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Chapter 1

Introduction

Music transcription refers to extraction of a human reaglarid interpretable description from
a recording of a music performance. The interest into thabl@m is mainly motivated by the
desire to implement a program to infer automatically a malsiotation (such as the traditional
western music notation) that lists the pitch levels of nated corresponding timestamps in a given
performance.

Besides being an interesting problem of its own, automated&ion of a score (or a score-like
description) is potentially very useful in a broad spectfrapplications such as interactive music
performance systems, music information retrieval and oulsgical analysis of musical perfor-
mances. However, in its most unconstrained form, i.e., wiparating on an arbitrary acoustical
input, music transcription stays yet as a very hard problachia arguably “Al-complete”, i.e.
requires simulation of a human-level intelligence. Neveless, we believe that an eventual practi-
cal engineering solution is possible by an interplay ofsttiie knowledge from cognitive science,
musicology, musical acoustics and computational teclesdrom artificial intelligence, machine
learning and digital signal processing. In this contexg #m of this thesis is to integrate this
vast amount of prior knowledge in a consistent and transpa@mputational framework and to
demonstrate the feasibility of such an approach in movingasger to a practical solution to music
transcription.

In a statistical sense, music transcription is an inferggroblem where, given a signal, we
want to find a score that is consistent with the encoded mursitis context, a score can be con-
templated as a collection of “musical objects” (e.g., notengs) that are rendered by a performer
to generate the observed signal. The term “musical objemties directly from an analogy to
visual scene analysis where a scene is “explained” by aflisbfects along with a description
of their intrinsic properties such as shape, color or redgpiosition. We view music transcription
from the same perspective, where we want to “explain” irdinal samples of a music signal in
terms of a collection of musical objects where each objestahset of intrinsic properties such as
pitch, tempo, loudness, duration or score position. It ihia respect that a score is a high level
description of music.

Musical signals have a very rich temporal structure, anslmatural to think of them as being
organized in a hierarchical way. On the highest level of thiganization, which we may call
as the cognitive (symbolic) level, we have a score of theqies, for instance, intended by a
composel. The performers add their interpretation to music and retigescore into a collection
of “control signals”. Further down on the physical levek ttontrol signals trigger various musical
instruments that synthesize the actual sound signal. Waridte these generative processes using
a hierarchical graphical model (See Figure 1.1), where iter@present generative links.

In reality the music may be improvised and there may be dgtuait a written score. However, for doing
transcription we have to assume the existence a score atading point.
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Figure 1.1: A hierarchical generative model for music signin this model, an unknown score is
rendered by a performer into a piano-roll. The performeaohices expressive timing deviations
and tempo fluctuations. The piano-roll is rendered into @lnyi a synthesis model. The piano
roll can be viewed as a symbolic representation, analognassequence of MIDI events. Given
the observations, transcription can be viewed as inferehtlee score by “inverting” the model.
Somewhat simplified, the transcription methods describellis thesis can be viewed as inference
techniques as applied to subgraphs of this graphical mdel&ythm quantization (Chapter 2) is
inference of the score given onsets from a piano-roll (i.kstaf onset times) and tempo. Tempo
tracking, as described in Chapter 3 corresponds to inferefihie expressive deviations introduced
by the performer, given onsets and a score. Joint quarttizatid tempo tracking (Chapter 4) infers
both the tempo and score simultaneously, given only onBelgphonic pitch tracking (Chapter 5)
is inference of a piano-roll given the audio signal.
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This architecture is of course anything but new, and in faateunlies any music generating
computer program such as a sequencer. The main differenaer shodel from a conventional
sequencer is that the links are probabilistic, instead t#rd@nistic. We use the sequencer analogy
in describing a realistic generative process for a largesatd music signals.

In describing music, we are usually interested in a symhelresentation and not so much
in the “details” of the actual waveform. To abstract awaynirthe signal details, we define an
intermediate layer, that represent the control signalss [Blyer, that we call a “piano-roll”, forms
the interface between a symbolic process and the actualgigocess. Roughly, the symbolic
process describes how a piece is composed and performeditidnad on the piano-roll, the
signal process describes how the actual waveform is syimdtesConceptually, the transcription
task is then to “invert” this generative model and recovekitae original score.

In the next section, we will describe three subproblems a$imtranscription in this frame-
work. First we introduce models féthythm QuantizatioandTempo Trackingwhere we assume
that exact timing information of notes is available, for exde as a stream of MiBlevents from
a digital keyboard. In the second part, we focugpotyphonic pitch trackingwhere we estimate
note events from acoustical input.

1.1 Rhythm Quantization and Tempo Tracking

In conventional music notation, the onset time of each netenplicitly represented by the cu-
mulative sum of durations of previous notes. Durations a®ded by simple rational numbers
(e.g., quarter note, eighth note), consequently all eviantausic are placed on a discrete grid. So
the basic task in MIDI transcription is to associate onsees with discrete grid locations, i.e.,
guantization.

However, unless the music is performed with mechanicaligisat identification of the cor-
rect association becomes difficult. This is due to the faat tusicians introduce intentional (and
unintentional) deviations from a mechanical prescriptiéior example timing of events can be
deliberately delayed or pushed. Moreover, the tempo catufite by slowing down or acceler-
ating. In fact, such deviations are natural aspects of espre performance; in the absence of
these, music tends to sound rather dull and mechanical. ©otkier hand, if these deviations are
not accounted for during transcription, resulting scoragehoften very poor quality. Figure 1.2
demonstrates an instance of this.

A computational model for tempo tracking and transcripticmm a MIDI-like music repre-
sentation is useful in automatic score typesetting, theicabanalog of word processing. Almost
all score typesetting applications provide a means of aat@rgeneration of a conventional music
notation from MIDI data. Robust and fast quantization andge tracking is also an important
requirement for interactive performance systems; apjpdica that “listen” to a performer for gen-
erating an accompaniment or improvisation in real time (Ragh, 2001b; Thom, 2000).

From a theoretical perspective, simultaneous quantizaim tempo tracking is a “chicken-
and-egg” problem: the quantization depends upon the ietdkteipo interpretation and the tempo
interpretation depends upon the quantization (See FigGje 1

Apparently, human listeners can resolve this ambiguity msihtases without much effort.
Even persons without any musical training are able to deterrthe beat and the tempo very
rapidly. However, it is still unclear what precisely comstes tempo and how it relates to the

2Musical Instruments Digital Interface. A standard comneatibn protocol especially designed for digital instru-
ments such as keyboards. Each time a key is pressed, a MIDbkey generates a short message containing pitch
and key velocity. A computer can tag each received messageilmestamp for real-time processing and/or recording
into a file.
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Figure 1.2: Excerpts from a performance of the C major pee(@BYVV 846 - first book of the well
tempered clavier). A pianist is invited to play the origipééce in Figure (a) on a digital MIDI
piano. He was free in choosing any interpretation. We camstidbe the performance directly
using a conventional music typesetting program; howeerakulting score becomes rapidly very
complex and useless for a human reader (Figure (b)). Thisrnsaply due to the fact that tempo
fluctuations and expressive timing deviations are not atsalfor. Consequently, the score does
not display the simple regular rhythmical structure of thecp. In Figure (c), a transcription is
shown that is produced by our system that displays the sirhgtemical structure.
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(a) Example: A performed onset sequence

(b) “Too” accurate quantization. Although  (c) “Too” simple notation. This notation
the resulting notation represents the per- is simpler butis a very poor description of
formance well, it is unacceptably compli-  the rhythm.

cated.

(d) Desired quantization balances accu-
racy and simplicity.

Period

Time

(e) Corresponding tempo-curves. Curves with square, awdl a
triangle dots correspond to the notation 1.3(b), 1.3(c)BB¢).

Figure 1.3: The tradeoff between quantization and temprkiing. Given any sequence of onset
times, we can in principle easily find a notation (i.e. a segeeof rational numbers) to describe
the timing information arbitrarily well. Consider the penfned simple rhythm in 1.3(a) (from
Desain & Honing, 1991). A very fine grid quantizer producessutt similar to 1.3(b). Although
this is a very accurate representation, the resulting iootat far too complex. Another extreme
case is the notation in 1.3(c), that contains notes of equaitibn. Although this notation is very
“simple”, it is very unlikely that it is the intended scorénese this would imply that the performer
has introduced very unrealistic tempo changes (See 1.3{elgicians would probably agree that
the “smoother” score shown in 1.3(d) is a better represemtal his example suggests thagaod
scoremust be “easy” to read while representing the timing infaroraaccurately.
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perception of the beat, rhythmical structure, pitch, styflenusic etc. Tempo is a perceptual
construct and cannot directly be measured in a performance.

1.1.1 Related Work

The goal of understanding tempo perception has stimulasgghéficant body of research on psy-
chological and computational modelling aspects of temgcking and beat induction. Early work
by (Michon, 1967) describes a systematic study on the modedf human behaviour in tracking
tempo fluctuations in artificially constructed stimuli. figuet-Higgins, 1976) proposes a musical
parser that produces a metrical interpretation of perfdrmesic while tracking tempo changes.
Knowledge about meter helps the tempo tracker to quantissfarmance.

Large and Jones (1999) describe an empirical study on terapkirg, interpreting the ob-
served human behaviour in terms of an oscillator model. Aij@ccharacteristic of this model
is that it is insensitive (or becomes so after enough evielengathered) to material in between
expected beats, suggesting that the perception tempoelaimglifferent to events in this interval.
(Toiviainen, 1999) discusses some problems regardingepddaptation.

Another class of tempo tracking models are developed indh&egt of interactive performance
systems and score following. These models make use of prmwledge in the form of an anno-
tated score (Dannenberg, 1984; Vercoe & Puckette, 1985)e vexently, Raphael (2001b) has
demonstrated an interactive real-time system that foll@wslo player and schedules accompani-
ment events according to the player’s tempo interpretation

More recently attempts are made to deal directly with theasignal (Goto & Muraoka, 1998;
Scheirer, 1998) without using any prior knowledge. Howgtlerse models assume constant tempo
(albeit timing fluctuations may be present). Although sssba for music with a steady beat (e.g.,
popular music), they report problems with syncopated data,(reggae or jazz music).

Many tempo tracking models assume an initial tempo (or keggth) to be known to start up
the tempo tracking process (e.g., (Longuet-Higgins, 19&8ge & Jones, 1999). There is few
research addressing how to arrive at a reasonable firstagstifLonguet-Higgins & Lee, 1982)
propose a model based on score data, (Scheirer, 1998) omeiday data. A complete model
should incorporate both aspects.

Tempo tracking is crucial for quantization, since one carumiquely quantize onsets without
having an estimate of tempo and the beat. The converse,ulatigation can help in identification
of the correct tempo interpretation has already been not&kkain and Honing (1991). Here, one
defines correct tempo as the one that results in a simpleitigaaon. However, such a schema
has never been fully implemented in practice due to comjoumalt complexity of obtaining a
perceptually plausible quantization. Hence quantizati@thods proposed in the literature either
estimate the tempo using simple heuristics (Longuet-higgl987; Pressing & Lawrence, 1993;
Agon, Assayag, Fineberg, & Rueda, 1994) or assume thattiygatés known or constant (Desain
& Honing, 1991; Cambouropoulos, 2000; Hamanaka, Goto, A&dbtsu, 2001).

1.2 Polyphonic Pitch Tracking

To transcribe a music performance from acoustical inpug @eds a mechanism to sense and
characterize individual events produced by the instrualett One potential solution is to use
dedicated hardware and install special sensors on to theimsnt body: this solution has re-
stricted flexibility and is applicable only to instrumentssijned specifically for such a purpose.
Discounting the ‘*hardware’ solution, we shall assume thatoapture the sound with a single
microphone, so that the computer receives no further infhdrahan the pure acoustic informa-
tion. In this context, polyphonic pitch tracking refers ttentification of (possibly simultaneous)
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Figure 1.4: Piano Roll inference from polyphonic signalap) A short segment of the polyphonic
music signal. (Middle) Spectrogram (Magnitude of the Skiore Fourier transform) of the signal.
Horizontal and vertical axes correspond to time and frequerespectively. Grey level denotes
the energy in a logarithmic scale. The line spectra (pdrdifees” to time axis equispaced in
frequency) are characteristic to many pitched musicalagnThe low frequency notes are not
well resolved due to short window length. Taking a longerysia window would increase the
frequency resolution but smear out onsets and offsets. Wie@ior more notes are played at the
same time, their harmonics overlap both in time and frequemaking correct associations of
individual harmonics to note events difficult. (Bottom) Ai&po-roll” denoting the note events
where the vertical axis corresponds to the note index antdhiegontal axis corresponds to time
index. Black and white pixels correspond to “sound” and “@iwespectively. The piano-roll can
be viewed as a symbolic summary of the underlying signalgssc

note events. The main challenge is separation and idemiincaf typically small (but unknown)
number of source signals that overlap both in time and frequéSee Figure 1.4).

1.2.1 Related Work

Polyphonic pitch identification has attracted quite an ambai research effort in the past; see
(Plumbley, Abdallah, Bello, Davies, Monti, & Sandler, 20Gar a recent review. The earliest

published papers in the field are due to Moorer (1977) anccPaszki and Galler (1977). Moorer

demonstrated a system that was capable of transcribingtadimmolyphonic source such as a duet.
Piszczalski and Galler (1977) focused on monophonic trgstgmn. Their method analyses the
music signal frame by frame. For each frame, they measueckitidamental frequency directly

from local maxima of the Fourier transform magnitude. Irsttespect, this method is the first
example of many other techniques that operate on a timexdrexry distribution to estimate the

fundamental frequency. Maher (1990) describes the firdtdeglumented model in the literature

that could track duets from real recordings by represerttiegaudio signal as the superposition
of sinusoidals, known in the signal processing communityladuley-Quatieri (MQ) analysis
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(1986). Mellinger (1991) employed a cochleagram repredimt (a time-scale representation
based on an auditory model (Slaney, 1995)). He proposedd deectional filters for extracting
features from this representation. Recently, Klapuri e{24101) proposed an iterative schema that
operates on the frequency spectrum. They estimate a siogladnt pitch, remove it from the en-
ergy spectrum and reestimate recursively on the residingy Teport that the system outperforms
expert human transcribers on a chord identification task.

Other attempts have been made to incorporate low level (@ddysr high level (musical struc-
ture and cognitive) information for the processing of makgignals. Rossi, Girolami, and Leca
(1997) reported a system that is based on matched filteraastl from piano sounds for poly-
phonic pitch identification for piano music. Martin (1999shdemonstrated use of a “blackboard
architecture” (Klassner, Lesser, & Nawab, 1998; Mani, )38%anscribe polyphonic piano music
(Bach chorales), that contained at most four differente®idass-tenor-alto-soprano ) simultane-
ously. Essentially, this is an expert system that encodies pnowledge about physical sound
characteristics, auditory physiology and high level maisgtructure such as rules of harmony.
This direction is further exploited by (Bello, 2003). Goasults reported by Rossi et al., Martin
and Bello support the intuitive claim that combining priofarmation from both lower and higher
levels can be very useful for transcription of musical slgna

In speech processing, tracking the pitch of a single speskeundamental problem and meth-
ods proposed in the literature fill many volumes (RabinegrGiRosenberg, & McGonegal, 1976;
Hess, 1983). Many of these techniques can readily be appliesnophonic music signals (de la
Cuadra, Master, & Sapp, 2001; de Cheveigné & Kawahara, )20@Zlosely related research
effort to transcription is developing real-time pitch tkaty and score following methods for in-
teractive performance systems (Vercoe, 1984), or for fastd to MIDI conversion (Lane, 1990).
Score following applications can also be considered a# pigckers with a very informative prior
(i.e. they know what to look for). In such a context, Grubb9&@Pdeveloped a system that can
track a vocalist given a score. A vast majority of pitch detetalgorithms are based on heuristics
(e.q., picking high energy peaks of a spectrogram, corralogauditory filter bank, e.t.c.) and
their formulation usually lacks an explicit objective fuion or a explicit model. Hence, it is of-
ten difficult to theoretically justify merits and shortcamgs of a proposed algorithm, compare it
objectively to alternatives or extend it to more complexsees such as polyphony.

Pitch tracking is inherently related to detection and eatiom of sinusoidals. Estimation and
tracking of single or multiple sinusoidals is a fundameptablem in many branches of applied
sciences so it is less surprising that the topic has also teeply investigated in statistics, (e.g.
see Quinn & Hannan, 2001). However, ideas from statistiems® be not widely applied in the
context of musical sound analysis, with only a few excemifinzarry, 2001, 2002) who present
frequentist techniques for very detailed analysis of malssounds with particular focus on de-
composition of periodic and transient components. (Saeg, Lsbell, & LeCun, 2002) presented
real-time monophonic pitch tracking application based aplace approximation to the poste-
rior parameter distribution of a second order autoregvegsiocess (AR(2)) model (Truong-Van,
1990; Quinn & Hannan, 2001, page 19). Their method, with soatteer simple preprocessing,
outperforms several standard pitch tracking algorithmssfeech, suggesting potential practical
benefits of an approximate Bayesian treatment. For monoplspeech, a Kalman filter based
pitch tracker is proposed by Parra and Jain (2001) thatdrpakameters of a harmonic plus noise
model (HNM). They propose the use of Laplace approximatronrad the predicted mean instead
of the extended Kalman filter (EKF).

Statistical techniques have been applied for polyphoartseription. Kashino is, to our knowl-
edge, the first author to apply graphical models explicilyite problem of music transcription.
In Kashino et al. (1995), they construct a model to reprekmgfter level musical knowledge and
solve pitch identification separately. Sterian (1999) dbsd a system that viewed transcription
as a model driven segmentation of a time-frequency digtabuThey use a Kalman filter model



1.3. PROBABILISTIC MODELLING AND MUSIC TRANSCRIPTION 9

to track partials on this image. Walmsley (2000) treatsdcaption and source separation in a full
Bayesian framework. He employs a frame based generaliredrlimodel (a sinusoidal model)
and proposes a reversible-jump Markov Chain Monte Carlo MDY (Andrieu & Doucet, 1999)
inference algorithm. A very attractive feature of the modethat it does not make strong as-
sumptions about the signal generation mechanism, and \tteveumber of sources as well as
the number of harmonics as unknown model parameters. DaVvgadsill (2003) address some
of the shortcomings of his model and allow changing ampésuand deviations in frequencies of
partials from integer ratios. The reported results are gbodever the method is computationally
expensive. In a faster method, (Raphael, 2002) uses thé taner Fourier Transform to make
features and uses an HMM to infer most likely chord hypothesi

In machine learning community, probabilistic models ardely applied for source separation,
a.k.a. blind deconvolution, independent components arsa{yCA) (Hyvarinen, Karhunen, & Oja,
2001). Related techniques for source separation in musimeaestigated by (Casey, 1998). ICA
models attempt source separation by forcing a factorizdddm state distribution, which can be
interpreted as a “not-very-informative” prior. Therefaree needs typically multiple sensors for
source separation. When the prior is more informative, @reattempt separation even from a
single channel (Roweis, 2001; Jang & Lee, 2002; Hu & Wang1200

Most of the authors view automated music transcription aaualid to piano-roll” conversion
and usually view “piano-roll to score” as a separate probl€his view is partially justified, since
source separation and transcription from a polyphoniccig already a challenging task. On
the other hand, automated generation of a human readabkeiactudes nontrivial tasks such as
tempo tracking, rhythm quantization, meter and key induc(Raphael, 2001a; Temperley, 2001).
We argue that models described in this thesis allow for golad integration of higher level sym-
bolic prior knowledge with low level signal analysis. Suehapproach can guide and potentially
improve the inference of a score , both in terms of qualityhef$olution and computation time.

1.3 Probabilistic Modelling and Music Transcription

We view music transcription, in particular rhythm quantiaa, tempo tracking and polyphonic
pitch identification, as latent state estimation probleimshythm quantization or tempo tracking,
given a sequence of onsets, we identify the most likely sootempo trajectory. In polyphonic
pitch identification, given the audio samples, we infer anptaoll that represents the onset times,
note durations and the pitch classes of individual notes.

Our general approach considers the quantities we wish ¢o & a sequence of *hidden’ vari-
ables, which we denote simply by For each problem, we define a probability model, that relate
the observations sequengdo the hiddense, possibly using a set of parametéks Given the
observations, transcription can be viewed as a Bayesianeinfe problem, where we compute a
posterior distribution over hidden quantities by “invaegi the model using the Bayes theorem.

1.3.1 Bayesian Inference

In Bayesian statistics, probability models are viewed as d&ructures that represent a model
builders knowledge about a (possibly uncertain) phenomenbe central quantity is a joint prob-
ability distribution:

ply,x,0) = p(yld,z)p(x,0)

that relates unknown variablesand unknown parametefsto observationg,. In probabilistic
modelling, there is no fundamental difference between onknvariables and unknown model
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(a) (b)

Figure 1.5: (a) Directed graphical model showing the assiraeasal relationship between observ-
ablesy, hiddensr and parameter. (b) The hidden variables are further partitioned:as (s, r).
Square nodes denote discrete, oval nodes denote contivaidaisles.

parameters; all can be viewed as unknown quantities to beasd. The inference problem is to
compute the posterior distribution using the Bayes theorem

p(z,0ly) = @p(ylﬁa z)p(z,0) (1.1)

The prior termp(z, 0) reflects our knowledge about the parametiesad hidden variables before
we observe any data. The likelihood mo@eél|d, =) relatesd andx to the observationg. It is
usually convenient to think gf(y|0, =) as a generative model fgr The model can be represented
as a graphical model shown in Figure 1.5(a). Given the obsiensy, the posteriop(x, f|y)
reflects our entire knowledge (e.g., the probable valuegtadssociated uncertainties) about the
unknown quantities. A posterior distribution on the hiddanables can be obtained by integrating
the joint posterior over the parameters, i.e.

plaly) = [ dop(a. ol 1.2)
From this quantity, we can obtain the most probablgiveny as

" = argmax p(x|y) (1.3)

Unfortunately, the required integrations @rare in most cases intractable so one has to reside to
numerical or analytical approximation techniques. At ghsnt, it is often more convenient to
distinguish between and# to simplify approximations. For example, one common apghda
approximation is to use a point estimate of the parametet@ndnvert intractable integration to

a simple function evaluation. Such an estimate is the maximyposteriori (MAP) estimate given
as:

0 = argmax/dxp(x,0|y)
0
plely) =~ p(x,0%y)

Note that this formulation is equivalent to “learning” thesh parameters given the observations. In
some special cases, the required integrations éweay still be carried out exactly. This includes
the cases whep, x andé are jointly Gaussian, or when bothandd are discrete. Here, exact
calculation hinges whether it is possible to represent tistquiorp(x, f|y) in a factorized form
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using a data structure such as fbaction tree(See (Smyth, Heckerman, & Jordan, 1996) and
references herein).

Another source of intractability is reflected in combin&bexplosion. In some special hybrid
model classes (such as switching linear dynamical syststagphy, 1998; Lerner & Parr, 2001)),
we can divide the hidden variables in two sets= (s,r) wherer is discrete and givenr is
conditionally Gaussian (See Figure. 1.5(b)). We will usehsmodels extensively in the thesis. To
infer the most likelyr consistent with the observations, we need to compute

r* = argmax / dsdfp(r, s, 0|y)
If we assume that model parametérare known, (e.g. suppose we have estimétesh a training
set where- was known) we can simplify the problem as:

*

r* &~ argmaxp(rly) = argmax/dsp(y\r, s)p(s|r)p(r) (1.4)

Here, we have omitted explicit conditioning 6h We can evaluate the integral in Eq.1.4 for any
givenr. However, in order to find the optimal solutieh exactly, we still need to evaluate the the
integral separately for evenyin the configuration space. Apart from some special casesrevh
we can derive exact polynomial time algorithms; in gendnel @anly exact method is exhaustive
search. Fortunately, although findingis intractable in general, in practice a useful solution may
be found by approximate methods. Intuitively, this is dufatt that realistic priorg(r) are usually
very informative (most of the configurationdave very small probability) and the likelihood term
p(y|r) is quite crisp. All this factors tend to render the postedoimodal.

1.4 Atoy example

We will now illustrate the basic ideas of Bayesian inferedeseloped in the previous section
on a toy sequencer model. The sequencer model is quite sanplés able to generate output
signals of length one only. We denote this output signaj.a3he “scores” that it can process
are equally limited and can consist of at most two “notes”.néte the “musical universe” of
our sequencer is limited only tb possible scores, nametylence two single note melodies and
one two note chord. Given any one of the four possible sctnessequencer generates control
signals which we will call a “piano-roll”. In this represetion, we will encode each note by a bit
r; € {"sound”, “mute”} for j = 1,2. This indicator bit denotes simply whether tjith note is
present in the score or not. In this simplistic example,gh&no distinction between a score and a
piano-roll and the latter is merely an encoding of the forrbet for longer signals there will be a
distinction. We specify next what waveform the sequenceukhgenerate when a note is present
or absent. We will denote this waveform by

sjlry ~ [r; =soundN (s;; uj, Ps) + [r; = mutd N (s;; 0, Pry)

Here the notationiz = text has value equal to 1 when variahleis in state text, and is zero
otherwise. The symboV/(s; i, P) denotes a Gaussian distribution on variableith meanu and
varianceP. Verbally, the above equation means that wher- mute,s; ~ 0 + \/P,, and when

r; = sound,s; ~ u; + /Ps. Here theu;, P, and P,, are known parameters of the signal model.
Finally, the output signal is given by summing up each wanefof individual notes

y:ZSj

J
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(a) Graphical model of the toy (b) The conditionalp(y|ri,r2). The
sequencer model. Square and “mute” and “sound” states are denoted by
oval shaped nodes denote dis- o ande respectively. Herey; = 3, uo =
crete (piano-roll) and contin- 5andP,, < Ps. The bottom figure shows
uous (waveform) variables re- the most likely transcription as a function
spectively.  Diamond-shaped of y, i.e. argmax,, », p(r1,7r2]y). We
node represents the observed assume a flat priop(r; = “mute”) =
signal. p(r; = “sound”) = 0.5.

Figure 1.6: Graphical model for the toy sequencer model

To make the model complete, we have to specify a prior didioh that describes how the scores
are generated. Since there is no distinction between apa@hand a score in this example, we
will directly define a prior directly on piano-roll. For sirhigity, we assume that notes are a-priori
independent, i.e.

ri o~ p(r;) j=1,2

and choose a uniform prior with(r; = mute) = p(r; = sound = 0.5. The corresponding
graphical model for this generative process is shown infeigue.

The main role of the generative process is that it makes iteptually easy to describe a joint
distribution between the output signaglwaveformss = (s, so) and piano-rollc = (71, 7) where

p(y,s,r) = p(yls)p(s|r)p(r)

Moreover, this construction implies a certdactorizationwhich potentially simplifies both the
representation of the joint distribution and the inferepcecedure. Formally, the transcription
task is now to calculate the conditional probability whislgiven by theBayes theoreras

1
piriy) = ——py|r)ptr
(rfy) p(y)(\)U
Here,p(y) = >, p(ylr)p(r’) is a normalization constant. In transcription, we are esezd
into the most likely piano-rolt*, hence the actual numerical valpg,), which merely scales the
objective, is at this point not important, i.e. we have

*

r’ = argmaxp(r|y) = argmax p(y|r)p(r) (1.5)
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The prior factorp(r) is already specified. The other term can be calculateidtegrating outthe
waveformss, i.e.

pylr) = / dsp(y, s|r) = / dsp(y]s)p(slr)

Conditioned on any, this quantity can be found analytically. For example, when= r, =
“sound”, p(y|r) = N (y; 1 + 12, 2P;). A numeric example is shown in Figure 1.6.

This simple toy example exhibits the key idea in our approa@asically, by just carefully
describing the sound generation procedure, we were ablertoufate an optimization problem
(Eq. 1.5) for doing polyphonic transcription! The derivatiis entirely mechanical and ensures
that the objective function consistently incorporatesgior knowledge about scores and about the
sound generation procedure (throygh) andp(s|r)). Of course, in realityy and each of; ands;
will be time series and both the score and sound generatameps will be far more complex. But
most importantly, we have divided the problem into two partone part formulating a realistic
model, on the other part finding an efficient inference atgani

1.5 Outline of the thesis

In the following chapters, we describe several methodsraorscription. For each subproblem,
we define a probability model, that relates the observatibidslens and parameters. The partic-
ular definition of these quantities will depend on the coftbut observables and hiddens will be
sequences of random variables. For a given observatioreseguwe will compute the posterior
distribution or some posterior features such as the MAP.

