
Ranking for Scalable Information Extraction

Pablo Javier Barrio González

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2015

c©2015

Pablo Javier Barrio González

All Rights Reserved

ABSTRACT

Ranking for Scalable Information Extraction

Pablo Javier Barrio González

Information extraction systems are complex software tools that discover structured infor-

mation in natural language text. For instance, an information extraction system trained to

extract tuples for an Occurs-in(Natural Disaster, Location) relation may extract the tuple

〈tsunami, Hawaii〉 from the sentence: “A tsunami swept the coast of Hawaii.” Having infor-

mation in structured form enables more sophisticated querying and data mining than what

is possible over the natural language text. Unfortunately, information extraction is a time-

consuming task. For example, a state-of-the-art information extraction system to extract

Occurs-in tuples may take up to two hours to process only 1,000 text documents. Since

document collections routinely contain millions of documents or more, improving the effi-

ciency and scalability of the information extraction process over these collections is critical.

As a significant step towards this goal, this dissertation presents approaches for (i) enabling

the deployment of efficient information extraction systems and (ii) scaling the information

extraction process to large volumes of text.

To enable the deployment of efficient information extraction systems, we have devel-

oped two crucial building blocks for this task. As a first contribution, we have created

REEL, a toolkit to easily implement, evaluate, and deploy full-fledged relation extraction

systems. REEL, in contrast to existing toolkits, effectively modularizes the key compo-

nents involved in relation extraction systems and can integrate other long-established text

processing and machine learning toolkits. To define a relation extraction system for a new

relation and text collection, users only need to specify the desired configuration, which

makes REEL a powerful framework for both research and application building. As a second

contribution, we have addressed the problem of building representative extraction task-

specific document samples from collections, a step often required by approaches for efficient

information extraction. Specifically, we devised fully automatic document sampling tech-

niques for information extraction that can produce better-quality document samples than

the state-of-the-art sampling strategies; furthermore, our techniques are substantially more

efficient than the existing alternative approaches.

To scale the information extraction process to large volumes of text, we have developed

approaches that address the efficiency and scalability of the extraction process by focusing

the extraction effort on the collections, documents, and sentences worth processing for a

given extraction task. For collections, we have studied both (adaptations of) state-of-the-

art approaches for estimating the number of documents in a collection that lead to the

extraction of tuples as well as information extraction-specific approaches. Using these esti-

mations we can identify the collections worth processing and ignore the rest, for efficiency.

For documents, we have developed an adaptive document ranking approach that relies on

learning-to-rank techniques to prioritize the documents that are likely to produce tuples for

an extraction task of choice. Our approach revises the (learned) ranking decisions period-

ically as the extraction process progresses and new characteristics of the useful documents

are revealed. Finally, for sentences, we have developed an approach based on the sparse

group selection problem that identifies sentences—modeled as groups of n-grams—that best

characterize the extraction task. Beyond identifying sentences worth processing, our ap-

proach aims at selecting sentences that lead to the extraction of unseen, novel tuples. Our

approaches are lightweight and efficient, and dramatically improve the efficiency and scala-

bility of the information extraction process. We can often complete the extraction task by

focusing on just a very small fraction of the available text, namely, the text that contains

relevant information for the extraction task at hand. Our approaches therefore constitute

a substantial step towards efficient and scalable information extraction over large volumes

of text.

Table of Contents

List of Figures v

List of Tables xiii

1 Introduction 1

2 Background 9

2.1 Information Extraction . 9

2.1.1 The Relation Extraction Problem . 10

2.1.2 Extracting Relations from Text . 11

2.1.3 Efficiency of Relation Extraction Systems 12

2.2 Text Collections . 14

2.2.1 Fully-Accessible Text Collections . 14

2.2.2 Deep Web Text Collections . 15

2.3 Information Extraction over Large Text Collections 17

2.4 Applications . 21

3 REEL: A Toolkit for Developing Relation Extraction Systems 27

3.1 Background and Problem Definition . 28

3.2 System Architecture . 30

3.3 The Text Processing Component . 32

3.3.1 Text Segment Loading . 32

3.3.2 Candidate Generation . 34

3.3.3 Feature Extraction and Operable Structure Generation 36

i

3.4 The Learning and Extraction Component 39

3.4.1 Relation Extraction Training . 39

3.4.2 Tuple Extraction . 40

3.4.3 Relation Extraction Evaluation . 41

3.5 Using REEL in Practice . 43

3.6 Conclusions . 48

4 Sampling Documents for Scalable Information Extraction 51

4.1 Background and Problem Definition . 53

4.2 Document Sampling Strategies . 55

4.2.1 Exploring the Query–Document Space 56

4.2.2 Exploiting Observed Information . 60

4.2.3 Sampling Techniques . 61

4.3 Experimental Settings . 64

4.4 Experimental Results . 73

4.4.1 Impact of Useful Document Retrieval 73

4.4.2 Impact of Query Execution Order 77

4.4.3 Impact of Document Retrieval and Processing 80

4.4.4 Impact of Revising Query Order . 82

4.4.5 Impact of Filtering Underperforming Queries 85

4.5 Conclusions . 88

5 Ranking Text Collections for Scalable Information Extraction 91

5.1 Background and Problem Definition . 92

5.2 Overview of Estimation Approaches . 94

5.3 Traditional Estimation Approaches: Adaptation for Collection Usefulness . 97

5.3.1 Surrogate-Based Estimator . 98

5.3.2 Query Pool-Based Estimator . 99

5.3.3 Query Pool-Free Estimator . 102

5.4 Information Extraction-Specific Estimators for Collection Usefulness 103

5.4.1 Targeted Surrogate-Based Estimator 103

ii

5.4.2 Targeted Query Pool-Based Estimator 105

5.4.3 Targeted Query Pool-Free Estimator 107

5.5 Experimental Settings . 109

5.6 Experimental Results . 115

5.6.1 Quality of Collection Ranking Approaches 115

5.6.2 Efficiency of Collection Ranking Approaches 118

5.6.3 Support of Collection Ranking Approaches 120

5.6.4 Impact of Selection Weight . 121

5.6.5 Impact of Collection Characteristics 121

5.6.6 Impact of Information Extraction-task Characteristics 122

5.6.7 Additional Discussion . 123

5.7 Conclusions . 124

6 Ranking Documents for Scalable Information Extraction 125

6.1 Background and Problem Definition . 126

6.2 Online Adaptive Ranking . 129

6.2.1 Ranking Generation . 130

6.2.1.1 BAgg-IE: A Pointwise Ranking Approach 132

6.2.1.2 RSVM-IE: A Pairwise Ranking Approach 134

6.2.2 Update Detection . 135

6.2.2.1 Top-K: Relevance-Based Update Detection Approach . . . 136

6.2.2.2 Mod-C: A Model-Based Update Detection Approach . . . 137

6.3 Experimental Settings . 137

6.4 Experimental Results . 142

6.4.1 Impact of Learning-To-Rank Approach 142

6.4.2 Impact of Sampling Strategies . 144

6.4.3 Impact of Adaptation . 144

6.4.4 Impact of Update Detection . 146

6.4.5 Scalability of our Approach . 150

6.4.6 Comparison with State-of-the-Art Ranking Strategies 151

6.5 Conclusions . 155

iii

7 Ranking Sentences for Scalable Information Extraction 157

7.1 Background and Problem Definition . 159

7.2 Ranking Sentences: A Group OMP-Based Approach 162

7.2.1 Sparse Group Selection: Background 163

7.2.2 Overview of Our Approach . 164

7.2.3 Modeling Sentences and Useful Information 166

7.2.4 Scoring and Ranking Sentences via Group OMP 169

7.2.5 Trading Relevance and Novelty . 176

7.2.6 Efficiency of Our Approach . 177

7.3 Experimental Settings . 178

7.4 Experimental Results . 183

7.4.1 Impact of Scoring Approach . 183

7.4.2 Impact of Sampling Strategy . 184

7.4.3 Impact of Sentence Representation 188

7.4.4 Impact of Useful Information Representation 190

7.4.5 Impact of Goodness of Fit Computation 194

7.4.6 Impact of Sentences per Iteration . 194

7.4.7 Impact of Document Set Characteristics 196

7.4.8 Comparison with Baseline Ranking Strategies 197

7.5 Conclusions . 201

8 Related Work 203

8.1 Text Document Sampling . 203

8.2 Text Collection Selection . 205

8.3 Information Extraction Process Optimization 206

8.4 Web-Scale Information Extraction . 207

9 Conclusions 211

10 Future Work 215

Bibliography 225

iv

List of Figures

2.1 Key steps in relation extraction. 11

2.2 Extracting Occurs-in tuples from text collections. 18

3.1 REEL system architecture. 31

3.2 Text Segment Loading. 33

3.3 Candidate Generation. 35

3.4 Operable Structure Generation. 37

3.5 Examples of features in REEL. 38

3.6 Training a relation extraction system. 39

3.7 Tuple Extraction. 41

3.8 Evaluation capabilities in REEL. 43

4.1 Two main families of existing query generation techniques for useful docu-

ment retrieval. 54

4.2 Query–document space. 57

4.3 Query–document space of a set queries for the Occurs-in relation. Useful

and useless documents are illustrated in green and red, respectively. 58

4.4 Examples of query–document space exploration strategies. Useful and useless

documents are illustrated in green and red, respectively. 62

4.5 Sample size for different useful document retrieval strategies, processing 50

documents per query and for the Person–Career relation. (P-Tuples and

R-Tuples refer to the Career and Person attributes, respectively.) 74

v

4.6 UniqueTuples@D for different useful document retrieval strategies, process-

ing 50 documents per query and for the Person–Career relation. (P-Tuples

and R-Tuples refer to the Career and Person attributes, respectively.) . . . 74

4.7 Number of unique tuples for different useful document retrieval strategies,

processing 50 documents per query and for the Person–Career relation. (P-

Tuples and R-Tuples refer to the Career and Person attributes, respectively.) 75

4.8 Coverage@S for different useful document retrieval strategies for different

sample sizes, processing 50 documents per query and for the Person–Career

relation. (P-Tuples and R-Tuples refer to the Career and Person attributes,

respectively.). 77

4.9 Sample size for different query execution orders and number of learned queries,

processing 100 documents per query and for the Man Made Disaster–Location

relation. 78

4.10 Number of unique tuples for different query execution orders and number of

learned queries, processing 100 documents per query and using the explicit

candidate set of keywords and for the Man Made Disaster–Location relation. 79

4.11 UniqueTuples@S for different query execution orders and number of learned

queries, processing 100 documents per query and using the explicit candidate

set of keywords and for the Man Made Disaster–Location relation. 79

4.12 Coverage@S for different query execution orders and number of learned

queries for different sample sizes, processing 100 documents per query and

for the Man Made Disaster–Location relation. 80

4.13 Sample size for different document retrieval and processing strategies for the

Person–Charge relation. 81

4.14 Number of unique tuples for different document retrieval and processing

strategies, using the explicit candidate set of keywords and for the Person–

Charge relation. 82

4.15 Coverage@S for different document retrieval and processing strategies for the

Person–Charge relation. 82

vi

4.16 SampleSize@D for different query execution schedules and processing 50 doc-

uments per round for the Natural Disaster–Location relation. 83

4.17 UniqueTuples@D for different query execution schedules, processing 50 doc-

uments per round, using the implicit candidate set of keywords and for the

Natural Disaster–Location relation. 84

4.18 Coverage@S for different query execution schedules, processing 50 documents

per round and for the Natural Disaster–Location relation. 84

4.19 Sample size for filtered and unfiltered versions of Cyclic (using k = 50) and

QXtract for the Election–Winner relation. 86

4.20 Number of unique tuples for filtered and unfiltered versions of Cyclic (using

k = 50) and QXtract, using the explicit candidate set of keywords and for

the Election–Winner relation. 87

4.21 Coverage@S for filtered and unfiltered versions of Cyclic (using k = 50) and

QXtract for the Election–Winner relation. 88

5.1 Collection ranking for information extraction. 94

5.2 An example (query, document)-graph: the estimate contribution f(d1) from

document d1 has a 1
3 weight (since its sampled degree is 3) and f(d3) is

counted twice, each time with weight 1
2 . 96

5.3 Category distribution (a) and size distribution (b) of the test set collections. 110

5.4 Fraction of useful documents for each relation across our 96 test collections.

The box boundaries are the 25th and 75th percentiles, the bold horizontal

line inside each box is the median, and the dots denote outliers. 111

5.5 nDCG@k for Natural Disaster–Location, for the BONG information extrac-

tion system and issuing (at most) 100 queries. 115

5.6 CG@k for Natural Disaster–Location (left) and Person–Career (right) for the

BONG information extraction system and issuing (at most) 100 queries. . . 119

5.7 Processed documents for Person–Charge, for the SSK information extraction

system and different numbers of issued queries. 119

5.8 nDCG@10 for Person–Charge, for the SSK information extraction system

and different numbers of issued queries. 119

vii

5.9 Fraction of non-zero estimates for Election–Winner, for the BONG informa-

tion extraction system and different numbers of issued queries. 121

5.10 nDCG@10 for Natural Disaster–Location, for the BONG information extrac-

tion system and different numbers of issued queries. 122

5.11 nDCG@k for Person–Career, for the BONG information extraction system

and issuing (at most) 100 queries. 123

6.1 QXtract and FactCrawl. 129

6.2 Our adaptive learning-to-rank approach for information extraction. 131

6.3 Average recall for Person–Charge for different base ranking generation tech-

niques. 142

6.4 Average recall for Disease–Outbreak for different base ranking generation

techniques. 143

6.5 Average recall for Person–Career for different base ranking generation tech-

niques. 143

6.6 Average recall for Man Made Disaster–Location with different sampling tech-

niques for the base and adaptive versions of RSVM-IE. 145

6.7 Average recall for Man Made Disaster–Location with different sampling tech-

niques for the base and adaptive versions of BAgg-IE. 146

6.8 Average recall for Election–Winner for different update methods with RSVM-

IE. 147

6.9 Distribution of updates for different techniques over the Election–Winner

relation with RSVM-IE. (Darker shades represent earlier stages of the ex-

traction process.) . 149

6.10 Analysis of the feature space during updates for RSVM-IE and a selection of

relations and update detection methods. 150

6.11 Average CPU time of our techniques as a function of the collection size for

different target recall values, for the Natural Disaster–Location relation. . . 151

6.12 Average CPU time to find a target number of documents (i.e., the number

of useful documents in the subset with 10% of the collection) for the Person–

Organization Affiliation relation, as a function of the collection size. 151

viii

6.13 Average recall for different ranking approaches in the full-access scenario. . 153

6.14 CPU time to obtain a target recall value. 154

7.1 Useful sentences recall for Person–Career for different ranking generation

techniques and using the BONG extraction system. For reference, we include

perfect and random sentence order (see red dotted line and black dashed line,

respectively). 185

7.2 Useful sentences recall for Election–Winner for different ranking generation

techniques and using the SSK extraction system. For reference, we include

perfect and random sentence order (see red dotted line and black dashed line,

respectively). 185

7.3 Useful sentences recall for Political Entity–Allied or Rival for different sample

generation techniques and using the OC extraction system. For reference,

we include perfect and random sentence order (see red dotted line and black

dashed line, respectively). 186

7.4 Useful sentences recall for Natural Disaster–Location for different sample

generation techniques and using the SSK extraction system. For reference,

we include perfect and random sentence order (see red dotted line and black

dashed line, respectively). 186

7.5 Unique extraction output recall for Political Entity–Allied or Rival for dif-

ferent sample generation techniques and using the OC extraction system. . 187

7.6 Unique extraction output recall for Natural Disaster–Location for different

sample generation techniques and using the SSK extraction system. 187

7.7 Useful sentences recall for Movie–Release Date for different lengths n of n-

gram and using the OC extraction system. For reference, we include perfect

and random sentence order (see red dotted line and black dashed line, re-

spectively). 188

7.8 Useful sentences recall for Movie–Release Date for different dimensions m of

distributed vector and using the OC extraction system. For reference, we

include perfect and random sentence order (see red dotted line and black

dashed line, respectively). 190

ix

7.9 Unique extraction output recall for Movie–Release Date for different lengths

n of n-gram and using the OC extraction system. 191

7.10 Unique extraction output recall for Movie–Release Date for different dimen-

sions m of distributed vector and using the OC extraction system. 191

7.11 Useful sentences recall for Company–Relation Type for different useful infor-

mation representation strategies and using the OC extraction system. For

reference, we include perfect and random sentence order (see red dotted line

and black dashed line, respectively). 192

7.12 Useful sentences recall for Person–Charge for different useful information rep-

resentation strategies and using the BONG extraction system. For reference,

we include perfect and random sentence order (see red dotted line and black

dashed line, respectively). 192

7.13 Unique extraction output recall for Company–Relation Type for different use-

ful information representation strategies and using the OC extraction system. 193

7.14 Unique extraction output recall for Person–Charge for different useful infor-

mation representation strategies and using the BONG extraction system. . 193

7.15 Useful sentences recall for Music Album–Release Date for different goodness

functions and using the OC extraction system. For reference, we include

perfect and random sentence order (see red dotted line and black dashed

line, respectively). 195

7.16 Useful sentences recall for Endorsee–Endorser for different number of sen-

tences N per iteration and using the OC extraction system. For reference,

we include perfect and random sentence order (see red dotted line and black

dashed line, respectively). 196

7.17 Unique extraction output recall for Endorsee–Endorser for different number

of sentences N per iteration and using the OC extraction system. 196

7.18 Useful sentences recall for Company–Customer for different proportions of

useful documents and using the OC extraction system. For reference, we

include perfect and random sentence order (see red dotted line and black

dashed line, respectively). 198

x

7.19 Useful sentences recall for Man Made Disaster–Location for different ranking

techniques and using the BONG extraction system. For reference, we include

perfect and random sentence order (see red dotted line and black dashed line,

respectively). 199

7.20 Unique extraction output recall for Man Made Disaster–Location for different

ranking techniques and using the BONG extraction system. 200

7.21 CPU time to obtain a target recall value for Man Made Disaster–Location

for different ranking techniques and using the BONG extraction system. For

reference, we include perfect and random sentence order (see red dotted line

and black dashed line, respectively). 201

xi

xii

List of Tables

2.1 Efficiency of various NLP tasks commonly used to support relation extrac-

tion. Measurements are obtain from single-threaded executions, as reported

in the source reference. 13

4.1 Sampling techniques and the alternatives they consider for each relevant as-

pect. For query execution, we consider prioritizing effective queries (>) or

less-effective queries (<). For document retrieval and processing, we consider

processing documents exhaustively at once (→) or iteratively and in rounds

(�). We finally consider techniques that perform query order revision or

query filtering (+) and techniques that do not (-). 62

4.2 Relations for our experiments along with fraction of useful documents in

TREC 1-5 collections. In this table, Travel Destination and Winner are of

type Location and Person, respectively. 66

4.3 Parameter setting for filtering conditions. The parameters correspond to:

round precision threshold (τr), number of queries (N), query precision thresh-

old (τq), and number of documents (M). 72

4.4 ProcessedDocuments@S for filtered and unfiltered versions of QXtract and

Cyclic (using k = 50), using the explicit candidate set of keywords and for

the Election–Winner relation. 86

4.5 IssuedQueries@S for filtered and unfiltered versions of QXtract and Cyclic

(using k = 50), using the explicit candidate set of keywords and for the

Election–Winner relation. 86

xiii

5.1 Summary of the characteristics of the baseline (B) and information extraction-

specific (IE) methods in Chapter 5. 97

5.2 Fraction of useful documents found in the TREC 1-5 collections for relations

extracted using two information extraction systems, SSK and BONG. We

use (*) only during tuning. 111

5.3 Relative estimation error for Natural Disaster–Location, using the BONG

information extraction system and issuing (at most) 100 queries. 117

6.1 Relations for our experiments. 139

6.2 Average precision of different document sampling techniques on the ranking

quality for all the relations with the base and adaptive versions of RSVM-IE

for the full-access scenario. 144

6.3 AUC of different document sampling techniques on the ranking quality for

all the relations with the base and adaptive versions of RSVM-IE for the

full-access scenario. 145

6.4 Average precision of the update detection methods for the full-access scenario

and using RSVM-IE as document ranking approach. 147

6.5 R-precision of the update detection methods for the full-access scenario and

using RSVM-IE as document ranking approach. 148

6.6 Average CPU time to perform update detection. 148

6.7 Average precision of the rankings generated by different techniques for the

full-access scenario. 152

6.8 AUC of the rankings generated by different techniques for the full-access

scenario. 152

6.9 Average precision of the rankings generated by different techniques for the

deep-web scenario. 152

7.1 List and description of symbols for Group OMP. 169

xiv

Acknowledgments

First and foremost, I would like to thank my advisor, Luis Gravano, for his truly exceptional

guidance and relentless patience. Luis has always had—often repeated times—the best piece

of advice. This, together with his contagious passion for teaching and research, has taught

me everything I know today about excellent research. Beyond it all, Luis has been extremely

supportive and caring during my years at Columbia, and I will be forever grateful for that.

The final version of this dissertation was possible thanks to my thesis committee: Chris

Develder, Kathy McKeown, Ken Ross, and Panos Ipeirotis. They provided insightful com-

ments, which helped me improve the clarity and precision of the final manuscript.

Much of the work in this dissertation is a result of collaboration. The work in Chapter 3

and Chapter 6 would not have been possible without Gonçalo Simões and his advisor, Helena

Galhardas. In particular, Gonçalo and I made, I believe, a great team. Our many times

heated discussions about our joint work as well as about futebol (Portuguese) or fútbol

(Spanish) lead to the best outcome: The result of most of our discussions is part of this

dissertation but, more importantly, I became a big fan of F.C. Porto, his team in Portugal,

and (I want to believe) he is slowly growing into San Lorenzo, my team in Argentina. The

work in Chapter 5 is joint work with Chris Develder, with whom I have been extremely

lucky to collaborate. His proactiveness and diligence are admirable, and I hope I acquired at

least a bit of such desirable qualities. Finally, the work in Chapter 7 was possible thanks to

Anju Kambadur from Bloomberg L.P. Among other things, Anju helped me better interpret

many machine learning algorithms from an algebraic standpoint. Looking back, I can say

that collaborating with great people not only leads to high-quality research but also gives

you formidable friends.

I also want to thank the members of the DB-group for their invaluable feedback and

support. In particular, Ken Ross helped me think beyond my research problems. Ken iden-

xv

tified striking analogies to other real-world problems, which many times lead to improving

my approaches. Hila Becker, Eva Sitaridi, Ioannis Paparrizos, Orestis Polychroniou, Fotis

Psallidas, and Wangda Zhang were always available for discussion, dry runs, coffee breaks,

and to lend a hand when things were not going the way they were supposed to. I am walking

out with a bunch of great friends that I hope, in one way or another, will be part of more

stories.

During my Ph.D. I also had the pleasure to work with many other talented researchers,

which I would like to thank. The members of the DETAiLS project taught me what it

is like to work in a large academic project. In particular, Kathy McKeown showed me

the keys to successful leadership, placing the contentment of the group before it all and

guiding the group to a state of steady progress. I also interned at Microsoft Research New

York, where I worked with Jake Hofman and Dan Goldstein from the Computational Social

Science group. I am thankful to Jake and Dan for letting me contribute to their fascinating,

world-changing ideas. The members of the Knowledge Engineering team at Bloomberg L.P.,

which I visited regularly during my last year as a Ph.D. student, are also a big part of my

student life. In particular, James Hodson and Stefano Pacifico welcomed to their group,

and always provided invaluable feedback for my research. I hope to keep collaborating with

all these researchers in the future.

I would have never finished—or started—the Ph.D. without the unconditional support

of my friends, I must admit. My friends from Olavarŕıa, my hometown, have been there

all along, rooting for me in every decision I have ever made. My friends from Tandil, my

college town, and from Buenos Aires, where I spent every summer during college, told me

to be ambitious; they knew, even before I did, that I was going to pursue a Ph.D. New

York gave me exceptional friends as well. I met the most brilliant people, many of whom I

truly admire, in the Computer Science department. I also made excellent friends during my

Friday soccer games (very, very early in the morning). I have to say that soccer has been

a rather therapeutic hobby during some difficult days as a Ph.D. student. I cannot close

this paragraph without thanking the Argentinian “clan” in New York: I am very lucky to

be surrounded by such smart, talented people.

My last words are dedicated to my families—both in Argentina and the U.S.A. Ma y

xvi

Pa: El sacrificio que han hecho todos estos años para que no nos falte nada sigue dando

sus frutos. Much́ısimas gracias por enseñarme a valorar la educación y por darme todas las

herramientas para cumplir mis sueños. Esta tesis es, por sobre todo, de ustedes. Mati y

Luci: Sigan dándome razones para admirarlos cada d́ıa más. Yo seguiré insistiendo que el

mundo seŕıa un lugar mejor si todos tuvieran la fortuna de tener hermanos como ustedes.

Gracias Meli (y Mati), también, por hacerme t́ıo de Emilia, quien me alegra cada d́ıa

con sus travesuras. T́ıos: Gracias por ser mis eternos cómplices y por acompañarme en

cada emprendimiento. Cata, Felix, Nelly, y Toto: Quiero que sepan que soy el nieto más

afortunado del mundo. De ustedes aprend́ı, entre muchas otras cosas, que en la vida nada es

imposible pero a veces se necesita un esfuerzo extra. Esta tesis es también de ustedes. I was

fortunate enough to also have an “adoptive” family in the U.S.A., which often reminded me

of the so-called home-feeling, specially, during holiday season. Thank you, Allie, for letting

me into your family but, most importantly, for being supportive, caring, and understanding

during all these years. My life would not be the same without you.

xvii

xviii

A Jorge, Carmelo, y Juan

xix

xx

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Information extraction systems are complex software tools that discover structured infor-

mation in natural language text. For instance, an information extraction system trained

to extract tuples for an Occurs-in(Natural Disaster, Location) relation may extract the tu-

ple 〈tsunami, Hawaii〉 from the sentence: “A tsunami swept the coast of Hawaii.” Having

information in structured form enables more sophisticated querying and data mining than

what is possible over the natural language text. Unfortunately, information extraction is

a time-consuming task. For example, a state-of-the-art information extraction system to

extract Occurs-in tuples may take up to two hours to process only 1,000 text documents.

Since document collections routinely contain millions of documents or more, improving the

efficiency and scalability of the information extraction process over these collections is crit-

ical, even over highly parallel computation environments. In this dissertation, we present

approaches that address this problem at three granularity levels of the text data: (i) col-

lection level, to decide the text collections to process; (ii) document level, to decide the

text documents to process within these collections; and (iii) sentence level, to decide the

sentences to process within these documents.

To better illustrate the scalability- and efficiency-related problem above, consider the

following example:

Example 1 An environmental scientist needs to find the safest and most accessible loca-

tions in the U.S. to establish evacuation centers for eventual natural disasters. The scien-

2 CHAPTER 1. INTRODUCTION

tist decides to collect the natural disasters and affected geographical areas from an extensive

group of news collections on the Web that cover most U.S. locations. Intuitively, the scientist

could run an information extraction system properly trained to extract tuples for this task

over all documents in the collected collections. Unfortunately, such an exhaustive process

may take several days—or even months—to finish, which is undesirable due to the intrinsic

urgency of the project.

Interestingly, the exhaustive processing of Example 1 above is often unnecessary: Many

times only a few text collections—and a few documents within them—produce tuples for a

given extraction task. In fact, most relations are topic-specific, in that they are associated

mainly with documents about certain topics. For example, less than 2% of the 1.03 million

documents in collections 1-5 from the TREC conference [TRE00] produce Occurs-in tuples

when processed with a state-of-the-art information extraction system and, not surprisingly,

most of these documents are about environment-related topics. Moreover, within these

documents, only 3.5% of the sentences include mentions of tuples for this extraction task.

If we could identify the collections, the documents in these collections, and the sentences

within these documents that lead to the extraction of tuples, we would be able to successfully

complete the extraction task while decreasing the extraction time dramatically.

Identifying the collections, documents, and sentences that are worth processing is a

challenging proposition for multiple reasons. Specifically, this identification step has to

be: (i) efficient, to avoid becoming computationally more expensive than an alternative

exhaustive processing; (ii) high-precision, to avoid processing collections, documents, and

sentences that will not lead to the extraction of tuples; and (iii) high-recall, to avoid missing

valuable collections, documents, and sentences for the extraction task of choice. As we

will see, this dissertation advocates efficient ranking approaches at all relevant granularities

of the data to effectively address these challenges.

Earlier efforts to identify collections for an extraction task (e.g., [AC05; JS09]) have

focused on the quality of the extraction output, rather than its volume. Specifically, these

approaches aim at devoting the extraction effort to collections that are likely to produce

high-quality extraction output (e.g., tuples extracted with high confidence) and ignore the

rest, for efficiency. These approaches are motivated by the fact that running an information

CHAPTER 1. INTRODUCTION 3

extraction system over collections with large numbers of low-quality tuples incurs consid-

erable overhead, because the extracted tuples are likely to be disregarded. Although the

quality of the extraction output is indeed important, the complementary problem of effec-

tively computing the number of tuples that we can potentially extract from the documents

in a collection, which has been largely ignored by these approaches, is also of critical im-

portance: For collections with comparable extraction output quality, we would like many

times to focus the extraction effort on collections with large numbers of tuples, namely, the

useful collections for the extraction task. We address this important problem in Chapter 5.

In a similar vein, existing approaches to improve the efficiency and scalability of in-

formation extraction systems over large text collections (e.g., QXtract [AG03], PRDual-

Rank [FC11], and FactCrawl [BLNP11a]) have addressed the document-level problem in-

troduced above, but exhibit crucial limitations. Specifically, these approaches are based

on the observation that the documents that produce tuples for an extraction task of in-

terest, namely, the useful documents, tend to share certain distinctive words and phrases.

For example, documents containing mentions of earthquakes—hence useful for the Occurs-

in relation—many times include words like “richter” or “hypocenter.” These words and

phrases can then be used as keyword queries, to retrieve from the collection the (hopefully

useful) documents that the extraction system will then process. To discover these words

and phrases, a critical step in the process, these techniques analyze a sample of documents

from the collection of interest, trying to keep the size of this document sample small, so

that the overhead of the querying process remains at reasonable levels. Because the samples

are small, unfortunately, these approaches often compromise the precision and recall of the

extraction process. In Chapter 6, we propose an approach that effectively addresses these

precision and recall limitations of existing approaches.

Beyond the document-level strategies above, other approaches (e.g., [NVB01; XGZ11;

WSE13]) have tackled the efficiency of the extraction process at a finer granularity of the

text. Specifically, given a set of input documents, the approach in [NVB01] uses classifiers

to filter the sentences that are likely to produce tuples for the extraction task at hand.

(The approach in [WSE13] includes this filtering step as a component of the relation ex-

traction system.) Unfortunately, such filtering steps are far from perfect and often miss

4 CHAPTER 1. INTRODUCTION

useful sentences for the extraction task, or sentences that produce tuples for the extraction

task at hand. The approach in [XGZ11] proposed instead to rank portions of text docu-

ments (e.g., sentences, paragraphs, or fixed- or variable-size text windows), which are often

referred to as passages, for the (related) task of efficiently extracting attributes of entities

(e.g., people or organizations) from text. Following a strategy similar in spirit to that of

the document-level techniques above, the approach in [XGZ11] learns keyword queries that

(potentially) retrieve passages with mentions of tuples for the extraction task of choice.

Finally, this approach retrieves and ranks the passages for extraction via passage retrieval

[KZ01], a family of techniques that identify passages that are topically relevant to a given

query. Unfortunately, this ranking step often involves detecting entities of interest in the

passages, which is often time-consuming and conflicts with our efficiency requirement above.

Moreover, this approach ignores the valuable information that is observed along the extrac-

tion process and, in effect, may process passages that lead to the extraction of already seen

tuples. In Chapter 7, we propose an approach that effectively addresses these limitations

and prioritizes novel sentences, or useful sentences that produce unseen, novel tuples.

To enable solving the problems above at scale, two lower-level problems also need to be

addressed. We illustrate these problems in the next example:

Example 1 (continued) Say the environmental scientist in Example 1 has identified a

rather comprehensive list of U.S. news websites (e.g., the list of almost 3000 U.S. newspapers

at http: // www. world-newspapers. com/ usa. html), which provides an ample coverage

of the geographical locations of interest. The environmentalist now faces the deployment

of the extraction task over these collections, which poses two crucial challenges. First, the

scientist needs to develop an information extraction system for the Occurs-in relation, the

extraction task of interest. Unfortunately, although many information extraction systems are

available, adapting them to this new task and, more importantly, assessing their performance

to select the best system is cumbersome. Second, to process these collections efficiently, and

in a timely manner, the extraction process needs to gather a representative sample of useful

documents from each collection. Unfortunately, existing approaches to collect such document

samples often miss relevant groups of useful documents, which in turn impacts the overall

performance of the extraction process.

http://www.world-newspapers.com/usa.html

CHAPTER 1. INTRODUCTION 5

As shown in Example 1 above, studying and empirically evaluating approaches for

collection-, document-, and sentence-level problems above at scale requires addressing two

important challenges. (1) Building Information Extraction Systems: Information extrac-

tion systems are in general difficult to implement, train, and evaluate, because of the many

text-processing steps (e.g., word tokenization, part-of-speech tagging, and other more com-

plex feature extraction steps) that are involved during extraction. Even more importantly,

these systems are often difficult to adapt to new extraction tasks and new text formats.

(2) Building Representative, Extraction-Specific Document Samples from Text Collections:

As we will see, many of the existing and new approaches for the problems of focus require

having a representative document sample from each collection. These samples need to ef-

fectively represent the (often rare) useful documents in text collections (e.g., by including

document with diverse tuple attributes) and need to be collected in a fully automated fash-

ion (i.e., without human intervention). Moreover, document sampling should occur in a

collection-specific way, because the focus and language of each collection generally differs

from those of other collections. We will address these two crucial challenges in Chapters 3

and 4.

Specifically, the key contributions of this dissertation are as follows:

• Toolkit for Building Relation Extraction Systems: In Chapter 3, we present

REEL (RElation Extraction Learning framework), an open-source framework to eas-

ily develop and evaluate relation extraction systems. REEL provides the code and

infrastructure to: (i) handle various input text formats, which enables operations over

different text collections; (ii) plug in appropriate text processing steps and tools, which

enables diverse processing of the text with minimal effort; (iii) define and combine

conceptual relation constraints that are automatically enforced; (iv) decouple learning

and extraction from the text processing, which enables the straightforward integra-

tion and re-usability of different extraction algorithms; and (v) uniformly execute and

evaluate relation extraction systems, which enables the testing and fair assessment of

these systems. REEL, in contrast to existing toolkits, effectively modularizes the key

components involved in relation extraction systems. To define a relation extraction

system for a new relation and text collections, users only need to specify the parsers to

6 CHAPTER 1. INTRODUCTION

load the collections, the relation and its constraints, and the learning and extraction

techniques, which makes REEL a powerful framework to enable the deployment of

relation extraction systems for both research and application building.

• Study of Document Sampling Strategies for Information Extraction: In

Chapter 4, we systematically study the space of query-based document sampling

techniques for information extraction. Specifically, we consider (i) alternative query

execution schedules, which vary on how they account for the query effectiveness; and

(ii) alternative document retrieval and processing schedules, which vary on how they

distribute the extraction effort over documents. We conduct a large-scale and fine-

grained experimental evaluation over real Web collections, and for a large variety

of information extraction tasks, to assess the merits of the alternative query execu-

tion and document retrieval and processing strategies. Our conclusions are twofold.

Regarding query execution, schedules that focus on queries with a high fraction of use-

ful documents, namely, the effective queries, improve sampling efficiency. In contrast,

schedules that prioritize less effective queries improve sampling quality, because in this

case many (potentially diverse) queries need to be issued to retrieve a desired number

of useful documents, hence leading to high-quality document samples. Regarding doc-

ument retrieval and processing, schedules that process the documents for each query

exhaustively at once improve sampling efficiency when the sampling technique focuses

on effective queries. In contrast, schedules that process documents incrementally and

in rounds improve sampling quality, because a larger variety of documents—from a

larger number of queries—is processed.

• Methods for Ranking Text Collections for Information Extraction: In Chap-

ter 5, we address the problem of identifying useful collections for an extraction task.

We introduce the problem of ranking text collections for efficient and scalable infor-

mation extraction, and develop lightweight, query-based approaches to estimate the

number of useful documents for a given information extraction task in a text col-

lection. Our approaches cover the three classical families of estimation techniques

for text collections, namely, surrogate-, query-pool-, and pool-free-based techniques,

CHAPTER 1. INTRODUCTION 7

which are suitable for different extraction scenarios, as we will see. We compare

both (adaptations of) state-of-the-art resource selection strategies, and information

extraction-specific approaches on a large-scale experimental evaluation over realistic

Web collections, and for several different information extraction tasks. Our results

show the merits and limitations of the alternative families of approaches, and provide

a roadmap for addressing this critically important building block for efficient, scalable

information extraction.

• Techniques for Ranking Text Documents for Information Extraction: In

Chapter 6, we address the problem of identifying useful documents for an extraction

task. We advocate an adaptive document ranking approach that addresses the preci-

sion and recall limitations of the state-of-the-art techniques. Specifically, we propose

a principled, efficient learning-to-rank approach that prioritizes documents for an in-

formation extraction task by combining: (i) online learning [SSSS07], to train and

adapt the ranking models incrementally, hence avoiding computationally expensive

retrains of the models from scratch; and (ii) in-training feature selection [GE03], to

identify a compact, discriminative set of words and phrases from the documents to

train ranking models effectively and efficiently. Importantly, our approach revises the

document ranking decisions periodically, as the ongoing extraction process reveals

(fine-grained) characteristics of the useful documents for the extraction task at hand.

Our approach thus manages to capture, progressively and in an adaptive manner, the

heterogeneity of language and content typically exhibited by the useful documents,

which in turn leads to information extraction executions that are substantially more

efficient—and effective—than those with state-of-the-art approaches, as we will see.

In summary, we present an end-to-end document ranking approach for effective and

efficient information extraction in an adaptive, online, and principled manner.

• Approach for Ranking Sentences for Information Extraction: In Chapter 7,

we address the problem of identifying useful and novel sentences for an extraction

task. Specifically, we propose a principled, efficient approach that exploits a forward

greedy sparse group selection strategy [LSA09] to identify the (rare) useful sentences

8 CHAPTER 1. INTRODUCTION

from a set of documents. Our approach models each sentence as a group of n-grams

and iteratively selects the sentence that best explains a carefully designed represen-

tation of the extraction task at hand. We build this representation of the extraction

task gradually, as the extraction process progresses, to capture all relevant aspects

of the task. During sentence ranking, our approach updates this representation to

account for the relevant aspects of the extraction task that have been already ex-

plained by other previously selected sentences. By doing this, our approach manages

to prioritize sentences that lead to the extraction of unseen tuples. Furthermore, our

approach provides for trading relevance and novelty in a robust manner, to suit dif-

ferent application requirements. Our experimental evaluation over a broad range of

extraction tasks shows the merits and limitations of all relevant building blocks in our

approach and, more importantly, shows the significant efficiency improvements that

can be obtained by effectively prioritizing sentences.

To illustrate the challenges of running an information extraction system over large text

collections, necessary for this dissertation, we provide the relevant background in Chap-

ter 2. We describe related work in Chapter 8, and then present our conclusions and discuss

directions for future work in Chapters 9 and 10, respectively.

CHAPTER 2. BACKGROUND 9

Chapter 2

Background

This chapter provides necessary background and defines the high-level problem that we

study in this dissertation. Specifically, Section 2.1 describes information extraction, the

text-centric task on which we focus in this dissertation. Section 2.2 discusses the types of

text collections that we study, along with their associated challenges. In turn, Section 2.3

defines the problem of information extraction over large text collection, a task of critical

importance and the focus of this dissertation. Finally, Section 2.4 reviews applications

empowered by performing information extraction over large text collections, and that in

effect greatly benefit from the contributions in this dissertation.

2.1 Information Extraction

Natural language text often embeds valuable structured information, which typically con-

sists of entities, attributes, or relations between them. For example, the sentence “A tsunami

swept the coast of Hawaii.” includes two entities, namely, tsunami and Hawaii, and a se-

mantic relation between them, namely, that Hawaii was affected by a tsunami. Information

extraction refers to the automatic identification and extraction of the rich structured infor-

mation from text [Sar08]. This structured information is much better suited to sophisticated

querying and analysis than the unstructured natural language text. In this dissertation,

we focus on relation extraction. We now first define the relation extraction problem (Sec-

tion 2.1.1). We then describe how typical relation extraction systems operate over text

10 CHAPTER 2. BACKGROUND

(Section 2.1.2). Finally, we discuss certain efficiency-related properties that make relation

extraction systems particularly challenging to be deployed at scale (Section 2.1.3).

2.1.1 The Relation Extraction Problem

Many data-centric tasks require identifying semantic relations between entities from text,

as finding entities in isolation may be insufficient. For example, we may need to identify

from a news article what geographic location has been affected by a natural disaster or what

person has been accused of a crime and when. Relation extraction refers to the automatic

detection of relations between two or more entities from text. For our examples, a relation

extraction system properly trained to extract tuples for an Occurs-in(Natural Disaster,

Location) relation may extract the tuple 〈tsunami, Hawaii〉 from the sentence: “A tsunami

swept the coast of Hawaii.” Likewise, another system properly trained to extract tuples for

a Charged(Person, Charge, Date) relation may extract the tuple 〈Mark Chapman, second-

degree murder, 1981〉 from the text excerpt: “John Lennon’s killer, Mark Chapman, was

sentenced in 1981 to 20 years to life in prison after pleading guilty to second-degree murder.”

The relation extraction problem gained initial attention during research competitions for

specific domains and was later extended to other areas as well. One of the first competitions

to promote relation extraction was the Message Understanding Conference (MUC), specifi-

cally, in its sixth [GS96] and seventh [Chi98] editions. The goal was to extract relations such

as Employee-of (Person, Organization) or Location-of (Organization, Location) from news

articles. Other competitions were the Automatic Content Extraction (ACE) task [DMP+],

which included multiple relations between person, organization, facility, location, and geo-

political entities, also over news articles, and the BioCreAtIvE II Protein-Protein Interaction

tasks [HYBV05; TAC06] in bioinformatics over scientific literature. Beyond news and sci-

entific articles, the relation extraction problem has been studied over a wide variety of

text sources (e.g., emails [JKR+06], Wikipedia [SIW06; SKW07], the general Web [AG00;

EBSW08]). We summarize next how relation extraction systems operate over natural lan-

guage text.

CHAPTER 2. BACKGROUND 11

Figure 2.1: Key steps in relation extraction.

2.1.2 Extracting Relations from Text

To discover relations in a text document, a relation extraction system needs to perform a

series of steps, which are illustrated in Figure 2.1. The relation extraction system starts by

loading the contents of a given text document, tagging the entities of interest, and splitting

the tagged text into text segments (see Text Loading, Entity Tagging, and Text Splitting

step in Figure 2.1). Text segments are often sentences, but they can also be paragraphs,

the entire document text, or combinations thereof. For each segment, the system then

generates zero or more candidate text segments, namely, the text segments that satisfy

all relation and entity constraints for the relation at hand (e.g., entities need to be of a

certain type, say, Natural Disaster or Location, or entities need to be mentioned within

N words of each other), and thus contain a mention of a potential tuple (see Candidate

Generation step in Figure 2.1). Then, the system extracts other relevant features (e.g.,

sequences of characters in the context of the entities, distance between entities, shallow

parse trees, dependency graphs), which are often task-specific (see Feature Extraction step

in Figure 2.1). The final step consists of using these extracted features as input to the tu-

ple extraction algorithm (e.g., [BM05b; BM05a; CS04; FSE11; GJJM05; Kam04; NWS12;

ZAR+03; ZG05]), which often relies on a binary classification approach: Based on decisions

learned during a training step, the tuple extraction algorithm labels a candidate text seg-

ment as positive—thus concluding that the entities in the candidate are related—or negative

otherwise (see Tuple Extraction step in Figure 2.1).

The tuple extraction algorithm discussed above can be classified into three broad classes,

12 CHAPTER 2. BACKGROUND

namely, pattern-, feature-, and kernel-based systems, according to how they model re-

lations. Pattern-based strategies [AG00; Bri99; FC11; NWS12] aim at identifying text

and grammatical patterns that signal a relation of interest between entities. For instance,

the occurrence of the text pattern “〈Person〉 was arrested for 〈Charge〉 on 〈Date〉” in

a given text excerpt may determine the existence of the above Charged(Person, Charge,

Date) relation. Feature-based relation extraction systems (e.g., [FSE11; GJJM05; Kam04;

ZG05]), on the other hand, operate over a predefined feature space (e.g., consisting of syn-

tactic features, such as the number of words between entities, semantic features, such as

the path between entities in the dependency graph, and lexical features, such as the words

between entities) and aim at learning which features—in this feature space—are discrimi-

native of the relation of interest. For example, these systems can learn that the occurrence

of words like “arrested” or “trial” anywhere in a given text excerpt are important indicators

of the Charged relation. Finally, kernel-based relation extraction systems (e.g., [BM05b;

BM05a; CS04; ZAR+03]) exploit kernel functions to explore a large, not explicitly pre-

defined, feature space that feature-based approaches are unable to handle. Kernel-based

systems can learn that, for instance, certain shapes of shallow parse trees are more likely

to include related entities than others (e.g., if they contain multiple subtrees that cover the

related entities and that share multiple nodes with parse trees of other manually annotated

text excerpts).

Because of all these operations that are typically involved, relation extraction is a com-

putationally expensive process. Next, we analyze the efficiency of these typical operations.

2.1.3 Efficiency of Relation Extraction Systems

The efficiency of a relation extraction system mainly depends on the efficiency of its multiple

operations, as argued above. Table 2.1 shows per-sentence, single-threaded time measure-

ments of a selection of natural language processing (NLP) tasks that are often required

to run a full-fledged relation extraction system over text documents. These estimates are

based on methods several times more efficient than those generally deployed in information

extraction systems, and that often exhibit close to state-of-the-art accuracy for their corre-

sponding task. Each NLP task in the table depends on all—or a subset of—the tasks shown

CHAPTER 2. BACKGROUND 13

Task
Time per
sentence

(ms)

Toolkit or
algorithm

Source
Performed

over

Sentence splitting 0.1 PTB [AS12]

All
documents

Tokenization 0.1 PTB [AS12]

Part-of-speech tagging 7.4 ClearNLP [Cho12]

Shallow parsing 42 Search Algorithm [TT05]

Dependency parsing 25.6 ClearNLP [Cho12]

Semantic role labeling 8.4 ClearNLP [Cho12]

Named entity recognition
(per entity)

1.1 SENNA [AS12]

428.5 Nested [FM09]

Coreference resolution 169 CROCS [DW15] Documents
with

entities
Relation Extraction

766 Tree Kernel
[dSMSB13]

67 OLLIE

Table 2.1: Efficiency of various NLP tasks commonly used to support relation extraction.
Measurements are obtain from single-threaded executions, as reported in the source refer-
ence.

higher in the table, and thus have to be computed sequentially for a given sentence.

Based on these shown estimates, and ignoring the time incurred to fetch a sentence, we

could decide whether a sentence within a document is a candidate (i.e., the sentence includes

the entities of interest) or not in approximately 90 ms (see task performed over all documents

in Table 2.1). This value may of course increase considerably if more sophisticated named

entity recognition algorithms (e.g., [FM09]) are needed for the entities in the relation of

choice. In turn, the detection of all entities of interest in the document triggers the execution

of other time-consuming tasks, such as coreference resolution and relation extraction per se

(see Documents with entities entries in Table 2.1). Coreference resolution, which is included

in the entity tagging task in Section 2.1.2, is a time-consuming process often performed to

detect all instances of the entities of interest. Finally, once all entities have been detected,

the relation extraction system runs the relation extraction algorithm over each candidate

sentence. This step may incur considerable time, because a single sentence can produce

multiple candidate sentences, as discussed.1

Besides the NLP tasks above, relation [AS12] extraction systems often need additional

“clues” in the form of features, some of which require expensive feature generation steps.

Specifically, these features can be simple features (e.g., a Boolean value indicating whether

1Some of the NLP tasks in Table 2.1, namely, the tasks from sentence splitting through semantic role
labeling, could be computed in advance, since they are often shared across different extraction tasks. How-
ever, these tasks comprise only a small fraction of the overall extraction time, as shown. More importantly,
running these tasks exhaustively over the available text would be unnecessary because, as we will see, often
only a small portion of the available text leads to the extraction of tuples.

14 CHAPTER 2. BACKGROUND

a word is capitalized), which can be computed relatively efficiently, or rather more complex

features (e.g., confidence of a string matching algorithm over entries in a remote database of

product names), which may require more computationally involved tasks [Sar08]. Moreover,

and similarly to the NLP tasks above, some of the features on which relation extraction

algorithms rely (e.g., the distance between nodes in a dependency graph [BM05a]) depend

on the values of other features or output NLP tasks and can only be computed sequen-

tially. Generating these features is thus also an important efficiency constituent of relation

extraction systems.

Based on our discussion above, running a full-fledged relation extraction system over

a sentence is a time-consuming process. Because we often need to run relation extraction

systems over large text collections, as we will see, addressing the efficiency and scalability

of the extraction process, the focus of this dissertation, is of critical importance.

2.2 Text Collections

Our goal in this dissertation is to scale the execution of information extraction systems

to large text collections. We now define—and discuss the challenges associated with—

the two families of text collections, namely, fully-accessible (Section 2.2.1) and deep web

(Section 2.2.2) text collections, that we consider throughout this dissertation.

2.2.1 Fully-Accessible Text Collections

The first family of text collections that we consider, namely, the fully-accessible text col-

lections, consists of the collections that provide unrestricted access to their documents.

Collections in this family comprise locally available archives, such as company emails (e.g.,

[EGN14]), human- and machine-generated documents (e.g., [D4D14]), news archives (e.g.,

[San08]), or scientific publications (e.g., [Els15]), and crawls of Web text collections, such as

news websites (e.g., [CNN15]), blogs (e.g., [ICW11]), Wikipedia [Wik15], or a combination

thereof (e.g., [Clu09; Clu12]) that can obtained through standard Web crawlers [ON10].

Text documents in these (fully-accessible) collections above many times include valuable

structured information that can be particularly helpful for various text-centric tasks. This

CHAPTER 2. BACKGROUND 15

information is rather specific of each type of collection and using this information would

not generalize well to other types of collections. For example, scientific articles typically

include metadata (e.g., authors, affiliations, keywords, category) that has proven useful for

citation prediction [YHO+11]. Likewise, emails, blogs, and news articles often include a

creation date, which is useful for the detection and tracking of events mentioned in the

documents [BNG10]. News articles and Wikipedia documents many times include links to

other documents in the collection—or to other collections—and to knowledge bases, which

enrich the contents of the document for tasks like named entity disambiguation [HOD12].

In this dissertation, we adopt a rather general approach: As we will see, our methods rely

only on the text contents, a shared characteristic across all collections.

2.2.2 Deep Web Text Collections

However, not all the contents of the Web are reachable through standard crawlers [ON10].

In fact, there is content “hidden” behind web search interfaces, in what is often referred to

as the deep web [MAAH09; MKK+08; ZWC+13]. The second family of text collections that

we consider, namely, the deep web text collections, consists of the collections in the deep

web that contain natural language text documents.

As an example of a deep web text collection, consider the Federal Emergency Man-

agement Agency (FEMA) collection [FEM15]. The FEMA collection is one of the most

up-to-date resources for natural disasters and other hazards in the United States. Users

can find information about disasters, their consequences as well as the government re-

action to them. Another example of deep web text collections is PubMed [Pub15], a

well-known collection for life sciences and biomedical research that hosts over 22 million

abstracts and references in the medical field. Biomedical scientists can search for full arti-

cles, similar papers, and their references on a large variety of biomedical topics. In addition

to FEMA and PubMed, the deep web is home of a large number of high-quality collec-

tions across many domains [Zil08]. There is, in effect, a wide range of text-centric tasks

that can benefit from gathering and exploiting the valuable information buried in these

collections. Furthermore, the collective content in deep web collections may exceed in

volume, according to some estimates, that of the crawlable, or “surface” web [HPZC07;

16 CHAPTER 2. BACKGROUND

MJC+07].

Accessing the contents of deep web collections poses several challenges. These challenges

are principally related to the querying interface that each collection provides [MKK+08] and

to the document indexing and retrieval criteria that different collections adopt [BYG11].

Querying interfaces across deep web collections, on the one hand, are rather heterogeneous,

in that they vary in the input methods for queries (e.g., GET or POST methods) and in their

navigation across returned documents (e.g., allow random access to all retrieved documents

or provide navigation links, such as “more results” or “next”, only). We therefore need fully

automatic techniques to effectively query and navigate the contents of the vast number of

deep web collections on the Web. We describe the end-to-end, fully automatic system that

we developed for this critical task in Section 4.3.

Other challenges of deep web collection are associated with the indexing and retrieval

criteria that each collection adopts [BYG11], as mentioned above. Notably, these criteria

can affect considerably the documents that are retrieved for a given query. During indexing,

different collections can vary, among others: (i) indexing depth, which refers to the maxi-

mum number of tokens (e.g., words and phrases) that are indexed per document; (ii) parsing

and tokenization, which refers to the algorithm adopted to identify terms in the documents;

and (iii) indexing scope, which refers to the sources (e.g., anchor text or document text)

from which the indexing algorithm obtains tokens for indexing. During retrieval, deep web

collections can differ along important dimensions, including: (i) query result limit, which

refers to the maximum number of documents than can be retrieved for an input query;

and (ii) ranking strategy, which refers to how documents are prioritized (e.g., by relevance

to the query, by diversity, by freshness, or a combination thereof). Different variants of

these components may cause queries to retrieve documents that do not include the words

in the query (e.g., because these words only appear as anchor text in other documents) and

prevent other queries from retrieving documents that include the words in the query (e.g.,

because the results of a query reached the query result limit). Addressing these challenges is

crucial to derive reliable, unbiased statistics from the deep web collections [ZZD11; BYG11;

ZZD13].

CHAPTER 2. BACKGROUND 17

2.3 Information Extraction over Large Text Collections

We now discuss the task of information extraction over large text collections, which aims

at exploiting the wealth of valuable data in the collections. Specifically, we first describe a

state-of-the-art approach for deploying an information extraction system over available large

text collections, which we illustrate in Figure 2.2. We then discuss multiple opportunities

to improve this process substantially and that are the basis of this dissertation, as we will

see.

The extraction process starts by retrieving a sample of useful and useless documents

from the collections (see Sample Generator in Figure 2.2). This document sample needs

to be collected efficiently and should effectively represent the diversity of useful documents

in the collections. An existing approach to collect useful documents for this document

sample is to turn tuples for the relation of interest (e.g., 〈tsunami, japan〉, 〈earthquake,

san francisco〉) into queries [AG03], in a bootstrapping fashion. Specifically, starting with a

small set of “seed” tuples, this approach iteratively builds queries from the tuples that the

information extraction system extracts from retrieved documents.

After collecting a document sample from each collection, the extraction process automat-

ically annotates the sample by running the information extraction system over the retrieved

documents. These (now-annotated) documents are in turn used to generate queries that

retrieve potentially useful documents for the extraction task at hand (see Automatic Query

Generator and Dispatcher in Figure 2.2). For instance, the extraction process can learn

queries such as [richter], [earthquake], and [aftermath] to retrieve documents about earth-

quakes from the earthquake.usgs.gov collection, and other queries such as [storm], [damage],

and [injured] to retrieve other disasters from other collections.

Once the extraction process has issued the learned queries to the collections, the in-

formation extraction system extracts Occurs-in tuples from the retrieved documents (see

Extraction Plan Executor in Figure 2.2) by performing the discussed steps in Figure 2.1

over each retrieved document. During this step, the extraction process could: (i) rank the

documents to process according to their usefulness to the extraction task at hand (e.g., by

using FactCrawl [BLNP11a]), to prioritize the extraction effort and improve the efficiency

of the process; or (ii) filter sentences or paragraphs of the document contents (e.g., by using

18 CHAPTER 2. BACKGROUND

Figure 2.2: Extracting Occurs-in tuples from text collections.

the approach in [NVB01]) that are unlikely to be useful for the extraction task.

The final step of the extraction process involves the population of the Occurs-in table

using the extracted tuples from all processed text collections (see Extraction Aggregator

in Figure 2.2), which is valuable for multiple applications, as we will see. During this final

stage, the extraction process prepares the tuples to be appropriately reported as output. For

instance, we can normalize tuples by disambiguating their corresponding entities [Win99]

to, in turn, generate an elegant, easy-to-analyze output.

We identify multiple opportunities for improving the efficiency and scalability of the

extraction process above. Our first observation is on the document sampling strategies

that initiate the overall extraction process, and that are crucial for the overall performance

of the extraction process: Earlier efforts to address the efficiency and scalability of the

extraction process (e.g., QXtract [AG03], FactCrawl [BLNP11a], and PRDualRank [FC11])

have adopted the bootstrapping approach above in their sample generation step, because

CHAPTER 2. BACKGROUND 19

queries tend to be high-precision (i.e., a high fraction of the retrieved documents is useful

for the extraction task at hand). Unfortunately, these techniques compromise recall (i.e.,

a small fraction of all the tuples in the collection is retrieved) and often miss important

relevant groups of useful documents, which is undesirable during the sampling step. We

aim to alleviate this issue by exploiting query learning approaches, such as those proposed

in QXtract [AG03] and FactCrawl [BLNP11a], and carefully choosing the query execution

as well as the document retrieval and processing strategies (Chapter 4).

After document sampling, our extraction process above resorts to query-based ap-

proaches for efficient information extraction over each text collection individually (see Fig-

ure 2.2). Our second observation is that such a näıve approach would be unnecessarily

expensive despite the efficiency-guided efforts made over each collection, because not all

collections contain any useful documents. Therefore, to prioritize the extraction effort, for

efficiency, we aim to focus on the problem of ranking text collections for an extraction task

of interest. An approach for this task should rightfully conclude, for example, that FEMA

is better for extracting Occurs-in tuples than NYTimes. This collection ranking problem

is related to the problem of resource selection in distributed information retrieval [SS11,

Chapter 3], to identify topically relevant collections for a given user query. Unlike in dis-

tributed information retrieval, though, our information extraction scenario requires that we

identify collections with useful documents for the extraction task, rather than documents

that are topically relevant for a given query. Despite this difference in focus, we can adapt

resource selection approaches to our information extraction scenario, as we will see, as well

as develop alternative, information extraction-specific approaches (Chapter 5).

As argued, prioritizing the extraction effort by focusing on the useful collections can

potentially reduce the extraction time considerably. Resorting to query-based approaches

for efficient information extraction over these (now prioritized) text collections (e.g., QX-

tract [AG03], PRDualRank [FC11], and FactCrawl [BLNP11a]) would thus be a reasonable

next step. Unfortunately, these approaches exhibit critical limitations. First, small doc-

ument samples, on which these techniques rely, for efficiency, are unlikely to reflect the

typically large variations in language and content that useful documents for an extraction

task may exhibit. As a result, the queries derived from the document sample may suffer from

20 CHAPTER 2. BACKGROUND

low recall during extraction. (We address this problem in part in Chapter 4, as discussed

above.) Second, these techniques schedule the documents for extraction once-and-for-all,

and thus do not benefit from the information that is captured as the extraction process

progresses. Our third observation is that we can exploit this information progressively and

in an adaptive manner, to derive other queries that retrieve new useful documents and refine

our document schedule so that we process useful documents first (Chapter 6).

Our final observation is related to that in [NVB01], that is, that only small fraction of

sentences in a useful document are useful for an extraction task of interest. Based on this

observation, we could drastically reduce the extraction time by focusing on these (useful)

sentences, and ignoring the rest. In addition to [NVB01], several other efforts (e.g., [XGZ11;

WSE13]) have considered this proposition. Unfortunately, these approaches exhibit crucial

limitations. The approaches in [NVB01] and [WSE13], for instance, compromise the re-

call because text filtering techniques are often far from perfect. Similarly, the approach

in [XGZ11] compromises the efficiency because it relies on running computationally expen-

sive text processing tasks (e.g., named entity recognition) over the entire text. Even more

importantly, these techniques largely ignore already extracted tuples and may lead to ex-

tracting the same tuples multiple times, which is many times undesirable. We argue that

by examining the document contents at such fine granularity we can effectively prioritize

sentences that lead to the extraction of unseen, novel tuples (Chapter 7). We can also

extend this idea of novelty to other levels of the data (e.g., documents and collections), as

we describe in our future work discussion in Chapter 10.

Distributing Information Extraction: So far we have discussed opportunities to scale

information extraction, which promote focusing the extraction effort. Another direction

to scale information extraction is that of parallelization and distributed processing, which

are in general very attractive choices for processing large volumes of data [Kum02]. Im-

portantly, information extraction is particularly suited for parallelization, since many of

the information extraction steps (e.g., part-of-speech tagging, shallow parsing) operate over

each document—and sometimes sentences—independently [DEG+03; LZY01; NZRS12a]

(see Section 2.1.3). For this reason, most distributed processing architectures (e.g., Hadoop

[Whi09], Spark [ZCF+10]) can be adapted for information extraction over large text col-

CHAPTER 2. BACKGROUND 21

lections. In our future work discussion (Chapter 10), we review some notable recent efforts

in this area (e.g., DeepDive [NZRS12b]) and explore how these distributed approaches can

potentially benefit from the targeted strategy that we advocate in this dissertation.

