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ABSTRACT

Computational Methods for Nonlinear Optimization
Problems: Theory and Applications

Ramtin Madani

This dissertation is motivated by the lack of efficient global optimization techniques for poly-

nomial optimization problems. The objective is twofold. First, a new mathematical foundation

for obtaining a global or near-global solution will be developed. Second, several case studies will

be conducted on a variety of real-world problems. Global optimization, convex relaxation and dis-

tributed computation are at the heart of this PhD dissertation. Some of the specific problems to

be addressed in this thesis on both the theory and the application of nonlinear optimization are

explained below:

Graph theoretic algorithms for low-rank optimization problems: There is a rapidly growing in-

terest in the recovery of an unknown low-rank matrix from limited information and measurements.

This problem occurs in many areas of engineering and applied science such as machine learning,

control, and computer vision. We develop a graph-theoretic technique in Part I that is able to gen-

erate a low-rank solution for a sparse Linear Matrix Inequality (LMI), which is directly applicable

to a large set of problems such as low-rank matrix completion with many unknown entries. Our

approach finds a solution with a guarantee on its rank, using the recent advances in graph theory.

Resource allocation for energy systems: The flows in an electrical grid are described by non-

linear AC power flow equations. Due to the nonlinear interrelation among physical parameters

of the network, the feasibility region represented by power flow equations may be nonconvex and

disconnected. Since 1962, the nonlinearity of the network constraints has been studied, and various

heuristic and local-search algorithms have been proposed in order to perform optimization over an

electrical grid [Baldick, 2006; Pandya and Joshi, 2008]. Part II is concerned with finding convex

formulations of the power flow equations using semidefinite programming (SDP). The potential of

SDP relaxation for problems in power systems has been manifested in [Lavaei and Low, 2012], with



further studies conducted in [Lavaei, 2011; Sojoudi and Lavaei, 2012]. A variety of graph-theoretic

and algebraic methods are developed in Part II in order to facilitate performing fundamental, yet

challenging tasks such as optimal power flow (OPF) problem, security-constrained OPF and the

classical power flow problem.

Synthesis of distributed control systems: Real-world systems mostly consist of many intercon-

nected subsystems, and designing an optimal controller for them pose several challenges to the

field of control theory. The area of distributed control is created to address the challenges aris-

ing in the control of these systems. The objective is to design a constrained controller whose

structure is specified by a set of permissible interactions between the local controllers with the

aim of reducing the computation or communication complexity of the overall controller. It has

been long known that the design of an optimal distributed (decentralized) controller is a daunt-

ing task because it amounts to an NP-hard optimization problem in general [Witsenhausen, 1968;

Tsitsiklis and Athans, 1984]. Part III is devoted to study the potential of the SDP relaxation for

the optimal distributed control (ODC) problem Our approach rests on formulating each of differ-

ent variations of the ODC problem as rank-constrained optimization problems from which SDP

relaxations can be derived. As the first contribution, we show that the ODC problem admits a

sparse SDP relaxation with solutions of rank at most 3. Since a rank-1 SDP matrix can be mapped

back into a globally-optimal controller, the low-rank SDP solution may be deployed to retrieve a

near-global controller.

Parallel computation for sparse semidefinite programs: While small- to medium-sized semidef-

inite programs are efficiently solvable by second-order-based interior point methods in polynomial

time up to any arbitrary precision [Vandenberghe and Boyd, 1996a], these methods are impractical

for solving large-scale SDPs due to computation time and memory issues. In Part IV of this dis-

sertation, a parallel algorithm for solving an arbitrary SDP is introduced based on the alternating

direction method of multipliers. The proposed algorithm has a guaranteed convergence under very

mild assumptions. Each iteration of this algorithm has a simple closed-form solution, and consists

of scalar multiplication and eigenvalue decomposition over matrices whose sizes are not greater

than the treewdith of the sparsity graph of the SDP problem. The cheap iterations of the proposed

algorithm enable solving real-world large-scale conic optimization problems.
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Chapter 1

Introduction

Optimization theory deals with the minimization of an objective function subject to a set of

constraints. This area plays a vital role in the design, control, operation, and analysis of real-

world systems. The development of efficient optimization techniques and numerical algorithms

has been an active area of research for many decades. The goal is to design a robust and scal-

able method that is able to find a global solution in polynomial time. This question has been

fully answered for the class of convex optimization problems that includes all linear and some

nonlinear problems [Boyd and Vandenberghe, 2004; Nesterov et al., 1994]. Convex optimiza-

tion has found a wide range of applications across engineering and economics [Ben-Tal and Ne-

mirovski, 2001]. In the past several years, a great effort has been devoted to casting real-world

problems as convex optimization. Nevertheless, several classes of optimization problems, includ-

ing polynomial optimization and quadratically constrained quadratic program (QCQP) as a spe-

cial case, are nonlinear, non-convex, and NP-hard in the worst case [Murty and Kabadi, 1987;

Klerk, 2008]. In particular, there is no known effective optimization technique for integer and com-

binatorial optimization as a small subclass of QCQP [Nemhauser and Wolsey, 1988; Papadimitriou

and Steiglitz, 1998]. Given a non-convex optimization, there are several techniques to find a solu-

tion that is locally optimal. However, seeking a global or near-global solution in polynomial time

is a daunting challenge. There is a large body of literature on nonlinear optimization witnessing

the complexity of this problem.

This dissertation develops a graph-theoretic basis in order to reduce the computational com-

plexity of sparse rank-constrained and polynomial optimization problems in Part I. The results of
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Part I are then illustrated in multiple nonlinear optimization problems for electrical networks and

design of distributed controllers in Parts II and III. The proposed algorithms for solving nonlinear

optimization problems in this work are based on semidefinite relaxation. Part IV of this disser-

tation introduces a robust and scalable computational method for solving large scale and sparse

semidefinite programs.

1.1 Part I: Rank and Sparsity

Part I is concerned with the problem of finding a low-rank solution of an arbitrary sparse linear

matrix inequality (LMI). The structure of the problem is mapped into a graph and multiple graph-

theoretic convex programs are proposed in order to obtain a low-rank solution.

1.1.1 Low-rank Solution of Sparse Linear Matrix Inequalities

A large variety of nonlinear optimization problems can be boiled down to the classical problem of

searching for a low-rank matrix in a convex set. The procedure through which a QCQP problem

can be cast as low-rank matrix optimization problem is called SDP relaxation. The existence of

a rank-1 solution for the SDP relaxation guarantees the equivalence of the original QCQP and its

relaxed problem. In this case the relaxation is said to be exact. The exactness of the relaxation is

substantiated for various applications [Lavaei and Low, 2012; Lasserre, 2001; Kim and Kojima, 2003;

Lavaei et al., 2011].

In many applications, the QCQP problem has a sparse underlying structure and as a result,

the convex set under study can be characterized by a sparse linear matrix inequality. The SDP

relaxation of a sparse QCQP problem often has infinitely many solutions and the conventional

numerical algorithms would find a solution with the highest rank. We will verify in Chapter 3 that

in many cases the SDP relaxation may have a hidden rank-1 solution that could not be easily found.

Hence, a question arises as to whether a low-rank solution of the SDP relaxation of a sparse QCQP

can be found efficiently. To address this problem, we capture the sparsity level of the original

problem through a graph G and use graph-theoretic algorithms to offer multiple convex programs

that are guaranteed to result in a low-rank solution.

The notions of tree decomposition, minimum semidefinite rank (msr) of a graph, ordered set
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vertex (OS-vertex) and positive semidefinite zero forcing are utilized in Chapter 2 to find low-rank

matrices using convex optimization. We propose a class of convex optimization problem and we

show that the rank of every solution of these problems can be upper bounded in terms of the OS

and msr of some supergraphs of G. The results of this part can be readily applied to three separate

problems of minimum-rank matrix completion, conic relaxation for polynomial optimization, and

affine rank minimization. A similar scheme is employed in later chapters for solving real-world

problems in power systems and the optimal distributed control problem.

1.2 Part II: Power Networks

A power grid is a large-scale electrical circuit consisting of transmission lines, transformers, and

various types of power electronic devices, and is used to transport power from generators (suppliers)

to loads (consumers). The real-time operation of a power grid is based on periodically forecasting

the time-varying load profiles and accordingly controlling the active devices in the network in

order to meet the demand requests while satisfying the network constraints. This is accomplished

by adjusting the controllable parameters of the power system (e.g., the mechanical input of each

generator and the tap ratio of each transformer) in such a way that the total cost of the energy

production is minimized and the stability of the network is ensured.

The real-time operation of a power network depends heavily on several resource allocation prob-

lems solved from every few minutes to every year. Optimal power flow (OPF), security constrained

OPF (SCOPF), unit commitment (UC), transmission planning, sizing of capacitor banks, and net-

work reconfiguration are some fundamental optimization problems solved for power networks. It is

a daunting challenge to solve these problems efficiently due to the nonlinearity/non-convexity cre-

ated by two different sources: (i) discrete variables such as the ratio of a tap-changing transformer,

the on/off status of a line switch, or the commitment parameter of a generator, and (ii) the laws

of physics. Due to these non-convexity issues, the existing solvers for energy-related optimization

problems either make potentially very conservative approximations to power problems or deploy

general-purpose local-search algorithms. Although these OPF-based problems have been studied

for 50 years, there does not yet exist a scalable, robust algorithm for this problem, which may incur

tens of billions of dollars annually.
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The objective of this part of the dissertation is to design a scalable, robust algorithm seeking

globally optimal solutions for the above-mentioned power problems. As a preliminary result, we

have developed an algorithm and implemented it in a piece of software in [Madani et al., 2014a],

which is able to find feasible solutions for several real-world OPF problems with at least 99% global

optimality guarantees. For example, the OPF problem for a Polish system with almost 3000 buses

(leading to over one million parameters in the SDP relaxation) can be solved on a laptop in a few

minutes using our software, resulting in a provably near-global solution.

1.2.1 Convex Relaxation for Optimal Power Flow Problem: Mesh Networks

The optimal power flow involves minimization of an operating cost function in an electrical grid

subject to network and physical constraints on loads, powers, voltages and line flows [Momoh,

2001]. The OPF problem is non-convex and NP-hard, due to its possible reduction to the (0,1)-

quadratic optimization. Started by the work [Carpentier, 1962] in 1962, many of the existing

optimization techniques have been studied for the OPF problem, leading to algorithms based on

linear programming, Newton Raphson, quadratic programming, nonlinear programming, Lagrange

relaxation, interior point method, artificial intelligence, artificial neural network, fuzzy logic, genetic

algorithm, evolutionary programming and particle swarm optimization [Pandya and Joshi, 2008].

Due to the non-convexity of OPF, these algorithms are not robust, lack performance guarantees,

and may not find a global optimum. The paper [Lavaei and Low, 2012] proposes a convex relaxation

method for solving OPF based on semidefinite programming.

In Chapter 3, we investigate the possibility of finding a global or near-global solution of the OPF

problem for mesh networks by solving only a few SDP relaxations. The SDP relaxation for OPF has

attracted much attention due to its ability to find a global solution in polynomial time, and it has

been applied to various applications in power systems including: voltage regulation in distribution

systems [Lam et al., 2012a], state estimation [Weng et al., 2012], calculation of voltage stability

margin [Molzahn et al., 2012], economic dispatch in unbalanced distribution networks [Dall’Anese

et al., 2013], charging of electric vehicles [Sojoudi and Low, 2011], and power management under

time-varying conditions [Ghosh et al., 2011].

The exactness of SDP relaxation has been shown in [Sojoudi and Lavaei, 2012] for acyclic

networks with some extra assumption related to the passivity of transmission lines and transformers.
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On the other hand, multiple works have reported that SDP relaxation is not always exact even

for a basic three-bus cyclic network [Lesieutre et al., 2011]. Valuable test cases are also provided

by [Bukhsh et al., 2013] with local solutions that witness inexactness of SDP relaxation for the

OPF problem. In the present work, we first consider the three-bus system studied in [Lesieutre

et al., 2011] and prove that the problem can be equivalently formulated in order to guarantee the

exactness of SDP relaxation. We also prove that the relaxation remains exact for weakly-cyclic

networks with cycles of size 3. Furthermore, we substantiate that this type of network has a convex

injection region in the lossless case and a non-convex injection region with a convex Pareto front

in the lossy case. The importance of this result is that the SDP relaxation works on certain cyclic

networks, for example the ones generated from three-bus subgraphs (this type of network is related

to three-phase systems).

In the case when the SDP relaxation does not work, an upper bound is provided on the rank

of the minimum-rank solution of the SDP relaxation. This bound is related only to the structure

of the power network and this number is expected to be very small for real-world power networks.

Finally, a heuristic method is proposed to enforce the SDP relaxation to produce a rank-1 solution

for general networks (by somehow eliminating the undesirable eigenvalues of the low-rank solution).

The efficacy of the proposed technique is elucidated by extensive simulations on IEEE systems as

well as a difficult example proposed in [Bukhsh et al., 2013] for which the OPF problem has at

least three local solutions.

1.2.2 Promises of Conic Relaxation for Contingency-Constrained Optimal Power

Flow Problem

Although OPF is a fundamental problem, a real-world power flow optimization is based on a

set of coupled OPFs with a variety of constraints and variables named security-constrained OPF

(SCOPF)[Capitanescu et al., 2007; Wood and Wollenberg, 1996]. The SCOPF problem is important

in practice, since independent system operators tend to design an operating point that satisfies

the demand and network constraints not only under normal operation but also under pre-specified

contingencies such as line and generator outages. SCOPF is more challenging than the conventional

OPF problem for two reasons. First, the size of the optimization could be prohibitive, depending

on the number of contingencies. Second, SCOPF is obtained by coupling a group of non-convex
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OPF problems associated with different contingencies and therefore its non-convexity would be

much higher than an individual OPF problem. The purpose of Chapter 4 is to propose an efficient

computational method that can be applied to not only OPF but also SCOPF.

In Chapter 4, we study the SCOPF problem through an extension of the SDP relaxation method

for OPF problem. The existence of a rank-1 SDP solution guarantees the recovery of a global

solution of SCOPF. We prove that the relaxation has a matrix solution whose rank is at most

the treewidth of the pre-contingency network plus one. The treewidth of real-world networks is

perceived to be small due to their (almost) planarity and sparsity [Fomin and Thilikos, 2006]. For

example, the treewidth of the graph corresponding to a peak hour setup of a Polish system with

over 3000 buses is less than 25.

The major drawback of representing the optimal power flow problem as a semidefinite program

is the requirement of defining a square matrix variable, which makes the number of scalar variables

of the problem quadratic with respect to the number of network buses. This may yield a very

high-dimensional SDP problem for a real-world network. To address this issue, the papers [Lam et

al., 2012b; Zhang et al., 2015; Molzahn et al., 2013; Andersen et al., 2014; Jabr, 2012; Molzahn and

Hiskens, 2015] have leveraged the sparsity of power networks in order to break down the large-scale

semidefinite constraint into small-sized constraints. The simulations performed in those papers,

however, suggest that the SDP relaxation would fail to result in a rank one solution for large-scale

systems [Molzahn et al., 2013].

In the present work, we reduce the computational complexity of the SDP problem using a tree

decomposition method to arrive at a decomposed SDP relaxation with a set of small-sized SDP

matrices as opposed to a full-scale SDP matrix. We show that the full-scale SDP relaxation has a

solution whose rank is upper bounded by the ranks of the small-sized matrices of the decomposed

SDP relaxation. By working on the ranks of these small matrices, we propose a technique to

identify the problematic lines of the network for each contingency that may contribute to the

inexactness of the SDP relaxation for SCOPF. This diagnosis method may enable us to develop a

heuristic method, named penalized SDP relaxation, to find a near-global solution of the problem by

penalizing the loss over the problematic lines for each contingency. We perform several simulations

on large-scale benchmark systems and verify that the global minima are at most 1% away from the

feasible solutions obtained from the proposed penalized relaxation.
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1.2.3 Convexification of Power Flow Problem over Arbitrary Networks

Chapter 5 is concerned with a fundamental problem of finding an unknown vector of complex

voltages V ∈ Cn for an n-bus power system that satisfies given quadratic constraints associated

with known quantities that are measured or specified in the network. This quadratic feasibility

problem is central to the analysis and operation of power systems. However, checking the existence

of a solution is known to be NP-hard for both transmission and distribution networks due to their

reduction to the subset sum problem [Lehmann et al., 2014; Verma, 2009].

The classical power flow problem is usually solved approximately through linearization or in

an asymptotic sense using Newton’s method, given that the solution belongs to a good regime

containing voltage vectors with small angles. The question arises as to whether the PF problem

can be cast as the solution of a convex optimization problem over that regime. The objective

of Chapter 5 is to show that the answer to the above question is affirmative. More precisely,

we propose a class of convex optimization problems with the property that they all solve the PF

problem as long as angles are small. Each convex problem proposed in this work is in the form of

a semidefinite program.

One important feature of the present approach is that associated with each SDP, we explicitly

characterize the set of complex voltages that can be recovered via that convex problem. Since there

are infinitely many SDP problems, each capable of recovering a potentially different set of voltages,

designing a good SDP problem is cast as a convex problem as well.

1.3 Part III: Distributed Control

The area of distributed control has been extensively studied for the cooperative control of multi-

vehicle systems and coordination of autonomous vehicle formations [Murray, 2007; Shamma, 2007;

Keviczky et al., 2008]. The design of an optimal distributed controller using an efficient compu-

tational method is one of the most fundamental problems in the area of control systems, which

remains as an open problem due to its NP-hardness in the worst case. This part of the dissertation

aims to proceed with our recent results to develop an efficient computational method for finding a

near-global distributed controller for a given large-scale systems.

This part of the thesis is motivated by the computational challenges arising in the control
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of many complex real-world systems such as communication networks, naval systems, aerospace

systems, large-space flexible structures, traffic systems, wireless sensor networks, and various types

of multi-agent systems. Each of these dynamical systems can be regarded as an interconnected

or multi-channel system composed of several (interconnecting) subsystems. The classical control

theory provides a rich mathematical foundation for the design of a centralized controller for such

systems. A centralized control framework is concerned with a single control unit responsible for

collecting the outputs of all subsystems, processing the acquired information, and generating the

inputs of those subsystems. This centralized control approach is not an attractive, if not infeasible,

strategy for many real-world systems due to its computation and communication complexity as

well as some reliability and security issues.

1.3.1 Convex Relaxation for Optimal Distributed Control Problem

The objective of Chapter 6 is to study the potential of the SDP relaxation for the optimal distributed

control (ODC) problem for both finite and infinite-horizon cases. In addition the problem of

stochastic ODC (for stochastic systems) is studied in the present work. Our approach rests on

formulating each of these problems as a rank-constrained optimization problem from which an

SDP relaxation can be derived. With no loss of generality, this part focuses on the design of a

static controller. As the first contribution, we show that the ODC problem admits a sparse SDP

relaxation with solutions of rank at most 3. Since a rank-1 SDP matrix can be mapped back into

a globally-optimal controller, the low-rank SDP solution may be deployed to retrieve a near-global

controller.

