
Perfect Simulation and Deployment Strategies for
Detection

Aya Wallwater

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2015

c©2015

Aya Wallwater

All Rights Reserved

ABSTRACT

Perfect Simulation and Deployment Strategies for
Detection

Aya Wallwater

This dissertation contains two parts. The first part provides the first algorithm that, under

minimal assumptions, allows to simulate the stationary waiting-time sequence of a single-

server queue backwards in time, jointly with the input processes of the queue (inter-arrival

and service times). The single-server queue is useful in applications of DCFTP (Dominated

Coupling From The Past), which is a well known protocol for simulation without bias from

steady-state distributions. Our algorithm terminates in finite time assuming only finite

mean of the inter-arrival and service times. In order to simulate the single-server queue

in stationarity until the first idle period in finite expected termination time we require the

existence of finite variance. This requirement is also necessary for such idle time (which

is a natural coalescence time in DCFTP applications) to have finite mean. Thus, in this

sense, our algorithm is applicable under minimal assumptions.

The second part studies the behavior of diffusion processes in a random environment.

We consider an adversary that moves in a given domain and our goal is to produce an

optimal strategy to detect and neutralize him by a given deadline. We assume that the

target’s dynamics follows a diffusion process whose parameters are informed by available

intelligence information. We will dedicate one chapter to the rigorous formulation of the

detection problem, an introduction of several frameworks that can be considered when

applying our methods, and a discussion on the challenges of finding the analytical optimal

solution. Then, in the following chapter, we will present our main result, a large deviation

behavior of the adversary’s survival probability under a given strategy. This result will be

later give rise to asymptotically efficient Monte Carlo algorithms.

Table of Contents

List of Figures iv

List of Tables v

List of Algorithms vi

1 Introduction 1

I Exact Sampling of Stationary and Time-Reversed Queues 3

2 Perfect Sampling 7

2.1 Introduction . 7

2.2 Construction of (Sn (µ) ,Mn : n ≥ 0) via “milestone events” 8

2.3 Sampling M0 jointly with (S1 (µ) , ..., S∆ (µ)) 14

2.3.1 Sampling Ber (P0 (Tm <∞)) and (S1 (µ) , ..., STm (µ)) given Tm <∞ 14

2.3.2 Building M0 and (S1 (µ) ,, S∆ (µ)) from downward and upward

patches . 25

2.4 From M0 to (Sk (µ) ,Mk : k ≥ 0):

Implementation of Procedure 1 . 26

2.4.1 Implementing Step 1 in Procedure 1 26

2.4.2 Implementing Step 2 in Procedure 1 27

2.4.3 Our algorithm to sample (Sk (µ) ,Mk : 0 ≤ k ≤ n) and

Proof of Theorem 2 . 28

i

2.5 Additional considerations: increments with infinite

variance and computing truncated tilted distributions 30

2.5.1 The case where E |X|β <∞ for β ∈ (1, 2] 30

2.5.2 The issue of evaluating ψk (θk) . 31

2.6 Numerical Example . 33

2.6.1 Choice of Parameters . 34

2.6.2 Simulation Results . 35

2.7 Conclusions . 37

II Diffusion Processes in Random Environment 38

3 Detection of Adversarial Agents: Modeling and Problem Formulation 44

3.1 One-Dimensional Brownian Case . 45

3.1.1 Deterministic Case . 45

3.1.2 The Stochastic Approach . 47

3.2 Disscusion . 54

3.3 The General Scenario . 55

3.3.1 Player 1 . 56

3.3.2 Player 2 . 57

3.4 Optimal Policy: Two-Dimensional Brownian Motion 59

3.4.1 Placing K Traps in G . 60

3.4.2 Partitioning G to K Subsets . 62

4 Detection of Adversarial Agents: Main Results and Algorithms 64

4.1 Main Result . 65

4.2 Upper bound . 66

4.2.1 Initialization . 67

4.2.2 Step k, k ≥ 1 . 67

4.2.3 Proof of upper bound . 68

4.3 Lower bound . 70

4.4 Asymptotically Optimal Monte Carlo for Detection Policies 71

ii

4.4.1 Estimating P (σR > T) . 72

4.4.2 Sampling form P∗ the law of {X (T) |σR > T} 74

4.4.3 Sampling {X (T) |σR > T} when the rate function I is computable . 76

4.5 Numerical Results . 78

4.5.1 One-dimensional Brownian Motion 78

4.5.2 Two-dimensional diffusion process . 79

4.6 Conclusions . 83

III Bibliography 84

Bibliography 85

Bibliography 85

IV Appendices 89

A Appendix for Chapter 2 90

A.1 Discussion on the generality of the assumptions imposed and selection of

parameters . 90

A.2 Proof of Lemma 3 . 92

A.3 Proof of Lemma 4 . 92

A.4 Proof of Lemma 5 . 96

B Appendix for Chapter 4 97

B.1 Proof of Lemma 15 . 97

B.1.1 Proof of Lemma 15 . 98

B.1.2 Proof of Lemma 21 . 99

iii

List of Figures

2.2.1 Construction of Milestone Stopping Times 9

2.2.2 High-level description of the algorithm . 12

2.6.1 Exact sampler mean E (M0) VS. batches mean of {Wn : 0 ≤ n ≤ l}, along

with the corresponding 95% confidence intervals. 37

2.7.1 Deterministic deployment strategy . 41

3.1.1 Optimal Policy for one-dimensional Brownian motion confined to (−m,m). 46

3.1.2 Gε . 50

3.1.3 Gε . 51

3.3.1 Poisson Cloud Vs. Wiener Sausage . 59

3.4.1 Minimal traps allocation in a ball . 61

3.4.2 Tessellation of trap allocation in a ball . 61

3.4.3 Level contours to determine fence location 63

4.2.1 Construction of the set Gk . 66

4.3.1 Gε and Gεa . 70

4.5.1 A0 (on the left) and A1 (on the right) for L = 2. 81

4.5.2 -Log of the estimator’s standard deviation. 82

iv

List of Tables

2.1 Parameters Choice for Simulation . 36

2.2 Simulation Results Perfect Sampling . 36

4.1 Survival probability: Importance Sampling (IS) vs. naïve Simulation: One-

dimensional Brownian motion. 79

4.2 Survival probability: Importance Sampling (IS) vs. naïve Simulation: Two-

dimensional Brownian motion. 80

v

List of Algorithms

- Procedure 1 . 13

1 Sampling Ber (P0 (Tm <∞)) and (S1 (µ) , ..., STm (µ)) given Tm <∞ 20

2 Sampling M0 and (S1 (µ) ,, S∆ (µ)) . 26

3 An Efficient Implementation of Procedure 1 29

4 Strategy for simulating (Sk (µ) ,Mk : 0 ≤ k ≤ n) 33

5 Generating a Poisson Cloud . 58

6 Sampling P (σR > T) . 73

7 Acceptance-Rejection Algorithm . 76

vi

Acknowledgments

I would like to thank my advisor, Professor Jose Blanchet , for his unwavering support. I

would like to thank the members of my committee for offering their invaluable insight and

expertise. I would like to thank my fellow doctoral students - those who have moved on,

those still deep in research, and those just beginning- for their support, friendship, and all

around good humor. I would like to thank all the staff in the IEOR department, for making

sure I progressed smoothly in my studies. I would like to thank all of my professors, for

sharing their knowledge and love of learning with me. I would like to thank all my friends,

for their support and good cheer. Last, but certainly not least, I would like to thank my

family for their unconditional love and endless support - it is on all your shoulders that I

now stand.

vii

To my beloved husband, Aaron Miller,
Sabrina (Yuanuan) Wang, and Valia Skiani

for their unconditional love.

viii

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The work that is covered in this dissertation is driven by the intention of overcoming

some of the current challenges in operations research and enhancing the bridge between

mathematical methods and real-world applications. My desire to learn a wide range of

tools and techniques in applied probability and operations research, such as steady-state

analysis, perfect simulation, large deviation theory, spectral theory of operators, game

theory and others, resulted in a dissertation that is divided into two parts.

Part I studies the topic of steady-state analysis and perfect simulation. We address the

problem of producing the first general perfect (also known as exact) sampling algorithm

for what is the most fundamental queuing system in operations research, the single-server

queue. We will discuss the relevant background and the literature on perfect sampling in

Chapter 2. We will also describe how our methods connect to other areas in Monte Carlo,

such as rare-event simulation, via the use of importance sampling. Thus, this contribution

is not only relevant from the perfect sampling perspective, but also because it bridges areas

in simulation that are seldom connected.

The work that will be presented in Part II is motivated by our wish to solve a current

problem with defense applications. In this problem, we consider an adversary that moves

in a given domain and our goal is to produce an optimal strategy to detect and neutralize

him by a given deadline. For the moment, we can think of a strategy as a placement of

detection units in the region. We assume that the target’s dynamics follows a diffusion

CHAPTER 1. INTRODUCTION 2

process whose parameters are informed by available intelligence information, of which a

simple example for such dynamic is a Brownian motion.

It becomes evident that as the deadline gets large and the agent has not been caught, we

can show that its evasion strategy can be represented as choosing an optimal “confinement”

set, which maximizes his survival probability. As we shall see, the problem is extremely

challenging to solve. However, we will give a characterization to the optimal solution in

terms of a set-valued function, which depends on the spectrum of the operator generating

the target’s dynamics.

In Chapter 3 we will formulate the problem rigorously, present several frameworks that

can be considered when applying our methods, and discuss the challenges of finding the

analytical optimal solution. Furthermore, in Chapter 4, we will present our main result, a

large deviation behavior of the adversary’s survival probability under a given strategy. This

result will later give rise to efficient Monte Carlo algorithms that can numerically evaluate

the performance of a given deployment policy and sample the target’s location conditioned

on him avoiding detection in an asymptotically optimal manner (as the deadline increases).

3

Part I

Exact Sampling of Stationary and

Time-Reversed Queues

4

Introduction to Part I

The theory of exact simulation has attracted substantial attention, particularly since the

ground breaking paper [Propp and Wilson, 1996]. In their paper, the authors introduced

the most popular sampling protocol for exact simulation to date; namely, Coupling From

The Past (CFTP). CFTP is a simulation technique which results in samples from the

steady-state distribution of a Markov chain under certain compactness assumptions. The

paper [Kendall, 1998] describes a useful variation of CFTP, called Dominated CFTP

(DCFTP). Like CFTP, DCFTP aims to sample from the steady-state distribution of a

Markov chain, but this technique can also be applied to cases in which the state-space is

unbounded.

The idea in the DCFTP method is to simulate a dominating stationary process back-

wards in time until the detection of a so-called coalescence time, in which the target and

dominating processes coincide. The sample path of the target process can then be recon-

structed forward in time from coalescence up to time zero. The state of the target process

at time zero is a sample from the associated stationary distribution.

Our contribution in this paper is to provide, under nearly minimal assumptions (finite-

mean service and inter-arrival times), an exact simulation algorithm for the stationary

workload of a single-server queue backwards in time. This is a fundamental queueing

system which can be used in many applications as a natural dominating process when

applying DCFTP. Usually additional assumptions, beyond the ones we consider here, have

been imposed to enable the simulation of the stationary single-server queue backwards in

time.

For example, in [Sigman, 2011] the problem of sampling from the distribution of an

5

M/G/c queue is considered. It is assumed that the ratio between the arrival rate, λ, and

the service rate, µ, namely the traffic intensity parameter ρ = λ/µ is strictly less than unity.

This is a strong assumption because stability is known to hold if ρ < c. Nevertheless, this

assumption is imposed because one can clearly use a stableM/G/1 queue (only one server)

in order to dominate the workload. The challenge is then to detect a coalescence time,

that is, a time at which the state of the target system (in this case the M/G/c system)

is known. A natural coalescence time in this case occurs when the upper bound process,

namely the workload of the M/G/1 queue, simulated in stationarity and backwards in

time is empty. Then, from this time the M/G/c queue can be reconstructed forward up

to time zero using the traffic underlying the simulation of the upper bound. At this point,

the difficulty consists in precisely simulating the workload of a stationary M/G/1 queue

backwards in time. The author in [Sigman, 2011] overcomes this problem by noting that

a processor sharing queue, which can easily be simulated backwards in time because it is

quasi-reversible, shares the same workload as the corresponding M/G/1 queue, and thus

it is possible to detect coalescence. An immediate extension of our contribution here is the

ability to handle GI/G/c queues with ρ < 1.

Later [Sigman, 2012] was able to simulate a stationary M/G/c queue assuming ρ < c.

The algorithm [Sigman, 2012] avoids the use of DCFTP, but it as a price an infinite

expected termination time. The strategy in [Sigman, 2012] was first to show that one can

dominate the number in system of an M/G/c queue using c independent M/G/1 queues.

The coupling explained in [Sigman, 2012] consists in taking the arriving customers into the

M/G/c queue and using the Poisson thinning theorem to split these customers into c i.i.d.

Poisson processes. The service times, however, must preserve the order in which they start

to be processed in order to ensure domination. Our contribution here would allow to use

the domination result in [Sigman, 2012] to produce an exact sampling algorithm for the

M/G/c queue which runs in finite expected termination time. In particular, we now can

simulate each of the independent M/G/1 queues in stationarity and backwards in time.

Then, we note that a coalescence time occurs when all of the queues are empty. At that

point we simulate the M/G/c queue forward in time up until time zero, but one must be

careful to make sure that the service times are used in the M/G/c according to the times

6

in which they start to be processed in the M/G/1 queues. An additional extension to

appear in [?] uses a different dominating process, but also exploits our work here to deal

with GI/G/c queues.

We note other applications. For example, the paper [Blanchet and Dong, 2012] uses the

single server queue backwards in time to sample the state descriptor of the infinite server

queue in stationarity – in turn, the infinite server queue is used to simulate loss networks in

stationarity. In the paper [Blanchet and Sigman, 2011] the single-server queue backwards in

time is used to simulate from a general class of heavy-tailed perpetuities. Both in [Blanchet

and Dong, 2012] and [Blanchet and Sigman, 2011] the underlying distributions are assumed

to have a finite moment generating function in a neighborhood of the origin. Applications

to multidimensional stochastic-fluid networks are discussed in [Blanchet and Chen, 2012].

Our contribution here directly extends the applicability of all of these instances in which

the single-server queue has been used as a dominated process under stronger assumptions.

A short section at the end of this paper on a direct application to multi-server queues has

been added in response to a request from one of the referees.

The first idle period (backwards in time starting from stationarity) is a natural coales-

cence time when applying DCFTP. Therefore, we are specially interested in an algorithm

that has finite expected termination time to simulate such first idle period. Moreover, it is

well known that finite-variance service times are necessary if the first idle period (starting

from stationarity) has finite expected time (this follows from Wald’s identity, [Durrett,

2005] p. 178, and from Theorem 2.1 in [Asmussen, 2003], p. 270). While our algorithm

terminates with probability one imposing only the existence of finite mean of service times

and inter-arrival times, when we assume finite variances we obtain an algorithm that has

finite expected running time (see Theorem 2 in Section 2.4).

CHAPTER 2. PERFECT SAMPLING 7

Chapter 2

Perfect Sampling

2.1 Introduction

Let us now provide the mathematical description of the problem we want to solve. Consider

a random walk Sn = X1 + . . .+Xn for n ≥ 1, and S0 = 0. We assume that (Xk : k ≥ 1)

is a sequence of independent and identically distributed (IID) random variables with

EXk = 0 and E |Xk|β <∞ for some β > 1. (2.1.1)

As we indicated earlier, of special interest is the case E |Xk|β <∞ for some β > 2. Now,

for µ > 0 and n ≥ 0 we define the negative-drift random walk and its associated running

(forward) maximum by

Sn (µ) = Sn − nµ and Mn = max
m≥n
{Sm (µ)− Sn (µ)}, (2.1.2)

respectively. Note that the maximum is taken over an infinite time-horizon, so the process

(Mn : n ≥ 0) is not adapted to the random walk (Sn (µ) : n ≥ 0). Our aim in this paper is

to design an algorithm that samples jointly from the sequence (Sn (µ) , Mn : 0 ≤ n ≤ N)

for any finite N (potentially a stopping time adapted to (Sn (µ) ,Mn : n ≥ 0)). Of

particular interest is the first idle time, N = min{n ≥ 0 : Mn = 0}, which can often be

used as a coalescence time.

Note that if we define Wm = M−m for m ≤ 0, then we can easily verify the so-called

Lindlay’s recursion (see [Asmussen, 2003], p. 92) namely

M−m = (M−m+1 +X−m − µ)+ = (Wm−1 +X−m − µ)+ = Wm,

CHAPTER 2. PERFECT SAMPLING 8

and therefore (Wm : m ≤ 0) corresponds to a single-server queue waiting time sequence

backwards in time; the sequence is clearly stationary since the Mn’s are all equal in dis-

tribution. Simulating (Sn (µ) ,Mn : n ≥ 0) jointly allows to couple the single-server queue

backwards in time with the driving sequence (i.e. the Xn’s). Such coupling is required in

the applications of the DCFTP method.

The algorithm that we propose here extends previous work in [Ensor and Glynn, 2000],

which shows how to simulate M0 assuming the existence of the so-called Cramer root (i.e.

θ > 0 such that E (exp (θX1)) = 1). The paper [Blanchet and Sigman, 2011] explains

how to simulate (Sn (µ) ,Mn : n ≥ 0) assuming a finite moment generating function in a

neighborhood of the origin. Multidimensional extensions, also under the assumption of a

finite moment generating function around the origin, are discussed in [Blanchet and Chen,

2012].

Our strategy for simulating the sequence (Sn (µ) ,Mn : n ≥ 0) relies on certain “upward

events” and “downward events” that occur at random times. These “milestone events” will

be discussed in Section 2.2. In Section 2.2 we will also present the high-level description

of our proposed algorithm, which will be elaborated in subsequent sections. Section 2.3

explains how to simulate M0 under the assumption that E |Xk|β < ∞ for β > 2. In

Section 2.4 we built on our construction for the sampling of M0 to simulate the sequence

(Sk (µ) ,Mk : k ≤ n). Section 2.5 will explain how to extend our algorithm to the case

E |Xk|β < ∞ for β > 1 and also discuss additional considerations involved in evaluating

certain normalizing constants. Finally, in Section 2.6 we will present a numerical example

that tests the empirical performance of our proposed algorithm.

2.2 Construction of (Sn (µ) ,Mn : n ≥ 0) via “milestone events”

We will describe the construction of a pair of sequences of stopping times (with respect to

the filtration generated by (Sn (µ) : n ≥ 0)), denoted by (Dn : n ≥ 0) and (Un : n ≥ 1),

which track certain downward and upward milestones in the evolution of (Sn (µ) : n ≥ 0).

We follow similar steps as described in [Blanchet and Sigman, 2011]. These “milestone

events” will be used in the design of our proposed algorithm. The elements of the two

CHAPTER 2. PERFECT SAMPLING 9

0 1 2 3 4 5 6 7 8 9 10 11 12

n

S
n
(µ
)

The figure illustrates a sample path

{Sn (µ) : 0 ≤ n ≤ 12}. If we set m = 1 and

L = 2 then the corresponding stopping times are

D1 = 4, U1 = 6, D2 = 9. If in addition U2 = ∞,

then Sn (µ) stays below the bold dashed line for all

n ≥ D2. Following Proposition 1 we can now evalu-

ate Mn satisfying {Mn : n ≤ 9, Sn (µ) ≥ S9 (µ) + 1}

In this example, at time t = D2 = 9 the values

of {Mn : 0 ≤ n ≤ 7} can be calculated and we

can update CUB ← SD2 (µ) + 1. Notice that

S8 (µ) ≤ S9 (µ) + 1 and therefore, in order to

determine M8 we need to keep on tracking the path

until the next time we spot Un =∞.

Figure 2.2.1: Construction of Milestone Stopping Times

stopping times sequences interlace with each other (when finite) and their precise descrip-

tion follows next.

We start by fixing any m > 0, L ≥ 1. Eventually we will choose m as small as possible

subject to certain constraints described in Section 2.3, and then we can choose L as small

as possible to satisfy

P (m < M0 ≤ (L+ 1)m) > 0. (2.2.1)

Typically, L = 1 is feasible. This constraint on L will be used in the proof of Proposition

1 and also in the implementation of Step 2 in Procedure 1 below.

Now set D0 = 0. We observe the evolution of the process (Sn (µ) : n ≥ 0) and detect

the time D1 (the first downward milestone),

D1 = inf {n ≥ D0 : Sn(µ) < −Lm} .

Once D1 is detected we check whether or not {Sn (µ) : n ≥ D1} ever goes above the

height SD1 (µ) +m (the first upward milestone); namely we define

U1 = inf {n ≥ D1 : Sn(µ) > m+ SD1 (µ)}

For now let us assume that we can check if U1 = ∞ or U1 < ∞ (how exactly to

do so will be explained in Section 2.3). To continue simulating the rest of the path,

CHAPTER 2. PERFECT SAMPLING 10

namely {Sn (µ) : n > D1}, we potentially need to keep track of the conditional upper

bound implied by the fact that U1 = ∞. To this end, we introduce the conditional

upper bound variable CUB (initially CUB = ∞). If at time D1 we detect that U1 =

∞, then we set CUB = SD1 (µ) + m and continue sampling the path of the random

walk conditional on never crossing the upper bound SD1 (µ) + m, that is, conditional on

{Sn (µ) < CUB : n > D1}. Otherwise, if U1 < ∞, we simulate the path conditional on

U1 < ∞, until we detect the time U1. We continue on sequentially checking whenever a

downward or an upward milestone is crossed as follows: For j ≥ 2, define

Dj = inf
{
n ≥ Uj−1I (Uj−1 <∞) ∨Dj−1 : Sn (µ) < SDj−1 (µ)− Lm

}
Uj = inf

{
n ≥ Dj : Sn (µ)− SDj (µ) > m

}
,

(2.2.2)

with the convention that if Uj−1 = ∞, then Uj−1I (Uj−1 <∞) = 0. Therefore, we have

that Uj−1I (Uj−1 <∞) > Dj−1 if and only if Uj−1 <∞.

