
Exact and Approximate Methods for Machine
Translation Decoding

Yin-Wen Chang

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2015

c©2015

Yin-Wen Chang

All Rights Reserved

ABSTRACT

Exact and Approximate Methods for Machine Translation
Decoding

Yin-Wen Chang

Statistical methods have been the major force driving the advance of machine translation in recent

years. Complex models are designed to improve translation performance, but the added complexity

also makes decoding more challenging. In this thesis, we focus on designing exact and approximate

algorithms for machine translation decoding. More specifically, we will discuss the decoding

problems for phrase-based translation models and bidirectional word alignment.

The techniques explored in this thesis are Lagrangian relaxation and local search. Lagrangian

relaxation based algorithms give us exact methods that have formal guarantees while being effi-

cient in practice. We study extensions to Lagrangian relaxation that improve the convergence rate

on machine translation decoding problems. The extensions include a tightening technique that

adds constraints incrementally, optimality-preserving pruning to manage the search space size and

utilizing the bounding properties of Lagrangian relaxation to develop an exact beam search algo-

rithm. In addition to having the potential to improve translation accuracy, exact decoding deepens

our understanding of the model that we are using, since it separates model errors from optimization

errors.

The observation leads to the question of designing models that improve the translation quality.

We design a syntactic phrase-based model that incorporates a dependency language model to eval-

uate the fluency level of the target language. By employing local search, an approximate method,

to decode this richer model, we discuss the trade-off between the complexity of a model and the

decoding efficiency with the model.

Table of Contents

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Decoding Problems . 3

1.1.1 Phrase-Based Translation Models . 3

1.1.2 Word Alignment . 6

1.2 Techniques . 10

1.2.1 Lagrangian Relaxation . 10

1.2.2 Local Search . 13

1.3 Outline of the Thesis . 14

2 A Lagrangian Relaxation Algorithm with Tightening Techniques 16

2.1 Introduction . 16

2.2 Related Work . 18

2.3 The Phrase-based Translation Model . 19

2.4 A Decoding Algorithm based on Lagrangian Relaxation 21

2.4.1 An Efficient Dynamic Program . 21

2.4.2 The Lagrangian Relaxation Algorithm . 24

2.4.3 Properties . 26

i

2.4.4 An Example of the Algorithm . 28

2.5 Tightening the Relaxation . 28

2.6 Speeding up the DP: A* Search . 32

2.7 Experiments . 33

2.7.1 An alternative dynamic program . 34

2.7.2 Comparison to an LP/ILP solver . 34

2.7.3 Comparison to MOSES . 35

2.8 Conclusions . 37

3 Optimal Beam Search 38

3.1 Introduction . 39

3.2 Background . 40

3.2.1 Notation . 40

3.2.2 Hypergraphs and Search . 40

3.3 A Variant of Beam Search . 44

3.3.0.1 Algorithm . 45

3.4 Finding Tighter Bounds with Lagrangian Relaxation 48

3.4.1 Algorithm . 48

3.4.2 Computing Upper Bounds . 50

3.5 Optimal Beam Search . 51

3.6 Related Work . 51

3.7 Results . 53

3.7.1 Setup and Implementation . 53

3.7.2 Baseline Methods . 55

3.7.3 Experiments . 55

3.8 Conclusion . 56

ii

4 A Local Search Algorithm 58

4.1 Introduction . 58

4.2 Related Work . 60

4.3 The Phrase-based Translation Model . 61

4.3.1 The Proposed Scoring Function . 62

4.4 The Dependency Language Model . 62

4.5 Local Search Algorithm . 66

4.5.1 Local Steps . 67

4.5.1.1 Swap . 68

4.5.1.2 Move . 68

4.5.1.3 Split . 68

4.5.1.4 Merge . 68

4.5.2 Neighborhood . 69

4.6 Dependency BLEU score . 70

4.7 Experiments . 71

4.8 Conclusion . 73

5 Bidirectional Word Alignment 74

5.1 Introduction . 74

5.2 Background . 76

5.2.1 Word Alignment . 76

5.3 Bidirectional Alignment . 78

5.3.1 Enforcing Full Agreement . 79

5.4 Adjacent Agreement . 82

5.4.1 Enforcing Adjacency . 82

5.5 Adding Back Constraints . 85

5.6 Pruning . 86

5.6.1 Thresholding Max-Marginals . 87

iii

5.6.2 Finding Lower Bounds . 88

5.7 Related Work . 89

5.8 Experiments . 90

5.9 Conclusion . 93

6 Conclusion 94

Bibliography 97

Appendices 105

A Phrase-Based Decoding 106

A.1 Step Size . 106

A.2 Bigram Trick to Speed up the DP Computation 107

B Bidirectional Word Alignment Problem 110

B.1 Proof of NP-Hardness . 110

iv

List of Figures

1-1 An example of phrase-based translation decoding. The source-language sentence

is a German sentence: das muss unsere sorge gleichermaßen sein. One of

the possible translations in English is this must also be our concern. The arrows

show the mapping from German phrases to English phrases. 4

1-2 Alignment between French words and English words. This figure shows the align-

ment of both directions. Alignment a is represented by blue lines, which align

English words to French words. The alignment vector is a = 〈1, 3, 1, 4, 5〉. 7

1-3 Word alignment between a French and an English sentence can be visualized as a

matrix. (a) Here both let and see are aligned to montrez, us is aligned to nous,

the is aligned to les, and documents is aligned to documents. (b) Another

direction. (c) The two directional alignments are not the same. 7

1-4 A local search algorithm with hill-climbing strategy. 13

2-1 The decoding algorithm. αt > 0 is the step size at the t’th iteration. 24

2-2 An example run of the algorithm in Figure 2-1. For each value of t we show the dual

value L(ut−1), the derivation yt, and the number of times each word is translated, yt(i)

for i = 1 . . . N . For each phrase in a derivation we show the English string e, together

with the span (s, t): for example, the first phrase in the first derivation has English string

the quality and, and span (3, 6). At iteration 7 we have yt(i) = 1 for i = 1 . . . N , and the

translation is returned, with a guarantee that it is optimal. 24

v

2-3 A decoding algorithm with incremental addition of constraints. The functionOptimize(C, u)

is a recursive function, which takes as input a set of constraints C, and a vector of Lagrange

multipliers, u. The initial call to the algorithm is with C = ∅, and u = 0. α > 0 is the

step size. In our experiments, the step size decreases with the number of iteration; see

Appendix A.1. 29

2-4 An example run of the algorithm in Figure 2-3. At iteration 32, we start the K = 10

iterations to count which constraints are violated most often. After K iterations, the count

for 6 and 10 is 10, and all other constraints have not been violated during the K iterations.

Thus, hard constraints for word 6 and 10 are added. After adding the constraints, we have

yt(i) = 1 for i = 1 . . . N , and the translation is returned, with a guarantee that it is optimal. 30

3-1 Dynamic programming algorithm for unconstrained hypergraph search. Note that

this version only returns the highest score: max(x,y)∈X θ
>y. The optimal hyperpath

can be found by including back-pointers. 42

3-2 A variant of the beam search algorithm. Uses dynamic programming to produce a

lower bound on the optimal constrained solution and, possibly, a certificate of op-

timality. Function SIGS enumerates all possible tail signatures. Function CHECK

identifies signatures that do not violate constraints. Bounds lb and ubs are used

to remove provably non-optimal solutions. Function PRUNE, taking parameter m,

returns true if it prunes hypotheses from π that could be optimal. 46

3-3 Pruning function for phrase-based translation. Set B contains all hypotheses with

||sig||1 source words translated. The function prunes all but the top-m scoring

hypotheses in this set. 47

3-4 Lagrangian relaxation algorithm. The algorithm repeatedly calls LRROUND to

compute the subgradient, update the dual vector, and check for a certificate. 49

vi

3-5 Two versions of optimal beam search: staged and alternating. Staged runs La-

grangian relaxation to find the optimal λ, uses λ to compute upper bounds, and

then repeatedly runs beam search with pruning sequence m1 . . .mk. Alternating

switches between running a round a Lagrangian relaxation and a round of beam

search with the updated λ. If either the Lagrangian relaxation or the beam search

produces a certificate, it returns the result. 52

4-1 An example dependency tree of the sentence: the man saw a dog on Wednesday. 64

4-2 The local search algorithm for phrase-based decoding. 67

4-3 An example dependency tree. The 4-word headword chains are (ROOT, saw,

man, the), (NULL, ROOT, saw, man), (NULL, NULL, ROOT, saw), (ROOT,

saw, dog, the), (NULL, ROOT, saw, dog). 71

5-1 An example e→f directional alignment for the sentences let us see the documents

and montrez - nous les documents, with I = 5 and J = 5. The indices i ∈ [I]0

are rows, and the indices j ∈ [J]0 are columns. The HMM alignment shown has transitions

x(0, 1, 1) = x(1, 2, 3) = x(3, 3, 1) = x(1, 4, 4) = x(4, 5, 5) = 1. 76

5-2 (a) An example alignment pair (x, y) satisfying the full agreement conditions. The x

alignment is represented with circles and the y alignment with triangles. (b) An example

f→e alignment y ∈ Y ′ with relaxed forward constraints. Note that unlike an alignment

from Y multiple words may be aligned in a column and words may transition from non-

aligned positions. 79

5-3 Viterbi-style algorithm for computing L(λ). For simplicity the algorithm shows the max

version of the algorithm, argmax can be computed with back-pointers. 82

vii

5-4 (a) An alignment satisfying the adjacency constraints. Note that x(2, 1) = 1 is allowed

because of y(1, 1) = 1, x(4, 3) = 1 because of y(3, 3), and y(3, 1) because of x(3, 2). (b)

An adjacent bidirectional alignment in progress. Currently x(2, 2) = 1 with zl(−1) = 1

and z↔(−1) = 1. The last transition was from x(1, 3) with z↔′(−1) = 1, z↔′(0) =

1, zl
′
(0) = 1. 83

5-5 Modified Viterbi algorithm for computing the adjacent agreement L(λ). 85

5-6 Constrained Viterbi algorithm for finding partially-constrained, full-agreement alignments.

The argument p indicates which constraints to enforce. 87

5-7 . 93

A-1 The dual values L(u(t)) at each iteration for two different choices of step size:

1/(λt + 1) and the rate based on Polyak’s rule. The curves end when the algo-

rithm converges. This is based on the results of one example sentence, using the

algorithm in Chapter 3. 107

viii

List of Tables

1.1 Example entries in the phrase translation table. 4

2.1 Table showing the number of iterations taken for the algorithm to converge. x indicates

sentences that fail to converge after 250 iterations. 97% of the examples converge within

120 iterations. 28

2.2 Table showing the number of constraints added before convergence of the algorithm in Figure 2-

3, broken down by sentence length. Note that a maximum of 3 constraints are added at each

recursive call, but that fewer than 3 constraints are added in cases where fewer than 3 constraints

have count(i) > 0. x indicates the sentences that fail to converge after 250 iterations. 78.7% of the

examples converge without adding any constraints. 32

2.3 The average time (in seconds) for decoding using the algorithm in Figure 2-3, with and without

A* algorithm, broken down by sentence length and the number of constraints that are added. A*

indicates speeding up using A* search; w/o denotes without using A*. 32

2.4 Average and median time of the LP/ILP solver (in seconds). % frac. indicates how often the LP

gives a fractional answer. Y ′ indicates the dynamic program using setY ′ as defined in Section 2.4.1,

and Y ′′ indicates the dynamic program using states (w1, w2, n, r). The statistics for ILP for length

16-20 are based on 50 sentences. 35

2.5 Table showing the number of examples where MOSES-nogc fails to give a translation, and the

number/percentage of search errors for cases where it does give a translation. 36

ix

2.6 Table showing statistics for the difference between the translation score from MOSES, and from the

optimal derivation, for those sentences where a search error is made. For MOSES-gc we include

cases where the translation produced by our system is not reachable by MOSES-gc. The average

score of the optimal derivations is -23.4. 36

2.7 Comparison of BLEU score. We only consider the sentences that both programs

produce an answer. 37

3.1 Experimental results for phrase-based translation. Column time is the mean time

per sentence in seconds, cert is the percentage of sentences solved with a certificate

of optimality, exact is the percentage of sentences solved exactly, i.e. θ>y = θ>y∗.

Results are grouped by sentence length (group 1-10 is omitted for space). 54

3.2 Experimental results for syntax-based translation. See Table 3.1 for column de-

scriptions. 54

3.3 Distribution of time within optimal beam search, including: hypergraph construc-

tion (including language model), Lagrangian relaxation, and beam search. Mean

is the percentage of total time. Median is the distribution over the median values

for each row. 56

4.1 The conditioning variables for each level of back-off. 65

4.2 Development and test set results show the effectiveness of adding the dependency

language model in terms of the syntactic evaluation metric HWCMBLEU . Here

phrase-based is the original phrase-based model, and +deplm is our method that

includes the dependency language model. Both methods are optimized using local

search algorithm seeded with the same beam search results. 72

4.3 The percentage of how often each type of local steps is taken to reach a higher

scoring state. The number is based on the test data consisting of 1000 sentences. . . 72

x

5.1 Experimental results for model accuracy of bilingual alignment. Column time is

the mean time per sentence pair in seconds; cert is the percentage of sentence

pairs solved with a certificate of optimality; exact is the percentage of sentence

pairs solved exactly. Results are grouped by sentence length. The percentage of

sentence pairs in each group is shown in parentheses. 89

5.2 Alignment accuracy and phrase pair extraction accuracy for directional and bidi-

rectional models. Prec is the precision. Rec is the recall. AER is alignment error

rate and F1 is the phrase pair extraction F1 score. 92

5.3 The average number of constraints added for sentence pairs where Lagrangian re-

laxation is not able to find an exact solution. 92

xi

Acknowledgments

I would like to thank my advisor Michael Collins, for guiding me through my studies and research.

I still remember the excitement from our first research conversation. This work would not be

possible without him. I also want to thank my committee members David Blei, Tommi Jaakkola,

Daniel Hsu, and Clifford Stein for their invaluable comments and feedback.

I also thank my long time officemate and collaborator Alexander Rush. From our discussion

and coding sessions, I have enhanced my knowledge in natural language processing and sharpened

my programming skills. I am fortunate to know my labmates Karl Stratos, Avner May, Andrei

Simion, and Mohammad Sadegh Rasooli.

I am grateful to have the opportunities to work with Marius Pasca, Terry Koo, and Kuzman

Ganchev as an intern in Google Research. The experience has broaden my perspective.

My gratitude also goes to my former advisor, Chih-Jen Lin, for introducing me to the area of

machine learning, which applied well to natural language processing.

Thanks to my parents for their love and support, which makes me who I am today, and my sister

for being a role model throughout my childhood. Finally, thanks to Peng-Jen for accompanying

me through my journey abroad.

xii

Chapter 1

Introduction

Machine translation is an important subfield in natural language processing (NLP). The goal of

a machine translation system is to translate a document in one language into another language,

allowing readers to understand content written in a language other than his or her own. The im-

portance of machine translation has been signified by the availability and popularity of free online

translation systems. However, producing translations of good quality remains a challenging prob-

lem.

Recent progress in machine translation has been powered by the advance of statistical methods,

which, in turn, benefit from the wide availability of large scale parallel corpora. These corpora

consist of example translations between two languages, and statistical machine translation systems

extract translation rules automatically from these data sets.

Statistical methods involve the design of a model, estimating model parameters from the data,

and making predictions on new data instances using the model. In the context of machine transla-

tion, the model determines what is a good translation according to certain mathematical formulae.

The parameter estimation step learns the specific parameters of the mathematical formula to score

a translation. In the prediction step, the system takes a sentence in one language as its input, and

outputs a translation in another language. In this thesis, we will focus on the prediction step, which

is also known as the decoding problem.

1

The final translation step is not the only decoding problem involved. A machine translation

system is usually a pipeline consisting of many steps. One important building block of translation

systems is word alignment. In a parallel corpus, we assume that the data is sentence-aligned,

which means that the corresponding sentences in the two languages are aligned to each other. In

the preparation for establishing a translation model, we want to align the words as well. The task

of word alignment is to identify the matching words in different languages. Word alignment help

us build a dictionary or a word translation table. The phrase translation table used in phrase-based

models can also be extracted from word alignment results.

In general, the decoding problem can be formulated as a combinatorial optimization problem:

y∗ = arg max
y∈Y

f(y)

We use y to represent any valid structure that we consider. In machine translation, y is a possible

translation, and in word alignment, y is the alignment between words. The set Y is a set of all

possible structures, and f is a scoring function of the structure, defined by the model. We aim

to find y∗, the highest scoring structure under the model. Performing an exhaustive search over

the set Y is often intractable, and a common solution is to use heuristic algorithms, such as beam

search for phrase-based translation models. Beam search is efficient in practice and are used by

many state-of-the-art systems. However, there is no formal guarantee on the quality of the solution

in terms of the model score.

In this thesis, we focus on two decoding problems in machine translation. One is decoding of

phrase-based translation models. The other is finding bidirectional word alignments. Both prob-

lems have been proved to be NP-hard if there are no further restrictions. We will design both exact

algorithms and approximate algorithms for tackling these problems. The exact algorithms apply

Lagrangian relaxation, a classical technique in combinatorial optimization, while the approximate

algorithm is based on local search.

In the remainder of this introduction, we first introduce the two decoding problems that this

2

thesis focuses on: decoding with phrase-based models and the bidirectional word alignment prob-

lem. We then describe the techniques we apply to these two problems: Lagrangian relaxation and

local search.

1.1 Decoding Problems

The two decoding problems we will focus on are the phrase-based decoding problem and the

bidirectional word alignment problem. Phrase-based models are widely used in state-of-the-art

machine translation systems and decoding is the final step toward the goal of a translation system.

The aim of the decoding problem is to find the highest scoring translation under a model for an

input sentence.

An important component of a phrase-based model is the phrase translation table, which is

used to evaluate the translation from one phrase to another. One crucial step to build the phrase

translation table is to find word alignments, which defines the set of possible correspondences

between multi-word expressions in two languages. Bidirectional word alignment is the task of

finding such alignment that are symmetric – that there is no distinction between directions. Either

aligning from language A to language B or reverse will give the same result.

1.1.1 Phrase-Based Translation Models

Currently, many state-of-the-art statistical machine translation systems are based on phrase-based

translation models (Och et al., 1999b). In phrase-based models, the basic unit is a sequence of

words. The span of words is called a phrase and it does not have to correspond to any linguistic or

semantic meaning. Phrase-based models are proposed to improve word-based models, since words

are not always the best basic units for translation. In many cases it is useful to have lexical entries

pairing a multi-word sequence in one language with a multi-word sequence in another language.

For example, in translation from German to English, we might have a lexical entry pairing “die

regionen in äußerster randlage” with “the outermost regions”.

3

x1 x2 x3 x4 x5 x6

p1 p2 p3 p4

das muss unsere sorge gleichermaßen sein

this must our concernalso be

Figure 1-1: An example of phrase-based translation decoding. The source-language sentence is a
German sentence: das muss unsere sorge gleichermaßen sein. One of the possible transla-
tions in English is this must also be our concern. The arrows show the mapping from German
phrases to English phrases.

German phrase English translation score
unsere sorge ’s concern 0.04

concern 0.03
is our concern , 0.05
my concern 0.01
our concern 0.17
our worries 0.08

Table 1.1: Example entries in the phrase translation table.

Figure 1-1 gives an example of translating a German sentence into English using a phrase-based

translation model. The source sentence in German is segmented into phrases. Each German phrase

can be translated into an English phrase, chosen from a list of candidate phrases. The translated

English phrases can be reordered to form a more fluent English sentence. In the example, the verb

“sein” in the German sentence is placed in the end of the sentence, while in the English sentence,

the verb “be” is moved to appear directly before the phrase “our concern”.

There may be several candidate translations of one German phrase. In the above example,

“unsere sorge” may be translated into English phrases other than “our concern”. Table 1.1

shows other possible translations, with their assigned score. The candidate translations and their

scores can be looked up in a phrase translation table.

More formally, we define the mapping between German phrase and English phrase to be a

phrase-pair p. A phrase-pair p can be represented by a tuple (s, t, e), where s and t marks the start

and end of the span in the German sentence, and e is an English phrase that the German phrase

can be translated into. In the example, (1, 2, this must) represents the mapping between “das

4

muss” and “this must”. We define a derivation to be a translation and the mappings between

the translated sentence and the source sentence. A derivation can be represented by a sequence of

phrase-pairs. The derivation of the above example is (1, 2, this must), (5, 5, also), (6, 6, be), (3,

4, our concern).

In order to find a good translation, we need to define a scoring function that would give higher

scores to better translations. In a phrase-based model, the major components include the language

model, the translation model, and the distortion model. The language model is used to encourage

the translation to be in good English. It is usually an n-gram language model. The translation

model is represented by the phrase translation table. It makes sure that each English phrase is a

suitable translation of the input German phrase it is translated from. The distortion model is usually

distance-based and discourages the phrases to move too further away from their original order in

the German sentence.

The scoring function f can be formally stated as follows:

f(y) = µt

L∑
l=1

gt(pl) + µlgl(e(y)) + µδ

L−1∑
l=1

gδ(t(pl), s(pl+1))

where y is a derivation and f is the scoring function. We use s(p), t(p) and e(p) to refer to each

element in the tuples of the phrase-pair p. The translated English sentence given by a derivation y

is e(y). The derivation y consists of L phrase-pairs: y = 〈p1p2 . . . pL〉. The function gt represents

the translation model, while gl is the language model and gδ is the distortion model. The weights

µt, µl, and µδ are for each component of the model.

The goal of decoding is to find the highest scoring translation of a given input German sentence

using the model:

y∗ = arg max
y∈Y

f(y),

where Y is the set of valid translations. A common constraint is that each German word should be

translated exactly once. There are many ways we can segment the German sentence into phrases,

several possible translations for each German phrase, and several ways to reorder the English

5

phrases. These many combinations make it hard to find the highest scoring translation of a given

sentence. In general, the phrase-based decoding problem is an NP-complete problem (Knight,

1999).

Thus, many heuristic search methods are explored. One of the most commonly used methods

is beam search (Koehn et al., 2003). Beam search is very efficient and usually produces good

translations in practice. However, it does not provide any formal guarantee regarding how good a

translation is compared to the optimal solution.

Exact decoding refers to methods that can find the highest scoring translation and gives a cer-

tificate of optimality. Some previous works have formulated the problem as an integer linear

program and used off-the-shelf solvers (Germann et al., 2001; Riedel and Clarke, 2009). Other at-

tempts include converting the decoding problem into a traveling salesman problem (TSP) and then

applying a TSP solver (Zaslavskiy et al., 2009). However, these methods are usually not efficient

enough to be applied to longer sentences.

1.1.2 Word Alignment

Word alignment is an important building block for many statistical machine translation systems.

For example, in a phrase-based model, the phrase translation table is built by extracting phrase-

pairs from a pair of word-aligned sentences. However, typical data sets have text that are sentence-

aligned, but not word-aligned. Thus, in the alignment problem, the input is a pair of sentences

that have the same meaning but are in two different languages. One is in the foreign language (the

source-language), and the other is in English (the target-language). The goal of word alignment

is to align the words in the foreign sentence to the words in the English sentence. Figure 1-2 and

Figure 1-3 both illustrate word alignments between a French and an English sentence.

In this section we will assume that the source language is French and the target language

is English, but the alignment problem can be applied to any pair of languages. Popular word

alignment models include the IBM Models (Brown et al., 1993) and hidden Markov models for

alignment (Vogel et al., 1996). We will introduce IBM Model 2 and the HMM-based model in this

6

i: 1 2 3 4 5
e: let us see the documents

j: 1 2 3 4 5
f: montrez - nous les documents

Figure 1-2: Alignment between French words and English words. This figure shows the alignment
of both directions. Alignment a is represented by blue lines, which align English words to French
words. The alignment vector is a = 〈1, 3, 1, 4, 5〉.

ε m
on
tr
ez

- no
us

le
s

do
cu
m
en
ts

ε

let

us

see

the

documents

(a)

ε m
on
tr
ez

- no
us

le
s

do
cu
m
en
ts

ε

let

us

see

the

documents

(b)

ε m
on
tr
ez

- no
us

les do
cu
m
en
ts

ε

let

us

see

the

documents

(c)

Figure 1-3: Word alignment between a French and an English sentence can be visualized as a
matrix. (a) Here both let and see are aligned to montrez, us is aligned to nous, the is aligned
to les, and documents is aligned to documents. (b) Another direction. (c) The two directional
alignments are not the same.

section. IBM Model 2 is a word-based translation model that captures the lexical translation and

the absolute alignment model that reflects the reordering of the translated sentence. On the other

hand, instead of using the absolute alignment model, the HMM-based word alignment model let

the alignment probabilities to be based on the differences in the alignment positions.

To state the alignment problem more formally, let vector a denote an alignment, which is a

mapping from an English word at position i to a French word at position j:

ai = j.

An example English-to-French alignment vector a = 〈1, 3, 1, 4, 5〉 is represented by blue lines in

7

Figure 1-2, and blue dots in Figure 1-3.

The alignment problem aims to model the probability p(e, a|f) for a French sentence f =

f1 . . . fm and an English sentence e = e1 . . . el. Note that m is the length of the French sentence

and l is the length of the English sentence.

IBM Model 2 is improved upon IBM Model 1, which only models the lexical translation

probability p(ei|fj) between words. In IBM Model 2, the alignment probability p(j|i, l,m) is

introduced. The lexical translation probability and the absolute alignment probability are combined

to form IBM Model 2:

p(e, a|f) =
l∏

i=1

p(ei|fai)p(ai|i, l,m)

We can estimate the parameters p(ei|fai) and p(ai|i, l,m) from a training corpus using the

Expectation-Maximization (EM) algorithm. It is an iterative algorithm that uncovers the param-

eters from incomplete data. In IBM Model 2, the hidden variables are the alignment a, and the

observed data are the French and the English sentence.

