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Chapter 1

Introduction

Music transcription refers to extraction of a human readable and interpretable description from
a recording of a music performance. The interest into this problem is mainly motivated by the
desire to implement a program to infer automatically a musical notation (such as the traditional
western music notation) that lists the pitch levels of notesand corresponding timestamps in a given
performance.

Besides being an interesting problem of its own, automated extraction of a score (or a score-like
description) is potentially very useful in a broad spectrumof applications such as interactive music
performance systems, music information retrieval and musicological analysis of musical perfor-
mances. However, in its most unconstrained form, i.e., whenoperating on an arbitrary acoustical
input, music transcription stays yet as a very hard problem and is arguably “AI-complete”, i.e.
requires simulation of a human-level intelligence. Nevertheless, we believe that an eventual practi-
cal engineering solution is possible by an interplay of scientific knowledge from cognitive science,
musicology, musical acoustics and computational techniques from artificial intelligence, machine
learning and digital signal processing. In this context, the aim of this thesis is to integrate this
vast amount of prior knowledge in a consistent and transparent computational framework and to
demonstrate the feasibility of such an approach in moving uscloser to a practical solution to music
transcription.

In a statistical sense, music transcription is an inferenceproblem where, given a signal, we
want to find a score that is consistent with the encoded music.In this context, a score can be con-
templated as a collection of “musical objects” (e.g., note events) that are rendered by a performer
to generate the observed signal. The term “musical object” comes directly from an analogy to
visual scene analysis where a scene is “explained” by a list of objects along with a description
of their intrinsic properties such as shape, color or relative position. We view music transcription
from the same perspective, where we want to “explain” individual samples of a music signal in
terms of a collection of musical objects where each object has a set of intrinsic properties such as
pitch, tempo, loudness, duration or score position. It is inthis respect that a score is a high level
description of music.

Musical signals have a very rich temporal structure, and it is natural to think of them as being
organized in a hierarchical way. On the highest level of thisorganization, which we may call
as the cognitive (symbolic) level, we have a score of the piece, as, for instance, intended by a
composer1. The performers add their interpretation to music and render the score into a collection
of “control signals”. Further down on the physical level, the control signals trigger various musical
instruments that synthesize the actual sound signal. We illustrate these generative processes using
a hierarchical graphical model (See Figure 1.1), where the arcs represent generative links.

1In reality the music may be improvised and there may be actually not a written score. However, for doing
transcription we have to assume the existence a score as our starting point.

1
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Score Expression

Piano-Roll

Signal

Figure 1.1: A hierarchical generative model for music signals. In this model, an unknown score is
rendered by a performer into a piano-roll. The performer introduces expressive timing deviations
and tempo fluctuations. The piano-roll is rendered into audio by a synthesis model. The piano
roll can be viewed as a symbolic representation, analogous to a sequence of MIDI events. Given
the observations, transcription can be viewed as inferenceof the score by “inverting” the model.
Somewhat simplified, the transcription methods described in this thesis can be viewed as inference
techniques as applied to subgraphs of this graphical model.Rhythm quantization (Chapter 2) is
inference of the score given onsets from a piano-roll (i.e. alist of onset times) and tempo. Tempo
tracking, as described in Chapter 3 corresponds to inference of the expressive deviations introduced
by the performer, given onsets and a score. Joint quantization and tempo tracking (Chapter 4) infers
both the tempo and score simultaneously, given only onsets.Polyphonic pitch tracking (Chapter 5)
is inference of a piano-roll given the audio signal.
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This architecture is of course anything but new, and in fact underlies any music generating
computer program such as a sequencer. The main difference ofour model from a conventional
sequencer is that the links are probabilistic, instead of deterministic. We use the sequencer analogy
in describing a realistic generative process for a large class of music signals.

In describing music, we are usually interested in a symbolicrepresentation and not so much
in the “details” of the actual waveform. To abstract away from the signal details, we define an
intermediate layer, that represent the control signals. This layer, that we call a “piano-roll”, forms
the interface between a symbolic process and the actual signal process. Roughly, the symbolic
process describes how a piece is composed and performed. Conditioned on the piano-roll, the
signal process describes how the actual waveform is synthesized. Conceptually, the transcription
task is then to “invert” this generative model and recover back the original score.

In the next section, we will describe three subproblems of music transcription in this frame-
work. First we introduce models forRhythm QuantizationandTempo Tracking, where we assume
that exact timing information of notes is available, for example as a stream of MIDI2 events from
a digital keyboard. In the second part, we focus onpolyphonic pitch tracking, where we estimate
note events from acoustical input.

1.1 Rhythm Quantization and Tempo Tracking

In conventional music notation, the onset time of each note is implicitly represented by the cu-
mulative sum of durations of previous notes. Durations are encoded by simple rational numbers
(e.g., quarter note, eighth note), consequently all eventsin music are placed on a discrete grid. So
the basic task in MIDI transcription is to associate onset times with discrete grid locations, i.e.,
quantization.

However, unless the music is performed with mechanical precision, identification of the cor-
rect association becomes difficult. This is due to the fact that musicians introduce intentional (and
unintentional) deviations from a mechanical prescription. For example timing of events can be
deliberately delayed or pushed. Moreover, the tempo can fluctuate by slowing down or acceler-
ating. In fact, such deviations are natural aspects of expressive performance; in the absence of
these, music tends to sound rather dull and mechanical. On the other hand, if these deviations are
not accounted for during transcription, resulting scores have often very poor quality. Figure 1.2
demonstrates an instance of this.

A computational model for tempo tracking and transcriptionfrom a MIDI-like music repre-
sentation is useful in automatic score typesetting, the musical analog of word processing. Almost
all score typesetting applications provide a means of automatic generation of a conventional music
notation from MIDI data. Robust and fast quantization and tempo tracking is also an important
requirement for interactive performance systems; applications that “listen” to a performer for gen-
erating an accompaniment or improvisation in real time (Raphael, 2001b; Thom, 2000).

From a theoretical perspective, simultaneous quantization and tempo tracking is a “chicken-
and-egg” problem: the quantization depends upon the intended tempo interpretation and the tempo
interpretation depends upon the quantization (See Figure 1.3).

Apparently, human listeners can resolve this ambiguity in most cases without much effort.
Even persons without any musical training are able to determine the beat and the tempo very
rapidly. However, it is still unclear what precisely constitutes tempo and how it relates to the

2Musical Instruments Digital Interface. A standard communication protocol especially designed for digital instru-
ments such as keyboards. Each time a key is pressed, a MIDI keyboard generates a short message containing pitch
and key velocity. A computer can tag each received message bya timestamp for real-time processing and/or recording
into a file.
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(b) Transcription without tempo tracking� � � � � � �� � � � � � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �
 

(c) Output of our system

Figure 1.2: Excerpts from a performance of the C major prelude (BWV 846 - first book of the well
tempered clavier). A pianist is invited to play the originalpiece in Figure (a) on a digital MIDI
piano. He was free in choosing any interpretation. We can transcribe the performance directly
using a conventional music typesetting program; however the resulting score becomes rapidly very
complex and useless for a human reader (Figure (b)). This is primarily due to the fact that tempo
fluctuations and expressive timing deviations are not accounted for. Consequently, the score does
not display the simple regular rhythmical structure of the piece. In Figure (c), a transcription is
shown that is produced by our system that displays the simplerhythmical structure.
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(e) Corresponding tempo-curves. Curves with square, oval and
triangle dots correspond to the notation 1.3(b), 1.3(c) and1.3(d).

Figure 1.3: The tradeoff between quantization and tempo tracking. Given any sequence of onset
times, we can in principle easily find a notation (i.e. a sequence of rational numbers) to describe
the timing information arbitrarily well. Consider the performed simple rhythm in 1.3(a) (from
Desain & Honing, 1991). A very fine grid quantizer produces a result similar to 1.3(b). Although
this is a very accurate representation, the resulting notation is far too complex. Another extreme
case is the notation in 1.3(c), that contains notes of equal duration. Although this notation is very
“simple”, it is very unlikely that it is the intended score, since this would imply that the performer
has introduced very unrealistic tempo changes (See 1.3(e)). Musicians would probably agree that
the “smoother” score shown in 1.3(d) is a better representation. This example suggests that agood
scoremust be “easy” to read while representing the timing information accurately.
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perception of the beat, rhythmical structure, pitch, styleof music etc. Tempo is a perceptual
construct and cannot directly be measured in a performance.

1.1.1 Related Work

The goal of understanding tempo perception has stimulated asignificant body of research on psy-
chological and computational modelling aspects of tempo tracking and beat induction. Early work
by (Michon, 1967) describes a systematic study on the modelling of human behaviour in tracking
tempo fluctuations in artificially constructed stimuli. (Longuet-Higgins, 1976) proposes a musical
parser that produces a metrical interpretation of performed music while tracking tempo changes.
Knowledge about meter helps the tempo tracker to quantize a performance.

Large and Jones (1999) describe an empirical study on tempo tracking, interpreting the ob-
served human behaviour in terms of an oscillator model. A peculiar characteristic of this model
is that it is insensitive (or becomes so after enough evidence is gathered) to material in between
expected beats, suggesting that the perception tempo change is indifferent to events in this interval.
(Toiviainen, 1999) discusses some problems regarding phase adaptation.

Another class of tempo tracking models are developed in the context of interactive performance
systems and score following. These models make use of prior knowledge in the form of an anno-
tated score (Dannenberg, 1984; Vercoe & Puckette, 1985). More recently, Raphael (2001b) has
demonstrated an interactive real-time system that followsa solo player and schedules accompani-
ment events according to the player’s tempo interpretation.

More recently attempts are made to deal directly with the audio signal (Goto & Muraoka, 1998;
Scheirer, 1998) without using any prior knowledge. However, these models assume constant tempo
(albeit timing fluctuations may be present). Although successful for music with a steady beat (e.g.,
popular music), they report problems with syncopated data (e.g., reggae or jazz music).

Many tempo tracking models assume an initial tempo (or beat length) to be known to start up
the tempo tracking process (e.g., (Longuet-Higgins, 1976;Large & Jones, 1999). There is few
research addressing how to arrive at a reasonable first estimate. (Longuet-Higgins & Lee, 1982)
propose a model based on score data, (Scheirer, 1998) one foraudio data. A complete model
should incorporate both aspects.

Tempo tracking is crucial for quantization, since one can not uniquely quantize onsets without
having an estimate of tempo and the beat. The converse, that quantization can help in identification
of the correct tempo interpretation has already been noted by Desain and Honing (1991). Here, one
defines correct tempo as the one that results in a simpler quantization. However, such a schema
has never been fully implemented in practice due to computational complexity of obtaining a
perceptually plausible quantization. Hence quantizationmethods proposed in the literature either
estimate the tempo using simple heuristics (Longuet-Higgins, 1987; Pressing & Lawrence, 1993;
Agon, Assayag, Fineberg, & Rueda, 1994) or assume that the tempo is known or constant (Desain
& Honing, 1991; Cambouropoulos, 2000; Hamanaka, Goto, Asoh, & Otsu, 2001).

1.2 Polyphonic Pitch Tracking

To transcribe a music performance from acoustical input, one needs a mechanism to sense and
characterize individual events produced by the instrumentalist. One potential solution is to use
dedicated hardware and install special sensors on to the instrument body: this solution has re-
stricted flexibility and is applicable only to instruments designed specifically for such a purpose.
Discounting the ‘hardware’ solution, we shall assume that we capture the sound with a single
microphone, so that the computer receives no further input other than the pure acoustic informa-
tion. In this context, polyphonic pitch tracking refers to identification of (possibly simultaneous)
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Figure 1.4: Piano Roll inference from polyphonic signals. (Top) A short segment of the polyphonic
music signal. (Middle) Spectrogram (Magnitude of the Shorttime Fourier transform) of the signal.
Horizontal and vertical axes correspond to time and frequency, respectively. Grey level denotes
the energy in a logarithmic scale. The line spectra (parallel “lines” to time axis equispaced in
frequency) are characteristic to many pitched musical signals. The low frequency notes are not
well resolved due to short window length. Taking a longer analysis window would increase the
frequency resolution but smear out onsets and offsets. Whentwo or more notes are played at the
same time, their harmonics overlap both in time and frequency, making correct associations of
individual harmonics to note events difficult. (Bottom) A “piano-roll” denoting the note events
where the vertical axis corresponds to the note index and thehorizontal axis corresponds to time
index. Black and white pixels correspond to “sound” and “mute” respectively. The piano-roll can
be viewed as a symbolic summary of the underlying signal process.

note events. The main challenge is separation and identification of typically small (but unknown)
number of source signals that overlap both in time and frequency (See Figure 1.4).

1.2.1 Related Work

Polyphonic pitch identification has attracted quite an amount of research effort in the past; see
(Plumbley, Abdallah, Bello, Davies, Monti, & Sandler, 2002) for a recent review. The earliest
published papers in the field are due to Moorer (1977) and Piszczalski and Galler (1977). Moorer
demonstrated a system that was capable of transcribing a limited polyphonic source such as a duet.
Piszczalski and Galler (1977) focused on monophonic transcription. Their method analyses the
music signal frame by frame. For each frame, they measures the fundamental frequency directly
from local maxima of the Fourier transform magnitude. In this respect, this method is the first
example of many other techniques that operate on a time-frequency distribution to estimate the
fundamental frequency. Maher (1990) describes the first well-documented model in the literature
that could track duets from real recordings by representingthe audio signal as the superposition
of sinusoidals, known in the signal processing community asMcAuley-Quatieri (MQ) analysis
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(1986). Mellinger (1991) employed a cochleagram representation (a time-scale representation
based on an auditory model (Slaney, 1995)). He proposed a setof directional filters for extracting
features from this representation. Recently, Klapuri et al. (2001) proposed an iterative schema that
operates on the frequency spectrum. They estimate a single dominant pitch, remove it from the en-
ergy spectrum and reestimate recursively on the residual. They report that the system outperforms
expert human transcribers on a chord identification task.

Other attempts have been made to incorporate low level (physical) or high level (musical struc-
ture and cognitive) information for the processing of musical signals. Rossi, Girolami, and Leca
(1997) reported a system that is based on matched filters estimated from piano sounds for poly-
phonic pitch identification for piano music. Martin (1999) has demonstrated use of a “blackboard
architecture” (Klassner, Lesser, & Nawab, 1998; Mani, 1999) to transcribe polyphonic piano music
(Bach chorales), that contained at most four different voices (bass-tenor-alto-soprano ) simultane-
ously. Essentially, this is an expert system that encodes prior knowledge about physical sound
characteristics, auditory physiology and high level musical structure such as rules of harmony.
This direction is further exploited by (Bello, 2003). Good results reported by Rossi et al., Martin
and Bello support the intuitive claim that combining prior information from both lower and higher
levels can be very useful for transcription of musical signals.

In speech processing, tracking the pitch of a single speakeris a fundamental problem and meth-
ods proposed in the literature fill many volumes (Rabiner, Chen, Rosenberg, & McGonegal, 1976;
Hess, 1983). Many of these techniques can readily be appliedto monophonic music signals (de la
Cuadra, Master, & Sapp, 2001; de Cheveigné & Kawahara, 2002). A closely related research
effort to transcription is developing real-time pitch tracking and score following methods for in-
teractive performance systems (Vercoe, 1984), or for fast sound to MIDI conversion (Lane, 1990).
Score following applications can also be considered as pitch trackers with a very informative prior
(i.e. they know what to look for). In such a context, Grubb (1998) developed a system that can
track a vocalist given a score. A vast majority of pitch detection algorithms are based on heuristics
(e.g., picking high energy peaks of a spectrogram, correlogram, auditory filter bank, e.t.c.) and
their formulation usually lacks an explicit objective function or a explicit model. Hence, it is of-
ten difficult to theoretically justify merits and shortcomings of a proposed algorithm, compare it
objectively to alternatives or extend it to more complex scenarios such as polyphony.

Pitch tracking is inherently related to detection and estimation of sinusoidals. Estimation and
tracking of single or multiple sinusoidals is a fundamentalproblem in many branches of applied
sciences so it is less surprising that the topic has also beendeeply investigated in statistics, (e.g.
see Quinn & Hannan, 2001). However, ideas from statistics seem to be not widely applied in the
context of musical sound analysis, with only a few exceptions (Irizarry, 2001, 2002) who present
frequentist techniques for very detailed analysis of musical sounds with particular focus on de-
composition of periodic and transient components. (Saul, Lee, Isbell, & LeCun, 2002) presented
real-time monophonic pitch tracking application based on Laplace approximation to the poste-
rior parameter distribution of a second order autoregressive process (AR(2)) model (Truong-Van,
1990; Quinn & Hannan, 2001, page 19). Their method, with somerather simple preprocessing,
outperforms several standard pitch tracking algorithms for speech, suggesting potential practical
benefits of an approximate Bayesian treatment. For monophonic speech, a Kalman filter based
pitch tracker is proposed by Parra and Jain (2001) that tracks parameters of a harmonic plus noise
model (HNM). They propose the use of Laplace approximation around the predicted mean instead
of the extended Kalman filter (EKF).

Statistical techniques have been applied for polyphonic transcription. Kashino is, to our knowl-
edge, the first author to apply graphical models explicitly to the problem of music transcription.
In Kashino et al. (1995), they construct a model to representhigher level musical knowledge and
solve pitch identification separately. Sterian (1999) described a system that viewed transcription
as a model driven segmentation of a time-frequency distribution. They use a Kalman filter model
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to track partials on this image. Walmsley (2000) treats transcription and source separation in a full
Bayesian framework. He employs a frame based generalized linear model (a sinusoidal model)
and proposes a reversible-jump Markov Chain Monte Carlo (MCMC) (Andrieu & Doucet, 1999)
inference algorithm. A very attractive feature of the modelis that it does not make strong as-
sumptions about the signal generation mechanism, and viewsthe number of sources as well as
the number of harmonics as unknown model parameters. Davy and Godsill (2003) address some
of the shortcomings of his model and allow changing amplitudes and deviations in frequencies of
partials from integer ratios. The reported results are good, however the method is computationally
expensive. In a faster method, (Raphael, 2002) uses the short time Fourier Transform to make
features and uses an HMM to infer most likely chord hypothesis.

In machine learning community, probabilistic models are widely applied for source separation,
a.k.a. blind deconvolution, independent components analysis (ICA) (Hyvärinen, Karhunen, & Oja,
2001). Related techniques for source separation in music are investigated by (Casey, 1998). ICA
models attempt source separation by forcing a factorized hidden state distribution, which can be
interpreted as a “not-very-informative” prior. Thereforeone needs typically multiple sensors for
source separation. When the prior is more informative, one can attempt separation even from a
single channel (Roweis, 2001; Jang & Lee, 2002; Hu & Wang, 2001).

Most of the authors view automated music transcription as a “audio to piano-roll” conversion
and usually view “piano-roll to score” as a separate problem. This view is partially justified, since
source separation and transcription from a polyphonic source is already a challenging task. On
the other hand, automated generation of a human readable score includes nontrivial tasks such as
tempo tracking, rhythm quantization, meter and key induction (Raphael, 2001a; Temperley, 2001).
We argue that models described in this thesis allow for principled integration of higher level sym-
bolic prior knowledge with low level signal analysis. Such an approach can guide and potentially
improve the inference of a score , both in terms of quality of the solution and computation time.

1.3 Probabilistic Modelling and Music Transcription

We view music transcription, in particular rhythm quantization, tempo tracking and polyphonic
pitch identification, as latent state estimation problems.In rhythm quantization or tempo tracking,
given a sequence of onsets, we identify the most likely scoreor tempo trajectory. In polyphonic
pitch identification, given the audio samples, we infer a piano-roll that represents the onset times,
note durations and the pitch classes of individual notes.

Our general approach considers the quantities we wish to infer as a sequence of ‘hidden’ vari-
ables, which we denote simply byx. For each problem, we define a probability model, that relates
the observations sequencey to the hiddensx, possibly using a set of parametersθ. Given the
observations, transcription can be viewed as a Bayesian inference problem, where we compute a
posterior distribution over hidden quantities by “inverting” the model using the Bayes theorem.

1.3.1 Bayesian Inference

In Bayesian statistics, probability models are viewed as data structures that represent a model
builders knowledge about a (possibly uncertain) phenomenon. The central quantity is a joint prob-
ability distribution:

p(y, x, θ) = p(y|θ, x)p(x, θ)

that relates unknown variablesx and unknown parametersθ to observationsy. In probabilistic
modelling, there is no fundamental difference between unknown variables and unknown model
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Figure 1.5: (a) Directed graphical model showing the assumed causal relationship between observ-
ablesy, hiddensx and parametersθ. (b) The hidden variables are further partitioned asx = (s, r).
Square nodes denote discrete, oval nodes denote continuousvariables.

parameters; all can be viewed as unknown quantities to be estimated. The inference problem is to
compute the posterior distribution using the Bayes theorem:

p(x, θ|y) =
1

p(y)
p(y|θ, x)p(x, θ) (1.1)

The prior termp(x, θ) reflects our knowledge about the parametersθ and hidden variablesx before
we observe any data. The likelihood modelp(y|θ, x) relatesθ andx to the observationsy. It is
usually convenient to think ofp(y|θ, x) as a generative model fory. The model can be represented
as a graphical model shown in Figure 1.5(a). Given the observationsy, the posteriorp(x, θ|y)
reflects our entire knowledge (e.g., the probable values andthe associated uncertainties) about the
unknown quantities. A posterior distribution on the hiddenvariables can be obtained by integrating
the joint posterior over the parameters, i.e.

p(x|y) =

∫

dθp(x, θ|y) (1.2)

From this quantity, we can obtain the most probablex∗ giveny as

x∗ = argmax
x

p(x|y) (1.3)

Unfortunately, the required integrations onθ are in most cases intractable so one has to reside to
numerical or analytical approximation techniques. At thispoint, it is often more convenient to
distinguish betweenx andθ to simplify approximations. For example, one common approach to
approximation is to use a point estimate of the parameter andto convert intractable integration to
a simple function evaluation. Such an estimate is the maximum a-posteriori (MAP) estimate given
as:

θ∗ = argmax
θ

∫

dxp(x, θ|y)

p(x|y) ≈ p(x, θ∗|y)

Note that this formulation is equivalent to “learning” the best parameters given the observations. In
some special cases, the required integrations overθ may still be carried out exactly. This includes
the cases wheny, x andθ are jointly Gaussian, or when bothx andθ are discrete. Here, exact
calculation hinges whether it is possible to represent the posteriorp(x, θ|y) in a factorized form
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using a data structure such as thejunction tree(See (Smyth, Heckerman, & Jordan, 1996) and
references herein).

Another source of intractability is reflected in combinatorial explosion. In some special hybrid
model classes (such as switching linear dynamical systems (Murphy, 1998; Lerner & Parr, 2001)),
we can divide the hidden variables in two setsx = (s, r) wherer is discrete ands given r is
conditionally Gaussian (See Figure. 1.5(b)). We will use such models extensively in the thesis. To
infer the most likelyr consistent with the observations, we need to compute

r∗ = argmax
r

∫

dsdθp(r, s, θ|y)

If we assume that model parametersθ are known, (e.g. suppose we have estimatedθ∗ on a training
set wherer was known) we can simplify the problem as:

r∗ ≈ argmax
r

p(r|y) = argmax
r

∫

dsp(y|r, s)p(s|r)p(r) (1.4)

Here, we have omitted explicit conditioning onθ∗. We can evaluate the integral in Eq.1.4 for any
givenr. However, in order to find the optimal solutionr∗ exactly, we still need to evaluate the the
integral separately for everyr in the configuration space. Apart from some special cases, where
we can derive exact polynomial time algorithms; in general the only exact method is exhaustive
search. Fortunately, although findingr∗ is intractable in general, in practice a useful solution may
be found by approximate methods. Intuitively, this is due tofact that realistic priorsp(r) are usually
very informative (most of the configurationsr have very small probability) and the likelihood term
p(y|r) is quite crisp. All this factors tend to render the posteriorunimodal.

1.4 A toy example

We will now illustrate the basic ideas of Bayesian inferencedeveloped in the previous section
on a toy sequencer model. The sequencer model is quite simpleand is able to generate output
signals of length one only. We denote this output signal asy. The “scores” that it can process
are equally limited and can consist of at most two “notes”. Hence, the “musical universe” of
our sequencer is limited only to4 possible scores, namelysilence, two single note melodies and
one two note chord. Given any one of the four possible scores,the sequencer generates control
signals which we will call a “piano-roll”. In this representation, we will encode each note by a bit
rj ∈ {“sound”, “mute”} for j = 1, 2. This indicator bit denotes simply whether thej’th note is
present in the score or not. In this simplistic example, there is no distinction between a score and a
piano-roll and the latter is merely an encoding of the former; but for longer signals there will be a
distinction. We specify next what waveform the sequencer should generate when a note is present
or absent. We will denote this waveform bysj

sj|rj ∼ [rj = sound]N (sj;µj, Ps) + [rj = mute]N (sj; 0, Pm)

Here the notation[x = text] has value equal to 1 when variablex is in state text, and is zero
otherwise. The symbolN (s;µ, P ) denotes a Gaussian distribution on variables with meanµ and
varianceP . Verbally, the above equation means that whenrj = mute,sj ≈ 0 ± √Pm and when
rj = sound,sj ≈ µj ±

√
Ps. Here theµj, Ps andPm are known parameters of the signal model.

Finally, the output signal is given by summing up each waveform of individual notes

y =
∑

j

sj
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(a) Graphical model of the toy
sequencer model. Square and
oval shaped nodes denote dis-
crete (piano-roll) and contin-
uous (waveform) variables re-
spectively. Diamond-shaped
node represents the observed
signal.
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(b) The conditionalp(y|r1, r2). The
“mute” and “sound” states are denoted by
◦ and• respectively. Here,µ1 = 3, µ2 =
5 andPm < Ps. The bottom figure shows
the most likely transcription as a function
of y, i.e. argmaxr1,r2

p(r1, r2|y). We
assume a flat prior,p(rj = “mute”) =
p(rj = “sound”) = 0.5.

Figure 1.6: Graphical model for the toy sequencer model

To make the model complete, we have to specify a prior distribution that describes how the scores
are generated. Since there is no distinction between a piano-roll and a score in this example, we
will directly define a prior directly on piano-roll. For simplicity, we assume that notes are a-priori
independent, i.e.

rj ∼ p(rj) j = 1, 2

and choose a uniform prior withp(rj = mute) = p(rj = sound) = 0.5. The corresponding
graphical model for this generative process is shown in Figure 1.6.

The main role of the generative process is that it makes it conceptually easy to describe a joint
distribution between the output signaly, waveformss = (s1, s2) and piano-rollr = (r1, r2) where

p(y, s, r) = p(y|s)p(s|r)p(r)

Moreover, this construction implies a certainfactorizationwhich potentially simplifies both the
representation of the joint distribution and the inferenceprocedure. Formally, the transcription
task is now to calculate the conditional probability which is given by theBayes theoremas

p(r|y) =
1

p(y)
p(y|r)p(r)

Here, p(y) =
∑

r′
p(y|r′)p(r′) is a normalization constant. In transcription, we are interested

into the most likely piano-rollr∗, hence the actual numerical valuep(y), which merely scales the
objective, is at this point not important, i.e. we have

r∗ = argmax
r

p(r|y) = argmax
r

p(y|r)p(r) (1.5)
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The prior factorp(r) is already specified. The other term can be calculated byintegrating outthe
waveformss, i.e.

p(y|r) =

∫

dsp(y, s|r) =

∫

dsp(y|s)p(s|r)

Conditioned on anyr, this quantity can be found analytically. For example, whenr1 = r2 =
“sound”,p(y|r) = N (y;µ1 + µ2, 2Ps). A numeric example is shown in Figure 1.6.

This simple toy example exhibits the key idea in our approach. Basically, by just carefully
describing the sound generation procedure, we were able to formulate an optimization problem
(Eq. 1.5) for doing polyphonic transcription! The derivation is entirely mechanical and ensures
that the objective function consistently incorporates ourprior knowledge about scores and about the
sound generation procedure (throughp(r) andp(s|r)). Of course, in reality,y and each ofrj andsj

will be time series and both the score and sound generation process will be far more complex. But
most importantly, we have divided the problem into two parts, in one part formulating a realistic
model, on the other part finding an efficient inference algorithm.

1.5 Outline of the thesis

In the following chapters, we describe several methods for transcription. For each subproblem,
we define a probability model, that relates the observations, hiddens and parameters. The partic-
ular definition of these quantities will depend on the context, but observables and hiddens will be
sequences of random variables. For a given observation sequence, we will compute the posterior
distribution or some posterior features such as the MAP.

In Chapter 2, we describe a model that relates short scores with corresponding onset times of
events in an expressive performance. The parameters of the model is trained on data resulting from
a psychoacoustical experiment to mimic the behaviour of a human transcriber on this task. This
chapter addresses the issue that there is not a single “ground truth” in music transcription. Even for
very simple rhythms, well trained human subjects show significant variations in their responses.
We demonstrate how this uncertainty problem can be addressed naturally using a probabilistic
model.

Chapter 3 focuses on tempo tracking from onsets. The observation model is a multiscale rep-
resentation (analogous to a wavelet transform ). The tempo prior is modelled as a Gauss-Markov
process. The tempo is viewed as a hidden state variable and isestimated by approximate Kalman
filtering.

We introduce in Chapter 4 a generative model to combine rhythm quantization and tempo
tracking. The model is a switching state space model in whichcomputation of exact probabilities
becomes intractable. We introduce approximation techniques based on simulation, namely Markov
Chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC).

In Chapter 5, we propose a generative model for polyphonic transcription from audio signals.
The model, formulated as a Dynamical Bayesian Network, describes the relationship between
polyphonic audio signal and an underlying piano roll. This model is also a special case of the,
generally intractable, switching state space model. Wherepossible, we derive, exact polynomial
time inference procedures, and otherwise efficient approximations.