Since the proposed relaxations are computationally expensive, we also propose computationally

cheap SDP relaxations associated with various formulations of the ODC problem. Afterwards, we

develop effective heuristic methods to recover a near-optimal controller from the low-rank SDP

solution. Note that the computationally-cheap SDP relaxations are exact for the classical (central-

ized) LQR and H2 problems. This implies that the relaxations indirectly solve Riccati equations

in the extreme case where the controller under design is unstructured. We conduct thousands of

simulations on a mass-spring system and 100 random systems to elucidate the efficacy of the pro-

posed relaxations. In particular, the design of numerous near-optimal structured controllers with

global optimality guarantees above 99% will be demonstrated.
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1.4 Part IV: Parallel Computing

Semidefinite programing is attractive due to its application in approximation of nonlinear and

combinatorial optimization problems [Lavaei and Low, 2012; Goemans and Williamson, 1995]. It is

known that small- to medium-sized SDP problems can be solved efficiently by interior point methods

in polynomial time up to any arbitrary precision [Vandenberghe and Boyd, 1996a]. However, these

methods are less practical for large-scale SDPs due to computation time and memory issues.

In Part IV of this work, we show that remarkable features of the Alternating Direction Method

of Multipliers (ADMM) make it a suitable choice for designing a distributed and parallel algorithm

for solving sparse large-scale semidefinite programs.

1.4.1 ADMM for Sparse Semidefinite Programming

Alternating direction method of multipliers is a first-order optimization algorithm proposed in the

mid-1970s by [Gabay and Mercier, 1976] and [Glowinsk and Marroco, 1975]. This method has

attracted much attention recently since it can be used for large-scale optimization problems and

also be implemented in parallel and distributed computational environments [Wen et al., 2010;

Boyd et al., 2011]. Compared to second order methods that are able to achieve a high accuracy via

expensive iterations, ADMM relies on low-complex iterations and can achieve a modest accuracy

in tens of iterations. Inspired by Nesterov’s scheme for accelerating gradient methods [Nesterov,

1983], great effort has been devoted to accelerating ADMM and attaining a high accuracy in a

reasonable number of iterations [Goldstein et al., 2014]. Since ADMM’s performance is affected by

the condition number of the problems data, diagonal rescaling is proposed in [Giselsson and Boyd,

2014] for a class of problems to improve the performance and achieve a linear rate of convergence.

This part aims to develop a fast, parallelizable algorithm for sparse semidefinite programing

problems. Based on the alternating direction method of multipliers, we design a numerical algo-

rithm, which has a guaranteed convergence under very mild assumptions. Each iteration of this

algorithm has a simple closed-form solution, consisting of scalar multiplications and eigenvalue

decompositions performed by individual computing agents. The cheap iterations of the proposed

algorithm enable solving real-world large-scale conic optimization problems.
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Rank and Sparsity
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Chapter 2

Low-rank Solution of Sparse Linear

Matrix Inequalities

This chapter is concerned with the problem of finding a low-rank solution of an arbitrary sparse

linear matrix inequality (LMI). To this end, we map the sparsity of the LMI problem into a graph.

We develop a theory relating the rank of the minimum-rank solution of the LMI problem to the

sparsity of its underlying graph. Furthermore, we propose three graph-theoretic convex programs to

obtain a low-rank solution. Two of these convex optimization problems need a tree decomposition

of the sparsity graph, which is an NP-hard problem in the worst case. The third one does not rely on

any computationally-expensive graph analysis and is always polynomial-time solvable. The results

of this work can be readily applied to three separate problems: minimum-rank matrix completion,

conic relaxation for polynomial optimization, and affine rank minimization. The results of this

chapter are employed in next chapters for two applications of optimal distributed control and

nonlinear optimization for electrical networks.
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2.1 Introduction

Let Sn denote the set of n×n real symmetric matrices and S+n denote the cone of positive semidefinite

matrices in Sn. Consider the linear matrix inequality (LMI) problem

find X ∈ Sn

subject to 〈Mk,X〉 ≤ ak, k = 1, . . . , p, (2.1a)

X � 0, (2.1b)

where � represents the positive semidefinite sign, the notation 〈A,B〉 denotes the Frobenius inner

product of matrices, M1, . . . ,Mp ∈ Sn are sparse matrices and a1, . . . , ap ∈ R are arbitrary fixed

scalars. The objective of this chapter is twofold. First, it is aimed to find a low-rank solution Xopt

of the above LMI (feasibility) problem using a convex program. Second, it is intended to study

the relationship between the rank of such a low-rank solution and the sparsity level of the matrices

M1, . . . ,Mk. To formulate the problem, let P ⊆ Sn denote the convex polytope characterized by

the linear inequalities given in (2.1a). The goal is to design an efficient algorithm to identify a

low-rank matrix Xopt in the set S+n ∩ P .

Observe that equality constraints are also covered by the general formulation given in (2.1).

The special case where P is an affine subspace of Sn (i.e., it is only characterized by linear equality

constraints) has been extensively studied in the literature [Au-Yeung and Poon, 1979; Barvinok,

2001; Ai et al., 2008]. In particular, the work [Barvinok, 2001] derives an upper bound on the rank

of Xopt, which depends on the dimension of P as opposed to the sparsity level of the problem.

The paper [Ai et al., 2008] develops a polynomial-time algorithm to find a solution satisfying the

bound condition given in [Barvinok, 2001]. However, since the bound obtained in [Barvinok, 2001]

is independent of the sparsity of the LMI problem (2.1), it is known not to be tight for several

practical examples [Sojoudi and Lavaei, 2014; Lavaei, 2013].

The investigation of the above-mentioned LMI has direct applications in three fundamental

problems: (i) minimum-rank positive semidefinite matrix completion, (ii) conic relaxation for poly-

nomial optimization, and (iii) affine rank minimization. In what follows, these problems will be

introduced in three separate subsections, followed by an outline of our contribution for each prob-

lem.



CHAPTER 2. LOW-RANK SOLUTION OF SPARSE LINEAR MATRIX INEQUALITIES 13

2.1.1 Low-rank Positive Semidefinite Matrix Completion

The LMI problem (2.1) encapsulates the low-rank positive semidefinite matrix completion problem,

which is as follows: given a partially completed matrix with some known entries, the positive

semidefinite matrix completion problem aims to design the unknown (free) entries of the matrix

in such a way that the completed matrix becomes positive semidefinite. As a classical result, this

problem has been fully addressed in [Grone et al., 1984], provided the graph capturing the locations

of the known entries of the matrix is chordal. The positive semidefinite matrix completion problem

plays a critical role in reducing the complexity of large-scale semidefinite programs [Fukuda et al.,

2001; Nakata et al., 2003; Kim et al., 2011; Jabr, 2012; Molzahn et al., 2013; Andersen et al., 2014].

In the case where a minimum-rank completion is sought, the problem is referred to as minimum-

rank positive semidefinite matrix completion. To formalize this problem, consider a simple graph

G = (VG , EG) with the vertex set VG and the edge set EG . Let gd(G) denote the Gram dimension of

G, defined as the smallest positive integer r such that for every X̂ ∈ S+|VG |, there exists a solution

to the following feasibility problem

find X ∈ S|VG |

subject to Xij = X̂ij , (i, j) ∈ EG , (2.2a)

Xkk = X̂kk, k ∈ VG , (2.2b)

X � 0, (2.2c)

with rank less than or equal to r. According to the above definition, every arbitrary positive

semidefinite matrix X̂ can be turned into a matrix X with rank at most gd(G) by manipulating

those off-diagonal entries of X̂ that correspond to the non-existent edges of G. The paper [Laurent

and Varvitsiotis, 2014] introduces the notion of Gram dimension and shows that gd(G) ≤ tw(G)+1

(for real-valued problems), where tw(G) denotes the treewidth of the graph G.

There is a large body of literature on graph-theoretic parameters regarded as minimum semidef-

inite rank of a graph over the space of real symmetric and complex Hermitian matrices [Fallat and

Hogben, 2007; Barrett et al., 2004; Sinkovic and van der Holst, 2011]. These two parameters, de-

noted as msrS(G) and msrH(G), are equal to the smallest rank of all positive semidefinite matrices

with the same support as the adjacency matrix of G in the sets of real symmetric and complex

Hermitian matrices respectively. It is straightforward from the definition that msrH(G) is a lower
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bound for msrS(G). In [Barioli et al., 2010], an example of a simple graph G is given, for the first

time, with the property msrH(G) < msrS(G). The notion of OS-vertex number of G, denoted by

OS(G), is proposed in [Hackney et al., 2009] that serves as a lower bound on msrH(G). The paper

[Hackney et al., 2009] also shows that OS(G) = msrH(G) for a chordal graph G. Examples of graphs

with OS(G) < msrH(G) are also introduced in [Mitchell et al., 2010]. The positive semidefinite zero

forcing number of a graph G, denoted by Z+(G), has first been introduced in [Barioli et al., 2010]

and is used for computation of msr of certain graphs. It is shown in [Barioli et al., 2010] that

Z+(G) + OS(G) = |G| (2.3)

for every graph G. See [Barioli et al., 2013] and [Fallat and Hogben, 2013] for more comprehensive

reviews on the relations between the graph theoretic parameters tw, msrS, msrH, OS and Z+.

The matrix completion problem (2.2) can be cast as the LMI problem (2.1) by representing

the constraints (2.2a) and (2.2b) as 〈eje∗i ,X〉 = X̂ij and 〈eke∗k,X〉 = X̂kk respectively, where

{e1, . . . , e|VG |} is the standard basis for R|VG |. Hence, the minimum-rank positive semidefinite

matrix completion problem amounts to finding a minimum-rank matrix in the convex set S+n ∩ P .

We utilize the notions of tree decomposition, minimum semidefinite rank of a graph, OS-vertex and

positive semidefinite zero forcing, to find low-rank matrices in S+n ∩ P using convex optimization.

Let G denote a graph capturing the sparsity of the LMI problem (2.1). Consider the convex problem

of minimizing a weighted sum of an arbitrary subset of the free entries of X subject to the matrix

completion constraint of (2.2). We show that the rank of every solution of this problem can be

upper bounded in terms of the OS and msr of some supergraphs of G. Our bound depends only on

the locations of the free entries minimized in the objective function rather than their coefficients. In

particular, given an arbitrary tree decomposition of G with width t, we show that the minimization

of a weighted sum of certain free entries of X guarantees that every solution Xopt of this problem

belongs to S+n ∩P and satisfies the relation rank{Xopt} ≤ t+1, for all possible nonzero coefficients of

the objective function. This result holds for both real and complex-valued problems. The problem of

finding a tree decomposition of minimum width is NP-complete [Arnborg et al., 1987]. Nevertheless,

for a fixed integer t, the problem of checking the existence of a tree decomposition of width t and

finding such a decomposition (if any) can be solved in linear time [Matoušek and Thomas, 1991;

Bodlaender, 1996]. Whenever a minimal tree decomposition is known, we offer infinitely many

optimization problems such that every solution of those problems satisfies the relation rank{Xopt} ≤
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tw(G) + 1.

In the case where a good decomposition of G with small width is not known, we propose a

polynomial-time solvable optimization that is able to find a matrix in S+n ∩ P with rank at most

2(n−msrH(G)). Note that this solution can be found in polynomial time, whereas our theoretical

upper bound on its rank is hard to compute. The upper bound 2(n−msrH(G)) is a small number

for a wide class of sparse graphs [Booth et al., 2008].

2.1.2 Sparse Quadratically-Constrained Quadratic Program

The problem of searching for a low-rank matrix in the convex set S+n ∩ P is important due to

its application in obtaining suboptimal solutions of quadratically-constrained quadratic programs

(QCQPs). Consider the standard nonconvex QCQP problem

minimize
x∈Rn−1

f0(x) (2.4a)

subject to fk(x) ≤ 0, k = 1, . . . , p, (2.4b)

where fk(x) = xTAkx+ 2bTk x+ ck for k = 0, . . . , p. Every polynomial optimization can be cast as

problem (2.4) and this also includes all combinatorial optimization problems [Shor, 1987; Nesterov

et al., 1994]. Thus, the above nonconvex QCQP “covers almost everything” [Nesterov et al., 1994].

To tackle this NP-hard problem, define

Fk ,

 ck bTk

bk Ak

 . (2.5)

Each fk has the linear representation fk(x) = 〈Fk,X〉 for the following choice of X:

X , [1 xT ]T [1 xT ]. (2.6)

It is obvious that an arbitrary matrix X ∈ Sn can be factorized as (2.6) if and only if it satisfies the

three properties X11 = 1, X � 0, and rank{X} = 1. Therefore, problem (2.4) can be reformulated
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as follows:

minimize
X∈Sn

〈F0,X〉 (2.7a)

subject to 〈Fk,X〉 ≤ 0 k = 1, . . . , p, (2.7b)

X11 = 1, (2.7c)

X � 0, (2.7d)

rank{X} = 1. (2.7e)

In the above representation of QCQP, the constraint (2.7e) carries all the nonconvexity. Neglecting

this constraint yields a convex problem, known as the semidefinite programming (SDP) relaxation

of QCQP [Vandenberghe and Boyd, 1996a; Anstreicher, 2012]. The existence of a rank-1 solution

for the SDP relaxation guarantees the equivalence of the original QCQP and its relaxed problem.

The SDP relaxation technique provides a lower bound on the minimum cost of the original

problem, which can be used for various purposes such as the branch and bound algorithm [Nesterov

et al., 1994]. To understand the quality of the SDP relaxation, this lower bound is known to be

at most 14% less than the minimum cost for the MAXCUT problem [Goemans and Williamson,

1995]. In general, the maximum possible gap between the solution of a graph optimization and

that of its SDP relaxation is defined as the Grothendieck constant of the graph [Briet et al., 2010;

Alon et al., 2006]. This constant is calculated for some special graphs in [Laurent and Varvitsiotis,

2011]. If the QCQP problem and its SDP relaxation result in the same optimal objective value,

then the relaxation is said to be exact. The exactness of the relaxation is substantiated for various

applications [Lavaei and Low, 2012; Lasserre, 2001; Kim and Kojima, 2003; Lavaei et al., 2011].

By exploring the optimal power flow problem, we will see in chapter 3 that the exactness of

the relaxation could be heavily formulation dependent. Indeed, we designed a practical circuit

optimization with four equivalent QCQPs, where only one of them had an exact SDP relaxation.

In the same context, we have also verified in chapter 3 that the SDP relaxation may have a hidden

rank-1 solution that could not be easily found. The reason is that the SDP relaxation of a sparse

QCQP problem often has infinitely many solutions and the conventional numerical algorithms

would find a solution with the highest rank. Hence, a question arises as to whether a low-rank

solution of the SDP relaxation of a sparse QCQP can be found efficiently. To address this problem,

let X̂ denote an arbitrary solution of the SDP relaxation. If the QCQP problem (2.4) is sparse and
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associated with a sparsity graph G, then every positive semidefinite matrix X satisfying the matrix

completion constraint of (2.2) is another solution of the SDP relaxation of the QCQP problem.

Now, the results spelled out in the preceding subsection can be used to find a low-rank SDP solution.

2.1.3 Affine Rank Minimization Problem

Consider the problem

minimize
W∈Rm×r

rank{W} (2.8a)

subject to 〈Nk,W〉 ≤ ak, k = 1, . . . , p, (2.8b)

where N1, . . . ,Np ∈ Rr×m are sparse matrices. This is an affine rank minimization problem without

any positive semidefinite constraint. A popular convexification method for the above non-convex

optimization is to replace its objective with the nuclear norm of W [Recht et al., 2010b]. This

is due to the fact that the nuclear norm ‖W‖∗ is the convex envelope for the function rank{W}

on the set {W ∈ Rm×r | ‖W‖ ≤ 1} [Fazel, 2002]. A special case of Optimization (2.8), known as

low-rank matrix completion problem, has been extensively studied in the literature due to its wide

applications [Johnson, 1990; Candès and Recht, 2009; Recht et al., 2010b; Keshavan et al., 2010].

In this problem, the constraint (2.8b) determines what entries of W are known.

A closely related problem is the following: can a matrix W be recovered by observing only

a subset of its entries? Interestingly, W can be successfully recovered by means of a nuclear

norm minimization as long as the matrix is non-structured and the number of observed entries

of W is large enough [Candès and Recht, 2009; Candès and Tao, 2010; Keshavan et al., 2010].

The performance of the nuclear norm minimization method for the problem of rank minimization

subject to general linear constraints has also been assessed in [Recht et al., 2011]. Based on

empirical studies, the nuclear norm technique is inefficient in the case where the number of free

(unconstrained) entries of W is relatively large. In the present work, we propose a graph-theoretic

approach that is able to generate low-rank solutions for a sparse problem of the form (2.8) and for

a matrix completion problem with many unknown entries.

Optimization (2.8) can be embedded in a bigger problem of the form (2.1) by associating the
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matrix W with a positive semidefinite matrix variable X defined as

X ,

 X1 W

WT X2

 , (2.9)

where X1 and X2 are two auxiliary matrices. Note that W acts as a submatrix of X corresponding

to its first m rows and last r columns. More precisely, consider the nonconvex problem

minimize
X∈Sr+m

rank{X} (2.10a)

subject to 〈Mk,X〉 ≤ ak, k = 1, . . . , p, (2.10b)

X � 0, (2.10c)

where

Mk ,

 0m×m
1
2NT

k

1
2Nk 0r×r

 , (2.11)

For every feasible solution X of the above problem, its associated submatrix W is feasible for (2.8)

and satisfies

rank{W} ≤ rank{X}. (2.12)

In particular, it is well known that the rank minimization problem (2.8) with linear constraints is

equivalent to the rank minimization (2.10) with LMI constraints [Fazel, 2002; Fazel et al., 2003].

Let X̂ denote an arbitrary feasible point of optimization (2.10). Depending on the sparsity level of

the problem (2.8), some entries of X̂ are free and do not affect any constraints of (2.10) except for

X � 0. Let the locations of those entries be captured by a bipartite graph. More precisely, define

B as a bipartite graph whose first and second parts of vertices are associated with the rows and

columns of W, respectively. Suppose that each edge of B represents a constrained entry of W. In

this work, we propose two convex problems with the following properties:

1. The first convex program is constructed from an arbitrary tree decomposition of B. The rank

of every solution to this problem is upper bounded by t + 1, where t is the width of its tree

decomposition. Given the decomposition, the low-rank solution can be found in polynomial

time.

