lateral inhibition permits only
one local network neuron to be active at a time. While a very sparse response is fully covered
by the theory, it could become a concern in neurobiological modeling. We will come back to
this point in the Discussion section.

Discussion

We have proposed a spatially structured spiking network model for distributed Bayesian infer-
ence and self-organized learning through synaptic plasticity. Building on the theory of MCMC
sampling, we have shown how the transient spike response of the recurrent neural network can
be understood as an ongoing sampling process from a well-defined Bayesian posterior distribu-
tion. Our study extends work by Buesing et al. in that it endows the generic network architec-
ture of [17] with a spatial structure (namely, local lateral inhibition and sparse recurrent
excitation) and the ability to integrate distributed spiking input. It turned out that the local
integration of distributed spiking input streams assigns a particular meaning to the previously
abstract random variables of the neural circuit: Network neurons encode the presence or
absence of salient input features which are stored in the network’s afferent synapses. This leads
to the conception of network neurons as probabilistic local experts which are organized in a tis-
sue of interwoven local winner-take-all circuit motifs. Beyond the range of lateral inhibition,
network neurons communicate via sparse recurrent excitatory connections on an intermediate
spatial scale. From a theoretical perspective, the recurrent transfer of information is linked to
the prior distribution in Bayes rule and captures structural knowledge on statistical correlations
among spatially separate input features. This ability to align instantaneous observations with
previously obtained structural knowledge according to the rules of probability theory enables
the neural sheet to maintain coherent global network states even when the presented input is
incomplete or ambiguous. Moreover, having a full probabilistic description p(y, z| ), that cov-
ers both the input and the network response, at hand permitted a rigorous mathematical treat-
ment of self-organized learning. Extending work of [36] and [25], we demonstrated that the
interplay of STDP-type synaptic and homeostatic intrinsic plasticity can approximate stochas-
tic online Expectation Maximization, a powerful machine learning algorithm. This is a remark-
able finding: Global statistical model optimization can be achieved in a spatially extended
network through only local information exchange (pre- and post-synaptic spiking activity) in a
fully unsupervised manner.
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Theoretical aspects of information processing in the neural sheet

The theoretical analysis of inference and learning in the neural sheet model revealed a distinct

functional role of individual network components. These are briefly addressed in the following
and comprise the functional contribution of precise relative spike timing, the lateral inhibition
connectivity motif, and the dynamics of self-organized synaptic learning.

The relative spike timing carries essential information. In the proposed neural sheet
model, multivariate posterior distributions p (z| y, 0) are represented by interpreting network
spikes as realizations of random variables z; according to Eq (1): After a spike of the k-th net-
work neuron, the associated RV z; turns active for a short time 7 (10 ms in this study). This
gives rise to vector-valued network states z(t) in which multiple RV z; will typically be active,
simultaneously. As a direct consequence, the relative spike timing of neuronal subgroups car-
ries important information on a millisecond time scale: overlapping on-times encode the prob-
ability of coactivation of the associated RVs in the multivariate distribution p (z | y, 8). The
computational importance of incorporating coactivations during inference becomes particu-
larly evident in ambiguous situations that support multiple coherent—but mutually exclusive
—explanations. The sampling network’s spike response in such an ambiguous scenario was
demonstrated in Fig 4 where the network switched stochastically between two coherent percep-
tual modes in a synchronized manner. The information density conveyed by this structured,
bimodal response goes far beyond the quality of conclusions that could be drawn from just
observing the average firing of individual neurons. Figuratively, considering only marginal
responses would disregard the insight that an obstacle could be circumvented either on the left
hand or the right hand side, but would instead suggest to steer a happy medium.

Lateral inhibition facilitates local synaptic learning. This information-rich neural repre-
sentation of globally coherent network states was shown to emerge fully autonomously through
the interplay of local synaptic and intrinsic plasticity rules. The derivation of the weight-depen-
dent plasticity rule (12) for afferent synapses Vj; furthermore revealed an essential role of the
local lateral inhibition network motif during learning. The contribution of lateral inhibition
becomes apparent when the derivation of Eq (12) is repeated in the absence of the inhibition
motif, resulting in the update rule (15). The latter rule (15) requires information not only on
the pre- and post-synaptic spiking activity of a plastic synapse, but also on the specific weight
values of other nearby synapses, thereby rendering learning non-local. This increased complex-
ity of parameter learning is a general problem in graphical models with converging arrows,
known as explaining away, and thus, the locality of synaptic learning displays a conceptual
challenge for a wide range of Bayesian network architectures. In the neural sheet model, lateral
inhibition establishes a particularly strong form of explaining away by ensuring that each input
y; is explained by at most one network variable z;, at a time. The resulting competition among
network neurons restores the locality of information required for synaptic learning. We there-
fore suspect that the competition introduced by local lateral inhibition could assist synaptic
learning in a wide range of network models in that it facilitates global statistical model optimi-
zation through local synaptic plasticity rules. In particular, in order to maximize the expressive
power of the system while preserving local synaptic learning, our theory suggests that self-orga-
nized learning of efficient representations benefits from network architectures in which the
range of lateral inhibition matches the spatial extent of network neurons that share common
afferent input.

Recurrent plasticity integrates structural knowledge. Regarding plasticity of recurrent
connections W} in the neural sheet, we found optimal learning rules to be fundamentally

non-local; a hardly surprising finding for recurrent systems. We therefore explored in com-
puter simulations to what extent even simple local plasticity rules with approximately matching
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convergence properties could be sufficient to recover complex structural correlations in the
presented input. In the small computer experiments of Figs 4 and 5, we observed no significant
impairment in the emergent weight configuration when simple local plasticity rules were used
(compared with the theoretically optimal non-local rule). This observation indicates that, for
tasks of “not too high” complexity, the prior p(z | 6) could indeed be adjusted by only local syn-
aptic plasticity. The specific shape of the employed plasticity rule, however, needs to be tailored
to statistical properties of the given task. For biological systems, it is thus conceivable that evo-
lution forged tailored simple plasticity dynamics for certain neuronal populations and brain
areas that interact with more elaborate plasticity types.

Robust evasion of suboptimal solutions. Finally, the learning dynamics of the underlying
stochastic online Expectation Maximization algorithm, that performs local gradient ascent in
the synaptic weights, deserves a brief discussion. Like every local optimization algorithm, learn-
ing in the neural sheet is only guaranteed to converge to a local optimum of the objective func-
tion F. This is a general issue in unsupervised learning since the likelihood functions of
complex probabilistic models may possess many local optima. However, two properties of the
neural sheet model are expected to mitigate this issue: First, the network employs stochasticity
in two ways, via the random presentation of input samples y ~ p*(y) and via the stochastic
nature of the network response z ~ p (z| y, ). This induces stochastic fluctuations in the syn-
aptic weights and facilitates the evasion of local optima (compared with a fully deterministic
batch algorithm as often used in machine learning). Second, homeostatic intrinsic plasticity
forces all neurons to participate in explaining the input. Thereby, many “particularly bad” local
optima, which recruit only a small fraction of hidden causes z; in the average posterior, are
automatically evaded. In accordance with these properties, we observed in the computer simu-
lations that learning was generally very robust and that the network reliably identified near-
optimal parameter settings most of the time.

Idealized modeling assumptions and conceptual limitations

Connectivity structure and neural dynamics of the proposed sheet model have their origin in
top-down principles of Bayesian information processing and machine learning theory. In the
spiking network implementation of the abstract algorithms, the time scales involved during
inference and learning span multiple orders of magnitude, ranging from milliseconds for the
instantaneous sampling process, over tens of seconds for homeostatic plasticity, up to minutes
and hours for synaptic plasticity (see also Interaction of time scales in Methods). In order to
keep these complex interactions in the recurrent system theoretically tractable, several idealized
modeling assumptions had to be made.

We employed a simple spike response neuron model that elicits action potentials stochasti-
cally based on an idealized membrane potential. The membrane potential integrates synaptic
input linearly, and synaptic transmission is mediated via rectangular non-additive post-synap-
tic potentials without delay. There exist many potential sources in the brain to generate sto-
chastic spike responses, ranging from channel noise and synaptic noise to recurrent network
phenomena [48]. While in-vitro data [33] justify the employed neuron model as a first approx-
imation of stochastic neuronal responses, the interactions of noise sources on a network level
are not yet sufficiently understood. Studies from computational neuroscience suggest that spik-
ing input from external neuronal populations [19] or the activity that arises in recurrent net-
works with probabilistic synapses [49] could lead to the employed stochastic neuronal
activation.

Homeostasis entered the system only in a single process, namely as homeostatic intrinsic
plasticity, with the aim to maintain a predefined average firing activity. In order to stay close to
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the derived learning rules, synaptic plasticity was implemented on the level of neuronal states,
i.e., on the value of y;(t) and z(t), and was not further mapped to the level of spikes. However,
in [25] and [28] it has been demonstrated that (variants of) the plasticity rule (12) can be
mapped down to the spike level, and that the resulting plasticity dynamics are tightly linked to
spike-timing dependent plasticity. In the computer simulations, lateral inhibition was trans-
mitted via strong reciprocal synapses between directly connected network neurons, thereby
integrating out the dynamics of putative interneurons. Regarding the connectivity structure,
lateral inhibition strictly obeyed the condition that a reciprocal inhibitory connection exists
between two network neurons if the neurons share common inputs. We did not investigate
synaptic plasticity of inhibitory connections. In particular, the range of lateral inhibition and
the size of receptive fields were treated as constant. In line with the generic probabilistic model
of [17], that was employed for the network population, recurrent excitatory connections were
symmetric. On a more conceptual level, it is noteworthy that, while the sampling process of the
network evolves in time, the underlying probabilistic model p(y, z| 6) is inherently non-tempo-
ral, i.e., the theory makes no predictions on the temporal structure of network trajectories or
the integration of salient temporal features of the input. Possible extensions of the theory in
order to support more complex recurrent (and also asymmetric) connectivity structures, soft
lateral inhibition, as well as the integration of temporal sequences are outlined below.