In Chapter 2, we describe a model that relates short scotescairesponding onset times of
events in an expressive performance. The parameters ofdtielns trained on data resulting from
a psychoacoustical experiment to mimic the behaviour ofradwutranscriber on this task. This
chapter addresses the issue that there is not a single ‘@jtauth” in music transcription. Even for
very simple rhythms, well trained human subjects show figant variations in their responses.
We demonstrate how this uncertainty problem can be addtessirally using a probabilistic
model.

Chapter 3 focuses on tempo tracking from onsets. The olsamvaodel is a multiscale rep-
resentation (analogous to a wavelet transform ). The temipoip modelled as a Gauss-Markov
process. The tempo is viewed as a hidden state variable &stinsated by approximate Kalman
filtering.

We introduce in Chapter 4 a generative model to combine rhygliantization and tempo
tracking. The model is a switching state space model in wbarhputation of exact probabilities
becomes intractable. We introduce approximation teclesdpased on simulation, namely Markov
Chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC).

In Chapter 5, we propose a generative model for polyphoaitstiription from audio signals.
The model, formulated as a Dynamical Bayesian Network, riess the relationship between
polyphonic audio signal and an underlying piano roll. Thigdal is also a special case of the,
generally intractable, switching state space model. Whessible, we derive, exact polynomial
time inference procedures, and otherwise efficient apprations.

1.6 Future Directions and Conclusions

When transcribing music, human experts rely heavily onrgammwledge about the musical struc-
ture — harmony, tempo, timbre, expression, e.t.c. As ghrti@monstrated in this thesis and else-
where (e.g. (Raphael & Stoddard, 2003)), such structurdearaptured by training probabilistic
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generative models on a corpus of example compositionspimeainces or sounds by collecting
statistics over selected features. One of the importardradges of our approach is that, at least
in principle, prior knowledge about any type of musical stame can be consistently integrated.
An attempt in this direction is made in (Cemgil, Kappen, & Bar, 2003), where we described a
model that combines low level signal analysis with high léwewledge. However, the computa-
tional obstacles and software engineering issues are petdwercome. | believe that investigation
of this direction is important in designing robust and piGdtmusic transcription systems.

In my view, the most attractive feature of probabilistic mthithg and Bayesian inference for
music transcription is the decoupling of modelling fromergnce. In this framework, the model
clearly describes the objective and the question how wealigtsolve the objective, whilst equally
important, becomes an entirely algorithmic and computatiosssue. Particularly in music tran-
scription, as in many other perceptual tasks, the answaetquestion of “what to optimize” is far
from trivial. This thesis tries to answer this question bfimiag an objective by using probabilistic
generative models and touches upon some state-of-thefareince techniques for its solution.

| argue that practical polyphonic music transcription canmiade computationally easy; the
difficulty of the problem lies in formulating precisely whtte objective is. This is in contrast
with traditional problems of computer science, such asrdeetling salesman problem, which are
very easy to formulate but difficult to solve exactly. In mewi this fundamental difference in
the nature of the music transcription problem requires aahoéntred approach rather than an
algorithm-centred approach. One can argue that objedtiverilated in the context of probabilis-
tic models are often intractable. | answer this by paraphga3ohn Tukey, who in the 50’s said
“An approximate solution of the exact problem is often moseful than the exact solution of an
approximate problem”.



Chapter 2
Rhythm Quantization

One important task in music transcription is rhythm quantiz ation that refers to categoriza-
tion of note durations. Although quantization of a pure mechanical performance is rather
straightforward, the task becomes increasingly difficult n presence of musical expression,
i.e. systematic variations in timing of notes and in tempo. i this chapter, we assume that
the tempo is known. Expressive deviations are modelled by argbabilistic performance
model from which the corresponding optimal quantizer is deived by Bayes theorem. We
demonstrate that many different quantization schemata carbe derived in this framework
by proposing suitable prior and likelihood distributions. The derived quantizer operates on
short groups of onsets and is thus flexible both in capturing lte structure of timing devia-
tions and in controlling the complexity of resulting notations. The model is trained on data
resulting from a psychoacoustical experiment and thus can mmic the behaviour of a human
transcriber on this task.

Adapted from A.T. Cemgil, P. Desain, and H.J. Kappen. Rhytjuantiza-
tion for transcription.Computer Music Journalpages 60-75, 2000.

2.1 Introduction

One important task in music transcription is rhythm quaattan that refers to categorization of
note durations. Quantization of a “mechanical” perforngaigrather straightforward. On the
other hand, the task becomes increasingly difficult in presef expressive variations, that can
be thought as systematic deviations from a pure mechangcdqmance. In such unconstrained
performance conditions, mainly two types of systematicatens from exact values do occur.
At small time scale notes can be played accented or delayetarge scale tempo can vary, for
example the musician(s) can accelerate (or deceleratajgdperformance or slow down (ritard)
at the end of the piece. In any case, these timing variatisnally obey a certain structure since
they are mostly intended by the performer. Moreover, theyliaked to several attributes of the
performance such as meter, phrase, form, style etc. (Clag&5). To devise a general compu-
tational model (i.e. a performance model) which takes &sé&factors into account, seems to be
quite hard.

Another observation important for quantization is that veecgive a rhythmic pattern not as a
sequence of isolated onsets but rather as a perceptuglmatite of onsets. This also suggests that
attributes of neighboring onsets such as duration, timawadion etc. are correlated in some way.

This correlation structure is not fully exploited in comri@t music packages, which do auto-
mated music transcription and score type setting. The @agpbach taken is to assume a constant
tempo throughout the piece, and to quantize each onset toetlrest grid point implied by the
tempo and a suitable pre-specified minimum note durati@n éght, sixteenth etc.). Such a grid

15
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quantization schema implies that each onset is quantizétetonearest grid poinhdependenof

its neighbours and thus all of its attributes are assumee todependent, hence the correlation
structure is not employed. The consequence of this rastmics that users are required to play
along with a fixed metronome and without any expression. Tladity of the resulting quanti-
zation is only satisfactory if the music is performed acaaogdo the assumptions made by the
guantization algorithm. In the case of grid-quantizatibis is a mechanical performance with
small and independent random deviations.

More elaborate models for rhythm quantization indirecliyet the correlation structure of ex-
pressive deviations into account. In one of the first attetomjuantization, (Longuet-Higgins,
1987) described a method in which he uses hierarchicaltateiof musical rhythms to do quanti-
zation. (Desain, Honing, & de RIijk, 1992) use a relaxationveek in which pairs of time intervals
are attracted to simple integer ratios. (Pressing & Laweeth893) use several template grids and
compare both onsets and inter-onset intervals (I0I's) éoghd and select the best quantization
according to some distance criterion. The Kant system (Agjoal., 1994) developed at IRCAM
uses more sophisticated heuristics but is in principlelamo (Pressing & Lawrence, 1993).

The common critic to all of these models is that the assumptabout the expressive devia-
tions are implicit and are usually hidden in the model, thus not always clear how a particular
design choice effects the overall performance for a fulgeaf musical styles. Moreover it is not
directly possible to use experimental data to tune moderpaters to enhance the quantization
performance.

In this chapter, we describe a method for quantization oebaequences. The paper is or-
ganized as follows: First, we state the transcription probband define the terminology. Using
the Bayesian framework we briefly introduce, we describéabdistic models for expressive de-
viation and notation complexity and show how different qumers can be derived from them.
Consequently, we train the resulting model on experimetatd obtained from a psychoacoustical
experiment and compare its performance to simple quaittizatrategies.

2.2 Rhythm Quantization Problem

2.2.1 Definitions

A performed rhythnis denoted by a sequenftgl* where each entry is the time of occurrence of
an onset. For example, the performed rhythm in Figure li8(@presented bg = 0, to = 1.18,

t3 = 1.77,t, = 2.06 etc. We will also use the ternperformanceor rhythminterchangeably when
we refer to an onset sequence.

A very important subtask in transcription is tempo tracking. the induction of a sequence
of points (i.e.beatg in time, which coincides with the human sense of rhythm. (&gt tapping)
when listening to music. We call such a sequence of betspo trackand denote it by” = [r;]
wherer; is the time at whicly’th beat occurs. We note that for automatic transcriptiois, to be
estimated from,].

Once a tempo track is given, the rhythm can be segmented into a sequence of s¢gme
each of duration; — 7;_;. The j'th segment will containk’; onsets, which we enumerate by
k = 1...K;. The onsets in each segment are normalized and denotedy(t}], i.e. for all
Tj—1 <t < Tj where
_ =T

k

(2.1)

Tj — Tj—l

we will denote a set with the typical elementas{z;}. If the elements are ordered (e.g. to form a vector) we
will use [z;].



2.2. RHYTHM QUANTIZATION PROBLEM 17

Note that this is merely a reindexing from single inde® double indexk, j) 2. In other words
the onsets are scaled and translated such that an onset jostend of the segment is mapped
to one and another just at the beginning to zero. The seghmwnt# a performance is given in
Figure 2.1.

A=1.2
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~
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Figure 2.1: Segmentation of a performance by a tempo traektii¢al dashed linesy =
[0.0,1.2,2.4,3.6,4.8,6.0,7.2,8.4]. The resulting segments arig= [0], t; = [0.475,0.717] etc.

d(cls)

depth

I I I
0 1/2 1
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Figure 2.2: Depth of gridpoint by subdivision schem& = [3, 2, 2]

Once a segmentation is given, quantization reduces to mgppisets to locations, which
can be described by simple rational numbers. Since in westersic tradition, notations are
generated by recursive subdivisions of a whole note, it$® abnvenient to generate possible
onset quantization locations by regular subdivisions. 88 |= [s;] denote a subdivision schema,
where(s;] is a sequence of small prime numbers. Possible quantizltoations are generated
by subdividing the unit intervdD, 1]. At each new iteration, the intervals already generated are
divided further intos; equal parts and the resulting endpoints are added to &.sélote that
this procedure places the quantization locations on a gmdimtsc, where two neighboring grid
points have the distandg [ [, s;. We will denote the first iteration number at which the gridnpo
c is added ta”' as thedepthof ¢ with respect taS. This number will be denoted a&c|S).

As an example consider the subdivisi®n- [3, 2, 2]. The unitinterval is divided first into three
equal pieces, then the resulting intervals into 2 and et@akh iteration, generated endpoints are

2When an argument applies to all segments, we will drop thexrid
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(a) Notation
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(b) Score

4.8
51
5.38
5.68
6.03
7.22

(c) Performance

Figure 2.3: A simplified schema of onset quantization. A tiota(a) defines a score (b) which
places onsets on simple rational points with respect to @temack (vertical dashed lines). The
performer “maps” (b) to a performance (c). This process isdeberministic; in every new per-
formance of this score a (slightly) different performancawd result. A performance model is a
description of this stochastic process. The task of thestider is to recover both the tempo track
and the onset locations in (b) given (c).

Figure 2.4: Two equivalent representations of the notatioRigure 2.3(a) by a code vector se-
guence. Here, each horizontal line segment representseata wf length one beat. The endpoint
of one vector is the samepoint in time as the beginning of #w wector. Note that the only

difference between two equivalent representations issiiaie begin and endpoints are swapped.

added to the list. In the first iteration, 0, 1/3, 2/3 and 1 a@ed to the list. In the second iteration,
1/6, 3/6 and 5/6 are added, etc. The resulting grid pointedfdircles) are depicted in Figure 2.2.
The vertical axis corresponds doc|S).

If a segment is quantized (with respect t8), the result is a dimensional vector with all
entries on some grid points. Such a vector we catbde vectorand denote as = [c], i.e.
cc(CxC---xC=CK, We call aset of code-vectorscadebook Since all entries of a code
vector coincide with some grid points, we can definedbpth of a code vectas

d(c|S) = > d(cilS) (2.2)

cpEC

A score can be viewed ascancatenatiorof code vectors:;. For example, the notation in Fig-
ure 2.3(a) can be represented by a code vector sequenceigaria E.4. Note that the representa-
tion is not unique, both code vector sequences represesathe notation.
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2.2.2 Performance Model

As described in the introduction section, natural musiégrerance is subject to several systematic
deviations. In lack of such deviations, every score woulgehanly one possible interpretation.

Clearly, two natural performances of a piece of music areendwe same, even performance of
very short rhythms show deviations from a strict mechanp@formance. In general terms, a
performance modas a mathematical description of such deviations, i.e. sicdees how likely

it is that a score is mapped into a performance (Figure 2.&fori® we describe a probabilistic

performance model, we briefly review a basic theorem of frdiatheory.

2.2.3 Bayes Theorem

The joint probabilityp(A, B) of two random variablesl and B defined over the respective state
spacesS, andSp can be factorized in two ways:

p(A, B) = p(B|A)p(A) = p(A|B)p(B) (2.3)

wherep(A|B) denotes the conditional probability of given B: for each value ofB, this is

a probability distribution overd. Therefore) , p(A|B) = 1 for any fixed B. The marginal
distribution of a variable can be found from the joint distriion by summing over all states of the
other variable, e.g.:

p(A) =Y p(A,B)= > p(A|B)p(B) (2.4)
BeSp BeSp

It is understood that summation is to be replaced by intemrat the state space is continuous.
Bayes theorem results from Eq. 2.3 and Eq. 2.4 as:

p(A|B)p(B)
B = M ABW(B) (3)
~ p(A|B)p(B) (2.6)

The proportionality follows from the fact that the denontoradoes not depend oB, sinceB is
already summed over. This rather simple looking “formulaésurprisingly far reaching conse-
guences and can be directly applied to quantization. Cendiig case thaB is a score and'i is

the set of all possible scores. Létbe the observed performance. Then Eq 2.5 can be written as

p(ScorePerformancg o« p(Performanckscore x p(Scorg (2.7)
posterior o likelihood x prior (2.8)

The intuitive meaning of this equation can be better undedstif we think of quantization as a
score selection problem. Since there is usually not a stngéenotation for a given performance,
there will be several possibilities. The most reasonabtgcehis selecting the scorewhich has
the highest probability given the performartc&echnically, we name this probability distribution
as the posteriop(c|t). The name posterior comes from the fact that this quantipeagsafter
we observe the performan¢e Note that the posterior is a function owerand assigns a number
to each notation after we fik. We look for the notatiore that maximizes this function. Bayes
theorem tells us that the posterior is proportional to thepct of two quantities, the likelihood
p(t|c) and the priomp(c). Before we explain the interpretation of the likelihood ahd prior in
this context, we first summerize the ideas in compact notatso

pleft) o p(tle)p(c). (2.9)
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The best code vectaer* is given by

*

c® = argmaxp(clt) (2.10)

ccCK

In technical terms, this problem is called a maximum a-pagig MAP) estimation problem and
c* is called the MAP solution of this problem. We can also definelated quantityC (minus log-
posterior) and try to minimize this quantity rather then mazing Eq. 2.9 directly. This simplifies
the form of the objective function without changing the loeas of local extrema sindeg(x) is
a monotonically increasing function.

1
L = —logp(clt) c —logp(t|c) + log —— 2.11
gp(clt) gp(tlc) 800 (2.11)

The —log p(t|c) term in Equation 2.11, which is the minus logarithm of theslikood, can be
interpreted as a distance measuring how far the rhytthenplayed from the perfect mechanical
performance:. For example, if(¢|c) would be of formexp(—(t — ¢)?), then—log(t|c) would be

(t — c)?, the square of the distance frarno c. This quantity can be made arbitrary small if we use
a very fine grid, however, as mentioned in the introductiatisa, this eventually would result
in a complex notation. A suitable prior distribution pretethis undesired result. THeg ﬁ

term, which is large when the prior probabilityc) of the codevector is small, can be interpreted
as a complexity term, which penalizes complex notationse bést quantization balances the
likelihood and the prior in an optimal way. The precise forfrthee prior will be discussed in a
later section.

The form of a performance model, i.e. the likelihood, canmhgeneral very complicated.
However, in this article we will consider a subclass of parfance models where the expressive
timing is assumed to be an additive noise component whichriigpornc. The model is given by

tj = Cj + Ej (212)

whereg; is a vector which denotes tlexpressive timing deviatiorin this paper we will assume
thate is normal distributed with zero mean and covariance matrix), i.e. the correlation struc-
ture depends upon the code vector. We denote this disoibatse ~ A (0,3.(c)). Note that
whene is the zero vector{. — 0), the model reduces to a so-called “mechanical”’ perforraanc

2.2.4 Example 1: Scalar Quantizer (Grid Quantizer)

We will now demonstrate on a simple example how these ideaggplied to quantization.

Consider a one-onset segment [0.45]. Suppose we wish to quantize the onset to one of the
endpoints, i.e. we are using effectively the codeb@bk= {[0],[1]}. The obvious strategy is to
quantize the onset to the nearest grid point (e.g. a gridtiqpeahand so the code-vector= [0] is
chosen as the winner.

The Bayesian interpretation of this decision can be dematest by computing the correspond-
ing likelihoodp(t|c) and the priop(c). It is reasonable to assume that the probability of obsgrvin
a performance given a particular decreases with the distanige— t|. A probability distribution
having this property is the normal distribution. Since #&isronly one onset, the dimensiéh= 1
and the likelihood is given by

T

p(tlc)
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0.45

t | pttle)n(c,) p(tic,)p(c,)

Figure 2.5: Quantization of an onset as Bayesian Inferetenp(c) = [1/2,1/2], at eacht, the
posteriorp(c|t) is proportional to the solid lines, and the decision boupdsatt = 0.5. When
the prior is changed tp(c) = [0.3,0.7] (dashed), the decision boundary moves towards

If both codevectors are equally probable, a flat prior canHmmsen, i.ep(c) = [1/2,1/2]. The
resulting posteriop(c|t) is plotted in 2.5. The decision boundary istat 0.5, wherep(c;|t) =
p(c2|t). The winner is given as in Eq. 2.10

¢* = argmax p(c|t)

Different quantization strategies can be implemented layging the prior. For exampledf= [0]
is assumed to be less probable, we can choose another pigr(@® = [0.3,0.7]. In this case the
decision boundary shifts from5 towards0 as expected.

2.2.5 Example 2: Vector Quantizer

Assigning different prior probabilities to notations idpone way of implementing different quan-
tization strategies. Further decision regions can be impteed by varying the conditional prob-
ability distributionp(t|c). In this section we will demonstrate the flexibility of thip@oach for
guantization of groups of onsets.

Figure 2.6: Two Onsets

Consider the segmenmt= [0.45,0.52] depicted in Figure 2.6. Suppose we wish to quantize
the onsets again only to one of the endpoints, i.e. we areyuefectively the codebookC =
{[0,0],[0,1], [1,1]}. The simplest strategy is to quantize every onset to theesegrid point (e.g.

a grid quantizer) and so the code-veatot [0, 1] is the winner. However, this result might be not
very desirable, since the inter-onset interval (I01) haseased more than 14 times, (from 0.07 to
1). Itis less likely that a human transcriber would make thigice since it is perceptually not very
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realistic. We could try to solve this problem by employingtuer strategy : 16 = t, — ¢; > 0.5,
we use the code-vectdd, 1]. If 6 < 0.5, we quantize to one of the code-vect¢ws0] or [1, 1]
depending upon the average of the onsets. In this strategyudintization 0f0.45, 0.52] is [0, 0].

p=0
2t ST g 2t
0 o 0
0 1/2 1 0 1/2 1
t1 t1

SN2t SN2

0 1/2 1 0 1/2 1

Figure 2.7: Tiling for choices op and constanp(c). Onset quantization (i.e. grid quantiza-
tion) used by many commercial notation packages corresptmthe case wherg = 0. 10l
guantization appears when— 1. Note that different correlation structures imply diffetguan-
tization decisions, not necessarily onset- or |IOI-quani@n. The cross corresponds to the rhythm
t = [0.45,0.52].

Although considered to be different in the literature, bsttiategies are just special cases which
can be derived from Eq. 2.11 by making specific choices albeutdrrelation structure (covariance
matrix X.) of expressive deviations. The first strategy assumes lileagxpressive deviations of
both onsets are independent of each other. This is appareith very realistic model for timing
deviations in music. The latter corresponds to the caseenvresets are linearly dependent; it was
assumed that, = ¢; + 6 and onlyé and¢; were considered in quantization. This latter operation
is merely a linear transformation of onset times and is ietbby the implicit assumption about
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the correlation structure. Indeed some quantization nsadehe literature focus directly on IOI's
rather then on onset times.

More general strategies, which can be quite difficult toestatrbally, can be specified by differ-
p
1
depicted in Figure 2.7. The ellipses denote the set of parhtsh are equidistant from the center
and the covariance matriX. determines their orientation. The lines denote the detismund-
aries. The interested reader is referred to (Duda & Hart31ff a discussion of the underlying
theory.

ent choices ok, andp(c). Some examples for the choite = and constanp(c) are

Likelihood for the Vector Quantizer

For modeling the expressive timimgn a segment containing onsets, we propose the following
parametric form for the covariance matrix

1 P12 - PLK
Sie) = 2| P2 b Pem (2.13)
L e :
pLr - 1
where
A2 9
Prm = neXp(—E(cm—cn)) (2.14)

Here,c,, andc, are two distinct entries (grid points) of the code vectotn Eq. 2.14,y is a
parameter between -1 and 1, which adjust the amount of etiorlstrength between two onsets.
The other parametex adjusts the correlation as a function of the distance betweedries in the
code vector. When is zero, all entries are correlated by the equal amount, lyamaVhen\ is
large, the correlation approaches rapidly to zero withéasmg distance.

This particular choice fop(e) reflects the observation that onsets, which are close to each
other, tend to be highly correlated. This can be interpretetbllows: if the onsets are close to
each other, it is easier to quantify the IOl and then selectgoropriate translation for the onsets
by keeping the IOl constant. If the grid points are far awayfreach other, the correlation tends to
be weak (or sometimes negative), which suggests that oasetpiantized independently of each
other. In section 2.3, we will verify this choice empirigall

Prior for the Vector Quantizer

The choice of the priop(c) reflects the complexity of codevector In this article we propose
a complexity measure from a probabilistic point of view. histmeasure, the complexity of a
codevectok = [¢;] is determined by the depth of with respect to the beat (See Eqg. 2.2) and the
time signature of the piece. See Figure 2.8.

The prior probability of a code-vector with respectlas chosen as

p(c|S) oc e77delS) (2.15)

Note that ify = 0, then the depth of the codevector has no influence upon itplesity. If it is
large, (e.g-y ~ 1) only very simple rhythms get reasonable probability masactice, we choose
~ = 0.02. This choice is also in accordance with the intuition andegxpental evidence: simpler
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ty sl rrr |

(a) In lack of any other context, both onset sequences wilhdadhe same.
However the first notation is more complex

trererlerop lycrererirrr |

(b) Assumed time signature determines the complexity oftatiom

Figure 2.8: Complexity of a notation

rhythms are more frequently used then complex ones. Theinadggior of a codevector is found
by summing out all possible subdivision schemes.

plc) = > p(cS)p(S) (2.16)
S

wherep(S) is the prior distribution of subdivision schemas. For exEmpne can select possible
subdivision schemas & = [2,2,2], S, = [3,2,2], S3 = [2, 3, 2]. If we have a preference towards
the time signature (4/4), the prior can be takep@s) = [1/2,1/4,1/4]. In general, this choice
should reflect the relative frequency of time signatures. phdépose the following form for the
prior of S = [s]

Table 2.1:w(s;)

&
N

; 3/5|7|11]13| 17| o/lw
w(s;)) 011123 4]|5] 6| ©

p(S) o e~Exiwlsd) (2.17)

wherew(s;) is a simple weighting function given in Table 2.1. This formefers subdivisions by
small prime numbers, which reflects the intuition that rimyth subdivisions by prime numbers
such as 7 or 11 are far less common then subdivisions suchra®. Zbe parametef distributes
probability mass over the primes. Whégr= 0, all subdivision schemata are equally probable. As
¢ — o0, only subdivisions withs; = 2 have non-zero probability.

2.3 Verification of the Model

To choose the likelihoogd(t|c) and the priop(c) in a way which is perceptually meaningful, we
analyzed data obtained from an psychoacoustical expetiwtere ten well trained subjects (nine
conservatory students and a conservatory professor) reieipated (Desain, Aarts, Cemgil,
Kappen, van Thienen, & Trilsbeek, 1999). The experimentsistaed of a perception task and
a production task.
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2.3.1 Perception Task

In the perception task the subjects were asked to trans@filfferentstimuli. These rhythms
consisted of four onsets . ..t; wheret, andt; were fixed and occur exactly on the beat (Fig-
ure 2.9). First a beat is provided to subjects (count in), thed the stimulus is repeated 3 times
with an empty bar between each repetition. Subjects weogvall to use any notation as a re-
sponse and listen to the stimulus as much as they wanted.tdl $oibjects used 125 different
notations, from which 57 were used only once and 42 are used than three times. An example
is depicted in Figure 2.10(a). From this data, we estimatgutsterior as

q(cjlty) = nk(cj)/an(cj)

wheren,(c;) denotes the number of times the stimutyss associated with the notati@n.

% Y P S

4
q

(a) Stimulus

Stimuli

Y

(b) Stimuli for the perception experiment. The dots

denote the rhythmts,, wherek = 1...91. Grid spac-
ing is 56ms.

Figure 2.9: Stimulus of the Perception Task
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(a) Perception (b) Production

Figure 2.10: Perception and Production of the rhythm [2 1cl1F (0.5 0.75]). The diamond
corresponds to the mechanical performance. In 2.10(a$jzlkef the circles is proportional to the
estimated posteriay(c;|t;). In 2.10(b), the dots correspond to performances of théarhyt

2.3.2 Production Task

In the production task the subjects are asked to performHhyhms that they have notated in
the perception task. An example is shown in Figure 2.10(a). eflach notatior; we assume a
gaussian distribution where

q(tley) = Ny, %5) (2.18)

The mean and the covariance matrix are estimated from ptiodwtata by

1
Bio= 5 >ty (2.19)
Tk
1
% = N 1 > bk = 1) (b1 — )" (2.20)
J

k.l

wheret,, ; is thek’'th performance ot; and.V; is the total count of these performances in the data
set. In Section 2.2.5 we proposed a model in which the cdioel®etween two onset decreases

with increasing inter-onset interval. The correlation foent and the estimated error bars are

depicted in Figure 2.11, where we observe that the coroglatecreases with increasing distance
between onsets.
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Figure 2.11: Estimated correlation coefficient as a fumctid Ac = (c2 — ¢;) on all subject
responses.

2.3.3 Estimation of model parameters

The probabilistic modep(c|t) described in the previous section can be fitted by minimitireg
“distance”to the estimated targgic|t). A well known distance measure between two probability
distributions is the Kullback-Leiber divergence (Cover &omas, 1991) which is given as

q(x)
KL = /dx x) lo 2.21
(qllp) q(x) 8 ox) (2.21)
The integration is replaced by summation for discrete poditya distributions. It can be shown
(Cover & Thomas, 1991) that Klg||p) > 0 for anyq, p and vanishes if and only if = p.

KL divergence can be interpreted as a “weighted averagdiefunctionlog 2 \yith respect
o : e : pix)
to weighting functiony(z). If ¢(z) andp(z) are significantly different for some (for which ¢(z)
is sufficently large), the KL divergence would be also langé would indicate that the distributions
are different. On the other if the distributions have alntbstsame shap%% ~ 1 for all z, and

KL would be close to zero sindeg(1) = 0.

The KL divergence is an appropriate measure for the rhythamtization problem. We observe
that for many stimuli, subjects give different responses emnsequently it is difficult to choose
just one “correct” notation for a particular stimulus. Ihet words, the target distributiaric|t)
has its mass distributed among several codevectors. Bymizimg the KL divergence one can
approximate the posterior distribution by preserving thisnsic uncertainty.

The optimization problem for the perception task can be set a

min. KL (g(c|t)s(t)||p(c|t)s(t)) (2.22)
s.t. o>0
-l<n<l1

A, &, v unconstrained

wheres(t) oc >, 6(t — t;) is the distribution of the stimuli. This is a distributionhieh has
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positive mass only on the stimuli pointg. This measure forces the model to fit the estimated
posterior at each stimulus poityt. We note that

pltlc; o, A, m)p(c; €,7) s
> p(tle; o, A, n)p(c; €,7) (2.23)

This is in general a rather difficult optimization problemedio the presence of the denominator.
Nevertheless, since the model has only five free parametersyere able to minimize Eq. 2.22
by a standard BFGS Quasi-Newton algorithm (MATLAB functfamnu). In our simulations, we
observed that the objective function is rather smooth aedofftimum found is not sensitive to
starting conditions, which suggests that there are not @ minima present.

p(clt)

2.3.4 Results

The model is trained on a subset of the perception data bymzimg Eq. 2.22. In the training, we
used 112 different notations (out of 125 that the subjeats urs total), which could be generated
by one of the subdivision schemas in Table 2.2. To identi®y rislative importance of model
parameters, we optimized Eq. 2.22 by clamping some parasnaiée use a labeling of different
models as follows: Model-1 is the “complete” model, whergparameters are unclamped. Model-
Il is an onset quantized] = o2I), where only prior parameters are active. Model-ll is (aft)
an IOl quantizer where the correlation between onsets etakbey = 0.98. Model-IV is similar
to Model | with the simplification that the covariance maisxonstant for all codevectors. Since
A =0, p = n. Model-V is an onset quantizer with a flat prior, similar t@ thuantizers used in
commercial notation packages and Model-VI has only thegperdince model parameters active.
In Model-VII, the parameters of the performance maadg|c) are estimated from the produc-
tion data. The model is fitted to the production datay minimizing

KL (4(t[c)g(c)l[p(t[c)g(c)) (2.24)

whereq(c;) = >, ni(c;)/ > ;ni(c;), i.e. a histogram obtained by counting the subject re-
sponses in the perception experiment.