1.6 Future Directions and Conclusions

When transcribing music, human experts rely heavily on prior knowledge about the musical struc-
ture – harmony, tempo, timbre, expression, e.t.c. As partially demonstrated in this thesis and else-
where (e.g. (Raphael & Stoddard, 2003)), such structure canbe captured by training probabilistic
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generative models on a corpus of example compositions, performances or sounds by collecting
statistics over selected features. One of the important advantages of our approach is that, at least
in principle, prior knowledge about any type of musical structure can be consistently integrated.
An attempt in this direction is made in (Cemgil, Kappen, & Barber, 2003), where we described a
model that combines low level signal analysis with high level knowledge. However, the computa-
tional obstacles and software engineering issues are yet tobe overcome. I believe that investigation
of this direction is important in designing robust and practical music transcription systems.

In my view, the most attractive feature of probabilistic modelling and Bayesian inference for
music transcription is the decoupling of modelling from inference. In this framework, the model
clearly describes the objective and the question how we actually solve the objective, whilst equally
important, becomes an entirely algorithmic and computational issue. Particularly in music tran-
scription, as in many other perceptual tasks, the answer to the question of “what to optimize” is far
from trivial. This thesis tries to answer this question by defining an objective by using probabilistic
generative models and touches upon some state-of-the-art inference techniques for its solution.

I argue that practical polyphonic music transcription can be made computationally easy; the
difficulty of the problem lies in formulating precisely whatthe objective is. This is in contrast
with traditional problems of computer science, such as the travelling salesman problem, which are
very easy to formulate but difficult to solve exactly. In my view, this fundamental difference in
the nature of the music transcription problem requires a model-centred approach rather than an
algorithm-centred approach. One can argue that objectivesformulated in the context of probabilis-
tic models are often intractable. I answer this by paraphrasing John Tukey, who in the 50’s said
“An approximate solution of the exact problem is often more useful than the exact solution of an
approximate problem”.



Chapter 2

Rhythm Quantization

One important task in music transcription is rhythm quantiz ation that refers to categoriza-
tion of note durations. Although quantization of a pure mechanical performance is rather
straightforward, the task becomes increasingly difficult in presence of musical expression,
i.e. systematic variations in timing of notes and in tempo. In this chapter, we assume that
the tempo is known. Expressive deviations are modelled by a probabilistic performance
model from which the corresponding optimal quantizer is derived by Bayes theorem. We
demonstrate that many different quantization schemata canbe derived in this framework
by proposing suitable prior and likelihood distributions. The derived quantizer operates on
short groups of onsets and is thus flexible both in capturing the structure of timing devia-
tions and in controlling the complexity of resulting notations. The model is trained on data
resulting from a psychoacoustical experiment and thus can mimic the behaviour of a human
transcriber on this task.

Adapted from A.T. Cemgil, P. Desain, and H.J. Kappen. Rhythmquantiza-
tion for transcription.Computer Music Journal, pages 60–75, 2000.

2.1 Introduction

One important task in music transcription is rhythm quantization that refers to categorization of
note durations. Quantization of a “mechanical” performance is rather straightforward. On the
other hand, the task becomes increasingly difficult in presence of expressive variations, that can
be thought as systematic deviations from a pure mechanical performance. In such unconstrained
performance conditions, mainly two types of systematic deviations from exact values do occur.
At small time scale notes can be played accented or delayed. At large scale tempo can vary, for
example the musician(s) can accelerate (or decelerate) during performance or slow down (ritard)
at the end of the piece. In any case, these timing variations usually obey a certain structure since
they are mostly intended by the performer. Moreover, they are linked to several attributes of the
performance such as meter, phrase, form, style etc. (Clarke, 1985). To devise a general compu-
tational model (i.e. a performance model) which takes all these factors into account, seems to be
quite hard.

Another observation important for quantization is that we perceive a rhythmic pattern not as a
sequence of isolated onsets but rather as a perceptual entity made of onsets. This also suggests that
attributes of neighboring onsets such as duration, timing deviation etc. are correlated in some way.

This correlation structure is not fully exploited in commercial music packages, which do auto-
mated music transcription and score type setting. The usualapproach taken is to assume a constant
tempo throughout the piece, and to quantize each onset to thenearest grid point implied by the
tempo and a suitable pre-specified minimum note duration (e.g. eight, sixteenth etc.). Such a grid
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quantization schema implies that each onset is quantized tothe nearest grid pointindependentof
its neighbours and thus all of its attributes are assumed to be independent, hence the correlation
structure is not employed. The consequence of this restriction is that users are required to play
along with a fixed metronome and without any expression. The quality of the resulting quanti-
zation is only satisfactory if the music is performed according to the assumptions made by the
quantization algorithm. In the case of grid-quantization this is a mechanical performance with
small and independent random deviations.

More elaborate models for rhythm quantization indirectly take the correlation structure of ex-
pressive deviations into account. In one of the first attemptto quantization, (Longuet-Higgins,
1987) described a method in which he uses hierarchical structure of musical rhythms to do quanti-
zation. (Desain, Honing, & de Rijk, 1992) use a relaxation network in which pairs of time intervals
are attracted to simple integer ratios. (Pressing & Lawrence, 1993) use several template grids and
compare both onsets and inter-onset intervals (IOI’s) to the grid and select the best quantization
according to some distance criterion. The Kant system (Agonet al., 1994) developed at IRCAM
uses more sophisticated heuristics but is in principle similar to (Pressing & Lawrence, 1993).

The common critic to all of these models is that the assumptions about the expressive devia-
tions are implicit and are usually hidden in the model, thus it is not always clear how a particular
design choice effects the overall performance for a full range of musical styles. Moreover it is not
directly possible to use experimental data to tune model parameters to enhance the quantization
performance.

In this chapter, we describe a method for quantization of onset sequences. The paper is or-
ganized as follows: First, we state the transcription problem and define the terminology. Using
the Bayesian framework we briefly introduce, we describe probabilistic models for expressive de-
viation and notation complexity and show how different quantizers can be derived from them.
Consequently, we train the resulting model on experimentaldata obtained from a psychoacoustical
experiment and compare its performance to simple quantization strategies.

2.2 Rhythm Quantization Problem

2.2.1 Definitions

A performed rhythmis denoted by a sequence[ti]
1 where each entry is the time of occurrence of

an onset. For example, the performed rhythm in Figure 1.3(a)is represented byt1 = 0, t2 = 1.18,
t3 = 1.77, t4 = 2.06 etc. We will also use the termsperformanceor rhythminterchangeably when
we refer to an onset sequence.

A very important subtask in transcription is tempo tracking, i.e. the induction of a sequence
of points (i.e.beats) in time, which coincides with the human sense of rhythm (e.g. foot tapping)
when listening to music. We call such a sequence of beats atempo trackand denote it by~τ = [τj ]
whereτj is the time at whichj’th beat occurs. We note that for automatic transcription,~τ is to be
estimated from[ti].

Once a tempo track~τ is given, the rhythm can be segmented into a sequence of segments,
each of durationτj − τj−1. The j’th segment will containKj onsets, which we enumerate by
k = 1 . . .Kj . The onsets in each segment are normalized and denoted bytj = [tkj ], i.e. for all
τj−1 ≤ ti < τj where

tkj =
ti − τj−1

τj − τj−1
(2.1)

1We will denote a set with the typical elementxj as{xj}. If the elements are ordered (e.g. to form a vector) we
will use [xj ].
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Note that this is merely a reindexing from single indexi to double index(k, j) 2. In other words
the onsets are scaled and translated such that an onset just at the end of the segment is mapped
to one and another just at the beginning to zero. The segmentation of a performance is given in
Figure 2.1.
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Figure 2.1: Segmentation of a performance by a tempo track (vertical dashed lines)~τ =
[0.0, 1.2, 2.4, 3.6, 4.8, 6.0, 7.2, 8.4]. The resulting segments aret0 = [0], t1 = [0.475, 0.717] etc.
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Figure 2.2: Depth of gridpointc by subdivision schemaS = [3, 2, 2]

Once a segmentation is given, quantization reduces to mapping onsets to locations, which
can be described by simple rational numbers. Since in western music tradition, notations are
generated by recursive subdivisions of a whole note, it is also convenient to generate possible
onset quantization locations by regular subdivisions. We letS = [si] denote a subdivision schema,
where[si] is a sequence of small prime numbers. Possible quantizationlocations are generated
by subdividing the unit interval[0, 1]. At each new iterationi, the intervals already generated are
divided further intosi equal parts and the resulting endpoints are added to a setC. Note that
this procedure places the quantization locations on a grid of pointscn where two neighboring grid
points have the distance1/

∏

i si. We will denote the first iteration number at which the grid point
c is added toC as thedepthof c with respect toS. This number will be denoted asd(c|S).

As an example consider the subdivisionS = [3, 2, 2]. The unit interval is divided first into three
equal pieces, then the resulting intervals into 2 and etc. Ateach iteration, generated endpoints are

2When an argument applies to all segments, we will drop the indexj.
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Figure 2.3: A simplified schema of onset quantization. A notation (a) defines a score (b) which
places onsets on simple rational points with respect to a tempo track (vertical dashed lines). The
performer “maps” (b) to a performance (c). This process is not deterministic; in every new per-
formance of this score a (slightly) different performance would result. A performance model is a
description of this stochastic process. The task of the transcriber is to recover both the tempo track
and the onset locations in (b) given (c).

Figure 2.4: Two equivalent representations of the notationin Figure 2.3(a) by a code vector se-
quence. Here, each horizontal line segment represents one vector of length one beat. The endpoint
of one vector is the samepoint in time as the beginning of the next vector. Note that the only
difference between two equivalent representations is thatsome begin and endpoints are swapped.

added to the list. In the first iteration, 0, 1/3, 2/3 and 1 are added to the list. In the second iteration,
1/6, 3/6 and 5/6 are added, etc. The resulting grid points (filled circles) are depicted in Figure 2.2.
The vertical axis corresponds tod(c|S).

If a segmentt is quantized (with respect toS), the result is aK dimensional vector with all
entries on some grid points. Such a vector we call acode vectorand denote asc = [ck], i.e.
c ∈ C × C · · · × C = CK . We call a set of code-vectors acodebook. Since all entries of a code
vector coincide with some grid points, we can define thedepth of a code vectoras

d(c|S) =
∑

ck∈c

d(ck|S) (2.2)

A score can be viewed as aconcatenationof code vectorscj. For example, the notation in Fig-
ure 2.3(a) can be represented by a code vector sequence as in Figure 2.4. Note that the representa-
tion is not unique, both code vector sequences represent thesame notation.
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2.2.2 Performance Model

As described in the introduction section, natural music performance is subject to several systematic
deviations. In lack of such deviations, every score would have only one possible interpretation.
Clearly, two natural performances of a piece of music are never the same, even performance of
very short rhythms show deviations from a strict mechanicalperformance. In general terms, a
performance modelis a mathematical description of such deviations, i.e. it describes how likely
it is that a score is mapped into a performance (Figure 2.3). Before we describe a probabilistic
performance model, we briefly review a basic theorem of probability theory.

2.2.3 Bayes Theorem

The joint probabilityp(A,B) of two random variablesA andB defined over the respective state
spacesSA andSB can be factorized in two ways:

p(A,B) = p(B|A)p(A) = p(A|B)p(B) (2.3)

wherep(A|B) denotes the conditional probability ofA givenB: for each value ofB, this is
a probability distribution overA. Therefore

∑

A p(A|B) = 1 for any fixedB. The marginal
distribution of a variable can be found from the joint distribution by summing over all states of the
other variable, e.g.:

p(A) =
∑

B∈SB

p(A,B) =
∑

B∈SB

p(A|B)p(B) (2.4)

It is understood that summation is to be replaced by integration if the state space is continuous.
Bayes theorem results from Eq. 2.3 and Eq. 2.4 as:

p(B|A) =
p(A|B)p(B)

∑

B∈SB
p(A|B)p(B)

(2.5)

∝ p(A|B)p(B) (2.6)

The proportionality follows from the fact that the denominator does not depend onB, sinceB is
already summed over. This rather simple looking “formula” has surprisingly far reaching conse-
quences and can be directly applied to quantization. Consider the case thatB is a score andSB is
the set of all possible scores. LetA be the observed performance. Then Eq 2.5 can be written as

p(Score|Performance) ∝ p(Performance|Score)× p(Score) (2.7)

posterior ∝ likelihood× prior (2.8)

The intuitive meaning of this equation can be better understood, if we think of quantization as a
score selection problem. Since there is usually not a singletrue notation for a given performance,
there will be several possibilities. The most reasonable choice is selecting the scorec which has
the highest probability given the performancet. Technically, we name this probability distribution
as the posteriorp(c|t). The name posterior comes from the fact that this quantity appearsafter
we observe the performancet. Note that the posterior is a function overc, and assigns a number
to each notation after we fixt. We look for the notationc that maximizes this function. Bayes
theorem tells us that the posterior is proportional to the product of two quantities, the likelihood
p(t|c) and the priorp(c). Before we explain the interpretation of the likelihood andthe prior in
this context, we first summerize the ideas in compact notation as

p(c|t) ∝ p(t|c)p(c). (2.9)
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The best code vectorc∗ is given by

c∗ = argmax
c∈CK

p(c|t) (2.10)

In technical terms, this problem is called a maximum a-posteriori (MAP) estimation problem and
c∗ is called the MAP solution of this problem. We can also define arelated quantityL (minus log-
posterior) and try to minimize this quantity rather then maximizing Eq. 2.9 directly. This simplifies
the form of the objective function without changing the locations of local extrema sincelog(x) is
a monotonically increasing function.

L = − log p(c|t) ∝ − log p(t|c) + log
1

p(c)
(2.11)

The− log p(t|c) term in Equation 2.11, which is the minus logarithm of the likelihood, can be
interpreted as a distance measuring how far the rhythmt is played from the perfect mechanical
performancec. For example, ifp(t|c) would be of formexp(−(t− c)2), then− log(t|c) would be
(t− c)2, the square of the distance fromt to c. This quantity can be made arbitrary small if we use
a very fine grid, however, as mentioned in the introduction section, this eventually would result
in a complex notation. A suitable prior distribution prevents this undesired result. Thelog 1

p(c)

term, which is large when the prior probabilityp(c) of the codevector is small, can be interpreted
as a complexity term, which penalizes complex notations. The best quantization balances the
likelihood and the prior in an optimal way. The precise form of the prior will be discussed in a
later section.

The form of a performance model, i.e. the likelihood, can be in general very complicated.
However, in this article we will consider a subclass of performance models where the expressive
timing is assumed to be an additive noise component which depends onc. The model is given by

tj = cj + εj (2.12)

whereεj is a vector which denotes theexpressive timing deviation. In this paper we will assume
thatε is normal distributed with zero mean and covariance matrixΣε(c), i.e. the correlation struc-
ture depends upon the code vector. We denote this distribution asε ∼ N (0,Σε(c)). Note that
whenε is the zero vector, (Σε → 0), the model reduces to a so-called “mechanical” performance.

2.2.4 Example 1: Scalar Quantizer (Grid Quantizer)

We will now demonstrate on a simple example how these ideas are applied to quantization.
Consider a one-onset segmentt = [0.45]. Suppose we wish to quantize the onset to one of the

endpoints, i.e. we are using effectively the codebookC = {[0], [1]}. The obvious strategy is to
quantize the onset to the nearest grid point (e.g. a grid quantizer) and so the code-vectorc = [0] is
chosen as the winner.

The Bayesian interpretation of this decision can be demonstrated by computing the correspond-
ing likelihoodp(t|c) and the priorp(c). It is reasonable to assume that the probability of observing
a performancet given a particularc decreases with the distance|c− t|. A probability distribution
having this property is the normal distribution. Since there is only one onset, the dimensionK = 1
and the likelihood is given by

p(t|c) =
1√
2πσ

exp(−(t− c)2

2σ2
)
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Figure 2.5: Quantization of an onset as Bayesian Inference.Whenp(c) = [1/2, 1/2], at eacht, the
posteriorp(c|t) is proportional to the solid lines, and the decision boundary is at t = 0.5. When
the prior is changed top(c) = [0.3, 0.7] (dashed), the decision boundary moves towards0.

If both codevectors are equally probable, a flat prior can be choosen, i.e.p(c) = [1/2, 1/2]. The
resulting posteriorp(c|t) is plotted in 2.5. The decision boundary is att = 0.5, wherep(c1|t) =
p(c2|t). The winner is given as in Eq. 2.10

c∗ = argmax
c

p(c|t)

Different quantization strategies can be implemented by changing the prior. For example ifc = [0]
is assumed to be less probable, we can choose another prior, e.g. p(c) = [0.3, 0.7]. In this case the
decision boundary shifts from0.5 towards0 as expected.

2.2.5 Example 2: Vector Quantizer

Assigning different prior probabilities to notations is only one way of implementing different quan-
tization strategies. Further decision regions can be implemented by varying the conditional prob-
ability distributionp(t|c). In this section we will demonstrate the flexibility of this approach for
quantization of groups of onsets.

0.
45

0.
52

Figure 2.6: Two Onsets

Consider the segmentt = [0.45, 0.52] depicted in Figure 2.6. Suppose we wish to quantize
the onsets again only to one of the endpoints, i.e. we are using effectively the codebookC =
{[0, 0], [0, 1], [1, 1]}. The simplest strategy is to quantize every onset to the nearest grid point (e.g.
a grid quantizer) and so the code-vectorc = [0, 1] is the winner. However, this result might be not
very desirable, since the inter-onset interval (IOI) has increased more than 14 times, (from 0.07 to
1). It is less likely that a human transcriber would make thischoice since it is perceptually not very
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realistic. We could try to solve this problem by employing another strategy : Ifδ = t2 − t1 > 0.5,
we use the code-vector[0, 1]. If δ ≤ 0.5, we quantize to one of the code-vectors[0, 0] or [1, 1]
depending upon the average of the onsets. In this strategy the quantization of[0.45, 0.52] is [0, 0].
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Figure 2.7: Tiling for choices ofρ and constantp(c). Onset quantization (i.e. grid quantiza-
tion) used by many commercial notation packages corresponds to the case whereρ = 0. IOI
quantization appears whenρ → 1. Note that different correlation structures imply different quan-
tization decisions, not necessarily onset- or IOI-quantization. The cross corresponds to the rhythm
t = [0.45, 0.52].

Although considered to be different in the literature, bothstrategies are just special cases which
can be derived from Eq. 2.11 by making specific choices about the correlation structure (covariance
matrix Σε) of expressive deviations. The first strategy assumes that the expressive deviations of
both onsets are independent of each other. This is apparently not a very realistic model for timing
deviations in music. The latter corresponds to the case where onsets are linearly dependent; it was
assumed thatt2 = t1 + δ and onlyδ andt1 were considered in quantization. This latter operation
is merely a linear transformation of onset times and is implied by the implicit assumption about
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the correlation structure. Indeed some quantization models in the literature focus directly on IOI’s
rather then on onset times.

More general strategies, which can be quite difficult to state verbally, can be specified by differ-

ent choices ofΣε andp(c). Some examples for the choiceΣε =

(

1 ρ
ρ 1

)

and constantp(c) are

depicted in Figure 2.7. The ellipses denote the set of pointswhich are equidistant from the center
and the covariance matrixΣε determines their orientation. The lines denote the decision bound-
aries. The interested reader is referred to (Duda & Hart, 1973) for a discussion of the underlying
theory.

Likelihood for the Vector Quantizer

For modeling the expressive timingε in a segment containingK onsets, we propose the following
parametric form for the covariance matrix

Σε(c) = σ2











1 ρ1,2 · · · ρ1,K

ρ1,2 1 ρn,m
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ρ1,K · · · · · · 1











(2.13)

where

ρn,m = η exp(−λ
2

2
(cm − cn)2) (2.14)

Here,cm andcn are two distinct entries (grid points) of the code vectorc. In Eq. 2.14,η is a
parameter between -1 and 1, which adjust the amount of correlation strength between two onsets.
The other parameterλ adjusts the correlation as a function of the distance between entries in the
code vector. Whenλ is zero, all entries are correlated by the equal amount, namely η. Whenλ is
large, the correlation approaches rapidly to zero with increasing distance.

This particular choice forp(ε) reflects the observation that onsets, which are close to each
other, tend to be highly correlated. This can be interpretedas follows: if the onsets are close to
each other, it is easier to quantify the IOI and then select anappropriate translation for the onsets
by keeping the IOI constant. If the grid points are far away from each other, the correlation tends to
be weak (or sometimes negative), which suggests that onsetsare quantized independently of each
other. In section 2.3, we will verify this choice empirically.

Prior for the Vector Quantizer

The choice of the priorp(c) reflects the complexity of codevectorc. In this article we propose
a complexity measure from a probabilistic point of view. In this measure, the complexity of a
codevectorc = [ci] is determined by the depth ofci with respect to the beat (See Eq. 2.2) and the
time signature of the piece. See Figure 2.8.

The prior probability of a code-vector with respect toS is chosen as

p(c|S) ∝ e−γd(c|S) (2.15)

Note that ifγ = 0, then the depth of the codevector has no influence upon its complexity. If it is
large, (e.g.γ ≈ 1) only very simple rhythms get reasonable probability mass.practice, we choose
γ ≈ 0.02. This choice is also in accordance with the intuition and experimental evidence: simpler
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(a) In lack of any other context, both onset sequences will sound the same.
However the first notation is more complex44 � � � � � 3� � 34 �� � � � � � � �� � � �

(b) Assumed time signature determines the complexity of a notation

Figure 2.8: Complexity of a notation

rhythms are more frequently used then complex ones. The marginal prior of a codevector is found
by summing out all possible subdivision schemes.

p(c) =
∑

S

p(c|S)p(S) (2.16)

wherep(S) is the prior distribution of subdivision schemas. For example, one can select possible
subdivision schemas asS1 = [2, 2, 2], S2 = [3, 2, 2], S3 = [2, 3, 2]. If we have a preference towards
the time signature (4/4), the prior can be taken asp(S) = [1/2, 1/4, 1/4]. In general, this choice
should reflect the relative frequency of time signatures. Wepropose the following form for the
prior of S = [si]

Table 2.1:w(si)

si 2 3 5 7 11 13 17 o/w
w(si) 0 1 2 3 4 5 6 ∞

p(S) ∝ e−ξ
∑

i w(si) (2.17)

wherew(si) is a simple weighting function given in Table 2.1. This form prefers subdivisions by
small prime numbers, which reflects the intuition that rhythmic subdivisions by prime numbers
such as 7 or 11 are far less common then subdivisions such as 2 or 3. The parameterξ distributes
probability mass over the primes. Whenξ = 0, all subdivision schemata are equally probable. As
ξ →∞, only subdivisions withsi = 2 have non-zero probability.

2.3 Verification of the Model

To choose the likelihoodp(t|c) and the priorp(c) in a way which is perceptually meaningful, we
analyzed data obtained from an psychoacoustical experiment where ten well trained subjects (nine
conservatory students and a conservatory professor) have participated (Desain, Aarts, Cemgil,
Kappen, van Thienen, & Trilsbeek, 1999). The experiment consisted of a perception task and
a production task.
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2.3.1 Perception Task

In the perception task the subjects were asked to transcribe91 differentstimuli. These rhythms
consisted of four onsetst0 . . . t3 wheret0 and t3 were fixed and occur exactly on the beat (Fig-
ure 2.9). First a beat is provided to subjects (count in), andthen the stimulus is repeated 3 times
with an empty bar between each repetition. Subjects were allowed to use any notation as a re-
sponse and listen to the stimulus as much as they wanted. In total, subjects used 125 different
notations, from which 57 were used only once and 42 are used more than three times. An example
is depicted in Figure 2.10(a). From this data, we estimate the posterior as

q(cj|tk) = nk(cj)/
∑

j

nk(cj)

wherenk(cj) denotes the number of times the stimulustk is associated with the notationcj.
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(b) Stimuli for the perception experiment. The dots
denote the rhythmstk, wherek = 1 . . . 91. Grid spac-
ing is 56ms.

Figure 2.9: Stimulus of the Perception Task
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Figure 2.10: Perception and Production of the rhythm [2 1 1] (c = [0.5 0.75]). The diamond
corresponds to the mechanical performance. In 2.10(a), thesize of the circles is proportional to the
estimated posteriorq(cj|tk). In 2.10(b), the dots correspond to performances of the rhythm.

2.3.2 Production Task

In the production task the subjects are asked to perform the rhythms that they have notated in
the perception task. An example is shown in Figure 2.10(a). For each notationcj we assume a
gaussian distribution where

q̂(t|cj) = N (µj,Σj) (2.18)

The mean and the covariance matrix are estimated from production data by

µj =
1

Nj

∑

k

tk,j (2.19)

Σj =
1

Nj − 1

∑

k,l

(tk,j − µj)(tl,j − µj)
T (2.20)

wheretk,j is thek’th performance ofcj andNj is the total count of these performances in the data
set. In Section 2.2.5 we proposed a model in which the correlation between two onset decreases
with increasing inter-onset interval. The correlation coefficient and the estimated error bars are
depicted in Figure 2.11, where we observe that the correlation decreases with increasing distance
between onsets.
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Figure 2.11: Estimated correlation coefficient as a function of ∆c = (c2 − c1) on all subject
responses.

2.3.3 Estimation of model parameters

The probabilistic modelp(c|t) described in the previous section can be fitted by minimizingthe
“distance”to the estimated targetq(c|t). A well known distance measure between two probability
distributions is the Kullback-Leiber divergence (Cover & Thomas, 1991) which is given as

KL(q||p) =

∫

dxq(x) log
q(x)

p(x)
(2.21)

The integration is replaced by summation for discrete probability distributions. It can be shown
(Cover & Thomas, 1991) that KL(q||p) ≥ 0 for anyq, p and vanishes if and only ifq = p.

KL divergence can be interpreted as a “weighted average” of the functionlog q(x)
p(x)

with respect
to weighting functionq(x). If q(x) andp(x) are significantly different for somex (for which q(x)
is sufficently large), the KL divergence would be also large and would indicate that the distributions
are different. On the other if the distributions have almostthe same shape,q(x)

p(x)
≈ 1 for all x, and

KL would be close to zero sincelog(1) = 0.
The KL divergence is an appropriate measure for the rhythm quantization problem. We observe

that for many stimuli, subjects give different responses and consequently it is difficult to choose
just one “correct” notation for a particular stimulus. In other words, the target distributionq(c|t)
has its mass distributed among several codevectors. By minimizing the KL divergence one can
approximate the posterior distribution by preserving thisintrinsic uncertainty.

The optimization problem for the perception task can be set as

min . KL(q(c|t)s(t)||p(c|t)s(t)) (2.22)

s.t. σ > 0

−1 < η < 1

λ, ξ, γ unconstrained

wheres(t) ∝ ∑k δ(t − tk) is the distribution of the stimuli. This is a distribution, which has
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positive mass only on the stimuli pointstk. This measure forces the model to fit the estimated
posterior at each stimulus pointtk. We note that

p(c|t) =
p(t|c; σ, λ, η)p(c; ξ, γ)

∑

c
p(t|c; σ, λ, η)p(c; ξ, γ)

(2.23)

This is in general a rather difficult optimization problem due to the presence of the denominator.
Nevertheless, since the model has only five free parameters,we were able to minimize Eq. 2.22
by a standard BFGS Quasi-Newton algorithm (MATLAB functionfminu). In our simulations, we
observed that the objective function is rather smooth and the optimum found is not sensitive to
starting conditions, which suggests that there are not manylocal minima present.

2.3.4 Results

The model is trained on a subset of the perception data by minimizing Eq. 2.22. In the training, we
used 112 different notations (out of 125 that the subjects used in total), which could be generated
by one of the subdivision schemas in Table 2.2. To identify the relative importance of model
parameters, we optimized Eq. 2.22 by clamping some parameters. We use a labeling of different
models as follows: Model-I is the “complete” model, where all parameters are unclamped. Model-
II is an onset quantizer (Σ = σ2I), where only prior parameters are active. Model-III is (almost)
an IOI quantizer where the correlation between onsets is taken to beρ = 0.98. Model-IV is similar
to Model I with the simplification that the covariance matrixis constant for all codevectors. Since
λ = 0, ρ = η. Model-V is an onset quantizer with a flat prior, similar to the quantizers used in
commercial notation packages and Model-VI has only the performance model parameters active.

In Model-VII, the parameters of the performance modelp(t|c) are estimated from the produc-
tion data. The model is fitted to the production dataq̂ by minimizing

KL(q̂(t|c)q(c)||p(t|c)q(c)) (2.24)

whereq(cj) =
∑

k nk(cj)/
∑

k,j nk(cj), i.e. a histogram obtained by counting the subject re-
sponses in the perception experiment.

Although approximating the posterior at stimuli points is our objective in the optimization, for
automatic transcription we are also interested into the classification performance. At each stimuli
tk, if we select the response which the subjects have chosen themost, i.e.c∗k = arg maxc q(c|tk),
we can achieve maximum possible classification rate on this dataset, which is given as

CRTarget =
nk(c

∗
k)

Z
× 100 (2.25)

Here,Z =
∑

k,c nk(c
∗
k), the total number of measurements. Similarly, if we select the codevector

with the highest predicted posteriorc∗k = arg maxc p(c|tk) at each stimulus, we achieve the clas-
sification rate of the Model denoted as CRModel. The results are shown in Table 2.3. The clamped
parameters are tagged with an ‘=’ sign. The results are for a codebook consisting of 112 codevec-
tors, which the subjects have used in their responses and could have been generated by one of the
subdivisions in Table 2.2.