2. Since finding a tree decomposition of B with a low treewidth may be hard in general, the

second convex program does not rely on any decomposition and is obtained by relaxing the
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real-valued problem (2.10) to a complex-valued convex program. The rank of every solution

to the second convex problem is bounded by the number 2(r + m − msrH{B}) and such a

solution can always be found in polynomial time.

2.1.4 Simple Illustrative Examples

To illustrate some of the main ideas to be discussed in this work, three simple examples will be

provided below in the context of low-rank positive semidefinite matrix completion.

Example 1.

Consider a partially-known matrix X ∈ S+n with unknown off-diagonal entries and known strictly

positive diagonal entries X11, . . . , Xnn. The aim is to design the unknown off-diagonal entries of

X to make the resulting matrix as low rank as possible. It can be shown that there are 2n rank-

1 matrices X ∈ S+n with the diagonal entries X11, . . . , Xnn, each of which can be expressed as

xxT for a vector x with the property that xi = ±
√
Xii. A question arises as to whether such

matrix completions can be attained via solving a convex optimization. To address this question,

consider the problem of finding a matrix X ∈ S+n with the given diagonal to minimize an arbitrary

weighted sum of the subdiagonal entries of X, i.e.,
∑n−1

i=1 tiXi+1,i for arbitrary nonzero coefficients

t1, . . . , tn−1. It can be verified that every solution of this optimization problem results in one of the

aforementioned 2n rank-1 matrices X. In other words, there are 2n ways to fill the matrix X, each

of which corresponds to infinitely many easy-to-characterize continuous optimization problems.

Example 2.

Consider a 3× 3 symmetric block matrix X partitioned as

X =


X11 X12 X13

X21 X22 X23

X31 X32 X33

 (2.13)

where X11 ∈ Rα×α, X22 ∈ Rβ×β and X33 ∈ Rγ×γ , for some positive numbers α, β and γ. Assume

that the block X13 is unknown while the remaining blocks of X are known either partially or

completely. Suppose that X admits a positive definite matrix completion, which implies that
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(a) (b) (c)

Figure 2.1: (a) The matrix X studied in Example 2 for α = γ; (b) the augmented matrix X̂

obtained from X in the case where α > γ; (c) the matrix X studied in Example 3.

rank{X} ≥ max{α+β, β+γ}. The goal is to perform the completion of X via convex optimization

such that rank{X} = max{α+ β, β + γ}.

Consider first the scenario where α = γ. Let {(i1, j1), . . . , (is, js)} denote an arbitrary set of

entries of X13 with s elements. Consider the optimization problem of minimizing
∑s

k=1 tkX13(ik, jk)

subject to the constraint that X is a positive semidefinite matrix in the form of (2.13), where

t1, . . . , ts are nonzero scalars and X13(ik, jk) denotes the (is, js) entry of X13. Let Xopt be an

arbitrary solution of this problem. In this work, we derive an upper bound on the rank of Xopt,

which depends only on the set {(i1, j1), . . . , (is, js)} and is independent of t1, . . . , ts. In particular,

if {(i1, j1), . . . , (is, js)} corresponds to s = α entries of X13 with no two elements in the same row

or column, then it is guaranteed that rank{Xopt} = max{α + β, β + γ} for all nonzero values of

t1, t2, . . . , ts. Figure 2.1(a) shows the blocks of matrix X, where the two 2× 2 blocks of X specified

by dashed red lines are known while the block X31 is to be designed. As a special case of the above

method, minimizing a weighted sum of the diagonal entries of X31 with nonzero weights leads to a

lowest-rank completion.

Consider now the scenario where α > γ. We add α − γ rows and α − γ columns to X and

denote the augmented matrix as X̂. This procedure is demonstrated in Figure 2.1(b), where the

added blocks are labeled as X̂14, X̂24, X̂34, X̂41, X̂42, X̂43 and X̂44. Note that the first α+ β + γ

rows and α + β + γ columns of X̂ are exactly the same as those of the matrix X. We also set all

diagonal entries of X̂44 to 1. The matrix X̂ has two partially-known 2 × 2 blocks of size α + β as

well as a square non-overlapping block containing X̂31 and X̂41. The problem under study now
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reduces to the matrix completion posed in the previous scenario α = γ. More precisely, consider

the problem of minimizing an arbitrary weighted sum of the diagonal entries of the non-overlapping

block (X̂31, X̂41) with nonzero weights over all positive semidefinite partially-known matrices X̂.

Every solution X̂opt of this optimization has rank at most α+ β, and so does its submatrix Xopt.

Example 3.

Consider the 4× 4 symmetric block matrix X shown in Figure 2.1(c) with partially-known blocks

X11,X21,X22,X32,X33,X43,X44 and totally-unknown blocks X31,X41,X42. The goal is to fill the

matrix to a minimum-rank positive semidefinite matrix. For simplicity, assume that the matrix

X admits a positive definite completion and that all 16 blocks Xij have the same size α × α. It

can be verified that the matrix X admits a positive semidefinite completion with rank 2α. To

convert the problem into an optimization, one can minimize the weighted sum of certain entries of

X31,X41,X42. It turns that if the weighted sum of the diagonal entries of one or all of these three

blocks is minimized, the rank would be higher than 2α. However, the minimization of the diagonal

entries of the two blocks X31 and X42 always produces a lowest-rank solution.

2.2 Notations and Definitions

Throughout this chapter, the symbols R and C denote the sets of real and complex numbers,

respectively. Sn denotes the space of n × n real symmetric matrices and Hn denotes the space of

n × n complex Hermitian matrices. Also, S+n ⊂ Sn and H+
n ⊂ Hn represent the convex cones of

real and complex positive semidefinite matrices, respectively. The set of notations (Fn,F+
n ,F) refers

to either (Sn,S+n ,R) or (Hn,H+
n ,C) depending on the context (i.e., whether the real or complex

domain is under study). Re{·}, Im{·}, rank{·}, and trace{·} denote the real part, imaginary part,

rank, and trace of a given scalar/matrix. Matrices are shown by capital and bold letters. The

symbols (·)T and (·)∗ denote transpose and conjugate transpose, respectively. The notation 〈A,B〉

represents trace{A∗B}, which is the inner product of A and B. Also, “i” is reserved to denote the

imaginary unit. The notation ]x denotes the angle of a complex number x. The notation W � 0

means that W is a Hermitian and positive semidefinite matrix. The (i, j) entry of W is denoted as

Wij , unless otherwise mentioned. Given scalars x1, . . . , xn, the notation diag{[x1, . . . , xn]} denotes

a n × n diagonal matrix with the diagonal entries x1, . . . , xn. The vertex set and edge set of a
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Figure 2.2: A maximal OS-vertex sequence for the Petersen graph

simple undirected graph G are shown by the notations VG and EG , and the graph G is identified

by the pair (VG , EG). NG(k) denotes the set of all neighbors of the vertex k in the graph G. The

symbol |G| shows the number of vertices of G.

Definition 1. For two simple graphs G1 = (V1, E1) and G2 = (V2, E2), the notation G1 ⊆ G2 means

that V1 ⊆ V2 and E1 ⊆ E2. G1 is called a subgraph of G2 and G2 is called a supergraph of G1. A

subgraph G1 of G2 is said to be an induced subgraph if for every pair of vertices vl, vm ∈ V1, the

relation (vl, vm) ∈ E1 holds if and only if (vl, vm) ∈ E2. In this case, G1 is said to be induced by the

vertex subset V1.

Definition 2. For two simple graphs G1 = (V1, E1) and G2 = (V2, E2), the subgraph of G2 induced

by the vertex set V2 \ V1 is shown by the notation G2 \ G1.

Definition 3. For two simple graphs G1 = (V, E1) and G2 = (V, E2) with the same set of vertices,

their union is defined as G1∪G2 = (V, E1∪E2) while the notation h shows their subtraction edge-wise,

i.e., G1 h G2 = (V, E1 \ E2).

Definition 4. The representative graph of an n× n Hermitian matrix W, denoted by G (W), is a

simple graph with n vertices whose edges are specified by the locations of the nonzero off-diagonal

entries of W. In other words, two arbitrary vertices i and j are connected if Wij is nonzero.
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Figure 2.3: A maximal OS-vertex sequence for a tree

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

   

 

 

 

   

Figure 2.4: A minimal tree decomposition for a ladder

2.3 Connection Between OS and Treewidth

In this section, we study the relationship between the graph parameters of OS and treewidth. For

the sake of completeness, we first review these two graph notions.

Definition 5 (OS). Given a graph G, let O = {ok}sk=1 be a sequence of vertices of G. Define Gk
as the subgraph induced by the vertex set {o1, . . . , ok} for k = 1, . . . , s. Let G′k be the connected

component of Gk containing ok. O is called an OS-vertex sequence of G if for every k ∈ {1, . . . , s},

the vertex ok has a neighbor wk with the following two properties:

1. wk 6= or for 1 ≤ r ≤ k

2. (wk, or) /∈ EG for every or ∈ VG′k \ {ok},

Denote the maximum cardinality among all OS-vertex sequences of G as OS(G) [Hackney et al.,

2009] .

Figure 2.2 shows the construction of a maximal OS-vertex sequence for the Petersen graph.

Dashed lines and bold lines highlight nonadjacency and adjacency, respectively, to demonstrate

that each wi satisfies the conditions of Definition 5. Figure 2.3 illustrates the procedure for finding
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a maximal OS-vertex sequence for a tree. The connected component of each ok in the subgraph

induced by {o1, . . . , ok} is also shown in the picture. Notice that although w2 is connected to o1, it

is a valid choice since o1 and o2 do not share the same connected component in G2.

Definition 6 (Treewidth). Given a graph G = (VG , EG), a tree T is called a tree decomposition of

G if it satisfies the following properties:

1. Every node of T corresponds to and is identified by a subset of VG.

2. Every vertex of G is a member of at least one node of T .

3. For every edge (i, j) of G, there exists a node in T containing vertices i and j simultaneously.

4. Given an arbitrary vertex k of G, the subgraph induced by all nodes of T containing vertex k

must be connected (more precisely, a tree).

Each node of T is a bag (collection) of vertices of H and therefore it is referred to as a bag. The

width of a tree decomposition is the cardinality of its biggest bag minus one. The treewidth of G is

the minimum width over all possible tree decompositions of G and is denoted by tw(G).

Note that the treewidth of a tree is equal to 1. Figure 2.4 shows a graph G with 6 vertices

named a, b, c, d, e, f , together with its minimal tree decomposition T with 4 bags V1, V2, V3, V4. The

width of this decomposition is equal to 2.

Definition 7 (Z+). Let G be a simple graph. A subset of vertices Z ⊆ VG is regarded as a positive

semidefinite zero forcing set of G, if starting from Z ′ := Z, it is possible to add all of the

vertices of G to Z ′ by repeating the following operation:

• Choose a vertex w ∈ VG \ Z ′ and let W be the set of vertices of the connected component of

G \ Z ′ that contains w. Add w to Z ′, if there exist a vertex u ∈ Z ′ such that w is the only

neighbor of u in the subgraph of G induced by W ∪ {u}.

The positive semidefinite zero forcing number of G, denoted by Z+(G), is the minimum of

|Z| over all positive semidefinite zero forcing sets Z ⊆ VG.

Definition 8 (Enriched Supergraph). Given a graph G accompanied by a tree decomposition T

of width t, G is called an enriched supergraph of G derived by T if it is obtained according to the

following procedure:
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(a)

 

 

 

(b)

Figure 2.5: (a) This figure illustrates Step 3 of Definition 8 for designing an enriched supergraph.

The shaded area includes the common vertices of bags V and V ′; (b) OS-vertex sequence O for the

graph G depicted in Figure 2.4.

1. Add a sufficient number of (redundant) vertices to the bags of T , if necessary, in such a

way that every bag includes exactly t+ 1 vertices. Also, add the same vertices to G (without

incorporating new edges). Denote the new graphs associated with T and G as T and G,

respectively. Set O as the empty sequence and T̃ = T .

2. Identify a leaf of T̃ , named V . Let V ′ denote the neighbor of V in T̃ .

3. Let V \ V ′ = {o1, . . . , os} and V ′ \ V = {w1, . . . , ws}. Update O, G and T̃ as

O := O ∪ {o1, . . . , os}

G := (VG , EG ∪ {(o1, w1), . . . , (os, ws)})

T̃ := T̃ \V

4. If T̃ has more than one bag, go to Step 2. Otherwise, terminate.

The graph G is referred to as an enriched suppergraph of G derived by T . Moreover, O serves as

an OS-vertex sequence for this supergraph and every bag of T is a positive semidefinite zero forcing

set for G.

Figure 2.5(a) illustrates Step 3 of the above definition. Figure 2.6 delineates the process of

obtaining an enriched supergraph G of the graph G depicted in Figure 2.4. Bold lines show the

added edges at each step of the algorithm. Figure 2.5(b) sketches the resulting OS-vertex sequence
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Figure 2.6: An enriched supergraph G of the graph G given in Figure 2.4

O. Observe that whether or not each non-bold edge exists in the graph, O still remains an OS-vertex

sequence. The next theorem reveals the relationship between OS and treewidth.

Theorem 1. Given a graph G accompanied by a tree decomposition T of width t, consider the

enriched supergraph G of G derived by T together with the sequence O constructed in Definition 8.

Let Gs be an arbitrary member of
{
Gs
∣∣ (G h G) ⊆ Gs ⊆ G

}
:

a) Then, O is an OS-vertex sequence for Gs of size |O| = |Gs| − t− 1.

b) Every bag Z ∈ VT is a positive semidefinite zero forcing set for Gs of size |Z| = t+ 1.

Proof. Consider the procedure described in Definition 8 for the construction of the supergraph G.

It is easy to verify that O includes all vertices of G except for those in the only remaining vertex

of T̃ when this process is terminated. Call this bag V1. Hence,

|O| = |G| − |V1| = |G| − (t+ 1). (2.14)

Now, it remains to show that O is an OS-vertex sequence. To this end, let Gs be an arbitrary

member of
{
Gs
∣∣ (G h G) ⊆ Gs ⊆ G

}
. We use induction to prove that O is an OS-vertex sequence

of Gs.

For |T |= 1, the sequence O is empty and the statement is trivial. For |T |> 1, consider the first

run of the loop in the algorithm. Notice that

{o1, . . . , os} ⊆ V and {o1, . . . , os} ∩ V ′ = ∅. (2.15)

Let T v denote the subgraph induced by all bags of T that include an arbitrary vertex v ∈ G.

According to the definition of tree decomposition, we have

V ∈ T o and V ′ /∈ T o (2.16)
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for every o ∈ {o1, . . . , os}. Since T o is a connected subgraph of T and V is a leaf, (2.16) implies

that T o has one node and no edges, i.e.,

T o = ({V },∅) for o ∈ {o1, . . . , os}. (2.17)

On the other hand, since {w1, . . . , ws} ∩ V = ∅, we have

V /∈ VT w
for w ∈ {w1, . . . , ws}. (2.18)

Given a pair (i, j) ∈ {1, . . . , s} × {1, . . . , s}, the relations (2.17) and (2.18) yield that the trees T oi
and T wj do not intersect and therefore (oi, wj) /∈ EG . Accordingly, since the edges (o1, w1), . . . , (os, ws)

are added to the graph at Step 3 of the algorithm, we have

(wi, oj) ∈ EGs ⇐⇒ i = j (2.19)

This means that the vertex oi in the sequence O has a neighbor wi satisfying the requirements of

the OS definition (note that (oi, wi) is an edge of Gs).

On the other hand, T \V is a tree decomposition for the subgraph of G induced by the vertex

subset VG \ {o1, . . . , os}. Hence, according to the induction assumption, the remaining members of

the sequence O satisfy the conditions of Definition 5. This completes the proof.

Proof of Part (b) follows directly from definition.

Corollary 1. For every graph G, there exists a supergraph G with the property that

max
Gs

{
Z+(Gs)

∣∣ (G h G) ⊆ Gs ⊆ G
}
≤ tw(G) + 1 (2.20)

Proof. The proof follows directly from Theorem 1 and the equation (2.3).

2.4 Low-Rank Solutions Via Graph Decomposition

In this section, we develop a graph-theoretic technique to find a low-rank feasible solution of the

LMI problem (2.1). To this end, we first introduce a convex optimization problem.

Optimization A: Let G and G′ be two graphs such that VG = {1, . . . , n}, VG′ = {1, . . . ,m},

n ≤ m, and EG ⊆ EG′. Consider arbitrary matrices Xref ∈ F+
n and T ∈ Fm with the property that
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G (T) = G′, where (F+
n ,Fm) is either (S+n , Sm) or (H+

n ,Hm). The problem

minimize
X∈Fm

〈T,X〉 (2.21a)

subject to Xkk = Xref
kk , k ∈ VG , (2.21b)

Xkk = 1 k ∈ VG′ \ VG , (2.21c)

Xij = Xref
ij (i, j) ∈ EG , (2.21d)

X � 0, (2.21e)

is referred to as “Optimization A with the input (G,G′,T, Xref)”.

Optimization A is a convex semidefinite program with a non-empty feasible set containing the

point  Xref 0n×(m−n)

0(m−n)×n I(m−n)

 . (2.22)

Let X
opt ∈ Fm denote an arbitrary solution of Optimization A with the input (G,G′,T,Xref) and

Xopt ∈ Fn represent its n-th leading principal submatrix. Then, Xopt is called the subsolution to

Optimization A associated with X
opt

. Note that Xopt and Xref share the same diagonal and values

for the entries corresponding to the edges of G. Hence, Optimization A is intrinsically a positive

semidefinite matrix completion problem with the input Xref and the output Xopt.