Putting it All Together: Another possible direction, and one that combines all the op-

portunities described thus far, is to perform a holistic optimization of the extraction process,

rather than focusing on each level in isolation. Recent approaches (e.g., [SGG13]) have

already taken a step in this direction, specifically, to find—for a given large text collection—

the fastest extraction plan (i.e., specific implementations and execution order of operators

required for extraction, such as document selection or named entity recognition) that sat-

isfies certain given precision and recall constraints. This is motivated by the fact that the

performance of information extraction systems (e.g., the speed or quality of the information

extraction system)—and in turn of the overall extraction process—tends to vary consider-

ably across text collections [IAJG07; AC05; JS09]. For instance, while a collection C1 may

include substantially more useful documents than another collection C2, and should hence

be deemed as more useful during collection ranking, the extraction process over C1 may fail

to find many of its useful documents and, as a result, produce fewer tuples than over C2.

Prioritizing the collections and documents to process with an information extraction system

of choice could hence be done comprehensively, integrating signals from all data levels. Si-

multaneously, and if the extraction process were run over a distributed infrastructure, many

more options should be considered. For example, the cost of fetching a set of documents or

sentences would now have to be considered together with their usefulness, to decide whether

it is cost-effective to fetch additional text contents or process local contents instead. Indeed,

many other interesting challenges arise as a result of this holistic proposition, and we plan

to explore them further in future work (Chapter 10).

2.4 Applications

A large variety of applications across a wide range of areas are empowered by information

extraction, specifically, by running information extraction systems over large volumes of

text data, such as the text contents on the Web. In this section, we review some of the

22 CHAPTER 2. BACKGROUND

most relevant such applications.

Knowledge Base Population: Knowledge bases are information repositories that store

facts about the world (e.g., entities and their attributes, relations between entities) in

machine-readable formats. Some examples of knowledge bases are: (i) academic efforts, like

KnowItAll [ECD+05; EBSW08; FSE11], ConceptNet (MIT) [SH12], DBpedia [ABK+07],

Freebase [BEP+08], NELL [CBK+10], WikiTaxonomy [PS07], YAGO [SKW07], YAGO2

[HSBW13], and DeepDive [NZRS12b]; as well as (ii) commercial projects, such as those

by Microsoft [Qia13], Google [Sin12], Facebook [Dar13], and Walmart [DLT+13]. Knowl-

edge bases are an important building block of many applications (some of which we de-

scribe in detail below): Machine translation (e.g., [CGN05]) and word sense disambiguation

(e.g., [BP06]) use lexical knowledge, query expansion exploits various taxonomic knowl-

edge (e.g., [LLYM04; GSW05; TSW06]), document classification based on supervised or

semi-supervised learning can be combined with domain-specific ontologies (e.g., [IW06]),

and question answering and information retrieval combine various sources of structured

knowledge (e.g., [HLN; ALG01; BDB02; MNPT02]).

The increasing interest in knowledge bases in the past few years has demanded auto-

mated efforts for building and enriching these knowledge bases, a task often referred to as

knowledge base population. One family of approaches to knowledge bases population fo-

cuses on extracting information from large volumes of unstructured text (e.g., the Web) for

a given ontology or schema representation using information extraction systems.2 Some of

the most relevant approaches in this family are NELL [CBK+10], PROSPERA [NTW11],

DeepDive [NZRS12b], and Knowledge Vault [DGH+14]. Due to the massive amounts of text

contents that approaches in this family need to process, efficiently deploying information

extraction systems is thus of critical importance.

Question Answering: Question answering systems aim at producing precise answers to

questions often posed in natural language [KM11]. One type of such questions is the so-

called list questions, which expect a list as an answer. For example, for a list question [Name

2Other approaches to knowledge base population build knowledge bases from already structured sources
(e.g., YAGO [SKW07], YAGO2 [HSBW13], DBpedia [ABK+07], and Freebase [BEP+08]), from open-ended
structures (e.g., Reverb from KnowItAll [FSE11], OLLIE [MSB+12], and PRISMATIC [FFGK10]), and from
manual annotations (e.g., Freebase [BEP+08], Cyc [HZW10], WordNet [MBF+90])

CHAPTER 2. BACKGROUND 23

the coffee-producing countries in South America], a list question answering system (e.g.,

[WSCN08; YC04]) should return “Brazil, Colombia, Peru, and Venezuela,” among others.

Another type of questions is the so-called factoid questions, whose answers are entities

(e.g., person, location, organization) or attributes thereof (e.g., place of birth, population,

net worth). For instance, for a question [Who won the 1980 Nobel Peace Prize?], a factoid

question answering system (e.g., [CA05; IBGC+14]) should return “Adolfo Pérez Ezquivel.”

Due to their structured nature, answers for both types of questions often derive from a

knowledge base, which is many times populated via information extraction, as discussed.

Other times, specifically, in real-time question answering [ESI+12], answers need to be

produced in seconds, by processing large text collections. For both scenarios, the efficiency

of running information extraction systems over text corpora is crucial.

Decision Making: Decision making is the process of selecting a logical choice from a

set of available options. In the financial domain, in particular, decision makers need an

intuition on the state of the financial market, which is many times sensitive to breaking

news on economic events (e.g., company acquisitions, stock splits, dividend announcements).

Because of the large volumes of text information that have to be processed, automating the

detection of these events with information extraction is crucial to enable faster processing

and making better informed decisions. Not surprisingly, many research and commercial

efforts (e.g., [SFMB07]) have addressed this critical proposition [Cvi10]. As text contents

continue to grow at high speeds, and as different events are regarded as valuable signals for

decision making, research has to focus on the efficiency of the deployment of the extraction

process, to satisfy the time-critical necessities of the financial market.

Scientific Applications: Besides the commercial applications above, there are also sci-

entific applications for which information extraction is a critical building block. Two such

applications are bioinformatics and scientometrics. Bioinformatics is the field that studies

the processing, understanding, and organization of information in biomedical literature via

computational algorithms, to facilitate the access and exploration of the vast biomedical lit-

erature [LGG+01; HDG00]. A central problem in bioinformatics is the extraction of entities,

such as genes and proteins, as well as their interactions, which are well-known applications

of information extraction. However, many other scientific tasks respond to templates that

24 CHAPTER 2. BACKGROUND

can be successfully addressed by information extraction: For example, scientists working

on drug discovery have an ongoing interest in reactions catalysed by enzymes in metabolic

pathways. These reactions may be viewed as relations in which various entity types (e.g.,

enyzmes, compounds) play particular roles (e.g., substrate, catalyst, product). Importantly,

bioinformatics is a very active research area that has helped advanced the state-of-the-art

of information extraction algorithms vigorously.

The other notable scientific application, namely, scientometrics, is the field that studies

the measurement and analysis of science (e.g., to predict and assess impact of authors, ar-

ticles, journals, or fields). Early approaches (e.g., [DYFC09; CWW02]) have relied mainly

on the metadata of the scientific articles (e.g., bibliography, keywords, institutions, journal

characteristics) and other much richer features derived from them (e.g., collaboration net-

works [VHL10]). More recent approaches (e.g., [YHO+11] and [MIC+15]) have moved a step

forward, to focus also on features derived from the text of the articles. In particular, and for

the task of author and term prominence detection, [MIC+15] uses information extraction

over large volumes of scientific articles to extract entities (e.g., algorithms, datasets, genes)

and relations (e.g., novelty claims, dataset purposes) as features for the pertinent promi-

nence analysis. Such features can indicate, for instance, the number of algorithms that

have been implemented for a given input problem, which may be a meaningful indicator of

the depth in which the problem has been studied. Importantly, [MIC+15] has shown these

(extraction-based) indicators to be among the top-performing ones for this task. Therefore,

there is crucial interest in effectively devising and efficiently deploying extraction tasks for

computing this type of indicators.

Reading Experience Enhancement: The last family of applications promotes using

structured data to help humans better understand the unstructured text. Two such ap-

plications, namely, semantic culturomics3 and reading comprehension improvement, have

recently gained substantial attention, due to the copious statements about a large number

of entities and relations that knowledge bases have accumulated. Semantic culturomics, on

the one hand, is defined in [SP14] as “the large-scale analysis of text documents with the

help of knowledge bases, with the goal of discovering, explaining, and predicting the trends

3Semantic culturomics is also referred to as knowledge-based culturomics [TBC+15].

CHAPTER 2. BACKGROUND 25

and events in history and society.” Semantic culturomics could, for example, answer ques-

tions such as “which are the less-densely populated cities near geographical areas affected

by natural disasters?” by first detecting Occurs-in tuples and then retrieving—from the

knowledge base—the population density of cities near those mentioned in the tuples. Im-

portantly, this dynamic interaction with text will produce more—and more diverse—user

needs, where information extraction will play a significant role both (i) populating knowl-

edge bases, to improve coverage; and (ii) finding entities and relations in text, to enable

semantically richer questions.

The second application, namely, reading comprehension improvement, consists of iden-

tifying concepts in text (e.g., measurements) that are difficult to understand for traditional

readers and producing a more meaningful definition of the concept. For example, a system

for this application would perceive that “300 million firearms” in text excerpt “Americans

own almost 300 million firearms” is difficult to comprehend and, in turn, would put it

into perspective, in a clearer way, as: “300 million firearms is about one firearm for ev-

ery person in the U.S.” Some of the existing efforts to address this task (e.g., [LZBB13;

Gen15]) rely on crowdsourcing to both identify and explain concepts. As shown in this

example, though, both the concepts and its explanation are structured: The use of informa-

tion extraction to identify them is therefore imminent. Recent approaches (e.g., [HDA13;

KKJ+15]) have moved towards automatic approaches empowered by information extrac-

tion, to exploit—in a scalable manner—the vast amounts of text generated on a daily basis.

Specifically, these approaches employ information extraction for: (i) automatically identify-

ing concepts that are, in turn, characterized based on their complexity; and (ii) populating

knowledge bases, as argued above, with valuable facts for this task.

As discussed, many interesting applications rely on running information extraction sys-

tems over large volumes of text data. These applications would directly benefit from efficient

and scalable approaches that deploy these (often expensive) information extraction systems

over the large text collections, the focus of this dissertation.

26 CHAPTER 2. BACKGROUND

CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION
SYSTEMS 27

Chapter 3

REEL: A Toolkit for Developing

Relation Extraction Systems

As discussed in Section 2.1.1, relation extraction is a complex task that relies on a wide

variety of text processing and machine learning steps to extract tuples from text. This

complicates the definition, deployment, and evaluation of systems for new extraction tasks

and text collections, crucial for a large variety of text-centric tasks, as argued. The problem

in which we focus in this chapter is, therefore, that of facilitating the definition, deployment,

and evaluation of relation extraction systems.

Specifically, the contribution of this chapter is REEL (RElation Extraction Learning

framework), an open-source framework to easily develop and evaluate relation extraction

systems. REEL provides the code and infrastructure to: (i) handle various input text for-

mats, which enables operations over different text collections; (ii) plug in appropriate text

processing steps and tools, which enables diverse processing of the text with minimal effort;

(iii) define and combine conceptual relation constraints that are automatically enforced;

(iv) decouple learning and extraction from the text processing, which enables the straight-

forward integration and re-usability of different extraction algorithms; and (v) uniformly

execute and evaluate relation extraction systems, which enables the testing and fair assess-

ment of these systems. REEL, in contrast to existing toolkits, effectively modularizes the

key components involved in relation extraction systems. To define a relation extraction

28
CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION

SYSTEMS

system for a new relation and text collections, users only need to specify the parsers to load

the collections, the relation and its constraints, and the learning and extraction techniques,

which makes REEL a powerful framework to enable the deployment of relation extraction

systems for both research and application building.

The rest of this chapter is organized as follows. Section 3.1 characterizes the limita-

tions of existing toolkits often used to develop relation extraction systems and defines the

problem that we study in this chapter. Section 3.2 provides a high-level description of

REEL’s architecture. Sections 3.3 and 3.4 describe the text processing and learning and

extraction components, and how they integrate to enable relation extraction. Finally, Sec-

tion 3.5 shows how to use REEL in practice, by providing an end-to-end implementation

of a typical relation extraction system, and Section 3.6 concludes the chapter. REEL is

publicly available as open source under the General Public License Version 3 (GPLv3) li-

cense, at http://reel.cs.columbia.edu/. The bulk of this chapter has been published

as [BSGG14].

3.1 Background and Problem Definition

Many relation extraction systems have been proposed in the literature (e.g., [BM05b;

FSE11; NWS12; ZAR+03; ZG05]). However, few such systems are publicly available and,

even when they are, it is usually problematic to adapt and evaluate them over new relations

and text collections. Because of all the steps involved in relation extraction, and because

of the wide variety of tuple extraction algorithms, developing relation extraction systems

is a rather challenging and time-consuming process (see Section 2.1). To avoid implement-

ing such complex systems from scratch, and to facilitate their adaptation and evaluation,

developers often rely on relation extraction toolkits. Many such toolkits (e.g., [LKT+15;

BRMB11; Sod99; SGD11; LCY+12; YPWC+13; AKM13; AMB14; GM14]) target novice

developers by providing interactive interfaces to develop extraction systems with minimal

coding effort. These systems, in particular, mainly focus on facilitating the compilation of

effective extraction patterns. Other toolkits are more flexible, and provide code and infras-

tructure to develop relation extraction systems as extensions of the original code. One such

http://reel.cs.columbia.edu/

CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION
SYSTEMS 29

toolkit is T-Rex [Iri05], which is based on the text processing and entity extraction learn-

ing framework RUNES [IC06]. T-Rex models the various relation extraction steps (e.g.,

word tokenization, entity recognition, learning of the relation extraction model) as addi-

tional text processing steps that can be coupled together—via a common interface—with

RUNES’s native components.

Unfortunately, T-Rex splits the relation extraction task into relatively coarse modules,

which limits the reuse of text processing and learning components across relation extraction

tasks, and hence complicates the implementation of new extraction tasks. In particular,

since all components share a generic interface that does not reveal their internal functionality

properly, the developer needs to be aware of the low-level details of these components to

reuse them successfully. Also, the coarse T-Rex modules do not constrain their output,

which complicates the experimental comparison of different relation extraction strategies.

As a result, to experimentally evaluate and compare relation extraction systems in T-

Rex, we must rely on ad-hoc solutions, which is undesirable. Furthermore, changes in the

evaluation process, such as using new evaluation measures, may lead to ubiquitous and

fine-grained source code modifications across systems, which is problematic.

Other toolkits originally proposed for related text-centric tasks provide low-level build-

ing blocks that are helpful for relation extraction, but lack the code and infrastructure

to support all steps involved in relation extraction. Specifically, text processing toolkits

(e.g., UIMA [FL04]) tend to only provide support for the entity tagging and feature ex-

traction steps described above and, as a result, lack infrastructure for the remaining steps.

Machine learning libraries (e.g., MALLET [McC02], LibSVM [CL11], Weka [HFH+09]), in

contrast, provide the foundation for learning the tuple extraction algorithm, although they

lack support for the variety of steps that relation extraction systems routinely need, such

as entity tagging and candidate enumeration. Finally, natural language processing suites

(e.g., NLTK [Bir06], OpenNLP [ope15b], StanfordNLP [sta15a], ClearTK [OWB09], Ling-

Pipe [lin15]) and entity extraction frameworks (e.g., RUNES [IC06], MinorThird [Coh04])

consolidate the features of the text processing and machine learning libraries, although they

lack support for relation extraction altogether, in that they do not offer infrastructure for,

say, candidate generation and relation constraints.

30
CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION

SYSTEMS

To support relation extraction, one alternative would be to extend the toolkits above by

including the missing components. However, this would require in many cases a significant

implementation effort and a drastic redesign of the toolkit, since we would have to incor-

porate full support for the missing steps. A more promising approach, which we advocate

in this dissertation, is to integrate and complement valuable text processing toolkits—to

exploit their powerful implementations of low-level text operations—and machine learning

toolkits—to exploit their powerful implementations of relevant learning operations—for our

relation extraction task. Our approach is then similar in spirit to that of ClearTK [OWB09]

but for a different problem. (ClearTK focuses on statistical natural language processing.)

To effectively identify the challenges of developing a toolkit for this difficult task—and

to explain in practical terms how our proposed solution addresses these challenges—we rely

on the following running example:

Example 2 Consider the relation Charged(Person, Charge, Date) of Section 2.1, which,

as we discussed, contains a tuple 〈p, c, d〉 if person p was accused of charge c on date

d. A properly trained relation extraction system for such relation should extract the tuple

〈Mark Chapman, second-degree murder, 1981〉 from the text excerpt “John Lennon’s killer,

Mark Chapman, was sentenced in 1981 to 20 years to life in prison after pleading guilty to

second-degree murder.”

The next sections explain the key steps to tackle our problem of focus, and provide a

roadmap to effectively address different practical challenges of the relation extraction prob-

lem.

3.2 System Architecture

We now introduce REEL’s flexible, modular architecture (see Figure 3.1). REEL’s com-

ponents can be divided into two types. The Text Processing components are responsible

for transforming the input text documents into the input format for the relation extrac-

tion techniques. Then, the Learning and Extraction components perform the (arguably)

most important relation extraction tasks, namely, to learn, execute, and evaluate relation

extraction systems. We now provide details about these two types of components.

CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION
SYSTEMS 31

Figure 3.1: REEL system architecture.

The Text Processing components (see Figure 3.1), which include the Text Segment

Loading, Candidate Generation, and Feature Extraction and Operable Structure Generation

components, focus on processing the input documents for the relation extraction system.

First, the Text Segment Loading component, which we describe in Section 3.3.1, loads the

documents in a text collection and transforms them into text segments that the relation

extraction techniques can then process. The key challenge here is to allow the integration

of different text processing tools (e.g., file loaders, XML parsers) so that it is easy to use

different types of collections in REEL. Second, the Candidate Generation component, which

we describe in Section 3.3.2, produces the candidate text segments that we introduced in

Section 2.1.2. As discussed, these candidate text segments satisfy the constraints associated

with the relation at hand (e.g., that the text segment must include the Person, Charge, and

Date entities within N words of each other). The key challenge for this component is to

enable a flexible definition of constraints over the entities and the relation itself. Finally, the

Feature Extraction and Operable Structure Generation component, which we describe in

Section 3.3.3, extracts the features required by a specific relation extraction algorithm and

produces the data structure for the extraction algorithm (e.g., sequences or trees of features).

These data structures, which we refer to as operable structures, are a feature-enriched version

of the candidate text segments on which the learning and extraction algorithms will operate.

The key challenge is then to provide a unified interface for the extraction of features that

supports the wide variety of features and structures that different learning algorithms may

require.

The Learning and Extraction components (see Figure 3.1), which include the Relation

32
CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION

SYSTEMS

Extraction Training, Tuple Extraction, and Relation Extraction Evaluation components,

focus on the relation extraction algorithms. First, the Relation Extraction Training compo-

nent, which we describe in Section 3.4.1, automatically produces a relation extraction model

using, as training input, labeled operable structures, which indicate whether the relation

of interest holds among their entities. Second, the Tuple Extraction component, which

we describe in Section 3.4.2, uses the model produced in the Relation Extraction Training

component to extract tuples corresponding to related entities. Notably, Tuple Extraction

performs a classification task over unlabeled operable structures and produces tuples of en-

tities that are likely related. Third, the Relation Extraction Evaluation component, which

we describe in Section 3.4.3, evaluates the relation extraction systems according to a given

set of evaluation metrics. When proposing an architecture for the learning and extraction

components, the key challenge is to provide a unified interface for different relation extrac-

tion techniques to help train, execute, and evaluate the resulting models with minor changes

in the code.

Next, we describe the different components discussed thus far in detail. Later, in Sec-

tion 3.5, we show the implementation of the Charged running example in REEL, which

demonstrates how our framework helps in writing relation extraction systems in a simple

and easy-to-understand manner.

3.3 The Text Processing Component

We now describe the Text Processing components, which focus on processing the input

documents for the relation extraction system.

3.3.1 Text Segment Loading

The first component of REEL, Text Segment Loading, is the interface between the original

representation of documents (e.g., XML files, file directories, or document indexes) and the

internal representation that REEL employs to represent the text segments. The main goal

of this component is to detach the formatting subtleties of the text collections from the

further operations to be run over them by producing text segments that include mentions

CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION
SYSTEMS 33

Figure 3.2: Text Segment Loading.

to the entities of interest.

The Text Segment Loading component in REEL starts by reading the text documents

from their original source (see Document Loader in Figure 3.2). Once the documents are

loaded, REEL performs the tagging of entities required by the relation of interest (see Entity

Tagger in Figure 3.2). For example, in our running example, the user needs to provide entity

taggers to annotate “John Lennon” and “Mark Chapman” as Person, “second-degree mur-

der” as Charge, and “1981” as Date entities. This tagging process can differ substantially

according to the text collections (e.g., some datasets such as ACE 2005 [Wal06] already

contain named entity annotations) and available tagging resources (e.g., some toolkits pro-

vide off-the-shelf, pre-trained named entity recognition models). REEL supports different

types of entity taggers that range from simple loaders from the document files to models

from open-source named entity tagging frameworks, such as Stanford NER [Sta15b] and

E-txt2DB [Etx12].

Finally, REEL splits the output of the text document loader into text segments ac-

cording to the needs of the extraction (see Text Segment Splitter in Figure 3.2). These

text segments can be different subsets of the documents, such as sentences or paragraphs,

and can vary according to the extraction task. This task may also depend on the text,

and REEL accommodates these different scenarios. For instance, some collections such as

Aimed [Moo11] provide the input documents already split into sentences.

The text segments resulting from the Text Segment Loading component contain all the

entities that can potentially appear in an extracted tuple. In the next section, we discuss

how to generate candidate text segments (i.e., text segments that represent a potential

relation between a specific set of entities).

34
CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION

SYSTEMS

3.3.2 Candidate Generation

Now that we have explained how the Text Segment Loading component produces text

segments annotated with entities, we describe the generation of candidate text segments.

This component receives as input the tagged text segments and the constraints of the

relation. Then, for each input text segment, it produces all the candidate text segments that

comply with the input constraints (Figure 3.3). REEL supports two types of constraints,

namely, Entity Constraints and Relation Constraints, that help to conceptually define the

relation of interest. REEL offers users the flexibility to define their own constraints and

combine them with others of the same type via logical Boolean expressions. We define these

constraints as follows:

• Entity Constraint: Entity Constraints are the conditions that entities need to sat-

isfy to be part of the relation of interest. Examples of such constraints are the entity

type constraints, which define to which types an entity can belong (e.g., all Charged re-

lations must be between a Person, a Charge, and a Date); and non-mandatory con-

straints, which define whether the occurrence of an entity is optional (e.g., in the

Charged relation, we may omit the Date but neither the Person nor the Charge can

be omitted).

• Relation Constraint: Relation Constraints are the conditions that apply to the

relation as a whole. Among these constraints we may find distance constraints (e.g.,

the distance between entities should not exceed 10 words) and number of occurring

entities (e.g., at least two entities need to participate in the relation even if some are

optional).

Candidate text segments represent potential tuples for the relation at hand in the text

segment, and, in effect, a single text segment may derive multiple candidates. REEL au-

tomatically computes these candidate text segments (see Algorithm 1), thus effectively

hiding the complexity of the process when multiple entities and constraints are involved.

Algorithm 1 receives as input a text segment with annotated entities and the relations of

interest. For example, a valid input would be “John Lennon’s killer, Mark Chapman, was

sentenced in 1981 to 20 years to life in prison after pleading guilty to second-degree murder”

CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION
SYSTEMS 35

Figure 3.3: Candidate Generation.

and the Charged relation. Then, for each of the relations of interest (line 2), the algorithm

obtains all possible entities in the text segment that comply with their corresponding en-

tity constraints (lines 5-7). In our example, we would obtain “John Lennon” and “Mark

Chapman” for Person, “second-degree murder” for Charge, and “1981” for Date. Then, the

algorithm produces all possible combinations (see Mappings function in line 10) according

to the relation constraints (line 9). For example, if the relation constraints indicate that

entities should occur within 10 words and that Date is optional, the possible mappings will

be: 〈John Lennon, second-degree murder, 1981〉, 〈Mark Chapman, second-degree murder,

1981〉, 〈John Lennon, second-degree murder〉, and 〈Mark Chapman, second-degree murder〉.

Then, the algorithm creates the candidate sentence and incorporates the corresponding en-

tities (lines 11-13). Finally, the candidate sentences are added to the result set (line 14).

Notice that some candidate text segments are subsumed by others in that their tuples are

a subset of the tuples in other candidate text segments. For example, the candidate text

segment that includes the potential tuple 〈Mark Chapman, second-degree murder〉 is sub-

sumed by another candidate text segment that includes the potential tuple 〈Mark Chapman,

second-degree murder, 1981〉. Interestingly, the entities in the tuple may only be related in

the absence of the Date entity, and thus reporting only the larger tuple may miss crucial

information. Thus, the decision on whether to report these two tuples as different tuples

or only return the tuple that includes all entities is left to the relation extraction system

implementation per se, as we describe in Section 3.4.2.

The output of the Candidate Generation component includes sets of entities that may

constitute a relation. However, as discussed, the relation extraction algorithms usually need

36
CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION

SYSTEMS

Algorithm 1: genenerateCandidates(Seg, Rels)

1: Cands← ∅
2: for each relation Rel ∈Relations do
3: CandE← ∅
4: for each role r∈Rel.roles do
5: C←Rel.entityConstraint(r)
6: Ents←C.compatibleEntities(Seg.Entities)
7: CandE← Cand ∪ 〈r, Ents〉
8: end for
9: RelC← Rel.relationConstraints()

10: for each mapping m∈Mappings(CandE, RelC) do
11: for each entity E∈m do
12: N←Rel〈E.role, E.entity〉
13: end for
14: Cands←Cands∪N
15: end for
16: end for
17: return Cands

additional hints, in the form of features, to decide if there is a relation between the entities

of a candidate text segment. In the next section, we describe how we enrich candidate text

segments with such features.

3.3.3 Feature Extraction and Operable Structure Generation

So far, we have described how REEL generates the candidate text segments for a relation

of interest. These candidate text segments only include the entities that satisfy the entities

and relation constraints and hence, are not specific to any relation extraction technique.

To make the candidate segments usable for a relation extraction technique, REEL needs

to “enrich” these candidates with features (e.g., lemmas, part-of-speech tags, dependency

graphs) and produce their corresponding operable structures (Figure 3.4).

For this, REEL considers the requirements of the relation extraction technique of inter-

est, including its features and how to store them in its operable structure. Such information

is carried in what we refer to as the core of the relation extraction technique. In particular,

cores are responsible for two crucial tasks. First, they guarantee that operable structures

include the mandatory features. For example, if our relation extraction system requires

CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION
SYSTEMS 37

Figure 3.4: Operable Structure Generation.

tokens and their part-of-speech tags, the core must report these features as mandatory.

Second, cores guarantee that the operable structures are represented in appropriate data

structures for training. For example, if the training algorithm requires numeric vectors to

represent each training instance, the core must store the operable structures in that form.

To define cores along with their mandatory features, REEL provides a simple interface that

is shared across relation extraction systems. This interface is general enough to enable the

incorporation of additional features to existing cores, which in turn helps to effortlessly

experiment with these features in other extraction systems.

Most of the features for relation extraction are typically shared across techniques, as

discussed in Section 2.1.2, and as such, should be computed uniformly. For this, REEL

provides Feature Extractors (Figure 3.4). Feature extractors respond to a unified interface

and can be re-used for different cores with no additional effort. Each core is then responsible

for storing the extracted features in their own format, as discussed. REEL defines, but is not

limited to, three types of features, namely, vector-based, sequence-based, and graph-based,

which we define as follows:

• Vector-based features refer to the most common feature representation in classifica-

tion tasks. In this representation each characteristic of the candidate text segment

is represented as a number (usually in a binary representation) and the entire set of

m features forms an m-dimensional space. Several external tools use this representa-

tion, as is the case for the machine learning toolkit Weka [HFH+09] and its Instance

object. For example, we can create in REEL an Instance-based operable structure as

38
CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION

SYSTEMS

(a) Weka instance as ex-
ample of vector-based fea-
tures.

(b) Part-of-speech tags as example of sequence-based features.

(c) Dependency graph as example of graph-based features.

Figure 3.5: Examples of features in REEL.

illustrated in Figure 3.5a, where each @attribute line corresponds to a feature and

the last line corresponds to pairs that include the index of the feature and a Boolean

value that indicates whether the feature occurs in the text or not.

• Sequence-based features refer to the text segment features that are modeled as se-

quences. As an example, consider part-of-speech tags, which produce a sequence of

features, one for each token in the sentence. Figure 3.5b illustrates the part-of-speech

tags of the text excerpt “Mark Chapman was sentenced in 1981 to 20 years to life in

prison after pleading guilty to second-degree murder,” where each part-of-speech tag

corresponds to one term or punctuation symbol in the text excerpt.

• Graph-based features refer to the text segment features that are modeled as a graph.

As an example, consider dependency graphs, which move away from the linearity of

sequence-based features to a more complex feature space. Figure 3.5c illustrates the

dependency graph of the text excerpt “Mark Chapman was sentenced in 1981 to 20

years to life in prison after pleading guilty to second-degree murder.” As we see in

this figure, there are (directed) connections between part-of-speech tags that together

form a graph of features.

Interestingly, dependencies between features are common in information extraction. For

example, the dependency graph needs the part-of-speech tags to be computed first (see

Figure 3.5c). To avoid computing the same features multiple times, which may incur a

CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION
SYSTEMS 39

Figure 3.6: Training a relation extraction system.

substantial overhead, REEL provides feature caching, so that each feature set is computed

only once.1 Specifically, REEL maintains two caches: one cache stores the features extracted

from the candidate text segment, which depend on the tagged entities (e.g., distance between

entities), whereas the other cache stores the features derived from the text segment, which

do not depend on the entities (e.g., tokens or part-of-speech tags). Such a distinction is

necessary, since the cache for text segment features is stored only once and shared across

its (derived) candidates.

After Feature Extraction and Operable Structure Generation, the documents are fully

processed and can serve as input to relation extraction algorithms. In the next section, we

explain how to train relation extraction systems with REEL given the results of the Feature

Extraction and Operable Structure Generation component.

3.4 The Learning and Extraction Component

We now describe the Learning and Extraction components, which focus on the relation

extraction algorithms, as discussed.

3.4.1 Relation Extraction Training

As we argued in Section 2.1.1, there are multiple techniques to train relation extraction

systems and our framework should be flexible enough to support different learning settings

(e.g., techniques, training algorithms, existing libraries). REEL includes two concepts,

namely, engine and model, that together with the core (Section 3.3.3) provide these capa-

1Such caching is possible because feature extractors are deterministic (i.e., they produce the same output
given the same text segment).

40
CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION

SYSTEMS

bilities. In a nutshell, the engine runs the training algorithm: Given a set of labeled operable

structures—generated under the constraints of a core—the engine produces a relation ex-

traction model (Figure 3.6). The engine must then be aware of the internal representation

of the operable structure to guarantee the effective usage of the included features. For ex-

ample, if the operable structure is represented with graph-based features (Section 3.3.3), the

learning algorithm in the engine should be aware of such structure to manage it successfully.

Engines bring flexibility into the development of relation extraction systems along sev-

eral dimensions. First, engines allow developers to use their machine learning libraries of

choice (e.g., JlibSVM [Soe14], Weka) with no restrictions, or to develop their own techniques

to learn models (e.g., pattern-based techniques such as PRDualRank [FC11]).2 Second, en-

gines enable the modification of several learning decisions for a given core with minimal

effort. For example, for an SVM-based core, we can customize existing engines with dif-

ferent learning strategies (e.g., batch vs. online) and different learning parameters (e.g.,

convergence criterion).

The flexibility of the engines described above is carried over to the learned models, which

include the necessary information to perform the classification task. For example, if the

relation extraction system relies on an SVM-based classifier [Joa98b], the model will include

the support vectors, whereas if the relation extraction system relies on patterns, the model

will include the learned patterns and how they are matched with the text.

The next section discusses how to use the relation extraction model that results from

the Relation Extraction Training to extract tuples from text.

3.4.2 Tuple Extraction

As we discussed in Section 3.2, REEL performs the tuple extraction as a classification

task: REEL uses the model learned by the Relation Extraction Training component (Sec-

tion 3.4.1) to classify unlabeled operable structures as positive (i.e., their entities are related)

or negative (i.e., their entities are not related). Therefore, during tuple extraction, REEL

observes a set of unlabeled operable structures and whenever one of these structures is

classified as containing related entities, REEL produces a tuple with those entities (see

2Our distribution of REEL includes an end-to-end implementation of PRDualRank for reference.

CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION
SYSTEMS 41

Figure 3.7: Tuple Extraction.

Figure 3.7).

For example, consider a relation extraction model that receives operable structures based

on dependency graphs and decides if their entities are an instance of the Charged relation

in our running example. For our example sentence from Section 3.1, the operable struc-

tures would resemble that in Figure 3.5c. Since there are four candidate text segments for

this sentence (see Section 3.3.2), the model would evaluate all the alternatives and out-

put as relation instances 〈Mark Chapman, second-degree murder〉 and 〈Mark Chapman,

second-degree murder, 1981〉. Furthermore, the model would attach information on tuple

subsumption to the tuples, so that applications or end users can decide what tuples to

consider.

Beyond the extraction of individual relations, we now discuss another important feature

of REEL, namely, how it supports the comprehensive experimental evaluation of alternative

relation extraction models.

3.4.3 Relation Extraction Evaluation

In addition to the definition of individual relation extraction systems, REEL supports the

experimental evaluation and comparison of multiple relation extraction systems, a task of

critical importance to facilitate research in information extraction. For this, REEL pro-

vides the notion of Evaluators. An evaluator helps to: (i) compare different configurations

of the same relation extraction system to find the best performing setup; (ii) compare the

performance of a relation extraction system over different text collections to demonstrate

robustness; and (iii) compare different relation extraction systems over the same text col-

lection to identify the best performers. To achieve this, the evaluator receives as input

42
CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION

SYSTEMS

both the real and predicted labels of a set of operable structures together with their pre-

diction properties (e.g., confidence of the output), and returns the measured performance

(see Figure 3.8a).

The REEL Relation Extraction Evaluation component considers two important factors

for the evaluation of relation extraction systems, namely, how to split sets of instances (e.g.,

documents, candidate sentences, or operable structures) and what performance measures to

use. Regarding the first factor, REEL provides the generation of instance splits to facilitate

the generation of principled training and test sets, as illustrated in Figure 3.8b. Specifically,

REEL is able to create these splits over sets of documents, candidate text segments, and

operable structures, thus offering different evaluation capabilities. For example, splitting

over candidate text segments allows segments from the same text document to belong to

both the training and test sets, which would not be possible if we could only split over

entire documents. REEL currently provides two types of splitting, namely, percentage split,

which splits elements at a given fraction (e.g., 70% for training and the rest for testing),

and K -fold split, which splits elements into K equally-sized groups suitable for K -fold cross

validation [Sto74].

Regarding the choice of performance measures, REEL provides common measures for

binary classifiers, namely, precision, recall, and F-measure, which can be used in the evalua-

tor, as illustrated in Figure 3.8a. In addition to these metrics, REEL allows the computation

of micro and macro averages over them, which is crucial during the evaluation of relation

extraction systems that extract multiple relations simultaneously. Altogether, these perfor-

mance measures enable the principled evaluation of relation extraction systems. REEL also

provides support for additional performance measures. Specifically, users can implement

measures that take as an input a set of operable structures along with their true labels,

predicted labels, and other prediction properties (e.g., confidence of the prediction, proba-

bility of entities being related), and ultimately produce an output value. Moreover, users

can define new prediction properties that the models can then explicitly report. These new

prediction properties would incur source code changes; however, these changes would only

affect the models, since that is where the actual prediction takes place.

Now that we have discussed the main components of REEL, we show how we use REEL

CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION
SYSTEMS 43

(a) Evaluator and Performance Measures. (b) Instance Splitter.

Figure 3.8: Evaluation capabilities in REEL.

to develop a relation extraction system for our running example.

3.5 Using REEL in Practice

In the previous section, we introduced the architecture of REEL and described its compo-

nents in detail. We now illustrate how to use REEL in practice by providing an end-to-end

implementation of a typical relation extraction system for our Charged relation example.

Specifically, we show the Java source code to perform text segment loading and candi-

date generation, feature extraction and operable structure generation, relation extraction

training, tuple extraction, and relation extraction evaluation.

Candidate Generation: To address these tasks a REEL user should use code templates

provided in the toolkit. Then, the users could adapt these templates to their own needs

by using different implementations of document loaders, constraints, feature generators,

engines, and cores. Users can also implement their own version of these elements to ex-

ploit new techniques. First, as explained in Sections 3.3.1 and 3.3.2, we load the text

segments of an input collection and derive their candidates (Sample Code 3.1). We define

the Charged relation along with its constraints, which we save via serialization for future

use (lines 2-9). We then load the documents from our collection (lines 11-13), each with

their corresponding text segments. Users can write their own collection loaders, which are

only required to produce documents in the REEL format as output. Next, we create a

text splitter (lines 15-16), which defines the scope of the candidate text segments (e.g.,

sentences) and, in turn, where the (potential) tuples can occur. Finally, we use the REEL

candidate generator to produce the candidates from all documents in the collection (lines

17-21) and save them for the following steps (line 22).

44
CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION

SYSTEMS

Sample Code 3.1: Candidate Generation.

1 // Define relationships and their constraints

2 String r = "CHARGED", t1 = "PER", t2 = "CHAR", t3 = "DAT";

3 RelationshipType rT = new RelationshipType(r, t1, t2, t3);

4 rT.setConstraints(new EntityTypeConstraint("PER"), t1);

5 rT.setConstraints(new EntityTypeConstraint("CHAR"), t2);

6 rT.setConstraints(new EntityTypeConstraint("DAT"), t3);

7 Set<RelationshipType> rTs = new HashSet<RelationshipType>();

8 rTs.add(rT);

9 SerializationHelper.write("rTypes.ser", rTs);

10 // Use a predefined Document Loader

11 Loader l = new MyLoader(rTs);

12 File AD = new File("/train/");

13 Dataset<Document> col = new Dataset<Document>(l, AD, false);

14 // Define sentence splitter for the candidate generator

15 String sp = "model.bin"

16 OpenNLPMESplitter spl = new OpenNLPMESplitter(sp);

17 CandidatesGenerator g = new CandidatesGenerator(spl);

18 Set<CandidateSentence> cand = new HashSet<CandidateSentence>();

19 for (Document d : col) {

20 candidates.addAll(g.generateCandidates(d, rTs));

21 }

22 SerializationHelper.write("train.ser", cand);

Operable Structure Generation: Once we generate the candidates, we must enrich

them with features to produce the operable structures, as described in Section 3.3.3 (Sam-

ple Code 3.2). We start by retrieving the recently generated candidates (line 1). Then,

we define the core (Section 3.4.1), which determines the tuple extraction algorithm (Short-

estPathKernel) which implicitly defines its mandatory features. In this example, we add

part-of-speech tags to the mandatory set of features (lines 6 and 7); however, we also in-

cluded tokenization (line 4) and chunking (line 5) features, which are required to compute

the part-of-speech tags. We then save this configuration (line 8), which we will use later

during training and that we can use to produce operable structures from other candidate

sentences for the Charged relation. Finally, we use the REEL StructureGenerator to pro-

duce the operable structures from the candidate sentences (line 9), and save them for later

use (line 10).

CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION
SYSTEMS 45

Sample Code 3.2: Operable Structure Generation.

1 Set<CandidateSentence> cand = (Set<CandidateSentence>)SerializationHelper.read("train.ser");

2 StructureConfiguration conf = new StructureConfiguration(new ShortestPathKernel());

3 FeatureGenerator<SequenceFS> tok = new OpenNLPTokenizationFG("modelT.bin");

4 FeatureGenerator<SequenceFS> fgCh = new EntityBasedChunkingFG(tok);

5 FeatureGenerator<SequenceFS<String>> fgChSt = new SpansToStringsConvertionFG(fgCh);

6 FeatureGenerator<SequenceFS<String>> fgPOS = new OpenNLPPartOfSpeechFG("modelPOS.bin", fgChSt);

7 conf.addFeatureGenerator(fgPOS);

8 SerializationHelper.write("conf.ser", conf);

9 Set<OperableStructure> trD = StructureGenerator.generateStructures(cand, conf);

10 SerializationHelper.write("optr.ser", trD);

Relation Extraction Training: As described in Sections 3.4.1 through 3.4.3, we can use

the operable structures to learn the relation extraction model, to extract tuples from text

documents, and to perform a thorough evaluation of the relation extraction system. We

now illustrate how REEL handles these operations.

For training, we load the operable structures, which are required to be labeled3, and

learn a relation extraction model (Sample Code 3.3). Specifically, we load the definition of

the relation that we created during candidate generation (line 1), the configuration of the

features (line 2), and the operable structures (line 3) both defined during operable structure

generation. Next, we create an engine (line 5), which we described in Section 3.4.1. The

engine includes the learning algorithm to train the relation extraction model from the

operable structure and thus, must support its internal structure (e.g., kernel), as discussed.

REEL allows users to define their own engines using different machine learning toolkits.

Finally, we train (line 6) and save the learned model (lines 8-9), which we can use for tuple

extraction and evaluation, as we see next.

3The labels of the operable structures can be loaded from the input text collection (e.g., from the ACE
2005 collection [Wal06]) or manually annotated.

46
CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION

SYSTEMS

Sample Code 3.3: Relation Extraction Training.

1 Set<RelationshipType> rTs = (Set<RelationshipType>)SerializationHelper.read("rTypes.ser");

2 StructureConfiguration conf = (StructureConfiguration)SerializationHelper.read("conf.ser");

3 Set<OperableStructure> trD = (Set<OperableStructure>)SerializationHelper.read("optr.ser");

4 //The engine is responsible for the training

5 Engine eng = new JLibSVMBinaryEngine(conf, rTs);

6 Model svmM = eng.train(trD);

7 //Finally, we can store the model in order to use it later

8 String modF = "CHARGEDModel.svm";

9 SerializationHelper.write(modF, svmMo);

Tuple Extraction: For tuple extraction (Sample Code 3.4) we employ all the capabilities

described thus far. We first load the recently learned model and splitter (lines 1-3) that we

then use to define our relation extraction system (line 4). This relation extraction system,

which is provided in REEL, enables users to directly plug in their learned models and have a

fully functional relation extraction system that can be used in application building settings.

In addition to the model, the relation extraction system receives a text splitter (line 3) that

defines the scope of the extraction (e.g., sentences), just as we did for candidate generation.

To put the system to work, we load the documents from which we want to extract tuples

(lines 5-8). (In this example we use the same type of dataset for training than we do for

testing but we could easily plug in any other dataset and loader.) Finally, we iterate over the

documents and print the extracted tuples (lines 9-11). The extractTuples method, provided

in the relation extraction system, hides the complexity of processing the given document to

obtain its operable structures and perform the extraction task.

CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION
SYSTEMS 47

Sample Code 3.4: Tuple Extraction.

1 String modF = "CHARGEDModel.svm";

2 Model svmM = (Model)SerializationHelper.read(modF);

3 OpenNLPMESplitter spl = new OpenNLPMESplitter("en-sent.bin");

4 ClassifierBasedRelationshipExtractor ext = new ClassifierBasedRelationshipExtractor(svmM, spl);

5 Set<RelationshipType> rTs = (Set<RelationshipType>)SerializationHelper.read("rTypes.ser");

6 Loader l = new MyLoader(rTs);

7 File AD = new File("/test/");

8 Dataset<Document> col = new Dataset<Document>(l, AD, false);

9 for (Document d : col) {

10 System.out.println(ext.extractTuples(d));

11 }

The output of the code above for a document that includes the text excerpt “John

Lennon’s killer, Mark Chapman, was sentenced in 1981 to 20 years to life in prison after

pleading guilty to second-degree murder” in our running example will look like:

Charged[Person(Mark Chapman); Charge(second-degree murder); Date(1981)]

Relation Extraction Evaluation: Finally, for evaluation (Sample Code 3.5), we require

the learned model that we want to evaluate, as well as the labeled operable structures that

will represent the ground truth. We start by loading the learned model (lines 1-2) as well

as the labeled operable structures (lines 3-9). We then define the evaluator (line 10), which

we described in Section 3.4.3, and the performance measures that we will consider in the

evaluation. Here, we measure our model using recall, precision, and F-measure (lines 11-16),

which are already implemented in REEL, although the user can incorporate other measures

that can be used directly, as we explained. Finally, we invoke the printEvaluatorReport

method (line 17), which outputs the recall, precision, and F-measure values, as requested.

48
CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION

SYSTEMS

Sample Code 3.5: Relation Extraction Evaluation.

1 String modF = "CHARGEDModel.svm";

2 Model svmM = (Model) SerializationHelper.read(modF);

3 List<String> tF = FileUtils.readLines("testfiles.ser");

4 List<OperableStructure> l = new ArrayList<OperableStructure>();

5 List<OperableStructure> oS;

6 for (String s : tF) {

7 oS = (List<OperableStructure>)SerializationHelper.read(s);

8 l.addAll(oS);

9 }

10 Evaluator eval = new Evaluator();

11 Measure rec = new Recall();

12 eval.addMeasure(rec);

13 Measure pre = new Precision();

14 eval.addMeasure(pre);

15 Measure f = new FMeasure(1.0);

16 eval.addMeasure(f);

17 eval.printEvaluationReport(l, svmM);

Calling printEvaluatorReport outputs the performance values, which can be reported in

many different ways (e.g., by appending the values to a file or by printing to console). We

illustrate an example of such an output here:

Recall: 0.76 - Precision: 0.65 - F-Measure: 0.70

In this section, we walked through the steps required to develop and evaluate a typical

relation extraction system in REEL. As shown, the code needed to produce such an extrac-

tion system within REEL is simple and easy to understand. This makes REEL a powerful

framework to enable the deployment and evaluation of relation extraction systems for both

application building and research.

3.6 Conclusions

In this chapter, we introduced REEL, an open-source framework to easily develop and

evaluate relation extraction systems. REEL provides end-to-end infrastructure to handle

relation extraction as a classification task, and leverages powerful existing toolkits for both

CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION
SYSTEMS 49

text processing and machine learning subtasks. Moreover, REEL effectively addresses the

complex requirements of relation extraction and helps developers and researchers produce

simple and easy-to-understand source code for their relation extraction systems. As part

of the REEL distribution—as open source under the General Public License Version 3

(GPLv3) license, at http://reel.cs.columbia.edu/—we have included ready-to-use re-

lation extraction systems (e.g., [BM05b; BM05a]). We have also integrated several text

processing and machine learning toolkits, to illustrate how to incorporate and leverage

external algorithms and toolkits.

The main contributions of this chapter, and those that make REEL preferable to exist-

ing toolkits, are: (i) the effective decoupling of text processing and learning components,

which enables the integration and re-usability of different extraction algorithms; and (ii) the

support to easily define and automatic reinforce entity and relation constraints that can be

shared across extraction tasks and systems. We have identified these contributions as crucial

for the easy development, evaluation, and deployment of relation extraction systems during

our interaction with REEL. In this dissertation, in particular, we used REEL to develop,

evaluate, and select full-fledged relation extraction systems for our experiments. We provide

details about the application of REEL in each individual section. Finally, despite its short

lifespan, REEL has received increasing, substantial attention across the research commu-

nity. We expect this trend to continue as well as to open new research and collaboration

opportunities.

http://reel.cs.columbia.edu/

50
CHAPTER 3. REEL: A TOOLKIT FOR DEVELOPING RELATION EXTRACTION

SYSTEMS

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 51

Chapter 4

Sampling Documents for Scalable

Information Extraction

In Chapter 2, we described a state-of-the-art approach for deploying an information ex-

traction system over large text collections and characterized the importance of collecting

representative extraction task-specific document samples from the collections. As discussed,

a document sample from a collection can be valuable, for instance, to help select and

rank the collection documents for the extraction task: techniques such as QXtract [AG03],

FactCrawl [BLNP12], or PRDualRank [FC11] use these samples to learn words and phrases

that separate those documents that lead to the extraction of tuples for a relation of interest

from those documents that do not, and should hence not be processed, for efficiency. Impor-

tantly, the samples on which these techniques rely must be collected in a collection-specific

way, because the focus and language of each collection generally differs from those of other

collections.

Despite the important role of sampling in the techniques above, the sampling approaches

that they use are far from ideal, as we will see. Specifically, these techniques adopt flavors

of sampling that rely on high-precision queries to target certain documents efficiently, but

fail to capture the large variety of extraction-relevant document characteristics in the useful

documents. Consequently, they miss important groups of documents during sampling, which

other sampling strategies can effectively obtain, as we will show experimentally.

52
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

In this chapter, we systematically study the space of query-based document sampling

techniques for information extraction. Specifically, we consider (i) alternative query exe-

cution schedules, which vary on how they account for the query effectiveness; and (ii) al-

ternative document retrieval and processing schedules, which vary on how they distribute

the extraction effort over documents. We conduct a large-scale and fine-grained experimen-

tal evaluation over real Web collections, and for a large variety of information extraction

tasks, to assess the merits of the alternative query execution and document retrieval and

processing strategies. We also explore several different query generation techniques, for

robustness.

The conclusions of our study are twofold. Regarding query execution, schedules that

focus on queries with a high fraction—and number—of useful documents, namely, the effec-

tive queries, improve sampling efficiency: These schedules require issuing a small number of

queries and processing few documents to collect document samples of a certain size. In con-

trast, schedules that prioritize less-effective queries need to issue many (potentially diverse)

queries to retrieve a desired number of useful documents, hence improving sampling qual-

ity: These schedules are likely to collect documents that cover distinct extraction-relevant

document characteristics (e.g., words and phrases related to different natural disasters for

our Occurs-in task) in the useful documents. Regarding document retrieval and processing,

schedules that process the documents for each query exhaustively at once improve sampling

efficiency when the sampling technique focuses on effective queries. In contrast, schedules

that process documents incrementally and in rounds improve sampling quality, because a

larger variety of documents—from a larger number of queries—is processed. As we will see,

fundamentally different sampling techniques (i.e., with distinct implications in sampling

efficiency and quality) are possible.

In short, the main contributions of this chapter are:

• A systematic study of query-based document sampling techniques for information

extraction over text collections that considers (i) alternative query execution schedules

and (ii) alternative document retrieval and processing schedules (Section 4.2).

• The first large-scale and fine-grained evaluation of query-based document sampling

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 53

techniques for information extraction. We perform our experiments over real Web-

accessible collections and for a large variety of extraction tasks. We show the implica-

tions in sampling efficiency and quality of different query execution schedules, as well

as of different document retrieval and processing schedules (Sections 4.3 and 4.4).

We now review necessary background and define our problem of focus in this chapter.

4.1 Background and Problem Definition

Given an information extraction task, producing high-quality, representative document sam-

ples from a text collection is a challenging process, for two main reasons. (1) Sampling

efficiency: the document sampling process has to be efficient and lightweight because, as

discussed above, it is often used to make the overall information extraction execution over

text collections efficient and scalable. This efficiency requirement is complicated by the fact

that analyzing the documents, to decide the composition of the samples, is an expensive

proposition because it often involves running the extraction system at hand on the docu-

ments. Furthermore, and particularly for deep web collections, document samples can only

be collected, by definition, by querying the (remote) contents of the collections, which is

expensive. (2) Sampling quality: the document sampling process has to return documents

that represent the relevant extraction-related document characteristics in each collection.

This quality requirement is complicated by the fact that useful documents for the informa-

tion extraction task, are often a small minority of the collection documents, as discussed.

Furthermore, even within a relatively small number of documents, the sampling process

should capture the large variations in language and general content in the documents. Fi-

nally, document sampling techniques should be applicable to fully accessible text collections

as well as to deep web text collections, which are only accessible via querying (Section 2.2).

Query-based document sampling has also been studied beyond information extraction,

for other text-centric tasks. As notable examples, [CC01], [BYG08], and [ZZD11] developed

document sampling techniques for the generation of generic descriptors of the collections.

Unfortunately, these approaches are ineffective for our information extraction scenario, be-

cause they focus on obtaining random document samples. As we discussed above, our

54
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

(a) Bootstrapping-based useful documents retrieval. (b) Learning-based useful documents retrieval.

Figure 4.1: Two main families of existing query generation techniques for useful document
retrieval.

scenario requires that the document samples represent the often small minority of docu-

ments that lead to extraction output for a given information extraction task. To sufficiently

characterize the documents in such small portions of the collections through random sam-

pling, the above techniques would require issuing an exorbitant number of queries to the

collections.

Based on the discussion above, the problem of focus in this chapter is that of efficiently

collecting high-quality document samples for information extraction from text collections,

as follows:

Problem Definition 1 Consider a text collection C and an information extraction system

E trained to extract tuples for a relation from text. To enable efficient and effective infor-

mation extraction over collection C, we need a sample of documents from C that represents

the population of useful documents in C with respect to E. Specifically, the goal is to obtain

a sample of useful documents that satisfies certain quality metrics (e.g., diversity in the tu-

ples extracted with E from the sampled documents) while satisfying certain efficiency-related

requirements (e.g., minimize the number of documents processed with E and the number of

queries issued to C as part of the sampling process).

Existing query-based techniques for retrieving useful documents from a collection fall

into two families. Techniques in the first family adopt a bootstrapping approach: Starting

with a small number of “seed” tuples for the relation of interest, these techniques iter-

atively retrieve (potentially useful) documents by issuing as queries the seed tuples and,

later, the new tuples that the extraction system discovers from documents as they are

retrieved (Figure 4.1a). Earlier efforts to address the efficiency and scalability of the ex-

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 55

traction process (e.g., QXtract [AG03], FactCrawl [BLNP12], and PRDualRank [FC11])

have adopted this family of techniques in their sample generation step, because queries

tend to be high-precision. Unfortunately, as we will show experimentally, these techniques

compromise recall and often miss important relevant groups of useful documents, which is

undesirable during the sampling step.

Techniques in the second family adopt a statistical learning approach that aims to alle-

viate the recall limitation above: Using a training sample of useful and useless documents

labeled “for free” with the information extraction system at hand, these techniques learn

keywords and phrases that are discriminative of the useful documents (Figure 4.1b). Im-

portantly, the learned keywords and phrases often include a score that roughly corresponds

with their expected precision and recall for useful documents. These scores can be sys-

tematically exploited when issuing these learned keywords and phrases as text queries to

retrieve potentially useful documents. For instance, QXtract [AG03] issues the queries in

descending score order, to first process queries that are likely to retrieve useful documents

with high recall and precision. QXtract processes the documents retrieved by each query ex-

haustively at once before processing those retrieved by the following query. Unfortunately,

these techniques mainly tackle the efficiency of the extraction process, one of the crucial

aspects in our sampling problem. As we will see, to also address the sampling quality we

need to choose carefully both the query execution as well as the document retrieval and

processing strategies.

In the next section, we discuss different query execution and document retrieval and

processing strategies, along with their implications in sampling efficiency and quality. We

in turn introduce several different sampling techniques, which we evaluate experimentally

in later sections.

4.2 Document Sampling Strategies

We now systematically study query-based document sampling techniques for information

extraction over a text collection. We focus on learning-based methods, which rely on a

learned set of text queries to retrieve potentially useful documents for an information ex-

56
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

traction task of interest, as discussed in Section 4.1. Unlike in the existing literature, though,

we consider tackling both sampling quality and efficiency. We start by outlining—and an-

alyzing the efficiency and quality of—different alternatives for processing the (learned) set

of queries and their retrieved documents, namely, the query–document space of the queries

(see Figure 4.2). We then discuss how we can exploit the information that we gather from

each query along the sampling process (e.g., the number of useful and useless documents

that the query returns) to improve different aspects of the process. In turn, we introduce

the sampling techniques that we study in this chapter, which we evaluate experimentally in

Sections 4.3 and 4.4.

4.2.1 Exploring the Query–Document Space

We now consider different alternatives to exploring the query–document space of a set of

queries for our sampling problem. We first consider alternative query execution schedules,

which vary on how they account for the query effectiveness. Specifically, for a pool of

documents retrieved by a query, we define the effectiveness of the query as the fraction

of useful documents within this document pool.1 Then, and in an orthogonal dimension,

we consider alternative document retrieval and processing schedules, which differ on how

they determine the document pool retrieved by each query and how they distribute the

extraction effort over documents. We discuss these alternatives in detail next.

Query Execution: The order in which we process queries during sampling, namely, the

query execution order, is crucial to the efficiency and quality of the sampling process. For

efficiency, on one hand, we need to prioritize effective queries (i.e., the queries that re-

trieve useful documents with high precision and recall), so that we mainly process—hence

sample—useful documents. This is motivated by the fact that the sampling cost is a func-

tion of the number of issued queries—necessary to retrieve documents for the sample—and

the number of documents retrieved and processed—necessary to decide the composition of

the sample. The approach in [AG03], for example, approximates this query order based on

the learned query scores: This approach uses the learned score of a query as a surrogate

1More formally, the effectiveness of a query is based on the so-called precision@K in information retrieval,
where relevance is defined in our case as usefulness and K is the number of documents to process.

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 57

Figure 4.2: Query–document space.

of its effectiveness and arranges the queries in descending score order. Figure 4.3 shows an

example of such query order for Occurs-in: the (top) query [earthquake] is more effective

than query [richter], because it retrieves more useful documents for the same number of

processed documents.

Processing queries in decreasing effectiveness order leads to efficient executions that

identify a sample of useful documents quickly. Unfortunately, if the query execution process

is only guided by efficiency, the overall sampling quality might suffer. To see why, consider

once again the example in Figure 4.3. Specifically, if the query execution process were to

focus, say, on queries [earthquake] and [richter], which are highly effective for Occurs-in, we

would likely produce a document sample whose useful documents are predominantly about

earthquakes and not about other natural disasters that should be included in the sample

as well.2

We thus argue that for quality we should sometimes prioritize less-effective queries, so

that a larger—hence potentially more diverse—set of queries needs to be processed to obtain

a desired number of useful documents. In our example in Figure 4.3, for instance, such a

query execution order would process query [aftermath] before processing other more effective

queries (e.g., queries [vortex] or [earthquake]) and, more importantly, it would be more likely

2Additionally, note that if query [earthquake] retrieves documents including the word “Richter,” query
[richter] may lose effectiveness, because many of the useful documents that query [richter] returns may
have already been processed. We study how to stop processing ineffective, underperforming queries in
Section 4.2.2.

58
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

Figure 4.3: Query–document space of a set queries for the Occurs-in relation. Useful and
useless documents are illustrated in green and red, respectively.

to cover documents about earthquakes, tornadoes, as well as other natural disasters, because

a larger number of queries would be processed. This quality-driven approach, however,

is problematic for two reasons. First, arranging the queries in such query order, or an

approximation thereof, is nontrivial, unlike with the efficiency-driven query execution order

above. Second, following this query execution order might compromise sampling efficiency

dramatically, because many useless documents would need to be processed to retrieve a

desired number of useful documents. Next, we discuss how different document retrieval and

processing strategies can help address these limitations.

Document Retrieval and Processing: In addition to query execution, the strategy

we adopt to retrieve and process the documents during sampling, namely, the document

retrieval and processing strategy, is also crucial to the efficiency and quality of the sampling

process. A possible choice is, of course, to process the documents returned by each query

exhaustively at once, as suggested in [AG03]. Importantly, such an exhaustive strategy

would promote the efficiency and quality considerations of the adopted query execution

approach: If, for instance, the query execution is guided by efficiency (i.e., effective queries

are prioritized), as in [AG03], exhaustively processing the documents returned by each

query will yield efficient sampling executions, because the number of queries to issue and

documents to process to collect a desired number of useful documents will be relatively

small. Analogously, if the query execution is guided by quality (i.e., it prioritizes less-

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 59

effective queries), processing all documents returned by each query would produce high-

quality sampling executions, because a larger, potentially more diverse set of queries will be

processed. Unfortunately, by promoting the considerations of the adopted query execution,

this exhaustive document processing strategy would also preserve their discussed quality

and efficiency limitations.

An alternative document retrieval and processing strategy, and one that would allevi-

ate the limitations of the exhaustive strategies above, would be to process the documents

returned by each query iteratively and in rounds. Specifically, for a given query execution

order, this strategy would iterate over the queries in order, processing only a certain number

of documents per round. In Figure 4.3, we identify the documents in the first round of an

iterative strategy that processes k documents from each query per round (see lightly shaded

area in Figure 4.3). As a result of this iterative process, documents will potentially be sam-

pled from larger sets of queries—hence addressing sampling quality—and the extraction

effort will be evenly distributed among queries during each round—hence addressing sam-

pling efficiency. To better illustrate this, consider again the lightly shaded documents from

our Occurs-in example in Figure 4.3: These documents form a rather diverse sample—with

documents about earthquakes, tornadoes, and other disasters—and only a fraction of the

(many) useless documents retrieved by less-effective queries (e.g., query [aftermath]) need

to be processed during the first round.

Despite the advantages of the iterative strategy above, specifying a number of documents

per round that suitably balances efficiency and quality is a difficult proposition: Large

values for such number would exhibit similar limitations to those of the exhaustive approach

discussed above, while small values would affect sampling efficiency drastically due to the

high querying cost that would be incurred. We experimentally evaluate the efficiency and

quality implications of the choice of the number of documents to process per round in

Sections 4.3 and 4.4. An additional problem of using small values is that we would be

unable to precisely measure the real effectiveness of queries, a crucial measurement, as we

discuss next.

60
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

4.2.2 Exploiting Observed Information

So far, we have discussed the query–document space exploration as a static, once-and-for-

all process. However, there is valuable information (e.g., the number of useful and useless

documents that a query returns) that we can gather gradually, as the sampling process

progresses, and that we can use to improve this process. We now discuss how we can

exploit this information (i) to revise the query execution order, for sampling efficiency and

quality; and (ii) to filter underperforming queries, for sampling efficiency:

Revising Query Execution Order: The learned score of a query is often used as a

surrogate of its effectiveness, as argued earlier in this section, so we can expect the query

order given by these scores to be correlated with that of the real effectiveness of the queries.