Model-I performs the best in terms of the KL divergence, however the marginal benefit ob-
tained by choosing a correlation structure, which decreases with increasing onset distances (ob-
tained by varyingλ) is rather small. One can achieve almost the same performance by having a
constant correlation between onsets (Model-IV). By comparing Model-IV to Models II and III, we
can say that under the given prior distribution the subjectsare employing a quantization strategy,
which is somehow between a pure onset quantization and IOI-quantization. The choice of the prior
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i Si

1 [2, 2, 2, 2]
2 [3, 2, 2]
3 [3, 3, 2]
4 [5, 2]
5 [7, 2]
6 [11]
7 [13]
8 [5, 3]
9 [17]
10 [7, 3]

Table 2.2: Subdivisions

Model Prior Likelihood Results
Label ξ γ σ λ η KL CRModel/CRTarget

I 1.35 0.75 0.083 2.57 0.66 1.30 77.1
II 1.34 0.75 0.086 = 0 = 0 1.41 71.3
III 1.33 0.77 0.409 = 0 = 0.98 1.96 51.4
IV 1.34 0.74 0.084 = 0 0.39 1.34 75.3
V = 0 = 0 0.085 = 0 = 0 1.92 29.7
VI = 0 = 0 0.083 2.54 0.66 1.89 32.7
VII 1.43 0.79 ! 0.053 ! 3.07 ! 0.83 1.89 84.3

Table 2.3: Optimization Results. CRTarget = 48.0. Values tagged with a ‘=’ are fixed during opti-
mization. Values estimated from the production experimentare tagged with a ‘!’. The meanings
of the columns are explained in the text.

is very important which can be seen from the results of Model-V and Model-VI, which perform
poor due to the flat prior assumption.

Model-VII suggests that for this data set (under the assumption that our model is correct) the
perception and production processes are different. This ismainly due to the spread parameterσ,
which is smaller for the production data. The interpretation of this behavior is that subjects deviate
less from the mechanical mean in a performance situation. However, this might be due to the fact
that performances were carried out in lack of any context, which forces the subjects to concentrate
on exact timing. It is interesting to note that almost the same correlation structure is reserved in
both experiments. This suggests that there is some relationbetween the production and perception
process. The classification performance of Model-VII is surprisingly high; it predicts the winner
accurately. However the prediction of the posterior is poor, which can be seen by the high KL
divergence score.

For visualization of the results we employ an interpolationprocedure to estimate the target
posterior at other points than the stimuli (See Appendix 2.4). The rhythm space can be tiled into
regions of rhythms, which are quantized to the same codevector. Estimated tiles from experimental
data are depicted in Figure 2.12(a).

In practice, it is not feasible to identify explicitly a subset of all possible codevectors, which
have non-zero prior probability. For example, the number ofnotations which can be generated by
subdivisions in Table 2.2 is 886 whereas the subjects used only 112 of these as a response. This
subset must be predicted by the model as well. A simple grid quantizer tries to approximate this
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subset by assigning a constant prior probability to codevectors only up to a certain threshold depth.
The proposed prior model can be contrasted to this schema in that it distributes the probability mass
in a perceptually more realistic manner. To visualize this,we generated a codebook consisting of
all 886 codevectors. The tilings generated by Model-I and Model-V for this codebook are depicted
in Figure 2.12(b) and 2.12(c). To compare the tilings, we estimate the ratio

Match=
Amatch

Atotal
× 100 (2.26)

whereAmatch is the area where the model matches with the target andAtotal is the total area of the
triangle. Note that this is just a crude approximation to theclassification performance under the
assumption that all rhythms are equally probable. The results are shown in Table. 2.4.

I II III IV V VI VII
Match 58.8 53.5 36.1 59.0 3.8 3.1 56.7

Table 2.4: Amount of match between tilings generated by the target and models

2.4 Discussion and Conclusion

In this article, we developed a vector quantizer for transcription of musical performances. We
considered the problem in the framework of Bayesian statistics where we proposed a quantizer
model. Experimentally, we observe that even for quantization of simple rhythms, well trained
subjects give quite different answers, i.e. in many cases, there is not only one correct notation. In
this respect, probabilistic modelling provides a natural framework.

The quantizer depends upon two probability models, a performance model and a prior. The
performance model generalizes simple quantization strategies by taking the correlation structure
in the music into account, for example onset quantization appears as a special case. The particular
parametric form is shown to be perceptually meaningful and facilitates efficient implementation.
It can also be interpreted as a suitable distance measure between rhythms.

The prior model can be interpreted as a complexity measure. In contrast to the likelihood,
which has a rather standard form, the prior reflects our intuitive and subjective notion about the
complexity of a notation and derives from consideration of time signatures and the hierarchical
(i.e. tree-like) structure of musical rhythms.

The model is verified and optimized by data obtained from a psychoacoustical experiment. The
optimization results suggest that prior and likelihood parameters can be optimized independently,
since clamping one set of parameters affects the optimal values of others only very slightly. This
property makes the interpretation of the model easier. Since we explicitly state the probability
model, we can make comparisons between models by using the KLdivergence as a goodness
of fit measure. Indeed any other model which computes a posterior distributionp(c|t) could be
compared in a quantitative manner using this framework. A class of statistical tests to determine
whether one model is significantly better than another is known as bootstrapping methods (Efron
& Tibshirani, 1993). This methods can be used to estimate error bars on the KL measures to
determine any significant difference between models.

We have to stress the point, that the particular parameter settings we find from data are not the
ultimate way of doing quantization in every circumstance. First, the model is not using any other
attributes of notes (e.g. duration, pitch), which may give additional information for better quanti-
zation. Second, we have not addressed the context information. Theoretically, such improvements
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can be integrated by proposing more complex likelihood and prior models. As already demon-
strated, since all the assumptions are stated as distributions, corresponding optimal parameters can
be estimated from experimental data. A practical but important limitation is that parameter esti-
mation in more complex models requires larger dataset otherwise the estimation can be subject to
overfitting. A large dataset is difficult to collect since oneeffectively has to rely on psychoacous-
tical experiments, which are inherently limited in the number of experimental conditions on can
impose (e.g. number of onsets, tempo, context e.t.c.). Nevertheless, we believe that the current
framework is a consistent and principled way to investigatethe quantization problem.
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Appendix 2.A Estimation of the posterior from subject responses

Let tk be the stimuli points. The histogram estimate attk is denoted byq(cj|tk). We define a
kernel

G(t; t0, σ) = exp(− 1

2σ2
‖t− t0‖2) (2.27)

where‖x‖ is the length of the vectorx. Then the posterior probability ofcj at an arbitrary pointt
is given as

q(cj|t) =
∑

k

αk(t)q(cj|ti) (2.28)

whereαk(t) = G(t;tk,σ)
∑

r G(t;tr,σ)
. We have takenσ = 0.04.
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(c) Model-V:(ξ, γ, σ, λ, η) = (0, 0, 0.085, 0, 0)

Figure 2.12: Tilings of the rhythm space byc∗ = argmax
c

p(c|t). The tiles denote the sets of

rhythms, which would be quantized to the same codevector. Both Model-I and Model-V use
the same codebook of 886 codevectors. Since Model-V assignsthe same prior probability to
all codevectors, the best codevector is always the nearest codevector (in Euclidian distance) and
consequently the rhythm space is highly fragmented.



Chapter 3

Tempo Tracking

We formulate tempo tracking in a Bayesian framework where a tempo tracker is modeled as
a stochastic dynamical system. The tempo is modeled as a hidden state variable of the system
and is estimated by aKalman filter. The Kalman filter operates on aTempogram, a wavelet-
like multiscale expansion of a real performance. An important advantage of our approach is
that it is possible to formulate both off-line or real-time algorithms. The simulation results
on a systematically collected set of MIDI piano performances of Yesterday and Michelle by
the Beatles shows accurate tracking of approximately%90 of the beats.

Adapted from: A. T. Cemgil, H. J. Kappen, P. Desain, and H. Honing. On
tempo tracking: Tempogram representation and Kalman filtering. Journal
of New Music Research, 28:4:259-273, 2001.

3.1 Introduction

An important and interesting subtask in automatic music transcription is tempo tracking: how to
follow the tempo in a performance that contains expressive timing and tempo variations. When
these tempo fluctuations are correctly identified it becomesmuch easier to separate the continuous
expressive timing from the discrete note categories (i.e. quantization). The sense of tempo seems
to be carried by the beats and thus tempo tracking is related to the study of beat induction, the
perception of beats or pulse while listening to music (see (Desain & Honing, 1994)). However, it
is still unclear what precisely constitutes tempo and how itrelates to the perception of rhythmical
structure. Tempo is a perceptual construct and cannot directly be measured in a performance.

In the context of tempo tracking, wavelet analysis and related techniques are already investi-
gated by various researchers (Smith, 1999; Todd, 1994). A similar comb filter basis is used by
(Scheirer, 1998). The tempogram is also related to the periodicity transform proposed by (Sethares
& Staley, 1999), but uses a time localized basis. Kalman filters are already applied in the music
domain such as polyphonic pitch tracking (Sterian, 1999) and audio restoration (Godsill & Rayner,
1998). From the modeling point of view, the framework discussed in this paper has also some re-
semblance to the work of (Sterian, 1999), who views transcription as a model based segmentation
of a time-frequency image.

The outline of the paper is as follows: We first consider the problem of tapping along a “noisy”
metronome and introduce the Kalman filter and its extensions. Subsequently, we introduce the
Tempogram representation to extract beats from performances and discuss the probabilistic in-
terpretation. Consequently, we discuss parameter estimation issues from data. Finally we report
simulation results of the system on a systematically collected data set, solo piano performances of
two Beatles songs, Yesterday and Michelle.

33
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3.2 Dynamical Systems and the Kalman Filter

Mathematically, a dynamical system is characterized by a set of state variablesand a set ofstate
transition equationsthat describe how state variables evolve with time. For example, a perfect
metronome can be described as a dynamical system with two state variables: a beat̂τ and a period
∆̂. Given the values of state variables atj − 1’th step aŝτj−1 and∆̂j−1, the next beat occurs at
τ̂j = τ̂j−1 + ∆̂j−1. The period of a perfect metronome is constant so∆̂j = ∆̂j−1. By using vector
notation and by lettingsj = [τ̂j , ∆̂j]

T we can write a linear state transition model as

sj =

(

1 1
0 1

)

sj−1 = Asj−1 (3.1)

When the initial states0 = [τ̂0, ∆̂0]
T is given, the system is fully specified. For example if the

metronom clicks at a tempo 60 beats per minute (∆̂0 = 1 sec.) and first click occurs at timêτ0 = 0
sec., next beats occur atτ̂1 = 1, τ̂2 = 2 e.t.c. Since the metronom is perfect the period stays
constant.

Such a deterministic model is not realistic for natural music performance and can not be used
for tracking the tempo in presence of tempo fluctuations and expressive timing deviations. Tempo
fluctuations may be modeled by introducing a noise term that “corrupts” the state vector

sj = Asj−1 + vj (3.2)

wherev is a Gaussian random vector with mean0 and diagonal covariance matrixQ, i.e. v ∼
N (0,Q)1. The tempo will drift from the initial tempo quickly if the variance ofv is large. On the
other hand whenQ→ 0, we have the constant tempo case.

In a music performance, the actual beatτ̂ and the period̂∆ can not be observed directly. By
actual beat we refer to the beat iterpretation that coincides with human perception when listening to
music. For example, suppose, an expert drummer is tapping along a performance at the beat level
and we assume her beats as the correct tempo track. If the taskwould be repeated on the same
piece, we would observe each time a slightly different tempotrack. As an alternative, suppose we
would know the score of the performance and identify onsets that coincide with the beat. However,
due to small scale expressive timing deviations, these onsets will be also noisy, i.e. we can at best
observe “noisy” versions of actual beats. We will denote this noisy beat byτ in contrast to the
actual but unobservable beatτ̂ . Mathematically we have

τj = τ̂j + wj (3.3)

wherewj ∼ N (0,R). Here,τj is the beat at stepj that we get from a (noisy) observation process.
In this formulation, tempo tracking corresponds to the estimation of hidden variableŝτj given
observations uptoj’th step. We note that in a “blind” tempo tracking task, i.e. when the score is
not known, the (noisy) beatτj can not be directly observed since there is no expert drummerwho
is tapping along, neither a score to guide us. The noisy-beatitself has to beinducedfrom events in
the music. In the next section we will present a technique to estimate both a noisy beatτj as well
a noisy period∆j from a real performance.

1A random vectorx is said to be Gaussian with meanµ and covariance matrixP if it has the probability density

p(x) = |2πP|−1/2 exp−1

2
(x− µ)T P−1(x− µ)

In this case we writex ∼ N (µ,P)
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Equations 3.2 and 3.3 define alinear dynamical system, because all noises are assumed to
be Gaussian and all relationships between variables are linear. Hence, all state vectorssj have
Gaussian distributions. A Gaussian distribution is fully characterized by its mean and covariance
matrix and in the context of linear dynamical systems, thesequantities can be estimated very
efficiently by aKalman filter(Kalman, 1960; Roweis & Ghahramani, 1999). The operation ofthe
filter is illustrated in Figure 3.1.

(a) The algorithm starts with
the initial state estimate
N (µ1|0, P1|0). In presence of
no evidence this state estimate
gives rise to a prediction in
the observableτ space,

(b) The beat is observed
at τ1, The state is updated
to N (µ1|1, P1|1) according to
the new evidence. Note that
the uncertainty “shrinks”,

(c) On the basis of cur-
rent state a new prediction
N (µ2|1, P2|1) is made,

(d) Steps are repeated un-
til all evidence is processed
to obtain filtered estimates
N (µj|j , Pj|j), j = 1 . . .N . In
this caseN = 3.

(e) Filtered estimates are
updated by backtracking to
obtain smoothed estimates
N (µi|N , Pi|N ) (Kalman
smoothing).

Figure 3.1:Operation of the Kalman Filter and Smoother. The system is given by Equations 3.2 and 3.3.
In each subfigure, the above coordinate system represents the hidden state space[τ̂ , ∆̂]T and the below
coordinate system represent the observable spaceτ . In the hidden space, the x and y axes represent the
phasêτ period∆̂ of the tracker. The ellipse and its center correspond to the covariance and the mean of the
hidden state estimatep(sj |τ1 . . . τk) = N (µj|k, Pj|k) whereµj|k andPj|k denote the estimated mean and
covariance given observationsτ1 . . . τk. In the observable space, the vertical axis represents the predictive
probability distributionp(τj |τj−1 . . . τ1).
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3.2.1 Extensions

The basic model can be extended in several directions. First, the linearity constraint on the Kalman
filter can be relaxed. Indeed, in tempo tracking such an extension is necessary to ensure that the
period ∆̂ is always positive. Therefore we define the state transitionmodel in a warped space
defined by the mappingω = log2 ∆. This warping also ensures the perceptually more plausible
assumption that tempo changes are relative rather than absolute. For example, under this warping,
a deceleration from∆→ 2∆ has the same likelihood as an acceleration from∆→ ∆/2.

The state spacesj can be extended with additional dynamic variablesâj . Such additional
variables store information about the past states (e.g. in terms of acceleration e.t.c.) and introduce
inertia to the system. Inertia reduces the random walk behavior in the state space and renders
smooth state trajectories more likely. Moreover, this can result in more accurate predictions.

The observation noisewj can be modeled as a mixture of gaussians. This choice has the
following rationale: To follow tempo fluctuations the observation noise varianceR should not be
too “broad”. A broad noise covariance indicates that observations are not very reliable, so they have
less effect to the state estimates. In the extreme case whenR→∞, all observations are practically
missing so the observations have no effect on state estimates. On the other hand, a narrowR makes
the filter sensitive to outliers since the same noise covariance is used regardless of the distance of
an observation from its prediction. Outliers can be explicitely modeled by using a mixture of
Gaussians, for example one “narrow” Gaussian for normal operation, and one “broad” Gaussian
for outliers. Such a switching mechanism can be implementedby using a discrete variablecj
which indicates whether thej’th observation is an outlier or not. In other words we use a different
noise covariance depending upon the value ofcj . Mathematically, we write this statement as
wj |cj ∼ N (0,Rc). Sincecj can not be observed, we define a prior probabilitycj ∼ p(c) and
sum over all possible settings ofcj , i.e. p(wj) =

∑

cj
p(cj)p(wj |cj). In Figure 3.2 we compare

a switching Kalman filter and a standard Kalman filter. A switch variable makes a system more
robust against outliers and consequently more realistic state estimates can be obtained. For a review
of more general classes of switching Kalman filters see (Murphy, 1998).

To summerize, the dynamical model of the tempo tracker is given by

τ̂j = τ̂j−1 + 2ω̂j−1 (3.4)
(

ω̂j

âj

)

= A

(

ω̂j−1

âj−1

)

+ vj (3.5)

(

τj
ωj

)

=

(

τ̂j
ω̂j

)

+ wj (3.6)

wherevj ∼ N (0,Q), wj|cj ∼ N (0,Rc) andcj ∼ p(cj). We takecj as a binary discrete switch
variable. Note that, in Eq. 3.6 the observable space is two dimensional (includes bothτ andω), in
contrast to one dimensional observableτ in Figure 3.2.

3.3 Tempogram Representation

In the previous section, we have assumed that the beatτj is observed at each stepj. In a real
musical situation, however, the beat can not be observed directly from performance data. The
sensation of a beat emerges from acollectionof events rather than, say, single onsets. For example,
a syncopated rhythm induces beats which do not neccesarly coincide with an onset.
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(a) Based on the state estimate
N (µ2|2, P2|2) the next state
is predicted asN (µ3|2, P3|2).
When propagated through the
measurement model, we ob-
tain p(τ3|τ2, τ1), which is a
mixture of Gaussians where
the mixing coefficients are
given byp(c),

(b) The observationτ3 is way
off the mean of the predic-
tion, i.e. it is highly likely
an outlier. Only the broad
Gaussian is active, which re-
flects the fact that the ob-
servations are expected to be
very noisy. Consequently,
the updated state estimate
N (µ3|3, P3|3) is not much
different than its prediction
N (µ3|3, P3|3). However, the
uncertainty in the next pre-
diction N (µ4|3, P4|3) will be
higher,

(c) After all observations are
obtained, the smoothed esti-
matesN (µj|4, Pj|4) are ob-
tained. The estimated state
trajectory shows that the ob-
servationτ3 is correctly inter-
preted as an outlier.

(d) In contrast to the switch-
ing Kalman filter, the ordi-
nary Kalman filter is sensitive
against outliers. In contrast to
(b), the updated state estimate
N (µ3|3, P3|3) is way off the
prediction.

(e) Consequently a very
“jumpy” state trajectory is
estimated. This is simply due
to the fact that the observation
model does not account for
presence of outliers.

Figure 3.2: Comparison of a standard Kalman filter with a switching Kalman filter.

In this section, we will define a probability distribution which assigns probability masses to all
possible beat interpretations given a performance. The Bayesian formulation of this problem is

p(τ, ω|t) ∝ p(t|τ, ω)p(τ, ω) (3.7)

wheret is an onset list. In this context, abeat interpretationis the tupleτ (local beat) andω (local
log-period).
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Figure 3.3:Tempogram Calculation. The continuous signalx(t) is obtained from the onset list by convo-
lution with a Gaussian function. Below, three different basis functionsψ are shown. All are localized at
the sameτ and differentω. The tempogram at(τ, ω) is calculated by taking the inner product ofx(t) and
ψ(t; τ, ω). Due to the sparse nature of the basis functions, the inner product operation can be implemented
very efficiently.

The first termp(t|τ, ω) in Eq.3.7 is the probability of the onset listt given the tempo track.
Sincet is actually observed,p(t|τ, ω) is a function ofτ andω and is thus called thelikelihood
of τ andω. The second termp(τ, ω) in Eq.3.7 is theprior distribution. The prior can be viewed
as a function which weights the likelihood on the(τ, ω) space. It is reasonable to assume that the
likelihoodp(t|τ, ω) is high when onsets[ti] in the performance coincide with the beats of the tempo
track. To construct a likelihood function having this property we propose a similarity measure
between the performance and alocalconstant tempo track. First we define a continuous time signal
x(t) =

∑I
i=1G(t − ti) where we takeG(t) = exp(−t2/2σ2

x), a Gaussian function with variance
σ2

x. We represent a local tempo track as a pulse trainψ(t; τ, ω) =
∑∞

m=−∞ αmδ(t−τ−m2ω) where
δ(t − t0) is a Dirac delta function, which represents an impulse located att0. The coefficientsαm

are positive constants such that
∑

m αm is a constant. (See Figure 3.3). In real-time applications,
where causal analysis is desirable,αm can be set to zero form > 0. Whenαm is a sequence of
formαm = αm, where0 < α < 1, one has the infinite impulse response (IIR) comb filters usedby
(Scheirer, 1998) which we adopt here. We define thetempogramof x(t) at each(τ, ω) as the inner
product

Tgx(τ, ω) =

∫

dt x(t)ψ(t; τ, ω) (3.8)

The tempogram representation can be interpreted as the response of a comb filter bank and is
analogous to a multiscale representation (e.g. the wavelettransform), whereτ andω correspond
to transition and scaling parameters (Rioul & Vetterli, 1991; Kronland-Martinet, 1988).

The tempogram parameters have simple interpretations. Thefilter coefficientα adjust the time
locality of basis functions. Whenα → 1, basis functionsψ extend to infinity and locality is lost.
Forα → 0 the basis degenerates to a single Dirac pulse and the tempogram is effectively equal to
x(t) for all ω and thus gives no information about the local period.

The variance parameterσx corresponds to the amount of small scale expressive deviation in an
onsets timing. Ifσx would be large, the tempogram gets “smeared-out” and all beat interpretations
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become almost equally likely. Whenσx → 0, we get a very “spiky” tempogram, where most beat
interpretations have zero probability.

In Figure 3.4 we show a tempogram obtained from a simple onsetsequence. We define the
likelihood asp(t|τ, ω) ∝ exp(Tgx(τ, ω)). When combined with the prior, the tempogram gives an
estimate of likely beat interpretations(τ, ω).
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Figure 3.4:A simple rhythm and its Tempogram.x andy axes correspond toτ andω respectively. The
bottom figure shows the onset sequence (triangles). Assuming flat priors onτ andω, the curve along theω
axis is the marginalp(ω|t) ∝

∫

dτ exp(Tgx(τ, ω)). We note thatp(ω|t) has peaks atω, which correspond
to quarter, eight and sixteenth note level as well as dotted quarter and half note levels of the original notation.
This distribution can be used to estimate a reasonable initial state.

3.4 Model Training

In this section, we review the techniques for parameter estimation. First, we summerize the rela-
tionships among variables by using a agraphical model. A graphical model is a directed acyclic
graph, where nodes represent variables and missing directed links represent conditional indepen-
dence relations. The distributions that we have specified sofar are summarized in Table 3.1.

Model Distribution Parameters
State Transition (Eq. 3.5) p(sj+1|sj) A, Q
(Switching) Observation (Eq. 3.6)p(τj, ωj |sj , cj) Rc

Switch prior (Eq. 3.6) p(cj) pc

Tempogram (Eq.3.8) p(t|τj, ωj) σx, α

Table 3.1:Summary of conditional distributions and their parameters.

The resulting graphical model is shown in Figure 3.5. For example, the graphical model has a
directed link fromsj to sj+1 to encodep(sj+1|sj). Other links towardssj+1 are missing.

In principle, we could jointly optimize all model parameters. However, such an approach would
be computationally very intensive. Instead, at the expenseof getting a suboptimal solution, we
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Figure 3.5: The Graphical Model

will assume that we observe the noisy tempo trackτj . This observation effectively “decouples” the
model into two parts (See Fig. 3.5), (i) The Kalman Filter (State transition model and Observation
(Switch) model) and (ii) Tempogram. We will train each part separately.

3.4.1 Estimation ofτj from performance data

In our studies, a score is always available, so we extractτj from a performancet by matching
the notes that coincide with the beat (quarter note) level and the bar (whole note). If there are
more than one note on a beat, we take the median of the onset times.2 For each performance, we
computeωj = log2(τj+1 − τj) from the extracted noisy beats[τj ]. We denote the resulting tempo
track{τ1, ω1 . . . τj , ωj . . . τJ , ωJ} as{τ1:J , ω1:J}.

3.4.2 Estimation of state transition parameters

We estimate the state transition model parametersA andQ by an EM algorithm (Ghahramani &
Hinton, 1996) which learns a linear dynamics in theω space. The EM algorithm monotonically
increasesp({τ1:J , ω1:J}), i.e. the likelihood of the observed tempo track. Put another way, the
parametersA andQ are adjusted in such a way that, at eachj, the probability of the observation
is maximized under the predictive distributionp(τj , ωj|τj−1, ωj−1, . . . τ1, ω1). The likelihood is
simply the hight of the predictive distribution evaluated at the observation (See Figure 3.1).

3.4.3 Estimation of switch parameters

The observation model is a Gaussian mixture with diagonalRc and prior probabilitypc. We could
estimateRc andpc jointly with the state transition parametersA andQ. However, then the noise
model would be totally independent from the tempogram representation. Instead, the observation
noise model should reflect the uncertainty in the tempogram;for example the expected amount of
deviations in(τ, ω) estimates due to spurious local maxima. To estimate the “tempogram noise”
by standard EM methods, we sample from the tempogram around each[τ̂j , ω̂j], i.e. we sampleτj
andωj from the posterior distributionp(τj , ωj|τ̂j , ω̂j, t;Q) ∝ p(t|τj, ωj)p(τj, ωj|τ̂j , ω̂j;Q). Note

2The scores do not have notes on each beat. We interpolate missing beats by using a switching Kalman filter with
parametersQ = diag([0.012, 0.052]), R1 = 0.012, R2 = 0.32, A = 1 andp(c) = [0.999, 0.001].
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that [τ̂j , ω̂j] are estimated during the E step of the EM algorithm when finding the parametersA
andQ.

3.4.4 Estimation of Tempogram parameters

We have already defined the tempogram as a likelihoodp(t|τ, ω; θ) whereθ denotes the tempogram
parameters (e.g.θ = {α, σx}). If we assume a uniform priorp(τ, ω) then the posterior probability
can be written as

p(τ, ω|t; θ) =
p(t|τ, ω; θ)

p(t|θ) (3.9)

where the normalization constant is given byp(t|θ) =
∫

dτdωp(t|τ, ω; θ). Now, we can estimate
tempogram parametersθ by a maximum likelihood approach. We write the log-likelihood of an
observed tempo track{τ1:J , ω1:J} as

log p({τ1:J , ω1:J}|t; θ) =
∑

j

log p(τj , ωj|t; θ) (3.10)

Note that the quantity in Equation 3.10 is a function of the parametersθ. If we havek tempo tracks
in the dataset, the complete data log-likelihood is simply the sum of all individual log-likelihoods.
i.e.

L =
∑

k

log p({τ1:J , ω1:J}k|tk;α, σx) (3.11)

wheretk is thek’th performance and{τ1:J , ω1:J}k is the corresponding tempo track.

3.5 Evaluation

Many tempo trackers described in the introduction are oftentested with ad hoc examples. However,
to validate tempo tracking models, more systematic data andrigorous testing is necessary. A
tempo tracker can be evaluated by systematically modulating the tempo of the data, for instance by
applying instantaneous or gradual tempo changes and comparing the models responses to human
behavior (Michon, 1967; Dannenberg, 1993). Another approach is to evaluate tempo trackers on
a systematically collected set of natural data, monitoringpiano performances in which the use of
expressive tempo change is free. This type of data has the advantage of reflecting the type of data
one expects automated music transcription systems to deal with. The latter approach was adopted
in this study.

3.5.1 Data

For the experiment 12 pianists were invited to play arrangements of two Beatles songs, Michelle
and Yesterday. Both pieces have a relatively simple rhythmic structure with ample opportunity to
add expressiveness by fluctuating the tempo. The subjects consisted of four professional jazz play-
ers (PJ), four professional classical performers (PC) and four amateur classical pianists (AC). Each
arrangement had to be played in three tempo conditions, three repetitions per tempo condition. The
tempo conditions were normal, slow and fast tempo (all in a musically realistic range and all ac-
cording to the judgment of the performer). We present here the results for twelve subjects (12 sub-
jects× 3 tempi× 3 repetitions× 2 pieces= 216 performances). The performances were recorded
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on a Yamaha Disklavier Pro MIDI grand piano using Opcode Vision. To be able to derive tempo
measurements related to the musical structure (e.g., beat,bar) the performances were matched
with the MIDI scores using the structure matcher of (Heijink, Desain, & Honing, 2000) available
in POCO (Honing, 1990). This MIDI data, as well as related software will be made available at
URL’s http://www.mbfys.kun.nl/∼cemgil andhttp://www.nici.kun.nl/mmm
(under the heading Download).

3.5.2 Kalman Filter Training results

We use the performances of Michelle as the training set and Yesterday as the test set. To find the
appropriate filter order (Dimensionality ofs) we trained Kalman filters of several orders on two
rhythmic levels: the beat (quarter note) level and the bar (whole note) level. Figure 3.6 shows the
training and testing results as a function of filter order.

Extending the filter order, i.e. increasing the the size of the state space loosely corresponds
looking more into the past. At bar level, using higher order filters merely results in overfitting as
indicated by decreasing test likelihood. In contrast, on the beat level, the likelihood on the test set
also increases and has a jump around order of7. Effectively, this order corresponds to a memory
which can store state information from the past two bars. In other words, tempo fluctuations at
beat level have some structure that a higher dimensional state transition model can make use of to
produce more accurate predictions.
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Figure 3.6: Kalman Filter training. Training Set: Michelle, Test Set: Yesterday.
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3.5.3 Tempogram Training Results

We use a tempogram model with a first order IIR comb basis. Thischoice leaves two free pa-
rameters that need to be estimated from data, namelyα, the coefficient of the comb filter andσx,
the width of the Gaussian window. We obtain optimal parameter values by maximization of the
log-likelihood in Equation 3.11 on the Michelle dataset. The optimal parameters are shown in
Table 3.2.

α σx

Non-Causal 0.55 0.017
Causal 0.73 0.023

Table 3.2:Optimal tempogram parameters.