Relation to cortical microcircuits

The proposed neural sheet model shares some striking similarities with cortical microcircuits.
These similarities range from salient connectivity motifs, to microscopic neural dynamics of
single cells and synapses, up to population-level response characteristics in living animals.
Most clearly, the neural sheet model can be linked to salient aspects of cortical layer 2/3, with
network neurons being associated with pyramidal cells and lateral inhibition being mediated
disynaptically by fast-spiking interneurons (e.g., basket cells). Certainly, the idealized neural
dynamics of the model cannot be expected to find any precise counterpart in biology. And, of
course, the abstract network model does not (and could not) intend to provide any complete
description of all the subtleties found in cortical microcircuits. Yet, we believe that the evident
similarities, as briefly reviewed in the following, could contribute to sharpening our conception
of the complex neural dynamics observed in living tissue.

Disynaptic inhibition establishes local competition among pyramidal cells. In vitro
experiments indicate that central aspects of the ubiquitous lateral inhibition network motif in
the neural sheet model are established in layer 2/3 by soma-targeting, fast-spiking (FS) inter-
neurons. FS interneurons preferably form synapses locally [31] and show particularly high con-
nection probability with nearby pyramidal cells (PCs) [50]. These GABAergic connections
typically involve many (ca. 15) contacts [34] per cell-pair and inhibit the target close to its cell
body [34]. In addition, FS-PC connections were reported to feature very short transmission
delays of only approx. 1ms [50]. The dense and fast inhibition of PCs by FS interneurons is
complemented with an increased probability for reciprocal connections [51], i.e., bidirectional
links between nearby PC-FES pairs. Notably, reciprocal PC-FS connections were reported to be
especially strong in either direction (see [51, 52] for PC — FS, and [51] for PC < FS). Further-
more, also the PC — FS connection was found to have below-average transmission delays [50].
This led the authors of [50] to the conclusion that, “[t]aken together, our in vitro data (this
study) and our related in vivo data [52] suggest that disynaptic inhibition driven by FS GABAer-
gic neurons in the neocortex mediates competition among excitatory neurons such that perhaps
only a small fraction of excitatory layer 2/3 neurons can be active at any given time.” The finding
of lateral competition among PCs in layer 2/3 was also confirmed in vivo by [53].
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Pyramidal cells are clearly tuned while local lateral inhibition is unspecific. In vivo
studies with awake animals characterized typical response properties of PCs and interneurons.
During quiet wakefulness, PCs show a much lower firing activity than FS cells [54]. This was
explained by the stronger synaptic drive required for exciting PCs compared with FS cells,
which maintain an average membrane potential close below threshold [54]. Furthermore,
detailed patch-clamp recordings, that separated individual conductance contributions, pointed
to significantly sharper spatial tuning of excitation than inhibition [55]. This finding is sup-
ported by studies with anesthetized mice that reported clear orientation selectivity of excitatory
neurons, while GABAergic cells showed only little tuning [56, 57], but see [58]. Indeed, experi-
mental data suggests that the stimulus dependence of interneuron responses could be explained
by the integrated activity of surrounding neurons [59].

Sparse coding and structured connectivity of excitatory neurons. Experimental data on
the spike response of PCs in layer 2/3 appears to be compatible with a sparse coding scheme.
For instance, it was observed in vivo by [60] that even neurons with overlapping receptive fields
showed only low correlation. Also [61] reported generally weak noise correlations between
neighboring neurons of similar tuning, suggesting a mechanism of active decorrelation among
nearby neurons. A recent review [62], that assessed experimental evidence for sparse coding,
emphasized the particularly sparse response of layer 2/3 and pointed to the generally low firing
activity in superficial layers compared with neurons from layer 4, which are considered to be a
major input to layer 2/3. The functional characterization of PC responses is complemented by
studies on physical connections between excitatory neurons. While inhibition was shown to
act mostly locally, recurrent excitation spans larger distances [31]. Furthermore, neurons with
positively correlated responses were found to also have an increased probability to maintain
reciprocal connections [63]. More specifically, in [30] an increased connection probability was
reported between neurons with similar orientation tuning and cell body distances larger than
500 ym.

Cortical models propose similar network architectures and function. Based on the rich
experimental data on cortical layer 2/3 both in vivo and in vitro, experimental neurobiologists
and computational neuroscientists have proposed functional models of information processing
in layer 2/3 that appear compatible with the architecture of the neural sheet model in this arti-
cle. Douglas and Martin [29] as well as Lansner [35] sketched functional models of layer 2/3
that rely on local competitive circuits which communicate via associative excitatory links. The
local competitive aspect of information processing in layer 2/3 was examined in detail by [50]
and [52]. Finally, the architecture of the neural sheet model is highly reminiscent of the con-
nectivity structures within a cortical column model of barrel cortex, as proposed in a recent
review by Petersen and Crochet [64].

Especially cortical network models, which extend the idea of Bayesian confidence propaga-
tion neural networks (BCPNNGs) [65], have been linked to probabilistic inference and statistical
learning. In these networks, the mean activity of a small neuronal population (“cortical mini-
column”) is interpreted as the probability of a certain realization of a random variable. Differ-
ent (disjoint) minicolumns form a “cortical hypercolumn” and compete in a winner-take-all
manner to represent the possible values of a random variable. Excitatory synapses between
hypercolumns realize associative memory function. BCPNN-type networks have been pro-
posed as a model of human working memory [66]. Similar to the neural sheet model examined
in this article, BCPNN-type networks are capable of developing abstract representations of
input patterns [67] and forming associative memory [68], and support implementations with
spiking neurons [69]. Furthermore, BCPNN-type networks have successfully been imple-
mented with highly detailed neuron and synapse models [70]. A key difference between the
neural sheet model and BCPNN-type networks is found in the local network architecture: In
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BCPNN-type networks, minicolumns are disjoint sets, i.e., each neuron participates in exactly
one WTA circuit. In contrast, a neural sheet hosts a plethora of interwoven WTA subcircuits
by virtue of the continuous nature of lateral inhibition. As a consequence, each network neuron
can take part in multiple overlapping WTA subcircuits.

Experimentally testable predictions

In our model, the correlation structure between stimulus features is reflected in the lateral con-
nectivity of the network after learning. In the generative model, the plastic modification of lat-
eral connections corresponds to reshaping the prior distribution p(z | 8). Whether such
correlation structure of features can be observed in the prior could be tested in an experiment
that extends the setup of Berkes et al. [38]. There, it was observed in ferret V1 that the distribu-
tion of spontaneous activity (dark stimulus condition, identified with the prior p(z | 8)) became
increasingly similar with the average evoked activity (natural stimulus conditions, identified
with the average posterior {p (z| y, 8))) during development. Our model predicts that a change
in the correlation structure of environmental features should be mirrored in the generative
prior and thus in the correlation structure of cortical spontaneous activity after learning.

In Fig 4, we have demonstrated synchronized perceptual switching between two modes of
activity under ambiguous stimulus conditions. Such stochastic switching displays a characteris-
tic property of sample-based representations when the posterior distribution is bimodal. Note
that in our model, perceptual switching is a result of the learned prior p(z | 0) that assigns very
low probability to network states that seem inconsistent with previous experience. According
to our model, the prior is subject to ongoing learning. Hence, for initial presentations of an
ambiguous stimulus, the prediction is that network activity will alternate between response pat-
terns that are consistent with the alternative stimulus interpretations rather than evoking a sta-
ble intermediate response (see Fig 4F). After sufficient learning time, however, it is expected
that a distinct neural representation emerges for the previously ambiguous stimulus, on which
the network activity settles.

Related theoretical work and integration into larger networks

During the last decade, several theoretical studies examined how Bayesian computations could
be performed and represented by spiking neural networks. In the following, we discuss how the
neural sheet model relates to existing work with a focus on two key aspects: (1) The fundamen-
tal (and unanswered) question how probability distributions are encoded in neuronal activity
patterns, and (2) the compatibility of the proposed sheet model, that focused on spatial aspects
of distributed inference and learning, with spiking network models that addressed other aspects
of Bayesian information processing, such as more complex causal relations or temporal inte-
gration. The two aspects are discussed separately.

Neural representations of Bayesian computation. The algorithms that underlie Bayesian
computations in neural network models are diverse. However, regarding the representation of
the arising posterior distributions p (z | y, 6) two general lines of research can be identified,
namely sample-based codes and distributional codes. In sample-based codes (as employed by
the neural sheet model) the observed network state is interpreted as an instantiation of one or
more random variables z. By observing the sequence z(t) of network states over time, the distri-
bution p (z| y, 6) is represented with increasing precision through the relative frequency of
state occurrences [23, 24]. Examples of a direct (one-to-one) mapping between neurons and
random variables are found in [38, 17, 25] and [20]. A conceptual separation between network
neurons and the represented RV's was explored by [47] where only a subset of so-called princi-
ple neurons carry meaningful information for downstream populations. In [16], a spiking
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network model was proposed that enables a sample-based Bayesian interpretation of percep-
tual bistability based on the average activity of neuronal populations. The idea to rigorously
separate neuronal spike patterns from the represented RVs was recently explored by [21],
thereby allowing the simultaneous operation of multiple entangled sampling chains within a
single network. In a different direction, recent theoretical work [18] has shown that the notion
of “network states” can be extended to also cover entire population trajectories. On a general
account, it has been emphasized [24] that sample-based codes offer several conceptual advan-
tages, such as high representational flexibility, easy marginalization, natural emergence of
response variability, and general suitability for learning.