Once we have estimated the probabilities from a training corpus, we can find the most probable

alignment between a French sentence and an English sentence under the model.

arg max
a

p(a|f , e)

The following derivation shows how this can be done using the estimated parameters. First, we

can derived the distribution:

p(e|f) =
∑
a

p(e, a|f).

Then by chain rule, we will have

p(a|f , e) =
p(e, a|f)
p(e|f) .

The probability p(e|f) remains the same for any alignment a, when e and f are given. Hence,

arg max
a

p(a|f , e) = arg max
a

p(e, a|f).

8

The HMM-based word alignment model is very similar to IBM Model 2. The difference is

that it models the alignment probability based on the distance between ai and ai−1. In an HMM,

there are observed variables and hidden variables. We assume that the observed variables are

generated by the hidden variables. In the word alignment case, the observed variables are the

English words ei and the hidden variables are the French words fj . The alignment is determined

by choosing the hidden French words fj that generates the observed English words. The emission

probability in HMM models the probability that a hidden variable generates an observed variable.

In the alignment problem, it is the translation probability p(ei|fai). The transition probability in

HMM models the probability that a hidden variable transitions from another hidden variable. It is

the alignment probability p(ai|ai−1) in the alignment problem. Together, the emission probability

and the transition probability forms the HMM:

p(e, a|f) =
l∏

i=1

p(ei|fai)p(ai|ai−1,m)

As for the IBM Model 2, EM algorithm can be applied to the HMM-based alignment model to

estimate the parameters.

One problem of these models is that they are directional. Because each English word is aligned

to at most one foreign word, we can not generate word alignments that map several English words

to one foreign word. If we reverse the alignment direction to be from English to the foreign

language, we will not be able to generate alignments that map several foreign words to an English

word. We say that the alignments are not symmetric.

In order to handle the asymmetric problem, many systems run the directional aligners and then

merge the two directional alignments heuristically. Naive methods include taking the intersection

or the union. The intersection includes good alignment points, but tends to include less alignment

points. The union includes most of the potential alignment points, but is more likely to include

incorrect alignment points. More complex methods use other heuristics, such as grow-diag-final

(Koehn et al., 2003), to explore the space between taking the intersection and the union. These

9

methods generally include all the alignment points given by the intersection and add some align-

ment points from the union heuristically.

Bidirectional models intend to find symmetric alignments directly, but decoding of many bidi-

rectional models is NP-hard (see Appendix B.1). Previously DeNero and Macherey (2011) has

proposed a bidirectional model and used dual decomposition to solve it. However, the number of

cases where an exact solution is recovered is relatively low.

1.2 Techniques

The two decoding problems that are considered by this thesis are NP-hard problems if there are no

further constraints. In this section, we will introduce two techniques that will be used in this thesis.

The first one is Lagrangian relaxation, which is a general technique in combinatorial optimization.

The Lagrangian relaxation algorithm gives us exact solutions when it converges. The second one

is local search, which is a powerful tool when the model is too complex and the search space too

huge to be searched exhaustively. The discussions of applying these two methods will demonstrate

the trade-offs when designing a machine translation system. The trade-offs are between having

a rich model, finding an optimal solution, and finding a solution efficiently. The final goal of all

systems is to deliver good quality translations, and exact algorithms let us better understand the

model, since we are able to separate the model error and the optimization error.

1.2.1 Lagrangian Relaxation

Lagrangian relaxation is a classical technique in combinatorial optimization for solving hard prob-

lems. The idea is to decompose the problem into a relaxed problem and some side constraints. The

relaxed problem can be solved efficiently, while adding the side constraints will make the problem

too complicated to be solved directly. Lagrangian relaxation incorporates the side constraints as

soft constraints and encourages the constraints to be satisfied by Lagrange multipliers. The al-

gorithm has the ability to determine if a solution is optimal, which will be described as having an

10

optimality certificate. When a non-optimal solution is returned, the algorithm may provide a bound

on the difference between the returned solution and the optimal solution.

Lagrangian relaxation was first discussed by Held and Karp (1971), who focused on relaxation

algorithms for the traveling salesman problem (TSP). It was recently introduced into the NLP field

(Rush et al., 2010; Koo et al., 2010). We will discuss several algorithms for solving decoding

problems in machine translation based on Lagrangian relaxation. A decoding problem can be

formulated as follows:

arg max
y∈Y

f(y) = arg max
y∈Y

θTy, (1.1)

where y ∈ {0, 1}|I| is an indicator vector representing a structure in the decoding problem. The

structure could be a translation derivation or a word alignment. The set Y is a collection of all

valid structures under some constraints. Solving Equation 1.1 directly might be intractable. For

example, the bidirectional word alignment formulation we discuss in this thesis is proved to be

NP-hard (Appendix B.1).

The strategy is to define a new set Y ′ that contains the solutions to a relaxed problem that can

be solved efficiently. The set Y ′ contains all structures in the original set Y and other structures

that are not considered valid in the original decoding problem. Therefore, we have Y ⊂ Y ′. Since

the set Y ′ is derived by relaxing some constraints, we can state the set Y as follows:

Y = {y : y ∈ Y ′ and Ay = b},

where A ∈ RN×|I| is the constraint matrix and b ∈ RN is an vector. Note that N is the number of

constraints. Together, Ay = b defines the side constraints that we have relaxed and that we would

like to re-introduce using Lagrange multipliers.

We assign one Lagrange multiplier for each constraint. The Lagrange multipliers can be rep-

resented as a vector of real values that has the same length as the number of constraints: λ ∈ RN .

11

The Lagrangian can be defined as:

L(λ, y) = θTy + λT (Ay − b)

The dual objective is

L(λ) = max
y∈Y ′

L(λ, y).

Note that here we optimize over the new relaxed set Y ′.

The dual problem is to find the minimum of the Lagrangian dual over the λ:

min
λ∈RN

L(λ).

The dual problem can be solved by using a subgradient algorithm, since L(λ) is a convex

function. If we define

yλ = arg max
y∈Y ′

L(λ, y),

then

γλ = Ayλ − b

is a subgradient of L(λ) at λ. The subgradient method is an iterative method for minimizing L(λ).

At each iteration, it performs the update

λt ← λt−1 − αtγλt−1 ,

where αt > 0 is the step size for the t’th iteration.

When we find a value for λ such that the solution yλ satisfies all the constraints, it is guaranteed

to be the optimal solution. However, the algorithm is not guaranteed to converge. In practice,

we can use heuristics to produce an approximate solution or use other techniques to encourage

convergence.

12

Initialization: a complete state y
for t = 1 . . . T

s = f(y)

for y′ ∈ N (y)

if f(y′) > f(y)

y ← y′

if f(y) = s

break

Figure 1-4: A local search algorithm with hill-climbing strategy.

1.2.2 Local Search

Local search is a type of heuristic optimization algorithm. It is heuristic since it does not perform

a systematic or exhaustive search, and the optimal solution is not guaranteed. In practice, it often

finds a reasonable solution when the search space is huge and exhaustive search is infeasible.

Local search operates on a complete current state, and moves only to neighbors of that state.

An essential part of a local search algorithm is defining the local steps and, thus, the neighborhood

that can be reached by taking one local step. Let y be a complete state. A neighborhood N (y)

is a set of states that can be reached by state y by taking a local step. There are several variants

of the local search algorithm. When using a hill-climbing strategy, it only moves to state with a

higher score. Figure 1-4 shows a local search algorithm with hill-climbing strategy, where f is the

scoring function that maps the state y to a value. The algorithm terminates when it reaches a state

where there is no neighboring state with higher score. Thus, the drawback of such strategy is that

it might be stuck in a local optimum.

Other strategies might include randomness. For example, in simulated annealing, a neighboring

state is generated randomly and a state with lower score is accepted with a probability that depends

on the scores, while a state with higher score is always accepted.

Local search has been successfully applied in the field of artificial intelligence, bioinformatics

and other engineering areas. These problems includes the travelling salesman problem and vertex

cover problem. Recently, various NLP problems consider local search as the optimization method,

13

including decoding of the phrase-based translation model (Langlais et al., 2007), dependency pars-

ing (Zhang et al., 2014), translation alignment (Marcu and Wong, 2002), and joing inference for

segmentation (Marcu and Wong, 2002), POS tagging and dependency parsing (Zhang et al., 2015).

1.3 Outline of the Thesis

This outline summarizes the chapters in this thesis and the contributions of this thesis. The first

contribution is to design exact algorithms based on Lagrangian relaxation for these two decoding

problems. Since the two decoding problems discussed in this thesis are complex, plain Lagrangian

relaxation algorithms only converge on a small fraction of examples. This observation indicates

that the relaxations are not tight. One of the main focuses of this thesis is to design extensions

to Lagrangian relaxation algorithms to promote convergence. Exact algorithms are interesting

algorithmically and helps us better understand the models. The last part of the contribution of this

thesis is to design a richer model that improves the translation quality.

Chapter 2 gives an exact algorithm for decoding the phrase-based translation model. The algo-

rithm is based on Lagrangian relaxation. By relaxing the constraint that each foreign word should

be translated exactly once, we obtain a relaxed problem that can be solved efficiently by dynamic

programming. Then the relaxed constraints are re-introduced and enforced by Lagrangian relax-

ation. The algorithm also introduces an extension that utilizes a tightening technique to obtain an

exact solution when the relaxation is not tight. The tightening technique adds constraints incre-

mentally, at each step picking the constraints that are violated the most.

Chapter 3 gives another exact algorithm for decoding the phrase-based translation model. The al-

gorithm combines beam search and Lagrangian relaxation to produce an efficient exact algorithm.

It is able to produce an exact variant of the heuristic beam search because the application of the

upper bound given by Lagrangian relaxation. Without adding constraints and growing the search

space of the relaxed problem, this algorithm is able to find exact solutions more efficiently than the

one in Chapter 2, according to our experiments.

14

Chapter 4 turns from exact algorithms to heuristic algorithms to allow a richer model. This chapter

introduces a decoding algorithm based on local search. The algorithm incorporates the syntactic

information into the phrase-based translation model by using a dependency language model. In

this chapter, we will discuss the trade-off between model complexity and the efficiency of the

optimization method.

Chapter 5 switches focus to the bidirectional word alignment. It presents an Lagrangian relaxation

based algorithm that solves a previously proposed model. The model was previously solved by dual

decomposition, but our algorithm employs a different decomposition for applying a Lagrangian

relaxation based algorithm. This algorithm also uses a tightening technique that incrementally adds

constraints. Furthermore, it presents an optimality-preserving pruning technique to accompany

the tightening procedure. The pruning method keeps the search space manageable after adding

constraints, and therefore allows more constraints to be added.

Chapter 6 concludes the thesis and provides some ideas for future work.

15

Chapter 2

A Lagrangian Relaxation Algorithm with

Tightening Techniques

[This chapter is adapted from joint work with Michael Collins entitled “Exact Decoding of Phrase-

based Translation Models through Lagrangian Relaxation” (Chang and Collins, 2011).]

This chapter focuses on an algorithm for exact decoding of phrase-based translation models.

The decoding problem is NP-hard when there is no further restriction on reordering. The algo-

rithm is based on Lagrangian relaxation, and utilizes a tightening technique that incrementally

adds constraints until an exact solution is found.

2.1 Introduction

Phrase-based models (Och et al., 1999b; Koehn et al., 2003, 2007) are a widely-used approach

for statistical machine translation. The decoding problem for phrase-based models is NP-hard1;

because of this, previous work has generally focused on approximate search methods, for example

variants of beam search, for decoding.

This chapter describes an algorithm for exact decoding of phrase-based models, based on La-

1We refer here to the phrase-based models of Koehn et al. (2003, 2007), considered in this chapter. Other variants
of phrase-based models, which allow polynomial time decoding, have been proposed, see the related work section.

16

grangian relaxation (Lemaréchal, 2001). The core of the algorithm is a dynamic program for

phrase-based translation which is efficient, but which allows some ill-formed translations. More

specifically, the dynamic program searches over the space of translations where exactly N words

are translated (N is the number of words in the source-language sentence), but where some source-

language words may be translated zero times, or some source-language words may be translated

more than once. Lagrangian relaxation is used to enforce the constraint that each source-language

word should be translated exactly once. A subgradient algorithm is used to optimize the dual

problem arising from the relaxation.

The first technical contribution of this chapter is the basic Lagrangian relaxation algorithm.

By the usual guarantees for Lagrangian relaxation, if this algorithm converges to a solution where

all constraints are satisfied (i.e., where each word is translated exactly once), then the solution is

guaranteed to be optimal. For some source-language sentences however, the underlying relaxation

is loose, and the algorithm will not converge. The second technical contribution of this chapter is a

method that incrementally adds constraints to the underlying dynamic program, thereby tightening

the relaxation until an exact solution is recovered.

We describe experiments on translation from German to English, using phrase-based models

trained by MOSES (Koehn et al., 2007). The method recovers exact solutions, with certificates of

optimality, on over 99% of test examples. On over 78% of examples, the method converges with

zero added constraints (i.e., using the basic algorithm); 99.67% of all examples converge with 9

or fewer constraints. We compare to a linear programming (LP)/integer linear programming (ILP)

based decoder. Our method is much more efficient: LP or ILP decoding is not feasible for anything

other than short sentences,2 whereas the average decoding time for our method (for sentences of

length 1-50 words) is 121 seconds per sentence. We also compare our method to MOSES, and give

precise estimates of the number and magnitude of search errors that MOSES makes. Even with

large beam sizes, MOSES makes a significant number of search errors. As far as we are aware,

previous work has not successfully recovered exact solutions for the type of phrase-based models

2For example ILP decoding for sentences of lengths 11-15 words takes on average 2707.8 seconds.

17

used in MOSES.

2.2 Related Work

Lagrangian relaxation is a classical technique for solving combinatorial optimization problems

(Korte and Vygen, 2008; Lemaréchal, 2001). Dual decomposition, a special case of Lagrangian

relaxation, has been applied to inference problems in NLP (Koo et al., 2010; Rush et al., 2010),

and also to Markov random fields (Wainwright et al., 2005; Komodakis et al., 2007; Sontag et al.,

2008). Earlier work on belief propagation (Smith and Eisner, 2008) is closely related to dual

decomposition. Recently, Rush and Collins (2011) describe a Lagrangian relaxation algorithm for

decoding for syntactic translation; the algorithmic construction described in the current chapter is,

however, very different in nature to this work.

Beam search stack decoders (Koehn et al., 2003) are the most commonly used decoding al-

gorithm for phrase-based models. Dynamic-programming-based beam search algorithms are dis-

cussed for both word-based and phrase-based models by Tillmann and Ney (2003) and Tillmann

(2006).

Several works attempt exact decoding, but efficiency remains an issue. Exact decoding via inte-

ger linear programming (ILP) for IBM model 4 (Brown et al., 1993) has been studied by Germann

et al. (2001), with experiments using a bigram language model for sentences up to eight words in

length. Riedel and Clarke (2009) have improved the efficiency of this work by using a cutting-

plane algorithm, and experimented with sentence lengths up to 30 words (again with a bigram

LM). Zaslavskiy et al. (2009) formulate phrase-based decoding problem as a traveling salesman

problem (TSP), and take advantage of existing exact and approximate approaches designed for

TSP. Their translation experiment uses a bigram language model and applies an approximate al-

gorithm for TSP. Och et al. (2001) propose an A* search algorithm for IBM model 4, and test on

sentence lengths up to 14 words. Other work (Kumar and Byrne, 2005a; Blackwood et al., 2009)

has considered variants of phrase-based models with restrictions on reordering that allow exact,

polynomial time decoding, using finite-state transducers.

18

The idea of incrementally adding constraints to tighten a relaxation until it is exact is a core idea

in combinatorial optimization. Previous work on this topic in NLP or machine learning includes

work on inference in Markov random fields (Sontag et al., 2008); work that encodes constraints

using finite-state machines (Tromble and Eisner, 2006); and work on non-projective dependency

parsing (Riedel and Clarke, 2006).

2.3 The Phrase-based Translation Model

This section establishes notation for phrase-based translation models, and gives a definition of the

decoding problem. The phrase-based model we use is the same as that described by Koehn et al.

(2003), as implemented in MOSES (Koehn et al., 2007).

The input to a phrase-based translation system is a source-language sentence with N words,

x1x2 . . . xN . A phrase table is used to define the set of possible phrases for the sentence: each

phrase is a tuple p = (s, t, e), where (s, t) are indices representing a contiguous span in the source-

language sentence (we have s ≤ t), and e is a target-language string consisting of a sequence

of target-language words. For example, the phrase p = (2, 5, the dog) would specify that words

x2 . . . x5 have a translation in the phrase table as “the dog”. Each phrase p has a score g(p) =

g(s, t, e): this score will typically be calculated as a log-linear combination of features (e.g., see

Koehn et al. (2003)).

We use s(p), t(p) and e(p) to refer to the three components (s, t, e) of a phrase p.

The output from a phrase-based model is a sequence of phrases y = 〈p1p2 . . . pL〉. We will often

refer to an output y as a derivation. The derivation y defines a target-language translation e(y),

which is formed by concatenating the strings e(p1), e(p2), . . . , e(pL). For two consecutive phrases

pk = (s, t, e) and pk+1 = (s′, t′, e′), the distortion distance is defined as δ(t, s′) = |t+ 1− s′|. The

score for a translation is then defined as

f(y) = h(e(y)) +
L∑
k=1

g(pk) +
L−1∑
k=1

η × δ(t(pk), s(pk+1))

19

where η ∈ R is often referred to as the distortion penalty, and typically takes a negative value. The

function h(e(y)) is the score of the string e(y) under a language model.3

The decoding problem is to find

arg max
y∈Y

f(y)

where Y is the set of valid derivations. The set Y can be defined as follows. First, for any derivation

y = 〈p1p2 . . . pL〉, define y(i) to be the number of times that the source-language word xi has been

translated in y: that is, y(i) =
∑L

k=1[[s(pk) ≤ i ≤ t(pk)]], where [[π]] = 1 if π is true, and 0

otherwise. Then Y is defined as the set of finite length sequences 〈p1p2 . . . pL〉 such that:

1. Each word in the input is translated exactly once: that is, y(i) = 1 for i = 1 . . . N .

2. For each pair of consecutive phrases pk, pk+1 for k = 1 . . . L−1, we have δ(t(pk), s(pk+1)) ≤

d, where d is the distortion limit.

An exact dynamic programming algorithm for this problem uses states (w1, w2, b, r), where

(w1, w2) is a target-language bigram that the partial translation ended with, b is a bit-string denoting

which source-language words have been translated, and r is the end position of the previous phrase

(e.g., see Koehn et al. (2003)). The bigram (w1, w2) is needed for calculation of trigram language

model scores; r is needed to enforce the distortion limit, and to calculate distortion costs. The

bit-string b is needed to ensure that each word is translated exactly once. Since the number of

possible bit-strings is exponential in the length of sentence, exhaustive dynamic programming

is in general intractable. Instead, people commonly use heuristic search methods such as beam

search for decoding. However, these methods have no guarantee of returning the highest scoring

translation.

3The language model score usually includes a word insertion score that controls the length of translations. The
relative weights of the g(p) and h(e(y)) terms, and the value for η, are typically chosen using MERT training (Och,
2003).

20

2.4 A Decoding Algorithm based on Lagrangian Relaxation

We now describe a decoding algorithm for phrase-based translation, based on Lagrangian relax-

ation. We first describe a dynamic program for decoding which is efficient, but which relaxes the

y(i) = 1 constraints described in the previous section. We then describe the Lagrangian relaxation

algorithm, which introduces Lagrange multipliers for each constraint of the form y(i) = 1, and

uses a subgradient algorithm to minimize the dual arising from the relaxation. We conclude with

theorems describing formal properties of the algorithm, and with an example run of the algorithm.

2.4.1 An Efficient Dynamic Program

As described in the previous section, our goal is to find the optimal translation y∗ = arg maxy∈Y f(y).

We will approach this problem by defining a set Y ′ such that Y ⊂ Y ′, and such that

arg max
y∈Y ′

f(y)

can be found efficiently using dynamic programming. The setY ′ omits some constraints—specifically,

the constraints that each source-language word is translated once, i.e., that y(i) = 1 for i =

1 . . . N—that are enforced for members of Y . In the next section we describe how to re-introduce

these constraints using Lagrangian relaxation. The set Y ′ does, however, include a looser con-

straint, namely that
∑N

i=1 y(i) = N , which requires that exactly N words are translated.

We now give the dynamic program that defines Y ′. The main idea will be to replace bit-

strings (as described in the previous section) by a much smaller number of dynamic programming

states. Specifically, the states of the new dynamic program will be tuples (w1, w2, n, l,m, r). The

pair (w1, w2) is again a target-language bigram corresponding to the last two words in the partial

translation, and the integer r is again the end position of the previous phrase. The integer n is the

number of words that have been translated thus far in the dynamic programming algorithm. The

integers l and m specify a contiguous span xl . . . xm in the source-language sentence; this span is

the last contiguous span of words that have been translated thus far.

21

The dynamic program can be viewed as a shortest-path problem in a directed graph, with

nodes in the graph corresponding to states (w1, w2, n, l,m, r). The transitions in the graph are

defined as follows. For each state (w1, w2, n, l,m, r), we consider any phrase p = (s, t, e) with

e = (e0 . . . eM−1eM) such that: 1) δ(r, s) ≤ d; and 2) t < l or s > m. The former condition

states that the phrase should satisfy the distortion limit. The latter condition requires that there is

no overlap of the new phrase’s span (s, t) with the span (l,m). For any such phrase, we create a

transition

(w1, w2, n, l,m, r)
p=(s,t,e)−−−−−→ (w′1, w

′
2, n

′, l′,m′, r′)

where

• (w′1, w
′
2) =

 (eM−1, eM) if M ≥ 2

(w2, e1) if M = 1

• n′ = n+ t− s+ 1

• (l′,m′) =

(l, t) if s = m+ 1

(s,m) if t = l − 1

(s, t) otherwise

• r′ = t

The new target-language bigram (w′1, w
′
2) is the last two words of the partial translation after in-

cluding phrase p. It comes from either the last two words of e, or, if e consists of a single word,

the last word of the previous bigram, w2, and the first and only word, e1, in e. (l′,m′) is expanded

from (l,m) if the spans (l,m) and (s, t) are adjacent. Otherwise, (l′,m′) will be the same as (s, t).

The score of the transition is given by a sum of the phrase translation score g(p), the lan-

guage model score, and the distortion cost η × δ(r, s). The trigram language model score is

h(e1|w1, w2) + h(e2|w2, e1) +
∑M−2

i=1 h(ei+2|ei, ei+1), where h(w3|w1, w2) is a trigram score (typ-

ically a log probability plus a word insertion score).

We also include start and end states in the directed graph. The start state is (<s>,<s>, 0, 0, 0, 0)

where <s> is the start symbol in the language model. For each state (w1, w2, n, l,m, r), such that

22

n = N , we create a transition to the end state. This transition takes the form

(w1, w2, N, l,m, r)
(N,N+1,</s>)−−−−−−−−−−→ END

For this transition, we define the score as score = h(</s>|w1, w2); thus this transition incorpo-

rates the end symbol </s> in the language model.

The states and transitions we have described form a directed graph, where each path from the

start state to the end state corresponds to a sequence of phrases p1p2 . . . pL. We define Y ′ to be the

full set of such sequences. We can use the Viterbi algorithm to solve arg maxy∈Y ′ f(y) by simply

searching for the highest scoring path from the start state to the end state.

The set Y ′ clearly includes derivations that are ill-formed, in that they may include words that

have been translated 0 times, or more than 1 time. The first line of Figure 2-2 shows one such

derivation (corresponding to the translation the quality and also the and the quality and also .). For

each phrase we show the English string (e.g., the quality) together with the span of the phrase (e.g.,

3, 6). The values for y(i) are also shown. It can be verified that this derivation is a valid member of

Y ′. However, y(i) 6= 1 for several values of i: for example, words 1 and 2 are translated 0 times,

while word 3 is translated twice.

Other dynamic programs, and definitions of Y ′, are possible: for example an alternative would

be to use a dynamic program with states (w1, w2, n, r). However, including the previous contigu-

ous span (l,m) makes the set Y ′ a closer approximation to Y . In experiments we have found that

including the previous span (l,m) in the dynamic program leads to faster convergence of the sub-

gradient algorithm described in the next section, and in general to more stable results. This faster

convergence is in spite of the dynamic program being larger; it is no doubt due to Y ′ being a better

approximation of Y .

23

Initialization: u0(i)← 0 for i = 1 . . . N

for t = 1 . . . T

yt = argmaxy∈Y ′ L(u
t−1, y)

if yt(i) = 1 for i = 1 . . . N

return yt

else
for i = 1 . . . N

ut(i) = ut−1(i)− αt
(
yt(i)− 1

)
Figure 2-1: The decoding algorithm. αt > 0 is the step size at the t’th iteration.

Input German: dadurch können die qualität und die regelmäßige postzustellung auch weiterhin sichergestellt werden .

t L(ut−1) yt(i) derivation yt

1 -10.0988 0 0 2 2 3 3 0 0 2 0 0 0 1
∣∣∣∣ 3, 6
the quality and

∣∣∣∣9, 9also

∣∣∣∣6, 6the

∣∣∣∣5, 5and

∣∣∣∣3, 3the

∣∣∣∣ 4, 6
quality and

∣∣∣∣9, 9also

∣∣∣∣13, 13.

∣∣∣∣
2 -11.1597 0 0 1 0 0 0 1 0 0 4 1 5 1

∣∣∣∣3, 3the

∣∣∣∣ 7, 7
regular

∣∣∣∣12, 12will

∣∣∣∣ 10, 10
continue to

∣∣∣∣12, 12be

∣∣∣∣ 10, 10
continue to

∣∣∣∣12, 12be

∣∣∣∣ 10, 10
continue to

∣∣∣∣12, 12be

∣∣∣∣ 10, 10
continue to

∣∣∣∣ 11, 13
be guaranteed .