3.5.4 Initialization

To have a fully automated tempo tracker, the initial states0 has to be estimated from data as
well. In the tracking experiments, we have initialized the filter to the beat level by computing
a tempogram for the first5 seconds of each performance. By assuming a flat prior onτ and
ω we compute the posterior marginalp(ω|t) =

∫

dτp(ω, τ |t). Note that this is operation is just
equivalent to summation along theτ dimension of the tempogram (See Figure 3.4). For the Beatles
dataset, we have observed that for all performances of a given piece, the most likely log-period
ω∗ = arg maxω p(ω|t) corresponds always to the same level, i.e. theω∗ estimate was always
consistent. For “Michelle”, this level is the beat level andfor “Yesterday” the half-beat (eighth
note) level. The latter piece begins with an arpeggio of eight notes; based on onset information
only, and without any other prior knowledge, half-beat level is also a reasonable solution. For
“Yesterday”, to test the tracking performance, we corrected the estimate to the beat level.

We could estimateτ ∗ using a similar procedure, however since all performances in our data
set started “on the beat”, we have chosenτ ∗ = t1, the first onset of the piece. All the other state
variableŝa0 are set to zero. We have chosen a broad initial state covarianceP0 = 9Q.

3.5.5 Evaluation of tempo tracking performance

We evaluated the accuracy of the tempo tracking performanceof the complete model. The accuracy
of tempo tracking is measured by using the following criterion:

ρ(ψ, t) =

∑

i maxj W (ψi − tj)
(I + J)/2

× 100

where [ψi] i = 1 . . . I is the target (true) tempo track and[tj ] j = 1 . . . J is the estimated
tempo track.W is a window function. In the following results we have used a Gaussian window
functionW (d) = exp(−d2/2σ2

e). The width of the window is chosen asσe = 0.04 sec which
corresponds roughly to the spread of onsets from their mechanical means during performance of
short rhythms (Cemgil, Desain, & Kappen, 2000).

It can be checked that0 ≤ ρ ≤ 100 andρ = 100 if and only ifψ = t. Intuitively, this measure
is similar to a normalized inner-product (as in the tempogram calculation); the difference is in the
max operator which merely avoids double counting. For example,if the target isψ = [0, 1, 2]
and we havet = [0, 0, 0], the ordinary inner product would still giveρ = 100 while only one beat
is correct(t = 0). The proposed measure givesρ = 33 in this case. The tracking indexρ can be
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roughly interpreted as percentage of “correct” beats. For example,ρ = 90 effectively means that
about90 percent of estimated beats are in the near vicinity of their targets.

3.5.6 Results

To test the relative relevance of model components, we designed an experiment where we evaluate
the tempo tracking performance under different conditions. We have varied the filter order and
enabled or disabled switching. For this purpose, we trainedtwo filters, one with a large (10) and
one with a small (2) state space dimension on beat level (using the Michelle dataset). We have
tested each model with both causal and non-causal tempograms. To test whether a tempogram is
at all necessary, we propose a simple onset-only measurement model. In this alternative model,
the next observation is taken as the nearest onset to the Kalman filter prediction. In case there are
no onsets in1σ interval of the prediction, we declare the observation as missing (Note that this is
an implicit switching mechanism).

In Table 3.3 we show the tracking results averaged over all performances in the Yesterday
dataset. The estimated tempo tracks are obtained by using a non-causal tempogram and Kalman
filtering. In this case, Kalman smoothed estimates are not significantly different. The results
suggest, that for the Yesterday dataset, a higher order filter or a (binary) switching mechanism
does not improve the tracking performance. However, presence of a tempogram makes the tracking
performance both more accurate and consistent (note the lower standard deviations). As a “base
line” performance criteria, we also compute the best constant tempo track (by a linear regression to
estimated tempo tracks). In this case, the average trackingindex obtained from a constant tempo
approximation is rather poor (ρ = 28 ± 18), confirming that there is indeed a need for tempo
tracking.

Filter order Switching tempogram no tempogram
10 + 92± 7 75± 21
2 + 91± 9 75± 21
10 - 91± 6 73± 21
2 - 90± 9 73± 22

Table 3.3:Average tracking performanceρ and standard deviations on Yesterday dataset using a non-causal
tempogram.+ denotes the case when we have the switch priorp(c) = [0.8, 0.2]. − denotes the absence
of a switching, i.e. the case whenp(c) = [1, 0].

We have repeated the same experiment with a causal tempogramand computed the tracking
performance for predicted, filtered and smoothed estimatesIn Table 3.4 we show the results for
a switching Kalman filter. The results without switching arenot significantly different. As one
would expect, the tracking index with predicted estimates is lower. In contrast to a non-causal
tempogram, smoothing improves the tempo tracking and results in a comparable performance as a
non-causal tempogram.

Naturally, the performance of the tracker depends on the amount of tempo variations introduced
by the performer. For example, the tempo tracker fails consistently for a subject who tends to use
quite some tempo variation3.

We find that the tempo tracking performance is not significantly different among different
groups (Table 3.5). However, when we consider the predictions, we see that the performances of
professional classical pianists are less predictable. Fordifferent tempo conditions (Table 3.6) the
results are also similar. As one would expect, for slower performances, the predictions are less

3This subject claimed to have never heard the Beatles songs before.
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causal
Filter order predicted filtered smoothed

10 74± 12 86± 9 91± 8
2 73± 12 85± 8 90± 8

Table 3.4:Average tracking performanceρ on Yesterday dataset. Figures indicate tracking indexρ fol-
lowed by the standard deviation. The label “non-causal” refers to a tempogram calculated using non-causal
comb filters. The labels predicted, filtered and smoothed refer to state estimates obtained by the Kalman
filter/smoother.

accurate. This might have two potential reasons. First, theperformance criteriaρ is independent
of the absolute tempo, i.e. the windowW is always fixed. Second, for slower performances there
is more room for adding expression.

non-causal causal
Subject Group filtered predicted filtered smoothed Best const.

Prof. Jazz 95 ± 3 81± 7 92± 4 94± 3 34± 22
Amateur Classical 92 ± 8 74± 7 88± 5 92± 4 24± 19

Prof. Classical 89 ± 7 66± 14 82± 11 86± 11 27± 12

Table 3.5:Tracking Averages on subject groups. As a reference, the right most column shows the results
obtained by the best constant tempo track. The label “non-causal” refers to a tempogram calculated using
non-causal comb filters. The labels predicted, filtered and smoothed refer to state estimates obtained by the
Kalman filter/smoother.

non-causal causal
Condition filtered predicted filtered smoothed Best const.

fast 94± 5 79± 9 90± 6 93± 6 39± 21
normal 92± 8 74± 9 88± 6 92± 4 25± 13
slow 90± 7 68± 14 84± 10 87± 11 21± 14

Table 3.6:Tracking Averages on tempo conditions. As a reference, the right most column shows the results
obtained by the best constant tempo track. The label “non-causal” refers to a tempogram calculated using
non-causal comb filters. The labels predicted, filtered and smoothed refer to state estimates obtained by the
Kalman filter/smoother.

3.6 Discussion and Conclusions

In this paper, we have formulated a tempo tracking model in a probabilistic framework. The
proposed model consist of a dynamical system (a Kalman Filter) and a measurement model (Tem-
pogram). Although many of the methods proposed in the literature can be viewed as particular
choices of a dynamical model and a measurement model, a Bayesian formulation exhibits several
advantages in contrast to other models for tempo tracking. First, components in our model have
natural probabilistic interpretations. An important and very practical consequence of such an inter-
pretation is that uncertainties can be easily quantified andintegrated into the system. Moreover, all
desired quantities can be inferred consistently. For example once we quantify the distribution of
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tempo deviations and expressive timing, the actual behavior of the tempo tracker arises automati-
cally from these a-priori assumptions. This is in contrast to other models where one has to invent
ad-hoc methods to avoid undesired or unexpected behavior onreal data.

Additionally, prior knowledge (such as smoothness constraints in the state transition model and
the particular choice of measurement model) are explicit and can be changed when needed. For
example, the same state transition model can be used for bothaudio and MIDI; only the measure-
ment model needs to be elaborated. Another advantage is that, for a large class of related models
efficient inference and learning algorithms are well understood (Ghahramani & Hinton, 1996).
This is appealing since we can train tempo trackers with different properties automatically from
data. Indeed, we have demonstrated that all model parameters can be estimated from experimental
data.

We have investigated several potential directions in whichthe basic dynamical model can be
improved or simplified. We have tested the relative relevance of the filter order, switching and the
tempogram representation on a systematically collected set of natural data. The dataset consists of
polyphonic piano performances of two Beatles songs (Yesterday and Michelle) and contains a lot
of tempo fluctuation as indicated by the poor constant tempo fits.

The test results on the Beatles dataset suggest that using a high order filter does not improve
tempo tracking performance.Although beat level filters capture some structure in tempo deviations
(and hence can generate more accurate predictions), this additional precision seems to be not very
important in tempo tracking. This indifference may be due tothe fact that training criteria (max-
imum likelihood) and testing criteria (tracking index), whilst related, are not identical. However,
one can imagine scenarios where accurate prediction is crucial. An example would be a real-time
accompaniment situation, where the application needs to generate events for the next bar.

Test results also indicate that a simple switching mechanism is not very useful. It seems that a
tempogram already gives a robust local estimate of likely beat and tempo values so the correct beat
can unambiguously be identified. The indifference of switching could as well be an artifact of the
dataset which lacks extensive syncopations. Nevertheless, the switching noise model can further
be elaborated to replace the tempogram by a rhythm quantizer(Cemgil et al., 2000).

To test the relevance of the proposed tempogram representation on tracking performance we
have compared it to a simpler, onset based alternative. The results indicate that in the onset-only
case, tracking performance significantly decreases, suggesting that a tempogram is an important
component of the system.

It must be noted that the choice of a comb basis set for tempogram calculation is rather arbi-
trary. In principle, one could formulate a “richer” tempogram model, for example by including
parameters that control the shape of basis functions. The parameters of such a model can sim-
ilarly be optimized by likelihood maximization on target tempo tracks. Unfortunately, such an
optimization (e.g. with a generic technique such as gradient descent) requires the computation of
a tempogram at each step and is thus computationally quite expensive. Moreover, a model with
many adjustable parameters might eventually overfit.

We have also demonstrated that the model can be used both online (filtering) and offline
(smoothing). Online processing is necessary for real time applications such as automatic accom-
paniment and offline processing is desirable for transcription applications.



Chapter 4

Integrating Tempo Tracking and
Quantization

We present a probabilistic generative model for timing deviations in expressive music perfor-
mance. The structure of the proposed model is equivalent to aswitching state space model.
The switch variables correspond to discrete note locationsas in a musical score. The con-
tinuous hidden variables denote the tempo. We formulate twowell known music recognition
problems, namely tempo tracking and automatic transcription (rhythm quantization) as fil-
tering and maximum a posteriori (MAP) state estimation tasks. Exact computation of poste-
rior features such as the MAP state is intractable in this model class, so we introduce Monte
Carlo methods for integration and optimization. We compareMarkov Chain Monte Carlo
(MCMC) methods (such as Gibbs sampling, simulated annealing and iterative improvement)
and sequential Monte Carlo methods (particle filters). Our simulation results suggest better
results with sequential methods. The methods can be appliedin both online and batch sce-
narios such as tempo tracking and transcription and are thuspotentially useful in a number
of music applications such as adaptive automatic accompaniment, score typesetting and mu-
sic information retrieval.

Adapted from: A. T. Cemgil and H. J. Kappen.Monte Carlo methods for
tempo tracking and rhythm quantization.Journal of Artificial Intelligence
Research, 18:45-81, 2003.

4.1 Introduction

Automatic music transcription refers to extraction of a human readable and interpretable descrip-
tion from a recording of a musical performance. Traditionalmusic notation is such a description
that lists the pitch levels (notes) and corresponding timestamps.

Ideally, one would like to recover a score directly from the audio signal. Such a representation
of the surface structure of music would be very useful in music information retrieval (Music-IR)
and content description of musical material in large audio databases. However, when operating on
sampled audio data from polyphonic acoustical signals, extraction of a score-like description is a
very challenging auditory scene analysis task (Vercoe, Gardner, & Scheirer, 1998).

In this paper, we focus on a subproblem in music-ir, where we assume that exact timing infor-
mation of notes is available, for example as a stream of MIDI1 events from a digital keyboard.

1Musical Instruments Digital Interface. A standard communication protocol especially designed for digital instru-
ments such as keyboards. Each time a key is pressed, a MIDI keyboard generates a short message containing pitch
and key velocity. A computer can tag each received message bya timestamp for real-time processing and/or recording
into a file.

47
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A model for tempo tracking and transcription from a MIDI-like music representation is useful
in a broad spectrum of applications. One example is automatic score typesetting, the musical
analog of word processing. Almost all score typesetting applications provide a means of automatic
generation of a conventional music notation from MIDI data.

In conventional music notation, the onset time of each note is implicitly represented by the
cumulative sum of durations of previous notes. Durations are encoded by simple rational numbers
(e.g., quarter note, eighth note), consequently all eventsin music are placed on a discrete grid. So
the basic task in MIDI transcription is to associate onset times with discrete grid locations, i.e.,
quantization.

However, unless the music is performed with mechanical precision, identification of the cor-
rect association becomes difficult. This is due to the fact that musicians introduce intentional (and
unintentional) deviations from a mechanical prescription. For example timing of events can be
deliberately delayed or pushed. Moreover, the tempo can fluctuate by slowing down or accelerat-
ing. In fact, such deviations are natural aspects of expressive performance; in the absence of these,
music tends to sound rather dull and mechanical. On the otherhand, if these deviations are not
accounted for during transcription, resulting scores haveoften very poor quality.

Robust and fast quantization and tempo tracking is also an important requirement for interactive
performance systems; applications that “listen” to a performer for generating an accompaniment or
improvisation in real time (Raphael, 2001b; Thom, 2000). Atlast, such models are also useful in
musicology for systematic study and characterization of expressive timing by principled analysis
of existing performance data.

From a theoretical perspective, simultaneous quantization and tempo tracking is a “chicken-
and-egg” problem: the quantization depends upon the intended tempo interpretation and the tempo
interpretation depends upon the quantization. Apparently, human listeners can resolve this ambi-
guity (in most cases) without any effort. Even persons without any musical training are able to
determine the beat and the tempo very rapidly. However, it isstill unclear what precisely consti-
tutes tempo and how it relates to the perception of the beat, rhythmical structure, pitch, style of
music etc. Tempo is a perceptual construct and cannot directly be measured in a performance.

The goal of understanding tempo perception has stimulated asignificant body of research on
the psychological and computational modeling aspects of tempo tracking and beat induction, e.g.,
see (Desain & Honing, 1994; Large & Jones, 1999; Toiviainen,1999). These papers assume that
events are presented as an onset list. Attempts are also madeto deal directly with the audio signal
(Goto & Muraoka, 1998; Scheirer, 1998; Dixon & Cambouropoulos, 2000).

Another class of tempo tracking models are developed in the context of interactive performance
systems and score following. These models make use of prior knowledge in the form of an anno-
tated score (Dannenberg, 1984; Vercoe & Puckette, 1985). More recently, Raphael (2001b) has
demonstrated an interactive real-time system that followsa solo player and schedules accompani-
ment events according to the player’s tempo interpretation.

Tempo tracking is crucial for quantization, since one can not uniquely quantize onsets without
having an estimate of tempo and the beat. The converse, that quantization can help in identification
of the correct tempo interpretation has already been noted by Desain and Honing (1991). Here, one
defines correct tempo as the one that results in a simpler quantization. However, such a schema
has never been fully implemented in practice due to computational complexity of obtaining a
perceptually plausible quantization. Hence quantizationmethods proposed in the literature either
estimate the tempo using simple heuristics (Longuet-Higgins, 1987; Pressing & Lawrence, 1993;
Agon et al., 1994) or assume that the tempo is known or constant (Desain & Honing, 1991;
Cambouropoulos, 2000; Hamanaka et al., 2001).

Our approach to transcription and tempo tracking is from a probabilistic, i.e., Bayesian mod-
eling perspective. In Cemgil et al. (2000), we introduced a probabilistic approach to perceptually
realistic quantization. This work also assumed that the tempo was known or was estimated by an
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external procedure. For tempo tracking, we introduced a Kalman filter model (Cemgil, Kappen,
Desain, & Honing, 2001). In this approach, we modeled the tempo as a smoothly varying hidden
state variable of a stochastic dynamical system.

In the current paper, we integrate quantization and tempo tracking. Basically, our model bal-
ances score complexity versus smoothness in tempo deviations. The correct tempo interpretation
results in a simple quantization and the correct quantization results in a smooth tempo fluctuation.
An essentially similar model is proposed recently also by Raphael (2001a). However, Raphael
uses an inference technique that only applies for small models; namely when the continuous hid-
den state is one dimensional. This severely restricts the models one can consider. In the current
paper, we survey general and widely used state-of-the-art techniques for inference.

The outline of the paper is as follows: In Section 4.2, we propose a probabilistic model for tim-
ing deviations in expressive music performance. Given the model, we will define tempo tracking
and quantization as inference of posterior quantities. It will turn out that our model is a switch-
ing state space model in which computation of exact probabilities becomes intractable. In Sec-
tion 4.3, we will introduce approximation techniques basedon simulation, namely Markov Chain
Monte Carlo (MCMC) and sequential Monte Carlo (SMC) (Doucet, de Freitas, & Gordon, 2001;
Andrieu, de Freitas, Doucet, & Jordan, 2002). Both approaches provide flexible and powerful
inference methods that have been successfully applied in diverse fields of applied sciences such
as robotics (Fox, Burgard, & Thrun, 1999), aircraft tracking (Gordon, Salmond, & Smith, 1993),
computer vision (Isard & Blake, 1996), econometrics (Tanizaki, 2001). Finally we will present
simulation results and conclusions.

4.2 Model

Assume that a pianist is improvising and we are recording theexact onset times of each key she
presses during the performance. We denote these observed onset times byy0, y1, y2 . . . yk . . . yK

or more compactly byy0:K . We neither have access to a musical notation of the piece norknow
the initial tempo she has started her performance with. Moreover, the pianist is allowed to freely
change the tempo or introduce expression. Given only onset time informationy0:K , we wish to
find a scoreγ1:K and track her tempo fluctuationsz0:K . We will refine the meaning ofγ andz later.

This problem is apparently ill-posed. If the pianist is allowed to change the tempo arbitrarily it
is not possible to assign a “correct” score to a given performance. In other words any performance
y0:K can be represented by using a suitable combination of an arbitrary score with an arbitrary
tempo trajectory. Fortunately, the Bayes theorem providesan elegant and principled guideline to
formulate the problem. Given the onsetsy0:K , the best scoreγ1:K and tempo trajectoryz0:K can be
derived from theposteriordistribution that is given by

p(γ1:K, z0:K |y0:K) =
1

p(y0:K)
p(y0:K|γ1:K , z0:K)p(γ1:K , z0:K)

a quantity, that is proportional to the product of thelikelihoodtermp(y0:K |γ1:K, z0:K) and theprior
termp(γ1:K , z0:K).

In rhythm transcription and tempo tracking, the prior encodes our background knowledge about
the nature of musical scores and tempo deviations. For example, we can construct a prior that
prefers “simple” scores and smooth tempo variations.

The likelihood term relates the tempo and the score to actualobserved onset times. In this
respect, the likelihood is a model for short time expressivetiming deviations and motor errors that
are introduced by the performer.
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c0 //""EEEEEEEEE c1 //�� ""EEEEEEEEE c2 //�� !!CCCCCCCCCC . . . // ##FFFFFFFFFF ck−1
//�� ##HHHHHHHHH ck //�� !!CCCCCCCCCC . . .Score Positions

γ1

��
γ2

��
. . . γk−1

��
γk

��
. . . Score

∆0 !!BBBBBBBBBB // ∆1 !!BBBBBBBBBB // ∆2   ���������� // . . . // ∆k−1
// ""EEEEEEEEEE ∆k

//   ���������� . . .Tempo Trajectory

τ0�� // τ1�� // τ2�� // . . . // τk−1 //�� τk //�� . . .Noiseless onsets

y0 y1 y2 . . . yk−1 yk . . .Observed Onsets

Figure 4.1: Graphical Model. Square and oval nodes correspond to discrete and continuous vari-
ables respectively. In the text, we sometimes refer to the continuous hidden variables(τk,∆k) by
zk. The dependence betweenγ andc is deterministic. Allc, γ , τ and∆ are hidden; only onsetsy
are observed.

4.2.1 Score prior

To define a scoreγ1:K , we first introduce a sequence ofscore positionsc0:K . A score positionck
specifies the score time of thek’th onset. We letγk denote the interval between score positions of
two consecutive onsets

γk = ck − ck−1 (4.1)

For example consider the conventional music notation� � � which encodes the scoreγ1:3 = [1 0.5 0.5].
Corresponding score positions arec0:3 = [0 1 1.5 2].

One simple way of defining a prior distribution on score positionsp(ck) is specifying a table
of probabilities forck mod 1 (the fraction ofck). For example if we wish to allow for scores
that have sixteenth notes and triplets, we define a table of probabilities for the statesc mod 1 =
{0, 0.25, 0.5, 0.75} ∪ {0, 0.33, 0.67}. Technically, the resulting priorp(ck) is periodic and
improper (sinceck are in principle unbounded so we can not normalize the distribution).

However, if the number of states ofck mod 1 is large, it may be difficult to estimate the
parameters of the prior reliably. For such situations we propose a “generic” prior as follows: We
define the probability, that thek’th onset gets quantized at locationck, by p(ck) ∝ exp(−λd(ck))
whered(ck) is the number of significant digits in thebinaryexpansion ofck mod 1. For example
d(1) = 0, d(1.5) = 1, d(7 + 9/32) = 5 etc. The positive parameterλ is used to penalize score
positions that require more bits to be represented. Assuming that score positions of onsets are
independent a-priori, (besides being increasing ink, i.e., ck ≥ ck−1), the prior probability of a
sequence of score positions is given byp(c0:K) ∝ exp(−λ∑K

k=0 d(ck)). We further assume that
c0 ∈ [0, 1). One can check that such a prior prefers simpler notations, e.g.,p( �� � 6 �� � 6 � ) < p( � � � ).
We can generalize this prior to other subdivisions such triplets and quintiplets in Appendix 4.5.

Formally, given a distribution onc0:K , the prior of a scoreγ1:K is given by

p(γ1:K) =
∑

c0:K

p(γ1:K|c0:K)p(c0:K) (4.2)
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Since the relationship betweenc0:K andγ1:K is deterministic,p(γ1:K|c0:K) is degenerate for any
givenc0:K , so we have

p(γ1:K) ∝ exp

(

−λ
K
∑

k=1

d(

k
∑

k′=1

γk′)

)

(4.3)

One might be tempted to specify a prior directly onγ1:K and get rid ofc0:K entirely. However, with
this simpler approach it is not easy to devise realistic priors. For example, consider a sequence of
note durations[1 1/16 1 1 1 . . . ]. Assuming a factorized prior onγ that penalizes short
note durations, this rhythm would have relatively high probability whereas it is quite uncommon
in conventional music.

4.2.2 Tempo prior

We represent the tempo in terms of its inverse, i.e., the period, and denote it with∆. For example
a tempo of120 beats per minute (bpm) corresponds to∆ = 60/120 = 0.5 seconds. At each onset
the tempo changes by an unknown amountζ∆k

. We assume the changeζ∆k
is iid with N (0, Q∆).

2 We assume a first order Gauss-Markov process for the tempo

∆k = ∆k−1 + ζ∆k
(4.4)

Eq. 4.4 defines a distribution over tempo sequences∆0:K . Given a tempo sequence, the “ideal” or
“intended” timeτk of the next onset is given by

τk = τk−1 + γk∆k−1 + ζτk
(4.5)

The noise termζτk
denotes the amount of accentuation (that is deliberately playing a note ahead or

back in time) without causing the tempo to be changed. We assumeζτk
∼ N (0, Qτ). Ideal onsets

and actually observed “noisy” onsets are related by

yk = τk + ǫk (4.6)

The noise termǫk models small scale expressive deviations or motor errors intiming of individual
notes. In this paper we will assume thatǫk has a Gaussian distribution parameterized byN (0, R).

The initial tempo distributionp(∆0) specifies a range of reasonable tempi and is given by a
Gaussian with a broad variance. We assume an uninformative (flat) prior onτ0. The conditional
independence structure is given by the graphical model in Figure 4.1. Table 4.1 shows a possible
realization from the model.

We note that our model is a particular instance of the well known switching state space model
(also known as conditionally linear dynamical system, jumpMarkov linear system, switching
Kalman filter) (See, e.g., Bar-Shalom & Li, 1993; Doucet & Andrieu, 2001; Murphy, 2002).

In the following sections, we will sometimes refer usezk = (τk,∆k)
T and refer toz0:K as a

tempo trajectory. Given this definition, we can compactly represent Eq. 4.4 and Eq. 4.5 by

zk =

(

1 γk

0 1

)

zk−1 + ζk (4.7)

whereζk = (ζτk
, ζ∆k

).

2We denote a (scalar or multivariate) Gaussian distributionp(x) with mean vectorµ and covariance matrixP by
N (µ, P )=̂|2πP |− 1

2 exp(− 1

2
(x− µ)TP−1(x− µ)).
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k 0 1 2 3
γk (� � (� . . .
ck 0 1/2 3/2 2 . . .
∆k 0.5 0.6 0.7 . . . . . .
τk 0 0.25 0.85 1.20 . . .
yk 0 0.23 0.88 1.24 . . .

Table 4.1: A possible realization from the model: a ritardando. For clarity we assumeζτ = 0.

4.2.3 Extensions

There are several possible extensions to this basic parameterization. For example, one could rep-
resent the period∆ in the logarithmic scale. This warping ensures positivity and seems to be
perceptually more plausible since it promotes equalrelative changes in tempo rather than on an
absolute scale (Grubb, 1998; Cemgil et al., 2001). Althoughthe resulting model becomes non-
linear, it can be approximated fairly well by an extended Kalman filter (Bar-Shalom & Li, 1993).

A simple random walk model for tempo fluctuations such as in Eq. 4.7 seems not to be very
realistic. We would expect the tempo deviations to be more structured and smoother. In our dynam-
ical system framework such smooth deviations can be modeledby increasing the dimensionality
of z to include higher order “inertia” variables (Cemgil et al.,2001). For example consider the
following model,
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We choose this particular parameterization because we wishto interpret∆1 as the slowly varying
“average” tempo and∆2 as a temporary change in the tempo. Such a model is useful for situations
where the performer fluctuates around an almost constant tempo; a random walk model is not
sufficient in this case because it forgets the initial values. Additional state variables∆3, . . . ,∆D−1

act like additional “memory” elements. By choosing the parameter matrixA and noise covariance
matrixQ, one can model a rich range of temporal structures in expressive timing deviations.

The score prior can be improved by using a richer model. For example to allow for different
time signatures and alternative rhythmic subdivisions, one can introduce additional hidden vari-
ables (Cemgil et al., 2000) (See also Appendix4.5) or use a Markov chain (Raphael, 2001a).
Potentially, such extensions make it easier to capture additional structure in musical rhythm (such
as “weak” positions are followed more likely by “strong” positions). On the other hand, the number
of model parameters rapidly increases and one has to be more cautious in order to avoid overfitting.

For score typesetting, we need to quantize note durations aswell, i.e., associate note offsets
with score positions. A simple way of accomplishing this is to define an indicator sequenceu0:K

that identifies whetheryk is an onset (uk = 1) or an offset (uk = 0). Givenuk, we can redefine the
observation model asp(yk|τk, uk) = ukN (0, R)+(1−uk)N (0, Roff) whereRoff is the observation
noise associated with offsets. A typical model would haveRoff ≫ R. ForRoff → ∞, the offsets
would have no effect on the tempo process. Moreover, sinceuk are always observed, this extension
requires just a simple lookup.

In principle, one must allow for arbitrary long intervals between onsets, henceγk are drawn
from an infinite (but discrete) set. In our subsequent derivations, we assume that the number of
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possible intervals is fixed a-priori. Given an estimate ofzk−1 and observationyk, almost all of
the virtually infinite number of choices forγk will have almost zero probability and it is easy to
identify candidates that would have significant probability mass.

Conceptually, all of the above listed extensions are easy toincorporate into the model and none
of them introduces a fundamental computational difficulty to the basic problems of quantization
and tempo tracking.

4.2.4 Problem Definition

Given the model, we define rhythm transcription, i.e., quantization as a MAP state estimation
problem

γ∗1:K = argmax
γ1:K

p(γ1:K |y0:K) (4.9)

p(γ1:K |y0:K) =

∫

dz0:Kp(γ1:K , z0:K |y0:K)

and tempo tracking as a filtering problem

z∗k = argmax
zk

∑

γ1:k

p(γ1:k, zk|y0:k) (4.10)

The quantization problem is a smoothing problem: we wish to find the most likely scoreγ∗1:K
given all the onsets in the performance. This is useful in “offline” applications such as score
typesetting.

For real-time interaction, we need to have an online estimate of the tempo/beatzk. This in-
formation is carried forth by the filtering densityp(γ1:k, zk|y0:k) in Eq.4.10. Our definition of the
best tempoz∗k as the maximum is somewhat arbitrary. Depending upon the requirements of an
application, one can make use of other features of the filtering density. For example, the variance
of
∑

γ1:k
p(γ1:k, zk|y0:k) can be used to estimate “amount of confidence” in tempo interpretation or

arg maxzk,γ1:k
p(γ1:k, zk|y0:k) to estimate most likely score-tempo pair so far.

Unfortunately, the quantities in Eq. 4.9 and Eq. 4.10 are intractable due to the explosion in
the number of mixture components required to represent the exact posterior at each stepk (See
Figure 4.2). For example, to calculate the exact posterior in Eq. 4.9 we need to evaluate the
following expression:

p(γ1:K |y0:K) =
1

Z

∫

dz0:Kp(y0:K |z0:K , γ1:K)p(z0:K |γ1:K)p(γ1:K) (4.11)

=
1

Z
p(y0:K |γ1:K)p(γ1:K) (4.12)

where the normalization constant is given byZ = p(y0:K) =
∑

γ1:K
p(y0:K |γ1:K)p(γ1:K). For

each trajectoryγ1:K , the integral overz0:K can be computed stepwise ink by the Kalman filter
(See appendix 4.5). However, to find the MAP state of Eq. 4.11,we need to evaluatep(y0:K |γ1:K)
independently for each of the exponentially many trajectories. Consequently, the quantization
problem in Eq. 4.9 can only be solved approximately.