Although approximating the posterior at stimuli points 18 objective in the optimization, for
automatic transcription we are also interested into thesdiaation performance. At each stimuli
tx, if we select the response which the subjects have chosendkg i.e.c; = arg max. q(c|tx),
we can achieve maximum possible classification rate on #isset, which is given as

ni(cy)

CRrarget= x 100 (2.25)
Here,Z =}, .mx(cy), the total number of measurements. Similarly, if we seleetdodevector
with the highest predicted posterigf = arg max. p(c|t;) at each stimulus, we achieve the clas-
sification rate of the Model denoted as (R The results are shown in Table 2.3. The clamped
parameters are tagged with an ‘=" sign. The results are fodalwook consisting of 112 codevec-
tors, which the subjects have used in their responses and lcave been generated by one of the
subdivisions in Table 2.2.

Model-I performs the best in terms of the KL divergence, hosvghe marginal benefit ob-
tained by choosing a correlation structure, which decreasth increasing onset distances (ob-
tained by varying\) is rather small. One can achieve almost the same perfoernanbaving a
constant correlation between onsets (Model-1V). By conmgaodel-IV to Models Il and II, we
can say that under the given prior distribution the subjamtsemploying a quantization strategy,
which is somehow between a pure onset quantization andu@ttigation. The choice of the prior
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2,2,2,2]
[3.2,2]
[3,3,2]
[5, 2]
[7, 2]
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[13]
[5, 3]
[17]
[7,3]
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Table 2.2: Subdivisions

Model Prior Likelihood Results
Label € ’y g )\ 77 KL CRModeI/CRTarget
I 1.35/ 0.75] 0.083 | 257 | 0.66 | 1.30 77.1
[l 1.34] 0.75] 0.086 | = =0 1.41 71.3
1 1.33/0.77| 0.409 | = =0.98| 1.96 51.4
v 1.341 0.74] 0.084 | = 0.39 || 1.34 75.3
\Y = = 0.085 | = =0 1.92 29.7
VI = = 0.083 | 254 | 0.66 | 1.89 32.7
Vil 1.43]0.79( 10.053|13.07| 10.83 | 1.89 84.3

Table 2.3: Optimization Results. GRje: = 48.0. Values tagged with a ‘=’ are fixed during opti-
mization. Values estimated from the production experinagattagged with a ‘!. The meanings
of the columns are explained in the text.

is very important which can be seen from the results of Matdakhd Model-VI, which perform
poor due to the flat prior assumption.

Model-VII suggests that for this data set (under the assiomphat our model is correct) the
perception and production processes are different. Thsaigly due to the spread parameter
which is smaller for the production data. The interpretatdthis behavior is that subjects deviate
less from the mechanical mean in a performance situatiomeier, this might be due to the fact
that performances were carried out in lack of any contexiclvforces the subjects to concentrate
on exact timing. It is interesting to note that almost the samrrelation structure is reserved in
both experiments. This suggests that there is some rela¢ivveen the production and perception
process. The classification performance of Model-VII igsisingly high; it predicts the winner
accurately. However the prediction of the posterior is padrich can be seen by the high KL
divergence score.

For visualization of the results we employ an interpolatwocedure to estimate the target
posterior at other points than the stimuli (See Appendi).ZT4e rhythm space can be tiled into
regions of rhythms, which are quantized to the same codevdetstimated tiles from experimental
data are depicted in Figure 2.12(a).

In practice, it is not feasible to identify explicitly a sudisof all possible codevectors, which
have non-zero prior probability. For example, the numbaeragations which can be generated by
subdivisions in Table 2.2 is 886 whereas the subjects uslgdld2 of these as a response. This
subset must be predicted by the model as well. A simple grahtizer tries to approximate this
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subset by assigning a constant prior probability to codeveonly up to a certain threshold depth.
The proposed prior model can be contrasted to this scherhatirt tlistributes the probability mass
in a perceptually more realistic manner. To visualize tiws,generated a codebook consisting of
all 886 codevectors. The tilings generated by Model-1 andi&td/ for this codebook are depicted
in Figure 2.12(b) and 2.12(c). To compare the tilings, weneste the ratio

A
Match= "2 100 (2.26)

where Anaich IS the area where the model matches with the targetgulis the total area of the
triangle. Note that this is just a crude approximation toclassification performance under the
assumption that all rhythms are equally probable. The teané shown in Table. 2.4.

I Il 1] vV | V | VI | VI
Match || 58.8| 53.5| 36.1| 59.0| 3.8 | 3.1 | 56.7

Table 2.4: Amount of match between tilings generated bydhget and models

2.4 Discussion and Conclusion

In this article, we developed a vector quantizer for traipsion of musical performances. We
considered the problem in the framework of Bayesian sitegisthere we proposed a quantizer
model. Experimentally, we observe that even for quantmatf simple rhythms, well trained
subjects give quite different answers, i.e. in many cagesetis not only one correct notation. In
this respect, probabilistic modelling provides a naturatrfework.

The quantizer depends upon two probability models, a pmadoce model and a prior. The
performance model generalizes simple quantization gfiegdy taking the correlation structure
in the music into account, for example onset quantizatiqgrears as a special case. The particular
parametric form is shown to be perceptually meaningful amwilifates efficient implementation.
It can also be interpreted as a suitable distance measwedrethythms.

The prior model can be interpreted as a complexity measurecomtrast to the likelihood,
which has a rather standard form, the prior reflects ourtimuand subjective notion about the
complexity of a notation and derives from considerationiwfet signatures and the hierarchical
(i.e. tree-like) structure of musical rhythms.

The model is verified and optimized by data obtained from &lpssicoustical experiment. The
optimization results suggest that prior and likelihoodgpaeters can be optimized independently,
since clamping one set of parameters affects the optimaésadf others only very slightly. This
property makes the interpretation of the model easier. éSime explicitly state the probability
model, we can make comparisons between models by using théiv€rgence as a goodness
of fit measure. Indeed any other model which computes a postéstributionp(c|t) could be
compared in a quantitative manner using this framework. as<bf statistical tests to determine
whether one model is significantly better than another isnknas bootstrapping methods (Efron
& Tibshirani, 1993). This methods can be used to estimatar drars on the KL measures to
determine any significant difference between models.

We have to stress the point, that the particular parametingewe find from data are not the
ultimate way of doing quantization in every circumstanciesti-the model is not using any other
attributes of notes (e.g. duration, pitch), which may gigdiional information for better quanti-
zation. Second, we have not addressed the context infammatheoretically, such improvements
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can be integrated by proposing more complex likelihood amat pnodels. As already demon-
strated, since all the assumptions are stated as distitsjitorresponding optimal parameters can
be estimated from experimental data. A practical but imgodrlimitation is that parameter esti-
mation in more complex models requires larger datasetwiberthe estimation can be subject to
overfitting. A large dataset is difficult to collect since agféectively has to rely on psychoacous-
tical experiments, which are inherently limited in the nienbf experimental conditions on can
impose (e.g. number of onsets, tempo, context e.t.c.). filesless, we believe that the current
framework is a consistent and principled way to investigladequantization problem.
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Appendix 2.A Estimation of the posterior from subject respases

Let t;, be the stimuli points. The histogram estimatetais denoted by (c;|t;). We define a
kernel

1
G(t:to,0) = exp(—55llt — to[*) (2.27)

where||x|| is the length of the vectat. Then the posterior probability ef at an arbitrary point
is given as

q(cilt) = Zak q(c;|ts) (2.28)

wherea,(t) = 7. We have taken = 0.04.
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Figure 2.12: Tilings of the rhythm space by = argmax p(c|t). The tiles denote the sets of

rhythms, which would be quantized to the same codevectoith Btodel-I and Model-V use
the same codebook of 886 codevectors. Since Model-V assignsame prior probability to
all codevectors, the best codevector is always the neavdstvector (in Euclidian distance) and
consequently the rhythm space is highly fragmented.



Chapter 3

Tempo Tracking

We formulate tempo tracking in a Bayesian framework where a empo tracker is modeled as
a stochastic dynamical system. The tempo is modeled as a helistate variable of the system
and is estimated by aKalman filter The Kalman filter operates on aTempograma wavelet-

like multiscale expansion of a real performance. An importat advantage of our approach is
that it is possible to formulate both off-line or real-time algorithms. The simulation results

on a systematically collected set of MIDI piano performancs of Yesterday and Michelle by
the Beatles shows accurate tracking of approximatel§,90 of the beats.

Adapted from: A. T. Cemgil, H. J. Kappen, P. Desain, and H.iHpnOn
tempo tracking: Tempogram representation and Kalman ffilgerJournal
of New Music Research, 28:4:259-273, 2001.

3.1 Introduction

An important and interesting subtask in automatic musiedtaption is tempo tracking: how to
follow the tempo in a performance that contains expressimeny and tempo variations. When
these tempo fluctuations are correctly identified it becomesh easier to separate the continuous
expressive timing from the discrete note categories (Lantjzation). The sense of tempo seems
to be carried by the beats and thus tempo tracking is relatélet study of beat induction, the
perception of beats or pulse while listening to music (sees@in & Honing, 1994)). However, it
is still unclear what precisely constitutes tempo and hawldtes to the perception of rhythmical
structure. Tempo is a perceptual construct and cannottlyitee measured in a performance.

In the context of tempo tracking, wavelet analysis and eeldéchniques are already investi-
gated by various researchers (Smith, 1999; Todd, 1994).miasi comb filter basis is used by
(Scheirer, 1998). The tempogram is also related to the gherip transform proposed by (Sethares
& Staley, 1999), but uses a time localized basis. Kalmanrdiltge already applied in the music
domain such as polyphonic pitch tracking (Sterian, 1998)ardio restoration (Godsill & Rayner,
1998). From the modeling point of view, the framework disagsin this paper has also some re-
semblance to the work of (Sterian, 1999), who views traption as a model based segmentation
of a time-frequency image.

The outline of the paper is as follows: We first consider thabfam of tapping along a “noisy”
metronome and introduce the Kalman filter and its extensi@ssequently, we introduce the
Tempogram representation to extract beats from perforesaand discuss the probabilistic in-
terpretation. Consequently, we discuss parameter esbimiasues from data. Finally we report
simulation results of the system on a systematically ctl&data set, solo piano performances of
two Beatles songs, Yesterday and Michelle.

33
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3.2 Dynamical Systems and the Kalman Filter

Mathematically, a dynamical system is characterized byt afsstate variablesand a set oftate
transition equationghat describe how state variables evolve with time. For etapa perfect
metronome can be described as a dynamical system with tteovstaables: a beatand a period
A. Given the values of state variablesjat- 1'th step as7;_; and Aj_l, the next beat occurs at

A A

#; = 7,1+ A,_,. The period of a perfect metronome is constanf\so= A;_,. By using vector
notation and by letting; = [7;, A;]7 we can write a linear state transition model as

11
5, = ( 0 1 )Sjl = ASj,1 (31)

When the initial state, = [7, AO]T is given, the system is fully specified. For example if the
metronom clicks at a tempo 60 beats per minttg £ 1 sec.) and first click occurs at tinig = 0
sec., next beats occur &t = 1, 7» = 2 e.t.c. Since the metronom is perfect the period stays
constant.

Such a deterministic model is not realistic for natural myrformance and can not be used
for tracking the tempo in presence of tempo fluctuations apdessive timing deviations. Tempo
fluctuations may be modeled by introducing a noise term tbatrtipts” the state vector

5; = Aijl—FVj (32)

wherev is a Gaussian random vector with meaand diagonal covariance matr@, i.e. v ~
N(0,Q)L. The tempo will drift from the initial tempo quickly if the viance ofv is large. On the
other hand whe®) — 0, we have the constant tempo case.

In a music performance, the actual béatnd the period\ can not be observed directly. By
actual beat we refer to the beat iterpretation that coirsordeh human perception when listening to
music. For example, suppose, an expert drummer is tappamg & performance at the beat level
and we assume her beats as the correct tempo track. If thevtagll be repeated on the same
piece, we would observe each time a slightly different tetnack. As an alternative, suppose we
would know the score of the performance and identify on$etisdoincide with the beat. However,
due to small scale expressive timing deviations, thesetomak be also noisy, i.e. we can at best
observe “noisy” versions of actual beats. We will denots thoisy beat by- in contrast to the
actual but unobservable beatMathematically we have

Tj = 7A'j+Wj (33)

wherew,; ~ N (0, R). Here,r; is the beat at stepthat we get from a (noisy) observation process.
In this formulation, tempo tracking corresponds to theraation of hidden variable$; given
observations uptg’th step. We note that in a “blind” tempo tracking task, i.ehem the score is
not known, the (noisy) beat; can not be directly observed since there is no expert drunarher

is tapping along, neither a score to guide us. The noisyitsedt has to benducedfrom events in
the music. In the next section we will present a techniquestnate both a noisy beat as well

a noisy period\; from a real performance.

1A random vectok is said to be Gaussian with mearand covariance matriP if it has the probability density
1
p(x) = 27|72 exp —2 (@ — 1) P! (& — pr)

In this case we writ&x ~ A (1, P)
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Equations 3.2 and 3.3 defineliaear dynamical systejmbecause all noises are assumed to
be Gaussian and all relationships between variables agarlirHence, all state vectoss have
Gaussian distributions. A Gaussian distribution is fulhaacterized by its mean and covariance
matrix and in the context of linear dynamical systems, thepsantities can be estimated very
efficiently by aKalman filter(Kalman, 1960; Roweis & Ghahramani, 1999). The operatiaief
filter is illustrated in Figure 3.1.

ANERAN

(a) The algorithm starts with  (b) The beat is observed (c) On the basis of cur-
the initial state estimate at 7;, The state is updated rent state a new prediction
N (p1j0, P1jo)- In presence of  to N'(uq)1, Pyjy) according to N (pgj1, Py ) is made,

no evidence this state estimate the new evidence. Note that

gives rise to a prediction in  the uncertainty “shrinks”,

the observable space,

N AN

(d) Steps are repeated un- (e) Filtered estimates are
til all evidence is processed updated by backtracking to
to obtain filtered estimates obtain smoothed estimates
N ()5, Pjjj),j=1...N.In N (wijn, Pyw) (Kalman
this caseV = 3. smoothing).

Figure 3.1:Operation of the Kalman Filter and Smoother. The systemvisrgby Equations 3.2 and 3.3.

In each subfigure, the above coordinate system represantsidden state spade, A]T and the below
coordinate system represent the observable spada the hidden space, the x and y axes represent the
phaser periodA of the tracker. The ellipse and its center correspond todleriance and the mean of the
hidden state estimate(s;|71 ... 7x) = N (i, Pj) wherep;;, and P;;, denote the estimated mean and
covariance given observations. .. ;. In the observable space, the vertical axis representsréutcfive

probability distributionp(7;|7j—1 ... 71).
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3.2.1 Extensions

The basic model can be extended in several directions, #ieslinearity constraint on the Kalman
filter can be relaxed. Indeed, in tempo tracking such an extans necessary to ensure that the
period A is always positive. Therefore we define the state transitiodel in a warped space
defined by the mapping = log, A. This warping also ensures the perceptually more plausible
assumption that tempo changes are relative rather thafuédsibor example, under this warping,
a deceleration from\ — 2A has the same likelihood as an acceleration fedm> A /2.

The state space; can be extended with additional dynamic variabdes Such additional
variables store information about the past states (e.g@ring of acceleration e.t.c.) and introduce
inertia to the system. Inertia reduces the random walk kehav the state space and renders
smooth state trajectories more likely. Moreover, this asult in more accurate predictions.

The observation noise/; can be modeled as a mixture of gaussians. This choice has the
following rationale: To follow tempo fluctuations the obgation noise varianc® should not be
too “broad”. A broad noise covariance indicates that oletéras are not very reliable, so they have
less effect to the state estimates. In the extreme case Rhenxo, all observations are practically
missing so the observations have no effect on state essmatethe other hand, a narrd®vmakes
the filter sensitive to outliers since the same noise conaeas used regardless of the distance of
an observation from its prediction. Outliers can be exfdlgi modeled by using a mixture of
Gaussians, for example one “narrow” Gaussian for normatatjps, and one “broad” Gaussian
for outliers. Such a switching mechanism can be implemehtedsing a discrete variablg
which indicates whether thgth observation is an outlier or not. In other words we usefteint
noise covariance depending upon the value:,of Mathematically, we write this statement as
w;lc; ~ N(0,R.). Sincec; can not be observed, we define a prior probabitity~ p(c) and
sum over all possible settings of, i.e. p(w;) = >_. p(c;)p(w;|c;). In Figure 3.2 we compare
a switching Kalman filter and a standard Kalman filter. A stvit@riable makes a system more
robust against outliers and consequently more realistte sistimates can be obtained. For a review
of more general classes of switching Kalman filters see (Myrp998).

To summerize, the dynamical model of the tempo tracker isrgby

Wi\ _ wj—1
( y ) - A( - ) +v, (3.5)
( ¥ ) = ( LJ ) +w; (3.6)

wherev; ~ N(0,Q), w;|¢; ~ N(0,R.) ande; ~ p(c;). We takec; as a binary discrete switch
variable. Note that, in Eq. 3.6 the observable space is timedsional (includes bothandw), in
contrast to one dimensional observabl@ Figure 3.2.

3.3 Tempogram Representation

In the previous section, we have assumed that the heatobserved at each stgp In a real
musical situation, however, the beat can not be observedttirfrom performance data. The
sensation of a beat emerges froodlectionof events rather than, say, single onsets. For example,
a syncopated rhythm induces beats which do not neccesanlgide with an onset.
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N

S

(a) Based on the state estimate
N (paj2, Poj2) the next state
is predicted asV(ji3)2, Ps|2)-
When propagated through the
measurement model, we ob-
tain p(7s|m2, 1), which is a
mixture of Gaussians where
the mixing coefficients are

(b) The observations is way
off the mean of the predic-
tion, i.e. it is highly likely
an outlier. Only the broad
Gaussian is active, which re-
flects the fact that the ob-
servations are expected to be
very noisy. Consequently,

(c) After all observations are
obtained, the smoothed esti-
mates N (p;)4, Pjj4) are ob-
tained. The estimated state
trajectory shows that the ob-
servationrs is correctly inter-
preted as an outlier.

37

the updated state estimate
N (313, P3j3) is not much
different than its prediction
N (p3i3, P3j3). However, the
uncertainty in the next pre-
diction NV (piaj3, Pyj3) will be
higher,

given byp(c),

VAN

(d) In contrast to the switch-
ing Kalman filter, the ordi-

(e) Consequently a very
“jumpy” state trajectory is
nary Kalman filter is sensitive  estimated. This is simply due
against outliers. In contrastto to the fact that the observation
(b), the updated state estimate model does not account for
N (3|3, Ps3) is way off the presence of outliers.
prediction.

Figure 3.2: Comparison of a standard Kalman filter with a elwitg Kalman filter.

In this section, we will define a probability distribution wh assigns probability masses to all
possible beat interpretations given a performance. The&ay formulation of this problem is

p(r,wlt) o p(tlr, w)p(T,w) (3.7)

wheret is an onset list. In this context eeat interpretations the tupler (local beat) and (local
log-period).
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Y

Figure 3.3:Tempogram Calculation. The continuous signél) is obtained from the onset list by convo-
lution with a Gaussian function. Below, three differentibdsinctionsy) are shown. All are localized at

the samer and differentv. The tempogram &tr,w) is calculated by taking the inner productaft) and

¥ (t; 7,w). Due to the sparse nature of the basis functions, the inglupt operation can be implemented
very efficiently.

The first termp(t|7,w) in EQ.3.7 is the probability of the onset listgiven the tempo track.
Sincet is actually observedy(t|r,w) is a function ofr andw and is thus called thikelihood
of 7 andw. The second term(7,w) in EQ.3.7 is theprior distribution. The prior can be viewed
as a function which weights the likelihood on thew) space. It is reasonable to assume that the
likelihoodp(t|7,w) is high when onsets;] in the performance coincide with the beats of the tempo
track. To construct a likelihood function having this prdgewe propose a similarity measure
between the performance antbaal constant tempo track. First we define a continuous time kigna
x(t) = L G(t — t;) where we take5 (t) = exp(—t2/202), a Gaussian function with variance
o2. We represent a local tempo track as a pulse tr@inr, w) = > °_ _ «a,,0(t—7—m2%) where
d(t — to) is a Dirac delta function, which represents an impulse kxtatt,. The coefficientsy,,
are positive constants such that  «,, is a constant. (See Figure 3.3). In real-time applications,
where causal analysis is desirahblg, can be set to zero fon > 0. Whenc,, is a sequence of
form a,, = @™, whered < a < 1, one has the infinite impulse response (IIR) comb filters bged
(Scheirer, 1998) which we adopt here. We definetéimepogranof z(¢) at each(r, w) as the inner
product

Tegy(m,w) = /dt z(t)(t; T, w) (3.8)

The tempogram representation can be interpreted as thenssmpf a comb filter bank and is
analogous to a multiscale representation (e.g. the watrale$form), where- andw correspond
to transition and scaling parameters (Rioul & Vetterli, 19Rronland-Martinet, 1988).

The tempogram parameters have simple interpretationsfilfdrecoefficienta adjust the time
locality of basis functions. Whea — 1, basis functiong> extend to infinity and locality is lost.
Fora — 0 the basis degenerates to a single Dirac pulse and the teampageffectively equal to
x(t) for all w and thus gives no information about the local period.

The variance parametet, corresponds to the amount of small scale expressive dewigtian
onsets timing. I, would be large, the tempogram gets “smeared-out” and allibeapretations
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become almost equally likely. When. — 0, we get a very “spiky” tempogram, where most beat
interpretations have zero probability.

In Figure 3.4 we show a tempogram obtained from a simple semgience. We define the
likelihood asp(t|7,w) x exp(Tgy(7,w)). When combined with the prior, the tempogram gives an
estimate of likely beat interpretatiofs, w).

o
-

Figure 3.4:A simple rhythm and its Tempogram:. andy axes correspond to andw respectively. The
bottom figure shows the onset sequence (triangles). Assuiainpriors onr andw, the curve along the
axis is the marginab(w(t) [ drexp(Tgx(7,w)). We note thap(w|t) has peaks at, which correspond
to quarter, eight and sixteenth note level as well as dottiedtgr and half note levels of the original notation.
This distribution can be used to estimate a reasonablalisttte.

3.4 Model Training

In this section, we review the techniques for parametemadion. First, we summerize the rela-
tionships among variables by using gmphical model A graphical model is a directed acyclic
graph, where nodes represent variables and missing dirtokes represent conditional indepen-
dence relations. The distributions that we have specifiddrsare summarized in Table 3.1.

Model Distribution | Parameters
State Transition (Eq. 3.5) p(sjt1ls;) A,Q
(Switching) Observation (Eq. 3.6)p(7;,wjs;, ¢;) R.
Switch prior (Eqg. 3.6) p(c ) De
Tempogram (Eq.3.8) p(t|Tj, w;) Oy O

Table 3.1:Summary of conditional distributions and their parameters

The resulting graphical model is shown in Figure 3.5. Fongxe, the graphical model has a
directed link froms; to s, ; to encodep(s;1|s;). Other links towards;..; are missing.

In principle, we could jointly optimize all model parameteHowever, such an approach would
be computationally very intensive. Instead, at the expefhggetting a suboptimal solution, we
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Kalman Filter ;" — """

Tempograrﬁ T

Figure 3.5: The Graphical Model

will assume that we observe the noisy tempo tracKr his observation effectively “decouples” the
model into two parts (See Fig. 3.5), (i) The Kalman Filtera¢Bttransition model and Observation
(Switch) model) and (ii) Tempogram. We will train each paparately.

3.4.1 Estimation ofr; from performance data

In our studies, a score is always available, so we extraftom a performance by matching
the notes that coincide with the beat (quarter note) levdltae bar (whole note). If there are
more than one note on a beat, we take the median of the onsat firRor each performance, we
computew; = log,(7;11 — 7;) from the extracted noisy bedts|. We denote the resulting tempo
traCk{Tl,wl c T W TJ,CL)J} aS{Tl;J,wl;J}.

3.4.2 Estimation of state transition parameters

We estimate the state transition model paramefeendQ by an EM algorithm (Ghahramani &
Hinton, 1996) which learns a linear dynamics in theapace. The EM algorithm monotonically
increase®({m.s,w1.s}), i.e. the likelihood of the observed tempo track. Put anotiesy, the
parameterdA andQ are adjusted in such a way that, at eacthe probability of the observation
is maximized under the predictive distributip(r;, w;|7;_1,w;_1,...7,w;). The likelihood is
simply the hight of the predictive distribution evaluatedhe observation (See Figure 3.1).

3.4.3 Estimation of switch parameters

The observation model is a Gaussian mixture with diagBaind prior probabilityp.. We could
estimateR,. andp. jointly with the state transition parameteAsand Q. However, then the noise
model would be totally independent from the tempogram regrtation. Instead, the observation
noise model should reflect the uncertainty in the tempogfangxample the expected amount of
deviations in(7, w) estimates due to spurious local maxima. To estimate thepggnam noise”
by standard EM methods, we sample from the tempogram araasid®, |, i.e. we sample;
andw; from the posterior distributiop(7;, w;|7;, w;, t; Q) o p(t|7;, w;)p(7;, w;|7j, @;; Q). Note

2The scores do not have notes on each beat. We interpolatiagiissats by using a switching Kalman filter with
parameter€) = diag([0.012,0.05?]), R; = 0.012, R = 0.3%, A = 1 andp(c) = [0.999, 0.001].
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that[7;, w;] are estimated during the E step of the EM algorithm when fumdie parametera
andQ.

3.4.4 Estimation of Tempogram parameters

We have already defined the tempogram as a likelihdold, w; #) whered denotes the tempogram
parameters (e.d. = {«a, 0, }). If we assume a uniform prigr(7, w) then the posterior probability
can be written as

p(t|7, w; 6)
p(t]0)
where the normalization constant is givenjigy|0) = [ drdwp(t|r,w; ). Now, we can estimate

tempogram parametefsby a maximum likelihood approach. We write the log-likeldabof an
observed tempo trackr.;, w;.;} as

p(T,wlt; 0) = (3.9)

log p({m1./, wi.s }[t; 0) = Z log p(7;,w;|t; 0) (3.10)

J

Note that the quantity in Equation 3.10 is a function of theapzeterd. If we havek tempo tracks
in the dataset, the complete data log-likelihood is simpé/gum of all individual log-likelihoods.
i.e.

L= Zlogp({leJ,wlzJ}k|tk; a,0,) (3.11)
&

wheret* is thek'th performance andr,.;, w;.;}* is the corresponding tempo track.

3.5 Evaluation

Many tempo trackers described in the introduction are déteted with ad hoc examples. However,
to validate tempo tracking models, more systematic datarguious testing is necessary. A

tempo tracker can be evaluated by systematically modgl&tetempo of the data, for instance by
applying instantaneous or gradual tempo changes and corgghe models responses to human
behavior (Michon, 1967; Dannenberg, 1993). Another apgraesto evaluate tempo trackers on
a systematically collected set of natural data, monitopiago performances in which the use of
expressive tempo change is free. This type of data has tlantalye of reflecting the type of data

one expects automated music transcription systems to demlThe latter approach was adopted
in this study.

3.5.1 Data

For the experiment 12 pianists were invited to play arrarg@siof two Beatles songs, Michelle
and Yesterday. Both pieces have a relatively simple rhythstnucture with ample opportunity to
add expressiveness by fluctuating the tempo. The subjecsssted of four professional jazz play-
ers (PJ), four professional classical performers (PC) anddmateur classical pianists (AC). Each
arrangement had to be played in three tempo conditions tepetitions per tempo condition. The
tempo conditions were normal, slow and fast tempo (all in aioally realistic range and all ac-
cording to the judgment of the performer). We present hexedhults for twelve subjects (12 sub-
jectsx 3 tempix 3 repetitionsx 2 pieces= 216 performances). The performances were recorded
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on a Yamaha Disklavier Pro MIDI grand piano using OpcodedrisiTo be able to derive tempo
measurements related to the musical structure (e.g., bagtthe performances were matched
with the MIDI scores using the structure matcher of (Heijiblesain, & Honing, 2000) available
in POCO (Honing, 1990). This MIDI data, as well as relatedwsafe will be made available at
URLs ht t p: / / www. nbf ys. kun. nl / ~cengi | andhtt p: //ww. ni ci . kun. nl / nmm
(under the heading Download).