∣∣∣∣
3 -12.3742 3 3 1 2 2 0 0 0 1 0 0 0 1

∣∣∣∣ 1, 2
in that way ,

∣∣∣∣5, 5and

∣∣∣∣2, 2can

∣∣∣∣1, 1thus

∣∣∣∣ 4, 4
quality

∣∣∣∣ 1, 2
in that way ,

∣∣∣∣ 3, 5
the quality and

∣∣∣∣9, 9also

∣∣∣∣13, 13.

∣∣∣∣
4 -11.8623 0 1 0 0 0 1 1 3 3 0 3 0 1

∣∣∣∣2, 2can

∣∣∣∣ 6, 7
the regular

∣∣∣∣ 8, 8
distribution should

∣∣∣∣9, 9also

∣∣∣∣11, 11ensure

∣∣∣∣ 8, 8
distribution should

∣∣∣∣9, 9also

∣∣∣∣11, 11ensure

∣∣∣∣ 8, 8
distribution should

∣∣∣∣9, 9also

∣∣∣∣11, 11ensure

∣∣∣∣13, 13.

∣∣∣∣
5 -13.9916 0 0 1 1 3 2 4 0 0 0 1 0 1

∣∣∣∣3, 3the

∣∣∣∣ 7, 7
regular

∣∣∣∣5, 5and

∣∣∣∣ 7, 7
regular

∣∣∣∣5, 5and

∣∣∣∣ 7, 7
regular

∣∣∣∣6, 6the

∣∣∣∣ 4, 4
quality

∣∣∣∣ 5, 7
and the regular

∣∣∣∣ 11, 11ensured

∣∣∣∣13, 13.

∣∣∣∣
6 -15.6558 1 1 1 2 0 2 0 1 1 1 1 1 1

∣∣∣∣ 1, 2
in that way ,

∣∣∣∣ 3, 4
the quality of

∣∣∣∣6, 6the

∣∣∣∣ 4, 4
quality of

∣∣∣∣6, 6the

∣∣∣∣ 8, 8
distribution should

∣∣∣∣ 9, 10
continue to

∣∣∣∣ 11, 13
be guaranteed .

∣∣∣∣
7 -16.1022 1 1 1 1 1 1 1 1 1 1 1 1 1

∣∣∣∣ 1, 2
in that way ,

∣∣∣∣ 3, 4
the quality

∣∣∣∣ 5, 7
and the regular

∣∣∣∣ 8, 8
distribution should

∣∣∣∣ 9, 10
continue to

∣∣∣∣ 11, 13
be guaranteed .

∣∣∣∣

Figure 2-2: An example run of the algorithm in Figure 2-1. For each value of t we show the dual value
L(ut−1), the derivation yt, and the number of times each word is translated, yt(i) for i = 1 . . . N . For
each phrase in a derivation we show the English string e, together with the span (s, t): for example, the
first phrase in the first derivation has English string the quality and, and span (3, 6). At iteration 7 we have
yt(i) = 1 for i = 1 . . . N , and the translation is returned, with a guarantee that it is optimal.

2.4.2 The Lagrangian Relaxation Algorithm

We now describe the Lagrangian relaxation decoding algorithm for the phrase-based model. Recall

that in the previous section, we defined a set Y ′ that allowed efficient dynamic programming, and

such that Y ⊂ Y ′. It is easy to see that Y = {y : y ∈ Y ′, and ∀i, y(i) = 1}. The original

decoding problem can therefore be stated as:

arg max
y∈Y ′

f(y) such that ∀i, y(i) = 1

We use Lagrangian relaxation (Korte and Vygen, 2008) to deal with the y(i) = 1 constraints.

We introduce Lagrange multipliers u(i) for each such constraint. The Lagrange multipliers u(i)

24

can take any positive or negative value. The Lagrangian is

L(u, y) = f(y) +
∑
i

u(i)(y(i)− 1)

The dual objective is then

L(u) = max
y∈Y ′

L(u, y).

and the dual problem is to solve

min
u
L(u).

The next section gives a number of formal results describing how solving the dual problem will be

useful in solving the original optimization problem.

We now describe an algorithm that solves the dual problem. By standard results for Lagrangian

relaxation (Korte and Vygen, 2008), L(u) is a convex function; it can be minimized by a subgra-

dient method. If we define

yu = arg max
y∈Y ′

L(u, y)

and γu(i) = yu(i)− 1 for i = 1 . . . N , then γu is a subgradient of L(u) at u. A subgradient method

is an iterative method for minimizing L(u), which perfoms updates ut ← ut−1 − αtγut−1 where

αt > 0 is the step size for the t’th subgradient step. In our experiment, we follow Koo et al. (2010)

and set the step size at the tth iteration to be αt = 1/(1 + λt), where λt is the number of times that

L(u(t
′)) > L(u(t

′−1)) for all t′ ≤ t.

Figure 2-1 depicts the resulting algorithm. At each iteration, we solve

arg max
y∈Y ′

(
f(y) +

∑
i

u(i)(y(i)− 1)

)

= arg max
y∈Y ′

(
f(y) +

∑
i

u(i)y(i)

)

by the dynamic program described in the previous section. Incorporating the
∑

i u(i)y(i) terms in

the dynamic program is straightforward: we simply redefine the phrase scores as

25

g′(s, t, e) = g(s, t, e) +
t∑
i=s

u(i)

Intuitively, each Lagrange multiplier u(i) penalizes or rewards phrases that translate word i; the

algorithm attempts to adjust the Lagrange multipliers in such a way that each word is translated

exactly once. The updates ut(i) = ut−1(i) − αt(yt(i) − 1) will decrease the value for u(i) if

yt(i) > 1, increase the value for u(i) if yt(i) = 0, and leave u(i) unchanged if yt(i) = 1.

2.4.3 Properties

We now give some theorems stating formal properties of the Lagrangian relaxation algorithm.

First, define y∗ to be the optimal solution for our original problem:

Definition 1. y∗ = arg maxy∈Y f(y)

Our first theorem states that the dual function provides an upper bound on the score for the

optimal translation, f(y∗):

Theorem 1. For any value of u ∈ RN , L(u) ≥ f(y∗).

Proof.

L(u) = max
y∈Y ′

(
f(y) +

∑
i

u(i)(y(i)− 1)

)

≥ max
y∈Y

(
f(y) +

∑
i

u(i)(y(i)− 1)

)

= max
y∈Y

f(y)

The first inequality follows because Y ⊂ Y ′. The final equality is true since any y ∈ Y has

y(i) = 1 for all i, implying that
∑

i u(i)(y(i)− 1) = 0.

The second theorem states that under an appropriate choice of the step sizes αt, the method

converges to the minimum of L(u). Hence we will successfully find the tightest possible upper

26

bound defined by the dual L(u).

Theorem 2. For any sequence α1, α2, . . . If 1) limt→∞ α
t → 0; 2)

∑∞
t=1 α

t =∞, then limt→∞ L(ut) =

minu L(u)

Proof. See Korte and Vygen (2008).

Our final theorem states that if at any iteration the algorithm finds a solution yt such that

yt(i) = 1 for i = 1 . . . N , then this is guaranteed to be the optimal solution to our original problem.

First, define

Definition 2. yu = arg maxy∈Y ′ L(u, y)

We then have the theorem

Theorem 3. If ∃ u, s.t. yu(i) = 1 for i = 1 . . . N , then f(yu) = f(y∗), i.e. yu is optimal.

Proof. We have

L(u) = max
y∈Y ′

(
f(y) +

∑
i

u(i)(y(i)− 1)

)

= f(yu) +
∑
i

u(i)(yu(i)− 1)

= f(yu)

The second equality is true because of the definition of yu. The third equality follows because by

assumption yu(i) = 1 for i = 1 . . . N . Because L(u) = f(yu) and L(u) ≥ f(y∗) for all u, we have

f(yu) ≥ f(y∗). But y∗ = arg maxy∈Y f(y), and yu ∈ Y , hence we must also have f(yu) ≤ f(y∗)

hence f(yu) = f(y∗).

In summary, we have shown that if the algorithm in Figure 2-1 returns a solution yt such that

yt(i) = 1 for all i, then this solution is guaranteed to be optimal.

In some cases, however, the algorithm in Figure 2-1 may not return a solution yt such that

yt(i) = 1 for all i. There could be two reasons for this. In the first case, we may not have

27

iter. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
0-7 166 (89.7 %) 219 (39.2 %) 34 (6.0 %) 2 (0.6 %) 0 (0.0 %) 421 (23.1 %) 23.1 %
8-15 17 (9.2 %) 187 (33.5 %) 161 (28.4 %) 30 (8.6 %) 3 (1.8 %) 398 (21.8 %) 44.9 %
16-30 1 (0.5 %) 93 (16.7 %) 208 (36.7 %) 112 (32.3 %) 22 (13.1 %) 436 (23.9 %) 68.8 %
31-60 1 (0.5 %) 52 (9.3 %) 105 (18.6 %) 99 (28.5 %) 62 (36.9 %) 319 (17.5 %) 86.3 %
61-120 0 (0.0 %) 7 (1.3 %) 54 (9.5 %) 89 (25.6 %) 45 (26.8 %) 195 (10.7 %) 97.0 %
121-250 0 (0.0 %) 0 (0.0 %) 4 (0.7 %) 14 (4.0 %) 31 (18.5 %) 49 (2.7 %) 99.7 %
x 0 (0.0 %) 0 (0.0 %) 0 (0.0 %) 1 (0.3 %) 5 (3.0 %) 6 (0.3 %) 100.0 %

Table 2.1: Table showing the number of iterations taken for the algorithm to converge. x indicates sentences
that fail to converge after 250 iterations. 97% of the examples converge within 120 iterations.

run the algorithm for enough iterations T to see convergence. In the second case, the underlying

relaxation may not be tight, in that there may not be any settings u for the Lagrange multipliers

such that yu(i) = 1 for all i.

Section 2.5 describes a method for tightening the underlying relaxation by introducing hard

constraints (of the form y(i) = 1 for selected values of i). We will see that this method is highly

effective in tightening the relaxation until the algorithm converges to an optimal solution.

2.4.4 An Example of the Algorithm

Figure 2-2 shows an example of how the algorithm works when translating a German sentence into

an English sentence. After the first iteration, there are words that have been translated two or three

times, and words that have not been translated. At each iteration, the Lagrangian multipliers are

updated to encourage each word to be translated once. On this example, the algorithm converges to

a solution where all words are translated exactly once, and the solution is guaranteed to be optimal.

2.5 Tightening the Relaxation

In some cases the algorithm in Figure 2-1 will not converge to y(i) = 1 for i = 1 . . . N because

the underlying relaxation is not tight. We now describe a method that incrementally tightens the

Lagrangian relaxation algorithm until it provides an exact answer. In cases that do not converge,

we introduce hard constraints to force certain words to be translated exactly once in the dynamic

programming solver. In experiments we show that typically only a few constraints are necessary.

28

Optimize(C, u)
while (dual value still improving)
y∗ = argmaxy∈Y ′C L(u, y)

if y∗(i) = 1 for i = 1 . . . N return y∗

else for i = 1 . . . N

u(i) = u(i)− α (y∗(i)− 1)

count(i) = 0 for i = 1 . . . N

for k = 1 . . .K

y∗ = argmaxy∈Y ′C L(u, y)

if y∗(i) = 1 for i = 1 . . . N return y∗

else for i = 1 . . . N

u(i) = u(i)− α (y∗(i)− 1)

count(i) = count(i) + [[y∗(i) 6= 1]]

Let C′ = set of G i’s that have the largest value
for count(i) and that are not in C
return Optimize(C ∪ C′, u)

Figure 2-3: A decoding algorithm with incremental addition of constraints. The function Optimize(C, u)
is a recursive function, which takes as input a set of constraints C, and a vector of Lagrange multipliers, u.
The initial call to the algorithm is with C = ∅, and u = 0. α > 0 is the step size. In our experiments, the
step size decreases with the number of iteration; see Appendix A.1.

Given a set C ⊆ {1, 2, . . . , N}, we define

Y ′C = {y : y ∈ Y ′, and ∀ i ∈ C, y(i) = 1}

Thus Y ′C is a subset of Y ′, formed by adding hard constraints of the form y(i) = 1 to Y ′. Note

that Y ′C remains as a superset of Y , which enforces y(i) = 1 for all i. Finding arg maxy∈Y ′C f(y)

can again be achieved using dynamic programming, with the number of dynamic programming

states increased by a factor of 2|C|: dynamic programming states of the form (w1, w2, n, l,m, r) are

replaced by states (w1, w2, n, l,m, r, bC) where bC is a bit-string of length |C|, which records which

words in the set C have or haven’t been translated in a hypothesis (partial derivation). Note that if

C = {1 . . . N}, we have Y ′C = Y , and the dynamic program will correspond to exhaustive dynamic

programming.

We can again run a Lagrangian relaxation algorithm, using the set Y ′C in place of Y ′. We will

use Lagrange multipliers u(i) to enforce the constraints y(i) = 1 for i /∈ C. Our goal will be to find

29

Input German: es bleibt jedoch dabei , dass kolumbien ein land ist , das aufmerksam beobachtet werden muss .

t L(ut−1) yt(i) derivation yt

1 -11.8658 0 0 0 0 1 3 0 3 3 4 1 1 0 0 0 0 1
∣∣∣∣5, 6that

∣∣∣∣10, 10is

∣∣∣∣ 8, 9
a country

∣∣∣∣6, 6that

∣∣∣∣10, 10is

∣∣∣∣ 8, 9
a country

∣∣∣∣6, 6that

∣∣∣∣10, 10is

∣∣∣∣8, 8a

∣∣∣∣ 9, 12
country that

∣∣∣∣17, 17.

∣∣∣∣
2 -5.46647 2 2 4 0 2 0 1 0 0 0 1 0 1 1 1 1 1

∣∣∣∣ 3, 3
however ,

∣∣∣∣1, 1it

∣∣∣∣ 2, 3
is , however

∣∣∣∣5, 5,
∣∣∣∣ 3, 3
however ,

∣∣∣∣1, 1it

∣∣∣∣ 2, 3
is , however

∣∣∣∣5, 5,
∣∣∣∣ 7, 7
colombia

∣∣∣∣11, 11,

∣∣∣∣16, 16must

∣∣∣∣ 13, 15
be closely monitored

∣∣∣∣17, 17.

∣∣∣∣
.
.
.

32 -17.0203 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1
∣∣∣∣ 1, 5
nonetheless ,

∣∣∣∣ 7, 7
colombia

∣∣∣∣10, 10is

∣∣∣∣8, 8a

∣∣∣∣ 9, 12
country that

∣∣∣∣16, 16must

∣∣∣∣ 13, 15
be closely monitored

∣∣∣∣17, 17.

∣∣∣∣
33 -17.1727 1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 1 1

∣∣∣∣ 1, 5
nonetheless ,

∣∣∣∣6, 6that

∣∣∣∣ 8, 9
a country

∣∣∣∣6, 6that

∣∣∣∣ 7, 7
colombia

∣∣∣∣11, 12, which

∣∣∣∣16, 16must

∣∣∣∣ 13, 15
be closely monitored

∣∣∣∣17, 17.

∣∣∣∣
34 -17.0203 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1

∣∣∣∣ 1, 5
nonetheless ,

∣∣∣∣ 7, 7
colombia

∣∣∣∣10, 10is

∣∣∣∣8, 8a

∣∣∣∣ 9, 12
country that

∣∣∣∣16, 16must

∣∣∣∣ 13, 15
be closely monitored

∣∣∣∣17, 17.

∣∣∣∣
35 -17.1631 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1

∣∣∣∣ 1, 5
nonetheless ,

∣∣∣∣ 7, 7
colombia

∣∣∣∣10, 10is

∣∣∣∣8, 8a

∣∣∣∣ 9, 12
country that

∣∣∣∣16, 16must

∣∣∣∣ 13, 15
be closely monitored

∣∣∣∣17, 17.

∣∣∣∣
36 -17.0408 1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 1 1

∣∣∣∣ 1, 5
nonetheless ,

∣∣∣∣6, 6that

∣∣∣∣ 8, 9
a country

∣∣∣∣6, 6that

∣∣∣∣ 7, 7
colombia

∣∣∣∣11, 12, which

∣∣∣∣16, 16must

∣∣∣∣ 13, 15
be closely monitored

∣∣∣∣17, 17.

∣∣∣∣
37 -17.1727 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1

∣∣∣∣ 1, 5
nonetheless ,

∣∣∣∣ 7, 7
colombia

∣∣∣∣10, 10is

∣∣∣∣8, 8a

∣∣∣∣ 9, 12
country that

∣∣∣∣16, 16must

∣∣∣∣ 13, 15
be closely monitored

∣∣∣∣17, 17.

∣∣∣∣
38 -17.0408 1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 1 1

∣∣∣∣ 1, 5
nonetheless ,

∣∣∣∣6, 6that

∣∣∣∣ 8, 9
a country

∣∣∣∣6, 6that

∣∣∣∣ 7, 7
colombia

∣∣∣∣11, 12, which

∣∣∣∣16, 16must

∣∣∣∣ 13, 15
be closely monitored

∣∣∣∣17, 17.

∣∣∣∣
39 -17.1658 1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 1 1

∣∣∣∣ 1, 5
nonetheless ,

∣∣∣∣6, 6that

∣∣∣∣ 8, 9
a country

∣∣∣∣6, 6that

∣∣∣∣ 7, 7
colombia

∣∣∣∣11, 12, which

∣∣∣∣16, 16must

∣∣∣∣ 13, 15
be closely monitored

∣∣∣∣17, 17.

∣∣∣∣
40 -17.056 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1 1 1

∣∣∣∣ 1, 5
nonetheless ,

∣∣∣∣ 7, 7
colombia

∣∣∣∣10, 10is

∣∣∣∣8, 8a

∣∣∣∣ 9, 12
country that

∣∣∣∣16, 16must

∣∣∣∣ 13, 15
be closely monitored

∣∣∣∣17, 17.

∣∣∣∣
41 -17.1732 1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 1 1

∣∣∣∣ 1, 5
nonetheless ,

∣∣∣∣6, 6that

∣∣∣∣ 8, 9
a country

∣∣∣∣6, 6that

∣∣∣∣ 7, 7
colombia

∣∣∣∣11, 12, which

∣∣∣∣16, 16must

∣∣∣∣ 13, 15
be closely monitored

∣∣∣∣17, 17.

∣∣∣∣
0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 count(6) = 10; count(10) = 10; count(i) = 0 for all other i

adding constraints: 6 10

42 -17.229 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
∣∣∣∣ 1, 5
nonetheless ,

∣∣∣∣ 7, 7
colombia

∣∣∣∣6, 6that

∣∣∣∣ 8, 12
a country that

∣∣∣∣16, 16must

∣∣∣∣ 13, 15
be closely monitored

∣∣∣∣17, 17.

∣∣∣∣

Figure 2-4: An example run of the algorithm in Figure 2-3. At iteration 32, we start the K = 10 iterations
to count which constraints are violated most often. After K iterations, the count for 6 and 10 is 10, and all
other constraints have not been violated during the K iterations. Thus, hard constraints for word 6 and 10
are added. After adding the constraints, we have yt(i) = 1 for i = 1 . . . N , and the translation is returned,
with a guarantee that it is optimal.

a small set of constraints C, such that Lagrangian relaxation will successfully recover an optimal

solution. We will do this by incrementally adding elements to C; that is, by incrementally adding

constraints that tighten the relaxation.

The intuition behind our approach is as follows. Say we run the original algorithm, with the

set Y ′, for several iterations, so that L(u) is close to convergence (i.e., L(u) is close to its minimal

value). However, assume that we have not yet generated a solution yt such that yt(i) = 1 for all

i. In this case we have some evidence that the relaxation may not be tight, and that we need to

add some constraints. The question is, which constraints to add? To answer this question, we run

the subgradient algorithm for K more iterations (e.g., K = 10), and at each iteration track which

constraints of the form y(i) = 1 are violated. We then choose C to be the G constraints (e.g.,

G = 3) that are violated most often during the K additional iterations, and are not adjacent to each

30

other. We recursively call the algorithm, replacing Y ′ by Y ′C; the recursive call may then return an

exact solution, or alternatively again add more constraints and make a recursive call.4

Figure 2-3 depicts the resulting algorithm. We initially make a call to the algorithmOptimize(C, u)

with C equal to the empty set (i.e., no hard constraints), and with u(i) = 0 for all i. In an initial

phase the algorithm runs subgradient steps, while the dual is still improving. In a second step,

if a solution has not been found, the algorithm runs for K more iterations, thereby choosing G

additional constraints, then recursing.

If at any stage the algorithm finds a solution y∗ such that y∗(i) = 1 for all i, then this is the

solution to our original problem, arg maxy∈Y f(y). This follows because for any C ⊆ {1 . . . N}

we have Y ⊆ Y ′C; hence the theorems in Section 2.4.3 go through for Y ′C in place of Y ′, with trivial

modifications. Note also that the algorithm is guaranteed to eventually find the optimal solution,

because eventually C = {1 . . . N}, and Y = Y ′C .

The remaining question concerns the “dual still improving” condition; i.e., how to determine

that the first phase of the algorithm should terminate. We do this by recording the first and second

best dual values L(u′) and L(u′′) in the sequence of Lagrange multipliers u1, u2, . . . generated by

the algorithm. Suppose thatL(u′′) first occurs at iteration t′′. If L(u
′)−L(u′′)
t−t′′ < ε, we say that the dual

value does not decrease enough. The value for ε is a parameter of the approach: in experiments we

used ε = 0.002.

Figure 2-4 gives an example run of the algorithm. After 31 iterations the algorithm detects

that the dual is no longer decreasing rapidly enough, and runs for K = 10 additional iterations,

tracking which constraints are violated. Constraints y(6) = 1 and y(10) = 1 are each violated

10 times, while other constraints are not violated. A recursive call to the algorithm is made with

C = {6, 10}, and the algorithm converges in a single iteration, to a solution that is guaranteed to

be optimal.

When C 6= ∅, A* search can be used for decoding, with the dynamic program for Y ′ providing

4Formal justification for the method comes from the relationship between Lagrangian relaxation and linear pro-
gramming relaxations. In cases where the relaxation is not tight, the subgradient method will essentially move between
solutions whose convex combination form a fractional solution to an underlying LP relaxation (Nedić and Ozdaglar,
2009). Our method eliminates the fractional solution through the introduction of hard constraints.

31

cons. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
0-0 183 (98.9 %) 511 (91.6 %) 438 (77.4 %) 222 (64.0 %) 82 (48.8 %) 1,436 (78.7 %) 78.7 %
1-3 2 (1.1 %) 45 (8.1 %) 94 (16.6 %) 87 (25.1 %) 50 (29.8 %) 278 (15.2 %) 94.0 %
4-6 0 (0.0 %) 2 (0.4 %) 27 (4.8 %) 24 (6.9 %) 19 (11.3 %) 72 (3.9 %) 97.9 %
7-9 0 (0.0 %) 0 (0.0 %) 7 (1.2 %) 13 (3.7 %) 12 (7.1 %) 32 (1.8 %) 99.7 %
x 0 (0.0 %) 0 (0.0 %) 0 (0.0 %) 1 (0.3 %) 5 (3.0 %) 6 (0.3 %) 100.0 %

Table 2.2: Table showing the number of constraints added before convergence of the algorithm in Figure 2-3, broken
down by sentence length. Note that a maximum of 3 constraints are added at each recursive call, but that fewer than 3
constraints are added in cases where fewer than 3 constraints have count(i) > 0. x indicates the sentences that fail to
converge after 250 iterations. 78.7% of the examples converge without adding any constraints.

cons. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
A* w/o A* w/o A* w/o A* w/o A* w/o A* w/o

0-0 0.8 0.8 9.7 10.7 47.0 53.7 153.6 178.6 402.6 492.4 64.6 76.1
1-3 2.4 2.9 23.2 28.0 80.9 102.3 277.4 360.8 686.0 877.7 241.3 309.7
4-6 0.0 0.0 28.2 38.8 111.7 163.7 309.5 575.2 1,552.8 1,709.2 555.6 699.5
7-9 0.0 0.0 0.0 0.0 166.1 500.4 361.0 1,467.6 1,167.2 3,222.4 620.7 1,914.1
mean 0.8 0.9 10.9 12.3 57.2 72.6 203.4 299.2 679.9 953.4 120.9 168.9
median 0.7 0.7 8.9 9.9 48.3 54.6 169.7 202.6 484.0 606.5 35.2 40.0

Table 2.3: The average time (in seconds) for decoding using the algorithm in Figure 2-3, with and without A*
algorithm, broken down by sentence length and the number of constraints that are added. A* indicates speeding up
using A* search; w/o denotes without using A*.

admissible estimates for the dynamic program for Y ′C . Experiments show that A* gives significant

improvements in efficiency. The next section contains a full description of the A* algorithm.

2.6 Speeding up the DP: A* Search

In the algorithm depicted in Figure 2-3, each time we call Optimize(C ∪ C ′, u), we expand the

number of states in the dynamic program by adding hard constraints. On the graph level, adding

hard constraints can be viewed as expanding an original state in Y ′ to 2|C| states in Y ′C , since now

we keep a bit-string bC of length |C| in the states to record which words in C have or haven’t been

translated. We now show how this observation leads to an A* algorithm that can significantly

improve efficiency when decoding with C 6= ∅.

For any state s = (w1, w2, n, l,m, r, bC) and Lagrange multiplier values u ∈ RN , define βC(s, u)

to be the maximum score for any path from the state s to the end state, under Lagrange multipliers

u, in the graph created using constraint set C. Define π(s) = (w1, w2, n, l,m, r), that is, the

corresponding state in the graph with no constraints (C = ∅). Then for any values of s and u, we

32

have

βC(s, u) ≤ β∅(π(s), u)

That is, the maximum score for any path to the end state in the graph with no constraints, forms an

upper bound on the value for βC(s, u).

This observation leads directly to an A* algorithm, which is exact in finding the optimum

solution, since we can use β∅(π(s), u) as the admissible estimates for the score from state s to

the goal (the end state). The β∅(s′, u) values for all s′ can be calculated by running the Viterbi

algorithm using a backwards path. With only 1/2|C| states, calculating β∅(s′, u) is much cheaper

than calculating βC(s, u) directly. Guided by β∅(s′, u), βC(s, u) can be calculated efficiently by

using A* search.