For accurate approximation, we wish to exploit any inherentindependence structure of the ex-
act posterior. Unfortunately, sincez andc are integrated over, allγk become coupled and in general
p(γ1:K |y0:K) does not possess any conditional independence structure (e.g., a Markov chain) that
would facilitate efficient calculation. Consequently, we will resort to numerical approximation
techniques.
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Figure 4.2: Example demonstrating the explosion of the number of components to represent the exact
posterior. Ellipses denote the conditional marginalsp(τk, ωk|c0:k, y0:k). (We show the period in logarithmic
scale whereωk = log2 ∆k). In this toy example, we assume that a score consists only ofnotes of length(� and � , i.e., γk can be either1/2 or 1. (a) We start with a unimodal posteriorp(τ0, ω0|c0, y0), e.g., a
Gaussian centered at(τ, ω) = (0, 0). Since we assume that a score can only consist of eight- and quarter
notes, i.e.,γk ∈ {1/2, 1}. the predictive distributionp(τ1, ω1|c0:1, y0) is bimodal where the modes are
centered at(0.5, 0) and(1, 0) respectively (shown with a dashed contour line). Once the next observationy1

is observed (shown with a dashed vertical line aroundτ = 0.5), the predictive distribution is updated to yield
p(τ1, ω1|c0:1, y0:1). The numbers denote the respective log-posterior weight ofeach mixture component.(b)
The predictive distributionp(τ2, ω2|c0:1, y0:1) at stepk = 2 has now4 modes, two for each component of
p(τ1, ω1|c0:1, y0:1). (c) The number of components grows exponentially withk.
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4.3 Monte Carlo Simulation

Consider a high dimensional probability distribution

p(x) =
1

Z
p∗(x) (4.13)

where the normalization constantZ =
∫

dxp∗(x) is not known butp∗(x) can be evaluated at any
particularx. Suppose we want to estimate the expectation of a functionf(x) under the distribution
p(x) denoted as

〈f(x)〉p(x) =

∫

dxf(x)p(x)

e.g., the mean ofx underp(x) is given by〈x〉. The intractable integration can be approximated by
an average if we can findN pointsx(i), i = 1 . . .N from p(x)

〈f(x)〉p(x) ≈
1

N

N
∑

i=1

f(x(i)) (4.14)

Whenx(i) are generated by independently sampling fromp(x), it can be shown that asN ap-
proaches infinity, the approximation becomes exact.

However, generating independent samples fromp(x) is a difficult task in high dimensions but
it is usually easier to generatedependentsamples, that is we generatex(i+1) by making use of
x(i). It is somewhat surprising, that even ifx(i) andx(i+1) are correlated (and provided ergodicity
conditions are satisfied), Eq. 4.14 remains still valid and estimated quantities converge to their true
values when number of samplesN goes to infinity.

A sequence of dependent samplesx(i) is generated by using a Markov chain that has the sta-
tionary distributionp(x). The chain is defined by a collection of transition probabilities, i.e., a
transition kernelT (x(i+1)|x(i)). The definition of the kernel is implicit, in the sense that one de-
fines a procedure to generate thex(i+1) givenx(i). TheMetropolisalgorithm (Metropolis & Ulam,
1949; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) provides a simple way of defin-
ing an ergodic kernel that has the desired stationary distributionp(x). Suppose we have a sample
x(i). A candidatex′ is generated by sampling from a symmetric proposal distribution q(x′|x(i))
(for example a Gaussian centered atx(i)). The candidatex′ is accepted as the next samplex(i+1)

if p(x′) > p(x(i)). If x′ has a lower probability, it can be still accepted, but only with probabil-
ity p(x′)/p(x(i)). The algorithm is initialized by generating the first samplex(0) according to an
(arbitrary) proposal distribution.

However for a given transition kernelT , it is hard to assess the time required to converge to
the stationary distribution so in practice one has to run thesimulation until a very large number
of samples have been obtained, (see e.g., Roberts & Rosenthal, 1998). The choice of the proposal
distributionq is also very critical. A poor choice may lead to the rejectionof many candidatesx′

hence resulting in a very slow convergence to the stationarydistribution.
For a large class of probability models, where the full posterior p(x) is intractable, one can still

efficiently compute marginals of formp(xk|x−k), x−k = x1 . . . xk−1, xk+1, . . . xK exactly. In this
case one can apply a more specialized Markov chain Monte Carlo (MCMC) algorithm, theGibbs
samplergiven below.

1. Initializex(0)
1:K by sampling from a proposalq(x1:K)

2. Fori = 0 . . .N − 1
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• Fork = 1, . . . , K, Sample

x
(i+1)
k ∼ p(xk|x(i+1)

1:k−1, x
(i)
k+1:K) (4.15)

In contrast to the Metropolis algorithm, where the new candidate is a vectorx′, the Gibbs
sampler uses the exact marginalp(xk|x−k) as the proposal distribution. At each step, the sampler
updates only one coordinate of the current statex, namelyxk, and the new candidate is guaranteed
to be accepted.

Note that, in principle we don’t need to samplexk sequentially, i.e., we can choosek randomly
provided that each slice is visited equally often in the limit. However, a deterministic scan algo-
rithm wherek = 1, . . .K, provides important time savings in the type of models that we consider
here.

4.3.1 Simulated Annealing and Iterative Improvement

Now we shift our focus from sampling to MAP state estimation.In principle, one can use the
samples generated by any sampling algorithm (Metropolis-Hastings or Gibbs) to estimate the MAP
statex∗ of p(x) by argmax

i=1:N
p(x(i)). However, unless the posterior is very much concentrated

around the MAP state, the sampler may not visitx∗ even though the samplesx(i) are obtained
from the stationary distribution. In this case, the problemcan be simply reformulated to sample
not from p(x) but from a distribution that is concentrated at local maximaof p(x). One such
class of distributions are given bypρj

(x) ∝ p(x)ρj . A sequence of exponentsρ1 < ρ2 < · · · <
ρj < . . . is called to be acooling scheduleor annealing scheduleowing to the inverse temperature
interpretation ofρj in statistical mechanics, hence the nameSimulated Annealing(SA) (Aarts &
van Laarhoven, 1985). Whenρj → ∞ sufficiently slowly inj, the cascade of MCMC samplers
each with the stationary distributionpρj

(x) is guaranteed (in the limit) to converge to the global
maximum ofp(x). Unfortunately, for this convergence result to hold, the cooling schedule must
go very slowly (in fact, logarithmically) to infinity. In practice, faster cooling schedules must be
employed.

Iterative improvement(II) (Aarts & van Laarhoven, 1985) is a heuristic simulated annealing
algorithm with a very fast cooling schedule. In fact,ρj = ∞ for all j. The eventual advantage
of this greedy algorithm is that it converges in a few iterations to a local maximum. By restarting
many times from different initial configurationsx, one hopes to find different local maxima ofp(x)
and eventually visit the MAP statex∗. In practice, by using the II heuristic one may find better
solutions than SA for a limited computation time.

From an implementation point of view, it is trivial to convert MCMC code to SA (or II) code.
For example, consider the Gibbs sampler. To implement SA, weneed to construct a cascade of
Gibbs samplers, each with stationary distributionp(x)ρj . The exact one time slice marginal of
this distribution isp(xk|x−k)

ρj . So, SA just samples from the actual (temperature=1) marginal
p(xk|x−k) raised to a powerρj .

4.3.2 The Switching State Space Model and MAP Estimation

To solve the rhythm quantization problem, we need to calculate the MAP state of the posterior in
Eq. 4.11

p(γ1:K |y0:K) ∝ p(γ1:K)

∫

dz0:Kp(y0:K |z0:K , γ1:K)p(z0:K |γ1:K) (4.16)

This is a combinatorial optimization problem: we seek the maximum of a functionp(γ1:K |y0:K)
that associates a number with each of the discrete configurationsγ1:K . Since it is not feasible to



4.3. MONTE CARLO SIMULATION 57

visit all of the exponentially many configurations to find themaximizing configurationγ∗1:K , we
will resort to stochastic search algorithms such as simulated annealing (SA) and iterative improve-
ment (II). Due to the strong relationship between the Gibbs sampler and SA (or II), we will first
review the Gibbs sampler for the switching state space model.

The first important observation is that, conditioned onγ1:K , the model becomes a linear state
space model and the integration onz0:K can be computed analytically using Kalman filtering equa-
tions. Consequently, one can sample onlyγ1:K and integrate outz. The analytical marginalization,
calledRao-Blackwellization(Casella & Robert, 1996), improves the efficiency of the sampler (e.g.,
see Doucet, de Freitas, Murphy, & Russell, 2000a).

Suppose now that each switch variableγk can haveS distinct states and we wish to generate
N samples (i.e trajectories){γ(i)

1:K, i = 1 . . . N}. A naive implementation of the Gibbs sampler
requires that at each stepk we run the Kalman filterS times on the whole observation sequence
y0:K to compute the proposalp(γk|γ(i)

1:k−1, γ
(i−1)
k+1:K, y0:K). This would result in an algorithm of time

complexityO(NK2S) that is prohibitively slow whenK is large. Carter and Kohn (1996) have
proposed a much more time efficient deterministic scan Gibbssampler that circumvents the need
to run the Kalman filtering equations at each stepk on the whole observation sequencey0:K . See
also (Doucet & Andrieu, 2001; Murphy, 2002).

The method is based on the observation that the proposal distribution p(γk| ·) can be factor-
ized as a product of terms that either depend on past observationsy0:k or the future observations
yk+1:K . So the contribution of the future can be computed a-priori by a backward filtering pass.
Subsequently, the proposal is computed and samplesγ

(i)
k are generated during the forward pass.

The sampling distribution is given by

p(γk|γ−k, y0:K) ∝ p(γk|γ−k)p(y0:K |γ1:K) (4.17)

where the first term is proportional to the joint priorp(γk|γ−k) ∝ p(γk,γ−k). The second term
can be decomposed as

p(y0:K |γ1:K) =

∫

dzkp(yk+1:K|y0:k, zk, γ1:K)p(y0:k, zk|γ1:K) (4.18)

=

∫

dzkp(yk+1:K|zk, γk+1:K)p(y0:k, zk|γ1:k) (4.19)

Both terms are (unnormalized) Gaussian potentials hence the integral can be evaluated analytically.
The termp(yk+1:K|zk, γk+1:K) is an unnormalized Gaussian potential inzk and can be computed by
backwards filtering. The second term is just the filtering distributionp(zk|y0:k, γ1:k) scaled by the
likelihoodp(y0:k|γ1:k) and can be computed during forward filtering. The outline of the algorithm
is given below, see the appendix 4.5 for details.

1. Initializeγ(0)
1:K by sampling from a proposalq(γ1:K)

2. Fori = 1 . . .N

• Fork = K − 1, . . . , 0,

– Computep(yk+1:K|zk, γ
(i−1)
k+1:K)

• Fork = 1, . . . , K,

– Fors = 1 . . . S

∗ Compute the proposal

p(γk = s|· ) ∝ p(γk = s,γ−k)

∫

dzkp(y0:k, zk|γ(i)
1:k−1, γk = s)p(yk+1:K|zk, γ

(i−1)
k+1:K)
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– Sampleγ(i)
k from p(γk|· )

The resulting algorithm has a time complexity ofO(NKS), an important saving in terms of
time. However, the space complexity increases fromO(1) toO(K) since expectations computed
during the backward pass need to be stored.

At each step, the Gibbs sampler generates a sample from a single time slicek. In certain types
of “sticky” models, such as when the dependence betweenγk andγk+1 is strong, the sampler may
get stuck in one configuration, moving very rarely. This is due to the fact that most singleton
flips end up in low probability configurations due to the strong dependence between adjacent time
slices. As an example, consider the quantization model and two configurations[. . . γk, γk+1 . . . ] =
[. . . 1, 1 . . . ] and [. . . 3/2, 1/2 . . . ]. By updating only a single slice, it may be difficult to move
between these two configurations. Consider an intermediateconfiguration[. . . 3/2, 1 . . . ]. Since
the duration (γk + γk+1) increases, all future score positionsck:K are shifted by1/2. That may
correspond to a score that is heavily penalized by the prior,thus “blocking” the path.

To allow the sampler move more freely, i.e., to allow for moreglobal jumps, one can sample
from L slices jointly. In this case the proposal distribution takes the form

p(γk:k+L−1|· ) ∝ p(γk:k+L−1,γ−(k:k+L−1))×
∫

dzk+L−1p(y0:k+L−1, zk+L−1|γ(i)
1:k−1, γk:k+L−1)p(yk+L:K|zk+L−1, γ

(i−1)
k+L:K)

Similar to the one slice case, terms under the integral are unnormalized Gaussian potentials (on
zk+L−1) representing the contribution of past and future observations. Sinceγk:k+L−1 hasSL states,
the resulting time complexity for generatingN samples isO(NKSL), thus in practiceL must be
kept rather small. One remedy would be to use a Metropolis-Hastings algorithm with a heuristic
proposal distributionq(γk:k+L−1|y0:K) to circumvent exact calculation, but it is not obvious how to
construct such aq.

One other shortcoming of the Gibbs sampler (and related MCMCmethods) is that the algorithm
in its standard form is inherently offline; we need to have access to all of the observationsy0:K to
start the simulation. For certain applications, e.g., automatic score typesetting, a batch algorithm
might be still feasible. However in scenarios that require real-time interaction, such as in interactive
music performance or tempo tracking, online methods must beused.

4.3.3 Sequential Monte Carlo

Sequential Monte Carlo, a.k.a. particle filtering, is a powerful alternative to MCMC for gener-
ating samples from a target posterior distribution. SMC is especially suitable for application in
dynamical systems, where observations arrive sequentially.

The basic idea in SMC is to represent the posteriorp(x0:k−1|y0:k−1) at timek−1 by a (possibly
weighted) set of samples{x(i)

0:k−1, i = 1 . . .N} and extend this representation to{(x(i)
0:k−1, x

(i)
k ), i =

1 . . . N} when the observationyk becomes available at timek. The common practice is to use
importance sampling.

Importance Sampling

Consider again a high dimensional probability distribution p(x) = p∗(x)/Z with an unknown
normalization constant. Suppose we are given aproposaldistributionq(x) that is close top(x)
such that high probability regions of both distributions fairly overlap. We generate independent
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samples, i.e.,particles, x(i) from the proposal such thatq(x) ≈∑N
i=1 δ(x−x(i))/N . Then we can

approximate

p(x) =
1

Z

p∗(x)

q(x)
q(x) (4.20)

≈ 1

Z

p∗(x)

q(x)

1

N

N
∑

i=1

δ(x− x(i)) (4.21)

≈
N
∑

i=1

w(i)

∑N
j=1w

(j)
δ(x− x(i)) (4.22)

wherew(i) = p∗(x(i))/q(x(i)) are theimportance weights. One can interpretw(i) as correction
factors to compensate for the fact that we have sampled from the “incorrect” distributionq(x).
Given the approximation in Eq.4.22 we can estimate expectations by weighted averages

〈f(x)〉p(x) ≈
N
∑

i=1

w̃(i)f(x(i)) (4.23)

wherew̃(i) = w(i)/
∑N

j=1w
(j) are thenormalized importance weights.

Sequential Importance Sampling

Now we wish to apply importance sampling to the dynamical model

p(x0:K |y0:K) ∝
K
∏

k=0

p(yk|xk)p(xk|x0:k−1) (4.24)

wherex = {z, γ}. In principle one can naively apply standard importance sampling by using an
arbitrary proposal distributionq(x0:K). However finding a good proposal distribution can be hard
if K ≫ 1. The key idea insequential importance samplingis the sequential construction of the
proposal distribution, possibly using the available observationsy0:k, i.e.,

q(x0:K |y0:K) =

K
∏

k=0

q(xk|x0:k−1, y0:k)

Given a sequentially constructed proposal distribution, one can compute the importance weight
recursively as

w
(i)
k =

p∗(x
(i)
0:k|y0:k)

q(x
(i)
0:k|y0:k)

=
p(yk|x(i)

k )p(x
(i)
k |x

(i)
0:k−1, y0:k−1)

q(x
(i)
k |x

(i)
0:k−1y0:k)

p(y0:k−1|x(i)
0:k−1)p(x

(i)
0:k−1)

q(x
(i)
0:k−1|y0:k−1)

(4.25)

=
p(yk|x(i)

k )p(x
(i)
k |x

(i)
0:k−1, y0:k−1)

q(x
(i)
k |x

(i)
0:k−1y0:k)

w
(i)
k−1 (4.26)

The sequential update schema is potentially more accurate than naive importance sampling
since at each stepk, one can generate a particle from a fairly accurate proposaldistribution that
takes the current observationyk into account. A natural choice for the proposal distribution is the
filtering distribution given as

q(xk|x(i)
0:k−1y0:k) = p(xk|x(i)

0:k−1, y0:k) (4.27)
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In this case the weight update rule in Eq. 4.26 simplifies to

w
(i)
k = p(yk|x(i)

0:k−1)w
(i)
k−1

In fact, provided that the proposal distributionq is constructed sequentially and past sampled tra-
jectories are not updated, the filtering distribution is theoptimal choice in the sense of minimizing
the variance of importance weightsw(i) (Doucet, Godsill, & Andrieu, 2000b). Note that Eq. 4.27
is identical to the proposal distribution used in Gibbs sampling atk = K (Eq 4.15). Atk < K, the
SMC proposal does not take future observations into account; so we introduce discount factorswk

to compensate for sampling from the wrong distribution.

Selection

Unfortunately, the sequential importance sampling may be degenerate, in fact, it can be shown
that the variance ofw(i)

k increases withk. In practice, after a few iterations of the algorithm, only
one particle has almost all of the probability mass and most of the computation time is wasted for
updating particles with negligible probability.

To avoid the undesired degeneracy problem, several heuristic approaches are proposed in the
literature. The basic idea is to duplicate or discard particles according to their normalized impor-
tance weights. The selection procedure can be deterministic or stochastic. Deterministic selection
is usually greedy; one choosesN particles with the highest importance weights. In the stochastic
case, calledresampling, particles are drawn with a probability proportional to their importance
weightw(i)

k . Recall that normalized weights{w̃(i)
k , i = 1 . . .N} can be interpreted as a discrete

distribution on particle labels(i).

4.3.4 SMC for the Switching State Space Model

The SIS algorithm can be directly applied to the switching state space model by sampling directly
from xk = (zk, γk). However, the particulate approximation can be quite poor if z is high dimen-
sional. Hence, too many particles may be needed to accurately represent the posterior.

Similar to the MCMC methods introduced in the previous section, efficiency can be improved
by analytically integrating outz0:k and only sampling fromγ1:k. This form of Rao-Blackwellization
is reported to give superior results when compared to standard particle filtering where bothγ and
z are sampled jointly (Chen & Liu, 2000; Doucet et al., 2000b).The improvement is perhaps not
surprising, since importance sampling performs best when the sampled space is low dimensional.

The algorithm has an intuitive interpretation in terms of a randomized breadth first tree search
procedure: at each new stepk, we expandN kernels to obtainS ×N new kernels. Consequently,
to avoid explosion in the number of branches, we selectN out ofS ×N branches proportional to
the likelihood, See Figure 4.3. The derivation and technical details of the algorithm are given in
the Appendix 4.5.

The tree search interpretation immediately suggests a deterministic version of the algorithm
where one selects (without replacement) theN branches with highest weight. We will refer to
this method as agreedy filter(GF). The method is also known assplit-trackfilter (Chen & Liu,
2000) and is closely related to Multiple Hypothesis Tracking (MHT) (Bar-Shalom & Fortmann,
1988). One problem with the greedy selection schema of GF is the loss of particle diversity. Even
if the particles are initialized to different locations inz0, (e.g., to different initial tempi), mainly
due to the discrete nature of the state space ofγk, most of the particles become identical after a
few stepsk. Consequently, results can not be improved by increasing the number of particlesN .
Nevertheless, when only very few particles can be used, say e.g., in a real time application, GF
may still be a viable choice.
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Figure 4.3: Outline of the algorithm. The ellipses correspond to the conditionalsp(zk|γ(i)
k , y0:k).

Vertical dotted lines denote the observationsyk. At each stepk, particles with low likelihood are
discarded. Surviving particles are linked to their parents.

Figure 4.4: A hypothetical situation where neither of the two particlesγ(i)
1:5 is optimal. We would

obtain eventually a higher likelihood configuration by interchangingγ3 between particles.

4.3.5 SMC and estimation of the MAP trajectory

Like MCMC, SMC is a sampling method. Hence comments made in Section 4.3.1 about the
eventual suboptimality of estimating the MAP trajectory from particles asarg max p(γ

(i)
1:K |y0:K)

also apply here. An hypothetical situation is shown in figure4.4.
One obvious solution is to employ the SA “trick” and raise theproposal distribution to a power

p(γk|·)γ. However, such a proposal will be peaked on a very fewγ at each time slice. Consequently,
most of the particles will become identical in time and the algorithm eventually degenerates to
greedy filtering.

An algorithm for estimating the MAP trajectory from a set of SMC samples is recently pro-
posed in the literature (Godsill, Doucet, & West, 2001). Thealgorithm relies on the observation
that once the particlesx(i)

k are sampled during the forward pass, one is left with a discrete distri-
bution defined on the (discrete) supportX1:K =

⊗K
k=1Xk. HereXk denotes is the support of the

filtering distribution a timek and
⊗

is the Cartesian product between sets. Formally,Xk is the set
of distinctsamples at timek and is given byXk =

⋃

i{x
(i)
k }.
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The distributionp(X1:K |y1:K)3 is Markovian because the original state transition model is
Markovian, i.e., the posterior can be represented exactly by

p(X1:K |y1:K) ∝
K
∏

k=1

p(yk|Xk)p(Xk|Xk−1)

Consequently, one can find the best MAP trajectoryarg max p(X1:K) by using an algorithm that
is analogous to the Viterbi algorithm for hidden Markov models (Rabiner, 1989).

However, this idea does not carry directly to the case when one applies Rao-Blackwellization.
In general, when a subset of the hidden variables is integrated out, all time slices of the posterior
p(Γ1:K |y1:k) are coupled, whereΓ1:K =

⊗K
k=1 Γk andΓk =

⋃

i{γ
(i)
k }. One can still employ a chain

approximation and run Viterbi, (e.g., Cemgil & Kappen, 2002), but this does not guarantee to find
arg max p(Γ1:K |y1:k).

On the other hand, becauseγ(i)
k are drawn from a discrete set, several particles become identical

soΓk has usually a small cardinality when compared to the number of particlesN . Consequently,
it becomes feasible to employ SA or II on the reduced state spaceΓ1:K ; possibly using a proposal
distribution that extends over several time slicesL.

In practice, for finding the MAP solution from the particle set {γ(i)
1:K , i = 1 . . . N}, we propose

to find the best trajectoryi∗ = arg maxi p(y0:K |γ(i)
1:K)p(γ

(i)
1:K) and apply iterative improvement

starting from the initial configurationγ(i∗)
1:K .

4.4 Simulations

We have compared the inference methods in terms of the quality of the solution and execution
time. The tests are carried out both on artificial and real data.

Given the true notationγtrue
1:K , we measure the quality of a solution in terms of the log-likelihood

difference

∆L = log
p(y0:K |γ1:K)p(γ1:K)

p(y0:K |γtrue
1:K)p(γtrue

1:K)

and in terms ofedit distance

e(γ1:K) =

K
∑

k=1

(1− δ(γk − γtrue
k ))

The edit distancee(γ1:K) gives simply the number of notes that are quantized wrongly.

4.4.1 Artificial data: Clave pattern

The synthetic example is a repeating “son-clave” pattern7 > � � > �� �� � 7 (c = [1, 2, 4, 5.5, 7 . . . ])
with fluctuating tempo. We repeat the pattern6 times and obtain a scoreγ1:K with K = 30.

Such syncopated rhythms are usually hard to transcribe and make it difficult to track the tempo
even for experienced human listeners. Moreover, since onsets are absent at prominent beat loca-
tions, standard beat tracking algorithms usually loose track.

3By a slight abuse of notation we use the symbolXk both as a set and as a general element when used in the
argument of a density,p(yk|Xk) meansp(yk|xk) s.t.xk ∈ Xk
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Given scoreγ1:K, we have generated100 observation sequencesy0:K by sampling from the
tempo model in Eq. 4.7. We have parameterized the observation noise variance4 asQ = γkQa+Qb.
In this formulation, the variance depends on the length of the interval between consecutive onsets;
longer notes in the score allow for more tempo and timing fluctuation. For the tests on the clave
example we have not used a prior model that reflects true source statistics, instead, we have used
the generic prior model defined in Section 4.2.1 withλ = 1.

All the example cases are sampled from the same score (clave pattern). However, due to the
use of the generic prior (that does not capture the exact source statistics well) and a relatively
broad noise model, the MAP trajectoryγ∗1:K giveny0:K is not always identical to the original clave
pattern. For thei’th example, we have defined the “ground truth”γtrue,i

1:K as the highest likelihood so-
lution found using any sampling technique during any independent run. Although this definition of
the ground truth introduces some bias, we have found this exercise more realistic as well as more
discriminative among various methods when compared to, e.g.,, using a dataset with essentially
shorter sequences where the exact MAP trajectory can be computed by exhaustive enumeration.
The wish to stress that the main aim of the simulations on synthetic dataset is to compare effec-
tiveness of different inference techniques; we postpone the actual test whether the model is a good
one to our simulations on real data.

We have tested the MCMC methods, namely Gibbs sampling (Gibbs), simulated annealing
(SA) and iterative improvement (II) with one and two time slice optimal proposal and for10 and
50 sweeps. For each onsetyk, the optimal proposalp(γk|·) is computed always on a fixed set,
Γ = {0, 1/4, 2/4 . . .3}. Figure 4.6 shows a typical run of MCMC.

Similarly, we have implemented the SMC forN = {1, 5, 10, 50, 100} particles. The selection
schema was random drawing from the optimal proposalp(γk|·) computed using one or two time
slices. Only in the special case of greedy filtering (GF), i.e., whenN = 1, we have selected the
switch with maximum probability. An example run is shown in Figure 4.5.

We observe that on average SMC results are superior to MCMC (Figure 4.7). We observe that,
increasing the number of sweeps for MCMC does not improve thesolution significantly. On the
other hand, increasing the number of particles seems to improve the quality of the SMC solution
monotonically. Moreover, the results suggest that sampling from two time slices jointly (with the
exception of SA ) does not have a big effect. GF outperforms a particle filter with 5 particles that
draws randomly from the proposal. That suggests that for PF with a small number of particlesN ,
it may be desirable to use a hybrid selection schema that selects the particle with maximum weight
automatically and randomly selects the remainingN − 1.

We compare inference methods in terms of execution time and the quality of solutions (as
measured by edit distance). As Figure 4.8 suggests, using a two slice proposal is not justified.
Moreover it seems that for comparable computational effort, SMC tends to outperform all MCMC
methods.

4.4.2 Real Data: Beatles

We evaluate the performance of the model on polyphonic pianoperformances. 12 pianists were
invited to play two Beatles songs, Michelle and Yesterday. Both pieces have a relatively simple
rhythmic structure with ample opportunity to add expressiveness by fluctuating the tempo. The
original score is shown in Figure 4.9(a). The subjects had different musical education and back-
ground: four professional jazz players, four professionalclassical performers and four amateur
classical pianists. Each arrangement had to be played in three tempo conditions, three repetitions
per tempo condition. The tempo conditions were normal, slowand fast tempo (all in a musically

4The noise covariance parameters wereR = 0.022,Qa = 0.062I andQb = 0.022I. I is a2× 2 identity matrix.
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Figure 4.6:Typical runs of Gibbs sampling, Simulated Annealing (SA) and Iterative Improvement (II) on
clave example. All algorithms are initialized to the greedyfilter solution. The annealing schedule for SA
was linear fromρ1 = 0.1 to ρ33 = 10 and than proceeding deterministically byρ34:50 = ∞. When SA
or II converge to a configuration, we reinitialize by a particle filter with one particle that draws randomly
proportional to the optimal proposal. Sharp drops in the likelihood correspond to reinitializations. We see
that, at the first sweep, the greedy filter solution can only beslightly improved by II. Consequently the
sampler reinitializes. The likelihood of SA drops considerably, mainly due to the high temperature, and
consequently stabilizes at a suboptimal solution. The Gibbs sampler seems to explore the support of the
posterior but is no able to visit the MAP state in this run.
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Figure 4.7:Comparison of inference methods on the clave data. The squares and ovals denote the median
and the vertical bars correspond to the interval between %25and %75 quantiles. We have tested the MCMC
methods (Gibbs, SA and II) independently for10 and50 (shown from left to right). The SMC methods are
the greedy filter (GF) and particle filter (PF). We have testedfilters withN = {5, 10, 50, 100}
particles independently (shown from left to right.).
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realistic range and all according to the judgment of the performer). Further details are reported in
(Cemgil et al., 2001).

Preprocessing

The original performances contained several errors, such as missing notes or additional notes that
were not on the original score. Such errors are eliminated byusing a matching technique (Heijink
et al., 2000) based on dynamical programming. However, visual inspection of the resulting dataset
suggested still several matching errors that we interpret as outliers. To remove these outliers,
we have extended the quantization model with a two state switching observation model, i.e., the
discrete space consists of(γk, ik). In this simple outlier detection mechanism, each switchik
is a binary indicator variable specifying whether the onsetyk is an outlier or not. We assume
that all indicators are independent a-priori and have a uniform prior. The observation model is
given byp(yk|ik, τk) = N (0, Rik)

5. Since the scoreγ1:K is known, the only unknown discrete
quantities are the indicatorsi0:K . We have used greedy filtering followed by iterative improvement
to find the MAP state of indicatorsi0:K and eliminated outliers in our further studies. For many
performances, there were around2− 4 outliers, less than1% of all the notes. The resulting dataset
can be downloaded from the urlhttp://www.snn.kun.nl/∼cemgil.