Definition 9 (msr). Given a simple graph G, define the real symmetric and complex Hermitian

minimum semidefinite rank of G as

msrS(G) , min
{

rank(W) |G (W) = G, W ∈ S+n
}

(2.23a)

msrH(G) , min
{

rank(W) |G (W) = G, W ∈ H+
n

}
. (2.23b)

Theorem 2. Assume that M1, . . . ,Mp are arbitrary matrices in Fn which is equal to either Sn or

Hn. Suppose that a1, . . . , ap are real numbers such that the feasibility problem

find X ∈ Fn

subject to 〈Mk,X〉 ≤ ak, k = 1, . . . , p, (2.24a)

X � 0, (2.24b)

has a positive-definite feasible solution Xref ∈ F+
n . Let G = G (M1) ∪ · · · ∪ G (Mp).
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a) Consider an arbitrary supergraph G′ of G. Every subsolution Xopt to Optimization A with the

input (G,G′,T,Xref) is a solution to the LMI problem (2.24) and satisfies the relation

rank{Xopt} ≤ |G′| −min
Gs

{
msrF(Gs)

∣∣ (G′ h G) ⊆ Gs ⊆ G′
}

(2.25)

b) Consider an arbitrary tree decomposition T of G with width t. Let G be an enriched supergraph

of G derived by T . Every subsolution Xopt to Optimization A with the input (G,G,T,Xref)

is a solution to (2.24) and satisfies the relation

rank{Xopt} ≤ t+ 1 (2.26)

Proof. To prove Part (a), notice that Xij does not play a role in the linear constraint (2.24a) of the

LMI problem (2.24) as long as i 6= j and (i, j) 6∈ EG . It can be inferred from this property that Xopt

is a solution of (2.24). Now, it remains to show the validity of the inequality (2.25). Constraints

(2.21b), (2.21c) and (2.21d) imply that for every feasible solution X of Optimization A, the matrix

X−X
opt

belongs to the convex cone

C = {W ∈ Fm|Wkk = 0 for k ∈ VG′ , Wij = 0 for (i, j) ∈ EG} . (2.27)

Therefore, a dual matrix variable Λ could be assigned to these constraints, which belongs to the

dual cone

C⊥ =
{
W ∈ Fm

∣∣Wij = 0 for (i, j) 6∈ EG and i 6= j
}
. (2.28)

Hence, the Lagrangian of Optimization A can be expressed as

L(X,Λ,Φ) = trace{TX}+ trace{Λ(X−X
opt

)} − trace{ΦX}

= trace{(Λ + T−Φ)X} − trace{ΛX
opt}

(2.29)

where Φ � 0 denotes the matrix dual variable corresponding to the constraint X � 0. The infimum

of the Lagrangian over X is −∞ unless Φ = Λ + T. Therefore, the dual problem is as follows:

maximize
Λ∈Fm

− 〈Λ,Xopt〉 (2.30a)

subject to Λij = 0 (i, j) /∈ EG and i 6= j, (2.30b)

Λ + T � 0. (2.30c)
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By pushing the diagonal entries of Λ toward infinity, the inequality Λ + T � 0 will become strict.

Hence, strong duality holds according to the Slater’s condition. If Φ = Φopt denotes an arbitrary

dual solution, the complementary slackness condition 〈Φopt,X
opt〉 = 0 yields that

rank{Φopt}+ rank{Xopt} ≤ m (2.31)

(note that since the primal and dual problems are strictly feasible, X
opt

and Φopt are both finite).

On the other hand, according to the equations Φ = Λ + T and Λ ∈ C⊥, we have

Φopt
ij 6= 0, for (i, j) ∈ EG′ \ EG (2.32a)

Φopt
ij = 0, for (i, j) /∈ EG′ and i 6= j. (2.32b)

Therefore,

(G′ h G) ⊆ G (Φopt) ⊆ G′ (2.33)

The proof of Part (a) is completed by combining (2.31) and (2.33) after noting that rank{Xopt} ≤

rank{Xopt} (recall that Xopt is a submatrix of X
opt

).

For Part (b), it follows from Theorem 1 that OS(Gs) ≥ |G|− t−1 for every Gs with the property

(G h G) ⊆ Gs ⊆ G. Therefore,

rank{Xopt} ≤ |G| −min
{

msrF(Gs)
∣∣ (G h G) ⊆ Gs ⊆ G

}
≤ |G| −min

{
OS(Gs)

∣∣ (G h G) ⊆ Gs ⊆ G
}

≤ |G| − (|G| − t− 1)

≤ t+ 1

(2.34)

(note that OS(G) ≤ msrF(G) as proven in [Hackney et al., 2009]). This completes the proof.

Corollary 2. The inequality in (2.25), leads to the following upper bound on rank{Xopt} in terms

of positive semidefinite zero forcing number:

rank{Xopt} ≤ max
Gs

{
Z+(Gs)

∣∣ (G′ h G) ⊆ Gs ⊆ G′
}

(2.35)

Observe that the objective function of Optimization A is a weighted sum of certain entries of

the matrix X, where the weights come from the matrix T. Part (a) of Theorem 2 proposes an

upper bound on the rank of all subsolutions of this optimization, which is contingent upon the

graph of the weight matrix T without making use of the nonzero values of the weights.
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Corollary 3. If the LMI problem (2.24) has a positive-definite feasible solution, then it has a

solution Xopt with rank at most tw(G) + 1.

Proof. The proof follows immediately from Part (b) of Theorem 2 by considering T to be a minimal

tree decomposition of G.

Note that Theorem 2 and Corollary 3 both require the existence of a positive-definite feasible

solution. This assumption will be reduced to only the feasibility of the LMI problem (2.24) in the

next section.

We now revisit Examples 1, 2 and 3 provided earlier and study them using Theorem 2. First,

consider Example 1. The graph G corresponding to a matrix X with known diagonal entries has

the vertex set {1, 2, . . . , n} with no edges. An enriched supergraph graph G can be obtained from

G by connecting vertices i and i+ 1 for i = 1, . . . , n− 1. Consider an arbitrary matrix T ∈ Sn with

the representative graph G. This matrix is sparse with nonzero subdiagonal and superdiagonal.

Using Theorem 2, Optimization A yields a solution such that Xopt ≤ tw(G) + 1. Since G does not

have any edges, its treewidth is equal to 0. As a result, every solution of Optimization A has rank

1.

Consider now Example 2 with X visualized in Figure 2.1. As can be observed, two 2× 2 blocks

of X specified by dashed red lines are known and the goal is to design the block X31. The graph

G has n = α + β + γ vertices with the property that the subgraphs induced by the vertex subsets

{1, . . . , α+ β} and {α+ 1, . . . , n} are both complete graphs. In the case where α = γ, an enriched

supergraph G can be obtained by connecting vertex i to vertex α+β+i for i = 1, 2, . . . , α. Consider

a matrix T with the representative graph G. Optimization A then aims to minimize the weighted

sum over the diagonal entries of X31. Consider now the case where α > γ. A tree decomposition

of G has two bags {1, . . . , α + β} and {α + 1, . . . , α + β + γ}. Since these bags have disparate

sizes, the definition of enriched supergraph requires adding α− γ new vertices to the bag with the

fewer number of vertices. This can be translated as adding α− γ rows and α− γ columns to X in

order to arrive at the augmented matrix X̂ depicted in Figure 2.1(b). In this case, Optimization A

may minimize a weighted sum of the diagonal entries of the square block including X̂31 and X̂41.

Regarding Example 3, the matrix G has the vertex set VG = {1, . . . , 4α} such that its subgraphs

induced by the vertex subsets {1, . . . , 2α}, {α + 1, . . . , 3α}, and {2α + 1, . . . , 4α} are all complete
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graphs. A tree decomposition of G has three bags {1, . . . , 2α}, {α+1, . . . , 3α} and {2α+1, . . . , 4α}.

Hence, an enriched graph G can be obtained by connecting vertices i and 2α+ i as well as vertices

i + α and 3α + i for i = 1, . . . , α. This implies that Optimization A minimizes a weighted sum of

the diagonal entries of the blocks X31 and X42.

2.5 Combined Graph-Theoretic and Algebraic Method

The results derived in the preceding section require the existence of a positive-definite feasible

solution for the LMI problem (2.24). The first objective of this part is to relax the above assumption

to only the existence of a feasible solution. The second objective is to develop a combined graph-

theoretic and algebraic method offering stronger results compared to Theorem 2 and Corollary 3.

Given an arbitrary matrix M in Fn, we denote its Moore-Penrose pseudoinverse as M+. If r =

rank{M} and M admits the eigenvalue decomposition M = QΛQ∗ with Λ = diag{[λ1, . . . , λr, 0, . . . , 0]},

then M+ = QΛ+Q∗ where Λ+ = diag{[λ−11 , . . . , λ−1r , 0, . . . , 0]}. The next lemma is borrowed from

[Carlson et al., 1974].

Lemma 1. Given a 2× 2 block matrix

M =

 A B∗

B C

 ∈ Fn, (2.36)

define its generalized Schur complement as S+ , C − BA+B∗. The relation M � 0 holds if and

only if

A � 0, S+ � 0 and null{A} ⊆ null{B}. (2.37)

In addition, the equation rank{M} = rank{A} + rank{S+} is satisfied if and only if null{A} ⊆

null{B}.

Theorem 3. Consider the block matrix

M (U) ,


A B∗x B∗y

Bx X U∗

By U Y

 (2.38)

where A, X, Y, B∗x and B∗y are known and the matrix U is the variable. Define

Mx ,

 A B∗x

Bx X

 and My ,

 A B∗y

By Y

 (2.39)



CHAPTER 2. LOW-RANK SOLUTION OF SPARSE LINEAR MATRIX INEQUALITIES 33

Define also S+
x , X−BxA

+B∗x and S+
y , Y−ByA

+B∗y. Given a constant matrix T of appropriate

dimension, every solution Uopt of the optimization problem

minimize
U

〈T,U〉 (2.40a)

subject to M (U) � 0. (2.40b)

has the minimum possible rank, i.e.,

rank{M
(
Uopt

)
} = max {rank{Mx}, rank{My}} , (2.41)

provided that S+
y TS+

x has the maximum possible rank, i.e.,

rank{S+
y TS+

x } = min
{

rank{S+
x }, rank{S+

y }
}

(2.42)

Proof. Let rx , rank{S+
x } and ry , rank{S+

y }. Consider the following eigenvalue decompositions

for S+
x and S+

y :

S+
x = QxΛxQ

∗
x and S+

y = QyΛyQ
∗
y. (2.43)

Let Qx = [Qx1 Qx0] and Qy = [Qy1 Qy0], where Qx1 ∈ Fn×rx and Qy1 ∈ Fn×ry . We can also

write

Λx ,

 Λx1 0

0 0

 and Λy ,

 Λy1 0

0 0

 , (2.44)

where Λx1 and Λy1 are diagonal matrices in Fnx and Fny , respectively. Define

Eij , Q∗yi(U−ByA
+B∗x)Qxj for i, j ∈ {1, 2}. (2.45)

It can be shown that

U−ByA
+B∗x =[Qy1 Qy0]

 E11 E10

E01 E00

 Q∗x1

Q∗x0


=Qy1E11Q

∗
x1 + Qy1E10Q

∗
x0 + Qy0E01Q

∗
x1 + Qy0E00Q

∗
x0.

(2.46)

Hence,

S+ ,

 X U∗

U Y

−
 Bx

By

A+
[

B∗x B∗y

]

=

 Qx1Λx1Q
∗
x1 U∗ −ByA

+B∗x

U−ByA
+B∗x Qy1Λy1Q

∗
y1

 .
(2.47)
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The constraint M(U) � 0 yields S+ � 0 and therefore 0 E∗ij

Eij 0

 =

 Q∗xi 0

0 Q∗yj

 Qx1Λx1Q
∗
x1 U∗ −ByA

+B∗x

U−ByA
+B∗x Qy1Λy1Q

∗
y1

 Qxi 0

0 Qyj


=

 Q∗xi 0

0 Q∗yj

S+

 Qxi 0

0 Qyj

 � 0 =⇒ Eij = 0

(2.48)

for every (i, j) ∈ {(0, 0), (1, 0), (0, 1)}. As a result, the block U can be written as U = ByA
+B∗x +

Qy1U1Q
∗
x1, where U1 , E11 ∈ Fry×rx . Therefore,

S+ ,

 X U∗

U Y

−
 Bx

By

A+
[

B∗x B∗y

]

=

 Qx1 0

0 Qy1

 Λx1 U∗1

U1 Λy1

 Q∗x1 0

0 Q∗y1

 .
(2.49)

Since Mx,My � 0 according to Lemma 1, one can write

null{A} ⊆ null{Bx} and null{A} ⊆ null{By} (2.50)

and therefore Lemma 1 yields

rank{Mx} = rank{A}+ rx (2.51)

rank{My} = rank{A}+ ry (2.52)

This implies that

M � 0 =⇒

 Λx1 U∗1

U1 Λy1

 � 0 (2.53)

On the other hand,

trace{TU∗} = trace{T(ByA
+B∗x + Qy1U1Q

∗
x1)
∗}

= trace{B∗yTBxA
+}+ trace{Q∗y1TQx1U

∗
1}

(2.54)

Hence, the problem (2.40) is equivalent to

minimize
U1

〈T1,U1〉 (2.55a)

subject to

 Λx1 U∗1

U1 Λy1

 � 0. (2.55b)
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where T1 = Q∗y1TQx1. Let Uopt
1 be an arbitrary solution of the above problem. It can be easily

seen that the dual matrix variable corresponding to the sole constraint of this problem is equal to Γx1 T∗1

T1 Γy1

 � 0 (2.56)

for some matrices Γx1 and Γy1. It follows from the complementary slackness that

trace


 Λx1 U∗1

U1 Λy1

 Γx1 T∗1

T1 Γy1

 = 0, (2.57)

implying that

rank


 Λx1 U∗1

U1 Λy1

+ rank


 Γx1 T∗1

T1 Γy1

 = rx + ry. (2.58)

Therefore,

rank


 Λx1 (Uopt

1 )∗

Uopt
1 Λy1

 ≤ rx + ry − rank{T1} = rx + ry − rank{S+
y TS+

x } (2.59)

Moreover, it can be concluded from (2.50) that

null{A} ⊆ null{Bx} ∩ null{By} = null


 Bx

By

 (2.60)

The proof is now completed by Lemma 1.

Remark 1. Note that the condition (2.42) required in Theorem 3 is satisfied for a generic matrix

T.

Corollary 4. Suppose that O ∈ Fry×rx is a matrix with 1’s on its rectangular diagonal and 0

elsewhere. If the matrix M(U) is completed as

U = ByA
+B∗x + Qy1

√
Λy1 O

√
Λx1Q

∗
x1 (2.61)

then, it satisfies the rank property (2.41). This explicit formula provides an iterative matrix-

completion method.

Definition 10. For every matrix X ∈ Fk and sets A,B ⊆ {1, . . . , k}, define X(A,B) as a submatrix

of X obtained by choosing those rows of X with indices appearing in A and those columns of X

with indices in B. If A = B, then X(A,B) will be abbreviated as X(A).
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Assume that M1, . . . ,Mp are arbitrary matrices in Fn, which is equal to either Sn or Hn.

Suppose that a1, . . . , ap are real numbers such that the feasibility problem

find X ∈ Fn

subject to 〈Mk,X〉 ≤ ak, k = 1, . . . , p, (2.62a)

X � 0, (2.62b)

has a feasible solution Xref ∈ Fn. Let G = G (M1) ∪ · · · ∪ G (Mp). Consider an arbitrary tree

decomposition T of G with the set of bags VT = {V1, . . . , V|T |}. Let

r , max
{

rank{Xref(Vk)} | 1 ≤ k ≤ |T |
}

(2.63)

and define G as a graph obtained from G by adding

|T |∑
k=1

(
r − rank{Xref(Vk)}

)
(2.64)

new isolated vertices. Let T , (VT , ET ) be a tree decomposition for G with the bags V 1, . . . , V |T |,

where each bag V k is constructed from Vk by adding r−rank{Xref(Vk)} of the new isolated vertices

in VG \ VG such that (V i \ Vi) ∩ (V j \ Vj) = ∅ for every i 6= j. Let m , |G| and define the matrix

X
ref ∈ Fm as

X
ref
kk = Xref

kk for k ∈ VG (2.65a)

X
ref
kk = 1 for k ∈ VG \ VG (2.65b)

X
ref
ij = Xref

ij for (i, j) ∈ EG (2.65c)

X
ref
ij = 0 for (i, j) /∈ EG . (2.65d)

For every pair i, j ∈ {1, . . . , |T |}, define

S+
ij , X

ref
(V i \ V j)

−X
ref

(V i \ V j , V i ∩ V j)
(
X

ref
(V i ∩ V j)

)+
X

ref
(V i ∩ V j , V i \ V j) (2.66)

Let the edges of the tree decomposition T be oriented in such a way that the indegree of every

node becomes less than or equal to 1. The resulting directed tree is denoted as ~T . The notation

E~T also represents the edge set of this directed tree.
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Optimization B: This problem is as follows:

minimize
X∈Fm

∑
(i,j)∈E~T

〈Tij ,Xij〉 (2.67a)

subject to Xk = X
ref
k k = 1, . . . , |T |, (2.67b)

X � 0, (2.67c)

where Tij ’s are arbitrary constant matrices of appropriate dimensions and

Xk , X(V k), X
ref
k , X

ref
(V k) and Xij , X(V i \ V j , V j \ V i) (2.68)

for every i, j, k ∈ {1, . . . , |T |}.

Let X
opt ∈ Fm denote an arbitrary solution of problem (2.67) and Xopt ∈ Fn be equal to

X
opt

(VG). Then, Xopt is called the subsolution to Optimization B associated with X
opt

. Note that

Xopt and Xref share the same diagonal and values for the entries corresponding to the edges of G.

Hence, Optimization B is a positive semidefinite matrix completion problem with the input Xref

and the output Xopt.

Theorem 4. Given an arbitrary solution Xref of the problem (2.62), every subsolution Xopt of

Optimization B has the property

rank{Xopt} = max
{

rank{Xref(Vk)} | k = 1, . . . , |T |
}

(2.69)

provided that the following equality holds for every (i, j) ∈ E~T :

rank{S+
ijTijS

+
ji} = min

{
rank{S+

ij}, rank{S+
ji}
}
. (2.70)

Proof. The proof follows immediately from Theorem 3 if |T | = 2. To prove by induction in the

general case, assume that the statement of Theorem 4 holds if |T | ≤ p for an arbitrary natural

number p, and the goal is to show its validity for |T | = p+1. With no loss of generality, assume that

Vp+1 is a leaf of ~T and that (Vp, Vp+1) is a directed edge of this tree. Consider a tree decomposition

T ′ = (VT ′ , ET ) for the sparsity graph of Optimization B with the bags V
′
1, . . . , V

′
|T |, where each

bag V
′
i is defined as the union of V i and its parent in the oriented tree T , if any. It results from

the chordal theorem that the constraint X � 0 in Optimization B can be replaced by the set of
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constraints X(V
′
j) � 0 for j = 1, . . . , p + 1. This implies that Optimization B can be decomposed

into p =|T |−1 independent semidefinite programs:

minimize
X(V

′
j)

〈Tij ,Xij〉 (2.71a)

subject to Xi = X
ref
i , (2.71b)

Xj = X
ref
j , (2.71c)

X(V
′
j) � 0, (2.71d)

for every (i, j) ∈ E~T . Notice that the submatrices X
ref
1 , . . . ,X

ref
|T | all have the same rank r. By

defining V
′
0 , V

′
1 ∪ V

′
2 . . . ∪ V

′
p, it follows from the induction assumption and the decomposition

property of Optimization B that

rank{Xopt
(V
′
0)} = max

{
rank{Xref

k }
∣∣∣∣ k = 1, . . . , p

}
= r (2.72)

Now, consider the block matrix

M (U) ,

 X
opt

(V
′
0 ∩ V

′
|T |) X

opt
(V
′
0 ∩ V

′
|T |, V

′
0 \ V

′
|T |) X

opt
(V
′
0 ∩ V

′
|T |, V

′
|T | \ V

′
0)

X
opt

(V
′
0 \ V

′
|T |, V

′
0 ∩ V

′
|T |) X

opt
(V
′
0 \ V

′
|T |) U∗

X
opt

(V
′
|T | \ V

′
0, V

′
0 ∩ V

′
|T |) U X

opt
(V
′
|T | \ V

′
0)


According to Theorem 3, it only remains to prove that

rank{S+
|T |,0 T|T |,0 S+

0,|T |} = min
{

rank{S+
|T |,0}, rank{S+

0,|T |}
}

(2.73)

where

T|T |,0 =
[
0 T|T |−1,|T |

]
. (2.74)

One can write

rank{S+
|T |,0

[
0 T|T |−1,|T |

]
S+
0,|T |} = rank{S+

|T |−1,|T |T|T |−1,|T | S
+
|T |,|T |−1}

= min
{

rank{S+
|T |−1,|T |}, rank{S+

|T |,|T |−1}
}

= rank{S+
|T |−1,|T |}

= rank{S+
0,|T |}

= min
{

rank{S+
|T |,0}, rank{S+

0,|T |}
}
. (2.75)

This completes the proof.
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Remark 2. Note that the condition (2.70) required in Theorem 4 is satisfied for generic choices of

Tij.