3.5.2 Kalman Filter Training results

We use the performances of Michelle as the training set asteltay as the test set. To find the
appropriate filter order (Dimensionality ej we trained Kalman filters of several orders on two
rhythmic levels: the beat (quarter note) level and the b&wo{e/note) level. Figure 3.6 shows the
training and testing results as a function of filter order.

Extending the filter order, i.e. increasing the the size efgtate space loosely corresponds
looking more into the past. At bar level, using higher ordiers merely results in overfitting as
indicated by decreasing test likelihood. In contrast, @libat level, the likelihood on the test set
also increases and has a jump around ordé&r @ffectively, this order corresponds to a memory
which can store state information from the past two bars. therowords, tempo fluctuations at
beat level have some structure that a higher dimensiortal sgasition model can make use of to
produce more accurate predictions.

x 10% Log-Likelihood. Beat Level x 10%
216 11.85

21r

Train
Test

2.08 1

2.06

2.04 1

2.02

2 3 4 5 6 7 8 9 10 1
Hidden State Space Dimension

Log-Likelihood. Bar Level
4185

4180

Train

4175

4170

4165 L L L L L L L L I 1
1 2 3 4 5 6 7 8 9 10 11
Hidden State Snace Dimension

Figure 3.6: Kalman Filter training. Training Set: Michelleest Set: Yesterday.
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3.5.3 Tempogram Training Results

We use a tempogram model with a first order IR comb basis. @lhgsce leaves two free pa-
rameters that need to be estimated from data, namelye coefficient of the comb filter and,,
the width of the Gaussian window. We obtain optimal paramet&ies by maximization of the
log-likelihood in Equation 3.11 on the Michelle dataset. eTéptimal parameters are shown in
Table 3.2.

I | a [ oo |
Non-Causall 0.55 | 0.017
Causal 0.73 | 0.023

Table 3.2:Optimal tempogram parameters.

3.5.4 Initialization

To have a fully automated tempo tracker, the initial stgtdas to be estimated from data as
well. In the tracking experiments, we have initialized tHeefito the beat level by computing
a tempogram for the firsi seconds of each performance. By assuming a flat prior and
w we compute the posterior marginglo|t) = [ drp(w,7|t). Note that this is operation is just
equivalent to summation along thelimension of the tempogram (See Figure 3.4). For the Beatles
dataset, we have observed that for all performances of a giexe, the most likely log-period
w* = argmax, p(w|t) corresponds always to the same level, i.e. dfieestimate was always
consistent. For “Michelle”, this level is the beat level diod “Yesterday” the half-beat (eighth
note) level. The latter piece begins with an arpeggio of teigites; based on onset information
only, and without any other prior knowledge, half-beat legealso a reasonable solution. For
“Yesterday”, to test the tracking performance, we corréthe estimate to the beat level.

We could estimate* using a similar procedure, however since all performancesur data
set started “on the beat”, we have chosén= ¢, the first onset of the piece. All the other state
variablesa, are set to zero. We have chosen a broad initial state coearfan= 9Q.

3.5.5 Evaluation of tempo tracking performance

We evaluated the accuracy of the tempo tracking performaitbe complete model. The accuracy
of tempo tracking is measured by using the following craeri

B >, max; W(y; —t;)
B (I+J)/2

p(1,t) x 100

where[y;] i = 1...1 is the target (true) tempo track afd] j = 1...J is the estimated
tempo track.IV is a window function. In the following results we have usedau&sian window
function W (d) = exp(—d?/2¢?%). The width of the window is chosen as = 0.04 sec which
corresponds roughly to the spread of onsets from their nmecélameans during performance of
short rhythms (Cemgil, Desain, & Kappen, 2000).

It can be checked that< p < 100 andp = 100 if and only if ¢ = t. Intuitively, this measure
is similar to a normalized inner-product (as in the tempogcalculation); the difference is in the
max operator which merely avoids double counting. For exaniplle target isy) = [0, 1, 2]
and we have = [0, 0, 0], the ordinary inner product would still give= 100 while only one beat
is correct(t = 0). The proposed measure gives= 33 in this case. The tracking indgxcan be
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roughly interpreted as percentage of “correct” beats. kample,p = 90 effectively means that
about90 percent of estimated beats are in the near vicinity of tleegets.

3.5.6 Results

To test the relative relevance of model components, we dedign experiment where we evaluate
the tempo tracking performance under different condition® have varied the filter order and
enabled or disabled switching. For this purpose, we trainedfilters, one with a largel()) and
one with a small %) state space dimension on beat level (using the Michellaségt We have
tested each model with both causal and non-causal tempegiBortest whether a tempogram is
at all necessary, we propose a simple onset-only measutenueiel. In this alternative model,
the next observation is taken as the nearest onset to theakditter prediction. In case there are
no onsets ino interval of the prediction, we declare the observation assmg (Note that this is
an implicit switching mechanism).

In Table 3.3 we show the tracking results averaged over afbpwances in the Yesterday
dataset. The estimated tempo tracks are obtained by using-aausal tempogram and Kalman
filtering. In this case, Kalman smoothed estimates are mptifcsantly different. The results
suggest, that for the Yesterday dataset, a higher order ditte (binary) switching mechanism
does not improve the tracking performance. However, paseha tempogram makes the tracking
performance both more accurate and consistent (note ther ktandard deviations). As a “base
line” performance criteria, we also compute the best canis¢anpo track (by a linear regression to
estimated tempo tracks). In this case, the average tragkalex obtained from a constant tempo
approximation is rather poop (= 28 + 18), confirming that there is indeed a need for tempo
tracking.

Filter order| Switching || tempogram| no tempogram
10 + 92+ 7 75+ 21
2 + 91+9 75+ 21
10 - 91 +6 73 + 21
2 - 90+9 73+ 22

Table 3.3:Average tracking performangeand standard deviations on Yesterday dataset using a nsaica
tempogram.+ denotes the case when we have the switch priey = [0.8, 0.2]. — denotes the absence
of a switching, i.e. the case whelc) = [1, 0].

We have repeated the same experiment with a causal temp@gémwomputed the tracking
performance for predicted, filtered and smoothed estinmatdable 3.4 we show the results for
a switching Kalman filter. The results without switching ai@ significantly different. As one
would expect, the tracking index with predicted estimatekiver. In contrast to a non-causal
tempogram, smoothing improves the tempo tracking andtsesud comparable performance as a
non-causal tempogram.

Naturally, the performance of the tracker depends on thesairad tempo variations introduced
by the performer. For example, the tempo tracker fails testly for a subject who tends to use
quite some tempo variatién

We find that the tempo tracking performance is not signifigadifferent among different
groups (Table 3.5). However, when we consider the predistiove see that the performances of
professional classical pianists are less predictable dFi@rent tempo conditions (Table 3.6) the
results are also similar. As one would expect, for slowefquarances, the predictions are less

3This subject claimed to have never heard the Beatles sorfigsebe
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causal
Filter order || predicted| filtered | smoothed
10 74+12 | 869 91 £8
2 73+12 | 85+£8 | 90+£8

Table 3.4:Average tracking performangeon Yesterday dataset. Figures indicate tracking inaéal-
lowed by the standard deviation. The label “non-causaknefo a tempogram calculated using non-causal
comb filters. The labels predicted, filtered and smootheer rtef state estimates obtained by the Kalman
filter/smoother.

accurate. This might have two potential reasons. Firstp#r@®rmance criteria is independent
of the absolute tempo, i.e. the winddW is always fixed. Second, for slower performances there
is more room for adding expression.

non-causal causal
Subject Group filtered predicted| filtered | smoothed|| Best const.
Prof. Jazz 95 +3 81+ 7 92+4 94+ 3 34 + 22
Amateur Classical| 92 +38 T4+7 88+ 5 92+4 24+19
Prof. Classical 89 +£7 6614 | 82+11 | 8611 27+ 12

Table 3.5:Tracking Averages on subject groups. As a reference, tie migst column shows the results
obtained by the best constant tempo track. The label “nosatarefers to a tempogram calculated using
non-causal comb filters. The labels predicted, filtered amologhed refer to state estimates obtained by the
Kalman filter/smoother.

non-causal causal
Condition filtered predicted| filtered | smoothed| Best const.
fast 94+ 5 79+9 90 + 6 93+ 6 39 +21
normal 92 £8 74+9 88+6 92+4 25+ 13
slow 90+ 7 68+14 |84 +10 | 87411 214+ 14

Table 3.6:Tracking Averages on tempo conditions. As a reference g most column shows the results
obtained by the best constant tempo track. The label “nosatarefers to a tempogram calculated using
non-causal comb filters. The labels predicted, filtered amologhed refer to state estimates obtained by the
Kalman filter/smoother.

3.6 Discussion and Conclusions

In this paper, we have formulated a tempo tracking model imababilistic framework. The
proposed model consist of a dynamical system (a KalmarnrFétel a measurement model (Tem-
pogram). Although many of the methods proposed in the tileeacan be viewed as particular
choices of a dynamical model and a measurement model, aiBayfesmulation exhibits several
advantages in contrast to other models for tempo trackimgt, Eomponents in our model have
natural probabilistic interpretations. An important amaywpractical consequence of such an inter-
pretation is that uncertainties can be easily quantifiedtegrated into the system. Moreover, all
desired quantities can be inferred consistently. For examipce we quantify the distribution of
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tempo deviations and expressive timing, the actual beha¥ithe tempo tracker arises automati-
cally from these a-priori assumptions. This is in contrastither models where one has to invent
ad-hoc methods to avoid undesired or unexpected behavi@abdata.

Additionally, prior knowledge (such as smoothness coigsan the state transition model and
the particular choice of measurement model) are explict@n be changed when needed. For
example, the same state transition model can be used foabdib and MIDI; only the measure-
ment model needs to be elaborated. Another advantage j$dhatlarge class of related models
efficient inference and learning algorithms are well unterd (Ghahramani & Hinton, 1996).
This is appealing since we can train tempo trackers witheckfiit properties automatically from
data. Indeed, we have demonstrated that all model parasreteibe estimated from experimental
data.

We have investigated several potential directions in withehbasic dynamical model can be
improved or simplified. We have tested the relative releeasfdhe filter order, switching and the
tempogram representation on a systematically collecteof satural data. The dataset consists of
polyphonic piano performances of two Beatles songs (Yéateand Michelle) and contains a lot
of tempo fluctuation as indicated by the poor constant tentpo fi

The test results on the Beatles dataset suggest that usigh arder filter does not improve
tempo tracking performance.Although beat level filtersgepsome structure in tempo deviations
(and hence can generate more accurate predictions), thisoael precision seems to be not very
important in tempo tracking. This indifference may be dughfact that training criteria (max-
imum likelihood) and testing criteria (tracking index), \gh related, are not identical. However,
one can imagine scenarios where accurate prediction isatrdm example would be a real-time
accompaniment situation, where the application needsrergée events for the next bar.

Test results also indicate that a simple switching mechargsot very useful. It seems that a
tempogram already gives a robust local estimate of likelt bad tempo values so the correct beat
can unambiguously be identified. The indifference of switgltould as well be an artifact of the
dataset which lacks extensive syncopations. Neverthdlesswitching noise model can further
be elaborated to replace the tempogram by a rhythm quat@zengil et al., 2000).

To test the relevance of the proposed tempogram repregentat tracking performance we
have compared it to a simpler, onset based alternative. héts indicate that in the onset-only
case, tracking performance significantly decreases, stiggethat a tempogram is an important
component of the system.

It must be noted that the choice of a comb basis set for terapogalculation is rather arbi-
trary. In principle, one could formulate a “richer” tempagr model, for example by including
parameters that control the shape of basis functions. Tremmders of such a model can sim-
ilarly be optimized by likelihood maximization on targetripo tracks. Unfortunately, such an
optimization (e.g. with a generic technique such as gradiescent) requires the computation of
a tempogram at each step and is thus computationally quitensxe. Moreover, a model with
many adjustable parameters might eventually overfit.

We have also demonstrated that the model can be used botte dfiliering) and offline
(smoothing). Online processing is necessary for real tippdi@ations such as automatic accom-
paniment and offline processing is desirable for transommpplications.



Chapter 4

Integrating Tempo Tracking and
Quantization

We present a probabilistic generative model for timing devations in expressive music perfor-
mance. The structure of the proposed model is equivalent to awitching state space model.
The switch variables correspond to discrete note locationas in a musical score. The con-
tinuous hidden variables denote the tempo. We formulate twaevell known music recognition
problems, namely tempo tracking and automatic transcription (rhythm quantization) as fil-
tering and maximum a posteriori (MAP) state estimation tasks. Exact computation of poste-
rior features such as the MAP state is intractable in this moe! class, so we introduce Monte
Carlo methods for integration and optimization. We compareMarkov Chain Monte Carlo
(MCMC) methods (such as Gibbs sampling, simulated annealmand iterative improvement)
and sequential Monte Carlo methods (particle filters). Our smulation results suggest better
results with sequential methods. The methods can be appliagd both online and batch sce-
narios such as tempo tracking and transcription and are thugpotentially useful in a number
of music applications such as adaptive automatic accompamient, score typesetting and mu-
sic information retrieval.

Adapted from: A. T. Cemgil and H. J. Kappeklonte Carlo methods for
tempo tracking and rhythm quantizatiodournal of Artificial Intelligence
Research, 18:45-81, 2003.

4.1 Introduction

Automatic music transcription refers to extraction of a lamneadable and interpretable descrip-
tion from a recording of a musical performance. Traditiomalsic notation is such a description
that lists the pitch levels (notes) and corresponding tiameps.

Ideally, one would like to recover a score directly from thieli® signal. Such a representation
of the surface structure of music would be very useful in musfiormation retrieval (Music-IR)
and content description of musical material in large audi@bases. However, when operating on
sampled audio data from polyphonic acoustical signalsaetion of a score-like description is a
very challenging auditory scene analysis task (Vercoed@ar & Scheirer, 1998).

In this paper, we focus on a subproblem in music-ir, where sgaiime that exact timing infor-
mation of notes is available, for example as a stream of Médents from a digital keyboard.

!Musical Instruments Digital Interface. A standard comneation protocol especially designed for digital instru-
ments such as keyboards. Each time a key is pressed, a MIDbkey generates a short message containing pitch
and key velocity. A computer can tag each received messageilmestamp for real-time processing and/or recording
into a file.

47
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A model for tempo tracking and transcription from a MIDIdiknusic representation is useful
in a broad spectrum of applications. One example is autensabre typesetting, the musical
analog of word processing. Almost all score typesettindiegions provide a means of automatic
generation of a conventional music notation from MIDI data.

In conventional music notation, the onset time of each netenplicitly represented by the
cumulative sum of durations of previous notes. Duratioessmcoded by simple rational numbers
(e.g., quarter note, eighth note), consequently all eviantausic are placed on a discrete grid. So
the basic task in MIDI transcription is to associate ongaes with discrete grid locations, i.e.,
guantization.

However, unless the music is performed with mechanicaligigat identification of the cor-
rect association becomes difficult. This is due to the faat thusicians introduce intentional (and
unintentional) deviations from a mechanical prescriptiéior example timing of events can be
deliberately delayed or pushed. Moreover, the tempo catuite by slowing down or accelerat-
ing. In fact, such deviations are natural aspects of exmeeperformance; in the absence of these,
music tends to sound rather dull and mechanical. On the bued, if these deviations are not
accounted for during transcription, resulting scores lwdten very poor quality.

Robust and fast quantization and tempo tracking is also pofitant requirement for interactive
performance systems; applications that “listen” to a penfr for generating an accompaniment or
improvisation in real time (Raphael, 2001b; Thom, 2000)la&t, such models are also useful in
musicology for systematic study and characterization pfessive timing by principled analysis
of existing performance data.

From a theoretical perspective, simultaneous quantizaim tempo tracking is a “chicken-
and-egg” problem: the quantization depends upon the ietktempo interpretation and the tempo
interpretation depends upon the quantization. Apparehtignan listeners can resolve this ambi-
guity (in most cases) without any effort. Even persons witheny musical training are able to
determine the beat and the tempo very rapidly. However,gtilisunclear what precisely consti-
tutes tempo and how it relates to the perception of the begthmical structure, pitch, style of
music etc. Tempo is a perceptual construct and cannot ljiteeimeasured in a performance.

The goal of understanding tempo perception has stimulasegréficant body of research on
the psychological and computational modeling aspectsmoptetracking and beat induction, e.qg.,
see (Desain & Honing, 1994; Large & Jones, 1999; Toiviaid®99). These papers assume that
events are presented as an onset list. Attempts are alsotmeddal directly with the audio signal
(Goto & Muraoka, 1998; Scheirer, 1998; Dixon & Cambouropsy000).

Another class of tempo tracking models are developed indh&egt of interactive performance
systems and score following. These models make use of prmwledge in the form of an anno-
tated score (Dannenberg, 1984; Vercoe & Puckette, 1985Ye Mexently, Raphael (2001b) has
demonstrated an interactive real-time system that follawslo player and schedules accompani-
ment events according to the player’s tempo interpretation

Tempo tracking is crucial for quantization, since one canumiquely quantize onsets without
having an estimate of tempo and the beat. The converse,ubatigation can help in identification
of the correct tempo interpretation has already been not&kkain and Honing (1991). Here, one
defines correct tempo as the one that results in a simplettigaaon. However, such a schema
has never been fully implemented in practice due to comjmun@it complexity of obtaining a
perceptually plausible quantization. Hence quantizati@ihods proposed in the literature either
estimate the tempo using simple heuristics (Longuet-Higgl 987; Pressing & Lawrence, 1993;
Agon et al., 1994) or assume that the tempo is known or congfesain & Honing, 1991;
Cambouropoulos, 2000; Hamanaka et al., 2001).

Our approach to transcription and tempo tracking is fromababilistic, i.e., Bayesian mod-
eling perspective. In Cemgil et al. (2000), we introducedabpbilistic approach to perceptually
realistic quantization. This work also assumed that theptemas known or was estimated by an
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external procedure. For tempo tracking, we introduced anléalfilter model (Cemgil, Kappen,
Desain, & Honing, 2001). In this approach, we modeled thegteas a smoothly varying hidden
state variable of a stochastic dynamical system.

In the current paper, we integrate quantization and tengukitmg. Basically, our model bal-
ances score complexity versus smoothness in tempo densatide correct tempo interpretation
results in a simple quantization and the correct quantinagsults in a smooth tempo fluctuation.
An essentially similar model is proposed recently also bplel (2001a). However, Raphael
uses an inference technique that only applies for small tspdamely when the continuous hid-
den state is one dimensional. This severely restricts th#etamne can consider. In the current
paper, we survey general and widely used state-of-theanhiques for inference.

The outline of the paper is as follows: In Section 4.2, we psgpa probabilistic model for tim-
ing deviations in expressive music performance. Given tbdet) we will define tempo tracking
and quantization as inference of posterior quantities.illttwrn out that our model is a switch-
ing state space model in which computation of exact proliegsilbecomes intractable. In Sec-
tion 4.3, we will introduce approximation techniques basadgimulation, namely Markov Chain
Monte Carlo (MCMC) and sequential Monte Carlo (SMC) (Doudet Freitas, & Gordon, 2001;
Andrieu, de Freitas, Doucet, & Jordan, 2002). Both appreagrovide flexible and powerful
inference methods that have been successfully appliedsers# fields of applied sciences such
as robotics (Fox, Burgard, & Thrun, 1999), aircraft tragk{Gordon, Salmond, & Smith, 1993),
computer vision (Isard & Blake, 1996), econometrics (Takiz2001). Finally we will present
simulation results and conclusions.

4.2 Model

Assume that a pianist is improvising and we are recordingeitaet onset times of each key she
presses during the performance. We denote these obsersettones byyo, y1,y2. .- Yk ... Yx
or more compactly byj.. We neither have access to a musical notation of the piecknuw
the initial tempo she has started her performance with. blare the pianist is allowed to freely
change the tempo or introduce expression. Given only oimeetihformationy,.x, we wish to
find a scorey;.x and track her tempo fluctuationg ;. We will refine the meaning of andz later.
This problem is apparently ill-posed. If the pianist is além to change the tempo arbitrarily it
is not possible to assign a “correct” score to a given peréee. In other words any performance
Yo.x Can be represented by using a suitable combination of atrasbscore with an arbitrary
tempo trajectory. Fortunately, the Bayes theorem provésheslegant and principled guideline to
formulate the problem. Given the onsets,, the best score;., and tempo trajectory,.x can be
derived from theposteriordistribution that is given by

1
)p(yO:Kh/l:Ka ZO:K)Z?(%;K, ZO:K)

Pk, 20:K |Yo:K —
( lvo:re) P(Yo:x

a quantity, that is proportional to the product of tikelihoodtermp(yo. x| 71.x, z0.x) @nd theprior
termp(yi.x, 20:x)-

In rhythm transcription and tempo tracking, the prior ereodur background knowledge about
the nature of musical scores and tempo deviations. For eeamwe can construct a prior that
prefers “simple” scores and smooth tempo variations.

The likelihood term relates the tempo and the score to actiosérved onset times. In this
respect, the likelihood is a model for short time expressiméng deviations and motor errors that
are introduced by the performer.
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Figure 4.1: Graphical Model. Square and oval nodes correspmdiscrete and continuous vari-
ables respectively. In the text, we sometimes refer to tiéimoous hidden variablgs;, Ax) by
zx. The dependence betweerandc is deterministic. Allc, v, 7 and A are hidden; only onsets
are observed.

4.2.1 Score prior

To define a score;.x, we first introduce a sequence sfore positions,.,. A score positiore,
specifies the score time of tihé&h onset. We lety, denote the interval between score positions of
two consecutive onsets

Te = Ck— Ck—1 (4.1)

For example consider the conventional music notationwhich encodes the scofgs; = [1 0.5 0.5].
Corresponding score positionsagg = [0 1 1.5 2].

One simple way of defining a prior distribution on score gosg p(cy) is specifying a table
of probabilities forc, mod 1 (the fraction ofc;). For example if we wish to allow for scores
that have sixteenth notes and triplets, we define a tableafigilities for the states mod 1 =
{0, 0.25, 0.5, 0.75} U {0, 0.33, 0.67}. Technically, the resulting prigs(c;) is periodic and
improper (sincey, are in principle unbounded so we can not normalize the bidion).

However, if the number of states of mod 1 is large, it may be difficult to estimate the
parameters of the prior reliably. For such situations wepse a “generic” prior as follows: We
define the probability, that thigth onset gets quantized at location by p(cx) o< exp(—Ad(cy))
whered(cy) is the number of significant digits in thenary expansion o, mod 1. For example
d(1l) = 0,d(1.5) = 1, d(7 4+ 9/32) = 5 etc. The positive parameteris used to penalize score
positions that require more bits to be represented. Assythiat score positions of onsets are
independent a-priori, (besides being increasing,ime., ¢, > c¢x_1), the prior probability of a
sequence of score positions is giveniy.x) o exp(—A Zf:o d(cy)). We further assume that
co € [0,1). One can check that such a prior prefers simpler notatiogs¢ === ) < p(. 7).
We can generalize this prior to other subdivisions suchetispand quintiplets in Appendix 4.5.

Formally, given a distribution on,. -, the prior of a score;. is given by

p(nx) = Y p(yrexc|cox)p(cor) (4.2)

Co:K
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Since the relationship betweep x and~,.x is deterministicp(v,.x|co.ic) IS degenerate for any
givency.x, SO we have

p(71.x) X exp (—)\ Z d(z *yk/)> (4.3)

k=1 k'=1

One might be tempted to specify a prior directlyqn, and get rid ot x entirely. However, with
this simpler approach it is not easy to devise realisticrprieor example, consider a sequence of
note durationgl 1/16 1 1 1...]. Assuming a factorized prior on that penalizes short
note durations, this rhythm would have relatively high @bitity whereas it is quite uncommon
in conventional music.

4.2.2 Tempo prior

We represent the tempo in terms of its inverse, i.e., thegeand denote it witd\. For example
a tempo ofl20 beats per minute (bpm) corresponds¥oe= 60/120 = 0.5 seconds. At each onset
the tempo changes by an unknown amait We assume the changg, is iid with A/(0, Qa).

2 We assume a first order Gauss-Markov process for the tempo

A = A1+, (4.4)

Eq. 4.4 defines a distribution over tempo sequendkgg. Given a tempo sequence, the “ideal” or
“intended” timer;,, of the next onset is given by

Te = Th—1+ Veli—1 + (o (4.5)

The noise terng,, denotes the amount of accentuation (that is deliberatelyipd a note ahead or
back in time) without causing the tempo to be changed. Wenassy ~ N (0, Q). Ideal onsets
and actually observed “noisy” onsets are related by

Y = Tp T € (4.6)

The noise terma, models small scale expressive deviations or motor errarming of individual
notes. In this paper we will assume thahas a Gaussian distribution parameterized\fy, R).

The initial tempo distributionp(A,) specifies a range of reasonable tempi and is given by a
Gaussian with a broad variance. We assume an uninformdlage frior onr,. The conditional
independence structure is given by the graphical modelgargi4.1. Table 4.1 shows a possible
realization from the model.

We note that our model is a particular instance of the welkMkmewitching state space model
(also known as conditionally linear dynamical system, julharkov linear system, switching
Kalman filter) (See, e.g., Bar-Shalom & Li, 1993; Doucet & Awedi, 2001; Murphy, 2002).

In the following sections, we will sometimes refer use= (7, Ax)” and refer toz.x as a
tempo trajectory Given this definition, we can compactly represent Eq. 4di&a. 4.5 by

2y = < (1J 71k )Zkl + Gk (4.7)

where¢;, = (¢, Ca,)-

2We denote a (scalar or multivariate) Gaussian distribytior) with mean vectoy: and covariance matri® by
N(p, P)=[2nP|~2 exp(—5(x — )" P~} (x — p)).
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F1Tol 1] 2] 3
o ST
| 0| 12|32 2
Ay |05 06]07]...
T 0.25| 0.85| 1.20
Ui 0.23] 0.88| 1.24

oo

Table 4.1: A possible realization from the model: a ritadmnFor clarity we assumg = 0.

4.2.3 Extensions

There are several possible extensions to this basic pasagation. For example, one could rep-
resent the period\ in the logarithmic scale. This warping ensures positivitgl seems to be
perceptually more plausible since it promotes eqakitive changes in tempo rather than on an
absolute scale (Grubb, 1998; Cemgil et al., 2001). Althotinghresulting model becomes non-
linear, it can be approximated fairly well by an extendedrianh filter (Bar-Shalom & Li, 1993).

A simple random walk model for tempo fluctuations such as in4&¢ seems not to be very
realistic. We would expect the tempo deviations to be mateired and smoother. In our dynam-
ical system framework such smooth deviations can be modsiedcreasing the dimensionality
of z to include higher order “inertia” variables (Cemgil et &Q01). For example consider the
following model,

T I % 7w O 0 Th—1
Ay g 0O 1 0 0 0 A g1
Ay — 0 0 Agp1 + ¢ (4.8)
: : A :
Ap_1 0 O Ap_1 k-1

We choose this particular parameterization because wetwisiterpretA; as the slowly varying
“average” tempo and\, as a temporary change in the tempo. Such a model is usefuldatisns
where the performer fluctuates around an almost constamgaieenrandom walk model is not
sufficient in this case because it forgets the initial valdetditional state variableds, ..., Ap_;
act like additional “memory” elements. By choosing the pagger matrixA and noise covariance
matrix ¢, one can model a rich range of temporal structures in expeessing deviations.

The score prior can be improved by using a richer model. Famge to allow for different
time signatures and alternative rhythmic subdivisiong oan introduce additional hidden vari-
ables (Cemgil et al., 2000) (See also Appendix4.5) or use &kdtachain (Raphael, 2001a).
Potentially, such extensions make it easier to capturdiaddl structure in musical rhythm (such
as “weak” positions are followed more likely by “strong” pii@ns). On the other hand, the number
of model parameters rapidly increases and one has to be @uatiews in order to avoid overfitting.

For score typesetting, we need to quantize note duratiomsehsi.e., associate note offsets
with score positions. A simple way of accomplishing thisaslefine an indicator sequencg
that identifies whethey;, is an onsety;, = 1) or an offset (;;, = 0). Givenu,, we can redefine the
observation model ag(y; |7, u) = wN (0, R) + (1 —uy, )N (0, Ror) WhereR is the observation
noise associated with offsets. A typical model would h&yg > R. For Ros — oo, the offsets
would have no effect on the tempo process. Moreover, sipege always observed, this extension
requires just a simple lookup.