Distributional codes provide a complementary (and at first glance, irreconcilable) neural
representation of probability distributions. A characteristic property of distributional codes is
the (almost) instantaneous representation of either the entire posterior distribution or, at least,
pivotal statistical properties thereof (e.g. marginals or mean values). Just as the case for sam-
pling networks, the exact inference algorithms implemented by distributional code network
models are manifold. One line of research [11, 12, 14, 15], builds upon the belief propagation
algorithm that aims to calculate the marginal posteriors (zx), (- | 5, ¢) for all variables. This
approach enables inference in complex graphical models, including temporal integration.
However, since correlations among RVs in the posterior are not accommodated, the precise
relative spike timing between different neurons carries no relevant information: what matters
is the spike count in a given time interval, not the spike timing. A second line of research is
established by (probabilistic) population codes (see e.g., [10, 13, 71]). These models aim to
infer the posterior of a hidden (true’) stimulus parameter (e.g., bar orientation) from the
observed input activity in a known generative model. The inference process relies on integrat-
ing the spike count of many input neurons with known tuning properties, simultaneously.
Neuronal trial-to-trial variability arises in this deterministic inference scheme solely from sto-
chasticity in the spiking input.

Despite their different origins, sample-based codes and probabilistic population codes can
provide mutually compatible interpretations, at least in some scenarios. Consider, for instance,
alocal column in the neural sheet model with multiple network neurons within the range of
lateral inhibition. This local network is very similar to the competitive networks examined in
[25]. Over the course of learning, each neuron will develop a tuning, e.g., a preferred bar orien-
tation (cp. Fig 5 in [25]), such that the local network neurons will jointly cover the entire local
input space. Due to the width of the likelihood distribution associated with each hidden cause,
the response curves of roughly similarly tuned neurons will partially overlap. Formally, the
resulting spike response of the local population to a given stimulus displays a sample-based
code of a multinomial (mixture) posterior distribution. However, by knowing the tuning curves
of each network neuron, the response of the sampling network could equally well be inter-
preted as a distributional code of the stimulus parameter (cp. Fig 2 in [71]). Conversely, the
continuous hidden stimulus parameter in PPC models could always be mapped to a set of
locally competing network neurons in a sampling sheet. Thus, it appears that, at least in some
cases, sample-based codes and probabilistic population codes are mutually compatible, and
further experimental research will be required to investigate spike response characteristics in
more complex scenarios.

Integration into larger Bayesian spiking networks. In this work, we have employed a
rather basic prior distribution p(z | 6) for associative memory formation, namely a single-layer
Boltzmann distribution. The theory of the neural sheet model, however, also supports more
complex network structures such as deep learning architectures [39] that constitute one of the
most powerful tools for unsupervised learning in machine learning theory. Such deep network
architectures would add hierarchical information exchange to the system (e.g., top-down or
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contextual information). Furthermore, arbitrary Bayesian networks, i.e., directed graphical
models, could likely be used for the prior distribution as long as the graphical model features
the local lateral inhibition network motif (mutually exclusive activity of hidden variables with
shared input). Several spiking network implementations for sample-based inference in general
graphical models can be found in [47]. Notably, these implementations overcome the con-
straint of symmetric recurrent connections in the network. An asymmetric recurrent connec-
tivity structure is also a salient property of temporal models. To endow the spatial model with
the ability of temporal integration, it would therefore be intriguing to combine the proposed
sheet model with the Hidden Markov Model network implementation by [20] or the neural
particle filtering approach by [22]. In a different research direction, we observed in computer
simulations that relaxing the assumption of strong lateral inhibition still leads to reasonable
learning results in many scenarios. This indicates that even soft inhibition could be sufficient
to govern the emergence of probabilistic local experts—an important property for network
models that feature a high neuron density. However, our current theory does not provide a
proper interpretation of the resulting network response since the arising coactivation of neigh-
boring neurons likely demands a generative model that supports soft explaining away. Finally,
it would be interesting to combine the fully self-organized network model with reinforcement
learning signals from the environment (e.g., via top-down feedback or third-factor plasticity
rules). This could endow the spiking network with the ability of Bayesian decision making and
action selection.

Operation paradigm for novel computing platforms

Beyond neuroscience, the proposed neural sheet model displays an intriguing design principle
for neuromorphic architectures [72]. Neuromorphic systems rely on rigorous parallelization of
information processing by implementing physical models of neurons and synapses in micro-
scale electronic circuitry [73]. A key intention behind the development of these systems is the
construction of fault tolerant, self-organized computing devices that overcome the traditional
strictly serial and deterministic design of von Neumann architectures.

The proposed neural sheet model appears to be ideally suited for neuromorphic implemen-
tations: information exchange is fully asynchronous without a central clock; the emergent
sparse spike code reduces the load on the interneuronal bus system; and the local confinement
of lateral inhibition facilitates compact mapping and efficient routing. Furthermore, idealized
modeling assumptions, such as stochastic neurons, rectangular PSP shapes or tailored inhibi-
tory connections, could likely be accounted for in engineered systems.

One of the main challenges in neuromorphic engineering lies in the required high-density
integration of plastic synapses [74]. On the way to a principled solution, material scientists
have made great progress in recent years in using memristors as plastic synapses [75, 76].
Memristors [77, 78] are novel nanoscale materials that adapt their electrical conductance based
on the history of the current and voltage flux through the device. Thus, memristors are
expected to accommodate both synaptic transmission and synaptic plasticity without the need
of extensive supporting circuitry. Experimental [79, 80] and theoretical [81, 82] studies have
explored how the plasticity dynamics of memristors can be utilized in spiking neural networks.
In particular, it was shown in [83] and [84] that conductance changes in certain memristive
materials appear compatible with (variants of) the weight dependent plasticity rule Eq (12).
Therefore, we expect that the proposed neural sheet model can provide a promising paradigm
for the efficient operation of neuromorphic hardware as massively parallel computing devices
for probabilistic inference and self-organized learning.
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Conclusion

We have proposed a spiking neural sheet model for sample-based probabilistic inference and
self-organized learning. The spatially structured network combines aspects of local competitive
learning and large-scale associative memory formation under a unified Bayesian account.
Using machine learning theory, we have shown how the spike response of the neural sheet can
be interpreted as an ongoing sampling process from a Bayesian posterior distribution, and how
local neural plasticity can accomplish network-wide statistical model optimization. The net-
work structure of the neural sheet bears resemblance to salient connectivity motifs observed
experimentally in cortical microcircuits. Therefore, we believe that the theoretical findings pre-
sented in this article can contribute to the development of targeted experiments on synaptic
plasticity and neural coding in the mammalian brain.

Methods

In the following, we provide the full definition and derivation of the neural sheet model for
inference and unsupervised learning. We first describe the probabilistic model and show that
the spiking network model can sample from the posterior distribution. Then we derive param-
eter updates for unsupervised model optimization and link them to plasticity rules for sample-
based online learning. The heuristic recurrent plasticity rule and a brief discussion on the inter-
acting time scales are presented in separate subsections. Finally, we provide details to the com-
puter simulations and figures.

Generative model

Definition of variables. We introduce a generative model
p.z|0) =p |z, 0) p(z]0) (20)

over N observed variables y, .., yn, subsumed in the vector y, and K latent variables z;, .., zx,
subsumed in the vector z. The latent variables are binary, z; € {0,1}, and said to be “active” iff
zx = 1. The possible values of the observed variables y; depend on the employed likelihood
model. The full model is governed by parameters @ = (V, V,, W, b) with real-valued K x N
afferent weight matrix V, N-dimensional default vector V, (which will be a constant during
learning), K x K recurrent weight matrix W, and K-dimensional bias vector b. Furthermore,
each latent variable z; is connected to a subset of the input variables (its afferent field) which is
described by an index set 7, C {1, 2, .., N}. Likewise, we define the projection field for each
input variable y; as the index set P, = {k|i€Z, }. We refer to all-but-one variables of a vector
by the shorthand notation z\x'= (21, .., Zk_1, Zk + 1> - ZK0)-

Generative Model: Likelihood. Provided the state of the hidden units z, the inputs are
defined to be independent (local “Naive Bayes”):

prlz, 0):Hp(yi\z, 0). (21)

For each y;, the prior will ensure that at most one hidden unit z; in P, is active. We assume
that, if present, this single active unit z; governs the distribution of y;. In case all hidden vari-
ables in P, are 0, a “default hypothesis” is used. The resulting input distribution is assumed to
be in the natural exponential family. For instance, Bernoulli, Poisson, or Gaussian distributions
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are in this class. In natural exponential family form, p (y; | z, 6) reads:

P(yi|zk =0,Vke P, 0) = hi (yz) eVori o (22)

P(Yi|zk =1ke ’Pl_’ 0) — hi (yl) ekt Voi) yi— (Agi+4g) (23)

where h;(y;) denotes the base measure, and the normalization constants Ay; and Ao; depend on
the parameters Vy; and V. In anticipation of (25), the parameters in (23) were written as (Vj;
+ Vo), L.e. relative to the default hypothesis. We adopt the convention that Vy; = 0 for k¢ P, to
obtain a closed form expression for (22) and (23):

POl ) = hpyewso [ | ferwrsy (24)

keP;

K
= hy(y,) e’ vexp [Z z2Viyi — ZAy (25)
k=1
By combining (21) and (25) we obtain the full likelihood
p(vlz, 0) =h(y) exp[z'Vy — 7'A] (26)

with A = (A, ., Ax) and A, = Zil A, . Here we use the short hands z' Vy=2%2izk Viyi
and z' A =3 z;Ay. The function h(y)=11; hi(y;) eV A comprises only terms that do not
depend on z, and hence, it will play no role in the inference. In Results, we employed a Ber-
noulli likelihood model:

P =1z, =0,Vke P, 0) =n,, pi=1lz,=1keP,0) =m, (27)

or in closed form

zk
LT (=)
Pz, 0) = mi(1 - 7'50;')1 y‘H [ﬁ] ’ (28)

k

By rewriting (28) in the exponential family form (25), we identify

T

— Vo Ay = log(l + evki+v(]i) — Ay,

Vi = logl -
ki

7tOz

V,; = log A, =log(1 + ™).