However, for a given collection, these two query orders may differ considerably (e.g., due to

the contents of the collection or the indexing and retrieval techniques thereof), and hence

the query execution order may have to be revised. For instance, in our Occurs-in example

in Figure 4.3, prioritizing query [vortex] would yield more efficient sampling executions than

processing the documents in descending score order.

Fortunately, exhaustively processing the documents returned by a query to effectively

measure its effectiveness is unnecessary: We can in fact gauge the real effectiveness of

a query by only processing a relatively small subset of its returned documents, because

the fraction of useful documents is expected to remain largely stable across its retrieved

documents [IAJG07].3 For instance, in our example in Figure 4.3, we could process the first

k documents returned by each query, to conclude that queries [vortex] and [aftermath] are,

respectively, the most and least effective queries, and revise the query execution order in

light of the observed information.

Filtering Underperforming Queries: By definition, there are two operations during

sampling that hurt sampling efficiency, namely, issuing queries to the collection at hand

that retrieve none—or a low fraction of—useful documents and retrieving and running

the information extraction system of choice over a useless document. We argue that, for

efficiency—and at the expense of a modest lost in quality—we can exploit the gauged

3This idea of “probing” queries to estimate their effectiveness is used in a preprocessing step in [BLNP12]

for the related problem of ranking documents to improve the efficiency of the extraction process.

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 61

effectiveness of queries to avoid such (undesirable) cases and, in effect, focus only on cost-

effective queries. For instance, in our example for Occurs-in in Figure 4.3, if we filtered

query [aftermath], we would avoid a considerable extraction effort—over multiple useless

documents—at the expense of losing one useful document.

Based on the discussion above, we consider applying two filtering options. Our first

alternative avoids issuing a query altogether if the observed effectiveness of previously issued

queries is below a certain threshold. This filtering scheme is possible when we initially issue

queries in descending score order, because the performance of the queries is expected to drop

as a function of their order. In Figure 4.3, for our Occurs-in example, we may filter query

[aftermath] if previous queries exhibited poor effectiveness. Our second alternative filters

already issued queries whose real, observed effectiveness drops below a certain threshold, to

avoid processing useless documents. For instance, if we decide to filter queries that do not

retrieve useful documents within the first k documents, the documents beyond k returned

by query [aftermath] in Figure 4.3 for Occurs-in would not be processed. Of course, deciding

the settings for these filtering conditions is challenging, and we consider several options in

Sections 4.3 and 4.4 together with their impact on sampling efficiency and quality.

4.2.3 Sampling Techniques

So far, we have discussed the components involved in query–document space exploration as

well as explained how we can exploit observed information to adaptively revise the query

execution order and to focus the sampling effort. We now define the (arguably) most in-

teresting query-based document sampling techniques for information extraction over a text

collection, which we summarize in Table 4.1. As we will see in our experimental evalua-

tion, we focus on techniques that collect high-quality document samples while keeping the

sampling cost at reasonable levels. For the completeness of our evaluation, however, we

include other sampling techniques, which we describe in the next sections, as needed. Im-

portantly, some of the techniques in Table 4.1 (e.g., QXtract [AG03]) have been introduced

in the literature whereas others have not. We list them all here, to assess their merits and

limitations experimentally later in Sections 4.3 and 4.4.

QXtract: QXtract [AG03] explores the query–document space by issuing queries in de-

62
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

(a) QXtract (b) Cyclic

(c) Opportunistic (d) Balanced

Figure 4.4: Examples of query–document space exploration strategies. Useful and useless
documents are illustrated in green and red, respectively.

Name
Query

Execution

Document
Retrieval

and
Processing

Query
Order

Revision

Query
Filtering

QXtract > → - -

Cyclic > � - -

Opportunistic > � + -

Balanced < � + -

F–QXtract > → - +

F–Cyclic > � - +

F–Opportunistic > � + +

F–Balanced < � + +

Table 4.1: Sampling techniques and the alternatives they consider for each relevant aspect.
For query execution, we consider prioritizing effective queries (>) or less-effective queries
(<). For document retrieval and processing, we consider processing documents exhaustively
at once (→) or iteratively and in rounds (�). We finally consider techniques that perform
query order revision or query filtering (+) and techniques that do not (-).

scending learned score order and processing the documents retrieved by each query ex-

haustively at once (Figure 4.4a). QXtract produces relatively efficient sampling executions;

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 63

however, it may compromise sampling quality, as discussed earlier in this section.

Cyclic: Cyclic explores the query–document space by issuing queries in descending learned

score order and processing the documents retrieved by each query iteratively and in rounds

(Figure 4.4b). Cyclic addresses the sampling quality deficiencies of QXtract above, because

it requires issuing a larger—hence potentially more diverse—set of queries to retrieve a

desired number of useful documents. For instance, to collect three useful documents in

Figure 4.4b, Cyclic processes the documents returned by two queries, namely, q1 and q2,

whereas QXtract processes the documents returned by one query, namely, q1.

Opportunistic: Opportunistic explores the query–document space by prioritizing—and

issuing—effective queries and processing the documents retrieved by each query iteratively

and in rounds (Figure 4.4c). Opportunistic initially prioritizes queries according to the

learned score; then, between rounds, and as it gathers relevant information for each query,

Opportunistic revises the query execution order using the real, observed effectiveness of

queries. The sampling quality of Opportunistic may suffer, though, because some groups

of documents may still be underrepresented. To see why, consider Figure 4.4c: If the

sampling process stops after collecting five useful documents (i.e., during the second round

of documents retrieved by q1), q1 will contribute three useful documents to the sample

whereas q2, q3, and qq will contribute at most one useful document each.

Balanced: Balanced explores the query–document space by prioritizing—and issuing—

less-effective queries and processing the documents retrieved by each query iteratively and in

rounds (Figure 4.4d). Because finding an initial query order for the queries is problematic,

as discussed, Balanced initially issues queries in descending score order; then, between

rounds, and as it gathers relevant information for each query, Balanced revises the query

execution order using the real, observed effectiveness of queries. By prioritizing less-effective

queries, Balanced alleviates the quality limitation of Opportunistic above. Specifically, if

in Figure 4.4d we stop after collecting five useful documents (i.e., during the second round

of documents retrieved by q3, which will be now prioritized), each query will contribute a

similar number of useful documents to the sample.

The techniques described thus far do not include the filtering step described earlier in

this section. We define variants of these techniques that incorporate query filtering, which

64
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

we refer to as F–QXtract, F–Cyclic, F–Opportunistic, and F–Balanced, respectively (see

Table 4.1). These filtered techniques run as their unfiltered counterparts, and decide the

queries to filter based on the filtering options described earlier in this section. Next, we

describe the settings for our in-depth experimental evaluation of sampling techniques for

information extraction.

4.3 Experimental Settings

We describe the details of our experimental evaluation of the query-based document sample

generation techniques for information extraction.

Web Collections: We collected a representative set of 335 real Web collections across

different topics by following an approach similar in spirit to that of [GIS03] over the Open

Directory Project directory [ODP15]: We first selected the 8 categories with the highest

number of entries, namely, Business, Society, Arts, Science, Computers, Recreation, Shop-

ping, and Sports. From each category, we then selected the 5 most popular subcategories

along with their corresponding 5 most popular subsubcategories, for a total of 200 subsub-

categories. We then randomly chose 7 unique Web collections with a text search interface

from each subsubcategory.4 Finally, we randomly selected 335 collections from this set of

collections, which we split into a tuning set (48 collections, or 15% of the collection set) and

a test set (287 collections, or 85 % of the collection set). We report our results over the test

set.

Interaction with Web collections: We developed an end-to-end system to support the

large number of Web collections in our experiments (see above) and to automatically query

the real contents of the collections. For our experiments, we focused on HTML-based Web

collections, which were the vast majority at the time of our experiments. Specifically, our

system consists of three main components, namely, the learning, the querying, and the

maintenance components, as follows:

• Learning component: For a given URL (e.g., http://www.fema.gov) of a collection,

the learning component determines how to retrieve documents from the collection

4For each subsubcategory with fewer than 7 entries, we selected all its collections.

http://www.fema.gov

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 65

via querying. The learning component starts by finding the search interface of the

collection using the decision tree in [MCSSMTLA13] to, in turn, identify the querying

protocol (e.g., GET or POS) as suggested in [MKK+08]. After identifying the search

interface, the learning component detects the HTML component with the returned

documents in the results page. For this, we use an approach similar in spirit to

that in DeLA [WL03], which is based on the observation that the component where

returned documents are placed tends to vary substantially across result pages for

different queries. For two given result pages, our technique uses the Hiperfingladal

index [oJC97] to identify the component with the highest concentration of changes.

We obtain result pages by submitting 50 queries obtained from the main page of the

collection [She09], which makes them likely to retrieve documents from the collection.

We also submit 5 queries that are unlikely to retrieve any documents (e.g., a sequence

of random characters), to obtain “empty” result pages. Finally, for queries that return

more documents than those visible in a result page, the learning component finds the

component for navigational links (e.g., links or images with “next,” “more results,”

“>,” or numbers). We do this by identifying HTML components that include the

same text (e.g., “next”) but different links (e.g., links that include the query text)

across result pages, and also by verifying that the linked URL is similar to other result

pages based on the tree edit distance of the HTML structure of the pages [FB11]. We

obtain a similarity threshold as the lowest similarity value across all 55 result pages

from the queries above.

• Querying component: The querying component obtains the documents that a query

returns. Specifically, the querying component uses the output of the learning compo-

nent above to issue a query and navigate its result pages, and extracts (hyperlinks to)

returned documents from the result pages. We obtain the clean text of each result

document using Tika [Tik15], a toolkit for extracting text from various file types.

• Maintenance component: The maintenance component keeps our system up-to-date

when the available collections experience format changes (e.g., different formatting of

pages or new placement of advertisements). For this, we use the tree edit distance-

66
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

Relation
Useful Documents (%)
SSK BONG

Person–Career 56.20% 55.95%

Natural Disaster–Location 2.03% 2.74%

Man Made Disaster–Location 0.80% 0.87%

Person–Travel Destination 1.08% 4.67%

Person–Charge 1.55% 1.84%

Election–Winner 0.24% 0.84%

Table 4.2: Relations for our experiments along with fraction of useful documents in TREC
1-5 collections. In this table, Travel Destination and Winner are of type Location and
Person, respectively.

based approach in [FB11]. We regularly compare the structure of the latest observed

versions of the pages of interest (e.g., search forms, result pages, result documents)

against local copies of these pages. We set the validation threshold to 1 for the search

forms, so that we detect all changes in the search interfaces. Our system updates

by re-running the learning phase when the similarity of a given page and its local

counterpart is below the given threshold for the page.

Importantly, because HTML pages often exhibit broken schemas and cannot be automati-

cally parsed, we clean all HTML pages that our system retrieves with the htmlcleaner tool

[htm15].

Training Collection: To learn the queries for our sampling strategies, we need a text

collection that includes useful documents for the extraction tasks of interest, as discussed

in Section 4.1. For this purpose, we combined all documents in the TREC 1-5 collections

[TRE00] to form a collection of 1,038,957 unique documents.

Entity and Relation Extraction Systems: To include a variety of extraction ap-

proaches, we considered different relation extraction systems for each relation (see next),

as well as different entity extraction systems for their corresponding entities. For relation

extraction systems, we selected the two best performing combinations via 5-fold cross vali-

dation over a set of manually annotated documents. Likewise, for entity extraction systems,

we selected the best performing combination for each entity type, and used it across all ex-

traction tasks. However, for diversity, whenever we had ties in performance, we selected

the (arguably) less common contender. We provide details next:

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 67

• Relation Extraction: To extract our relations, we trained relation extraction systems

using REEL (see Chapter 3). The two best performing systems, and the ones that we

use in our experiments, are Subsequence Kernel [BM05b] (SSK) and Bag of n-grams

Kernel [GLR06] (BONG).

• Entity Extraction: To extract person and location entities, we used the StanfordNLP

named entity tagger [Sta15b]; for other entities, we trained our own entity extrac-

tors using E-txt2DB [Etx12]. Our final models are Maximum Entropy Markov Mod-

els [MFP00] for natural disasters and Conditional Random Fields [ML03] for the

remaining entities.

Relations: Table 5.2 shows the broad range of relations from different domains that we

extract for our experiments. We also include the fraction of useful documents for each

relation in our training collection for the different extraction systems above. Our relations

include sparse relations, for which a relatively small fraction of documents (i.e., less than

2% of the documents) are useful, as well as dense relations.

Bootstrapping-based Sampling Techniques: In addition to the techniques discussed

in Section 4.2, we evaluate the bootstrapping-based approach proposed in [AG03]—and

described in Section 4.1—that derives queries from all attributes in extracted tuples. We

also experiment with queries derived from each attribute individually, as done in [FC11], to

assess their impact in sampling quality and efficiency. The bootstrapping-based techniques

that we explore are defined as follows:

• Tuples [AG03] uses all tuple attributes in the query. For example, for the Occurs-

in relation, Tuples produces the query [adairsville AND tornado] from the tuple

〈adairsville, tornado〉.

• P-Tuples [FC11] uses the most “specific” (see below) tuple attribute of the relation

in the query with the goal of producing high-precision queries. To determine the

most specific attribute in a relation, we analyze the schema of all relations supported

by OpenCalais [Ope15a], an online service for information extraction, and use the

least common relation attribute. In our Occurs-in relation, for instance, P-Tuples

68
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

uses the natural disaster attribute, because this is the attribute that appears in the

fewest OpenCalais relations, specifically in just one relation out of 83. P-Tuples thus

produces the query [tornado] from the tuple 〈adairsville, tornado〉.

• R-Tuples [FC11] uses the most “general” (see below) tuple attribute of the relation

in the query with the goal of producing high-recall queries. To determine the most

general attribute in a relation, we analyze the schema of all relations supported by

OpenCalais and use the most common relation attribute. In our Occurs-in relation,

for instance, R-Tuples uses the location attribute, because this is the attribute that

appears in the most OpenCalais relations, specifically in 16 relations out of 83. R-

Tuples thus produces the query [adairsville] from the tuple 〈adairsville, tornado〉.

As discussed in Section 4.1, given a collection, bootstrapping-based techniques start with

a small seed of tuples for the relation of interest likely to be mentioned in the collection.

We rely on a fully automatic approach to obtain such tuples: We collected 20,000 unique

documents from each collection using the crawling technique by Barbosa et al. [BF10]. The

technique in [BF10] generates initial queries using words in the main page of the text collec-

tion, and subsequently generates more queries using frequent keywords from the documents

retrieved using the initial queries. We then run our information extraction systems over the

crawled documents, to obtain tuples for each collection–information extraction system pair.

We do not consider the cost of obtaining these tuples in the overall sampling cost reported

in Section 4.4, to focus on quantifying the actual cost of sampling. For collections that

did not produce tuples following this strategy, we generated seed tuples from the training

collection.

Learning-Based Query Generation Techniques: We now describe different query

generation techniques that learn queries from a training document sample, as discussed in

Section 4.1. Query generation techniques rely on two building blocks, namely, the candi-

date set of keywords and the query generation algorithm. The candidate set of keywords

specifies the words (e.g., all words except for stopwords) in the training documents that the

query generation algorithm can use to construct queries. The query generation algorithm

automatically learns as text queries discriminative words and phrases that separate useful

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 69

from useless documents. As described in Section 4.1, these query generation techniques

assign a score to each word or phrase, which is generally a function of its precision and

recall for useful documents. In detail, our candidate sets of keywords and query generation

techniques are as follows:

Candidate Set of Keywords: We study two candidate set of keywords. For our first set, we

removed: (i) English stopwords reported in MySQL, as they are not effective as queries and

(ii) rare words (i.e., words that appeared in less than 0.003% of the training documents)

and frequent words (i.e., words that appeared in more than 90% of the training documents).

For our second set, we also removed words in tuple attributes (e.g., “tornado”), as originally

suggested in [AG03]. We refer to the first candidate set of keywords as explicit, since at-

tribute values can be used to construct queries; accordingly, we refer to the second candidate

set of keywords as implicit.

Query Generation Algorithm: We explored several techniques from two fundamentally dif-

ferent approaches: (i) keyword selection, which produce single-keyword queries from words

that effectively separate useful from useless documents; and (ii) keyword combination, which

produce phrase queries (e.g., [“tornado swept”]) or Boolean queries (e.g., [tornado AND

vortex]) from word combinations that are discriminative of the useful documents. Specifi-

cally, we evaluated three keyword selection techniques (SVM, IG, and χ2) and two keyword

combination techniques (Ripper and SP), which effectively cover existing query generation

algorithms in the literature. We provide a brief description of these techniques, and explain

how they score words and phrases:

• SVM [MBGM04] trains a linear support vector machine classifier [Joa98a] using the

candidate set of keywords as Boolean features, and scores them with their correspond-

ing learned weights.

• IG [MBGM04] scores each keyword in the candidate set with its information gain

value [KL51].5 We ignore keywords that are more frequent in the useless documents

than in the useful documents.

5The information gain of a keyword W is defined as IG(C) = H(C) − H(C|W), where C =
{useful, useless}, and H(C) and H(C|W) are the entropy and the conditional entropy, respectively.

70
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

• Chi-Squared (χ2) performs the Pearson’s χ2 test [Pea00] over the candidate set of

keywords and scores them with their corresponding χ2 value. Because the test runs

over a 2× 2 contingency table for each keyword—with usefulness of documents (i.e.,

useful or not) and occurrence of a keyword (i.e., it occurs in the document or not)—

and because the table observations that we obtain from the training sample are rather

small, we apply Yates’s correction [Yat34] to the observations6. Yates’s correction

alleviates the upward bias of Pearson’s χ2 test in 2 × 2 contingency tables with low

observations.

• Ripper [AG03] uses the Ripper algorithm [Coh95] to generate classification rules con-

sisting of combinations of words that define useful documents. The algorithm in

[AG03] then transforms the rules into Boolean conjunctive queries. For example, the

rule <“vortex” AND “wind” ⇒ useful> is transformed into the Boolean conjunctive

query [vortex AND wind]. A query is scored with its expected precision, defined as

the ratio of useful documents to the total of documents in the training set that match

its original rule.

• Significant Phrases (SP) [BLNP11a; BLNP12] learns the most frequently collocated

pairs of words [Dun93] from the useful documents and reports them as phrase queries.

For example, for the Occurs-in relation, SP produces queries such as [“richter scale”]

and [“snow storm”]. SP scores each phrase with the Pearson’s χ2 value computed over

its keywords, which indicates how independent its keywords are from one another. To

guarantee that the queries (i.e., collocated pairs of words) are real phrases in the

document sample, we generate all phrases and remove those that do not comply with

the candidate set of keywords at hand: (i) for explicit, we remove phrases with only

stopwords, rare, or frequent words; (ii) for implicit, we also remove phrases that

include words in the attribute values.

We used Weka 3.6 [HFH+09] with default settings to implement SVM (SequentialMin-

imalOptimization), IG (InfoGainAttributeEval), χ2 (ChiSquaredAttributeEval with Yates

6The corrected χ2 value is obtained from χ2(K) =
∑
i∈{0,1}

∑
C∈{+,−}

((OK
i,C−EK

i,C)−0.5)2

EK
i,C

, where k is the

keyword, OKi,C and EKi,C are the observed and the expected value for K of the contingency table, respectively,
and i and C index the occurrence of the term and the usefulness of a document, respectively.

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 71

correction), and Ripper (JRip). To implement SP, we used the significant phrases imple-

mentation of LingPipe [lin15] with default settings, as suggested in [BLNP11a].

Sampling Techniques: We evaluate the techniques described in Section 4.2 and the

bootstrapping-based techniques described above. For QXtract, we retrieve and process

1000 documents per query, while we consider different numbers of retrieved documents for

Cyclic, Balanced, and Opportunistic. Also, for reference, we compare a sampling technique

that prioritizes less-effective queries from the ground up (i.e., without previously assessing

the real effectiveness of queries). Specifically, this technique, which we refer to as Reverse,

proceeds as QXtract (see Section 4.2), although processing top-Q queries in ascending score

order. We use different values of Q in our experiments.

Filtering Conditions: We rely on two filtering conditions, which correspond to the alter-

natives described in Section 4.2. The first filtering condition stops processing queries based

on the performance of the latest N queries that were issued. Specifically, we stop processing

queries when, out of these N queries, the fraction of queries that retrieve at least one useful

document is below a certain threshold τr (see (1) in Table 4.3). The main impact of this

filtering condition occurs during the first query round because, as discussed, queries are

initially issued according to their effectiveness. The second filtering condition stops pro-

cessing queries based on their actual performance, as follows: We stop processing a query

q if its effectiveness computed over the last M retrieved documents (i.e., the precision@M

of the query) is below a certain threshold τq (see (2) in Table 4.3). We evaluated different

values for the parameters in these conditions: We varied N ∈ [10, 100], τr ∈ [0.02, 0.25],

M ∈ [5, 50], τq ∈ [0.05, 0.25]. Finally, we kept for each strategy the settings that collected

on average the largest and highest-quality samples for the same sampling cost, which we

summarize in Table 4.3.

Sampling Execution and Termination: We let each sampling execution issue at most

500 unique queries and process at most 10,000 unique documents, to keep the sampling

cost to reasonable levels. Given an information extraction system and a collection, the

output document sample includes all useful documents for the extraction task at hand

that are processed along the sampling execution. We also terminate the sampling process

after collecting 400 useful documents. According to the results over our tuning collections,

72
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

Technique
Filtering Condition

(1) (2)
τr N τq M

F-QXtract 0.15 75 0.05 150

F-Cyclic 0.15 75 0.05 150

F-Opportunistic 0.15 75 0.05 150

F-Balanced 0.15 75 0.05 50

Table 4.3: Parameter setting for filtering conditions. The parameters correspond to: round
precision threshold (τr), number of queries (N), query precision threshold (τq), and number
of documents (M).

conclusions are analogous for larger sample sizes.

Performance Metrics: We use the following metrics:

• SampleSize@Q and SampleSize@D measure the size of the document sample (i.e.,

number of useful documents in the sample) as a function of the number of issued

queries Q and of the number of processed documents D, respectively.7

• UniqueTuples@S, UniqueTuples@Q, and UniqueTuples@D measure the quality of the

sampling process in terms of the number of unique tuples and attributes as a function

of sample size S, issued queries Q, and processed documents D, respectively. Specifi-

cally, we compute the number of unique tuples using case-insensitive string matching

over each attribute.

• IssuedQueries@S and ProcessedDocuments@S measure the number of queries issued

and documents processed, respectively, to collect a sample of size S. Given a technique

and a sample size S, we only report IssuedQueries@S and ProcessedDocuments@S

if the technique collects at least one sample of size S. Because not all sampling

executions manage to collect document samples of all sizes8, we complement these

measures with the fraction of collections that the technique collects samples of size S

from, which we define next.

7We do not report S or D as a percentage of the total number of documents in the collection being
sampled (e.g., 50% of the documents), since we are unaware of the real size of the collection.

8Some sampling techniques may not reach all sample sizes S for three main reasons: (i) collections may
include (very) small number of useful documents for some relations; (ii) techniques that rely on filtering
conditions may terminate the sampling process early; and (iii) only a limited number of issued queries and
processed documents may be allowed, for efficiency.

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 73

• Coverage@S measures the fraction of collections from which the sampling process

manages to collect samples of size S.9 We evaluate Coverage@S as a complementary

measure to those defined above.

We run all sampling processes five times, to account for randomness, as follows: For

bootstrapping-based techniques, each run uses a different initial set of seed of 20 tuples.

For learning-based techniques, we built 5 disjoint training document samples from our

training collection, each with 5,000 randomly picked useful documents—or the maximum

number of useful documents available for each training sample10—and the same number

of useless documents, so that the training samples are balanced. (Other seed tuples and

training sample sizes yielded similar results during tuning.) Given a collection, we finally

report the average over all executions using the same sampling configuration.

4.4 Experimental Results

We now report our experimental results: We start by evaluating different families of useful

document retrieval techniques (Section 4.4.1). We then evaluate different query execution

schedules (Section 4.4.2) and document retrieval and processing strategies (Section 4.4.3).

Finally, we evaluate the impact of revising the query execution order (Section 4.4.4) and of

filtering underperforming queries (Section 4.4.5).

4.4.1 Impact of Useful Document Retrieval

We evaluate the two document retrieval strategies in Section 4.3, from the bootstrapping-

and learning-based families discussed in Section 4.1.

Efficiency Analysis: We first evaluate efficiency by considering sample size: Figure 4.5

shows SampleSize@D (Figure 4.5a) and SampleSize@Q (Figure 4.5b) for different document

retrieval strategies and processing the top-50 documents per query, for the Person–Career

9We do not report Coverage@S as a fraction of the ideal coverage, since we are unaware of the real
contents of the collections.

10For example, for the Election–Winner relation and using the SSK extraction system, each training
document sample included 499 useful documents, because there were 2494 useful documents in the training
collection.

74
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

(a) SampleSize@D (b) SampleSize@Q

Figure 4.5: Sample size for different useful document retrieval strategies, processing 50
documents per query and for the Person–Career relation. (P-Tuples and R-Tuples refer to
the Career and Person attributes, respectively.)

0

25

50

75

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Processed Documents D

U
ni

qu
eT

up
le

s@
D

Candidate Keywords Explicit Implicit

Measurement Attribute (Career) Attribute (Person) Tuple

(a) χ2

0

25

50

75

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Processed Documents D

U
ni

qu
eT

up
le

s@
D

Technique P−Tuples R−Tuples Tuples

Measurement Attribute (Career) Attribute (Person) Tuple

(b) All bootstrapping-based variants

Figure 4.6: UniqueTuples@D for different useful document retrieval strategies, processing
50 documents per query and for the Person–Career relation. (P-Tuples and R-Tuples refer
to the Career and Person attributes, respectively.)

relation. (Other relations as well as number of documents per query yielded analogous

conclusions.) As shown, learning-based techniques that employ keyword selection, namely,

SVM, IG, and χ2, consistently outperform other techniques after processing 1000 documents

and issuing 100 queries. These techniques sample on average 100% more documents than

other techniques for the same document processing and querying costs. For lower costs,

bootstrapping-based techniques are comparable to keyword selection-based techniques. This

finding corroborates that of previous studies for the related problem of efficiently running an

extraction process over a large text collection (e.g., [AG03]), which state that bootstrapping-

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 75

0

25

50

75

100

0 100 200 300 400 500
Issued Queries Q

U
ni

qu
eT

up
le

s@
Q

Candidate Keywords Explicit Implicit

Measurement Attribute (Career) Attribute (Person) Tuple

(a) UniqueTuples@Q for χ2.

0

25

50

75

100

0 100 200 300 400 500
Issued Queries Q

U
ni

qu
eT

up
le

s@
Q

Technique P−Tuples R−Tuples Tuples

Measurement Attribute (Career) Attribute (Person) Tuple

(b) UniqueTuples@Q for all bootstrapping-based
variants.

Figure 4.7: Number of unique tuples for different useful document retrieval strategies,
processing 50 documents per query and for the Person–Career relation. (P-Tuples and
R-Tuples refer to the Career and Person attributes, respectively.)

based techniques are rather high-precision.

The choice of candidate sets of keywords also affects sampling efficiency, as shown in

Figure 4.5: The explicit candidate set of keywords, which includes values of tuple attributes

in the learned queries (see Section 4.3), targets useful documents more effectively than

its implicit counterpart. (We observed analogous conclusions for all relations, with the

exception of Natural Disaster–Location, for which rather generic words, such as “destroyed”

and “emergency”, are effective and are now highly scored.) We study this relation in

detail later.) This result differs from that in [AG03], where the implicit set of keywords

(almost) always performed the best. We observe the largest performance gap for SVM,

which gave considerably high weights to infrequent—yet discriminative—keywords in the

training documents. These keywords were in turn also infrequent in our test text collections.

This finding corresponds with that of previous studies (e.g., see [CLTW10]) that conclude

that SVMs are many times unable to generalize to other datasets.

Quality Analysis: To evaluate the quality of the samples produced with different doc-

ument retrieval strategies, we measured the number of unique tuples. Figure 4.7 shows

UniqueTuples@D (Figure 4.6) and UniqueTuples@Q (Figure 4.7), processing top-50 docu-

ments per query for the Person–Career relation. For clarity, we show one learning-based

strategy (see side (a) in these figures) and the bootstrapping-based techniques (see side (b)

76
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

in these figures). (Other learning-based techniques, relations, and number of documents

per query yielded similar conclusions.) Our first observation is that the most efficient tech-

niques also exhibit the highest quality: For the same document processing and querying

cost, these (efficient) techniques collect a larger number of tuples, which in effect include a

higher number of unique tuples. For bootstrapping-based techniques, in particular, the qual-

ity positively correlates with the domain of attributes (e.g., names of people, careers) used

as queries. In the Person–Career relation, for instance, there are more people names than

careers; as a result, we observe the highest quality for R–Tuples, which derives queries from

the Person attribute. Unfortunately, the quality of bootstrapping-based techniques is low

compared with that of χ2 and other learning-based techniques. Moreover, these techniques

reach their highest quality values early in the sampling process, which exhibits their quality

limitations. This corroborates the finding in [AIG03], which states that bootstrapping-

based approaches often only reach limited groups of documents—hence limited sampling

quality—in the collections.

Coverage Analysis: We finally evaluate Coverage@S of the document retrieval strategies:

Figure 4.8 shows Coverage@S for the learning- and bootstrapping-based variants of interest.

As shown, learning-based techniques using the explicit set of keywords exhibit the highest

coverage across different sample sizes. Specifically, learning-based techniques manage to

collect useful documents from 30% more collections than other techniques on average. For

bootstrapping-based techniques, P-Tuples collects small samples (75 documents or fewer

for the Person–Career relation) from 10% and 20% more collections than R-Tuples and

Tuples, respectively. For larger samples (100 documents or more, for the Person–Career

relation), in contrast, R-Tuples manages to effectively collect samples from 25% and 40%

more collections than P-Tuples and Tuples, respectively.

Conclusion: Based on the evaluation above, we conclude that learning-based techniques

with keyword selection strategies perform the best for document sampling: They (i) collect

useful documents efficiently (e.g., in terms of processed documents and issued queries);

(ii) sample representative, high-quality documents for all attributes in the extraction task

at hand; and (iii) manage to collect useful documents from more collections than those of

other techniques.

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 77

0

20

40

60

50 100 150 200 250 300 350 400
Sample Size S

C
ov

er
ag

e@
S

Candidate Keywords Explicit Implicit

Technique Chi2 IG P−Tuples R−Tuples Ripper SP SVM Tuples

Figure 4.8: Coverage@S for different useful document retrieval strategies for different sample
sizes, processing 50 documents per query and for the Person–Career relation. (P-Tuples and
R-Tuples refer to the Career and Person attributes, respectively.).

4.4.2 Impact of Query Execution Order

In Section 4.2, we argued that different query execution orders have distinct implications

in sampling efficiency and quality. We now evaluate the discussed query execution orders:

We compare (i) QXtract (see Section 4.2), to assess the performance of prioritizing effec-

tive queries; and (ii) Reverse (see Section 4.3), to assess the performance of prioritizing

less-effective queries. We report our evaluation using χ2 as query generation method and

over the explicit candidate set of keywords, as it performed substantially better than other

techniques and comparably to IG and SVM . We vary the number of (top) learned queries

between 100 and 500.

Efficiency Analysis: To assess the efficiency of different query execution orders, we evalu-

ated QXtract and Reverse over all relations, and for different numbers of queries: Figure 4.9

shows SampleSize@D (Figure 4.9a) and SampleSize@Q (Figure 4.9b) for different query ex-

ecution orders and number of learned queries, for the Man Made Disaster–Location relation.

(Other relations yielded analogous conclusions.) As shown, all versions of QXtract perform

comparably or better than the Reverse counterparts: For small number of highly-effective

queries (see QXtract-100 and Reverse-100 in Figure 4.9), the query execution order has

almost no impact on sampling efficiency. For large numbers of queries (see QXtract-500

and Reverse-500 in Figure 4.9), the impact of the query execution order is considerable,

with QXtract-500 collecting 100% more useful documents than Reverse-500.

Quality Analysis: Beyond efficiency, we also expect the query execution order to impact

78
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

0

5

10

15

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Processed Documents D

S
am

pl
eS

iz
e@

D

Technique QXtract−100 QXtract−300 QXtract−500
Reverse−100 Reverse−300 Reverse−500

(a) SampleSize@D

0

5

10

15

50 100 150 200 250 300 350 400 450 500
Issued Queries Q

S
am

pl
eS

iz
e@

Q

Technique QXtract−100 QXtract−300 QXtract−500
Reverse−100 Reverse−300 Reverse−500

(b) SampleSize@Q

Figure 4.9: Sample size for different query execution orders and number of learned queries,
processing 100 documents per query and for the Man Made Disaster–Location relation.

sampling quality. Figure 4.10 shows UniqueTuples@D (Figure 4.10a) and UniqueTuples@Q

(Figure 4.10b), for different query execution orders and number of learned queries, and

using the explicit candidate set of keywords over the Man Made Disaster–Location relation.

(Other relations yielded analogous conclusions.) As shown, for the number of processed

documents and issued queries, QXtract variants, which prioritize effective queries, collect a

higher number of unique tuples and attributes. This happens because, as discussed above,

effective queries lead to extracting more tuples—hence more unique tuples. However, we

are also interested in the sampling quality of different query execution orders as a function

of the sample size. This cannot be evaluated with UniqueTuples@Q and UniqueTuples@D,

since we have different sample sizes across collections for the same values of Q and D.

To evaluate the intrinsic quality of different query execution orders, and to complement

the quality analysis above, we evaluate sample quality across sample sizes. Figure 4.11

shows UniqueTuples@S for different query execution orders, using the explicit candidate

set of keywords, and over the Man Made Disaster–Location relation. As shown, for small

sample sizes (100 sampled documents or fewer), Reverse variants exhibit sample quality at

least as good as that of their QXtract counterparts. This also holds for sample sizes for

which QXtract has collected more samples (see Sample Size=75 in Figure 4.12).

Coverage Analysis: We finally evaluate the coverage that different query execution orders

exhibit. Figure 4.12 shows Coverage@S for different query execution orders, using the Man

Made Disaster–Location relation. (Other relations yielded analogous results.) Conclusions

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 79

0

3

6

9

12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Processed Documents D

U
ni

qu
eT

up
le

s@
D

Measurement Attribute (Location) Attribute (Man Made Disaster) Tuple

Technique QXtract−100 QXtract−300 QXtract−500
Reverse−100 Reverse−300 Reverse−500

(a) UniqueTuples@D

0

3

6

9

12

0 100 200 300 400 500
Issued Queries Q

U
ni

qu
eT

up
le

s@
Q

Measurement Attribute (Location) Attribute (Man Made Disaster) Tuple

Technique QXtract−100 QXtract−300 QXtract−500
Reverse−100 Reverse−300 Reverse−500

(b) UniqueTuples@Q

Figure 4.10: Number of unique tuples for different query execution orders and number of
learned queries, processing 100 documents per query and using the explicit candidate set
of keywords and for the Man Made Disaster–Location relation.

10

20

30

100 200 300 400
Sample Size S

U
ni

qu
eT

up
le

s@
S

Measurement Attribute (Location) Attribute (Man Made Disaster) Tuple

Technique QXtract−100 QXtract−300 QXtract−500
Reverse−100 Reverse−300 Reverse−500

Figure 4.11: UniqueTuples@S for different query execution orders and number of learned
queries, processing 100 documents per query and using the explicit candidate set of keywords
and for the Man Made Disaster–Location relation.

are manifold: Focusing on a small set of highly-effective queries drastically reduces the

coverage of the techniques for all sample sizes (see QXtract-100 and Reverse-100 in Fig-

ure 4.12). More importantly, the query execution order does not affect the (poor) coverage

in this case. Unlike what we expected, increasing the number of learned queries showed

limited impact in coverage, while its querying overhead was considerable (see Figure 4.9b).

Conclusion: We have empirically corroborated the efficiency and quality implications of

different query execution orders: Prioritizing effective queries leads to more efficient sam-

pling executions that, in turn, collect document samples from a larger number of collections

than prioritizing less-effective queries. Prioritizing less-effective queries, in contrast, leads

80
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

0

5

10

15

50 100 150 200 250 300 350 400
Sample Size S

C
ov

er
ag

e@
S

Technique QXtract−100 QXtract−300 QXtract−500
Reverse−100 Reverse−300 Reverse−500

Figure 4.12: Coverage@S for different query execution orders and number of learned queries
for different sample sizes, processing 100 documents per query and for the Man Made
Disaster–Location relation.

to high-quality document samples, but at a considerably high document processing and

querying cost. Moreover, increasing the number of learned queries has limited impact.

4.4.3 Impact of Document Retrieval and Processing

In addition to the query execution orders analyzed above, we also argued in Section 4.2 that

different document retrieval and processing strategies also impact sampling efficiency and

quality. We now compare: (i) QXtract, which retrieves and process documents exhaustively

for each query; and (ii) Cyclic, which does so incrementally and in rounds. We report our

evaluation using χ2 as our query generation method and over the explicit candidate set of

keywords, as done in Section 4.4.2.

Efficiency Analysis: We evaluate the efficiency of QXtract and Cyclic with different

numbers of documents per round. Figure 4.13 shows SampleSize@D (Figure 4.13a) and

SampleSize@Q (Figure 4.13b) for different document retrieval and processing strategies,

and using the Person–Charge relation. (Other relations yielded similar conclusions.) As

shown, there is a positive correlation between the number of documents per round and

the number of sampled useful documents: QXtract and Cyclic start with highly-effective

queries, which are likely to retrieve useful documents with high precision and recall. This

is better illustrated in Figure 4.13b, where QXtract consistently outperforms all variants

of Cyclic. In terms of processed documents, though, the sampling process benefits from

moving earlier to other queries (see Figure 4.13a), because top queries may not be equally

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 81

0.0

2.5

5.0

7.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Processed Documents D

S
am

pl
eS

iz
e@

D

Technique Cyclic−10 Cyclic−50 Cyclic−100 Cyclic−500 QXtract

(a) SampleSize@D

0.0

2.5

5.0

7.5

50 100 150 200 250 300 350 400 450 500
Issued Queries Q

S
am

pl
eS

iz
e@

Q

Technique Cyclic−10 Cyclic−50 Cyclic−100 Cyclic−500 QXtract

(b) SampleSize@Q

Figure 4.13: Sample size for different document retrieval and processing strategies for the
Person–Charge relation.

effective across collections. As a result, variants of Cyclic with rounds of 100 documents or

more collect larger samples than QXtract, for the same number of processed documents.

Quality Analysis: Beyond efficiency, we also compared the quality of different document

retrieval and processing strategies. Figure 4.14 shows UniqueTuples@D (Figure 4.14a) and

UniqueTuples@Q (Figure 4.14b) for different document retrieval and processing strategies,

using the explicit candidate set of keywords and for the Person–Charge relation. (Other

relations yielded analogous conclusions.) Surprisingly, low values of k (e.g., k = 10) did not

enhance sample quality: Even after processing 8000 documents with Cyclic-10, sampling

quality was lower than that of other variants for only 4000 retrieved and processed doc-

uments. Conversely, and similarly to what we observed for document retrieval strategies

(Section 4.4.1), the number of sampled documents correlates with quality.

Coverage Analysis: Figure 4.15 shows Coverage@S for different document retrieval and

processing strategies, for the Person–Charge relation. (Other relations yielded similar con-

clusions.) As shown, the most efficient techniques, namely, QXtract and variants of Cyclic

with 100 or more documents per round, also exhibit the best coverage. Processing fewer doc-

uments per round tended to deploy querying and document processing effort on less–effective

queries and useless documents, thus compromising the overall sampling performance (see

Cyclic-10 in Figure 4.15).

Conclusion: Based on the evaluation above, techniques that focus on effective queries,

namely, QXtract and variants of Cyclic with 100 or more documents per round, outper-

82
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

0.0

2.5

5.0

7.5

10.0

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
Processed Documents D

U
ni

qu
eT

up
le

s@
D

Technique Cyclic−10 Cyclic−50 Cyclic−100 Cyclic−500 QXtract

Measurement Attribute (Charge) Attribute (Person) Tuple

(a) UniqueTuples@D

0.0

2.5

5.0

7.5

10.0

0 100 200 300 400 500
Issued Queries Q

U
ni

qu
eT

up
le

s@
Q

Technique Cyclic−10 Cyclic−50 Cyclic−100 Cyclic−500 QXtract

Measurement Attribute (Charge) Attribute (Person) Tuple

(b) UniqueTuples@Q

Figure 4.14: Number of unique tuples for different document retrieval and processing strate-
gies, using the explicit candidate set of keywords and for the Person–Charge relation.

0

5

10

15

50 100 150 200 250 300 350 400
Sample Size S

C
ov

er
ag

e@
S

Technique Cyclic−10 Cyclic−50 Cyclic−100 Cyclic−500 QXtract

Figure 4.15: Coverage@S for different document retrieval and processing strategies for the
Person–Charge relation.

formed other configurations. In particular, although these techniques perform comparably,

QXtract is a better choice when querying cost dominates the sampling cost, while Cyclic

prevails when document processing cost dominates sampling cost.

4.4.4 Impact of Revising Query Order

So far, our experimental evaluation is on the intrinsic performance of different query execu-

tion and document processing and retrieval strategies. However, as argued in Section 4.2,

there is valuable information (e.g., the real, observed effectiveness of queries) that we can

exploit along the sampling process. We now study the impact of using this information to

revise the query execution order. We compare (i) Balanced and Opportunistic, which revise

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 83

0

10

20

30

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Processed Documents D

S
am

pl
eS

iz
e@

D

Technique Cyclic Opportunistic Balanced

Figure 4.16: SampleSize@D for different query execution schedules and processing 50 doc-
uments per round for the Natural Disaster–Location relation.

the order of the queries; and (ii) Cyclic, which maintains their original (learned) order along

the sampling process. We report our evaluation using χ2 as our query generation method

and over the implicit candidate set of keywords. Unlike in previous experiments, though, we

only report the number of processed documents, as these techniques issue the same queries.

Efficiency Analysis: We first evaluate the impact on sampling efficiency of revising the

query order. Figure 4.16 shows SampleSize@D for Cyclic, Opportunistic, and Balanced,

processing 50 documents per round (i.e., k = 50) for the Natural Disaster–Location relation.

(Other relations and values of k yielded analogous conclusions.) From the techniques we

evaluated, Opportunistic revises the query order to prioritize queries based on their real,

observed effectiveness. As expected, Opportunistic exhibits the best sampling efficiency on

average. Importantly, the improvement of Opportunistic over other techniques was more

noticeable over collections with a large number of useful documents.

Quality Analysis: We also evaluated the impact in sampling quality, because Balanced

prioritizes less-effective queries. Figure 4.17 shows UniqueTuples@D for Cyclic, Oppor-

tunistic, and Balanced, processing 50 documents per round (i.e., k = 50), using the implicit

candidate set of keywords, and for the Natural Disaster–Location relation. (Other rela-

tions and values of k yielded similar conclusions.) As expected, Balanced exhibits the best

sampling quality for all attributes, even when Opportunistic collected more useful docu-

ments (see efficiency analysis above). More importantly, and similarly to what we pointed

out above, the impact on quality of Balanced is generally more noticeable over collections

that include large numbers of useful documents. These collections tend to return many

84
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

0

10

20

30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Processed Documents D

U
ni

qu
eT

up
le

s@
D

Technique Cyclic Opportunistic Balanced

Measurement Attribute (Location) Attribute (Natural Disaster) Tuple

Figure 4.17: UniqueTuples@D for different query execution schedules, processing 50 docu-
ments per round, using the implicit candidate set of keywords and for the Natural Disaster–
Location relation.

10

20

30

50 100 150 200 250 300 350 400
Sample Size S

C
ov

er
ag

e@
S

Technique Cyclic Opportunistic Balanced

Figure 4.18: Coverage@S for different query execution schedules, processing 50 documents
per round and for the Natural Disaster–Location relation.

useful documents also for less-effective queries; therefore, these queries effectively enhance

sampling quality when prioritized.

Coverage Analysis: Finally, we evaluate the impact on coverage of revising query execu-

tion order. Figure 4.18 shows Coverage@S for different sample sizes for Cyclic, Opportunis-

tic, and Balanced, processing 50 documents per round (e.g., k = 50) and for the Natural

Disaster–Location relation. All compared techniques exhibit similar coverage, which shows

that prioritizing less-effective queries based on their real, observed performance (e.g., in

Balanced) does not impact the fraction of collections from which we can collect samples of

different sizes.

Conclusion: Based on the evaluation above, we corroborated that we can further im-

prove sampling efficiency and quality by accounting for the real, observed effectiveness of

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 85

the queries. Although all techniques performed similarly, on average, Opportunistic and

Balanced exhibited, respectively, the best sampling efficiency and quality, with noticeable

effects on collections with large numbers of useful documents.

4.4.5 Impact of Filtering Underperforming Queries

Our last experiment involves assessing the impact of filtering underperforming queries,

which, as discussed in Section 4.2, can improve sampling efficiency. We compare (i) Cyclic

and QXtract, which issue and process all queries; and (ii) F–Cyclic and F–QXtract, their

filtered counterparts, which filter underperforming queries using the settings of Section 4.3.

Conclusions were analogous for different techniques. We report our evaluation using χ2 as

our query generation method and over the explicit candidate set of keywords.

Efficiency Analysis: We first evaluate ProcessedDocuments@S and IssuedQueries@S for

different sample sizes, which we show in Tables 4.4 and 4.5, respectively. (We later analyze

the coverage of these techniques, which explains why, for instance, samples of 100 documents

for Cyclic are on average less expensive to obtain than those of 50 documents.) As shown,

filtered versions collect samples more efficiently than their unfiltered counterparts. For

example, F–Cyclic needs to process 35% fewer documents and issues 55% fewer queries

than Cyclic to collect samples of 50 useful documents. The main benefit of these filtered

versions is that they stop processing collections that include none—or insufficiently many—

useful documents, which are a large portion of the collections. Overall, F–QXtract exhibits

the best sampling efficiency across different sampling sizes; however, as we will see next,

filtering underperforming queries has undesirable effects on all other relevant aspects of the

sampling process.

In addition to the evaluation above, we study the impact of filtering underperforming

queries on the sample size that we collect at different sampling costs. Figure 4.19 shows

SampleSize@D (Figure 4.19a) and SampleSize@Q (Figure 4.19b) for both the filtered and

unfiltered versions of Cyclic, processing 50 document per round (i.e., k = 50), and QXtract,

for the Election–Winner relation. (Other relations yielded similar conclusions.) As shown,

filtered versions collect on average smaller sample sizes for the same cost, because they (mis-

takenly) stop processing queries that would retrieve useful documents otherwise: QXtract

86
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

0

2

4

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Processed Documents D

S
am

pl
eS

iz
e@

D

Technique Cyclic QXtract F−Cyclic F−QXtract

(a) SampleSize@D

0

2

4

50 100 150 200 250 300 350 400 450 500
Issued Queries Q

S
am

pl
eS

iz
e@

Q

Technique Cyclic QXtract F−Cyclic F−QXtract

(b) SampleSize@Q

Figure 4.19: Sample size for filtered and unfiltered versions of Cyclic (using k = 50) and
QXtract for the Election–Winner relation.

Technique
Sample Size

25 50 100 200 400
F–Cyclic 1067.4 ± 261 1853.2 ± 53.4 3385.9 ± 517.6 5146.8 ± 1006.1 -

Cyclic 2374 ± 336.2 2804.5 ± 328.6 3517.9 ± 463.1 5457 ± 567.3 7126 ± 0
F–QXtract 975.1 ± 245.4 1761.5 ± 62.8 3266.4 ± 81.9 5193.5 ± 983.2 -

QXtract 1977.3 ± 134.4 2617.4 ± 466.4 3281.4 ± 838.7 5617.9 ± 776.3 7169.5 ± 0

Table 4.4: ProcessedDocuments@S for filtered and unfiltered versions of QXtract and Cyclic
(using k = 50), using the explicit candidate set of keywords and for the Election–Winner
relation.

Technique
Sample Size

25 50 100 200 400
F–Cyclic 83.1 ± 12.9 128.9 ± 11.4 224.8 ± 24.8 306.5 ± 74.8 -

Cyclic 245.8 ± 19.2 316.4 ± 19.8 292.5 ± 48 374.7 ± 21.6 500 ± 0
F–QXtract 89.9 ± 23.9 125.7 ± 15.4 214.9 ± 11.3 305.6 ± 70.1 -

QXtract 119.9 ± 10.4 177 ± 22.3 201.1 ± 56.5 298.5 ± 28.2 485 ± 0

Table 4.5: IssuedQueries@S for filtered and unfiltered versions of QXtract and Cyclic (using
k = 50), using the explicit candidate set of keywords and for the Election–Winner relation.

and Cyclic collect samples on average 100% larger than those of F–Cyclic and F–QXtract,

respectively, for the same number of processed documents and issued queries.

Quality Analysis: In Section 4.2, we argued that filtering certain queries has implications

for sampling quality, because the sampling process only focuses on highly-effective queries.

To evaluate their real impact, we compared Cyclic, processing 50 documents per query,

and QXtract to their filtered counterparts in terms of sampling quality: Figure 4.20 shows

UniqueTuples@D (Figure 4.20a) and UniqueTuples@Q (Figure 4.20b), for Cyclic, QXtract,

F–Cyclic, and F–QXtract, using the explicit candidate set of keywords and for the Election–

Winner relation. (Other relations yielded analogous conclusions.) As expected, filtering

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 87

0

2

4

6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Processed Documents D

U
ni

qu
eT

up
le

s@
D

Measurement Attribute (Election) Attribute (Winner) Tuple

Technique Cyclic QXtract F−Cyclic F−QXtract

(a) UniqueTuples@D

0

2

4

6

0 100 200 300 400 500
Issued Queries Q

U
ni

qu
eT

up
le

s@
Q

Measurement Attribute (Election) Attribute (Winner) Tuple

Technique Cyclic QXtract F−Cyclic F−QXtract

(b) UniqueTuples@Q

Figure 4.20: Number of unique tuples for filtered and unfiltered versions of Cyclic (using
k = 50) and QXtract, using the explicit candidate set of keywords and for the Election–
Winner relation.

underperforming queries impacts sampling quality, because less-effective queries that po-

tentially retrieve different groups of documents may not be processed. Also, and similarly

to what we observed above, the techniques that collected more useful documents for the

same document processing and query issuing cost also exhibit the best sample quality, for

all tuple attributes.

Coverage Analysis: We finally evaluate how filtering underperforming queries impacts

the coverage of the sampling techniques. Figure 4.21 shows Coverage@S for different sample

sizes for Cyclic, QXtract, F–Cyclic, and F–Qxtract, and for the Election–Winner relation.

(Other relations yielded similar conclusions.) We identify two regions in this figure worth

analyzing. For small samples (e.g., 200 useful documents or fewer), QXtract and Cyclic

consistently cover more collections than their filtered counterparts: Filtered technique rarely

reach less-effective queries. For large samples (e.g., 200 documents or more), filtered and

unfiltered techniques perform similarly: Filtering conditions do not affect the (typically)

few collections that include large numbers of useful documents; instead, they effectively

stop processing underperforming queries and focus on the rest.

Conclusion: Based on the evaluation above, we corroborate that filtering conditions help

improve the efficiency of the sampling process, but affect other relevant aspects of the

sampling process. We observed that the impact of the filtering step depends on the number

of useful documents in the collections: Filtered techniques are as effective as their unfiltered

88
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

0.0

2.5

5.0

7.5

10.0

50 100 150 200 250 300 350 400
Sample Size S

C
ov

er
ag

e@
S

Technique Cyclic QXtract F−Cyclic F−QXtract

Figure 4.21: Coverage@S for filtered and unfiltered versions of Cyclic (using k = 50) and
QXtract for the Election–Winner relation.

counterparts over collections with large numbers of useful documents, while they tend to

affect collections with only a small number of useful documents considerably. As we will see

in Chapter 5, we many times need to focus on collection with large numbers of documents,

so filtering underperforming queries may be beneficial.

4.5 Conclusions

In this chapter, we systematically studied the problem of query-based sample generation for

information extraction over a text collection. We considered (i) alternative query execution

schedules, which vary on how they account for the query effectiveness, and (ii) alternative

document retrieval and processing schedules, which vary on how they deploy the extraction

effort over documents. Our large-scale evaluation, the first to the best of our knowledge,

yielded several important conclusions: (i) schedules that focus on effective queries improve

sampling efficiency, while schedules that prioritize less-effective queries favor quality; and

(ii) processing the documents of highly-effective queries exhaustively consistently exhibits

high sampling efficiency, but processing documents incrementally and in rounds can many

times (e.g., with round sizes of 100 documents or more) exhibit better sampling efficiency

and quality.

We also evaluated several different useful document retrieval methods: Learned keyword

queries performed substantially better than queries derived from tuples, which have been

widely used in the existing literature. Additionally, we evaluated the implications of revising

CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 89

the order of the queries and of filtering underperforming queries: Revising query order

during sampling helps improve sampling efficiency—when effective queries are prioritized

in each round—and quality—when less-effective queries are prioritized instead. Moreover,

filtering underperforming queries improves sampling efficiency considerably, although it

compromises all other relevant aspects of the sampling process.

Putting it all together, the key contribution of this chapter is the development and

thorough evaluation of sampling configurations that produce better-quality document sam-

ples for information extraction, and with executions that are several times more efficient,

than those possible with the sampling techniques adopted in the literature. As we will see

throughout this dissertation, the sampling techniques in this section were crucial for the

deployment of our approaches at scale. Furthermore, the (high) quality of our document

samples improves the overall performance of the extraction process. In conclusion, our re-

sults provide a roadmap for addressing this critically important building block for efficient,

scalable information extraction.

90
CHAPTER 4. SAMPLING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 91

Chapter 5

Ranking Text Collections for

Scalable Information Extraction

In Chapter 2, we argued that information extraction is generally a computationally expen-

sive process, and that improving its efficiency, so that it scales to large volumes of text, is of

critical importance. We now introduce and address the problem of ranking text collections

for an information extraction task, to prioritize the extraction effort by focusing on collec-

tions with substantial numbers of useful documents for the information extraction task. An

approach for this task should rightfully conclude, for example, that FEMA [FEM15], a key

up-to-date resource for natural disasters and other hazards in the United States introduced

in Section 2.2.2, is better for extracting Occurs-in tuples than PubMed [Pub15], a well-

known resource for life sciences and biomedical research with over 22 million abstracts and

references to research papers also introduced Section 2.2.2. This collection ranking problem

is related to the problem of resource selection in distributed information retrieval [SS11,

Chapter 3], to identify topically relevant collections for a given user query. Unlike in dis-

tributed information retrieval, though, our information extraction scenario requires that we

identify collections with useful documents for the extraction task, rather than documents

that are topically relevant for a given query. Despite this difference in focus, we can adapt

resource selection approaches to our information extraction scenario, as we will see, as well

as develop alternative, information extraction-specific approaches.

92
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

To effectively rank text collections for a given extraction task, we develop approaches

that target the useful documents for the extraction task in question. We compare both

(adaptations of) state-of-the-art resource selection strategies and information extraction-

specific approaches in an extensive experimental evaluation over realistic Web text col-

lections, and for several different extraction tasks. In summary, the contributions of this

chapter are:

• We review (adaptations of) traditional approaches for estimating, for each text col-

lection, the number of useful documents for a given extraction task (Sections 5.2 and

5.3).

• We present information extraction-specific approaches for estimating, for each text

collection, the number of useful documents for a given extraction task (Section 5.4).

• We report the results of an extensive evaluation of both (adaptations of) traditional

approaches for distributed information retrieval, and information extraction-specific

approaches over real-world Web collections and for several different information ex-

traction tasks. Our results show the merits and limitations of the alternative families

of approaches, and provide a roadmap for addressing this critically important building

block for efficient, scalable information extraction (Sections 5.5 and 5.6).

We now review necessary background and introduce the problem of ranking text collec-

tions for efficient and scalable information extraction, our problem of focus in this chapter

(Section 5.1). The bulk of this chapter has been published as [BGD15].

5.1 Background and Problem Definition

To run an information extraction system over the available text collections, a näıve, expen-

sive approach could resort to state-of-the-art approaches for efficient query-based informa-

tion extraction execution (e.g., [AG03; FC11; BLNP11a]) over each collection individually,

as described in Section 2.3.1 Such a näıve approach would be unnecessarily expensive,

1Our approach is not applicable over open information extraction scenarios (e.g., [BCS+07]) where doc-
uments frequently contribute tuples to the open-ended extraction task.

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 93

because not all collections contain any useful documents. Therefore, to prioritize the infor-

mation extraction effort, for efficiency, we focus on the problem of ranking text collections

for an information extraction task of interest. Our approaches should be applicable to fully-

accessible text collections as well as to deep web text collections, discussed in Section 2.2.

A related problem, resource selection, has been studied in the context of distributed

information retrieval, to rank collections according to their topical relevance to a given user

query [SS11]. Resource selection approaches generally consist of two steps: (1) descriptor

generation: in an offline step, build a compact, representative collection summary (e.g.,

consisting of word frequency vectors [CLC95; GGMT99] or document samples [SC04; SZ07]);

(2) relevance estimation: to process a given query, use the collection descriptors to estimate

the number of topically relevant documents in each collection, and rank the collections

accordingly.

Unlike in distributed information retrieval, our information extraction scenario requires

that we identify useful collections, or collections with useful documents for the extraction

task, rather than collections with documents that are topically relevant to a given query.

As a result, the collection descriptors will need to effectively capture the characteristics of

the useful documents, a challenging proposition because of two critical reasons. First, the

notion of document usefulness is, by definition, specific to a given extraction task, so our

collection ranking approaches—and the collection descriptors on which they rely—will have

to be flexible to adapt to each given extraction task. In particular, the “one-size-fits-all”

descriptors adopted by resource selection approaches for distributed information retrieval

would not be appropriate for our information extraction scenario. Second, the fraction of

documents in a collection that are useful for an information extraction task can many times

be very small (see Section 2.3), so our collection ranking approaches—and the estimation

techniques on which they rely—will have to effectively target the useful documents, to keep

the ranking overhead to manageable levels.

To prioritize text collections for an extraction task, we must identify the most useful

collections, namely, the collections with the largest numbers of useful documents for the

IE task. Therefore, we need to estimate the number of useful documents in each collection

and, importantly, we need to do so efficiently (e.g., by issuing a relatively small number

94
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

where to run IE?where to run IE?
text collections

ranked for IE:
IE system

30k 8k 0

fema.gov nytimes.com pubmed

estimation # useful
docs.

fema.gov nytimes.com pubmed

Figure 5.1: Collection ranking for information extraction.

of queries to each collection). For this estimation problem, we could exploit state-of-the-

art techniques for measuring certain (queryable) collection properties (e.g., their number

of documents) [ZZD11; BYG11; ZZD13]. Unfortunately, as we will see, such techniques

can be prohibitively expensive for information extraction, because they may need to issue

many queries to sufficiently cover the (often rare) useful documents for an extraction task

of interest.

We summarize the problem that we address in this chapter as follows:

Problem Definition 2 Consider a set of text collections and an information extraction

task T with its corresponding (previously trained) information extraction system. Our goal

is to rank the collections according to their number of useful documents for the IE task T

(see Figure 5.1). Furthermore, the ranking process should be efficient (e.g., in terms of the

number of queries issued to each collection), to keep its overhead to reasonable levels.

Earlier efforts to identify collections for an extraction task (e.g., [JS09; AC05]) have fo-

cused on the quality of the extraction output, rather than its volume. The (complementary)

methods described in this chapter can be adapted to consider quality (see Chapter 10).

5.2 Overview of Estimation Approaches

To prioritize the information extraction effort and rank text collections for an extraction

task, we need to estimate the number of useful documents for the information extraction

task in each collection. Specifically, for each collection C , we will estimate the cardinality

of C u, the set of useful documents in C for the information extraction task at hand. In this

section, we provide an overview of three families of state-of-the-art estimation approaches

that we can adapt for the task.

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 95

Given an information extraction task, we can cast the problem of estimating the number

of useful documents for the task in a text collection as an instance of the generic task of

estimating a “property” of interest for a text collection, which has been studied extensively

in the research literature. Such a property F of a collection C is typically defined as an

aggregate over a document-level function, say, f(d). A simple example is the estimation of

the number of documents in a text collection C : in this case, f(d) = 1 for every document

d in C , and F (C) =
∑

d∈C f(d). In our information extraction scenario, to estimate the

number of useful documents we should define f(d) = 1{d is useful}, that is, as the indicator

function that returns 1 if d is useful and 0 otherwise. Various methods have been proposed

to estimate properties of (queryable) document collections (e.g., collection size, number

of documents relevant to a query, average document length) [BYG11; HSB+10; ZZD11;

ZZD13], and these methods can be classified in three broad classes: (i) surrogate-based

methods, (ii) query pool-based methods, and (iii) query pool-free methods.

Surrogate-based methods construct an approximate representation of the entire collec-

tion, and then use that surrogate to estimate the metric of interest, without further accessing

the actual collection. A surrogate typically comprises a (relatively small) document sample

(e.g., [SC04; SZ07]), or document frequency estimations for the terms occurring in the col-

lection (e.g., [CLC95; GGMT99]). In resource selection for distributed information retrieval,

such representations have been widely used to estimate the number of documents relevant

to a query (e.g., CORI [CLC95], GlOSS [GGMT99], ReDDE [SC04], and Relax [SZ07]).