In principle, one must allow for arbitrary long intervalstiveen onsets, hencg are drawn
from an infinite (but discrete) set. In our subsequent daaua, we assume that the number of
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possible intervals is fixed a-priori. Given an estimate;of; and observation,, almost all of
the virtually infinite number of choices foy, will have almost zero probability and it is easy to
identify candidates that would have significant probapiliass.

Conceptually, all of the above listed extensions are easctwporate into the model and none
of them introduces a fundamental computational difficuttytie basic problems of quantization
and tempo tracking.

4.2.4 Problem Definition

Given the model, we define rhythm transcription, i.e., qizatibn as a MAP state estimation
problem

Yk = argmaxp(yi.x|Yo:x) (4.9)

T:K

(Vi lYox) = /dZO;Kp(%:K,ZO:K\yo;K)
and tempo tracking as a filtering problem

z; = argmaXZp(*yl;k, 2| Yo:x) (4.10)

2k
T1:k

The quantization problem is a smoothing problem: we wishrtd fhe most likely score;.
given all the onsets in the performance. This is useful irlite” applications such as score
typesetting.

For real-time interaction, we need to have an online esaméthe tempo/beat,. This in-
formation is carried forth by the filtering densit§7; .x, zx|yo.x) iN EQ.4.10. Our definition of the
best tempo:; as the maximum is somewhat arbitrary. Depending upon theirexgents of an
application, one can make use of other features of the filjedtensity. For example, the variance
of Zm p(71:k, 2k |Yo:x) €N be used to estimate “amount of confidence” in tempo irg&apon or
arg max,, ~,.. P(V1:k, 2k|Yo:x) 10 estimate most likely score-tempo pair so far.

Unfortunately, the quantities in Eq. 4.9 and Eq. 4.10 areagtable due to the explosion in
the number of mixture components required to representxaet gosterior at each stép(See
Figure 4.2). For example, to calculate the exact postendeq. 4.9 we need to evaluate the
following expression:

1

p(’Yl:K|yo:K) = E/dZO:Kp(Z/O:K|ZO:K771:K)p(ZO:K"}/1:K)p<71:K) (4-11)
1

= EP(?JO:KWLK)Z?(%:K) (4.12)

where the normalizatior_w constant is given By= p(yo.x) = Z%K_p(yo:K\yl:K)p(%:K). I_:or
each trajectoryy,.x, the integral over,.x can be computed stepwise inby the Kalman filter
(See appendix 4.5). However, to find the MAP state of Eq. 4vElneed to evaluat® yo. x| v1.x)
independently for each of the exponentially many trajeetor Consequently, the quantization
problem in Eq. 4.9 can only be solved approximately.

For accurate approximation, we wish to exploit any inhenmet¢pendence structure of the ex-
act posterior. Unfortunately, sineeandc are integrated over, all, become coupled and in general
p(71:x|Yo.c) dOes not possess any conditional independence structgregéviarkov chain) that
would facilitate efficient calculation. Consequently, wélwesort to numerical approximation
techniques.
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Figure 4.2: Example demonstrating the explosion of the number of comptnto represent the exact
posterior. Ellipses denote the conditional margindls;, wi|co.x, yo.x)- (We show the period in logarithmic
scale wherev, = log, Ag). In this toy example, we assume that a score consists ontptes of length
) andJ, ie., v, can be either /2 or 1. (a) We start with a unimodal posterign(ry, wo|co, 0), €.9., @
Gaussian centered ét,w) = (0,0). Since we assume that a score can only consist of eight- zartiequ
notes, i.e.nr € {1/2, 1}. the predictive distribution (7, w1 |co.1,¥0) is bimodal where the modes are
centered at0.5,0) and(1, 0) respectively (shown with a dashed contour line). Once théeateservationy;

is observed (shown with a dashed vertical line aronrd0.5), the predictive distribution is updated to yield
p(11,w1lco.1, yo:1)- The numbers denote the respective log-posterior weigkadh mixture componentb)
The predictive distribution (72, wa|co.1,yo:1) at stepk = 2 has now4 modes, two for each component of
p(71,w1]co.1,Y0:1)- (€) The number of components grows exponentially viith
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4.3 Monte Carlo Simulation

Consider a high dimensional probability distribution

p(x) = Zp*(x) (4.13)

where the normalization constafit= [ dxp*(x) is not known bup*(x) can be evaluated at any
particularx. Suppose we want to estimate the expectation of a fungtighunder the distribution
p(x) denoted as

)y = / de f (x)p(x)

e.g., the mean of underp(x) is given by(x). The intractable integration can be approximated by
an average if we can finf pointsx®,i = 1... N from p(x)

N

(ot ~ 5 D7) (4.14)

=1

Whenx(® are generated by independently sampling frp), it can be shown that a& ap-
proaches infinity, the approximation becomes exact.

However, generating independent samples fpdg) is a difficult task in high dimensions but
it is usually easier to generatiependensamples, that is we generatét?) by making use of
x( It is somewhat surprising, that evenxif) andx“*1) are correlated (and provided ergodicity
conditions are satisfied), Eq. 4.14 remains still valid asttheated quantities converge to their true
values when number of samplasgoes to infinity.

A sequence of dependent sampiéd is generated by using a Markov chain that has the sta-
tionary distributionp(x). The chain is defined by a collection of transition probdket, i.e., a
transition kernell’ (x(+1|x®). The definition of the kernel is implicit, in the sense thae ate-
fines a procedure to generate &™) givenx?). TheMetropolisalgorithm (Metropolis & Ulam,
1949; Metropolis, Rosenbluth, Rosenbluth, Teller, & Tell®53) provides a simple way of defin-
ing an ergodic kernel that has the desired stationary digtanp(x). Suppose we have a sample
x(, A candidatex’ is generated by sampling from a symmetric proposal digiohu(x’|x®)
(for example a Gaussian centeredkét). The candidate’ is accepted as the next sampglét)
if p(x’) > p(x®). If x' has a lower probability, it can be still accepted, but onlyrwirobabil-
ity p(x')/p(x®). The algorithm is initialized by generating the first sampl&@ according to an
(arbitrary) proposal distribution.

However for a given transition kernél, it is hard to assess the time required to converge to
the stationary distribution so in practice one has to runsihaulation until a very large number
of samples have been obtained, (see e.g., Roberts & Ro§elfiA8). The choice of the proposal
distributiong is also very critical. A poor choice may lead to the rejectiddmany candidates’
hence resulting in a very slow convergence to the statiodiatyibution.

For a large class of probability models, where the full postey(x) is intractable, one can still
efficiently compute marginals of form(xy|x_), Xy = @1 ... Zk_1, Try1, . . . T €XaActly. In this
case one can apply a more specialized Markov chain Mont® QACMC) algorithm, theGibbs
samplergiven below.

1. Initialize z\°). by sampling from a proposalz1.x)

2. Fort=0...N -1
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e Fork=1,..., K, Sample

x}(;ﬂ) ~ p(xklxﬁﬁ)p :E;fZJ)rl:K) (4.15)

In contrast to the Metropolis algorithm, where the new cdat# is a vectox’, the Gibbs
sampler uses the exact margipét,|x_;) as the proposal distribution. At each step, the sampler
updates only one coordinate of the current stateamelyz;, and the new candidate is guaranteed
to be accepted.

Note that, in principle we don’t need to samplesequentially, i.e., we can chooBeandomly
provided that each slice is visited equally often in the linlHlowever, a deterministic scan algo-
rithm wherek = 1, ... K, provides important time savings in the type of models thacansider
here.

4.3.1 Simulated Annealing and Iterative Improvement

Now we shift our focus from sampling to MAP state estimatidn.principle, one can use the

samples generated by any sampling algorithm (Metropodistifgs or Gibbs) to estimate the MAP

statex* of p(x) by argmaxp(x(?). However, unless the posterior is very much concentrated
i=1:N

around the MAP state, the sampler may not vigiteven though the samples? are obtained
from the stationary distribution. In this case, the problgan be simply reformulated to sample
not from p(x) but from a distribution that is concentrated at local maxiofig(x). One such
class of distributions are given by, (x) oc p(x)”. A sequence of exponents < p; < --- <

p; < ... is called to be @ooling scheduler annealing schedulewing to the inverse temperature
interpretation ofp; in statistical mechanics, hence the na@imulated Annealin¢SA) (Aarts &
van Laarhoven, 1985). When — oo sufficiently slowly inj, the cascade of MCMC samplers
each with the stationary distributign, (x) is guaranteed (in the limit) to converge to the global
maximum ofp(x). Unfortunately, for this convergence result to hold, theltw schedule must
go very slowly (in fact, logarithmically) to infinity. In pdice, faster cooling schedules must be
employed.

Iterative improvemenfll) (Aarts & van Laarhoven, 1985) is a heuristic simulateth@aling
algorithm with a very fast cooling schedule. In fap}, = oo for all j. The eventual advantage
of this greedy algorithm is that it converges in a few iteyas to a local maximum. By restarting
many times from different initial configuratiors one hopes to find different local maximaygik)
and eventually visit the MAP state*. In practice, by using the Il heuristic one may find better
solutions than SA for a limited computation time.

From an implementation point of view, it is trivial to cont&CMC code to SA (or II) code.
For example, consider the Gibbs sampler. To implement SAneesl to construct a cascade of
Gibbs samplers, each with stationary distributigs)?;. The exact one time slice marginal of
this distribution isp(zx|x_x)?. S0, SA just samples from the actual (temperature=1) malrgin
p(xk|x_)) raised to a powes;.

4.3.2 The Switching State Space Model and MAP Estimation

To solve the rhythm quantization problem, we need to caleulae MAP state of the posterior in
Eq.4.11

p(%:K|yo:K) X p(%:K)/dZo:Kp(yozK|20:K,71:K)p(20:K|%:K) (4-16)

This is a combinatorial optimization problem: we seek theimam of a functionp(vi.x |vo.x)
that associates a number with each of the discrete configusat,.. Since it is not feasible to
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visit all of the exponentially many configurations to find timaximizing configurationy; ., we
will resort to stochastic search algorithms such as siradlahnealing (SA) and iterative improve-
ment (II). Due to the strong relationship between the Gildm@er and SA (or II), we will first
review the Gibbs sampler for the switching state space model

The first important observation is that, conditioneder, the model becomes a linear state
space model and the integration g, can be computed analytically using Kalman filtering equa-
tions. Consequently, one can sample only. and integrate out. The analytical marginalization,
calledRao-BlackwellizatiofCasella & Robert, 1996), improves the efficiency of the Sam(e.g.,
see Doucet, de Freitas, Murphy, & Russell, 2000a).

Suppose now that each switch variablecan haveS distinct states and we wish to generate

N samples (i.e trajectoriegy’)..i = 1...N}. A naive implementation of the Gibbs sampler
requires that at each stépwe run the Kalman filtelS times on the whole observation sequence

Yo.x 10 compute the proposp[ykaLl, 7,&:11:)[(, Yo.xc)- This would result in an algorithm of time
complexityO(N K2S) that is prohibitively slow wheri is large. Carter and Kohn (1996) have
proposed a much more time efficient deterministic scan Gsblospler that circumvents the need
to run the Kalman filtering equations at each stegn the whole observation sequengg,. See
also (Doucet & Andrieu, 2001; Murphy, 2002).

The method is based on the observation that the proposabdistn p(vx| -) can be factor-
ized as a product of terms that either depend on past obs®rsgt.,. or the future observations
Yri1.k- S0 the contribution of the future can be computed a-prigratbackward filtering pass.

Subsequently, the proposal is computed and sanm@éare generated during the forward pass.
The sampling distribution is given by

PVl Y > Yo:xc) o< (V| ¥ )P (Yo: x| V1) (4.17)

where the first term is proportional to the joint priery.|v_.) o p(7,v_x). The second term
can be decomposed as

p(yo:K\’h:K) = /dzkp(ykJrl:KwO:kaZka'Yl:K)p(Z/O:kaszl:K) (4-18)

= /dzkp(yk+1:K|Zk,%+1:K)p(yo:k, 2| V1:k) (4.19)

Both terms are (unnormalized) Gaussian potentials herdetigral can be evaluated analytically.
The termp(yr+1.x| 2k, Te+1:1) IS @n unnormalized Gaussian potentiatjrand can be computed by
backwards filtering. The second term is just the filteringrdiation p(z|yo.x, 71.x) Scaled by the
likelihood p(yo.x|71.x) @nd can be computed during forward filtering. The outlinenefalgorithm

is given below, see the appendix 4.5 for details.

1. Initialize~.%). by sampling from a proposal,.x)
2. Fori=1...N
e Fork=K—1,...,0,
(i=1) )

— Computep(yr1:x |2k, Viy1:x
e Fork=1,... K,
—Fors=1...5
+ Compute the proposal

7 1—1
p(ve = s]-) o< p(yk = 5,v_4) / d2p (Yo 26|V n_ 15Tk = 8)DWhs 1k 28 V1)
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— Sampley;” from p(v-)

The resulting algorithm has a time complexity@f N K.S), an important saving in terms of
time. However, the space complexity increases flof) to O(K) since expectations computed
during the backward pass need to be stored.

At each step, the Gibbs sampler generates a sample fromla 8img slicek. In certain types
of “sticky” models, such as when the dependence betwgemd~, ,, is strong, the sampler may
get stuck in one configuration, moving very rarely. This i€ da the fact that most singleton
flips end up in low probability configurations due to the sgaependence between adjacent time
slices. As an example, consider the quantization modehaadonfigurations. . . v, Ve41...] =
[...1,1...]and[...3/2,1/2...]. By updating only a single slice, it may be difficult to move
between these two configurations. Consider an intermedatéguration[...3/2,1...]. Since
the duration {; + ~x.1) increases, all future score positions, are shifted byl /2. That may
correspond to a score that is heavily penalized by the ghas “blocking” the path.

To allow the sampler move more freely, i.e., to allow for mglebal jumps, one can sample
from L slices jointly. In this case the proposal distribution skee form

P(kk+r—1l) X P(VektL—1, Y—(hkrr-1)) X

i i—1
/ dzk—i—L—lp(yO:k-i-L—la Zk+L-1 |78€,1, '7k:k:+L—1)p(yk:+L:K|2k+L—1> %iJrL;)K)

Similar to the one slice case, terms under the integral anemmalized Gaussian potentials (on
21+1—1) representing the contribution of past and future obs@mat Sincey,.,.;_; hasS” states,
the resulting time complexity for generatidg samples i) (N K S*), thus in practice, must be
kept rather small. One remedy would be to use a Metropolsstikigs algorithm with a heuristic
proposal distribution(yx.x+1—1|Y0.x ) t0 Circumvent exact calculation, but it is not obvious how to
construct such a.

One other shortcoming of the Gibbs sampler (and related M@M@ods) is that the algorithm
in its standard form is inherently offline; we need to haveeasdo all of the observationg x to
start the simulation. For certain applications, e.g., auatiic score typesetting, a batch algorithm
might be still feasible. However in scenarios that requead-time interaction, such as in interactive
music performance or tempo tracking, online methods musskd.

4.3.3 Sequential Monte Carlo

Sequential Monte Carlo, a.k.a. particle filtering, is a pdulealternative to MCMC for gener-
ating samples from a target posterior distribution. SMCsgeeially suitable for application in
dynamical systems, where observations arrive sequentiall

The basic idea in SMC is to represent the posteriop.._1|yo.x—1) attimek — 1 by a (possibly
weighted) set of samples:’} _,,i = 1... N} and extend this representation{ta:\’}_,, z\"),i =
1... N} when the observatiop, becomes available at time The common practice is to use
importance sampling.

Importance Sampling

Consider again a high dimensional probability distribotigx) = p*(x)/Z with an unknown
normalization constant. Suppose we are givgaposaldistributiong(x) that is close tg(x)
such that high probability regions of both distributionslfaoverlap. We generate independent
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samples, i.eparticles x¥ from the proposal such thatx) ~ S, 6(x — x(?)/N. Then we can
approximate

b = 52 o) (4.20)
o lp(x)1 a ;
o N;a(x—ﬂ ) (4.21)
~ ivj w? 5(x — x) (4.22)
i=1 Zjvzl w!

wherew = p*(x)/q(x") are theimportance weights One can interprets”) as correction
factors to compensate for the fact that we have sampled frenfincorrect” distributiong(x).
Given the approximation in Eq.4.22 we can estimate expeasby weighted averages

(£ (%)) po) Z K (4.23)
wherew® = w®/ Zj‘\le wY) are the normalized importance weights

Sequential Importance Sampling

Now we wish to apply importance sampling to the dynamical eiod

K

pl@oxlyor) o ] p(uklze)p(zilzor—) (4.24)
k=0

wherez = {z,~v}. In principle one can naively apply standard importanceping by using an
arbitrary proposal distributioq(z.x ). However finding a good proposal distribution can be hard
if K > 1. The key idea irsequential importance sampling the sequential construction of the
proposal distribution, possibly using the available obagonsy.,, i.e.,

K

Q($0:K|yo:K) = HCI(J?H:UO:J{A, yO:k)
k=0

Given a sequentially constructed proposal distributiore oan compute the importance weight
recursively as

w® = ($0k|yol<:) p(yk|$§j)) (% |950k; 15 Yo:k— 1)p(?Jo:k—l|$(()z:)k—1)p($(()z:)k—1)
Y=

_ o (4.25)
(xO:k:‘yO:k) Q(xk; |~’U0:k_13/0;k) (o1 |Yok—1
(#) (4) ‘
_ plywlzy )p(zy |ffo;<; 1> Youk— 1)w£31 (4.26)

(5’714; ‘xo Ek—1Y0: k)

The sequential update schema is potentially more accunate naive importance sampling
since at each step, one can generate a particle from a fairly accurate proptisaibution that
takes the current observatigp into account. A natural choice for the proposal distribat®the
filtering distribution given as

q(xz$h yor) = pexled ) vou) (4.27)
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In this case the weight update rule in Eq. 4.26 simplifies to

wl(;) = (yk|$0k 1)wl(c)1

In fact, provided that the proposal distributigms constructed sequentially and past sampled tra-
jectories are not updated, the filtering distribution isdp&imal choice in the sense of minimizing
the variance of importance weights? (Doucet, Godsill, & Andrieu, 2000b). Note that Eq. 4.27
is identical to the proposal distribution used in Gibbs stimgmatt = K (Eq 4.15). Atk < K, the
SMC proposal does not take future observations into ac¢sane introduce discount factous,

to compensate for sampling from the wrong distribution.

Selection

Unfortunately, the sequentlal importance sampling may dégederate, in fact, it can be shown

that the variance 01ka increases witlt. In practice, after a few iterations of the algorithm, only
one particle has almost all of the probability mass and mbteocomputation time is wasted for
updating particles with negligible probability.

To avoid the undesired degeneracy problem, several hiewaigbroaches are proposed in the
literature. The basic idea is to duplicate or discard piagiaccording to their normalized impor-
tance weights. The selection procedure can be deterngioisstochastic. Deterministic selection
is usually greedy; one choosésparticles with the highest importance weights. In the sastic
case, calledesampling particles are drawn Wlth a probability proportional toithenportance

welghtwk). Recall that normalized welghl{ewk ,i = 1...N} can be interpreted as a discrete
distribution on particle labelg).

4.3.4 SMC for the Switching State Space Model

The SIS algorithm can be directly applied to the switchirgesspace model by sampling directly
from z, = (2, 7). However, the particulate approximation can be quite pbetis high dimen-
sional. Hence, too many particles may be needed to accyrafmlesent the posterior.

Similar to the MCMC methods introduced in the previous settefficiency can be improved
by analytically integrating ouy., and only sampling from, ... This form of Rao-Blackwellization
is reported to give superior results when compared to stdmtaticle filtering where both and
z are sampled jointly (Chen & Liu, 2000; Doucet et al., 2000l)e improvement is perhaps not
surprising, since importance sampling performs best whersampled space is low dimensional.

The algorithm has an intuitive interpretation in terms ohadomized breadth first tree search
procedure: at each new stepwe expandV kernels to obtairt’ x N new kernels. Consequently,
to avoid explosion in the number of branches, we selécut of S x N branches proportional to
the likelihood, See Figure 4.3. The derivation and tecHrdetails of the algorithm are given in
the Appendix 4.5.

The tree search interpretation immediately suggests andigiistic version of the algorithm
where one selects (without replacement) fidoranches with highest weight. We will refer to
this method as greedy filter(GF). The method is also known aplit-trackfilter (Chen & Liu,
2000) and is closely related to Multiple Hypothesis Tragk{MHT) (Bar-Shalom & Fortmann,
1988). One problem with the greedy selection schema of Gteitoss of particle diversity. Even
if the particles are initialized to different locations 4p, (e.g., to different initial tempi), mainly
due to the discrete nature of the state space,pfnost of the particles become identical after a
few stepsk. Consequently, results can not be improved by increasiagtimber of particlesv.
Nevertheless, when only very few particles can be used, spyie a real time application, GF
may still be a viable choice.
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Figure 4.3: Outline of the algorithm. The ellipses corragpto the conditional$(zk|y,f), Yok )-
Vertical dotted lines denote the observatigps At each stepk, particles with low likelihood are
discarded. Surviving particles are linked to their parents

Figure 4.4: A hypothetical situation where neither of the tpmrticlesﬁf% is optimal. We would
obtain eventually a higher likelihood configuration by nateangingy; between particles.

4.3.5 SMC and estimation of the MAP trajectory

Like MCMC, SMC is a sampling method. Hence comments made oti®Ge4.3.1 about the

eventual suboptimality of estimating the MAP trajectorgrir particles asrg max p(ﬂf}<|y0: K)
also apply here. An hypothetical situation is shown in figlize

One obvious solution is to employ the SA “trick” and raise pneposal distribution to a power
p(7x|-)7. However, such a proposal will be peaked on a very{feteach time slice. Consequently,
most of the particles will become identical in time and thgoaithm eventually degenerates to
greedy filtering.

An algorithm for estimating the MAP trajectory from a set &S samples is recently pro-
posed in the literature (Godsill, Doucet, & West, 2001). Bhgorithm relies on the observation

that once the particles,f) are sampled during the forward pass, one is left with a disatstri-

bution defined on the (discrete) suppdit x = ®sz1 X. Here X, denotes is the support of the
filtering distribution a time: and@) is the Cartesian product between sets. Formallyis the set

of distinctsamples at timé and is given byX,, = |J,{z\"}.
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The distributionp(X 1.k |y1.x)® is Markovian because the original state transition model is
Markovian, i.e., the posterior can be represented exagtly b

p(Xrxclyrre) oc [ [ ool X)p(X| Xe1)

k=1

Consequently, one can find the best MAP trajectaymax p(X;.x) by using an algorithm that
is analogous to the Viterbi algorithm for hidden Markov misd®abiner, 1989).

However, this idea does not carry directly to the case whenamplies Rao-Blackwellization.
In general, when a subset of the hidden variables is integraat, all time slices of the posterior
p(T'1.x|y1.x) @re coupled, wherg, . = ®sz1 ', andl', = Ui{y,?)}. One can still employ a chain
approximation and run Viterbi, (e.g., Cemgil & Kappen, 2)@ut this does not guarantee to find
argmax p(I'y. g |y1.)- ‘

On the other hand, becau$,§é> are drawn from a discrete set, several particles becoméaedén
sol';, has usually a small cardinality when compared to the numbyeardiclesN. Consequently,
it becomes feasible to employ SA or Il on the reduced stateedpay; possibly using a proposal
distribution that extends over several time sli¢es ,

In practice, for finding the MAP solution from the particle @ﬁ}(,z’ =1... N}, we propose

to find the best trajectory = arg max; p(yo.x |7\ % )p(7\%) and apply iterative improvement
starting from the initial configuratiomﬁ;().

4.4 Simulations

We have compared the inference methods in terms of the gulithe solution and execution
time. The tests are carried out both on artificial and rea.dat

Given the true notation!’s¢, we measure the quality of a solution in terms of the loglifie@d
difference

AL = log p(?Jo:KWl:K)p(%:K)

true true

p(Wox [N P('E)

and in terms otdit distance

e(y) = Y (1= 80y — ")

k=1

The edit distance(~;.x ) gives simply the number of notes that are quantized wrongly.

4.4.1 Atrtificial data: Clave pattern

The synthetic example is a repeating “son-clave” pattern J ¢ [J [ J d(c=[1,2,4,5.5,7...])
with fluctuating tempo. We repeat the pattértimes and obtain a scong.x with K = 30.

Such syncopated rhythms are usually hard to transcribe akd rdifficult to track the tempo
even for experienced human listeners. Moreover, sincet®ase absent at prominent beat loca-
tions, standard beat tracking algorithms usually loosektra

3By a slight abuse of notation we use the symBgl both as a set and as a general element when used in the
argument of a density(yx| Xx) mean(yx|xr) s.t.z, € X
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Given scorey;., we have generateth0 observation sequenceg x by sampling from the

tempo model in Eq. 4.7. We have parameterized the obsemvatise varianceasQ = v, Q.+ Qs.
In this formulation, the variance depends on the length eirtkerval between consecutive onsets;
longer notes in the score allow for more tempo and timing flaton. For the tests on the clave
example we have not used a prior model that reflects true s@tatistics, instead, we have used
the generic prior model defined in Section 4.2.1 witk: 1.

All the example cases are sampled from the same score (cédter). However, due to the
use of the generic prior (that does not capture the exacteaitatistics well) and a relatively
broad noise model, the MAP trajectory .- giveny,.x is not always identical to the original clave
pattern. For thé'th example, we have defined the “ground tru’qﬁ{‘}?l as the highest likelihood so-
lution found using any sampling technique during any ingeeleat run. Although this definition of
the ground truth introduces some bias, we have found thiciseemore realistic as well as more
discriminative among various methods when compared to,, @iging a dataset with essentially
shorter sequences where the exact MAP trajectory can beuwtethpy exhaustive enumeration.
The wish to stress that the main aim of the simulations onh&titt dataset is to compare effec-
tiveness of different inference techniques; we postpoeathual test whether the model is a good
one to our simulations on real data.

We have tested the MCMC methods, namely Gibbs sampling &pildimulated annealing
(SA) and iterative improvement (1) with one and two timecslioptimal proposal and fdi and
50 sweeps. For each onsgt, the optimal proposab(~,|-) is computed always on a fixed set,
I'={0,1/4,2/4...3}. Figure 4.6 shows a typical run of MCMC.

Similarly, we have implemented the SMC far = {1, 5, 10,50, 100} particles. The selection
schema was random drawing from the optimal proppsal|-) computed using one or two time
slices. Only in the special case of greedy filtering (GF), ighen N = 1, we have selected the
switch with maximum probability. An example run is shown iigéie 4.5.

We observe that on average SMC results are superior to MCNfQr@4.7). We observe that,
increasing the number of sweeps for MCMC does not improvestihation significantly. On the
other hand, increasing the number of particles seems taweghe quality of the SMC solution
monotonically. Moreover, the results suggest that sarggtiom two time slices jointly (with the
exception of SA ) does not have a big effect. GF outperformartigbe filter with 5 particles that
draws randomly from the proposal. That suggests that for Biraxsmall number of particled,
it may be desirable to use a hybrid selection schema thattsetes particle with maximum weight
automatically and randomly selects the remainig- 1.

We compare inference methods in terms of execution time hedjtiality of solutions (as
measured by edit distance). As Figure 4.8 suggests, using alice proposal is not justified.
Moreover it seems that for comparable computational ef&8¥tC tends to outperform all MCMC
methods.