1—m,’
In particular, the cluster centers can be recovered via my; = o(Vy; + V).

Likewise, Poisson and Gaussian distributions can be written in the exponential family form
(25). This extends the input domain to y; € N and y; € R respectively. For a Poisson model
with expected values 1y; and A; (for the default hypothesis and the hidden causes resp.),

P(yi | z, =0, Vke Pi? 0) = (yi!)—l;%,-ie—zo,‘ ) P(yi ‘ z. =1, k€ Piv 0) = (yi!)_l)“ﬁei;ykiv (30)

we obtain

’ (31)

V, =log(4,) — Vi, Ay =exp(V,+ V) — A,
VOi = log (;‘Oi)7 A(],' = eXp(VOi)'
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For Gaussians with centers p; and yy; and fixed variance 7,

p(yi|zk =0, Vke P, 0) :N(yi; HO;"O-Q) ) p(Yilzk =1, ke P, 0) :No/i; :ukngz)v (32)

we obtain
i o’
sz - 0__1; ‘/l)iﬂ Aki 5( ki + ‘/l)x) AOi’
(33)
_ Hyi _ a
VOi - ?v AOi 5 V

Generative model: Prior. The prior p(z | 0) guarantees that no two (or more) hidden units
2y, z; with overlapping input fields, Z, NZ; # (), are active simultaneously, i.e., it ensures that at
most one unit z; generates each input variable y; at the same time. For this work, we choose a
Boltzmann machine prior which can introduce dependencies between units with non-overlap-

ping receptive fields through symmetric parameters W"“ = WJ“;“ Furthermore each variable

zi has a bias value b . which directly affects its prior probability of activity:

p(el6) = jesp 5 Wecs b HH 0,10 )" (9
k=1 j=1

with 6 denoting the Kronecker delta and 0% =1.The double-product factor ensures, that the
assumptions on z made in the likelihood (26) are satisfied, and can be approximated with arbi-

trary precision by using strong inhibitory weights W]‘.}(“‘
INI, #0= W' — —co  fork # j, (35)

2

and setting [T, H] 1 <5zkmzj‘, w) = exp[Lz'W™"z]. Note that the range of strong inhibition
could also extend beyond the minimal required range (35). For notational brevity, we subsume
the excitatory and inhibitory recurrent weight matrices in a single matrix W = W< 4 /i
for the derivation. W is symmetric (W = W') and has zero diagonal (W, = 0). Using this
notation, the prior simply reads

p(z|0) = % exp { Wi+ sz} (36)

Inference in the generative model (Corollary 1)
By applying Bayes rule p (z| y,0) « p(z| 6) - p (y | z, 0) on Eqs (36) and (26) we obtain the pos-

terior in closed form

p(z|y, 0) = exp sz+z Vy+2'(b—A)| /Norm. (37)

where the normalization sums the exponential over all possible states of the posterior. To
establish the link to the neural sampling theory via the sufficient conditions (5), we solve (37)
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for the logit of a single unit z;:

v P =12u,0,0) plzi=1,24]y,0)
u, =log = log (38)
p(zk:0|z\k7y7 0) p(z =0, z\k|y7 0)
| exp [% all ijzj + Z;'ij )+ Vi) 1 (b — Ak):| (39)
= log " " -
€xp [% Zﬁek(o Wiz + W - 0)+> (0 V) +0- (b, — Ak)]
€xp [% Zj,l#kszﬂZl + Zj#kZi(zj‘/jiyi) + Zj;ékzj : (i’j - Aj):|
+log - » (40)
€xp E Zj‘l#kzjwjlzl + Zj#kZi(ZjVjiyi) + Zj#kzj : (bj - Aj):|
ex W,z + S Voy + (b, — A
_ log p [Zﬁék ki<j Zz ktyl ( k k)] + logl (41)
exp [0]
K N
= Wz + Z Vi + (b — Ay). (42)

j=1 i=1

Here we made use of the symmetry of W and W,, = 0. Hence, we can map the neuronal mem-
brane potential (3) to the parameters of the Bernoulli likelihood model. We find ij =

Wz}“ + W}j}h = W + W for recurrent weights, V;; = log ™= — log "2 for afferent

1w 1-mp;
weights according to Eq (29),and b, = b . — A, for excitabilities, with Ay = ¥; A, given by Eq
(29). This proves Corollary 1.

Model optimization via Generalized Expectation Maximization

In the presence of plastic input synapses Vy;, the terms Ay change over time and, in a spiking
network implementation, add to the intrinsic excitability of the cells. Arguably, the information
required for calculating Ay is not locally available to the neurons since Ay depends on all affer-
ent synaptic efficacies Vj;. We follow the approach of [36] who showed that homeostatic intrin-
sic plasticity can enable a spiking network to account for time varying A;’s. More precisely, the
interplay of homeostatic intrinsic plasticity and synaptic plasticity can be understood in the
generalized Expectation Maximization framework, and a spiking network can implement a
variational posterior distribution g(z | y) which maintains a long-term average target activity.
In close analogy to the derivation in [36], we transfer this approach to the spatially extended
sheet model in the following.

We impose a posterior constraint on the latent variables z and investigate learning in the
generalized online EM framework. The EM decomposition [85] reads

F(0,q(zly)) = L(0) — (D (q(zly) lp(z]¥, 0))) e — E-step, (43)

= (logp (. 2| 0)>p*(y)q(z\y) + <H(q(z|y))>p*(y) — M-step, (44)

with the log-likelihood £(6) = (log p (y | 8)),*(y) of the input under the model, the Kullback-
Leibler divergence Dy (+||-), and the entropy H(-). The decomposition holds for any probability
distribution ¢, and g(z | y) defines a variational posterior for every input state. For this work,
we constrain g to a class of “homeostatic” distributions, g€ Q, such that each variable z;
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maintains a long-term average activity my,
Q={q: (@), gy = My forall k=1, K} (45)

The desired target activations m = (m;, .., my) are assumed to be compatible with the inhibition
structure (35), e.g. by choosing my, sufficiently small.

E-step: Homeostatic intrinsic plasticity. During the E-step (43), we seek the distribution
q* € Q that minimizes the Kullback-Leibler divergence to the model posterior p (z| y, 6), and
thus, maximizes the lower bound F on the likelihood £. This constrained optimization prob-
lem can be solved with Lagrange multipliers. We examine the Lagrange function

A(q) = (D (q(Z' | ¥) |l p(Z' ¥, 0) )>p*(y’) - Z By (<z;<>q(z’ ) pr ) my)

=AWy — (46)

where the apostrophes indicate that y and 2/ are summation variables, and f3 are the Lagrange
multipliers for the K constraints. The additional Lagrange multiplier A ensures correct normali-
zation of g. The root of the derivative with respect to q(z | y), with any particular choice of z
and y, fulfills 9, A(q) = p*(») [log((z | ¥) /p(z | ¥, 8) +1— 7 — X8, 2] = 0and,

thus, the optimal solution g* has the form

qz|y)=pzly, 0) exp |i-14+> Bz
k
1 iR T T
x exp |-z Wz+zVy+z7(b—A+B)| . (47)
2 ———
= b= (by,by)

Note that the variational distribution in (47) is already correctly normalized through the free
constant exp(A—1).

However, the optimal multipliers = (31, .., Bx) are still to be determined. Analogous to [36,
37], gradient ascent on the dual function

0, ¥ (B) =0y B'm— (0, log> p(z|y, 0)exp(B’2)),, (48)

= M = (Z)pr (qcly) (49)

yields an iterative update rule to determine the optimal Lagrange multipliers S in ¢* for the E-
step (43). During the E-step, the synaptic weights V}; remain constant (synaptic weight updates
are the M-step). Thus, optimizing fy is equivalent to optimizing bk:=l; « — A, + P, since by and
By differ only by an additive constant. In particular, the update rule

851(\}’ = aﬁk‘P =m - <Zk>P*(J’) (50)

a(zly)

remains unchanged and describes a form of homeostatic plasticity. It compares the average
activation ( zx ) p* (5)q(<ly) With the target activation m; and adapts the intrinsic excitability
accordingly: When the average activity ( z; ) is too low, the excitability by will be increased; if
the activity is too high, the excitability will be reduced. Importantly, the homeostatic rule (50)
requires only local information and “overwrites” the non-local terms Ay in (47) and in by.
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M-step in Vi;: Weight-dependent plasticity of afferent weights. During the M-step (44),
we perform gradient ascent on (log p (y, 2| 0) ) (y)q(zly) With respect to the parameters 6. This
increases the lower bound F on the likelihood £(6) since the entropy ( H(q(z|y)) )p+(y) does not
depend on 6. For the afferent weights V, the derivative of the log-joint models (26) x (36) reads

aVki]: = avki< logp (y’ < | 0) >P*(y)q(1\y) = <Zk ’ ()’,- - akaAki) >P*(y)q(z|y)' (51)

For a Bernoulli likelihood distribution, we obtain from Eq (29) that Oy, Ax; = o(Vi; + Vo) = m
and hence:

aw,f =(z-(y,— oV, + V) >p*(y)q<z\y)' (52)

The update rule Eq (52) only depends on local information, namely pre-(y;) and post-(z) syn-
aptic activity and the current synaptic weight Vy;. The same holds true for Poisson distributions
with 0y, Ay; = exp(Vy; + Vo;) and Gaussian distributions with dy, Ay; = o - (Vi + Vy,). Intui-
tively, since Ay, Ax; = ( ¥i )p (s, | zk - 1, 9) in any natural exponential family, the plasticity rule
(51) compares the true input value y; ~ p*(y) with the current expectation of the probabilistic
model whenever z; is active.