Let us define

∆ = inf{Dn : Un =∞, n ≥ 1}. (2.2.3)

So, for example, if U1 =∞ we have that ∆ = D1 and the drifted random walk will never

reach level SD1 (µ) +m again. This allows us to evaluate M0 by computing

M0 = max {Sn (µ) : 0 ≤ n ≤ ∆} . (2.2.4)

Similarly, the event Uj =∞, for some j ≥ 1, implies that the level SDj (µ)+m is never

crossed for all n ≥ Dj , and we let CUB = SDj (µ) +m. The value of CUB keeps updating

as the random walk evolves, at times where Uj =∞.

The advantage of considering these stopping times is the following: once we observed

that some Uj =∞, the values of
{
Mn : n ≤ Dj , Sn (µ) ≥ SDj (µ) +m

}
are known without

a need of further simulation. A detailed example is illustrated in Figure 2.2.

Before we summarize the properties of the stopping times Dn’s and Un’s it will be

useful to introduce the following. For any a and b > 0 let

Tb = inf {n ≥ 0 : Sn − µn > b} ,

T−b = inf {n ≥ 0 : Sn − µn < −b} ,

Pa (·) = P (· | S0 = a) .

(2.2.5)

CHAPTER 2. PERFECT SAMPLING 11

Proposition 1. Set D0 = 0 and let (Dn : n ≥ 1) and (Un : n ≥ 1) be as (2.2.2). We

have that

P0 (limn→∞Dn =∞) = 1 and P0 (Dn <∞) = 1, ∀n ≥ 1. (2.2.6)

Furthermore,

P0 (Un =∞, i.o.) = 1. (2.2.7)

Proof. The statement in (2.2.6) follows easily from the Law of Large Numbers since

ES1 (µ) = −µ < 0. Now we will verify that P0 (Un =∞, i.o.) = 1. Recall that U1

was defined by U1 = inf {n ≥ D1 : Sn(µ)− SD1 (µ) > m}. Therefore, since ES1(µ) < 0,

for all m ≥ 0 we have (see [Asmussen, 2003] p. 224),

P0 (U1 =∞|S1, ..., SD1) = P0 (Tm =∞) = P (M0 ≤ m) ≥ P (M0 = 0) > 0.

Our next goal is to show that for j ≥ 2 we can find δ > 0 such that

P0

(
Uj =∞|S1, ..., SDj , U1, ..., Uj−1

)
≥ δ > 0.

Suppose first that Ul <∞ for each l = 1, 2, ..., j−1. Then, by the strong Markov property

we have that

P0

(
Uj =∞|S1, ..., SDj , U1, ..., Uj−1

)
= P0 (Tm =∞) ≥ P (M0 = 0) > 0.

Now suppose that Ul = ∞ for some l ≤ j − 1 and let l∗ = max {l ≤ j − 1 : Ul =∞}.

Define r = SDl∗ (µ) +m− SDj (µ) ≥ (L+ 1)m. Note that

P0

(
Uj =∞|S1, ..., SDj , U1, ..., Uj−1

)
= P0 (Tm =∞|Tr =∞) . (2.2.8)

Keep in mind that the right hand side of (2.2.8) regards r as a deterministic constant and

note that

P0 (Tm =∞|Tr =∞) = P0 (M0 ≤ m|M0 ≤ r) ≥
P0 (M0 = 0)

P (M0 ≤ r)
≥ P0 (M0 = 0) > 0 (2.2.9)

Hence, we conclude that

P0

(
Uj =∞|S1, ..., SDj , U1, ..., Uj−1

)
≥ P (M0 = 0) := δ > 0 .

It then follows by the Borel-Cantelli lemma that P0 (Un =∞, i.o.) = 1.

CHAPTER 2. PERFECT SAMPLING 12

a. Step 1. b. Step 2.

Figure 2.2.2: High-level description of the algorithm

In the setting of Proposition 1, for each k ≥ 0 we can defineN0 (k) = inf {n ≥ 1 : Dn ≥ k}

and T (k) = inf {j ≥ N0 (k) + 1 : Uj =∞}, both finite random variables such that

Mk = −Sk (µ) + max{Sn (µ) : k ≤ n ≤ DT (k)} (2.2.10)

In words, DT (k) is the time, not earlier than k, at which we detect a second unsuccessful

attempt at building an upward patch directly. The fact that the relation in (2.2.10) holds,

follows easily by construction of the stopping times in (2.2.2). Note that it is important,

however, to define T (k) ≥ N0 (k) + 1 so that DN0(k)+1 is computed first. That way we

can make sure that the maximum of the sequence (Sn (µ) : n ≥ k) is achieved between k

and DT (k) (see Figure 2.2).

Proposition 1 ensures that it suffices to sequentially simulate (Dn : n ≥ 0) and (Un :

n ≥ 1) jointly with the underlying random walk in order to sample from the sequence

(Sn (µ) , Mn : n ≥ 0). This observation gives rise to our suggested scheme. The procedure

sequentially constructs the random walk in the intervals [Dn−1, Dn) for n ≥ 1. Here is the

high-level procedure to construct (Sn (µ) , Mn : n ≥ 0):

CHAPTER 2. PERFECT SAMPLING 13

Procedure 1 Milestone Construction of (Sn (µ) , Mn : n ≥ 0) (see Figure 2.2.2)
At kth iteration, k ≥ 1:

Step 1: “downward patch". Conditional on the path not crossing CUB we

simulate the path until we detect Dk− the first time the path crosses the level

SDk−1
(µ)− Lm (see Figure 2.2.2a).

Step 2: “upward patch". Check whether or not the level SDk(µ) +m is ever

crossed. That is, whether Uk <∞ or not. If the answer is “Yes”, then conditional on

the path crossing the level SDk(µ) +m but not crossing the level CUB we simulate

the path until we detect Uk, the first time the level SDk(µ) +m is crossed (see

Figure 2.2.2b). Otherwise (Uj =∞), and we can update CUB: CUB ← SDj (µ) +m

The implementation of the steps in Procedure 1 will be discussed in detail in the

next sections, culminating with the precise description given in Algorithm 3 at the end

of Subsection 2.4.3. The following result summarizes the main contribution of this paper.

The development in the next sections provides the proof of this result, which will ultimately

be given after the description of Algorithm 3.

Throughout the rest of the paper a function evaluation is considered to be any of the

following operations: evaluation of a sum, a product, the exponential of a number, the

underlying increment distribution at a given point, the simulation of a uniform number,

and the simulation of a single increment conditioned on lying on a given interval.

Theorem 2. Suppose that E |Xk|β < ∞ for some β > 1. If m > 0 is suitably chosen

(see Subsection 2.3.1.1) then for each n ≥ 0 deterministic it is possible to simulate exactly

the sequence (Dj : 0 ≤ j ≤ n) and (Uj : 0 ≤ j ≤ n) jointly with (Sj (µ) : j ≤ n).

Therefore, (given our previous discussion on the evaluation of Mk) simulate exactly the

sequence (Sk (µ) ,Mk : 0 ≤ k ≤ n).

Moreover, if β > 2, the expected number of function evaluations required to simulate

(Sk (µ) ,Mk : 0 ≤ k ≤ n) is finite. In particular, since EN <∞ for

N = inf{k ≥ 0 : Mk = 0},

the expected running time to simulate (Sk (µ) ,Mk : 0 ≤ k ≤ N) is also finite.

CHAPTER 2. PERFECT SAMPLING 14

2.3 Sampling M0 jointly with (S1 (µ) , ..., S∆ (µ))

The goal of this section is to sample exactly from the steady-state distribution of the

single-server queue, namely M0. To this end we need to simulate the sample path up to

the first Uj such that Uj = ∞ (recall that ∆ was defined to be the corresponding Dj).

This sample path will be used in the construction of further steps in Procedure 1 .

Throughout this section, in order to simplify the exposition, we will assume that

E |Xk|2+ε < ∞ (i.e. β = 2 + ε). This will allow us to conclude that our algorithm

has finite expected termination time. We will discuss the case E |Xk|1+ε < ∞ only (for

ε ∈ (0, 1)) in Section 2.5 for completeness, but in such case the algorithm may take infinite

expected time to terminate.

Let us recall the definition of the crossing stopping times Tb and T−b, for b > 0,

introduced in (2.2.5). Since we concentrate on M0, we have that CUB =∞. We first need

to explain a procedure to generate a Bernoulli random variable with success parameter

P0 (Tm <∞), for suitably chosen m > 0. Also, this procedure, as we shall see will allow

us to simulate (S1 (µ) , ..., STm (µ)) given that Tm <∞.

2.3.1 Sampling Ber (P0 (Tm <∞)) and (S1 (µ) , ..., STm (µ)) given Tm <∞

Let us denote by J a Bernoulli random variable with success parameter P0 (Tm <∞).

The constant m > 0 will be selected below in Subsection 2.3.1.1. There are several ways

of sampling J , we use a strategy similar to that considered in [Murthy et al., 2013], in

connection to a different sampling problem.

In order to sample J we first introduce a partition on the natural numbers (i.e. the

positive time line on the lattice) as follows. Let

nk = 2k−1, k = 1, 2, (2.3.1)

This sequence define a partition of the natural numbers via the sets [nk−1, nk − 1] for

k = 2, 3, Now, for k = 2, 3, . . . we consider the sets

CHAPTER 2. PERFECT SAMPLING 15

Ak =
nk−1⋃
j=nk−1

{
Xj > (µj +m)1−δ

}
Bk =

nk−1⋂
j=1

{
Xj ≤ (µnk−1 +m)1−δ

}
Ack ∩Bc

k

(2.3.2)

for some δ ∈ (0, 1
2], also to be selected.

First, the algorithm samples the random variable K ≥ 2, which has probability mass

function g(·) that will be specified later. The random variable K relates to the partition on

the natural numbers that was induced by (2.3.1) andK = k will eventually imply that Tm ∈

[nk−1, nk − 1]. Given K = k, the algorithm then proposes a walk (S1 (µ) , . . . , Snk−1 (µ))

via conditioning on one of three possible events described in terms of Ak, Bk ∩ Ack and

Ack ∩ Bc
k with equal probability (i.e. with probability 1

3 each). Conditioning on Ak and

Ack∩Bc
k will be handled using a mixtures based on individual large-jump-events of the form

{Xj > (µj +m)1−δ}. Conditioning on Bk will be handled using an exponential tilting of

the distribution of Xj given that {Xj < (µj +m)1−δ}. The tilting parameter will be

selected via

θk =
γ

nk−1µ+m
, (2.3.3)

for some γ > 0.

In order to describe all of these conditional sampling procedures we need to provide

some definitions and state auxiliary lemmas which will be proved in the appendix.

We will start by specifying the probability mass function {g (k) , k ≥ 2}. Consider Y ,

a Pareto distributed random variable with some regularly varying index α > 0, namely,

P (Y > y) =
1

(1 + y)α
,

for y ≥ 0. Conditions on α > 0 will be imposed below. Let

Ḡ (t) =

∞̂

t

P (Y > s) ds

Then we set for k = 2, 3, . . .

g (k) = P (K = k) =
Ḡ (m+ µnk−1)− Ḡ (m+ µnk)

Ḡ (m+ µn1)
. (2.3.4)

CHAPTER 2. PERFECT SAMPLING 16

Let us impose conditions on δ, α,m and γ that will be assumed for the implementation of

the algorithm.

2.3.1.1 Assumptions imposed on the parameters δ, α, m and γ

In addition to δ ∈
(
0, 1

2

]
, and (2.2.1), assume that m ≥ 1 is selected large enough so that

E
(
X2
)

m2(1−δ) ≤
1

2
, (2.3.5)

and that the following inequalities hold:

sup
z∈µ·{2k:k≥0}

6 (1 + 2z +m)α P
(
X > (z +m)1−δ

)
(α− 1) (m+ 1)α−1 µ

≤1, (2.3.6)

sup
z∈µ·{2k:k≥0}

exp

(
−γ (m+ z)δ +

γ2eγE(X2)z
(m+z)2(1−δ)µ

+ 4 zµP
(
X > (z +m)1−δ

))
3−1 (α− 1) (m+ 1)α−1 (1 + 2z +m)−α z

≤1. (2.3.7)

Inequalities (2.3.6) and (2.3.7) are used during the proofs of Lemmas 3 and 4 , respectively.

Inequality (2.3.5) appears in a simple technical step leading to (2.3.7).

In Appendix A.1 we will discuss how equations (2.3.5)-(2.3.7) can always be satisfied

under our assumptions on the increments Xk.

2.3.1.2 Some technical lemmas underlying the description of our algorithm

Using the previous assumptions we now are ready to discuss a series of technical lemmas

that are the basis for our algorithm.

Lemma 3. Under (A.1.2) (see Appendix A.1) we have that

3P (Ak)

g (k)
≤ 1, ∀k ≥ 2. (2.3.8)

Proof. See Appendix A.2

On the event Bk we sample the path (S1 (µ) , ..., Snk−1 (µ)) using an exponential tilting.

Specifically, we sample the increments, (Xj : 1 ≤ j ≤ nk − 1), conditional on the event Bk

and tilted with parameter θk up to time min {Tm, nk − 1}, where

θk =
γ

C1−δ
k

, and Ck := (nk−1µ+m) .

CHAPTER 2. PERFECT SAMPLING 17

Recall that γ > 0 has been implicitly constrained due to (2.3.7). The corresponding log-mgf

is given by

ψk (θk) := log

E
[
exp {θkX} I

(
X ≤ C1−δ

k

)]
P
(
X ≤ C1−δ

k

)
 .

The likelihood ratio between P
(
Xj ∈ ·|Xj ≤ C1−δ

k

)
and the tilted distribution (to be used

in an IID way for 1 ≤ j ≤ nk − 1) denoted via Pk,1 (·) is given by

dPk,1
dP

(X) =
I
(
X ≤ C1−δ

k

)
exp (θkX − ψk (θk))

P
(
X ≤ C1−δ

k

) . (2.3.9)

Now we summarize some bounds for this likelihood ratio.

Lemma 4. Under conditions (2.3.5)-(2.3.7) we have that

3 exp(−θkSTm + Tmψk (θk))

g (k)
≤ 1, ∀k ≥ 2. (2.3.10)

Proof. See Appendix A.3

As the final piece we will note the following.

Lemma 5. Then, under (A.1.1), and (A.1.2) we have that

3P (Bc
k)

g (k)
≤ 1, ∀k ≥ 2. (2.3.11)

Proof. See Appendix A.4

2.3.1.3 Algorithm for sampling Ber (P0 (Tm <∞)) jointly with (S1 (µ) , ..., STm (µ))

given Tm <∞

Now we are ready to fully discuss our algorithm to sample J and ω = (S1, ...STm) given

Tm < ∞. In addition to the random variable K following the probability mass function

g (·), let us introduce a random variable Z uniformly distributed on {0, 1, 2} and indepen-

dent of K. Finally, we also introduce V ∼ U (0, 1) independent of everything else.

CHAPTER 2. PERFECT SAMPLING 18

If Z = 0, then we sample the path (S1, ..., Snk−1) conditional on Ak (denote Pk,0 (·) =

P (·|Ak)). This will be explained in Subsection 2.3.1.4, the sample takes O (nk) function

evaluations to be produced. Then we let

J = I(V ≤ 3P (Ak) I(Tm ∈ [nk−1, nk − 1])/g (k)).

Owing to Lemma 3, we have that

3P (Ak)

g (k)
≤ 1, ∀k ≥ 2. (2.3.12)

If Z = 1, we sample (S1 (µ) , ..., Snk−1 (µ)) by applying each increment Xj conditional

on {Xj ≤ (µnk−1 +m)1−δ} for j ∈ {1, ..., nk − 1} in an IID way each following the expo-

nential tilting (2.3.9). This sampling distribution is denoted via Pk,1 (·). The simulation

of each increment is done using Acceptance/Rejection, as we shall explain, and the overall

sampling {Xj : j ≤ nk − 1} takes O (nk) function evaluations, see Subsections 2.3.1.5.

Additional discussion on the evaluation ψk (θk) in O (nk) function evaluations is given in

Subsection 2.5.2. We then set

J = I(V ≤ 3 · exp {−θkSTm + Tmψk (θk)} I(Tm ∈ [nk−1, nk − 1] , Ack, Bk)/g (k)).

Observe that Lemma 4 guarantees the inequality

3 exp {−θkSTm + Tmψk (θk)}
g (k)

≤ 1, ∀k ≥ 2. (2.3.13)

Finally, if Z = 2, we sample the path (S1 (µ) , ..., Snk−1 (µ)) conditional on the event

Bc
k (denote Pk,2 (·) = P (·|Bc

k)). This is done in a completely analogous manner as in

Subsection 2.3.1.4, thus taking O (nk) function evaluations. We then let

J = I(V ≤ 3P (Bc
k) I(Tm ∈ [nk−1, nk − 1] , Ack, B

c
k)/g (k)).

Here the inequality

3P (Bc
k)

g (k)
≤ 1, ∀k ≥ 2, (2.3.14)

is obtained thanks to Lemma 5.

CHAPTER 2. PERFECT SAMPLING 19

Upon termination we will output the pair (J, ω). If J = 1, then we set ω = (S1 (µ) , ..., STm (µ)).

Otherwise (J = 0), we set ω = [], the empty vector. The precise description of the algo-

rithm is given next.

CHAPTER 2. PERFECT SAMPLING 20

Algorithm 1: Sampling Ber (P0 (Tm <∞)) and (S1 (µ) , ..., STm (µ)) given Tm <∞
Input: g (·) as in (2.3.4), with α, δ,m, γ satisfying the conditions in Section 2.3.1.1

and L as in (2.2.1).

Output: J ∼ Ber (P0 (Tm <∞)) and ω. If J = 1, then ω = (S1 (µ) , . . . , STm (µ)).

Otherwise (J = 0), ω = [] // If J = 0, then ω equals to the empty

vector

Sample a time K with probability mass function g (k) = P (K = k)

Sample Z ∼ Unif {0, 1, 2}

Sample V ∼ U (0, 1) independent of everything

Given Z and K = k sample (S1, . . . , Snk) as follows:

if Z = 0 then
Sample w̃ = (Sj : j ≤ nk − 1) from Pk,0 (·) := P (·|Ak)

if V ≤ 3P (Ak)
g(k) I (Ak, Tm ∈ [nk−1, nk − 1]) then

J = 1

else
J = 0

if Z = 1 then
Sample w̃ = (Sj : j ≤ Tm ∧ (nk − 1)) from Pk,1 (·)

dPk,1 (w̃) = exp
{
θkSTm∧(nk−1) − (Tm ∧ (nk − 1)ψk (θk))

}
dP (w̃)

if V ≤ 3 exp{−θkSTm+Tmψk(θk)}
g(k) I (Bk, A

c
k, Tm ∈ [nk−1, nk − 1]) then

J = 1

else
J = 0

if Z = 2 then
Sample w̃ = (Sj : j ≤ nk − 1) from Pk,2 (·) := P (·|Bc

k)

if V ≤ 3P(Bck)
g(k) I (Bc

k A
c
k, Tm ∈ [nk−1, nk − 1]) then

J = 1

else
J = 0

if J = 1 then

Output (J, ω), where ω = (Sj (µ) : 1 ≤ j ≤ Tm) // Recall: Sj (µ) = Sj − µj.

else
Output (J, ω), where ω = [] and J = 0.

CHAPTER 2. PERFECT SAMPLING 21

We now provide the following result which justifies the validity of the algorithm.

Proposition 6. The output J is Bernoulli with success parameter P0 (Tm <∞) and ω

follows the required distribution of (S1, . . . , STm) given Tm <∞. Moreover, if E |X1|2+ε <

∞, then the expected number of function evaluations required to sample J and ω is finite.

Proof. To verify that indeed J ∼ Ber(P0(Tm <∞)), let P ′ (·) denote the joint probability

distribution of K, Z, (S1, ..., SnK−1), and J induced by the algorithm. Note, of course,

that nK − 1 ≥ Tm under P ′ (·). In addition, observe that

P ′ (J = 1|Z = 0,K = k) = 3P (Ak)
g(k) · P0 (Tm ∈ [nk−1, nk − 1] |Ak)

= 3
g(k) · P0 (Tm ∈ [nk−1, nk − 1] , Ak) .

(2.3.15)

Let rk,1 := exp(−θkSTm+Tmψ (θk))I (Bk, A
c
k, Tm ∈ [nk−1, nk − 1]), and define Ek,1(·) to be

the expectation operator associated to the exponential tilting distribution with parameter

θk applied to the random variables X1, ..., Xnk−1 (see (2.3.9)). Note that,

P ′ (J = 1|Z = 1,K = k) = 3
g(k)Ek,1 [rk,1]

= 3
g(k)P0 (Bk, A

c
k, Tm ∈ [nk−1, nk − 1])

(2.3.16)

Finally,

P ′ (J = 1|Z = 2,K = k) = 3
g(k)P0 (Bc

k, A
c
k, Tm ∈ [nk−1, nk − 1]) (2.3.17)

Combining (2.3.15)-(2.3.17) we have

P ′ (J = 1) =

=
∞∑
k=2

1
3 (P ′ (J = 1|Z = 0,K = k) + P ′ (J = 1|Z = 1,K = k) + P ′ (J = 1|Z = 2,K = k)) g (k)

=
∞∑
k=2

P0 (Tm ∈ [nk−1, nk − 1] , Ak) + P0 (Bk, A
c
k, Tm ∈ [nk−1, nk − 1])

+P0 (Bc
k, A

c
k, Tm ∈ [nk−1, nk − 1])

=
∞∑
k=2

P0 (Tm ∈ [nk−1, nk − 1]) = P0 (Tm <∞) .