4.4.2 Real Data: Beatles

We evaluate the performance of the model on polyphonic pperormances. 12 pianists were
invited to play two Beatles songs, Michelle and YesterdagthBoieces have a relatively simple
rhythmic structure with ample opportunity to add expressess by fluctuating the tempo. The
original score is shown in Figure 4.9(a). The subjects h#fdrént musical education and back-
ground: four professional jazz players, four professiarnassical performers and four amateur
classical pianists. Each arrangement had to be playedee tempo conditions, three repetitions
per tempo condition. The tempo conditions were normal, glad fast tempo (all in a musically

4The noise covariance parameters ware- 0.022, Q, = 0.062I and@, = 0.0221. | is a2 x 2 identity matrix.
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Figure 4.5: Particle filtering on clave example withparticles. Each circle denotes the mean

(7,5"), w,i")) wherew,i") = log, A;. The diameter of each particle is proportional to the noizesl
importance weight at each generation. "™ denote the {ruev) pairs; here we have modulated
the tempo deterministically according &g = 0.3 sin(27c,/32), observation noise variance is
R = 0.0252.
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Figure 4.6:Typical runs of Gibbs sampling, Simulated Annealing (SA) &erative Improvement (I1) on
clave example. All algorithms are initialized to the gredilter solution. The annealing schedule for SA
was linear fromp; = 0.1 to p33 = 10 and than proceeding deterministically pyy.50 = oo. When SA

or Il converge to a configuration, we reinitialize by a pdetifilter with one particle that draws randomly
proportional to the optimal proposal. Sharp drops in theliliood correspond to reinitializations. We see
that, at the first sweep, the greedy filter solution can onlhslightly improved by Il. Consequently the
sampler reinitializes. The likelihood of SA drops consaldy, mainly due to the high temperature, and
consequently stabilizes at a suboptimal solution. The &gampler seems to explore the support of the
posterior but is no able to visit the MAP state in this run.
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Figure 4.7:Comparison of inference methods on the clave data. Theasjaad ovals denote the median
and the vertical bars correspond to the interval between&@34675 quantiles. We have tested the MCMC
methods (Gibbs, SA and Il) independently fd@rand50 (shown from left to right). The SMC methods are
the greedy filter (GF) and particle filter (PF). We have teéilests with N = {5, 10, 50,100}

particles independently (shown from left to right.).
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Figure 4.8:Comparison of execution time in terms of floating point ogierss. For all methods, the first
number (1 or 2) denotes the number slices used by the optimpbgal distribution. For the particle filter
(PF), the second number denotes the number of particles.dasteed lines are merely used to connect
related methods.

realistic range and all according to the judgment of thegrerér). Further details are reported in
(Cemgil et al., 2001).

Preprocessing

The original performances contained several errors, ssichissing notes or additional notes that
were not on the original score. Such errors are eliminateasinyg a matching technique (Heijink
et al., 2000) based on dynamical programming. Howeverabvisgpection of the resulting dataset
suggested still several matching errors that we interpgetidliers. To remove these outliers,
we have extended the quantization model with a two stateckini observation model, i.e., the
discrete space consists 0fx,ix). In this simple outlier detection mechanism, each swifch
is a binary indicator variable specifying whether the ongeis an outlier or not. We assume
that all indicators are independent a-priori and have aoumifprior. The observation model is
given by p(yxlix, ) = N(0, R;,) °. Since the score.r is known, the only unknown discrete
guantities are the indicatoig . We have used greedy filtering followed by iterative improeat

to find the MAP state of indicatorg.x and eliminated outliers in our further studies. For many
performances, there were arouhé 4 outliers, less tham% of all the notes. The resulting dataset
can be downloaded from the unt t p: / / www. snn. kun. nl / ~cengi | .

Parameter Estimation

We have trained tempo tracking models with different dinemality D, where D denotes the
dimension of the hidden variabte In all of the models, we use a transition matrix that has the
formin Eq. 4.8.

Since the true score is known, i.e., the score positijonf each onsey, is given, we can

SWe tookR;, —o = 0.002 andR;, -1 = 2.
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clamp all the discrete variables in the model. Consequen#ycan estimate the observation noise
varianceR, the transition noise variancg and the transition matrix coefficientsfrom data.

We have optimized the parameters by Expectation-MaxinaagEM) for the linear dynam-
ical systems (Shumway & Stoffer, 1982; Ghahramani & Hintd896) using all performances
of “Yesterday” as training data. Similarly, the score pp@rameters are estimated by frequency
counts from the score of “Yesterda$: All tests are carried out on “Michelle”.

Results

In Figure 4.9 we show the result of typesetting a performamitie and without tempo tracking.
Due to fluctuations in tempo, the quality of the automaticgknerated score is very poor. The
quality can be significantly improved by using our model.

Figure 4.10 shows some tempo tracking examples on Michatkesét for pianists from differ-
ent background and training. We observe that in most casagsults are satisfactory.

In Figure 4.11, we give a summary of test results on Michediadn terms of the loglikeli-
hood and edit distance as a function of model order and nuwibearticles used for inference.
Figure 4.11(a) shows that the median likelihood on test gatacreasing with model order. This
suggests that a higher order filter is able to capture streatupianists’ expressive timing. More-
over, as for the sythetic data, we see a somewhat monotamaaise in the likelihood of solutions
found when using more particles.

The edit distance between the original score and the esignaa¢ given in Figure 4.11(b). Since
both pieces are arranged for piano, due to polyphony, thenmany onsets that are associated with
the same score position. Consequently, mgft§in the original score are effectively zero. In such
cases, typically, the corresponding inter onset inteyyat y,_; is also very small and the correct
guantization (namely,, = 0) can be identified even if the tempo estimate is completelyngr
As a consequence, the edit distance remains small. To makagk slightly more challenging, we
exclude the onsets witi{*¢ = 0 from edit distance calculation.

We observe that the extra prediction ability obtained usnigigher order model does not
directly translate to a better transcription. The errossaound;% for all models. On the other
hand, the variance of edit distance for higher order modelmaller suggesting an increased
robustness towards divergence from the tempo track implyetie original score.

4.5 Discussion

We have presented a switching state space model for joitiimhgiuantization and tempo tracking.
The model describes the rhythmic structure of musical gidgea prior distribution over score
positions. In this representation, it is easy to constrgeraeric prior that prefers simpler notations
and to learn parameters from a data set. The prior on scorBopss:.; translates to a non-
Markovian distribution over a scorg. ..

Timing deviations introduced by performers (tempo fluatuataccentuations and motor er-
rors) are modeled as independent Gaussian noise souraéstni® specific timing preferences
are captured by the parameters of these distributions.

Given the model, we have formulated rhythm quantization &A#& state estimation prob-
lem and tempo tracking as a filtering problem. We have intceduMarkov chain Monte Carlo
(MCMC) and sequential Monte Carlo (SMC) to approximate #spective distributions.

5The maximum likelihood parameters for a model of dimengdios: 3 are found to bea = —0.072, R = 0.0132
andg, = 0.0082, ga, = 0.007% andga, = 0.0502. The priorp(c) is p(0) = 0.80, p(1/3) = 0.0082, p(1/2) = 0.15
p(5/6) = 0.0418. Remainingp(c) are set tal0~5.
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Michelle

(a) Original Score (b) Typesetting without pro- (c) Typesetting after tempo
cessing by the model. Due tracking and quantization with
to fluctuations in tempo, the a particle filter.
quality of the score is poor.

Figure 4.9:Results of Typesetting the scores.

The quantization model we propose is similar to that of (Rehh2001a). For transcription,
Raphael proposes to computies max p(co. ., 0.k [Yo.x) @nd USes a message propagation scheme
that is essentially analogous to Rao-Blackwellized plartiittering. To prevent the number of
kernels from explosion, he uses a deterministic selectietihod, called “thinning”. The advantage
of Raphael’s approach is that the joint MAP trajectory cancbmputed exactly, provided that
the continuous hidden stateis one dimensional and the model is in a parameter regime that
keeps the number of propagated Gaussian kernels limitgd,ie R is small, thinning can not
eliminate many kernels. One disadvantage is that the nuaflkernels varies depending upon the
features of the filtering distribution; it is difficult to inlggment such a scheme in real time. Perhaps
more importantly, simple extensions such as increasingltmensionality ofz or introducing
nonlinearities to the transition model would render therapph quickly invalid. In contrast, Monte
Carlo methods provide a generic inference technique tlat great flexibility in models one can
employ.

We have tested our method on a challenging artificial problelave example). SMC has
outperformed MCMC in terms of the quality of solutions, asasigred in terms of the likelihood
as well as the edit distance. We propose the use of SMC forgrothlems. For finding the MAP
guantization, we propose to apply iterative improvement¢l the SMC solution on the reduced
configuration space.

The correct choice of the score prior is important in the allgrerformance of the system.
Most music pieces tend to have a certain rhythmical vocajutaat is certain rhythmical motives
reoccur several times in a given piece. The rhythmic streaiepends mostly upon the musical
genre and composer. It seems to be rather difficult to devgemaral prior model that would work
well in a large spectrum of styles. Nevertheless, for a giyenre, we expect a simple prior to
capture enough structure sufficient for good transcriptibar example, for the Beatles dataset,
we have estimated the prior by counting from the originateas “Yesterday”. The statistics are
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Figure 4.10:Examples of filtered estimates af.x = [r, Ax]” from the Beatles data set. Circles denote
the mean of (2”19, yo.1) and “x” denote meamp(z1 |77, yo:x) obtained by SMC. It is interesting to

note different timing characteristics. For example thessilzal pianist uses a lot more tempo fluctuation
than the professional jazz pianist. Jazz pianist slows diramatically at the end of the piece, the amateur
“rushes”, i.e., constantly accelerates at the beginnirige tfacking and quantization results for (a) and (b)
are satisfactory. In (a), the filter loses track at the lastates, where the pianist dramatically slows down.
In (c), the filter loses track but catches up again. In (d).fillker jumps to a metrical level that is twice as

fast as the original performance. That would translate togichtion in note durations only.
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Figure 4.11:SMC results on the test data (108 performances of Micheffe).each model we show the
results obtained withVv' = 1,10,20 and 50 particles. The “-” show the median of the best particle and
“x" denote the median after applying iterative improvememhe vertical bars correspond to the interval
between %25 and %75 quantiles.
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fairly close to that of “Michelle”. The good results on thetiset can be partially accounted for
the fact that both pieces have a similar rhythmical structur

Conditioned on the score, the tempo tracking model is adidgaamical system. We have op-
timized several tempo models using EM where we have varedithension of tempo variables
The test results suggest that increasing the dimensigmdlit improves the likelihood. However,
increase in the likelihood of the whole dataset does nostad@ directly to overall better quantiza-
tion results (as measured by edit distance). We observertbdels trained on the whole training
data fail consistently for some subjects, especially msifmal classical pianists. Perhaps interest-
ingly, if we train “custom” models specifically optimizedrfthe same subjects, we can improve
results significantly also on test cases. This observatiggests a kind of multimodality in the
parameter space where modes correspond to different pgfoegimes. It seems that a Kalman
filter is able to capture the structure in expressive timiegaktions. However, when averaged over
all subjects, these details tend to be wiped out, as sugbbgtine quantization results that do not
vary significantly among models of different dimensions.

A related problem with the edit distance measure is that uadéaverage” model, the likeli-
hood of the desired score (e.g., original score of “Michglleay have a lower likelihood than a
solution found by an inference method. In such cases inogé#se likelihood may even decrease
the edit distance. In some test cases we even observe sslwith a higher likelihood than the
original notation where all notes are wrong. In most of thesses, the tempo trajectory of the
solution correspond to the half or twice of the original tengo consequently all note durations
are halved or doubled (e.g., all whole notes are notated las\di@s, all half notes as quarters
e.t.c.). Considering the fact that the model is “self iniziag” its tempo, that is we assume a
broad uncertainty a-priori, the results are still satigfacfrom a practical application perspective.

One potential shortcoming of our model is that it takes omhjirtg information of onsets into
account. In reality, we believe that pitch and melodic giogpms well as articulation (duration
between note onsets and offsets) and dynamics (louder t@rspfovide useful additional infor-
mation for tempo tracking as well as quantization. Morepsirent model assumes that all onsets
are equally relevant for estimation. That is probably inegahnot true: for example, a kick-drum
should provide more information about the tempo than a flotethe other hand, our simulations
suggest that even from such a limited model one can obtate gatisfactory results, at least for
simple piano music.

It is somewhat surprising, that SMC, basically a method Haaples from the filtering dis-
tribution outperforms an MCMC method such as SA that is padiy designed for finding the
MAP solution given all observations. An intuitive explaioatfor relatively poorer MCMC results
is that MCMC proceeds first by proposing a global solution e tries to improve it by local
adjustments. A human transcriber, on the other hand, wastiehl to shorter segments of music
and gradually write down the score. In that respect, theesgttpl update schema of SMC seems
to be more natural for the rhythm transcription problem. ig&inresults, where SMC outperforms
MCMC are already reported in the literature, e.g., in thecalbled “Growth Monte Carlo” for
generating self-avoiding random walks (Liu, Chen, & Loganiko, 2001). It seems that for a large
class of dynamical problems, including rhythm transcoptisequential updating is preferable over
batch methods.

We note that theoretical convergence results for SA regueeuse of a logarithmic cooling
schedule. It seems that our cooling schedule was too faseét this requirement; so one has to
be still careful in interpreting the poor performance as gatige SA result. We maintain that by
using a richer neighborhood structure in the configuratjmace (e.g., by using a block proposal
distribution) and a slower cooling schedule, SA resultslmammproved significantly. Moreover,
MCMC methods can be also be modified to operate sequenf@llgxample see (Marthi, Pasula,
Russell, & Peres, 2002).

Another family of inference methods for switching statecganodels rely on deterministic
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approximate methods. This family includes variationalragpnations (Ghahramani & Hinton,
1998) and expectation propagation (Heskes, 2002). It revaai interesting open question whether
deterministic approximation methods provide an advantagerms of computation time and ac-
curacy; in particular for the quantization problem and ftres switching state space models. A
potential application of the deterministic approximatienhniques in a MCMC schema can be in
designing proposal distributions that extend over seuvérs slices. Such a schema would cir-
cumvent the burden for computing the optimal proposal ithstion exhaustively hence allowing
more global moves for the sampler.

Our current results suggest the superiority of SMC for oobfem. Perhaps the most important
advantage of SMC is that it is essentially an “anytime” alldyon; if we have a faster computer we
can increase the number of particles to make use of the addittcomputational power. When
computing time becomes short one can decrease the numbamples. These features make
SMC very attractive for real-time applications where one easily tune the quality/computation-
time tradeoff.

Motivated by the practical advantages of SMC and our pasgirnulation results, we have im-
plemented a prototype of SMC method in real-time. Our carcemputer system (a 800 MHz P3
laptop PC running MS Windows) allows us to use up to 5 padialgh almost no delay even dur-
ing busy passages. We expect to significantly improve theiefity by translating the MATLAB
constructs to native C code. Hence, the method can be usetkagoa tracker in an automatic
interactive performance system and as a quantizer in amatitoscore typesetting program.

Appendix 4.A A generic prior model for score positions

In traditional western music notation, note durations ameegated by recursive subdivisions start-
ing from a whole note, hence it is also convenient to genesabee positions in a similar fash-
ion by regular subdivisions. We decompose a score posititman integer part and a fraction:
¢ = |c] + (¢ mod 1). For defining a prior, we will only use the fraction.

The set of all fractions can be generated by recursivelyigididg the unit interval0, 1). We
let S = [s;] denote a subdivision schema, whésg is a (finite) sequence of arbitrary integers
(usually small primes such as 2,3 or 5). The choice of a pdaicS depends mainly on the
assumed time signature. We generate the set of fraaticasfollows: At first iteration, we divide
the unit interval intos; intervals of equal length and append the endpainté resulting intervals
into the setC. At each following iterationi, we subdivide all intervals generated by the previous
iteration intos; equal parts and append all resulting endpoint§’to Note that this procedure
generates a regular grid where two neighboring grid poiatthe distanceé/ [ [, s;. We denote
the iteration number at which the endpaints first inserted ta”' as thedepthof ¢’ (with respect
to S). This number will be denoted a%c/|S). It is easy to see that this definition @fcoincides
with the number of significant bits to representnod 1 whenS = [2, 2,...].

As an illustirative example consider the subdivis®nr= [3,2]. At the first iteration, the unit
interval is divided intos; = 3 equal intervals, and the resulting endpoiffs /3, and2/3 are
inserted intoC' with depthsd(0) = d(1/3) = d(2/3) = 1. At the second iteration, the new
endpointsl /6, 3/6 and5/6 are inserted t@' and are assigned the degth

Given anS, we can define a distribution on score positions

p(ck|S) x exp(—Ad(cx, mod 1|S))

If we wish to consider several time signatures, i.e., défersubdivision schemata, we can inter-
pretS as a hidden indicator variable and define a pfi@f$). In this case, the prior becomes a
multinomial mixture given by(c;) = > s p(ck|S)p(S). For further details and empirical results
justifying such a choice see (Cemgil et al., 2000).
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Appendix 4.B Derivation of two pass Kalman filtering Equa-
tions

Consider a Gaussian potential with mgaand covarianc& defined on some domain indexed by
Z.

o) = ZxN(w®) = 2P ep(—5 - @S @) (4.28)

where [ dz¢(z) = Z > 0. If Z = 1 the potential is normalized. The exponent in Eq. 4.28 is a
guadratic form so the potential can be written as

1
o(x) = exp(g+h'e— ixTKx) (4.29)
where
1 K 1
K=y h=%"1u g=logZ + ~log|—| — =h"K'h
2 2 2
To denote a potential in canonical form we will use the notati

o(r) = ZxN(uT)=[hK.g

and we will refer tog, h and K ascanonicalparameters. Now we consider a Gaussian potential
on (z1,72)T. The canonical representation is

s = |(3 ) (R &2

In models where several variables are interacting, one cahdesired quantities by applying
three basic operations defined on Gaussian potentials eTaresultiplication, conditioning and
marginalization The multiplication of two Gaussian potentials on the santex setr follows
directly from Eq. 4.29 and is given by

¢'(x) = ¢u(r) X gp()
[h/7 Kla gl] = [hm KOH ga] X [hb7 Kb7 gb] = [ha + hb7 Ka + Kb7 Ga + gb]

If the domain ofp, and¢, only overlaps on a subset, then potentials are extended apjpropriate
domain by appending zeros to the corresponding dimensions.
The marginalization operation is given by

o(x1) = / G(r1,72) = [ — K1aK55' oy K1y — K12 K3 Ko, ]
T2

whereg’ = g — 1log|Ky/2n| + 1hy"(K2) 'hy andg is the initial constant term af(z1, z»).
The conditioning operation is given by

¢(IE1,$2 = f2) = [hl - K12513"2>K1179/]

whereg’ = g + h] s — 323 Koo .
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4.B.1 The Kalman Filter Recursions

Suppose we are given the following linear model subject ieeno

2, = Az + G
Y = OZk—I—ek

whereA andC are constant matriceg, ~ N (0, Q) ande, ~ N (0, R)
The model encodes the joint distribution

K
p(ZLK,yLK) = H yk|2k Zk;|Zk;—1) (4-30)
p(z1]20) = ( 1) (4.31)
-1 —1 1 1 T
p(z) = [Pl Pl =G log 2w P — Spt P
0 CTR e —CTR 1
p(y1]z1) = {( 0 ) , ( _R-C R-1 ) ,——log\QWR@
p(y1 =d1lz) = [0+CTR 'y, CTR'C, ——10g|27rR| — —le m

T -1 o T
plalz) = [(8),({591;{‘ e ),—élogm@]

Forward Message Passing

Suppose we wish to compute the likelihood

pyx) = / p(yKIZK)'-'/p(Zlez)p(szZz)/ p(22]21)p(y1]21)p(21)

z2 21

"We can compute this integral by starting from and proceeding tax. We define forward
‘messagest as

® Qo = p(21)
e k=1:K
— ok = P(Ye = Ur|2r) je—1
— aprap = [, p(zra]2r)
The forward recursion is given by
e ayo =[P 'p, Pt —1log|2nP| — Lt P71y
e k=1... K

— ik = [P, Kjio, Grl]

"We Ietfz = [dz
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hige = CT Rk + higjr—a
Kk\k =CTRC + Kk\k—l
Jklk = Jklk—1 — %log 12T R| — %Q?Rflﬁk

— g1k = [Prs1)es Kitifks Gosili]
M, = (ATQ_IA + Kk‘k)_l
Piyape = QilAMkhkUg
Keyip =Q 7' — QTAMATQ™
Jk+1k = Gklk — %105-13 127Q| + %log |27 M| + %h{‘kMkhk\k

Backward Message Passing

We can compute the likelihood also by starting from

Plyx) = / p(z1)p(u]21) / Pzl )p(gal) - . / pexcl2xe—)p (o)

21 22 2K

In this case the backward propagation can be summarized as
o ﬁK|K+1 =1
e k=K...1
— Bk = Wk = Tl 2k) Brjea
- @c—l\k = fzk p(2k|zk71)ﬁk|k
The recursion is given by
[h}|K+17K}k(|K+1vg}k(\K+1] = [0,0,0]
o k=K. .1
= Biie = Wy Kijpos Gipa)
hZ|k = CTRilgk + h;;|k+1
Kg\k =CTR7'C+ KZ\kJrl
91:\19 = _% log |27TR| - %ggRilgk + QZ\;@H
= Br—1je = [hZ—umKZ—ung_uk]
My = Q7"+ Kj)™
W1 = ATQ_IMI:hZ\k
1k = ATQ™H(Q - My)Q'A
Grape = Jipp — +log [27Q| + 5 log |27 M| + %h*akM,jh’,;‘k

Kalman Smoothing

Suppose we wish to find the distribution of a particulagiven all the observationg.,. We just
have to combine forward and backward messages as

p(zrlyie) o< p(Yriir, 26, Yuk)
P(Y1:ks 25)P(Yr+1:5 | 25)
= Qi X 5k\k+1
(kg + P> Kk + K jsts Grik + Gijira]
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Appendix 4.C Rao-Blackwellized SMC for the Switching State
space Model

We leti = 1... N be an index over particles and= 1. .. S an index over states of. We denote
the (unnormalized) filtering distribution at tinkie— 1 by

0 = p(Yor-1, )

Sincey.,— are observed;&,(ﬁ1 is a Gaussian potential ap_; with parameters ,@1 XN (,u,(fll, E,(Ql).

Note that the normalization constadf”, is the data likelihood(yo.x—17) 1) = [ dzo\”,.
Similarly, we denote the filtered distribution at the nextesiconditioned on,, = s by

>

l(:m = /dzklp(yk‘zk)p<zk|zkla ) ;(;11 (4.32)
= p<y0:k7 Zk"}é?c—lv Ve = 8)

We denote the normalization constantqiéf'i) by Z,is'i). Hence the joint proposal onand (i) is
given by

0" = / dz0y" > p(n = 5,710
= p% = 5. Yh_1s Yoik)
The outline of the algorithm is given below:

e Initialize. Fori =1... N, ¢\ — p(yo, o)
e Fork=1...K

—Fori=1...N,s=1...5

Computes!”™ from ¢\” | using Eq.4.32.

0" — 2 % plog = 5,90 _)

—Fori=1...N
Select a tuplés|j) ~ qx
Yk — (W0 = 5)
Cb](;) - Qsl(j‘])
() (sl5)
wk; — Zs qk:

Note that the procedure has a “built-in” resampling schesnaliminating particles with small
importance weight. Sampling jointly ofx|:) is equivalent to sampling a singtefor each: and

then resampling according to the weight@,(f). One can also check that, since we are using the

optimal proposal distribution of Eq.4.27, the weight atresatep is given byu,(f) = p(y@_l, Youk)-



Chapter 5

Piano-Roll Inference

In this paper we present a graphical model for polyphonic mug transcription. Our model,
formulated as a Dynamical Bayesian Network, embodies a trasparent and computationally
tractable approach to this acoustic analysis problem. An adantage of our approach is that it
places emphasis on explicitly modelling the sound generain procedure. It provides a clear
framework in which both high level (cognitive) prior inform ation on music structure can be
coupled with low level (acoustic physical) information in aprincipled manner to perform
the analysis. The model is a special case of the, generallytriactable, switching Kalman
filter model. Where possible, we derive, exact polynomial the inference procedures, and
otherwise efficient approximations. We argue that our geneative model based approach
is computationally feasible for many music applications ad is readily extensible to more
general auditory scene analysis scenarios.

Adapted from A. T. Cemgil, H. J. Kappen, and D. Barbér.generative
model for music transcriptianAccepted to IEEE Transactions on Speech
and Audio Processing, 2004.

5.1 Introduction

When humans listen to sound, they are able to associateta@ssgnals generated by different
mechanisms with individual symbolic events (Bregman, 39%0e study and computational mod-
elling of this human ability forms the focus of computatibaaditory scene analysis (CASA) and
machine listening (Brown & Cooke, 1994). Research in themaeeks solutions to a broad range
of problems such as the cocktail party problem, (for exanapl®matically separating voices of
two or more simultaneously speaking persons, see e.g. {i4Bb) 1985; Roweis, 2001)), identi-
fication of environmental sound objects (Ellis, 1996) andsital scene analysis (Scheirer, 2000).
Traditionally, the focus of most research activities hasrb@& speech applications. Recently,
analysis of musical scenes is drawing increasingly moenatin, primarily because of the need
for content based retrieval in very large digital audio Bates (Tzanetakis, 2002) and increasing
interest in interactive music performance systems (Ro@@12

5.1.1 Music Transcription

One of the hard problems in musical scene analysis is automaisic transcription, that is, the
extraction of a human readable and interpretable desanigtom a recording of a music per-
formance. Ultimately, we wish to infer automatically a naadinotation (such as the traditional
western music notation) listing the pitch levels of noted eorresponding time-stamps for a given
performance. Such a representation of the surface steuofumusic would be very useful in a

77
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broad spectrum of applications such as interactive mugioimeance systems, music informa-
tion retrieval (Music-IR) and content description of maimaterial in large audio databases, as
well as in the analysis of performances. In its most uncamstd form, i.e., when operating on
an arbitrary polyphonic acoustical input possibly contagran unknown number of different in-
struments, automatic music transcription remains a giegitenge. Our aim in this paper is to
consider a computational framework to move us closer to etiged solution of this problem.

Music transcription has attracted significant researcbreif the past — see (Scheirer, 2000)
and (Plumbley et al., 2002) for a detailed review of early amate recent work, respectively.
In speech processing, the related task of tracking the pitéhsingle speaker is a fundamental
problem and methods proposed in the literature are welliedijidess, 1983). However, most
current pitch detection algorithms are based largely omisiges (e.g., picking high energy peaks
of a spectrogram, correlogram, auditory filter bank, etel their formulation usually lacks an
explicit objective function or signal model. It is often filiult to theoretically justify the merits
and shortcomings of such algorithms, and compare themtnlggcto alternatives or extend them
to more complex scenarios.

Pitch tracking is inherently related to the detection arttrestion of sinusoids. The estimation
and tracking of single or multiple sinusoids is a fundamleptablem in many branches of ap-
plied sciences, so it is less surprising that the topic hes laéen deeply investigated in statistics,
(e.g. see (Quinn & Hannan, 2001)). However, ideas fromstiesi seem to be not widely applied
in the context of musical sound analysis, with only a few @xioms (Irizarry, 2001, 2002) who
present frequentist techniques for very detailed analyfsmusical sounds with particular focus
on decomposition of periodic and transient componentsl &aai. (2002) has presented real-time
monophonic pitch tracking application based on a Laplagega@mation to the posterior param-
eter distribution of an AR(2) model (Truong-Van, 1990; Quif Hannan, 2001, page 19). Their
method outperforms several standard pitch tracking dalgyos for speech, suggesting potential
practical benefits of an approximate Bayesian treatmentmiémophonic speech, a Kalman filter
based pitch tracker is proposed by Parra and Jain (2001y#ics parameters of a harmonic plus
noise model (HNM). They propose the use of Laplace appraximaround the predicted mean
instead of the extended Kalman filter (EKF). For both methbdsvever, it is not obvious how to
extend them to polyphony.

Kashino Kashino et al. (1995) is, to our knowledge, the fitghar to apply graphical mod-
els explicitly to the problem of polyphonic music transtigp. Sterian Sterian (1999) described
a system that viewed transcription as a model driven segtientof a time-frequency image.
Walmsley Walmsley (2000) treats transcription and sousgasation in a full Bayesian frame-
work. He employs a frame based generalized linear modeln{gssidal model) and proposes
inference by reversible-jump Markov Chain Monte Carlo (MCMalgorithm. The main advan-
tage of the model is that it makes no strong assumptions dbewignal generation mechanism,
and views the number of sources as well as the number of hacsas unknown model parame-
ters. Davy and Godsill Davy and Godsill (2003) address sohtkeoshortcomings of his model
and allow changing amplitudes and frequency deviationse réjported results are encouraging,
although the method is computationally very expensive.

5.1.2 Approach

Musical signals have a very rich temporal structure, bottagahysical (signal) and a cognitive
(symbolic) level. From a statistical modelling point of wiesuch a hierarchical structure induces
very long range correlations that are difficult to capturéhva@onventional signal models. More-
over, in many music applications, such as transcriptioncoresfollowing, we are usually inter-
ested in a symbolic representation (such as a score) and motich in the “details” of the actual
waveform. To abstract away from the signal details, we dediset of intermediate variables (a
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sequence of indicators), somewhat analogous to a “pialfiorepresentation. This intermediate

layer forms the “interface” between a symbolic process &edaictual signal process. Roughly,
the symbolic process describes how a piece is composed afodrped. We view this process as

a prior distribution on the piano-roll. Conditioned on tharmo-roll, the signal process describes
how the actual waveform is synthesized.