M-step in Vfﬁje’m: Wake-sleep plasticity of recurrent weights
Similarly, we can examine the derivative of 7 with respect to the recurrent weights I and

biases b in the prior:

D, (Logp (1,21 0)) e yae) = (22D pr gty — (%% Dyt 10) (53)

9y, (logp (1, 210)) ey = (&g ey = {2 otz 10) (54)

These update rules compare expected values from the variational posterior with expected val-
ues from the model prior, i.e., they are a variant of the wake-sleep algorithm. In the neural
sheet model, we will apply recurrent learning only to lateral excitatory connections W7 and
keep lateral inhibitory connections W};" fixed since lateral inhibition is the foundation for local
synaptic plasticity rules of the afferent connections Vj;.

Plasticity rules for sample-based online learning (Corollary 2). The above learning
scheme revealed local update rules for unsupervised model optimization via Generalized
Expectation Maximization. The derived algorithm relies on three ingredients:

1. the variational posterior distribution q(z | y) in Eq (47),
2. the homeostatic update rule (50) to solve the E-step, and
3. the synaptic update rule (52) to solve the M-step.

Ingredient 1: By applying the sufficient condition (5) on the homeostatic posterior g(z | y),
we find that the network can sample from g(z | y) when we use the same form of the membrane
potential u, but with bk:=i)k — A, + P, (instead of b, = b, — A, for sampling from the model
posterior p (z | , 8)). This establishes an equivalent to Corollary 1 for the variational posterior.

Ingredient 2: A sample-based online approximation of Eq (50) is established by

0

ot by=mn, (m,—z(t)) , (55)

with 7, denoting a small learning rate. This homeostatic intrinsic plasticity rule approximates
the expected values ( zx ) p* (y)q(z | y in Eq (50) through samples z ~ g(z| y) in response to the
input y ~ p*™(y). The required samples z ~ q(z| y) - p*(y) are naturally provided by the
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network in response to presented input. The homeostatic plasticity rule Eq (55) uses only
locally available information. When homeostatic plasticity has converged, i.e., when the aver-
age update (£ b,) = 0 vanishes for all neurons, the network implements the variational poste-
rior distribution Eq (47) with optimal multipliers f;, i.e., the network solves the E-step by
sampling from from g*(z | y). Due to the non-infinitesimal learning rate 7,, this equilibrium is
subject to small stochastic fluctuations.

Ingredient 3: A sample-based online approximation of Eq (52) is established by

0

a Vi =1y 'Zk(t) ’ ()’i(t) - G(Vki + Vo;‘))v (56)

with a small learning rate 77y. This synaptic plasticity rule approximates the gradient in Eq (52)
from samples y ~ p*(y) and the evoked response z ~ q(z | y). The required samples z ~ g(z |
) - p*(y) are provided by the network if the homeostatic posterior q(z | ) is correctly imple-
mented in the E-step. Hence, it must be ensured that homeostatic intrinsic plasticity acts on
significantly faster time scales than synaptic plasticity. This can be achieved by separating the
time scales of intrinsic and synaptic plasticity via the learning rates 1, and 17y, such that homeo-
static intrinsic plasticity can react quickly to changes in the synaptic weights (see also Interac-
tion of time scales below).

Since Eq (55) approximates the E-step, and Eq (56) approximates the M-step, the joint
application of these rules approximates the previously described Generalized Expectation Max-
imization algorithm. This proves Corollary 2.

In addition, theoretically optimal learning of recurrent connections can be realized by sam-
ple-based implementations of Eqs (53) and (54). This gives rise to the plasticity rule Eq (16).
The LTD term ¢;;" ( Wee ik b) = (g, Z;) (| o) a0 be determined by using an independent
prior sampler, thereby giving rise to a sample-based sleep phase. In computer simulations with
wake-sleep learning, we used such a prior sampler. This sampler maintained independent
parameters b which were updated according to a sample-based approximation of Eq (54), i.e.,
according to the difference of samples from the variational posterior and the prior. Since it is
not known if (or how) the LTD term ¢, ( e i b)Y can be calculated by a single spiking
network, we did not include recurrent plasticity in Corollary 2. Nevertheless, algorithmically
the theory supports concurrent learning of input synapses and recurrent synapses.

Approximate plasticity rule for recurrent synapses

As shown above, theoretically optimal learning of recurrent weights W is challenging in a
spiking network since the model expectations in Eq (53) are not directly available from the net-
work response and demand an independent sleep phase. Therefore, we investigated to what
extent the simple local plasticity rule (17) could entail similar weight configurations as the the-
oretically exact wake-sleep rule. In the following, we describe how the simple rule was
obtained.

For a given learning problem, we first performed wake-sleep learning to obtain optimized
weights W,", along with covariances ci: = ( (zc—( 2k ) - (z~(2;)) ) p()q(z | y) that led to these
weights. Then, we fit a function W{(cy;) to the data. For constructing the local plasticity rule, we
use that my = ( 2k ) p*(y)q(z | ) due to homeostatic intrinsic plasticity, i.e.,

Gy = (2 B gary) — M My - (57)

Importantly, the information ( zx - z; ) p* (;)q(z | y) O the pre-post spike response during infer-
ence is locally available to a synapse. The following weight-dependent plasticity rule for W
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then has a fixed point at Wi = W(c,) ~ Wi (c):

J

6 eXC — exc
Wi = e g = (mycmy £+ W WE))] (58)
with W denoting the inverse function of W(cy;). This follows directly from inspecting

! (9 exc _ -1 exc
0= <aij >p*<y>q(zy) = {a Zj>P*(J’)‘1(Z\y) —mem— W (ij ) (59)

and solving for Wi For this work, we assumed the following functional form of W(c):
W(e,) = EE arctan (7 - ¢;) (60)

with two free parameters W™** and y. This function turned out to match the data points

(W, ¢;;)> as obtained from wake-sleep learning, well, and results in the following heuristic

plasticity rule:
a €XC 1 Tc szc
& ij =Ny - |:Zk . Zj — (mk . mj + ;tan (2 Wn‘:ﬂ))] s (61)

exc

ie., gp(Wi©) = my - m; + tan (“ Yy ) . While this plasticity rule preserves the symmetry of

3 Wmax

recurrent weights and features the desired fixed points Wi = W(c), it must be noted that

there exists no theoretical guarantee for convergence under recurrent network dynamics.

Interaction of time scales

The learning rates 7, 17y and 1y control the typical time scales for significant changes in the
parameters b, V.and W™, In an online EM learning scenario, these changes are interrelated
with the network’s spike response and variations in the external input. In total, four different
processes are to be distinguished which jointly orchestrate the learning dynamics:

1. On the fastest time scale, the synaptic time constant 7 sets the typical scale for inference and
mixing during sampling from the posterior. For this study, we set 7 = 10 ms.

2. On a slower time scale—let’s refer to it as 7;,,, for this discussion—significant changes in the
presented input statistics occur, i.e. the input vector y € {0,1}" switches to substantially dif-
ferent regions in the space of possible inputs during sampling from p*(y).

3. The variational E-step integrates the average network response { z ) »+(;)q(z | )» and thus,
relies on a representative coverage of the input space. Therefore, changes in b, which happen
on a time scale g & 77, !, must be slower than the mixing of y ~ p*(y).

4. Finally, the M-step adapts synaptic weights V.and W based on a reliable E-step, and
hence, 7\ ~ 11,71 (or n;,,l) need to be large compared to 7%.

In summary, from a strictly theoretical perspective we require 7 < 7y, < 75 < 7. In practice,
we typically find a factor 5-20 per < -relation to be sufficient. For instance, the network
responds on the time scale of few to tens of milliseconds; input statistics vary on the time scale
of hundreds of milliseconds to seconds; intrinsic neuronal excitabilities adapt on the time scale
of tens of seconds to minutes; and synapses change their weight on the time scale of minutes to
hours.
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lllustration of learning with homeostatic intrinsic plasticity

In this subsection, we exemplify the contribution of the homeostatic intrinsic plasticity rule
(13) to self-organized learning in a spiking network. Intuitively speaking, homeostatic plasticity
compensates for an “unrightful” advantage that network neurons with strong input weights
(corresponding to high intensity input patterns) gain over network neurons with weak input
weights (corresponding to low intensity input patterns) by regulating the excitabilities by, of the
neurons. Mathematically speaking, the correct value of the by’s is determined by the analyti-
cally calculated posterior (37): the strong-weight advantage in the term z' V y is counterbal-

anced by the normalization constants A in the term z' - (b — A). This leads to excitabilities

b, = i)k — A, of the neurons for exact inference according to Eq (42). While the Ay’s can in
principle be calculated from the synaptic weight values Vy;, it remains unclear how a network
neuron could obtain the required knowledge of all afferent weight values. This is where homeo-
static intrinsic plasticity comes into play. It approximates the A;-contribution during the E-
step and, thus, enables the network neurons to perform variational inference.