Using the A* algorithm leads to significant improvements in efficiency when constraints are

added. Section 4.7 presents comparison of the running time with and without A* algorithm.

2.7 Experiments

In this section, we present experimental results to demonstrate the efficiency of the decoding algo-

rithm. We compare to MOSES (Koehn et al., 2007), a phrase-based decoder using beam search,

and to a general purpose integer linear programming (ILP) solver, which solves the problem ex-

actly.

The experiments focus on translation from German to English, using the Europarl data (Koehn,

2005). We tested on 1,824 sentences of length at most 50 words. The experiments use the algorithm

shown in Figure 2-3. We limit the algorithm to a maximum of 250 iterations and a maximum of 9

hard constraints. The distortion limit d is set to be four, and we prune the phrase translation table

to have 10 English phrases per German phrase.

Our method finds exact solutions on 1,818 out of 1,824 sentences (99.67%). (6 examples do not

converge within 250 iterations.) Table 2.1 shows the number of iterations required for convergence,

and Table 2.2 shows the number of constraints required for convergence, broken down by sentence

33

length. In 1,436/1,818 (78.7%) sentences, the method converges without adding hard constraints to

tighten the relaxation. For sentences with 1-10 words, the vast majority (183 out of 185 examples)

converge with 0 constraints added. As sentences get longer, more constraints are often required.

However most examples converge with 9 or fewer constraints.

Table 2.3 shows the average times for decoding, broken down by sentence length, and by

the number of constraints that are added. As expected, decoding times increase as the length

of sentences, and the number of constraints required, increase. The average run time across all

sentences is 120.9 seconds. Table 2.3 also shows the run time of the method without the A*

algorithm for decoding. The A* algorithm gives significant reductions in runtime.

2.7.1 An alternative dynamic program

In the end of Section 2.4.1, we mention that an alternative dynamic program with states (w1, w2, n, r)

is possible. We experiment with the algorithm depicted in Figure 2-3 using this dynamic pro-

gram. Experiments shows that it requires more constraints and more iterations, but each iteration

is cheaper than using Y ′. The average runtime is 1.2 seconds for sentences with 1–10 words, 19.7

seconds for sentences with 11-20 words, and 102.4 seconds for those with 21-30 words. However,

the average runtime shows that using set Y ′, which is a closer approximate of the set Y , is more

stable.

2.7.2 Comparison to an LP/ILP solver

To compare to a linear programming (LP) or integer linear programming (ILP) solver, we can

implement the dynamic program (search over the set Y ′) through linear constraints, with a linear

objective. The y(i) = 1 constraints are also linear. Hence we can encode our relaxation within an

LP or ILP. Having done this, we tested the resulting LP or ILP using Gurobi, a high-performance

commercial grade solver. We also compare to an LP or ILP where the dynamic program makes

use of states (w1, w2, n, r)—i.e., the span (l,m) is dropped, making the dynamic program smaller.

Table 2.4 shows the average time taken by the LP/ILP solver. Both the LP and the ILP require

34

method ILP LP
set length mean median mean median % frac.

Y ′′ 1-10 275.2 132.9 10.9 4.4 12.4 %
11-15 2,707.8 1,138.5 177.4 66.1 40.8 %
16-20 20,583.1 3,692.6 1,374.6 637.0 59.7 %

Y ′ 1-10 257.2 157.7 18.4 8.9 1.1 %
11-15 3607.3 1838.7 476.8 161.1 3.0 %

Table 2.4: Average and median time of the LP/ILP solver (in seconds). % frac. indicates how often the LP gives
a fractional answer. Y ′ indicates the dynamic program using set Y ′ as defined in Section 2.4.1, and Y ′′ indicates the
dynamic program using states (w1, w2, n, r). The statistics for ILP for length 16-20 are based on 50 sentences.

very long running times on these shorter sentences, and running times on longer sentences are

prohibitive. Our algorithm is more efficient because it leverages the structure of the problem, by

directly using a combinatorial algorithm (dynamic programming).

2.7.3 Comparison to MOSES

We now describe comparisons to the phrase-based decoder implemented in MOSES. MOSES uses

beam search to find approximate solutions.

The distortion limit described in Section 4.3 is the same as that in Koehn et al. (2003), and

is the same as that described in the user manual for MOSES (Koehn et al., 2007). However, a

complicating factor for our comparisons is that MOSES uses an additional distortion constraint,

not documented in the manual, which we describe here.5 We call this constraint the gap constraint.

We will show in experiments that without the gap constraint, MOSES fails to produce translations

on many examples. In our experiments we will compare to MOSES both with and without the gap

constraint (in the latter case, we discard examples where MOSES fails).

We now describe the gap constraint. For a sequence of phrases p1, . . . , pk define θ(p1 . . . pk) to

be the index of the left-most source-language word not translated in this sequence. For example, if

the bit-string for p1 . . . pk is 111001101000, then θ(p1 . . . pk) = 4. A sequence of phrases p1 . . . pL

satisfies the gap constraint if and only if for k = 2 . . . L, |t(pk) + 1− θ(p1 . . . pk)| ≤ d. where d is

the distortion limit. We will call MOSES without this restriction MOSES-nogc, and MOSES with

this restriction MOSES-gc.

5Personal communication from Philipp Koehn; see also the software for MOSES.

35

Beam size Fails # search errors percentage
100 650/1,818 214/1,168 18.32 %
200 531/1,818 207/1,287 16.08 %

1000 342/1,818 115/1,476 7.79 %
10000 169/1,818 68/1,649 4.12 %

Table 2.5: Table showing the number of examples where MOSES-nogc fails to give a translation, and the num-
ber/percentage of search errors for cases where it does give a translation.

Diff. MOSES-gc MOSES-gc MOSES-nogc
s =100 s =200 s=1000

0.000 – 0.125 66 (24.26%) 65 (24.07%) 32 (27.83%)
0.125 – 0.250 59 (21.69%) 58 (21.48%) 25 (21.74%)
0.250 – 0.500 65 (23.90%) 65 (24.07%) 25 (21.74%)
0.500 – 1.000 49 (18.01%) 49 (18.15%) 23 (20.00%)
1.000 – 2.000 31 (11.40%) 31 (11.48%) 5 (4.35%)
2.000 – 4.000 2 (0.74%) 2 (0.74%) 3 (2.61%)
4.000 –13.000 0 (0.00%) 0 (0.00%) 2 (1.74%)

Table 2.6: Table showing statistics for the difference between the translation score from MOSES, and from the
optimal derivation, for those sentences where a search error is made. For MOSES-gc we include cases where the
translation produced by our system is not reachable by MOSES-gc. The average score of the optimal derivations is
-23.4.

Results for MOSES-nogc Table 2.5 shows the number of examples where MOSES-nogc fails to

give a translation, and the number of search errors for those cases where it does give a translation,

for a range of beam sizes. A search error is defined as a case where our algorithm produces an

exact solution that has higher score than the output from MOSES-nogc. The number of search

errors is significant, even for large beam sizes.

Results for MOSES-gc MOSES-gc uses the gap constraint, and thus in some cases our decoder

will produce derivations which MOSES-gc cannot reach. Among the 1,818 sentences where we

produce a solution, there are 270 such derivations. For the remaining 1,548 sentences, MOSES-gc

makes search errors on 2 sentences (0.13%) when the beam size is 100, and no search errors when

the beam size is 200, 1,000, or 10,000.

Finally, table 2.6 shows statistics for the magnitude of the search errors that MOSES-gc and

MOSES-nogc make.

36

type of Moses beam size # sentence Moses our code

MOSES-gc

100 1,818 24.4773 24.5395
200 1,818 24.4765 24.5395

1,000 1,818 24.4765 24.5395
10,000 1,818 24.4765 24.5395

MOSES-nogc

100 1,168 27.3546 27.3249
200 1,287 27.0591 26.9907

1,000 1,476 26.5734 26.6128
10,000 1,649 25.6531 25.6620

Table 2.7: Comparison of BLEU score. We only consider the sentences that both programs produce
an answer.

2.8 Conclusions

We have described an exact decoding algorithm for phrase-based translation models, using La-

grangian relaxation. The algorithmic construction we have described may also be useful in other

areas of NLP, for example natural language generation. Possible extensions to the approach in-

clude methods that incorporate the Lagrangian relaxation formulation within learning algorithms

for statistical MT: we see this as an interesting avenue for future research.

37

Chapter 3

Optimal Beam Search

[This chapter is adapted from joint work with Alexander Rush and Michael Collins entitled “Opti-

mal Beam Search for Machine Translation” (Rush et al., 2013).]

In this chapter, we will present another algorithm for decoding of phrase-based translation mod-

els. The algorithm is still based on Lagrangian relaxation. Instead of using the tightening technique

to achieve an exact solution, this algorithm combines the Lagrangian relaxation method with beam

search. We use the Lagrangian relaxation method to provide a good admissible heuristic, and use

beam search to obtain a primal feasible solution. Similar to the A* algorithm described in Sec-

tion 2.6, the admissible heuristic guarantees that the solution is optimal if no pruning by beam size

is applied.

The algorithm has several differences and advantages over the algorithm presented in Chap-

ter 2:

• It provides a feasible solution even when the algorithm does not converge, and gives a bound

for the difference between the solution and the optimal solution.

• It can utilize Polyak’s rule to compute step size since an lower bound and an upper bound

are available at all iterations.

• Overall, it is more efficient in practice.

38

3.1 Introduction

Beam search Koehn et al. (2003) and cube pruning Chiang (2007) have become the de facto decod-

ing algorithms for phrase- and syntax-based translation. The algorithms are central to large-scale

machine translation systems due to their efficiency and tendency to produce high-quality transla-

tions Koehn (2004); Koehn et al. (2007); Dyer et al. (2010). However despite practical effective-

ness, neither algorithm provides any bound on possible decoding error.

In this work we present a variant of beam search decoding for phrase- and syntax-based transla-

tion. The motivation is to exploit the effectiveness and efficiency of beam search, but still maintain

formal guarantees. The algorithm has the following benefits:

• In theory, it can provide a certificate of optimality; in practice, we show that it produces

optimal hypotheses, with certificates of optimality, on the vast majority of examples.

• It utilizes well-studied algorithms and extends off-the-shelf beam search decoders.

• Empirically it is very fast, results show that it is 3.5 times faster than heavily-optimized

relaxation-based solvers. (The two solvers are solving exactly the same problem and produce

exact solutions on the same number of example sentences.)

While our focus is on fast decoding for machine translation, the algorithm we present can be

applied to a variety of dynamic programming-based decoding problems. The method only relies

on having a fast constrained beam search algorithm and a fast unconstrained dual search algorithm.

Similar algorithms exist for many NLP tasks.

We begin in Section 3.2 by describing constrained hypergraph search and showing how it gen-

eralizes translation decoding. Section 3.3 introduces a variant of beam search that is, in theory,

able to produce a certificate of optimality. Section 3.4 shows how to improve the chance that beam

search produces a certificate by using bounds derived from Lagrangian relaxation. Section 3.5 puts

everything together to derive a fast beam search algorithm that is often optimal in practice.

Experiments compare the new algorithm with several varieties of beam search, cube prun-

ing, A∗ search, and relaxation-based decoders on two translation tasks. The optimal beam search

39

algorithm is able to find exact solutions with certificates of optimality on 99% of phrase-based

translation examples and 98% of syntax-based translation examples, significantly more than other

baselines. Additionally the optimal beam search algorithm is much faster than other exact methods.

3.2 Background

The focus of this work is decoding for statistical machine translation. Given a source sentence,

the goal is to find the target sentence that maximizes a combination of translation model and

language model scores. In order to analyze this decoding problem, we first abstract away from

the specifics of translation into a general form, known as a hypergraph. In this section, we describe

the hypergraph formalism and its relation to machine translation.

3.2.1 Notation

Throughout the chapter, scalars and vectors are written in lowercase, matrices are written in up-

percase, and sets are written in script-case, e.g. X . All vectors are assumed to be column vectors.

The function δ(j) yields an indicator vector with δ(j)j = 1 and δ(j)i = 0 for all i 6= j.

3.2.2 Hypergraphs and Search

A directed hypergraph is a pair (V , E) where V = {1 . . . |V|} is a set of vertices, and E is a set

of directed hyperedges. Each hyperedge e ∈ E is a tuple 〈〈v2, . . . , vk〉, v1〉 where vi ∈ V for

i ∈ {1 . . . k}. The head of the hyperedge is h(e) = v1. The tail of the hypergraph is the ordered

sequence t(e) = 〈v2, . . . , vk〉. The size of the tail |t(e)| may vary across different edges, but

|t(e)| ≥ 1 for all edges. A directed graph is a directed hypergraph with |t(e)| = 1 for all edges

e ∈ E .

Each vertex v ∈ V is either a non-terminal or a terminal in the hypergraph. The set of non-

terminals is N = {v ∈ V : h(e) = v for some e ∈ E}. Conversely, the set of terminals is defined

as T = V \ N .

40

All directed hypergraphs used in this work are acyclic: informally this implies that no hyper-

path (as defined below) contains the same vertex more than once (see Martin et al. (1990) for a

full definition). Acyclicity implies a partial topological ordering of the vertices. Let this partial

order be given by the inequality operator ≺. We also assume there is a distinguished root vertex 1

with the property that 1 ≺ v for all v ∈ V \ {1}. For hyperedges, we use e ≺ e′ as shorthand for

h(e) ≺ h(e′).

Next we define a hyperpath as a tuple (x, y) ∈ {0, 1}|V| × {0, 1}|E| where xv = 1 if vertex v

is used in the hyperpath, xv = 0 otherwise (similarly ye = 1 if edge e is used in the hyperpath,

ye = 0 otherwise). The set of valid hyperpaths starting at the root is

X = {(x, y) : x1 = 1,

xv =
∑

e∈E:h(e)=v

ye ∀ v ∈ N ,

xv =
∑

e∈E:v∈t(e)

ye ∀ v ∈ V \ {1}}

The first problem we consider is unconstrained hypergraph search. Let θ ∈ R|E| be the weight

vector for the hypergraph. The unconstrained search problem is to find

max
(x,y)∈X

∑
e∈E

θeye = max
(x,y)∈X

θ>y

This maximization can be computed for any weight vector and directed acyclic hypergraph

in time O(|E|) using dynamic programming. Figure 3-1 shows this algorithm which is simply a

version of the CKY algorithm.

Next consider a variant of this problem: constrained hypergraph search. Constraints will be

necessary for both phrase- and syntax-based decoding. In phrase-based models, the constraints will

ensure that each source word is translated exactly once. In syntax-based models, the constraints

will be used to intersect a translation forest with a language model.

In the constrained hypergraph problem, hyperpaths must fulfill additional linear hyperedge

41

procedure BESTPATHSCORE()
π[v]← 0 for all v ∈ T
for e ∈ E in � order do
〈〈v2, . . . , vk〉, v1〉 ← e

s← θe +
k∑
i=2

π[vi]

if s > π[v1] then π[v1]← s

return π[1]

Figure 3-1: Dynamic programming algorithm for unconstrained hypergraph search. Note that this
version only returns the highest score: max(x,y)∈X θ

>y. The optimal hyperpath can be found by
including back-pointers.

constraints. Define the set of constrained hyperpaths as

X ′ = {(x, y) ∈ X : Fy = c}

where we have a constraint matrix F ∈ R|c|×|E| and vector c ∈ R|c| encoding |c| constraints. The

optimal constrained hyperpath is x∗, y∗ = arg max(x,y)∈X ′ θ
>y.

Note that the constrained hypergraph search problem may be NP-Hard. Crucially this is true

even when the corresponding unconstrained search problem, max(x,y)∈X θ
>y, is solvable in poly-

nomial time. For instance, phrase-based decoding is known to be NP-Hard Knight (1999), but we

will see that it can be expressed as a polynomial-sized hypergraph with constraints.

Example: Phrase-Based Machine Translation Consider translating a source sentence s1 . . . s|s|

to a target sentence in a language with vocabulary Σ. A simple phrase-based translation model

consists of a tuple (P , f, g) with

• P; a set of pairs (r, t) where r1 . . . r|r| is a sequence of source words and t1 . . . t|t| is a

sequence of target words.

• f : P → R; a translation model mapping each element of P to a real-valued score.

• g : Σ2 → R; a language model mapping a target language bigram to a score.

42

Additionally we define two helper functions. Let g(i)(t) =
∑|t|

i=2 g(ti−1, ti) be the internal

language model score of a word sequence. Let g(o)(t, t′) = g(t|t|, t
′
1) be the overlapping language

model score of two words adjacent sequences.

A phrase-based derivation is a sequence of phrases p1 . . . p|p|. A phrase p consists of a span in

the source sentence (j(p), k(p)) with 1 ≤ j(p) ≤ k(p) ≤ |s| and a sequence of target words t(p).

The span identifies the source sequence r(p) = sj(p) . . . sk(p) that is translated by the phrase. Note

that a phrase corresponds to a pair (r(p), t(p)) ∈ P . For a derivation to be valid, it must translate

every source word exactly once. Call the set of valid derivations D.

The decoding problem for phrase-based translation is to find the highest scoring valid deriva-

tion

max
p∈D

|p|∑
l=1

f(r(pl), t(pl)) + g(i)(t(pl)) + g(o)(t(pl−1), t(pl))

where we define t(p0) to be the start symbol ∗.

This problem can be expressed as a hypergraph using the construction of Chang and Collins

(2011). For conciseness we write vertices as tuples and assume an implied mapping to integers:

• The vertices track the current target word w and the number of source words translated, b.

Let V = {(b, w) : w ∈ Σ, b ∈ {1 . . . |s|}}.

• The edges indicate using a phrase p, thereby increasing the source word count by |r(p)| and

setting w to the final word in t(p).

Let E =

 (b, w)→ (b+ |r(p)|, t(p)|t(p)|) :

w ∈ Σ, b ∈ {1 . . . |s|}, phrase p

• The edge weights are the cost of using phrase p when the current word was w.

θe = f(r(p), t(p)) + g(i)(t(p)) + g(o)(w, t(p))

Any valid derivation corresponds to a path in this graph. However, a path in the graph may

not be valid derivation in D, since it may not use all source words exactly once. We enforce this

property through constraints.

43

Define a constraint matrix F ∈ {0, 1}|s|×|E| where the rows correspond to source indices and

the columns correspond to edges. For column e ∈ E and row i ∈ 1 . . . |s| we have Fi,e = 1 if the

corresponding phrase p = p(e) translates the source word i, i.e. has j(p) ≤ i ≤ k(p). For all other

positions Fi,e = 0. The product Fy is a vector where (Fy)i is the number of times word i has been

translated.

The constrained hypergraph problem for phrase-based translation ensures that each word is

translated exactly once

X ′ = {(x, y) ∈ X : Fy = 1 }

The best derivation under this phrase-based translation model has score max(x,y)∈X ′ θ
>y.

Example: Syntax-Based Machine Translation Syntax-based machine translation with a lan-

guage model can also be expressed as a constrained hypergraph problem. For the sake of space,

we omit the definition. See Rush and Collins (2011) for an in-depth description of the constraint

matrix used for syntax-based translation.

3.3 A Variant of Beam Search

This section describes a variant of the beam search algorithm for finding the highest-scoring con-

strained hyperpath. The algorithm uses three main techniques: (1) dynamic programming with

additional signature information to satisfy the hypergraph constraints, (2) beam pruning where

some, possibly optimal, hypotheses are discarded, and (3) branch-and-bound-style application of

upper and lower bounds to discard provably non-optimal hypotheses.

Any solution returned by the algorithm will be a valid constrained hyperpath and a member

of X ′. Additionally the algorithm returns a certificate flag opt that if true means that no beam

pruning was used, implying the solution returned is optimal. Generally it will be hard to produce

a certificate even by reducing the amount of beam pruning; however in the next section we will

introduce a method based on Lagrangian relaxation to tighten the upper bounds. These bounds

44

will help eliminate most solutions before they trigger pruning.

3.3.0.1 Algorithm

Figure 3-2 shows the complete beam search algorithm. At its core it is a dynamic programming

algorithm filling in the chart π. The beam search chart indexes hypotheses by their top vertex

v ∈ V as well as a signature sig ∈ S where S ⊂ R|c| and |c| is the number of constraints. A new

hypothesis is constructed from each hyperedge and all possible signatures of tail nodes. We define

the function SIGS to take the tail of an edge and return the set of possible signature combinations

SIGS(〈v2, . . . vk〉) =
k∏
i=2

{sig : π[vi, sig] 6= −∞}

Line 7 loops over this entire set. For hypothesis (x, y), the algorithm ensures that its signature sig

is equal to Fy. This property is updated on line 8.

The signature provides proof that a hypothesis is still valid. Let the function CHECK(sig)

return true if the hypothesis can still fulfill the constraints. For example, in phrase-based decoding,

we will define CHECK(sig) = (sig ≤ 1), this ensures that each word has been translated 0 or 1

times. This check is applied on line 10.

Unfortunately maintaining all signatures is inefficient. For example we will see that in phrase-

based decoding the signature is a bit-string recording which source words have been translated; the

number of possible bit-strings is exponential in the length of the sentence. The algorithm includes

two methods for removing potential paths, bounding and pruning.

Bounding allows us to discard provably non-optimal solutions. The algorithm takes as argu-

ments a lower bound on the optimal score lb ≤ θ>y∗, and upper bounds on the outside score for

all vertices v: ubs[v], i.e. an overestimate of the score for completing the hyperpath from v. If a

hypothesis has score s, it can only be optimal if s + ubs[v] ≥ lb. This bound check is performed

on line 10.

Pruning removes weak partial solutions based on problem-specific checks. The algorithm in-

45

1: procedure BEAMSEARCH(lb,ubs,m)
2: opt← true
3: π[v, sig]← −∞ for all v ∈ V, sig ∈ S
4: π[v, 0]← 0 for all v ∈ T
5: for e ∈ E in � order do
6: 〈〈v2, . . . , vk〉, v1〉 ← e
7: for sig(2) . . . sig(k) ∈ SIGS(〈v2, . . . , vk〉) do

8: sig ← Fδ(e) +

k∑
i=2

sig(i)

9: s← θe +
k∑
i=2

π[vi, sig
(i)]

10: if

 s > π[v1, sig] ∧
CHECK(sig) ∧
s+ ubs[v1] ≥ lb

 then

11: π[v1, sig]← s
12: if PRUNE(v1, sig,m) then opt← false
13: lb′ ← π[1, c]
14: return lb′, opt

Input:

(V, E , θ) hypergraph with weights
(F, c) matrix and vector for constraints
lb ∈ R lower bound
ubs ∈ R|V| upper bounds on outside scores
m a pruning parameter

Output:
[
lb′ resulting lower bound score
opt certificate of optimality

Figure 3-2: A variant of the beam search algorithm. Uses dynamic programming to produce a
lower bound on the optimal constrained solution and, possibly, a certificate of optimality. Function
SIGS enumerates all possible tail signatures. Function CHECK identifies signatures that do not vi-
olate constraints. Bounds lb and ubs are used to remove provably non-optimal solutions. Function
PRUNE, taking parameter m, returns true if it prunes hypotheses from π that could be optimal.

vokes the black-box function, PRUNE, on line 12, passing it a pruning parameter m and a vertex-

signature pair. The pruner returns true if it prunes from the chart. Note that pruning may remove

optimal hypotheses, so we set the certificate flag opt to false if the chart is modified.

This variant on beam search satisfies the following two properties (recall (x∗, y∗) is the optimal

constrained solution)

Property 3.3.1 (Primal Feasibility). The returned score lb′ lower bounds the optimal constrained

score, that is lb′ ≤ θ>y∗.

Property 3.3.2 (Dual Certificate). If beam search returns with opt = true, then the returned score

46

procedure PRUNE(v, sig,m)
B ← {(u, sig′) : ||sig′||1 = ||sig||1,

π[u, sig′] 6= −∞}
P ← B \mBEST(m,B, π)
π[u, sig′]← −∞ for all u, sig′ ∈ P
if P = ∅ then return true
else return false

Input:
[
(v, sig) the last hypothesis added to the chart
m ∈ Z+ # of hypotheses to retain

Output: true, if π is modified

Figure 3-3: Pruning function for phrase-based translation. Set B contains all hypotheses with
||sig||1 source words translated. The function prunes all but the top-m scoring hypotheses in this
set.

is optimal, i.e. lb′ = θ>y∗.

An immediate consequence of Property 3.3.1 is that the output of beam search, lb′, can be

used as the input lb for future runs of the algorithm. Furthermore, if we loosen the amount of

beam pruning by adjusting the parameter m we can produce tighter lower bounds and discard

more hypotheses. We can then iteratively apply this idea with a sequence of parameters m1 . . .mK

producing lower bounds lb(1) through lb(K). We return to this idea in Section 3.5.

Example: Phrase-based Beam Search. Recall that the constraints for phrase-based translation

consist of a binary matrix F ∈ {0, 1}|s|×|E| and vector c = 1. The value sigi is therefore the number

of times source word i has been translated in the hypothesis. The predicate CHECK(sig) = (sig ≤

1) removes hypotheses that translate source words more than once. For this reason, phrase-based

signatures are called bit-strings.

A common beam pruning strategy is to group together items into a set B and retain a (possibly

complete) subset. An example phrase-based beam pruner is given in Figure 3-3. It groups together

hypotheses based on ||sigi||1, i.e. the number of source words translated, and applies a hard pruning

filter that retains only the m highest-scoring items (v, sig) ∈ B based on π[v, sig].

47

3.4 Finding Tighter Bounds with Lagrangian Relaxation

Beam search produces a certificate only if beam pruning is never used. In the case of phrase-based

translation, the certificate is dependent on all groups B having less than m + 1 items. The only

way to ensure this is to bound out enough hypotheses to avoid pruning. The effectiveness of the

bounding inequality, s+ubs[v] < lb, in removing hypotheses is directly dependent on the tightness

of the bounds lb and ubs.