(2.3.18)

Similarly we can verify that if J = 1, ω = (S1, ..., STm) follows the conditional law

CHAPTER 2. PERFECT SAMPLING 22

P (ω ∈ ·|Tm <∞). Just note that for any F ,

P ′ (ω ∈ F, J = 1|K = k, Z = 0) = P0 (ω ∈ F, Tm ∈ [nk−1, nk − 1] |Ak) ·
3P (Ak)

g (k)

= P0 (ω ∈ F, Tm ∈ [nk−1, nk − 1] , Ak) ·
3

g (k)
,

P ′ (ω ∈ F, J = 1|K = k, Z = 1) = P0 (ω ∈ F, Tm ∈ [nk−1, nk − 1]Ack|Bk) ·
3P (Bk)

g (k)

= P0 (ω ∈ F, Tm ∈ [nk−1, nk − 1]Ack, Bk) ·
3

g (k)
,

P ′ (ω ∈ F, J = 1|K = k, Z = 2) = P0 (ω ∈ F,Ack, Tm ∈ [nk−1, nk − 1] |Bc
k) ·

3P (Bc
k)

g (k)

= P0 (ω ∈ F, Tm ∈ [nk−1, nk − 1] , Bc
k, A

c
k) ·

3

g (k)
.

Consequently, combining these terms

P ′ (ω ∈ F, J = 1) =

=
∞∑
k=2

[P0 (ω ∈ F, Tm ∈ [nk−1, nk − 1] , Ak) + P0 (ω ∈ F, Tm ∈ [nk−1, nk − 1]Ack, Bk)

+ P0 (ω ∈ F, Tm ∈ [nk−1, nk − 1] , Bc
k, A

c
k)]

=

∞∑
k=2

P0 (ω ∈ F, Tm ∈ [nk−1, nk − 1]) = P0 (ω ∈ F, Tm <∞) .

Since P ′ (J = 1) = P0 (Tm <∞), we conclude that indeed

P ′ (ω ∈ F |J = 1) = P0 (ω ∈ F |Tm <∞) .

We now argue that the expected number of function evaluations required to generate (J, ω)

has finite mean. Let us assume that sampling from Pk,0 (·) , Pk,1 (·), and Pk,2 (·) takes O(nk)

function evaluations (a fact that it is not difficult to see, but nonetheless we will justify in

Subsections 2.3.1.4 and 2.3.1.5). Then, we note that each proposal ω takes on the order of

O(

∞∑
k=2

nkg (k)) ≤ O(
∞∑
k=2

n2
kP (Y > nk−1µ+m)) <∞

function evaluations; the sum is finite assuming that α > 2, as indicated in (A.1.1).

We close this section explaining how to sample from Pk,0 (·) , Pk,1 (·), and Pk,2 (·). We

will also verify that it takes O(nk) function evaluations to sample ω in each of these three

cases as claimed in the end of Proposition 6.

CHAPTER 2. PERFECT SAMPLING 23

2.3.1.4 Sampling from Pk,0 (·) and Pk,2 (·)

We now explain how to use Acceptance / Rejection to obtain a sample from Pk,0 (·) (i.e.

sampling (S1, ..., Snk−1) given Ak). Our proposal distribution, which we denote by Q (·), is

based on a mixture P (·) and another distribution which we denote by P̄ (·) to be described

momentarily. In particular, we shall set Q = 1
2P + 1

2 P̄ . As we shall see, the reason for

introducing P is to make sure that the acceptance ratio is bounded uniformly over µ. This

will be relevant in our discussion on mixing time in heavy-traffic in Section 2.6 (i.e. when

µ is close to zero). If µ is not close to zero then we can simply select Q = P̄ and the

acceptance ratio will be bounded uniformly in k, but not as µ→ 0.

The distribution of (S1, ..., Snk−1) under P̄ (·) is better described algorithmically. First,

we sample Tk with probability mass function rk (·) given by

rk (j) =
P (Xj > (µj +m)1−δ)∑nk−1

j=nk−1
P (Xj > (µj +m)1−δ)

,

for j ∈ {nk−1, . . . , nk − 1}. Next, given Tk = j, sampleXj conditional onXj > (µj +m)1−δ.

Finally, sample Xi, for i 6= j and 1 ≤ i ≤ nk − 1 from the nominal (unconditional) distri-

bution. We then obtain that

dP̄

dP
(X1, ..., Xnk−1) =

∑nk−1
j=nk−1

I
(
Xj > (µj +m)1−δ

)
∑nk−1

j=nk−1
P (Xj > (µj +m)1−δ)

.

Therefore, with Pk,0 (·) = P (·|Ak) we obtain that

I (Ak)

P (Ak)
· dP
dQ

(X1, ..., Xnk−1) =

= 2
I (Ak)

P (Ak)
·

∑nk−1
j=nk−1

P (Xj > (µj +m)1−δ)∑nk−1
j=nk−1

I
(
Xj > (µj +m)1−δ

)
+
∑nk−1

j=nk−1
P (Xj > (µj +m)1−δ)

≤ ck :=
2

P (Ak)
·
∑nk−1

j=nk−1
P (Xj > (µj +m)1−δ)

1 +
∑nk−1

j=nk−1
P (Xj > (µj +m)1−δ)

.

Consequently, in order to sample from Pk,0 (·) it suffices to propose from Q (·) and accept

with probability

q :=
1

ck
· I (Ak)

P (Ak)
· dP
dQ

(X1, ..., Xnk−1)

=I (Ak) ·
1 +

∑nk−1
j=nk−1

P (Xj > (µj +m)1−δ)∑nk−1
j=nk−1

I
(
Xj > (µj +m)1−δ

)
+
∑nk−1

j=nk−1
P (Xj > (µj +m)1−δ)

.

CHAPTER 2. PERFECT SAMPLING 24

We note that the expected number of proposals required to accept is ck. Moreover, as

we shall quickly verify, ck is bounded uniformly both in k and µ > 0. To see this, use the

fact that for x ≥ 0, 1− x ≤ exp (−x) and conclude that

P (Ak) = 1−
nk−1∏
j=nk−1

(
1− P

(
Xj > (µj +m)1−δ

))

≥ 1− exp

− nk−1∑
j=nk−1

P (Xj > (µj +m)1−δ)

 .

Let us write

Λ := Λ (k, µ) =

nk−1∑
j=nk−1

P
(
Xj > (µj +m)1−δ

)
and therefore obtain that

ck ≤
2

1− exp (−Λ)
· Λ

1 + Λ
≤ 4I

(
Λ ∈

[
0,

1

2

])
+ 6I

(
Λ ≥ 1

2

)
≤ 6.

We suggest applying a completely analogous randomization procedure to sample Pk,2 (·),

which corresponds to sampling given the event

Bc
k =

nk−1⋃
j=1

{
Xj > (µnk−1 +m)1−δ

}
.

A very similar argument as the one just discussed shows that the number of proposals

required to accept is also uniformly bounded over k and µ. We therefore conclude that it

takes O(nk) function evaluations to sample ω both under Pk,0 (·) and Pk,2 (·).

2.3.1.5 Sampling from Pk,1 (·)

In order to simulate from Pk,1 (·) we use Acceptance / Rejection. We propose from P (·)

(the nominal distribution). Using the fact that θk = γ/C1−δ
k , note that

dPk,1 =
I
(
X ≤ C1−δ

k

)
exp (θkX − ψk (θk))

P
(
X ≤ C1−δ

k

) dP (2.3.19)

≤
I
(
X ≤ C1−δ

k

)
exp (γ − ψk (θk))

P
(
X ≤ C1−δ

k

) dP ≤ exp (γ − ψk (θk))

P
(
X ≤ C1−δ

k

) dP. (2.3.20)

CHAPTER 2. PERFECT SAMPLING 25

So, in order to sample from Pk,1 (·) it suffices to propose from P (·) and accept with

probability

q (ω) :=
P
(
X ≤ C1−δ

k

)
exp (γ − ψk (θk))

dPk,1
dP

= exp (θkX − γ) I
(
X ≤ C1−δ

k

)
.

The expected number of proposals required to obtain a successful sample X from Pk,1 (·)

is equal to
exp (γ − ψk (θk))

P
(
X ≤ C1−δ

k

) ≤ exp (γ)

P (X ≤ m)
<∞,

which is clearly uniformly bounded in k. So each increment takes O (1) time to be simulated

and therefore we conclude it takes O (nk) function evaluations to simulate ω under Pk,1 (·).

2.3.2 Building M0 and (S1 (µ) ,, S∆ (µ)) from downward and upward

patches

Before we move on to the algorithm let us define the following. Given a vector s, of

dimension d ≥ 1, we let L(s) = s (d) (i.e. the d-th component of the vector s).

Proposition 7. The output of Algorithm 2 has the correct distribution according to (2.2.3)

and (2.2.4). Moreover, if E |X1|2+ε <∞, then the expected number of function evaluations

required to sample M0 and (S1 (µ) ,, S∆ (µ)) is finite.

Proof. The fact that the output has the correct distribution follows directly from our

discussion leading to (2.2.4) and from Proposition 6, which also implies that simulating a

single replication of (J, ω) using Algorithm 1 requires finite expected running time. But

Algorithm 2 requires a number of calls to Algorithm 1 which is geometrically distributed

with mean 1
P0(Tm=∞) <∞. Therefore, by Wald’s identity (see [Durrett, 2005], p. 178) we

conclude the finite expected running time of Algorithm 2.

CHAPTER 2. PERFECT SAMPLING 26

Algorithm 2: Sampling M0 and (S1 (µ) ,, S∆ (µ))

Input: Same as Algorithm 1

Output: The path (S1 (µ) ,, S∆ (µ))

Initialization s← [], F ← 0, L = 0

// initially s is the empty vector,the variable L represents the

last position of the drifted random walk

while F = 0 do
Sample

(
S1 (µ) , . . . , ST−Lm (µ)

)
given S0 (µ) = 0

s =
[
s,L + S1 (µ) , . . . ,L + ST−Lm (µ)

]
L = L (s)

Call Algorithm 1 and obtain (J,w)

if J = 1 then
Set s = [s,L + ω]

else
F ← 1 (J = 0)

Output s.

2.4 From M0 to (Sk (µ) ,Mk : k ≥ 0):

Implementation of Procedure 1

In this section we will explain in detail how to implement the steps behind the construction

of the sequence (Sn (µ) ,Mn : n ≥ 0) that were described in Procedure 1 . We will be calling

Algorithm 1 and Algorithm 2 repeatedly.

2.4.1 Implementing Step 1 in Procedure 1

In Step 1 we need to sample a downward patch of the drifted random walk (Sn (µ) : n ≥ 0).

The goal is to detect the time where the next downward milestone is crossed, namely the

next element in the sequence (Dn : n ≥ 1), conditional on the event that the level CUB is

not crossed. To this end, let us invoke a result in [Blanchet and Sigman, 2011].

Lemma 8. Let 0 < a < b ≤ ∞ and consider any sequence of bounded positive measurable

CHAPTER 2. PERFECT SAMPLING 27

functions fk : Rk+1 −→ [0,∞).

E0

[
fT−a

(
S0 (µ) , ..., ST−a (µ)

)
|Tb =∞

]
=

=
E0

[
fT−a

(
S0 (µ) , ..., ST−a (µ)

)
I (Si (µ) < b, ∀i < T−a)PST−a (Tb =∞)

]
P0 (Tb =∞)

So, if P ∗ (·) = P0 (·|Tb =∞), then

dP ∗

dP0
=
I (Si (µ) < b,∀i < T−a)PST−a (Tb =∞)

P0 (Tb =∞)
≤ 1

P0 (Tb =∞)
. (2.4.1)

The result of Lemma 8 holds due to the strong Markov property. Lemma 8 enables us to

sample a downward patch by means of the Acceptance/Rejection method using the nominal

(i.e. unconditional) distribution as proposal. More precisely, suppose that our current

position is SDj (µ) and we know that the random walk will never reach position CUB (say,

if Uj =∞ then CUB = SDj (µ) +m). Next we need to simulate the path up to time Dj+1.

Lemma 8 says that we can propose a downward patch s1 := S1 (µ) , ..., sT−Lm := ST−Lm (µ),

under the nominal probability given S0 (µ) = 0 and Si (µ) ≤ m for i ≤ T−Lm. Then we

accept the downward patch with probability P0 (Tσ =∞), where σ = CUB − SDj (µ) −

sT−Lm . For example, if Uj =∞ then σ = m− sT−Lm ≥ (L+ 1)m.

Of course, to accept, we can simulate a Bernoulli, say B, with probability P0 (Tσ =∞)

by calling Algorithm 1 with m ←− σ and returning B = 1 − J . If the downward patch(
s1, ..., sT−Lm

)
is accepted we concatenate to produce the output

(
S0 (µ) , ..., SDj (µ) , SDj+1 (µ) , ..., SDj+1 (µ)

)
= (S0 (µ) , ..., SDj (µ) , SDj (µ) + s1, ..., SDj (µ) + sT−Lm).

Otherwise, we keep simulating downward-patch proposals until acceptance.

2.4.2 Implementing Step 2 in Procedure 1

Assume we have finished generating the path up to time Dj+1 as explained in Subsection

2.4.1. At this point we let σ = CUB − SDj+1 (µ) ≥ (L+ 1)m and define

ξ = P0

(
Uj+1 <∞|S1, . . . , SDj+1 , U1, . . . , Uj

)
= P0 (Tm <∞|Tσ =∞) = P0 (M0 > m |M0 ≤ σ) .

CHAPTER 2. PERFECT SAMPLING 28

Observe that assumption in equation (2.2.1) ensures that ξ > 0. We will explain how to

simulate B ∼ Ber (ξ). First, we call Algorithm 2 and obtain the output ω = (s1, ..., s∆).

We computeM0 according to (2.2.4) and keep calling Algorithm 2 until we obtainM0 ≤ σ,

at which point we set B = I (M0 > m). Of course, we obtain B ∼ Ber (ξ) and if B = 1

we can write

(
SDj+1 (µ) , SDj+1+1 (µ) , . . . , SUj+1 (µ)

)
= (SDj+1 (µ) , SDj+1+1 (µ) + s1, ..., SDj (µ) + s∆).

(2.4.2)

Otherwise, B = 0, we could simply declare Uj+1 =∞, update CUB ← SDj+1 (µ) +m and

proceed to the next iteration.

Breaking the path into “upward” and “downward” patches helps to conceptualize the

logic of our method. However, it is not an efficient way of implementing the method. A

more efficient implementation would be to sequentially generate versions of ω = (s1, ..., s∆)

as long as M0 ≤ m. We can then output the right hand side of (2.4.2) even when B = 0,

because the path has been simulated according to the correct distribution given Tσ =∞.

We provide a precise description of this implementation in Algorithm 3 in the next section.

2.4.3 Our algorithm to sample (Sk (µ) ,Mk : 0 ≤ k ≤ n) and

Proof of Theorem 2

We close this section by giving the explicit implementation of our general method outlined

in Subsections 2.4.1 and 2.4.2. In order to describe the procedure, let us recall some

definitions. Given a vector s of dimension d ≥ 1, let L (s) = s (d) (the last element of

the vector) and set d (s) = d (the length of the vector). The implementation is given in

Algorithm 3.

Proof of Theorem 2. The validity of Algorithm 3 is justified following the same logic as

in Proposition 7. The only difference here is that the number of trials required to sim-

ulate each upward patch is geometrically distributed with a mean which is bounded by

1/P0 (M0 = 0) <∞, following the reasoning behind (2.2.9). Also note that

E0(TmI(Tm <∞)) ≤
∞∑
k=2

nkg (k) <∞.

CHAPTER 2. PERFECT SAMPLING 29

Moreover, if σ ≥ (L+ 1)m, by assumption (2.2.1)

E0 (Tm|Tm <∞, Tσ =∞) ≤ E0 (TmI(Tm <∞))

P0 (Tm <∞, Tσ =∞)
≤ E0 (TmI(Tm <∞))

P0 (m < M0 ≤ σ)
<∞.

So, each upward path requires finite number of function evaluations to be produced. The

argument for finite expected running time then follows along the lines of Proposition 7.

Algorithm 3: An Efficient Implementation of Procedure 1
Input: Same as Algorithm 1 and some n ≥ 1

Output: (Sk (µ) ,Mk : 0 ≤ k ≤ n)

Initialization s←− [0], N←− [0], F ←− 0 // Initialize the sample path with

the 1-dimensional zero vector.

// The vector N, which is initially equals to zero records the times

Dj such that Uj =∞

// F is a Boolean variable which detects when we have enough

information to compute Mn

Call Algorithm 2 and obtain ω = (s1, ..., s∆)

Set s = [s, ω] // concatenate ω to s

Set N = [N,d (s)− 1] // update N

while F = 0 do

if N (d (N)− 1) ≥ n then
F = 1

else
Call Algorithm 2 and obtain ω = (s1, ..., s∆), and compute M0

if M0 ≤ m then
Set s = [s,L(s) + ω]

Set N = [N,d (s)− 1]

for i = 0, ..., n do
Mi = max(s (i+ 1) , s (i+ 2) ,, s (d(s)))− s (i+ 1)

Si (µ) = s (i+ 1)

Output (Sk (µ) ,Mk : 1 ≤ k ≤ n)

CHAPTER 2. PERFECT SAMPLING 30

2.5 Additional considerations: increments with infinite

variance and computing truncated tilted distributions

2.5.1 The case where E |X|β <∞ for β ∈ (1, 2]

We will now discuss how to relax the assumption that E |X|β <∞ for β > 2 and assume

only that E |X|1+ε <∞ for ε ∈ (0, 1].

The development can be easily adapted. In order to facilitate the explanation let us

discuss the adaptation in the setting of Subsection A.1, which leads somewhat weaker

bounds that those assumed in (2.3.6) to (2.3.7) but strong enough to adapt the conclusion

in Lemma 3 through Lemma 5.

In order to adapt equation (A.1.2), for example, we now select δ > 0 small enough so

that 1 < α ≤ (1 + ε) (1− δ). Then (A.1.2) is replaced by

6 · 2α

(α− 1) (m+ 1)α−1 µ
· E
[(
X+

1

)1+ε
]
≤ 1.

These changes yield that inequality (2.3.6), which in turn yields the proof Lemma 3 and

Lemma 5.

As for Lemma 4, let us now apply Lemma 20 with

A (γ) =

(
γ2

2
· exp (1)

1− ε
+ 2

)
· E
(
|X|1+ε

)
,

and obtain

exp(ψk (θk)) ≤ exp

(
A (γ)

Ck

)
. (2.5.1)

Since Tm we have that STm ≥ µTm+m, and because Tm ∈ [nk−1, nk − 1] we conclude that

STm ≥ µnk−1 +m = Ck.

Therefore, on Tm ∈ [nk−1, nk − 1]

exp(−θkSTm + Tmψk (θk)) ≤ exp(−θkCk + nkψk (θk))

≤ exp(−γCδk +A (γ)
nk
Ck

)

≤ exp(−γCδk +A (γ)
2

µ
),

CHAPTER 2. PERFECT SAMPLING 31

where the last inequality was obtained from the bound nk
Ck
≤ nk

nk−1µ
. So, we conclude,

letting z = µnk−1, that

3 exp
(
−γCδk + 2A (γ)µ−1

)
g (k)

≤ 3 (2z +m)α

(α− 1) (m+ 1)α−1 z
exp

(
−γ (m+ z)δ + 2A (γ)µ−1

)
.

Further, if u = γ1/δ(m+ z), following the development in Subsection A.1, we arrive at

3 exp(−γCδk + 2A (γ)µ−1)

g (k)
≤ 3 · 2αγ−α/δ

(α− 1) (m+ 1)α−1 µ
exp

(
2A (γ)µ−1

)
max

u≥γ1/δm
uα exp

(
−uδ

)
≤ 3 · 2αγ−α/δ

(α− 1) (m+ 1)α−1 µ
exp

(
2A (γ)µ−1

) (α
δ

)α
exp

(
−
(α
δ

)δ)
.

For every γ > 0 we can select m large enough to make the right hand side less than one

and this yields the adaptation of the proof of Lemma 4 to the case β ∈ (1, 2].

This discussion implies that Algorithm 3 provides unbiased samples from (Mk, Sk (µ) : 0 ≤ k ≤ n)

in finite time with probability one. Nevertheless, if ε ∈ (0, 1], we have that α ≤ (1− δ) (1 + ε) <

2 and therefore the expected number of function evaluations required to sample J in Al-

gorithm 1 is bounded from below by∑
k

n2
kP (Y > µnk +m) =∞.

Therefore, the expected running time of Algorithm 3 is not finite.

2.5.2 The issue of evaluating ψk (θk)

We are concerned with the evaluation of (2.3.13), that is, during the course of the algorithm

we must decide if

V ≤ 3 · exp {−θkSTm + Tmψk (θk)} I(Tm ∈ [nk−1, nk − 1] , Ack, Bk) (2.5.2)

where V ∼ U (0, 1) independent of STm and Tm. In order to decide if inequality (2.5.2)

holds one does not need to compute ηk := exp(ψk (θk)) explicitly. It suffices to construct a

pair of monotone sequences {η+
k (n) : n ≥ 0} and {η−k (n) : n ≥ 0} such that η+

k (n) ↘ ηk

as n → ∞ and η−k (n) ↗ ηk as n → ∞. It is important, however, to have the sequences

converging at a suitable speed. For example, it is not difficult to show that if

0 ≤ η+
k (n)− η−k (n) ≤ c0n

−r

CHAPTER 2. PERFECT SAMPLING 32

for r > 2, and the evaluation of η+
k (n), η−k (n) takes O (l (k)n) function evaluations then

the expected number of function evaluations required to terminate Algorithm 1 will be

bounded if
∑

k g (k) l (k) <∞ (this holds if E |X|β <∞ for some β > 2 and l (k) = O (nk),

given our selection of α > 2). Note the requirement on quadratic convergence (r > 2).

Sequences η+
k (·) and η−k (·) can be constructed assuming the existence of a smooth density

for X using quadrature methods. Nevertheless, we do not want to impose the existence of

a smooth density and thus we shall advocate a different approach for estimating ψk (θk),

based on coupling.

The approach that we advocate proceeds as follows. First, note that if X has a lattice

distribution, with span h > 0, then ψk (θk) can be evaluated with O
(
C1−δ
k h−1

)
function

evaluations given k. So, the expected number of function evaluations involved in imple-

menting Algorithm 3 and deciding (2.5.2) is bounded, since
∑
g (k)C1−δ

k = O(
∑
g (k)nk) <

∞.