Most authors view automated music transcription as an ‘@talpiano-roll” conversion and
usually consider “piano-roll to score” a separate problérhis view is partially justified, since
source separation and transcription from a polyphoniccig already a challenging task. On
the other hand, automated generation of a human readabkeiactudes nontrivial tasks such as
tempo tracking, rhythm quantization, meter and key induc{Raphael, 2001a; Temperley, 2001;
Cemgil & Kappen, 2003). As also noted by other authors (ekgskino et al., 1995; Matrtin,
1999; Klapuri, Virtanen, & Holm, 2000)), we believe that adebthat integrates this higher level
symbolic prior knowledge can guide and potentially imprtwe inferences, both in terms quality
of a solution and computation time.

There are many different natural generative models forgiatis. In (Cemgil et al., 2003), we
proposed a realistic hierarchical prior model. In this pape consider computationally simpler
prior models and focus more on developing efficient infeeetezhniques of a piano-roll repre-
sentation. The organization of the paper is as follows: Wefirst present a generative model,
inspired by additive synthesis, that describes the sigaakration procedure. In the sequel, we
will formulate two subproblems related to music transceoipt melody identification and chord
identification. We will show that both problems can be eaflynulated as combinatorial opti-
mization problems in the framework of our model, merely byefining the prior on piano-rolls.
Under our model assumptions, melody identification can besdaexactly in polynomial time (in
the number of samples). By deterministic pruning, we obdganactical approximation that works
in linear time. Chord identification suffers from combinadbexplosion. For this case, we pro-
pose a greedy search algorithm based on iterative impraver@®nsequently, we combine both
algorithms for polyphonic music transcription. Finallyewlemonstrate how (hyper-)parameters
of the signal process can be estimated from real data.

5.2 Polyphonic Model

In a statistical sense, music transcription, (as many gikereptual tasks such as visual object
recognition or robot localization) can be viewed as a lagtate estimation problem: given the
audio signal, we wish to identify the sequence of events (@tes) that gave rise to the observed
audio signal.

This problem can be conveniently described in a Bayesiandveork: given the audio sam-
ples, we wish to infer a piano-roll that represents the otiseds (e.g. times at which a ‘string’ is
‘plucked’), note durations and the pitch classes of indmgildhotes. We assume that we have one
microphone, so that at each tim&ae have a one dimensional observed quangtityMultiple mi-
crophones (such as required for processing stereo regsidivould be straightforward to include
in our model. We denote the temporal sequence of audio safpleys, . .., v, - .., yr} by the
shorthand notatiop;.. A constant sampling frequendy, is assumed.

Our approach considers the quantities we wish to infer adlaction of ‘hidden’ variables,
whilst acoustic recording valueg.r are ‘visible’ (observed). For each observed sampleve
wish to associate a higher, unobserved quantity that labelsampley; appropriately. Let us
denote the unobserved quantitiesHy.; where each; is a vector. Our hidden variables will
contain, in addition to a piano-roll, other variables regdito complete the sound generation
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procedure. We will elucidate their meaning later. As a gaheiference problem, the posterior
distribution is given by Bayes’ rule

p(Hir|yir) o< p(yir|Hir)p(Hir) (5.1)

The likelihood termp(y.7|H1.7) in (5.1) requires us to specify a generative process thasgige

to the observed audio samples. The prior texfH,.;-) reflects our knowledge about piano-rolls
and other hidden variables. Our modelling task is thereforspecify both how, knowing the
hidden variable states (essentially the piano-roll), therophone samples will be generated, and
also to state a prior on likely piano-rolls. Initially, weramentrate on the sound generation process
of a single note.

5.2.1 Modelling a single note

Musical instruments tend to create oscillations with maties are roughly related by integer ra-
tios, albeit with strong damping effects and transientchtizharacteristics (Fletcher & Rossing,
1998). It is common to model such signals as the sum of a geraminponent and a transient
non-periodic component (See e.g. (Serra & Smith, 1991; RA4&88; Irizarry, 2002)). The sinu-
soidal model (McAulay & Quatieri, 1986) is often a good appneation that provides a compact
representation for the periodic component. The transiemponent can be modelled as a corre-
lated Gaussian noise process (Parra & Jain, 2001; Davy &iE@f¥3). Our signal model is also
in the same spirit, but we will define it in state space forntause this provides a natural way to
couple the signal model with the piano-roll representatiSimilar formulations are used in the
econometrics literature to model seasonal fluctuatiogs,see (Harvey, 1989; West & Harrison,
1997). Here we omit the transient component and focus onghieghc component. It is concep-
tually straightforward to include the transient comporesthis does not effect the complexity of
our inference algorithms.

First we consider how to generate a damped sinugdildrough time, with angular frequency
w. Consider a Gaussian process where typical realizatjppnsare damped “noisy” sinusoidal
signals with angular frequency:

si ~ N(pBw)si-1,Q) (5.2)
y ~ N(Cs;, R) (5.3)
so ~ N(0,5) (5.4)
B cos(w) —sin(w)
Bw) = ( sin(w)  cos(w) ) (5.5)

We useN (u, ) to denote a multivariate Gaussian distribution with mgaand covariancé.
Here B(w) is a Givens rotation matrix that rotates two dimensionatwmeg by w degrees counter-
clockwise.C'is a projection matrix defined & = [1, 0]. The phase and amplitude characteristics
of y, are determined by the initial conditiay drawn from a prior with covariancg€. The damping
factor0 < p, < 1 specifies the rate at which contracts td). See Figure 5.1 for an example. The
transition noise variana@ is used to model deviations from an entirely deterministiedr model.
The observation noise varianéemodels background noise.

In reality, musical instruments (with a definite pitch) haeveral modes of oscillation that are
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Figure 5.1: A damped oscillator in state space form. Left:eAth time step, the state vector
rotates byw and its length becomes shorter. Right. The actual wavefermmone dimensional
projection from the two dimensional state vector. The shstic model assumes that there are two
independent additive noise components that corrupt the s&ctors and the sampleg, so the
resulting waveforny,.r is a damped sinusoid with both phase and amplitude noise.

roughly located at integer multiples of the fundamentadjfirencyw. We can model such signals
by a bank of oscillators giving a block diagonal transitioatrix A, = A(w, p;) defined as

pgl)B(w) 0 . 0
0 PP B(2w) : (5.6)
: : 0
0 . 0 p,EH)B(Hw)

where H denotes the number diarmonics assumed to be known. To reduce the number of free
parameters we define each harmonic damping factoin terms of a basig. A possible choice

is to take,o,ﬂh) = pl', motivated by the fact that damping factors of harmonics wibaating string
scale approximately geometrically with respect to thathef fundamental frequency, i.e. higher
harmonics decay faster (Valimaki, Huopaniemi, Karjalein& Janosy, 1996).A(w, p;) is the
transition matrix at timg and encodes the physical properties of the sound genem@ifiest
order Markov Process. The rotation anglecan be made time dependent for modelling pitch
drifts or vibrato. However, in this paper we will restrictrselves to sound generators that produce
sounds with (almost) constant frequency. The state of tbadgenerator is represented ya

2H dimensional vector that is obtained by concatenation dhalloscillator states in (5.2).

5.2.2 From Piano-Roll to Microphone

A piano-rollis a collection of indicator variables;, wherej = 1... M runs over sound generators
(i.e. notes or “keys” of a piano) antd= 1 ... 7T runs over time. Each sound generator has a unique
fundamental frequenay; associated with it. For example, we can chooseuch that we cover
all notes of the tempered chromatic scale in a certain freggueange. This choice is arbitrary and
for a finer pitch analysis a denser grid with smaller intes\u@@tween adjacent notes can be used.

Each indicator is binary, with values “sound” or “mute”. Tégsential idea is that, if previously
muted,r; ,—, = “mute” an onset for the sound generajavccurs ifr;, = “sound”. The generator
continues to sound (with a characteristic damping decayj) mns again set to “mute”, when
the generated signal decays to zero amplitude (much) fastex piano-roll, being a collection
of indicatorsry.)s 1.7, can be viewed as a binary sequence, e.g. see Figure 5.2.r&mdf the
piano-rollr; 1. controls an underlying sound generator.

The piano-roll determines the both sound onset generadimhthe damping of the note. We
consider first the damping effects.

Piano-Roll : Damping

Thanks to our simple geometrically related damping fadtmreach harmonic, we can characterise
the damping factor for each nofe= 1, ..., M by two decay coefficientssoung@nd pmute SUCh that
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Figure 5.2: Piano-roll. The vertical axis corresponds ®gbund generator indgxand the hori-
zontal axis corresponds to time indexBlack and white pixels correspond to “sound” and “mute”
respectively. The piano-roll can be viewed as a binary secgighat controls an underlying signal
process. Each row of the piano-roll,.r controls a sound generator. Each generator is a Gaussian
process (a Kalman filter model), where typical realizatiares damped periodic waveforms of a
constant fundamental frequency. As in a piano, the fundéahaquency is a function of the gen-
erator indexj. The actual observed signal; is a superposition of the outputs of all generators.

1 > psound> pmute > 0. The piano-rollr; 1. controls the damping coefficiept , of note; at time
t by:

pj,t == psounc{rj7t == Sounq’ + pmute[rji == mutq (57)

Here, and elsewhere in the article, the notatior- text has value equal to 1 when variahlés in
state text, and is zero otherwise. We denote the transit'mrixrasA;”“te = A(wj, pmute); Similarly
for Aseund

sound

Piano-Roll : Onsets

At each new onset, i.e. whem;,_; = mute — (r;, = sound, the old states,_, is “forgot-
ten” and a new state vector is drawn from a Gaussian priorilolision A/(0,.5). This models
the energy injected into a sound generator at an onset (@pdns, for example, when a guitar
string is plucked). The amount of energy injected is prapaoel to the determinant of and the
covariance structure df describes how this total energy is distributed among thembarcs. The
covariance matrix thus captures some of the timbre characteristics of thedsoline transition
and observation equations are given by

isonsef; = (r;,—1 = muteAr;, =sound (5.8)
Ajp = [rje = mutdAT™* + [r;, = soundAs*™ (5.9)

Sjt [ﬁisonseJZ,,t]N(Aj,tSt,l, Q)
+[isonset,JN (0, S) (5.10)

yj,t ~ N(CSj’t,R) (511)
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Figure 5.3: Graphical Model. The rectangle box denotestégla M replications of the nodes
inside. Each plate, = 1, ..., M represents the sound generator (note) variables throongh ti

In the above(' is al x 2H projection matrixC' = [1,0, 1,0, ..., 1, 0] with zero entries on the even
components. Hencg;; has a mean being the sum of the damped harmonic oscillatarsodels
the variance of the noise in the output of each sound genefatally, the observed audio signal
is the superposition of the outputs of all sound generators,

Y = Zyj,t (5.12)
J

The generative model (5.7)-(5.12) can be described gtiaéita by the graphical model in
Figure 5.3. Equations (5.11) and (5.12) defirig,.r|s1.a1.7). Equations (5.7) (5.9) and (5.10)
relater ands and define(sy.ar1.7|r1:a2,1.7)- In this paper, the prior modg(r;.5 1.7) is Markovian
and has the following factorial structute

p(rl:M,l:T> = HHp(Tm,thnm,tfl)
m t

5.2.3 Inference

Given the polyphonic model described in section 5.2, torittie most likely piano-roll we need
to compute

TLMiT = argmax p(ri.as,1:7|Y1:7) (5.13)
T1:M,1:T

where the posterior is given by

1
p(rle,lzT‘y1:T> = / p(yLT\SLM,l:T)
S1:M,1:T

p(yr.1)

XP(SLM,LT|7’1:M,1:T)p(7’1:M,1:T)

1In the simulations we have fixed the transition paramgter= mutdr = sound = p(r = soundr = mute) =
1077
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The normalization constani(y,.), obtained by summing the integral term over all configuragio
117 IS called the evidencé.

Unfortunately, calculating this most likely piano-rolliitguration is generally intractable, and
is related to the difficulty of inference in Switching Kalmé&ilters (Murphy, 1998, 2002). We
shall need to develop approximation schemes for this genasa, to which we shall return in a
later section.

As a prelude, we consider a slightly simpler, related modeictv aims to track the pitch
(melody identification) in a monophonic instrument (playionly a single note at a time), such
as a flute. The insight gained here in the inference task witlgyus to a practical approximate
algorithm in the more general case later.

5.3 Monophonic Model

Melody identification, or monophonic pitch tracking withs@t and offset detection, can be for-
mulated by a small modification of our general framework. riti@s simplified task is still of
huge practical interest, e.g. in real time MIDI conversiondontrolling digital synthesizers using
acoustical instruments or pitch tracking from the singilogce. One important problem in real
time pitch tracking is the time/frequency tradeoff: to sste the frequency accurately, an algo-
rithm needs to collect statistics from a sufficiently lontenval. However, this often conflicts with
the real time requirements.

In our formulation, each sound generator is a dynamicaksystith a sequence of transition
models, sound and mute. The stagvolves first according to the sounding regime with traositi
matrix A°“"“and then according to the muted regime with"®®. The important difference from a
general switching Kalman filter is that when the indicat@witches from mute to sound, the old
state vector is “forgotten”. By exploiting this fact, in tla@pendix 5.6.1 we derive, for a single
sound generator (i.e. a single note of a fixed pitch that ge&na off), an exact polynomial time
algorithm for calculating the evidengéy,.,-) and MAP configuration; .

Monophonic pitch tracking

Here we assume that at any given titnenly a single sound generator can be soundingrj.e=
sound= r;, = mute for;’ # j. Hence, for practical purposes, the factorial structureuwf
original model is redundant; i.e. we can “share” a singleestactors among all sound generatérs
The resulting model will have the same graphical structara single sound generator but with an
indicatorj, € 1... M which indexes the active sound generator, and {sound mute} indicates
sound or mute. Inference for this case turns out to be alstatske (i.e. polynomial). We allow

2|t is instructive to interpret (5.13) from a Bayesian modakstion perspective (MacKay, 2003). In this interpre-
tation, we view the set of all piano-rolls, indexed by confafions of discrete indicator variables,;, ;.7, as the set
of all models among which we search for the best mogg} ;... In this view, state vectors;.,;,1.7- are the model
parameters that are integrated over. It is well known thatcttinditional predictive density(y|r), obtained through
integration ovek, automatically penalizes more complex models, when etediety = y;.7. In the context of piano-
roll inference, this objective will automatically prefeslations with less notes. Intuitively, this is simply beeauat
each note onset, the state vecipiis reinitialized using a broad Gaussiaf(0, .S). Consequently, a configuration
r with more onsets will give rise to a conditional predictivistdbution p(y|r) with a larger covariance. Hence, a
piano-roll that claims the existence of additional onsdtheut support from data will get a lower likelihood.

3We ignore the cases when two or more generators are simaiialyen the mute state.
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Figure 5.4: Simplified Model for monophonic transcriptio8ince there is only a single sound
generator active at any given time, we can represent a p@hat each time slice by the tuple
(7, m:) Wherey, is the index of the active sound generator apg {soundmute} indicates the
State.

switching to a newj’ only after an onset. The full generative model using thesdair r;), which
includes both likelihood and prior terms is given as

re o~ p(re|re-1)

isonset = (r; = soundA r;_; = mute
Ji ~ [-isonset}o(js; ji—1) + [isonsefu(jy;)
A = [ry = mutd AT"® + [r, = soundA3*"™
sy ~ [-isonsefN (Ass; 1, Q) + [isonsef N (0, S)

Yy ~ N(OSt,R)

Herew(j) denotes a uniform distribution an. .., M andd(j; j;—1) denotes a degenerate (deter-
ministic) distribution concentrated oj, i.e. unless there is an onset the active sound generator
stays the same. Our choice of a unifoufy) simply reflects the fact that any new note is as likely
as any other. Clearly, more informative priors, e.g. thlieot knowledge about tonality, can also
be proposed. Similarly, for doing a more precise pitch asialywe may choose a finer grid such
thatw;,,/w; = Q. Here,Q is the quality factor, a measure of the desired frequenogigios not

to be confused with the transition noige

The graphical model is shown in Figure 5.4. The derivatiorthef polynomial time infer-
ence algorithm is given in appendix 5.6.2. Technicallysiaisimple extension of the single note
algorithm derived in appendix 5.6.1.

In Figure 5.5, we illustrate the results on synthetic datagad from the model where we
show the filtering density(r, j:|y1..). After an onset, the posterior becomes quickly crisp, long
before we observe a complete cycle. This feature is espeattiactive for real time applications
where a reliable pitch estimate has to be obtained as eapgssible.

We conclude this subsection with an illustration on reahdate have recorded a major scale
on an electric bass and downsampled from the original sagptite of F, = 22050 by a factor
of D = 10. We have estimated parameters for a signal model With= 8 harmonics. The
“training set” consisted of a single note recorded from thme instrument; this procedure will
be discussed in more detail in section 5.5. We have estintatetMAP configurationr, j),.r
using the algorithm described in appendix 5.6.2. The fighmvs that the estimated piano roll is
quite precise. We have repeated the experiment on a piamatbla pitch grid of1/4 semitones
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Figure 5.5: Monophonic pitch tracking. (Top) Syntheticadaampled from model in Figure 5.4.
Vertical bars denote the onset and offset times. (Botton® filtering densityp(r,, j;|y1.¢). The
vertical axis denotes the sound generator infleand the gray level denotes the posterior proba-
bility p(r, = sound j;|y;.1) where black corresponds to
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Figure 5.6: Monophonic pitch estimation on real data. (Tieft) F major scale played on an
electric bass. (Top, right) Estimated MAP configuratien;),.,. (Bottom, left) A finer analysis
with Q = 21/ reveals that the 5'th and 7'th degree of the scale are inéorsdightly low. (Bottom,
right) Poorer results may be obtained when signal modehpeters are not set correctly.

(Q = 2'/%%). The results reveal that tH&h and 7'th degree of the scale were intonated slightly
low, which didn’t had much effect on the estimation of thechitlass when using a coarser grid.
In the last experiment we have trained the model parameséng @ note sung by a vocalist. As
expected, the results are poorer; in particular we obséaté ths or octaves are confused due to
the different harmonic structure and transition charasties.

Extension to vibrato and legato

The monophonic model has been constructed such that th@orotnglew remains constant.
Although the the transition noise with varian@estill allows for small and independent deviations
in frequencies of the harmonics, the model is not realigiicsituations with systematic pitch
drift or fluctuation, e.g. as is the case with vibrato. Mor@own many musical instruments,
it is possible to playegatqg that is without an explicit onset between note boundariesour
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Figure 5.7: Tracking varying pitch. Top and middle panehgitime true piano-roll and the sampled
signal. The estimated piano-roll is shown below.

framework, pitch drift and legato can be modelled as a sempiehtransition models. Consider
the generative process for the note ingdex

Ty~ p(refria)
isonset = (r; = soundA r,_; = mute
issound = (r; = soundA r;_; = sound
Ji ~ lissoungd|d(j:|j:—1) +
[re = mutdd(ji; je—1) + [isonsetu(j;)

Here,d(j:|j:—1) is a multinomial distribution reflecting our prior belieflwdikely is it to switch be-
tween notes. When = mute, there is no regime change, reflected by the determeidistribution
d(j¢; je—1) peaked aroungl_;. Remember that neighbouring notes have also close fundahfien
quencyw. To simulate pitch drift, we choose a fine grid such thatw,.; = Q. In this case, we
can simply definel(j;|j;_1) as a multinomial distribution with support &y 1 — 1, j¢_1, ji—1 + 1]
with cell probabilitiesd_; dy d;]. We can take a larger support fé(j;|j;—1), but in practice we
would rather reduce the frequency precis@rno avoid additional computational cost.

Unfortunately, the terms included by the drift mechanisndiex an exact inference procedure
intractable. We derive the details of the resulting aldponitin the appendix 5.6.2. A simple
deterministic pruning method is described in appendixX% . Figure 5.7, we show the estimated
MAP trajectoryr?.. for drifting pitch. We use a model where the quality facto@s= 2-'%°, (120
generators per octave) with drift probability,; = d; = 0.1. A fine pitch contour, that is accurate
to sample precision, can be estimated.

5.4 Polyphonic Inference

In this section we return to the central goal of inferencénedeneral polyphonic model described

in section 5.2. To infer the most likely piano-roll we needctomputeargmax p(ry.as,1.7|y1.7) de-
T1:M,1:T

fined in (5.13). Unfortunately, the calculation of (5.13)nfractable. Indeed, even the calculation

of the Gaussian integral conditioned on a particular condiion ., 1.7 using standard Kalman

filtering equations is prohibitive since the dimension of #tate vector iss| = 2H x M, where

H is the number of harmonics. For a realistic application wg hmeve M ~ 50 andH =~ 10. Itis
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clear that unless we are able to develop efficient approxamaéchniques, the model will be only
of theoretical interest.

5.4.1 \Vertical Problem: Chord identification

Chord identification is the simplest polyphonic transeédpttask. Here we assume that a given
audio signaly,.7 is generated by a piano-roll wherg;, = r; for all* j = 1... M. The task is to
find the MAP configuration

TT:M = argmaxp(y1:T7 Tl:M)
T1:Mm
Each configuration corresponds to a chord. The two extresesae “silence” and “cacophony”
that correspond to configurations,,;[mute mute ... mutd and[sound sound... sound
respectively. The size of the search space in this 2¥savhich is prohibitive for direct computa-
tion.

A simple approximation is based on greedy search: we s&dtive improvement from an
initial configurationrg?])w (silence, or randomly drawn from the prior). At each itevati, we
evaluate the probability(y,.7, r1.,,) Of all neighbouring configurations mﬁf;j). We denote this
set byneigh(rﬁ;j)). A configuration’ € neigh(r), if v’ can be reached fromwithin a single flip
(i.e., we add or remove single notes)rﬁ‘;}) has a higher probability than all its neighbours, the
algorithm terminates, having found a local maximum. Othesywwe pick the neighbour with the
highest probability and set
7’@\4 = argmax : (Y11, T10)

1
)

r1.ar Eneigh(r{ ]
and iterate until convergence. We illustrate the algoritnma signal sampled from the generative
model, see Figure 5.8. This procedure is guaranteed to ggeve a (possibly local) maxima.
Nevertheless, we observe that for many examples this puoeed able to identify the correct
chord. Using multiple restarts from different initial cadirations will improve the quality of the
solution at the expense of computational cost.

One of the advantages of our generative model based appsoidet we can in principle infer
a chord given any subset of data. For example, we can simpiynsktmpley,. (without any
preprocessing) by an integer factor bfand view the discarded samples as missing values. Of
course, wherD is large, i.e. when we throw away many samples, due to dimmimjslikelihood
contribution, we obtain a diffuse posterior on the piantb-amd eventually the results will be
poorer.

In Figure 5.9, we show the results of such an experiment. We Hawnsampled.; with
factor D = 2,3 and4. The energy spectrum is quite coarse due to the short lerigttealata.
Consequently many harmonics are not resolved, e.g. we daderdify the underlying line spec-
trum by visual inspection. Methods based on template magcbr identification of peaks may
have serious problems for such examples. On the other handnadel driven approach is able
to identify the true chord. We note that, the presented tesue illustrative only and the actual
behaviour of the algorithm (sensitivity 0, importance of starting configuration) will depend on
the details of the signal model.

“We will assume that initially we start from silence whefg = mute forallj = 1... M
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6 O 00O O0OO0OOO® 00000 0000 @O0 e0 e —1633593
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10 O 00O 0OO0OO0OO0OOOO®®e®OoOO0O 0000 eo0 eo0 e —4664
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Figure 5.8: We have first drawn a random piano-roll configara¢a random chordy;.,,;. Given
r1.v, We generate a signal of lengih0 samples with a sampling frequenéy = 4000 from
p(y1.r|riar). We assume 24 notes (2 octaves). The synthesized signattiegenerative model
and its discrete time Fourier transform modulus are showreabr he true chord configuration and
the associated log probability is at the bottom of the tablar. the iterative algorithm, the initial
configuration in this example was silence. At this point wepate the probability for each single
note configurations (all one flip neighbours of silence). Titst note that is added is actually not
present in the chord. Until iteratich all iterations add extra notes. Iterati®and10 turn out to be
removing the extra notes and iterations converge to thectraed. The intermediate configurations
visited by the algorithm are shown in the table below. Hevensl and mute states are represented
by e’s ando’s.
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p(yl:D:T; Tl:M)
—2685
—3179

—2685

3m4

Init
True
Silence

Random

—2057
—2057
—2616

True
Silence

Random

o

—1605
—1668
—1591

True
Silence

Random

Figure 5.9: Iterative improvement results when data arsauipled by a factor ob = 2,3 and
4, respectively. For each factdr, the top line shows the true configuration and the correspgnd
probability. The second line is the solution found by stegtfrom silence and the third line is
starting from a random configuration drawn form the priorsfla 3 independent runs).
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5.4.2 Piano-Roll inference Problem: Joint Chord and Melodyidentification

The piano-roll estimation problem can be viewed as an eidarmd chord identification in that we
also detect onsets and offsets for each note within the sisdiyame. A practical approach is to
analyze the signal in sufficiently short time windows anduass that for each note, at most one
changepoint can occur within the window.

Consider data in a short window, sayy,,. We start iterative improvement from a configuration
{1+ Where each time slicg”),, for ¢ = 1... W is equal to a “chord?,y,. The chordr.
can be silence or, during a frame by frame analysis, theilast slice of the best configuration
found in the previous analysis window. Let the configuraon — 1'th iteration be denoted as

rﬁj)lw At each new iteration, we evaluate the posterior probabiligyy: w, 71.0,1.w), Where

r1.m,1:w funs over all neighbouring configurationﬁf;ﬁ:w. Each member.); 1. Of the neigh-
bourhood is generated as follows: For each 1... M, we clamp all the other rows, i.e. we set
Tiw = ry;lgv for j/ # 5. For each time step=1... W, we generate a new configuration such
that the switches up to timeare equal to the initial switch; ;, and its oppositer; , aftert, i.e.
riv =Tjolt’ < t]+-mr;o[t’ > t]. Thisis equivalent to saying that a sounding note may geedjut
or a muted note may start to sound. The computational adyamballowing only one change-
point at each row is that the probability of all neighbouranfigurations for a fixeg can be
computed by a single backward, forward pass (Cemgil & Kap@é@3; Murphy, 2002). Finally,
we pick the neighbour with the maximum probability. The aitfon is illustrated in Figure 5.10.

The analysis for the whole sequence proceeds as followssi@emtwo successive analy-
Sis WindowsYyrey = y1.w andY = ywy1.0w. Suppose we have obtained a solutiﬁpev =
a1 Obtained by iterative improvement. Conditioned £f),,, we compute the posterior
p(s1:00,w|Yprev, Iprey) DY Kalman filtering. This density is the prior effor the current analysis
window Y. The search starts from a chord equal to the last time slide;Qf. In Fig. 5.11 we
show an illustrative result obtained by this algorithm ontbgtic data. In similar experiments with
synthetic data, we are often able to identify the correatieoll.

This simple greedy search procedure is somewhat sengitilecation of onsets within the
analysis window. Especially, when an onset occurs nearrtti@tan analysis window, it may be
associated with an incorrect pitch. The correct pitch isoftientified in the next analysis window,
when a longer portion of the signal is observed. Howevecesthe basic algorithm does not allow
for correcting the previous estimate by retrospectiors thiroduces some artifacts. A possible
method to overcome this problem is to use a fixed lag smoo#ppgoach, where we simply carry
out the analysis on overlapping windows. For example, foamalysis windowyrey = y1., We
find r{.,; 13- The next analysis window is taken @g, 1. whereL < V. We find the prior
p(s1::,2|Y1:2, 71.01.2) DY Kalman filtering. On the other hand, obviously, the altjori becomes
slower by a factor of./ V.

An optimal choice forL, andW will depend upon many factors such as signal charactesjstic
sampling frequency, downsampling factor onset/offset positions, number of active sound gen-
erators at a given time as well as the amount of CPU time dtaildn practice, these values may
be critical and they need to be determined by trial and ei@nr.the other hand, it is important
to note thatl, andW just determine how the approximation is made but not enteutiderlying
model.