For example, ReDDE builds a random document sample S for each collection C , once and

for all. Simply stated, to judge the relevance of C to a query q, ReDDE extrapolates the

number of documents relevant to q in S to the entire collection.

Query pool-based methods pick queries from a predefined query pool Q (e.g., a dictionary

of words or n-grams collected from extensive web crawls) to retrieve—from the collection

at hand—documents from which to estimate the metric of interest. Unlike the collection-

specific surrogates, the query pool can be shared across collections and can also be targeted

specifically to the estimation task at hand. The query pool-based method in [LSYM01] aims

at estimating collection size effectively but is inefficient: for large collections, the samples

required to produce accurate estimates are very large. Subsequent (query pool-based) meth-

96
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

d1

d2

d3

d4

q1

q2

q3

q4

q5

Query matches and
retrieves document

Query matches but
does not retrieve
document
(Only top-2 retrieved)

Queries Documents

sampled edgessampled edges

Figure 5.2: An example (query, document)-graph: the estimate contribution f(d1) from
document d1 has a 1

3 weight (since its sampled degree is 3) and f(d3) is counted twice, each
time with weight 1

2 .

ods addressed this limitation, and sample random edges from a (query, document)-graph, as

sketched in Figure 5.2: the graph vertices are queries q ∈ Q and documents d ∈ C , a solid

edge (q, d) means that q retrieves d, and a dashed edge (q, d) means that q is mentioned

in the contents of d but not retrieved (see Section 2.2.2 for possible reasons of this case).

For each sampled (q, d) pair, the measure f(d) contributes to the estimation of F (C) with

a weight that is proportional to the probability of having sampled d. Pool-based methods

work well, provided the query pool Q retrieves all documents of interest for the metric (i.e.,

for which f(d) 6= 0).

Query pool-free methods avoid relying on a query pool, and rather find the queries to

issue “on the fly.” These methods use a seed query (e.g., a common word or phrase) to

retrieve a first set of documents and select the next query to issue from these documents.

Thus, they issue queries and retrieve documents to perform a random walk on a graph where

nodes are either queries [ZZD13] or documents [BYG08]. To properly weigh the particular

f(d) value derived from visiting a node in such graph, these methods use the fact that the

probability of visiting a node during a random walk is proportional to its number of incident

edges.

In our information extraction scenario, we need to estimate the number of useful doc-

uments in a text collection for an information extraction task of interest. Unfortunately,

only very few or no useful documents might be present in a truly random document sample

from the collection, given that useful documents might be rare for an information extraction

task. This poses a problem for all three families of estimation methods summarized above.

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 97

Family
Technique
(B or IE)

Collection IE

Surrogate
ReDDE (B)

(Section 5.3.1)

Document
sample + size

estimate
Queries

Surrogate (IE)
(Section 5.4.1)

Term-frequency
map + size

estimate

Document
sample

Query
Pool-Based

PB (B)
(Section 5.3.2)

In sum: - In generic:
-

In specific:
query poolIn avg: size

estimate
PB-W (IE)

(Section 5.4.2)
In sum: - In generic:

weights
In specific:
query pool
+ weights

In avg: size
estimate

Query
Pool-Free

PF (B)
(Section 5.3.3)

Query sample -

PF-W (IE)
(Section 5.4.3)

Query sample Query sample

Table 5.1: Summary of the characteristics of the baseline (B) and information extraction-
specific (IE) methods in Chapter 5.

The next sections describe the existing approaches in detail (Sections 5.3.1 through

5.3.3) and derive information extraction-specific estimators that effectively target useful

documents (Sections 5.4.1 through 5.4.3). By aiming to collect documents for which f(d) 6=

0, our information extraction-specific methods are designed to have more non-zero terms

in their estimation, thus alleviating the limitations of existing estimation techniques for

other tasks. Table 5.1 summarizes the requirements of each estimation method to handle

collections and information extraction tasks.

5.3 Traditional Estimation Approaches: Adaptation for Col-

lection Usefulness

We now review relevant details of the traditional estimation approaches that we consider

in this chapter, and adapt them to our collection usefulness estimation. Specifically, we

consider surrogate-based (Section 5.3.1), query pool-based (Section 5.3.2), and query pool-

free (Section 5.3.3) estimators.

98
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

5.3.1 Surrogate-Based Estimator

Our first (baseline) estimator is an adaptation of ReDDE, a resource selection technique

for distributed information retrieval [SC03]. To estimate the number of topically relevant

documents for a query q in a collection C , ReDDE predicts the relevance of a representative

sample S ⊂ C and scales it to the entire collection with a factor SF = |C |/|S | to obtain

a collection relevance metric Rel(q,C). This metric relies on estimating (i) the collection

size |C | and (ii) the relevance of sample documents in S to the given query q. The size |C |

is query-independent and thus computed once and for all (e.g., using the sample-resample

method [SC03]), while the query relevance for C is based on issuing q to a centralized global

sample unifying all individual collection samples.

Specifically, the relevance of query q for a collection C is measured in terms of the

expected number of relevant documents R̂elCq in C for q, defined as:

R̂elCq =
∑
di∈S

P (rel|di, q) · SF,

where P (rel|di, q) is the probability of document di being relevant to q. Here, P (rel|di, q) is

computed using an estimated global document ranking obtained from issuing q to a global

collection (that includes all documents from all collections): ReDDE will assign a query-

specific constant Cq to the top-n documents (e.g., 1% of the total number of documents)

and 0 to all other documents. The position σ(di) of document di in the global ranking is

computed as:

σ(di) =
∑

σS(dj)<σS(di)

|C dj |
|Sdj |

,

where σS(di) is the position of document di in the (ranked) list of documents retrieved

by q from the centralized sample, for a given effective retrieval method (e.g., INQUERY

[CCB95]), and C dj and Sdj are the collection of document dj and its document sample.

Intuitively, σ(di) estimates the number of documents that would be ranked higher than di

in a global ranking for query q.

To apply ReDDE to our information extraction scenario, we could intuitively replace

the relevance of a document with the real usefulness of d (i.e., f(d) = 1{x is useful}),

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 99

obtained by running the information extraction system at hand over d. However, this

is problematic: Finding a single query that effectively models the information extraction

task at hand is complicated, given the variations in language to express extraction tasks

and that standard keyword search identifies documents whose topic is relevant to queries,

without considering their relevance to the extraction task at hand. More importantly, a

random sample might have very few or no useful documents because, as discussed, useful

documents for an information extraction task are often rare. This may lead to many zero

estimates.

Instead, we model the information extraction task as a set of high-performing queries

Qie, which we can automatically learn (e.g., see QXtract [AG03]). We thus calculate collec-

tion relevance for the information extraction task as a sum of the ReDDE relevance metric,

taken over the top-k queries from our set of information extraction-specific queries:

ˆ|C u| =
∑

q∈topk(Qie)

Rel(q,C).

Importantly, and in contrast to the original ReDDE proposition, in our (multiple-queries)

formulation documents can potentially be retrieved by many queries. To avoid computing

the relevance of documents multiple times, we account for their relevance once and for all.

Furthermore, ˆ|C u| is not an absolute estimate of the number of useful documents, because

the few queries in topk(Qie) might be far from comprehensively expressing all variations of

mentions for the extraction task at hand. Rather, ˆ|C u| is a relative estimate, where higher

values indicate higher usefulness.

5.3.2 Query Pool-Based Estimator

We consider the method of Bar-Yossef et al. [BYG11], which set the foundations for subse-

quent query pool-based estimators (e.g., [ZZD11]) and allows estimating any generic metric

that can be expressed as a discrete integral over the documents in C :

Intπ(f) ,
∑
d∈C

f(d) · πD(d),

100
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

where f is the target function of interest and πD weighs documents as needed (e.g., πD(d) =

1 if all documents contribute equally). As indicated in Section 5.2, documents d ∈ C are

obtained by issuing queries from a pool Q . The method of Bar-Yossef et al. relies on two core

ideas: (i) extend πD to a measure over the (query, document)-space Q × C , and (ii) apply

importance sampling to use a practical sampling strategy, selecting a (query, document)-pair

with probability p(q, d), rather than from the probability distribution induced by πD , which

is unfeasible to sample from. For Item (i), the extended measure is:

π(q, d) ,
1{d ∈ Cq} · πD(d)

ω(d)
,

where Cq is the set of documents that q retrieves from C and ω(d) is the degree of document

d, defined as the number of queries in Q that retrieve d. With this extended measure π,

referred to as the target distribution, and defining g(q, d) , f(d), it is easy to see that

Intπ(g) = IntπD (f). For Item (ii), the practical sampling strategy is: (1) pick a random

query q from the set of queries that return at least one document, noted as Q+, and then

(2) randomly pick one of the documents it retrieves:

p(q, d) ,
1

|Q+|
· 1{d ∈ Cq}

|Cq|
.

In importance sampling, p(q, d) induces a probability distribution referred to as the

trial distribution. The idea is then to sample (query,document)-pairs according to this

trial distribution, and correct the estimate with a factor w(q, d) to obtain the following

(corrected) estimator2:

IS(q, d) = f(d) · π(q, d)

p(q, d)
= f(d) · w(q, d). (5.1)

Here, w(q, d) is referred to as the importance weight, and is defined as:

w(q, d) ,
π(q, d)

p(q, d)
=
πD(d) · |Q+| · |Cq|

ω(d)
,

2This is valid as long as supp(p) ⊇ supp(π), where supp(p) , {x ∈ C : p(x) > 0}.

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 101

which yields the unbiased importance sampling estimator for Intπ(f) when used in (5.1).

Bar-Yossef et al. use an efficient estimator u(q, d) of w(q, d), defined as u(q, d) = πD(d) ·

PSE · |Cq| · IDE(d), with a pool size estimator PSE for |Q+| and an inverse degree estimator

IDE(d) for 1/ω(d), in turn, to calculate the approximate importance sampler (AIS):

AIS(q, d) , f(d) · u(q, d)

The authors show that if u approximates w well, and if the ratio u/w is uncorrelated with

f , AIS remains largely unbiased.

However, directly using AIS in our information extraction scenario is problematic: (i) the

number of queries to issue and subsequent information extraction-processing of returned

documents to determine f(d), to find some useful documents, may be high; and (ii) the

estimation will have high variance because of the few non-zero f(d) values.3 To address

the first limitation for the related problem of counting the frequency of a given word (e.g.,

“sports”) in a collection, Zhang et al. identify the queries that are positively correlated with

the word (e.g., query [golf]) [ZZD11]. The query sampling process is then stratified over

correlated and uncorrelated queries. Unfortunately, this approach still requires issuing a

large number of queries.

Estimator for Averages: A variant of the above estimator for sums [BYG11] computes:

Avg(f) =

∑
i f(d) · u(qi, di)∑

i u(qi, di)
,

where the PSE factor cancels out, and obtains the estimator by multiplying Avg(f) by the

size of the collection. This collection size estimation can be done once and for all, and reused

for different metrics (e.g., for the usefulness for different information extraction tasks), to

amortize its cost. This estimator allows for a more efficient, yet low-bias estimator for

1/ω(d), that derives directly from the contents of d, incurring no additional querying cost:

(1) generate all possible queries from the contents of d and (2) count their incidence in Q .

Such a degree estimator, however, would incur substantial bias if applied directly on an

3The variance can be reduced via Rao-Blackwellization, as suggested in [BYG11], which requires running
information extraction over all retrieved documents. We evaluate this version of the algorithm later in the
experimental section (Section 5.6).

102
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

estimator for sums [BYG11].

5.3.3 Query Pool-Free Estimator

We focus on the method introduced by Zhang et al. [ZZD13], using a query graph:4 (i) the

nodes are h-grams5 q that retrieve at least u documents6 and (ii) undirected edges connect

a node pair (q, q′) if q′ matches (i.e., appears in the text of) at least one of the documents

that q retrieves, and vice versa. Since a random walk implies that a node q is visited with a

probability proportional to its degree d(q), each per-query estimate is weighted with 1/d(q)

to agree with uniform sampling. To estimate d(q), we retrieve all documents Cq returned by

issuing q, get the h-grams they contain as Q ′ (as potential neigbors of q) and then sample

(uniformly at random, with replacement) a q′ ∈ Q ′, until we find such a q′ that (i) retrieves

at least u documents, and (ii) q is among the h-grams found in the documents Cq′ . If we

need n tries to find such q′, then we estimate ˆd(q) = |Q ′|/nall. The estimation of a function

F (C) =
∑

d∈C f(d) from sampled queries S from graph Q is:

F̂ (C) = ˆ|Q | ·

∑
q∈S

1/d(q) ·
∑
d∈Cq

f(d)/ω(d)∑
q∈S

1/d(q)︸ ︷︷ ︸
useful documents per sampled query

= |Vc| · λ̃ (Vc) ·

∑
q∈S

1/d(q) ·
∑
d∈Cq

f(d)/ω(d)∑
q∈S∩VC

1/d(q)
. (5.2)

4The pool-free approach in [BYG08] defines a document graph where: (i) a pair of documents (d, d′) is
connected if they are retrievable by the same query (i.e., they are connected to the same query q in the
(query,document)-graph of Figure 5.2), and (ii) the edge between two documents (d, d′) is weighted with the
number of such queries they share. The limit distribution p(d) of the random walk corresponds to selecting
document d proportionally to its degree ω(d) in the (query, document)-graph. To rescale this distribution
to a uniform target distribution π(d), we could adopt a similar idea to that of the pool-based approaches
above: We can distribute the weight of a document across its edges and obtain an unbiased estimator.
Unfortunately, this document graph approach is inefficient, since it may issue a few million queries to obtain
only a few thousand documents.

5Zhang et al. argue that h = 1 works well in practice.

6Parameter u controls the size and connectivity of the graph. Zhang et al. propose u = 3.

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 103

Here, ω(d) is the number of queries in Q that retrieve d. Furthermore, the size of the

query graph ˆ|Q | is estimated from a startup query collection VC .7 Specifically, VC is a

sample of the vocabulary of h-grams appearing in the collection, obtained from all the

documents of another random walk, and that is independent of the random walk to obtain

S . Because many h-grams in VC retrieve fewer than u documents, λ̃ (VC), an unbiased

estimator of the fraction of h-grams in VC that retrieve at least u documents, is used to

correctly compute ˆ|Q |. In [ZZD13], λ̃ (VC) is assessed by drawing a random sample of h-

grams in VC , issuing them to the collection at hand, and computing the fraction of them

that retrieve u documents or more.

While eliminating a potential coverage issue by avoiding an a priori query pool, the

resulting estimation may still require many queries in the information extraction scenario,

to find sufficiently many useful documents.

5.4 Information Extraction-Specific Estimators for Collec-

tion Usefulness

In the previous section, we described traditional estimation approaches for different families

of estimation approaches. We now describe our information extraction specific estimators

for these relevant families. Specifically, we describe surrogate-based (Section 5.4.1), query

pool-based (Section 5.4.2), and query pool-free (Section 5.4.3) estimators.

5.4.1 Targeted Surrogate-Based Estimator

An alternative, information extraction-specific estimation approach to the surrogate-base

method in Section 5.3.1 could be simply to collect a random sample S from a collection

C , run the information extraction system over the documents in S , and extrapolate the

number of useful documents to the full collection C as in ReDDE, namely, ˆ|C u| = SF · |Su|

with scaling factor SF = |C |/|S |. Unfortunately, a random sample might have very few or

no useful documents because, as discussed. To address this problem, the document sample

S should be then biased towards useful documents.

7We correct an erroneous 1/|S| factor from [ZZD13, eq. (5)].

104
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

The proposition above implies that we subsequently have to correct the scaling factor

SF for the usefulness bias of S . The main idea is to look at document frequency differences

of certain terms between the sample S and the full collection C . For a given term t, let

df(t,X) be the fraction of documents in X that contain t, and define the frequency ratio

in the sample vs. in the full collection as αS
t ,

df(t,S)
df(t,C) . We propose to use the average of

this ratio over useful terms, Tu, as a heuristic scaling factor: SF = ETu

[
1/αS

t

]
, where

useful terms are those that are (i) biased towards usefulness, in contrast to “neutral” terms

that would appear equally in useful and useless documents; and (ii) overrepresented in the

sample (i.e., αS
t > 1). The rationale for this choice of SF is that the overrepresentation

of such useful terms in S compared to in C is a good proxy for the overrepresentation of

useful documents. (We can find Tu through standard statistical significance tests.)

A formal motivation of our SF starts from stochastic variables defined for a document

d: (i) S: the event that d is selected in the sample, (ii) U : the event that d is useful, and

(iii) T : the event that d contains a given term t. We thus can write (applying Bayes’ rule

and P (U |S) · P (S) · |C | = P (U, S) · |C | = |Su| for the last two transitions):

|C u| = P (U) · |C | = P (U |S) · P (S)

P (S|U)
· |C | = 1

P (S|U)
· |Su|.

Now, we claim that P (S|U) ≈ P (S|T) holds for useful terms: (a) if a term is highly

useful, we expect it to appear in useful documents (regardless of the adopted sampling

strategy), i.e., P (T |U, S) ≈ P (T |U) or, more specifically, P (T |US)
P (T |U) ≈ 1; (b) if a term is

overrepresented in the sample, then the probability of sampling a document including this

term is independent on the document’s usefulness and, consequently, P (S|U, T) ≈ P (S|T).

Combining Item (a) and Item (b) corroborates our claim. We thus corroborate our

hypothesis as:

P (S|U) =
P (S|UT) · P (T |U)

P (T |U, S)
≈ P (S|U, T) · 1 ≈ P (S|T)

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 105

Thus, for a useful term t (with Xt , documents in X containing t):

|C u| = 1

P (S|U)
· |Su| ≈ 1

P (S|T)
· |Su| = P (T)

P (S) · P (T |S)
· |Su|

=
P (T)

P (S, T)
· |Su| = |Ct|/|C |

|St|/|C |
· |Su| = df(t,C)

df(t,S)
· |Su| = 1

αS
t

· |Su|.

Importantly, we assume that we know the document frequencies df(t,C) in the complete

collection, as well as the collection size |C |. We can estimate these values reliably once and

for all for each collection (e.g., see [IG08] and [SC03]).

5.4.2 Targeted Query Pool-Based Estimator

For our query-pool based estimator, we adapt the Bar-Yossef et al. approach in Section 5.4.2,

with target and trial distributions that are aligned with f(d) for usefulness: Our target

distribution assigns probabilities greater than 0 only to useful documents:

πu(q, d) ,
1{d ∈ C u

q } · πD(d)

ω(d)
,

where C u
q is the set of useful documents that q retrieves from C . Our trial distribution,

accordingly, should (i) retrieve useful documents with high recall and precision, and (ii) be

efficient to sample from.

One possible approach for our trial distribution would be to define a query pool that

is specific to the extraction task at hand to, in turn, directly apply state-of-the-art esti-

mators such as those above (e.g., [BYG11; ZZD11]). For example, a query pool for our

Occurs-in relation would include words correlated with natural disasters (e.g., “richter”,

“hurricane”, “aftermath”). To automatically generate these queries, we could resort to the

learning approach in QXtract [AG03]. Unfortunately, these queries exhibit far-from-perfect

recall [BLNP11a; AG03], in that not all useful documents can always be retrieved. (i.e., the

aforementioned coverage issue, which is difficult to assess and correct). Moreover, precision

would also be compromised: relevance to the issued query does not necessarily imply a

document would contain extractable tuples.

To alleviate the recall and precision limitations above, and to retrieve useful documents

106
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

with high recall and precision, we propose to give higher selection weight to (potentially)

useful queries, rather than focusing on a few queries correlated to the extraction task.

Specifically, for recall, we obtain our query pool from a large, external text collection E

that we can process once and for all. For precision, we learn the usefulness of—and assign

proportional selection weights to—queries with respect to the given information extraction

task: (1) process E with the information extraction system at hand, to identify the useful

documents (2) query E with all words in the documents, and (3) count the useful documents

within the top-k results for each query q, noted as |Eu
q |. Importantly, the step Item (1) above

requires that the external collection E has useful documents, which may be non-trivial for

some information extraction tasks. Such assumption is acceptable, however, because the

cost of finding a collection with useful documents has to be paid once and for all. Finally,

our trial distribution assigns a selection weight to each query q, defined as w · |Eu
q |+ |En

q |,

where |En
q | is the number of useless documents within the top-k results for q.8

Given these query selection weights, our trial process consists of two steps: (1) pick a

useful query q, namely, a query that retrieves at least one useful document, proportion-

ally to its weight, and (2) pick a document from q’s useful results uniformly at random.

Specifically, for Item (1), we need to issue queries until retrieving (at least) one useful doc-

ument. For Item (2), we need to sample documents uniformly at random from q’s results

and process them with the extraction system until we find a useful document. This yields

the following trial distribution:

pu(q, d) ,
w · |Eu

q |+ |En
q |

Zw
·
1{d ∈ C u

q }
|C u
q |

.

Here, Zw =
∑

q∈Qu
+

w · |Eu
q |+ |En

q | is the normalization factor of the probability distribution

induced by the queries that retrieve at least one useful document, Qu
+. We can now obtain

our importance weight function as:

wu(q, d) ,
πu(q, d)

pu(q, d)
=

Zw · πD(d)

ω(d)
·

|C u
q |

w · |Eu
q |+ |En

q |
,

8|En
q | in the selection weight operates as a smoothing factor: Many of the words that do not match useful

documents in E may do so in the collection at hand.

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 107

which we need to compute only over the useful documents. Similarly to [BYG11], we rely

on an efficient estimator uu of wu, defined as:

uu(d, q) ,
NFE · IDE(d) ·UE(q) · πD(d)

w · |Eu
q |+ |En

q |
,

to keep estimation costs to reasonable levels. Here, NFE and UE(q) are estimators of

normalization factor Zw and number of useful documents retrieved by a query.

The key challenge in computing NFE is to account for the number of queries |Qu
+| and

the distribution of their selection weight. We can compute them both on the fly while

sampling during our trial process: Both factors can be computed by sampling according

to the selection weight, instead of uniformly at random, as for the PSE estimator in Bar-

Yossef et al. [BYG11]. We compute NFE by keeping track of the fraction of sampled

queries that retrieve at least one useful document, defined as α, and in turn computing

NFE = α ·
∑

q∈Q(w · |Eu
q | + |En

q |).9 To compute UE(q), we proceed similarly to IDE

computation Bar-Yossef et al. [BYG11]: We sample documents uniformly at random from

Cq until we find a useful document; if we find the useful document after processing n

documents, then UE(q) =
|Cq |
n .

By favoring queries likely to be useful our approach potentially address the limitations

of random approaches. However, we still need to consider the selection of w , which controls

the selection bias in our estimations. Choosing w ≈ 1, will exhibit comparable limitations

to the baseline random approach, while choosing w � 1 may lead to issuing very specific

queries that may not be representative of the useful documents in the collection at hand.

We experimentally show the impact of different values of w in Sections 5.5 and 5.6, and

provide a guideline on how to select this value.

5.4.3 Targeted Query Pool-Free Estimator

As discussed in Section 5.3.3, the query-pool free approach in [ZZD13] may rarely find

useful documents, because the random walk is performed over all queries, independently of

the target function f(d). To estimate the number of useful documents, we could restrict

9Both |Eu
q | and |En

q | values in this formula are computed once and for all during the generation of the
queries.

108
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

the graph to only useful queries (i.e., queries that retrieve at least one useful document

and for which f(d) = 1). Unfortunately, such graph could be largely disconnected and

the random walk would be unable to fully explore it, thus leading to inaccurate usefulness

estimations. Instead, we propose to keep the original graph—so that we can fully explore

it—and modify the random walk process to favor visiting useful queries—so that we are

more likely to observe documents for which f(d) = 1.

We define a weighted graph, on which we perform a “weighted” random walk (i.e., edge

e with weight w(e) is selected from an edge set E with probability w(e)/
∑

e′∈E w(e′)). We

define an edge (q, q′) to be useful if and only if both queries it connects retrieve at least

one useful document. We assign useful edges weight w and the others 1. In Equation

(5.2) we thus replace the original (unweighted) degree d(q) with the weighted counterpart:

dw(q) = w · Nu + Nn, where Nu is the number of q’s useful incident edges (i.e., useful

neighbors q′) and Nn = Nall − Nu (with Nall = d(q)). The definition of ω(d) (i.e., the

number of queries that retrieve it) remains unchanged, thus we still estimate it using the

method in [ZZD13].

To estimate the weighted degree dw(q) of a sampled query q we need (i) the number

of all incident edges Nall, and (ii) the number of useful edges Nu. For Nall we proceed

as in [ZZD13] for the degree d(q) (see Section 5.3.3). For Nu we proceed similarly, now

counting the number of sampling attempts nu we need to find a q′ that both matches q and

is useful, to estimate N̂u = |Q ′|/nu.10 Thus, we calculate d̂w(q) = w ·N̂u+(N̂all−N̂u). The

computation of |Vc| uses the unweighted graph to collect the startup collection, as described

for the baseline approach in Section 5.3.3.

Thus far, we have described the (adaptations of) traditional approaches and information

extraction-specific approaches that we study in this chapter. We now describe the settings

for our experimental evaluation of these techniques (Section 5.5) and report our results

(Section 5.6).

10Implementation-wise, we can get nall, the sampling attempts for Nall, from the same sampling sequence
as nu.

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 109

5.5 Experimental Settings

Collections: Our test set consists of 96 real web collections across different topics, col-

lected using an approach similar to that in [GIS03] over the Open Directory Project

(ODP) [ODP15]. Specifically, we first selected the 8 top-level ODP categories with the

largest number of entries, namely, Business, Society, Arts, Science, Computers, Recreation,

Shopping, and Sports. We then selected the 5 most popular subcategories in each of the

8 initial categories. In turn, we also picked the 5 most popular subsubcategories from

each subcategory, for a total of 200 subsubcategories. For each subsubcategory, we then

randomly chose 7 unique web collections that have a text search interface. Finally, we col-

lected their contents using a state-of-the-art query-based sampler [CC01], issuing at most

20,000 queries and retrieving up to 1,000 documents for each. In our test set, we kept the

collections that produced at least 10,000 documents following this method, to focus the

evaluation on collections with a substantial number of documents. We show the distribu-

tion of covered categories and their sizes in Figure 5.3. Our tuning set, which we use for

tuning parameters of the various techniques, consists of 40 collections selected randomly

from among the collections under the above subsubcategories and not in the test set. We

collected documents from these tuning collections using the Nutch Web crawler [Nut15].

We indexed each collection, in both the tuning set and the test set, with the text retrieval

toolkit Lucene [Luc15], to emulate the query-only behavior of deep web collections and

only access them through their query interface. (Fully-accessible collections can be indexed

once and for all using Lucene, to provide query access.) We exhaustively processed the

collections with our information extraction systems (see below) to obtain the real number

of useful documents in each collection. We also used TREC 1-5 collections [TRE00] for dif-

ferent operations (e.g., query pool construction), which we describe as needed throughout

this section.

Information Extraction Systems: We evaluated a variety of information extraction

systems and components for all relations in our experiments (see below) via 5-fold crossval-

idation over a set of training documents, and selected the two best-performing combinations,

namely, Subsequence Kernel (SSK) [BM05b] and Bag of n-Grams Kernel (BONG) [GLR06].

We implemented them using REEL (see Chapter 3). We also considered different named

110
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

0
5

10
15
20

Bus
ine

ss

Soc
iet

y
Arts

Scie
nc

e

Com
pu

te
rs

Rec
re

at
ion

Sho
pp

ing

Spo
rts

Categories

C
ol

le
ct

io
ns

 (
%

)

(a) Distribution of categories

0

5

10

104 104.5 105 105.5 106

Size (log scale)

C
ol

le
ct

io
ns

 (
%

)

(b) Distribution of collection sizes

Figure 5.3: Category distribution (a) and size distribution (b) of the test set collections.

entity taggers and selected: for person and location entities, the pretrained conditional

random fields (CRF) [ML03] from the StanfordNLP package [sta15a]; for natural disasters,

CRFs from the E-txt2DB framework [Etx12]; for the remaining entities, maximum entropy

markov models (MEMM) [MFP00], also from E-txt2DB.

Relations: For a robust evaluation, we include 5 substantially different relations in the

experiments, as noted in Table 5.2. Four such relations, namely, Natural Disaster–Location,

Man Made Disaster–Location, Person–Charge, and Election–Winner, are sparse, in that

very few documents tend to be useful for them. In contrast, relation Person–Career is a

dense relation. (Table 5.2 shows the percentage of useful documents for each relation in the

TREC 1-5 collections for the two information extraction systems. Also, Figure 5.4 shows

the distribution of useful documents over the collections in our test set.)

Technique Tuning: We tuned each technique over the tuning set and using the SSK

information extraction system over Man Made Disaster–Location.

Surrogate-based methods: The tuning of the surrogate-based methods was performed as

follows:

• Baseline (Section 5.3.1): We evaluated different query sets Q and numbers of queries

k. For Q , we generated one-word queries using the SVM approach in [MBGM04] and

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 111

Relation
Useful documents
SSK BONG

Person–Career 56.20% 55.95%

Natural Disaster–Location 2.03% 2.74%

Man Made Disaster–Location (*) 0.80% 0.87%

Person–Charge 1.55% 1.84%

Election–Winner 0.24% 0.84%

Table 5.2: Fraction of useful documents found in the TREC 1-5 collections for relations
extracted using two information extraction systems, SSK and BONG. We use (*) only
during tuning.

●●

●
●

●

●

●
●● ●

●●

●
●

●

●
●●

●●

●●●

10−3

10−2

10−1

100

101

102

BONG SSK BONG SSK BONG SSK BONG SSK BONG SSK
Extraction System

%
 o

f u
se

fu
l d

oc
s

 (
lo

g
sc

al
e)

Person−Career Natural
Disaster−Location

Man Made
Disaster−Location

Person−Charge Election−Winner

Figure 5.4: Fraction of useful documents for each relation across our 96 test collections.
The box boundaries are the 25th and 75th percentiles, the bold horizontal line inside each
box is the median, and the dots denote outliers.

two effective feature selection methods, namely, Information Gain and χ2 test [ZWS04]

(see learning-based query generation techniques in Section 4.3), over 10,000 documents

(50% useful and 50% useless) from TREC 1-5; we kept the words that are discrimi-

native of the useful class; also, and as suggested in [AG03], we evaluated a query set

including all words in the documents and another one removing the tuple attribute

values (see explicit and implicit candidate set of keywords in Section 4.3). We varied

k ∈ [10, 200] in intervals of 10. We built the document samples using the query-based

sampling technique in [CC01], which produces nearly-random document samples from

words collected from retrieved documents.

• Information extraction-specific (Section 5.4.1): We compared (i) the query-based sam-

pling technique in ReDDE; (ii) the bootstrapping-based sampling approach in [AG03],

which starts from a set of seed tuples as queries that is iteratively expanded as it col-

lects more useful documents and extracts tuples from them (see Tuples in Section 4.3);

(iii) Our Cyclic sampling technique (Section 4.2.3) that issues the queries in Q above

112
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

based on their score and processes the documents iteratively and in rounds. Finally,

to find the useful terms and to asses term bias we used the Fisher exact test in [Fis36]

varying p-value ∈ [0.01, 0.1].

Query pool-based methods: The tuning of the query pool-based methods was performed as

follows:

• Baseline (Section 5.3.2): We built two query pools of single words from TREC 1-5:

(i) a generic query pool (G) of 4M words considering all documents; and (ii) an infor-

mation extraction specific query pool (S) that only considers words from useful docu-

ments. We performed the estimation process with and without Rao-Blackwellization,

suggested in the original paper for variance reduction [BYG11]. We evaluated the

sum and average approaches.

• Information extraction-specific (Section 5.4.2): In addition to the configuration of

Baseline above, we evaluated several different values for the weight w ∈ [50, 500000].

We also used the TREC 1-5 collections as our external collection and varied the

number of documents to retrieve from it k ∈ [10, 1000] for weight computation.

Query pool-free methods: The tuning of the query pool-free methods was performed as

follows:

• Baseline (Section 5.3.3): We varied three parameters: (i) the number of sampled

queries |S | ∈ [10, 500], with increments of 10, (ii) the length of h-grams, h ∈ {1, 2, 3},

and (iii) the length of the burn-in of the random walk b before collecting the samples,

b ∈ [50, 500] with increments of 50.

• Information extraction-specific (Section 5.4.3): Besides the parameters for Baseline

above, we evaluated several different values for its weight w ∈ [10, 5000].

Techniques for Comparison: We compared the following alternatives over the 96 collec-

tions in our test set, with the settings derived via tuning, as summarized below:

• Baseline surrogate-based (ReDDE): We generate the samples with the query-based

document sampler in [CC01], issuing up to 300 queries and collecting (at most) 5

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 113

documents for each. We use the queries learned with χ2 for Q and use the top-100

queries (i.e., k = 100).

• Baseline query-pool-based (PB): We use the sum (ABS) and average (AVG) methods

and perform Rao-Blackwellization. (The impact on efficiency of performing Rao-

Blackwellization is low, because the number of documents processed with the infor-

mation extraction system is relatively small.)

• Baseline query-pool-free (PF): We use an English dictionary to randomly find an initial

query for the estimation process. We use single terms as queries (i.e., h = 1) and only

accept queries that retrieve at least u = 3 documents, as suggested in [ZZD13]. We

collect 100 queries for Vc, the startup query path that can be shared across information

extraction tasks, and at most 100 for the estimation sample queries S .

• Information extraction-specific surrogate-based method (Surrogate): For sampling, we

derive Q using the χ2 method and excluding tuple attributes. We considered the

useful queries in order of χ2. Our sample S has at most 1000 documents. To select

the useful terms Tu, we use p-value = 0.05 in the Fisher test.

• Information extraction-specific query-pool-based method (PB-W): As with the base-

line, we evaluate sum (ABS) and average (AVG) estimators using the G and S query

pools and applying Rao-Blackwellization. We index our external collection using

Lucene with default parameters. We use k = 1000 for the query weight computation

and w = 5000.

• Information extraction-specific query-pool-free method (PF-W): We use a similar con-

figuration to that in PF, but with w = 1000.

Additional Settings: Estimators issue at most 100 queries, and retrieve up to 50 docu-

ments per query. To account for randomness, we run each estimator five times and report

average values over the five runs. Finally, note that all estimators contain some form

of (weighted) averaging of a metric over samples S (e.g., for the pool-free estimator, we

calculate the individual contribution of each q in the summation in the denominator of

Equation (5.2)). We filter outliers from this average, using the outlier detection algorithm

114
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

in [vdL10, “Method I”] as implemented in the R [RSo15] package “extremevalues:” a value

x is an outlier if it is outside the limit where less than 1 observation is expected, based

on observed data within quantile limits [α, 1− α]. We evaluated every estimator with and

without outlier removal (using α ∈ {0.05, 0.1}). Removing outliers using α = 0.1 performed

best across all techniques. Thus, our final results include such removal.

Evaluation Metrics: We measure ranking quality and estimation cost with the following

metrics:

• Cumulative Gain (CG@k): We measure the number of useful documents that we

obtain by processing the collections in ranking order. If ui is the number of useful

documents in the ith collection, we define CG@k =
∑k

i=1 ui. This metric focuses

on absolute values of useful documents, which makes the comparison across relations

problematic, and also does not fully capture “errors” in the ranking.

• Normalized Discounted Cumulative Gain (nDCG@k): nDCG@k alleviates the limita-

tions above in a robust manner. Specifically, nDCG@k is defined as the normalized

version of Discounted Cumulative Gain DCG@k = u1 +
∑k

i=2
ui

log2(i)
, which penalizes

the errors in the ranking order.11 Now, to normalize DCG@k (and obtain nDCG@k),

we need to calculate the DCG@k of an ideal ranking, namely, IDCG@k. Finally,

nDCG@k = DCG@k
IDCG@k .

• Processed Documents (PD) and Issued Queries (IQ): We measure the efficiency of

the information extraction process in terms of the number of issued queries and pro-

cessed documents, and not running time. The reasons for this are twofold: (1) many

factors (e.g., network traffic, collection responsiveness) can distort running times in

the distributed environments on which we focus and are difficult to capture reliably;

and (2) the number of issued queries and processed documents are good indicators of

expected running time. Finally, we report these values only for the actual estimation

process and ignore the initial, once-and-for-all processing (e.g., collection size estima-

tion or random document sample generation) required by the techniques, which gets

11Variants of DCG@k exist in the literature; the version we use accounts for the distribution of useful
documents.

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 115

●

● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Rank

N
D

C
G

@
R

an
k

● Surrogate
PF

PF−1000
ReDDE

(a) Surrogate and pool-free

●

●
●

●
● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Rank

N
D

C
G

@
R

an
k

● PB−G−ABS
PB−S−ABS

PB−G−ABS−5K
PB−S−ABS−5K

(b) Pool-based (sum)

●

● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Rank

N
D

C
G

@
R

an
k

● PB−G−AVG
PB−S−AVG

PB−G−AVG−5K
PB−S−AVG−5K

(c) Pool-based (avg)

Figure 5.5: nDCG@k for Natural Disaster–Location, for the BONG information extraction
system and issuing (at most) 100 queries.

amortized over time.

• Relative Estimation Error (RE): We measure the relative estimation error, defined

as RE(C) = | ˆ|C u|−|C u||
|C u| , to assess the accuracy of the estimators. Because we compute

our estimations issuing a number of queries (al least) an order of magnitude smaller

than those reported in earlier work, we expect the estimation error to be higher than

those reported in the literature.

• Non-Zero Estimates (NZ): We measure the fraction of estimates that produce non-

zero estimates, to assess the impact of finding useful documents during the estimation.

With this metric we can thus better explain the performance of different estimators

(e.g., if they find many useful documents but fail to produce accurate estimates).

5.6 Experimental Results

We now evaluate the baseline and information extraction-specific ranking approaches of

Sections 5.3 and 5.4, with the settings of Section 5.5.

5.6.1 Quality of Collection Ranking Approaches

We evaluate the ranking approaches over all relations and information extraction systems

of Section 5.5. Figure 5.5 shows nDCG@k of all techniques over the entire rank of collections

(i.e., k ∈ [1, 96]) for Natural Disaster–Location using the BONG information extraction

116
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

system, and issuing at most 100 queries. (Other relations and extraction systems—with the

exception of Person–Career, which we study in detail later—yielded similar results. Also, we

later vary the number of issued queries.) Figure 5.5a, for the surrogate and query pool-based

methods, shows that the PF baseline outperforms PF-1000, its information extraction-

specific counterpart, by almost 75%. PF-1000 requires on average more queries than PF to

walk the random graph; for this reason, PF-1000 will rarely find useful documents at such

small query budget. As we will see, when PF-1000 finds useful documents, its performance

improves considerably, always overcoming its baseline counterpart. In contrast, among

the surrogate methods, Surrogate outperforms ReDDE by almost 50%: the information

extraction-specific document sample, although small, manages to include useful documents;

also, ReDDE’s collection descriptors do not accurately characterize the useful documents.

Figures 5.5b and 5.5c, for the query pool-based methods for sums and averages, show

that the information extraction-specific versions also outperform the baseline counterparts.

For sum, this difference is mainly based on the number of useful documents sampled during

the estimation, because there are more non-zero components to include in the estimation.

For this reason, PB-S-ABS-5K is best, with its weighted specific query pool highlighting

potentially useful queries. For average, the quality of the ranking also depends on finding

queries that retrieve a combination of useful and useless documents, as both types are

crucial for computing the average in question. PB-S-AVG and PB-G-AVG-5K sample such

queries and thus exhibit the highest quality in this family. Overall, and across families,

the top contenders are Surrogate and the average pool-based estimators, which effectively

exploit both useful and useless documents during estimation.

In addition to the (ranking-based) evaluation above, we also evaluate the quality of

our estimators by computing their relative estimation error. Table 5.3 shows the relative

estimation error of our estimators for the Natural Disaster–Location relation and using the

BONG information extraction system. (Other relations and information extraction systems

yielded similar conclusions. Also, this table does not include ReDDE, because it is not an

estimator of the number of useful documents in a collection.) Rather than computing an

aggregated measure over all collections, we report the relative estimation error for different

collection splits, according to their number of useful documents: We produce the collection

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 117

Technique
name

Splits [Min - Max]

[1-1] [6-80]
[97-

1409]
[1708-
32301]

[93235-
144457]

Surrogate 1.00 0.66 0.63 0.74 0.64

PF 1.15 1.15 1.43 0.99 0.97

PF-1000 1.96 5.11 4.97 1.03 0.98

PB-G-ABS 1.00 4.23 1.07 1.00 0.99

PB-G-AVG 1.00 62.22 3.28 1.25 0.89

PB-S-ABS 1.50 1.59 0.97 0.97 1.00

PB-S-AVG 17.91 12.85 5.74 1.19 0.53

PB-G-ABS-5K 1.00 1.03 0.93 0.98 1.00

PB-G-AVG-5K 1.00 5.12 9.59 1.33 0.54

PB-S-ABS-5K 3.17 1.41 0.92 0.97 0.99

PB-S-AVG-5K 37.20 15.22 5.48 1.05 0.60

Table 5.3: Relative estimation error for Natural Disaster–Location, using the BONG infor-
mation extraction system and issuing (at most) 100 queries.

splits using log-scaled usefulness values (i.e., we use the logarithm of the number of useful

documents in a collection log10 |C u| instead of |C u| directly) to effectively cover the large

range of possible usefulness values. For clarity, Table 5.3 shows the minimum and maximum

number of useful documents in each split. As shown, relative errors tend to be high: this is

due to the low number of queries that we issue to meet our efficiency constraints. By issuing

thousands of queries—which is highly impractical for our information extraction setting—we

can reduce the relative estimation error significantly. We also observe that most techniques

tend to perform better for collections with a large number of useful documents. Finally,

based on this analysis, we conclude that Surrogate consistently produces the most accurate

estimations.

To understand the actual number of useful documents observed as we process collections

in ranking order, Figure 5.6 shows CG@k for Natural Disaster–Location and Person Career

using the BONG information extraction system, for a selection of high-quality techniques

according to our experiments. For reference we also show the CG@k of an ideal ranking

(labeled Ideal) and of a random ranking (noted as a dashed line). Figure 5.6 reveals substan-

tial gains from prioritizing the collections for extraction. For Natural Disaster–Location, for

example, Surrogate effectively identifies the collections containing 95% of the total useful

documents within the top-10 collections. This would translate to an efficiency improvement

118
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

of almost 90% if we were to only process these top-10 collections, because we would ignore

86 (out of 96) test collections. A noticeable benefit is also shown for Person–Career, which

we discuss in detail later in this section, for Surrogate, ReDDE, and PB-G-AVG-5K.

5.6.2 Efficiency of Collection Ranking Approaches

To understand the efficiency of the different approaches, we analyze the extraction cost

and achieved ranking quality at different stages in the estimation process. Figures 5.7 and

5.8 show, respectively, the number of documents processed with the information extraction

system and nDCG@10 for different numbers of issued queries, for Person–Charge using the

SSK information extraction system. (Different relations and information extraction systems

yielded analogous conclusions.) We show the same technique splits as in the above analysis,

for clarity. Figure 5.7 shows that information extraction-specific techniques process on

average more documents than their baseline counterpart. ReDDE is an exception: it does

not incur querying or extraction costs during the estimation process.

The reasons as to why information extraction-specific approaches process more docu-

ments on average are manifold and differ for each family of techniques. Notably, for Surro-

gate (Figure 5.7a), the number of extracted documents grows with the size of the document

sample, because all sampled documents need to be processed. For the pool-free family (also

in Figure 5.7a), PF-1000 may need to process several documents before choosing the next

“hop,” due to its weighted walking strategy. In contrast, PF does not need this operation,

since it navigates the graph only based on the document contents, without incurring addi-

tional extractions. However, these techniques may retrieve several hundred documents from

each collection for graph construction, to extract h-grams from the documents.

Finally, for the pool-based families (Figures 5.7b and 5.7c), the extraction cost grows

with the number of observed useful documents (from the sampled edges). In fact, after

obtaining a useful document further operations take place: (i) for sum, the inverse degree

estimator issues additional queries to the collection, although it avoids processing the doc-

uments with the information extraction system; the average estimators do not need inverse

degree estimation and, therefore, more documents are often processed for the same query

budget; and (ii) the Rao-Blackwellization method for variance reduction processes all doc-

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 119

●

●

● ● ● ● ● ● ● ●

0

100,000

200,000

300,000

0 25 50 75 100
Rank

C
G

@
R

an
k

● Surrogate
PB−S−AVG
PB−S−AVG−5K

ReDDE
Ideal

●

●

●

●

●

●
● ● ● ●

0

200,000

400,000

600,000

0 25 50 75 100
Rank

C
G

@
R

an
k

● Surrogate
PB−S−AVG
PB−S−AVG−5K

ReDDE
Ideal

Figure 5.6: CG@k for Natural Disaster–Location (left) and Person–Career (right) for the
BONG information extraction system and issuing (at most) 100 queries.

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

0

100

200

300

400

25 50 75 100
Issued Queries

P
ro

ce
ss

ed
 D

oc
um

en
ts ● Surrogate

PF
PF−1000
ReDDE

(a) Surrogate and pool-free

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●0

20

40

60

25 50 75 100
Issued Queries

P
ro

ce
ss

ed
 D

oc
um

en
ts ● PB−G−ABS

PB−S−ABS
PB−G−ABS−5K
PB−S−ABS−5K

(b) Pool-based (sum)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

25

50

75

25 50 75 100
Issued Queries

P
ro

ce
ss

ed
 D

oc
um

en
ts ● PB−G−AVG

PB−S−AVG
PB−G−AVG−5K
PB−S−AVG−5K

(c) Pool-based (avg)

Figure 5.7: Processed documents for Person–Charge, for the SSK information extraction
system and different numbers of issued queries.

●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Issued Queries

N
D

C
G

@
10 ● Surrogate

PF
PF−1000
ReDDE

(a) Surrogate and pool-free

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

25 50 75 100
Issued Queries

N
D

C
G

@
10

● PB−G−ABS
PB−S−ABS

PB−G−ABS−5K
PB−S−ABS−5K

(b) Pool-based (sum)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

25 50 75 100
Issued Queries

N
D

C
G

@
10

● PB−G−AVG
PB−S−AVG

PB−G−AVG−5K
PB−S−AVG−5K

(c) Pool-based (avg)

Figure 5.8: nDCG@10 for Person–Charge, for the SSK information extraction system and
different numbers of issued queries.

uments that the current query retrieves; this increases the extraction cost, but this cost is

comparable across the techniques we evaluated.

After analyzing the extraction cost, we also study the ranking quality associated with

such costs. Figure 5.8 shows that the quality of the ranking improves with the number

120
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

of issued queries: The estimators learn more—and more reliably—about the collections as

the estimation progresses, which is reflected in better estimations. These improvements,

though, vary considerably across techniques: Surrogate, for instance, produces high-quality

estimates even when issuing a small number of queries, whereas the remaining techniques

improve their quality progressively, with a steeper gain for information extraction-specific

than for baseline approaches. Furthermore, some information extraction-specific techniques

achieve higher quality rankings than other techniques at a fraction of their cost. For exam-

ple, after issuing 25 queries, PB-G-ABS-5K and PB-G-AVG-5K exhibit comparable quality

to PB-S-ABS and PB-S-AVG after issuing 100 queries, respectively.

5.6.3 Support of Collection Ranking Approaches

As discussed in Section 5.2, one of the crucial requirements of accurate and low-variance

estimation methods is producing non-zero terms (i.e., terms in which f(d) 6= 0), to in turn

produce non-zero estimates. In our information extraction setting, this implies obtaining

useful documents—for which f(d) = 1—along the estimation process. We now analyze the

fraction of non-zero estimates that different estimation methods produce, computed over

the five independent runs that we perform for each method (see Section 5.5). Figure 5.9

shows the fraction of non-zero estimates of all techniques for Election–Winner using the

BONG information extraction system, and for varying numbers of issued queries. (Other

relations and extraction systems yielded similar results.) As shown, baseline approaches,

namely, PF (Figure 5.9a), PB-G-ABS (Figure 5.9b), and PB-G-AVG (Figure 5.9c), produce

a significantly smaller fraction of non-zero estimates than information extraction-specific

approaches, for the same number of issued queries. This corroborates our hypothesis of

Section 5.2 and explains the poor quality that these methods exhibit for our ranking prob-

lem. Another important observation is that pool-based approaches are many times (about

25% of the time) unable to produce non-zero estimates: This occurs because the sampled

queries rarely match—and retrieve—any documents from the collections. We observe this

for PB-S-ABS-5K and PB-S-AVG-5K, two methods that heavily favor picking queries—from

an information extraction-specific query pool—that are likely to retrieve useful documents.

Next, we analyze the impact of different selection weights in the quality of the estimation

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 121

(a) Surrogate and pool-free (b) Pool-based (sum) (c) Pool-based (avg)

Figure 5.9: Fraction of non-zero estimates for Election–Winner, for the BONG information
extraction system and different numbers of issued queries.

methods.

5.6.4 Impact of Selection Weight

We finally analyzed the impact in collection ranking of the selection weight that we use

in our information extraction-specific estimators. Figure 5.10 shows nDCG@10 for PF-

W (Figure 5.10a), PB-S-ABS (Figure 5.10b), and PB-S-AVG (Figure 5.10c), for Natural

Disaster–Location using the BONG information extraction system and for varying numbers

of issued queries. (Conclusions were analogous across relations and within techniques of

the same families.) As shown, increasing the selection weight has limited impact on the

quality of the ranking. In fact, using high selection weights (e.g., see Weight=50000 in

Figures 5.10b and 5.10c) hurts the quality of the ranking because the selected queries are

too specific to the training collection and do not generalize well to other collections. For

the pool-free approach (see Figure 5.10a), the low performance of high selection weights is

due to the cost of “walking” the weighted random graph: In this approach, higher selection

weights indicate a higher number of issued queries and processed documents.

5.6.5 Impact of Collection Characteristics

Text collections are rather heterogeneous, with substantial differences in size and contents.

Notably, large collections are problematic for baseline approaches, as Figure 5.6a shows for

Natural Disaster–Location, where the most useful collections were among the largest col-

lections (350,000 documents on average). We showed the effectiveness of our information

122
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

●

● ●
● ●

●
●

●
● ●

● ●
●

● ● ● ● ●

●
●

0.00

0.25

0.50

0.75

1.00

25 50 75 100
Issued Queries

N
D

C
G

@
10

Weight ● 50 500 1000

(a) Pool-free

●

● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

25 50 75 100
Issued Queries

N
D

C
G

@
10

Weight ● 50 500 5000 50000

(b) Pool-based (sum) specific pool

●

●

● ●

●
● ●

●
●

●

● ● ● ● ● ● ●
● ● ●

0.00

0.25

0.50

0.75

1.00

25 50 75 100
Issued Queries

N
D

C
G

@
10

Weight ● 50 500 5000 50000

(c) Pool-based (avg) specific pool

Figure 5.10: nDCG@10 for Natural Disaster–Location, for the BONG information extrac-
tion system and different numbers of issued queries.

extraction-specific approaches for this case. Similarly, the collection contents also affect

some of the other approaches: Pool-based approaches retrieved substantially fewer docu-

ments than pool-free approaches (see Figure 5.7), because many queries in the query pool

were not topically relevant to the contents of the collections; pool-free approaches do not

exhibit this problem.

5.6.6 Impact of Information Extraction-task Characteristics

To understand the impact of relation characteristics, we now focus on a dense relation.

Figure 5.11 shows nDCG@k over the entire rank of collections (i.e., k ∈ [1, 96]) for Person–

Career using the BONG information extraction system, and for all techniques. We show the

same technique splits as in the above analysis, for clarity. Figure 5.11a shows that Surrogate,

PF, and PF-1000 exhibit comparable (low) quality: these techniques failed to correctly rank

large collections with a large number—but a relatively low fraction—of useful documents.

Specifically, Surrogate was unable to obtain discriminative terms for the estimation, since

most sampled documents were useful. The pool-free approaches, on the other hand, were

unable to reach many useful documents, because the useful documents in the top collections

were a small fraction in each collection. The pool-based sum estimators in Figure 5.11b

exhibit a trend similar to that of pool-free approaches. However, two sets of techniques

performed relatively well, namely, ReDDE (Figure 5.11a) and the information extraction-

specific pool-based AVG estimators (Figure 5.11c). These techniques benefited from the

scaling to the entire collection, because the largest collections were among the top most

CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION
EXTRACTION 123

●

●

●

●
● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Rank

N
D

C
G

@
R

an
k

● Surrogate
PF

PF−1000
ReDDE

(a) Surrogate and pool-free

●

●
●

●
●

●
●

●
●

●

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Rank

N
D

C
G

@
R

an
k

● PB−G−ABS
PB−S−ABS

PB−G−ABS−5K
PB−S−ABS−5K

(b) Pool-based (sum)

●

● ●
●

●
●

●
●

●
●

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Rank

N
D

C
G

@
R

an
k

● PB−G−AVG
PB−S−AVG

PB−G−AVG−5K
PB−S−AVG−5K

(c) Pool-based (avg)

Figure 5.11: nDCG@k for Person–Career, for the BONG information extraction system and
issuing (at most) 100 queries.

useful collections.

5.6.7 Additional Discussion

An orthogonal, interesting aspect to the discussion above concerns the overhead incurred

by a ranking approach when new collections or information extraction tasks arrive. Ta-

ble 5.1 summarized the collection- and information extraction-specific requirements of each

ranking technique. For new collections, almost all techniques require some preprocessing

(see collection column in Table 5.1). Deciding the approach to adopt will not only depend

on the performance and overhead of the techniques but also on the number of information

extraction systems that we will run over each (new) collection. Because size estimation and

graph construction may take up to several thousand queries, approaches that rely on these

will only be reasonable when many information extraction systems are involved, as the cost

will amortize over time. In other cases, though, estimators that do not require additional

information from the collection, such as pool-based estimators for sums, may be the best

choice.

Similarly, for new information extraction tasks, almost all techniques also require some

preprocessing (see information extraction column in Table 5.1). The most expensive process

is, by far, producing a specific query pool (with or without query weights). The remaining

processes, namely, learning queries for document sampling or for querying the descriptor

in ReDDE and producing a query sample for the pool-free techniques, are relatively inex-

pensive. Therefore, and given our quality and efficiency results, surrogate methods (i.e.,

124
CHAPTER 5. RANKING TEXT COLLECTIONS FOR SCALABLE INFORMATION

EXTRACTION

ReDDE or Surrogate) seem to be the most reasonable choice for new information extraction

tasks. However, if new collections are expected to appear at high rates, it may be worth-

while building—and amortizing the construction of—a query pool, so that the estimation

starts without overhead.

5.7 Conclusions

In this chapter, we introduced and addressed the problem of ranking text collections for an

information extraction task, to prioritize the extraction effort by focusing on collections with

substantial numbers of useful documents for the information extraction task. Specifically,

the problem is that of effectively and efficiently ranking a set of text collections according to

their number of useful documents for a given information extraction task. We studied both

(adaptations of) state-of-the-art resource selection strategies, and information extraction-

specific approaches. We performed an extensive experimental evaluation over realistic Web

collections, and for several different information extraction tasks. Our evaluation focused

on the quality and efficiency characteristics of the ranking approaches, with the following

conclusions: (1) we found top contenders for each of these characteristics and provided in-

sight on how to choose among them; (2) we analyzed which techniques are better suited for

certain characteristics of the collections, such as their size and contents, and of the informa-

tion extraction tasks, such as their sparsity; and (3) we discussed the overhead incurred by

each technique in dynamic domains, where new collections or information extraction tasks

may arrive.

The main contributions of this chapter are the introduction and extensive evaluation

of the problem of ranking text collections for information extraction. We believe that

the approaches in this chapter can serve as the basis for future efforts on prioritizing the

extraction process over large volumes of text. As we will see in our future work discussion

(Chapter 10), for instance, our approaches provide the necessary infrastructure to support—

with rather minimal intervention—collection ranking along other relevant dimensions (e.g.,

quality of the extracted tuples). Overall, this chapter provides a roadmap for addressing

this critically important building block for efficient, scalable information extraction.

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 125

Chapter 6

Ranking Documents for Scalable

Information Extraction

In Chapter 5, we discussed how we can prioritize useful collections for an information extrac-

tion task of interest, so that we can focus the extraction effort, for efficiency. Moreover, we

showed that the useful documents—even in these useful collections—are only a (very) small

fraction of the entire collections. If we could effectively identify the set of useful documents

in a collection, we would complete the extraction process while decreasing the extraction

time considerably without any need to change the information extraction system.

In this chapter, we present an adaptive document ranking approach to effectively and

efficiently prioritize the useful documents in a collection for an information extraction task

of interest. Specifically, we propose a principled, efficient learning-to-rank approach that

prioritizes documents for an information extraction task by combining: (i) online learn-

ing [SSSS07], to train and adapt the ranking models incrementally, hence avoiding com-

putationally expensive retrains of the models from scratch; and (ii) in-training feature

selection [GE03], to identify a compact, discriminative set of words and phrases from the

documents to train ranking models effectively and efficiently. Importantly, our approach

revises the document ranking decisions periodically, as the ongoing extraction process re-

veals (fine-grained) characteristics of the useful documents for the extraction task at hand.

Our approach thus manages to capture, progressively and in an adaptive manner, the het-

126
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

erogeneity of language and content typically exhibited by the useful documents, which in

turn leads to information extraction executions that are substantially more efficient—and

effective—than those with state-of-the-art approaches, as we will see.

In summary, the main contributions of this chapter are:

• An end-to-end document ranking approach for effective and efficient information ex-

traction in an adaptive, online, and principled manner (Section 6.2). We include two

low-overhead ranking algorithms for information extraction based on learning-to-rank

strategies. These algorithms perform online learning and in-training feature selec-

tion (Section 6.2.1). In addition, we present two techniques to detect when adapting

the ranking model for information extraction is likely to have a significantly positive

impact on the ranking quality (Section 6.2.2).

• An experimental evaluation of our approach using multiple extraction tasks imple-

mented with a variety of extraction approaches (Sections 6.3 and 6.4). Our approach

has low overhead and manages to achieve higher accuracy than the state-of-the-art

approaches, and hence is a substantial step towards scalable information extraction.

We now review necessary background and define our problem of focus in this chapter

(Section 6.1). The bulk of this chapter has been published as [BSGG15].

6.1 Background and Problem Definition

Because information extraction systems are computationally expensive, as argued in Chap-

ter 2, processing all documents exhaustively becomes prohibitively time consuming for large

document collections. Ideally, we should focus the extraction effort on the useful documents

for the information extraction system at hand.

As a crucial task, information extraction optimization approaches (e.g., Holistic-MAP

[SGG13]) choose a document selection strategy to identify documents that are likely to

be useful. State-of-the-art approaches for such document selection (e.g., QXtract [AG03],

PRDualRank [FC11], and FactCrawl [BLNP11a]) are based on the observation that useful

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 127

documents for a specific relation1 tend to share distinctive words and phrases. Discover-

ing these words and phrases is challenging because: (i) many extraction systems rely on

off-the-shelf, black-box components (e.g., named entity recognizers), from which we cannot

extract relevant words and phrases directly; and (ii) machine learning techniques for infor-

mation extraction do not generally produce easily interpretable models, which complicates

the identification of relevant words and phrases. QXtract learns these words and phrases

through document classification: after retrieving a small document sample, QXtract auto-

matically labels each document as useful or not by running the extraction system of interest

over these documents. QXtract can thus learn that words like “richter” or “hypocenter” are

characteristic of some of the useful documents for the Occurs-in relation. Then, QXtract

uses these learned words and phrases as keyword queries to retrieve (other) potentially use-

ful documents (see Figure 6.1). More recent approaches (e.g., FactCrawl [BLNP11a] and

PRDualRank [FC11]) adopt similar retrieval-based document selection strategies.

QXtract issues queries to the standard keyword search interface of document collections

in order to retrieve potentially useful documents for extraction. Such keyword search in-

terface, unfortunately, is not tailored for information extraction: the documents that are

returned for a keyword query are ranked according to how well they match the query and

not on how useful they are for the underlying information extraction task [BLNP11a]. For

example, the query [tornado] for the Occurs-in relation returns only 145 useful documents

among the top-300 matches from our validation split of the New York Times annotated

corpus [NYT15] (see Section 6.3) using Lucene [Luc15], a state-of-the-art search engine

library.

FactCrawl [BLNP11a] moves a step beyond keyword search and re-ranks the retrieved

documents to prioritize the extraction effort (see Figure 6.1). Specifically, FactCrawl scores

documents proportionally to the number and quality of the queries that retrieve them.

FactCrawl determines the quality of each learned query—and of the query generation

method that was used to generate the query—in an initial step, once and for all, by retriev-

ing a small number of documents with the query and running them through the extraction

1Our approach is not applicable over open information extraction scenarios (e.g., [BCS+07]) where doc-
uments frequently contribute tuples to the open-ended extraction task.

128
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

system in question. With this initial step, FactCrawl derives: (i) for each query q, the

F-measure Fβ(q), where β is a parameter that weights precision over recall; and (ii) for

each query generation method m, the average F avgβ (m) of the Fβ value of all queries gener-

ated with method m. During the extraction process, after retrieving documents with a set

Qd of queries learned via a query generation method m, FactCrawl re-ranks the documents

according to a scoring function S(d) =
∑

q∈Qd Fβ(q) · F avgβ (m). FactCrawl’s document re-

ranking process improves the efficiency of the extraction, since the documents more likely

to be useful are processed earlier. However, FactCrawl exhibits two key weaknesses: (i) for

document retrieval and ranking, just as QXtract (see discussion above), FactCrawl relies

on queries derived, once and for all, from a small initial document sample, and hence may

miss words and phrases relevant to the information extraction task at hand; and (ii) for

document ranking, FactCrawl relies on a coarse, query-based document scoring approach

that is not adaptive, and hence does not benefit from the wealth of information that is

captured as the extraction process progresses.