We illustrate the contribution of Eq (13) to the learning process in a minimal example with
only K = 2 network neurons and N = 6x6 input neurons, organized in a small WTA network.
The presented input y(t) ~ p*(y) consists of only three prototypic activity patterns: the two
patterns shown in Fig 6A with ( ;) = 0.2 and 0.8 for “inactive” and “active” inputs respectively,
and a uniform low-intensity background activity pattern with ( y; } = 0.2. These somewhat arti-
ficial input patterns are an extreme and particularly challenging case for learning since the
weak pattern (bottom) is fully contained in the strong pattern (top). As a consequence, a net-
work neuron, which is specialized on the strong pattern (and hence maintains strong weights
Vi) will always have a stronger input contribution ¥; V}; - y; to the membrane potential u, than
a network neuron which is specialized on the weak pattern. The task of intrinsic plasticity is to
continuously approximate the values Ay in the excitabilities by during learning in order to com-
pensate the systematic (dis-)advantage.

In a computer simulation, all three input patterns were presented for an equal amount of
time. Synaptic weights were initialized at V};(t = 0) = 0, and homeostatic target activities were
set to m; = m, = 0.32. The weight evolution Vi,(t) for both network neurons is shown in Fig
6B. During an initial phase, lasting until ¢ = 500 s, both neurons raised their input weights and
integrated the average activity of both patterns. Then, WTA competition began to enforce a
separation of the two patterns. At the end of learning, each network neuron had become an
expert for one of the patterns (the low-intensity background pattern is covered by the default
value 7y; = 0.2). In particular, the weak pattern had successfully been identified by the plastic
network. The contribution of homeostatic intrinsic plasticity to this learning process can be
seen in Fig 6C. Shown is the evolution of intrinsic excitabilities by(t) for both neurons, along-
side the analytically correct normalizations —A() calculated offline from Eq (29). Homeostatic
intrinsic plasticity approximately tracks the time-varying contribution of —A.(f)’s to the excit-
abilities b, = i)k — A, + f, during the variational E-step Eq (43).

The ability to track the normalizations Ax(t) in the excitabilities by(¢) is essential for success-
ful learning: In a repetition of the above experiment with intrinsic excitabilities fixed at by = -2,
only one of the network neurons developed significant afferent weight values and entered a
state of continuous bursting ({ z ) = 0.980 for ¢ > 4000 s). The other neuron remained almost
silent (( z ) = 0.002 for ¢ > 4000 s) with weights close to zero.
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Fig 6. lllustration of learning with homeostatic intrinsic plasticity. (A) Input patterns that are particularly challenging for learning since the weak pattern
(bottom) is fully contained in the strong pattern (top). (B) Evolution of afferent weights V() during learning with homeostatic intrinsic plasticity in a small two-
neuron WTA network. (C) Evolution of excitabilities b,(t) alongside externally calculated normalizations Ax(t). Homeostatic intrinsic plasticity enables the
network neurons to track the contribution of the non-local values Ay, and thereby implements a variational E-step.

doi:10.1371/journal.pone.0134356.9006

Details to the computer simulations

All computer simulations were performed with custom Python [86] scripts, using a discrete
time version for spiking neurons and synaptic plasticity with simulation time step 6t = 1 ms
and PSP time constant 7 = 10 ms. Python scripts to reproduce the simulations are provided as
supporting information (S1 Code). In order to avoid boundary effects at the edge of the net-
work, a torus-like network topology is used, i.e., neurons at the left-hand edge are adjacent to
neurons at the right-hand edge, and neurons at the top edge are adjacent to neurons at the bot-
tom edge of the sheet. Inhibitory connections were non-plastic. Excitatory connections, if plas-
tic, were restricted to positive weight values. The constraint to positive weights was imposed
for the purpose of neuroscientific modeling, only. The theory for inference and learning sup-
ports positive and negative weights (incl. sign changes). In the following, we first describe the
implementation of neurons and synapses as used in all simulations. Then we provide specific
simulation details for each figure. An overview of used parameters is provided in Table 1.

Stochastic neuron model (common to all figures). We employed the simplest neuron
model from [17] with an absolute refractory period. Neurons are characterized by their mem-
brane potential 1 and a refractory time 7 that matches the time constant the associated RV z;
is active after a spike. In discrete time, the active period lasts for 7:=7/d¢t = 10 time steps. The
spiking probability in each time step reads p(spike) = o(u, — log7) if the neuron is non-
refractory. A neuron is non-refractory if z; = 0 or if it is in its last active time step (to allow an
uninterrupted active state, see [17]). Neurons in a network were updated sequentially such that
state transitions of one cell are visible in the same time step to subsequently updated neurons.
In the computer simulations, the update order was chosen randomly, in every time step. Just as
for the continuous time neuron model of the Results section, networks that employ this dis-
crete time neuron model are proven [17] to sample from the correct target distribution in the
sense of Corollary 1. For a discrete time implementation of homeostatic intrinsic plasticity, we
updated the excitability b in every time step according to 6by = 8t - n, - (my — z;). This is a sim-
ple Euler integration of the continuous time plasticity rule.

In the limit 6t — 0 and T — oo while keeping 7 = const., we obtain the continuous time neu-
ron model from the discrete time model. In continuous time, the sequential update policy in
the network disappears and all network neurons evolve in parallel. The Markov Chain that
underlies continuous time implementations is expected to show even better mixing properties
(in terms of biological real-time, not the number of time steps) than the discrete time model
used in the simulations: In continuous time, if multiple local WTA neurons compete for
explaining the input, an active neuron will (almost surely) switch back to the inactive state at
the end of its active phase; the next spike of the local WTA population will then immediately
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Table 1. Parameters of the computer simulations.

Category

Simulation

Network

Stimulus

Plasticity

Parameter

Sim. time

Time step

Network neurons
Geometry

Neuron distance
Rec. exc. conn. range
Rec. exc. conn. prob.
Inh. conn. dist.

Inh. weight

Inputs

Geometry

Afferent conn.
PSP-/Ref.-time
Backgr. act.

Activity range
Pattern duration
Hom. target

Init bias

Init inp. weight

Init rec. weight
Learn rate bias
Learn rate inp. syns
Learn rate rec. syns

Symb. Fig 2 Fig 3 Fig 4 Fig 5 Fig 6 Comments
T 25 10,000 25,000 10,000 5,000 Unit [s]
ot 0.001 0.001 0.001 0.001 0.001 Unit [s]
K 6 21 21 144 2
6x1 7x3 7x3 12x12 2x1
3 3x2 6x1 2x2 0 Relative to inp. space
- - 00 00 = Max. norm; input space
- - 1 0.25 -
3 3 1 4 1 Max. norm
winh -100 -100 -100 -100 -100
N 108 126 252 576 36
18%x6 21x6 42x6 24x24 6x6
6%6 6x6 6x6 6%6 6%6
T 0.010 0.010 0.010 0.010 0.010 Unit [s]
o 0.2 0.1 0.1 0.1 0.2
0.2/0.55 0.1/0.6 0.1/0.4 0.1/0.5 0.2/0.8 Min./Max. ( y; )
- 200ms" 250ms? 100ms 1000s During learning
my - 0.065 0.95/3 0.025 0.32
by -1 - A -2 -1 -3 -2 att=0
Vii Eq (29) 0 0 0 0 att=0
W Oori 0 0 0 0 att=0
No 0 1 0.1 10 1.5 Unit [Hz]
Ny 0 0.2 0.1 2 0.3 Unit [Hz]
nw 0 = 0.005% 1 = Unit [Hz]

"Average duration of locally occurring patterns.
2)In case of an ambiguous cue; otherwise: 2x250ms.
%)0.05 for wake-sleep learning.

doi:10.1371/journal.pone.0134356.t001

be a correct sample from the local posterior distribution. In contrast, a discrete time neuron
has a non-vanishing probability to re-spike in the last time step of its active phase, thereby gen-
erating strongly correlated samples. As a consequence, we expect that all results obtained from
discrete time computer simulations remain valid without any restrictions in the continuous
time limit.

Synaptic transmission and plasticity (common to all figures). A spike of the i-th neuron
elicits a rectangular post-synaptic potential (PSP) at the k-th neuron with duration 7 and
amplitude Vj; (Wy;) for afferent (recurrent) connections. Synaptic transmission has zero-delay
and is non-additive, and thus, PSPs encode the value of the pre-synaptic random variable times
the synaptic weight at any time. In discrete time, PSPs last for 7 time steps, accordingly. For a
discrete time implementation of plasticity, we updated the weights V, W™ in every time step
according to 8Vy; = 6t - 1y - zi - (yi — o( Vi + Vo)) and OW = 6t -y, - (z -z, — ¢). Here ¢
denotes the LTD term of wake-sleep learning and the approximate plasticity rule, respectively.
Again, this is a simple Euler integration of the continuous-time plasticity rules.

Spiking input generation (common to all figures). In all simulation, spiking input was
presented to the network in form of Poisson spike trains with time varying firing rate. In accor-
dance with the synaptic transmission in the network via non-additive, rectangular PSPs, an
input RV y,(f) has value 1 if a spike had occurred in the i-th input channel within (t - 7, ¢], and
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value 0 otherwise. Firing rates are chosen such that the expected value of y; matches a target
activity x; i.e., { y; ) = x;. The specific target values x; used for the simulations are provided
below for each figure. In order to achieve ( y; ) = x; in a discrete time simulation, the spiking
probability of an input is set to p,:=p(spike in t) = 1 — (1 — x,)"/" for each time step. This
assignment originates from the following thought. An input is inactive when there was no
spike in the last 7 time steps, i.e., p(y; = 0) = (1 — p,)7. The expected value { y; ) is thus given
by (y,) = p(y, = 1) = 1 — p(y, = 0) = x,. Solving for p; yields the above assignment. In the
limit 6t — 0 such that T = 7 - 6t = const., these spiking dynamics yield a Poisson process with
firing rate log[(1 — x;)""].