Parameter Estimation

We have trained tempo tracking models with different dimensionality D, whereD denotes the
dimension of the hidden variablez. In all of the models, we use a transition matrix that has the
form in Eq. 4.8.

Since the true score is known, i.e., the score positionck of each onsetyk is given, we can

5We tookRik=0 = 0.002 andRik=1 = 2.
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clamp all the discrete variables in the model. Consequently, we can estimate the observation noise
varianceR, the transition noise varianceQ and the transition matrix coefficientsA from data.

We have optimized the parameters by Expectation-Maximization (EM) for the linear dynam-
ical systems (Shumway & Stoffer, 1982; Ghahramani & Hinton,1996) using all performances
of “Yesterday” as training data. Similarly, the score priorparameters are estimated by frequency
counts from the score of “Yesterday”6 . All tests are carried out on “Michelle”.

Results

In Figure 4.9 we show the result of typesetting a performancewith and without tempo tracking.
Due to fluctuations in tempo, the quality of the automatically generated score is very poor. The
quality can be significantly improved by using our model.

Figure 4.10 shows some tempo tracking examples on Michelle dataset for pianists from differ-
ent background and training. We observe that in most cases the results are satisfactory.

In Figure 4.11, we give a summary of test results on Michelle data in terms of the loglikeli-
hood and edit distance as a function of model order and numberof particles used for inference.
Figure 4.11(a) shows that the median likelihood on test datais increasing with model order. This
suggests that a higher order filter is able to capture structure in pianists’ expressive timing. More-
over, as for the sythetic data, we see a somewhat monotonic increase in the likelihood of solutions
found when using more particles.

The edit distance between the original score and the estimates are given in Figure 4.11(b). Since
both pieces are arranged for piano, due to polyphony, there are many onsets that are associated with
the same score position. Consequently, manyγtrue

k in the original score are effectively zero. In such
cases, typically, the corresponding inter onset intervalyk − yk−1 is also very small and the correct
quantization (namelyγk = 0) can be identified even if the tempo estimate is completely wrong.
As a consequence, the edit distance remains small. To make the task slightly more challenging, we
exclude the onsets withγtrue

k = 0 from edit distance calculation.
We observe that the extra prediction ability obtained usinga higher order model does not

directly translate to a better transcription. The errors are around5% for all models. On the other
hand, the variance of edit distance for higher order models is smaller suggesting an increased
robustness towards divergence from the tempo track impliedby the original score.

4.5 Discussion

We have presented a switching state space model for joint rhythm quantization and tempo tracking.
The model describes the rhythmic structure of musical pieces by a prior distribution over score
positions. In this representation, it is easy to construct ageneric prior that prefers simpler notations
and to learn parameters from a data set. The prior on score positions c0:K translates to a non-
Markovian distribution over a scoreγ1:K.

Timing deviations introduced by performers (tempo fluctuation, accentuations and motor er-
rors) are modeled as independent Gaussian noise sources. Performer specific timing preferences
are captured by the parameters of these distributions.

Given the model, we have formulated rhythm quantization as aMAP state estimation prob-
lem and tempo tracking as a filtering problem. We have introduced Markov chain Monte Carlo
(MCMC) and sequential Monte Carlo (SMC) to approximate the respective distributions.

6The maximum likelihood parameters for a model of dimensionD = 3 are found to be:a = −0.072,R = 0.0132

andqτ = 0.0082, q∆1
= 0.0072 andq∆2

= 0.0502. The priorp(c) is p(0) = 0.80, p(1/3) = 0.0082, p(1/2) = 0.15
p(5/6) = 0.0418. Remainingp(c) are set to10−6.
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(c) Typesetting after tempo
tracking and quantization with
a particle filter.

Figure 4.9:Results of Typesetting the scores.

The quantization model we propose is similar to that of (Raphael, 2001a). For transcription,
Raphael proposes to computearg max p(c0:K , z0:K |y0:K) and uses a message propagation scheme
that is essentially analogous to Rao-Blackwellized particle filtering. To prevent the number of
kernels from explosion, he uses a deterministic selection method, called “thinning”. The advantage
of Raphael’s approach is that the joint MAP trajectory can becomputed exactly, provided that
the continuous hidden statez is one dimensional and the model is in a parameter regime that
keeps the number of propagated Gaussian kernels limited, e.g., if R is small, thinning can not
eliminate many kernels. One disadvantage is that the numberof kernels varies depending upon the
features of the filtering distribution; it is difficult to implement such a scheme in real time. Perhaps
more importantly, simple extensions such as increasing thedimensionality ofz or introducing
nonlinearities to the transition model would render the approach quickly invalid. In contrast, Monte
Carlo methods provide a generic inference technique that allow great flexibility in models one can
employ.

We have tested our method on a challenging artificial problem(clave example). SMC has
outperformed MCMC in terms of the quality of solutions, as measured in terms of the likelihood
as well as the edit distance. We propose the use of SMC for bothproblems. For finding the MAP
quantization, we propose to apply iterative improvement (II) to the SMC solution on the reduced
configuration space.

The correct choice of the score prior is important in the overall performance of the system.
Most music pieces tend to have a certain rhythmical vocabulary, that is certain rhythmical motives
reoccur several times in a given piece. The rhythmic structure depends mostly upon the musical
genre and composer. It seems to be rather difficult to devise ageneral prior model that would work
well in a large spectrum of styles. Nevertheless, for a givengenre, we expect a simple prior to
capture enough structure sufficient for good transcription. For example, for the Beatles dataset,
we have estimated the prior by counting from the original score of “Yesterday”. The statistics are
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(c) Professional Classical Pianist. The fil-
ter temporarily loses track.
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(d) Tracking at twice the rate of the origi-
nal tempo.

Figure 4.10:Examples of filtered estimates ofz0:K = [τk,∆k]
T from the Beatles data set. Circles denote

the mean ofp(zk|γoriginal
1:k , y0:k) and “x” denote meanp(zk|γ∗1:k, y0:k) obtained by SMC. It is interesting to

note different timing characteristics. For example the classical pianist uses a lot more tempo fluctuation
than the professional jazz pianist. Jazz pianist slows downdramatically at the end of the piece, the amateur
“rushes”, i.e., constantly accelerates at the beginning. The tracking and quantization results for (a) and (b)
are satisfactory. In (a), the filter loses track at the last two notes, where the pianist dramatically slows down.
In (c), the filter loses track but catches up again. In (d), thefilter jumps to a metrical level that is twice as
fast as the original performance. That would translate to a duplication in note durations only.
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Figure 4.11:SMC results on the test data (108 performances of Michelle).For each model we show the
results obtained withN = 1, 10, 20 and50 particles. The “-” show the median of the best particle and
“x” denote the median after applying iterative improvement. The vertical bars correspond to the interval
between %25 and %75 quantiles.
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fairly close to that of “Michelle”. The good results on the test set can be partially accounted for
the fact that both pieces have a similar rhythmical structure.

Conditioned on the score, the tempo tracking model is a linear dynamical system. We have op-
timized several tempo models using EM where we have varied the dimension of tempo variablesz.
The test results suggest that increasing the dimensionality of z improves the likelihood. However,
increase in the likelihood of the whole dataset does not translate directly to overall better quantiza-
tion results (as measured by edit distance). We observe thatmodels trained on the whole training
data fail consistently for some subjects, especially professional classical pianists. Perhaps interest-
ingly, if we train “custom” models specifically optimized for the same subjects, we can improve
results significantly also on test cases. This observation suggests a kind of multimodality in the
parameter space where modes correspond to different performer regimes. It seems that a Kalman
filter is able to capture the structure in expressive timing deviations. However, when averaged over
all subjects, these details tend to be wiped out, as suggested by the quantization results that do not
vary significantly among models of different dimensions.

A related problem with the edit distance measure is that under an “average” model, the likeli-
hood of the desired score (e.g., original score of “Michelle”) may have a lower likelihood than a
solution found by an inference method. In such cases increasing the likelihood may even decrease
the edit distance. In some test cases we even observe solutions with a higher likelihood than the
original notation where all notes are wrong. In most of thesecases, the tempo trajectory of the
solution correspond to the half or twice of the original tempo so consequently all note durations
are halved or doubled (e.g., all whole notes are notated as half notes, all half notes as quarters
e.t.c.). Considering the fact that the model is “self initializing” its tempo, that is we assume a
broad uncertainty a-priori, the results are still satisfactory from a practical application perspective.

One potential shortcoming of our model is that it takes only timing information of onsets into
account. In reality, we believe that pitch and melodic grouping as well as articulation (duration
between note onsets and offsets) and dynamics (louder or softer) provide useful additional infor-
mation for tempo tracking as well as quantization. Moreover, current model assumes that all onsets
are equally relevant for estimation. That is probably in general not true: for example, a kick-drum
should provide more information about the tempo than a flute.On the other hand, our simulations
suggest that even from such a limited model one can obtain quite satisfactory results, at least for
simple piano music.

It is somewhat surprising, that SMC, basically a method thatsamples from the filtering dis-
tribution outperforms an MCMC method such as SA that is specifically designed for finding the
MAP solution given all observations. An intuitive explanation for relatively poorer MCMC results
is that MCMC proceeds first by proposing a global solution andthen tries to improve it by local
adjustments. A human transcriber, on the other hand, would listen to shorter segments of music
and gradually write down the score. In that respect, the sequential update schema of SMC seems
to be more natural for the rhythm transcription problem. Similar results, where SMC outperforms
MCMC are already reported in the literature, e.g., in the so-called “Growth Monte Carlo” for
generating self-avoiding random walks (Liu, Chen, & Logvinenko, 2001). It seems that for a large
class of dynamical problems, including rhythm transcription, sequential updating is preferable over
batch methods.

We note that theoretical convergence results for SA requirethe use of a logarithmic cooling
schedule. It seems that our cooling schedule was too fast to meet this requirement; so one has to
be still careful in interpreting the poor performance as a negative SA result. We maintain that by
using a richer neighborhood structure in the configuration space (e.g., by using a block proposal
distribution) and a slower cooling schedule, SA results canbe improved significantly. Moreover,
MCMC methods can be also be modified to operate sequentially,for example see (Marthi, Pasula,
Russell, & Peres, 2002).

Another family of inference methods for switching state space models rely on deterministic
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approximate methods. This family includes variational approximations (Ghahramani & Hinton,
1998) and expectation propagation (Heskes, 2002). It remains an interesting open question whether
deterministic approximation methods provide an advantagein terms of computation time and ac-
curacy; in particular for the quantization problem and for other switching state space models. A
potential application of the deterministic approximationtechniques in a MCMC schema can be in
designing proposal distributions that extend over severaltime slices. Such a schema would cir-
cumvent the burden for computing the optimal proposal distribution exhaustively hence allowing
more global moves for the sampler.

Our current results suggest the superiority of SMC for our problem. Perhaps the most important
advantage of SMC is that it is essentially an “anytime” algorithm; if we have a faster computer we
can increase the number of particles to make use of the additional computational power. When
computing time becomes short one can decrease the number of samples. These features make
SMC very attractive for real-time applications where one can easily tune the quality/computation-
time tradeoff.

Motivated by the practical advantages of SMC and our positive simulation results, we have im-
plemented a prototype of SMC method in real-time. Our current computer system (a 800 MHz P3
laptop PC running MS Windows) allows us to use up to 5 particles with almost no delay even dur-
ing busy passages. We expect to significantly improve the efficiency by translating the MATLABc©

constructs to native C code. Hence, the method can be used as atempo tracker in an automatic
interactive performance system and as a quantizer in an automatic score typesetting program.

Appendix 4.A A generic prior model for score positions

In traditional western music notation, note durations are generated by recursive subdivisions start-
ing from a whole note, hence it is also convenient to generatescore positions in a similar fash-
ion by regular subdivisions. We decompose a score position into an integer part and a fraction:
c = ⌊c⌋+ (c mod 1). For defining a prior, we will only use the fraction.

The set of all fractions can be generated by recursively subdividing the unit interval[0, 1). We
let S = [si] denote a subdivision schema, where[si] is a (finite) sequence of arbitrary integers
(usually small primes such as 2,3 or 5). The choice of a particular S depends mainly on the
assumed time signature. We generate the set of fractionsC as follows: At first iteration, we divide
the unit interval intos1 intervals of equal length and append the endpointsc′ of resulting intervals
into the setC. At each following iterationi, we subdivide all intervals generated by the previous
iteration intosi equal parts and append all resulting endpoints toC. Note that this procedure
generates a regular grid where two neighboring grid points have the distance1/

∏

i si. We denote
the iteration number at which the endpointc′ is first inserted toC as thedepthof c′ (with respect
to S). This number will be denoted asd(c′|S). It is easy to see that this definition ofd coincides
with the number of significant bits to representc mod 1 whenS = [2, 2, . . . ].

As an illustirative example consider the subdivisionS = [3, 2]. At the first iteration, the unit
interval is divided intos1 = 3 equal intervals, and the resulting endpoints0, 1/3, and2/3 are
inserted intoC with depthsd(0) = d(1/3) = d(2/3) = 1. At the second iteration, the new
endpoints1/6, 3/6 and5/6 are inserted toC and are assigned the depth2.

Given anS, we can define a distribution on score positions

p(ck|S) ∝ exp(−λd(ck mod 1|S))

If we wish to consider several time signatures, i.e., different subdivision schemata, we can inter-
pretS as a hidden indicator variable and define a priorp(S). In this case, the prior becomes a
multinomial mixture given byp(ck) =

∑

S p(ck|S)p(S). For further details and empirical results
justifying such a choice see (Cemgil et al., 2000).
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Appendix 4.B Derivation of two pass Kalman filtering Equa-
tions

Consider a Gaussian potential with meanµ and covarianceΣ defined on some domain indexed by
x.

φ(x) = Z ×N (µ,Σ) = Z|2πΣ|− 1
2 exp(−1

2
(x− µ)TΣ−1(x− µ)) (4.28)

where
∫

dxφ(x) = Z > 0. If Z = 1 the potential is normalized. The exponent in Eq. 4.28 is a
quadratic form so the potential can be written as

φ(x) = exp(g + hTx− 1

2
xTKx) (4.29)

where

K = Σ−1 h= Σ−1µ g = logZ +
1

2
log |K

2π
| − 1

2
hTK−1h

To denote a potential in canonical form we will use the notation

φ(x) = Z ×N (µ,Σ) ≡ [h,K, g]

and we will refer tog, h andK ascanonicalparameters. Now we consider a Gaussian potential
on (x1, x2)

T . The canonical representation is

φ(x1, x2) =

[(

h1

h2

)

,

(

K11 K12

K21 K22

)

, g

]

In models where several variables are interacting, one can find desired quantities by applying
three basic operations defined on Gaussian potentials. Those aremultiplication, conditioning, and
marginalization. The multiplication of two Gaussian potentials on the same index setx follows
directly from Eq. 4.29 and is given by

φ′(x) = φa(x)× φb(x)

[h′, K ′, g′] = [ha, Ka, ga]× [hb, Kb, gb] = [ha + hb, Ka +Kb, ga + gb]

If the domain ofφa andφb only overlaps on a subset, then potentials are extended to the appropriate
domain by appending zeros to the corresponding dimensions.

The marginalization operation is given by

φ(x1) =

∫

x2

φ(x1, x2) = [h1 −K12K
−1
22 h2, K11 −K12K

−1
22 K21, g

′]

whereg′ = g − 1
2
log |K22/2π| + 1

2
h2

T (K22)
−1h2 andg is the initial constant term ofφ(x1, x2).

The conditioning operation is given by

φ(x1, x2 = x̂2) = [h1 −K12x̂2, K11, g
′]

whereg′ = g + hT
2 x̂2 − 1

2
x̂T

2K22x̂2.
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4.B.1 The Kalman Filter Recursions

Suppose we are given the following linear model subject to noise

zk = Azk−1 + ζk
yk = Czk + ǫk

whereA andC are constant matrices,ζk ∼ N (0, Q) andǫk ∼ N (0, R)
The model encodes the joint distribution

p(z1:K , y1:K) =

K
∏

k=1

p(yk|zk)p(zk|zk−1) (4.30)

p(z1|z0) = p(z1) (4.31)

p(z1) = [P−1µ, P−1,−1

2
log |2πP | − 1

2
µTP−1µ]

p(y1|z1) =

[(

0
0

)

,

(

CTR−1C −CTR−1

−R−1C R−1

)

,−1

2
log |2πR|

]

p(y1 = ŷ1|z1) = [0 + CTR−1ŷ1, C
TR−1C,−1

2
log |2πR| − 1

2
ŷT

1 R
−1ŷ1]

p(z2|z1) =

[(

0
0

)

,

(

ATQ−1A −ATQ−1

−Q−1A Q−1

)

,−1

2
log |2πQ|

]

. . .

Forward Message Passing

Suppose we wish to compute the likelihood

p(y1:K) =

∫

zK

p(yK |zK) . . .

∫

z2

p(z3|z2)p(y2|z2)
∫

z1

p(z2|z1)p(y1|z1)p(z1)

7We can compute this integral by starting fromz1 and proceeding tozK . We define forward
“messages”α as

• α1|0 = p(z1)

• k = 1 : K

– αk|k = p(yk = ŷk|zk)αk|k−1

– αk+1|k =
∫

zk
p(zk+1|zk)αk|k

The forward recursion is given by

• α1|0 = [P−1µ, P−1,−1
2
log |2πP | − 1

2
µTP−1µ]

• k = 1 . . .K

– αk|k = [hk|k, Kk|k, gk|k]

7We let
∫

z
≡
∫

dz
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hk|k = CTR−1ŷk + hk|k−1

Kk|k = CTR−1C +Kk|k−1

gk|k = gk|k−1 − 1
2
log |2πR| − 1

2
ŷT

1 R
−1ŷk

– αk+1|k = [hk+1|k, Kk+1|k, gk+1|k]

Mk = (ATQ−1A +Kk|k)
−1

hk+1|k = Q−1AMkhk|k

Kk+1|k = Q−1 −Q−1AMkA
TQ−1

gk+1|k = gk|k − 1
2
log |2πQ|+ 1

2
log |2πMk|+ 1

2
hT

k|kMkhk|k

Backward Message Passing

We can compute the likelihood also by starting fromyK .

p(y1:K) =

∫

z1

p(z1)p(y1|z1)
∫

z2

p(z2|z1)p(y2|z2) . . .
∫

zK

p(zK |zK−1)p(yK|zK)

In this case the backward propagation can be summarized as

• βK|K+1 = 1

• k = K . . . 1

– βk|k = p(yk = ŷk|zk)βk|k+1

– βk−1|k =
∫

zk
p(zk|zk−1)βk|k

The recursion is given by

• [h∗K|K+1, K
∗
K|K+1, g

∗
K|K+1] = [0, 0, 0]

• k = K . . . 1

– βk|k = [h∗k|k, K
∗
k|k, g

∗
k|k]

h∗k|k = CTR−1ŷk + h∗k|k+1

K∗
k|k = CTR−1C +K∗

k|k+1

g∗k|k = −1
2
log |2πR| − 1

2
ŷT

kR
−1ŷk + g∗k|k+1

– βk−1|k = [h∗k−1|k, K
∗
k−1|k, g

∗
k−1|k]

M∗
k = (Q−1 +K∗

k|k)
−1

h∗k−1|k = ATQ−1M∗
kh

∗
k|k

K∗
k−1|k = ATQ−1(Q−M∗

k )Q−1A

g∗k−1|k = g∗k|k − 1
2
log |2πQ|+ 1

2
log |2πM∗

k |+ 1
2
h∗T

k|kM
∗
kh

∗
k|k

Kalman Smoothing

Suppose we wish to find the distribution of a particularzk given all the observationsy1:K. We just
have to combine forward and backward messages as

p(zk|y1:K) ∝ p(yk+1:K, zk, y1:k)

= p(y1:k, zk)p(yk+1:K|zk)

= αk|k × βk|k+1

= [hk|k + h∗k|k+1, Kk|k +K∗
k|k+1, gk|k + g∗k|k+1]
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Appendix 4.C Rao-Blackwellized SMC for the Switching State
space Model

We leti = 1 . . . N be an index over particles ands = 1 . . . S an index over states ofγ. We denote
the (unnormalized) filtering distribution at timek − 1 by

φ
(i)
k−1 =̂ p(y0:k−1, zk−1|γ(i)

1:k−1)

Sincey0:k−1 are observed,φ(i)
k−1 is a Gaussian potential onzk−1 with parametersZ(i)

k−1×N (µ
(i)
k−1,Σ

(i)
k−1).

Note that the normalization constantZ(i)
k−1 is the data likelihoodp(y0:k−1|γ(i)

1:k−1) =
∫

dzkφ
(i)
k−1.

Similarly, we denote the filtered distribution at the next slice conditioned onγk = s by

φ
(s|i)
k =̂

∫

dzk−1p(yk|zk)p(zk|zk−1, γk = s)φ
(i)
k−1 (4.32)

= p(y0:k, zk|γ(i)
1:k−1, γk = s)

We denote the normalization constant ofφ
(s|i)
k by Z(s|i)

k . Hence the joint proposal ons and(i) is
given by

q
(s|i)
k =

∫

dzkφ
(s|i)
k × p(γk = s, γ

(i)
1:k−1)

= p(γk = s, γ
(i)
1:k−1, y0:k)

The outline of the algorithm is given below:

• Initialize. Fori = 1 . . .N , φ(i)
0 ← p(y0, x0)

• Fork = 1 . . .K

– For i = 1 . . . N , s = 1 . . . S

Computeφ(s|i)
k from φ

(i)
k−1 using Eq.4.32.

q
(s|i)
k ← Z

(s|i)
k × p(γk = s, γ

(i)
1:k−1)

– For i = 1 . . . N

Select a tuple(s|j) ∼ qk

γ
(i)
1:k ← (γ

(j)
1:k−1, γk = s)

φ
(i)
k ← φ

(s|j)
k

w
(i)
k ←

∑

s q
(s|j)
k

Note that the procedure has a “built-in” resampling schema for eliminating particles with small
importance weight. Sampling jointly on(s|i) is equivalent to sampling a singles for eachi and
then resamplingi according to the weightsw(i)

k . One can also check that, since we are using the
optimal proposal distribution of Eq.4.27, the weight at each step is given byw(i)

k = p(γ
(i)
1:k−1, y0:k).



Chapter 5

Piano-Roll Inference

In this paper we present a graphical model for polyphonic music transcription. Our model,
formulated as a Dynamical Bayesian Network, embodies a transparent and computationally
tractable approach to this acoustic analysis problem. An advantage of our approach is that it
places emphasis on explicitly modelling the sound generation procedure. It provides a clear
framework in which both high level (cognitive) prior inform ation on music structure can be
coupled with low level (acoustic physical) information in aprincipled manner to perform
the analysis. The model is a special case of the, generally intractable, switching Kalman
filter model. Where possible, we derive, exact polynomial time inference procedures, and
otherwise efficient approximations. We argue that our generative model based approach
is computationally feasible for many music applications and is readily extensible to more
general auditory scene analysis scenarios.

Adapted from A. T. Cemgil, H. J. Kappen, and D. Barber.A generative
model for music transcription. Accepted to IEEE Transactions on Speech
and Audio Processing, 2004.

5.1 Introduction

When humans listen to sound, they are able to associate acoustical signals generated by different
mechanisms with individual symbolic events (Bregman, 1990). The study and computational mod-
elling of this human ability forms the focus of computational auditory scene analysis (CASA) and
machine listening (Brown & Cooke, 1994). Research in this area seeks solutions to a broad range
of problems such as the cocktail party problem, (for exampleautomatically separating voices of
two or more simultaneously speaking persons, see e.g. (Weintraub, 1985; Roweis, 2001)), identi-
fication of environmental sound objects (Ellis, 1996) and musical scene analysis (Scheirer, 2000).
Traditionally, the focus of most research activities has been in speech applications. Recently,
analysis of musical scenes is drawing increasingly more attention, primarily because of the need
for content based retrieval in very large digital audio databases (Tzanetakis, 2002) and increasing
interest in interactive music performance systems (Rowe, 2001).

5.1.1 Music Transcription

One of the hard problems in musical scene analysis is automatic music transcription, that is, the
extraction of a human readable and interpretable description from a recording of a music per-
formance. Ultimately, we wish to infer automatically a musical notation (such as the traditional
western music notation) listing the pitch levels of notes and corresponding time-stamps for a given
performance. Such a representation of the surface structure of music would be very useful in a

77
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broad spectrum of applications such as interactive music performance systems, music informa-
tion retrieval (Music-IR) and content description of musical material in large audio databases, as
well as in the analysis of performances. In its most unconstrained form, i.e., when operating on
an arbitrary polyphonic acoustical input possibly containing an unknown number of different in-
struments, automatic music transcription remains a great challenge. Our aim in this paper is to
consider a computational framework to move us closer to a practical solution of this problem.

Music transcription has attracted significant research effort in the past – see (Scheirer, 2000)
and (Plumbley et al., 2002) for a detailed review of early andmore recent work, respectively.
In speech processing, the related task of tracking the pitchof a single speaker is a fundamental
problem and methods proposed in the literature are well studied(Hess, 1983). However, most
current pitch detection algorithms are based largely on heuristics (e.g., picking high energy peaks
of a spectrogram, correlogram, auditory filter bank, etc.) and their formulation usually lacks an
explicit objective function or signal model. It is often difficult to theoretically justify the merits
and shortcomings of such algorithms, and compare them objectively to alternatives or extend them
to more complex scenarios.

Pitch tracking is inherently related to the detection and estimation of sinusoids. The estimation
and tracking of single or multiple sinusoids is a fundamental problem in many branches of ap-
plied sciences, so it is less surprising that the topic has also been deeply investigated in statistics,
(e.g. see (Quinn & Hannan, 2001)). However, ideas from statistics seem to be not widely applied
in the context of musical sound analysis, with only a few exceptions (Irizarry, 2001, 2002) who
present frequentist techniques for very detailed analysisof musical sounds with particular focus
on decomposition of periodic and transient components. Saul et al. (2002) has presented real-time
monophonic pitch tracking application based on a Laplace approximation to the posterior param-
eter distribution of an AR(2) model (Truong-Van, 1990; Quinn & Hannan, 2001, page 19). Their
method outperforms several standard pitch tracking algorithms for speech, suggesting potential
practical benefits of an approximate Bayesian treatment. For monophonic speech, a Kalman filter
based pitch tracker is proposed by Parra and Jain (2001) thattracks parameters of a harmonic plus
noise model (HNM). They propose the use of Laplace approximation around the predicted mean
instead of the extended Kalman filter (EKF). For both methods, however, it is not obvious how to
extend them to polyphony.

Kashino Kashino et al. (1995) is, to our knowledge, the first author to apply graphical mod-
els explicitly to the problem of polyphonic music transcription. Sterian Sterian (1999) described
a system that viewed transcription as a model driven segmentation of a time-frequency image.
Walmsley Walmsley (2000) treats transcription and source separation in a full Bayesian frame-
work. He employs a frame based generalized linear model (a sinusoidal model) and proposes
inference by reversible-jump Markov Chain Monte Carlo (MCMC) algorithm. The main advan-
tage of the model is that it makes no strong assumptions aboutthe signal generation mechanism,
and views the number of sources as well as the number of harmonics as unknown model parame-
ters. Davy and Godsill Davy and Godsill (2003) address some of the shortcomings of his model
and allow changing amplitudes and frequency deviations. The reported results are encouraging,
although the method is computationally very expensive.

5.1.2 Approach

Musical signals have a very rich temporal structure, both ona physical (signal) and a cognitive
(symbolic) level. From a statistical modelling point of view, such a hierarchical structure induces
very long range correlations that are difficult to capture with conventional signal models. More-
over, in many music applications, such as transcription or score following, we are usually inter-
ested in a symbolic representation (such as a score) and not so much in the “details” of the actual
waveform. To abstract away from the signal details, we definea set of intermediate variables (a
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sequence of indicators), somewhat analogous to a “piano-roll” representation. This intermediate
layer forms the “interface” between a symbolic process and the actual signal process. Roughly,
the symbolic process describes how a piece is composed and performed. We view this process as
a prior distribution on the piano-roll. Conditioned on the piano-roll, the signal process describes
how the actual waveform is synthesized.

Most authors view automated music transcription as an “audio to piano-roll” conversion and
usually consider “piano-roll to score” a separate problem.This view is partially justified, since
source separation and transcription from a polyphonic source is already a challenging task. On
the other hand, automated generation of a human readable score includes nontrivial tasks such as
tempo tracking, rhythm quantization, meter and key induction (Raphael, 2001a; Temperley, 2001;
Cemgil & Kappen, 2003). As also noted by other authors (e.g. (Kashino et al., 1995; Martin,
1999; Klapuri, Virtanen, & Holm, 2000)), we believe that a model that integrates this higher level
symbolic prior knowledge can guide and potentially improvethe inferences, both in terms quality
of a solution and computation time.

There are many different natural generative models for piano-rolls. In (Cemgil et al., 2003), we
proposed a realistic hierarchical prior model. In this paper, we consider computationally simpler
prior models and focus more on developing efficient inference techniques of a piano-roll repre-
sentation. The organization of the paper is as follows: We will first present a generative model,
inspired by additive synthesis, that describes the signal generation procedure. In the sequel, we
will formulate two subproblems related to music transcription: melody identification and chord
identification. We will show that both problems can be easilyformulated as combinatorial opti-
mization problems in the framework of our model, merely by redefining the prior on piano-rolls.
Under our model assumptions, melody identification can be solved exactly in polynomial time (in
the number of samples). By deterministic pruning, we obtaina practical approximation that works
in linear time. Chord identification suffers from combinatorial explosion. For this case, we pro-
pose a greedy search algorithm based on iterative improvement. Consequently, we combine both
algorithms for polyphonic music transcription. Finally, we demonstrate how (hyper-)parameters
of the signal process can be estimated from real data.