5.5 Learning

In the previous sections, we assumed that the correct sigodél parameteré = (5, p, Q, R)
were known. These include in particular the damping coeffits psoung Pmuter transition noise
variancer), observation nois& and the initial prior covariance matriafter an onset. In practice,
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(a)

1 -63276.7

2 -15831.1

3 -1848.5

19

57.2

|

90.3

7 130.5

True

(b)

Figure 5.10: Iterative improvement with changepoint digdec The true piano-roll, the signal
and its Fourier transform magnitude are shown in Figure.ta)0In Figure 5.10.(b), configura-
tions r® visited during iterative improvement steps. Iteration mems: are shown left and the
corresponding probability is shown on the right. The initianfiguration (i.e. “chord”)y.xs IS
set to silence. At the first step, the algorithm searchesradles note configurations with a single
onset. The winning configuration is shown on top panel of F@du10.(b). At the next iteration,
we clamp the configuration for this note and search in a suifg®to note configurations. This
procedure adds and removes notes from the piano-roll anctoges to a local maxima. Typically,
the convergence is quite fast and the procedure is able mbifigéhe true chord without making a
“detour” as in (b).
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_

Figure 5.11: A typical example for Polyphonic piano-rolfarence from synthetic data. We gen-
erate a realistic piano-roll (top) and render a signal usiegpolyphonic model (middle). Given
only the signal, we estimate the piano-roll by iterative rmy@ment in successive windows (bot-
tom). In this example, only the offset time of the lowest nigtaot estimated correctly. This is a
consequence that, for long notes, the state veatonverges to zero before the generator switches
to the mute state.

for an instrument class (e.g. plucked string instrumentsfaonable range fércan be specified a-
priori. We may safely assume thavill be static (not time dependent) during a given perforoean
However, exact values for these quantities will vary amaiffgrént instruments (e.g. old and new
strings) and recording/performance conditions.

One of the well-known advantages of Bayesian inferenceat thhen uncertainty about pa-
rameters is incorporated in a model, this leads in a natuagl tw the formulation of a learning
algorithm. The piano-roll estimation problem, omittingttime indices, can be stated as follows:

= argunas / / p(yls, O)p(slr, O)p(O)p(r) (5.14)

In other words, we wish to find the best piano-roll by takinpiaccount all possible settings of the
parametep, weighted by the prior. Note that (5.14) becomes equivdte(®.13), if we knew the
“best” parametef*, i.e. p(d) = 6(0 —6*). Unfortunately, the integration ghcan not be calculated
analytically and approximation methods must be used (Gimhni & Beal, 2000). A crude but
computationally cheap approximation replaces the integr@ané in (5.14) with maximization:

r* = argmax m@ax /p(y|379)p(5|73 0)p(0)p(r)

s

Essentially, this is a joint optimization problem on piamdis and parameters which we solve by
a greedy coordinate ascent algorithm. The algorithm wegsejs a double loop algorithm where
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we iterate in the outer loop between maximization ovend maximization ovef. The latter
maximization itself is calculated with an iterative algbm EM.

r® = argmax / pyls, 09 )p(s[r, 0 D)p(0")p(r)

s

60 — argmax / plyls, 0)p(s|r®, 0)p(0)p(r®)
0

S

For a single note, conditioned on a fixed ), »(® can be calculated exactly, using the message
propagation algorithm derived in appendix 5.6.2. Condgit onr(®, maximization on the)
coordinate becomes equivalent to parameter estimationgan dynamical systems, for which no
closed form solution is known. Nevertheless, this step eacdiculated by an iterative expectation
maximization (EM) algorithm (Murphy, 2002; Ghahramani &nithn, 1996). In practice, we
observe that for realistic starting conditiof®, the () are identical, suggesting that the best
segmentatiom™ is not very sensitive to variations thnear to a local optimum. In Figure 5.12, we
show the results of training the signal model based on aeimggie (a C from the low register) of
an electric bass.

In an experiment with real data, we illustrate the perforogaof the model for two and three
note polyphony (See Fig.5.13). We have recorded three agpaionophonic melodies; ascending
modes of the major scale starting from the ratgd and 5'th degree of a major scale. We have
estimated model parameters using a single note from the sagister. For each monophonic
melody, we have calculated the ground truftf; | - by the algorithm described in section 5.3. We
have constructed the two note example by adding the first telodies. The analysis is carried
out using a window length ofl” = 200 samples, without overlap between analysis frames (i.e.
L = W). We were able to identify the correct pitch classes for the hote polyphony case.
However, especially some note offsets are not detecte@atbyrr In the three note case, pitch
classes are correct, but there are also more artifactstleegchord arround sample indégo is
identified incorrect. We expect results to go worse withéasing polyphony; this behaviour is
qualitatively similar to other methods reported in therbtere, e.g. (Sterian, 1999; Walmsley,
2000), but clearly, more simulation studies have to be edraut for an objective comparison.

rtrue Tlrue ) )
Investigating the loglikelihood ratitvg ggym i PUier) s, () suggests that the failure is due

yer|7’{;1\/1,1:T)p(7"fM,1;T)
to the suboptimal estimation procedure, i.e. the modelepsethe true solution but our greedy
algorithm is unable to locate it and gets stuckin, ,.,., wherer* denotes here the configuration
found by the algorithm. In the conclusions section, we wabdiss some alternative approximation
methods to improve results.

5.6 Discussion

We have presented a model driven approach where transcriptviewed as a Bayesian inference
problem. In this respect, at least, our approach paralegptevious work of Walmsley (2000),
Davy and Godsill (2003), Raphael (2002). We believe, howetat our formulation, based on a
switching state space model, has several advantages. Wermawe the assumption of a frame
based model and this enables us to analyse music online aaitple precision. Practical ap-
proximations to an eventually intractable exact posterér be carried out frame-by-frame, such
as by using a fixed time-lag smoother. This, however, is meaaeiomputational issue (albeit a
very important one). We may also discard samples to reducgotational burden, and account
for this correctly in our model.

An additional advantage of our formulation is that we cah daliver a pitch estimate even
when the fundamental and lower harmonics of the frequenng bae missing. This is related to
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(a) A single note from an electric bass. Original samplinig ra

of 22050 Hz is reduced by downsampling with factér = 20.
Vertical lines show the changepoints of the MAP trajectary .
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(b) Top to Bottom: Fourier transform of the downsampled algn
and diagonal entries &f, @@ and damping coefficientssoung for
each harmonic.

Figure 5.12: Training the signal model with EM from a singt@enfrom an electric bass using a
sampling rate 022050 Hz. The original signal is downsampled by a factor/of= 20. Given
some crude first estimate for model paramet?5.S, p, @, R), we estimate "), shown in (a).
Conditioned o™, we estimate the model parametéf8 and so on. LefS, denote the x 2
block matrix from the diagonaf, corresponding to th&’th harmonic, similarly for@;. In (b), we
show the estimated parameters for each harmonic sum ofrthhgements, i.€I'r S, andTr Q..
The damping coefficient is found @agoung = (det AhA{)l/‘l whereA,, is a2 x 2 diagonal block
matrix of transition matrixAs°'"d For reference, we also show the Fourier transform modulus
of the downsampled signal. We can see, that on the low frexyueands,S mimics the average
energy distribution of the note. However, transient phesioan such as the strongly dampéith
harmonic with relatively high transition noise, is hardigible in the frequency spectrum. On the
other hand for online pitch detection, such high frequermygonents are important to generate a
crisp estimate as early as possible.
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Figure 5.13: Experiment with two and three note polyphony.
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so calledvirtual pitch perception (Terhardt, 1974): we tend to associate notdsavgitch class
depending on the relationship between harmonics rather ttie frequency of the fundamental
component itself.

There is a strong link between model selection and polyghomisic transcription. In chord
identification we need to compare models with different namitif notes, and in melody identi-
fication we need to deduce the number of onsets. Model sefelbécomes conceptually harder
when one needs to compare models of different size. We [partiacumvent this difficulty by
using switch variables, which implicitly represent the agnof components.

Following the established signal processing jargon, we oadlyour approach a time-domain
method, since we are not explicitly calculating a disctetes Fourier transform. On the other
hand, the signal model presented here has close links tooingeF analysis and sinusoidal mod-
elling. Our analysis can be interpreted as a search proeddua sparse representation on a set
of basis vectors. In contrast to Fourier analysis, wherebtss vectors are sinusoids (e.g. see
(Qi, Minka, & Picard, 2002) for a Bayesian treatment), weresent the observed signal implic-
itly using signals drawn from a stochastic process whichclly generates decaying periodic
oscillations (e.g. notes) with occasional changepoinite Jparsity of this representation is a con-
sequence of the onset mechanism, that effectively puts areiprior over the hidden state vector
s. This prior is peaked around zero and has broad tails, itidigghat most of the sources are
muted and only a few are sounding. It is well known that suchisS&n mixture priors induce
sparse representations, e.g. see (Attias, 1999; Olsh&uskiman, 2000) for applications in the
context of source separation.

5.6.1 Future work

Although our approach has many desirable features (autcaigtdeducing number of correct
notes, high temporal resolution e.t.c.), one of the maiadliantage of our method is computa-
tional cost associated with updating large covariance iogastin Kalman filtering. It would be
very desirable to investigate approximation schemas tiglay fast transformations such as the
FFT to accelerate computations.

When transcribing music, human experts rely heavily onrgeimwledge about the musical
structure — harmony, tempo or expression. Such structurdeaaptured by training probabilis-
tic generative models on a corpus of compositions and peenoces by collecting statistics over
selected features (e.g. (Raphael & Stoddard, 2003)). Ornkeoimportant advantages of our
approach is that such prior knowledge about the musicattsire: can be formulated as an in-
formative prior on a piano-roll; thus can be integrated gnai analysis in a consistent manner.
We believe that investigation of this direction is impoitandesigning robust and practical music
transcription systems.

Our signal model considered here is inspired by additivét®sis. An advantage of our linear
formulation is that we can use the Kalman filter recursionsitegrate out the continuous latent
state analytically. An alternative would be to formulateamlmear dynamical system that imple-
ments a nonlinear synthesis model (e.g. FM synthesis, Wwapasgy synthesis, or even a physical
model(Smith, 1992)). Such an approach would reduce therdiiaeality of the latent state space
but force us to use approximate integration methods suclariglp filters or EKF/UKF (Doucet
et al., 2001). It remains an interesting open question wdreth practice, one should trade-off
analytical tractability versus reduced latent state disien

In this paper, for polyphonic transcription, we have useelatively simple deterministic infer-
ence method based on iterative improvement. The basicgedgdrithm, whilst still potentially
useful in practice, may get stuck in poor solutions. We belighat, using our model as a frame-
work, better polyphonic transcriptions can be achievedgisiore elaborate inference or search
methods. For example, computation time associated withuwestive search of the neighbourhood
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for all visited configuations could be significantly reducgdandomizing the local search (e.g. by
Metropolis-Hastings moves) or use heuristic proposatibistions derived from easy-to-compute
features such as the energy spectrum. Alternatively, se@gli&lonte Carlo methods or determin-
istic message propagation algorithms such as Expectatapagation (EP) (Minka, 2001) could

be also used.

We have not yet tested our model for more general scenarok, & music fragments con-
taining percussive instruments or bell sounds with inhamimepectra. Our simple periodic signal
model would be clearly inadequate for such a scenario. Ootties hand, we stress the fact that the
framework presented here is not only limited to the analgssgnals with harmonic spectra, and
in principle applicable to any family of signals that can bpresented by a switching state space
model. This is already a large class since many real-woddstc processes can be approximated
well with piecewise linear regimes. We can also formulateiiat jestimation schema for unknown
parameters as in (5.14) and integrate them out (e.g. see &ual/Godsill (2003)). However, this
is currently a hard and computationally expensive taskffi¢ient and accurate approximate in-
tegration methods can be developed, our model will be agiplecto mixtures of many different
types of acoustical signals and may be useful in more geaadilory scene analysis problems.

Appendix 5.A Derivation of message propagation algorithms

In the appendix, we derive several exact message propagdgorithms. Our derivation closely
follows the standard derivation of recursive predictiod apdate equations for the Kalman filter
(Bar-Shalom & Li, 1993). First we focus on a single sound gatoe. In appendix 5.6.1 and 5.6.2,
we derive polynomial time algorithms for calculating thédencep(y;.7) and MAP configuration
ri.p = argmax p(y,.1, r1.7) respectively. The MAP configuration is useful for onseteffdetec-

T1.T
tion. In the following section, we extend the onset/offssedtion algorithms to monophonic pitch
tracking with constant frequency. We derive a polynomiakialgorithm for this case in appendix
5.6.2. The case for varying fundamental frequency is ddnmehe following appendix 5.6.2. In
appendix 5.6.2 we describe heuristics to reduce the amdwaongputations.

5.A.1 Computation of the evidencep(y,.r) for a single sound generator by
forward filtering

We assume a Markovian prior on the indicatersvherep(r, = i|r,_1 = j) = p; ;. For conve-
nience, we repeat the generative model for a single sounergem by omitting the note index

VE

Ty o~ p(rlrea)

isonset = (r; = soundA r,_; = mute)
sy ~ [-isonsefN (A, s;—1,Q) + [isonse N (0,.5)
v ~ N(Cs, R)

For simplicity, we will sometime use the labdlsind2 to denote sound and mute respectively. We
enumerate the transition modelsfags:|s:—1) = N(4,,s:-1, Q). We define the filtering potential
as

o = p(y1:t73ta7nt77’t71): Z p(yl:t;SO:tarlzt)

T1:4—9 50:t—1
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We assume thaj is always observed, hence we use the term potential to itedtba fact that
(Y14, S, 7, 74—1) IS not normalized. The filtering potential is in general aditional Gaussian
mixture, i.e. a mixture of Gaussians for each configuratibn,o,.;. We will highlight this data
structure by using the following notation

1,1 1,2
_ o oy’
Qp = { 2,1 2,2 }
Qy oy’
where eachy)’ = p(y14, ¢, = 0,71 = j) fori,j = 1...2 are also Gaussian mixture poten-
tials. We will denote the condltlonal normalization comt&saas

th‘ = py,m=1) = Z/ e
Tt—1
Consequently the evidence is given by
7= =33 [a=37

We also define the predictive density

Qglg—1 = p(y1t 15 Sty Tty Tt— 1)

= Z/ St|3t 15Tty Tt— 1) (Tt|’f’t 1)Oét 1

re_g ¥ St—

In general, for switching Kalman filters, calculating exposterior features, such as the evi-
denceZ; = p(yi1.), is not tractable. This is a consequence of the fact that th&er of mixture
components to required to represent the exact filteringityeas grows exponentially with time
stepk (i.e. one Gaussian for each of the exponentially many cordtgansr;.;). Luckily, for the
model we are considering here, the growth is polynomi&l amly. See also (Fearnhead, 2003).

To see this, suppose we have the filtering density availattienat — 1 asa,_;. The tran-
sition models can be organized also in a table wh#herow and j’th column correspond to

(St‘st 1,7 =1, 1—])

o Ji(s¢]se-1) 7(s¢)
p(selsi1,me,m1) = {f;(st\st_i) f2(8t|st_1)}

Calculation of the predictive potential is straightfordaFirst, summation over, . yields

Z Q-1 = atz 11 N atz 21 ét !
Q;y +apy &

Integration oves,_; and multiplication byp(r;|r;_1) yields the predictive potential

o — prai(se) praZi m(se)
A P21P3(st)  pagt3(si)

where we define

7, = / £, pl(s) = / Filselse)El s
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The potentials)! can be computed by applying the standard Kalman predictjoatéons to each
component ot} ;. The updated potential is given by = p(y:|s:)ou;—1. This quantity can be
computed by applying standard Kalman update equationscto@amponent ofv;,_;.

From the above derivation, it is clear that* has only a single Gaussian component. This
has the consequence that the number of Gaussian compomentsincreases only linearly (the
first row-sum termsg; , propagated througlfi,). The second row sum terg# is more costly; it
increases at every time slice by the number of componerg5 jn Since the size of; ; grows
linearly, the size of? grows quadratically with time.

5.6.2 Computation of MAP configurationr;.
The MAP state is defined as

*
o = argmax/ p(y1.1, So.r, T17)

T1:T S0:T
= argmax ¢(s0.7, T11)
T1:T S0:T

For finding the MAP state, we replace summations oydsy maximization. One potential
technical difficulty is that, unlike in the case for evidemadculation, maximization and integration
do not commute. Consider a conditional Gaussian potential

o(s,r) = {o(s,r=1),0(s,r=2)}

where ¢(s,r) are Gaussian potentials for each configuration-.ofWe can compute the MAP
configuration

rto= argmax/gb(s,r) = argmax{Zl,Zz}

whereZ? = [ ¢(s,r = j). We evaluate the normalization of each component (i.egrate over
the continuous hidden variabddirst) and finally find the maximum of all normalization consis
However, direct calculation of; - is not feasible because of exponential explosion in the num-
ber of distinct configurations. Fortunately, for our modae, can introduce a deterministic pruning
schema that reduces the number of kernels to a polynomiat artd meanwhile guarantees that
we will never eliminate the MAP configuration. This exactming method hinges on the factor-
ization of the posterior for the assignment of variables- 1,r,_; = 2 (mute to sound transition)
that breaks the direct link betweenands;_:

P(S0.7, T2, o1 = 2,70 = 1,7y 17) =
P(80:4-1, T1:t—2, -1 = 2)@(Sers Teyrer, e = 1rey = 2)  (5.15)
In this case:
MmMaXe, ., fSO:T (S0, 142, Te—1 = 2,74 = 1,7 17)
= max,, ; [, O(s0u-1,"14-2,7-1 = 2)
XM,y [, G(Ser: s, me = i1 =2)
= Zf X MaXy, , .p fst:T O(Sers Teprr, e = 1o = 2) (5.16)

This Equation shows that whenever we have an onset, we cauatal the maximum over the past
and future configurations separately. Put differentlyymted that the MAP configuration has the
form i = [ri_s,7eo1 = 2,70 = 1,77,1.7], the prefix[r{,,_s,r.—1 = 2] will be the solution for
the reduced maximization problemg max, , , fso’t_l O(S0:0—1,T1:-1)-
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Forward pass

Suppose we have a collection of Gaussian potentials

1,1 1,2
01 = { 55711 55721 } = { 5{;1 }
01 05 071
with the property that the Gaussian kernel correspondiagotiefixr;,,_, of the MAP state is a
member of;_y, i.e. ¢(s;_1,77, 1) € 0p—1 Sty = [17,_1, 7). We also define the subsets
0770 = {d(se-1,71:0-1) 1 ¢ € Gq@andry_y =i, 79 = j}

5271 = U 51%31
j
We show how we find,;. The prediction is given by

5t\t—1 = / p(3t|3t7177’t,thl)p(rth“tfl)(;tq

St—1

The multiplication byp(r¢|r:—1) and integration oves,_, yields the predictive potentia};_,

P11 f&_l f1(3t|5t71>515171 p1a7(se) fst_l 515271
P21 fsﬁl f2(3t|5t—1)5t1_1 D22 fshl f2(5t|3t—1)6;:2_1

By the (5.16), we can replace the collection of numbgrs 47, with with the scalarZ; ;, =
max [, 07, without changing the optimum solution:

1,2
5t|t71 = pl,zzf—lﬂ'(st)

The updated potential is given by = p(y|s:)d:—1. The analysis of the number of kernels
proceeds as in the previous section.

Decoding

During the forward pass, we tag each Gaussian componeptath its past history of-.;. The
MAP state can be found by a simple search in the collectiorobfmmially many numbers and
reporting the associated tag:

iy = argrnax/ or
rT ST
We finally conclude that the forward filtering and MAP (Vitegath) estimation algorithms are
essentially identical with summation replaced by maximaaand an additional tagging required
for decoding.

5.A.3 Inference for monophonic pitch tracking

In this section we derive an exact message propagationidgdgofor monophonic pitch tracking.

Perhaps surprisingly, inference in this case turns out tetiidractable. Even though the size
of the configuration space. ;1. is of size(M + 1)T = O(2T'°¢ M), the space complexity of an
exact algorithm remains quadratictinFirst, we define a “mega” indicator node= (j;, ;) where
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Ji € 1... M indicates the index of the active sound generatorrare {sound mute} indicates its

state. The transition modglz;|z;_1) is a large sparse transition table with probabilities

P11 pr2/M p12/M

P11 | pi2/M pr2/M (5.17)
P21 D22

D2.1 D22

where the transitions(z; = (j,7)|z.-1 = (4, ")) are organized at the’th row andm’th column
wheren =r x M +j —1andm =" x M + j' — 1. (5.17). The transition mode}gs;|s;_1, z; =
(7,7),2-1 = (j',7")) can be organized similarly:

f171 7T(8t> 7T(St>
fout | 7(s0) oo w(s)
fQ,l f2,1
font  fanr

Here, f,.; = f.,(s:/s,—1) denotes the transition model of thigh sound generator when in state
The derivation for filtering follows the same lines as theaifadfset detection model, with only
slightly more tedious indexing. Suppose we have the filtedansity available at time— 1 as
a;_1. We first calculate the predictive potential. Summationraye, yields the row sums

(rg) _ (1,9),(r",5")
t—-1 = E Q7
7‘/ j/

Integration overs,_; and multiplication byp(z|z_,) yields the predictive potentiat,,_,. The
components are given as

AV 1 M r! TS Z(i/7j/) 7,,:1/\,,,/:2
) _ { (1/M)peam(s9 277 (5.18)

e j=17"]x pr,wwt(T’j otherwise
where we define

Z(r/vj/)

t—1

/ e
St—1

t(m)(rm E/ fr,j(st\stfl)fgij)
St—1

t

The potentials) can be computed by applying the standard Kalman predictjoatéons to each
component of. Note that the forward messages have the same sparsitjuseas the prior, i.e.
o\ 40 whenp(r, = r,j. = jlr1 = r',j; = j') is nonzero. The updated potential is
given bya; = p(u¢|s:)as—1. This quantity can be computed by applying standard Kalnpaiate
equations to each nonzero componentgf ;.



5.6. DISCUSSION 103

5.A.4 Monophonic pitch tracking with varying fundamental f requency

We model pitch drift by a sequence of transition models. Wioske a grid such that; /w, 1 = Q,
where @ is close to one. Unfortunately, the subdiagonal terms thiced to the prior transition

matrixp(z; = (1, ji)|ze-1 = (1, je-1))

(do+dy) d_y
dq do d_y
P11 X dip (5.19)
do d_q
di (do+d-y)

render an exact algorithm exponentiakinrhe recursive update equations, starting with,, are
obtained by summing ovet,_,, integration over, ; and multiplication byp(z;|z;_1). The only
difference is that the prediction equation (5.18) needstohanged to

Na d(] )Xprrwtrj(rj) r=1nAr"=1
0415‘7;],)1(1" JD (1/M)prr/7r(st)Z( ) r=1A1r"=2
i =7 xprr¢(TJ) 3" =9

where ) and Z are defined in (5.19). The reason for the exponential growtthe follow-
ing: Remember that each™)"35) has as many components as an entire row suigj gt =
Dot i ag’" Jl) "7 " Unlike the inference for piecewise constant pitch estiomanow at some rows

there are two or more messages (e.g”"” anday,”""*") that depend om.

Appendix 5.B  Computational Simplifications
5.B.1 Pruning

Exponential growth in message size renders an algorithriessén practice. Even in special
cases, where the message size increases only polynomidljythis growth is still prohibitive for
many applications. A cheaper approximate algorithm canbtaimed by pruning the messages.
To keep the size of messages bounded, we limit the numbemapaoents taV and store only
components with the highest evidence. An alternative isadlding components of a message that
contribute less than a given fraction (e0g)001) to the total evidence. More sophisticated pruning
methods with profound theoretical justification, such aanepling (Cemgil & Kappen, 2003) or
collapsation (Heskes, 2002), are viable alternativeshmsgd are computationally more expensive.
In our simulations, we observe that using a simple pruninthowewith the maximum number of
components per message seiMae= 100, we can obtain results very close to an exact algorithm.

5.B.2 Kalman filtering in a reduced dimension

Kalman filtering with a large state dimensios at typical audio sampling rates;, ~ 40 kHz
may be prohibitive with generic hardware. This problem lees more severe when the number
of notesM is large, (which is typically around0 — 60), than even conditioned on a particular
configurationry.,,, the calculation of the filtering density is expensive. Hernno an implementa-
tion, tricks of precomputing the covariance matrices cacdresidered (Bar-Shalom & Li, 1993)
to further reduce the computational burden.
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Another important simplification is less obvious from thanical structure and is a conse-
guence of the inherent asymmetry between the sound and naés.s Typically, when a note
switches and stays for a short period in the mute state,ri;e.= mute for some period, the
marginal posterior over the state vectgy will converge quickly to a zero mean Gaussian with a
small covariance matriregardlessof observationg;. We exploit this property to save computa-
tions by clamping the hidden states for sequences ofto zero forr; ., = “mute”. This reduces
the hidden state dimension, since typically, only a few slogenerators will be in sound state.
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Samenvatting

Muziektranscriptie kan worden beschouwd als het omzet@neen gedigitaliseerde opname van
een muziekuitvoering in een beschrijving die voor menséezten en te begrijpen is. Het einddoel
van onderzoek in deze richting is een computer programmatteeopen dat uit iedere voorstel-
bare uitvoering een muzikale beschrijving (b.v. in de gedalijke westelijke muzieknotatie) kan
afleiden, die onder andere de toonhoogten en posities vam ot een bepaald tijdstip bevat.
Transcriptie van iedere willekeurige muziekuitvoeringder enige aanname van de soort muziek
is een zeer moeilijke, zelfs “Al-complete” taak, waarvoammenselijke intelligentie zou moeten
kunnen reproduceren. Wij geloven echter dat onder somremestische aannames een werkbare
oplossing kan worden gevonden; namelijk door een comiginan kennis vanuit verschillende
wetenschappen, zoals de cognitieve wetenschappen, nugteskschap en akoestiek, en computa-
tionele technieken afkomstig uit de kunstmatige intehiggs, automatisch leren en digitale signaal
verwerking. Het doel van dit proefschrift is om een prakis@anpak voor muziektranscriptie
te ontwikkelen door deze grote hoeveelheid a-priori keimisen samenhangend en transparent
computationeel model te integreren.

In dit proefschrift behandelen we muziektranscriptie as etatistisch inferentie probleem,
waarbij we een notatie zoeken die een gegeven muziek sigoadl beschrijft. In deze context
identificeren we drie problemen, namelijkne kwantisatie, het volgen van temgrovan polyfone
pitch. Voor elk probleem definiéren we een generatief kansmoDBel.transcriptie taak is dan
gedefinieerd als het “omdraaien” van dit generatief modekorde originele “verborgen” notatie
te vinden.

In hoofdstuk 2 definieren we een kansmodel tussen kortdiestan hun waargenomen uitvo-
ering. Uit psychoakoestische experimenten blijkt datszetfor vrij eenvoudige ritmes getrainde
transcriptie experts verschillende antwoorden kunnermgewe laten zien hoe een kansmodel
deze onzekerheid op een natuurlijke manier kan vatten en.ler

In hoofdstuk 3 ligt onze aandacht op volgen van tempo vasgatn dit model wordt het tempo
gezien als een verborgen variabele die we door Kalman figeschatten.

De volgende hoofdstuk (hoofdstuk 4) introduceert een geiegimodel voor ritme kwantisatie
en tempo volgen tegelijkertijd. Het kansmodel is een zogemh“switching state space” model.
In dit model is het niet mogelijk om kansen exact te berekedaarom behandelen we hier be-
naderingsmethoden als Markov Chain Monte Carlo (MCMC) eusgtial Monte Carlo (SMC).

In de laatste hoofdstuk 5 beschrijven we een model voor poly/franscriptie vanuit een audio
signaal. Het model, uitgedrukt als een “Dynamic Bayesiatwiek” (dynamisch Bayesiaans
Netwerk), bevat de afhankelijkheid tussen het signaal enpéeno rol. Dit model is ook een
speciaal geval van het switching state space model. Waaelijlokgiden we polynomiale tijd
algoritmen af en anders effectieve benaderingsmethoden.

De meest aantrekkelijke eigenschap van de Bayesiaansalka&opr muziektranscriptie is
ontkoppeling van het model en het benaderingsalgoritmeditirmamwerk beschrijft het model
duidelijk het doel maar de vraag hoe dit doel te bereikenpebeeer belangrijk, wordt een on-
afhankelijke kwestie. In perceptuele taken en in muzigigcaptie in het bijzonder is de vraag
“wat te optimaliseren” niet eenvoudig te beantwoorden. @defschrift probeert een antwoord
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te geven door doelfuncties te definiéren geschreven alsmpiiistische grafische modellen en in-
troduceert benaderende en exacte inferentie techniekezearacceptabele oplossing efficiéent te

vinden.

translated and edited with Matthijs Spaan
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else in the lab who have made it a fun place to be. | want to merdnd thank the support
group, Gunter and Ger who made sure everything works psgerd Hans for helping in fixing
up broken things.

| am deeply thankful to my former professors from Bogatigiiversity, in particular to Alp
Eden for a short but wonderful journey through the “ivory tiglsof mathematics and Ethem
Alpaydin for introducing and teaching me to the basic meshaidmachine learning. My special
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thanks go to Khalid Sayood not only for being a wonderful kesidn data compression, signal
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