Figure 2: Sheets of spiking neurons can perform Bayesian inference on distributed spik-
ing input. The network consists of N = 18x6 input neurons and K = 6 network neurons. Each
network neuron receives local input from 6x6 inputs, with local connections being shifted by 3
between neighboring network neurons. Neurons with overlapping input inhibit each other,
resulting in nearest-neighbor inhibition. In addition, three neuron pairs ((k, j) = (1, 3), (3, 5)
and (4,6)) maintain excitatory recurrent connections of weight Wee = Wwge =1 Preferred
local activity patterns xi; € (0.2,0.55), 1 <k < 6and 1 < j < 36, were drawn for each network
neuron from a uniform distribution. Background activity was set to 7p; = 0.2, and afferent syn-
aptic weights were set to match the patterns according to Eq (29). Neuronal excitabilities were
setto b, = l;k — A, with b . = —1land A = ¥; Ay, being calculated for each neuron according to
Eq (29).

Spiking input was generated with the aim that the input distribution p*(y) closely resembles
the model distribution p(y | 0) of the network: At each location and time point, at most one
local input pattern xy; is active. If pattern xy; is active, it governs the firing rate of all those
inputs that are connected to neuron k, i.e., { y; ) = xi;for i = [(18 - (k = 1) + (j—1) — 6) mod N]

+ 1. The presence of an input pattern is indicated by colored spikes in Fig 2E. If no dedicated
pattern is active, inputs fire with the background activity, i.e., { y; ) = mo; (gray spikes). The data
shown in Fig 2 and evaluated Fig 7A covers 1.5s simulation time. The total simulation time was
2.5s with a short period before and after the shown data being discarded. This serves to provide
a burn-in phase for the sampling network, and to prevent boundary artifacts when smoothing
the posterior marginals. In panel D, the posterior marginals p,,. were estimated from the net-
work response z(t) during 1000 simulation runs, all with exactly the same input (spike-level
identity). The correct posterior pu,e, is given by Eq (37). For visual clarity, the traces of the pos-
terior marginals have been smoothed with a 20 ms box kernel.

A comparison of non-smoothed data is provided in Fig 7A. The figure shows a more sys-
tematic analysis of the sampling quality of the spiking network by means of a histogram over

A~ 7000 B 5 c
6000 e e Smoothed 3
« 5000 I Raw data = | +
S 4000 5 Lo 5 2
3 3000 2
2000 = o05f 1
1000 8
02075 =050 -025 0.00 025 050 075 0.0%500 0.05 0.10 0.15 020 0°5:000 0.005
pn(zt(zk :lly(t))_pth(zo(zk :lly(t)) Covariance Covariance

Fig 7. Sampling quality and heuristic learning rule. (A) Sampling quality of the spiking network. Red: Histogram over the difference between the traces in
Fig 2D for every neuron and time point. For visual clarity, the data in Fig 2D had been smoothed with a 20ms box kernel. Gray: Histogram over the non-
smoothed, raw data. (B) Recurrent plasticity function in the setup of Fig 4. Weights obtained with wake-sleep learning vs. the covariance of network variables
(blue dots), alongside the fitted plasticity function W(c,;)(red line). (C) Same for Fig 5.

doi:10.1371/journal.pone.0134356.9007
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the mismatch (p,o:(zx = 1 | p(£)) — Pineo(2x = 1 | ¥(2)). The red dotted counts were evaluated on
the smoothed data of Fig 2D; the gray bars depict the non-smoothed (raw) data, evaluated on a
millisecond basis. This quantitative analysis confirms the excellent approximation quality of
the sampling network. In conclusion, the data shown in Figs 2D and 7A indicate that the sam-
pling network can calculate and represent the general structure as well as quantitative specifici-
ties of the time-varying posterior distribution with high accuracy. However, small differences
between the traces in Fig 2D are visible. Most notably, rapid and sharp peaks in the posterior,
which arise from pronounced but transient jumps in the input, are not fully integrated by the
network. The origin of these deviations is of stochastic and systematic nature. Stochastic fluctu-
ations arise from the general sample-based representation. For time-varying input signals y(t),
only few independent samples can be drawn from the target posterior distribution p (z | y(¢), 6)
under (almost) stable conditions, i.e., before the target distribution changes. Any representa-
tion based on a limited number of samples can approximate the posterior only with limited
precision. Systematic deviations result from incomplete convergence of the Markov chain. The
Markov chain, that underlies the network dynamics, is guaranteed to converge to the correct
equilibrium distribution p (z| y, 0) only for any constant input y in the limit t — oo. For time-
varying input y(t), convergence of the network will typically “lag behind” the “moving target” p
(z] y(t), ). Theoretical work [18] has shown that the network distribution converges exponen-
tially fast to its equilibrium in almost arbitrary network architectures. Notably, the local WTA
architecture is expected to facilitate mixing of the Markov chain since typically only a few com-
peting neurons will attempt to fire in response to the presented input at the same time.

Figure 3: Emergence of probabilistic local experts through synaptic plasticity. The net-
work consists of N = 21x6 input neurons and K = 7x3 network neurons. Network neurons are
organized in 7 local populations. The 3 neurons within a population share the same 6x6 field
of afferent connections. Afferent fields of neighboring populations are shifted by 3 (measured
in the domain of input neurons). Due to the torus-like topology, every network neuron has
overlapping inputs with 8 other network neurons (2 in its population and 2x3 in the neighbor-
ing populations). This is the range of lateral inhibition.

Spatio-temporal spiking input (that determines the samples y and thus p*(y)) was generated
as follows. For each of the 7 afferent field locations, 3 random activity patterns xj, (1 < p < 3,1
<1<7,1<j<36), were drawn. To facilitate the generation of locally different activity pat-
terns, each input location was drawn from a Dirichlet distribution and scaled to the activity
range [0.1,0.6]: (x;, x;, x;) ~ 0.5 - Dir(0.3,0.3,0.3) + 0.1. Whenever a local activity pattern x]
was presented, Poisson spike trains were generated such that (y,) = x] with i = (18 - [+ j mod

N) + 1. The presence of local activity patterns x/ was determined as follows. Three chains

¢ = 1,2,3 were started at time f = 0. Each chain can either be active or inactive. If it is active, it
appears at a location / and presents one of the local activity patterns 7. Initially, all chains were
inactive and the initial duration of inactivity (in ms) was drawn for each chain from a Gamma
distribution I'(k = 10, 0 = 10), leading to an average initial inactivity of 100 ms. Whenever inac-
tivity of a chain ends, it turns active for a duration (in ms) drawn from I'(k = 10, 0 = 20), lead-
ing on average to 200 ms duration of activity. When a chain turns active, a random pattern p is
drawn uniformly, and a random location [ is drawn such that the invoked activity pattern x
does not overlap with the local activity pattern of a different currently active chain. Such a valid
location always exists in the given architecture. After a chain’s active phase, it turns inactive
again for a duration (in ms) drawn from I'(k = 10, 8 = 10). Inputs, that are not covered by a cur-
rently active chain, maintain a background activity with ( y; ) = 7ry; = 0.1. This process leads to
spatially non-overlapping, but temporally interleaved input spike patterns as shown in Fig 3F.
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The network was exposed to this spiking input for 10000 s. Afferent weights V},; and intrin-
sic excitabilities by were plastic; recurrent connections W;** and W™ were non-plastic, and
W;J‘T"C =0.

Details to the plotting: Panel B shows the activity patterns xj, p = 1,2,3, for the input region
highlighted in panel A. For estimating the log-likelihood in panel C, § = 10000 input samples y*
were randomly drawn from the training data as a proxy for p*(y). Furthermore, the network
has 337 possible z-states that respect the inhibition structure. Thus, the log-likelihood can be
calculated via £(0) ~ 13" logd~ p(z) - [Tp (¥ | z, 0), withp(y; | z, 8) given by Eq (25), for
any afferent weight configuration V that emerges over the course of learning. The joint distri-

bution depends on the parameters W™, V and b. While the synaptic parameters W™, V are
directly accessible in the spiking network, the biases b in the prior must be determined differ-
ently. We calculated the biases b offline such that the prior exhibited the homeostatic target

activity, i.e. { z ) p(z | o) = My for all k. This is a canonical choice since these are the biases ba
Bayesian observer would determine from observing the network response. In panel D, optimal
weights were calculated from the generating input patterns x‘l‘]’ according to Eq (29). This is pos-

sible since the data distribution p*(y) is structurally similar to the model distribution p(y | 6).
For each of the seven input locations, each of the three local network neurons was assigned to
the best matching pattern of optimal weights. The assignment was unambiguous, since each
network neuron had clearly specialized on one of the local input patterns, and determines the
one-to-one mapping between learned weights V}; and optimal weights plotted in panel D. For
panels E and G, four additional simulations were run with network parameters (V(t), b(t))
taken from different training time points t = 0's, 1000 s, 3000 s, 10000 s. Identical 100s-spike
patterns were presented to the network in these four simulations. Panel G shows [2.5]s of the
input spike pattern alongside the network response for these simulations. Panel F shows the
corresponding afferent weights V(¢) for the three highlighted network neurons. For the
2-dimensional linear projection in panel E, the input states y(t) of each 100s-simulation were
sampled every 10 ms (i.e. 10000 data points per scatter plot) and projected onto the 2d plane.
The color of each data point is determined by the network response: red, green, blue if one the
neurons marked in panel A responded; and gray otherwise. The projection plane is spanned by
the two leading principle components (PCA) of those input samples the three highlighted net-
work neurons responded to at the end of learning, i.e., the PCA is based on the colored samples
in the rightmost panel. This biased selection only concerns the choice of the projection plane
with the aim to visually discern the clusters of interest; the plotted data points are unbiased.