5.2 Polyphonic Model

In a statistical sense, music transcription, (as many otherperceptual tasks such as visual object
recognition or robot localization) can be viewed as a latentstate estimation problem: given the
audio signal, we wish to identify the sequence of events (e.g. notes) that gave rise to the observed
audio signal.

This problem can be conveniently described in a Bayesian framework: given the audio sam-
ples, we wish to infer a piano-roll that represents the onsettimes (e.g. times at which a ‘string’ is
‘plucked’), note durations and the pitch classes of individual notes. We assume that we have one
microphone, so that at each timet we have a one dimensional observed quantityyt. Multiple mi-
crophones (such as required for processing stereo recordings) would be straightforward to include
in our model. We denote the temporal sequence of audio samples {y1, y2, . . . , yt, . . . , yT} by the
shorthand notationy1:T . A constant sampling frequencyFs is assumed.

Our approach considers the quantities we wish to infer as a collection of ‘hidden’ variables,
whilst acoustic recording valuesy1:T are ‘visible’ (observed). For each observed sampleyt, we
wish to associate a higher, unobserved quantity that labelsthe sampleyt appropriately. Let us
denote the unobserved quantities byH1:T where eachHt is a vector. Our hidden variables will
contain, in addition to a piano-roll, other variables required to complete the sound generation
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procedure. We will elucidate their meaning later. As a general inference problem, the posterior
distribution is given by Bayes’ rule

p(H1:T |y1:T ) ∝ p(y1:T |H1:T )p(H1:T ) (5.1)

The likelihood termp(y1:T |H1:T ) in (5.1) requires us to specify a generative process that gives rise
to the observed audio samples. The prior termp(H1:T ) reflects our knowledge about piano-rolls
and other hidden variables. Our modelling task is thereforeto specify both how, knowing the
hidden variable states (essentially the piano-roll), the microphone samples will be generated, and
also to state a prior on likely piano-rolls. Initially, we concentrate on the sound generation process
of a single note.

5.2.1 Modelling a single note

Musical instruments tend to create oscillations with modesthat are roughly related by integer ra-
tios, albeit with strong damping effects and transient attack characteristics (Fletcher & Rossing,
1998). It is common to model such signals as the sum of a periodic component and a transient
non-periodic component (See e.g. (Serra & Smith, 1991; Rodet, 1998; Irizarry, 2002)). The sinu-
soidal model (McAulay & Quatieri, 1986) is often a good approximation that provides a compact
representation for the periodic component. The transient component can be modelled as a corre-
lated Gaussian noise process (Parra & Jain, 2001; Davy & Godsill, 2003). Our signal model is also
in the same spirit, but we will define it in state space form, because this provides a natural way to
couple the signal model with the piano-roll representation. Similar formulations are used in the
econometrics literature to model seasonal fluctuations, e.g. see (Harvey, 1989; West & Harrison,
1997). Here we omit the transient component and focus on the periodic component. It is concep-
tually straightforward to include the transient componentas this does not effect the complexity of
our inference algorithms.

First we consider how to generate a damped sinusoidyt through time, with angular frequency
ω. Consider a Gaussian process where typical realizationsy1:T are damped “noisy” sinusoidal
signals with angular frequencyω:

st ∼ N (ρtB(ω)st−1, Q) (5.2)

yt ∼ N (Cst, R) (5.3)

s0 ∼ N (0, S) (5.4)

B(ω) =

(

cos(ω) − sin(ω)
sin(ω) cos(ω)

)

(5.5)

We useN (µ,Σ) to denote a multivariate Gaussian distribution with meanµ and covarianceΣ.
HereB(ω) is a Givens rotation matrix that rotates two dimensional vector st byω degrees counter-
clockwise.C is a projection matrix defined asC = [1, 0]. The phase and amplitude characteristics
of yt are determined by the initial conditions0 drawn from a prior with covarianceS. The damping
factor0 ≤ ρt ≤ 1 specifies the rate at whichst contracts to0. See Figure 5.1 for an example. The
transition noise varianceQ is used to model deviations from an entirely deterministic linear model.
The observation noise varianceR models background noise.

In reality, musical instruments (with a definite pitch) haveseveral modes of oscillation that are
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Figure 5.1: A damped oscillator in state space form. Left: Ateach time step, the state vectors
rotates byω and its length becomes shorter. Right: The actual waveform is a one dimensional
projection from the two dimensional state vector. The stochastic model assumes that there are two
independent additive noise components that corrupt the state vectors and the sampley, so the
resulting waveformy1:T is a damped sinusoid with both phase and amplitude noise.

roughly located at integer multiples of the fundamental frequencyω. We can model such signals
by a bank of oscillators giving a block diagonal transition matrixAt = A(ω, ρt) defined as
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(5.6)

whereH denotes the number ofharmonics, assumed to be known. To reduce the number of free
parameters we define each harmonic damping factorρ(h) in terms of a basicρ. A possible choice
is to takeρ(h)

t = ρh
t , motivated by the fact that damping factors of harmonics in avibrating string

scale approximately geometrically with respect to that of the fundamental frequency, i.e. higher
harmonics decay faster (Valimaki, Huopaniemi, Karjaleinen, & Janosy, 1996).A(ω, ρt) is the
transition matrix at timet and encodes the physical properties of the sound generator as a first
order Markov Process. The rotation angleω can be made time dependent for modelling pitch
drifts or vibrato. However, in this paper we will restrict ourselves to sound generators that produce
sounds with (almost) constant frequency. The state of the sound generator is represented byst, a
2H dimensional vector that is obtained by concatenation of allthe oscillator states in (5.2).

5.2.2 From Piano-Roll to Microphone

A piano-roll is a collection of indicator variablesrj,t, wherej = 1 . . .M runs over sound generators
(i.e. notes or “keys” of a piano) andt = 1 . . . T runs over time. Each sound generator has a unique
fundamental frequencyωj associated with it. For example, we can chooseωj such that we cover
all notes of the tempered chromatic scale in a certain frequency range. This choice is arbitrary and
for a finer pitch analysis a denser grid with smaller intervals between adjacent notes can be used.

Each indicator is binary, with values “sound” or “mute”. Theessential idea is that, if previously
muted,rj,t−1 = “mute” an onset for the sound generatorj occurs ifrj,t = “sound”. The generator
continues to sound (with a characteristic damping decay) until it is again set to “mute”, when
the generated signal decays to zero amplitude (much) faster. The piano-roll, being a collection
of indicatorsr1:M,1:T , can be viewed as a binary sequence, e.g. see Figure 5.2. Eachrow of the
piano-rollrj,1:T controls an underlying sound generator.

The piano-roll determines the both sound onset generation,and the damping of the note. We
consider first the damping effects.

Piano-Roll : Damping

Thanks to our simple geometrically related damping factorsfor each harmonic, we can characterise
the damping factor for each notej = 1, . . . ,M by two decay coefficientsρsoundandρmute such that
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 5.2: Piano-roll. The vertical axis corresponds to the sound generator indexj and the hori-
zontal axis corresponds to time indext. Black and white pixels correspond to “sound” and “mute”
respectively. The piano-roll can be viewed as a binary sequence that controls an underlying signal
process. Each row of the piano-rollrj,1:T controls a sound generator. Each generator is a Gaussian
process (a Kalman filter model), where typical realizationsare damped periodic waveforms of a
constant fundamental frequency. As in a piano, the fundamental frequency is a function of the gen-
erator indexj. The actual observed signaly1:T is a superposition of the outputs of all generators.

1 ≥ ρsound> ρmute> 0. The piano-rollrj,1:T controls the damping coefficientρj,t of notej at time
t by:

ρj,t = ρsound[rj,t = sound] + ρmute[rj,t = mute] (5.7)

Here, and elsewhere in the article, the notation[x = text] has value equal to 1 when variablex is in
state text, and is zero otherwise. We denote the transition matrix asAmute

j ≡ A(ωj, ρmute); similarly
for Asound

j .

Piano-Roll : Onsets

At each new onset, i.e. when(rj,t−1 = mute) → (rj,t = sound), the old statest−1 is “forgot-
ten” and a new state vector is drawn from a Gaussian prior distributionN (0, S). This models
the energy injected into a sound generator at an onset (this happens, for example, when a guitar
string is plucked). The amount of energy injected is proportional to the determinant ofS and the
covariance structure ofS describes how this total energy is distributed among the harmonics. The
covariance matrixS thus captures some of the timbre characteristics of the sound. The transition
and observation equations are given by

isonsetj,t = (rj,t−1 = mute∧ rj,t = sound) (5.8)

Aj,t = [rj,t = mute]Amute
j + [rj,t = sound]Asound

j (5.9)

sj,t ∼ [¬isonsetj,,t]N (Aj,tst−1, Q)

+[isonsetj,t]N (0, S) (5.10)

yj,t ∼ N (Csj,t, R) (5.11)
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M

rj,1 rj,2 . . . rj,t

sj,1 sj,2 . . . sj,t

yj,1 yj,2 . . . yj,t

y1 y2 . . . yt

Figure 5.3: Graphical Model. The rectangle box denotes “plates”,M replications of the nodes
inside. Each plate,j = 1, . . . ,M represents the sound generator (note) variables through time.

In the above,C is a1×2H projection matrixC = [1, 0, 1, 0, . . . , 1, 0] with zero entries on the even
components. Henceyj,t has a mean being the sum of the damped harmonic oscillators.R models
the variance of the noise in the output of each sound generator. Finally, the observed audio signal
is the superposition of the outputs of all sound generators,

yt =
∑

j

yj,t (5.12)

The generative model (5.7)-(5.12) can be described qualitatively by the graphical model in
Figure 5.3. Equations (5.11) and (5.12) definep(y1:T |s1:M,1:T ). Equations (5.7) (5.9) and (5.10)
relater ands and definep(s1:M,1:T |r1:M,1:T ). In this paper, the prior modelp(r1:M,1:T ) is Markovian
and has the following factorial structure1:

p(r1:M,1:T ) =
∏

m

∏

t

p(rm,t|rm,t−1)

5.2.3 Inference

Given the polyphonic model described in section 5.2, to infer the most likely piano-roll we need
to compute

r∗1:M,1:T = argmax
r1:M,1:T

p(r1:M,1:T |y1:T ) (5.13)

where the posterior is given by

p(r1:M,1:T |y1:T ) =
1

p(y1:T )

∫

s1:M,1:T

p(y1:T |s1:M,1:T )

×p(s1:M,1:T |r1:M,1:T )p(r1:M,1:T )

1In the simulations we have fixed the transition parameterp(r = mute|r = sound) = p(r = sound|r = mute) =
10−7
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The normalization constant,p(y1:T ), obtained by summing the integral term over all configurations
r1:M,1:T is called the evidence.2

Unfortunately, calculating this most likely piano-roll configuration is generally intractable, and
is related to the difficulty of inference in Switching KalmanFilters (Murphy, 1998, 2002). We
shall need to develop approximation schemes for this general case, to which we shall return in a
later section.

As a prelude, we consider a slightly simpler, related model which aims to track the pitch
(melody identification) in a monophonic instrument (playing only a single note at a time), such
as a flute. The insight gained here in the inference task will guide us to a practical approximate
algorithm in the more general case later.

5.3 Monophonic Model

Melody identification, or monophonic pitch tracking with onset and offset detection, can be for-
mulated by a small modification of our general framework. Even this simplified task is still of
huge practical interest, e.g. in real time MIDI conversion for controlling digital synthesizers using
acoustical instruments or pitch tracking from the singing voice. One important problem in real
time pitch tracking is the time/frequency tradeoff: to estimate the frequency accurately, an algo-
rithm needs to collect statistics from a sufficiently long interval. However, this often conflicts with
the real time requirements.

In our formulation, each sound generator is a dynamical system with a sequence of transition
models, sound and mute. The states evolves first according to the sounding regime with transition
matrixAsoundand then according to the muted regime withAmute. The important difference from a
general switching Kalman filter is that when the indicatorr switches from mute to sound, the old
state vector is “forgotten”. By exploiting this fact, in theappendix 5.6.1 we derive, for a single
sound generator (i.e. a single note of a fixed pitch that gets on and off), an exact polynomial time
algorithm for calculating the evidencep(y1:T ) and MAP configurationr∗1:T .

Monophonic pitch tracking

Here we assume that at any given timet only a single sound generator can be sounding, i.e.rj,t =
sound⇒ rj′,t = mute forj′ 6= j. Hence, for practical purposes, the factorial structure ofour
original model is redundant; i.e. we can “share” a single state vectors among all sound generators3.
The resulting model will have the same graphical structure as a single sound generator but with an
indicatorjt ∈ 1 . . .M which indexes the active sound generator, andrt ∈ {sound,mute} indicates
sound or mute. Inference for this case turns out to be also tractable (i.e. polynomial). We allow

2It is instructive to interpret (5.13) from a Bayesian model selection perspective (MacKay, 2003). In this interpre-
tation, we view the set of all piano-rolls, indexed by configurations of discrete indicator variablesr1:M,1:T , as the set
of all models among which we search for the best modelr∗

1:M,1:T . In this view, state vectorss1:M,1:T are the model
parameters that are integrated over. It is well known that the conditional predictive densityp(y|r), obtained through
integration overs, automatically penalizes more complex models, when evaluated aty = y1:T . In the context of piano-
roll inference, this objective will automatically prefer solutions with less notes. Intuitively, this is simply because at
each note onset, the state vectorst is reinitialized using a broad GaussianN (0, S). Consequently, a configuration
r with more onsets will give rise to a conditional predictive distribution p(y|r) with a larger covariance. Hence, a
piano-roll that claims the existence of additional onsets without support from data will get a lower likelihood.

3We ignore the cases when two or more generators are simultaneously in the mute state.
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r0 r1 . . . rT

j0 j1 . . . jT

s0 s1 . . . sT

y1 . . . yT

Figure 5.4: Simplified Model for monophonic transcription.Since there is only a single sound
generator active at any given time, we can represent a piano-roll at each time slice by the tuple
(jt, rt) wherejt is the index of the active sound generator andrt ∈ {sound,mute} indicates the
state.

switching to a newj′ only after an onset. The full generative model using the pairs (jt, rt), which
includes both likelihood and prior terms is given as

rt ∼ p(rt|rt−1)

isonsett = (rt = sound∧ rt−1 = mute)

jt ∼ [¬isonsett]δ(jt; jt−1) + [isonsett]u(jt)

At = [rt = mute]Amute
jt

+ [rt = sound]Asound
jt

st ∼ [¬isonsett]N (Atst−1, Q) + [isonsett]N (0, S)

yt ∼ N (Cst, R)

Hereu(j) denotes a uniform distribution on1, . . . ,M andδ(jt; jt−1) denotes a degenerate (deter-
ministic) distribution concentrated onjt, i.e. unless there is an onset the active sound generator
stays the same. Our choice of a uniformu(j) simply reflects the fact that any new note is as likely
as any other. Clearly, more informative priors, e.g. that reflect knowledge about tonality, can also
be proposed. Similarly, for doing a more precise pitch analysis, we may choose a finer grid such
thatωj+1/ωj = Q. Here,Q is the quality factor, a measure of the desired frequency precision not
to be confused with the transition noiseQ.

The graphical model is shown in Figure 5.4. The derivation ofthe polynomial time infer-
ence algorithm is given in appendix 5.6.2. Technically, it is a simple extension of the single note
algorithm derived in appendix 5.6.1.

In Figure 5.5, we illustrate the results on synthetic data sampled from the model where we
show the filtering densityp(rt, jt|y1:t). After an onset, the posterior becomes quickly crisp, long
before we observe a complete cycle. This feature is especially attractive for real time applications
where a reliable pitch estimate has to be obtained as early aspossible.

We conclude this subsection with an illustration on real data. We have recorded a major scale
on an electric bass and downsampled from the original sampling rate ofFs = 22050 by a factor
of D = 10. We have estimated parameters for a signal model withH = 8 harmonics. The
“training set” consisted of a single note recorded from the same instrument; this procedure will
be discussed in more detail in section 5.5. We have estimatedthe MAP configuration(r, j)1:T

using the algorithm described in appendix 5.6.2. The figure shows that the estimated piano roll is
quite precise. We have repeated the experiment on a pianoroll with a pitch grid of1/4 semitones
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Figure 5.5: Monophonic pitch tracking. (Top) Synthetic data sampled from model in Figure 5.4.
Vertical bars denote the onset and offset times. (Bottom) The filtering densityp(rt, jt|y1:t). The
vertical axis denotes the sound generator indexjt and the gray level denotes the posterior proba-
bility p(rt = sound, jt|y1:t) where black corresponds to1.

500 1000 1500 2000 2500 3000 3500

500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500

Figure 5.6: Monophonic pitch estimation on real data. (Top,left) F major scale played on an
electric bass. (Top, right) Estimated MAP configuration(r, j)1:T . (Bottom, left) A finer analysis
withQ = 21/48 reveals that the 5’th and 7’th degree of the scale are intonated slightly low. (Bottom,
right) Poorer results may be obtained when signal model parameters are not set correctly.

(Q = 21/48). The results reveal that the5’th and7’th degree of the scale were intonated slightly
low, which didn’t had much effect on the estimation of the pitch class when using a coarser grid.
In the last experiment we have trained the model parameters using a note sung by a vocalist. As
expected, the results are poorer; in particular we observe that5’ths or octaves are confused due to
the different harmonic structure and transition characteristics.

Extension to vibrato and legato

The monophonic model has been constructed such that the rotation angleω remains constant.
Although the the transition noise with varianceQ still allows for small and independent deviations
in frequencies of the harmonics, the model is not realistic for situations with systematic pitch
drift or fluctuation, e.g. as is the case with vibrato. Moreover, on many musical instruments,
it is possible to playlegato, that is without an explicit onset between note boundaries.In our
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Figure 5.7: Tracking varying pitch. Top and middle panel show the true piano-roll and the sampled
signal. The estimated piano-roll is shown below.

framework, pitch drift and legato can be modelled as a sequence of transition models. Consider
the generative process for the note indexj:

rt ∼ p(rt|rt−1)

isonsett = (rt = sound∧ rt−1 = mute)

issoundt = (rt = sound∧ rt−1 = sound)

jt ∼ [issoundt]d(jt|jt−1) +

[rt = mute]δ(jt; jt−1) + [isonsett]u(jt)

Here,d(jt|jt−1) is a multinomial distribution reflecting our prior belief how likely is it to switch be-
tween notes. Whenrt = mute, there is no regime change, reflected by the deterministic distribution
δ(jt; jt−1) peaked aroundjt−1. Remember that neighbouring notes have also close fundamental fre-
quencyω. To simulate pitch drift, we choose a fine grid such thatωj/ωj+1 = Q. In this case, we
can simply defined(jt|jt−1) as a multinomial distribution with support on[jt−1 − 1, jt−1, jt−1 + 1]
with cell probabilities[d−1 d0 d1]. We can take a larger support ford(jt|jt−1), but in practice we
would rather reduce the frequency precisionQ to avoid additional computational cost.

Unfortunately, the terms included by the drift mechanism render an exact inference procedure
intractable. We derive the details of the resulting algorithm in the appendix 5.6.2. A simple
deterministic pruning method is described in appendix 5.6.2. In Figure 5.7, we show the estimated
MAP trajectoryr∗1:T for drifting pitch. We use a model where the quality factor isQ = 2−120, (120
generators per octave) with drift probabilityd−1 = d1 = 0.1. A fine pitch contour, that is accurate
to sample precision, can be estimated.

5.4 Polyphonic Inference

In this section we return to the central goal of inference in the general polyphonic model described
in section 5.2. To infer the most likely piano-roll we need tocomputeargmax

r1:M,1:T

p(r1:M,1:T |y1:T ) de-

fined in (5.13). Unfortunately, the calculation of (5.13) isintractable. Indeed, even the calculation
of the Gaussian integral conditioned on a particular configurationr1:M,1:T using standard Kalman
filtering equations is prohibitive since the dimension of the state vector is|s| = 2H ×M , where
H is the number of harmonics. For a realistic application we may haveM ≈ 50 andH ≈ 10. It is
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clear that unless we are able to develop efficient approximation techniques, the model will be only
of theoretical interest.

5.4.1 Vertical Problem: Chord identification

Chord identification is the simplest polyphonic transcription task. Here we assume that a given
audio signaly1:T is generated by a piano-roll whererj,t = rj for all4 j = 1 . . .M . The task is to
find the MAP configuration

r∗1:M = argmax
r1:M

p(y1:T , r1:M)

Each configuration corresponds to a chord. The two extreme cases are “silence” and “cacophony”
that correspond to configurationsr1:M [mute mute . . . mute] and[sound sound . . . sound]
respectively. The size of the search space in this case2M , which is prohibitive for direct computa-
tion.

A simple approximation is based on greedy search: we start iterative improvement from an
initial configurationr(0)

1:M (silence, or randomly drawn from the prior). At each iteration i, we
evaluate the probabilityp(y1:T , r1:M) of all neighbouring configurations ofr(i−1)

1:M . We denote this
set byneigh(r

(i−1)
1:M ). A configurationr′ ∈ neigh(r), if r′ can be reached fromr within a single flip

(i.e., we add or remove single notes). Ifr(i−1)
1:M has a higher probability than all its neighbours, the

algorithm terminates, having found a local maximum. Otherwise, we pick the neighbour with the
highest probability and set

r
(i)
1:M = argmax

r1:M∈neigh(r
(i−1)
1:M )

p(y1:T , r1:M)

and iterate until convergence. We illustrate the algorithmon a signal sampled from the generative
model, see Figure 5.8. This procedure is guaranteed to converge to a (possibly local) maxima.
Nevertheless, we observe that for many examples this procedure is able to identify the correct
chord. Using multiple restarts from different initial configurations will improve the quality of the
solution at the expense of computational cost.

One of the advantages of our generative model based approachis that we can in principle infer
a chord given any subset of data. For example, we can simply downsampley1:T (without any
preprocessing) by an integer factor ofD and view the discarded samples as missing values. Of
course, whenD is large, i.e. when we throw away many samples, due to diminishing likelihood
contribution, we obtain a diffuse posterior on the piano-roll and eventually the results will be
poorer.

In Figure 5.9, we show the results of such an experiment. We have downsampledy1:T with
factorD = 2, 3 and4. The energy spectrum is quite coarse due to the short length of the data.
Consequently many harmonics are not resolved, e.g. we can not identify the underlying line spec-
trum by visual inspection. Methods based on template matching or identification of peaks may
have serious problems for such examples. On the other hand, our model driven approach is able
to identify the true chord. We note that, the presented results are illustrative only and the actual
behaviour of the algorithm (sensitivity toD, importance of starting configuration) will depend on
the details of the signal model.

4We will assume that initially we start from silence whererj,0 = mute for allj = 1 . . .M
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iteration r1 rM log p(y1:T , r1:M )

1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ −1220638254

2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ −665073975

3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • −311983860

4 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • −162334351

5 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • −43419569

6 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −1633593

7 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −14336

8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −5766

9 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −5210

10 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −4664

True ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −4664

Figure 5.8: We have first drawn a random piano-roll configuration (a random chord)r1:M . Given
r1:M , we generate a signal of length400 samples with a sampling frequencyFs = 4000 from
p(y1:T |r1:M). We assume 24 notes (2 octaves). The synthesized signal fromthe generative model
and its discrete time Fourier transform modulus are shown above. The true chord configuration and
the associated log probability is at the bottom of the table.For the iterative algorithm, the initial
configuration in this example was silence. At this point we compute the probability for each single
note configurations (all one flip neighbours of silence). Thefirst note that is added is actually not
present in the chord. Until iteration9, all iterations add extra notes. Iteration9 and10 turn out to be
removing the extra notes and iterations converge to the truechord. The intermediate configurations
visited by the algorithm are shown in the table below. Here, sound and mute states are represented
by •’s and◦’s.
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D p(y1:D:T , r1:M ) Init

2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −2685 True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ • ◦ • ◦ • −3179 Silence

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −2685 Random

3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −2057 True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −2057 Silence

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • • • • ◦ ◦ • −2616 Random

4 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −1605 True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ −1668 Silence

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ −1591 Random

Figure 5.9: Iterative improvement results when data are subsampled by a factor ofD = 2, 3 and
4, respectively. For each factorD, the top line shows the true configuration and the corresponding
probability. The second line is the solution found by starting from silence and the third line is
starting from a random configuration drawn form the prior (best of3 independent runs).
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5.4.2 Piano-Roll inference Problem: Joint Chord and Melodyidentification

The piano-roll estimation problem can be viewed as an extension of chord identification in that we
also detect onsets and offsets for each note within the analysis frame. A practical approach is to
analyze the signal in sufficiently short time windows and assume that for each note, at most one
changepoint can occur within the window.

Consider data in a short window, sayy1:W . We start iterative improvement from a configuration
r
(0)
1:M,1:W , where each time slicer(0)

1:M,t for t = 1 . . .W is equal to a “chord”r1:M,0. The chordr1:M,0

can be silence or, during a frame by frame analysis, the last time slice of the best configuration
found in the previous analysis window. Let the configurationat i − 1’th iteration be denoted as
r
(i−1)
1:M,1:W . At each new iterationi, we evaluate the posterior probabilityp(y1,W , r1:M,1:W ), where

r1:M,1:W runs over all neighbouring configuration ofr(i−1)
1:M,1:W . Each memberr1:M,1:W of the neigh-

bourhood is generated as follows: For eachj = 1 . . .M , we clamp all the other rows, i.e. we set
rj′,1:W = r

(i−1)
j′,1:W for j′ 6= j. For each time stept = 1 . . .W , we generate a new configuration such

that the switches up to timet are equal to the initial switchrj,0, and its opposite¬rj,0 after t, i.e.
rj,t′ = rj,0[t

′ < t] + ¬rj,0[t
′ ≥ t]. This is equivalent to saying that a sounding note may get muted,

or a muted note may start to sound. The computational advantage of allowing only one change-
point at each row is that the probability of all neighbouringconfigurations for a fixedj can be
computed by a single backward, forward pass (Cemgil & Kappen, 2003; Murphy, 2002). Finally,
we pick the neighbour with the maximum probability. The algorithm is illustrated in Figure 5.10.

The analysis for the whole sequence proceeds as follows: Consider two successive analy-
sis windowsYprev ≡ y1:W andY ≡ yW+1:2W . Suppose we have obtained a solutionR∗

prev ≡
r∗1:M,1:W obtained by iterative improvement. Conditioned onR∗

prev, we compute the posterior
p(s1:M,W |Yprev, R

∗
prev) by Kalman filtering. This density is the prior ofs for the current analysis

window Y . The search starts from a chord equal to the last time slice ofR∗
prev. In Fig. 5.11 we

show an illustrative result obtained by this algorithm on synthetic data. In similar experiments with
synthetic data, we are often able to identify the correct piano-roll.

This simple greedy search procedure is somewhat sensitive to location of onsets within the
analysis window. Especially, when an onset occurs near the end of an analysis window, it may be
associated with an incorrect pitch. The correct pitch is often identified in the next analysis window,
when a longer portion of the signal is observed. However, since the basic algorithm does not allow
for correcting the previous estimate by retrospection, this introduces some artifacts. A possible
method to overcome this problem is to use a fixed lag smoothingapproach, where we simply carry
out the analysis on overlapping windows. For example, for ananalysis windowYprev ≡ y1:W , we
find r∗1:M,1:W . The next analysis window is taken asyL+1:W+L whereL ≤ W . We find the prior
p(s1:M,L|y1:L, r

∗
1:M,1:L) by Kalman filtering. On the other hand, obviously, the algorithm becomes

slower by a factor ofL/W .
An optimal choice forL andW will depend upon many factors such as signal characteristics,

sampling frequency, downsampling factorD, onset/offset positions, number of active sound gen-
erators at a given time as well as the amount of CPU time available. In practice, these values may
be critical and they need to be determined by trial and error.On the other hand, it is important
to note thatL andW just determine how the approximation is made but not enter the underlying
model.

5.5 Learning

In the previous sections, we assumed that the correct signalmodel parametersθ = (S, ρ,Q,R)
were known. These include in particular the damping coefficientsρsound, ρmute, transition noise
varianceQ, observation noiseR and the initial prior covariance matrixS after an onset. In practice,
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Figure 5.10: Iterative improvement with changepoint detection. The true piano-roll, the signal
and its Fourier transform magnitude are shown in Figure 5.10.(a). In Figure 5.10.(b), configura-
tions r(i) visited during iterative improvement steps. Iteration numbersi are shown left and the
corresponding probability is shown on the right. The initial configuration (i.e. “chord”)r1:M,0 is
set to silence. At the first step, the algorithm searches all single note configurations with a single
onset. The winning configuration is shown on top panel of Figure 5.10.(b). At the next iteration,
we clamp the configuration for this note and search in a subsetof two note configurations. This
procedure adds and removes notes from the piano-roll and converges to a local maxima. Typically,
the convergence is quite fast and the procedure is able to identify the true chord without making a
“detour” as in (b).
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Figure 5.11: A typical example for Polyphonic piano-roll inference from synthetic data. We gen-
erate a realistic piano-roll (top) and render a signal usingthe polyphonic model (middle). Given
only the signal, we estimate the piano-roll by iterative improvement in successive windows (bot-
tom). In this example, only the offset time of the lowest noteis not estimated correctly. This is a
consequence that, for long notes, the state vectors converges to zero before the generator switches
to the mute state.

for an instrument class (e.g. plucked string instruments) areasonable range forθ can be specified a-
priori. We may safely assume thatθ will be static (not time dependent) during a given performance.
However, exact values for these quantities will vary among different instruments (e.g. old and new
strings) and recording/performance conditions.