Based on the discussion above, we now present our problem of focus in this chapter:

Problem Definition 3 Consider a set of text documents D and an information extraction

system E trained to extract tuples for a relation from text. Our goal is to prioritize the

extraction effort of E over the documents in D, so that we process the useful documents

for E earlier in the extraction process, for efficiency. Importantly, we want our ranking of

documents to exhibit high precision and recall—to minimize the number of useless documents

to process with E—while satisfying certain efficiency requirements (e.g., that running E

over D in ranked order leads to a larger number of tuples faster than running E over D

directly). Moreover, we want the document ranking to adapt to the relevant information

about the extraction task (e.g., the real usefulness of the documents) obtained as E runs

over documents from D.

Adaptive models have been used for information extraction in a variety of ways. Early

influential systems for large-scale information extraction, such as DIPRE [Bri98] and Snow-

ball [AG00], have relied on bootstrapping to adapt to newly discovered information. Start-

ing with a small number of “seed” tuples for the extraction task of interest, these systems

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 129

Figure 6.1: QXtract and FactCrawl.

learn and iteratively improve extraction patterns and, simultaneously, build queries from

the tuples that they discover using these patterns. However, these systems are not suit-

able for our problem for two main reasons. First, techniques based on bootstrapping often

exhibit far-from-perfect recall, since it is difficult to reach all tuples in a collection by us-

ing previously extracted tuples as queries [AG03; IAJG07]. Second, extraction systems are

many times “black box” systems, which impedes the alteration of their extraction decisions.

Other approaches (e.g., [CJTN06]) have relied on label propagation: starting with labeled

and unlabeled examples, these approaches propagate the given labels to the unlabeled ex-

amples based on some example similarity computation. Such label propagation approaches

are not beneficial for our extraction scenario, where the extraction system has already been

trained and we can obtain new labels (i.e., useful or not) for previously unseen documents

automatically by running the extraction system over them.

6.2 Online Adaptive Ranking

We now propose an end-to-end document ranking approach for scalable information extrac-

tion (see Figure 6.2) that addresses the limitations of the state of the art. Our approach

prioritizes documents for an information extraction task—with a corresponding already-

130
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

trained information extraction system—based on principled, efficient learning-to-rank ap-

proaches that exploit the full contents of the documents (Section 6.2.1). Additionally, our

approach revises the ranking decisions periodically as the extraction process progresses

and reveals (fine-grained) characteristics of the useful documents for the extraction task at

hand (Section 6.2.2). Our approach thus manages to capture, progressively and in an adap-

tive manner, the heterogeneity of language and content typically exhibited by the useful

documents, which leads to extraction processes substantially more efficient—and effective—

than those with state-of-the-art approaches, as we will show experimentally in Sections 6.3

and 6.4.

6.2.1 Ranking Generation

To prioritize the information extraction effort, by focusing on the potentially useful docu-

ments for the extraction system at hand, we follow a learning-to-rank approach (see Ranking

Generation step in Figure 6.2). Similarly to state-of-the-art query-generation and ranking

efforts (see Chapter 2), we obtain a small document sample and automatically “label” it

with the information extraction system, without human intervention. We use the documents

in this sample, with their words as well as the attribute values of tuples extracted from them

as features, to train an initial document ranking model. After the initial document ranking

is produced, we start processing documents, in order, with the information extraction sys-

tem (see Tuple Extraction step in Figure 6.2).2 Unfortunately, the initial ranking model is

generally far from perfect, because it is learned from a necessarily small document sample.

So our approach periodically updates and refines the ranking model (see Update Detection

step in Figure 6.2), as new documents are processed and the characteristics of the useful

documents are revealed, as we will discuss in detail in Section 6.2.2.

Unfortunately, state-of-the-art approaches for learning to rank [Liu09] are problematic

for our document ranking setting for two main reasons. First, such approaches tend to

be computationally expensive [Scu09], so updating and revising the ranking model contin-

2The pool of documents to process is either the full document collection, for collections of moderate size
over which we have full access, or, alternatively, the documents retrieved with queries learned from the doc-
ument sample. In Sections 6.3 and 6.4, we discuss this issue for our experiments further and experimentally
study these two scenarios, which we introduced in Section 2.2.

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 131

Figure 6.2: Our adaptive learning-to-rank approach for information extraction.

uously over time, as new documents are processed, would result in an unacceptably high

overhead in the extraction process. Second, such approaches tend to require a relatively

small feature space [BWG+10]. In contrast, in our ranking setting the feature space, in-

cluding the document words and attributes of extracted tuples, is vast; furthermore, the

feature space continues to grow as new documents are processed. Therefore, we need to

develop unconventional learning-to-rank techniques for our ranking problem, to address the

above two limitations of state-of-the-art approaches in an effective and efficient manner and

without compromising the quality of the ranking models that we produce.

To address the efficiency limitation of learning-to-rank approaches, and to update the

document ranking model efficiently, we rely on online learning [Bot10]. Using online learn-

ing, we can train the ranking model incrementally, one document at a time. Therefore, we

can continuously adapt the ranking model as we process new documents, without having to

retrain it from scratch. To adapt online learning to our problem, the main challenge is to

define an update rule for the model—to be triggered when we observe new documents along

the extraction process—that is simple enough to be efficient but, at the same time, sophisti-

cated enough to produce high-quality models. From among the most robust online learning

approaches [Bot10], the updates based on Pegasos gradient steps [SSSS07] are particularly

well suited for our approach because of their efficiency and accuracy. Specifically, Pegasos

gradient steps provide update rules that guarantee that learning techniques based on Sup-

132
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

port Vector Machines (SVM), the basis for some of the best-performing learning-to-rank

approaches, learn high-quality models efficiently.

To address the feature-set limitation of learning-to-rank approaches, and to handle large

(and expanding) feature sets, we rely on in-training feature selection [GE03]. In a nutshell,

with in-training feature selection the learning-to-rank algorithm can efficiently identify the

most discriminative features, out of a large and possibly expanding feature set, during the

training of the document ranking model and without an explicit feature selection step.

To do so, we rely on a sparse representation of the vectors that represent the feature

weights, to discard all features with zero value. Therefore, our objective is to penalize

models that rely on a large number of features with non-zero weight. Interestingly, we

can rely on regularization [Bis06] to control the feature weight distribution in our learned

models: regularization penalizes models that have undesirable properties such as having

many features with non-zero weights, so we can use it for in-training feature selection

and also to avoid overfitting. In our approach, we rely on a linear combination of two

regularization methods, usually called elastic-net regularization [ZH05], which integrates:

(i) the `1-norm regularization [TTA09], which tends to learn models where only a small

subset of the features have non-zero weights; and (ii) the `2-norm regularization, which

produces high-quality models by avoiding overfitting. This combination is necessary because

the `1-norm regularization does not perform well when the number of documents is smaller

than the feature space [ZH05], which is the case during early phases of the extraction

process.

We now propose two learning-to-rank strategies, BAgg-IE and RSVM-IE, that overcome

the limitations of state-of-the-art learning-to-rank approaches by integrating online learning

and in-training feature selection, as discussed above.

6.2.1.1 BAgg-IE: A Pointwise Ranking Approach

Our first strategy, namely, BAgg-IE, incorporates online learning and in-training feature se-

lection into a binary classification scheme where documents are ranked according to their as-

signed label and prediction confidence. Since binary classifiers optimize the accuracy of label

assignment instead of the instance order, they are not optimized for ranking tasks [HGO00].

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 133

For this reason, BAgg-IE adopts a more robust approach that exploits multiple binary clas-

sifiers based on bootstrapping aggregation, or bagging [Bre96]. With this approach, the

label assignments and confidence predictions derive from the aggregation of the answers of

a committee of classifiers, rather than from an individual classifier. The intuition behind

BAgg-IE is that each classifier is able to evaluate distinct aspects of the documents, thus

collectively mitigating the limitations of each individual classifier. We adapt SVM-based

binary classifiers [Joa98b] to support online learning and in-training feature selection. For

online learning, our algorithm is based on Pegasos, in which each text document is a training

instance and, hence, we update the model one document at a time. For in-training feature

selection, each classifier in BAgg-IE combines the SVM binary classification problem with

the regularization components of the elastic-net regularization framework that we discussed

earlier, thus yielding the following learning problem to solve:

arg min
w,b

λAll ·
(
λL2
2
‖w‖2 + (1− λL2)‖w‖1

)
+

∑
(d,y)∈S

`(y〈w,d〉+ b)

where b is the bias term, y〈w,d〉 is the dot product of w and d, ` is the hinge loss function,

`(t) = max(0, 1− t), and ‖w‖1 and ‖w‖2 are the `1 and `2-norms of the weight vector (i.e.,

the regularization components), respectively. Moreover, λAll is the parameter that weights

the regularization component over the loss function, and λL2, 0 ≤ λL2 ≤ 1, is the parameter

that weights the `2-norm regularization over the `1-norm regularization.

The committee in BAgg-IE consists of three classifiers3, trained over disjoint random

splits of the documents, which leads to different feature spaces for each, and with balanced

labels (i.e., same number of useful and useless documents). Finally, to obtain the score of

a text document we sum over the normalized scores of each classifier s(d) = 1

1+e−(w>d+b)
,

which accounts for the differences in the feature weights of each classifier. In this equation,

w and b are the weight vector and bias factor, respectively, of the classifier. Because BAgg-

IE models the usefulness of a document independently of other documents, BAgg-IE is a

pointwise learning-to-rank method.

3We experimented with additional classifiers, which slightly improved performance at the expense of
substantial overhead.

134
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

In summary, BAgg-IE addresses the ranking problem as an optimized classification

problem. In contrast, our second technique, RSVM-IE, which we describe next, adopts a

principled learning-to-rank approach natively.

6.2.1.2 RSVM-IE: A Pairwise Ranking Approach

Our second learning-to-rank strategy, namely, RSVM-IE, is based on RankSVM [Joa03], a

popular and effective pairwise learning-to-rank approach. Just as we did for BAgg-IE, we

need to modify RankSVM’s original optimization problem so that it incorporates in-training

feature selection and, in turn, suits our ranking problem. In a nutshell, RankSVM scores

the documents via a linear combination of the document features: the score of a document

d is s(d) =
∑

iwi · di, where wi is the weight of feature i and di is the value of feature i in

document d. The objective of RankSVM is then to find the set of weights w = {w1, ..., wn}

that is optimized to determine, in a pair of documents, if a document is more relevant than

the other document. To achieve this, RankSVM learns the feature weights by comparing the

features of useful and useless documents in pairs: each pair includes a useful and a useless

document, and the label indicates whether the useful document is the first document in the

pair.

By integrating the in-training feature selection discussed above into the original RankSVM

formulation, we obtain the following optimization problem to solve for RSVM-IE:

arg min
w

λAll ·
(
λL2
2
‖w‖2 + (1− λL2)‖w‖1

)
+
∑

(i,j)εP

`(y〈w>,di − dj〉)

where all variables are defined as for BAgg-IE, and di and dj represent a useful and a useless

document, respectively. For online learning, and in contrast to BAgg-IE, which uses the

individual documents in the Pegasos scheme, the training examples are the pairs of useful

and useless documents that the extraction process observes, which is known as Stochastic

Pairwise Descent [Scu09].

Unlike BAgg-IE, RSVM-IE is designed from the ground up to address a ranking task,

so we expect it to outperform BAgg-IE. Moreover, we expect the overhead of RSVM-IE

to be substantially lower than that of BAgg-IE, since BAgg-IE maintains multiple learned

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 135

models (i.e., the classifiers in the committee). This overhead becomes noticeable when the

models are frequently updated. Next, we explain our approach to decide when an update

of the ranking models is desirable during the extraction process, thus reducing the overall

document re-ranking overhead.

6.2.2 Update Detection

As we mentioned in Section 6.2.1, our adaptive extraction approach revises the ranking

decisions periodically, to account for the new observations gathered along the extraction

process. To determine when to update the ranking model (and, correspondingly, the doc-

ument ranking), we introduce the Update Detection step (see Figure 6.2). To make this

decision, we analyze whether the features of recently processed documents differ substan-

tially from those in the ranking model. If this is the case, then we trigger a new ranking

generation step (Section 6.2.1), which uses the recently processed documents as additional

training examples. The new training examples often reveal novel features, or lead to ad-

justing the weight of known features, which in turn helps to more effectively prioritize the

yet-unprocessed documents.

One possible approach for update detection is through feature shifting detection tech-

niques [GLM12]. Feature shifting predicts whether the distribution of features in a (test)

dataset differs from the distribution of the features in the training data. Unfortunately, most

feature shifting techniques are problematic: First, they rely on computationally expensive

algorithms (e.g., kernel-based one-class SVM classifier [GLM12]), thus incurring substantial

overhead when applied repeatedly. Second, these techniques only detect changes in existing

features, so they do not handle well the evolving feature space in our problem. Thus, the

features that do not appear in the ranking would not be considered in the comparison,

unless we re-train the kernel-based classifier from scratch, which would be prohibitively

expensive.

As efficient alternatives, we introduce two update detection approaches, namely, Top-

K and Mod-C. Top-K evaluates a reduced set of highly relevant features, determined

independently from the ranking model, whereas Mod-C directly manipulates the low-level

characteristics of the ranking model to detect changes in the feature space.

136
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

6.2.2.1 Top-K: Relevance-Based Update Detection Approach

Our first approach, namely, Top-K, exploits the fact that the predicted usefulness of the

documents in the current ranking varies the most when the highly influential features in the

ranking model change. For instance, if the word “lava” becomes more frequent along the

processed useful documents in our Occurs-in example, this feature will become (temporar-

ily) more relevant than others. In that case, the predicted usefulness of documents that

include such word should increase accordingly to be prioritized over other documents. Based

on this observation, Top-K compares the K most influential features in the current ranking

against the K most influential features according to the recently processed documents, and

triggers an update when the difference between these two sets exceeds a given threshold τ ,

determined experimentally, as we explain in Section 6.3. Overall, Top-K consists of two key

steps: (i) feature selection, which selects the K most influential features; and (ii) feature

comparison, which measures the distance between two sets of features. To perform feature

selection, we choose the K features with highest weight in an SVM-based linear classifier

trained—and subsequently updated—on the same features (i.e., words and tuple attributes)

as the ranking algorithm. To perform feature comparison, we compute a generalized version

of the Spearman’s Footrule4 [KV10], which considers the relative position of the features

and their weights. According to this measure, the difference between feature weights will

be higher when heavily weighted features change positions.

As discussed, Top-K maintains its own set of relevant features according to an SVM-

based binary classifier. The advantage of this approach is that it makes Top-K independent

of the ranking technique. However, the relevant features in this classifier may differ from

those in the ranking model [HGO00]. In our Occurs-in example, for instance, a trained

RankSVM model weighted the word “northern” as a top-20 feature, whereas a linear SVM

model trained on the same documents weighted “northern” almost neutrally. Such discrep-

ancies in the feature relevance may cause updates that have little impact on the document

ranking or, alternatively, may lead to missing necessary updates because important features

are not being evaluated. We now introduce Mod-C, which works directly with the ranking

4The generalized version of the Spearman’s Footrule that we use is given by
∑
i wi ·∣∣∣∑j:j≤i wj −

∑
j:σ(j)≤σ(i) wj

∣∣∣, where σ(i) is the rank of feature i and wi is its weight.

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 137

models, to capture feature relevance directly.

6.2.2.2 Mod-C: A Model-Based Update Detection Approach

The techniques in Section 6.2.1 learn ranking models that consist of a vector of numeric

weights, where each weight represents the captured relevance of one feature. We can then

use a vector similarity metric, such as cosine similarity [MRS08], to measure the difference

between the relevance of features in two similar ranking models. Our second technique,

namely, Mod-C, exploits this observation and compares the current ranking model to an

“updated” ranking model that also includes some of the recently processed documents. This

updated ranking model includes only a fraction ρ of the recently processed documents, since

including all of these documents would incur substantial overhead. To compare the ranking

models, Mod-C depends on a metric suitable for the ranking model (e.g., cosine similarity

for RSVM-IE) and a threshold α, determined experimentally as we explain in Section 6.3,

that needs to be exceeded to trigger an update. In our cosine similarity example, α would

indicate the maximum allowed angle between ranking models, hence triggering an update

when this angle is exceeded. Mod-C is thus able to handle the real relevance of features,

crucial to precisely decide when an update in the ranking model will improve the current

document ranking.

In summary, we propose two update detection techniques that decide efficiently when it

is beneficial to revise the ranking decisions to adaptively improve the extraction process.

6.3 Experimental Settings

We now describe the experimental settings for the evaluation of our adaptive ranking ap-

proach:

Collections: We used the NYT Annotated Corpus [San08], with 1.8 million New York

Times articles from 1987 to 2007. We split this corpus into a training set (97,258 docu-

ments), a development set (671,457 documents), and a test set (1,086,944 documents). We

evaluated different combinations of techniques and parameters on the development set. We

ran the final experiments on the test set. Additionally, we used collections 1-5 from the

138
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

TREC conference [TRE00] to generate the queries for the query-based sample generation

that we explain later in this section.

Document Access: As mentioned in Section 6.2.1, we consider two document-access sce-

narios: In the full-access scenario (see fully-accessible collection in Section 2.2.1), we rank

all documents in a (moderately sized) document collection. In contrast, in the (more realis-

tic) deep-web scenario (see deep web collection in Section 2.2.2), we retrieve the documents

to rank through keyword queries. We evaluate our ranking approach over both scenarios.

For the deep-web scenario we learn the queries following QXtract (Section 6.1) to retrieve

an initial pool of documents. Also, we provide a search interface over our collection us-

ing the Lucene indexer [Luc15], to retrieve additional documents as the extraction process

progresses: after each ranking update, we use the top-100 features of the updated ranking

model as individual text queries to retrieve additional (potentially) useful documents.

Relations: Table 6.1 shows the broad range of relations from different domains that we

extract for our experiments, with the number of useful documents for each relation in the

test set. Our relations include sparse relations, for which a relatively small fraction of

documents (i.e., less than 2% of the documents) are useful, as well as dense relations.

Information Extraction Techniques: We selected the extraction approach for each

relation to include a variety of extraction approaches (i.e., both machine learning and rule-

based approaches, as well as techniques with varying speed). Specifically, we considered

different entity and relation extractors for each relation, and selected the best performing

combination. However, for diversity, whenever we had ties in performance, we selected the

(arguably) less common contender (e.g., a pattern-based approach to extract organizations

and Maximum Entropy Markov Model [MFP00], or MEMM, for natural disasters):

• For the Person–Organization Affiliation relation we used Hidden Markov Models [EB07]

and automatically generated patterns [WKPU08] as named entity recognizers for Per-

son and Organization, respectively. We used SVM [GLR06] to extract the relation.

• For the Disease–Outbreak relation we used dictionaries and manually crafted reg-

ular expressions as named entity recognizers for Disease and Temporal Expression,

respectively. We used the distance between entities to predict if they are related.

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 139

Relation Useful Documents

Person–Organization Affiliation 185,237 (16.95%)

Disease–Outbreak 847 (0.08%)

Person–Career 458,294 (42.16%)

Natural Disaster–Location 18,370 (1.69%)

Man Made Disaster–Location 15,837 (1.46%)

Person–Charge 19,237 (1.77%)

Election–Winner 5,384 (0.50%)

Table 6.1: Relations for our experiments.

• For the remaining relations, we used Stanford NER [Sta15b] to find Person and Loca-

tion entities, a MEMM [MFP00] to find Natural Disasters, and Conditional Random

Fields [ML03] to find the remaining entities. Then, we used the Subsequence Ker-

nel [BM05b] to identify relations between these entities.

Development Toolkits: We used the following off-the-shelf libraries: (i) Lingpipe [lin15],

for rule-based named entity extraction; (ii) OpenNLP [ope15b], for word and sentence

segmentation; (iii) E-txt2DB [Etx12] and Stanford NER, to train and execute named entity

extractors based on machine learning; and (iv) REEL (see Chapter 3), to train relation

extraction models.

Sampling Strategies: We compared two techniques to collect the initial document sample

for our ranking techniques (Section 6.2.1):

• Simple Random Sampling (SRS): SRS picks 2,000 documents at random from the

collection (only for the full-access scenario).

• Cyclic Query Sampling (CQS): CQS (see Cyclic in Section 4.2.3) iterates repeatedly

over a list of queries and collects the unseen documents from the next K documents

that each query retrieves until it collects 2,000 documents. We learned 5 lists of

queries using sets of 10,000 random documents (5,000 useful and 5,000 useless) from

the TREC collection by applying the SVM-based method in QXtract [AG03].

Ranking Generation Techniques: We evaluated our ranking generation techniques from

Section 6.2.1. To obtain the best parameters for these techniques, we performed several

140
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

experiments over our development set, varying λAll and λL2. The parameter values that we

determined experimentally are as follows: for BAgg-IE, λAll = 0.5 and λL2 = 0.99; while for

RSVM-IE, λAll = 0.1 and λL2 = 0.99. Setting λL2 = 0.99 results in an `1-norm weight of

1− λL2 = 0.01. This weight in turn results in models with 10 times fewer features—which

are hence 10 times faster—than models that only use the `2-norm. Higher `1-norm weights

would lead to lower-quality ranking models, as discussed in Section 6.2.

We also evaluated the following (strong) baselines:

• FactCrawl (FC): FC corresponds to our implementation of FactCrawl [BLNP11a], as

described in Section 6.1.

• Adaptive FactCrawl (A-FC): We produced a new version of FC that re-ranks the

documents. Specifically, to make FC more competitive with our adaptive ranking

strategies, A-FC recomputes the quality of the queries, and re-ranks the documents

with these new values after each document is processed. In addition, A-FC learns new

queries and retrieves more documents before every re-ranking step.

(We evaluated other approaches, such as QXtract [AG03] and PRDualRank [FC11], but do

not discuss them further because FactCrawl dominated the alternatives that we considered.)

Update Detection Techniques: We evaluated our update detection techniques from

Section 6.2.2:

• Top-K: We set K = 200, which experimentally led to high coverage of the relevant

features and small overhead in feature comparison. We set τ = ε ·K, where ε indicates

how much each feature can change without impacting the ranking. We experimented

with several values of τ and finally picked τ = 0.5 (ε = 0.0025).

• Mod-C: We evaluated several combinations of ρ and α: the best value for ρ is 0.1, while

the best angle values for α are 5◦ and 30◦ for RSVM-IE and BAgg-IE, respectively.

We also compared against the following baselines:

• Wind-F: We implemented a näıve approach for update detection that updates the

ranking model after processing a fixed number of documents. We experimented with

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 141

several values and observed no substantial differences. We report our results for

updating 50 times along the extraction process, which leads to updates after 13,429

and 21,739 documents for the validation and test sets, respectively.

• Feat-S: We implemented an efficient version of feature shifting [GLM12] using an

online one-class SVM based on Pegasos [SSSS07]. We used a Gaussian kernel with

γ = 0.01 and k = 6, as suggested in [GLM12]. Finally, we triggered an update

when the geometrical difference F = 1− S exceeded a threshold τ = 0.55. Since the

features of the documents after each update tend to fluctuate, we only run Feat-S

after processing 700 new documents or more.

Executions: We executed each experiment five times with different samples (i.e., five

different random samples and five different sets of initial sample queries), to account for the

effect of randomness in the results, and report the average of these executions.

Evaluation Metrics: We use the following metrics:

• Average Recall: Average recall is the recall of the extraction process (i.e., the fraction

of useful documents in the collection that have been processed) at different points

during the extraction (e.g., after processing x% of the documents) and averaged over

all executions of the same configuration.

• Average Precision: Average precision the mean of the precision values at every posi-

tion of the ranking [TS06], averaged over all the executions of the same configuration.

• R-Precision: R-precision is the precision@K value when K is the total number of

useful documents in the collection, averaged over all the executions of the same con-

figuration.

• Area Under the ROC curve (AUC): AUC is the area under the curve of the true

positive rate as a function of the false positive rate, averaged over all the executions

of the same configuration.

• CPU Time: CPU time measures the time consumed for extracting and ranking the

documents.

142
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

0 10 20 30 40 50 60 70 80 90 100

0
10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

A
ve

ra
ge

 R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
BAgg−IE
RSVM−IE
FC

Figure 6.3: Average recall for Person–Charge for different base ranking generation tech-
niques.

6.4 Experimental Results

We now present the results of the experimental evaluation of our adaptive ranking approach.

We tuned the configuration of all components of our approach (i.e., the sampling strategy,

the learning-to-rank approach, and the update detection approach) by exhaustively con-

sidering all possible combinations over the development set and selecting the best such

combination. In the discussion below, for clarity, we consider the configuration choices for

each component separately. Later, for the final evaluation of our approach over the test set

and against the state-of-the-art ranking strategies, we use the best configuration according

to the development set experiments.

6.4.1 Impact of Learning-To-Rank Approach

To understand the impact of using our learning-to-rank approach, we first evaluate our

techniques of Section 6.2.1, without the adaptation step, against FC over the development

set. Figure 6.3 shows the average recall for the Person–Charge relation for the full-access

scenario. (For reference, we also show the performance of a random ordering of the docu-

ments, as well as of a perfect ordering where all useful documents are ahead of the useless

ones.) Both RSVM-IE and BAgg-IE consistently outperform FC. Interestingly, RSVM-IE

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 143

0 10 20 30 40 50 60 70 80 90 100

0
10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

A
ve

ra
ge

 R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
BAgg−IE
RSVM−IE
FC

Figure 6.4: Average recall for Disease–Outbreak for different base ranking generation tech-
niques.

0 10 20 30 40 50 60 70 80 90 100

0
10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

A
ve

ra
ge

 R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
BAgg−IE
RSVM−IE
FC

Figure 6.5: Average recall for Person–Career for different base ranking generation tech-
niques.

performs better in early phases of the extraction, while BAgg-IE performs better in the

later phases, which agrees with our intuition from Section 6.2.1: RSVM-IE is at its core a

ranking optimization technique, while BAgg-IE is based on classifiers. BAgg-IE separates

useful from useless documents, thus obtaining high-accuracy in the middle of the extrac-

tion process, which in turn leads to high recall later on. We observed similar results for

most of the relations (e.g., Figures 6.4 and6.5 show the results for Disease–Outbreak and

144
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

Relation Base SRS Base CQS Ada. SRS Ada. CQS

Person–Organization Affil. 33.6±0.9% 37.9±1.0% 44.2±0.3% 43.6±0.3%

Disease–Outbreak 2.3±1.1% 3.1±0.6% 3.0±1.0% 3.8±0.6%

Person–Career 80.2±0.4% 79.2±0.5% 84.2±0.2% 84.1±0.2%

Natural Disaster–Loc. 6.1±1.1% 13.1±0.9% 10.2±0.9% 16.4±0.8%

Man Made Disaster–Loc. 7.3±1.8% 13.6±1.2% 12.9±1.4% 17.2±0.8%

Man Person–Charge 28.6±0.7% 28.1±1.1% 33.0±0.6% 33.4±0.6%

Man Election–Winner 6.6±4.0% 10.2±0.8% 9.4±3.2% 12.6±0.6%

Table 6.2: Average precision of different document sampling techniques on the ranking
quality for all the relations with the base and adaptive versions of RSVM-IE for the full-
access scenario.

Person–Career respectively). However, RSVM-IE performs better than BAgg-IE for sparse

relations, so RSVM-IE is preferable for such relations even in later phases of the extrac-

tion process (see Figure 6.4). Overall, even without an adaptation step, our techniques

outperform the state-of-the-art ranking technique FC.

6.4.2 Impact of Sampling Strategies

To understand the impact of different sampling techniques to learn the initial ranking model,

we compared RSVM-IE and BAgg-IE using the SRS and CQS sampling techniques (Sec-

tion 6.3). Figure 6.6 shows the average recall for the Man Made Disaster–Location relation

in the full-access scenario for RSVM-IE, both without the adaptation step (denoted with

keyword “Base” in the plot) as well as with adaptation (denoted with keyword “Adaptive”).

(The results for BAgg-IE were analogous; see Figure 6.7.) Using CQS, a sophisticated

sampling technique, has a generally positive impact relative to using the (simpler) SRS

strategy. The only exceptions were the dense relations, namely, Person–Organization and

Person–Career, for which a simple random sample typically includes a wide variety of useful

documents, thus leading to high-quality models.

6.4.3 Impact of Adaptation

We claimed throughout this chapter that refining the document ranking along the extrac-

tion process significantly improves its efficiency. To support this claim, Figure 6.6 shows the

average recall of RSVM-IE for the Man Made Disaster–Location relation for the full-access

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 145

Relation Base SRS Base CQS Ada. SRS Ada. CQS

Person–Organization Affil. 76.7±1.0% 77.7±0.9% 82.7±0.1% 82.7±0.1%

Disease–Outbreak 88.2±2.2% 87.9±0.9% 97.0±0.1% 97.1±0.1%

Person–Career 86.9±0.2% 86.5±0.4% 89.9±0.1% 89.9±0.1%

Natural Disaster–Loc. 64.0±3.5% 64.3±3.2% 85.5±0.2% 85.4±0.2%

Man Made Disaster–Loc. 67.4±3.2% 76.6±3.6% 88.6±0.2% 89.2±0.1%

Man Person–Charge 89.7±1.4% 87.3±1.6% 95.5±0.0% 95.4±0.0%

Man Election–Winner 79.5±8.6% 84.6±1.4% 94.9±0.5% 95.3±0.1%

Table 6.3: AUC of different document sampling techniques on the ranking quality for all
the relations with the base and adaptive versions of RSVM-IE for the full-access scenario.

0 10 20 30 40 50 60 70 80 90 100

0
10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

A
ve

ra
ge

 R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
Base SRS RSVM−IE
Base CQS RSVM−IE
Adaptive SRS RSVM−IE
Adaptive CQS RSVM−IE

Figure 6.6: Average recall for Man Made Disaster–Location with different sampling tech-
niques for the base and adaptive versions of RSVM-IE.

scenario. (The results for BAgg-IE are analogous, although the difference between the sam-

pling techniques is higher than for RSVM-IE; see Figure 6.7.) These results show that

by adapting the ranking model learned by RSVM-IE and, correspondingly, the document

ranking, we significantly improve the efficiency of the extraction process. For example, Fig-

ure 6.6 shows that the adaptive versions of RSVM-IE can reach 70% of the useful documents

after processing only 10% of the collection, whereas the base (non-adaptive) versions only

reached 40% and 50% of the useful documents, for SRS and CQS, respectively. This same

behavior was replicated by almost all relations. Additionally, as shown in Figure 6.6, the

sampling technique does not have a significant impact anymore when we incorporate the

146
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

0 10 20 30 40 50 60 70 80 90 100

0
10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

A
ve

ra
ge

 R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
Base SRS BAgg−IE
Base CQS BAgg−IE
Adaptive SRS BAgg−IE
Adaptive CQS BAgg−IE

Figure 6.7: Average recall for Man Made Disaster–Location with different sampling tech-
niques for the base and adaptive versions of BAgg-IE.

adaptation step. Nevertheless, we observed that the results of average precision and AUC

(see Table 6.3) are generally better for CQS than for SRS, since CQS leads to processing

more useful documents at early stages of the extraction process.

Finally, we evaluated the number of new features incorporated into the ranking model

during the adaptation step. In early stages of the extraction process, an average of 200

(or about 25% of the total number of features in the previous models) are incorporated; a

similar number of features is removed in each adaptation step. However, in later stages, this

behavior changes as the models become more stable. Specifically, the number of incorpo-

rated and removed features drops to 10 after each adaptation step. These results show that

while the initial adaptation steps significantly impact the ranking model, the later ones are

insignificant. Therefore, it is important to properly schedule the adaptation step to avoid

insignificant updates to the ranking model.

6.4.4 Impact of Update Detection

To evaluate the update detection techniques that we introduced in Section 6.2.2, we fix

the document sampling to SRS, and evaluate the techniques according to their impact on

the extraction process, distribution of updates, and overhead. Figure 6.8 shows the results

of RSVM-IE for the Election–Winner relation for the full-access scenario. (The behavior

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 147

0 10 20 30 40 50 60 70 80 90 100

0
10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

A
ve

ra
ge

 R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
Wind−F RSVM−IE
Feat−S RSVM−IE
Top−K RSVM−IE
Mod−C RSVM−IE

Figure 6.8: Average recall for Election–Winner for different update methods with RSVM-IE.

Relation Wind-F Feat-S Top-K Mod-C

Person–Organization Affil. 33.0±0.6% 29.7±1.1% 34.7±0.3% 36.0±0.4%

Disease–Outbreak 9.4±3.2% 11.8±1.5% 10.3±3.6% 15.8±1.4%}
Person–Career 84.2±0.2% 68.7±5.8% 84.7±0.1% 83.5±0.3%

Natural Disaster–Loc. 10.2±0.9% 8.4±0.7% 12.9±1.5% 17.7±0.8%

Man Made Disaster–Loc. 12.9±1.4% 13.3±1.7% 15.8±1.1% 19.7±0.8%

Person–Charge 33.0±0.6% 29.7±1.1% 34.7±0.3% 36.0±0.4%

Election–Winner 9.4±3.2% 11.8±1.5% 10.3±3.6% 15.8±1.4%

Table 6.4: Average precision of the update detection methods for the full-access scenario
and using RSVM-IE as document ranking approach.

for the other relations is analogous. We show the average precision and R-precision of

different update detection methods for all relations using the RSVM-IE approach in Tables

6.4 and 6.5). Feat-S technique performed poorly in comparison to others, because Feat-S

stops performing updates when the features observed in the data stabilize with respect to its

kernel-based definition of shifting. For this reason, Feat-S misses late updates that prioritize

other still poorly ranked useful documents. In addition, we observe that both Top-K and

Mod-C produce consistently better results than Wind-F, especially at early stages of the

extraction process, thus leading to high recall early in the extraction process. Overall, we

show that both Top-K and Mod-C are robust alternatives for update detection in terms of

ranking quality.

Additionally, to evaluate the impact on efficiency of the update detection techniques, we

148
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

Relation Wind-F Feat-S Top-K Mod-C

Person–Organization Affil. 35.8±1.0% 37.3±0.8% 40.3±1.5% 41.3±0.5%

Disease–Outbreak 12.6±6.7% 23.0±2.6% 12.5±6.3% 23.9±1.5%

Person–Career 76.3±0.1% 64.1±5.0% 76.6±0.0% 75.1±0.5%

Natural Disaster–Loc. 12.0±1.7% 16.8±1.3% 22.1±1.4% 25.0±0.2%

Man Made Disaster–Loc. 14.6±3.3% 23.6±1.9% 25.3±2.3% 28.9±0.4%

Person–Charge 35.8±1.0% 37.3±0.8% 40.3±1.5% 41.3±0.5%

Election–Winner 12.6±6.7% 23.0±2.6% 12.5±6.3% 23.9±1.5%

Table 6.5: R-precision of the update detection methods for the full-access scenario and using
RSVM-IE as document ranking approach.

Update Technique CPU Time per Document

Wind-F 0.01±0.00 ms

Feat-S 5.72±0.29 ms

Top-K 1.89±0.71 ms

Mod-C 0.32±0.10 ms

Table 6.6: Average CPU time to perform update detection.

calculated the overhead per document in terms of average CPU time, which we summarize in

Table 6.6. As expected, Wind-F incurs negligible overhead (roughly 0.01 ms per document),

since it only keeps a counter of the processed documents, whereas Feat-S incurs the highest

overhead (5.72 ms per document). Our two techniques, Top-K (1.89 ms per document) and

Mod-C (0.32 ms per document), exhibit a substantial difference in terms of efficiency, since

the overhead of Top-K is dominated by the use of the binary classifier, as we discussed in

Section 6.2.2.

We also studied the distribution of updates across the extraction process, to understand

the behavior of Top-K and Mod-C. Figure 6.9 shows the number of updates that each

technique performs at different stages of the extraction process. Top-K and Mod-C tend

to update much more frequently in early stages, where almost all documents carry new

evidence of usefulness, than in later stages. For instance, most of the updates are performed

while processing the first 10% of the collection. This behavior leads to ranking models that

stabilize early, since they are able to overcome the usual lack of training data in the initial

document samples. Interestingly, despite the density of updates early in the process, the

overall number of updates of Top-K and Mod-C remains smaller than that of Wind-F, since

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 149

0

10

20

30

40

50

Wind−F Feat−S Top−K Mod−C

N
um

be
r

O
f U

pd
at

es
 Processed
 Documents (%) 10 20 30 40 50 60 70 80 90 100

Figure 6.9: Distribution of updates for different techniques over the Election–Winner rela-
tion with RSVM-IE. (Darker shades represent earlier stages of the extraction process.)

our techniques avoid unnecessary updates in late phases of the extraction process.

Additionally, we studied the number and percentage of features that are incorporated

to, removed from, and updated in the models. Figure 6.10 shows these values together

with the total number of features in the model for Mod-C, the best performing update

detection method based on our analysis above, and Wind-F, which updates the models at

regular intervals: The adaptation steps triggered by Mod-C add a consistent number of new

features (i.e., about 100 per adaptation step) throughout the extraction process. (Because

of the regularization step during learning, the model removes a comparable number of

features from the model.) This behavior significantly differs from that of Wind-F, which

incorporates a large fraction of new features in early phases of the extraction process but

only a small number of features later on: Mod-C (and also Top-K) only performs an update

if this update will have a significantly positive impact on the model. This is reflected in

the number of features that change in the model after each update (see Updated line in

Figure 6.10), which for Mod-C are consistently close to the total number of features (see

All line in Figure 6.10). Finally, relations such as Disease–Outbreak, which include(very)

few useful documents in the initial document sample, tend to incorporate more features

in the ranking model. This occurs because most useful documents processed along the

extraction process will include unseen features. In conclusion, and considering also the

150
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

Person−
Organization Affiliation Disease−Outbreak Person−Career Election−Winner

0

500

1000

1500

2000

0

500

1000

1500

M
od−

C
W

ind−
F

0 20 40 600 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Update Number

N
um

be
r

of
 F

ea
tu

re
s

Features All Incorporated Removed Updated

Figure 6.10: Analysis of the feature space during updates for RSVM-IE and a selection of
relations and update detection methods.

efficiency results, Mod-C consistently outperforms the other techniques.

6.4.5 Scalability of our Approach

To understand how our strategies scale with the document collection size, we produced 10

subsets of the test collection with different sizes (from 10% to 100% of the total collection)

and we measured (i) the time overhead for producing the ranking and (ii) the extraction

time needed to reach a (fixed) target number of useful documents in each subset. Figure 6.11

shows how the size of the collection affects the CPU time needed to perform the ranking

and extraction tasks with our techniques for the Natural Disaster–Location relation: the

CPU time needed to perform an extraction task with our techniques grows approximately

linearly with the collection size, which is desirable. Additionally, Figure 6.12 shows—for the

Person–Organization Affiliation relation—that the time needed to find and process a target

number of useful documents significantly drops as we increase the size of the collection. In

this figure, the target number of useful documents corresponds to that in the subset of the

collection that only contains 10% of the documents. As shown, the time becomes almost

constant when the number of useful documents in the subset is large enough for the ranking

to reach the target number at very early phases of the extraction process.

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 151

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

10 20 30 40 50 60 70 80 90 100
Collection Size (%)

C
P

U
 T

im
e

(m
)

Technique BAgg−IE RSVM−IE

Recall 0.25 0.5 0.75 1

Figure 6.11: Average CPU time of our techniques as a function of the collection size for
different target recall values, for the Natural Disaster–Location relation.

10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

12

14

16

Collection Size (%)

C
P

U
 T

im
e

(m
)

BAgg−IE
RSVM−IE

Figure 6.12: Average CPU time to find a target number of documents (i.e., the number
of useful documents in the subset with 10% of the collection) for the Person–Organization
Affiliation relation, as a function of the collection size.

6.4.6 Comparison with State-of-the-Art Ranking Strategies

We now compare our best performing ranking approaches with the state-of-the-art ap-

proaches discussed in Section 6.1. We selected the best configuration for RSVM-IE and

BAgg-IE according to the previous experiments, which involve CQS sampling and Mod-C

update detection. Then, we ran this configuration over the test set to compare with FC

and A-FC. We compare the techniques on ranking quality and efficiency.

152
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

Relation BAgg-IE RSVM-IE FC A-FC

Person–Organization Affil. 40.5±0.9% 45.7±0.3% 29.0±0.9% 30.5±0.6%

Disease–Outbreak 3.5±1.3% 8.3±0.2% 1.5±0.4% 1.6±0.4%

Person–Career 79.2±0.4% 85.1±0.1% 66.3±1.1% 63.2±1.0%

Natural Disaster–Loc. 10.2±1.4% 18.9±0.6% 6.0±0.4% 7.1±0.4%

Man Made Disaster–Loc. 10.8±2.1% 17.0±0.1% 3.8±0.4% 4.1±0.4%

Person–Charge 22.3±2.6% 33.8±0.3% 10.0±1.5% 11.0±1.2%

Election–Winner 9.6±0.6% 15.5±0.3% 2.4±0.2% 2.6±0.2%

Table 6.7: Average precision of the rankings generated by different techniques for the full-
access scenario.

Relation BAgg-IE RSVM-IE FC A-FC

Person–Organization Affil. 78.2±0.6% 82.4±0.1% 68.9±0.5% 71.9±0.8%

Disease–Outbreak 89.7±0.3% 98.2±0.1% 71.5±11.4% 78.8±5.4%

Person–Career 83.7±0.4% 88.6±0.1% 76.3±0.4% 72.9±0.5%

Natural Disaster–Loc. 78.4±0.5% 85.8±0.1% 67.8±1.5% 72.9±0.2%

Man Made Disaster–Loc. 81.4±1.2% 88.0±0.0% 67.1±1.7% 69.9±1.5%

Person–Charge 90.5±2.1% 95.1±0.0% 74.6±2.8% 78.9±1.5%

Election–Winner 90.2±0.2% 95.4±0.1% 78.1±1.5% 80.5±1.3%

Table 6.8: AUC of the rankings generated by different techniques for the full-access scenario.

Relation BAgg-IE RSVM-IE FC A-FC

Person–Organization Affil. 40.6±0.9% 46.8±0.1% 29.1±0.9% 31.1±1.0%

Disease–Outbreak 3.5±0.9% 7.6±0.2% 1.5±0.4% 1.6±0.4%

Person–Career 79.3±0.6% 85.9±0.0% 66.3±1.1% 63.2±1.0%

Natural Disaster–Loc. 10.3±1.6% 18.9±0.6% 6.0±0.4% 7.1±0.3%

Man Made Disaster–Loc. 10.4±1.7% 17.3±0.2% 3.8±0.4% 4.1±0.4%

Person–Charge 21.9±2.5% 34.2±0.4% 10.0±1.5% 11.0±1.3%

Election–Winner 9.9±0.3% 15.6±0.3% 2.4±0.2% 2.6±0.2%

Table 6.9: Average precision of the rankings generated by different techniques for the deep-
web scenario.

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 153

0 10 20 30 40 50 60 70 80 90 100

0
10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

A
ve

ra
ge

 R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
BAgg−IE
RSVM−IE
FC
A−FC

(a) Disease–Outbreak

0 10 20 30 40 50 60 70 80 90 100

0
10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

A
ve

ra
ge

 R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
BAgg−IE
RSVM−IE
FC
A−FC

(b) Person–Career

Figure 6.13: Average recall for different ranking approaches in the full-access scenario.

Table 6.8 shows the average precision and AUC of the four techniques that we com-

pare, for all relations and over the full-access scenario: RSVM-IE and BAgg-IE generally

outperform the FactCrawl baselines by a large margin, and RSVM-IE consistently out-

performs BAgg-IE. We performed this experiment in the deep-web scenario as well, with

similar conclusions (see average precision in Table 6.9). Interestingly, our adaptive version of

FactCrawl, A-FC, does not exhibit the same significant improvement compared to FC that

we observed between the adaptive and base versions of RSVM-IE and BAgg-IE above: A-

FC is unable to properly model the usefulness of the documents when new features emerge,

since it only relies on a small number of features.

To understand the effects of the relation characteristics, we studied the performance

154
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

0 10 20 30 40 50 60 70 80 90 100

0
9,300

18,600
27,900
37,200
46,500
55,800
65,100
74,400
83,700
93,000

Useful Document Recall (%)

C
P

U
 T

im
e

(m
)

Random Ranking
BAgg−IE
RSVM−IE
FC
A−FC

(a) Natural Disaster–Location

0 10 20 30 40 50 60 70 80 90 100

0
33
66
99

132
165
198
231
264

Useful Document Recall (%)

C
P

U
 T

im
e

(m
)

Random Ranking
BAgg−IE
RSVM−IE
FC
A−FC

(b) Person–Organization Affiliation

Figure 6.14: CPU time to obtain a target recall value.

of the techniques over both sparse (Figure 6.13a) and dense (Figure 6.13b) relations. The

performance gap is more evident for sparse relations than it is for dense relations: The

vocabulary around mentions of sparse relations tends to be reduced and specific, which

makes it easier to model and prioritize the useful documents. Conversely, dense relations

are scattered across diverse documents, thus co-occurring with a large variety of words,

which makes it difficult to select a set of features that precisely identifies useful documents.

Regardless, RSVM-IE and BAgg-IE still outperform the other techniques, since they are

able to handle feature spaces of variable sizes.

We evaluate efficiency by measuring the time—including both ranking and extraction

time—that each technique requires to achieve different values of recall. We show the results

CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION
EXTRACTION 155

for two relations that exhibit substantially different extraction times according to their

respective information extraction system: (i) Natural Disaster–Location, which takes an

average of 6 seconds per document (Figure 6.14a); and (ii) Person–Organization Affiliation,

which takes an average of 0.01 seconds per document (Figure 6.14b). RSVM-IE outperforms

the others, in agreement with our earlier findings. The results for Person–Organization

Affiliation are, in contrast, slightly different. For this fast extraction task, the overhead

of the ranking technique can be problematic since it may easily become larger than the

extraction time per se. We can observe such behavior for A-FC, which is less efficient than

a random ranking technique with no overhead: A-FC (and, correspondingly, FC) relies on

features that are expensive to compute [BLNP11a], which is problematic for the adaptive

case. However, the other techniques behave similarly as for the more expensive relations,

with RSVM-IE resulting in the most efficient extraction process. Interestingly, for extraction

tasks that incur lengthier extraction time, as is the case for Natural Disaster–Location, the

quality of the ranking has a higher impact on efficiency than for other extraction tasks.

Overall, our experiments show that RSVM-IE outperforms all other techniques in all

settings and extraction tasks. More specifically, RSVM-IE produces better rankings, while

incurring very little overhead. Finally, when combined with Mod-C, RSVM-IE achieves

much lower extraction times than the alternative strategies that we studied. Indeed, even

with fast information extraction systems, adaptively ranking documents with RSVM-IE

remained the best choice. Additionally, we evaluated the scalability of our techniques

and confirmed that as the size of the collection grows, so does the positive impact of our

approach, making it a substantial step towards scalable information extraction.

6.5 Conclusions

In this chapter, we presented an adaptive, lightweight document ranking approach for infor-

mation extraction. Our approach enables effective and efficient information extraction over

large document collections. Specifically, our approach relies on learning-to-rank techniques

that learn in a principled way the fine-grained characteristics of the useful documents for

an extraction task of interest. Our techniques incorporate (i) online learning algorithms,

156
CHAPTER 6. RANKING DOCUMENTS FOR SCALABLE INFORMATION

EXTRACTION

to enable a principled, efficient, and continuous incorporation of new relevant evidence as

the extraction process progresses and reveals the real usefulness of documents; and (ii) in-

-training feature selection, to enable the learning of ranking models that rely on a small,

discriminative set of features. Our experiments show that our approach exhibits higher

recall and precision than state-of-the-art approaches, while keeping the overhead low.

The key contributions of this chapter are the techniques that we have devised for the two

critical building blocks of our approach, namely, ranking generation and update detection.

Beyond being efficient and effective, which is crucial for the performance of the overall

extraction process, these techniques are also remarkably flexible: These techniques can

potentially handle different, dynamic sets of features without further modifications. We

believe that these techniques will enable the development and deployment of highly effective,

domain-specific document ranking approaches. Overall, our document ranking approach

and techniques are a substantial step towards scalable information extraction.

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 157

Chapter 7

Ranking Sentences for Scalable

Information Extraction

In Chapter 6, we addressed the problem of document ranking for efficient information

extraction, namely, to prioritize the extraction effort over useful documents for an extraction

task of choice. We also showed that our techniques need to process considerably fewer

documents than state-of-the-art approaches to extract tuples from the same number of

useful documents. However, information extraction systems typically operate over small

text units (e.g., sentences or paragraphs) rather than over the entire documents, as discussed

in Chapter 2. Even more importantly, many times only a small number of sentences in a

useful document are useful for the extraction task at hand [NVB01]. We argue that further

efficiency improvements can be made by focusing on these few useful sentences and ignoring

the rest.

In this chapter, we present a sentence ranking approach to effectively and efficiently

prioritize the useful sentences that lead to the extraction of novel, unseen tuples for an

extraction task of interest. Specifically, we propose a principled, efficient approach that

exploits a forward greedy sparse group selection strategy [LSA09] to identify the (often-

few) useful sentences from a set of documents. Our approach models each sentence as a

group of n-grams and iteratively selects the sentence that best explains a carefully designed

representation of the extraction task at hand derived from discriminative n-grams for the

158
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

task. Importantly, we build this representation of the extraction task gradually, as the

extraction process progresses, to capture all relevant aspects of the task. During sentence

ranking, our approach updates this representation to account for the relevant aspects of the

extraction task that have been already explained by other previously selected sentences.

By doing this, our approach manages to prioritize sentences that lead to the extraction of

unseen tuples. We exploit distributed word representations to model the sentences and the

extraction task, to enable a meaningful characterization of sentence usefulness and novelty.

Our experimental evaluation over a broad range of extraction tasks shows the merits and

limitations of all relevant building blocks in our approach and, more importantly, shows the

significant efficiency improvements that can be made by effectively prioritizing sentences.

In summary, the main contributions of this chapter are:

• An end-to-end sentence ranking approach for effective and efficient information ex-

traction in a greedy, efficient, and principled manner (Section 7.2). Our approach

produces rich, compact representations of both the sentences and the extraction task,

to effectively characterize usefulness and novelty (Section 7.2.3). Also, our approach

prioritizes sentences that lead to the extraction of unseen, novel tuples by exploit-

ing sparse group selection solutions over the sentences and with respect to the ex-

traction task (Section 7.2.4). Finally, our approach enables trading relevance and

novelty, which largely benefits the requirements of diverse downstream applications

(Section 7.2.5).

• An experimental evaluation of our approach using multiple extraction tasks imple-

mented with a variety of extraction approaches (Sections 7.3 and 7.4). Our evaluation

highlights the substantial efficiency improvements—in terms of processing time—that

can be achieved by effectively prioritizing sentences. In particular, we show the merits

and limitations of all relevant building blocks in our approach for identifying novel

sentences for an extraction task of interest.

We now review necessary background and define our problem of focus in this chapter.

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 159

7.1 Background and Problem Definition

To extract tuples from a given text document, information extraction systems often run

over all sentences in the document, as described in Chapter 2. However, such exhaustive

processing is many times unnecessary even over a useful document, because only a small

fraction of the sentences are useful for the extraction task at hand [NVB01].1 For our

Occurs-in relation, for instance, under 4% of the sentences in useful documents in TREC 1-5

collections [TRE00] are useful when processed with a state-of-the-art information extraction

system. If we could identify the small fraction of useful sentences, we would complete the

extraction process in substantially less time than an exhaustive execution and without any

need to change the information extraction system.

Early approaches for identifying useful sentences for an extraction task of interest have

resorted to filtering [Agi05]: In a preprocessing step, these approaches run inexpensive text

classifiers [NVB01; BHL11] or hand-crafted patterns [GHY02] over each sentence to decide

whether the sentence should be forwarded to the extraction system (e.g., if the classifier

categorizes the sentence as positive or if the pattern matches the sentence). By applying

these filtering techniques the extraction process becomes noticeably more efficient because

the extraction techniques will run over a (relatively) small number of sentences [WSE13].2

Unfortunately, filtering approaches have two crucial limitations. First, recall of the extrac-

tion process (i.e., the number of tuples that are extracted with the information extraction

system) may suffer, because filtering approaches are usually far from perfect [PR07]. As

a result, many useful sentences are not forwarded to the information extraction system.

Wachsmuth et al. [WSE13] propose trading recall for efficiency by increasing the scope of

the filtering approach (e.g., to paragraphs or to the entire document); however, recall of

the extraction process still remains affected. Second, efficiency may also be compromised,

because the information extraction system may run over sentences that produce already

1Our approach is not applicable over open information extraction scenarios (e.g., [BCS+07]) where sen-
tences frequently contribute tuples to the open-ended extraction task.

2The extraction process may also become more effective, as demonstrated empirically in [PR07]. This
happens because reducing the number of sentences to process with the information extraction system reduces,
in effect, the number of false positives (i.e., extracted tuples that are semantically incorrect). We do not
consider effectiveness in our work. Instead, we trust the output of the information extraction system and
focus on efficiently and effectively identifying useful sentences for our extraction task of interest.

160
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

seen tuples that may be ignored by downstream applications.

To alleviate the limitations above in the (related) task of efficiently extracting from text

attributes (e.g., work place or location) of entities (e.g., person or organization), Xu et al.

move beyond filtering and adopt instead a ranking approach [XGZ11]. Following an idea

similar in spirit to those of QXtract [AG03] and FactCrawl [BLNP11b], their approach col-

lects a set of passages (e.g., sentences, paragraphs, or fixed- or variable-size text windows)

that are likely to be useful for the extraction task of choice. Specifically, they issue auto-

matically learned discriminative queries for the task to a passage retrieval system, namely,

a retrieval system that identifies passages—from indexed documents—that are topically

relevant to a given query [KZ01]. This approach then re-ranks the retrieved passages ac-

cording to a passage score that considers: (1) occurrence of the entity of interest (e.g., Reed

Hastings) or, alternatively, of pronouns that can potentially refer to the entity; (2) novel

or repeated occurrence of an entity of the attribute type to be extracted (e.g., work place),

where the novelty is defined according to previously processed passages; and (3) mention of

any top-n most discriminative words, weighted proportionally to their precision (i.e., ratio

of useful passages that include the word to the total set of passages that include the word)

over a set of training passages.

Unfortunately, the approach above has some serious limitations. First, recall of the

extraction process is still compromised because, just as in QXtract and FactCrawl, the

learned queries may miss passages with mentions of the extraction task at hand. Second, its

efficiency is also affected, since computationally expensive text processing steps are needed

over all passages during scoring (e.g., named entity recognition needs to be performed

in Item (2) above). Third, and similarly to QXtract and FactCrawl, this approach does

not benefit from or adapt to the information that is captured as the extraction process

progresses. Finally, novelty of the extraction output is considered in isolation, ignoring

signals from the full contents of the passages that, as we will see, are helpful to characterize

the novelty of the extraction output. This impacts the diversity of the extraction output,

namely, the unique tuples and attributes that are extracted from the text, which is many

times a desirable property of the output, as we will see.

Novelty and diversity have been extensively studied in the related area of information

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 161

retrieval, where the relevance of a document must be determined with respect to those ap-

pearing before it in query results [Gof64; Boy82]. More specifically, Clarke et al. distinguish

novelty—the need to avoid redundancy in the returned results—and diversity—the need

to resolve ambiguity in the posed search query [CKC+08]. Some approaches (e.g., [CG98;

ZCL03; SMK09; AGHI09; DC12]) greedily apply carefully designed scoring functions to the

documents to determine their novelty. Other methods (e.g., [CK06]) exploit the so-called

negative relevance feedback, namely, to deem seen documents as non-relevant, to then resort

to traditional relevance measures. Finally, learning-based approaches (e.g., [YJ08; SRG10;

SMO10; RSJ12]) train ranking algorithms for diversity in the results from the ground up.

Importantly, novelty and diversity of the output are highly desirable properties in multiple

domains [SCAC14].

Unlike in information retrieval, though, our information extraction setting requires that

we identify novel sentences, or (useful) sentences that lead to the extraction of unseen tuples,

rather than documents that cover different topical aspects of a given query. As a result, we

should effectively determine the novelty of a sentence—in terms of its (future) extraction

output—with respect to previously processed sentences. Accordingly, by promoting novelty

we enhance diversity over time, just as in the (related) area of recommender systems [VC11].

This is a particularly challenging proposition for three main reasons. First, sentences are

generally short, which complicates effectively characterizing their novelty and usefulness.

Our methods should therefore exploit this scarce information competently. Second, novelty

of a sentence should be determined in a lightweight manner, for efficiency. In particular,

determining the novelty of a sentence should avoid incurring extraction effort. Finally, the

fraction of useful sentences for an information extraction task in a set of documents can

many times be very small, as discussed. Our methods should accurately identify these few

useful sentences from the documents.

Based on the discussion above, we now present our problem of focus in this chapter:3

Problem Definition 4 Consider a set of text documents D and an information extraction

3A more general version of this problem would be to prioritize text fragments of different lengths (e.g., a
set of n sentences or paragraphs). We focus on sentences in our work but, as we will see, our techniques are
applicable to other text units as well.

162
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

system E trained to extract tuples for a relation R from text. Our goal is to prioritize the

extraction effort of E over the sentences S from the documents in D, so that: (i) we process

the useful sentences for E earlier in the extraction process, for efficiency; and (ii) we extract

tuples that are novel with respect to those from previously processed sentences, for diversity.

Importantly, we want our ranking of sentences to achieve these goals while satisfying certain

efficiency requirements (e.g., that running E over S in ranked order leads to a larger and

more diverse set of tuples faster than running E over S directly). Moreover, our sentence

ranking will have to adapt in light of the relevant information about the extraction task

(e.g., the real usefulness of the sentences and their extracted tuples) obtained as E runs

over sentences from S.

Because of the sparsity of useful sentences discussed earlier, the problem above has a

counterpart in sparse group selection [HZM09]. In many high-dimensional learning prob-

lems, certain “parts” of the the data may be more relevant than others to the learning task.

For example, the most relevant signals to categorize a text document in a text classification

problem may lie in a few of its sentences rather than in the entire document [YS14]. This

observation holds as well for many other text-centric problems such as sentiment analysis

[YYC10; TM11] or citation prediction [YS14], to name a few. The key idea in sparse group

selection is that variables in the same group (e.g., words in the same sentence) will be either

deemed as relevant or irrelevant for the task simultaneously. We now describe our sentence

ranking approach, which builds on an efficient forward greedy approach for the sparse group

selection problem.

7.2 Ranking Sentences: A Group OMP-Based Approach

In Section 7.1, we argued that existing sentence filtering and ranking approaches for ef-

ficient information extraction have crucial limitations. We also argued that the problem

of identifying useful sentences for an extraction task of choice has a counterpart in the

sparse group selection problem. We now propose a sentence ranking approach to prioritize

novel sentences for an information extraction task that is based on Group OMP [LSA09;

LSA11], an efficient greedy strategy for the sparse group selection problem. Unlike tradi-

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 163

tional sentence filtering and ranking techniques, our approach improves the ranking decisions

periodically in a robust manner, for novelty and efficiency. We first provide the necessary

background on sparse group selection (Section 7.2.1). Then, we present an overview of our

general approach (Section 7.2.2). Finally, we provide the details of our approach (Sections

7.2.3 through 7.2.5) and analyze its efficiency (Section 7.2.6).

7.2.1 Sparse Group Selection: Background

In tasks involving high-dimensional spaces, sparse group selection aims to identify a small

number of groups of variables that collectively explain all aspects of a task sufficiently

accurately. For example, assume a traditional high-dimensional learning task (e.g., text

classification) defined in terms of y ∈ Rd (e.g., a vector of {+1,−1} labels for d documents)

and X ∈ Rd×p (e.g., a set of d documents modeled with p-sized word feature vectors). Sparse

group selection for this task aims to find a small set of groups features (e.g., a relatively

small set of sentences) that best explain the vector y of observations, given certain group

constraints defined over the p features (e.g., all words in a sentence form a group). This

problem is generally approached as finding a vector β ∈ Rp of “relevant” coefficients for the

features such that ||y − Xβ||22 is minimized, by imposing group sparsity constraints (i.e.,

that only a few coefficients—and from features of a few groups—in β are non-zero).

Notable solutions to the sparse group selection problem include Group Lasso and Group

LARS [YL06], Elastic-Net [ZH05], and Group OMP [LSA09; LSA11]. In particular, Group

Lasso has been the most extensively studied (e.g., see [KKK06; MVDGB08; RF08]) due

to its simplicity: (i) In an intra-group level, Group Lasso “forces” the variables within a

group to be comparably relevant via `2-norm, while (ii) in an inter-group level, it “forces”

sparsity across the groups via `1-norm. Unfortunately, Group Lasso is problematic for our

task for two main reasons. First, assessing the merits of a group with respect to the task,

which is necessary for our task as we will see, is a difficult proposition in Group Lasso.4

Second, interpreting the optimization decisions behind the selection of groups, so that we

can characterize novelty and usefulness of sentences, is also difficult.

4Yang et al. [YXKL10] propose an online learning approach for Group Lasso that learns from one group
at a time. Even in this formulation interpreting the impact of each group in the learning task is cumbersome,
because the optimization decisions are performed globally.

164
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

A better suited approach for our problem is Group OMP [LSA09; LSA11], a variant of

the forward greedy Orthogonal Matching Pursuit (OMP) algorithm [PRK93; DMA97] for

sparse group selection. For a given task, Group OMP addresses the sparse group selection

problem based on two main ideas: (i) to select a group of variables, Group OMP evaluates

the correlation of each group to the current version of the task; and (ii) to keep the number

of selected groups small, Group OMP updates the task in light of all previously selected

groups so that only unexplained aspects of the task are considered. (We provide a more

formal definition of Group OMP in Section 7.2.4.) By doing this, Group OMP approximates

group-sparsity constraints to the number of non-zero coefficients (i.e., the `0-norm). As we

see next, we can largely benefit from such (greedy) approach in our information extraction

setting.