Figure 4: Plastic recurrent synapses integrate structural knowledge. The network con-
sists of N = 7x6 x 6 input neurons and K = 7x3 network neurons. Network neurons are orga-
nized in 7 local populations. The 3 neurons within a population share the same 6x6 field of
afferent connections. The afferent fields of different populations are disjoint. Network neurons
within the same population share lateral inhibition. Network neurons, which belong to differ-
ent populations, maintain excitatory recurrent connections Wi > 0.

For the spiking input, a simpler temporal input structure than in Fig 3 was used since the
focus of this simulation was set at the correlation structure of the input beyond the range of
individual input fields. There are three local activity patterns x, p=1,2,3, referred to as the red,
green and blue pattern, each consisting of “vertical stripes” at shifted locations: xj; = 0.4 if
|(j—1)/] mod 3 = (p—1), and 0.1 otherwise, with |- | denoting the floor function. To generate a
global activity pattern x, two (potentially identical) cue patterns x/ were picked for the outer-
most locations [ = 1 and [ = 7. Then the inner locations / = 2—6 were filled with a consistent
valid pattern, with “validity” referring to the condition to show a pattern that differs from the
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cues. Thus, in case of two different cue patterns, the choice of the inner pattern was fully deter-
mined (e.g. a red and green cue leads to blue inner patterns); in case of two identical cues, the
inner pattern could show either of two valid patterns with all inner locations showing the same
pattern (e.g. a double-green cue leads to either all-red or all-blue inner patterns). Hence, both
cues (I =1 and [ = 7) must be taken into consideration to determine the validity of inner pat-
terns (2 <1 < 6) during inference, and all inner patterns are supposed to be of equal type. As
in previous simulations, input Poisson spike trains were generated such that the average value
( y ) matched the activity pattern x. Input activity patterns x were presented for a fixed duration
before the global activity pattern switched: The patterns iterated over the nine possible cue
combinations. In case of differently colored cues the global pattern was presented for 500 ms;
in case of identical cues the two valid global patterns were presented for 250 ms each. Thus all
cue combinations were presented for an equal amount of time. After all cues were presented,
the presentation was repeated.

For the learning experiments, the network was exposed to this spiking input for 25000 s, i.e.,
each cue combination was presented 25, 000 s/0.5 s/9 = 5,500 times. In total, three learning
experiments were conducted with recurrent plasticity being (a) governed by the theoretically
optimal wake-sleep rule, (b) governed by the simple heuristic rule, (c) switched off. In all simu-
lations, afferent weights V}; and intrinsic excitabilities b were plastic. In (a) and (b) recurrent
connections Wi were plastic and restricted to positive (excitatory) weight values. For (a)
“wake-sleep learning”, the theoretically derived learning rule (53) was used with
nw = 0.05, and prior samples being drawn from an independent sampling network which
shared its recurrent weights W with the learning network but maintained independent
(homeostatically regulated) biases and was not exposed to any input. After learning, the covari-
ances c;; were calculated from the posterior samples z() of the last 1000s of the simulation. To
obtain data points (W, ¢;) for fitting the function W(cy;), only excitatory synapses were con-
sidered that had a weight W > 0.01 at the end of learning. This is to prevent distortions in

the fit due to synapses between negatively correlated neurons that would have developed nega-
tive weights during wake-sleep learning (but were bounded to W} > 0 in the simulation). Fit-
ting the function (60) to this data yielded Wy, = 1.4113 and y = 31.606 for the free
parameters. Data points and fitted function are shown in Fig 7. For (b) “heuristic learning”, the
fitted learning rule was used with 77y = 0.005. All recurrent weights W converged to stable
values. Weights connecting inner neurons (2 <[ < 6), that had specialized on equal activity
patterns, settled at Wi &~ 1.27. Weights between cue neurons and compatible inner neurons

settled at W &~ 0.90. Weights between cue neurons responsive to the same pattern settled at

Wi ~ 0.32. All other weights settled close to zero (W,f]?‘C < 0.003).

For the demonstration of inference in face of incomplete observations (panels E and F),
activity patterns x were generated as follows. Two cues were chosen at the outer locations.
These cues had increased contrast to ensure that the spike pattern at the cue locations was
unambiguous: xj; = 0.6 if | (j~1)/3] mod 3 = (p~1), and 0.1 otherwise (for /=1 and I = 7).

All inner locations [ = 2—6 showed uninformative uniform activity of moderate intensity:x;; =
(0.6 + 0.1)/2 = 0.35 for all j. We refer to the uninformative patterns as “gray” patterns. For each
cue combination, Poisson spike trains with { y ) = x were presented to the network for 100 s.
The vertical bars in panel E and F show the mean activity ( 2z, ) of each network neuron during
the simulation given an unambiguous cue (panel E) and an ambiguous cue (panel F).

The log-likelihood £(6(#)) in panel D was estimated as follows.S = 10000 input samples y*
were randomly drawn from the training data as a proxy for p*(y). Furthermore, the network
has 47 = 16384 possible z-states (zero or one active neuron in each local population). Thus, the
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log-likelihood can be calculated via £(0) ~ 13" log> p(z) - [L.p (¥ | z, @) for each time

point ¢ and each network type (a)-(c). The joint distribution depends on the parameters W,
W™V and b. While the synaptic parameters W™, W™, V are directly accessible in the spik-
ing network, the biases b in the prior must be determined differently. We calculated the biases

b offline for each weight configuration (W(¢), W) such that the prior matched the homeo-
static target activity, i.e. ( zx )p(z | 9) = Mk The log-likelihood is shown only for the first 10,000s
of the simulation in order to highlight the early stage of learning.

Figure 5: Emergence of excitatory subnetworks in neural sheets. The network consists
of N = 24x24 input neurons and K = 12x12 network neurons. Network neurons are organized
in a sparse grid with twice the distance of inputs. Each network neuron maintains afferent con-
nections with 6x6 inputs, such that the input field of neighboring neurons is shifted by two.
Lateral inhibition has a range of 2 (in the network grid; maximum norm). Additionally, any
pair of network neurons (beyond the range of inhibition) maintains a plastic reciprocal excit-
atory connection W with 25% probability. All existing excitatory connections are plastic with
initial values Vi;(t = 0) = 0 and W(t = 0) = 0. “Non-existing” recurrent excitatory connec-
tions have a weight fixed at W = 0. Note that non-existing connections are fully supported
by the theory for inference and learning: reducing the number of plastic synapses in the net-
work means to reduce the number of free parameters 6 of the generative model p(y, z | 6). The
derivative (53) in the direction of existing weights W remains unaffected. Thus, the reduction
only decreases the expressive power of the generative model.

Spiking input is composed of three prototypic rate patterns x7, 1 < p < 3 (grid, diagonal
stripes, checkerboard), occurring locally at random locations (cp. panel B). Activity patterns
are binary with a high rate of X/’ = 0.5 and a low rate of x = m,; = 0.1. The diameter of local
patterns is variable, but exceeds the 6x6 input field of individual network neurons. Two ran-
domly selected (and possibly equal) patterns are presented simultaneously at non-overlapping
locations. New patterns and locations are drawn every 100ms during training. All inputs not
covered by a pattern fire with the background activity ( y; ) = 0.1. Homeostatic target activa-
tions my, = 0.025 are chosen such that the network explains on average approx. 130 inputs; this
is roughly half of the average area covered by rate patterns x{, i.e., ca. 50% of the input is on
average being explained by the network.

The network was first trained with wake-sleep learning and variable learning rates until all
parameters had converged to stable values. The simple learning rule was fitted to the resulting
(W}, ¢;)-pairs just as for Fig 4, yielding parameters W,y = 2.7049 and y = 733.69. See Fig 7
for data and fitted function W(c;). The high value of the sensitivity y, compared to Fig 4, likely
originates from the generally much lower covariance c;, which in turn arises from the lower
average network activity m.

For the subsequent spiking network simulation with the simple plasticity rule, a new net-
work with different connected pairs of network neurons was generated. Thus, the extracted
plasticity rule is only tailored to the general learning setup, but not to a specific network
instance. The total simulation time was T = 10,000s, i.e, the network was presented with
100,000 input examples. Learning rates were set to quite high values (17, = 10, 7y =2, nyy = 1)
since the focus of this simulation was on the general structure of emerging weight configura-
tions, rather than on numerical precision. After training, recurrent weights covered the entire
range of positive weight values with max[W“] = 2.275. To verify that the emergent weight
configuration was stable even in face of high learning rates, the simulation was continued for
another 10,000s, showing no signs of instability.
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Details to the plotting: For panels C and D, the trained network was exposed to spiking input
with patterns switching every 500ms. This was to obtain more stable estimates for the “expected
input” ( 8" ) in panel D. For panel E, all neurons could unambiguously be labeled to be respon-
sive to one of the three local patterns, since their afferent weights V;; showed an evident prefer-
ence for either one of them. Panel F uses the euclidean distance in the lattice coordinates of the
network neurons, i.e., directly neighboring network neurons have distance one.
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