Now, suppose that the distribution of X is non-lattice. The idea is to construct a

coupling between Xj (µ) and a suitably defined lattice-valued random variable X ′j (µ′) so

that Xj (µ) ≤ X ′j (µ′), EX ′j = 0, and µ′ > 0. We will simulate the random walk associated

to the X ′j (µ′)’s, namely, S′j (µ′) and the associated sequence
(
M ′j : j ≥ 0

)
, jointly with

(Sj (µ) : 0 ≤ j ≤ n). Since max{S′j (µ′) : j ≥ l} ↘ −∞ as l→∞ we will be able to sample

(Mk : k ≤ n) after computing N such that

max {S′j
(
µ′
)

: j ≥ N} ≤ min {Sk (µ) : k ≤ n}.

We now proceed to describe this strategy in detail. Given h > 0 define

X ′j = h

⌊
Xj

h

⌋
− E

(
h

⌊
Xj

h

⌋)
.

We omit the dependence on h in X ′j for notational convenience. In addition, let

µ′ = µ− E
(
h

⌊
Xj

h

⌋)
− h.

Since E
(
h
⌊
Xj
h

⌋)
< 0 for each h > 0, if we also select h ≤ µ we have µ′ > 0. Define

X ′j
(
µ′
)

= X ′j − µ′ = h

⌊
Xj

h

⌋
− µ+ h,

CHAPTER 2. PERFECT SAMPLING 33

and note that

X ′j
(
µ′
)
≥ Xj (µ) .

We then define the corresponding random walks S′n = X ′1 + ... + X ′n, S′n (µ′) = S′n − nµ′

with S′0 = 0 and

M ′n
(
µ′
)

= sup{S′k
(
µ′
)

: k ≥ n} − S′n
(
µ′
)
.

The following algorithm summarizes our strategy to simulate (Sk (µ) ,Mk : 0 ≤ k ≤ n)

when ψk (θk) cannot be computed exactly.

Algorithm 4: Strategy for simulating (Sk (µ) ,Mk : 0 ≤ k ≤ n)

Input: Same as Algorithm 1 but for X ′j and h ∈ (0, µ)

Output: (Sk (µ) ,Mk : 1 ≤ k ≤ n)

Call Algorithm 3 and obtain ω′ = (S′k (µ′) ,M ′k : 0 ≤ k ≤ n)

Given ω′ = (S′k (µ′) : 0 ≤ k ≤ n) sample ω = (Sk : 0 ≤ k ≤ n) ; // this is done

by sampling Xk given the simulated outcome of bXk/hc

Set M−n := min(Sk (µ) : 0 ≤ k ≤ n)

Using Algorithm 3, continue sampling (S′k (µ′) ,M ′k : n ≤ k ≤ N), where

N = inf{k ≥ n : M ′k + S′k (µ′) ≤M−n }

Given (S′k (µ′) : n ≤ k ≤ N), sample (Sk : n ≤ k ≤ N)

Set Mk = max{Sj (µ) : k ≤ j ≤ N} − Sk (µ) for 0 ≤ k ≤ n

Output (Sk (µ) ,Mk : 0 ≤ k ≤ n).

The complexity analysis (i.e. finite expected running time if E |X1|2+ε < ∞) carries

over since EM ′0 < ∞, E |min{Sk(µ) : k ≤ n}| < ∞, and therefore EN < ∞, with N

defined in Algorithm 4.

2.6 Numerical Example

We will now illustrate our algorithm by revisiting the example that was described in the

Introduction. This example considers the waiting time sequence that corresponds to the

CHAPTER 2. PERFECT SAMPLING 34

single-server queue. Recall that this sequence (Wn : n ≥ 0) can be generated by the so-

called Lindley’s recursion

Wn = (Wn−1 +Xn − µ)+ (2.6.1)

and when in steady state, the Wn’s are equal in distribution to

M0 = max {Sm (µ) : m ≥ 0}

To demonstrate the capability of our algorithm, we chose a sequence of Xn’s of the form

Xn = h
⌊ c
h
Vn

⌋
− E

(
h
⌊ c
h
Vn

⌋)
=: Yn − E (Yn) (2.6.2)

where Vn ∼ Pareto (α′), that is,

P (V > t) =
1

(1 + t)α
′ t > 0

The parameters α′, c, and h can be changed in order to test the algorithm in different

scenarios. α′ > 2 determines how heavy the tail of the increments is, h > 0 is the lattice

parameter (the non-lattice case is where h→ 0), and c > 0 controls the mean of Yn.

2.6.1 Choice of Parameters

As mentioned at the end of Subsection A.1, we used the Excel solver in the following way:

given our selection of α ∈ (2, 4), we picked δ ∈ (0, 1/2], γ ≥ 0, and m ≥ 0 so as to minimize

m subject to (2.3.6) and (2.3.7). The input parameters µ, α′, h, and c are chosen to test

conditions ranging from light to heavy traffic (controlled primarily by the parameter µ),

and from heavy tails to relatively lighter tails (which are controlled by the parameter α′).

We conclude our discussion by providing a formal comparison against the relaxation

time of the Markov chain {Wn : n ≥ 0} in heavy-traffic. We chose a formal comparison

because a rigorous computation of the exact relaxation time of the single-server queue is

not available (to the best of our knowledge) at the level of generality at which our algorithm

works, although bounds have been studied, as is the case in [Foss and Sapozhnikov, 2006].

We have argued that our algorithm is sharp, in the sense that it is applicable under close

to minimal conditions required for the stability of the single-server queue. We believe that

the heavy-traffic analysis provides yet another interesting perspective.

CHAPTER 2. PERFECT SAMPLING 35

Assuming that β > 2 (i.e. the increments have finite variance), in heavy traffic, as

µ → 0, it is well known that at temporal scales of order O
(
µ−2

)
and spatial scales of

order O
(
µ−1

)
Lindley’s recursion can be approximated by a one dimensional reflected

Brownian motion (RBM). In fact, the approximation persists also for the corresponding

stationary distribution (which converges after proper normalization to an exponential dis-

tribution, which is the stationary distribution of RBM (see [Kingman and Atiyah, 1961],

for example)). The relaxation time of {Wn : n ≥ 0} is of order O
(
µ−2

)
as µ→ 0.

The running time analysis of our algorithm involves the “downward" patches, which

take O (m) random numbers to be produced. We also need to account for the simulation

of the Bernoulli trials for each “upward" patch, which requires the generation of K under

g (·), and a total of C0 = O (
∑∞

k=1 nkg (k)) expected random numbers to be simulated.

This analysis holds because the number of proposals required to sample Pk,0, Pk,1 and Pk,2

remains bounded also as µ→ 0. Therefore, the actual Xi’s conditional on the Ei’s can be

easily simulated. A similar strategy can be implemented for Pk,2.

Consequently, the over all cost of our algorithm is driven by C0 = O
(
µ−2m

)
. We also

need to ensure that m is selected so that (2.3.6) and (2.3.7) are satisfied. From the analysis

of (A.1.2) and (A.1.4), we see that m = O
(
µ−1

)
is always a possible choice. However,

this choice can be improved if one can select a large α , which in turn is feasible as long

as zαP
(
X > z1−δ) = O (1). In particular, we can choose m = O

(
µ−1/(α−1)

)
, provided

that δ is chosen sufficiently close to unity in order to satisfy (A.1.4). Our exact sampling

algorithm in heavy traffic has a running time that is not worse that O
(
µ−3

)
and it can be

arbitrarily close to the relaxation time O
(
µ−2

)
of the chain {Wn : n ≥ 0}.

2.6.2 Simulation Results

We tested the algorithm in four different cases in which we changed the nature of the

random walk increments and the traffic intensity. By picking α′ = 2.9 and α′ = 7, we

considered heavy tailed increments and relatively lighter tailed increments, respectively.

By changing the value of c, we changed the traffic intensity ρ, which is given by

ρ =
E
(
h
⌊
c
hV
⌋)

E
(
h
⌊
c
hV
⌋)

+ µ
≈ cE (V)

cE (V) + µ

CHAPTER 2. PERFECT SAMPLING 36

Throughout all scenarios we used the parameters

L = 1.1, h = 0.1, µ = 1 and δ = 0.38

The rest of the parameters were chosen as follows:

ρ = 0.3 ρ = 0.8

α γ c m α γ c m

α′ = 7 4 1.7 3 16 4 0.75 25 217

α′ = 2.9 2.01 1.24 0.85 35 2.01 0.74 8 400

Table 2.1: Parameters Choice for Simulation

In each of the above cases we generated 100,000 exact replicas of M0 and compared it

with the chain {Wn : 0 ≤ n ≤ l}, where l was picked to fit the scenario. To analyze the

output of the chain, we used batches with varying sizes. In the light traffic case, for both

α′ = 2.9 and α′ = 7, we used l = 106 with batches of size 25. In the heavy traffic scenario,

we used l = 2 · 106 with batches of size 50 for α′ = 7, and l = 4 · 106 with batches of size

100 for α′ = 2.9

We summarized the result in the following table (see also Figure 2.6.1):

ρ = 0.3 ρ = 0.8

LCI UCI RT LCI UCI RT

α′ = 7
Exact sampler 0.0709 0.0726 ≈ 1.5 10.9092 11.1159 ≈ 10

Batch mean 0.0701 0.0734 ≈ 1 10.7542 11.1152 ≈ 3

α′ = 2.9
Exact sampler 0.6505 0.7336 ≈ 3 28.7925 29.6832 ≈ 15

Batch mean 0.5344 0.7429 ≈ 1 28.7908 30.1681 ≈ 4

Table 2.2: Simulation Results. LCI/UCI=Lower/Upper 95% Confidence Interval.

RT= Running Time (in minutes).

CHAPTER 2. PERFECT SAMPLING 37

α′ = 7

0 0.05 0.1 0.15 0.2 0.250.068

0.069

0.070

0.071

0.072

0.073

0.074

Exact Batch

ρ = 0.3

0 0.05 0.1 0.15 0.2 0.2510.50

10.60

10.70

10.80

10.90

11.00

11.10

11.20

Exact Batch

ρ = 0.8

α′ = 2.6

0 0.05 0.1 0.15 0.2 0.250.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Exact Batch

ρ = 0.3

0 0.05 0.1 0.15 0.2 0.2528.0

28.5

29.0

29.5

30.0

30.5

Exact Batch

ρ = 0.8

Figure 2.6.1: Exact sampler mean E (M0) VS. batches mean of {Wn : 0 ≤ n ≤ l}, along

with the corresponding 95% confidence intervals.

In the numerical examples we see that the IID replications of M0 appear to be a

reasonable approach to steady-state estimation, especially in light traffic. The performance

deteriorates somewhat in heavy traffic, which is expected given our earlier discussion on

running time in heavy traffic. Nevertheless, it is important to note that while our procedure

does not have any bias, batch means do not provide control on the bias with absolute

certainty. Overall, we feel that a few minutes of additional running time in exchange for

total bias deletion is not an onerous price to pay. Therefore, our procedure is not only

of theoretical interest (as the first exact sampler for a general single-server queue), but of

practical value as well.

2.7 Conclusions

The work presented in this chapter was motivated by the important role that single-server

queue plays in many applications that use the DCFTP method as well as the challenge of

efficiently dealing with random walks involving heavy-tailed increments. We developed an

exact simulation method that can be used to simulate the stationary waiting-time sequence

of a single-server queue backward in time, jointly with the input process of the queue. We

provided an algorithm, which is easy to implement, that has a finite expected termination

time under nearly minimal assumptions.

38

Part II

Diffusion Processes in Random

Environment

39

Introduction to Part II

The work that we will present in this part is motivated by the problem of finding an

optimal strategy for detecting an adversarial agent. We will describe the framework of our

modeling and in what sense we define optimality, when evaluating the efficiency of a policy

of detectors deployment.

We will model the dynamic of a rouge target and define the notion of optimality

among the admissible detectors allocation policies. In addition, we will also provide a large

deviation result that will enable us to evaluate policies and solve the problem in special

cases. We will start with some notations that will help give the problem a mathematical

framework.

Consider an adversary that moves (continuously) in a certain domain G ⊂ Rd, d ≥ 1,

and its movement can modeled by a diffusion process (X (t) : t ≥ 0). We assume that the

domain G represents a containment region, in the sense that if the adversary reaches the

boundary of G, then he is immediately detected and neutralized. This assumption can

be relaxed, as we shall explain later. In order to catch the agent, we have a number of

detectors (traps) at our disposal, that we can place in the domain G. We assume that

the detection coverage area of each trap can be modeled as a ball of radius a. Moreover,

we assume that after the detection units have being placed their locations stay fixed. Our

goal is to catch the adversary before a given deadline T . A natural deployment strategy to

consider consists with selecting a set of points {pi}Ki=1 ⊂ G that represents the locations

where the detection units should be placed.

Let B (x, r) denote the d−dimensional Euclidean ball of radius r > 0 that centered at

x. We define the Wiener sausage of radius r > 0 at time t > 0 that corresponds to the

40

process (X (t) : t ≥ 0) by

W r
t =

⋃
0≤s≤t

B (X (s) , r) . (2.7.1)

Notice that W r
t is a set-valued process and that W r

s ⊆ W r
t for s ≤ t. Moreover, observe

that the event that the agent has not been detected by time T is equivalent to
 ⋃

0≤s≤T
X (s)

 ∩(K⋃
i=1

B (pi, a)

)
= ∅

 =

{
W a
T ∩

(
K⋃
i=1

pi

)
= ∅

}
. (2.7.2)

Therefore, our goal is to find an allocation policy the minimizes the probability

P

(
W a
T ∩

(
K⋃
i=1

pi

)
= ∅

)
.

A natural approach to solve this problem might be the following. Consider dividing the

domain G into a grid made of squares with edges of size ε = ε (d, a). ε is chosen such

that the d−dimensional cube of volume ε can be inscribed within a ball of radius a.

Then a deployment strategy would be a selection of a subset of size K of these squares

and placement of K detectors at their centers. The detection coverage of such strategy

can be roughly represented by the union of the selected K squares (see Figure 2.7.1).

Under this formulation, the problem would consists of finding the optimal configurations

which minimizes the probability of no detection by time T . Unfortunately, this is a hard

combinatorial problem. This happens because one needs to find the best subset of size K

out of a set of items whose cardinality is of order O
(
cd
)
for some c > 1, and then evaluate

the probability of no detection for some general dynamics of an adversary. Furthermore,

the problem of finding optimal trap allocation brings to mind the well-known Maximum

Coverage Problem. In the Maximum Coverage Problem framework we are given a collection

of subsets S = {S1, . . . , Sn} and tasked with finding a subset S∗ which consists with at

most k subsets from the collection, such that together they contain a maximal amount

of elements,that is, the size

∣∣∣∣∣ ⋃Si⊂S∗ Si
∣∣∣∣∣ is maximal. It can be formulated as an integer

programming problem and it is known to be NP hard (for more information see e.g.,

[Nemhauser et al., 1978], [Hochbaum, 1997], and [Vazirani, 2001]).

Due to the presence of this combinatorial difficulty, it is natural to consider a continuous

relaxation of the problem. We shall study one such relaxation by introducing a randomized

41

class of policies. Instead of using a deterministic deployment policy, we will randomly place

the traps according to a Poisson point process with an intensity β =
(
β (x) : x ∈ Rd

)
, where

β (x) is the evaluation of β at a point x. We will refer to the resulting configuration as

a Poisson cloud. The randomized problem then optimizes over some family of admissible

intensities. By using this technique we might hope achieve tractability.

The problem of diffusion process moving in a random environment is a well known

problem in statistical physics. The way the traps are randomly placed determines the kind

of “disorder” present in the system. Quenched disordered system is a system where some of

the parameters that define the system are random variables that do not evolve with time,

i.e. they are quenched or frozen (spin glasses are typical examples). The counterpart of the

quenched disorder is the annealed disorder. In this kind of system the random variables

that define the system evolve with time and their evolution is related to the degrees of

freedom that define the system.

When analyzing diffusion processed in a quenched systems, we typically consider a

measure that describes the behavior of the trajectory of a particle diffusing from a known

point (say the origin) in a typical realization of the quenched environment. In the annealed

setup, we can use a spatial ergodic theory to handle the dynamic environment in which

the diffusion process evolves.

In the mathematical community, the topic has long been a subject of research as well.

In their paper [Donsker and Varadhan, 1975] considered a Brownian motion in Rd moving

in a Poisson cloud of constant intensity ν > 0. They derived a large deviation result

regarding the volume of the corresponding Wiener sausage conditioned on the event that

it doesn’t include any point of the Poisson cloud. Later on, under the same assumptions,

𝐷 𝐷

Figure 2.7.1: Deterministic deployment strategy

42

[Sznitman, 1991] (for d = 2) and [Povel, 1999] (for d ≥ 3) showed that the probability that

the Wiener sausage is confined in a ball of radius c t1/(d+2), for some (computable) c > 0,

given that the sausage does not include any point of the Poisson cloud, tends to 1 as t

tends to ∞. A comprehensive account of ideas, results and techniques, which relate to the

study of Brownian motion and random obstacles, can be found, for example, in [Sznitman,

1998].

In a slightly different but related framework, [Peres et al., 2011] considered a scenario

both the agent and the points of the Poisson clouds are moving. Each point moves accord-

ing to a Brownian motion independent of the target process and the other points of the

cloud. Among other results, the authors derived a large deviation result for the probability

of target detection in the case.

Problems related to diffusions avoiding obstacles borrow mathematical tools from anal-

ysis and probability. As we shall discuss, spectral properties associated to the underlying

diffusion plays an important role (see [Kac, 1951]). Later, we will invoke few results from

[Pinsky, 1985] and [Pinsky, 1995], which lies within the intersection of probability and

partial differential equations (PDEs).

Note that he above list does not pretend to be comprehensive overview of the work

that has been done in the field. There are many more in-progress and published results,

papers, and books in this area that were not mentioned here.

At this point, we would like to introduce the mathematical framework and some related

results that we will need later.

We will consider diffusion processes that evolve according to stochastic differential equa-

tions (SDE) of the form

dX (t) = ∇Q (X (t)) dt+ dB (t) , (2.7.3)

where (B (t) : t ≥ 0) is a standard Brownian motion in Rd and Q : Rd → R is a C2.

The generator associated with this SDE is a differential operator L of the form

L = −1

2
4+∇Q · ∇ = −1

2

d∑
i=1

∂2

∂x2
i

+
d∑
i=1

Qxi (x)
∂

∂xi
. (2.7.4)

43

L is a self-adjoint operator over L2 with density exp (2Q), which makes spectral theory one

of the tools that we have at our disposal. In particular we will be utilizing the Dirichlet

principle eigenvalue, which is defined by

λ (G) = bottom of the spectrum of L with Dirichlet boundary condition on G ⊂ Rd.

(2.7.5)

Here are couple useful properties of the principle eigenvalue.

Property 1. Let G1, G2 ⊂ Rd be non-empty and open sets. Then,

G1 ⊂ G2 ⇒ λ (G1) ≥ λ (G2) . (2.7.6)

Property 2. Let G =
⋃
iGi where Gi are the connected components of G. Then,

λ (G) = inf
i
λ (Gi) . (2.7.7)

The principle eigenvalues plays a key role when deriving probabilistic quantities related to

the diffusion process (X (t) : t ≥ 0). Here is one example,

Theorem 9. Let G ⊂ Rd and let τG denote the first time the process (X (t) : t ≥ 0) exits

G. Namely,

τG = inf {t ≥ 0 : X (t) /∈ G} . (2.7.8)

Then for every x ∈ G we have

Px (τG > t) = e−λ(G)t+o(t) (2.7.9)

as t→∞, where Px (·) = P (· |X (0) = x) (see e.g., [Pinsky, 1985]).

Part II is organized in the following way. In Chapter 3 we will formulate the prob-

lem in detail and show that the stochastic relaxation is indeed a good approximation to

the deterministic problem. We will also discuss about different frameworks for which our

method can be applied to and the challenges of solving the optimization problem ana-

lytically. Chapter 4 will be defecated to presenting our main results and efficient Monte

Carlo algorithms, that can numerically evaluate the performance of a given deployment

policy and sample the adversary’s location conditioned on him avoiding detection in an

asymptotically optimal manner (as the deadline increases).

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 44

Chapter 3

Detection of Adversarial Agents:

Modeling and Problem Formulation

Introduction

As mentioned earlier, finding an optimal deployment policy is combinatorially difficult.

Therefore, it is natural to study continuous relaxations via randomized policies. The main

goal of this chapter is to rigorously describe the framework we used to model problem of

detecting an adversary, and study the nature of the types of randomized policies that can

be used as a relaxation.

We will start by arguing in Section 3.1 that our method is reasonable in the sense that

the randomized relaxation asymptotically approximates the optimal deployment policy as

T → ∞. We will show that in the particular case where the agent move according to a

one-dimensional Brownian motion, which is of course limited, but tractable. We will ded-

icate Section 3.2 for a discussion on the advantages of taking the stochastic approach and

the differences between the one-dimensional and the multi-dimensional scenario. Then in

Section 3.3, we will provide a detailed construction of the model for the general framework

we consider, namely for a broader family of diffusion processes and for any d ≥ 1. In

Section 3.4 we will explore the optimal solution to the optimization problem in the case

of a two-dimensional Brownian motion and will discuss the possible frameworks that one

can consider when implementing the stochastic approach.

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 45

3.1 One-Dimensional Brownian Case

Throughout this section we will consider an adversary that moves on the real line accord-

ing to a Brownian motion (B (t) : t ≥ 0). He starts at a random point x0, where x0 is

distributed according to a probability density function f (·) of the form

f (x) = exp (−h (x)) and supp f ⊂ (−m,m) (3.1.1)

for some m > 0. Let VT (x0) denote the range covered by the Brownian motion started at

x0 by time T . Namely,

VT (x0) =
⋃
s≤T
{B (s) |B (0) = x0} . (3.1.2)

We assume that we have a containment mechanism in place, which restricts the motion

of the target to the region (−m,m). Such mechanism can be achieved if we place two

detectors at positions {−m,m}, for example. In addition to these two detectors, we assume

that we have K detectors that are available at our disposal.