Example 4.

Consider a tree decomposition T with three bags V1 = {1, 2, 3}, V2 = {3, 4, 5} and V3 = {5, 6, 7},

and the edge set ET = {(V1, V2), (V2, V3)}. Suppose that the partially known matrix solution is as

follows:

Xref =



2 1 1 u∗11 u∗21 w∗11 w∗21

1 1 1 u∗12 u∗22 w∗12 w∗22

1 1 1 1 1 v∗11 v∗21

u11 u12 1 1 1 v∗12 v∗22

u21 u22 1 1 1 1 1

w11 w12 v11 v12 1 2 1

w21 w22 v21 v22 1 1 3


(2.76)

It can be verified that

rank{Xref(V1)} = 2, rank{Xref(V2)} = 1, rank{Xref(V3)} = 3, (2.77)

and that there exists only one unique solution for each unknown block

X12 =

 u11 u12

u21 u22

 and X23 =

 v11 v12

v21 v22

 (2.78)

to meet the constraint X � 0. Hence, the only freedom for the matrix completion problem is on

the choice of the remaining block  w11 w12

w21 w22

 . (2.79)

Therefore, optimization problems solved over the blocks X12 and X23 would not result in a rank-3

solution. To resolve the issue, we enrich Xref to obtain a matrix X
ref

by adding multiple rows and
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columns to Xref in order to make the ranks of all resulting bags equal:

X
ref

=



1 0 0 0 u∗11 u∗21 u∗31 u∗41 w∗11 w∗21

0 2 1 1 u∗12 u∗22 u∗32 u∗42 w∗12 w∗22

0 1 1 1 u∗13 u∗23 u∗33 u∗43 w∗13 w∗23

0 1 1 1 0 0 1 1 v∗11 v∗12

u11 u12 u13 0 1 0 0 0 v∗12 v∗22

u21 u22 u23 0 0 1 0 0 v∗13 v∗23

u31 u32 u33 1 0 0 1 1 v∗14 v∗24

u41 u42 u43 1 0 0 1 1 1 1

w11 w12 w13 v11 v12 v13 v14 1 2 1

w21 w22 w23 v21 v22 v23 v24 1 1 3



. (2.80)

Now, we have

V 1 = {1, 2, 3, 4}, V 2 = {4, 5, 6, 7, 8}, and V 3 = {8, 9, 10} (2.81)

and

rank{Xref
1 } = 3, rank{Xref

2 } = 3, and rank{Xref
3 } = 3. (2.82)

Therefore, the conditions of Theorem 4 hold for generic constant matrices T12 and T23. As a result,

every solution X of Optimization B has the property

rank{Xopt} = 3. (2.83)

As a final step, the deletion of those rows and columns of X
opt

with indices 1, 5 and 6 yields a

completion of Xref with rank 3.

2.6 Low-Rank Solutions via Complex Analysis

Consider the problem of finding a low-rank solution Xopt for the LMI problem (2.24). Theorem 2

can be used for this purpose, but it needs solving one of the following graph problems: (i) designing a

supergraph G′ minimizing the upper bound given in (2.25), or (ii) obtaining a tree decomposition of

G with the minimum width. Although these graph problems are easy to solve for highly sparse and

structured graphs, they are NP-hard for arbitrary graphs. A question arises as to whether a low-

rank solution can be obtained using a polynomial-time algorithm without requiring an expensive

graph analysis. This problem will be addressed in this section.
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Definition 11. Given a complex number z, define

zray , {λz |λ ∈ R, λ ≥ 0}. (2.84)

Definition 12. A finite set U ⊂ C is called sign-definite in C if U and −U can be separated in the

complex plane by a line passing through the origin, where −U , {−u |u ∈ U} [Sojoudi and Lavaei,

2014]. Moreover, a finite set U ⊂ R is called sign-definite in R if its members are all nonnegative

or all nonpositive.

Optimization C: Let G be a simple graph with n vertices and F be equal to either R or C. Consider

arbitrary matrices Xref ∈ F+
n and T ∈ Fn such that G (T) is a supergraph of G. The problem

minimize
X∈Fn

〈T,X〉 (2.85a)

subject to Xkk = Xref
kk k ∈ VG , (2.85b)

Xij −Xref
ij ∈ T

ray
ij (i, j) ∈ EG , (2.85c)

X � 0, (2.85d)

is referred to as “Optimization C with the input (G,Xref ,T,F)”.

Lemma 2. Assume that Xref is positive definite. Every solution Xopt of Optimization C with the

input (G,Xref ,T,H) satisfies the inequality

rank{Xopt} ≤ n−msrH(G (T)) (2.86)

Proof. Constraints (2.85b) and (2.85c) imply that for any feasible matrix X, the matrix X−Xref

belongs to the convex cone

C =
{

W ∈ Fn|Wkk = 0 for k ∈ VG , Wij ∈ T ray
ij for (i, j) ∈ EG

}
. (2.87)

Hence, the dual matrix variable Λ is a member of the dual cone

C⊥ =
{
W ∈ Fn|Re{WijT

∗
ij} ≥ 0 for (i, j) ∈ EG , Wij = 0 for (i, j) /∈ EG and i 6= j

}
.

Therefore, the Lagrangian is equal to

L(X,Λ,Φ) = trace{TX}+ trace{Λ(X−Xref)} − trace{ΦX}

= trace{(Λ + T−Φ)X} − trace{ΛXref},
(2.88)
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where Φ � 0 denotes the matrix dual variable corresponding to the constraint X � 0. The infimum

of the Lagrangian over X is −∞ unless Φ = Λ + T. Therefore, the dual problem is as follows:

maximize
Λ∈Hn

− 〈Λ,Xref〉 (2.89a)

subject to Re{ΛijT ∗ij} ≥ 0 (i, j) ∈ EG (2.89b)

Λij = 0, (i, j) /∈ EG and i 6= j (2.89c)

Λ + T � 0. (2.89d)

By pushing the diagonal entries of Λ toward infinity, the inequality Λ + T � 0 will become strict.

Hence, strong duality holds according to the Slater’s condition. Let Φ = Φopt denote an arbitrary

dual solution. The complementary slackness condition 〈Φopt,Xopt〉 = 0 yields that

rank{Φopt}+ rank{Xopt} ≤ n. (2.90)

On the other hand, it can be deduced from the equation Φ = Λ+T together with (2.89b) and (2.89c)

that

G (T) = G (Φopt) (2.91)

Now, combining (2.90) and (2.91) completes the proof.

Theorem 5. Assume that M1, . . . ,Mp are arbitrary matrices in Sn. Suppose that a1, . . . , ap are

real numbers such that the LMI problem

find X ∈ Sn

subject to 〈Mk,X〉 ≤ ak k = 1, . . . , p, (2.92a)

X � 0 (2.92b)

has a positive-definite feasible solution Xref ∈ Sn. Let T ∈ Hn be an arbitrary matrix such that

Re{T} = 0n×n and G (T) is a supergraph of G (M1) ∪ · · · ∪ G (Mp).

a) Every solution Xopt ∈ Hn of Optimization C with the input (G,Xref ,T,H) is a solution of

the LMI problem (2.92) and satisfies the relation

rank{Xopt} ≤ n−msrH(G (T)). (2.93)
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b) The matrix Re{Xopt} is a real-valued solution of the LMI problem (2.92) and satisfies the

inequality

rank{Xreal} ≤ min{2(n−msrH(G (T)), n}. (2.94)

Proof. For every feasible solution X of Optimization C, we have

〈Mk,X〉 = 〈Mk,X
ref〉 for k = 1, . . . , p (2.95)

Hence, every feasible solution of Optimization C is a solution of the LMI problem (2.92) as well.

Now, the proof of Part (a) follows from Lemma 2. For Part (b), it is straightforward to verify that

Xreal defined as 1
2

(
Xopt + (Xopt)T

)
is a feasible solution of (2.92). Moreover,

rank{Xreal} ≤ rank{Xopt}+ rank{(Xopt)T } = 2 rank{Xopt} (2.96)

The proof follows from the above inequality and Part (a).

Corollary 5. The inequalities (2.93) and (2.94), lead to the following upper bounds on rank{Xopt}

and rank{Xreal}, in terms of positive semidefinite zero forcing number:

rank{Xopt} ≤ Z+(G (T)), (2.97)

rank{Xreal} ≤ min{2 Z+(G (T)), n}. (2.98)

Consider an LMI problem with real-valued coefficients. Theorem 5 states that the complex-

valued Optimization C can be exploited to find a real solution of the LMI problem under study with

a guaranteed bound on its rank. This bound might be looser than the ones derived in Theorem 2,

but is still small for very sparse graphs. Note that although the calculation of the bound given

in (2.94) is an NP-hard problem, Optimization C is polynomial-time solvable without requiring any

expensive graph preprocessing. In what follows, we improve the bound obtained in Theorem 5 for

a structured LMI problem.

Lemma 3. Let U = {u1, . . . , un} ⊂ F be sign-definite in F. Then, the set

∠U , {x ∈ F |Re{ukx} ≤ 0 for k = 1, . . . , n} (2.99)

forms a non-trivial convex cone in F.
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Proof. In the case F = R, the set U is either the ray of nonnegative real numbers or non-positive

real numbers. Hence, U is a non-trivial convex cone if F = R. Consider now the case F = C. The

convexity of ∠U results from the fact that this set is described by linear inequalities. ∠U is also

a cone because λx ∈ ∠U for every x ∈ ∠U and λ ≥ 0. On the other hand, by the definition of a

sign-definite set, there exists a line passing through the origin that separates the sets {u1, . . . , un}

and {−u1, . . . ,−un}. Assume that this line makes the angle α with the real axis. Then, one of the

two points exp
[(
π
2 + α

)
i
]

and exp
[(
−π

2 + α
)
i
]

belongs to ∠U . As a result, ∠U is non-trivial.

By leveraging the result of Lemma 3, the bound proposed in Theorem 5 will be improved for a

sign-definite LMI problem below.

Theorem 6. Assume that M1, . . . ,Mp belong to the set Fn that is equal to either Sn or Hn. Let

a1, . . . , am be real numbers such that the LMI problem

find X ∈ Fn

subject to 〈Mk,X〉 ≤ ak k = 1, . . . , p, (2.100a)

X � 0, (2.100b)

has a positive-definite feasible solution Xref ∈ F+
n . Let G = G (M1)∪ · · · ∪ G (Mp) and suppose that

the set Mij composed of the (i, j) entries of M1, . . . ,Mp is sign-definite for every pair (i, j) ∈ EG.

Consider a matrix T ∈ Fn such that G (T) is a supergraph of G and that Tij ∈ ∠Mij for every

(i, j) ∈ EG. Then, every solution Xopt ∈ Fn of Optimization C with the input (G,Xref ,T,F) is a

solution of the LMI problem (2.100) and satisfies the inequality

rank{Xopt} ≤ n−msrF(G (T)). (2.101)

Proof. According to Lemma 3, a matrix T with the properties mentioned in the theorem always

exists. We have Xopt
ij −Xref

ij ∈ T
ray
ij ⊆ ∠Mij for every (i, j) ∈ EG . Hence, for k = 1, . . . , p, one can

write

Re{Mk(i, j)(X
opt
ij −X

ref
ij )} ≤ 0 (2.102)

or equivalently

〈Mk,X
opt〉 ≤ 〈Mk,X

ref〉 (2.103)
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(Mk(i, j) denotes the (i, j) entry of Mk). Consequently, Xopt is a feasible solution of the LMI

problem (2.100) and satisfies the inequality (2.101) in light of Lemma 2.

Corollary 6. The inequality (2.101), lead to the following upper bound on rank{Xopt}, in terms

of positive semidefinite zero forcing number:

rank{Xopt} ≤ Z+(G (T)). (2.104)

Theorem 6 improves upon the results of Theorem 5 for structured LMI problems in two direc-

tions: (i) extension to the complex case, and (ii) reduction of the upper bound by a factor of 2 in

the real case.

2.7 Low-Rank Solutions for Affine Problems

In this section, we will generalize the results derived earlier to the affine rank minimization problem.

Definition 13. For an arbitrary matrix W ∈ Cm×r, the notation B(W) = (VB, EB) denotes a

bipartite graph defined as:

1. VB is the union of the first vertex set VB1 = {1, . . . , n} and the second set vertex set VB2 =

{1, . . . ,m}, associated with the two parts of the graph.

2. For every (i, j) ∈ VB1 × VB2, we have (i, j) ∈ EB if and only if Wij 6= 0.

Definition 14. Consider an arbitrary matrix X ∈ Hn and two natural numbers m and r such that

n ≥ m + r. The matrix subm,r{X} is defined as the m × r submatrix of X corresponding to the

first m rows and the last r columns of the (m+ r)-th leading principal submatrix of X.

Theorem 7. Consider the feasibility problem

find W ∈ Rm×r

subject to 〈Nk,W〉 ≤ ak k = 1, . . . , p, (2.105a)

where a1, . . . , ap ∈ R and N1, . . . ,Np ∈ Rr×m. Let Wref ∈ Rm×r denote a feasible solution of

this feasibility problem and Xref ∈ S+r+m be a matrix such that subr,m{Xref} = Wref . Define

G = B(NT
1 ) ∪ · · · ∪B(NT

p ). The following statements hold:
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a) Consider an arbitrary supergraph G′ of G with n vertices, where n ≥ r +m. Let Xopt denote

an arbitrary solution of Optimization A with the input (G,G′,T,Xref). Then, Wopt defined

as subm,r{Xopt} is a solution of the feasibility problem (2.105a) and satisfies the relation

rank{Wopt} ≤ |G′| −min
{

msrS(Gs)
∣∣ (G′ h G) ⊆ Gs ⊆ G′

}
(2.106)

b) Consider an arbitrary tree decomposition T of G with width t. If G′ in Part (a) is considered

as an enriched supergraph of G derived by T , then

rank{Wopt} ≤ t+ 1 (2.107)

c) Let Xopt denote an arbitrary solution of Optimization C with the input (G,Xref , T,H). Then,

Wopt defined as subm,r
{

Re{Xopt}
}

is a solution of the feasibility problem (2.105a) and sat-

isfies the relation

rank{Wreal} ≤ min{2(r +m−msrH(G (T)), r,m}. (2.108)

Proof. The proof follows directly from Theorems 2 and 5, the conversion technique delineated in

Subsection 2.1.3, and the inequality

rank{subm,r{X}} ≤ rank{X} (2.109)

for every X ∈ Sn.

Corollary 7. The inequalities (2.106) and (2.108), lead to the following upper bounds on rank{Wopt}

and rank{Wreal}, in terms of positive semidefinite zero forcing number:

rank{Wopt} ≤ max
{

Z+(Gs)
∣∣ (G′ h G) ⊆ Gs ⊆ G′

}
(2.110a)

rank{Wreal} ≤ min{2Z+(G (T)), r,m}. (2.110b)

The following corollary is an immediate consequence of Theorem 7.

Corollary 8. If the feasibility problem (2.105a) has a non-empty feasible set, then it has a solution

Wopt with rank at most tw
(
B(NT

1 ) ∪ · · · ∪B(NT
p )
)

+ 1.
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As discussed in Subsection 2.1.3, the nuclear norm method is a popular technique for the

minimum-rank matrix completion problem. In what follows, we adapt Theorem 7 to improve

upon the nuclear norm method by incorporating a weighted sum into this norm and then obtain a

guaranteed bound on the rank of every solution of the underlying convex optimization.

Theorem 8. Suppose that B is a bipartite graph with |VB1 | = m and |VB2 | = r. Given arbitrary

matrices Wref and Q in Rm×r, consider the convex program

minimize
W∈Rm×r

‖W‖∗ + 〈Q,W〉 (2.111a)

subject to Wij = W ref
ij (i, j) ∈ EB. (2.111b)

Let B′ be defined as the supergraph B ∪ B(Q). Then, every solution Wopt of the optimization

(2.111) satisfies the inequality

rank{Wopt} ≤ m+ r −min
{

msrS(Bs)
∣∣ (B′ h B) ⊆ Bs ⊆ B′

}
. (2.112)

Proof. Consider an arbitrary matrix W ∈ Rm×r. It has been shown in [Fazel, 2002] that the nuclear

norm of W is equal to the optimal objective value of the optimization

minimize
X1∈Rm×m

X2∈Rr×r

1

2
trace{X1}+

1

2
trace{X2} (2.113a)

subject to

 X1 W

WT X2

 � 0. (2.113b)

This implies that Optimization (2.111) is equivalent to

minimize
X1∈Rm×m

X2∈Rr×r

W∈Rm×r

1

2
trace{X1}+

1

2
trace{X2}+ 〈Q,W〉 (2.114a)

subject to

 X1 W

WT X2

 � 0, (2.114b)

Wij = W ref
ij (i, j) ∈ EB (2.114c)

The proof follows from applying Part (a) of Theorem 7 to the above optimization.
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Corollary 9. The inequality (2.112), lead to the following upper bound on rank{Wopt}, in terms

of positive semidefinite zero forcing number:

rank{Wopt} ≤ max
{

Z+(Bs)
∣∣ (B′ h B) ⊆ Bs ⊆ B′

}
. (2.115)

The nuclear norm method reviewed in Subsection 2.1.3 corresponds to the case Q = 0 in

Theorem 8. However, this theorem discloses the role of the weight matrix Q. In particular, this

matrix can be designed based on the results developed in Section 2.3 to yield a small number for

the upper bound given in (2.112), provided B is a sparse graph.