In this section we propose using Lagrangian relaxation to get tight upper bounds ubs. We first

give a brief overview of the method and then apply it to computing bounds. Our experiments show

that these upper bounds are very effective at finding certificates in practice.

3.4.1 Algorithm

In Lagrangian relaxation, instead of solving the constrained search problem, we relax the con-

straints and solve an unconstrained hypergraph problem with modified weights. Recall the con-

strained hypergraph problem: max(x,y)∈X :Fy=c θ
>y. The Lagrangian dual of this optimization

problem is

L(λ) = max
(x,y)∈X

θ>y − λ>(Fy − c)

=

(
max

(x,y)∈X
(θ> − λ>F)y

)
+ λ>c

where λ ∈ R|c| is a vector of dual variables. This maximization is over X , so for any value of λ,

L(λ) can be calculated using dynamic programming.

The Lagrangian dual has the following two properties, where (x, y) ∈ X is the hyperpath

computed within the max

Property 3.4.1 (Dual Feasibility). The value L(λ) upper bounds the optimal solution, that is

L(λ) ≥ θ>y∗

Property 3.4.2 (Primal Certificate). If the hyperpath (x, y) is a member of X ′, i.e. Fy = c, then

48

procedure LRROUND(αk, λ)
(x, y)← arg max

(x,y)∈X
θ>y − λ>(Fy − c)

λ′ ← λ− αk(Fy − c)
opt← Fy = c
ub← θ>y
return λ,ub, opt

procedure LAGRANGIANRELAXATION(α)
λ(0) ← 0
for k in 1 . . .K do
λ(k),ub, opt← LRROUND(αk, λ

(k−1))
if opt then return λ(k), ub, opt

return λ(K),ub, opt

Input: α1 . . . αK sequence of subgradient rates

Output:

 λ final dual vector
ub upper bound on optimal constrained solution
opt certificate of optimality

Figure 3-4: Lagrangian relaxation algorithm. The algorithm repeatedly calls LRROUND to com-
pute the subgradient, update the dual vector, and check for a certificate.

L(λ) = θ>y∗.

Property 3.4.1 states that L(λ) always produces some upper bound; however, to help beam

search, we want as tight an bound as possible: minλ L(λ).

The Lagrangian relaxation algorithm, shown in Figure 3-4, uses subgradient descent to find

this minimum. The subgradient of L(λ) is Fy− c where y is the argmax of the modified objective

(x, y) = arg max(x,y)∈X θ
>y − λ>(Fy − c). Subgradient descent iteratively solves unconstrained

hypergraph search problems to compute these subgradients and updates λ. See Rush and Collins

(2012) for an extensive discussion of this style of optimization in natural language processing.

Example: Phrase-based Relaxation. For phrase-based translation, we expand out the Lagrangian

to

L(λ) = max
(x,y)∈X

θ>y − λ>(Fy − c)

= max
(x,y)∈X

∑
e∈E

(θe −
k(p(e))∑
i=j(p(e))

λi)ye +

|s|∑
i=1

λi

49

The weight of each edge θe is modified by the dual variables λi that correspond to each source

word used by the phrase p(e), j(p(e)) ≤ i ≤ k(p(e)). The relaxed solution is the best uncon-

strained derivation under this new set of weights. This solution may use source words multiple

times or not at all. However if the solution uses each source word exactly once (Fy = 1), then we

have a certificate and the solution is optimal.

3.4.2 Computing Upper Bounds

The table ubs[v] passed to BEAMSEARCH must contain an overestimate of the outside score for

all vertices v ∈ V . Define the set O(v) to contain all outside edges of vertex v (informally, edges

that cannot appear in a hypothesis ending in v). It is required that, for all v ∈ V ,

max
(x,y)∈X ′:xv=1

∑
e∈O(v)

θeye ≤ ubs[v]

Solving this constrained maximization is difficult; however, we can again relax the constraint and

compute the Lagrangian dual. Property 3.4.1 implies that for any dual vector λ,

max
(x,y)∈X ′:xv=1

∑
e∈O(v)

θeye ≤

max
(x,y)∈X :xv=1

∑
e∈O(v):ye=1

(θ> − λTF)δ(e) + λT c

We take this last term as the upper bound for all v.

If we have a fixed dual vector λ, these upper bounds can be efficiently computed for all vertices

using the standard outside dynamic programming algorithm with modified weights. We will refer

to this algorithm as DUALOUTSIDE(λ).

50

3.5 Optimal Beam Search

Whether the beam search algorithm can return an optimal solution or not is dependent on the

tightness of the upper and lower bounds. We can produce better lower bounds by varying the

pruning parameter m; we can produce better upper bounds by running Lagrangian relaxation and

computing outside scores based on λ. In this section we combine these two ideas and present a

complete optimal beam search algorithm.

One simple method for computing bounds, shown at the top of Figure 3-5, is to compute

bounds in stages. The algorithm first runs Lagrangian relaxation to compute the best λ vector. If,

in the process, it finds a primal certificate, it returns the result. The algorithm then iteratively runs

beam search using the parameter sequencemk. These parameters allow the algorithm to loosen the

amount of beam pruning until it finds an optimal solution. For example in phrase based pruning,

we would raise the number of hypotheses stored per group until no beam pruning occurs.

The disadvantage of the staged approach is that it needs to wait until Lagrangian relaxation

is completed before even running beam search. Often beam search will be able to quickly find

an optimal solution even with good but non-optimal λ. In the worst case, beam search may still

improve the lower bound lb.

This observation motivates the alternating algorithm OPTBEAM shown Figure 3-5. In each

round, the algorithm alternates between computing subgradients to tighten ubs and running beam

search to maximize lb. In early rounds we set m for aggressive beam pruning, and as the upper

bounds get tighter, we loosen pruning to try to get a certificate. If at any point either a primal or

dual certificate is found, the algorithm returns the optimal solution.

3.6 Related Work

Approximate methods based on beam search and cube-pruning have been widely studied for

phrase-based Koehn et al. (2003); Tillmann and Ney (2003); Tillmann (2006) and syntax-based

translation models Chiang (2007); Huang and Chiang (2007); Watanabe et al. (2006); Huang and

51

procedure OPTBEAMSTAGED(α,m)
λ,ub, opt←LAGRANGIANRELAXATION(α)
if opt then return ub

ubs← DUALOUTSIDE(λ)
lb(0) ← −∞
for k in 1 . . .K do
lb(k), opt← BEAMSEARCH(ubs, lb(k−1),mk)
if opt then return lb(k)

return maxk∈{1...K} lb
(k)

procedure OPTBEAM(α,m)
λ(0) ← 0
lb(0) ← −∞
for k in 1 . . .K do
λ(k), ub(k), opt← LRROUND(αk, λ

(k−1))
if opt then return ub(k)

ubs(k) ← DUALOUTSIDE(λ(k))
lb(k), opt← BEAMSEARCH(ubs(k), lb(k−1),mk)
if opt then return lb(k)

return maxk∈{1...K} lb
(k)

Input:
[
α1 . . . αK sequence of subgradient rates
m1 . . .mK sequence of pruning parameters

Output: optimal constrained score or lower bound

Figure 3-5: Two versions of optimal beam search: staged and alternating. Staged runs Lagrangian
relaxation to find the optimal λ, uses λ to compute upper bounds, and then repeatedly runs beam
search with pruning sequence m1 . . .mk. Alternating switches between running a round a La-
grangian relaxation and a round of beam search with the updated λ. If either the Lagrangian
relaxation or the beam search produces a certificate, it returns the result.

Mi (2010).

There is also a line of work studying exact algorithms for machine translation decoding. Often

times exact decoders are slow to use in practice, but help quantify the errors made by approximate

methods. Exact algorithms proposed for IBM model 4 include ILP Germann et al. (2001), cutting

plane Riedel and Clarke (2009), and multi-pass A* search Och et al. (2001). Zaslavskiy et al.

(2009) formulate phrase-based decoding as a traveling salesman problem (TSP) and use a TSP

decoder. Exact decoding algorithms based on finite state transducers (FST) Iglesias et al. (2009)

have been studied on phrase-based models with limited reordering Kumar and Byrne (2005b).

Exact decoding based on FST is also feasible for certain hierarchical grammars de Gispert et al.

(2010).

52

Chang and Collins (2011) and Rush and Collins (2011) develop Lagrangian relaxation-based

approaches for exact machine translation. Both algorithms rely on involved tightening procedures

to recover the exact solution. The method presented in this chapter can be seen as an alternative to

this process.

Apart from translation decoding, this chapter is closely related to work on column generation

for NLP. Riedel et al. (2012) and Belanger et al. (2012) relate column generation to beam search

and produce exact solutions for parsing and tagging. They also discuss the relationship between

beam width and duality gap.

3.7 Results

To evaluate the effectiveness of optimal beam search for translation decoding, we implemented

decoders for phrase- and syntax-based models. In this section we compare the speed and optimality

of these decoders to several baseline methods.

3.7.1 Setup and Implementation

For phrase-based translation we used a German-to-English data set taken from Europarl (Koehn,

2005). We tested on 1,824 sentences of length at most 50 words. For experiments the phrase-

based model uses a trigram language model and also includes distortion penalties. Additionally the

unconstrained hypergraph includes additional derivation information similar to the graph described

in Chang and Collins (2011).

For syntax-based translation we used a Chinese-to-English data set. The model and hyper-

graphs come from the work of Huang and Mi (2010). We tested on 691 sentences from the

newswire portion of the 2008 NIST MT evaluation test set. For experiments, the syntax-based

model uses a trigram language model. The translation model is tree-to-string syntax-based model

with a standard context-free translation forest. The constraint matrix F is based on the constraints

described by Rush and Collins (2011).

53

11-20 (558) 21-30 (566) 31-40 (347) 41-50 (168) all (1824)
time cert exact time cert exact time cert exact time cert exact time cert exact

BEAM (100) 2.33 19.5 38.0 8.37 1.6 7.2 21.59 0.3 1.4 47.06 0.0 0.0 11.82 15.3 23.2
BEAM (1000) 2.33 37.8 66.3 8.42 3.4 18.9 21.60 0.6 3.2 53.99 0.6 1.2 12.44 22.6 36.9
MOSES (100) 0.18 0.0 81.0 0.36 0.0 45.6 0.53 0.0 14.1 0.74 0.0 6.0 0.34 0.0 52.3
MOSES (1000) 2.29 0.0 97.8 4.39 0.0 78.8 6.52 0.0 43.5 9.00 0.0 19.6 4.20 0.0 74.6
ASTAR (cap) 11.02 99.3 99.3 91.59 53.9 53.9 124.9 7.8 7.8 264.7 1.2 1.2 86.99 58.8 58.8
LR-TIGHT 4.20 100.0 100.0 23.25 100.0 100.0 88.16 99.7 99.7 377.9 97.0 97.0 60.11 99.7 99.7
OPTBEAM 2.85 100.0 100.0 10.33 100.0 100.0 28.29 100.0 100.0 84.34 97.0 97.0 17.27 99.7 99.7
ChangCollins 10.90 100.0 100.0 57.20 100.0 100.0 203.4 99.7 99.7 679.9 97.0 97.0 120.9 99.7 99.7
MOSES-GC (100) 0.14 0.0 89.4 0.27 0.0 84.1 0.41 0.0 75.8 0.58 0.0 78.6 0.26 0.0 84.9
MOSES-GC (1000) 1.33 0.0 89.4 2.62 0.0 84.3 4.15 0.0 75.8 6.19 0.0 79.2 2.61 0.0 85.0

Table 3.1: Experimental results for phrase-based translation. Column time is the mean time per
sentence in seconds, cert is the percentage of sentences solved with a certificate of optimality, exact
is the percentage of sentences solved exactly, i.e. θ>y = θ>y∗. Results are grouped by sentence
length (group 1-10 is omitted for space).

11-20 (192) 21-30 (159) 31-40 (136) 41-100 (123) all (691)
time cert exact time cert exact time cert exact time cert exact time cert exact

BEAM (100) 0.40 4.7 75.9 0.40 0.0 66.0 0.75 0.0 43.4 1.66 0.0 25.8 0.68 5.72 58.7
BEAM (1000) 0.78 16.9 79.4 2.65 0.6 67.1 6.20 0.0 47.5 15.5 0.00 36.4 4.16 12.5 65.5
CUBE (100) 0.08 0.0 77.6 0.16 0.0 66.7 0.23 0.0 43.9 0.41 0.0 26.3 0.19 0.0 59.0
CUBE (1000) 1.76 0.0 91.7 4.06 0.0 95.0 5.71 0.0 82.9 10.69 0.0 60.9 4.66 0.0 85.0
LR-TIGHT 0.37 100.0 100.0 1.76 100.0 100.0 4.79 100.00 100.00 30.85 94.5 94.5 7.25 99.0 99.0
OPTBEAM 0.25 100.0 100.0 0.59 99.4 99.4 2.08 98.5 98.5 6.56 92.7 92.7 1.82 98.2 98.2
ILP 9.15 100.0 100.0 32.35 100.0 100.0 49.6 100.0 100.0 108.6 100.0 100.0 40.1 100.0 100.0

Table 3.2: Experimental results for syntax-based translation. See Table 3.1 for column descrip-
tions.

Our decoders use a two-pass architecture. For each sentence the first pass constructs the hyper-

graph in memory, and the second pass runs search. Wherever possible the models share optimized

construction and search code.

The performance of optimal beam search is dependent on the sequences α and m. For the step-

size α we used a variant of Polyak’s rule Polyak (1987); Boyd and Mutapcic (2007), substituting

the unknown optimal score for the last computed lower bound: αk ← θ>y(k)−lb(k)
||Fy(k)−c||22

. We adjust

the order of the pruning parameter m based on a function µ of the current duality gap: mk ←

10µ(ub
(k)−lb(k)).

Previous work on these data sets has shown that exact algorithms do not result in a significant

increase in translation accuracy. We focus on the efficiency and model score of the algorithms.

54

3.7.2 Baseline Methods

We compare optimal beam search (OPTBEAM) to several different decoding methods. For both

systems we compare to: BEAM, the beam search decoder from Figure 3-2 using outside scores

generated with λ = 0 and m ∈ {100, 1000}; LR-TIGHT, Lagrangian relaxation followed by

incremental tightening constraints, which is a reimplementation of Chang and Collins (2011) and

Rush and Collins (2011).

For phrase-based translation we compare with: MOSES-GC, the standard Moses beam search

decoder with m ∈ {100, 1000} Koehn et al. (2007); MOSES, a version of Moses without gap

constraints more similar to BEAM; ASTAR, an implementation of A∗ search using future scores

generated with λ = 0, and capped at 20,000,000 queue pops.

For syntax-based translation we compare with: ILP, a general-purpose integer linear program-

ming solver Gurobi Optimization (2013) and CUBEPRUNING, an approximate decoding method

similar to beam search Chiang (2007), tested with m ∈ {100, 1000}.

3.7.3 Experiments

Table 3.1 shows the main results for phrase-based translation. OPTBEAM decodes the optimal

translation with certificate in 99% of sentences with an average time of 17.27 seconds per sentence.

This speed is seven times faster than the decoder of Chang and Collins (2011) and 3.5 times faster

then our reimplementation, LR-TIGHT. ASTAR performs poorly, taking lots of time on a few

difficult sentences. BEAM is fast, but rarely finds an exact solution. MOSES is very fast, but less

exact than optimal beam search and unable to produce a certificate.

Table 3.2 shows the main results for syntax-based translation. OPTBEAM finds a certificate on

98% of solutions with an average time of 1.82 seconds per sentence, and is four times faster than

LR-TIGHT. CUBE (100) is an order of magnitude faster, but is rarely exact on longer sentences.

CUBE (1000) finds more exact solutions, but is comparable in speed to optimal beam search.

BEAM performs better than in the phrase-based model, but is not much faster than OPTBEAM.

Table 3.3 breaks down the amount of time spent in each part of the algorithm. For both meth-

55

≥ 30 all
mean median mean median

Hypergraph 56.6% 69.8% 59.6% 69.6%
PB Lag. Relaxation 10.0% 5.5% 9.4% 7.6%

Beam Search 33.4% 24.6% 30.9% 22.8%
Hypergraph 0.5% 1.6% 0.8% 2.4%

SB Lag. Relaxation 15.0% 35.2% 17.3% 41.4%
Beam Search 84.4% 63.1% 81.9 % 56.1%

Table 3.3: Distribution of time within optimal beam search, including: hypergraph construction
(including language model), Lagrangian relaxation, and beam search. Mean is the percentage of
total time. Median is the distribution over the median values for each row.

ods, beam search has the most time variance. Beam search also uses more time on longer sentences.

For phrase-based sentences, Lagrangian relaxation is fast, and hypergraph construction dominates.

If not for this cost, OPTBEAM would be comparable in speed to MOSES (1000).

3.8 Conclusion

In this work we develop an optimal variant of beam search and apply it to machine translation

decoding. The algorithm exploits the fact that beam search produces constrained solutions, and

uses bounds from Lagrangian relaxation to eliminate non-optimal solutions. Results show that this

form of optimal beam search is able to find exact solutions significantly faster than other exact

methods.

This chapter utilizes Lagrangian relaxation to build an variant of beam search. The algorithm

uses beam search to give valid solutions and take advantage of the upper bound obtained from

Lagrangian relaxation to prune the search space. The pruning becomes more and more effective

when the upper bound from Lagrangian relaxation becomes tighter. Combined with the optimality-

preserving pruning, the beam search is able to find the optimal solution.

The same idea that utilizes the bounding property of the Lagrangian relaxation to prune the

search space can be applied to other search method, such as A∗ search. The drawback of A∗ search

is that it terminates only when it finds the optimal solution. The process might be time consuming

when the upper bound given by Lagrangian relaxation is not tight enough. Whereas beam search

56

has the advantage of trying it quickly. One obvious modification to A∗ search is to cap the size of

the queue storing all the hypotheses. The modified A∗ search can be described as a variant of beam

search that has only one beam.

One reason that we choose beam search is because we would like to search by building the

partial translation from left to right, which is how the core dynamic programming algorithm of the

Lagrangian relaxation works. This way we can utilize the upper bound to prune the search space

effectively.

57

Chapter 4

A Local Search Algorithm

In this chapter, we propose to use local search to approach the decoding problem for phrase-

based translation models. Local search is a heuristic method that does not provide any guarantee

on the solution. However, local search can be appealing due to its ability to work with a more

complex model. For example, when applying Lagrangian relaxation, the construction discussed

in Section 2.4 is difficult to scale to higher order language model because of the size of dynamic

programming (Section 2.4.1) will increase exponentially with the order of the language model.

Whereas computing a four-gram language model is of the same order of complexity as computing

a trigram language model when it is computed for the whole sentence. Hence, local search can

easily a higher order language model without adding too much computation cost.

4.1 Introduction

The design of a machine translation model depends on several factors. In addition to translation

accuracy, we have to consider the efficiency of the decoding problem. The goal of the decoding

problem is to find the highest scoring translation in the target language, which in term involves the

scoring function and a search method. The design of the translation model affects which search

methods can be applied efficiently. On the other hand, we can also say that the search method we

employ decides the restriction on the scoring function. For example, dynamic-programming based

58

methods, which are easily extended to the widely-used method of beam search, require the scoring

function to be decomposable according to the dynamic programming states.

In this work, we propose a dependency language model that aims to improve translation qual-

ity. We incorporate the dependency language model as one more component to the log-linear

combination of scores in a phrase-based translation model. We first parse a complete sentence into

a dependency tree and use the head-modifier relations. The trigram dependency language model

looks at either the previous sibling or the grandparent of the current word. Then, we use local

search as our method to optimize the model score.

The work by Langlais et al. (2007) discussed using local search as the optimization method in

the decoding process. The proposed local search algorithm is a greedy method that scores a whole

sentence at a time and moves toward the higher scoring translation until no improvement can be

made. In a local search algorithm, we always start with a valid derivation, and at each iteration, we

maintain a valid derivation, which includes a complete target-language sentence. Then we search

the neighborhood for a higher scoring translation. A neighborhood is defined to be a set of valid

translations that can be reached by the current translation via taking a local step. The operations

consist of swapping, moving, splitting, merging and re-translating one or two phrases. A detailed

description of the local steps will be given in Section 4.5.1.

We use BLEU score, as well as a syntactic evaluation metric to measure the translation quality.

Adding the dependency language model does not affect the BLEU score significantly; however,

we do observe a significant improvement in the syntactic evaluation metric.

The rest of this chapter is structured as follows. In Section 4.2 we survey related works on

local search and syntactic phrase-based translation models. We introduce phrase-based translation

models in Section 4.3, and detail the dependency language model in Section 4.4. Section 4.5 gives

the local search algorithm. In Section 4.6, we describe the syntactic evaluation metric. Section 4.7

shows the experimental results.

59

4.2 Related Work

The local search algorithm used in our work is based on the work by Langlais et al. (2007), who

proposed a local search algorithm for the phrase-based system. We use a similar local search

algorithm and the same set of operations. The difference is that we incorporate a dependency

language model to improve the translation quality, whereas they focus on the study of local search

on phrase-based translation models. They used a reversed n-gram language model to demonstrate

that local search can work with a non-incremental scoring function, but the improvement is not

very significant.

Previously, a greedy decoding algorithm has been studied for decoding of word-based models

by Germann et al. (2001), and a faster approach was discussed in Germann (2003).

Local search has also been applied to document-wide decoding of the phrase-based translation

model (Hardmeier et al., 2012). The proposed operations are very similar to other work.

There are also works that apply local search to other natural language processing (NLP) tasks.

Zhang et al. (2014) use local search for dependency parsing, and Marcu and Wong (2002) use it for

translation alignment. Zhang et al. (2015) use randomized greedy inference for joint segmentation,

POS tagging and dependency parsing.

There are various efforts of incorporating the syntactic information into phrase-based transla-

tion models. To avoid the requirement of a complete target-language sentence, various approaches

have been proposed and studied: string-to-tree (Yamada and Knight, 2001; Huang et al., 2006;

Shen et al., 2008), tree-to-string (Liu et al., 2006; Huang and Mi, 2010), tree-to-tree approach

(Cowan et al., 2006; DeNeefe and Knight, 2009; Chiang, 2010), incremental syntactic language

model (Schwartz et al., 2011)

In our work, we use an evaluation metric proposed by Liu and Gildea (2005). It is a modified

BLEU score on head-word chains in a dependency tree. Several other works proposed syntax-

based automatic evaluation measures for machine translation. Popović and Ney (2009) proposed

BLEU score, precision, recall and F-measure on part-of-speech (POS) tags and on words and POS

tags together. Mehay and Brew (2006) used a Combinatory Categorial Grammar (CCG) parser to

60

extract word-word dependencies.

4.3 The Phrase-based Translation Model

In phrase-based translation models, the basic unit is a phrase pair consisting of a source-language

phrase and a target-language phrase. A phrase is defined to be any continuous span of words. The

goal of the decoding problem of the phrase-based translation model is to find the highest scoring

translation in the target-language, given a source-language sentence. Here we define x = x1 . . . xN

to be the source-language sentence that consists of N words. Each xi represents the ith word.

We also define a phrase pair p to be a tuple of (s, t, e) where s and t are indices into the source-

language sentence, and e is a target-language phrase that xs . . . xt can be translated into. We use

s(p), t(p), e(p) to refer to the three components of phrase pair p. We describe a derivation to be a

sequence of L phrase pairs that covers the all words in the source-language sentence once:

y = 〈p1 . . . pL〉.

The translated target-language sentence can be represented by e(y), and we use |e(y)| to denote

the number of words in the target-language sentence.

A scoring function is used to score the derivation. The usual phrase-based model has three

parts: the translation model, the language model and the distortion model.

f(y) = µt

L∑
l=1

gt(pl) + µlgl(e(y)) + µb|e(y)|+ µδ

L−1∑
l=1

gδ(t(pl), s(pl+1))

We use gt to represent the translation score, gl the language model score, and gδ the distortion

score. Each component has weight µ.

The decoding problem is to find the highest scoring derivation for a given scoring function f ,

within the set of valid derivations:

y∗ = max
y∈Y

f(y),

61

where Y is the set of valid derivations. Here we define a derivation to be valid if each source-

language word is translated exactly once and the distortion limit is satisfied. The distortion limit is

a hard constraint on how phrases can be reordered.

4.3.1 The Proposed Scoring Function

Using local search gives us the flexibility to use a scoring function that takes the whole sentence

into consideration. Unlike optimization methods based on dynamic programming, we will not

require the scoring function to be decomposable.

Our scoring function consists of the usual components of the phrase-based translation models:

the translation scores, the language model, and the distortion penalties. In addition, we add a

dependency language model to allow scoring of long-distance syntactic relationships. We define

the scoring function to be

f̂(y) = f(y) + µdgd(y),

where gd(y) is the dependency language model score that will be defined the Section 4.4

4.4 The Dependency Language Model

In order to include the syntactic structure in the scoring function, we utilize a trigram dependency

language model. For modifiers adjacent to its head, the model looks at the grandparent, and for

non-adjacent modifiers, it looks at the previous sibling. The dependency language model is built

upon tags and an unlabeled dependency tree of the sentence.

We first parse the translated target-language sentence into a dependency tree using an existing

parser. We use the notation d(y) to represent the parse tree derived from a derivation y. The

dependency tree can be viewed as a set of head-modifier pairs (h,m), where h is the head and m

is the modifier. Every word in the sentence will appear as modifier in exactly one head-modifier

relation.

In our model, we consider several features including direction, adjacency to the head, the head

62

word and its tag, the previous sibling word and its tag, and occasionally the grandparent word

(head of the head word) and its tag. We only look at the grandparent when the current word is

adjacent to the head. In that situation, there is no previous sibling. We use a four-layer back-off

model that eventually goes to the probability of the word.