We will start by deriving the optimal deterministic policy in Subsection 3.1.1. Next,

in Subsection 3.1.2, we will introduce a continuous randomized relaxation to the problem

and show that its optimal solution tends to the deterministic one as T →∞.

3.1.1 Deterministic Case

Under the assumption that there areK detection units that we can place in the the interval

(−m,m), we can describe the family of admissible strategies by

ΘK =

{
θ (x) =

k∑
i=1

I{zi} (x) : z1, . . . , zk ∈ (−m,m) , k ≤ K
}

= {θ = {z1, . . . , zk} : z1, . . . , zk ∈ (−m,m) , k ≤ K} ,
(3.1.3)

where the zi’s represent the locations of the detectors placed according to a strategy θ.

For every θ ∈ ΘK let σθ denote the time we detect and neutralize the agent if we follow

policy θ. That is,

σθ = inf

t ≥ 0 : Vt (x0) ∩

⋂
zi∈θ
{zi}

 6= ∅
 . (3.1.4)

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 46

Therefore, under any given deadline T > 0, the (deterministic) optimization problem can

be formulated by

min
θ∈ΘK

P̄ (σθ > T) . (3.1.5)

Her we use the notation P̄ to emphasize that the source of randomness in this case arises

form the underlying Brownian dynamic of the target and its initial position.

Intuitively, the optimal policy, θ∗, would be the strategy that places the K detectors

in equal spaces of size 2m
K+1 , namely,

θ∗ (x) =
K∑
i=1

I{yi} (x) with yi = −m+
i

K + 1
· 2m (3.1.6)

(see Figure 3.1.1). The following lemma proves that indeed this strategy is optimal.

Lemma 10. Let θ∗ be as defined in equation (3.1.6). Then,

lim
T→∞

1

T
log P̄ (σθ∗ > T) = −π2

(
K + 1

2m

)2

. (3.1.7)

Moreover,

P̄ (σθ∗ > T) = min
θ∈ΘK

P̄ (σθ > T) (3.1.8)

as T →∞.

Proof. Recall that the generator of the one-dimensional Brownian motion is L = −1
2
d2

ds2

and the corresponding principle Dirichlet eigenvalue on any interval (a, b) is given by

λ ((a, b)) =
π2

(b− a)2 . (3.1.9)

m-m

2𝑚

𝐾 + 1

2𝑚

𝐾 + 1

Figure 3.1.1: Optimal Policy for one-dimensional Brownian motion confined to (−m,m).

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 47

Notice that

{σθ∗ > T} ⇐⇒ {∀x ∈ (−m,m) : ∃i ∈ {0, 1, . . .K} VT (x) ⊂ (yi, yi+1)} , (3.1.10)

where y0 := −m and yK+1 := m. Moreover, by construction we have that for every

i = 0, 1, . . . ,K

λ ((yi, yi+1)) = π2

(
K + 1

2m

)2

. (3.1.11)

Invoking Property 2 of the principle eigenvalue and Theorem 9 we obtain that

P (σθ∗ > T) = exp

(
−π2

(
K + 1

2m

)2

T + o (T)

)
, (3.1.12)

and equation (3.1.7) follows. To show optimality, let θ = {z1, . . . , zK} ∈ ΘK \ θ∗ be some

policy that deploys exactly K detectors in (−m,m). If we adopt such strategy, then the

maximal distance between two neighboring locations, say l, will be strictly greater than
2m
K+1 . Invoking Property 2 and Theorem 9 again, we will obtain that

P (σθ > T) = exp

(
−π2

(
1

l

)2

T + o (T)

)
. (3.1.13)

Therefore,

P (σθ > T) > P (σθ∗ > T) (3.1.14)

as T → ∞. From similar arguments, for every θ = {z1, . . . , zk} ∈ ΘK , where k < K,

equation (3.1.14) holds, and the result follows.

3.1.2 The Stochastic Approach

We will now provide a description of the randomized continuous relaxation to the opti-

mization problem in the one-dimensional case. Moreover, we will show that its solution

approximate the optimal deterministic policy as T →∞.

As before, our goal is to minimize the probability that an adversary avoids detection

by a given deadline T over the set of admissible strategies. However, this time we want

to utilize a family of strategies of stochastic nature. Specifically, we consider policies that

deploy the traps at the beginning of the time horizon according to a Poisson spatial process

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 48

with intensity βT (s) = Tβ (s), subject to the constraints that

m̂

−m

β (s) ds = K, (3.1.15)

and that two detectors are initially deployed on {−m,m}. Let us denote by B, the set of

such strategies, namely,

B =

β : (−m,m) : R : β ≥ 0,

m̂

−m

β (s) ds = K

 . (3.1.16)

In the following we will discuss about how to implement this continuous relaxation and

why this particular design is desirable. First we will argue that as T →∞, this continuous

relaxation returns the same optimal policy as the deterministic strategy discussed in the

previous section. Moreover, we will see that the optimal randomized strategy consists with

picking β (·) as a mixture of suitably centered delta functions (point mass measures). We

can think of a delta function centered at a point p, as a density of a Gaussian random

variable with mean equal to p and an infinitesimally small variance. This intuition will be

made rigorous in this section.

When considering other models for the adversary’s dynamic, for example a Brownian

motion with some general drift coefficient, the idea is to solve for an optimal allocation by

finding K centers of K Gaussian densities, each with a relatively small variance, which in

turn may be a parameter to optimize.

In the following subsections we will show that

lim
T→∞

1

T
inf
β∈B

logP (σR > T) = −π2

(
K + 1

2m

)2

.

Here we use the notation, P , to emphasize that in addition to the Brownian dynamics of

the target and its initial position (which is also random), there is the randomness associated

to the deployment policy.

3.1.2.1 Lower Bound

In this section we will establish that the deterministic solution provides a lower bound to

the one of the stochastic relaxation, as stated in Lemma 11.

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 49

Lemma 11. Consider a one-dimensional Brownian motion that is confined to an interval

(−m,m). Let B be the family of strategies defined in equation (3.1.16). Then,

lim
T→∞

1

T
inf
β∈B

logP (σR > T) ≥ −π2

(
K + 1

2m

)2

. (3.1.17)

Lemma 11 asserts that any admissible randomized policy cannot perform better than the

optimal deterministic strategy. A key component of proving the lemma consists with the

following result.

Lemma 12. In the setting on Lemma 11, we have

sup
β∈B

inf
G open

G⊂(−m,m)

ˆ
G

β (s) ds+ λ (G)

 = π2

(
K + 1

2m

)2

. (3.1.18)

Proof. To make the proof easier to follow, we will first lay out its outline, and then describe

in detail how the execute each step. We will start by defining a family of admissible policies

(βε : ε > 0) ⊂ B. For a fixed ε > 0 we will construct a set Gε for which

f (Gε) :=

ˆ

Gε

βε (s) ds+ λ (G) > π2

(
K + 1

2m

)2

− ε. (3.1.19)

Then, we will show that for every G that is contained in Gε,

f (G) ≥ f (Gε) .

Next, we will show that for every G that contains Gε and such that,∣∣∣∣∣G ∩
K⋃
i=1

(
yi −

δ

2
, yi +

δ

2

)∣∣∣∣∣ = η,

for some η > 0,

f (G) ≥ f (Gε) .

Finally, we will establish that there exists ε0 > 0 such that for every ε ≤ ε0

f (Gε) = inf
G open

G⊂(−m,m)

ˆ
G

βε (s) ds+ λ (G)

 > π2

(
K + 1

2m

)2

− ε,

which will conclude the proof.

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 50

We will start by constructing the family of policies (βε : ε > 0). For every ε > 0 we

consider δ (ε) = δ > 0 which will be specified later. We define βε by

βε (s) =
1

δ

K∑
i=1

I

(
s ∈

(
yi −

δ

2
, yi +

δ

2

))
, (3.1.20)

where yi, i = 1, . . . ,K are as in equation (3.1.6).

For every ε we define a function fε : {G ⊂ (−m,m) , G open} → R by

fε (G) =

ˆ

G

βε (s) ds+ λ (G) . (3.1.21)

Define a set

Gε =

(
yi +

δ

2
, yi+1 −

δ

2

)
, (3.1.22)

for some i = 1, . . . ,K − 1 (see Figure 3.1.2). Notice that Property 2 of the principle

eigenvalue implies that the choice of i or some union of different i′s ∈ {0, 1, 2, . . . ,K} does

not affect the rest of the proof.

Therefore,

fε (Gε) = λ (Gε) = π2

(
2m

K + 1
− δ
)2

= π2

(
K + 1

2m

)2

+ ε, (3.1.23)

for δ = δ (ε) such that the equality

ε = π2δ

(
K + 1

2m

)(
2m

K + 1
− δ
)−1

(
2 + δ

(
K + 1

2m

)(
2m

K + 1
− δ
)−1

)
(3.1.24)

is satisfied. Notice that ε→ 0 ⇐⇒ δ → 0.

2𝑚

𝐾 + 1

𝑦𝑖 𝑦𝑖+1𝑦𝑖 +
𝛿
2

𝑦𝑖+1 −
𝛿
2

𝐺𝜖

Figure 3.1.2: Gε

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 51

Now consider G ⊂ Gε. Notice that
´
G

βε (s) ds = 0 and therefore we have fε (G) = λ (G).

Invoking Property 1 of the principle eigenvalue, we have that

fε (G) ≥ fε (Gε) ∀G ⊂ Gε. (3.1.25)

Next, let G be such that,

Gε ⊂ G and

∣∣∣∣∣G ∩
(

k⋃
i=1

(
yi −

δ

2
, yi +

δ

2

))∣∣∣∣∣ = η > 0. (3.1.26)

Among all such sets, fε is minimal when G′ = Gε ∪
(
yi + δ

2 − η, yi + δ
2

)
(see Figure 3.1.3).

Indeed, for every G satisfying equation (3.1.26),

fε (G) =
η

δ
+ λ (G) . (3.1.27)

Recalling Property 2 and Property 1 of the principle eigenvalue, we obtain that the min-

imum of fε over sets that satisfy equation (3.1.26) is achieved when the set is connected.

An example for such set is G′.

fε (G′), takes the form

fε
(
G′
)

=
η

δ
+ π2

(
2m

K + 1
− δ + η

)−2

. (3.1.28)

Notice that as δ approaches 0 the first term tends to ∞ while the second term converges

to π2
(

2m
K+1 + η

)−2
, which is bounded from above by π2

(
2m
K+1

)−2
.

Therefore, there exists ε0 such that for all ε ≤ ε0, we have

fε (G) ≥ fε (Gε) (3.1.29)

𝑦𝑖 𝑦𝑖+1𝑦𝑖 +
𝛿
2 𝑦𝑖+1 −

𝛿
2𝐺𝜖

η

𝐺

Figure 3.1.3: Gε

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 52

for all sets G that satisfy equation (3.1.26).

In conclusion, we have that,

fε (Gε) = inf
G open

G⊂(−m,m)

ˆ
G

βε (s) ds+ λ (G)

 > π2

(
K + 1

2m

)2

− ε (3.1.30)

for every ε ≤ ε0 and the result of the lemma follows.

We will close this section with the proof of Lemma 11.

Proof of Lemma 11. By conditioning on the initial position we have,

inf
β∈B

P (σR > T) = inf
β∈B

E (Px (σR > T)) (3.1.31)

= inf
β∈B

E (Px (σR > T, VT (x) ⊂ (−m,m))) (3.1.32)

= inf
β∈B

E

(
exp

{
−
ˆ
VT (x)

β (s) ds

}
I (VT (x) ⊂ (−m,m))

)
. (3.1.33)

Now, applying Theorem 9 we can bound the expectation on the right hand side form below

and obtain that,

inf
β∈B

P (σR > T) ≥ inf
β∈B

exp

− inf
G

G⊂(−m,m)

ˆ
G

(β (s) ds+ Tλ (G) + o (T))

 (3.1.34)

= exp

− sup
β∈B

inf
G

G⊂(−m,m)

ˆ
G

(β (s) ds+ Tλ (G) + o (T))

 . (3.1.35)

Invoking Lemma 12 we have

inf
β∈B

P (σR > T) ≥ exp

{
−π2

(
K + 1

2m

)2

+ o (T)

}
(3.1.36)

and the result follows.

3.1.2.2 Upper Bound

In this section we will construct a family of randomized placement policies that approaches

optimality as T →∞. To this end, we will utilized the collection of randomized strategies

(βε : ε > 0), that where constructed in the previous section. However, this time we will

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 53

specify the sequence parameters (ε = ε (T) : T > 0) (or rather δ (ε)) for which (βε : ε > 0)

are asymptotically optimal.

Lemma 13. Consider a one-dimensional Brownian motion that is confined to an interval

(−m,m). Let B be the family of strategies defined in equation (3.1.16). Then,

lim
T→∞

1

T
inf
β∈B

logP (σR > T) ≤ −π2

(
K + 1

2m

)2

. (3.1.37)

Proof. We will start by revisiting the family of strategies defined in equation (3.1.20).

For T > 0 we pick δ = 1
T and define β∗T (s) by

β∗T (s) = Tβδ= 1
T

(s) = T 2
K∑
i=1

I

(
s ∈

(
yi −

1

2T
, yi +

1

2T

))
= T ·

K∑
i=1

hT (s, yi) , (3.1.38)

where

hT (s, yi) = TI

(
s ∈

(
yi −

1

2T
, yi +

1

2T

))
. (3.1.39)

Notice that, for every G ⊂ R we have

K∑
i=1

´
G

h (s, yi) ds = T
K∑
i=1

∣∣G ∩ (yi − 1
2T , yi + 1

2T

)∣∣
−→
T→∞

T
K∑
i=1

1
T I (yi ∈ G) = # {G ∩ {yi, i = 1, . . . ,K}} .

(3.1.40)

Overall, we have

inf
β∈B

P (σR > T) = (3.1.41)

= inf
β∈B

E

(
exp

{
−
ˆ
VT (x)

β (s) ds

}
I (VT (x) ⊂ (−m,m))

)
(3.1.42)

≤ E

(
exp

{
−
ˆ
VT (x)

β∗T (s) ds

}
I (VT (x) ⊂ (−m,m))

)
(3.1.43)

= E

(
exp

{
−T

K∑
i=1

ˆ
VT (x)

hT (s, yi) ds

}
I (VT (x) ⊂ (−m,m))

)
(3.1.44)

≈ E (exp {−T ·# (VT (x) ∩ {yi, i = 1, . . . ,K})} I (VT (x) ⊂ (−m,m))) .(3.1.45)

Let A denote the event

A =

{
VT (x) ⊂

(
yi +

1

2T
, yi+1 −

1

2T

)
, for some i ∈ {0, . . . ,K}

}
, (3.1.46)

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 54

where y0 = −2m and yK+1 = 2m. Invoking Theorem 9, notice that, the expectation taken

over all possible realizations of VT (x) on the event Ac is of order o (T) as T →∞. Whereas

on the event A, the expectation is equal to exp
{
−π2

(
K+1
2m

)2
T + o (T)

}
as T →∞.

Overall we have,

inf
β∈B

P (σR > T) ≤ exp

{
−π2

(
K + 1

2m

)2

T + o (T)

}
(3.1.47)

as T →∞, which completes the proof of Lemma 13.

3.2 Disscusion

Now that we have introduced a continuous stochastic relaxation to the combinatorial op-

timization problem, we wish to point out some more advantages that stochastic approach

has over the deterministic one.

Apart from potentially more tractability that was discussed earlier, another advantage

of using the randomized method arises from the modeling point of view. In reality, the

detectors might suffer from technical limitations, for example the problem of detecting the

presence or absence of a weak signal, when the white signal noise statistics are unknown

but the fact that its distribution is within a particular class of distributions, or even the

question of the reliability of the device.

Moreover, one also needs to take into account a scenario where the adversary learns

about the whereabout of some detection unit. In this case, he will avoid getting near it

and from practical aspect the detector is useless.

All these features can be easily incorporate into the stochastic relaxation in the fol-

lowing manner. Let us denote by p the probability that agent detected upon encountering

a given trap. Our current model formulation assumes that p = 1. We can assume that

p ∈ (0, 1] and that if the target avoids detection of such given trap, then the trap becomes

ineffective, in other words, the target now will always be able to evade such trap. Assuming

that traps can thus be neutralized with probability p allows to incorporate a more realistic

feature in the model. Such feature can be captured within our mathematical framework

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 55

of randomized deployment policies by invoking the thinning theorem. In particular, intro-

ducing such a parameter p in (0, 1] amounts to replacing the intensity β by (1− p) ∗ beta,

and, therefore, also the total budget K by (1− p)K. Hence, without loss of generality, we

will formulate our results and solve for p = 1.

Furthermore, the stochastic approach also naturally induces some duality to the prob-

lem. Using the notion of the Wiener sausage, by conditioning on the path of the adversary

by the given deadline T , we can choose to solve the problem form either the adversary

or the “defender” point of view. This observation will become handy when designing a

simulation scheme, as we shall see in the next chapter.

Before moving on to the general multi-dimensional framework, we would like to point

out one main difference between the one-dimensional and the multi-dimensional frame-

works. In the first framework, a placement of a detector results in disconnecting the region

G (which is simply an interval). This is, however, not necessarily the case in the later

framework. This difference does not affect the nature of the large deviation in both cases.

Yet, it affects the resulting optimal policy (unless we impose some additional structural

constrains), as we shall see in Section 3.4.

3.3 The General Scenario

In this section we will consider a problem of detecting an adversary that moves in a bounded

region G ⊂ Rd, for some d ≥ 1. We will assume that the agent starts from a random point

in the region and keep on continuously moving according to a Brownian motion with a

general drift. This is a natural extension of the one dimensional case described in Section

3.1.

We will describe the problem using a two-players game. This will enable us to introduce

the mathematical framework we will work in and formulate in detail the model and the

assumptions we impose on the model.

Consider a game which takes place in a bounded and connected domain G in Rd, d ≥ 1,

with a non-empty C2 boundary. The game is played by two players and each round lasts

T units of time. Here is the description of the dynamics of the game.

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 56

3.3.1 Player 1

Player 1 starts each round at a random point x0 in G, which is distributed according

to some distribution that might be unknown. From this point Player 1 starts moving

(continuously) within the domain until the end of the round or until he gets caught by

Player 2, whichever occurs first (we will explain what Player 2 does in the subsequent

section). We assume that Player 1 wishes to survive but he has a mission to accomplish.

We can characterize his movement via a diffusion process (X (t) : t ≥ 0) that corresponds

to the following stochastic differential equation (SDE)

dX (t) = ∇Q (X (t)) dt+ dB (t) , (3.3.1)

where B (t) is a standard Brownian motion in Rd. Q (·) can be interpret as an instan-

taneous reward for the player, and the he seeks to move locally in order to maximize its

reward. The reward might be associated, as mentioned earlier, to accomplishing a mission.

A simple example of the dynamics of Player 1 arises when the reward is constant

throughout the domain. In this case, since Player 1 has no preference to which path he

should take, he simply moves according to a Brownian motion (since ∇Q ≡ 0). A more

interesting example occurs when there are places with high reward. In this case, we can

model Q as a linear combination of Gaussian functions, where the means of the densities

represent locations that are desirable (or undesirable), if the sign of the coefficient in the

linear combination is positive (or negative).

In general, we will assume that Q ∈ C2
(
Ḡ
)
. Notice that this assumption implies that

there exists some δ > 0 such that

δ ≤ exp (Q (x)) ≤ 1

δ
∀x ∈ Ḡ (3.3.2)

and that ∇Q is bounded on Ḡ.

A key quantity in our computations is the principal eigenvalue of the generator, L, of

the SDE (3.3.1). L is a differential operator defined by

L = −1

2
4+∇Q · ∇, (3.3.3)

where 4 is the Laplace operator. The eigenvalue problem of L on G ⊂ Rd with Dirichlet

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 57

boundary condition is given by
Lu = λu x ∈ G

u = 0 x ∈ ∂G
(3.3.4)

Under our assumptions, it is known that L has a sequence of strictly positive eigenvalues

0 < λ1 (G) ≤ λ2 (G) ≤ . . . (3.3.5)

(see e.g., [Pinsky, 1995]). The principle eigenvalue of L in G is defined as the bottom of

its spectrum (i.e., λ1 (G)) and for the rest of this chapter we will use the notation

λ (G) := λ1 (G) . (3.3.6)

As we shall see, at the end of each round Player 1 would have maximized his probability

of survival by staying within a region which is free of detectors.

3.3.2 Player 2

The goal of Player 2 is to catch Player 1 by the end of the round. To achieve this goal,

at the beginning of each round Player 2 places several detection units (traps) within G.

Once the units are deployed they stay stationary until the end of the round, at which

point they can be redeployed. We assume that Player 2 has no (or little) knowledge of the

distribution of the starting point of Player 1 (namely, x0) and his reward function Q (·).

In this formulation, we assume that Player 2 knows Q (·) exactly, but an extension in

which Q (·) is itself random can be easily incorporated.

The placement policy that Player 2 uses is represented by a function β (·) and the

number of units that are available for him is limited by a budget constraint which can be

expressed as ˆ
G
β (x) dx ≤ K, (3.3.7)

where K might depend on the volume of the set G.

Assume that each unit has a detection radius a = a (T) and let us denote by Pβ =

{P1, P2, . . .} the locations in G which were selected according to the policy β. Therefore,

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 58

we can express the coverage configuration (denoted by Rβ), that is induced by placing the

detectors at locations Pβ , as the union of the balls

Rβ =
⋃

Pi∈Pβ

B (Pi, a) (3.3.8)

where B (x, r) denotes the Euclidean open ball centered at x with radius r. Let σRβ denote

the time Player 1 is detected by Player 2, and let αβ (x, T) denote the probability that

Player 1 has not been detected by the end of the round given that he started the round at

point x. Formally, σRβ is the first time the process (X (t) : t ≥ 0) enters the set Rβ ,

σRβ = inf {t ≥ 0 : X (t) ∈ Rβ} (3.3.9)

and αβ (x, T) is the probability

αβ (x, T) = Px
(
σRβ > T

)
. (3.3.10)

Below we describe an algorithm that can be used to generate a Poisson cloud with

intensity β (x).