2.8 Summary

This chapter aims to find low-rank solutions of sparse linear matrix inequality (LMI) problems

using convex optimization and graph theory. To this end, the sparsity of a given LMI problem

is mapped into a graph and a rigorous theory is developed to connect the rank of the minimum-

rank solution of the LMI problem to the sparsity of this graph. Moreover, three graph-theoretic

convex programs are proposed to find low-rank solutions of the underlying LMI problem with the

property that the rank of every solution of these problems has a guaranteed upper bound. Two

of these convex optimization problems may need heavy graph computation, whereas the third

convex program does not rely on any computationally-expensive graph analysis and is always

polynomial-time solvable. The implications of this work are also discussed for three applications:

minimum-rank matrix completion, conic relaxation for polynomial optimization, and affine rank

minimization. The results are applied to two case studies in the next chapters for electrical power

networks and dynamical systems.
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Part II

Power Networks
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Chapter 3

Convex Relaxation for Optimal Power

Flow Problem: Mesh Networks

This chapter is concerned with the optimal power flow (OPF) problem. It has been shown in

[Lavaei and Low, 2012] that a convex relaxation based on semidefinite programming (SDP) is able

to find a global solution of OPF for IEEE benchmark systems, and moreover this technique is

guaranteed to work over acyclic (distribution) networks. The present work studies the potential

of the SDP relaxation for OPF over mesh (transmission) networks. First, we consider a simple

class of cyclic systems, namely weakly-cyclic networks with cycles of size 3. We show that the

success of the SDP relaxation depends on how the line capacities are modeled mathematically.

More precisely, the SDP relaxation is proven to succeed if the capacity of each line is modeled in

terms of bus voltage difference, as opposed to line active power, apparent power or angle difference.

This result elucidates the role of the problem formulation. Our second contribution is to relate the

rank of the minimum-rank solution of the SDP relaxation to the network topology. The goal is to

understand how the computational complexity of OPF is related to the underlying topology of the

power network. To this end, an upper bound is derived on the rank of the SDP solution, which

is expected to be small in practice. A penalization method is then applied to the SDP relaxation

to enforce the rank of its solution to become 1, leading to a near-optimal solution for OPF with a

guaranteed optimality degree. The remarkable performance of this technique is demonstrated on

IEEE systems with more than 7000 different cost functions.
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3.1 Introduction

The optimal power flow (OPF) problem aims to find an optimal operating point of a power system,

which minimizes a certain objective function (e.g., power loss or generation cost) subject to network

and physical constraints [Momoh et al., 1999]. Due to the nonlinear interrelation among active

power, reactive power and voltage magnitude, OPF is described by nonlinear equations and may

have a nonconvex/disconnected feasibility region. Since 1962, the nonlinearity of the OPF problem

has been studied, and various heuristic and local-search algorithms have been proposed [Baldick,

2006; Pandya and Joshi, 2008].

The paper [Lavaei and Low, 2012] proposes two methods for solving OPF: (i) to use a convex

relaxation based on semidefinite programming (SDP), (ii) to solve the SDP-type Lagrangian dual

of OPF. That work shows that the SDP relaxation is exact if and only if the duality gap is zero.

More importantly, [Lavaei and Low, 2012] makes the observation that OPF has a zero duality gap

for IEEE benchmark systems with 14, 30, 57, 118 and 300 buses, in addition to several randomly

generated power networks. This technique is the first method proposed since the introduction of

the OPF problem that is able to find a provably global solution for practical OPF problems. The

SDP relaxation for OPF has attracted much attention due to its ability to find a global solution

in polynomial time, and it has been applied to various applications in power systems including:

voltage regulation in distribution systems [Lam et al., 2012a], state estimation [Weng et al., 2012],

calculation of voltage stability margin [Molzahn et al., 2012], economic dispatch in unbalanced

distribution networks [Dall’Anese et al., 2013], charging of electric vehicles [Sojoudi and Low,

2011], and power management under time-varying conditions [Ghosh et al., 2011].

The paper [Sojoudi and Lavaei, 2012] shows that the SDP relaxation is exact in two cases: (i)

for acyclic networks, (ii) for cyclic networks after relaxing the angle constraints (similar result was

derived in [Zhang and Tse, 2011] and [Bose et al., 2011] for acyclic networks). This exactness was

related to the passivity of transmission lines and transformers. A question arises as to whether

the SDP relaxation remains exact for mesh (cyclic) networks without any angle relaxations. To

address this problem, the paper [Lesieutre et al., 2011] shows that the relaxation is not always

exact for a three-bus cyclic network. More examples can be found in the recent paper [Bukhsh et

al., 2013], where the existence of local solutions is studied for the OPF problem. To improve the

performance of the above-mentioned convex relaxation, the papers [Gopalakrishnan et al., 2011]
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and [Phan, 2012] suggest solving a sequence of SDP-type relaxations based on the branch and

bound technique. However, it is highly desirable to develop an algorithm needing to solve only a

few SDP relaxations in order to guarantee a polynomial-time run for the algorithm. The aim of

this chapter is to investigate the possibility of finding a global or near-global solution of the OPF

problem for mesh networks by solving only a few SDP relaxations.

In this work, we first consider the three-bus system studied in [Lesieutre et al., 2011] and prove

that the exactness of the SDP relaxation depends on the problem formulation. More precisely,

we show that there are four (almost) equivalent ways to model the capacity of a power line but

only one of these models always gives rise to the exactness of the SDP relaxation. We also prove

that the relaxation remains exact for weakly-cyclic networks with cycles of size 3. Furthermore,

we substantiate that this type of network has a convex injection region in the lossless case and a

non-convex injection region with a convex Pareto front in the lossy case. The importance of this

result is that the SDP relaxation works on certain cyclic networks, for example the ones generated

from three-bus subgraphs (this type of network is related to three-phase systems).

In the case when the SDP relaxation does not work, an upper bound is provided on the rank

of the minimum-rank solution of the SDP relaxation. This bound is related only to the structure

of the power network and this number is expected to be very small for real-world power networks.

Finally, a heuristic method is proposed to enforce the SDP relaxation to produce a rank-1 solution

for general networks (by somehow eliminating the undesirable eigenvalues of the low-rank solution).

The efficacy of the proposed technique is elucidated by extensive simulations on IEEE systems as

well as a difficult example proposed in [Bukhsh et al., 2013] for which the OPF problem has at

least three local solutions. Note that this chapter is concentrated on a basic OPF problem, but

the results can be readily extended to a more sophisticated formulation of OPF with security

constraints together with variable tap-changing transformers and capacitor banks. This can be

carried out using the methodology delineated in [Lavaei, 2011].

Notations: R, R+, S+n and H+
n denote the sets of real numbers, positive real numbers, n×n positive

semidefinite symmetric matrices, and n× n positive semidefinite Hermitian matrices, respectively.

Re{W}, Im{W}, rank{W} and trace{W} denote the real part, imaginary part, rank and trace

of a given scalar/matrix W, respectively. The notation W � 0 means that W is Hermitian and

positive semidefinite. The notation ]x denotes the angle of a complex number x. The notation “i”
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is reserved for the imaginary unit. The symbol “*” represents the conjugate transpose operator.

Given a matrix W, its (l,m) entry is denoted as Wlm. The superscript (·)opt is used to show the

optimal value of an optimization parameter.

Definitions: Given a simple graph H, its vertex and edge sets are denoted by VH and EH, respec-

tively. A “forest” is a simple graph that has no cycles and a “tree” is defined as a connected forest.

A graph H′ is said to be a subgraph of H if VH′ ⊆ VH and EH′ ⊆ EH. A subgraph H′ of H is said

to be an induced subgraph if, for every pair of vertices vl, vm ∈ VH′ , (vl, vm) ∈ EH′ if and only if

(vl, vm) ∈ EH. H′ is said to be induced by the vertex subset VH′ .

3.2 Optimal Power Flow

Consider a power network with the set of buses N := {1, 2, ..., n}, the set of generator buses G ⊆ N ,

and the set of flow lines L ⊆ N ×N , where:

• A known constant-power load with the complex value PDk
+ QDk

i is connected to each bus

k ∈ N .

• A generator with an unknown complex output PGk
+QGk

i is connected to each bus k ∈ G.

• Each line (l,m) ∈ L of the network is modeled as a passive device with an admittance ylm

with possible resistance and reactance (the network can be modeled as a general admittance

matrix).

We call the network lossless if Re{ylm} = 0 for all (l,m) ∈ L and call it lossy otherwise. The

goal is to design the unknown outputs of all generators in such a way that the load constraints are

satisfied. To formulate this problem, named optimal power flow (OPF), define:

• Vk: Unknown complex voltage at bus k ∈ N .

• Plm: Unknown active power transferred from bus l ∈ N to the rest of the network through

the line (l,m) ∈ L.

• Slm: Unknown complex power transferred from bus l ∈ N to the rest of the network through

the line (l,m) ∈ L.
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• fk(PGk
): Known increasing, convex function representing the generation cost for generator

k ∈ G.

Define V, PG, QG, PD and QD as the vectors {Vk}k∈N , {PGk
}k∈G , {QGk

}k∈G , {PDk
}k∈N and

{QDk
}k∈N , respectively. Given the known vectors PD and QD, OPF minimizes the total generation

cost
∑

k∈G fk(PGk
) over the unknown parameters V, PG and QG subject to the power balance

equations at all buses and some network constraints. To simplify the formulation of OPF, with no

loss of generality assume that G = N . The mathematical formulation of OPF is given as follows

minimize
V∈Cn

QG∈Rn

PG∈Rn

∑
k∈G

fk(PGk
) (3.1a)

subject to PGk
− PDk

=
∑

l∈N (k)

Re {Vk(V ∗k − V ∗l )y∗kl} , k ∈ N (3.1b)

QGk
−QDk

=
∑

l∈N (k)

Im {Vk(V ∗k − V ∗l )y∗kl} , k ∈ N (3.1c)

Pmin
k ≤ Pk ≤ Pmax

k k ∈ N (3.1d)

Qmin
k ≤ Qk ≤ Qmax

k , k ∈ N (3.1e)

V min
k ≤ |Vk| ≤ V max

k , k ∈ N (3.1f)

A capacity constraint for each line, (l,m) ∈ L (3.1g)

where:

• (3.1b) and (3.1c) are the power balance equations accounting for the conservation of energy

at bus k.

• (3.1d), (3.1e) and (3.1f) restrict the active power, reactive power and voltage magnitude at

bus k, for the given limits Pmin
k , Pmax

k , Qmin
k , Qmax

k , V min
k , V max

k .

• Each line of the network is subject to a capacity constraint to be introduced later.

• N (k) denotes the set of all neighboring nodes of bus k ∈ N .

3.2.1 Convex Relaxation for Optimal Power Flow

Regardless of the unspecified capacity constraint, the above formulation of the OPF problem is

non-convex due to the nonlinear terms |Vk|’s and VkV
∗
l ’s. Since this problem is NP-hard in the
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worst case, the paper [Lavaei and Low, 2012] suggests solving a convex relaxation of OPF. To

this end, notice that the constraints of OPF can all be expressed as linear functions of the entries

of the quadratic matrix VV∗. This implies that if the matrix VV∗ is replaced by a new matrix

variable W ∈ Hn, then the constraints of OPF become convex in W. Since W plays the role of

VV∗, two constraints must be added to the reformulated OPF problem in order to preserve the

equivalence of the two formulations: (i) W � 0, (ii) rank{W} = 1. Observe that Constraint (ii) is

the only non-convex constraint of the reformulated OPF problem. Motivated by this fact, the SDP

relaxation of OPF is defined as the OPF problem reformulated in terms of W under the additional

constraint W � 0, which is given as follows:

minimize
W∈H+

n
QG∈Rn

PG∈Rn

∑
k∈G

fk(PGk
) (3.2a)

subject to PGk
− PDk

=
∑

l∈N (k)

Re {(Wkk −Wkl)y
∗
kl} , k ∈ N (3.2b)

QGk
−QDk

=
∑

l∈N (k)

Im {(Wkk −Wkl)y
∗
kl} , k ∈ N (3.2c)

Pmin
k ≤ Pk ≤ Pmax

k k ∈ N (3.2d)

Qmin
k ≤ Qk ≤ Qmax

k , k ∈ N (3.2e)

(V min
k )2 ≤Wkk ≤ (V max

k )2, k ∈ N (3.2f)

A convexified capacity constraint for each line, (l,m) ∈ L (3.2g)

If the SDP relaxation gives rise to a rank-1 solution Wopt, then it is said that the relaxation is

exact. The exactness of the SDP relaxation is a desirable property being sought, because it implies

the equivalence of the convex SDP relaxation and the non-convex OPF problem.

3.2.2 Four Types of Capacity Constraints

In this part, the line capacity constraint in the formulation of the OPF problem given in (3.1) will

be specified. Line flows are restricted in practice to achieve various goals such as avoiding line

overheating and guaranteeing the stability of the network. Notice that

i) A thermal limit can be imposed by restricting the line active power flow Plm, the line apparent

power flow |Slm|, or the line current magnitude |Ilm|. The maximum allowable limits on these
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parameters can be determined by analyzing the material characteristics of the line.

ii) A stability limit may be translated into a constraint on the voltage phase difference across

the line, i.e., |]Vl − ]Vm|.

Hence, each line (l,m) ∈ L may be associated with one or multiple capacities constraints, each of

which has its own power engineering implication. Four types of capacity constraints are provided

in the following inequalities

|θlm| = |]Vl − ]Vm| ≤ θmax
lm (3.3a)

|Plm| = |Re {Vl(V ∗l − V ∗m)y∗lm}| ≤ Pmax
lm (3.3b)

|Slm| = |Vl(V ∗l − V ∗m)y∗lm| ≤ Smax
lm (3.3c)

|Vl − Vm| ≤ ∆V max
lm (3.3d)

for the given upper bounds θmax
lm = θmax

ml , Pmax
lm = Pmax

ml , Smax
lm = Smax

ml and ∆V max
lm = ∆V max

ml , where

θlm denotes the angle difference ]Vl−]Vm. Note that the constraint (3.3d) is equivalent to the line

current limitation constraint in the context of this work, because each line has been modeled as a

simple admittance and therefore Vl−Vm is proportional to the line current. Henceforth, we assume

that θmax
lm is less than 90◦ due to the current practice in power networks. This can be assured by

adding the constraint Re{Wlm} > 0 to the SDP relaxation, if necessary.

The capacity constraints given in (3.3) can all be cast as convex inequalities in W, leading to

the reformulated constraints as follows:

Im{Wlm} ≤ Re{Wlm} tan(θmax
lm ) (3.4a)

Re{(Wll −Wlm)y∗lm} ≤ Pmax
lm (3.4b)

|(Wll −Wlm)y∗lm| ≤ Smax
lm (3.4c)

Wll +Wmm −Wlm −Wml ≤ (∆V max
lm )2 . (3.4d)

To understand how the reformulation from V to W is carried out, consider the constraint (3.3a).

This constraint is equivalent to |](VlV
∗
m)| ≤ θmax

lm or∣∣∣∣ Im{VlV ∗m}Re{VlV ∗m}

∣∣∣∣ ≤ tan(θmax
lm ) (3.5)
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Figure 3.1: Four feasible regions for voltage phasor Vm (in p.u.) associated with the constraints

in (3.3) in the case where Vl is fixed at 1]0◦(p.u.) and 0.9 ≤ |Vm| ≤ 1.1: (a) region for the line

constraint (3.3a); (b) region for the line constraint (3.3b); (c) region for the line constraint (3.3c),

and (d) region for the line constraint (3.3d).

Since θmax
lm is less than 90◦ by assumption, the above inequality can be rewritten as

|Im{VlV ∗m}| ≤ Re{VlV ∗m} tan(θmax
lm ) (3.6)

The convex constraint (3.4a) is obtained from the above inequality by replacing VlV
∗
m with Wlm

and dropping the absolute value operator from the left side. Note that the absolute value is

not important because the two constraints |θlm|, |θml| ≤ θmax
lm are equivalent to θlm ≤ θmax

lm and

θml ≤ θmax
lm all together (recall that θmax

lm = θmax
ml ).

Theorem 9. Let α ∈ [0, π/2) denote an arbitrary angle. Suppose that all voltage magnitudes are
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fixed at the nominal value of 1 per unit. Then, the capacity constraints in (3.3) are all mathemati-

cally equivalent and interchangeable through the upper bounds:

θmax
lm (α) , α (3.7a)

Pmax
lm (α) , Re{(1− eαi)y∗lm} (3.7b)

Smax
lm (α) , |(1− eαi)y∗lm| (3.7c)

∆V max
lm (α) ,

√
2 (1− cos(α)). (3.7d)

Proof: In order to prove the equivalence of the constraints (3.3a) and (3.3b) at the nominal voltage

magnitudes, notice that

Plm = Re {Vl(V ∗l − V ∗m)y∗lm} = Re{(1− eθlmi)y∗lm} = |y∗lm| [cos(]y∗lm)− cos(θlm + ]y∗lm)] .

By inspecting the sinusoidal term inside the expression of Plm, it is straightforward to verify that

|Plm| attains its maximum value at θlm = α. For the constraints (3.3c) and (3.3d), one can write:

|Slm|2 = |Vl(V ∗l − V ∗m)y∗lm|
2 = |y∗lm|

2
∣∣∣(1− eiθlm)

∣∣∣2 = 2 |y∗lm|
2 (1− cos(θlm)) (3.8)

and

|Vl − Vm|2 = |Vl|2 + |Vm|2 − 2|Vl||Vm| cos(θlm) = 2(1− cos(θlm)). (3.9)

By inspecting the term cos(θlm) and using the assumption α ∈ [0, π/2), it follows from the above

relations that

θlm ∈ [−α, α] ⇔ |Slm| ≤ Smax
lm (α) ⇔ |Vl − Vm| ≤ ∆V max

lm (α) (3.10)

This completes the proof. �

Under relatively tight voltage conditions, the four capacity constraints in (3.3) give rise to very

similar feasible regions for (Vl, Vm) if the above upper bounds are employed. Given a certain level

of deviation from the nominal voltage magnitude, it is possible to improve the above upper limits of

the constraints by incorporating the deviation into these limits via solving a small optimization. In

addition, given an upper bound for any of the constraints in (3.3), it is possible to design the upper

bounds for the remaining three constraints in such a way that they all imply the constraint with

the given upper bound. Since the maximum voltage deviation is usually small and less than 10% in
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Figure 3.2: (a) Three-bus system studied in Section 3.2.3 ; (b) optimal objective value of the SDP

relaxation for Problems A-D.

general, it can be inferred from the above arguments that four common types of capacity constraints

with different power engineering implications can be converted to each other with a good accuracy

from a mathematical standpoint. To shed light on this fact, Figure 3.1 depicts the feasible region

of Vm for each of the constraints in (3.3), where the upper bounds in (3.7) are deployed for the line

(l,m) under the following scenario: α = 15◦, the line admittance ylm = 1] − 80◦ (p.u.), allowing

a variable voltage magnitude for Vm with the maximum permissible deviation of 10% from the

nominal magnitude, and Vl = 1]0◦ (p.u.). It can be seen that the feasible regions are very similar

and barely distinguishable from each other.