The dependency language model score of a sentence is the sum of log probabilities of each

word under the model.

gd(y) =
∑

(h,m)∈d(y)

log(p(wm, tm|wh, th, dir, adj, wp, tp))

We define the following symbols:

• dir: whether the modifier is on the left (L) or on the right (R)

• adj: whether the modifier is adjacent to the head or not (True, False)

• wh: the head word

• th: the tag of the head word

• wm: the modifier word

• tm: the tag of the modifier word

• wp:

the previous sibling word if adj is False

the grandparent word (head of the head) if adj is True

• tp:

the tag of the previous sibling word if adj is False

the tag of the grandparent word if adj is True

Figure 4-1 shows an example dependency tree. The dependency language model score of this

sentence will be as follows (for brevity we omit probabilities involving the STOP symbol, which

63

ROOT the man saw the dog on Wednesday

ROOT DT NN VBD DT NN IN NNP

Figure 4-1: An example dependency tree of the sentence: the man saw a dog on Wednesday.

is always the final modifier to any head):

p(the,DT | man,NN,L, True, saw, V BD)

×p(man,NN | saw,VBD, L, True,ROOT,ROOT)

×p(saw,ROOT | ROOT,ROOT, R, True,NULL,NULL)

×p(the,DT | dog,NN, L, True, saw,VBD)

×p(dog,NN | saw,VBD, R, True,ROOT,ROOT)

×p(on, IN | Wednesday,NNP, L, True, saw,VBD)

×p(Wednesday,NNP | saw,VBD, R, False, dog,NN)

Similar to the works by Eisner (1996); Collins (1997), we decompose probability of each word-

tag pair into the product of two terms using the chain rule.

p(wm, tm|wh, th, dir, adj, wp, tp)

= p(wm|tm, wh, th, dir, adj, wp, tp)× p(tm|wh, th, dir, adj, wp, tp)

Following the back-off models in Collins (1997), we use a 4-level back-off model for smooth-

ing. The conditioning variables for each level of back-off is summarized in Table 4.1. For the

trigram probability estimate of the word given its tag, we use smoothing parameters λ1, λ2 and λ3

64

Back-off level p(wm| · · ·) p(tm| · · ·)
1 tm, wh, th, dir, adj, wp, tp wh, th, dir, adj, wp, tp
2 tm, wh, th, dir, adj wh, th, dir, adj
3 tm th, dir, adj
4 – –

Table 4.1: The conditioning variables for each level of back-off.

to produce the interpolated estimate.

p(wm|tm, wh, th, dir, adj, wp, tp) =λ1pML(wm|tm, wh, th, dir, adj, wp, tp) + (1− λ1)p(wm|tm, wh, th, dir, adj)

p(wm|tm, wh, th, dir, adj) =λ2pML(wm|tm, wh, th, dir, adj) + (1− λ2)p(wm|tm)

p(wm|tm) =λ3pML(wm|tm) + (1− λ3)p(wm)

p(wm) =pML(wm)

For the tag, we use smoothing parameters λ4, λ5 and λ6 to interpolate the lower gram proba-

bility.

p(tm|wh, th, dir, adj, wp, tp) =λ4pML(tm|wh, th, dir, adj, wp, tp) + (1− λ4)p(tm|wh, th, dir, adj)

p(tm|wh, th, dir, adj) =λ5pML(tm|wh, th, dir, adj) + (1− λ5)p(tm|th, dir, adj)

p(tm|th, dir, adj) =λ6pML(tm|th, dir, adj) + (1− λ6)p(tm)

p(tm) =pML(tm)

Each λi is derived using the following method:

λevent =
count(event)

count(event) + λu(event)

65

The event for each λi is the conditioning variable for that level. It is described here:

λ1 =λ(tm,wh,th,dir,adj,wp,tp)

λ2 =λ(tm,wh,th,dir,adj)

λ3 =λ(tm)

λ4 =λ(wh,th,dir,adj,wp,tp)

λ5 =λ(wh,th,dir,adj)

λ6 =λ(th,dir,adj)

For example,

λ1 =
count(tm, wh, th, dir, adj, wp, tp)

count(tm, wh, th, dir, adj, wp, tp) + λu(tm, wh, th, dir, adj, wp, tp)

Note that u(event) returns the number of unique word following event, and λ is a constant.

Also, pML is the maximum likelihood estimator of the probability, for example:

pML(wm|tm, wh, th, dir, adj, wp, tp) =
count(tm, wh, th, dir, adj, wp, tp, wm)

count(tm, wh, th, dir, adj, wp, tp)
(4.1)

4.5 Local Search Algorithm

We use a local search algorithm with hill-climbing strategy. It starts from an initial state, and

moves to a higher scoring neighboring state at each iteration, until there is no higher scoring state

in its neighborhood. In our algorithm, each state is a valid derivation. A state can transition to

another state by taking a local step. Section 4.5.1 gives the definition of all local steps we use. We

can described each type of local step as a function that maps one state to a set of states. Each type

of local steps defines a partial neighborhood.

66

Initialization: Get a initial derivation y = p1 . . . pL using beam search with beam size 1000, with no
dependency language model
for t = 1 . . . T

s = f(y)

for N ∈ {NSwap,NMove,NSplit,NMerge}
for y′ ∈ N (y)

Parse the complete sentence e(y′) into a tree d(y′)
if f(y′) > f(y)

y ← y′

if f(y) = s

break

Figure 4-2: The local search algorithm for phrase-based decoding.

In our algorithm, we explore the neighborhood and find the highest scoring state in the neigh-

borhood. Each state is a complete derivation, and we need to score all states in the neighborhood.

Each time a derivation is proposed, we need to parse it into a dependency tree and score it using

the scoring function introduced in Section 4.3.1. If the score is higher than the current state, we

transition to this new state. Otherwise, we have found a local maximum and the algorithm stops.

The algorithm is described in Figure 4-2.

4.5.1 Local Steps

There are four types of local steps in our local search algorithm. They are swap, move, split, and

merge. We assume that the current derivation we have is

y = 〈p1p2 . . . pL〉

We will describe each type of the local steps in the following sections. In each operation, there

are one or two phrases involved. Note that for all operations, we consider the alternative target-

language translations of the involved phrases.

67

4.5.1.1 Swap

With the Swap operation, we pick two phrases and swap their locations. The resulting derivation

of swapping phrase i and phrase j can be defined as

yi:j = 〈p1 . . . pi−1pjpi+1 . . . pj−1pipj+1 . . . pL〉,

assuming that i < j.

4.5.1.2 Move

With the move operation, we pick one phrase and move it to another position. The resulting

derivation of moving phrase i to the position of phrase j can be defined as

yi→j = 〈p1 . . . pj−1pipjpj+1 . . . pL〉.

4.5.1.3 Split

The split operation takes one phrase p = (s, t, e) such that t− s ≥ 1 and replaces it by two phrases

p′ = (s, u, e′) and p′′ = (u+ 1, t, e′′) such that s ≤ u and u+ 1 ≤ t. The resulting derivation is

yi:p′ip′′i = 〈p1 . . . pi−1p′ip′′i pi+1 . . . pL〉

4.5.1.4 Merge

The merge operation takes two neighboring phrases that are together covering a continuous span in

the source-language and replace the two phrases by one phrase that cover the same span. Suppose

the two neighboring phrases are at position i and i + 1: pi = (s, t, e) and pi+1 = (s′, t′, e′). There

are two cases that pi and pi+1 are covering the same span:

1. s′ − t = 1

2. s− t′ = 1

68

We replace them by a phrase p̂ = (ŝ, t̂, ê) such that either of the following is true:

1. ŝ = s and t̂ = t′ if s′ − t = 1

2. ŝ = s′ and t̂ = t if s− t′ = 1

The resulting derivation is

yi,i+1:p̂ = 〈p1 . . . pi−1p̂pi+2 . . . pL〉.

4.5.2 Neighborhood

The neighborhoodN (y) of the currently derivation y is a set of valid derivations that can be reached

by local steps. We define four types of neighborhood according to the four types of local steps. In

our local search algorithm, we iterate through the four types of neighborhood. Each time we move

to the highest scoring state in one neighborhood. We stop iterating when there is no improvement

in all four types of neighborhood.

Each neighborhood contains only the valid derivation, and we use a function feasible(y) to

check if a new derivation y satisfies the distortion limit. The partial neighborhood that is defined

by each local step can be defined as follows:

• Nswap(y) = {yi:j : i ∈ {1 . . . L}, j ∈ {i+ 1 . . . L}, feasible(yi:j)}

• Nmove(y) = {yi→j : i, j ∈ {1 . . . L, feasible(yi→j)}

• Nsplit(y) = {yi:p′ip′′i : t(pi) − s(pi) ≥ 1, p′i = (s(pi), u, e
′), p′′i = (u + 1, t(pi), e

′′) ∀i ∈

{1 . . . L}, feasible(yi:p′ip′′i)}

• Nmerge(y) = {yi,i+1:p̂ : constraints in Section 4.5.1.4 satisfied ∀ i ∈ {1 . . . L−1}, feasible(yi,i+1:p̂)}

69

4.6 Dependency BLEU score

In addition to BLEU score (Papineni et al., 2002), we use HWCM (Head-Word Chain based Met-

ric), an evaluation metric proposed by Liu and Gildea (2005), to evaluate the translation quality.

HWCM is a dependency based BLEU score that reflects the similarity of the syntactic structures

between the proposed translation and the reference translation. We modified it slightly to incorpo-

rate the brevity penalty (BP) as in the computation of BLEU score. We will use HWCMBLEU to

denote it.

HWCM replaces the word n-gram by dependency n-gram. The dependency n-gram are de-

termined by tracing the head-modifier relations in the dependency tree. The unigram consists of

single words, the same as in the usual language model. The bigram, which is a 2-word head word

chain, is defined to be the head-modifier pair. The trigram, which is a 3-word headword chain, is a

triple of grandparent, head, and modifier, where grandparent is the head of the head. The four-gram

(4-word headword chain) is a tuple of grand-grandparent, grandparent, head, and modifier. If for

any word, the length of a chain is less than the desired length, we use NULL to fill it. Figure 4-3

shows an example of a dependency tree and lists the 4-word headword chains.

The sentences in both the proposed translation and the reference translation are parsed into

dependency trees. The headword chains for both trees are extracted. The rest of the computation

of the score is the same as the original BLEU score. In our experiment, the maximum length

of the headword chains is four. Let pn be the modified dependency n-gram precision, then the

HWCMBLEU score is defined as follows:

HWCMBLEU = BP × exp

(
4∑

n=1

1

4
log pn

)
,

where BP = exp(1− reference translation length
proposed translation length)

Following the original BLEU score, the modified precision score pn only count the smaller

70

ROOT the man saw the dog

Figure 4-3: An example dependency tree. The 4-word headword chains are (ROOT, saw, man,
the), (NULL, ROOT, saw, man), (NULL, NULL, ROOT, saw), (ROOT, saw, dog, the),
(NULL, ROOT, saw, dog).

number of the appearance of a token as hit.

pn =
min(count(t) in proposed translation, count(t) in reference translation)

count(t) in proposed translation

4.7 Experiments

Our experiments compare the translation quality of our method to the phrase-based model.

We test the model on the German-to-English Europarl data set (Koehn, 2005). When decoding,

we use reordered German sentences (Collins et al., 2005) as our input. The reordering was utilizing

the source-language (German) syntactic structure, while our method is incorporating the target-

language (English) dependency structure. We use a set of 500 sentences for parameter tuning (see

below). The standard test set consists of 2000 sentences. We use the first half as the development

set and the second half as the test set.

In our experiments, we use the output from the Moses decoder with beam size 1000 to seed our

local search. We compare our model which include the dependency language model and the usual

phrase-based model. We use MERT (Och, 2003) to obtain the weights for each component of the

phrase-based model. Then, the simplex method Nelder and Mead (1965) is used to tune the three

parameters of language model (µl), dependency language (µd) and the word bonus (µb).

Each time we score a complete sentence, we parse the sentence using the Yara Parser (Rasooli

and Tetreault, 2015), an implementation of the arc-eager dependency model (Nivre, 2004) with

averaged perceptron training (Collins, 2002). The parser was trained on the Wall Street Journal

71

Development Test
phrase-based +deplm phrase-based +deplm

BLEU 26.29 26.20 26.36 26.53
HWCMBLEU 21.51 22.27 22.31 23.52

Table 4.2: Development and test set results show the effectiveness of adding the dependency lan-
guage model in terms of the syntactic evaluation metric HWCMBLEU . Here phrase-based is the
original phrase-based model, and +deplm is our method that includes the dependency language
model. Both methods are optimized using local search algorithm seeded with the same beam
search results.

Local step %
Swap 38
Move 4
Split 42
Merge 16

Table 4.3: The percentage of how often each type of local steps is taken to reach a higher scoring
state. The number is based on the test data consisting of 1000 sentences.

data set. We set beam size to one for speed reason. The same parser is employed to build the

dependency language model using the Europarl training set.

Table 4.2 shows the results on two metrics: BLEU and the syntactic evaluation metric HWCMBLEU

described in Section 4.6. The baseline is the phrase-based model phrase-based. Our method that

includes the dependency language model into the scoring function is denoted by +deplm. Both

methods use outputs from Moses as the initial state. The original phrase-based model is also opti-

mized by the local search. Having the dependency language model, the HWCMBLEU is increased

by 0.7 on the development set and by 1.2 on the test set.

On the test set, we see improvement of scores on 93% of sentences after applying local search.

It is not surprising since the initial state uses translation output from Moses which does not take

the dependency language model score into account. The average number of local steps taken is 2.5

steps. Table 4.3 shows how often each type of local steps is taken. The Swap and Split are applied

most often.

72

4.8 Conclusion

This chapter focuses on improving the translation quality. We include a dependency language

model into the phrase-based translation model and use local search to optimize the model. The

experimental results show that the translation quality is improved in terms of a syntactic evaluation

metric.

In addition to consider the one-best tree when computing the dependency language model

score, we can also consider multiple trees at the same time. One idea is to obtain the k-best parse

trees and sum over the k trees, which can be viewed as marginalizing the probability. This strategy

might be able to reduce the noise given by the parser.

Moreover, our method could be extended to include other information, since local search allows

a more flexible design of the scoring function. In addition to syntactic information, we could also

consider semantic information of the proposed translation.

Local search can be explored in more depth. One obvious strategy is to include randomization

in the local search algorithm, such as random restart, which has shown improvement in various

other applications. Alternative variants of local search are worth exploring as well. One example

is stimulated annealing, which utilize randomness to avoid being stuck at local optima. We can

also consider maintaining more than one state at a time.

Other improvement to the local search include different strategies to enlarge the search space

of each local step. We can replace the exhaustive search in our algorithm by other optimization

algorithms. For example, Lagrangian relaxation might be used to do efficient search over the search

space of a neighborhood.

73

Chapter 5

Bidirectional Word Alignment

[This chapter is adapted from joint work with Alexander Rush, John DeNero, and Michael Collins

entitled “A Constrained Viterbi Relaxation for Bidirectional Word Alignment” (Chang et al., 2014).]

In this chapter, we turn from phrase-based translation to bidirectional word alignment. The

bidirectional word alignment formulation we work with is NP-hard. Our focus is on exact decoding

algorithm based on Lagrangian relaxation. To achieve higher convergence rate, we use a tightening

technique that incrementally re-introduce the constraints. To compensate for the cost of adding

constraints, we use a optimality-preserving pruning to reduce the size of the search space.

5.1 Introduction

Word alignment is a critical first step for building statistical machine translation systems. In order

to ensure accurate word alignments, most systems employ a post-hoc symmetrization step to com-

bine directional word aligners, such as IBM Model 4 (Brown et al., 1993) or hidden Markov model

(HMM) based aligners (Vogel et al., 1996). Several authors have proposed bidirectional models

that incorporate this step directly, but decoding under many bidirectional models is NP-Hard and

finding exact solutions has proven difficult.

In this chapter, we describe a novel Lagrangian-relaxation based decoder for the bidirectional

model proposed by DeNero and Macherey (2011), with the goal of improving search accuracy.

74

In that work, the authors implement a dual decomposition-based decoder for the problem, but are

only able to find exact solutions for around 6% of instances.

Our decoder uses a simple variant of the Viterbi algorithm for solving a relaxed version of this

model. The algorithm makes it easy to re-introduce constraints for difficult instances, at the cost

of increasing run-time complexity. To offset this cost, we employ optimality-preserving coarse-to-

fine pruning to reduce the search space. The pruning method utilizes lower bounds on the cost of

valid bidirectional alignments, which we obtain from a fast, greedy decoder.

The method has the following properties:

• It is based on a novel relaxation for the model of DeNero and Macherey (2011), solvable

with a variant of the Viterbi algorithm.

• To find optimal solutions, it employs an efficient strategy that alternates between adding

constraints and applying pruning.

• Empirically, it is able to find exact solutions on 86% of sentence pairs and is significantly

faster than general-purpose solvers.

We begin in Section 5.2 by formally describing the directional word alignment problem. Sec-

tion 5.3 describes a preliminary bidirectional model using full agreement constraints and a La-

grangian relaxation-based solver. Section 5.4 modifies this model to include adjacency constraints.

Section 5.5 describes an extension to the relaxed algorithm to explicitly enforce constraints, and

Section 5.6 gives a pruning method for improving the efficiency of the algorithm.

Experiments compare the search error and accuracy of the new bidirectional algorithm to sev-

eral directional combiners and other bidirectional algorithms. Results show that the new relaxation

is much more effective at finding exact solutions and is able to produce comparable alignment

accuracy.

Notation We use lower- and upper-case letters for scalars and vectors, and script-case for sets

e.g. X . For vectors, such as v ∈ {0, 1}[(I×J)∪J], where I and J are finite sets, we use the notation

75

ε m
on
tr
ez

- no
us

le
s

do
cu
m
en
ts

ε

let

us

see

the

documents

Figure 5-1: An example e→f directional alignment for the sentences let us see the documents
and montrez - nous les documents, with I = 5 and J = 5. The indices i ∈ [I]0 are rows, and
the indices j ∈ [J]0 are columns. The HMM alignment shown has transitions x(0, 1, 1) = x(1, 2, 3) =
x(3, 3, 1) = x(1, 4, 4) = x(4, 5, 5) = 1.

v(i, j) and v(j) to represent elements of the vector. Define d = δ(i) to be the indicator vector with

d(i) = 1 and d(i′) = 0 for all i′ 6= i. Finally define the notation [J] to refer to {1 . . . J} and [J]0 to

refer to {0 . . . J}.

5.2 Background

The focus of this work is on the word alignment decoding problem. Given a sentence e of length

|e| = I and a sentence f of length |f | = J , our goal is to find the best bidirectional alignment

between the two sentences under a given objective function. Before turning to the model of interest,

we first introduce directional word alignment.

5.2.1 Word Alignment

In the e→f word alignment problem, each word in e is aligned to a word in f or to the null word ε.

This alignment is a mapping from each index i ∈ [I] to an index j ∈ [J]0 (where j = 0 represents

alignment to ε). We refer to a single word alignment as a link.

A first-order HMM alignment model (Vogel et al., 1996) is an HMM of length I + 1 where

the hidden state at position i ∈ [I]0 is the aligned index j ∈ [J]0, and the transition score takes

into account the previously aligned index j′ ∈ [J]0.1 Formally, define the set of possible HMM

1Our definition differs slightly from other HMM-based aligners in that it does not track the last ε alignment.

76

alignments as X ⊂ {0, 1}[([I]0×[J]0)∪([I]×[J]0×[J]0)] with

X =

x : x(0, 0) = 1,

x(i, j) =
J∑

j′=0

x(j′, i, j) ∀i ∈ [I], j ∈ [J]0,

x(i, j) =

J∑
j′=0

x(j, i+ 1, j′) ∀i ∈ [I − 1]0, j ∈ [J]0

where x(i, j) = 1 indicates that there is a link between index i and index j, and x(j′, i, j) = 1

indicates that index i − 1 aligns to index j′ and index i aligns to j. Figure 5-1 shows an example

member of X .

The constraints of X enforce backward and forward consistency respectively. If x(i, j) = 1,

backward consistency enforces that there is a transition from (i− 1, j′) to (i, j) for some j′ ∈ [J]0,

whereas forward consistency enforces a transition from (i, j) to (i + 1, j′) for some j′ ∈ [J]0.

Informally the constraints “chain” together the links.

The HMM objective function f : X → R can be written as a linear function of x

f(x; θ) =
I∑
i=1

J∑
j=0

J∑
j′=0

θ(j′, i, j)x(j′, i, j)

where the vector θ ∈ R[I]×[J]0×[J]0 includes the transition and alignment scores. For a generative

model of alignment, we might define θ(j′, i, j) = log(p(ei|fj)p(j|j′)). For a discriminative model

of alignment, we might define θ(j′, i, j) = w · φ(i, j′, j, f , e) for a feature function φ and weights

w (Moore, 2005; Lacoste-Julien et al., 2006).

Now reverse the direction of the model and consider the f→e alignment problem. An f→e

alignment is a binary vector y ∈ Y where for each j ∈ [J], y(i, j) = 1 for exactly one i ∈ [I]0.

Define the set of HMM alignments Y ⊂ {0, 1}[([I]0×[J]0)∪([I]0×[I]0×[J])] as

77

Y =

y : y(0, 0) = 1,

y(i, j) =
I∑

i′=0

y(i′, i, j) ∀i ∈ [I]0, j ∈ [J],

y(i, j) =

I∑
i′=0

y(i, i′, j + 1) ∀i ∈ [I]0, j ∈ [J − 1]0

Similarly define the objective function

g(y;ω) =
J∑
j=1

I∑
i=0

I∑
i′=0

ω(i′, i, j)y(i′, i, j)

with vector ω ∈ R[I]0×[I]0×[J].

Note that for both of these models we can solve the optimization problem exactly using the

standard Viterbi algorithm for HMM decoding. The first can be solved in O(IJ2) time and the

second in O(I2J) time.

5.3 Bidirectional Alignment

The directional bias of the e→f and f→e alignment models may cause them to produce differing

alignments. To obtain the best single alignment, it is common practice to use a post-hoc algorithm

to merge these directional alignments (Och et al., 1999a). First, a directional alignment is found

from each word in e to a word f . Next an alignment is produced in the reverse direction from f to

e. Finally, these alignments are merged, either through intersection, union, or with an interpolation

algorithm such as grow-diag-final (Koehn et al., 2003).

In this work, we instead consider a bidirectional alignment model that jointly considers both

directional models. We begin in this section by introducing a simple bidirectional model that en-

forces full agreement between directional models and giving a relaxation for decoding. Section 5.4

loosens this model to adjacent agreement.

78

ε m
on
tr
ez

- no
us

le
s

do
cu
m
en
ts

ε

let

us

see

the

documents

(a)

ε m
on
tr
ez

- no
us

les do
cu
m
en
ts

ε

let

us

see

the

documents

(b)

Figure 5-2: (a) An example alignment pair (x, y) satisfying the full agreement conditions. The x alignment
is represented with circles and the y alignment with triangles. (b) An example f→e alignment y ∈ Y ′ with
relaxed forward constraints. Note that unlike an alignment from Y multiple words may be aligned in a
column and words may transition from non-aligned positions.

5.3.1 Enforcing Full Agreement

Perhaps the simplest post-hoc merging strategy is to retain the intersection of the two directional

models. The analogous bidirectional model enforces full agreement to ensure the two alignments

select the same non-null links i.e.

x∗, y∗ = arg max
x∈X ,y∈Y

f(x) + g(y) s.t.

x(i, j) = y(i, j) ∀i ∈ [I], j ∈ [J]

We refer to the optimal alignments for this problem as x∗ and y∗.

Unfortunately this bidirectional decoding model is NP-Hard (a proof is given in Appendix B.1).

As it is common for alignment pairs to have |f | or |e| over 40, exact decoding algorithms are

intractable in the worst-case.

Instead we will use Lagrangian relaxation for this model. At a high level, we will remove a

subset of the constraints from the original problem and replace them with Lagrange multipliers. If

we can solve this new problem efficiently, we may be able to get optimal solutions to the original

79

problem. (See the tutorial by Rush and Collins (2012) describing the method.)

There are many possible subsets of constraints to consider relaxing. The relaxation we use

preserves the agreement constraints while relaxing the Markov structure of the f→e alignment.

This relaxation will make it simple to later re-introduce constraints in Section 5.5.

We relax the forward constraints of set Y . Without these constraints the y links are no longer

chained together. This relaxation has two consequences: (1) for index j there may be any number

of indices i, such that y(i, j) = 1, (2) if y(i′, i, j) = 1 it is no longer required that y(i′, j − 1) = 1.

The relaxation gives a set Y ′ which is a superset of Y

Y ′ =

 y : y(0, 0) = 1,

y(i, j) =
∑I

i′=0 y(i
′, i, j) ∀i ∈ [I]0, j ∈ [J]

Figure 5-2b shows a possible y ∈ Y ′ and a valid unchained structure.