7.2.2 Overview of Our Approach

As discussed above, we rely on sparse group selection techniques for efficiently ranking novel

sentences. The key intuition is that sentences that are relevant to a particular extraction

task and that explain different aspects of the extraction task are likely to be novel, in that

they are likely to lead to the extraction of unseen tuples. The following example illustrates

the intuition behind our approach:

Example 3 Assume a comprehensive and accurate representation U of the useful infor-

mation for an information extraction task T . One possible U for our Occurs-in relation,

for instance, consists of all words or phrases (e.g., “earthquake”, “aftermath”) positively

correlated to natural disasters. Assume as well a set of documents D from which we want

to efficiently extract tuples for T . To prioritize the extraction effort over sentences in D,

we could measure the similarity of each sentence si to U (e.g., using cosine similarity over

the words in the sentence) to, in turn, process the sentences in descending similarity or-

der. Say that by processing the sentences in order we process a sentence sU that produces

a tuple t for T (i.e., sU is useful for T). If we continue to process sentences in this order,

our extraction system may run over another sentence sD that leads to the extraction of the

(seen) tuple t, which is many times undesirable. For example, an extraction system for our

Occurs-in relation may extract tuple 〈tsunami, Hawaii〉 from sentence “A tsunami swept

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 165

the coast of Hawaii” as well as from sentence “The coast of Hawaii was devastated after

the tsunami.” To prevent this, we could remove from U the aspects of T already explained

by sU , to obtain Ũ , an updated version of U . For instance, we could remove all words and

phrases in sU from U .5 We expect the similarity between sD and Ũ to be lower than over the

original U . More importantly, we expect the similarity between sentences that differ from

sU—and are hence likely to produce different tuples—to be higher with respect to Ũ than

to U . We therefore update the similarity of all remaining sentences with respect to Ũ , and

repeat this procedure until we fully explain U .

Example 3 above assumed a comprehensive representation of the extraction task; how-

ever, having such representation is often prohibitive, as it would require knowing a priori all

distinct aspects of the task. Our approach starts from a small, initial representation for the

extraction and grows this representation gradually, as the extraction process progresses and

reveals relevant aspects of the extraction task at hand. We refer to the representation of the

extraction task in our approach as the useful information representation. Similar to ear-

lier efforts for efficient information extraction (e.g., QXtract [AG03], PRDualRank [FC11],

and FactCrawl [BLNP11a]), we can obtain an initial set of useful sentences by running the

information extraction system over a small document sample. We can then produce an

initial useful information representation from these useful sentences and start the sentence

ranking process. Subsequently, we can process the sentences in order, until all aspects of

the initial representation have been explained. Unfortunately, not all relevant aspects of

the extraction task will be represented in this initial representation as it is obtained from a

purposely small document sample. We can thus enhance the useful information represen-

tation by including all recently processed useful sentences, and restart the ranking process

to prioritize the remaining sentences. We hope that new aspects of the task are revealed as

we process more useful sentences along the extraction process.

The strategy above poses several challenges. First, the representation of sentences and

useful information should be effective— to precisely characterize usefulness and novelty—as

well as compact and efficient to obtain—to keep the ranking overhead to reasonable levels

5Removing the most correlated element is the key idea behind the Matching Pursuit (MP) algorithm
[MZ93]. OMP and its grouped variant Group OMP consider all previously selected elements as well.

166
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

(Section 7.2.3). This effectiveness requirement is complicated by the fact that sentences

tend to be short, so the “signals” that we can obtain from them are rather limited. The

efficiency requirement is complicated by the fact that approaches for modeling sentences in

a rich and compact manner (e.g., Paragraph Vector [LM14]) require substantial computa-

tion for each sentence. Second, sentence scoring and ranking should also be lightweight and

efficient, to obtain novel sentences faster than by processing the sentences plainly and ex-

haustively (Section 7.2.4). Finally, our approach should allow trading relevance for novelty

in a robust manner, as in the related areas of information retrieval and recommender sys-

tems, to support different application requirements (Section 7.2.5). The following sections

describe the details of our approach.

7.2.3 Modeling Sentences and Useful Information

We now define how we model sentences and useful information to enable effective and

efficient sentence ranking for information extraction.

Modeling Sentences: As described in Section 7.2.2, we need a compact sentence represen-

tation that enables efficiently and effectively characterizing sentence usefulness and novelty.

One alternative would be to resort to traditional sentence representation strategies, and

model a sentence as a sparse bag-of-words vector over the space of words in the documents.

Although this (sparse) representation leads to efficient Group OMP solutions6, its effective-

ness is limited: A sentence will only correlate to the useful information when at least one

of the words in the sentence is explicitly modeled in the useful information representation.

This representation, for instance, would fail to correlate a sentence that includes the word

“quake,” a synonym of “earthquake” and hence very related to natural disasters, with a

representation of the useful information that includes the word “earthquake.”

A more effective representation that alleviates the limitations above is to exploit the

so-called distributed word representations, namely, semantically rich, dense word vectors,

and model a sentence as a set of dense vectors. Specifically, for a given set of training

documents (e.g., Wikipedia [Wik15]) and a dimension m for the vectors, approaches for

learning distributed word representations (e.g., Word2Vec [MCCD13] or Glove [PSM14])

6Only non-zero components will be considered during Group OMP.

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 167

produce dense vectors for all words such that words with similar meaning appear near (e.g.,

with respect to cosine similarity) in an m-dimensional space. For example, the vectors for

“earthquake” and “quake” would be very similar, which is valuable for our Occurs-in task.

These vectors are generally learned by performing dimensionality reduction techniques,

such as matrix factorization, over some representation of the co-occurrence of words in the

training documents, such as the co-occurrence matrix. For even richer representations, we

can obtain a set of meaningful n-grams (e.g., “Richter scale” or “tropical storm”) from an

external collection following the approach in [MSC+13] and learn vectors for them.7 (We

consider these sentence representations in our experimental evaluation.) In summary, for

a given sentence s = w1w2 . . . wn, our final representation sM of s is sM =
[
~t1, ~t2, . . . , ~tt

]
,

t ≤ n, where ti is an n-gram from the training collection included in the sentence and ~ti is

its learned vector stored as a column vector. This representation is often referred to as bag

of n-grams, because the order of the n-grams in the sentence is disregarded.

Importantly, the benefits of adopting the (dense) bag of n-grams representation above

are twofold. First, unlike the sparse bag-of-words approach, assessing the relevance of a

sentence is possible even when its n-grams have not been explicitly modeled in the useful

information. This is particularly important at early stages of the extraction process, when

not much information about the extraction task has been revealed. Second, the novelty of

sentences can be assessed in a robust manner, because the components of the dense vectors

carry semantically rich evidence of the n-grams.

Modeling Useful Information: Beyond modeling sentences we need to find a compact

and effective representation U for the useful information, as argued in Section 7.2.2. One

approach is to use the n-grams in useful sentences in a similar fashion to that for the sen-

tences above: U would consist of learned column vectors for all unique n-grams in the

already processed useful sentences. However, although this representation will comprehen-

sively cover all (seen) aspects of the useful documents, this representation has two crucial

limitations. First, efficiency will be compromised, because U will grow as the extraction

process progresses, and will require substantially more computation during sentence scor-

7This method decides whether words wi and wj should form a bigram by computing
count(wiwj)−δ

count(wi)×count(wj)
,

where count(t) is the frequency of token t in the training collection and δ is a discounting coefficient to
prevent large numbers of bigrams with rare words.

168
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

ing and ranking. Second, accuracy will also be compromised, because not all n-grams in

the useful sentences may be equally discriminative for the task. For example, the word

“tsunami” in the useful sentence “A tsunami swept the coast of Hawaii” for Occurs-in is

intuitively more discriminative than words “coast” or “Hawaii.” As a result, correlating

to these less-discriminative n-grams may lead to prioritizing useless sentences, which is

undesirable.

An alternative approach, and one that alleviates the limitations above, is to perform

dimensionality reduction over the useful sentences. There are two broad families of dimen-

sionality reduction methods that we can use in our problem. The first family consists of

feature selection methods [MBN02], where the goal is to identify a small subset of discrim-

inative n-grams from the available n-grams. Such methods would identify, for instance,

that the word “tsunami” is more discriminative than words “coast” and “Hawaii” for the

Occurs-in relation and should hence be modeled in the useful information. Interestingly,

selecting the n-grams for the useful information—initially and after an update—can be done

efficiently, provided the adopted feature selection method is efficient. In the course of our

experiments we adopt a feature selection approach based on `1-norm regularized Support

Vector Machines (SVM) [BBE+03]. Specifically, this approach trains an SVM linear clas-

sifier and uses the (few) non-zero learned weights to assess the relevance of the feature to

the task. This approach manages to remove noisy and redundant features, thus effectively

modeling the different aspects of the extraction task at hand.

The second family consists of feature extraction methods [Fod02], in particular, the

(sub)class of signal representation methods. Here, the goal is to transform a high-dimensional

feature space into a different lower-dimensional feature space without loss of information.

In our experiments, we used Principal Component Analysis (PCA) [Shl05] to obtain such

lower-dimensional space. Specifically, we perform PCA over M ∈ Rm×t, namely, the m-

dimensional representation of all N unique n-grams in the useful sentences, to obtain an

m-dimensional representation for U as follows: (i) compute covariance matrix K ∈ Rm×m

of M , defined as K = 1
NMMT ; (ii) compute the eigenvectors of K, which by definition will

have m dimensions; and (iii) use the computed eigenvectors as column vectors for U . Each

eigenvector ei is associated with an eigenvalue λi whose absolute value |λi| indicates the

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 169

Symbol Type Description

|.| N Size operator

||.||2 R `2 norm

\ — Regression solve operator

E — Information extraction system

s N Number of sentences

n N Number of unique n-grams

m N Dimension of dense vector

lj N Length of the jth sentence

lmax N Maximum length of a sentence

y Rm Centered right-hand side

X Rm×n Centered and normalized n-gram matrix

Xj Rm×lj Centered and normalized
matrix for the jth sentence

K N Maximum number of iterations

ε R Precision for stopping

Jsel {. . . } (set) Selected sentences

β ≤ Rk, 0 ≤ k ≤ Klmax Coefficients for linear system

Table 7.1: List and description of symbols for Group OMP.

importance in the covariance matrix.

7.2.4 Scoring and Ranking Sentences via Group OMP

Based on the definition of sentences and useful information described above, we now for-

mally describe our Group OMP-based algorithm. We first represent a sentence adopting a

bag of n-grams strategy with learned dense column vectors for each n-gram in the sentence.

Then, considering each sentence as a group of variables, we perform sparse group variable

selection via Group OMP by regressing against the columns of our useful information rep-

resentation, which we refer to as the right-hand sides. This regression against multiple

right-hand sides, namely, the so-called multitask regression, consists of regressing against

each column individually to in turn compute a unified cost, as we will see. Our Group

OMP execution differs from traditional Group OMP in that we update the task only after

selecting useful sentences. Specifically, we process each selected sentence with the informa-

tion extraction system at hand and update the task only if the sentence is useful for the

extraction task at hand. Upon convergence, our approach builds an updated version of the

useful information that uses the processed sentences and restarts Group OMP—over the

170
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

Algorithm 2: Group OMP for Information Extraction

Input: y, X, s, E, K, ε.
Output: Jsel.

1 r0 ← y, J0
sel ← ∅, Jcand ← {1 . . . s};

2 for k ∈ 1, 2, 3, . . . ,K do
3 jk ← argmin(X, rk−1, E, ε, Jcand); /* Get next useful sentence */

4 Xk
aug ← augment(X, Jk−1sel

⋃
jk);

5 βk ← Xk
aug\y;

6 rk ← y −Xk
augβ

k ; /* Update right-hand side */

7 Jksel ← Jk−1sel

⋃
{jk};

8 Jcand ← Jcand − {jk};
9 if ||rk||2 ≤ ε then /* Evaluate convergence */

10 break

11 return Jksel;

non-processed sentences with the updated right-hand sides. For simplicity, our description

assumes that we select only the best, most correlated useful sentence during each Group

OMP iteration and that we regress against a single right-hand side (i.e., a single column of

our useful information representation). As we will see, the extension to multiple selected

sentences per iteration as well as to multiple right-hand sides is rather straightforward. For

reference, we summarize the list of symbols used in the description in Table 7.1.8

Sparse Group Selection for Sentence Ranking: We begin by describing the Group

OMP algorithm [LSA11], which we use for sparse group variable selection (Algorithm 2).

This algorithm receives as input y, X, s, E, K, and ε (see Table 7.1). Briefly, y ∈ Rm is one

right-hand side, specifically, a column of the useful information representation; X ∈ Rm×n

is the matrix representation of all the sentences of interest, which consists of the vectors of

all unique n-grams in the sentences;9 s is the number of sentences in the input documents

to process; E is the information extraction system of choice; and K and ε determine the

convergence of Group OMP, respectively, by reaching a maximum number of iterations or

by determining that the right-hand side has been sufficiently “explained.” The objective is

8For purposes of numerical stability, during modeling each column (word vector) of each sentence is both
mean centered and scaled by the column standard deviations. Also, the right-hand side y is only centered.

9As we will see Group OMP requires access to one sentence Xj at a time. We use a vector of indexes
over this matrix to obtain the bag-of-n-grams representation for a sentence.

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 171

to find a sparse set of sentences that solve the system Xβ = y by enforcing group penalty

over the sentences.

Algorithm 2 approximates `0-sparse, group-penalized solution by iteratively choosing

the useful sentence that is most correlated to the right-hand side based on the residual.

The first step of the algorithm initializes the residual r0 as the input right-hand side, the

set of selected sentences, and the set of sentences to evaluate (line 1).10 The first step in

sentence selection consists of an argmin function (see Algorithm 3) that goes over each

eligible sentence and evaluates correlation of the sentence to the current residual (line 3).

This step is the performance critical portion of the algorithm, as we discuss in Section 7.2.6.

Furthermore, in argmin the evaluation is done against the current residual rk−1, and not the

original right-hand side y, to promote novel sentences that have low correlation with respect

to previously selected sentences while having high correlation with the useful information

representation. At the end of the first step, the sentence jk, which is the most likely to be

novel, is available. The next step is to re-estimate the model coefficients by adding sentence

jk to the model (lines 4-6). Given our representation of sentences (see above), the function

augment can be done efficiently, by simply appending the n-grams in sentence j. Then, the

set of selected sentences Jsel and candidate sentences Jcand is updated (lines 7-8). Finally,

if the `2 norm of the residual11 is smaller than the precision for stopping (||rk||2 ≤ ε), the

iterations are terminated (lines 9-10). (We later explain how we evaluate for convergence

when rk consists of multiple right-hand-sides.) By definition, the smaller the `2-norm of

a vector, the closer the vector is to ~0, the 0 vector. For our problem, ~0 indicates that

all aspects of the initial useful information matrix have been sufficiently explained. Note

that Group OMP also stops when it reaches the maximum number of iterations K. (For a

detailed analysis of the convergence and consistency of Group OMP, please see [LSA11].)

Selecting Novel Sentence: The implementation of the argmin function is given in Algo-

rithm 3. This algorithm considers each eligible (i.e., yet unselected) sentence and evaluates

its suitability to be added to Jsel. For each eligible sentence j, the matrix Xj corresponding

10We use superscript to denote the iteration number through Algorithm 2 (e.g., r0 represents the residual
at iteration 0).

11`2-norm of a vector x is ||x||2 =
√
x21 + x22 + . . .+ x2n.

172
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

Algorithm 3: argmin

Input: X, r, E, Jcand.
Output: jsel: Selected sentence index.

1 C ← ∅;
2 for j ∈ Jcand do /* Evaluate sentences */

3 βj ← Xj\r;
4 rj ← r − (Xjβj);
5 C ← C ∪ {(j, cost(rj))}
6 sortAscending(C); /* Order sentences by cost */

7 jsel ← −1;
8 for i ∈ 1, 2, 3, . . . , |Jcand| do /* Find best useful sentence */

9 if isUseful(E, jC[i]) then

10 jsel ← jC[i];

11 break;

12 return jsel

to this sentence is used to compute the residual rj by first regressing r for Xj (line 3), which

involves solving a dense linear system, and then computing the residual (lines 4). Finally,

the goodness of fit of sentence j, defined in terms of cost(rj) (i.e., cost of the residual rj),

is evaluated and stored to be compared with that of other sentences (line 5). Notice that

the evaluation of sentences is highly parallelizable if cost(rj) is both associative and com-

mutative. (Below we define the cost functions that we use in our approach, which are both

associative and commutative.) The algorithm then prioritizes the sentences according to

their cost (line 6). In a subsequent step, this algorithm processes the sentences in order

(lines 8-11) until it finds a useful sentence. As discussed, a sentence is useful if it produces

tuples when processed with the information extraction system E. The algorithm returns

the best useful sentence, in terms of its goodness of fit.

Note that in the algorithm above the information extraction system may run over all

sentences when there are no useful sentences in the input data. There are several possible

improvements of Algorithm 3 to speed up computation: One such improvement would be to

only forward in line 4 the sentences that “explain” a certain amount of the residual r. This

is often done by comparing the residuals rj and r (e.g., based on ||r − rj ||2, the `2-norm of

their difference, r − rj).

Goodness of a Sentence: As argued above, the candidate sentence to return from each

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 173

iteration is determined based on its goodness of fit. Intuitively, the best Xj is the one

that explains most of r, which in turn would reduce ||r −Xjβj ||2. In fact, the best choice

would correspond to an Xb that can fully explain r (i.e., r − Xbβj = ~0). Several equally

effective cost functions for measuring goodness of fit have been proposed in the literature,

from which we use Mean Squared Error (MSE). We describe MSE as well as other valuable

functions in terms of r, Xj , and βj next:

• Mean Squared Error (MSE): MSE measures the average of the squares or the errors

in the estimate r̂ = Xjβj when compared to r. Intuitively, MSE indicates how much

of the right-hand side r remained “unexplained” after regression. Specifically,

MSE(r̂) =
||r − r̂||22
DoF

, (7.1)

where DoF , or degrees of freedom, is another cost measure, which we define next.

• Degrees of Freedom (DoF): DoF evaluates the domain of βj . That is, DoF com-

putes the number of components of βj that need to be known to fully determine βj .

Specifically,

DoF (βj) = m− pβj , (7.2)

where m is the dimension of the word vector and pβj is the number of non-zero

components in βj . In practice, when m is small m− pβj is often replaced by m− 1.

• Bayesian Information Criterion (BIC): BIC is used for model selection in statistics

to prevent overfitting. When many learned models are equally effective, the model

with the lowest BIC—hence least likely to overfit—is preferred. Formally,

BIC(βj) = ln(MSE) +

(
|βj |

ln(m)

m

)
, (7.3)

where m and MSE are defined as above and |βj |, the length of βj , denotes the upper

bound on the number of modeling parameters.12

12We can get the accurate number of free parameters in a model Xβ = y by solving trace(Xβy+), where
y+ is the Moore-Penrose pseudo-inverse of y [Moo20; Pen55; Pen56].

174
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

However, applying the functions above in our problem directly may be problematic,

because there would be an undesirable bias towards long sentences. In fact, long sentences

include a large number of n-grams that may not necessarily be correlated to the task at

hand, but may explain several aspects of the useful information collectively. As a result,

the cost of the residual for these (long) sentences will be low and will hence be prioritized.

This problem is similar to that for long documents in early information retrieval systems:

Long documents include more words and phrases—and with higher frequencies—than short

documents; as a result, some scoring functions assign higher topical relevance scores to long

documents than they do to short documents with comparable contents. It has been shown

that penalizing for document length leads to better-quality retrieval systems [SBM96].

We build on the idea of Pivoted Unique Normalization proposed in [SBM96] to “nor-

malize” the cost for a sentence. In particular, we use the formulation that accounts only for

number of terms, because we consider unique terms in our sentence representation (see Sec-

tion 7.2.3): We adjust the computed cost of a sentence sj by multiplying by (1−b)+b× |sj |
|s|avg ,

where |sj | is the length of sj , specifically, the number of unique n-grams in sj , |s|avg is the

average length of all sentences, and b weighs length over relevance. (In our experiments

we use b = 0.25, the best value reported in [SBM96], and |s|avg = 17.5, a common value

across diverse text collections.) Based on this formulation: (i) sentences that are longer

than the average-length sentence will be penalized (i.e., their adjusted cost value will be

higher); (ii) sentences that are shorter than the average-length sentence will be promoted

(i.e., their adjusted cost will be lower); and (iii) sentences of average length will preserve

their cost. Such weighing of sentences is possible, because for many extraction tasks the

sentence length distribution is similar for useful and useless documents.

Extending to Multiple Right-Hand Sides: Our above definition of goodness of fit in-

volved computing the cost of a residual r̂ ∈ Rm, defined as r̂ = Xβ, because our formulation

consisted originally of a single right-hand side y ∈ Rm. To extend to multiple h right-hand

sides (i.e., Y ∈ Rm×h), the goodness of fit needs to be computed over a residual R̂ ∈ Rm×h,

defined as R̂ = Xβ. Note that in multitask regression the regression step reduces to solv-

ing h single right-hand side systems, as discussed, and the key challenge is on evaluating

the goodness of fit of the residual R̂ matrix. In our experiments, we evaluate three cost

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 175

functions, namely, Minimum, Maximum, and Average, to assess the goodness of fit of a sen-

tence. As we see next, given a sentence j these functions are aggregated over the cost of the

individual components R̂j(i) of the residual R̂j using any of the formulation above. Also,

as before, the best candidate sentence is the one with the lowest value. We first define the

basic form of this cost measures to in turn introduce their generalized, weighted variants.

• Minimum (Min): Min computes the cost of each individual component and uses the

smallest value (i.e., the smallest residual component) as a surrogate of its aggregate

cost. Specifically,

Min(R̂) = min
i∈1...h

cost(R̂(i)). (7.4)

Intuitively, Min will lead to picking a sentence if it explains (at least) one component

of Y sufficiently.

• Maximum (Max): Max computes the cost of each individual component and uses

the highest computed value (i.e., the cost of the worst explained component) as a

surrogate of its aggregate cost.

Specifically,

Max(R̂) = max
i∈1...h

cost(R̂(i)). (7.5)

Intuitively, Max will lead to picking a sentence that explains the components of Y

with high coefficients (i.e., the components that are not yet well explained).

• Average (Avg): Avg computes the cost of each individual component and returns the

average over the computed values as a surrogate of its aggregate cost. Specifically,

Avg(R̂) =
1

h
·
h∑
i=1

cost(R̂(i)). (7.6)

Intuitively, Avg will lead to picking a sentence that will explain most components of

Y .

Note that the functions above assume that all right-hand sides contribute equally to

the extraction task. However, not all components of the useful information matrix will be

176
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

equally valuable for the task. For example, the n-grams in our useful information repre-

sentation based on feature selection originally include learned weights that describe how

discriminative they are for the task. Likewise, each component in our useful information

representation based on feature extraction will be associated with a value (an eigenvalue)

that indicates its importance for the extraction task via its absolute value. We exploit

these values in generalized, weighted variants of the functions above. Specifically, the cost

of each component is now weighted with its associated value (i.e., learned weight for the

feature selection-based representation and eigenvalue for the feature extraction-based repre-

sentation). Because these basic and weighted functions still suffer the length bias discussed

above, we apply the described length adjustment to the final cost value.

Finally, the convergence criterion (see lines 9-10 in Algorithm 2) needs to be modified

as well when the right hand sides comprises multiple columns. The extension to the single

right-hand-side version discussed above consists of assessing if the average of all `2-norm

values computed over each column of the residual is smaller than ε. In addition to this

convergence criterion, we also evaluate that the current iteration contributes to explaining

the useful information. We do this by computing the gain of the current iteration, namely,

the cost difference between the current and last iteration, and evaluating that this gain is

lower than a given threshold.13

7.2.5 Trading Relevance and Novelty

As discussed, providing for means of weighing relevance and novelty can benefit a broad

range of downstream applications. In fact, such weighted schemes are crucial in areas such

as information retrieval and recommender systems, as discussed. In our Group OMP im-

plementation we can trade relevance and novelty by allowing a flexible number of sentences

N to be pick per iteration.

The discussion above presented a Group OMP implementation that selects one useful

sentence per iteration. To return N sentences per Group OMP iteration, we need to redefine

our argmin function. We achieve this by processing sentences with the information extrac-

tion system (lines 8-11 in Algorithm 3) until we process N useful sentences. The Group

13In our experiments, we stop when the current gain is smaller than 0.0000001.

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 177

OMP algorithm (Algorithm 2) will now augment Xk
aug using the N selected sentences, and

the rest of the algorithm will remain unchanged.

In practice, different values of N will have distinct implications in the relevance, nov-

elty, and efficiency of the extraction output. Small N values will promote novelty, because

updates of the useful information—hence prioritization of novel sentences—will happen fre-

quently along the extraction process. These frequent updates, however, may impact the

efficiency of the process, because a series of regressions over all sentences will have to be

performed against the updated right-hand side. Large N values, on the contrary, will pro-

mote relevance because sentences will be mainly correlated to outdated version of the useful

information, as updates will happen rarely. The rather rare useful information updates will

lead to fewer regressions along the extraction process, favoring efficiency: Simply put, the

number of regressions will be reduced by a factor of N in comparison to our earlier described

(N = 1) algorithm. In this case, the cost of the extraction process will be dominated by

the cost of running the information extraction system over a sentence. We next provide a

more detailed analysis of our approach.

7.2.6 Efficiency of Our Approach

As argued above, the critical part of Algorithm 2 is the argmin function, which repeatedly

solves a least squares problem—βj = Xj\r—and in turn computes the residual norm of

this solution (see MSE above). From among the traditional matrix factorization methods

to solve least square problems, namely, Cholesky, QR, and SVD [Str93], Cholesky is the

most efficient. We solve the least squares problem using Cholesky factorization.

Briefly, the goal of a least squares problem is to minimize ||rj ||22 = ||Xjβj − r||22, where

βj is the solution to Xj\r. As ||rj ||22 = rTj rj , this problem can be rewritten as minimizing

(XGiβj − r)T (XGiβj − r). By taking the first derivative with respect to βj and setting

it to zero, we get XT
j Xjβj = XT

j r. This equation can be now solved using Cholesky de-

composition, provided Xj has full rank.14 The reason Cholesky decomposition is appealing

is because the dimensions Rlj×lj of the matrix XT
j Xj , where lj is the length of the jth

14We ensure the full rank of Xj by adding a small ridge λ along the diagonal of XT
j Xj .

178
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

sentence, are small.15 We can therefore precompute and store the Cholesky factors XT
j Xj

for all the sentences.16 The backsolve is (relative to the factorization) inexpensive, as it in-

volves O
(
l2max

)
operations; therefore, the time consuming portion is computing XT

j r, which

involves O (mlmax) operations. By keeping m small, by using low-dimension word vectors,

we can also keep the cost of XT
j r low.17 Furthermore, these operations are performed over h

right-hand sides: by keeping h small (e.g., using the feature selection and feature extraction

methods described earlier in this section), we can keep the overall cost low.

Finally, computing XT
j r is bandwidth bound, which precludes obtaining both peak

throughput on an individual core and linear speedup on multi-cores. This is because com-

puting each element of XT
j r requires m scalar multiplies and m − 1 scalar additions, for

a total of 2m − 1 operations per element. The total count of floating operations would

be bounded by lmax(2m − 1). From a memory use perspective, computing XT
j r requires

reading both XT
j and r once and writing out at most lmax scalar values: The total number

of memory operations is lmaxm+m+ lmax ≈ lmax(m+1). In short, the ratio of memory op-

erations to compute operations is ≈ 1, which means that the limiting factor in throughput

and speedup would be the speed with which operands can be loaded and stored.

7.3 Experimental Settings

We now describe the experimental settings for the evaluation of our adaptive ranking ap-

proach:

Collections: We used 360,000 random documents from the NYT Annotated Corpus [San08],

which originally contains 1.8 million New York Times articles from 1987 to 2007. (We used

the entire NYT corpus for our evaluation in Chapter 6 for the document ranking problem.)

We split this set of documents into a tuning set (97,258 documents, for a total of 2,826,631

sentences) and a test set (262,742 documents, for a total of 7,613,296 sentences). We eval-

uated different combinations of techniques and parameters on the tuning set. Additionally,

15The average sentence length that we observed across many different text collections was 17.5.

16This factorization step is still considerably more efficient that computing the Paragraph Vectors of the
sentence [LM14].

17In our experiments we observed that m = 50 produces high-quality word vectors.

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 179

as in Chapters 4 through 6, we used collections 1-5 from the TREC conference [TRE00]

(totalling 1,038,957 unique documents) to generate the queries for the query-based sample

generation that we explain later in this section. Finally, we used the Wikipedia in English

dump dated 08-04-2015 (1.6 billion tokens) for training the distributed word representation

algorithms.

Entity and Relation Extraction Systems: To include a variety of extraction ap-

proaches, we considered different relation extraction systems for each relation (see next), as

well as different entity extraction systems for their corresponding entities, as follows:

• Relation Extraction: To extract our relations, we trained four relation extraction

systems using REEL (see Chapter 3) and used OpenCalais [Ope15a], an off-the-shelf

online service for information extraction. Specifically, the four trained relation extrac-

tion systems that we use in our experiments are: Subsequence Kernel [BM05b] (SSK),

Shortest-Path Kernel [BM05a] (SPK), Bag of n-grams Kernel [GLR06] (BONG), and

Dependency Graph Kernel [TPL10] (DG). We used two of these trained extraction

systems, namely, SSK and BONG, in previous chapters as well.

• Entity Extraction: To extract the entities in our trained relation extraction system, we

use the entity extraction systems from previous chapters, which we obtained as follows:

We selected the best performing combination of entity extraction systems for each

entity type via 5-fold cross validation over a set of manually annotated documents,

and used it across all extraction tasks. However, for diversity, whenever we had ties

in performance, we selected the (arguably) less common contender. Specifically, to

extract person and location entities, we used the StanfordNLP named entity tagger

[Sta15b]; for other entities, we trained our own entity extractors using E-txt2DB

[Etx12]. Our final models are Maximum Entropy Markov Models [MFP00] for natural

disasters and Conditional Random Fields [ML03] for the remaining entities. The

entities for the relations extracted using OpenCalais are automatically extracted by

the service. Importantly, OpenCalais normalizes entities from many of its entity

types (e.g., person or organization), which provides for a robust evaluation of novelty

between tuples, as we will see.

180
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

Relations: We include an extensive and diverse set of relations in the experiments. We

use our trained relation extraction systems to extract 5 relations, namely, Person–Career,

Natural Disaster–Location, Man Made Disaster–Location, Person–Charge, and Election–

Winner. We also use OpenCalais to extract 83 relations that cover financial, business,

sports, politics, and other relevant domains18, for a total of 85 unique relations. The

percentage of useful sentences for all relations over our tuning set ranges from 0.0004% to

27.76% (0.68% on average).

Sampling Strategies: We compared two techniques to collect the initial document sample

for our initial useful information representation:

• Random: Random picks 2,000 documents at random from the collection.

• Cyclic: Cyclic (see Section 4.2.3) iterates repeatedly over a list of queries and collects

the unseen documents from the next K documents that each query retrieves until it

collects 2,000 documents . We learned 5 lists of queries using sets of 10,000 random

documents (5,000 useful and 5,000 useless) from the TREC collection by applying

the χ2-based method in Section 4.3, which weighs keywords in the training collection

according to their Pearson’s χ2 test. We used K = 50 in our experiments.

n-Gram Representation: We consider different configurations for n-gram representation:

(i) n-grams: We used unigrams, bigrams, and trigrams that appear in 5 documents or more

in Wikipedia, obtained with Word2Phrase [MSC+13] (for a total of 2,380,073 unigrams,

4,540,242 bigrams, and 7,430,063 trigrams); (ii) Vector dimension: We varied the length

m of vectors (m ∈ [50, 100, 300, 1000]); and (iii) Learning algorithm: We used continuous

skip-gram and continuous bag-of-words models [MCCD13] and GloVe [PSM14]. We do not

report results for bag-of-words model, as it was consistently outperformed by skip-gram.

After learning the vectors, we remove English stopwords reported in MySQL as well as rare

words (i.e., words that appear in less than 0.003% of the NYT documents) and frequent

words (i.e., words that appear in more than 90% of the NYT documents).

Sentence Representation: For sentence representation we use the bag of n-grams ap-

proach described in Section 7.2.3. Specifically, for a given sentence with l unique n-grams,

18The full list of relations extracted by OpenCalais is listed at http://goo.gl/nD5m8V.

http://goo.gl/nD5m8V

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 181

and m-sized distributed word model M (see above), we build an l ×m matrix with the l

vectors for the n-grams obtained from M . We only include n-grams that are learned in M

(i.e., n-grams from Wikipedia that are not regarded as stopwords, rare, or frequent words).

Useful Information Representation: We consider the useful information representa-

tion methods discussed in Section 7.2.3. As discussed, we build the first target using the

sentences in the initial document sample and, later, from the useful sentences that are

processed as the extraction progresses.

• All: Uses as column vectors the learned vectors of all n-grams (see sentence represen-

tation above) in the useful sentences.

• K-Sel: Uses as column vectors the learned vectors of the K most discriminative n-

grams, obtained by performing the `1-norm regularized SVM approach in [BBE+03]

over the observed useful and useless sentences, as we explained in Section 7.2.3. We

evaluated different values for K (K ∈ [50, 100, 300, 500, 1000]).

• Summ: Uses as column vectors the eigenvectors derived from performing Principal

Components Analysis [Shl05] over the All representation above, as described in Sec-

tion 7.2.3.

Group OMP Settings: We use the following settings for our Group OMP approach:

(1) Goodness of fit: We use the weighted version of the aggregated cost functions discussed

in Section 7.2.4, namely, Min, Max, and Avg. After computing the cost of the residual for a

sentence, we adjust this value using the length penalization strategy based on unique length

normalization, with b = 0.25 and |s|avg = 17.5. (2) Convergence methods: For each Group

OMP execution (i.e., for each updated useful information representation), we perform a

maximum of 100 iterations (i.e., K = 100 in Algorithm 2). We also stop when the `2-norm

of the residual is smaller than 0.0001 (i.e., ε = 0.0001 in Algorithm 2).

Sentence Ranking Baselines: We compare the Group OMP-based approach from this

chapter to two baseline techniques:

• SVM: SVM is an SVM-based state-of-the-art sentence filtering technique [BHL11]

that learns an SVM-based linear classifier to decide if a sentence should be forwarded

182
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

to the information extraction system. The classifier uses words and phrases in the

sentences as features. The original algorithm in [BHL11] forwards the entire document

to the information extraction system. Instead, we forward the sentences according to

the confidence score from the classifier, which yields efficient executions and keeps

sentence recall unaffected.

• RSVM-IE: RSVM-IE is a variant for ranking sentences of the RankSVM-based doc-

ument ranking technique described in Section 6.2.1. To train the SVM classifier in

RSVM-IE, we used the settings in Section 6.3, namely, online learning based on Pe-

gasos gradient steps [SSSS07] with elastic-net regularization [ZH05] using λAll = 0.1

and λL2 = 0.99.

Additionally, because RSVM-IE is driven only by usefulness, we evaluate a variant of

this method that incorporates novelty via the Maximum Marginal Relevance [CG98] (MMR)

method. For a given query Q, MMR selects the next document Di according to:

arg max
Di∈R\S

[
α · Sim1(Di, Q)− (1− λ) · max

Dj∈S
Sim2(Di, Dj)

]
,

where R is the set of documents, S is the set of already selected documents, Sim1(Di, Q)

defines the relevance of document Di to query Q, Sim2(Di, Dj) defines the similarity be-

tween documents Di and Dj , and λ weighs relevance over novelty. For our problem, we

regard the extraction task E as the query Q and a document Di as a sentence Si, and

define: Sim1(Si, E) as the score given by RSVM-IE for sentence Si when trained for E, and

Sim2(Si, Sj) as cosine similarity between Si and Sj , where Sj is always useful. Based on

this definition, we only need to update sentence scores after processing a useful sentence.

Executions: We executed each experiment five times with different samples (i.e., five

different random samples and five different sets of initial sample queries), to account for the

effect of randomness in the results, and report the average of these executions.

Evaluation Metrics: We use the following metrics:

• Useful Sentence Recall: Useful sentence recall measures the fraction of useful sentences

in the documents that have been processed at different points during the extraction

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 183

(e.g., after processing x% of the sentences) and averaged over all executions of the

same configuration.

• Unique Extraction Output Recall: Unique extraction output recall measures the frac-

tion of unique tuples that have been extracted at different points during the extraction

process (e.g., after processing x% of the sentences) and averaged over all executions of

the same configuration. We also report the recall for each individual attribute. Nor-

malized attributes, which we indicate as (N), are compared with respect to their nor-

malized value, whereas non-normalized attributes are compared using case-insensitive

string matching.

• CPU Time: CPU time measures the time consumed for processing and ranking the

sentences.

7.4 Experimental Results

We now present the results of the experimental evaluation of our sentence ranking approach.

Specifically, we first consider the configuration choices for each building block (i.e., sample

generation, target generation, sentence representation, goodness function, iteration size)

separately and over our tuning set. For this, and unless otherwise indicated, our GOMP-IE

technique across all tuning experiments uses the following settings: (i) Cyclic for sampling

generation, (ii) unigrams (i.e., n = 1) for bag-of-n-grams representation, (iii) 50-dimensional

Word2Vec word vectors (i.e., m = 50), (iv) 100-Sel (i.e., K-Sel with K = 100) for useful

information representation, (v) weighted Avg cost function for goodness of fit assessment,

and (vi) updates (of the useful information representation) every 25 useful sentences (i.e.,

N = 25). Later, for the final evaluation of our approach over the test set and against the

state-of-the-art ranking strategies, we use the best configuration according to the tuning

set experiments.

7.4.1 Impact of Scoring Approach

To understand the impact of using our regression-based scoring approach, we first evaluate

our technique of Section 7.2.4 without updating the useful information (i.e., we use the initial

184
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

useful information along the entire extraction process) against the two baseline RSVM-IE

variants (i.e., without MMR) without adaptation. From our baselines, RSVM-IE (Base-D)

ranks documents and processes all sentences for each document, whereas RSVM-IE (Base-S)

ranks sentences instead. Figure 7.1 shows the average recall for the Person–Career relation

using the BONG extraction system. Person–Career is a rather dense relation, with 4.01%

useful sentences in the tuning set. For reference, we also show the performance of a random

ordering of the sentences (see black dashed line in Figure 7.1), as well as of a perfect ordering

where all useful sentences are ahead of the useless ones (see red dotted line in Figure 7.1).

We also show in Figure 7.2 the results for the Election–Winner relation using the SSK

extraction system. Unlike Person–Career, Election–Winner is a sparse relation, with only

0.01% useful sentences in the tuning set. We observed similar results for other relations. As

shown, RSVM-IE (Base-S) significantly outperforms other approaches. RSVM-IE (Base-S)

effectively learns words and phrases that occur in useful sentences and, in effect, identifies

useful sentences with high recall and precision: 75% of the useful sentences for Person–

Career are processed within the first 15% of the sentences (Figure 7.1), whereas 90% of the

useful sentences for Election–Winner are processed within 5% of the sentences (Figure 7.2).

We also observe that our GOMP-IE approach exhibits similar performance to that of RSVM-

IE (Base-D): This happens because the distributed word representation that we use to model

n-grams leverages knowledge beyond sentence level. In turn, many useless sentences that

include words correlated to those in the useful information representation are prioritized.

Unfortunately, this drastically impacts the performance of GOMP-IE for sparse relations

during early stages of the extraction process (see Figure 7.2 for Election–Winner), because a

vast majority of the sentences are useless. We study this effect in more detail in Section 7.4.3.

7.4.2 Impact of Sampling Strategy

To understand the impact of different sampling techniques, which we used to build the

initial useful information representation, we compared the Random and Cyclic sampling

techniques (Section 7.3). Figure 7.3 shows the average recall for the Political Entity–Allied

or Rival relation using the OC extraction system. We observed similar results across re-

lations (e.g., Figure 7.4 shows the results for Natural Disaster–Location using the SSK

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 185

●
●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
se

fu
l

S
en

te
nc

es
 (

%
)

● GOMP−IE RSVM−IE
(Base−D)

RSVM−IE
(Base−S)

Figure 7.1: Useful sentences recall for Person–Career for different ranking generation tech-
niques and using the BONG extraction system. For reference, we include perfect and
random sentence order (see red dotted line and black dashed line, respectively).

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ●

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
se

fu
l

S
en

te
nc

es
 (

%
)

● GOMP−IE RSVM−IE
(Base−D)

RSVM−IE
(Base−S)

Figure 7.2: Useful sentences recall for Election–Winner for different ranking generation
techniques and using the SSK extraction system. For reference, we include perfect and
random sentence order (see red dotted line and black dashed line, respectively).

extraction system). As shown, the extraction process performs comparably for both sam-

pling approaches; however, the recall of the extraction process improves more rapidly at

early stages of the extraction process with the Random sampling approach than does with

the Cyclic approach. This occurs because a random sample is expected to better repre-

sent distinct aspects of the extraction task, provided the (small) document sample includes

useful documents. The Cyclic approach, on the contrary, may incur a certain bias towards

the useful contents in the training collection. We observe this in Figure 7.4 for Natural

Disaster–Location, where the execution using Cyclic starts with a higher number of use-

186
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

● ●● ●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
se

fu
l

S
en

te
nc

es
 (

%
)

● Random Cyclic

Figure 7.3: Useful sentences recall for Political Entity–Allied or Rival for different sample
generation techniques and using the OC extraction system. For reference, we include perfect
and random sentence order (see red dotted line and black dashed line, respectively).

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ●
●

● ●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
se

fu
l

S
en

te
nc

es
 (

%
)

● Random Cyclic

Figure 7.4: Useful sentences recall for Natural Disaster–Location for different sample gen-
eration techniques and using the SSK extraction system. For reference, we include perfect
and random sentence order (see red dotted line and black dashed line, respectively).

ful documents than does Random, but these useful sentences produce the same extraction

output (see below).

Beyond useful sentences recall, we also evaluate the impact of different sampling tech-

niques on the number of unique tuples and attributes extracted along the process. Figure 7.5

shows the average fraction of unique tuples and attributes for the Political Entity–Allied

or Rival relation using the OC extraction system. Other relations exhibited similar results

(e.g., Figure 7.6 shows the results for Natural Disaster–Location using the SSK extraction

system). As above, both sampling approaches produce comparable extraction processes.

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 187

●

● ●

●
● ● ● ● ●

●

●

● ● ● ● ● ●
● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
ni

qu
e

E
xt

ra
ct

io
n

O
ut

pu
t (

%
)

● ●Random Cyclic

● Entity A (N) Entity B (N) Tuple

Figure 7.5: Unique extraction output recall for Political Entity–Allied or Rival for different
sample generation techniques and using the OC extraction system.

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
ni

qu
e

E
xt

ra
ct

io
n

O
ut

pu
t (

%
)

● ●Random Cyclic

● Location Natural Disaster Tuple

Figure 7.6: Unique extraction output recall for Natural Disaster–Location for different
sample generation techniques and using the SSK extraction system.

For Political Entity–Allied or Rival, the Random sampling approach consistently exhibits

better extraction output recall than the Cyclic approach. We observe a similar trend for

Natural Disaster–Location even when the extraction process has collected more useful use-

ful sentences with the Cyclic sampling approach: This is particularly evident at early stages

of the extraction process (10% or fewer processed sentences) for the attribute Location. In

sum, both sampling approaches yield extraction processes of similar performance. However,

the Random sampling strategy should only be used when a random document sample is

likely to include useful documents for the extraction task at hand.

188
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

●
● ●

●

● ● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
se

fu
l

S
en

te
nc

es
 (

%
)

● 1−Gram 2−Gram 3−Gram

Figure 7.7: Useful sentences recall for Movie–Release Date for different lengths n of n-gram
and using the OC extraction system. For reference, we include perfect and random sentence
order (see red dotted line and black dashed line, respectively).

7.4.3 Impact of Sentence Representation

As discussed in Section 7.3, there are three broad dimensions related to the distributed word

representation that characterize the modeling of the sentence, namely, length n of n-grams,

dimensions m of learned distributed vector, and learning strategy. To evaluate the impact

of sentence representation, we consider the Word2Vec and GloVe learning models described

in Section 7.3 and vary n and m in two independent evaluations.

Figure 7.7 shows the average recall for the Movie–Release Date relation using the OC

extraction system using Word2Vec and varying n. Other relations yielded analogous con-

clusions. As shown, higher values for n perform better at early stages of the extraction

process. This is because longer n-grams are unlikely to be ambiguous and, in effect, their

vectors carry a precise, meaningful representation. However, the main limitation of high

values for n is that the number of unique n-grams becomes prohibitively large, which com-

plicates finding a small set of n-grams that comprehensively represent the extraction task.

Small values for n, on the contrary, yield meaningful representations of the n-grams while

keeping the number of unique n-grams relatively small. This translates into extraction pro-

cesses that are consistently better than those of longer n values. Moreover, although many

naturally ambiguous n-grams (e.g., “Java,” “sweep,” “New York,” “Rio”) may carry mul-

tiple meanings in their vectors, this ambiguity may have little or no impact when sentences

include non-ambiguous terms as well.

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 189

In addition to the evaluation of n above, we also evaluated the impact of m, namely,

the size of the learned distributed vectors. Figure 7.8 shows the average recall for the

Movie–Release Date relation using the OC extraction system and varying the learning

algorithm and m. We observed comparable results for other relations. As shown, the

learning algorithms that we compare, specifically, Word2Vec and Glove (W2V and GV

in Figure 7.8, respectively) exhibit similar performance for the same dimension size m.

We observe, however, that W2V consistently outperforms GV. This corroborates results

from earlier comparisons of these methods for other text-centric tasks (e.g., [LGD15]). An

important observation concerns the (poor) performance of high-dimensional vectors (see

GV-300 and W2V-300 in Figure 7.8), which is affected for two main reasons. First, these

vectors capture characteristics of the n-grams that are beyond the rather shallow features in

our information extraction systems. This produce high correlation between n-grams—from

the sentence and the extraction task representation—that do not lead to the extraction of

tuples. Second, these vectors lead to a large representation of the extraction task, which

will only be fully explained after a large number of iterations. This drastically hurts the

performance of the extraction process when the initial document sample includes only a

(very) small number of useful documents, as is the case for the Movie–Release Date relation.

This substantially hurts the precision of our approach. For (relatively) small vectors (i.e.,

m = 50 and m = 100), the performance of our approach is similar along the extraction

process. Deciding the value for m therefore becomes an efficiency-related decision, which

is, of course, better for small values for m. We evaluate efficiency later in this section.

We finally compare the settings above in terms of unique extraction output. Figure 7.9

shows the fraction of unique tuples and attributes for the Movie–Release Date relation

using the OC extraction system using Word2Vec and varying n. Other relations yielded

analogous conclusions. As shown, unique extraction output correlates with the recall from

our analysis above. Specifically, using long n-grams tends to collect a higher fraction of

unique tuples and attributes during early stages of the extraction process, whereas using

short n-grams tends to perform best during the remaining portion of the process. This

implies that the length of n-grams has little or no impact on the tuples and attributes that

we collect along the extraction process. It is important to note, however, that picking n

190
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
se

fu
l

S
en

te
nc

es
 (

%
)

● GV−50
W2V−50

GV−100
W2V−100

GV−300
W2V−300

Figure 7.8: Useful sentences recall for Movie–Release Date for different dimensions m of
distributed vector and using the OC extraction system. For reference, we include perfect
and random sentence order (see red dotted line and black dashed line, respectively).

may be an extraction task-specific choice in certain cases. Using bigrams or trigrams may

produce highly meaningful sentence representations for extraction tasks that, for example,

involve entities of type person.

Additionally, we evaluated the impact of m in unique extraction output recall. Fig-

ure 7.10 shows the fraction of unique tuples and attributes for the Movie–Release Date

relation using the OC extraction system and varying m. (For clarity, we only show the

best performing techniques from our analysis above, namely, GV-50, GV-100, W2V-50, and

W2V-100.) As shown, modeling sentences with high-dimensional vectors has limited im-

pact on the overall performance of the extraction process. In fact, W2V-50 and W2V-100

(i.e., Word2Vec with m = 50 and m = 100, respectively) produce comparable extraction

output after processing 20% of the sentences. Moreover, and as shown above, higher values

for m (e.g., m = 300) substantially hurt the performance of the overall extraction process.

Therefore, m should be kept small for effectiveness but also, as discussed in Section 7.2.6,

for efficiency.

7.4.4 Impact of Useful Information Representation

To evaluate the impact of useful information representation, we compared the variants

discussed in Section 7.2.3, namely, All, K-Sel, and Summ, using the settings of Section 7.3.

Figure 7.11 shows the average recall for the Company–Relation Type relation using the

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 191

●
●

●

●

●

●

●

●

●
● ●

●●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
● ● ●

●
● ●

●●

●
●
●

● ● ● ●●
●● ●

●
●

●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
ni

qu
e

E
xt

ra
ct

io
n

O
ut

pu
t (

%
)

● ● ●1−Gram 2−Gram 3−Gram

● Date Movie (N) Tuple

Figure 7.9: Unique extraction output recall for Movie–Release Date for different lengths n
of n-gram and using the OC extraction system.

●

●

●

●

●
●

● ●
●

●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ● ● ●

●

●
●

●

● ●

●
●

●
●●

● ●

●

●

●

●

● ●

●

●
●

●
●

● ●● ●
●

●

●●
●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
ni

qu
e

E
xt

ra
ct

io
n

O
ut

pu
t (

%
)

●

●

●

●

GV−50
W2V−50

GV−100
W2V−100

● Date Movie (N) Tuple

Figure 7.10: Unique extraction output recall for Movie–Release Date for different dimensions
m of distributed vector and using the OC extraction system.

OC extraction system for All, K-Sel (with K = 100 and K = 300), and Summ useful

information representation methods. Other relations yielded analogous conclusions (e.g.,

Figure 7.12 shows the results for Person–Charge using the BONG extraction system). As

shown, the performance of the extraction process is highly correlated with the specificity

of the useful information representation: 100-Sel, which forms the useful information with

the 100 most relevant words for the extraction task, consistently outperforms all other

approaches. This corroborates our conclusion in Section 7.4.1 on the (high) effectiveness

of high-precision approaches. The Summ approach, which builds the useful information

representation via a linear combination of different words exhibits the lowest performance.

This occurs because Summ may eliminate certain dimensions that are highly relevant to the

192
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●
● ●

● ●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
se

fu
l

S
en

te
nc

es
 (

%
)

● All 100−Sel 300−Sel Summ

Figure 7.11: Useful sentences recall for Company–Relation Type for different useful in-
formation representation strategies and using the OC extraction system. For reference,
we include perfect and random sentence order (see red dotted line and black dashed line,
respectively).

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ●
● ● ●

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
se

fu
l

S
en

te
nc

es
 (

%
)

● All 100−Sel 300−Sel Summ

Figure 7.12: Useful sentences recall for Person–Charge for different useful information rep-
resentation strategies and using the BONG extraction system. For reference, we include
perfect and random sentence order (see red dotted line and black dashed line, respectively).

extraction task, as they may exhibit low variance across useful sentences, and keep other

non-relevant terms instead.

We also study the impact of different useful information representations on the unique

tuples and attributes that are extracted along the extraction process. Figure 7.13 shows the

average fraction of unique tuples and attributes for the Company–Relation Type relation

using the OC extraction system. We observed similar results over other relations (e.g., Fig-

ure 7.14 shows the results for Person–Charge using the BONG extraction system). Similarly

to what we observed above for useful sentence recall, the most specific useful information

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 193

● ●● ● ●●

●

● ●●●

●

●

●
●

●
●

●
●

●
● ● ● ●

●

●

●

●

●

●
●

●
●

●
● ●

●

● ● ● ● ●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
ni

qu
e

E
xt

ra
ct

io
n

O
ut

pu
t (

%
)

● ●

● ●

All 100−Sel

300−Sel Summ

● Company (N) Relation Type Tuple

Figure 7.13: Unique extraction output recall for Company–Relation Type for different useful
information representation strategies and using the OC extraction system.

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ● ●

●
●

●
●

●

●

●
●

● ●●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
ni

qu
e

E
xt

ra
ct

io
n

O
ut

pu
t (

%
)

● ●

● ●

All 100−Sel

300−Sel Summ

● Charge Person Tuple

Figure 7.14: Unique extraction output recall for Person–Charge for different useful infor-
mation representation strategies and using the BONG extraction system.

representations perform best. Furthermore, the difference in unique extraction output recall

across techniques is consistent along the extraction process, even when the representation of

strategies such as All increases as the extraction process progresses. For 100-Sel and 300-Sel,

in particular, this suggests that the selected n-grams effectively represent different aspects

of the extraction task at hand. As another important observation, for each technique the

recall for tuples and individual attributes is comparable along the extraction process and

not dominated by one single attribute. This implies that the extraction output is diverse

and not predominantly about a small set of attribute values. We study this effect in more

detail in our comparison with the state-of-the-art approaches (Section 7.4.8).

194
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

7.4.5 Impact of Goodness of Fit Computation

To evaluate the impact of the goodness computation, we compare the generalized, weighted

variants of the cost functions described in Section 7.2.4, namely, Min, Max, and Avg. Fig-

ure 7.15 shows the average recall for the Music Album–Release Date relation using the OC

extraction system. Other relations yielded analogous conclusions. As shown, Avg consis-

tently outperforms Max and Min along the extraction process. This result corroborates our

hypotheses from Section 7.2.4 for the different cost functions: Avg prioritizes sentences that

sufficiently explain multiple important aspects of the extraction task, which leads to priori-

tizing most useful sentences early in the sampling process. For Music Album–Release Date,

90% of the useful sentences are processed within the first 20% of the sentences. Likewise,

Max prioritizes sentences that explain the important aspects of the extraction task that

remain largely explained in the useful information representation. This leads to prioritizing

sentences similarly to Avg during early stages of the extraction process; however, when

most relevant aspects of the extraction task have been explained, Max fails to continue

identifying useful sentences. Also, Max exhibits a higher bias towards long sentences than

those of other cost functions, since long sentences will explain most aspects of the extrac-

tion task to some extent, thus producing “flat” residuals (i.e., residual with low, comparable

values). Finally, Min prioritizes sentences that explain at least one important aspect of the

extraction task sufficiently. When multiple sentences fully explain at least one right-hand

side (i.e., the cost of the residual for the right-hand side is 0), Min exhibits some serious

limitations: Min is unable to “break ties” and the sentence ranking becomes nearly ran-

dom. Min becomes more effective later in the extraction process, specifically, when useless

sentences that fully explain at least one aspect of the extraction task have been already

processed. The performance of Min is conditioned by how discriminative the n-grams of

the extraction task at hand are.

7.4.6 Impact of Sentences per Iteration

In Section 7.2, we argued that the number of sentences N per iteration in our Group OMP-

based approach, or the number of useful sentences we process before updating the useful

information representation, weighs relevance and novelty. We now evaluate the impact of

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 195

●

●

●

●

●

●

●

●

● ● ●

●

● ● ● ● ● ● ●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
se

fu
l

S
en

te
nc

es
 (

%
)

● MIN MAX AVG

Figure 7.15: Useful sentences recall for Music Album–Release Date for different goodness
functions and using the OC extraction system. For reference, we include perfect and random
sentence order (see red dotted line and black dashed line, respectively).

N . Figure 7.16 shows the average recall for the Endorsee–Endorser relation using the OC

extraction system. Other relations yielded analogous conclusions. As shown, at early stages

of the extraction process, larger values for N lead to higher recall values than those of small

values for N . This occurs because large N values delay updating the useful information

representation. This delay, unfortunately, has a negative impact on the overall performance

of the extraction process, because the useful information representation is not frequently

enhanced. Small values for N , on the contrary, lead to frequent updates of the useful

information representation, for novelty (see below). In turn, this leads to enhancing the

useful information representation more frequently than with high values forN . This explains

why the recall values for small values for N are comparable to those of high values for N .

We now evaluate the unique tuples and attributes for different values of N . Figure 7.17

shows the average fraction of unique tuples for the Endorsee–Endorser relation using the

OC extraction system. We observed similar results for other relations. As shown, all values

for N exhibit comparable unique extraction output. Interestingly, this occurs even when

the executions for high values of N have processed a larger number of useful sentences (see

Figure 7.16), which suggests that using small values for N effectively promote novelty along

the extraction process. This result corroborates the hypothesis in Section 7.2.5, namely,

that our approach provides for trading relevance and novelty in a robust manner.

196
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

●

●

● ● ● ●

●

● ●

●

●

●

●

●
●

●
●

● ● ●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
se

fu
l

S
en

te
nc

es
 (

%
)

●
GOMP−IE
(25)

GOMP−IE
(50)

GOMP−IE
(100)

Figure 7.16: Useful sentences recall for Endorsee–Endorser for different number of sentences
N per iteration and using the OC extraction system. For reference, we include perfect and
random sentence order (see red dotted line and black dashed line, respectively).

●

●

●

●

●

●

●

●

●
●

●

●
● ● ●

●

●

●

●
●

●
● ●

●

●

●
●

● ●

●

●

●

● ●
● ●

●

● ●

●

●●● ● ● ●●● ● ●● ●●● ●● ●● ●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
ni

qu
e

E
xt

ra
ct

io
n

O
ut

pu
t (

%
)

● ● ●
GOMP−IE
(25)

GOMP−IE
(50)

GOMP−IE
(100)

● Endorsee (N) Endorser (N) Tuple

Figure 7.17: Unique extraction output recall for Endorsee–Endorser for different number of
sentences N per iteration and using the OC extraction system.

7.4.7 Impact of Document Set Characteristics

The goal of this experiment is to evaluate the performance of our technique as a building

block in a system using the techniques of Chapter 6, which focus on a (relatively small) set of

potentially useful documents. We evaluate our best performing technique, which, according

to our experiments above, consists of: (i) Cyclic for sampling generation, (ii) 100-Sel (i.e.,

K-Sel with K = 100) for useful information representation, (iii) unigrams (i.e., n = 1) for

bag-of-n-grams representation, (iv) 50-dimensional (i.e., m = 50) Word2Vec word vectors,

(v) weighted Avg cost function for goodness of fit assessment, and (vi) updates (of the

useful information representation) every 25 useful sentences (i.e., N = 25). We run the

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 197

technique above over splits of documents—obtained from the tuning set—with fractions of

useful documents ranging from 10% to 90%. These splits represent sets of documents to

process that are retrieved by queries of different quality for the extraction task at hand.

We form a document split with a fraction p of useful documents as follows: (1) we learn

50 queries from the document sample obtained with Cyclic by following the SVM approach

for K-Sel described in Section 7.3; (2) we retrieve from our tuning collection C at most 1,000

documents per query, and combine them in a single set of documents D ; (3) we update

D, so that it includes |D+| = p · |D| useful documents and |D−| = (1 − p) · |D| useless

documents. The steps from Item (1) and Item (2) are shared across different values of p.

We perform the step in Item (3) for each value of p; this step consists of removing useless

documents from D at random or picking documents from C at random until |D+| = p · |D|.

Figure 7.18 shows the average recall for the Company–Customer relation using the

OC extraction system. As shown, our approach effectively prioritizes useful sentences for

different fractions of useful documents. In particular, our approach performs best when

the fraction of useful documents is small. This document distribution is typical when the

learned queries aim to retrieve useful documents with high recall. Moreover, our approach

exhibits substantial improvements over an approach that processes all retrieved documents

(see black dashed line in Figure 7.18), even when a vast majority of the documents is useful.

This document distribution corresponds to a set of queries that retrieve useful documents

with high precision. In sum, our approach improves the efficiency of the extraction process

under different precision and recall requirements, which demonstrates the merits of our

approach as a building block for efficient information extraction.

7.4.8 Comparison with Baseline Ranking Strategies

We now compare over the test set our best performing configuration (see Section 7.4.7)

against the SVM baseline approach in Section 7.3 and two variants of RSVM-IE: (i) RSVM-IE

(Adap-S), which performs RSVM-IE at sentence level with adaptation; and (ii) RSVM

(MMR-S), which incorporates MMR to form the (strong) baseline technique discussed in

Section 7.3. We evaluate the techniques on useful sentence recall, unique extraction output

recall, and efficiency (in terms of CPU time).

198
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
se

fu
l

S
en

te
nc

es
 (

%
)

● 10% 30% 50% 70% 90%

Figure 7.18: Useful sentences recall for Company–Customer for different proportions of
useful documents and using the OC extraction system. For reference, we include perfect
and random sentence order (see red dotted line and black dashed line, respectively).

Figure 7.19 shows the average recall for the Man Made Disaster–Location relation using

the BONG extraction system. Other relations yielded analogous conclusions. As shown, the

SVM baseline and our variants of the RSVM-IE approach perform best, as they effectively

learn words and phrases that identify—and prioritize—useful sentences with high precision.

This is crucial for the BONG extraction system as well as for other extraction systems that

exploit primarily the words and phrases in a sentence during tuple extraction. Our approach,

on the contrary, does not exploit the words and phrases directly but rather uses a semantic

representation of them. Although this representation enables a richer characterization of

the novelty and usefulness (see below), it misses shallow features such as words and phrases.