In the following subsection, we will show that this similarity (or equivalence in the extreme case

of fixed voltage magnitudes) is no longer preserved after relaxation. In fact, it will be shown that

the above capacity constraints behave very differently in the SDP relaxation (i.e., after removing

the rank constraint rank{W} = 1).

3.2.3 SDP Relaxation for a Three-bus Network

It has been shown in [Lesieutre et al., 2011] that the SDP relaxation is not exact for a specific

three-bus power network with a triangular topology, provided one line has a very limited capacity.

The capacity constraint in [Lesieutre et al., 2011] has been formulated with respect to apparent

power. It is imperative to study the interesting observation made in [Lesieutre et al., 2011] because

if the SDP relaxation cannot handle very simple cyclic networks, its application to mesh networks
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would be questionable. The result of [Lesieutre et al., 2011] implies that the SDP relaxation is not

necessarily exact for cyclic networks if the capacity constraint (3.3c) is employed. The high-level

objective of this part is to make the surprising observation that the SDP relaxation becomes exact

if the capacity constraint (3.3d) is used instead (this result will be proved later in the chapter). To

this end, we explore a scenario for which all four types of capacity constraints provided in (3.3) are

equivalent but their convexified counterparts behave very differently. The goal is to show that the

SDP relaxation is always exact only for one of these capacity constraints.

Consider the three-bus system depicted in Figure 3.2(a), which has been adopted from [Lesieutre

et al., 2011]. The parameters of this cyclic network are provided in Table 3.1, where zlm = 1
ylm

de-

notes the impedance of the line (l,m). Assume that lines (1, 2) and (2, 3) have very high capacities,

i.e.,

θmax
12 = Pmax

12 = Smax
12 = ∆V max

12 =∞, (3.11a)

θmax
23 = Pmax

23 = Smax
23 = ∆V max

23 =∞, (3.11b)

while line (1, 3) has a very limited capacity. Since there are four ways to limit the flow over this

line, we study four problems, each using only one of the capacity constraints given in (3.3) with its

corresponding bound from (3.7). To this end, given an angle α belonging to the interval [0, 30◦],

consider the following limits for these four problems:

Problem A : θ13 ≤ θmax
13 (α) (3.12a)

Problem B : P13 ≤ Pmax
13 (α) (3.12b)

Problem C : S13 ≤ Smax
13 (α) (3.12c)

Problem D : ∆V13 ≤ ∆V max
13 (α) (3.12d)

It is straightforward to verify that Problems A-D are equivalent due to the fact that they all

lead to the same feasible set for the pair (V1, V3). After removing the rank constraint from the

OPF problem, these four problems become very distinct. To illustrate this property, we solve four

relaxed SDP problems for the network depicted in Figure 3.2(a), corresponding to the equivalent

Problems A-D. Figure 3.2(b) plots the optimal objective value of each of the four SDP relaxations

as a function of α over the range α ∈ [0, 30◦]. Let fopt(α) denote the solution of the original OPF

problem. Each of the curves in Figure 3.2(b) is theoretically a lower bound on the function fopt(α)
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Figure 3.3: Optimal objective value of the SDP relaxation for Problems A-D by allowing 10%

off-nominal voltage magnitudes.

in light of removing the non-convex constraint rank{W} = 1. A few observations can be made

here:

• The SDP relaxation for Problem D yields a rank-1 solution for all values of α. Hence, the

curve drawn in Figure 3.2(b) associated with Problem D represents the function fopt(α),

leading to the true solution of OPF.

• The curves for the SDP relaxations of Problems A-C do not overlap with fopt(α) if α ∈ (0, 7◦).

Moreover, the gap between these curves and the function fopt(α) is significant for certain

values of α.

• Figure 3.3 shows the case when a maximum of 10% off-nominal voltage magnitude is allowed

for each bus. In this case, Problem D is the only formulation that always results in a rank-1

solution.

In summary, three types of capacity constraints make the SDP relaxation inexact in general,

while the last type of capacity constraint makes the SDP relaxation always exact. The current

practice in power systems is to use Problem B (due to its connection to DC OPF), but this example

signifies that Problem D is the only one making the SDP relaxation a successful technique. Note

that the capacity constraint considered in Problem D is closely related to the thermal loss, and

therefore it may be natural to deploy Problem D for solving the OPF problem. Note also that if

the OPF is defined in terms of multiple types of capacity constraints, the above reasoning justifies

the need for converting the constraints into a single constraint of the form (3.3d).
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f1(PG1) , 0.11P 2
G1

+ 5.0PG1

f2(PG2) , 0.085P 2
G2

+ 1.2PG2

f3(PG3) , 0

z23 = 0.025 + 0.750i, SD1 = 110 MW

z31 = 0.065 + 0.620i, SD2 = 110 MW

z12 = 0.042 + 0.900i, SD3 = 95 MW

V min
k = V max

k = 1 for k = 1, 2, 3

(Qmin
k , Qmax

k ) = (−∞,∞) for k = 1, 2, 3

(Pmin
k , Pmax

k ) = (−∞,∞) for k = 1, 2

Pmin
3 = Pmax

3 = 0

Table 3.1: Parameters of the three-bus system drawn in Figure 3.2(a) with the base value 100

MVA.

Based on the methodology developed in [Lavaei and Low, 2012] and [Sojoudi and Lavaei, 2012],

the above result can be interpreted in terms of the duality gap for OPF: there are four equivalent

non-convex formulations of the OPF problem in the above example with the property that three of

them have a nonzero duality gap in general while the last one always has a zero duality gap. This

example reveals the fact that the problem formulation of OPF has a tremendous role in the success

of the SDP relaxation, and in particular even equivalent formulations may become distinct after

convexification. The observation made in this example will be proved for certain networks below.

Definition 15. A graph is called weakly cyclic if every edge of the graph belongs to at most one

cycle in the graph.

Theorem 10. Consider the OPF problem (3.1) with the capacity constraint (3.3d) for a weakly-

cyclic network with cycles of size 3. The following statements hold:

a) The SDP relaxation is exact in the lossless case, provided Qmin
k = −∞ for every k ∈ N .

b) The SDP relaxation is exact in the lossy case, provided Pmin
k = Qmin

k = −∞ and Qmax
k = +∞

for every k ∈ N .
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Proof: The proof is trivial for a 2-bus network. Assume for now that the network is composed

of a single cycle of size 3. In order to prove the theorem in this case, consider an arbitrary

solution (Pinit
G ,Qinit

G ,Winit) of the SDP relaxation. It suffices to show that there exists another

solution (Popt
G ,Qopt

G ,Wopt) with the same cost as (Pinit
G ,Qinit

G ,Winit) such that rank{Wopt} = 1.

Alternatively, it is enough to prove that the feasibility problem

Pmin
k ≤ PDk

+
∑

l∈N (k)

Re {(Wkk −Wkl)y
∗
kl} ≤ P init

Gk
(3.13a)

Qmin
k ≤ QDk

+
∑

l∈N (k)

Im {(Wkk −Wkl)y
∗
kl} ≤ Qmax

Gk
(3.13b)

(V min
k )2 ≤Wkk ≤ (V max

k )2 (3.13c)

Wll +Wmm −Wlm −Wml ≤ (∆V max
lm )2 (3.13d)

W � 0 (3.13e)

∀ k ∈ N , (l,m) ∈ L, has a rank-1 solution Wopt. To this end, we convert the above feasibility

problem into an optimization by adding the objective function

min
W∈Hn

−
∑
k∈G

QGk
(3.14)

to the problem. Let νk, λk, µk ∈ R+, νk, λk, µk, ψlm ∈ R+, and A ∈ H+
3 denote the Lagrange mul-

tipliers corresponding to the lower bounding constraints (3.13a), (3.13b), (3.13c), upper bounding

constraints (3.13a), (3.13b), (3.13c), (3.13d), and (3.13e), respectively. It can be shown that

Alm = − Im{y∗lm} − ψlm − ψml

−
(νl − νl)y∗lm + (νm − νm)ylm

2

−
(λl − λl)y∗lm − (λm − λm)ylm

2i
(3.15)

for every (l,m) ∈ L. Define νk , νk − νk and λk , λk − λk, for every k ∈ N . Then, (3.15) can be

rewritten as

Alm = −ψlm − ψml

−Re{y∗lm}
[
νl + νm − (λl − λm)i

2

]
−Im{y∗lm}

[
1 +

λl + λm + (νl − νm)i

2

]
(3.16)
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for every (l,m) ∈ L. Moreover, the complementary slackness condition yields that trace{WoptAopt} =

0 at optimality. To prove that Wopt has rank 1, it suffices to show that Aopt has rank n− 1 = 2.

To prove the later statement by contradiction, assume that Aopt has rank 1. Therefore, the deter-

minant of each 2× 2 submatrix of Aopt must be zero. In particular,

det

Aopt
12 Aopt

13

Aopt
22 Aopt

23

 = Aopt
12 A

opt
23 −A

opt
13 A

opt
22 = 0 (3.17)

=⇒ ]Aopt
12 + ]Aopt

23 − ]A
opt
13 = ]Aopt

22 . (3.18)

Since Aopt is Hermitian, we have

]Aopt
22 = 0 and ]Aopt

13 = −]Aopt
31 (3.19)

and hence the following relation must hold:

]Aopt
12 + ]Aopt

23 + ]Aopt
31 = 0. (3.20)

On the other hand, under the assumptions of the theorem, we have

Re{y∗lm} = 0, λk ≥ 0 (3.21)

for Part (a) and

λk = 0, νk ≥ 0 (3.22)

for Part (b). Hence, it can be concluded from (3.16) and each set of equations (3.21) or (3.22) that

Re{Aopt
12 },Re{Aopt

23 },Re{Aopt
31 } < 0 (3.23a)

Im{Aopt
12 }

Im{y∗12}
+

Im{Aopt
23 }

Im{y∗23}
+

Im{Aopt
31 }

Im{y∗31}
= 0. (3.23b)

(recall that y∗lm has nonnegative real and imaginary parts due to the positivity assumption of the

resistance and reactance of each line). It can be concluded from (3.23b) that the elements of

the set
{

Im{Aopt
12 }, Im{A

opt
23 }, Im{A

opt
31 }

}
are neither all positive nor all negative. With no loss of

generality, it suffice to study the following two cases:
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i) If

Im{Aopt
12 }, Im{A

opt
23 } ≥ 0 and Im{Aopt

31 } ≤ 0, (3.24)

then according to (3.23a), we have:

π/2 < ]Aopt
12 ≤ π (3.25a)

π/2 < ]Aopt
23 ≤ π (3.25b)

π ≤ ]Aopt
31 < 3π/2. (3.25c)

ii) If

Im{Aopt
12 }, Im{A

opt
23 } ≤ 0 and Im{Aopt

31 } ≥ 0, (3.26)

then according to (3.23a), we have:

π ≤ ]Aopt
12 < 3π/2 (3.27a)

π ≤ ]Aopt
23 < 3π/2 (3.27b)

π/2 < ]Aopt
31 ≤ π. (3.27c)

Both (3.25) and (3.27) yield that

2π < ]Aopt
12 + ]Aopt

23 + ]Aopt
31 < 4π (3.28)

implying that the angle relation (3.20) does not hold. This contradiction completes the proof for

both Parts (a) and (b).

For a general network with multiple cycles, let O denote the set of all 3-bus cyclic subgraphs of

the power network. Define Ō as the set of all bridge edges (i.e., those edges whose removal makes

the graph disconnected). By adapting the proof delineated above for a single link and a single

cycle, it can be shown that the SDP relaxation has a solution Wopt with the property

rank{W opt(S)} = 1 for all S ∈ O ∪ Ō, (3.29)

where W opt(S) is a sub-matrix of Wopt obtained by picking every row and column of Wopt whose

index corresponds to a vertex of the subgraph S. The above relation yields that

|W opt| =
√
W opt
ll W opt

mm, (l,m) ∈ L (3.30)
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and that

]W opt(S)1,2 + ]W opt(S)2,3 + ]W opt(S)3,1 = 0 (3.31)

for every S ∈ O. It follows from the above equation that there exist some angles θ1, . . . , θn ∈ [−π, π]

such that

θl − θm = ]W opt
lm for all (l,m) ∈ L (3.32)

Now, it is easy to verity that Vopt(Vopt)∗ is a rank-1 solution of the SDP relaxation, where

Vopt =

[√
W opt

11 e−θ1i,

√
W opt

22 e−θ2i, . . . ,

√
W opt
nn e

−θni
]∗

(3.33)

This completes the proof. �

Note that the statement of Theorem 10 cannot be generalized to the capacity constraints (3.3a)-

(3.3c). This manifests the importance of the problem formulation and mathematical modeling.

3.3 Injection Region

A power network under operation has a pair of flows (Plm, Pml) over each line (l,m) ∈ L and a

net injection Pk at each bus k ∈ N , where Pk is indeed equal to PGk
− PDk

. This means that two

vectors can be attributed to the network: (i) injection vector P = [ P1 P2 · · · Pn ], (ii) flow vector

F = [Plm| (l,m) ∈ L]. Due to the relation Pk =
∑

l∈N (k) Pkl, there exists a matrix M such that

P = M × F.

In order to understand the computational complexity of OPF, it is beneficial to explore the

feasible set for the injection vector. To this end, two notions of flow region and injection region will

be defined in line with [Lavaei et al., 2012].

Definition 16. Define the flow region F as the set of all flow vectors F = [Plm | (l,m) ∈ L] for

which there exists a voltage phasors vector [ V1 V2 · · · Vn ] such that

Plm = Re {Vl(V ∗l − V ∗m)y∗lm} , (l,m) ∈ L (3.34a)

|Vl − Vm| ≤ ∆V max
lm , (l,m) ∈ L (3.34b)

V min
k ≤ |Vk| ≤ V max

k , k ∈ N (3.34c)

Define also the injection region P as M · F .



CHAPTER 3. CONVEX RELAXATION FOR OPTIMAL POWER FLOW PROBLEM: MESH
NETWORKS 67

(a) (b)

Figure 3.4: (a) The reduced flow region Fr for a three-bus mesh network; (b) the injection region

P for a three-bus mesh network.

The above definition of the flow and injection regions captures the laws of physics, capacity con-

straints and voltage constraints. One can make this definition more comprehensive by incorporating

reactive-power constraints.

Definition 17. Define the convexified flow region Fc as the set of all flow vectors F = [Plm | (l,m) ∈

L] for which there exists a matrix W ∈ H+
n such that

Plm = Re {(Wll −Wlm)y∗lm} (3.35a)

Wll +Wmm −Wlm −Wml ≤ (∆V max
lm )2 (3.35b)

(V min
k )2 ≤Wkk ≤ (V max

k )2 (3.35c)

for every (l,m) ∈ L and k ∈ N . Define also the convexified injection region Pc as M · Fc.

It is straightforward to verify that P ⊆ Pc and F ⊆ Fc.

3.3.1 Lossless Cycles

A lossless network has the property that Plm + Pml = 0 for every (l,m) ∈ L, or alternatively

Re{ylm} = 0. Since real-world transmission networks are very close to being lossless, we study

lossless mesh networks here. The flow region F has been defined in terms of two flows Plm and

Pml for each line (l,m) ∈ L. Due to the relation Pml = −Plm for lossless networks, one can define

a reduced flow region Fr based on one flow Plm for each line (l,m).

The reduced flow region Fr has been plotted in Figure 3.4(a) for a cyclic three-bus network

under the voltage setting V min
k = V max

k for k = 1, 2, 3 and some arbitrary capacity limits. This
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feasible set is a non-convex 2-dimensional curvy surface in R3. The corresponding injection region

P can be obtained by applying an appropriate linear transformation to Fr. Surprisingly, this set

becomes convex, as depicted in Figure 3.4(b). More precisely, it can be shown that P = Pc in this

case. The goal of this part is to investigate the convexity of P for a single cycle. Assume for now

that the power network is composed of a single cycle with the links (1, 2), . . . , (n− 1, n), (n, 1).

Theorem 11. Consider a lossless n-bus cycle with n ≥ 3. The reduced flow region Fr is always

non-convex if V min
k = V max

k , k = 1, 2, ..., n.

Proof: The reduced flow region Fr consists of all vectors of the form

(α1 sin(θ12), α2 sin(θ23), . . . αn sin(θn1)),

where θ12 + θ23 + · · · + θn1 = 0 and αk = |Vk||Vk+1|Im{y∗k,k+1} for k ∈ N . Therefore, Fr can be

characterized in terms of n − 1 independent angle differences θ12, ..., θ(n−1),n. This implies that

Fr is an (n − 1)-dimensional surface embedded in Rn. On the other hand, this region cannot be

embedded in Rn−1 due to its non-zero curvature. Thus, Fr cannot be a convex subset of Rn. �

Since V min
k ' V max

k in practice, it follows from Theorem 11 that the reduced flow region is

expected to be non-convex under a normal operation.

Theorem 12. Consider a lossless n-bus cycle. The following statements hold:

a) For n = 2 and n = 3, the injection region P is convex and in particular P = Pc.

b) For n ≥ 5, the injection region P is non-convex if

V min
k = V max

k = V max, k ∈ N

∆V max
lm = ∆V max, (l,m) ∈ L

(3.36)

for any arbitrary numbers V max and ∆V max.

Proof of Part (a): Consider an arbitrary injection vector P̄ belonging to the convexified injection

region Pc. In order to prove Part (a), it suffices to show that P̄ is contained in P. Alternatively,

it is enough to prove that the SDP relaxation of OPF with the capacity constraint (3.3d) and the

parameters

Pmax
k = Pmin

k = P̄k (3.37a)

Qmax
k = +∞, Qmin

k = −∞, (3.37b)
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has a rank-1 solution W. This follows directly from Part (a) of Theorem 10.

Sketch of Proof for Part (b): Define

θmax = cos−1

(
1− (∆V max)2

2

)
(3.38)

As pointed out in the proof of Theorem 11, the reduced flow region Fr contains all vectors of the

form (α1 sin(θ12), α2 sin(θ23), . . . αn sin(θn1)), where θ12+θ23+. . .+θn1 = 0 and |θ12|, ..., |θn1| ≤ θmax.

Four observations can be made here:

i) The mapping from Fr to P is linear.

ii) The kernel of the map from Fr to P has dimension 1.

iii) Due to (i) and (ii), it can be proved that the restriction of Fr to the angles θ12 = θmax and

θn1 = −θmax is a convex set whenever P is convex.

iv) The restriction of Fr to the angles θ12 = θmax and θn1 = −θmax amounts to the reduced flow

region for a single cycle of size n−2. In light of Theorem 11, this set is nonconvex if n−2 ≥ 3.