To form the Lagrangian dual with relaxed forward constraints, we introduce a vector of La-

grange multipliers, λ ∈ R[I−1]0×[J]0 , with one multiplier for each original constraint. The La-

grangian dual L(λ) is defined as

max
x∈X ,y∈Y ′,
x(i,j)=y(i,j)

f(x) +

I∑
i=1

J∑
j=0

I∑
i′=0

y(i′, i, j)ω(i′, i, j) (5.1)

−
I∑
i=0

J−1∑
j=0

λ(i, j)

(
y(i, j)−

I∑
i′=0

y(i, i′, j + 1)

)

= max
x∈X ,y∈Y ′,
x(i,j)=y(i,j)

f(x) +

I∑
i=1

J∑
j=0

I∑
i′=0

y(i′, i, j)ω′(i′, i, j) (5.2)

= max
x∈X ,y∈Y ′,
x(i,j)=y(i,j)

f(x) +
I∑
i=1

J∑
j=0

y(i, j) max
i′∈[I]0

ω′(i′, i, j) (5.3)

= max
x∈X ,y∈Y ′,
x(i,j)=y(i,j)

f(x) + g′(y;ω, λ) (5.4)

80

Line 5.2 distributes the λ’s and introduces a modified potential vector ω′ defined as

ω′(i′, i, j) = ω(i′, i, j)− λ(i, j) + λ(i′, j − 1)

for all i′ ∈ [I]0, i ∈ [I]0, j ∈ [J]. Line 5.3 utilizes the relaxed set Y ′ which allows each y(i, j)

to select the best possible previous link (i′, j − 1). Line 5.4 introduces the modified directional

objective

g′(y;ω, λ) =
I∑
i=1

J∑
j=0

y(i, j) max
i′∈[I]0

ω′(i′, i, j)

The Lagrangian dual is guaranteed to be an upper bound on the optimal solution, i.e. for all

λ, L(λ) ≥ f(x∗) + g(y∗). Lagrangian relaxation attempts to find the tighest possible upper bound

by minimizing the Lagrangian dual, minλ L(λ), using subgradient descent. Briefly, subgradient

descent is an iterative algorithm, with two steps. Starting with λ = 0, we iteratively

1. Set (x, y) to the arg max of L(λ).

2. Update λ(i, j) for all i ∈ [I − 1]0, j ∈ [J]0,

λ(i, j)← λ(i, j)− ηt
(
y(i, j)−

I∑
i′=0

y(i, i′, j + 1)
)

.

where ηt > 0 is a step size for the t’th update. If at any iteration of the algorithm the forward

constraints are satisfied for (x, y), then f(x) + g(y) = f(x∗) + g(x∗) and we say this gives a

certificate of optimality for the underlying problem.

To run this algorithm, we need to be able to efficiently compute the (x, y) pair that is the

arg max of L(λ) for any value of λ. Fortunately, since the y alignments are no longer constrained

to valid transitions, we can compute these alignments by first picking the best f→e transitions

for each possible link, and then running an e→f Viterbi-style algorithm to find the bidirectional

alignment.

81

procedure VITERBIFULL(θ, ω′)
Let π, ρ be dynamic programming charts.
ρ[i, j]← max

i′∈[I]0
ω′(i′, i, j) ∀ i ∈ [I], j ∈ [J]0

π[0, 0]←∑J
j=1max{0, ρ[0, j]}

for i ∈ [I], j ∈ [J]0 in order do
π[i, j]← max

j′∈[J]0
θ(j′, i, j) + π[i− 1, j′]

if j 6= 0 then π[i, j]← π[i, j] + ρ[i, j]

return maxj∈[J]0 π[I, j]

Figure 5-3: Viterbi-style algorithm for computing L(λ). For simplicity the algorithm shows the max
version of the algorithm, argmax can be computed with back-pointers.

The max version of this algorithm is shown in Figure 5-3. It consists of two steps. We first

compute the score for each y(i, j) variable. We then use the standard Viterbi update for computing

the x variables, adding in the score of the y(i, j) necessary to satisfy the constraints.

5.4 Adjacent Agreement

Enforcing full agreement can be too strict an alignment criteria. DeNero and Macherey (2011)

instead propose a model that allows near matches, which we call adjacent agreement. Adjacent

agreement allows links from one direction to agree with adjacent links from the reverse alignment

for a small penalty. Figure 5-4a shows an example of a valid bidirectional alignment under adjacent

agreement.

In this section we formally introduce adjacent agreement, and propose a relaxation algorithm

for this model. The key algorithmic idea is to extend the Viterbi algorithm in order to consider

possible adjacent links in the reverse direction.

5.4.1 Enforcing Adjacency

Define the adjacency set K = {−1, 0, 1}. A bidirectional alignment satisfies adjacency if for all

i ∈ [I], j ∈ [J],

• If x(i, j) = 1, it is required that y(i + k, j) = 1 for exactly one k ∈ K (i.e. either above,

82

ε m
on
tr
ez

- no
us

les do
cu
m
en
ts

ε

let

us

see

the

documents

(a)

ε m
on
tr
ez

- no
us

le
s

do
cu
m
en
ts

ε

let

us

see

the

documents

(b)

Figure 5-4: (a) An alignment satisfying the adjacency constraints. Note that x(2, 1) = 1 is allowed because
of y(1, 1) = 1, x(4, 3) = 1 because of y(3, 3), and y(3, 1) because of x(3, 2). (b) An adjacent bidirectional
alignment in progress. Currently x(2, 2) = 1 with zl(−1) = 1 and z↔(−1) = 1. The last transition was
from x(1, 3) with z↔′(−1) = 1, z↔′(0) = 1, zl

′
(0) = 1.

center, or below). We indicate which position with variables zli,j ∈ {0, 1}[]K

• If x(i, j) = 1, it is allowed that y(i, j+k) = 1 for any k ∈ K (i.e. either left, center, or right)

and all other y(i, j′) = 0. We indicate which positions with variables z↔i,j ∈ {0, 1}[]K

Formally for x ∈ X and y ∈ Y , the pair (x, y) is feasible if there exists a z from the set

Z(x, y) ⊂ {0, 1}[K2×[I]×[J]] defined as

Z(x, y) =

z : ∀i ∈ [I], j ∈ [J]

zli,j ∈ {0, 1}[K], z↔i,j ∈ {0, 1}[K]

x(i, j) =
∑
k∈K

zli,j(k),
∑
k∈K

z↔i,j(k) = y(i, j),

zli,j(k) ≤ y(i+ k, j) ∀k ∈ K : i+ k > 0,

x(i, j) ≥ z↔i,j−k(k) ∀k ∈ K : j + k > 0

83

Additionally adjacent, non-overlapping matches are assessed a penalty α calculated as

h(z) =
I∑
i=1

J∑
j=1

∑
k∈K

α|k|(zli,j(k) + z↔i,j(k))

where α ≤ 0 is a parameter of the model. The example in Figure 5-4a includes a 3α penalty.

Adding these penalties gives the complete adjacent agreement problem

arg max
z∈Z(x,y)
x∈X ,y∈Y

f(x) + g(y) + h(z)

Next, apply the same relaxation from Section 5.3.1, i.e. we relax the forward constraints of the

f→e set. This yields the following Lagrangian dual

L(λ) = max
z∈Z(x,y)
x∈X ,y∈Y ′

f(x) + g′(y;ω, λ) + h(z)

Despite the new constraints, we can still compute L(λ) in O(IJ(I + J)) time using a variant

of the Viterbi algorithm. The main idea will be to consider possible adjacent settings for each

link. Since each zli,j and z↔i,j only have a constant number of settings, this modification does not

increase the asymptotic complexity of the algorithm.

Figure 5-5 shows the algorithm for computing L(λ). The main loop of the algorithm is similar

to Figure 5-3. It proceeds row-by-row, picking the best alignment x(i, j) = 1. The major change

is that the chart π also stores a value z ∈ {0, 1}[K×K] representing a possible zli,j, z↔i,j pair. Since

we have the proposed zi,j in the inner loop, we can include the scores of the adjacent y alignments

that are in neighboring columns, as well as the possible penalty for matching x(i, j) to a y(i+k, j)

in a different row. Figure 5-4b gives an example setting of z.

In the dynamic program, we need to ensure that the transitions between the z’s are consistent.

The vector z′ indicates the y links adjacent to x(i− 1, j′). If j′ is near to j, z′ may overlap with z

and vice-versa. The transition set N ensures these indicators match up

84

procedure VITERBIADJ(θ, ω′)
ρ[i, j]← max

i′∈[I]0
ω′(i′, i, j) ∀ i ∈ [I], j ∈ [J]0

π[0, 0]←∑J
j=1max{0, ρ[0, j]}

for i ∈ [I], j ∈ [J]0, zl, z↔ ∈ {0, 1}[|K|] do
π[i, j, z]←

max
j′∈[J]0,

z′∈N (z,j−j′)

θ(j′, i, j) + π[i− 1, j′, z′]

+
∑
k∈K

z↔(k)(ρ[i, j + k] + α|k|)

+zl(k)α|k|
return maxj∈[J]0,z∈{0,1}[|K×K|] π[I, j, z]

Figure 5-5: Modified Viterbi algorithm for computing the adjacent agreement L(λ).

N (z, k′) =

z′ : (zl(−1) ∧ k′ ∈ K)⇒ z↔′(k′),

(zl
′
(1) ∧ k′ ∈ K)⇒ z↔(−k′),∑

k∈K z
l(k) = 1

5.5 Adding Back Constraints

In general, it can be shown that Lagrangian relaxation is only guaranteed to solve a linear program-

ming relaxation of the underlying combinatorial problem. For difficult instances, we will see that

this relaxation often does not yield provably exact solutions. However, it is possible to “tighten”

the relaxation by re-introducing constraints from the original problem.

In this section, we extend the algorithm to allow incrementally re-introducing constraints. In

particular we track which constraints are most often violated in order to explicitly enforce them in

the algorithm.

Define a binary vector p ∈ {0, 1}[[I−1]0×[J]0] where p(i, j) = 1 indicates a previously relaxed

constraint on link y(i, j) that should be re-introduced into the problem. Let the new partially

85

constrained Lagrangian dual be defined as

L(λ; p) = max
z∈Z(x,y)
x∈X ,y∈Y ′

f(x) + g′(y;ω, λ) + h(z)

y(i, j) =
∑
i′

y(i, i′, j + 1) ∀i, j : p(i, j) = 1

If p = ~1, the problem includes all of the original constraints, whereas p = ~0 gives our original

Lagrangian dual. In between we have progressively more constrained variants.

In order to compute the arg max of this optimization problem, we need to satisfy the constraints

within the Viterbi algorithm. We augment the Viterbi chart with a count vector d ∈ D where

D ⊂ Z ||p||1 and d(i, j) is a count for the (i, j)’th constraint, i.e. d(i, j) = y(i, j) −∑i′ y(i′, i, j).

Only solutions with count 0 at the final position satisfy the active constraints. Additionally define

a helper function [·]D as the projection from Z [I−1]0×[J] → D, which truncates dimensions without

constraints.

Figure 5-6 shows this constrained Viterbi relaxation approach. It takes p as an argument and

enforces the active constraints. For simplicity, we show the full agreement version, but the adjacent

agreement version is similar. The main new addition is that the inner loop of the algorithm ensures

that the count vector d is the sum of the counts of its children d′ and d− d′.

Since each additional constraint adds a dimension to d, adding constraints has a multiplicative

impact on running time. Asymptotically the new algorithm requires O(2||p||1IJ(I+J)) time. This

is a problem in practice as even adding a few constraints can make the problem intractable. We

address this issue in the next section.

5.6 Pruning

Re-introducing constraints can lead to an exponential blow-up in the search space of the Viterbi

algorithm. In practice though, many alignments in this space are far from optimal, e.g. aligning

a common word like the to nous instead of les. Since Lagrangian relaxation re-computes the

86

procedure CONSVITERBIFULL(θ, ω′, p)
for i ∈ [I], j ∈ [J]0, i

′ ∈ [I] do
d← |δ(i, j)− δ(i′, j − 1)|D
ρ[i, j, d]← ω′(i′, i, j)

for j ∈ [J], d ∈ D do
π[0, 0, d]← max

d′∈D
π[0, 0, d′] + ρ[0, j, d− d′]

for i ∈ [I], j ∈ [J]0, d ∈ D do
if j = 0 then
π[i, j, d]← max

j′∈[J]0
θ(j′, i, j) + π[i− 1, j′, d]

else
π[i, j, d]←

max
j′∈[J]0,d′∈D

θ(j′, i, j) + π[i− 1, j′, d′]

+ρ[i, j, d− d′]
return maxj∈[J]0 π[I, j,0]

Figure 5-6: Constrained Viterbi algorithm for finding partially-constrained, full-agreement alignments.
The argument p indicates which constraints to enforce.

alignment many times, it would be preferable to skip these links in later rounds, particularly after

re-introducing constraints.

In this section we describe an optimality preserving coarse-to-fine algorithm for pruning. Ap-

proximate coarse-to-fine pruning algorithms are widely used within NLP, but exact pruning is less

common. Our method differs in that it only eliminates non-optimal transitions based on a lower-

bound score. After introducing the pruning method, we present an algorithm to make this method

effective in practice by producing high-scoring lower bounds for adjacent agreement.

5.6.1 Thresholding Max-Marginals

Our pruning method is based on removing transitions with low max-marginal values. Define the

max-marginal value of an e→f transition in our Lagrangian dual as

M(j′, i, j;λ) = max
z∈Z(x,y),
x∈X ,y∈Y ′

f(x) + g′(y;λ) + h(z)

s.t. x(j′, i, j) = 1

87

where M gives the value of the best dual alignment that transitions from (i− 1, j′) to (i, j). These

max-marginals can be computed by running a forward-backward variant of any of the algorithms

described thus far.

We make the following claim about max-marginal values and any lower-bound score

Lemma 1 (Safe Pruning). For any valid constrained alignment x ∈ X , y ∈ Y , z ∈ Z(x, y) and

for any dual vector λ ∈ R[I−1]0×[J]0 , if there exists a transition j′, i, j with max-marginal value

M(j′, i, j;λ) < f(x) + g(y) + h(z) then the transition will not be in the optimal alignment, i.e.

x∗(j′, i, j) = 0.

This lemma tells us that we can prune transitions whose dual max-marginal value falls below

a threshold without pruning possibly optimal transitions. Pruning these transitions can speed up

Lagrangian relaxation without altering its properties.

Furthermore, the threshold is determined by any feasible lower bound on the optimal score,

which means that better bounds can lead to more pruning.

5.6.2 Finding Lower Bounds

Since the effectiveness of pruning is dependent on the lower bound, it is crucial to be able to pro-

duce high-scoring alignments that satisfy the agreement constraints. Unfortunately, this problem is

non-trivial. For instance, taking the union of directional alignments does not guarantee a feasible

solution; whereas taking the intersection is trivially feasible but often not high-scoring.

To produce higher-scoring feasible bidirectional alignments we introduce a heuristic algorithm.

The algorithm starts with any feasible alignment (x, y, z). It runs the following greedy loop:

1. Repeat until there exists no x(i, 0) = 1 or y(0, j) = 1, or there is no score increase.

(a) For each i ∈ [I], j ∈ [J]0, k ∈ K : x(i, 0) = 1, check if x(i, j)← 1 and y(i, j+k)← 1

is feasible, remember score.

(b) For each i ∈ [I]0, j ∈ [J], k ∈ K : y(0, j) = 1, check if y(i, j)← 1 and x(i+k, j)← 1

is feasible, remember score.

88

1-20 (28%) 21-40 (45%) 41-60 (27%) all
time cert exact time cert exact time cert exact time cert exact

ILP 15.12 100.0 100.0 364.94 100.0 100.0 2,829.64 100.0 100.0 924.24 100.0 100.0
LR 0.55 97.6 97.6 4.76 55.9 55.9 15.06 7.5 7.5 6.33 54.7 54.7
CONS 0.43 100.0 100.0 9.86 95.6 95.6 61.86 55.0 62.5 21.08 86.0 88.0
D&M - 6.2 - - 0.0 - - 0.0 - - 6.2 -

Table 5.1: Experimental results for model accuracy of bilingual alignment. Column time is the
mean time per sentence pair in seconds; cert is the percentage of sentence pairs solved with a cer-
tificate of optimality; exact is the percentage of sentence pairs solved exactly. Results are grouped
by sentence length. The percentage of sentence pairs in each group is shown in parentheses.

(c) Let (x, y, z) be the highest-scoring feasible solution produced.

This algorithm produces feasible alignments with monotonically increasing score, starting from the

intersection of the alignments. It has run-time of O(IJ(I + J)) since each inner loop enumerates

IJ possible updates and assigns at least one index a non-zero value, limiting the outer loop to I+J

iterations.

In practice we initialize the heuristic based on the intersection of x and y at the current round

of Lagrangian relaxation. Experiments show that running this algorithm significantly improves the

lower bound compared to just taking the intersection, and consequently helps pruning significantly.

5.7 Related Work

The most common techniques for bidirectional alignment are post-hoc combinations, such as union

or intersection, of directional models, (Och et al., 1999a), or more complex heuristic combiners

such as grow-diag-final (Koehn et al., 2003).

Several authors have explored explicit bidirectional models in the literature. Cromieres and

Kurohashi (2009) use belief propagation on a factor graph to train and decode a one-to-one word

alignment problem. Qualitatively this method is similar to ours, although the model and decoding

algorithm are different, and their method is not able to provide certificates of optimality.

A series of papers by Ganchev et al. (2010), Graca et al. (2008), and Ganchev et al. (2008) use

posterior regularization to constrain the posterior probability of the word alignment problem to be

89

symmetric and bijective. This work acheives state-of-the-art performance for alignment. Instead

of utilizing posteriors our model tries to decode a single best one-to-one word alignment.

A different approach is to use constraints at training time to obtain models that favor bidi-

rectional properties. Liang et al. (2006) propose agreement-based learning, which jointly learns

probabilities by maximizing a combination of likelihood and agreement between two directional

models.

General linear programming approaches have also been applied to word alignment problems.

Lacoste-Julien et al. (2006) formulate the word alignment problem as quadratic assignment prob-

lem and solve it using an integer linear programming solver.

Our work is most similar to DeNero and Macherey (2011), which uses dual decomposition to

encourage agreement between two directional HMM aligners during decoding time.

5.8 Experiments

Our experimental results compare the accuracy and optimality of our decoding algorithm to direc-

tional alignment models and previous work on this bidirectional model.

Data and Setup The experimental setup is identical to DeNero and Macherey (2011). Evalua-

tion is performed on a hand-aligned subset of the NIST 2002 Chinese-English dataset (Ayan and

Dorr, 2006). Following past work, the first 150 sentence pairs of the training section are used for

evaluation. The potential parameters θ and ω are set based on unsupervised HMM models trained

on the LDC FBIS corpus (6.2 million words). Training is performed using the agreement-based

learning method which encourages the directional models to overlap (Liang et al., 2006). This

directional model has been shown produce state-of-the-art results with this setup (Haghighi et al.,

2009).

Baselines We compare our algorithm with several baseline methods. DIR includes post-hoc

combinations of the e→f and f→e HMM-based aligners. Variants include union, intersection,

90

and grow-diag-final. D&M is the dual decomposition algorithm for bidirectional alignment as pre-

sented by DeNero and Macherey (2011) with different final combinations. LR is the Lagrangian

relaxation algorithm applied to the adjacent agreement problem without the additional constraints

described in Section 5.5. CONS is our full Lagrangian relaxation algorithm including incremen-

tal constraint addition. ILP uses a highly-optimized general-purpose integer linear programming

solver (Gurobi Optimization, 2013) to solve the lattice with the constraints described.

Implementation The main task of the decoder is to repeatedly compute the arg max of L(λ).

To speed up decoding, our implementation fully instantiates the Viterbi lattice for a problem in-

stance. This approach has several benefits: each iteration can reuse the same lattice structure;

max-marginals can be easily computed with a general forward-backward algorithm; pruning cor-

responds to removing lattice edges; and adding constraints can be done through lattice intersection.

For consistency, we implement each baseline (except for D&M) through the same lattice.

Parameter Settings We run 400 iterations of the subgradient algorithm using the rate schedule

ηt = 0.95t
′ where t′ is the count of updates for which the dual value did not improve. Every 10

iterations we run the greedy decoder to compute a lower bound. If the gap between our current dual

value L(λ) and the lower bound improves significantly we run coarse-to-fine pruning as described

in Section 5.6 with the best lower bound. For CONS, if the algorithm does not converge we run

400 more iterations and incrementally add the 5 most violated constraints every 25 iterations.

Results Our first set of experiments looks at the model accuracy and the decoding time of various

methods that can produce optimal solutions. Results are shown in Table 5.1. D&M is only able

to find the optimal solution with certificate on 6% of instances. The relaxation algorithm used

in this work is able to increase that number to 54.7%. With incremental constraints and pruning,

we are able to solve over 86% of sentence pairs including many longer and more difficult pairs.

Additionally the method finds these solutions with only a small increase in running time over

Lagrangian relaxation, and is significantly faster than using an ILP solver.

91

Model Combiner alignment phrase pair
Prec Rec AER Prec Rec F1

DIR
union 57.6 80.0 33.4 75.1 33.5 46.3
intersection 86.2 62.9 27.0 64.3 43.5 51.9
grow-diag 59.7 79.5 32.1 70.1 36.9 48.4

D&M
union 63.3 81.5 29.1 63.2 44.9 52.5
intersection 77.5 75.1 23.6 57.1 53.6 55.3
grow-diag 65.6 80.6 28.0 60.2 47.4 53.0

CONS 72.5 74.9 26.4 53.0 52.4 52.7

Table 5.2: Alignment accuracy and phrase pair extraction accuracy for directional and bidirectional
models. Prec is the precision. Rec is the recall. AER is alignment error rate and F1 is the phrase
pair extraction F1 score.

1-20 21-40 41-60 all
cons. 20.0 32.1 39.5 35.9

Table 5.3: The average number of constraints added for sentence pairs where Lagrangian relaxation
is not able to find an exact solution.

Next we compare the models in terms of alignment accuracy. Table 5.2 shows the precision,

recall and alignment error rate (AER) for word alignment. We consider union, intersection and

grow-diag-final as combination procedures. The combination procedures are applied to D&M in

the case when the algorithm does not converge. For CONS, we use the optimal solution for the

86% of instances that converge and the highest-scoring greedy solution for those that do not. The

proposed method has an AER of 26.4, which outperforms each of the directional models. How-

ever, although CONS achieves a higher model score than D&M, it performs worse in accuracy.

Table 5.2 also compares the models in terms of phrase-extraction accuracy (Ayan and Dorr, 2006).

We use the phrase extraction algorithm described by DeNero and Klein (2010), accounting for

possible links and ε alignments. CONS performs better than each of the directional models, but

worse than the best D&M model.

Finally we consider the impact of constraint addition, pruning, and use of a lower bound.

Table 5.3 gives the average number of constraints added for sentence pairs for which Lagrangian

relaxation alone does not produce a certificate. Figure 5-7a shows the average over all sentence

pairs of the best dual and best primal scores. The graph compares the use of the greedy algorithm

from Section 5.6.2 with the simple intersection of x and y. The difference between these curves

illustrates the benefit of the greedy algorithm. This is reflected in Figure 5-7b which shows the

92

0 50 100 150 200 250 300 350 400
iteration

100

50

0

50

100
sc

o
re

 r
e
la

ti
v
e
 t

o
 o

p
ti

m
a
l best dual

best primal

intersection

(a) The best dual and the best primal score,
relative to the optimal score, averaged over
all sentence pairs. The best primal curve
uses a feasible greedy algorithm, whereas the
intersection curve is calculated by tak-
ing the intersection of x and y.

0 50 100 150 200 250 300 350 400
number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
v
e
 s

e
a
rc

h
 s

p
a
ce

 s
iz

e

(b) A graph showing the effectiveness of
coarse-to-fine pruning. Relative search space
size is the size of the pruned lattice compared
to the initial size. The plot shows an average
over all sentence pairs.

Figure 5-7

effectiveness of coarse-to-fine pruning over time. On average, the pruning reduces the search

space of each sentence pair to 20% of the initial search space after 200 iterations.

5.9 Conclusion

We have introduced a novel Lagrangian relaxation algorithm for a bidirectional alignment model

that uses incremental constraint addition and coarse-to-fine pruning to find exact solutions. The

algorithm increases the number of exact solution found on the model of DeNero and Macherey

(2011) from 6% to 86%.

Unfortunately despite achieving higher model score, this approach does not produce more ac-

curate alignments than the previous algorithm. This result suggests that the adjacent agreement

model may still be too constrained for this underlying task. Implicitly, an approach with fewer

exact solutions may allow for useful violations of these constraints. In future work, we hope to

explore bidirectional models with soft-penalties to explicitly permit these violations.

The tightening technique of adding constraints is similar to the one described in Chapter 2. This

chapter further introduces an extension to the tightening technique: a pruning method to prevent

the search space from growing too fast and therefore allow more constraints to be added.

93

Chapter 6

Conclusion

This thesis has explored exact and approximate algorithms for two decoding problems in machine

translation: phrase-based decoding and bidirectional word alignment. For exact algorithms, we

proposed algorithms based on Lagrangian relaxation. Each algorithm involves the design of a

decomposition for the specific decoding problem. We also studied extensions to the Lagrangian

relaxation method that increase the convergence rate. These extensions include a tightening tech-

nique that adds constraints incrementally, an optimality-preserving pruning technique that allows

more constraints to be added and a variant of beam search that utilizes the bounding property of

Lagrangian relaxation. For approximate algorithm, we used local search to decode a more com-

plex phrase-based translation model, which improves the translation quality in terms of a syntactic

evaluation metric.

In this thesis, a major focus has been on Lagrangian relaxation, where a problem is decomposed

into an easier problem and some side constraints. Dual decomposition is a variant of Lagrangian

relaxation and is used to combine two or more models. The constraints enforced in dual decom-

position are the agreement between different models. It works naturally for joint models in natural

language processing (NLP) when we want to combine different models. Dual decomposition has

delivered good results on several NLP tasks.

Sometimes a problem can be decomposed differently so that either Lagrangian relaxation or

94

dual decomposition can be applied. For example, DeNero and Macherey (2011) proposed a model

for bidirectional word alignment. They decomposed the problem into two directional alignment

problems and employed dual decomposition to find agreement of the two models. For the same

model, we proposed a different decomposition that relaxed some constraints of the problem and

used Lagrangian relaxation to enforce the constraints (Chapter 5). Different ways of decompo-

sition might result in difference in easiness of convergence. Thus, when designing a Lagrangian

relaxation based algorithm, it worths considering different ways to decompose the problem.

Lagrangian relaxation and dual decomposition have been widely applied in the field of natu-

ral language processing. It has been used in various parsers, including dependency parser (Koo

et al., 2010; Martins et al., 2011), a shallow semantic parser with linguistic constraints (Martins

et al., 2011), a method for combining constituency parsers with latent annotations (Roux et al.,

2013). Application to other NLP areas includes biomedical event extraction (Riedel and McCal-

lum, 2011), joint word alignment and bilingual named entity recognition (Wang et al., 2013), and

multi-document summarization (Almeida and Martins, 2013).