Algorithm 5: Generating a Poisson Cloud
Input: Policy β (x), domain G, grid size ε > 0

Output: P a Poisson cloud in G with intensity β

Divide G into cubes {�i}i∈I with side length ε

For each square �

begin
Set λ� =

´
� β (x) dx

Sample N� ∼ Poisson (λ�)

Given N� = n: Sample p1, . . . , pn ∼ f ∝ β |�

However, we will approach the problem from a different direction. As we mentioned

before, one of advantages of relaxing the problem using a Poisson point process is that it

gives rise to a dual way of viewing the problem. Recall that, the Wiener sausage of radius

a generated by the process (X (t) : 0 ≤ t ≤ T) is defined by

W a
T =

⋃
0≤s≤T

B (X (s) , a) .

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 59

Figure 3.3.1: Poisson Cloud Vs. Wiener Sausage

By conditioning on the sample path generated by time T , we can rewrite equation (3.3.10)

and obtain that

Px (σR > T) = Ex [1 {X (s) /∈ R, ∀s ∈ [0, T]}] =

Ex [P ({X (s) /∈ R, ∀s ∈ [0, T]} | {X (s) , s ∈ [0, T]})] =

Ex

[
exp

{
−T
´
Wa
T

β (s) ds

}] (3.3.11)

(see Figure 3.3.2). This duality allows us to simulate the problem form the adversary

(Player 1) point of view. In other words, instead of realizing the allocation policy an check-

ing whether or not the target crossed paths with the set R by time T , we can simulating

the movement of the target up to time T and calculate the volume that its corresponding

Wiener sausage occupied in Rd.

3.4 Optimal Policy: Two-Dimensional Brownian Motion

In this section we will consider an adversary that moves according to a Brownian motion

within a domain G ⊂ R2. As in the one-dimensional, we assume that there is a containment

mechanism in place. In other words, we assume that once the target reaches the boundary,

he is caught and neutralized. Following the large deviation result will be established in

Theorem 14 (see Chapter 4 Section 4.1) , our goal is to solve the optimization problem

sup
β

inf
D⊂Ω

ˆ
D

β (s) ds+ λ (D)

 . (3.4.1)

The key to understand the structure of the solution to this optimization problem lays with

behavior of the principle Dirichlet eigenvalue in a domain with holes (see e.g., [Rauch and

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 60

Taylor, 1975], [Flucher, 1995] and [Harrell et al., 2001]). First, notice that unlike the one-

dimensional case, in the multi-dimension scenario, the placement of an obstacle or more

might not result in disconnecting the domain G. Moreover, it is helpful to keep in mind

that the eigenvalues of the Laplacian, which is the generator of a Brownian motion, are

invariant under translations and rotations.

3.4.1 Placing K Traps in G

In this section we will assume that the domain G is an Euclidean ball of radius m, for

some m > 0 Since eigenvalue of the Laplacian is invariant under translation, without loss

of generality, we can assume that G is centered at the origin.

The two-dimensional version of the Faber-Krahn inequality (see [Fab, 1923] and [Krahn,

1925]), states that

λ

(
B

(
x,

√
A

π

))
= min {λ (D) : Area (D) = A} . (3.4.2)

That is, among all domain in R2 of area A, the domain that minimizes the principle

eigenvalue of the Laplacian is a ball. Following the Faber-Krahn inequality, the intuition

is that the configuration R of traps that will minimize the eigenvalue when the radius of

the ball inscribed in G \ R is maximal.

Therefore, if we will not impose any other constraints (apart from those who were

mentioned in Section 3.3), then an optimal placement strategy will do the following: The

policy will start by picking a random point on the boundary and place the first trap so

that its boundary will be tangent form within to ∂G at the chosen point (see Figure 3.4.1

(a)). Next, the second trap will be placed in such a way that its boundary will be tangent

both to ∂G and to the boundary of the first trap(see Figure 3.4.1 (b)). Once the boundary

is completely covered, the strategy will place the following traps to create a second layer

(see Figure 3.4.1 (c)) and so on.

This, however, is not a sensible solution in our case. Unless, perhaps, if we relax the

assumption that the adversary is stopped once he reaches the boundary.

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 61

(a) (b) (c)

Figure 3.4.1: Minimal traps allocation in a ball

Figure 3.4.2: Tessellation of trap allocation in a ball

Thus, we will impose an additional constraint on the problem. In addition to the

previous constraints, we will only consider deployment strategies that ensures that there

will be distance of at least da (K) between the individual detectors and from each detector

to the boundary.

In this case, if the distance da (K) satisfies

2π

|log (a)|
(da (K))−2 −→

a→0
0. (3.4.3)

Then the optimal strategy will result with a tessellation like configuration (see Figure

3.4.2). For more information see [Rauch and Taylor, 1975] and [Flucher, 1995].

This result is more sensible and induces a partition on the set G. Moreover, this solution

suggests an alternative formulation of the problem.

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 62

3.4.2 Partitioning G to K Subsets

Instead of placing K detectors, we can consider partition G into K importance subset. In

the context of catching an adversary, the alternative formulation would be the following.

We have the task of partitioning the region G into K subregions, each of size proportional

to likelihood of the presence of the target. Namely, areas in which the adversary is more

likely to be present will be smaller, and the other way around. To impose the partition on

G we could think of placing fences, that detect the target as soon as it get close enough,

or as the routes along which patrol. The later scenario can be modeled as a fence with a

probability p of detection.

The “detectors” in case has a very small detection radius (which is consistent with the

assumption that a (T)→ 0 as T →∞ as we shall see later), and can be considered as part

of a fence. In other words, we can think of the fence as a long string of "tiny detectors"

aligned in a certain shape.

Here is one way to characterize the intensity β (·) in this case. Let φ (x, µ) be the

Gaussian density centered at µ. That is,

φ (x, µ) =
1√
2π

exp

(
−(x− µ)2

2

)
. (3.4.4)

Then we can set β (·) such that,

− log β (x) ∝
K∑
i=1

φ (x, µi) . (3.4.5)

After solving for optimal centers µi, the fence will be placed along the lines that consist only

with the saddle points of the optimal strategy. Notice that after a partition is obtained, we

could still place K detection units (one per each subregion). However, this allocation will

be different than the one the that will be obtain by considering the previous framework.

CHAPTER 3. DETECTION OF ADVERSARIAL AGENTS: MODELING AND
PROBLEM FORMULATION 63

Figure 3.4.3: Level contours to determine fence location

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 64

Chapter 4

Detection of Adversarial Agents:

Main Results and Algorithms

Introduction

In this chapter will provide a method to evaluate a strategy that deploys K detectors in

a the domain G asymptotically as the deadline T tends to infinity. We will work in the

same framework that was described earlier in Section 3.3.

First, recall that the configuration of traps in the space can be represented by the set

Rβ =
⋃

Pi∈P
B (Pi, a) and the first hitting time of the diffusion process (X (t) : t ≥ 0) to

this set were defined by σRβ = inf {t ≥ 0 : X (t) ∈ Rβ}.

In this chapter we aim to achieve two goals. The first is to find the optimal policy β∗

that solves the optimization problem

min
β

max
x∈G

Px
(
σRβ > T

)
. (4.0.1)

The second goal it to construct an efficient simulation scheme to sample from the law

of
{
X (T) | σRβ > T

}
, the location distribution of an adversary, given that he avoided

detection by time T . Notice that as T tends to infinity the event
{
σRβ > T

}
becomes a

rare event.

In section 4.1 we will state our main theorem (Theorem 14) , which is a large de-

viation result for αβ (x, T) = Px
(
σRβ > T

)
. The proof of Theorem 14 will be divided

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 65

into two parts, which will be given in Sections 4.2 and 4.3. We will conclude with

a simulation schemes that sample Px
(
σRβ > T

)
and from the conditional distribution{

X (T) | σRβ > T
}
, which will be described in Section 4.4. We would like to point out

that these algorithms generalize the results that were presented in [Blanchet and Dupuis,

2014].

4.1 Main Result

We will start by stating our main result.

Theorem 14. Let (X (t) : t ≥ 0) as defined in equation (3.3.1) with Q ∈ C2
(
Ḡ
)
. Assume

that there exists a constant δ̃ > 0 such that

δ̃ ≤ β (x) ∀x ∈ Ḡ.

Moreover, assume that a = a (T) satisfies

Tad (T) −→
T→∞

0. (4.1.1)

Then,

αβ (x, T) = Px
(
σRβ > T

)
= exp {−TI (x) + o (T)} ∀x ∈ G, (4.1.2)

where I (x) = inf
x∈D
D open

{´
D

β (s) ds+ λ (D)

}
and λ (D) is as defined in equation (3.3.6).

We will divide the proof of Theorem 14 into two parts. We will start by showing that

Px
(
σRβ > T

)
≤ exp {−TI (x) + o (T)} . (4.1.3)

The strategy of proving that consists of partitioning Rd by a grid of size ε = ε (d), where

ε > 0 is small enough. Then we use the grid to approximate the Wiener sausage W a
T form

within as time progresses and the process evolve. In order to control the growth of W a
T ,

we introduce a change of measure that relates to a stopping time τ , which is defined as

follows. For every open set G ⊂ Rd we define the stopping time τG by

τG := inf {t ≥ 0 : X (t) /∈ G} . (4.1.4)

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 66

ε

G
0

(a)

ε

G
0 Λ

1
=X(A

1
)

(b)

G
k

Λ
k
=X(A

k
)

(c)

G
k

Λ
k
=X(A

k
)

(d)

Figure 4.2.1: Construction of the set Gk

That is, τG represent the first time the process (X (t) : t ≥ 0) exits the set G. We also

need the following lemma.

Lemma 15. Let us make the same assumptions as in Theorem 14. Then, there exists a

constant K = K (d,Q) that depends only on the dimension d and the function Q, such that

for every ρ ∈ (0, 1) and x ∈ G we have

Ex (exp {(1− ρ)λ (G) τG}) ≤
K (d,Q)

ρ1+d/2
. (4.1.5)

Proof. See Appendix B.1.

In Section 4.3 we will provide the proof of the lower bound, namely,

Px
(
σRβ > T

)
≥ exp {−TI (x) + o (T)} . (4.1.6)

The proof uses the fact that the intensity β (·) is bounded.

4.2 Upper bound

Let Zd be the d−dimensional integer lattice and for ε > 0 define Zε = ε
1
dZd. For each

point c in Zε we assign an open cube of volume ε centered at c, Rε (c). Notice that for

c1, c2 ∈ Zε , c1 6= c2 we have Rε (c1)∩Rε (c2) = ∅. Moreover,
⋃
c∈Zε Rε (c) = Rd. For every

d ≥ 1 we pick ε = ε (d) such that a cube of volume ε centered at the origin is inscribed

in a sphere of radius a, which is also centered at the origin. For example, for d = 2 we

pick ε ≤ 2a2, for d = 3 we let ε ≤
(

4
3

)3/2
a3, and so on. Our strategy is therefore, to track

the Wiener sausage W a
T using these ε−squares and sequentially apply a change of measure

adapted by the underlying process in the following manner.

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 67

4.2.1 Initialization

Initially we start with the set G0 = Rε (0), a d−dimensional cube of volume ε = ε (d)

centered at zero. Let A0 = 0, Λ0 = 0 ∈ Rd and define

ϕ0 (x) = Ex [exp {θ0τG0}] , (4.2.1)

where τG0 is as defined in (4.1.4), θ0 = λ (G0) (1− ρ0) and ρ0 ∈ (0, 1). We define the

process {X0 (t) : t ≥ 0} by

{X0 (t) : t ≥ 0} d
= {X (t) : t ≥ 0} , X0 (0) = Λ0 = 0, (4.2.2)

and apply a change of measure that corresponds to the martingale

M0 (t) =
ϕ0 (X0 (t ∧ τG0))

ϕ (X0 (0))
· exp {θ0 (t ∧ τG0)} . (4.2.3)

The intuition behind this choice of measure is the fact that the hitting time to the

boundary ∂G0 behaves like an Exponential random variable with rate λ (G0). Hence, this

change-of-measure will drive the process to stay within G0 as long as possible (see Figure

4.2.1(a)). We let the process evolve under the new measure and detect the first time it

hits the boundary, A1, and the corresponding hitting location Λ1 = X0 (A1) (see Figure

4.2.1(b)).

4.2.2 Step k, k ≥ 1

At the beginning of the kth step k = 1, 2, . . . we have at hand the path up to time Ak and

the current location Λk = Xk−1 (Ak). First, we construct the next set of interest Gk,

Gk = Gk−1 ∪ {Rε that adjacent to Λk} . (4.2.4)

That is, we slightly enlarge the set Gk−1 by adding another ε−cube to the edge adjacent

to Λk (see Figure 4.2.1(c) and 4.2.1(d)). Then, similarly to what we did before, we define

the function

ϕk (x) = Ex [exp {θkτGk}] , (4.2.5)

with θk = λ (Gk) (1− ρk), ρk ∈ (0, 1) and the process

{Xk (t) : t ≥ 0} d
= {Xk−1 (t) : t ≥ 0} , Xk (0) = Λk.

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 68

We then apply a change of measure that corresponds to the martingale

Mk (t) =
ϕk (Xk (t ∧ τGk))

ϕ (Xk (0))
· exp {θk (t ∧ τGk)}

and let the process run until the time hitting time to the boundary Ak+1 and the hitting

point Λk+1 are detected.

Stopping criterion We stop when we reach the predetermined time T

4.2.3 Proof of upper bound

Lemma 16. Let (X (t) : t ≥ 0) as defined in equation (3.3.1) with Q ∈ C2
(
Ḡ
)
. Moreover,

assume that a = a (T) satisfies

Tad (T) −→
T→∞

0. (4.2.6)

Then,

Px
(
σRβ > T

)
≤ exp {−TI (x) + o (T)} ∀x ∈ G, (4.2.7)

where I (x) = inf
x∈D
D open

{´
D

β (s) ds+ λ (D)

}
and λ (D) is as defined in equation (3.3.6).

Proof of Upper Bound. We denote by PM and EM the probability and expectation under

the new measure, respectively. Following the procedure that was described in the previous

subsection, we denote by N (t) the number of cubes that were needed to track the Wiener

sausage W T
a by time T . Therefore,

N (t) = Last step of algorithm− 1 (4.2.8)

Notice that the combined likelihood ratio at time t can be written as

Y (t) = exp

tˆ

0

θN(s)+1ds

N(t)∏
j=0

ϕj (Λj+1)

ϕj (Λj)
. (4.2.9)

Therefore, we have

Px (σR > T) = Ex

[
exp

{
−T
´
Wa
T

β (s) ds

}]

= EMx

[
exp

{
−T
´
Wa
T

β (s) ds−
T́

0

θN(s)+1ds

}
N(T)∏
j=0

ϕj(Λj)
ϕj(Λj+1)

]

= EMx

[
exp

{
−T
´
Wa
T

β (s) ds−
T́

0

θN(s)+1ds

}
N(T)∏
j=0

ϕj (Λj)

]
,

(4.2.10)

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 69

since ϕj (Λj+1) = 1 for j = 0, 1, . . . , N (t). Lemma 15 states that there exists a constant

K (d,Q) such that for ρ ∈ (0, 1) we have that

ϕj (Λj) = Ej
[
exp

{
θjτGj

}]
≤ K (d,Q)

ρ
d
2

+1

j

. (4.2.11)

Therefore, we can pick ρT = ρ (T, d,Q) and set ρj = ρT for all j so that

ϕj (Λj) ≤ exp {Tε} . (4.2.12)

Consequently, we have

Px (σR > T) ≤ EMx

exp

−T
ˆ

Wa
T

β (s) ds− TθN(T)+1 + TεN (T)

 . (4.2.13)

Moreover, since Gj ⊂ Gj+1 and GN(T) ⊂ W a
T , by Property 1 of the principle eigenvalue

we have that

λ (Gj+1) ≤ λ (Gj) and λ (W a
T) ≤ λ

(
GN(T)

)
. (4.2.14)

Keeping in mind that θj = λ (Gj) (1− ρT), we can write

Px (σR > T) ≤ EMx

[
exp

{
−T

(´
Wa
T

β (s) ds− εN (T)

)
− Tλ

(
GN(T)+1

)
(1− ρT)

}]

≤ EMx

[
exp

{
−T

(´
Wa
T

β (s) ds− εN (T)

)
− Tλ (W a

T) (1− ρT)

}]

= EMx

[
exp

{
−T

(´
Wa
T

β (s) ds+ λ (W a
T)

)
+ TεN (T) + ρTTλ (W a

T)

}]
.

(4.2.15)

Recall that ε was defined to be such that a d−dimensional cube of volume ε is inscribed

in a d−dimensional sphere of radius a. Therefore, εN (T) = O
(
T 1/2ad

)
as T → ∞. As a

result, we have

Px (σR > T) ≤ EMx

[
exp

{
−T

(´
Wa
T

β (s) ds+ λ (W a
T)

)
+ o (T)

}]

≤ exp

−T inf
x∈G
G open

(´
G

β (s) ds+ λ (G)

)
+ o (T)

(4.2.16)

as T →∞, which concludes our proof.

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 70

𝐺𝑎
𝜖

𝐺𝜖

𝑎

Figure 4.3.1: Gε and Gεa

4.3 Lower bound

Lemma 17. Let (X (t) : t ≥ 0) as defined in equation (3.3.1) with Q ∈ C2
(
Ḡ
)
. Assume

that there exists a constant δ̃ > 0 such that

δ̃ ≤ β (x) ∀x ∈ Ḡ.

Moreover, assume that a = a (T) satisfies

ad (T) −→
T→∞

0. (4.3.1)

Then,

Px (σR > T) ≥ exp {−TI (x) + o (T)} ∀x ∈ G, (4.3.2)

where I (x) = inf
x∈D
D open

{´
D

β (s) ds+ λ (D)

}
and λ (D) is as defined in equation (3.3.6).

Proof of Lower Bound. Let x ∈ Rd and recall that I (x) was defined by

I (x) = inf
x∈G
G open

ˆ

G

β (s) ds+ λ (G)

 .

Therefore, for every ε > 0 we can find Gε such that x ∈ Gε, Gε is open and connected

subset of Rd and such that
ˆ

Gε

β (s) ds+ λ (Gε) ≤ I (x) + ε. (4.3.3)

Let Gεa be the enlargement of the set Gε so that the distance between the boundaries of

the sets is a, as illustrated in Figure 4.3.

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 71

Notice that,

τGε > T ⇐⇒ W a
T ⊂ Gεa.

Therefore,

Px (σR > T) = Ex

[
exp

{
−T
´
Wa
T

β (s) ds

}]

≥ Ex

[
exp

{
−T
´
Wa
T

β (s) ds

}
I (τGε > T)

]

≥ Ex

[
exp

{
−T
´
Gεa

β (s) ds

}
I (τGε > T)

]

= exp

{
−T
´
Gε
β (s) ds

}
Px (τGε > T) exp

{
−T

´
Gεa\Gε

β (s) ds

}
≥ exp

{
−T
´
Gε
β (s) ds− Tλ (Gε)

}
exp

{
−T δ̃ V ol (Gεa \Gε)

}
≥ exp {−TI (x)− Tε} exp

{
−T δ̃ V ol (Gεa \Gε)

}
.

(4.3.4)

And so,
1

T
log Px (σR > T) ≥ −I (x)− ε+ o (T) (4.3.5)

as T →∞.

4.4 Asymptotically Optimal Monte Carlo for Detection Poli-

cies

This section is divided into two parts. The first part involves evaluating a given deploy-

ment policy, so we are interested in estimating efficiently via simulation the probability

P (σR > T) for large T . After providing our algorithm, based on importance sampling, we

shall prove that the algorithm is asymptotically optimal in the sense of controlling the rate

of decay of the second moment of the associated estimator.

The second subsection involves estimating the conditional distribution of the target

X (·) and, in particular, the position of the target at time T , given that the target has

avoided detection. In both tasks we will leverage off our large deviations results. As

we mentioned earlier, the algorithms that will be presented in this section generalize the

results that were introduced in [Blanchet and Dupuis, 2014]. There the authors used

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 72

importance sampling based algorithm to evaluate the probability of a Brownian motion

that avoid hitting, traps which where distributed according to a Poisson process with

constant intensity. Our algorithms can be applied to more general scenarios.

4.4.1 Estimating P (σR > T)

In Theorem 14 we have proved a large deviations results for P (σR > T). However, as is

typical in large deviations theory, the result is more interesting from a qualitative stand-

point because we are only evaluating the exponential rate of decay, so lower order terms

such as sub-exponential factors, which might play a significant role, are not accounted for.

Therefore, it is of interest to provide efficient Monte Carlo simulation for estimating such

large deviations probabilities.

When estimating large deviations probabilities one often takes advantage of a technique

called importance sampling. We shall briefly review the elements of importance sampling

momentarily. Large deviations suggests how to perform importance sampling by using

the change of measure which is suggested by the proof of a the lower bound. There are

counter-examples, however, to the use of such change of measure as an importance sam-

pling distribution (see [Glasserman and Wang, 1997], for example). Fortunately, the proof

that we presented immediately suggests an asymptotically optimal importance sampling

estimator.

4.4.1.1 Importance Sampling

Importance Sampling is a general technique for estimating properties of a particular distri-

bution, while only having samples generated from a different distribution than the distri-

bution of interest (see e.g., [Asmussen and Glynn, 2007]). Assume that we wish to compute

the expectation

z = E (Z) ,

where E (·) denotes the expectation with respect to the probability measure P (·). Now let

P̃ denote a different probability measure. If the measure P is absolutely continuous with

respect to P̃ , that is, if

P (dw) = L (w) P̃ (dw) (4.4.1)

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 73

for all w ∈ Ω (the whole probability space). Then the Importance Sampling technique

asserts that we can sample according to the measure P̃ and then our estimator would be

z = E (Z) = Ẽ (LZ) ,

where Ẽ is the expectation with respect to the measure P̃ .

4.4.1.2 Algorithm for sampling P (σR > T)

Algorithm 6: Sampling P (σR > T)

Input: Deadline T , grid size ε = ε (d).