We compared the same techniques above in terms of the unique tuples and attributes

that they extract along the extraction process. Figure 7.20 shows the average number

of tuples and attributes for the Man Made Disaster–Location relation using the BONG

extraction system. We observed similar behavior across relations. There are four broad

conclusions that we can draw from examining unique extraction output recall. First, the

baseline approaches outperform our GOMP-IE approach during early stages of the extrac-

tion process. This correlates with our results above for useful sentence recall. Second, the

unique extraction output recall gap is considerably smaller than that of useful sentence

recall. For example, the recall of the Man Made Disaster attribute after processing 5% of

the sentences is 22% for GOMP-IE and 48% and 57% for the MMR-S and Adap-S variants

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 199

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
se

fu
l

S
en

te
nc

es
 (

%
)

● GOMP−IE RSVM−IE
(Adap−S)

RSVM−IE
(MMR−S)

SVM
(Sen)

Figure 7.19: Useful sentences recall for Man Made Disaster–Location for different ranking
techniques and using the BONG extraction system. For reference, we include perfect and
random sentence order (see red dotted line and black dashed line, respectively).

of RSVM-IE, respectively (26% and 35% recall gap); for the same number of processed

sentences, the useful sentence recall is 17% for GOMP-IE and 67% and 75% for the MMR-S

and Adap-S variants of RSVM-IE, respectively (50% and 58% recall gap). This suggests

that GOMP-IE prioritizes novel sentences more effectively than other approaches. This also

suggests that by improving the sentence scoring function, which is orthogonal to the rank-

ing approach, we would directly improve the diversity of the extraction process. Third, our

approach manages to collect higher fractions of unique tuples and attributes than those of

our MMR-S variant of RSVM-IE during late stages of the extraction process. Interestingly,

this occurs even when the useful sentence recall for RSVM-IE (MMR-S) is higher than that

of GOMP-IE. GOMP-IE also exhibits comparable unique extraction output recall to that

of RSVM-IE (Adap-S), even when RSVM-IE (Adap-S) has processed considerably more

useful sentences. Fourth, we observe that all recall curves for GOMP-IE exhibit similar

values along the extraction process. This indicates that our GOMP-IE approach effectively

covers different aspects of the extraction task. The baseline techniques, on the contrary,

exhibit significantly different recall curves for their attributes and tuples. For the Man

Made Disaster–Location relation, in particular, the recall curve for the Location attribute

is higher than that of the Man Made Disaster attribute during early stages of the extraction

process. This suggests that the first tuples extracted by using RSVM-IE are heavily biased

towards a particular group of useful sentences, since they are predominantly about a small

200
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

● ● ●

●

●

●

●

●

●

●
●

●

●●
●

●● ●

●

●

●

●

● ●● ●● ●

●

● ●

●

●
● ●

●●● ●●
● ●● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100
Processed Sentences (%)

U
ni

qu
e

E
xt

ra
ct

io
n

O
ut

pu
t (

%
)

● ● ● ●GOMP−IE RSVM−IE
(Adap−S)

RSVM−IE
(MMR−S)

SVM
(Sen)

● Location Man Made Disaster Tuple

Figure 7.20: Unique extraction output recall for Man Made Disaster–Location for different
ranking techniques and using the BONG extraction system.

number of man-made disasters.

Our final analysis involves empirically evaluating the efficiency of our GOMP-IE by

measuring the time—including both ranking and extraction time—that each technique re-

quires to achieve different recall values. Figure 7.21 shows the results for the Man Made

Disaster–Location relation using the BONG extraction system. Other relations yielded sim-

ilar results. The processing time per sentence that we measured for BONG is on average

0.139 seconds for useful sentences and 0.0714 seconds for useless sentences. As shown, the

sentence ranking approaches that we evaluate produce more efficient executions than simply

running the information extraction system over the entire documents. In particular, the

techniques that exhibit the best recall in our analysis above, also exhibit the best efficiency.

Overall, our experiments show that GOMP-IE effectively prioritizes useful and novel

sentences. During early stages of the process, however, the baseline sentence filtering and

ranking approaches, namely, SVM and RSVM-IE, perform substantially better than GOMP-

IE. As discussed, these techniques learn a small set of words and phrases that are mentioned

in a large portion of the useful sentences. Despite this, GOMP-IE manages to collect a more

diverse and balanced set of tuples and attributes than those of the baseline techniques later

in the process. We also evaluated GOMP as a (sentence ranking) building block of a system

for efficient information extraction, and showed considerable efficiency improvements over

systems with distinct recall and precision requirements. Additionally, we evaluated the

efficiency of GOMP-IE, and confirmed that the overall extraction time of GOMP-IE—as

CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION
EXTRACTION 201

● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

0

50

100

150

0 10 20 30 40 50 60 70 80 90 100
Useful Sentences (%)

T
im

e
(in

 h
ou

rs
) ● GOMP−IE RSVM−IE

(Adap−S)
RSVM−IE
(MMR−S)

SVM
(Sen)

Figure 7.21: CPU time to obtain a target recall value for Man Made Disaster–Location
for different ranking techniques and using the BONG extraction system. For reference,
we include perfect and random sentence order (see red dotted line and black dashed line,
respectively).

well as of the baselines—remains below that of processing all sentences directly.

7.5 Conclusions

In this chapter, we presented a principled, efficient sentence ranking approach for infor-

mation extraction. Our approach exploits a forward greedy sparse group selection strategy

[LSA09] to identify the (rare) useful sentences from a set of documents. Our approach mod-

els each sentence as a group of n-grams and iteratively selects the sentence that best explains

a carefully designed representation of the extraction task at hand. For usefulness, we build

this representation of the extraction task gradually, as the extraction process progresses, to

capture all relevant aspects of the task. For novelty, during sentence ranking our approach

updates this representation to account for the relevant aspects of the extraction task that

have been already explained by other previously selected sentences. Our approach thus

manages to prioritize sentences that lead to the extraction of unseen tuples. Furthermore,

our approach is flexible, as it enables trading relevance for novelty in a robust manner and,

hence, suits different requirements of downstream applications. Our experiments showed

the merits and limitations of all relevant building blocks in our approach for both usefulness

and novelty and, more importantly, showed the significant efficiency improvements that are

enabled by effectively prioritizing sentences. However, the (strong) baseline strategies that

202
CHAPTER 7. RANKING SENTENCES FOR SCALABLE INFORMATION

EXTRACTION

we evaluated performed substantially better than our approach during early stages of the

extraction process. These baseline strategies effectively identified a few highly discrimina-

tive words and phrases, which lead to processing a high fraction of the useful sentences early

in the process. We also showed that our approach improves the efficiency of the extraction

process over document sets with different usefulness proportions.

The main contribution of this chapter is our new approach for ranking novel useful sen-

tences for an extraction task of choice. The key building blocks of our approach, namely,

sentence representation, useful information representation, and sentence scoring, are well

defined and can be adapted to support different representations or scoring approaches.

Moreover, our approach can handle text fragments beyond single sentences, such as sets of

sentences or paragraphs. Despite being outperformed by baseline strategies that operate

over shallow features (e.g., words and phrases), our empirical evaluation has shown the mer-

its and limitations of all relevant building blocks in our approach. These results have shown

that improving the sentence scoring technique, which now relies on all words in a sentence,

may enhance the performance of our approach considerably. Overall, we showed that prior-

itizing the extraction effort by focusing on useful sentences yields highly efficient extraction

executions. Together with our collection and document ranking techniques (Chapters 5 and

6, respectively), we can efficiently process large volumes of text, which is crucial for the

scalability of information extraction.

CHAPTER 8. RELATED WORK 203

Chapter 8

Related Work

We surveyed several applications of large-scale information extraction and described related

efforts on the implementation of information extraction systems in Chapters 2 and 3, respec-

tively. This chapter now reviews additional literature that is relevant to this dissertation.

Section 8.1 outlines related work on document sampling, the problem that we addressed

in Chapter 4 for our information extraction setting. Section 8.2 summarizes research on

text collection selection, a problem closely related to our work in Chapter 5. Section 8.3

describes prior work on optimization of the information extraction process over text col-

lections, the problem that we covered in Chapters 6 and 7. Finally, Section 8.4 describes

general work on Web-scale information extraction, a problem that touches all key aspects

of this dissertation.

8.1 Text Document Sampling

Building document samples from text collections has been widely studied, since many im-

portant applications (e.g., resource selection in distributed information retrieval [SS11], data

analytics [BYG11; ZZD11; ZZD13], and information extraction [AG03; BLNP11a]) require

a small, representative summary of the collections over which they operate. In particular,

most research efforts on document sampling from text collections have focused on building

random samples, as it is well known that the characteristics of a population can often be

effectively determined by such samples. We now focus on query-based document sampling;

204 CHAPTER 8. RELATED WORK

then, we describe general work on document sampling.

Early approaches for query-based document sampling (e.g., [CC01]) aimed at efficiently

collecting representative documents with certain allowed bias—intrinsic to the querying

process—in the sample. The approach in [CC01] starts by issuing random words (e.g.,

obtained from a dictionary) as text queries and then words obtained from the retrieved

documents. Despite their bias, the document samples collected following this approach

proved very effective for many applications. Unfortunately, this bias is often unacceptable

for other applications such as estimating the size of a collection, because it may lead to

innacurate estimations. Recent approaches (e.g., [BYG08; ZZD11; ZZD13]) have addressed

this problem, in that they aim at collecting truly random document samples from a text

collection. The approaches in [BYG08] and [ZZD11] use a large pool of queries (e.g., all

n-grams in an external text collection) that together potentially reach all documents of

interest in the collections and that is built once and for all. The sampling process consists

of: (i) picking a query from the query pool and issuing it to the collection; and (ii) picking a

document at random from the returned set of documents and “accepting” (or “rejecting”)

the document with a certain non-zero probability (e.g., based on the number of terms that

the document includes). The approach in [ZZD13], on the other hand, and similarly to the

work in [CC01], generates the queries to be issued (see Item (i) above) “on the fly,” as it

retrieves documents from the collection in a random-walk fashion. Unfortunately, to effec-

tively represent the (rather rare) useful documents in a collection, these approaches would

require issuing an exorbitant number of queries. For a given (sub)population of interest

(e.g., documents about sports), the approach in [ZZD11] proposes identifying queries that

are positively correlated with this population (e.g., query [golf]), a proposition similar in

spirit to that of our document sampling approaches in Chapter 4. In turn, [ZZD11] stratifies

the sampling process over correlated and uncorrelated queries. Unfortunately, this approach

still requires issuing a large number of queries.

More generally, stratified sampling [SSW03] is often used to represent all relevant sub-

populations that random sampling would be unable to cover sufficiently. Stratified sam-

pling [SSW03] separates the subpopulations of interest into non-overlapping strata that can

be in turn sampled independently from one another. Existing approaches for efficiently run-

CHAPTER 8. RELATED WORK 205

ning an information extraction system over a large text collection (e.g., QXtract [AG03],

FactCrawl [BLNP11a], PRDualRank [FC11]) often require such stratification to learn dis-

criminative queries that retrieve useful documents: One stratum consists of useful docu-

ments, which are collected with high-precision queries (see Section 4.1), whereas the other

stratum consists of (rather frequent) useless documents, which we can obtain from a ran-

dom sample (e.g., by using [CC01], as suggested in [AG03]). A more fine-grained version

of stratified document sampling over fully-accessible collections, and for the related prob-

lem of optimizing the extraction process (see Section 8.3), is performed in [SGG13]: Here,

each stratum includes documents reached by the same retrieval strategy. In Chapter 4, we

extensively studied different document sampling techniques for efficiently collecting useful

documents for an extraction task of choice. Our techniques produced better-quality samples

than those with sampling approaches adopted in the literature. Furthermore, our document

samples proved useful for the optimization problems that we tackled along this dissertation

(Chapters 5 through 7).

8.2 Text Collection Selection

One of the most crucial tasks in distributed information retrieval is that of text collection

selection, or resource selection. Given a user query, find and rank the text collections

that are topically relevant to the query (e.g., because they include a substantial number of

documents that match the query) without interacting with the collection directly. This task

is critical for two main reasons. First, many times only a few collections in the distributed

environment include documents that are topically relevant to the query. Second, querying

all collections is a very expensive proposition.

Text collection selection techniques are often classified into three broad categories:1

(i) lexicon-based (e.g., GlOSS [GGMT99], CORI [CLC95; XC98], LM [XC99; SJCO02], and

CVV [YL97]), which treat collections as bags of words or n-grams and rely on information

retrieval scoring metrics (e.g., cosine similarity) to rank the collections; (ii) surrogate-based

(e.g., ReDDE [SC03] and its variants UUM [SC04] and RUM [SC05], CRCS [Sho07], SUSHI

1For a detailed survey on text collection selection, see [SS11].

206 CHAPTER 8. RELATED WORK

[TS09], and DTF [Fuh96; Fuh99]), which exploit the contents and topical relevance of doc-

uments in samples, or surrogates, collected from the collections; and (iii) classification- and

clustering-based (e.g., MRDD and QC [VGJL95] and QProber [IG08]), where the task is

regarded as either a classification task or a clustering task. In Chapter 5, we evaluated

an adaptation of ReDDE for our information extraction scenario. Our experimental results

exhibited the limitations of classical resource selection approaches in our information extrac-

tion setting. More importantly, our estimator-based approaches (see Chapter 5) exhibited

the best performance overall for our text collection ranking task.

8.3 Information Extraction Process Optimization

When running an information extraction system over a large text collection, there are

many decisions (e.g., the document retrieval strategy or the order of the operators in the

information extraction system) that have a substantial impact on both “completeness”

(e.g., in terms of recall) and efficiency (e.g., in terms of running time) of the extraction

process. To support these decisions, and to find the best execution plan for a certain

objective function (e.g., extract t tuples as fast as possible), several cost-based optimization

approaches have been proposed (e.g., [IAJG07; JI09; SDNR07; SGG13]). Most approaches

provide for decisions related to the data to process (e.g., the set of documents on which to

run the extraction system) and to the extraction system (e.g., which operators to run first

or what parameters to use for certain internal operations).

Optimization approaches typically first enumerate different extraction execution plans

to, finally, choose the best plan for a given objective function. Some of these approaches,

namely, CIMPLE [SDNR07] and SystemT [CKL+10], produce execution plans with identical

extraction output; others, namely, SQoUT [JI09] and Holistic-MAP [SGG13], evaluate plans

with different extraction output as well. These approaches evaluate all execution plans, or

a meaningful subset thereof, using cost models and determine, for instance, the number

of documents that need to be processed to reach a certain recall. The decision on which

execution plan to adopt is based on the informed output of the cost models.

Importantly, the execution plan does not necessarily have to be generated once and for

CHAPTER 8. RELATED WORK 207

all. In fact, approaches such as [IAJG07] propose revising earlier decisions as the extraction

process progresses and they collect more relevant information about the actual performance

of the execution plan. For instance, the chosen execution plan may be unable to reach a

desired recall value because it retrieved—and processed—insufficiently many documents,

and this approach may switch to scanning the collection to overcome this shortcoming.

The approaches that we have described in Chapters 5 through 7 are orthogonal to the

optimization techniques discussed above. Specifically, our approaches become new choices

for the optimizers at the time of enumerating the execution plans and evaluating the cost

models over them. However, integrating our approaches into these optimizers has many

associated challenges (e.g., cost models should now account for our prioritized execution).

We characterize these issues further in our future work discussion (Chapter 10).

8.4 Web-Scale Information Extraction

Multiple efforts have addressed the problem of extracting entities and relations from the

Web. The Read The Web research project developed NELL [CBK+10; CBW+10; MHM11],

or Never-Ending-Language-Learning system, a computer system that aims to learn new

entities and relations continuously. NELL relies on ensemble methods and corrects itself

as it better understands natural language. Another well-known research project is the

Open Information Extraction project, which developed TextRunner [BCS+07; YCB+07]

and ReVerb [FSE11], two systems that aim to extract all relations between pairs of noun

phrases. ReVerb, which is now the core of the Open Information Project, imposes certain

constrains on the relations (e.g., relations between noun phrases need to be verb phrases that

end with prepositions). Unfortunately, open information extraction systems often produce

relatively noisy output, which complicates reasoning over the extracted data.

More recently, the DeepDive project [NZRS12b] has focused on producing high-confidence

extraction output and on other crucial challenges of large-scale information extraction, such

as dealing with conflicting evidence [FSYB11]. Unlike the projects above, DeepDive per-

forms deep natural language processing over text to obtain rich linguistic features (e.g.,

named entity tags or dependency paths). These features are in turn used for statistical

208 CHAPTER 8. RELATED WORK

learning and inference in a wide variety of text-centric tasks, including include relation ex-

traction. DeepDive runs on a carefully designed distributed environment that can process

500 million English Web documents in one week. We argue that systems such as DeepDive,

which require running computationally expensive tasks over the text, can largely benefit

from the techniques developed in this dissertation. We discuss this issue further in our

future work section (Chapter 10).

Structured information can also be obtained from sources other than natural text alone.

Several efforts (e.g., [CHW+08; LSC10; VHM+11]) have focused on the extraction of entities

and relations from the HTML tables on the Web, which are in the order of millions. Along

the same lines, YAGO [SKW07; HSBW13], DBpedia [ABK+07], and Freebase [BEP+08]

extract entities and relations from semi-structured sources, such as the Wikipedia infoboxes.

These approaches leverage domain-specific rules rather than full-fledged entity and relation

extraction systems. Unfortunately, these systems can only extract a limited set of entities

and relations, specifically, those for which HTML tables and infoboxes exist. This is an

important limitation, as recent research efforts have identified a large variety of entities and

relations that would be highly valuable in Web search and that are not included in these

types of information sources [GHW+14].

Beyond the information sources discussed above, social media provides unique oppor-

tunities for information extraction. Social media many times provides more up to date

information than do conventional sources of information (e.g., online news), which makes

social media particularly attractive in the information extraction setting. For example, dur-

ing the 2011 earthquakes in Japan and the Arab Spring, social media sites such as Twitter

were more up to date than news websites [PY13]. However, information extraction from

social media is challenging for three main reasons: (i) social media documents are typi-

cally very short (e.g., Twitter posts are only 140 characters long); (ii) text is often noisy

and informal, with non-standard abbreviations and lack of punctuation and capitalization;

and (iii) social media documents are often unreliable. Resorting to traditional information

extraction strategies thus result in significantly degraded performance [PY13].

Information extraction over social media has mainly focused on event extraction, often

regarded a subtask of relation extraction. In this setting, though, multiple social media doc-

CHAPTER 8. RELATED WORK 209

uments are required during the extraction process. The approach in [SOM10], for instance,

classifies tweets on earthquakes and typhoons and uses a probabilistic spatio-temporal model

to determine the trajectory and epicenter of the disaster. Other approaches (e.g., [VHSP10])

evaluate tweets during certain events (e.g., a natural disaster) and identify structured infor-

mation (e.g., weather, flood level, road conditions) that should be automatically extracted—

with information extraction systems—during similar events in the future. An extensive

body of work that is complementary to these approaches is developed in [BNG09; BNG11;

BNG10]. Here social media documents that cover the same events are clustered, to form

richer representations of the events that can largely benefit downstream applications. We

believe that the techniques developed in this dissertation will play a key role in deploying

and scaling the extraction process over social media documents. In particular, our relation

extraction toolkit (Chapter 3) and our sentence ranking approach (Chapter 7) involve sev-

eral building blocks that can potentially be exploited to tackle the intrinsic challenges of

extracting structured information from social media documents.

210 CHAPTER 8. RELATED WORK

CHAPTER 9. CONCLUSIONS 211

Chapter 9

Conclusions

In this dissertation, we described key building blocks for supporting large-scale information

extraction and presented techniques for scaling the extraction of structured relations to

large text collections. Next, we summarize our main contributions.

Toolkit for Building Relation Extraction Systems: In Chapter 3, we studied the de-

velopment, deployment, and evaluation of relation extraction systems. We characterized the

limitations of existing toolkits for this task and introduced REEL, an open-source frame-

work to easily develop and evaluate relation extraction systems. Beyond addressing the

limitations of existing toolkits, REEL promotes the integration of other, long-established

software libraries for all building blocks in relation extraction. Moreover, REEL effectively

addresses the complex requirements of relation extraction and helps developers and re-

searchers produce simple and easy-to-understand source code for their relation extraction

systems (see Section 3.5). We believe that these crucial characteristics of REEL will foster

research on relation extraction, and we hope they will prove useful to the research commu-

nity at large. We have made REEL publicly available as open source under the General

Public License Version 3 (GPLv3) license, at http://reel.cs.columbia.edu/.

Study of Document Sampling Strategies for Information Extraction: In Chap-

ter 4, we studied the problem of query-based document sample generation for information

extraction. We identified the key aspects of document sampling for this task and considered

their implications along two crucial dimensions of the sampling process, namely, the quality

and efficiency of the sampling process. We performed a thorough, large-scale experimental

http://reel.cs.columbia.edu/

212 CHAPTER 9. CONCLUSIONS

evaluation over realistic Web collections. We showed that, by carefully choosing the differ-

ent sampling components, we can obtain sampling executions that are several times more

efficient—and with samples of significantly better quality—than those following approaches

adopted in the literature. Altogether, our study and experimental evaluation provide a

roadmap for addressing this critically important building block for efficient, scalable infor-

mation extraction.

Methods for Ranking Text Collections for Information Extraction: In Chapter 5,

we introduced and addressed the problem of ranking text collections for an information ex-

traction task, to prioritize the extraction effort by focusing on collections with substantial

numbers of useful documents for the extraction task. Given a set of text collections, our goal

was to estimate the number of useful documents for a given extraction task in each collection

to, in turn, rank them according to this estimated value. We cast the problem of estimating

the number of useful documents for a task as an instance of the generic problem of esti-

mating a “property” of interest for a collection. This related problem has been extensively

studied, and their methods are often classified in three broad classes, namely, surrogate-

based, query pool-based, and query pool-free methods. We studied both (adaptations of)

state-of-the-art methods across these families as well as information extraction-specific ap-

proaches. Our extensive experimental evaluation over realistic Web collections focused on

the quality of the ranking and on the efficiency gains achieved with the prioritized execution

obtained thereafter. Overall, Chapter 5 showed highly-efficient and scalable executions for

the deployment of extraction tasks at scale.

Techniques for Ranking Text Documents for Information Extraction: In Chap-

ter 6, we addressed the problem of ranking documents in text collections for an information

extraction task, to prioritize the extraction effort by focusing on documents that are likely

to produce tuples for the task at hand. We presented a document ranking approach that

relies on learning-to-rank techniques to determine the fine-grained characteristics of useful

documents for an extraction task of choice. Furthermore, our approach revises the (learned)

ranking decisions periodically as the extraction process progresses and new characteristics

of the useful documents are revealed. As crucial building blocks for the efficiency of our

techniques, we incorporated online learning algorithms and in-training feature selection. As

CHAPTER 9. CONCLUSIONS 213

a result, our experiments showed that our approach exhibits higher recall and precision

than those of state-of-the-art approaches, while keeping the ranking overhead to reasonable

levels. Overall, the document ranking approach proposed in Chapter 6 yielded efficient

executions even for inexpensive extraction tasks and is, hence, a substantial step towards

scalable information extraction.

Approach for Ranking Sentences for Information Extraction: In Chapter 7, we

addressed the problem of ranking sentences in a set of documents for an information ex-

traction task, to prioritize the extraction effort by focusing on documents that are likely

to produce unseen, novel tuples for the task at hand. We presented a sentence ranking

approach that exploits a forward greedy sparse group selection solution to characterize use-

fulness and novelty of sentences in a robust manner. Our approach models each sentence

as a group of words and represents each word in a semantically rich manner using so-called

distributed word vectors. To identify useful sentences, our approach correlates sentences

to a carefully designed representation of the extraction task that is built gradually, as the

extraction process progresses. To identify novel sentences, our approach updates the rep-

resentation of the extraction task so that it only includes the aspects that remain to be

explained. Importantly, our approach allows for trading relevance and novelty in a robust

manner to suit different requirements of downstream applications. Our experimental evalu-

ation highlighted the importance of sentence ranking, as well as the merits and limitations

of the key building blocks in our approach. In particular, we showed that our baseline

strategy, namely, an adaptation for sentence ranking of our document ranking technique

in Chapter 6, considerably outperforms our proposed approach during early stages of the

extraction process. Our analysis highlighted the performance-critical building blocks of our

approach and showed opportunities for further improvement. Overall, our approach yielded

efficient executions for a broad range of extraction tasks and over sets of documents with

different proportions of useful documents. This renders our approach valuable for further

improving the efficiency and scalability of the extraction process.

In summary, in this dissertation we addressed critically important building blocks for

improving the efficiency and scalability of information extraction over large text collections.

During the first part of this dissertation, we presented a toolkit to easily deploy full-fledged

214 CHAPTER 9. CONCLUSIONS

relation extraction systems and proposed fully automatic document sampling techniques

for information extraction: These contributions enabled the deployment of information ex-

traction tasks at scale. During the second part of this dissertation, we proposed approaches

to improve the efficiency and scalability of information extraction systems over large text

collections. Our approaches prioritize the extraction effort by focusing on the useful col-

lections, the useful documents in these collections, and the useful sentences within these

documents. We have supported our conclusions with robust evaluations that considered

realistic Web collections as well as extraction tasks of distinct characteristics. We have

also made REEL, our toolkit to support the development, deployment, and evaluation of

relation extraction systems, available. We hope that REEL as well as the contributions of

this dissertation will prove useful to the research community.

CHAPTER 10. FUTURE WORK 215

Chapter 10

Future Work

Our work suggests interesting directions for future research, which we outline below. As

we will see, some directions are immediate extensions of the techniques presented in this

dissertation; others convey long-term research endeavors for which our work is naturally

valuable.

Exploiting Existing Document Samples for an Extraction Task: In Chapter 4, we

discussed the problem of document sampling generation for information extraction, namely,

to gather collection-specific, representative samples of useful documents, an often-necessary

step for efficient information extraction. As discussed, document sampling techniques need

to issue a small number of queries and process a small number of documents, for effi-

ciency. Because of this, document samples many times miss relevant groups of useful

documents and, in effect, the overall performance of the extraction process may suffer.

Interestingly, Web-accessible text collections often share aspects such as their language and

contents [IG02] that are essential throughout the extraction process, as argued throughout

this dissertation. An interesting direction for future work would thus be to exploit doc-

ument samples of other collections to: (i) enrich often-incomplete document samples or,

alternatively, (ii) “skip” the sample generation step on certain text collections altogether

and, instead, use available document samples for the task at hand.

A similar problem to that of Item (i) above is studied in [IG04], for the related prob-

lem of resource selection in distributed information retrieval. Here, collection summaries

suffer from a sparse-data problem, in that they often miss many words that appear only

216 CHAPTER 10. FUTURE WORK

in a few documents. To alleviate this problem, the authors in [IG04] propose combining

content summaries from collections categorized under similar topic categories, adopting

a shrinkage-based approach from hierarchical document classification [MRMN98]. There

are, however, fundamental differences that make this approach not directly applicable to

our information extraction setting (e.g., the combination of samples should be done at a

relation-specific level, rather than at the collection level), and further research is needed.

Likewise, the problem in Item (ii) can be seen as an instance of the generic problem of do-

main adaptation [DM06], where training data—that is labeled for a given task—and testing

data—that is unlabeled—are not necessarily drawn from the same underlying distribution

(e.g., because they were obtained from different text collections). This (related) problem

has been extensively studied for different natural language processing tasks and, in effect,

lays the groundwork for exploring novel solutions in our information extraction setting.

Improving Query Generation Strategies: To identify potentially useful documents for

an extraction task of interest, the approaches proposed in this dissertation require issuing

learned, extraction-specific queries to the collections. We have thoroughly studied a wide

variety of query generation techniques that produce simple text queries (e.g., single-word,

phrase, or keyword-combination queries) and that we have used across all extraction tasks

and systems indistinguishably (see Chapter 4). A promising direction for future work is thus

to improve the query generation step—and potentially the overall extraction process—by

(i) exploring other, more expressive query formulations and (ii) choosing query generation

strategies according to the characteristics of the extraction tasks and systems, as we discuss

next.

Many extraction tasks can potentially benefit from more expressive queries than those

studied in this dissertation, provided the document retrieval system in the collections sup-

ports such queries. For example, we could improve the precision of the queries obtained for

our Occurs-in relation by allowing Boolean queries such as [richter AND NOT gerhard], to

avoid retrieving documents about Gerhard Richter. Alternatively, we could improve recall

by allowing Boolean disjunctive queries such as [earthquake OR tremor OR temblor OR

quake] that include synonyms of observed words and phrases. Note that such disjunctive

queries potentially improve the efficiency of the extraction process, since the number of

CHAPTER 10. FUTURE WORK 217

issued queries may decrease.

Beyond improving the query generation strategies in isolation, we can also benefit from

studying their interaction with the characteristics of the information extraction systems. For

example, a query generation strategy that learns high-precision queries may be desirable

for a time-consuming extraction system (e.g., extraction systems that require human input)

over another strategy that produces high-recall queries. In this case, the extraction system

would only need to run over a very small, potentially useful set of documents. Likewise,

a query generation strategy that produces high-recall queries may be desirable for fast

extraction systems (e.g., an extraction system based on regular expressions) over another

strategy that produces high-precision queries. In this case, the extraction process would

remain largely unaffected by the number of documents to process.

Ranking Collections, Documents, and Sentences Along Other Dimensions: In

this dissertation, we promoted ranking approaches for collections, documents, and sentences

that are driven by usefulness. In Chapter 7, we also explored prioritizing novel sentences

(i.e., sentences that produce tuples that have not been seen along the extraction process),

to avoid (unnecessarily) running the information extraction system at hand over sentences

that produce already seen tuples.

In future work, novelty could also be considered for documents and collections. In

particular, we could in principle adapt our approach in Chapter 7 to operate over documents;

however, the efficiency of the overall extraction would suffer, because documents would

require prohibitively large representations. Instead, we could build on approaches proposed

for the related problem of retrieving novel and diverse documents in Web search (e.g.,

[SCAC14]). Unlike in Web search, though, we should prioritize useful documents with

novel tuples rather than documents that are topically relevant to queries that carry multiple

interpretations. For collections, we could rely on the intuition that collections that cover

different topics may lead to the extraction of largely disjoint sets of tuples, and prioritize the

most useful collections for each topic. However, within certain topics (e.g., news, business,

sports) some collections may still lead to very different sets of tuples (e.g., because they

belong to different geographical areas). Extending our idea of ranking to the novelty of the

extraction output is thus an interesting direction for future work.

218 CHAPTER 10. FUTURE WORK

Beyond novelty and usefulness, several other dimensions are also worth exploring:

• Ranking for Diversity: As another ranking dimension worth exploring, we identify

diversity of the extraction output, a dimension that is related to novelty but involves

different objective functions [CKC+08; VC11]: When ranking for diversity, the goal

will be to obtain extraction outputs that differ from one another as a group, and not

just with respect to previously seen outputs, as argued for novelty. This problem

is related to retrieving diverse and novel documents in information retrieval [DP10;

AGHI09], and their adaptation to the information extraction setting poses an inter-

esting and challenging proposition.

• Ranking for Quality: Another possible dimension for ranking involves considering the

quality of the extraction output. In fact, there may be collections, documents, and

sentences that are deemed as relevant but lead to the extraction of low-quality tu-

ples, which subsequent applications (e.g., see Section 2.4) may disregard entirely. The

approaches that we have proposed in this dissertation can be adapted to effectively ac-

count for the quality of the extraction output: (i) for collections, we could incorporate

the quality of the extraction output in the target measure f (e.g., as a function of the

confidence scores of the tuples extracted from a document), as suggested in [ZZD13]

and [BYG11]; (ii) for documents, we could modify our “binary” interpretation of use-

ful documents during learning (i.e., that a document is useful if it produces a tuple for

the relation of choice and useless otherwise) and characterize some useful documents

as more useful than others (e.g., if their tuples exhibit different confidence scores);

(iii) for sentences, we could assign weights to the different words and phrases in the

target matrix that account for the quality of the associated tuples (e.g., as a function

of the confidence score of the tuples mentioned within the context of these words and

phrases). Integrating these new ranking dimensions is an interesting proposition, as

it would combine two of the most important characteristics of the extraction output,

namely, volume and quality.

• Ranking for Efficiency: Throughout this dissertation we have addressed the efficiency

of the extraction process by prioritizing useful collections, documents, and sentences.

CHAPTER 10. FUTURE WORK 219

Although our usefulness-driven approach has been shown effective, there are other

fine-grained aspects of the extraction process that we have not modeled and that di-

rectly affect the efficiency of the extraction process. As a notable example of such

aspects, consider the average length of sentences and documents in a collection: Many

natural language processing tasks (e.g., dependency parsing or named entity tagging,

which often are essential building blocks in information extraction systems, as dis-

cussed) tend to be slow over lengthy sentences and documents [FKM08]. However, as

argued in Chapter 7, long documents and sentences, which are many times prioritized

over shorter documents and sentences, are not necessarily more likely to be useful. Ac-

counting for the length of documents and sentences, as well as other efficiency-related

aspects, to further improve the efficiency of the extraction process, is therefore an

interesting direction of future work.

Along the dimensions discussed above, many variations are possible. For instance, when

ranking for novelty and diversity, we could either adopt a rather simple approach (e.g.,

one that considers only the words and phrases in the text) or explore complex similarity

measures across the text (e.g., one that exploits the topics covered in the text or metadata,

such as dates or geographical location). Importantly, our work is complementary to these

new ranking dimensions and their integration poses many interesting challenges.

Exploiting External Structured and Unstructured Resources: The methods devel-

oped in this dissertation rely only on text contents to tackle the efficiency and scalability

of the extraction process. However, there are many often-curated structured and unstruc-

tured resources that can enhance the plain text for multiple applications. For example, and

as described in Section 2.2.1, scientific articles typically include metadata (e.g., authors,

affiliations, keywords, category), news articles often include a creation date and entities

and topics covered, and Wikipedia documents often link to related Wikipedia documents

and external sources, which have been proven useful for many tasks (e.g., citation predic-

tion [YHO+11], event tracking [BNG10], and named entity disambiguation [HOD12]). A

natural direction of future work would be to exploit this information to improve our ranking

decisions for information extraction.

In addition to the efforts described above, and certainly related to our problem of

220 CHAPTER 10. FUTURE WORK

focus, distant supervision [MBSJ09] exploits the entities and relations in a knowledge base

(e.g., Freebase [BEP+08]) as instances of weakly labeled data: The intuition is that any

sentence that contains any pair of entities related in the knowledge base is likely to express

the relation in some way. Interestingly, knowledge bases many times include much more

information about entities and their relations (e.g., attributes, properties, text descriptions)

than just semantic collection between them. An interesting direction of future work would

be therefore to integrate this semantically richer information in the form of new features

into the representation of our data. By using these (richer) features, we could, for example,

identify shared characteristics of geographical locations that are prone to natural disasters—

and could potentially occur in Occurs-in tuples—and “inject” these characteristics in our

ranking approaches, even if we have not observed them in the data.

Finally, other approaches for the related problem of resource selection (e.g., [IG08]) have

exploited the categorization of collections, which is generally expected to remain unchanged

over time and thus can be used reliably once obtained. The categorization of collections

is often determined by the topics covered in the documents in the collection and is of

particular importance in our information extraction setting: Relations tend to be topic-

specific, as we discussed in Chapter 2. An interesting direction of future work would thus

be to capture the “affinity” between topics and relations, so that we focus on collections and

documents that cover the topics that are most related to an extraction task of choice. In

this problem, topics could be high-level categories in vertical search (e.g., business, finance,

sports), for which a natural extension to our setting would build on the approaches in

[IG08], or finer-grain entries in other taxonomies and ontologies (e.g., individual nodes or

their properties and attributes). For this last case, a possible approach would be to extend

probabilistic approaches for modeling the relations between structured entities and sources

(e.g., [PDB13]). In particular, the non-parametric approach in [PDB13], namely, the so-

called Indian Buffet Process, exhibits many desirable properties for our settings, because

the relations and entities therein are unknown ahead of time and are expected to grow as

we consider more text contents.

Adding Conditions to the Information Extraction Task: In this dissertation, we

have assumed that all the tuples extracted by the information extraction system of choice

CHAPTER 10. FUTURE WORK 221

are equally valuable, a reasonable assumption for many of the applications discussed in

Section 2.4. However, certain applications (e.g., fact checking on the Web [GKK+13]) may

only need a subset of the tuples that a given information extraction system would produce.

For example, given an information extraction system of the Occurs-in relation, we may

be interested in natural disasters that occurred within a certain time period or near some

predefined geographical location. For these applications, the completion of the extraction

task that we promote in our work would be unnecessary. Earlier efforts (e.g., [JDG08])

have incorporated conditions in the document retrieval strategies adopted to identify the

documents to process, but have done so in a relatively ad-hoc manner. Extending our work

to effectively support such conditioned extraction tasks to all levels of the data is thus of

significant interest.

As a first approximation to the problem outlined above, we could train an information

extraction system to only produce tuples that meet the given criteria and directly use the

approaches presented in this dissertation. Unfortunately, such an approach would require

substantial training effort and would not scale well to the large variations of possible condi-

tions that users and applications may impose to extraction tasks. An alternative approach,

and one that would not involve training information extraction systems from scratch, would

be to redefine the notion of usefulness, so that only the collections, documents, and sen-

tences that lead to the extraction of tuples that meet the given conditions are deemed as

useful. This new notion of usefulness is far from trivial, though, because we may still want

to leverage knowledge (e.g., words and phrases) observed within the context of tuples that

may not match the given conditions, for recall. Furthermore, and as suggested in [JDG08],

we should exploit the information provided in the conditions (e.g., that the affected location

in an Occurs-in tuple should be “San Francisco”). We believe that recommender systems

(e.g., [BOHG13; SK09]) will play an important role in this problem, as we could “recom-

mend” certain words and phrases—as well as other signals—to specific conditions, rather

than treating all conditions equally as in [JDG08].

Distributing the Extraction Process: In Chapter 2, we briefly discussed the important

role of distributed and parallel environments on information extraction. Importantly, there

have been several successful efforts in this direction over the past few years. As a notable

222 CHAPTER 10. FUTURE WORK

example, the DeepDive project [NZRS12b] has leveraged mature parallel-computing infras-

tructure (e.g., Hadoop [Whi09] and Condor [TTL05]) to speed up the execution of multiple

natural language processing tasks (e.g., named entity recognition, dependency parsing) ex-

haustively over large corpora, to support knowledge-base construction (see Section 2.4).

DeepDive runs these tasks over 500 million documents from ClueWeb09 [Clu09] within a

week, using Condor and 100,000 CPU hours.

Despite the dramatic efficiency improvements on large-scale text processing with respect

to recent predictions (e.g., [PRH04]), we argue that much more efficient text processing ex-

ecutions are possible. In particular, by integrating ranking approaches into distributed

infrastructures we can reduce running time—and the number of CPU hours—significantly.

For example, the sentences that include mentions of any two entities from Freebase—and

hence may include mentions of relations [AMB14; KAH14]—are fewer than 1% of all sen-

tences in ClueWeb09. By focusing the extraction effort we could process—and obtain the

tuples from—the relevant data over the same distributed environment in less than two

hours. To successfully deploy ranking-based distributed extraction processes over large text

collections, however, further research is needed. We believe that our contributions in this

dissertation will play a crucial role in this problem.

Putting It All Together: In this dissertation, we have addressed the efficiency and

scalability of the extraction process at different granularities of the data, namely, collections,

documents, and sentences, independently from one another. A natural direction of future

work involves addressing our problem of focus in a holistic approach, where decisions are

made considering all granularity levels of the data simultaneously. The following example

illustrates this proposition:

Example 4 Consider an information extraction task T and two text collections C1 and C2

that are deemed as useful for T by the estimators in Chapter 5, with |Ĉ u
1 | > |̂C u

2 | (i.e., db1

is expected to include more useful documents for T than C2). Based on this, C1 would be

processed before C2 in a sequential execution. Consider as well that performing the document

ranking approach in Chapter 6 over C1 and C2 produces substantially fewer tuples from C1

than from C2, for the same number of processed documents and issued queries. In this case,

ranking C2 over C1 would have yielded a more efficient extraction process than that obtained

CHAPTER 10. FUTURE WORK 223

by prioritizing collections and documents independently from one another.

As illustrated in Example 4 above, we can produce more efficient executions by consid-

ering all granularities of the data holistically. To address this problem, we need optimizers

that efficiently enumerate and evaluate execution plans that span all relevant granularities

of the data. Importantly, these execution plans will need to account for two relevant di-

mensions of the extraction process. First, the execution plans should cover the families of

techniques available for processing collections, documents, or sentences. In particular, this

is challenging because the cost models on which existing optimizers (e.g., [JI09; IAJG07;

SGG13]) rely for plan evaluation are not well suited for neither the ranking approaches that

we proposed in this dissertation nor their adaptation throughout the extraction process.

Second, the execution plans should also cover the deployment of the extraction process over

collections, documents, and sentences. This is particularly challenging because the number

of plans may become prohibitively large when we consider, for instance, the order in which

we process the collections. Furthermore, we may also want to enumerate and evaluate ex-

ecution plans that combine documents from different collections, which poses additional

challenges.

Beyond efficiency, there are other realistic execution scenarios that would benefit from

optimization approaches that holistically consider all granularities of the data. Next, we

enumerate some of these scenarios along with examples of building blocks that need to be

developed to tackle these scenarios effectively:

• Recall-based scenario: Many times there is a desired target number of tuples ϕ to ex-

tract [IAJG07]. In this scenario, the goal is to identify the fastest execution plan E to

extract ϕ tuples: (1) Recall(E) ≥ ϕ and (2) Time(E) ≤ Time(Ei) if Recall(Ei) ≥ ϕ.

For this, we will need estimators to predict the time required to obtain recall ϕ (e.g.,

based on the number of queries to issue and number of documents and sentences to

process) for a given execution plan. In this case, we can produce time estimates for

different portions of the execution plan independently to, in turn, aggregate these

estimates. This is possible because this recall-based scenario disregards the actual

contents of the extraction output.

224 CHAPTER 10. FUTURE WORK

• Diversity-based scenario: Other scenarios involve defining a target number of distinct

tuples δ to extract. Here, the goal is to identify the fastest execution plan E to

extract δ distinct tuples: (1) Diversity(E) ≥ δ and (2) Time(E) ≤ Time(Ei) if

Diversity(Ei) ≥ δ. For this, we will need estimators to predict the time required to

obtain δ distinct tuples (e.g., based on the number of queries to issue and number of

documents and sentences to process). Importantly, we need to predict the extraction

overlap that exists in the available text. If we can effectively account for this overlap,

we will be able to evaluate the plans in a similar fashion to that of the recall-based

scenario above.

• Time-bound scenario: Some applications often require the most extraction output in

a constrained time τ . The goal in this scenario is to obtain the execution plan E that

achieves the best tuple recall, tuple diversity, or a combination thereof, given the time

constraints: (1) F (E) ≥ F (Ei) and (2) Time(E), T ime(Ei) ≤ τ for all i, where F is

the target function. For this, we will need estimators to predict the value of F (e.g.,

recall or diversity) obtained after running the extraction process for a certain period

of time.

Earlier optimizers (e.g., [IAJG07]) can potentially be adapted to these scenarios above.

These optimizers tackle the optimization problem in two distinct ways. On one hand, they

adopt a global strategy that chooses the best execution plan once and for all for a given

optimization function. On the other hand, rather than optimizing globally, these optimizers

adopt a local strategy that partitions the execution plan into smaller optimization stages

(e.g., 5% of the allocated time) and successively identify the best execution plan locally for

each stage. This local strategy will be particularly useful for the adaptive strategies proposed

in this dissertation, since our optimization decisions can be improved as the extraction

process progresses.

BIBLIOGRAPHY 225

Bibliography

[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard

Cyganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data.

In Proceedings of The Semantic Web, Sixth International Semantic Web

Conference, Second Asian Semantic Web Conference (ISWC ’07 / ASWC

’07), 2007. (Cited on pages 22 and 208.)

[AC05] Eugene Agichtein and Silviu Cucerzan. Predicting accuracy of extract-

ing information from unstructured text collections. In Proceedings of the

Fourteenth ACM International Conference on Information and Knowl-

edge Management (CIKM ’05), 2005. (Cited on pages 2, 21, and 94.)

[AG00] Eugene Agichtein and Luis Gravano. Snowball: Extracting relations from

large plain-text collections. In Proceedings of the Fifth ACM International

Conference on Digital Libraries (DL ’00), 2000. (Cited on pages 10, 12,

and 128.)

[AG03] Eugene Agichtein and Luis Gravano. Querying text databases for efficient

information extraction. In Proceedings of the Nineteenth International

Conference on Data Engineering (ICDE ’03), 2003. (Cited on pages 3,

17, 18, 19, 51, 55, 56, 58, 61, 67, 69, 70, 74, 75, 92, 99, 105, 111, 126, 129,

139, 140, 160, 165, 203, and 205.)

[AGHI09] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong.

Diversifying search results. In Proceedings of the Third ACM International

226 BIBLIOGRAPHY

Conference on Web Search and Data Mining (WSDM ’09), 2009. (Cited

on pages 161 and 218.)

[Agi05] Eugene Agichtein. Scaling information extraction to large document col-

lections. IEEE Data Engineering Bulletin, 28(4):3–10, 2005. (Cited on

page 159.)

[AIG03] Eugene Agichtein, Panagiotis G. Ipeirotis, and Luis Gravano. Modeling

query-based access to text databases. In Proceedings of the Sixth Interna-

tional Workshop on the Web and Databases (WebDB ’03), 2003. (Cited

on page 76.)

[AKM13] Alan Akbik, Oresti Konomi, and Michail Melnikov. Propminer: A work-

flow for interactive information extraction and exploration using depen-

dency trees. In Proceedings of the 2013 ACL System Demonstrations

(ACL ’13), 2013. (Cited on page 28.)

[ALG01] Eugene Agichtein, Steve Lawrence, and Luis Gravano. Learning search

engine specific query transformations for question answering. In Proceed-

ings of the Tenth International Conference on World Wide Web (WWW

’10), 2001. (Cited on page 22.)

[AMB14] Alan Akbik, Thilo Michael, and Christoph Boden. Exploratory relation

extraction in large text corpora. In Proceedings of the Twenty-fifth Inter-

national Conference on Computational Linguistics (COLING ’14), 2014.

(Cited on pages 28 and 222.)

[AS12] Rami Al-Rfou and Steven Skiena. Speedread: A fast named entity recog-

nition pipeline. In Proceedings of the Twenty-fourth International Con-

ference on Computational Linguistics (COLING ’12), 2012. (Cited on

page 13.)

[BBE+03] Jinbo Bi, Kristin Bennett, Mark Embrechts, Curt Breneman, and Minghu

Song. Dimensionality reduction via sparse support vector machines. The

BIBLIOGRAPHY 227

Journal of Machine Learning Research, 3:1229–1243, 2003. (Cited on

pages 168 and 181.)

[BCS+07] Michele Banko, Michael J. Cafarella, Stephen Soderland, Matt Broad-

head, and Oren Etzioni. Open information extraction from the web. In

Proceedings of the Twentieth International Joint Conference on Artificial

Intelligence (IJCAI ’00), 2007. (Cited on pages 92, 127, 159, and 207.)

[BDB02] Eric Brill, Susan Dumais, and Michele Banko. An analysis of the AskMSR

question-answering system. In Proceedings of the Second Conference on

Empirical Methods in Natural Language Processing (EMNLP ’02), 2002.

(Cited on page 22.)

[BEP+08] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie

Taylor. Freebase: A collaboratively created graph database for structur-

ing human knowledge. In Proceedings of the 2008 ACM International

Conference on Management of Data (SIGMOD ’08), 2008. (Cited on

pages 22, 208, and 220.)

[BF10] Luciano Barbosa and Juliana Freire. Siphoning hidden-web data through

keyword-based interfaces. Journal of Information and Data Management,

1(1):133–144, 2010. (Cited on page 68.)

[BGD15] Pablo Barrio, Luis Gravano, and Chris Develder. Ranking deep web

text collections for scalable information extraction. In Proceedings of

the Twenty-fourth ACM International Conference on Information and

Knowledge Management (CIKM ’15), 2015. (Cited on page 92.)

[BHL11] Christoph Boden, Thomas Haefele, and Alexander Löser. Classification

algorithms for Web text filtering. In First International Workshop on

Managing Data Throughout its Lifecycle (DaLi ’11), 2011. (Cited on

pages 159, 181, and 182.)

[Bir06] Steven Bird. NLTK: The natural language toolkit. In Proceedings of

the Twenty-first International Conference on Computational Linguistics

228 BIBLIOGRAPHY

and Forty-fourth Annual Meeting of the Association for Computational

Linguistics (COLING ’06), 2006. (Cited on page 29.)

[Bis06] Christopher M. Bishop. Pattern recognition and machine learning.

Springer-Verlag, 2006. (Cited on page 132.)

[BLNP11a] Christoph Boden, Alexander Löser, Christoph Nagel, and Stephan Pieper.

FactCrawl: A fact retrieval framework for full-text indices. In Proceed-

ings of the Fourteenth International Workshop on the Web and Databases

(WebDB ’11), 2011. (Cited on pages 3, 17, 18, 19, 70, 71, 92, 105, 126,

127, 140, 155, 165, 203, and 205.)

[BLNP11b] Christoph Boden, Alexander Löser, Christoph Nagel, and Stephan Pieper.

FactCrawl: A fact retrieval framework for full-text indices. In Proceed-

ings of the Fourteenth International Workshop on the Web and Databases

(WebDB ’11), 2011. (Cited on page 160.)

[BLNP12] Christoph Boden, Alexander Löser, Christoph Nagel, and Stephan Pieper.

Fact-aware document retrieval for information extraction. Datenbank-

Spektrum, 12(2):89–100, 2012. (Cited on pages 51, 55, 60, and 70.)

[BM05a] Razvan C. Bunescu and Raymond J. Mooney. A shortest path depen-

dency kernel for relation extraction. In Proceedings of Human Language

Technology Conference and Conference on Empirical Methods in Natural

Language Processing (HLT/EMNLP ’05), 2005. (Cited on pages 11, 12,

14, 49, and 179.)

[BM05b] Razvan C. Bunescu and Raymond J. Mooney. Subsequence kernels for

relation extraction. In Proceedings of the Nineteenth International Confer-

ence on Neural Information Processing Systems (NIPS ’05), 2005. (Cited

on pages 11, 12, 28, 49, 67, 109, 139, and 179.)

[BNG09] Hila Becker, Mor Naaman, and Luis Gravano. Event identification in

social media. In Proceedings of the Twelfth International Workshop on

the Web and Databases (WebDB ’09), 2009. (Cited on page 209.)

BIBLIOGRAPHY 229

[BNG10] Hila Becker, Mor Naaman, and Luis Gravano. Learning similarity metrics

for event identification in social media. In Proceedings of the Third ACM

International Conference on Web Search and Data Mining (WSDM ’10),

2010. (Cited on pages 15, 209, and 219.)

[BNG11] Hila Becker, Mor Naaman, and Luis Gravano. Beyond trending topics:

Real-world event identification on twitter. In Proceedings of the Fifth

International Conference on Weblogs and Social Media (ICWSM ’11),

2011. (Cited on page 209.)

[BOHG13] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham

Gutiérrez. Recommender systems survey. Knowledge-Based Systems,

46:109–132, 2013. (Cited on page 221.)

[Bot10] Léon Bottou. Large-scale machine learning with stochastic gradient de-

scent. In Proceedings of the Nineteenth International Conference on Com-

putational Statistics (COMPSTAT ’11), 2010. (Cited on page 131.)

[Boy82] Bert R. Boyce. Beyond topicality : A two stage view of relevance and the

retrieval process. Information Processing and Management, 18(3):105–

109, 1982. (Cited on page 161.)

[BP06] Razvan Bunescu and Marius Pasca. Using encyclopedic knowledge for

named entity disambiguation. In Proceedings of the Eleventh Conference

of the European Chapter of the Association for Computational Linguistics

(EACL ’06), 2006. (Cited on page 22.)

[Bre96] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140,

1996. (Cited on page 133.)

[Bri98] Sergey Brin. Extracting patterns and relations from the world wide

web. In Proceedings of the First International Workshop on the Web

and Databases (WebDB ’98), 1998. (Cited on page 128.)

230 BIBLIOGRAPHY

[Bri99] Sergey Brin. Extracting patterns and relations from the world wide web.

In Proceedings of the Second International Workshop on the Web and

Databases (WebDB ’99). 1999. (Cited on page 12.)

[BRMB11] Falk Brauer, Robert Rieger, Adrian Mocan, and Wojciech M. Barczynski.

Enabling information extraction by inference of regular expressions from

sample entities. In Proceedings of the Twentieth ACM International Con-

ference on Information and Knowledge Management (CIKM ’11), 2011.

(Cited on page 28.)

[BSGG14] Pablo Barrio, Gonçalo Simões, Helena Galhardas, and Luis Gravano.

REEL: A relation extraction learning framework. In Proceedings of the

2014 ACM Joint Conference on Digital Libraries (JCDL ’14), 2014.

(Cited on page 28.)

[BSGG15] Pablo Barrio, Gonçalo Simões, Helena Galhardas, and Luis Gravano.

Learning to rank adaptively for scalable information extraction. In Pro-

ceedings of the 2015 International Conference on Extending Database

Technology (EDBT ’15), 2015. (Cited on page 126.)

[BWG+10] Bing Bai, Jason Weston, David Grangier, Ronan Collobert, Kunihiko

Sadamasa, Yanjun Qi, Olivier Chapelle, and Kilian Weinberger. Learning

to rank with (a lot of) word features. Information Retrieval, 13(3):291–

314, 2010. (Cited on page 131.)

[BYG08] Ziv Bar-Yossef and Maxim Gurevich. Random sampling from a search

engine’s index. Journal of the ACM, 55(5):1–74, 2008. (Cited on pages 53,

96, 102, and 204.)

[BYG11] Ziv Bar-Yossef and Maxim Gurevich. Efficient search engine measure-

ments. ACM Transactions on the Web, 5(4):18:1–18:48, 2011. (Cited on

pages 16, 94, 95, 99, 101, 102, 105, 107, 112, 203, and 218.)

BIBLIOGRAPHY 231

[CA05] Silviu Cucerzan and Eugene Agichtein. Factoid question answering over

unstructured and structured web content. In Proceedings of the Fourteenth

Text Retrieval Conference (TREC-14), 2005. (Cited on page 23.)

[CBK+10] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam

R. Hruschka Jr., and Tom M. Mitchell. Toward an architecture for never-

ending language learning. In Proceedings of the Twenty-fourth National

Conference on Artificial Intelligence (AAAI ’10), 2010. (Cited on pages 22

and 207.)

[CBW+10] Andrew Carlson, Justin Betteridge, Richard C. Wang, Estevam R. Hr-

uschka, Jr., and Tom M. Mitchell. Coupled semi-supervised learning for

information extraction. In Proceedings of the Third ACM International

Conference on Web Search and Data Mining (WSDM ’10), 2010. (Cited

on page 207.)

[CC01] Jamie Callan and Margaret Connell. Query-based sampling of text

databases. ACM Transactions on Information Systems, 19(2):97–130,

2001. (Cited on pages 53, 109, 111, 112, 204, and 205.)

[CCB95] James P. Callan, William Bruce Croft, and John Broglio. TREC and TIP-

STER experiments with INQUERY. Information Processing and Man-

agement, 31(3):327–343, 1995. (Cited on page 98.)

[CG98] Jaime Carbonell and Jade Goldstein. The use of MMR, diversity-based

reranking for reordering documents and producing summaries. In Pro-

ceedings of the Twenty-first ACM International Conference on Research

and Development in Information Retrieval (SIGIR ’98), 1998. (Cited on

pages 161 and 182.)

[CGN05] Niladri Chatterjee, Shailly Goyal, and Anjali Naithani. Resolving pattern

ambiguity for english to hindi machine translation using WordNet. In

Workshop on Modern Approaches in Translation Technologies at RANLP

(RANLP ’05), 2005. (Cited on page 22.)

232 BIBLIOGRAPHY

[Chi98] Nancy A. Chinchor. Overview of muc-7. In Proceedings of the Seventh

Message Understanding Conference (MUC-7), 1998. (Cited on page 10.)

[Cho12] Jinho D. Choi. Optimization of Natural Language Processing Components

for Robustness and Scalability. PhD thesis, Boulder, CO, USA, 2012.

AAI3549172. (Cited on page 13.)

[CHW+08] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and

Yang Zhang. WebTables: Exploring the power of tables on the web.

VLDB Endowment, 1(1):538–549, 2008. (Cited on page 208.)

[CJTN06] Jinxiu Chen, Donghong Ji, Chew Lim Tan, and Zhengyu Niu. Rela-

tion extraction using label propagation based semi-supervised learning.

In Proceedings Twenty-first International Conference on Computational

Linguistics and Forty-fourth Annual Meeting of the Association for Com-

putational Linguistics (COLING ’06), 2006. (Cited on page 129.)

[CK06] Harr Chen and David R. Karger. Less is more: Probabilistic models

for retrieving fewer relevant documents. In Proceedings of the Twenty-

ninth ACM International Conference on Research and Development in

Information Retrieval (SIGIR ’06), 2006. (Cited on page 161.)

[CKC+08] Charles L. A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vech-

tomova, Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and

diversity in information retrieval evaluation. In Proceedings of the Thirty-

first ACM International Conference on Research and Development in In-

formation Retrieval (SIGIR ’08), 2008. (Cited on pages 161 and 218.)

[CKL+10] Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Sriram Ragha-

van, Frederick R. Reiss, and Shivakumar Vaithyanathan. SystemT: An

algebraic approach to declarative information extraction. In Proceedings

of the Forty-eighth Annual Meeting of the Association for Computational

Linguistics (ACL ’10), 2010. (Cited on page 206.)

BIBLIOGRAPHY 233

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support

vector machines. ACM Transactions on Intelligent Systems and Technol-

ogy, 2(3):27:1–27:27, 2011. (Cited on page 29.)

[CLC95] James P. Callan, Zhihong Lu, and William Bruce Croft. Searching

distributed collections with inference networks. In Proceedings of the

Eighteenth ACM International Conference on Research and Development

in Information Retrieval (SIGIR ’95), 1995. (Cited on pages 93, 95,

and 205.)

[CLTW10] Bo Chen, Wai Lam, Ivor W. Tsang, and Tak-Lam Wong. Location and

scatter matching for dataset shift in text mining. In Proceedings of the

Tenth IEEE International Conference on Data Mining (ICDM ’10), 2010.

(Cited on page 75.)

[Clu09] The ClueWeb09 Dataset. http://www.lemurproject.org/clueweb09.php/,

2009. [Online; accessed August 2015]. (Cited on pages 14 and 222.)

[Clu12] The ClueWeb12 Dataset. http://www.lemurproject.org/clueweb12.php/,

2012. [Online; accessed August 2015]. (Cited on page 14.)

[CNN15] Cable News Network. http://www.cnn.com/, 2015. [Online; accessed

August 2015]. (Cited on page 14.)

[Coh95] William W. Cohen. Fast effective rule induction. In Proceedings of the

Twelfth International Conference on Machine Learning (ICML ’98), 1995.

(Cited on page 70.)

[Coh04] William W. Cohen. Minorthird: Methods for identifying names and on-

tological relations in text using heuristics for inducing regularities from

data. http://minorthird.sourceforge.net, 2004. (Cited on page 29.)

[CS04] Aron Culotta and Jeffrey Sorensen. Dependency tree kernels for relation

extraction. In Proceedings of the Forty-second Annual Meeting of the

234 BIBLIOGRAPHY

Association for Computational Linguistics (ACL ’04), 2004. (Cited on

pages 11 and 12.)

[Cvi10] Ana Cvitas. Information extraction in business intelligence systems. In

Proceedings of the Thirty-third International Convention on Informa-

tion and Communication Technology, Electronics, and Microelectronics

(MIPRO ’10), 2010. (Cited on page 23.)

[CWW02] Michael Callaham, Robert L. Wears, and Ellen Weber. Journal prestige,

publication bias, and other characteristics associated with citation of pub-

lished studies in peer-reviewed journals. Journal of the American Medical

Association, 287(21):2847–2850, 2002. (Cited on page 24.)

[D4D14] D4D Challenge – Senegal. http://www.d4d.orange.com/, 2014. [Online;

accessed August 2015]. (Cited on page 14.)

[Dar13] Brittany Darwell. Facebook builds knowledge graph with info modules on

community pages. http://www.adweek.com/socialtimes/facebook-builds-

knowledge-graph-with-info-modules-on-community-pages, 2013. [Online;

accessed August 2015]. (Cited on page 22.)

[DC12] Van Dang and William Bruce Croft. Diversity by proportionality: An

election-based approach to search result diversification. In Proceedings of

the Thirty-Fifth ACM International Conference on Research and Devel-

opment in Information Retrieval (SIGIR ’12), 2012. (Cited on page 161.)

[DEG+03] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, Ramanathan

Guha, Anant Jhingran, Tapas Kanungo, Sridhar Rajagopalan, Andrew

Tomkins, John A. Tomlin, and Jason Y. Zien. Semtag and seeker: Boot-

strapping the semantic web via automated semantic annotation. In Pro-

ceedings of the Twelfth International Conference on World Wide Web

(WWW ’03), 2003. (Cited on page 20.)

[DGH+14] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao,

Kevin Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang.

BIBLIOGRAPHY 235

Knowledge vault: A web-scale approach to probabilistic knowledge fu-

sion. In Proceedings of the Twentieth ACM International Conference on

Knowledge Discovery and Data Mining (SIGKDD ’14), 2014. (Cited on

page 22.)

[DLT+13] Omkar Deshpande, Digvijay S. Lamba, Michel Tourn, Sanjib Das, Sri

Subramaniam, Anand Rajaraman, Venky Harinarayan, and AnHai Doan.