When we design the exact algorithms based on Lagrangian relaxation, we are solving existing

models, which include the standard phrase-based model (Koehn et al., 2003, 2007), and the bidi-

rectional alignment model proposed by DeNero and Macherey (2011). Our goal is to demonstrate

that we can solve the model exactly and to help us understand the model. Even though the ac-

curacy and translation quality are not necessarily improved, the studies of the algorithm are itself

interesting, and solving a model exactly let us separate model errors from optimization errors.

One direction of future work is to apply Lagrangian relaxation or dual decomposition to other

decoding problems, such as coreference resolution or decipherment. Dual decomposition can also

be useful when combing different steps of an NLP system. For example, it could be used to do

joint tagging, parsing, and translation.

Shifting our focus on improving the translation quality, we turn to explore another side of

the trade-off between a rich model and an exact decoding algorithm. We explore incorporating

dependency language model into the phrase-based translation model, and use local search as our

95

tool to decode. Including dependency information into our model would yield more grammatically

correct translation, but would at the same time increase the model complexity. Though inexact,

local search allows us decode the model efficiently.

Employing local search gives us more freedom in designing the scoring function. We could fur-

ther consider other information that might improve the translation quality. In addition to different

level of syntactic information, we could include semantic information as well.

Another natural future direction would be designing a richer model and an exact algorithm

at the same time. In terms of designing a richer model, one direction that has been explored

in the machine translation area is to incorporate syntactic information into translation. We have

demonstrated that adding a dependency language model could be helpful in this thesis, but there

are other ways to develop a syntactic translation model. For example, an idea is to combine parsing

and translation as one decoding problem.

96

Bibliography

Almeida, M. B. and Martins, A. F. T. (2013). Fast and robust compressive summarization with
dual decomposition and multi-task learning. In The 51st Annual Meeting of the Association for
Computational Linguistics, pages 196–206.

Ayan, N. F. and Dorr, B. J. (2006). Going beyond aer: An extensive analysis of word alignments
and their impact on mt. In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Association for Computational Linguistics, pages
9–16. Association for Computational Linguistics.

Belanger, D., Passos, A., Riedel, S., and McCallum, A. (2012). Map inference in chains using
column generation. In NIPS, pages 1853–1861.

Blackwood, G., de Gispert, A., Brunning, J., and Byrne, W. (2009). Large-scale statistical ma-
chine translation with weighted finite state transducers. In Proceeding of the 2009 conference
on Finite-State Methods and Natural Language Processing: Post-proceedings of the 7th Interna-
tional Workshop FSMNLP 2008, pages 39–49, Amsterdam, The Netherlands, The Netherlands.
IOS Press.

Boyd, S. and Mutapcic, A. (2007). Subgradient methods.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993). The mathematics of
statistical machine translation: Parameter estimation. Computational Linguistics, 19:263–311.

Chang, Y.-W. and Collins, M. (2011). Exact decoding of phrase-based translation models through
lagrangian relaxation. In Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, pages 26–37. Association for Computational Linguistics.

Chang, Y.-W., Rush, A. M., DeNero, J., and Collins, M. (2014). A constrained viterbi relaxation
for bidirectional word alignment. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, pages 1481–1490. Association for Computational Linguistics.

Chiang, D. (2007). Hierarchical phrase-based translation. computational linguistics, 33(2):201–
228.

Chiang, D. (2010). Learning to translate with source and target syntax. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, pages 1443–1452. Associa-
tion for Computational Linguistics.

97

Collins, M. (1997). Three generative, lexicalised models for statistical parsing. In Proceedings of
the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Confer-
ence of the European Chapter of the Association for Computational Linguistics, pages 16–23.
Association for Computational Linguistics.

Collins, M. (2002). Discriminative training methods for hidden markov models: Theory and ex-
periments with perceptron algorithms. In Proceedings of the ACL-02 conference on Empirical
methods in natural language processing-Volume 10, pages 1–8. Association for Computational
Linguistics.

Collins, M., Koehn, P., and Kučerová, I. (2005). Clause restructuring for statistical machine trans-
lation. In Proceedings of the 43rd annual meeting on association for computational linguistics,
pages 531–540. Association for Computational Linguistics.

Cowan, B., Kučerová, I., and Collins, M. (2006). A discriminative model for tree-to-tree trans-
lation. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language
Processing, pages 232–241. Association for Computational Linguistics.

Cromieres, F. and Kurohashi, S. (2009). An alignment algorithm using belief propagation and a
structure-based distortion model. In Proceedings of the 12th Conference of the European Chap-
ter of the Association for Computational Linguistics, pages 166–174. Association for Computa-
tional Linguistics.

de Gispert, A., Iglesias, G., Blackwood, G., Banga, E. R., and Byrne, W. (2010). Hierarchical
Phrase-Based Translation with Weighted Finite-State Transducers and Shallow-n Grammars.
Computational linguistics, 36(3):505–533.

DeNeefe, S. and Knight, K. (2009). Synchronous tree adjoining machine translation. In Proceed-
ings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume
2-Volume 2, pages 727–736. Association for Computational Linguistics.

DeNero, J. and Klein, D. (2010). Discriminative modeling of extraction sets for machine transla-
tion. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguis-
tics, pages 1453–1463. Association for Computational Linguistics.

DeNero, J. and Macherey, K. (2011). Model-based aligner combination using dual decomposition.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages 420–429. Association for Computational Lin-
guistics.

Dyer, C., Lopez, A., Ganitkevitch, J., Weese, J., Ture, F., Blunsom, P., Setiawan, H., Eidelman, V.,
and Resnik, P. (2010). cdec: A decoder, alignment, and learning framework for finite-state and
context-free translation models. In In Proceedings of ACL System Demonstrations.

Eisner, J. (1996). Three new probabilistic models for dependency parsing: An exploration. In
Proceedings of the 16th International Conference on Computational Linguistics (COLING-96),
pages 340–345, Copenhagen.

98

Ganchev, K., Graça, J., Gillenwater, J., and Taskar, B. (2010). Posterior Regularization for Struc-
tured Latent Variable Models. Journal of Machine Learning Research, 11:2001–2049.

Ganchev, K., Graça, J. a. V., and Taskar, B. (2008). Better alignments = better translations? In
Proceedings of ACL-08: HLT, pages 986–993, Columbus, Ohio. Association for Computational
Linguistics.

Germann, U. (2003). Greedy decoding for statistical machine translation in almost linear time.
In Proceedings of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology-Volume 1, pages 1–8. Association
for Computational Linguistics.

Germann, U., Jahr, M., Knight, K., Marcu, D., and Yamada, K. (2001). Fast decoding and optimal
decoding for machine translation. In Proceedings of the 39th Annual Meeting on Association
for Computational Linguistics, ACL ’01, pages 228–235.

Graca, J., Ganchev, K., and Taskar, B. (2008). Expectation maximization and posterior constraints.
In Platt, J., Koller, D., Singer, Y., and Roweis, S., editors, Advances in Neural Information
Processing Systems 20, pages 569–576. MIT Press, Cambridge, MA.

Gurobi Optimization, I. (2013). Gurobi optimizer reference manual.

Haghighi, A., Blitzer, J., DeNero, J., and Klein, D. (2009). Better word alignments with supervised
itg models. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume
2-Volume 2, pages 923–931. Association for Computational Linguistics.

Hardmeier, C., Nivre, J., and Tiedemann, J. (2012). Document-wide decoding for phrase-based
statistical machine translation. In Proceedings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language Learning, pages
1179–1190. Association for Computational Linguistics.

Held, M. and Karp, R. M. (1971). The traveling-salesman problem and minimum spanning trees:
Part ii. Mathematical programming, 1(1):6–25.

Huang, L. and Chiang, D. (2007). Forest rescoring: Faster decoding with integrated language mod-
els. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics,
pages 144–151, Prague, Czech Republic. Association for Computational Linguistics.

Huang, L., Knight, K., and Joshi, A. (2006). Statistical syntax-directed translation with extended
domain of locality. In Proceedings of AMTA, pages 66–73.

Huang, L. and Mi, H. (2010). Efficient incremental decoding for tree-to-string translation. In
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing,
pages 273–283, Cambridge, MA. Association for Computational Linguistics.

Iglesias, G., de Gispert, A., Banga, E. R., and Byrne, W. (2009). Rule filtering by pattern for
efficient hierarchical translation. In Proceedings of the 12th Conference of the European Chap-
ter of the ACL (EACL 2009), pages 380–388, Athens, Greece. Association for Computational
Linguistics.

99

Knight, K. (1999). Decoding complexity in word-replacement translation models. Computational
Linguistics, 25(4):607–615.

Koehn, P. (2004). Pharaoh: a beam search decoder for phrase-based statistical machine translation
models. Machine translation: From real users to research, pages 115–124.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In Proceedings
of the MT Summit.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen,
W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses: Open
source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of
the ACL on Interactive Poster and Demonstration Sessions, ACL ’07, pages 177–180.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In Proceedings
of the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology, NAACL ’03, pages 48–54.

Komodakis, N., Paragios, N., and Tziritas, G. (2007). MRF optimization via dual decomposition:
Message-passing revisited. In Proceedings of the 11th International Conference on Computer
Vision.

Koo, T., Rush, A. M., Collins, M., Jaakkola, T., and Sontag, D. (2010). Dual decomposition for
parsing with non-projective head automata. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 1288–1298, Cambridge, MA. Association for
Computational Linguistics.

Korte, B. and Vygen, J. (2008). Combinatorial Optimization: Theory and Application. Springer
Verlag.

Kumar, S. and Byrne, W. (2005a). Local phrase reordering models for statistical machine transla-
tion. In Proceedings of the conference on Human Language Technology and Empirical Methods
in Natural Language Processing, HLT ’05, pages 161–168.

Kumar, S. and Byrne, W. (2005b). Local phrase reordering models for statistical machine trans-
lation. In Proceedings of Human Language Technology Conference and Conference on Empir-
ical Methods in Natural Language Processing, pages 161–168, Vancouver, British Columbia,
Canada. Association for Computational Linguistics.

Lacoste-Julien, S., Taskar, B., Klein, D., and Jordan, M. I. (2006). Word alignment via quadratic
assignment. In Proceedings of the main conference on Human Language Technology Conference
of the North American Chapter of the Association of Computational Linguistics, pages 112–119.
Association for Computational Linguistics.

Langlais, P., Patry, A., and Gotti, F. (2007). A greedy decoder for phrase-based statistical machine
translation. Proc. of TMI.

100

Lemaréchal, C. (2001). Lagrangian Relaxation. In Computational Combinatorial Optimization,
Optimal or Provably Near-Optimal Solutions [based on a Spring School], pages 112–156, Lon-
don, UK. Springer-Verlag.

Liang, P., Taskar, B., and Klein, D. (2006). Alignment by agreement. In Proceedings of the
main conference on Human Language Technology Conference of the North American Chapter
of the Association of Computational Linguistics, pages 104–111. Association for Computational
Linguistics.

Liu, D. and Gildea, D. (2005). Syntactic features for evaluation of machine translation. In Pro-
ceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine
Translation and/or Summarization, pages 25–32.

Liu, Y., Liu, Q., and Lin, S. (2006). Tree-to-string alignment template for statistical machine
translation. In Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguistics, pages 609–616.
Association for Computational Linguistics.

Marcu, D. and Wong, W. (2002). A phrase-based, joint probability model for statistical machine
translation. In Proceedings of the ACL-02 conference on Empirical methods in natural language
processing-Volume 10, pages 133–139. Association for Computational Linguistics.

Martin, R. K., Rardin, R. L., and Campbell, B. A. (1990). Polyhedral characterization of discrete
dynamic programming. Operations research, 38(1):127–138.

Martins, A. F. T., Smith, N. A., Aguiar, P. M. Q., and Figueiredo, M. A. T. (2011). Dual decom-
position with many overlapping components. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP ’11, pages 238–249, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Mehay, D. N. and Brew, C. (2006). Bleu atre: Flattening syntactic dependencies for mt evaluation.
TMI 2007, page 122.

Moore, R. C. (2005). A discriminative framework for bilingual word alignment. In Proceedings of
the conference on Human Language Technology and Empirical Methods in Natural Language
Processing, pages 81–88. Association for Computational Linguistics.

Nedić, A. and Ozdaglar, A. (2009). Approximate primal solutions and rate analysis for dual sub-
gradient methods. SIAM Journal on Optimization, 19(4):1757–1780.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The computer
journal, 7(4):308–313.

Nivre, J. (2004). Incrementality in deterministic dependency parsing. In Proceedings of the Work-
shop on Incremental Parsing: Bringing Engineering and Cognition Together, pages 50–57. As-
sociation for Computational Linguistics.

101

Och, F. J. (2003). Minimum error rate training in statistical machine translation. In Proceedings
of the 41st Annual Meeting on Association for Computational Linguistics, ACL ’03, pages 160–
167.

Och, F. J., Tillmann, C., Ney, H., et al. (1999a). Improved alignment models for statistical machine
translation. In Proc. of the Joint SIGDAT Conf. on Empirical Methods in Natural Language
Processing and Very Large Corpora, pages 20–28.

Och, F. J., Tillmann, C., Ney, H., and Informatik, L. F. (1999b). Improved alignment models for
statistical machine translation. In Proceedings of the Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very Large Corpora, pages 20–28.

Och, F. J., Ueffing, N., and Ney, H. (2001). An efficient A* search algorithm for statistical machine
translation. In Proceedings of the workshop on Data-driven methods in machine translation
- Volume 14, DMMT ’01, pages 1–8, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, pages 311–318. Association for Computational Linguistics.

Polyak, B. (1987). Introduction to Optimization. Optimization Software, Inc.

Popović, M. and Ney, H. (2009). Syntax-oriented evaluation measures for machine translation
output. In Proceedings of the Fourth Workshop on Statistical Machine Translation, pages 29–
32. Association for Computational Linguistics.

Rasooli, M. S. and Tetreault, J. (2015). Yara parser: A fast and accurate dependency parser. arXiv
preprint arXiv:1503.06733.

Riedel, S. and Clarke, J. (2006). Incremental integer linear programming for non-projective de-
pendency parsing. In Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing, EMNLP ’06, pages 129–137, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Riedel, S. and Clarke, J. (2009). Revisiting optimal decoding for machine translation IBM model
4. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, Companion Volume: Short
Papers, NAACL-Short ’09, pages 5–8, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Riedel, S. and McCallum, A. (2011). Fast and robust joint models for biomedical event extrac-
tion. In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
EMNLP ’11, pages 1–12, Stroudsburg, PA, USA. Association for Computational Linguistics.

Riedel, S., Smith, D., and McCallum, A. (2012). Parse, price and cut: delayed column and row
generation for graph based parsers. In Proceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and Computational Natural Language Learning,
pages 732–743. Association for Computational Linguistics.

102

Roux, J. L., Rozenknop, A., and Foster, J. (2013). Combining PCFG-LA models with dual decom-
position: A case study with function labels and binarization. In Proceedings of the Empirical
Methods in Natural Language Processing, pages 1158–1169.

Rush, A. M., Chang, Y.-W., and Collins, M. (2013). Optimal beam search for machine translation.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages
210–221. Association for Computational Linguistics.

Rush, A. M. and Collins, M. (2011). Exact decoding of syntactic translation models through
lagrangian relaxation. In Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies, volume 1, pages 72–82.

Rush, A. M. and Collins, M. (2012). A tutorial on dual decomposition and lagrangian relaxation
for inference in natural language processing. Journal of Artificial Intelligence Research, 45:305–
362.

Rush, A. M., Sontag, D., Collins, M., and Jaakkola, T. (2010). On dual decomposition and linear
programming relaxations for natural language processing. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Processing, pages 1–11, Cambridge, MA.
Association for Computational Linguistics.

Schwartz, L., Callison-Burch, C., Schuler, W., and Wu, S. (2011). Incremental syntactic language
models for phrase-based translation. In Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Technologies-Volume 1, pages 620–631.
Association for Computational Linguistics.

Shen, L., Xu, J., and Weischedel, R. M. (2008). A new string-to-dependency machine translation
algorithm with a target dependency language model. In ACL, pages 577–585.

Smith, D. A. and Eisner, J. (2008). Dependency parsing by belief propagation. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’08, pages
145–156.

Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., and Weiss, Y. (2008). Tightening LP relax-
ations for MAP using message passing. In Proceedings of the 24th Conference on Uncertainty
in Artificial Intelligence, pages 503–510.

Tillmann, C. (2006). Efficient dynamic programming search algorithms for phrase-based SMT. In
Proceedings of the Workshop on Computationally Hard Problems and Joint Inference in Speech
and Language Processing, CHSLP ’06, pages 9–16.

Tillmann, C. and Ney, H. (2003). Word reordering and a dynamic programming beam search
algorithm for statistical machine translation. Computational Linguistics, 29:97–133.

Tromble, R. W. and Eisner, J. (2006). A fast finite-state relaxation method for enforcing global
constraints on sequence decoding. In Proceedings of the main conference on Human Language
Technology Conference of the North American Chapter of the Association of Computational
Linguistics, HLT-NAACL ’06, pages 423–430, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

103

Vogel, S., Ney, H., and Tillmann, C. (1996). Hmm-based word alignment in statistical translation.
In Proceedings of the 16th conference on Computational linguistics-Volume 2, pages 836–841.
Association for Computational Linguistics.

Wainwright, M., Jaakkola, T., and Willsky, A. (2005). MAP estimation via agreement on trees:
Message-passing and linear programming. 51(11):3697–3717.

Wang, M., Che, W., and Manning, C. D. (2013). Joint word alignment and bilingual named
entity recognition using dual decomposition. In The 51st Annual Meeting of the Association for
Computational Linguistics, pages 1073–1082.

Watanabe, T., Tsukada, H., and Isozaki, H. (2006). Left-to-right target generation for hierarchical
phrase-based translation. In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Association for Computational Linguistics, ACL-
44, pages 777–784, Morristown, NJ, USA. Association for Computational Linguistics.

Yamada, K. and Knight, K. (2001). A syntax-based statistical translation model. In Proceed-
ings of the 39th Annual Meeting on Association for Computational Linguistics, pages 523–530.
Association for Computational Linguistics.

Zaslavskiy, M., Dymetman, M., and Cancedda, N. (2009). Phrase-based statistical machine trans-
lation as a traveling salesman problem. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP: Volume 1 - Volume 1, ACL ’09, pages 333–341, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Zhang, Y., Lei, T., Barzilay, R., and Jaakkola, T. (2014). Greed is good if randomized: New
inference for dependency parsing. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1013–1024.

Zhang, Y., Li, C., Barzilay, R., and Darwish, K. (2015). Randomized greedy inference for joint
segmentation, pos tagging and dependency parsing. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for Computational Linguistics (NAACL).

104

Appendices

105

Appendix A

Phrase-Based Decoding

A.1 Step Size

In the subgradient method that we used to optimize the dual objective, the choice of step size affects

the speed of convergence. Note that ideally the step size sequence should satisfy the assumption in

Section 2.4.3.

There are several choices. In the experiments in Chapter 2, we set the step size at the tth

iteration to be αt = 1/(1 + λt), where λt is the number of times that L(u(t
′)) > L(u(t

′−1)) for all

t′ ≤ t. We define λt this way because we only want to decrease the step size when the dual is not

improving, which prevents us from decreasing the step size too fast. This rate is also used in Koo

et al. (2010).

In Chapter 5, we consider a rate that decays more slowly in the beginning: αt = cλ
t where c is

a constant smaller than 1, and λt has the same definition as above. The choices of c decides how

fast the rate is decaying.

When an lower bound is available, we can consider using Polyak’s rule (Polyak, 1987; Boyd

and Mutapcic, 2007) to compute step size. We substitute the unknown optimal score for the last

computed lower bound: αt ← θ>y(t)−lb(t)
||Ay(t)−b||22

. The denominator is the square of the subgradientAyt−b.

In our experiment in Chapter 3, this rate outperforms those that solely depend on the number of

106

0 5 10 15 20 25 30 35 40
Iteration

−50

−40

−30

−20

−10

0

10

20

30

Va
lu

e

1/(λt + 1)

Polyak

Figure A-1: The dual values L(u(t)) at each iteration for two different choices of step size: 1/(λt+
1) and the rate based on Polyak’s rule. The curves end when the algorithm converges. This is
based on the results of one example sentence, using the algorithm in Chapter 3.

iteration. Figure A-1 compares two different choices of step size. It shows that the step size based

on Polyak’s rule is more stable and converges faster.

A.2 Bigram Trick to Speed up the DP Computation

This section involves some implementation details of the Lagrangian relaxation algorithm for

phrase-based decoding. The dynamic program in Section 2.4.1 will be solved several times in

the Lagrangian relaxation algorithm. Each time the dynamic program has the same structure but

with different weights. To reuse the same structure, we construct a lattice to represent the dynamic

program. Each time we solve the dynamic program, we only need to update the weights associated

with each edge.

The states in the dynamic program are represented by the nodes in the lattice, and the phrases

that leads from one state to another are represented by edges. Each edge is associated with a

weight that includes the translation score, language model score, and the distortion scores. Solving

the dynamic program is the same as finding a highest scoring path in the lattice, which can be

converted into a shortest path problem.

The size of the lattice determine the computation complexity. We can reduce the size of the

107

lattice by a bigram trick that utilizes the sparsity of the trigram language model. This section

introduces the bigram trick in details.

The key observation is that there are many trigrams that do not appear in the training data.

When we are computing the trigram probability of a trigram that has never been seen in the train-

ing data, we use back-off models to compute the trigram probability. In this case, the trigram

probability can be decomposed into two terms. One depends only on the first two words and one

depends only on the latter two words. Thus, if there is a bigram that does not appear in any trigram

seen in the training data, we can ignore the second word in the bigram by separating the two terms

into the incoming and the outgoing edge of the node with the bigram. Therefore, we can collapse

all such bigrams that begin with the same word into a single node in the lattice. This section details

the construction.

First, we identify all bigrams (w1, w2) such that the trigram (w1, w2, w
′) does not exist in the

language model for all w′ in the vocabulary. Let B denote the set of such bigrams:

B = {(w1, w2) s.t. c(w1, w2, w
′) = 0 ∀ w′ ∈ V}

where c(w1, w2, w
′) is the number of times the trigram (w1, w2, w

′) has been seen. In the back-off

language model, if the trigram does not exist, the back-off language model score can be expressed

by two components:

qBO(w′|w1, w2) = α(w1, w2)qBO(w′|w2) if c(w1, w2, w
′) = 0,

The back-off weights α(w1, w2) depends on the prefix (w1, w2) and the lower order back-off lan-

guage model score qBO(w′|w2) depends on the suffix (w2, w
′). For each hypothesis (w1, w2, b, l,m, r),

where (w1, w2) ∈ B, we no longer need to keep w1, the first word of the ending bigram. Origi-

nally w1 is kept for the calculation of qBO(w′|w1, w2) when we extend from the hypothesis. Now

we know that qBO(w′|w1, w2) = α(w1, w2)qBO(w′|w2). We can factored the language model

score into the incoming edge and the outgoing edge. Therefore, when we reach the hypothesis

108

(w1, w2, b, l,m, r) where (w1, w2) ∈ B, we include the back-off weight α(w1, w2) to the weights

on the incoming edge, and only keep (w2, b, l,m, r) in the hypothesis. When we extend from the

hypothesis (w2, b, l,m, r), we add the score of qBO(w′|w2) to the outgoing edge.

The modification for creating a transition would be as follows. For any such phrase, we create

a transition

(w1, w2, b, l,m, r)
p=(s,t,e)−−−−−→ (w′1, w

′
2, b
′, l′,m′, r′)

where

• (w′1, w
′
2) =

(eM−1, eM) if M ≥ 2 and (eM−1, eM) /∈ B

(NULL, eM) if M ≥ 2 and (eM−1, eM) ∈ B

(w2, e1) if M = 1 and (w2, e1) /∈ B

(NULL, e1) if M = 1 and (w2, e1) ∈ B
The modification to the language model score associated with the transition is described below.

Note that the language model score is in log space.

h′(e1|w1, w2) + h(e2|w2, e1) +
M−2∑
i=1

h(ei+2|ei, ei+1) + h′′(eM−1, eM)

where

• h′(e1|w1, w2) =

 h(e1|w1, w2) if w1 6= NULL

log qBO(e1|w2) if w1 = NULL

• h′′(eM−1, eM) =

 0 if (eM−1, eM) /∈ B

logα(eM−1, eM) if (eM−1, eM) ∈ B
This modification reduces the number of nodes to 65% of its original number on average, and

reduces the number of edges to 63%.

We use SriLM package to handle the language model. The interface of the language model can

be found in Ngram.h. We use the function findBOW() to find the back-off weight α(w1, w2), and

the function findProb() to find the lower level back-off language model score qBO(w′|w2). Note

that if the bigram (w2, w
′) has not been seen in the language model, qBO(w′|w2) = α(w2)qBO(w′).

109

Appendix B

Bidirectional Word Alignment Problem

B.1 Proof of NP-Hardness

We can show that the bidirectional alignment problem is NP-hard by reduction from the traveling

salesman problem (TSP). A TSP instance with N cities has distance c(i′, i) for each (i′, i) ∈ [N]2.

We can construct a sentence pair in which I = J = N and ε-alignments have infinite cost.

ω(i′, i, j) = −c(i′, i) ∀i′ ∈ [N]0, i ∈ [N], j ∈ [N]

θ(j′, i, j) = 0 ∀j′ ∈ [N]0, i ∈ [N], j ∈ [N]

ω(i′, 0, j) = −∞ ∀i′ ∈ [N]0, j ∈ [N]

θ(j′, i, 0) = −∞ ∀j′ ∈ [N]0, i ∈ [N]

Every bidirectional alignment with finite objective score must align exactly one word in e to

each word in f, encoding a permutation a. Moreover, each possible permutation has a finite score:

the negation of the total distance to traverse the N cities in order a under distance c. Therefore,

solving such a bidirectional alignment problem would find a minimal Hamiltonian path of the TSP

encoded in this way, concluding the reduction.

110