Output: p

Initialization Set:

k ← 0, G0 ← Rε (0), A0 ← 0, Λ0 ← 0, ϕ0 (x)← Ex [exp {θ0τG0}]

where τG0 is as defined in (4.1.4), θ0 = λ (G0) (1− ρ0) and ρ0 ∈ (0, 1).

Define {X0 (t) : t ≥ 0}: {X0 (t) : t ≥ 0} d
= {X (t) : t ≥ 0} , X0 (0) = Λ0 = 0

Apply a change of measure that corresponds to the martingale

M0 (t) =
ϕ0(X0(t∧τG0))

ϕ(X0(0)) · exp {θ0 (t ∧ τG0)} .

Simulate until X0 (t) ∈ ∂G0.

Set A1 ←hitting location, Λ1 ← X0 (A1) (see Figure 4.2.1(b)).

repeat
Set k ← k + 1, Gk as in equation (4.2.4), ϕk (x)← Ex [exp {θkτGk}] with

θk = λ (Gk) (1− ρk), ρk ∈ (0, 1).

Define:{Xk (t) : t ≥ 0} d
= {Xk−1 (t) : t ≥ 0} , Xk (0) = Λk.

Apply a change of measure that corresponds to the martingale

Mk (t) =
ϕk(Xk(t∧τGk))

ϕ(Xk(0)) · exp {θk (t ∧ τGk)}

Simulate until Xk (t) ∈ ∂Gk.

Set Ak+1 ←hitting location, Λk+1 ← X0 (A1)

until Deadline T ;

Set p← exp

{
−T
´
Wa
T

β (s) ds−
T́

0

θN(s)+1ds

}
N(T)∏
j=0

ϕj (Λj)

where N (s) = k at time s.

return p

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 74

4.4.1.3 Asymptotic optimality

We will now argue that our algorithm is asymptotically optimal. First, let us recall the

definition of asymptotically optimal estimator (see [Asmussen and Glynn, 2007], for exam-

ple).

Definition 18. Z (T) is an asymptotically optimal estimator, if for any ε > 0 we have

that

sup
T

EZ2 (T)

(E (Z (T)))2−ε <∞.

The definition intuitively indicates, that

logEZ2 (T) ≈ log
(
E (Z (T))2

)
as T →∞ and therefore the variance is controlled as T →∞. In other words, the relative

variance grows at most sub-exponentially as T →∞.

Theorem 19. The estimator Z (T) given in Algorithm 6 is asymptotically optimal.

Proof. Let ε > 0. Then,

EZ2(T)

(E(Z(T)))2−ε
=

E

exp

−2T
´
Wa
T

β(s)ds−2
T́

0

θN(s)+1ds

N(T)∏
j=0

(ϕj(Λj))
2

(P (σR>T))2−ε

≤ exp(2(IT+o(T)))
exp((2−ε)(IT+o(T))) ,

(4.4.2)

where the last inequality is due to Theorem 14.

4.4.2 Sampling form P∗ the law of {X (T) |σR > T}

Another question that is of interest is the following. Assume that we have not managed

to detect the adversary by time T . Giving this information what can we say about his

current position? How can we sample form the law of {X (T) |σR > T}?

For the case of a Brownian motion moving in a Poisson cloud with constant intensity,

[Sznitman, 1991] (for d = 2) and [Povel, 1999] (for d ≥ 3) showed that the probability that

the W a
T is confined in a ball of radius c t1/(d+2), for some (computable) c > 0, given that

the sausage does not include any point of the Poisson cloud, goes to 1 as t goes to ∞.

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 75

In the general case, we can use the procedure described earlier to find the typical shape

of W a
T . Let PM denote the measure induced by the procedure described in Algorithm 6.

Recall that

dPM = Y (T) dP

with

Y (t) = exp

tˆ

0

θN(s)+1ds

N(t)∏
j=0

ϕj (Λj+1)

ϕj (Λj)
. (4.4.3)

We propose the following procedure. First sample from the law PM and obtain

X1, . . . ,Xn IID sample paths. For each such sample path we can compute a weight

ξi = exp

− ˆ

(Wa
T)

i

β (s) ds

 (Yi (T))−1 , (4.4.4)

where (W a
T)i and Yi (T) are the Wiener sausage and the likelihood ratio, respectively, that

correspond to the sample path Xi. We define µ̂n by

µ̂n (dx) =
1

n

n∑
i=1

δXi (dx) · ξi (4.4.5)

and set

µ̂n∗ (dx) =

n∑
i=1

δXi (dx) · ξi
n∑
j=1

ξj

.

Observe that that µ̂n∗ is a biased, but consistent, estimator of P∗ in the sense that for every

continuous and bounded f : C [0, 1]→ C [0,∞), we have that
ˆ
f (x) µ̂n∗ (dx)→ E [f (X) | σR > T] .

Moreover, due to the asymptotic optimality of our estimator for P (σR > T) given in our

algorithm in the previous subsection, we have that

E

[∣∣∣∣E [f (X) I (σR > T)]−
ˆ
f (x) µ̂n (dx)

∣∣∣∣2
]

= V arM

(ˆ
f (x) µ̂n∗ (dx)

)
(4.4.6)

=
1

n
V arM (f (Xi) ξi) (4.4.7)

≤ ‖f‖22 ·
1

n
V arM (ξi) ≤ ‖f‖22 ·

c

n
· P (σR > T)2−ε , (4.4.8)

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 76

where V arM (·) is the variance under the probability PM .

It is important to note that the mean-squared error of our estimator forE [f (X) | σR > T]

can be controlled due to (4.4.8) even if T is large. In particular, it suffices to let let

n = O (1/P (σR > T)ε) for any fixed ε > 0 in order to provide accurate estimates.

Now, note that
´
f (x) µ̂n∗ (dx) has a small bias which is asymptotically negligible, but

such bias, as we can see, can actually be deleted due to the fact that our importance

sampling estimator induced a bounded likelihood ratio. We will explain this feature next.

4.4.3 Sampling {X (T) |σR > T} when the rate function I is computable

If the rate function I is computable, then we can device an Acceptance-Rejection based

algorithm to produce an exact sampler to the conditional probability. First, let us recall

the general Acceptance-Rejection procedure.

4.4.3.1 Acceptance-Rejection

The Acceptance-Rejection algorithm is a well known sampling technique, which was pro-

posed by John Von Neumann on 1951 ([von Neumann, 1951]). It might be considered

one of the most important building block in field of Simulation Theory. The goal of the

Acceptance-Rejection algorithm is to generate samples from a distribution P (·), which

is usually unaccessible or unknown in closed form, using and another distribution P̃ (·),

which is easier to simulate. The measure P needs to be absolutely continuous with respect

to P̃ and
dP (x)

dP̃ (x)
≤ C <∞

for all x for some constant C.

The algorithm is then executed as follows:
Algorithm 7: Acceptance-Rejection Algorithm
Output: x ∼ P

repeat
Sample x ∼ P̃

Sample u ∼ U (0, 1) independent of x

until u ≤ 1
C ·

dP (x)

dP̃ (x)
;

return x

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 77

4.4.3.2 Acceptance-Rejection based algorithm for sampling {X (T) |σR > T}

Let X := (X (t) : 0 ≤ t ≤ T) denote the path of the adversarial agent until the given

deadline T , and let N denote the law of the Poisson cloud with intensity β. Consider the

following joint density

P∗ (dω) = P (dω|σ (ω) > T) =
P (dω) I (σ (ω) > T)

P (σ (ω) > T)
, (4.4.9)

where ω = (X,N) and σ (ω) = σR. We are interested in sampling form its marginal

distribution, P∗ (dX). To this end, we will integrate the joint density given in equation

4.4.9 and obtain

P∗ (dX) =

ˆ

N∈Ω

P∗ (dX, dN) (4.4.10)

=

ˆ

N∈Ω

E [I (dX ∈ dx, dN ∈ dη) I (σ (ω) > T)]

P (σ (ω) > T)
(4.4.11)

=

ˆ

N∈Ω

P (I (N ∈ dη, I (σ (ω) > T)|X))

P (σ (ω) > T)
P (dX) (4.4.12)

=

exp

(
−
´
Wa
T

β (s) ds

)

E

[
exp

(
−
´
Wa
T

β (s) ds

)] P (dX) . (4.4.13)

In order to sample from P∗, we suggest to use the Acceptance-Rejection algorithm and

propose a sample from the measure PM that was introduced in Subsection 4.2.

Notice that

PM (ω) = PM (dX)P (dN|N ∩W a
T , X) . (4.4.14)

Moreover,

P (X ∈ A|σ > T) =

E

[
exp

(
−
´
Wa
T

β (s) ds

)
I (X ∈ A)

]
P (σ > T)

. (4.4.15)

Overall, we have that the likelihood ratio is given by

dP∗
dPM

(X) =

exp

(
−
´
Wa
T

β (s) ds

)
(Y (T))−1

P (σ > T)
≤ exp (−T (1− ρT) I)

P (σ > T)
:= C . (4.4.16)

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 78

Notice that C = exp (o (T)) as T →∞ and is finite for T <∞. Therefore, the probability

of accepting a proposed sample is

1

C
· dP∗
dPM

(X) =

exp

(
−
´
Wa
T

β (s) ds

)
(Y (T))−1

exp (−T (1− ρT) I)
. (4.4.17)

Notice that the all expressions in the nominator are known (as a by product of the

simulation) and we assume that the rate function I is computable, for example, if the

principle eigenvalue is computable, then the Acceptance-Rejection algorithm can be applied

in a straightforward way.

4.5 Numerical Results

The following subsections summarize the simulation results we obtain, comparing the per-

formance of the importance sampling based algorithm (Algorithm 6) with a naïve Monte

Carlo sampler. First, we tested the algorithm in the simple case of a one-dimensional Brow-

nian motion (Subsection 4.5.1). Later, in Subsection 4.5.2, we considered more complex

scenarios: a two-dimensional diffusion process with different choices of drift coefficients.

For these scenarios we also tested the variance reduction achieved by the importance sam-

pling based estimator. In both subsections, the implementation extends the sampling

methods proposed in [Blanchet and Dupuis, 2014]. At this point we would like to thank

Elioth Mirsha Sanabria Buenaventura for his help with the implementation.

4.5.1 One-dimensional Brownian Motion

In this subsection we considered a target that moves according to a one-dimensional Brow-

nian motion. We tested the algorithm by evaluating the target’s survival probability for

different deployment policies. We considered three cases:

Case 1: Traps are placed according to a Poisson process with constant intensity β = 0.25.

Case 2: Traps are placed within distance 3 of one another.

Case 3: Traps are placed within distance 2 of one another.

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 79

The three cases can be fitted the scenario where the target is confined to the interval (−6, 6)

and we can place up to K detectors. Cases 1 and 2 correspond to K = 3, while Case 3

corresponds to K = 5. We set a deadline of T = 10 and use a lattice of size 0.01 for all

scenarios. In each case, we sampled the Brownian motion using the importance sampling

technique (Algorithm 6) in a naïve way. The estimations of the survival probability are

based on sample of size 1,000 per case per technique. The estimations are given by intervals

with 95% confidence.

We summarized the results in table 4.1 below. As expected, point-mass type strategy

(Case 2) performs better than the uniform intensity (Case 1). Moreover, placing more

traps (Case 3) reduced the probability of survival.

Case 1 Case 2 Case 3

LCI UCI LCI UCI LCI UCI

IS 7.52 · 10−4 8.79 · 10−4 4.58 · 10−5 4.59 · 10−5 4.32 · 10−5 4.35 · 10−5

Naïve 7.38 · 10−4 9.68 · 10−4 4.58 · 10−5 4.60 · 10−5 4.32 · 10−5 4.36 · 10−5

Table 4.1: Survival probability: Importance Sampling (IS) vs. naïve Simulation: One-

dimensional Brownian motion.

4.5.2 Two-dimensional diffusion process

In this subsection, we considered a target that moves in the plane according to a two-

dimensional Brownian motion and a drift coefficient ∇Q (x, y).

We tested the algorithm for different choices of the function Q. In particular, we

considered the following four cases:

(a) Q(x, y) = Constant.

(b) Q(x, y) = C
(
x2 + y2

)
.

(c) Q(x, y) = e−(x2+y2).

(d) Q(x, y) = e−(x−0.5)2−(y−0.5)2 .

For Q = Constant, time horizon T = 5, and 10,000 samples of the survival probability

α̂T , we have

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 80

Method α̂T LCI UCI

Naïve 6.20 · 10−3 5.42 · 10−3 6.99 · 10−3

IS 6.30 · 10−3 5.51 · 10−3 7.09 · 10−3

Table 4.2: Survival probability: Importance Sampling (IS) vs. naïve Simulation: Two-

dimensional Brownian motion.

where LCI and UCI represent the lower and upper 95% confidence intervals, respec-

tively.

In the previous section we proved that Algorithm 6 is asymptotically optimal. There-

fore, a natural thing was to explore when one can see the variance reduction. To this end,

we tested the algorithm in each scenario for different sizes of boundary L, which is defined

in the following manner: Let us denote by At the set of points that the process has visited

by time t and assume that the process starts at x0 at time t = 0. Then,

A0 = {x : d (x, x0) ≤ L} (4.5.1)

For example, assume that x0 = (0, 0) and L = 2. Then A0 is the blue region in Figure

4.5.1 on the left. Now suppose that the process starts and the first point that it visits

outside the blue set (A0), which is the point y = (1, 2) (the red point in Figure 4.5.1).

The set A1 can now be written as

A1 = A0 ∪ {x : d (x, y) ≤ L} (4.5.2)

In Figure 4.5.1 (right), A1 is represented by the union of blue and red points.

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 81

Figure 4.5.1: A0 (on the left) and A1 (on the right) for L = 2.

We ran the simulation for different choices of the function Q(x, y) and boundary sizes

L. For each selection of Q(x, y), we simulated 10,000 samples for each choice of L, and

compared the estimators’ variance for different values of L. The results of the simulation

are illustrated in Figure 4.5.2. The plots represent the standard deviation of the estimator

(on a negative log scale). Each sub-figure corresponds to a different choice of the function

Q(x, y). In each sub-figure, the black line corresponds to a naïve Monte Carlo simulation,

and the red, green and purple lines corresponds to the results of the importance sampling

for the choices of L = 0, L = 1, and L = 2, respectively.

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 82

(a) Q = Constant. (b) Q =
(
x2 + y2

)
.

(c) Q = e−(x2+y2). (d) Q = e−(x−0.5)2−(y−0.5)2 .

Figure 4.5.2: -Log of the estimator’s standard deviation.

CHAPTER 4. DETECTION OF ADVERSARIAL AGENTS: MAIN RESULTS AND
ALGORITHMS 83

4.6 Conclusions

The problem of detecting an adversarial agent, that was discussed in this part, is com-

binatorially NP hard. The continuous relaxation we propose, no matter what kind of

framework we consider (traps or fences), requires that we solve

sup
β

inf
D⊂Ω

ˆ
D

β (s) ds+ λ (D)

 . (4.6.1)

with β being the intensity for either detector or fence placement. However, solving equa-

tion 4.6.1 analytically, involves knowing the value of the rate function (or alternatively,

computing the value of the principle eigenvalue), which is also difficult.

On the bright side, we can use our algorithms to numerically evaluate policies and gain

some knowledge regarding the location of an adversary given that he has not been detected

by a given deadline.

The importance of the work presented in this part is in the fact that it lies down a

mathematical foundation and it provides a new approach to the solution of finding the

optimal policy that solves detection problem. There are many future directions that one

could make to take our results one step forward. For example, it will be interesting to

check if combining our technique with current methods for solving the Maximal Coverage

problem, that was mention in the introduction. Another possible directions, are to consider

more than one agent that is moving in the domain, or when the traps are not stationary.

84

Part III

Bibliography

BIBLIOGRAPHY 85

Bibliography

[Asmussen and Glynn, 2007] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algo-

rithms and Analysis. Springer-Verlag, 2007.

[Asmussen, 2003] S. Asmussen. Applied Probability and Queues, 2nd ed. Springer, New

York, 2003.

[Blanchet and Chen, 2012] J. Blanchet and X. Chen. Steady-state simulation for reflected

Brownian motion and related networks. http://arxiv.org/pdf/1202.2062.pdf, 2012.

[Blanchet and Dong, 2012] J. Blanchet and J. Dong. Sampling point processes on stable

unbounded regions and exact simulation of queues. In Proceedings of the 2012 Winter

Simulation Conference C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M.

Uhrmacher, eds, 2012.

[Blanchet and Dupuis, 2014] Jose Blanchet and Paul Dupuis. Fast simulation of brownian

motion avoiding random obstacles, 2014.

[Blanchet and Sigman, 2011] J. Blanchet and K. Sigman. On exact sampling of stochastic

perpetuities. Journal of Applied Probability, 48A:165–182, 2011.

[Donsker and Varadhan, 1975] Monroe D. Donsker and S.R.Srinivasa Varadhan. Asymp-

totics for th wiener sausage. Communications on Pure and Applied Mathematics,

1025:525–565, 1975.

[Durrett, 2005] R. Durrett. Probability: Theory and Examples. Duxbury Advanced Series,

2005.

BIBLIOGRAPHY 86

[Ensor and Glynn, 2000] K. B. Ensor and P. W. Glynn. Simulating the maximum of a

random walk. Journal of Statistical Planning and Inference, 85:127–135, 2000.

[Fab, 1923] dass unter allen homogenen Membranen von gleicher Fläche und gleicher Span-

nung die kreisförmige den tiefsten Grundton gibt, 1923.

[Flucher, 1995] Martin Flucher. Approximation of dirichlet eigenvalues on domains with

small holes. Journal of Mathematical Analysis and Applications, 193(1):169 – 199, 1995.

[Foss and Sapozhnikov, 2006] S. Foss and A. Sapozhnikov. Convergence rates in monotone

separable stochastic networks. Queueing Systems, 52(2):125–137, 2006.

[Glasserman and Wang, 1997] Paul Glasserman and Yashan Wang. Counterexamples in

importance sampling for large deviations probabilities. Ann. Appl. Probab., 7(3):731–

746, 08 1997.

[Harrell et al., 2001] Evans M. Harrell, Pawel Kroger, and Kazuhiro Kurata. On the place-

ment of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM journal

on mathematical analysis, 33(1):240–259, 2001.

[Hochbaum, 1997] Dorit S. Hochbaum. Approximation Algorithms for NP-hard Problems,

chapter Approximating Covering and Packing Problems: Set Cover, Vertex Cover, Inde-

pendent Set, and Related Problems, pages 94–143. PWS Publishing Co., Boston, MA,

USA, 1997.

[Kac, 1951] Mark Kac. On some connections between probability theory and differential

and integral equations, 1951.

[Kendall, 1998] W. S. Kendall. Perfect simulation for the area-interaction point process. In

Probability Towards 2000 (ed. L. Accardi and C.C. Heyde). Lecture Notes in Statistics.

volume 128, New York; Springer-Verlag, 218-234, 1998.

[Kingman and Atiyah, 1961] J. F. C. Kingman and M. F. Atiyah. The single server queue

in heavy traffic. Proceedings of the Cambridge Philosophical Society, 57:902, 1961.

[Krahn, 1925] E. Krahn. Über eine von rayleigh formulierte minimaleigenschaft des kreises.

Mathematische Annalen, 94(1):97–100, 1925.

BIBLIOGRAPHY 87

[Murthy et al., 2013] K. Murthy, S. Juneja, and J. Blanchet. State-independent

importance sampling for random walks with regularly varying increments.

http://arxiv.org/pdf/1206.3390.pdf, 2013.

[Nemhauser et al., 1978] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of

approximations for maximizing submodular set functions i. Mathematical Programming,

14(1):265–294, December 1978.

[Peres et al., 2011] Yuval Peres, Alistair Sinclair, Perla Sousi, and Alexandre Stauffer. Mo-

bile geometric graphs: Detection, coverage and percolation. In SODA, pages 412–428,

2011.

[Pinsky, 1985] Ross Pinsky. On the convergence of diffusion processes conditioned to re-

main in a bounded region for large time to limiting positive recurrent diffusion processe.

The Annals of Probability, 13:363–378, 1985.

[Pinsky, 1995] Ross Pinsky. Positive Harmonic Functions and Diffusion: An Integrated

Analytic and Probabilistic Approach. Cambridge, 1995.

[Povel, 1999] Tobias Povel. Confinement of brownian motion among poissonian obstacles

in rd , d ≥ 3. Probability Theory and Related Fields, 114:177–205, 1999.

[Propp and Wilson, 1996] J. G. Propp and D. B. Wilson. Exact sampling with coupled

Markov chains and applications to statistical mechanics. Random Structures & Al-

gorithms (Atlanta, Georgia: Proceedings of the Seventh International Conference on

Random Structures and Algorithms), 9:223–252, 1996.

[Rauch and Taylor, 1975] Jeffrey Rauch and Michael Taylor. Potential and scattering the-

ory on wildly perturbed domains. Journal of Functional Analysis, 18(1):27 – 59, 1975.

[Sigman, 2011] K. Sigman. Exact simulation of the stationary distribution of the FIFO

M/G/c queue. Journal of Applied Probability, 48A:209–216, 2011.

[Sigman, 2012] K. Sigman. Exact simulation of the stationary distribution of the FIFO

M/G/c queue: The general case for ρ < c. Queueing Systems, 70:37–43, 2012.

BIBLIOGRAPHY 88

[Sznitman, 1991] Alain-Sol Sznitman. On the confinement property of two-dimensional

brownian motion among poissonian obstacles. Communications in Pure and Applied

Mathematics, 44:1137–1170, 1991.

[Sznitman, 1998] Alain-Sol Sznitman. Brownian Motion, Obstacles and Random Media.

Springer Monographs in Mathematics, 1998.

[Vazirani, 2001] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York,

Inc., New York, NY, USA, 2001.

[von Neumann, 1951] John von Neumann. Various techniques used in connection with

random digits. monte carlo methods. U.S. Dept. of Commerce, National Bureau of

Standards; Applied mathematics series, 12:36–38, 1951.

89

Part IV

Appendices

APPENDIX A. APPENDIX FOR CHAPTER 2 90

Appendix A

Appendix for Chapter 2

Chapter 2 describes a method of perfect sampling of stationary and time reversed queues.