Building, maintaining, and using knowledge bases: A report from the

trenches. In Proceedings of the 2013 ACM International Conference on

Management of Data (SIGMOD ’13), 2013. (Cited on page 22.)

[DM06] Hal Daumé, III and Daniel Marcu. Domain adaptation for statistical clas-

sifiers. Journal of Artificial Intelligence Research, 26(1):101–126, 2006.

(Cited on page 216.)

[DMA97] Geoffrey Davis, Stephane Mallat, and Marco Avellaneda. Adaptive greedy

approximations. Constructive Approximation, 13(1):57–98, 1997. (Cited

on page 164.)

[DMP+] George R. Doddington, Alexis Mitchell, Mark A. Przybocki, Lance A.

Ramshaw, Stephanie Strassel, and Ralph M. Weischedel. The automatic

content extraction (ACE) program-tasks, data, and evaluation. (Cited on

page 10.)

[DP10] Marina Drosou and Evaggelia Pitoura. Search result diversification. SIG-

MOD Record, 39(1):41–47, 2010. (Cited on page 218.)

[dSMSB13] Filipe de Sá Mesquita, Jordan Schmidek, and Denilson Barbosa. Effec-

tiveness and efficiency of open relation extraction. In Proceedings of the

Fourteenth Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP ’13), 2013. (Cited on page 13.)

[Dun93] Ted Dunning. Accurate methods for the statistics of surprise and coinci-

dence. Computational Linguistics, 19(1):61–74, 1993. (Cited on page 70.)

236 BIBLIOGRAPHY

[DW15] Sourav Dutta and Gerhard Weikum. Cross-document co-reference reso-

lution using sample-based clustering with knowledge enrichment. Trans-

actions of the Association for Computational Linguistics, 3:15–28, 2015.

(Cited on page 13.)

[DYFC09] Ying Ding, Erjia Yan, Arthur Frazho, and James Caverlee. Pagerank for

ranking authors in co-citation networks. Journal of the American Society

for Information Science and Technology, 60(11):2229–2243, 2009. (Cited

on page 24.)

[EB07] Asif Ekbal and Sivaji Bandyopadhyay. A hidden markov model based

named entity recognition system: Bengali and hindi as case studies. In

Proceedings of the Second International Conference on Pattern Recogni-

tion and Machine Intelligence (PReMI ’07), 2007. (Cited on page 138.)

[EBSW08] Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S. Weld.

Open information extraction from the web. Communications of the ACM,

51(12):68–74, 2008. (Cited on pages 10 and 22.)

[ECD+05] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal

Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Unsu-

pervised named-entity extraction from the web: An experimental study.

Artificial Intelligence, 165(1):91–134, 2005. (Cited on page 22.)

[EGN14] Kathrin Eichler, Aleksandra Gabryszak, and Günter Neumann. An anal-

ysis of textual inference in german customer emails. In Proceedings of the

Third Joint Conference on Lexical and Computational Semantics (SEM

’14), 2014. (Cited on page 14.)

[Els15] Elsevier: Publishing company. http://www.elsevier.com/, 2015. [Online;

accessed August 2015]. (Cited on page 14.)

[ESI+12] Edward A. Epstein, Marshall I. Schor, Bhavani Iyer, Adam Lally, Eric W.

Brown, and Jaroslaw Cwiklik. Making watson fast. IBM Journal of

Research and Development, 56(3):15, 2012. (Cited on page 23.)

BIBLIOGRAPHY 237

[Etx12] E-txt2DB: Entity recognition framework.

http://web.ist.utl.pt/ist155840/etxt2db/, 2012. [Online; accessed

August 2015]. (Cited on pages 33, 67, 110, 139, and 179.)

[FB11] Emilio Ferrara and Robert Baumgartner. Automatic wrapper adaptation

by tree edit distance matching. In Proceedings of the Second Interna-

tional Workshop on Combinations of Intelligent Methods and Applications

(CIMA ’11). 2011. (Cited on pages 65 and 66.)

[FC11] Yuan Fang and Kevin Chen-Chuan Chang. Searching patterns for relation

extraction over the web: Rediscovering the pattern-relation duality. In

Proceedings of the Fourth ACM International Conference on Web Search

and Data Mining (WSDM ’11), 2011. (Cited on pages 3, 12, 18, 19, 40,

51, 55, 67, 68, 92, 126, 127, 140, 165, and 205.)

[FEM15] Federal Emergency Management Agency. http://www.fema.gov/, 2015.

[Online; accessed August 2015]. (Cited on pages 15 and 91.)

[FFGK10] James Fan, David Ferrucci, David Gondek, and Aditya Kalyanpur. Pris-

matic: Inducing knowledge from a large scale lexicalized relation resource.

In Proceedings of the First International Workshop on Formalisms and

Methodology for Learning by Reading at NAACL HLT (FAMLBR ’10),

2010. (Cited on page 22.)

[Fis36] Ronald Aylmer Fisher. Statistical methods for research workers. Num-

ber 5. Genesis Publishing Pvt Ltd, 1936. (Cited on page 112.)

[FKM08] Jenny Rose Finkel, Alex Kleeman, and Christopher D. Manning. Ef-

ficient, feature-based, conditional random field parsing. In Proceedings

of the Forty-sixth Annual Meeting of the Association for Computational

Linguistics (ACL ’08), 2008. (Cited on page 219.)

[FL04] David Ferrucci and Adam Lally. UIMA: An architectural approach to

unstructured information processing in the corporate research environ-

238 BIBLIOGRAPHY

ment. Natural Language Engineering, 10(3-4):327–348, 2004. (Cited on

page 29.)

[FM09] Jenny Rose Finkel and Christopher D. Manning. Nested named en-

tity recognition. In Proceedings of the Eighth Conference on Empirical

Methods in Natural Language Processing (EMNLP ’09), 2009. (Cited on

page 13.)

[Fod02] Imola Fodor. A survey of dimension reduction techniques. Technical

report, 2002. (Cited on page 168.)

[FSE11] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying rela-

tions for open information extraction. In Proceedings of the Twelfth Con-

ference on Empirical Methods in Natural Language Processing (EMNLP

’11), 2011. (Cited on pages 11, 12, 22, 28, and 207.)

[FSYB11] Lujun Fang, Anish Das Sarma, Cong Yu, and Philip Bohannon. REX: Ex-

plaining relationships between entity pairs. VLDB Endowment, 5(3):241–

252, 2011. (Cited on page 207.)

[Fuh96] Norbert Fuhr. Optimum database selection in networked ir. In Proceedings

of the Workshop Networked Information Retrieval at SIGIR (SIGIR ’96),

1996. (Cited on page 206.)

[Fuh99] Norbert Fuhr. A decision-theoretic approach to database selection in

networked ir. ACM Transactions on Information Systems, 17(3):229–249,

1999. (Cited on page 206.)

[GE03] Isabelle Guyon and André Elisseeff. An introduction to variable and

feature selection. The Journal of Machine Learning Research, 3:1157–

1182, 2003. (Cited on pages 7, 125, and 132.)

[Gen15] Genius: Annotate the world. http://genius.com/, 2015. [Online; accessed

August 2015]. (Cited on page 25.)

BIBLIOGRAPHY 239

[GGMT99] Luis Gravano, Héctor Garćıa-Molina, and Anthony Tomasic. GlOSS: text-

source discovery over the internet. ACM Transactions on Database Sys-

tems, 24(2):229–264, 1999. (Cited on pages 93, 95, and 205.)

[GHW+14] Rahul Gupta, Alon Halevy, Xuezhi Wang, Steven Euijong Whang, and Fei

Wu. Biperpedia: An ontology for search applications. VLDB Endowment,

7(7):505–516, 2014. (Cited on page 208.)

[GHY02] Ralph Grishman, Silja Huttunen, and Roman Yangarber. Information

extraction for enhanced access to disease outbreak reports. Journal of

Biomedical Informatics, 35(4):236–246, 2002. (Cited on page 159.)

[GIS03] Luis Gravano, Panagiotis G. Ipeirotis, and Mehran Sahami. QProber: A

system for automatic classification of hidden-web databases. ACM Trans-

actions on Information Systems, 21(1):1–41, 2003. (Cited on pages 64

and 109.)

[GJJM05] Zhou GuoDong, Su Jian, Zhang Jie, and Zhang Min. Exploring various

knowledge in relation extraction. In Proceedings of the Forty-third Annual

Meeting on Association for Computational Linguistics (ACL ’05), 2005.

(Cited on pages 11 and 12.)

[GKK+13] François Goasdoué, Konstantinos Karanasos, Yannis Katsis, Julien

Leblay, Ioana Manolescu, and Stamatis Zampetakis. Fact checking and

analyzing the web. In Proceedings of the 2013 ACM International Confer-

ence on Management of Data (SIGMOD ’13), 2013. (Cited on page 221.)

[GLM12] Assaf Glazer, Michael Lindenbaum, and Shaul Markovitch. Feature shift

detection. In Proceedings of the Twenty-first International Conference on

Pattern Recognition (ICPR ’12), 2012. (Cited on pages 135 and 141.)

[GLR06] Claudio Giuliano, Alberto Lavelli, and Lorenza Romano. Exploiting shal-

low linguistic information for relation extraction from biomedical litera-

ture. In Proceedings of the Eleventh Conference of the European Chap-

240 BIBLIOGRAPHY

ter of the Association for Computational Linguistics (EACL ’06), 2006.

(Cited on pages 67, 109, 138, and 179.)

[GM14] Sonal Gupta and Christopher Manning. SPIED: Stanford pattern based

information extraction and diagnostics. In Proceedings of the Workshop

on Interactive Language Learning, Visualization, and Interfaces (ILLVI

’14), 2014. (Cited on page 28.)

[Gof64] William Goffman. A searching procedure for information retrieval. Infor-

mation Storage and Retrieval, 2(2):73–78, 1964. (Cited on page 161.)

[GS96] Ralph Grishman and Beth Sundheim. Message understanding conference-

6: A brief history. In Proceedings of the Sixteenth International Con-

ference on Computational Linguistics (COLING ’96), 1996. (Cited on

page 10.)

[GSW05] Jens Graupmann, Ralf Schenkel, and Gerhard Weikum. The Sphere-

Search engine for unified ranked retrieval of heterogeneous XML and web

documents. In Proceedings of the Thirty-first International Conference

on Very Large Databases (VLDB ’05), 2005. (Cited on page 22.)

[HDA13] Jessica Hullman, Nicholas Diakopoulos, and Eytan Adar. Contextifier:

Automatic generation of annotated stock visualizations. In Proceedings

of the Thirty-first Annual Conference on Human Factors in Computing

Systems (CHI ’13), 2013. (Cited on page 25.)

[HDG00] Kevin Humphreys, George Demetriou, and Robert Gaizauskas. Two ap-

plications of information extraction to biological science journal articles:

enzyme interactions and protein structures. Pacific Symposium on Bio-

computing, pages 505–516, 2000. (Cited on page 23.)

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian H. Witten. The WEKA data mining software: An

update. SIGKDD Explorations Newsletter, 11(1):10–18, 2009. (Cited on

pages 29, 37, and 70.)

BIBLIOGRAPHY 241

[HGO00] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank

boundaries for ordinal regression. In Advances in Large Margin Classi-

fiers, 2000. (Cited on pages 132 and 136.)

[HLN] Warren A. Hunt, Lucian V. Lita, and Eric Nyberg. Gazetteers, WordNet,

Encyclopedias, and the Web: Analyzing question answering resources.

Technical report. (Cited on page 22.)

[HOD12] Sherzod Hakimov, Salih Atilay Oto, and Erdogan Dogdu. Named entity

recognition and disambiguation using linked data and graph-based cen-

trality scoring. In Proceedings of the Fourth International Workshop on

Semantic Web Information Management (SWIM ’12), 2012. (Cited on

pages 15 and 219.)

[HPZC07] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. Ac-

cessing the deep web. Communications of the ACM, 50(5):94–101, 2007.

(Cited on page 16.)

[HSB+10] Dzung Hong, Luo Si, Paul Bracke, Michael Witt, and Tim Juchcinski.

A joint probabilistic classification model for resource selection. In Pro-

ceeding of the Thirty-third ACM International Conference on Research

and Development in Information Retrieval (SIGIR ’10), 2010. (Cited on

page 95.)

[HSBW13] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard

Weikum. YAGO2: A spatially and temporally enhanced knowledge

base from wikipedia. Artificial Intelligence, 194:28–61, 2013. (Cited on

pages 22 and 208.)

[htm15] Html Cleaner: Transform HTML to well-formed XML.

http://htmlcleaner.sourceforge.net/, 2015. [Online; accessed August

2015]. (Cited on page 66.)

[HYBV05] Lynette Hirschman, Alexander Yeh, Christian Blaschke, and Alfonso Va-

lencia. Overview of BioCreAtIvE: Critical assessment of information ex-

242 BIBLIOGRAPHY

traction for biology. BMC Bioinformatics, 6(Suppl 1):S1, 2005. (Cited

on page 10.)

[HZM09] Junzhou Huang, Tong Zhang, and Dimitris Metaxas. Learning with struc-

tured sparsity. In Proceedings of the Twenty-Sixth International Confer-

ence on Machine Learning (ICML ’09), 2009. (Cited on page 162.)

[HZW10] Raphael Hoffmann, Congle Zhang, and Daniel S. Weld. Learning 5000

relational extractors. In Proceedings of the Forty-eighth Annual Meeting

of the Association for Computational Linguistics (ACL ’10), 2010. (Cited

on page 22.)

[IAJG07] Panagiotis G. Ipeirotis, Eugene Agichtein, Pranay Jain, and Luis Gra-

vano. Towards a query optimizer for text-centric tasks. ACM Transac-

tions on Database Systems, 32(4):2–47, 2007. (Cited on pages 21, 60, 129,

206, 207, 223, and 224.)

[IBGC+14] Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher,

and Hal Daumé III. A neural network for factoid question answering

over paragraphs. In Proceedings of the Fifteenth Conference on Empirical

Methods in Natural Language Processing (EMNLP ’14), 2014. (Cited on

page 23.)

[IC06] José Iria and Fabio Ciravegna. A methodology and tool for represent-

ing language resources for information extraction. In Proceedings of the

Fourth International Conference on Language Resources and Evaluation

(LREC ’06), 2006. (Cited on page 29.)

[ICW11] ICWSM 2011 Spinn3r Dataset. http://www.icwsm.org/data/, 2011. [On-

line; accessed August 2015]. (Cited on page 14.)

[IG02] Panagiotis G. Ipeirotis and Luis Gravano. Distributed search over the

hidden web: Hierarchical database sampling and selection. In Proceedings

of the Twenty-eighth International Conference on Very Large Data Bases

(VLDB ’02), 2002. (Cited on page 215.)

BIBLIOGRAPHY 243

[IG04] Panagiotis G. Ipeirotis and Luis Gravano. When one sample is not enough:

Improving text database selection using shrinkage. In Proceedings of the

2004 ACM International Conference on Management of Data (SIGMOD

’04), 2004. (Cited on pages 215 and 216.)

[IG08] Panagiotis G. Ipeirotis and Luis Gravano. Classification-aware hidden-

web text database selection. ACM Transactions on Information Systems,

26(2):6:1–6:66, 2008. (Cited on pages 105, 206, and 220.)

[Iri05] José Iria. T-Rex: A flexible relation extraction framework. In Proceedings

of the Eighth Annual Colloquium for the UK Special Interest Group for

Computational Linguistics (CLUK ’05), 2005. (Cited on page 29.)

[IW06] Georgiana Ifrim and Gerhard Weikum. Transductive learning for text

classification using explicit knowledge models. In Proceedings of Tenth

European Conference on Principles and Practice of Knowledge Discovery

in Databases (PKDD ’06), 2006. (Cited on page 22.)

[JDG08] Alpa Jain, AnHai Doan, and Luis Gravano. Optimizing SQL queries

over text databases. In Proceedings of the Twenty-fourth International

Conference on Data Engineering (ICDE ’08), 2008. (Cited on page 221.)

[JI09] Alpa Jain and Panagiotis G. Ipeirotis. A quality-aware optimizer for infor-

mation extraction. ACM Transactions on Database Systems, 34(1):5:1–

5:48, 2009. (Cited on pages 206 and 223.)

[JKR+06] Thathachar S. Jayram, Rajasekar Krishnamurthy, Sriram Raghavan,

Shivakumar Vaithyanathan, and Huaiyu Zhu. Avatar information extrac-

tion system. IEEE Data Engineering Bulletin, 29(1):40–48, 2006. (Cited

on page 10.)

[Joa98a] Thorsten Joachims. Making large-scale support vector machine learning

practical. In Advances in Kernel Methods: Support Vector Machines.

1998. (Cited on page 69.)

244 BIBLIOGRAPHY

[Joa98b] Thorsten Joachims. Text categorization with support vector machines:

Learning with many relevant features. In Proceedings of the Tenth Eu-

ropean Conference on Machine Learning (ECML ’98), 1998. (Cited on

pages 40 and 133.)

[Joa03] Thorsten Joachims. Optimizing search engines using clickthrough data.

In Proceedings of the Ninth ACM International Conference on Knowledge

Discovery and Data Mining (SIGKDD ’03), 2003. (Cited on page 134.)

[JS09] Alpa Jain and Divesh Srivastava. Exploring a few good tuples from text

databases. In Proceedings of the Twenty-fifth International Conference

on Data Engineering (ICDE ’09), 2009. (Cited on pages 2, 21, and 94.)

[KAH14] Johannes Kirschnick, Alan Akbik, and Holmer Hemsen. Freepal: A large

collection of deep lexico-syntactic patterns for relation extraction. In

Proceedings of the Ninth International Conference on Language Resources

and Evaluation (LREC ’14), 2014. (Cited on page 222.)

[Kam04] Nanda Kambhatla. Combining lexical, syntactic, and semantic features

with maximum entropy models for extracting relations. In Proceedings

of the Forty-second Annual Meeting of the Association for Computational

Linguistics (ACL ’04), 2004. (Cited on pages 11 and 12.)

[KKJ+15] Juho Kim, Eun-Young Ko, Jonghyuk Jung, Chang Won Lee, Nam Wook

Kim, and Jihee Kim. Factful: Engaging taxpayers in the public discus-

sion of a government budget. In Proceedings of the Thirty-third Annual

Conference on Human Factors in Computing Systems (CHI ’15), 2015.

(Cited on page 25.)

[KKK06] Yuwon Kim, Jinseog Kim, and Yongdai Kim. Blockwise sparse regression.

Statistica Sinica, 16(2):375–390, 2006. (Cited on page 163.)

[KL51] Solomon Kullback and Richard A. Leibler. On information and sufficiency.

Annals of Mathematical Statistics, 22(1):79–86, 1951. (Cited on page 69.)

BIBLIOGRAPHY 245

[KM11] Oleksandr Kolomiyets and Marie-Francine Moens. A survey on question

answering technology from an information retrieval perspective. Informa-

tion Sciences, 181(24):5412–5434, 2011. (Cited on page 22.)

[Kum02] Vipin Kumar. Introduction to parallel computing. Addison-Wesley Long-

man, 2nd edition, 2002. (Cited on page 20.)

[KV10] Ravi Kumar and Sergei Vassilvitskii. Generalized distances between rank-

ings. In Proceedings of the Nineteenth International Conference on World

Wide Web (WWW ’10), 2010. (Cited on page 136.)

[KZ01] Marcin Kaszkiel and Justin Zobel. Effective ranking with arbitrary pas-

sages. Journal of the American Society for Information Science and Tech-

nology, 52(4):344–364, 2001. (Cited on pages 4 and 160.)

[LCY+12] Yunyao Li, Laura Chiticariu, Huahai Yang, Frederick R. Reiss, and Ar-

naldo Carreno-fuentes. WizIE: A best practices guided development en-

vironment for information extraction. In Proceedings of the 2012 ACL

System Demonstrations (ACL ’12), 2012. (Cited on page 28.)

[LGD15] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional

similarity with lessons learned from word embeddings. Transactions of

the Association for Computational Linguistics, 3:211–225, 2015. (Cited

on page 189.)

[LGG+01] Nicholas M Luscombe, Dov Greenbaum, Mark Gerstein, et al. What is

bioinformatics? A proposed definition and overview of the field. Methods

of Information in Medicine, 40(4):346–358, 2001. (Cited on page 23.)

[lin15] LingPipe: Natural language processing and text analytics. http://alias-

i.com/lingpipe/, 2015. [Online; accessed August 2015]. (Cited on pages 29,

71, and 139.)

[Liu09] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and

Trends in Information Retrieval, 3(3):225–331, 2009. (Cited on page 130.)

246 BIBLIOGRAPHY

[LKT+15] Yunyao Li, Elmer Kim, Marc A. Touchette, Ramiya Venkatachalam, and

Hao Wang. Vinery: A visual IDE for information extraction. VLDB

Endowment, 8(12):1948–1959, 2015. (Cited on page 28.)

[LLYM04] Shuang Liu, Fang Liu, Clement Yu, and Weiyi Meng. An effective

approach to document retrieval via utilizing WordNet and recognizing

phrases. In Proceedings of the Twenty-seventh ACM International Con-

ference on Research and Development in Information Retrieval (SIGIR

’04), 2004. (Cited on page 22.)

[LM14] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences

and documents. In Proceedings of the Thirty-Fifth International Con-

ference on Machine Learning (ICML ’14), 2014. (Cited on pages 166

and 178.)

[LSA09] Aurelie C. Lozano, Grzegorz Swirszcz, and Naoki Abe. Grouped orthog-

onal matching pursuit for variable selection and prediction. In Advances

in Ranking Workshop at NIPS (NIPS ’09), 2009. (Cited on pages 7, 157,

162, 163, 164, and 201.)

[LSA11] Aurelie C. Lozano, Grzegorz Swirszcz, and Naoki Abe. Group orthogonal

matching pursuit for logistic regression. In Proceedings of the Fourteenth

International Conference on Artificial Intelligence and Statistics (AIS-

TATS ’11), 2011. (Cited on pages 162, 163, 164, 170, and 171.)

[LSC10] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating

and searching web tables using entities, types and relationships. VLDB

Endowment, 3(1-2):1338–1347, 2010. (Cited on page 208.)

[LSYM01] King-Lup Liu, Adrain Santoso, Clement Yu, and Weiyi Meng. Discov-

ering the representative of a search engine. In Proceedings of the Tenth

ACM International Conference on Information and Knowledge Manage-

ment (CIKM ’01), 2001. (Cited on page 95.)

BIBLIOGRAPHY 247

[Luc15] The Lucene Indexer. http://lucene.apache.org/, 2015. [Online; accessed

August 2015]. (Cited on pages 109, 127, and 138.)

[LZBB13] Raymond Liaw, Ari Zilnik, Mark Baldwin, and Stephanie Butler. Maater:

Crowdsourcing to improve online journalism. In Proceedings of the Thirty-

first Annual Conference on Human Factors in Computing Systems (CHI

’13), 2013. (Cited on page 25.)

[LZY01] Jianming Li, Lei Zhang, and Yong Yu. Learning to generate seman-

tic annotation for domain specific sentences. In Proceedings of the K-

CAP 2001 Workshop on Knowledge Markup and Semantic Annotation

(Semannot@K-CAP ’01), 2001. (Cited on page 20.)

[MAAH09] Jayant Madhavan, Loredana Afanasiev, Lyublena Antova, and Alon

Halevy. Harnessing the deep web: Present and future. 2009. (Cited

on page 15.)

[MBF+90] George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross,

and Katherine J Miller. Introduction to WordNet: An on-line lexi-

cal database. International journal of lexicography, 3(4):235–244, 1990.

(Cited on page 22.)

[MBGM04] Dunja Mladenic, Janez Brank, Marko Grobelnik, and Natasa Milic-

Frayling. Feature selection using linear classifier weights: interaction with

classification models. In Proceedings of the Twenty-seventh ACM Interna-

tional Conference on Research and Development in Information Retrieval

(SIGIR ’04), 2004. (Cited on pages 69 and 110.)

[MBN02] Luis Carlos Molina, Llúıs Belanche, and Àngela Nebot. Feature selection

algorithms: A survey and experimental evaluation. In Proceedings of

the Second IEEE International Conference on Data Mining (ICDM ’02),

2002. (Cited on page 168.)

[MBSJ09] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant super-

vision for relation extraction without labeled data. In Proceedings of the

248 BIBLIOGRAPHY

Forty-seventh Annual Meeting of the Association for Computational Lin-

guistics and the Fourth International Joint Conference on Natural Lan-

guage Processing of the AFNLP (IJCNLP ’09), 2009. (Cited on page 220.)

[McC02] Andrew K. McCallum. MALLET: A Machine Learning for Language

Toolkit. http://mallet.cs.umass.edu, 2002. (Cited on page 29.)

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient

estimation of word representations in vector space. In Proceedings of the

2013 International Conference on Learning Representations (ICLR ’13),

2013. (Cited on pages 166 and 180.)

[MCSSMTLA13] Heidy M. Marin-Castro, Victor J. Sosa-Sosa, Jose F. Martinez-Trinidad,

and Ivan Lopez-Arevalo. Automatic discovery of web query interfaces

using machine learning techniques. Journal of Intelligent Information

Systems, 40(1):85–108, 2013. (Cited on page 65.)

[MFP00] Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Max-

imum entropy Markov models for information extraction and segmen-

tation. In Proceedings of the Seventeenth International Conference on

Machine Learning (ICML ’00), 2000. (Cited on pages 67, 110, 138, 139,

and 179.)

[MHM11] Thahir P. Mohamed, Estevam R. Hruschka, Jr., and Tom M. Mitchell.

Discovering relations between noun categories. In Proceedings of the

Twelfth Conference on Empirical Methods in Natural Language Processing

(EMNLP ’11), 2011. (Cited on page 207.)

[MIC+15] Kathleen McKeown, Hal Daume III, Snigdha Chaturvedi, John Paparri-

zos, Kapil Thadani, Pablo Barrio, Or Biran, Suvarna Bothe, Michael

Collins, Kenneth Fleischmann, Luis Gravano, Rahul Jha, Ben King,

Kevin McInerney, Taesun Moon, Diarmuid O’Seaghdha, Dragomir Radev,

Clay Templeton, and Simone Teufel. Predicting impact of scientific con-

BIBLIOGRAPHY 249

cepts using full text features. [to appear]. Journal of the American Society

for Information Science and Technology, 2015. (Cited on page 24.)

[MJC+07] Jayant Madhavan, Shawn R. Jeffery, Shirley Cohen, Xin Dong, David Ko,

Cong Yu, and Alon Halevy. Web-scale data integration: You can only af-

ford to pay as you go. In Proceedings of the Third Biennial Conference on

Innovative Data Systems Research (CIDR ’07), 2007. (Cited on page 16.)

[MKK+08] Jayant Madhavan, David Ko, Lucja Kot, Vignesh Ganapathy, Alex Ras-

mussen, and Alon Halevy. Google’s deep web crawl. VLDB Endowment,

1(2):1241–1252, 2008. (Cited on pages 15, 16, and 65.)

[ML03] Andrew McCallum and Wei Li. Early results for named entity recognition

with conditional random fields, feature induction and web-enhanced lex-

icons. In Proceedings of the Ninth Conference on Computational Natural

Language Learning (CoNLL ’05), 2003. (Cited on pages 67, 110, 139,

and 179.)

[MNPT02] Bernardo Magnini, Matteo Negri, Roberto Prevete, and Hristo Tanev.

Is it the right answer?: Exploiting web redundancy for answer valida-

tion. In Proceedings of the Fortieth Annual Meeting on Association for

Computational Linguistics (ACL ’02), 2002. (Cited on page 22.)

[Moo20] Eliakim Hastings Moore. On the reciprocal of the general algebraic ma-

trix. Bulletin of the American Mathematical Society, 26:394–395, 1920.

(Cited on page 173.)

[Moo11] Raymond Mooney. Aimed: Protein-protein interactions, 2011. [Online;

accessed August 2015]. (Cited on page 33.)

[MRMN98] Andrew McCallum, Ronald Rosenfeld, Tom M. Mitchell, and Andrew Y.

Ng. Improving text classification by shrinkage in a hierarchy of classes. In

Proceedings of the Fifteenth International Conference on Machine Learn-

ing (ICML ’98), 1998. (Cited on page 216.)

250 BIBLIOGRAPHY

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. In-

troduction to Information Retrieval. Cambridge University Press, 2008.

(Cited on page 137.)

[MSB+12] Mausam, Michael Schmitz, Robert Bart, Stephen Soderland, and Oren

Etzioni. Open language learning for information extraction. In Proceed-

ings of the Thirteenth Joint Conference on Empirical Methods in Natu-

ral Language Processing and Computational Natural Language Learning

(EMNLP-CoNLL ’12), 2012. (Cited on page 22.)

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jef-

frey Dean. Distributed representations of words and phrases and their

compositionality. In Proceedings of the Twenty-Seventh International

Conference on Neural Information Processing Systems (NIPS ’13), 2013.

(Cited on pages 167 and 180.)

[MVDGB08] Lukas Meier, Sara Van De Geer, and Peter Bühlmann. The group lasso

for logistic regression. Journal of the Royal Statistical Society, 70:53–71,

2008. (Cited on page 163.)

[MZ93] Stéphane G. Mallat and Zhifeng Zhang. Matching pursuits with

time-frequency dictionaries. IEEE Transactions on Signal Processing,

41(12):3397–3415, 1993. (Cited on page 165.)

[NTW11] Ndapandula Nakashole, Martin Theobald, and Gerhard Weikum. Scalable

knowledge harvesting with high precision and high recall. In Proceedings

of the Fourth ACM International Conference on Web Search and Data

Mining (WSDM ’11), 2011. (Cited on page 22.)

[Nut15] The Nutch Crawler: Highly extensible, highly scalable Web crawler.

http://nutch.apache.org/, 2015. [Online; accessed August 2015]. (Cited

on page 109.)

[NVB01] Claire Nedellec, Mohamed Ould Abdel Vetah, and Philippe Bessières.

Sentence filtering for information extraction in genomics, a classification

BIBLIOGRAPHY 251

problem. In Proceedings of the Fifth European Conference on Principles of

Data Mining and Knowledge Discovery (ECMLPKDD ’01), 2001. (Cited

on pages 3, 18, 20, 157, and 159.)

[NWS12] Ndapandula Nakashole, Gerhard Weikum, and Fabian Suchanek. Patty:

A taxonomy of relational patterns with semantic types. In Proceed-

ings of the Thirteenth Joint Conference on Empirical Methods in Nat-

ural Language Processing and Computational Natural Language Learning

(EMNLP-CoNLL ’12), 2012. (Cited on pages 11, 12, and 28.)

[NYT15] New York Times. http://www.nytimes.com/, 2015. [Online; accessed

August 2015]. (Cited on page 127.)

[NZRS12a] Feng Niu, Ce Zhang, Christopher Ré, and Jude Shavlik. Elementary:

Large-scale knowledge-base construction via machine learning and statis-

tical inference. International Journal on Semantic Web and Information

Systems, 8(3):42–73, 2012. (Cited on page 20.)

[NZRS12b] Feng Niu, Ce Zhang, Christopher Ré, and Jude W Shavlik. Deepdive:

Web-scale knowledge-base construction using statistical learning and in-

ference. 2012. (Cited on pages 21, 22, 207, and 222.)

[ODP15] Open Directory Project. http://www.dmoz.org/, 2015. [Online; accessed

August 2015]. (Cited on pages 64 and 109.)

[oJC97] United States. Dept. of Justice and United States. Federal Trade Com-

mission. Horizontal merger guidelines. U.S. Dept. of Justice, 1997. (Cited

on page 65.)

[ON10] Christopher Olston and Marc Najork. Web crawling. Foundations and

Trends in Information Retrieval, 4(3):175–246, 2010. (Cited on pages 14

and 15.)

252 BIBLIOGRAPHY

[Ope15a] Open Calais: Bring structure to unstructured content.

http://new.opencalais.com/, 2015. [Online; accessed August 2015].

(Cited on pages 67 and 179.)

[ope15b] OpenNLP: Java machine learning toolkit for natural language processing.

http://opennlp.apache.org/, 2015. [Online; accessed August 2015]. (Cited

on pages 29 and 139.)

[OWB09] Philip V. Ogren, Philipp G. Wetzler, and Steven J. Bethard. ClearTK: A

framework for statistical natural language processing. In UIMA Workshop

at GSCL (UIMA@GSCL ’09), 2009. (Cited on pages 29 and 30.)

[PDB13] Aditya Pal, Nilesh N. Dalvi, and Kedar Bellare. Discovering hierarchical

structure for sources and entities. In Proceedings of the Twenty-seventh

National Conference on Artificial Intelligence (AAAI ’13), 2013. (Cited

on page 220.)

[Pea00] Karl Pearson. On the criterion that a given system of deviations from the

probable in the case of a correlated system of variables is such that can be

reasonably supposed to have arisen from random sampling. Philosophical

Magazine, 50(302):157–175, 1900. (Cited on page 70.)

[Pen55] Roger Penrose. A generalized inverse for matrices. Mathematical Proceed-

ings of the Cambridge Philosophical Society, 51(03):406–413, 1955. (Cited

on page 173.)

[Pen56] Roger Penrose. On best approximate solutions of linear matrix equa-

tions. In Mathematical Proceedings of the Cambridge Philosophical Soci-

ety, 1956. (Cited on page 173.)

[PR07] Siddharth Patwardhan and Ellen Riloff. Effective information extraction

with semantic affinity patterns and relevant regions. In Proceedings of the

Eighth Joint Conference on Empirical Methods in Natural Language Pro-

cessing and Computational Natural Language Learning (EMNLP-CoNLL

’07), 2007. (Cited on page 159.)

BIBLIOGRAPHY 253

[PRH04] Patrick Pantel, Deepak Ravichandran, and Eduard Hovy. Towards teras-

cale knowledge acquisition. In Proceedings of the Twentieth international

conference on Computational Linguistics (COLING ’04), 2004. (Cited on

page 222.)

[PRK93] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy

Krishnaprasad. Orthogonal matching pursuit: Recursive function ap-

proximation with applications to wavelet decomposition. In Proceedings

of the Twenty-Seventh Annual Asilomar Conference on Signals, Systems,

and Computers (ASILOMAR ’93), 1993. (Cited on page 164.)

[PS07] Simone Paolo Ponzetto and Michael Strube. Deriving a large scale taxon-

omy from wikipedia. In Proceedings of the Twenty-second National Con-

ference on Artificial Intelligence (AAAI ’07), 2007. (Cited on page 22.)

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:

Global vectors for word representation. In Proceedings of the Fif-

teenth Conference on Empirical Methods in Natural Language Processing

(EMNLP ’14), 2014. (Cited on pages 166 and 180.)

[Pub15] PubMed: US national library of medicine national institutes of health.

http://www.ncbi.nlm.nih.gov/pubmed, 2015. [Online; accessed August

2015]. (Cited on pages 15 and 91.)

[PY13] Jakub Piskorski and Roman Yangarber. Information extraction: Past,

present and future. In Multi-source, Multilingual Information Extraction

and Summarization. 2013. (Cited on page 208.)

[Qia13] Richard Qian. Satori: Understand your world with bing.

https://blogs.bing.com/search/2013/03/21/understand-your-world-

with-bing/, 2013. [Online; accessed August 2015]. (Cited on page 22.)

[RF08] Volker Roth and Bernd Fischer. The group-lasso for generalized linear

models: uniqueness of solutions and efficient algorithms. In Proceedings of

254 BIBLIOGRAPHY

the Twenty-Fifth International Conference on Machine Learning (ICML

’08), 2008. (Cited on page 163.)

[RSJ12] Karthik Raman, Pannaga Shivaswamy, and Thorsten Joachims. Online

learning to diversify from implicit feedback. In Proceedings of the Eigh-

teenth ACM International Conference on Knowledge Discovery and Data

Mining (SIGKDD ’12), 2012. (Cited on page 161.)

[RSo15] The R project for statistical computing. http://www.r-project.org/, 2015.

[Online; accessed August 2015]. (Cited on page 114.)

[San08] Evan Sandhaus. The New York Times Annotated Corpus. In Linguistic

Data Consortium, 2008. (Cited on pages 14, 137, and 178.)

[Sar08] Sunita Sarawagi. Information Extraction. Foundations and Trends in

Databases, 1(3):261–377, 2008. (Cited on pages 9 and 14.)

[SBM96] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted document

length normalization. In Proceedings of the Nineteenth ACM Interna-

tional Conference on Research and Development in Information Retrieval

(SIGIR ’96), 1996. (Cited on page 174.)

[SC03] Luo Si and Jamie Callan. Relevant document distribution estimation

method for resource selection. In Proceedings of the Twenty-sixth ACM

International Conference on Research and Development in Information

Retrieval (SIGIR ’03), 2003. (Cited on pages 98, 105, and 205.)

[SC04] Luo Si and Jamie Callan. Unified utility maximization framework for re-

source selection. In Proceedings of the Thirteenth ACM International Con-

ference on Information and Knowledge Management (CIKM ’04), 2004.

(Cited on pages 93, 95, and 205.)

[SC05] Luo Si and Jamie Callan. Modeling search engine effectiveness for fed-

erated search. In Proceedings of the Twenty-eighth ACM International

BIBLIOGRAPHY 255

Conference on Research and Development in Information Retrieval (SI-

GIR ’05), 2005. (Cited on page 205.)

[SCAC14] Rodrygo L.T. Santos, Pablo Castells, Ismail Sengor Altingovde, and Fazli

Can. Diversity and novelty in web search, recommender systems and data

streams. In Proceedings of the Seventh ACM International Conference on

Web Search and Data Mining (WSDM ’14), 2014. (Cited on pages 161

and 217.)

[Scu09] David Sculley. Large scale learning to rank. In Advances in Ranking

Workshop at NIPS (NIPS ’09), 2009. (Cited on pages 130 and 134.)

[SDNR07] Warren Shen, AnHai Doan, Jeffrey F. Naughton, and Raghu Ramakrish-

nan. Declarative information extraction using datalog with embedded ex-

traction predicates. In Proceedings of the Thirty-third International Con-

ference on Very Large Databases (VLDB ’07), 2007. (Cited on page 206.)

[SFMB07] Horacio Saggion, Adam Funk, Diana Maynard, and Kalina Bontcheva.

Ontology-based information extraction for business intelligence. In Pro-

ceedings of The Semantic Web, Sixth International Semantic Web Con-

ference, Second Asian Semantic Web Conference (ISWC ’07 / ASWC

’07), 2007. (Cited on page 23.)

[SGD11] Balaji R. Soundrarajan, Thomas Ginter, and Scott L. DuVall. An inter-

face for rapid natural language processing development in UIMA. In Pro-

ceedings of the Fourty-nineth Annual Meeting of the Association for Com-

putational Linguistics: Human Language Technologies: Systems Demon-

strations (HLT ’11), 2011. (Cited on page 28.)

[SGG13] Gonçalo Simões, Helena Galhardas, and Luis Gravano. When speed has

a price: Fast information extraction using approximate algorithms. In

Proceedings of the Thirty-ninth International Conference on Very Large

Databases (VLDB ’13), 2013. (Cited on pages 21, 126, 205, 206, and 223.)

256 BIBLIOGRAPHY

[SH12] Robert Speer and Catherine Havasi. Representing general relational

knowledge in ConceptNet 5. In Proceedings of the Eighth International

Conference on Language Resources and Evaluation (LREC ’12), 2012.

(Cited on page 22.)

[She09] Denis Shestakov. On building a search interface discovery system. In

Proceedings of the Second International Workshop on Resource Discovery

(RED ’09), 2009. (Cited on page 65.)

[Shl05] Jonathon Shlens. A tutorial on Principal Component Analysis. In Sys-

tems Neurobiology Laboratory, Salk Institute for Biological Studies, 2005.

(Cited on pages 168 and 181.)

[Sho07] Milad Shokouhi. Central-rank-based collection selection in uncooperative

distributed information retrieval. In Proceedings of the Twenty-ninth Eu-

ropean conference on Information Retrieval research (ECIR ’07), 2007.

(Cited on page 205.)

[Sin12] Amit Singhal. Introducing the Knowledge Graph: things, not strings.

http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-

things-not.html, 2012. [Online; accessed August 2015]. (Cited on

page 22.)

[SIW06] Fabian M. Suchanek, Georgiana Ifrim, and Gerhard Weikum. Combin-

ing linguistic and statistical analysis to extract relations from web docu-

ments. In Proceedings of the Twelfth ACM International Conference on

Knowledge Discovery and Data Mining (SIGKDD ’06), 2006. (Cited on

page 10.)

[SJCO02] Luo Si, Rong Jin, Jamie Callan, and Paul Ogilvie. A language modeling

framework for resource selection and results merging. In Proceedings of the

Eleventh ACM International Conference on Information and Knowledge

Management (CIKM ’02), 2002. (Cited on page 205.)

BIBLIOGRAPHY 257

[SK09] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative fil-

tering techniques. Advances in Artificial Intelligence, 2009:4:2–4:2, 2009.

(Cited on page 221.)

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A

core of semantic knowledge. In Proceedings of the Sixteenth International

Conference on World Wide Web (WWW ’07), 2007. (Cited on pages 10,

22, and 208.)

[SMK09] Ashwin Swaminathan, Cherian V. Mathew, and Darko Kirovski. Essen-

tial pages. In Proceedings of the 2009 International Conference on Web

Intelligence (WI ’09), 2009. (Cited on page 161.)

[SMO10] Rodrygo L.T. Santos, Craig Macdonald, and Iadh Ounis. Selectively di-

versifying web search results. In Proceedings of the Nineteenth ACM Inter-

national Conference on Information and Knowledge Management (CIKM

’10), 2010. (Cited on page 161.)

[Sod99] Stephen Soderland. Learning information extraction rules for semi-

structured and free text. Machine Learning, 34(1-3):233–272, 1999. (Cited

on page 28.)

[Soe14] David Soergel. JLibSVM: Efficient training of Support Vector Machines in

Java. http://dev.davidsoergel.com/trac/jlibsvm/, 2014. [Online; accessed

August 2015]. (Cited on page 40.)

[SOM10] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes

twitter users: Real-time event detection by social sensors. In Proceedings

of the Nineteenth International Conference on World Wide Web (WWW

’10), 2010. (Cited on page 209.)

[SP14] Fabian M. Suchanek and Nicoleta Preda. Semantic culturomics (vision

paper). VLDB Endowment, 7(12):1215–1218, 2014. (Cited on page 24.)

258 BIBLIOGRAPHY

[SRG10] Aleksandrs Slivkins, Filip Radlinski, and Sreenivas Gollapudi. Learning

optimally diverse rankings over large document collections. In Proceed-

ings of the Twenty-Seventh International Conference on Machine Learn-

ing (ICML ’10), 2010. (Cited on page 161.)

[SS11] Milad Shokouhi and Luo Si. Federated search. Foundations and Trends

in Information Retrieval, 5(1):1–102, 2011. (Cited on pages 19, 91, 93,

203, and 205.)

[SSSS07] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal

estimated sub-gradient solver for SVM. In Proceedings of the Twenty-

fourth International Conference on Machine Learning (ICML ’07), 2007.

(Cited on pages 7, 125, 131, 141, and 182.)

[SSW03] Carl-Erik Särndal, Bengt Swensson, and Jan Wretman. Model Assisted

Survey Sampling. Springer, 2003. (Cited on page 204.)

[sta15a] Stanford CoreNLP suit. http://nlp.stanford.edu/software/, 2015. [On-

line; accessed August 2015]. (Cited on pages 29 and 110.)

[Sta15b] Stanford named-entity recognizer. http://nlp.stanford.edu/software/CRF-

NER.shtml, 2015. [Online; accessed August 2015]. (Cited on pages 33,

67, 139, and 179.)

[Sto74] Mervyn Stone. Cross-validatory choice and assessment of statistical pre-

dictions. Journal of the Royal Statistical Society, 36(2):111–147, 1974.

(Cited on page 42.)

[Str93] Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge

Press, 1993. (Cited on page 177.)

[SZ07] Milad Shokouhi and Justin Zobel. Federated text retrieval from unco-

operative overlapped collections. In Proceedings of the Thirtieth ACM

International Conference on Research and Development in Information

Retrieval (SIGIR ’07), 2007. (Cited on pages 93 and 95.)

BIBLIOGRAPHY 259

[TAC06] Jordi Turmo, Alicia Ageno, and Neus Català. Adaptive information ex-

traction. ACM Computing Surveys, 38(2):4, 2006. (Cited on page 10.)

[TBC+15] Nina Tahmasebi, Lars Borin, Gabriele Capannini, Devdatt Dubhashi,

Peter Exner, Markus Forsberg, Gerhard Gossen, FredrikD. Johansson,

Richard Johansson, Mikael K̊agebäck, Olof Mogren, Pierre Nugues, and

Thomas Risse. Visions and open challenges for a knowledge-based cultur-

omics. International Journal on Digital Libraries, 15(2-4):169–187, 2015.

(Cited on page 24.)

[Tik15] Apache Tika: A content analysis toolkit. http://tika.apache.org, 2015.

[Online; accessed August 2015]. (Cited on page 65.)

[TM11] Oscar Täckström and Ryan T. McDonald. Discovering fine-grained senti-

ment with latent variable structured prediction models. In Proceedings of

the Thirty-Third European conference on Information Retrieval research

(ECIR ’11), 2011. (Cited on page 162.)

[TPL10] Domonkos Tikk, Peter Palaga, and Ulf Leser. A fast and effective de-

pendency graph kernel for PPI relation extraction. BMC Bioinformatics,

11(S-5):P8, 2010. (Cited on page 179.)

[TRE00] Text REtrieval Conference. http://trec.nist.gov/, 2000. [Online; accessed

August 2015]. (Cited on pages 2, 66, 109, 138, 159, and 179.)

[TS06] Andrew Turpin and Falk Scholer. User performance versus precision mea-

sures for simple search tasks. In Proceedings of the Twenty-ninth ACM

International Conference on Research and Development in Information

Retrieval (SIGIR ’06), 2006. (Cited on page 141.)

[TS09] Paul Thomas and Milad Shokouhi. SUSHI: Scoring scaled samples for

server selection. In Proceedings of the Thirty-second ACM International

Conference on Research and Development in Information Retrieval (SI-

GIR ’09), 2009. (Cited on page 206.)

260 BIBLIOGRAPHY

[TSW06] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. TopX and XXL

at INEX 2005. In Proceedings of the Fourth International Conference on

Initiative for the Evaluation of XML Retrieval (INEX ’06), 2006. (Cited

on page 22.)

[TT05] Yoshimasa Tsuruoka and Jun’ichi Tsujii. Chunk parsing revisited. In

Proceedings of the Ninth International Workshop on Parsing Technology

(IWPT ’05), 2005. (Cited on page 13.)

[TTA09] Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ananiadou. Stochastic

gradient descent training for L1-regularized log-linear models with cumu-

lative penalty. In Proceedings of the Forty-seventh Annual Meeting of the

Association for Computational Linguistics and the Fourth International

Joint Conference on Natural Language Processing of the AFNLP (ACL

’09), 2009. (Cited on page 132.)

[TTL05] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed com-

puting in practice: The condor experience: Research articles. Concur-

rency and Computation: Practice and Experience, 17(2-4):323–356, 2005.

(Cited on page 222.)

[VC11] Saúl Vargas and Pablo Castells. Rank and relevance in novelty and di-

versity metrics for recommender systems. In Proceedings of the Fifth

ACM Conference on Recommender Systems (RecSys ’11), 2011. (Cited

on pages 161 and 218.)

[vdL10] Mark P. J. van der Loo. Distribution based outlier detection for univariate

data. Technical Report Discussion paper 10003, Statistics Netherlands,

The Hague, 2010. (Cited on page 114.)

[VGJL95] Ellen M. Voorhees, Narendra K. Gupta, and Ben Johnson-Laird. Learn-

ing collection fusion strategies. In Proceedings of the Eighteenth ACM

International Conference on Research and Development in Information

Retrieval (SIGIR ’95), 1995. (Cited on page 206.)

BIBLIOGRAPHY 261

[VHL10] Theresa Velden, Asif-ul Haque, and Carl Lagoze. A new approach to

analyzing patterns of collaboration in co-authorship networks: mesoscopic

analysis and interpretation. Scientometrics, 85(1):219–242, 2010. (Cited

on page 24.)

[VHM+11] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren

Shen, Fei Wu, Gengxin Miao, and Chung Wu. Recovering semantics of

tables on the web. VLDB Endowment, 4(9):528–538, 2011. (Cited on

page 208.)

[VHSP10] Sarah Vieweg, Amanda L. Hughes, Kate Starbird, and Leysia Palen. Mi-

croblogging during two natural hazards events: What twitter may con-

tribute to situational awareness. In Proceedings of the Twenty-eighth An-

nual Conference on Human Factors in Computing Systems (CHI ’10),

2010. (Cited on page 209.)

[Wal06] Christopher Walker. ACE 2005 multilingual training corpus. In Linguistic

Data Consortium, 2006. (Cited on pages 33 and 45.)

[Whi09] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st

edition, 2009. (Cited on pages 20 and 222.)

[Wik15] Wikipedia: The free encyclopedia. https://www.wikipedia.org/, 2015.

[Online; accessed August 2015]. (Cited on pages 14 and 166.)

[Win99] William E. Winkler. The state of record linkage and current research

problems. Technical report, Statistical Research Division, U.S. Census

Bureau, 1999. (Cited on page 18.)

[WKPU08] Casey Whitelaw, Alex Kehlenbeck, Nemanja Petrovic, and Lyle Ungar.

Web-scale named entity recognition. In Proceedings of the Seventeenth

ACM International Conference on Information and Knowledge Manage-

ment (CIKM ’08), 2008. (Cited on page 138.)

262 BIBLIOGRAPHY

[WL03] Jiying Wang and Frederick H. Lochovsky. Data extraction and label

assignment for web databases. In Proceedings of the Twelfth International

Conference on World Wide Web (WWW ’03), 2003. (Cited on page 65.)

[WSCN08] Richard C. Wang, Nico Schlaefer, William W. Cohen, and Eric Nyberg.

Automatic set expansion for list question answering. In Proceedings of

the Seventh Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP ’08), 2008. (Cited on page 23.)

[WSE13] Henning Wachsmuth, Benno Stein, and Gregor Engels. Information ex-

traction as a filtering task. In Proceedings of the Twenty-second ACM

International Conference on Information and Knowledge Management

(CIKM ’13), 2013. (Cited on pages 3, 20, and 159.)

[XC98] Jinxi Xu and Jamie Callan. Effective retrieval with distributed collec-

tions. In Proceedings of the Twenty-first ACM International Confer-

ence on Research and Development in Information Retrieval (SIGIR ’98),

1998. (Cited on page 205.)

[XC99] Jinxi Xu and William Bruce Croft. Cluster-based language models for

distributed retrieval. In Proceedings of the Twenty-second ACM Interna-

tional Conference on Research and Development in Information Retrieval

(SIGIR ’99), 1999. (Cited on page 205.)

[XGZ11] Wei Xu, Ralph Grishman, and Le Zhao. Passage retrieval for information

extraction using distant supervision. In Proceedings of the Fifth Interna-

tional Joint Conference on Natural Language Processing (IJCNLP ’11),

2011. (Cited on pages 3, 4, 20, and 160.)

[Yat34] Frank Yates. Contingency tables involving small numbers and the chi-

square test. Supplement to the Journal of the Royal Statistical Society,

1(2):217–235, 1934. (Cited on page 70.)

BIBLIOGRAPHY 263

[YC04] Hui Yang and Tat-Seng Chua. Web-based list question answering. In

Proceedings of the Twentieth international conference on Computational

Linguistics (COLING ’04), 2004. (Cited on page 23.)

[YCB+07] Alexander Yates, Michael Cafarella, Michele Banko, Oren Etzioni,

Matthew Broadhead, and Stephen Soderland. Textrunner: Open in-

formation extraction on the web. In Proceedings of Human Language

Technologies Conference of the North American Chapter of the Associa-

tion for Computational Linguistics (HLT-NAACL ’07), 2007. (Cited on

page 207.)

[YHO+11] Dani Yogatama, Michael Heilman, Brendan O’Connor, Chris Dyer,

Bryan R. Routledge, and Noah A. Smith. Predicting a scientific commu-

nity’s response to an article. In Proceedings of the Twelfth Conference on

Empirical Methods in Natural Language Processing (EMNLP ’11), 2011.

(Cited on pages 15, 24, and 219.)

[YJ08] Yisong Yue and Thorsten Joachims. Predicting diverse subsets using

structural svms. In Proceedings of the Twenty-Fifth International Con-

ference on Machine Learning (ICML ’08), 2008. (Cited on page 161.)

[YL97] Budi Yuwono and Dik Lun Lee. Server ranking for distributed text re-

trieval systems on the internet. In Proceedings of the Fifth International

Conference on Database Systems for Advanced Applications (DASFAA

’97), 1997. (Cited on page 205.)

[YL06] Ming Yuan and Yi Lin. Model selection and estimation in regression with

grouped variables. Journal of the Royal Statistical Society, 68(1):49–67,

2006. (Cited on page 163.)

[YPWC+13] Huahai Yang, Daina Pupons-Wickham, Laura Chiticariu, Yunyao Li,

Benjamin Nguyen, and Arnaldo Carreno-Fuentes. I can do text ana-

lytics!: Designing development tools for novice developers. In Proceedings

264 BIBLIOGRAPHY

of the Thirty-first Annual Conference on Human Factors in Computing

Systems (CHI ’13), 2013. (Cited on page 28.)

[YS14] Dani Yogatama and Noah A. Smith. Making the most of bag of words:

Sentence regularization with alternating direction method of multipliers.

In Proceedings of the Thirty-Fifth International Conference on Machine

Learning (ICML ’14), 2014. (Cited on page 162.)

[YXKL10] Haiqin Yang, Zenglin Xu, Irwin King, and Michael R. Lyu. Online learn-

ing for group lasso. In Proceedings of the Twenty-Seventh International

Conference on Machine Learning (ICML ’10), 2010. (Cited on page 163.)

[YYC10] Ainur Yessenalina, Yisong Yue, and Claire Cardie. Multi-level structured

models for document-level sentiment classification. In Proceedings of the

Eleventh Conference on Empirical Methods in Natural Language Process-

ing (EMNLP ’10), 2010. (Cited on page 162.)

[ZAR+03] Dmitry Zelenko, Chinatsu Aone, Anthony Richardella, Jaz, Thomas Hof-

mann, Tomaso Poggio, and John Shawe-taylor. Kernel methods for rela-

tion extraction. The Journal of Machine Learning Research, 3:1083–1106,

2003. (Cited on pages 11, 12, and 28.)

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,

and Ion Stoica. Spark: Cluster computing with working sets. In Proceed-

ings of the Second USENIX Conference on Hot Topics in Cloud Comput-

ing (HotCloud ’10), 2010. (Cited on page 20.)

[ZCL03] Cheng Xiang Zhai, William W. Cohen, and John Lafferty. Beyond in-

dependent relevance: Methods and evaluation metrics for subtopic re-

trieval. In Proceedings of the Twenty-sixth ACM International Confer-

ence on Research and Development in Information Retrieval (SIGIR ’03),

2003. (Cited on page 161.)

[ZG05] Shubin Zhao and Ralph Grishman. Extracting relations with integrated

information using kernel methods. In Proceedings of the Forty-third An-

BIBLIOGRAPHY 265

nual Meeting on Association for Computational Linguistics (ACL ’05),

2005. (Cited on pages 11, 12, and 28.)

[ZH05] Hui Zou and Trevor Hastie. Regularization and variable selection via the

Elastic Net. Journal of the Royal Statistical Society, 67(2):301–320, 2005.

(Cited on pages 132, 163, and 182.)

[Zil08] Marcus P. Zillman. Deep web research 2008.

http://www.llrx.com/features/deepweb2008.htm, 2008. [Online; ac-

cessed August 2015]. (Cited on page 15.)

[ZWC+13] Qinghua Zheng, Zhaohui Wu, Xiaocheng Cheng, Lu Jiang, and Jun Liu.

Learning to crawl deep web. Information Systems, 38(6):801–819, 2013.

(Cited on page 15.)

[ZWS04] Zhaohui Zheng, Xiaoyun Wu, and Rohini Srihari. Feature selection for

text categorization on imbalanced data. SIGKDD Explorations Newslet-

ter, 6(1):80–89, 2004. (Cited on page 111.)

[ZZD11] Mingyang Zhang, Nan Zhang, and Gautam Das. Mining a search engine’s

corpus: Efficient yet unbiased sampling and aggregate estimation. In

Proceedings of the 2011 ACM International Conference on Management

of Data (SIGMOD ’11), 2011. (Cited on pages 16, 53, 94, 95, 99, 101,

105, 203, and 204.)

[ZZD13] Mingyang Zhang, Nan Zhang, and Gautam Das. Mining a search en-

gine’s corpus without a query pool. In Proceedings of the Twenty-second

ACM International Conference on Information and Knowledge Manage-

ment (CIKM ’13), 2013. (Cited on pages 16, 94, 95, 96, 102, 103, 107,

108, 113, 203, 204, and 218.)

266 BIBLIOGRAPHY

	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Information Extraction
	2.1.1 The Relation Extraction Problem
	2.1.2 Extracting Relations from Text
	2.1.3 Efficiency of Relation Extraction Systems

	2.2 Text Collections
	2.2.1 Fully-Accessible Text Collections
	2.2.2 Deep Web Text Collections

	2.3 Information Extraction over Large Text Collections
	2.4 Applications

	3 REEL: A Toolkit for Developing Relation Extraction Systems
	3.1 Background and Problem Definition
	3.2 System Architecture
	3.3 The Text Processing Component
	3.3.1 Text Segment Loading
	3.3.2 Candidate Generation
	3.3.3 Feature Extraction and Operable Structure Generation

	3.4 The Learning and Extraction Component
	3.4.1 Relation Extraction Training
	3.4.2 Tuple Extraction
	3.4.3 Relation Extraction Evaluation

	3.5 Using REEL in Practice
	3.6 Conclusions

	4 Sampling Documents for Scalable Information Extraction
	4.1 Background and Problem Definition
	4.2 Document Sampling Strategies
	4.2.1 Exploring the Query–Document Space
	4.2.2 Exploiting Observed Information
	4.2.3 Sampling Techniques

	4.3 Experimental Settings
	4.4 Experimental Results
	4.4.1 Impact of Useful Document Retrieval
	4.4.2 Impact of Query Execution Order
	4.4.3 Impact of Document Retrieval and Processing
	4.4.4 Impact of Revising Query Order
	4.4.5 Impact of Filtering Underperforming Queries

	4.5 Conclusions

	5 Ranking Text Collections for Scalable Information Extraction
	5.1 Background and Problem Definition
	5.2 Overview of Estimation Approaches
	5.3 Traditional Estimation Approaches: Adaptation for Collection Usefulness
	5.3.1 Surrogate-Based Estimator
	5.3.2 Query Pool-Based Estimator
	5.3.3 Query Pool-Free Estimator

	5.4 Information Extraction-Specific Estimators for Collection Usefulness
	5.4.1 Targeted Surrogate-Based Estimator
	5.4.2 Targeted Query Pool-Based Estimator
	5.4.3 Targeted Query Pool-Free Estimator

	5.5 Experimental Settings
	5.6 Experimental Results
	5.6.1 Quality of Collection Ranking Approaches
	5.6.2 Efficiency of Collection Ranking Approaches
	5.6.3 Support of Collection Ranking Approaches
	5.6.4 Impact of Selection Weight
	5.6.5 Impact of Collection Characteristics
	5.6.6 Impact of Information Extraction-task Characteristics
	5.6.7 Additional Discussion

	5.7 Conclusions

	6 Ranking Documents for Scalable Information Extraction
	6.1 Background and Problem Definition
	6.2 Online Adaptive Ranking
	6.2.1 Ranking Generation
	6.2.1.1 BAgg-IE: A Pointwise Ranking Approach
	6.2.1.2 RSVM-IE: A Pairwise Ranking Approach

	6.2.2 Update Detection
	6.2.2.1 Top-K: Relevance-Based Update Detection Approach
	6.2.2.2 Mod-C: A Model-Based Update Detection Approach

	6.3 Experimental Settings
	6.4 Experimental Results
	6.4.1 Impact of Learning-To-Rank Approach
	6.4.2 Impact of Sampling Strategies
	6.4.3 Impact of Adaptation
	6.4.4 Impact of Update Detection
	6.4.5 Scalability of our Approach
	6.4.6 Comparison with State-of-the-Art Ranking Strategies

	6.5 Conclusions

	7 Ranking Sentences for Scalable Information Extraction
	7.1 Background and Problem Definition
	7.2 Ranking Sentences: A Group OMP-Based Approach
	7.2.1 Sparse Group Selection: Background
	7.2.2 Overview of Our Approach
	7.2.3 Modeling Sentences and Useful Information
	7.2.4 Scoring and Ranking Sentences via Group OMP
	7.2.5 Trading Relevance and Novelty
	7.2.6 Efficiency of Our Approach

	7.3 Experimental Settings
	7.4 Experimental Results
	7.4.1 Impact of Scoring Approach
	7.4.2 Impact of Sampling Strategy
	7.4.3 Impact of Sentence Representation
	7.4.4 Impact of Useful Information Representation
	7.4.5 Impact of Goodness of Fit Computation
	7.4.6 Impact of Sentences per Iteration
	7.4.7 Impact of Document Set Characteristics
	7.4.8 Comparison with Baseline Ranking Strategies

	7.5 Conclusions

	8 Related Work
	8.1 Text Document Sampling
	8.2 Text Collection Selection
	8.3 Information Extraction Process Optimization
	8.4 Web-Scale Information Extraction

	9 Conclusions
	10 Future Work
	Bibliography