One of the well-known advantages of Bayesian inference is that, when uncertainty about pa-
rameters is incorporated in a model, this leads in a natural way to the formulation of a learning
algorithm. The piano-roll estimation problem, omitting the time indices, can be stated as follows:

r∗ = argmax
r

∫

θ

∫

s

p(y|s, θ)p(s|r, θ)p(θ)p(r) (5.14)

In other words, we wish to find the best piano-roll by taking into account all possible settings of the
parameterθ, weighted by the prior. Note that (5.14) becomes equivalentto (5.13), if we knew the
“best” parameterθ∗, i.e. p(θ) = δ(θ−θ∗). Unfortunately, the integration onθ can not be calculated
analytically and approximation methods must be used (Ghahramani & Beal, 2000). A crude but
computationally cheap approximation replaces the integration onθ in (5.14) with maximization:

r∗ = argmax
r

max
θ

∫

s

p(y|s, θ)p(s|r, θ)p(θ)p(r)

Essentially, this is a joint optimization problem on piano-rolls and parameters which we solve by
a greedy coordinate ascent algorithm. The algorithm we propose is a double loop algorithm where
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we iterate in the outer loop between maximization overr and maximization overθ. The latter
maximization itself is calculated with an iterative algorithm EM.

r(i) = argmax
r

∫

s

p(y|s, θ(i−1))p(s|r, θ(i−1))p(θ(i−1))p(r)

θ(i) = argmax
θ

∫

s

p(y|s, θ)p(s|r(i), θ)p(θ)p(r(i))

For a single note, conditioned on a fixedθ(i−1), r(i) can be calculated exactly, using the message
propagation algorithm derived in appendix 5.6.2. Conditioned onr(i), maximization on theθ
coordinate becomes equivalent to parameter estimation in linear dynamical systems, for which no
closed form solution is known. Nevertheless, this step can be calculated by an iterative expectation
maximization (EM) algorithm (Murphy, 2002; Ghahramani & Hinton, 1996). In practice, we
observe that for realistic starting conditionsθ(0), the r(i) are identical, suggesting that the best
segmentationr∗ is not very sensitive to variations inθ near to a local optimum. In Figure 5.12, we
show the results of training the signal model based on a single note (a C from the low register) of
an electric bass.

In an experiment with real data, we illustrate the performance of the model for two and three
note polyphony (See Fig.5.13). We have recorded three separate monophonic melodies; ascending
modes of the major scale starting from the root,3’rd and5’th degree of a major scale. We have
estimated model parameters using a single note from the sameregister. For each monophonic
melody, we have calculated the ground truthrtrue

1:M,1:T by the algorithm described in section 5.3. We
have constructed the two note example by adding the first two melodies. The analysis is carried
out using a window length ofW = 200 samples, without overlap between analysis frames (i.e.
L = W ). We were able to identify the correct pitch classes for the two note polyphony case.
However, especially some note offsets are not detected correctly. In the three note case, pitch
classes are correct, but there are also more artifacts, e.g.the chord arround sample index500 is
identified incorrect. We expect results to go worse with increasing polyphony; this behaviour is
qualitatively similar to other methods reported in the literature, e.g. (Sterian, 1999; Walmsley,
2000), but clearly, more simulation studies have to be carried out for an objective comparison.

Investigating the loglikelihood ratiolog
p(y1:T |rtrue

1:M,1:T )p(rtrue
1:M,1:T )

p(y1:T |r∗1:M,1:T )p(r∗1:M,1:T )
≫ 0 suggests that the failure is due

to the suboptimal estimation procedure, i.e. the model prefers the true solution but our greedy
algorithm is unable to locate it and gets stuck inr∗1:M,1:T , wherer∗ denotes here the configuration
found by the algorithm. In the conclusions section, we will discuss some alternative approximation
methods to improve results.

5.6 Discussion

We have presented a model driven approach where transcription is viewed as a Bayesian inference
problem. In this respect, at least, our approach parallels the previous work of Walmsley (2000),
Davy and Godsill (2003), Raphael (2002). We believe, however, that our formulation, based on a
switching state space model, has several advantages. We canremove the assumption of a frame
based model and this enables us to analyse music online and tosample precision. Practical ap-
proximations to an eventually intractable exact posteriorcan be carried out frame-by-frame, such
as by using a fixed time-lag smoother. This, however, is merely a computational issue (albeit a
very important one). We may also discard samples to reduce computational burden, and account
for this correctly in our model.

An additional advantage of our formulation is that we can still deliver a pitch estimate even
when the fundamental and lower harmonics of the frequency band are missing. This is related to
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(a) A single note from an electric bass. Original sampling rate
of 22050 Hz is reduced by downsampling with factorD = 20.
Vertical lines show the changepoints of the MAP trajectoryr1:K .
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(b) Top to Bottom: Fourier transform of the downsampled signal
and diagonal entries ofS, Q and damping coefficientsρsound for
each harmonic.

Figure 5.12: Training the signal model with EM from a single note from an electric bass using a
sampling rate of22050 Hz. The original signal is downsampled by a factor ofD = 20. Given
some crude first estimate for model parametersθ(0)(S, ρ,Q,R), we estimater(1), shown in (a).
Conditioned onr(1), we estimate the model parametersθ(1) and so on. LetSh denote the2 × 2
block matrix from the diagonalS, corresponding to theh’th harmonic, similarly forQh. In (b), we
show the estimated parameters for each harmonic sum of diagonal elements, i.e.TrSh andTrQh.
The damping coefficient is found asρsound = (detAhA

T
h )1/4 whereAh is a2 × 2 diagonal block

matrix of transition matrixAsound. For reference, we also show the Fourier transform modulus
of the downsampled signal. We can see, that on the low frequency bands,S mimics the average
energy distribution of the note. However, transient phenomena, such as the strongly damped7’th
harmonic with relatively high transition noise, is hardly visible in the frequency spectrum. On the
other hand for online pitch detection, such high frequency components are important to generate a
crisp estimate as early as possible.
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(a) (Top) The ground truth estimated when all melodies are transcribed
separately. (Middle) The superposition of melodies downsampled by
a factor ofD = 10. (Bottom) Piano-roll estimated with an analysis
window of sizeW = 200 samples, without overlap between analysis
frames
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(b) Result for the same experiment with three notes polyphony.

Figure 5.13: Experiment with two and three note polyphony.
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so calledvirtual pitch perception (Terhardt, 1974): we tend to associate notes with a pitch class
depending on the relationship between harmonics rather than the frequency of the fundamental
component itself.

There is a strong link between model selection and polyphonic music transcription. In chord
identification we need to compare models with different number of notes, and in melody identi-
fication we need to deduce the number of onsets. Model selection becomes conceptually harder
when one needs to compare models of different size. We partially circumvent this difficulty by
using switch variables, which implicitly represent the number of components.

Following the established signal processing jargon, we maycall our approach a time-domain
method, since we are not explicitly calculating a discrete-time Fourier transform. On the other
hand, the signal model presented here has close links to the Fourier analysis and sinusoidal mod-
elling. Our analysis can be interpreted as a search procedure for a sparse representation on a set
of basis vectors. In contrast to Fourier analysis, where thebasis vectors are sinusoids (e.g. see
(Qi, Minka, & Picard, 2002) for a Bayesian treatment), we represent the observed signal implic-
itly using signals drawn from a stochastic process which typically generates decaying periodic
oscillations (e.g. notes) with occasional changepoints. The sparsity of this representation is a con-
sequence of the onset mechanism, that effectively puts a mixture prior over the hidden state vector
s. This prior is peaked around zero and has broad tails, indicating that most of the sources are
muted and only a few are sounding. It is well known that such Gaussian mixture priors induce
sparse representations, e.g. see (Attias, 1999; Olshausen& Millman, 2000) for applications in the
context of source separation.

5.6.1 Future work

Although our approach has many desirable features (automatically deducing number of correct
notes, high temporal resolution e.t.c.), one of the main disadvantage of our method is computa-
tional cost associated with updating large covariance matrices in Kalman filtering. It would be
very desirable to investigate approximation schemas that employ fast transformations such as the
FFT to accelerate computations.

When transcribing music, human experts rely heavily on prior knowledge about the musical
structure – harmony, tempo or expression. Such structure can be captured by training probabilis-
tic generative models on a corpus of compositions and performances by collecting statistics over
selected features (e.g. (Raphael & Stoddard, 2003)). One ofthe important advantages of our
approach is that such prior knowledge about the musical structure can be formulated as an in-
formative prior on a piano-roll; thus can be integrated in signal analysis in a consistent manner.
We believe that investigation of this direction is important in designing robust and practical music
transcription systems.

Our signal model considered here is inspired by additive synthesis. An advantage of our linear
formulation is that we can use the Kalman filter recursions tointegrate out the continuous latent
state analytically. An alternative would be to formulate a nonlinear dynamical system that imple-
ments a nonlinear synthesis model (e.g. FM synthesis, waveshaping synthesis, or even a physical
model(Smith, 1992)). Such an approach would reduce the dimensionality of the latent state space
but force us to use approximate integration methods such as particle filters or EKF/UKF (Doucet
et al., 2001). It remains an interesting open question whether, in practice, one should trade-off
analytical tractability versus reduced latent state dimension.

In this paper, for polyphonic transcription, we have used a relatively simple deterministic infer-
ence method based on iterative improvement. The basic greedy algorithm, whilst still potentially
useful in practice, may get stuck in poor solutions. We believe that, using our model as a frame-
work, better polyphonic transcriptions can be achieved using more elaborate inference or search
methods. For example, computation time associated with exhaustive search of the neighbourhood
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for all visited configuations could be significantly reducedby randomizing the local search (e.g. by
Metropolis-Hastings moves) or use heuristic proposal distributions derived from easy-to-compute
features such as the energy spectrum. Alternatively, sequential Monte Carlo methods or determin-
istic message propagation algorithms such as Expectation propagation (EP) (Minka, 2001) could
be also used.

We have not yet tested our model for more general scenarios, such as music fragments con-
taining percussive instruments or bell sounds with inharmonic spectra. Our simple periodic signal
model would be clearly inadequate for such a scenario. On theother hand, we stress the fact that the
framework presented here is not only limited to the analysisof signals with harmonic spectra, and
in principle applicable to any family of signals that can be represented by a switching state space
model. This is already a large class since many real-world acoustic processes can be approximated
well with piecewise linear regimes. We can also formulate a joint estimation schema for unknown
parameters as in (5.14) and integrate them out (e.g. see Davyand Godsill (2003)). However, this
is currently a hard and computationally expensive task. If efficient and accurate approximate in-
tegration methods can be developed, our model will be applicable to mixtures of many different
types of acoustical signals and may be useful in more generalauditory scene analysis problems.

Appendix 5.A Derivation of message propagation algorithms

In the appendix, we derive several exact message propagation algorithms. Our derivation closely
follows the standard derivation of recursive prediction and update equations for the Kalman filter
(Bar-Shalom & Li, 1993). First we focus on a single sound generator. In appendix 5.6.1 and 5.6.2,
we derive polynomial time algorithms for calculating the evidencep(y1:T ) and MAP configuration
r∗1:T = argmax

r1:T

p(y1:T , r1:T ) respectively. The MAP configuration is useful for onset/offset detec-

tion. In the following section, we extend the onset/offset detection algorithms to monophonic pitch
tracking with constant frequency. We derive a polynomial time algorithm for this case in appendix
5.6.2. The case for varying fundamental frequency is derived in the following appendix 5.6.2. In
appendix 5.6.2 we describe heuristics to reduce the amount of computations.

5.A.1 Computation of the evidencep(y1:T ) for a single sound generator by
forward filtering

We assume a Markovian prior on the indicatorsrt wherep(rt = i|rt−1 = j) ≡ pi,j. For conve-
nience, we repeat the generative model for a single sound generator by omitting the note index
j.

rt ∼ p(rt|rt−1)

isonsett = (rt = sound∧ rt−1 = mute)

st ∼ [¬isonsett]N (Art
st−1, Q) + [isonsett]N (0, S)

yt ∼ N (Cst, R)

For simplicity, we will sometime use the labels1 and2 to denote sound and mute respectively. We
enumerate the transition models asfrt

(st|st−1) = N (Art
st−1, Q). We define the filtering potential

as

αt ≡ p(y1:t, st, rt, rt−1) =
∑

r1:t−2

∫

s0:t−1

p(y1:t, s0:t, r1:t)
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We assume thaty is always observed, hence we use the term potential to indicate the fact that
p(y1:t, st, rt, rt−1) is not normalized. The filtering potential is in general a conditional Gaussian
mixture, i.e. a mixture of Gaussians for each configuration of rt−1:t. We will highlight this data
structure by using the following notation

αt ≡
{

α1,1
t α1,2

t

α2,1
t α2,2

t

}

where eachαi,j
t = p(y1:t, st, rt = i, rt−1 = j) for i, j = 1 . . . 2 are also Gaussian mixture poten-

tials. We will denote the conditional normalization constants as

Z i
t ≡ p(y1:t, rt = i) =

∑

rt−1

∫

st

α
i,rt−1

t

Consequently the evidence is given by

Zt ≡ p(y1:t) =
∑

rt

∑

rt−1

∫

st

αt =
∑

i

Z i
t

We also define the predictive density

αt|t−1 ≡ p(y1:t−1, st, rt, rt−1)

=
∑

rt−2

∫

st−1

p(st|st−1, rt, rt−1)p(rt|rt−1)αt−1

In general, for switching Kalman filters, calculating exactposterior features, such as the evi-
denceZt = p(y1:t), is not tractable. This is a consequence of the fact that the number of mixture
components to required to represent the exact filtering density αt grows exponentially with time
stepk (i.e. one Gaussian for each of the exponentially many configurationsr1:t). Luckily, for the
model we are considering here, the growth is polynomial ink only. See also (Fearnhead, 2003).

To see this, suppose we have the filtering density available at time t − 1 asαt−1. The tran-
sition models can be organized also in a table wherei’th row and j’th column correspond to
p(st|st−1, rt = i, rt−1 = j)

p(st|st−1, rt, rt−1) =

{

f1(st|st−1) π(st)
f2(st|st−1) f2(st|st−1)

}

Calculation of the predictive potential is straightforward. First, summation overrt−2 yields

∑

rt−2

αt−1 =

{

α1,1
t−1 + α1,2

t−1

α2,1
t−1 + α2,2

t−1

}

≡
{

ξ1
t−1

ξ2
t−1

}

Integration overst−1 and multiplication byp(rt|rt−1) yields the predictive potential

αt|t−1 =

{

p1,1ψ
1
1(st) p1,2Z

2
t−1π(st)

p2,1ψ
1
2(st) p2,2ψ

2
2(st)

}

where we define

Z2
t−1 ≡

∫

st−1

ξ2
t−1 ψj

i (st) ≡
∫

st−1

fi(st|st−1)ξ
j
t−1
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The potentialsψj
i can be computed by applying the standard Kalman prediction equations to each

component ofξj
t−1. The updated potential is given byαt = p(yt|st)αt|t−1. This quantity can be

computed by applying standard Kalman update equations to each component ofαt|t−1.
From the above derivation, it is clear thatα1,2

t has only a single Gaussian component. This
has the consequence that the number of Gaussian components in α1,1

t increases only linearly (the
first row-sum termsξ1

t−1 propagated throughf1). The second row sum termξ2
t is more costly; it

increases at every time slice by the number of components inξ1
t−1. Since the size ofξ1

t−1 grows
linearly, the size ofξ2

t grows quadratically with timet.

5.6.2 Computation of MAP configuration r∗1:T

The MAP state is defined as

r∗1:T = argmax
r1:T

∫

s0:T

p(y1:T , s0:T , r1:T )

≡ argmax
r1:T

∫

s0:T

φ(s0:T , r1:T )

For finding the MAP state, we replace summations overrt by maximization. One potential
technical difficulty is that, unlike in the case for evidencecalculation, maximization and integration
do not commute. Consider a conditional Gaussian potential

φ(s, r) ≡ {φ(s, r = 1), φ(s, r = 2)}
whereφ(s, r) are Gaussian potentials for each configuration ofr. We can compute the MAP
configuration

r∗ = argmax
r

∫

s

φ(s, r) = argmax
{

Z1, Z2
}

whereZj =
∫

s
φ(s, r = j). We evaluate the normalization of each component (i.e. integrate over

the continuous hidden variables first) and finally find the maximum of all normalization constants.
However, direct calculation ofr∗1:T is not feasible because of exponential explosion in the num-

ber of distinct configurations. Fortunately, for our model,we can introduce a deterministic pruning
schema that reduces the number of kernels to a polynomial order and meanwhile guarantees that
we will never eliminate the MAP configuration. This exact pruning method hinges on the factor-
ization of the posterior for the assignment of variablesrt = 1, rt−1 = 2 (mute to sound transition)
that breaks the direct link betweenst andst−1:

φ(s0:T , r1:t−2, rt−1 = 2, rt = 1, rt+1:T ) =

φ(s0:t−1, r1:t−2, rt−1 = 2)φ(st:T , rt+1:T , rt = 1|rt−1 = 2) (5.15)

In this case:

maxr1:T

∫

s0:T
φ(s0:T , r1:t−2, rt−1 = 2, rt = 1, rt+1:T )

= maxr1:t−1

∫

s0:t−1
φ(s0:t−1, r1:t−2, rt−1 = 2)

×maxrt:T

∫

st:T
φ(st:T , rt+1:T , rt = 1|rt−1 = 2)

= Z2
t ×maxrt+1:T

∫

st:T
φ(st:T , rt+1:T , rt = 1|rt−1 = 2) (5.16)

This Equation shows that whenever we have an onset, we can calculate the maximum over the past
and future configurations separately. Put differently, provided that the MAP configuration has the
form r∗1:T = [r∗1:t−3, rt−1 = 2, rt = 1, r∗t+1:T ], the prefix[r∗1:t−3, rt−1 = 2] will be the solution for
the reduced maximization problemarg maxr1:t−1

∫

s0:t−1
φ(s0:t−1, r1:t−1).
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Forward pass

Suppose we have a collection of Gaussian potentials

δt−1 ≡
{

δ1,1
t−1 δ1,2

t−1

δ2,1
t−1 δ2,2

t−1

}

≡
{

δ1
t−1

δ2
t−1

}

with the property that the Gaussian kernel corresponding the prefixr∗1:t−1 of the MAP state is a
member ofδt−1, i.e.φ(st−1, r

∗
1:t−1) ∈ δt−1 s.t. r∗1:T = [r∗1:t−1, r

∗
t:T ]. We also define the subsets

δi,j
t−1 = {φ(st−1, r1:t−1) : φ ∈ δt−1andrt−1 = i, rt−2 = j}
δi
t−1 =

⋃

j

δi,j
t−1

We show how we findδt. The prediction is given by

δt|t−1 =

∫

st−1

p(st|st−1, rt, rt−1)p(rt|rt−1)δt−1

The multiplication byp(rt|rt−1) and integration overst−1 yields the predictive potentialδt|t−1

{

p1,1

∫

st−1
f1(st|st−1)δ

1
t−1 p1,2π(st)

∫

st−1
δ2
t−1

p2,1

∫

st−1
f2(st|st−1)δ

1
t−1 p2,2

∫

st−1
f2(st|st−1)δ

2
t−1

}

By the (5.16), we can replace the collection of numbers
∫

st−1
δ2
t−1 with with the scalarZ2

t−1 ≡
max

∫

st−1
δ2
t−1 without changing the optimum solution:

δ1,2
t|t−1 = p1,2Z

2
t−1π(st)

The updated potential is given byδt = p(yt|st)δt|t−1. The analysis of the number of kernels
proceeds as in the previous section.

Decoding

During the forward pass, we tag each Gaussian component ofδt with its past history ofr1:t. The
MAP state can be found by a simple search in the collection of polynomially many numbers and
reporting the associated tag:

r∗1:T = argmax
r1:T

∫

sT

δT

We finally conclude that the forward filtering and MAP (Viterbi path) estimation algorithms are
essentially identical with summation replaced by maximization and an additional tagging required
for decoding.

5.A.3 Inference for monophonic pitch tracking

In this section we derive an exact message propagation algorithm for monophonic pitch tracking.
Perhaps surprisingly, inference in this case turns out to bestill tractable. Even though the size
of the configuration spacer1:M,1:T is of size(M + 1)T = O(2T log M), the space complexity of an
exact algorithm remains quadratic int. First, we define a “mega” indicator nodezt = (jt, rt) where
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jt ∈ 1 . . .M indicates the index of the active sound generator andrt ∈ {sound,mute} indicates its
state. The transition modelp(zt|zt−1) is a large sparse transition table with probabilities



















p1,1 p1,2/M . . . p1,2/M
. . .

...
. . .

...
p1,1 p1,2/M . . . p1,2/M

p2,1 p2,2

. . . . . .
p2,1 p2,2



















(5.17)

where the transitionsp(zt = (j, r)|zt−1 = (j′, r′)) are organized at then’th row andm’th column
wheren = r×M + j− 1 andm = r′×M + j′− 1. (5.17). The transition modelsp(st|st−1, zt =
(j, r), zt−1 = (j′, r′)) can be organized similarly:



















f1,1 π(st) . . . π(st)
. . .

...
. . .

...
f1,M π(st) . . . π(st)

f2,1 f2,1

. . . . . .
f2,M f2,M



















Here,fr,j ≡ fr,j(st|st−1) denotes the transition model of thej’th sound generator when in stater.
The derivation for filtering follows the same lines as the onset/offset detection model, with only
slightly more tedious indexing. Suppose we have the filtering density available at timet − 1 as
αt−1. We first calculate the predictive potential. Summation over zt−2 yields the row sums

ξ
(r,j)
t−1 =

∑

r′,j′

α
(r,j),(r′,j′)
t−1

Integration overst−1 and multiplication byp(zt|zt−1) yields the predictive potentialαt|t−1. The
components are given as

α
(r,j)(r′,j′)
t|t−1 =

{

(1/M)pr,r′π(st)Z
(r′,j′)
t−1 r = 1 ∧ r′ = 2

[j = j′]× pr,r′ψ
(r,j)(r′,j′)
t otherwise

(5.18)

where we define

Z
(r′,j′)
t−1 ≡

∫

st−1

ξ
(r′,j′)
t−1

ψ
(r,j)(r′,j′)
t ≡

∫

st−1

fr,j(st|st−1)ξ
(r′,j′)
t−1

The potentialsψ can be computed by applying the standard Kalman prediction equations to each
component ofξ. Note that the forward messages have the same sparsity structure as the prior, i.e.
α

(r,j)(r′,j′)
t−1 6= 0 whenp(rt = r, jt = j|rt−1 = r′, jt = j′) is nonzero. The updated potential is

given byαt = p(yt|st)αt|t−1. This quantity can be computed by applying standard Kalman update
equations to each nonzero component ofαt|t−1.
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5.A.4 Monophonic pitch tracking with varying fundamental f requency

We model pitch drift by a sequence of transition models. We choose a grid such thatωj/ωj+1 = Q,
whereQ is close to one. Unfortunately, the subdiagonal terms introduced to the prior transition
matrixp(zt = (1, jt)|zt−1 = (1, jt−1))

p1,1 ×















(d0 + d1) d−1

d1 d0 d−1

d1
. . . . . .
. . . d0 d−1

d1 (d0 + d−1)















(5.19)

render an exact algorithm exponential int. The recursive update equations, starting withαt−1, are
obtained by summing overzt−2, integration overst−1 and multiplication byp(zt|zt−1). The only
difference is that the prediction equation (5.18) needs to be changed to

α
(r,j)(r′,j′)
t|t−1 =











d(j − j′)× pr,r′ψ
(r,j)(r′,j′)
t r = 1 ∧ r′ = 1

(1/M)pr,r′π(st)Z
(r′,j′)
t−1 r = 1 ∧ r′ = 2

[j = j′]× pr,r′ψ
(r,j)(r′,j′)
t r = 2

whereψ and Z are defined in (5.19). The reason for the exponential growth is the follow-
ing: Remember that eachψ(r,j)(r′,j′) has as many components as an entire row sum ofξ

(r,j)
t−1 =

∑

r′,j′ α
(r,j),(r′,j′)
t−1 . Unlike the inference for piecewise constant pitch estimation, now at some rows

there are two or more messages (e.g.α
(1,j)(1,j)
t|t−1 andα(1,j)(1,j+1)

t|t−1 ) that depend onψ.

Appendix 5.B Computational Simplifications

5.B.1 Pruning

Exponential growth in message size renders an algorithm useless in practice. Even in special
cases, where the message size increases only polynomially in T , this growth is still prohibitive for
many applications. A cheaper approximate algorithm can be obtained by pruning the messages.
To keep the size of messages bounded, we limit the number of components toN and store only
components with the highest evidence. An alternative is discarding components of a message that
contribute less than a given fraction (e.g.0.0001) to the total evidence. More sophisticated pruning
methods with profound theoretical justification, such as resampling (Cemgil & Kappen, 2003) or
collapsation (Heskes, 2002), are viable alternatives but these are computationally more expensive.
In our simulations, we observe that using a simple pruning method with the maximum number of
components per message set toN = 100, we can obtain results very close to an exact algorithm.

5.B.2 Kalman filtering in a reduced dimension

Kalman filtering with a large state dimension|s| at typical audio sampling ratesFs ≈ 40 kHz
may be prohibitive with generic hardware. This problem becomes more severe when the number
of notesM is large, (which is typically around50 − 60), than even conditioned on a particular
configurationr1:M , the calculation of the filtering density is expensive. Hence, in an implementa-
tion, tricks of precomputing the covariance matrices can beconsidered (Bar-Shalom & Li, 1993)
to further reduce the computational burden.
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Another important simplification is less obvious from the graphical structure and is a conse-
quence of the inherent asymmetry between the sound and mute states. Typically, when a note
switches and stays for a short period in the mute state, i.e.rj,t = mute for some period, the
marginal posterior over the state vectorsj,t will converge quickly to a zero mean Gaussian with a
small covariance matrixregardlessof observationsy. We exploit this property to save computa-
tions by clamping the hidden states for sequences ofsj,t:t′ to zero forrj,t:t′ = “mute”. This reduces
the hidden state dimension, since typically, only a few sound generators will be in sound state.
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Samenvatting

Muziektranscriptie kan worden beschouwd als het omzetten van een gedigitaliseerde opname van
een muziekuitvoering in een beschrijving die voor mensen telezen en te begrijpen is. Het einddoel
van onderzoek in deze richting is een computer programma te ontwerpen dat uit iedere voorstel-
bare uitvoering een muzikale beschrijving (b.v. in de gebruikelijke westelijke muzieknotatie) kan
afleiden, die onder andere de toonhoogten en posities van noten op een bepaald tijdstip bevat.
Transcriptie van iedere willekeurige muziekuitvoering zonder enige aanname van de soort muziek
is een zeer moeilijke, zelfs “AI-complete” taak, waarvoor men menselijke intelligentie zou moeten
kunnen reproduceren. Wij geloven echter dat onder sommige realistische aannames een werkbare
oplossing kan worden gevonden; namelijk door een combinatie van kennis vanuit verschillende
wetenschappen, zoals de cognitieve wetenschappen, muziekwetenschap en akoestiek, en computa-
tionele technieken afkomstig uit de kunstmatige intelligentie, automatisch leren en digitale signaal
verwerking. Het doel van dit proefschrift is om een praktische aanpak voor muziektranscriptie
te ontwikkelen door deze grote hoeveelheid a-priori kennisin een samenhangend en transparent
computationeel model te integreren.

In dit proefschrift behandelen we muziektranscriptie als een statistisch inferentie probleem,
waarbij we een notatie zoeken die een gegeven muziek signaalgoed beschrijft. In deze context
identificeren we drie problemen, namelijkritme kwantisatie, het volgen van tempoenvan polyfone
pitch. Voor elk probleem definiëren we een generatief kansmodel.De transcriptie taak is dan
gedefinieerd als het “omdraaien” van dit generatief model omzo de originele “verborgen” notatie
te vinden.

In hoofdstuk 2 definiëren we een kansmodel tussen korte notaties en hun waargenomen uitvo-
ering. Uit psychoakoestische experimenten blijkt dat zelfs voor vrij eenvoudige ritmes getrainde
transcriptie experts verschillende antwoorden kunnen geven. We laten zien hoe een kansmodel
deze onzekerheid op een natuurlijke manier kan vatten en leren.

In hoofdstuk 3 ligt onze aandacht op volgen van tempo variaties. In dit model wordt het tempo
gezien als een verborgen variabele die we door Kalman filtering schatten.

De volgende hoofdstuk (hoofdstuk 4) introduceert een generatief model voor ritme kwantisatie
en tempo volgen tegelijkertijd. Het kansmodel is een zogenaamd “switching state space” model.
In dit model is het niet mogelijk om kansen exact te berekenen, daarom behandelen we hier be-
naderingsmethoden als Markov Chain Monte Carlo (MCMC) en sequential Monte Carlo (SMC).

In de laatste hoofdstuk 5 beschrijven we een model voor polyfone transcriptie vanuit een audio
signaal. Het model, uitgedrukt als een “Dynamic Bayesian Network” (dynamisch Bayesiaans
Netwerk), bevat de afhankelijkheid tussen het signaal en een piano rol. Dit model is ook een
speciaal geval van het switching state space model. Waar mogelijk leiden we polynomiale tijd
algoritmen af en anders effectieve benaderingsmethoden.

De meest aantrekkelijke eigenschap van de Bayesiaanse aanpak voor muziektranscriptie is
ontkoppeling van het model en het benaderingsalgoritme. Indit raamwerk beschrijft het model
duidelijk het doel maar de vraag hoe dit doel te bereiken, hoewel zeer belangrijk, wordt een on-
afhankelijke kwestie. In perceptuele taken en in muziektranscriptie in het bijzonder is de vraag
“wat te optimaliseren” niet eenvoudig te beantwoorden. Ditproefschrift probeert een antwoord
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te geven door doelfuncties te definiëren geschreven als probabilistische grafische modellen en in-
troduceert benaderende en exacte inferentie technieken omeen acceptabele oplossing efficiënt te
vinden.

translated and edited with Matthijs Spaan
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Maral, Cağlayan̈Orge, Cengiz Baysal, Sarp Maden, Tuluğ Tırpan, Tolga Tüz¨un, Selim Benba and
Cumhur Erkut.
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