To ensure that our algorithm works properly, in Subsection 2.3.1.1 we formulated our

assumptions regarding the parameters δ, α, m, and γ. The first section in this appendix

will discuss the generality of these assumptions. The subsequent sections of this appendix

we will present the proofs for the technical lemmas that were stated in Subsection 2.3.1.2.

A.1 Discussion on the generality of the assumptions imposed

and selection of parameters

In this section we will argue that the inequalities (2.3.5)-(2.3.7) can always be satisfied

under our underlying assumption that E |Xk|β < ∞ for β = 2 + ε > 2 (the case β > 1 is

discussed in Section 2.5). First, the selection of L in (2.2.1) is always feasible, as indicated

earlier L = 1 is most of the time feasible; for example L = 1 will be feasible if X1 is

non-lattice.

Clearly the selection of m satisfying (2.3.5) is always feasible. Now, note that we can

always select δ > 0 so that

2 < α ≤ (2 + ε) (1− δ) . (A.1.1)

APPENDIX A. APPENDIX FOR CHAPTER 2 91

Then observe that if m ≥ 1, applying Chebyshev’s inequality,

6 (1 + 2µz +m)α

(α− 1) (m+ 1)α−1 µ
P (X > (µz +m)1−δ) ≤ 6 · 2α (µz +m)α

(α− 1) (m+ 1)α−1 µ
·

E
[(
X+

1

)2+ε
]

(µz +m)(2+ε)(1−δ)

≤ 6 · 2α

(α− 1) (m+ 1)α−1 µ
· E
[(
X+

1

)2+ε
]

So, condition (2.3.6) is automatically satisfied if m is chosen sufficiently large so that

6 · 2α

(α− 1) (m+ 1)α−1 µ
· E
[(
X+

1

)2+ε
]
≤ 1. (A.1.2)

Next, for (2.3.7), we optimize over z and obtain

z

(m+ z)2(1−δ) ≤
1

m1−2δ
· (1− 2δ)1−2δ

(2 (1− δ))2(1−δ) , (A.1.3)

for all δ ∈ (0, 1/2]. Use Chebyshev’s inequality, together with (A.1.3), and the change of

variable u = γ1/δ(m+ z) to obtain

3 (1 + 2z +m)α

(α− 1) (m+ 1)α−1 z
exp

(
−γ (m+ z)δ +

γ2eγE
(
X2
)
z

(m+ z)2(1−δ) µ
+ 4

z

µ
P
(
X > (z +m)1−δ

))
≤

≤ 3 (1 + 2z +m)α

(α− 1) (m+ 1)α−1 z
exp

(
−γ (m+ z)δ +

(γ2eγ + 4)E
(
X2
)

(1− 2δ)1−2δ

(2 (1− δ))2(1−δ) µm1−2δ

)

≤ 3 · 2αγ−α/δ

(α− 1) (m+ 1)α−1 µ
exp

(
(γ2eγ + 4)E

(
X2
)

(1− 2δ)1−2δ

(2 (1− δ))2(1−δ) µm1−2δ

)
max

u≥γ1/δm
uα exp

(
−uδ

)
.

Thus, we can first select γ = 1, for example, and then pick the smallest m so that

3 · 2α

(α− 1) (m+ 1)α−1 µ
exp

(
7E
(
X2
)

(1− 2δ)1−2δ

(2 (1− δ))2(1−δ) µm1−2δ

)
max

u≥γ1/δm
uα exp

(
−uδ

)
≤ 1. (A.1.4)

This can be done numerically or, explicitly by simply by noting (using elementary calculus)

that

max
u≥γ1/δm

uα exp
(
−uδ

)
≤
(α
δ

)α
exp

(
−
(α
δ

)δ)
.

In the numerical examples that we will discuss in Section 2.6 we noted that the per-

formance of the algorithm is not too sensitive to the selection of α, and thus we advocate

picking α somewhat larger than 2, for instance α ∈ (2, 4], but it is important to constrain

α and δ so that zαP
(
X > z1−δ) = O(1), due to (2.3.6).

It is constraint (2.3.7) the one that has the highest impact in the algorithm’s perfor-

mance and we noted that the selection ofm, in particular, was the most relevant parameter.

APPENDIX A. APPENDIX FOR CHAPTER 2 92

So, we simply used the Excel solver; given our selection of α we picked δ ∈
(
0, 1

2

]
, γ ≥ 0

and m ≥ 0 so as to minimize m subject to (2.3.6) and (2.3.7). The optimization is done

only once and it took a second.

In Section 2.6 we also argued that the running time of our algorithm is close to the

relaxation time of the Markov chain from a heavy-traffic perspective.

A.2 Proof of Lemma 3

Proof. Notice that

P (Ak) ≤
nk−1∑
j=nk−1

P
(
Xj > (jµ+m)1−δ

)
≤ nkP

(
X1 > (nk−1µ+m)1−δ

)
.

It is straightforward to verify (using Chebyshev’s inequality, the fact that E |X1|β < ∞

for β > 1 and the definition of nk) that for any δ > 0,∑
k

nkP
(
X1 > (nk−1µ+m)1−δ

)
<∞.

Now we have for k ≥ 2

3P (Ak)

g (k)
≤ 3Ḡ (m)

nkP (X1 > (nk−1µ+m)1−δ)´m+µnk
m+µnk−1

P (Y > s) ds
(A.2.1)

≤ 3Ḡ (m)
nkP (X1 > (µnk−1 +m)1−δ)

µnk−1P (Y > m+ nk)
(A.2.2)

= 6Ḡ (m)
P (X+

1 > (µnk−1 +m)1−δ)

µP (Y > m+ µnk)
(A.2.3)

≤ 6 (1 + 2µnk−1 +m)α

(α− 1) (m+ 1)α−1 µ
P
(
X > (µnk−1 +m)1−δ

)
(A.2.4)

≤ 1 (A.2.5)

Making z = µnk−1 = µ2k−2 and using (2.3.6) we obtain the conclusion of the lemma.

A.3 Proof of Lemma 4

Before we prove Lemma 4, we will first introduce an auxiliary lemma, which will be proved

at the end of this section.

APPENDIX A. APPENDIX FOR CHAPTER 2 93

Lemma 20. Set θ = γ/u1−δ for δ ∈ (0, 1), u, γ > 0 and suppose that E (X) = 0. If

E
(
|X|1+ε

)
<∞ for some ε ∈ (0, 1) and

E
(
|X|1+ε

)
u(1−δ)(1+ε)

≤ 1

2
, (A.3.1)

then

E
[
exp(θX)

∣∣∣ X ≤ u1−δ
]
≤ exp

{
A

u(1−δ)(1+ε)

}
(A.3.2)

with

A =

(
γ2

2
· exp (γ)

1− ε
+ 2

)
· E
(
|X|1+ε

)
. (A.3.3)

Moreover, if E
(
X2
)
<∞ and

E
(
X2
)

u2(1−δ) ≤
1

2
(A.3.4)

then

E
[
exp(θX)

∣∣∣ X ≤ u1−δ
]
≤ exp

(
γ2 exp (γ)E(X2)

2u2(1−δ) + 2P
(
X > u1−δ

))
(A.3.5)

≤ exp

{
A

u2(1−δ)

}
, (A.3.6)

with

A =

(
γ2 exp (γ)

2
+ 2

)
· E
(
X2
)
. (A.3.7)

If in addition u ≥ 1 and 0 < δ ≤ ε/2 then from (A.3.2) we obtain

E
[
exp(θX)

∣∣∣ X ≤ u1−δ
]
≤ exp

(
A

u

)
, (A.3.8)

and if EX2 <∞ inequality (A.3.8) follows from (A.3.6) choosing 0 ≤ δ ≤ 1/2.

Having Lemma 20 at hand we are now ready to prove Lemma 4

Proof of Lemma 4. Since m ≥ 1 satisfies inequality (2.3.5), then we can invoke Lemma 20

with u = nk−1µ+m = Ck and obtain

exp(ψk (θk)) ≤ exp

(
γ2 exp (γ)E(X2)

2C
2(1−δ)
k

+ 2P
(
X > C1−δ

k

))
. (A.3.9)

APPENDIX A. APPENDIX FOR CHAPTER 2 94

By definition of Tm we have that STm ≥ µTm + m, and because Tm ∈ [nk−1, nk − 1] we

conclude that

STm ≥ µnk−1 +m = Ck.

Therefore, on Tm ∈ [nk−1, nk − 1]

exp(−θkSTm + Tmψk (θk)) ≤ exp(−θkCk + nkψk (θk)). (A.3.10)

Combining (A.3.9) and (A.3.10), and letting z = µnk−1, we obtain that

exp(−θkSTm + Tmψk (θk)) ≤

≤ exp

(
−γ (µnk−1 +m)δ +

γ2 exp (γ)E(X2)nk−1

(µnk−1 +m)2(1−δ) + 2nkP
(
X > (µnk−1 +m)(1−δ)

))

= exp

(
−γ (z +m)δ +

γ2 exp (γ)E(X2)z

(z +m)2(1−δ) µ
+ 4

z

µ
P
(
X > (z +m)(1−δ)

))
.

Therefore, using (2.3.7) we conclude that

3 exp(−θkSTm + Tmψk (θk))

g (k)
≤

≤ 3 (1 + 2z +m)α

(α− 1) (m+ 1)α−1 z
exp

(
−γ (z +m)δ +

γ2 exp (γ)E(X2)z

(z +m)2(1−δ) µ
+ 4

z

µ
P
(
X > (z +m)(1−δ)

))
≤ 1,

thereby obtaining the result.

We conclude this appendix with the proof of the auxiliary lemma.

Proof of Lemma 20. Since EX = 0, E[XI
(
X ≤ u1−δ)] < 0, and therefore a Taylor ex-

pansion of second order yields

E
[
exp

{
X

γ

u1−δ

}
, X ≤ u1−δ

]
≤ 1 +

γ2

2
E

[(
X

u1−δ

)2

exp

{
γX

u1−δ

}
I
(
X ≤ u1−δ

)]

If EX2 <∞, we conclude that

E
[
exp

{
X

γ

u1−δ

}
, X ≤ u1−δ

]
≤ 1 +

γ2 exp (γ)

2
· E(X2) · 1

u2(1−δ) .

APPENDIX A. APPENDIX FOR CHAPTER 2 95

Since 1 + x ≤ exp (x) for x ≥ 0 we conclude that

E
[
exp

{
X

γ

u1−δ

}
, X ≤ u1−δ

]
≤ exp

(
γ2 exp (γ)

2
· E(X2) · 1

u2(1−δ)

)
.

On the other hand

P
(
X ≤ u1−δ

)
= 1− P

(
X > u1−δ

)
≥ 1− E(X2)

u2(1−δ)

and since 1− x ≥ exp (−2x) for x ∈
(
0, 1

2

)
we conclude that if (A.3.4) holds then

E
[
exp

{
X

γ

u1−δ

} ∣∣∣ X ≤ u1−δ
]
≤ exp

(
γ2 exp (γ)E(X2)

2u2(1−δ) + 2P
(
X > u1−δ

))
,

which yields (A.3.6).

Now, let’s assume that ε ∈ (0, 1) and E |X|1+ε < ∞. Since z2 exp (−z) ≤ 4 exp (−2) < 1

for z ≥ 0 we have that

E

[(
Xγ

u1−δ

)2

exp

{
Xγ

u1−δ

}
I
(
X ≤ u1−δ

)]
≤

≤ γ2 exp (γ)E

[(
X

u1−δ

)2

I
(
|X| ≤ u1−δ

)]
+ P

(
X < −u1−δ

)
.

In addition,

E
[
|X|2 I

(
|X| ≤ u1−δ

)]
= 2E

 u1−δˆ

0

sI (|X| > s) ds

 (A.3.11)

= 2

u1−δˆ

0

sP (|X| > s) ds (A.3.12)

≤ E |X|1+ε

1− ε
u(1−ε)(1−δ) (A.3.13)

Therefore,

E

[(
X

u1−δ

)2

I
(
|X| ≤ u1−δ

)]
≤ E |X|1+ε

1− ε
· 1

u(1+ε)(1−δ) .

Since

P
(
X < −u1−δ

)
≤ E |X|1+ε

u(1+ε)(1−δ) ,

APPENDIX A. APPENDIX FOR CHAPTER 2 96

we conclude combining (A.3.13) and (A.3) that

E
[
exp

{
X

γ

u1−δ

}
, X ≤ u1−δ

]
≤ 1 +

γ2

2
· E |X|1+ε ·

(
exp (γ)

(1− ε)
+ 1

)
· 1

u(1+ε)(1−δ) (A.3.14)

≤ 1 + γ2 · E |X|1+ε · exp (γ)

(1− ε)
· 1

u(1+ε)(1−δ) . (A.3.15)

Similarly to the finite variance case we conclude that if (A.3.4) holds, then

E
[
exp

{
X

γ

u1−δ

} ∣∣∣ X ≤ u1−δ
]
≤

≤ exp

(
γ2 · E |X|1+ε · exp (γ)

(1− ε)
· 1

u(1+ε)(1−δ) + 2E |X|1+ε · 1

u(1+ε)(1−δ)

)
,

which in turn yields (A.3.2). The last part of the result, namely (A.3.8) follows from

elementary algebra and the fact that we are requiring u ≥ 1.

A.4 Proof of Lemma 5

Proof. Notice that

P (Bc
k) ≤

nk−1∑
j=nk−1

P
(
Xj > (jµ+m)1−δ

)
≤ nkP

(
X1 > (nk−1µ+m)1−δ

)
.

Now we can continue and apply the same arguments as in Lemma 3 to conclude the

proof.

APPENDIX B. APPENDIX FOR CHAPTER 4 97

Appendix B

Appendix for Chapter 4

B.1 Proof of Lemma 15

The goal of this section is to establish the result in Lemma 15, which is stated again below

Lemma (Lemma 15). Under the assumptions as in Theorem 14. There exists a constant

K = K (d,Q) that depends only on the dimension d and the function Q, such that for

every ρ ∈ (0, 1) and x ∈ G we have

Ex (exp {(1− ρ)λ (G) τG}) ≤
K (d,Q)

ρ1+d/2
(B.1.1)

In order to prove Lemma15 we will need the following two results

Lemma 21. Under the assumptions as in Theorem 14.

Px (τG > t) ≤ 1

δ2
Ex

exp

−
tˆ

0

V (B (s)) ds, τG > t

 (B.1.2)

where

V (x) :=
1

2
e−Q(x) · 4eQ(x) (B.1.3)

and (B (t) : , t ≥ 0) is the d−dimensional Brownian motion.

Lemma 22. Let λ̃V (G) be the Dirichlet principle eigenvalue of the generator L̃ = −1
24+V

that was introduced earlier. Then, under the assumption of Theorem 14, there exists a

APPENDIX B. APPENDIX FOR CHAPTER 4 98

constant c (d,Q) ∈ (1,∞) that depends only on the dimension and the function Q (or

alternatively, the function V) such that,

sup
x∈G

Ẽx

exp

−
tˆ

0

V (B (s)) ds, τG > t

 ≤ c (d, V)

((
λ̃V (G) t

)d/2
+ 1

)
exp

{
−λ̃V (G) t

}
(B.1.4)

We will provide the proof of Lemma 21 at the end of this section. The proof of Lemma

22 can be found in [Sznitman, 1998] (Theorem 1.2 page 93).

Remark 23. Notice that Lemma 15 implies that

λ (G) = λ̃V (G) (B.1.5)

B.1.1 Proof of Lemma 15

Proof of Lemma 15. First notice that by using integration by parts, we have for every

η > 0
∞́

0

ηeηtPx (τD > t) dt = Ex

[∞́
0

1 (τD > t) deηt
]

= Ex

[
τD́

0

deηt
]

= Ex [eητD − 1] = Ex [eητD]− 1

(B.1.6)

Using integration by parts and Lemma 22 we have,

Ex (exp {(1− ρ)λ (G) τG}) =

= 1 +
∞́

0

(1− ρ)λ (G) e(1−ρ)λ(G)tPx (τG > t) dt

≤ 1 + c(d,V)
δ2

∞́

0

(1− ρ)λ (G)

((
λ̃V (G) t

)d/2
+ 1

)
exp

{
(1− ρ)λ (G) t− λ̃V (G) t

}
(B.1.7)

Now using the fact that λ (G) = λ̃V (G) and making a change in variables we have that

the left hand side of equation B.1.7

= 1 + c(d,V)(1−ρ)
δ2

∞́

0

(
1 + ud/2

)
exp (−ρu) du

=

1 + c(d,V)(1−ρ)

δ2

(
1
ρ +

Γ(1+ d
2)

ρ1+d/2

)
if λ (G) 6= 0

0 otherwise

(B.1.8)

APPENDIX B. APPENDIX FOR CHAPTER 4 99

B.1.2 Proof of Lemma 21

Proof of Lemma 21. Consider the following stochastic differential equation

dX̃ (t) = dB (t)− V (B.1.9)

where V is as in equation (B.1.3). Notice that the process defined by (B.1.9) is a d−dimensional

Brownian motion under the influence of a potential −V . The corresponding generators to

the by

L̃ = −1

2
4+ V (B.1.10)

In order to connect the two processes we will invoke Grisanov’s Theorem which in this

case states that ∀x ∈ Ḡ

dPx
dP̃x
|Ft = exp

{
t́

0

∇Q (Xs) dXs − 1
2

t́

0

‖∇Q (Xs)‖22 ds
}

=: Mx (t)

(B.1.11)

Observe that applying Itô’s lemma yields that

Q (Xt)−Q (X0) =
1

2

tˆ

0

4Q (Xs) ds+

tˆ

0

∇Q (Xs) dXs (B.1.12)

Moreover, notice that,

e−Q(x) · 4eQ(x) = e−Q(x)
d∑
i=1

∂2

∂x2i
eQ(x)

= e−Q(x)
d∑
i=1

∂
∂xi
Qxi (x) eQ(x)

= e−Q(x)
d∑
i=1

[
Qxixi (x) eQ(x) + (Qxi (x))2 eQ(x)

]
= 4Q (x) + ‖∇Q (x)‖22

(B.1.13)

Therefore, Mx (t) in (B.1.11) can be written as

Mx (t) = exp

{
Q (Xt)−Q (X0)− 1

2

t́

0

4Q (Xs) ds− 1
2

t́

0

‖∇Q (Xs)‖22 ds
}

= exp

{
Q (Xt)−Q (X0)−

t́

0

1
2e
−Q(Xs) · 4eQ(Xs)ds

} (B.1.14)

Using the notations,

V (Xs) =
1

2
e−Q(Xs) · 4eQ(Xs) and u (Xs) = eQ(Xs) (B.1.15)

APPENDIX B. APPENDIX FOR CHAPTER 4 100

we obtain that

Px (τG > t) = Ẽx [I (τG > t)Mx (t)]

= Ẽx

[
I (τG > t) u(Xs)

u(X0) exp

{
−

t́

0

V (Xs) ds

}] (B.1.16)

Notice that there exists δ (G) = δ > 0 so that

δ ≤ eQ(x) ≤ 1

δ

for all x ∈ Ḡ. And so we can bound

Px (τG > t) ≥ δ2Ẽx

[
I (τG > t) exp

{
−

t́

0

V (Xs) ds

}]
Px (τG > t) ≤ 1

δ2
Ẽx

[
I (τG > t) exp

{
−

t́

0

V (Xs) ds

}] (B.1.17)

	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	I Exact Sampling of Stationary and Time-Reversed Queues
	2 Perfect Sampling
	2.1 Introduction
	2.2 Construction of (Sn() ,Mn:n0) via “milestone events”
	2.3 Sampling M0 jointly with (S1() ,...,S())
	2.3.1 Sampling Ber(P0(Tm<)) and (S1() ,...,STm()) given Tm<
	2.3.2 Building M0 and (S1() ,....,S()) from downward and upward patches

	2.4 From M0 to (Sk() ,Mk:k0) : Implementation of Procedure 1
	2.4.1 Implementing Step 1 in Procedure 1
	2.4.2 Implementing Step 2 in Procedure 1
	2.4.3 Our algorithm to sample (Sk() ,Mk:0kn) and Proof of Theorem 2

	2.5 Additional considerations: increments with infinite variance and computing truncated tilted distributions
	2.5.1 The case where E"026A30C X"026A30C < for (1,2]
	2.5.2 The issue of evaluating k(k)

	2.6 Numerical Example
	2.6.1 Choice of Parameters
	2.6.2 Simulation Results

	2.7 Conclusions

	II Diffusion Processes in Random Environment
	3 Detection of Adversarial Agents: Modeling and Problem Formulation
	3.1 One-Dimensional Brownian Case
	3.1.1 Deterministic Case
	3.1.2 The Stochastic Approach

	3.2 Disscusion
	3.3 The General Scenario
	3.3.1 Player 1
	3.3.2 Player 2

	3.4 Optimal Policy: Two-Dimensional Brownian Motion
	3.4.1 Placing K Traps in G
	3.4.2 Partitioning G to K Subsets

	4 Detection of Adversarial Agents: Main Results and Algorithms
	4.1 Main Result
	4.2 Upper bound
	4.2.1 Initialization
	4.2.2 Step k, k1
	4.2.3 Proof of upper bound

	4.3 Lower bound
	4.4 Asymptotically Optimal Monte Carlo for Detection Policies
	4.4.1 Estimating P(R>T)
	4.4.2 Sampling form P* the law of { X(T) |R>T}
	4.4.3 Sampling { X(T) |R>T} when the rate function I is computable

	4.5 Numerical Results
	4.5.1 One-dimensional Brownian Motion
	4.5.2 Two-dimensional diffusion process

	4.6 Conclusions

	III Bibliography
	Bibliography
	Bibliography

	IV Appendices
	A Appendix for Chapter 2
	A.1 Discussion on the generality of the assumptions imposed and selection of parameters
	A.2 Proof of Lemma 3
	A.3 Proof of Lemma 4
	A.4 Proof of Lemma 5

	B Appendix for Chapter 4
	B.1 Proof of Lemma 15
	B.1.1 Proof of Lemma 15
	B.1.2 Proof of Lemma 21