The proof of Part (b) follows from the above facts. �

Theorem 12 states that the injection region is convex only for small values of n.

3.3.2 Weakly-cyclic Networks

In this part, the objective is to study the convexity of the injection region for a class of mesh

networks. Although the class under investigation is simple and far from practical, its study gives rise

to a good insight into the complexity of OPF. Notice that the injection region P is not necessarily

convex for lossy networks. For example, the set P corresponding to a three-bus mesh network with

nonzero loss is a curvy 2-dimensional surface in R3. The objective of this part is to show that the

front of this non-convex feasible set is convex in some sense.

Definition 18. Given a set A ⊆ Rn, define its Pareto front as the set of all points (a1, ..., an) ∈ A

for which there does not exist a different point (b1, ..., bn) in A such that bi ≤ ai for i = 1, ..., n.

Pareto front is an important subset of A because the solution of an arbitrary optimization over

A with an increasing objective function must lie on the Pareto front of A.



CHAPTER 3. CONVEX RELAXATION FOR OPTIMAL POWER FLOW PROBLEM: MESH
NETWORKS 70

Theorem 13. The following statements hold for a weakly-cyclic network with cycles of size 3:

a) If the network is lossless, then the injection region P is convex and in addition P = Pc.

b) If the network is lossy, then the injection region P and the convexified region Pc share the

same Pareto front.

Proof: The proof of Part (a) of Theorem 12 also works for a general lossless weakly-cyclic network,

leading to Part (a) of the present theorem.

In order to prove Part (b), we employ the same strategy as in the proof of Theorem 12. Assume

that P̄ belongs to the Pareto front of the convexified injection region Pc. Consider the OPF

problem (3.1) with the capacity constraint (3.3d) and let

Pmax
k = P̄k, Pmin

k = −∞, (3.39a)

Qmax
k = +∞, Qmin

k = −∞. (3.39b)

The objective function of the OPF problem can be replaced by a certain linear function in such a

way that P̄ becomes a solution of the SDP relaxation of this problem. On the other hand, it follows

form Part (b) of Theorem 10 that there exists a solution (Popt,Qopt,Wopt) for this problem where

Wopt is a rank-1 matrix. Since P̄ belongs to the Pareto front of Pc, we have Popt = P̄ . Hence,

Popt also belongs to P and that completes the proof. �

3.4 Penalized SDP Relaxation

So far, it has been shown that the SDP relaxation is exact for certain systems such as weakly-cyclic

networks, provided a good mathematical formulation is deployed. Nevertheless, the SDP relaxation

may not remain exact for mesh networks with large cycles. The objective of this section is to remedy

this shortcoming for general networks. To this end, we first study the rank of the minimum-rank

solution of the SDP relaxation and then introduce a penalization technique to enforce the rank of

this solution matrix to become one. This will ultimately lead to a near-global solution of OPF with

some measure of the optimality degree.
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3.4.1 Low-rank Solution for SDP Relaxation

In this part, we first introduce some graph-theoretic parameters and then utilize them to relate the

network topology to the existence of a low-rank solution for the SDP relaxation method.

Definition 19. The representative graph of an n× n Hermitian matrix W, denoted by G (W), is

a simple graph with n vertices whose edges are specified by the locations of the nonzero off-diagonal

entries of W. In other words, two arbitrary vertices i and j are connected if Wij is nonzero.

Definition 20. Given a simple graph H, define the complex Hermitian minimum semidefinite rank

of H as

msrH(G) , min
{

rank(W) |G (W) = G, W ∈ H+
n

}
. (3.40a)

The next theorem studies the rank of a solution of the SDP relaxation of the OPF problem

under the load over satisfaction assumption

Pmin
k = Qmin

k = −∞ for k ∈ N . (3.41)

A general version of this theorem with no extra assumption has been developed in chapter 2.

Theorem 14. Consider the OPF problem given in (3.1) subject to the capacity constraints (3.3a),

(3.3b) and (3.3d), under the assumption Pmin
k = Qmin

k = −∞ for every k ∈ N . If this problem is

feasible, then its corresponding SDP relaxation has a solution (Wopt,Popt
G , Qopt

G ) such that

rank{Wopt} ≤ |H| −msrH(H), (3.42)

where H can be any arbitrary simple graph with the property that VH = N and L ⊆ EH.

Proof: Since the OPF problem is feasible by assumption, there exists an optimal solution (W0,Popt
G ,Qopt

G )

for this problem. Now, consider the optimization problem:

min
W∈H+

n

−
∑

(l,m)∈EH

Re{Wlm} (3.43a)

s.t. Wkk = W 0
kk, k ∈ N (3.43b)

Re{Wlm} ≥ Re{W 0
lm}, (l,m) ∈ L (3.43c)

Im{Wlm} = Im{W 0
lm}, (l,m) ∈ L (3.43d)
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Let Wopt denote an arbitrary solution of the above optimization. Since the resistance and induc-

tance of each line (l,m) ∈ L are considered as nonnegative numbers in this chapter, it is straight-

forward to verify that (Wopt,Popt
G ,Qopt

G ) is an optimal solution of the SDP relaxation under the

load over-satisfaction assumption. Now, it remains to prove that Wopt satisfies the inequality

rank{Wopt} ≤ n−msrH(H).

To proceed with the proof, we aim to take the Lagrangian of Optimization (3.43). Let A ∈ H+
n

denote the dual variable corresponding to the constraint W � 0. By noting that the positions of

the nonzero off-diagonal entries of the matrix A correspond to the edges of the graph H, it follows

from the definition of “msr” that

rank{Aopt} ≥ msrH(H). (3.44)

On the other hand, the complementary slackness condition trace{Wopt Aopt} = 0 yields that

rank{Aopt}+ rank{Wopt} ≤ n. (3.45)

The proof is completed by combining (3.44) and (3.45). �

Roughly speaking, Theorem 14 aims to relate the computational complexity of the OPF problem

to the topology of the power network by quantifying how inexact the SDP relaxation is.

Definition 21. Define η(H) as the minimum number of vertices whose removal from the graph H

eliminates all cycles of the graph.

To illustrate the definition of η, observe that this number is equal to 0 for a graph representing

an acyclic network and is equal to 1 if all cycles of the network share a common node. Two graphs

with η = 1 are depicted in Figure 3.5.

Theorem 15. Consider the OPF problem given in (3.1) subject to the capacity constraints (3.3a),

(3.3b) and (3.3d), under the assumption Pmin
k = Qmin

k = −∞ for every k ∈ N . Let H be the graph

that describes the topology of the power network under study. If the OPF problem is feasible, then its

corresponding SDP relaxation has a solution (Wopt,Popt
G ,Qopt

G ) such that rank{Wopt} ≤ η(H) + 1.

Proof: Let J denote an induced subgraph of the power network with no cycles. One can expand J

into a tree T by adding a minimal set of additional edges to this possibly disconnected subgraph.
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Figure 3.5: Two graphs with η = 1.

Let H′ , (VH, EH ∪ ET ). According to Theorem, 14 there exists a solution (Wopt,Popt
G ,Qopt

G ) such

that

rank{Wopt} ≤ |H′| −msrH(H′). (3.46)

It also follows from [Booth et al., 2008] that

msrH(H′) ≥ |H′| − η(H′)− 1. (3.47)

Combining (3.46) and (3.47) yields

rank{Wopt} ≤ η(H′) + 1. (3.48)

For an optimal choice of J with the maximum number of vertices |J | = |H| − η(H), we have

η(H′) = η(H). This completes the proof. �

There is a large body of literature on computing η, which signifies that this number is small

for a very broad class of graphs, including mostly planar graphs. To illustrate the application

of Theorem 15, consider the distribution network depicted in Figure 3.5(a). This network has

three cycles, possibly used for exchanging renewable energy between the load buses without going

through the feeder (the node shown in gray). Since removing this node eliminates all cycles of

the network, it follows from Theorem 15 that the SDP relaxation of OPF has a solution with the

property rank{Wopt} ≤ 2.

Remark 3. The power balance equations (3.1b) and (3.1c) are equality constraints. One may relax

these equations to inequality constraints so that each bus k ∈ N can be oversupplied. This notion is

called over-satisfaction and has been considered in a number of papers (see [Lavaei and Low, 2012;

Baldick, 2006] and the references therein). The main idea is that whenever a power network operates
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under a normal condition, it is expected that the solution of the OPF problem remains intact or

changes insignificantly under the load over-satisfaction assumption. The condition Pmin
k = Qmin

k =

−∞ in Theorem 15 can be supplanted by the load over-satisfaction assumption

Remark 4. Given a general graph H, finding the parameter η(H) and its associated maximal

induced forest J is known to be an NP-complete problem. Nevertheless, as shown in the proof of

Theorem 15, any arbitrary set of nodes whose removal eliminates all cycles of the network leads

to a solution Wopt together with an upper bound on its rank. In addition, the identification of J

is mostly a one-time process and the algorithm proposed in [Razgon, 2006] can be used for that

purpose.

3.4.2 Recovery of Near-optimal Solution for OPF

As discussed in the preceding subsection, the SDP relaxation is expected to have a low-rank solution.

This solution may be used to find an approximate rank-1 solution. Another technique is to enforce

the SDP relaxation to eliminate the undesirable nonzero eigenvalues of the low-rank solution by

incorporating a penalty term into its objective. The recent literature of compressed sensing suggests

the penalty term ε× trace{W} for some coefficient ε ∈ R+ [Recht et al., 2010a]. However, this idea

fails to work for OPF since all feasible solutions of the SDP relaxation have almost the same trace

(because V min
k and V max

k are normally close to each other for k = 1, ..., n). We propose a different

penalty function in this chapter.

Penalized SDP relaxation: This optimization is obtained from the SDP relaxation of the OPF

problem by replacing its objective function with

∑
k∈G

fk(PGk
) + ε

∑
k∈G

QGk
(3.49)

for a given positive number ε.

There are two independent reasons behind the introduction of the penalty term
∑

k∈G QGk
:

• Consider a positive semidefinite matrix X with constant (fixed) diagonal entries X11, . . . , Xnn

and variable off-diagonal entries. If we maximize a weighted sum of the off-diagonal entries

of X with positive weights, then it turns out that Xlm =
√
XllXmm for all l,m ∈ {1, . . . , n},

in which case X becomes rank-1. Motivated by this fact, we employ the idea of elevating the
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off-diagonal entries of W to obtain a low-rank solution. For a lossless network, the above

penalty term increases the weighted sum of the real parts of the off-diagonal entries of W.

• Denote the set of all feasible vectors (PG,QG) satisfying the constraints of OPF as A. The

OPF problem minimizes the cost function
∑

k∈G fk(PGk
) over the projection of A onto the

space for PG, which is referred to as P in this work. The projection from A to P maps

multiple (possibly an uncountable number of) points into the same vector PG. This becomes

a critical issue after removing the constraint rank{W} = 1 from OPF. The main reason is

that those multiple points with the same projection could correspond to different values of W

with disparate ranks. The penalty term ε
∑

k∈G QGk
aims to guide the numerical algorithm

by speculating that the right point (PG,QG) would cause the lowest reactive loss.

Let (Wopt,Popt
G ,Qopt

G ) and (Wε,Pε
G,Q

ε
G) denote arbitrary solutions of the SDP and penalized

SDP relaxations, respectively. Assume that Wopt does not have rank 1, whereas Wε has rank 1.

It can be observed that the optimal objective value of OPF is lower and upper bounded by the

respective numbers
∑

k∈G fk(P
opt
Gk

) and
∑

k∈G fk(P
ε
Gk

). Moreover, (Wε,Pε
G,Q

ε
G) can be mapped

into the feasible solution (Vε,Pε
G,Q

ε
G) of the OPF problem, where Vε(Vε)∗ = Wε. As a result,

whenever the penalized SDP relaxation has a rank-1 solution, a feasible solution of OPF can be

readily constructed and its sub-optimality degree can be measured subsequently. Note that a

gradient descent algorithm can then be exploited to produce a local (if not global) solution from

(Vε,Pε
G,Q

ε
G). Since the SDP relaxation of OPF possesses a low-rank solution in most cases, it

is anticipated that the penalized SDP relaxation generates a global or near-global solution. We

conducted extensive simulations on IEEE systems with more than 7000 different cost functions

and observed that the penalized SDP relaxation always had a rank-1 solution. In addition, the

obtained feasible solution of OPF was not only near optimal but also almost a local solution

(satisfying the first order optimality conditions with some small error) in more than 95% of the

trials. This observation will be elaborated in the next section. In what follows, we will provide

partial theoretical results supporting our penalization technique.

Theorem 16. Consider a weakly-cyclic network with cycles of size 3. Given an arbitrary strictly

positive number ε, every solution of the penalized SDP relaxation with the capacity constraint (3.4d)

has rank-1, provided
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IEEE-14

ε 0 0.012

λ1 15.1617 15.1340

λ2 0.0138 0

Cost $316.08 $316.13

k ck PGk QGk PGk QGk

1 3 25.36 0 25.38 0.85

2 1 140 25.44 140 22.25

3 4 0 28.77 0 27.11

6 1 100 -6 100 -6

8 4 0 9.16 0 6.42

Table 3.2: Case study for IEEE 14 bus system.

a) Qmin
k = −∞ for every k ∈ N in the lossless case;

b) Pmin
k = Qmin

k = −∞ and Qmax
k =∞ for every k ∈ N in the lossy case.

Proof: This theorem can be proved in line with the technique developed in the proof of Theorem

10. �

3.5 Simulations

Consider the IEEE 14-bus system with the cost function
∑

k∈G ckPGk
, where the coefficients ck’s

are provided in Table 3.2. Let λ1 and λ2 denote the two largest eigenvalues of the matrix solution

Wopt
ε of the penalized SDP relaxation. Solving this relaxation with ε = 0 gives rise to λ1 = 15.1617

and λ2 = 0.0138, implying that the matrix Wopt
ε is nearly rank-1. However, λ2 being nonzero is

an impediment to the recovery of a feasible solution of OPF. To address this issue, we solve the

penalized SDP relaxation with ε = 0.012. This leads to a rank-1 matrix Wopt
ε . The results are

summarized in Table 3.2. It can be seen that changing the penalty coefficient ε from 0 to 0.012 has

a negligible effect on PG but a significant impact on QG. As a result, the proposed penalization

method corrects the vector of reactive powers and the upshot of this correction is the recovery of a

feasible solution for OPF. Notice that the cost for this feasible solution is equal to 316.13, while the

optimal cost for the globally optimal solution of OPF is lower bounded by 316.08, i.e., the solution

of the SDP relaxation. This means that although it is hard to argue whether the feasible solution
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IEEE-30

ε 0 0.55

λ1 30.6789 30.8677

λ2 0.4986 0

Cost $414.34 $438.40

k ck PGk QGk PGk QGk

1 1 80 11.11 80 -4.60

2 10 0 39.16 0 -2.10

13 1 40 44.70 40 44.70

33 10 23.98 35.26 27.32 33.36

23 100 0 33.39 0 15.62

27 1 54.55 25.65 45.22 21.33

Table 3.3: Case study for IEEE 30 bus system.

IEEE-57

ε 0 1.5

λ1 57.1776 56.8887

λ2 0.0767 0

Cost $259.70 $272.73

k ck PGk QGk PGk QGk

1 0.1 575.88 78.60 575.88 111.87

2 0.1 100 50 100 50

3 100 0 60 0 44.29

6 0.1 100 25 100 25

8 10 13.11 117.90 14.41 159.64

9 0.1 100 9 100 9

12 0.1 410 96.91 410 -6.29

Table 3.4: Case study for IEEE 57 bus system.
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Figure 3.6: (a) IEEE-14; (b) IEEE-30; (c) IEEE-57
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retrieved from the rank-1 matrix Wopt
ε for ε = 0.012 is globally optimal for OPF, its sub-optimality

degree is at least %99.98 (this number is obtained by contrasting the cost 316.13 with the lower

bound 316.08). It is even more interesting to note that the feasible solution recovered for OPF

coincides with the solution found by the interior point method implemented in MATPOWER. This

implies that the attained feasible solution is a local near-global (if not global) solution of OPF.

To gain some insight into the selection of the penalty coefficient ε, the cost foptε =
∑

k∈G fk(P
ε
Gk

)

is plotted in Figure 3.6(a). It can be observed that this function is strictly increasing at the

beginning, but there is a breakpoint at which the function becomes almost flat. Interestingly, the

matrix Wopt
ε has rank 2 before the breakpoint ε = 0.012 and rank 1 after this point. Consequently,

there is a range of values for ε (as opposed to a single number) that makes the matrix Wopt
ε rank

1 and keeps the cost at the lowest level (due to the almost flat part of the curve foptε ).

The above experiment was repeated on two very extreme cases for IEEE 30 and 57-bus systems

with linear cost functions. The results are summarized in Tables 3.3 and 3.4 and Figures 3.6(b)-

(c). The observations made for each of these cases conform with the previous ones: (i) there is

a turning point at which the cost function foptε becomes almost flat and concurrently the matrix

Wopt
ε becomes rank 1, (ii) the feasible solution of OPF recovered from a rank-1 matrix Wopt

ε is not

only near-optimal but also a local solution. The phenomenon of the “almost flat part segment”

in the curve foptε has been observed in numerous cases examined by the authors for which the

(unpenalized) SDP relaxation did not have a rank-1 solution.

Some modifications on the IEEE test cases and other well known examples have been proposed

in [Bukhsh et al., 2013] and [Gopalakrishnan et al., 2011], which make the SDP relaxation method

fail to work. Consider the case “modified 14-bus” from [Gopalakrishnan et al., 2011] and “modified

118-bus” from [Bukhsh et al., 2013] to evaluate the performance of the penalized SDP method:

• For the case “modified 14-bus” from [Gopalakrishnan et al., 2011], the (unpenalized) SDP

lower bound on the optimal cost of the solution is 8092.36. A rank-1 solution can be obtained

at ε = 80 with the cost 8092.72.

• For the case “modified 118-bus” from [Bukhsh et al., 2013], the diagram of the optimal cost

versus the penalty coefficient ε is shown in Figure 3.7. This system has at least 3 local minima

with the associated costs 129625.03, 177984.32 and 195695.54. The penalized SDP relaxation

gives rise to the best minimum among these local minima for ε ' 0.2.
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Rank 1 

Rank 2 

Figure 3.7: The modified 118-bus system

To demonstrate the merit of the penalized SDP relaxation, we generated more than 7000 cost

functions for IEEE 14, 30 and 57-bus systems with the network parameters obtained from MAT-

POWER test data files—including constraints limiting the apparent power for each line—where

the cost coefficients ck’s were chosen from the discrete set {1, 2, 3, 4}. We then conducted the above

experiment on all these generated OPF problems and tabulated the findings in the supplement

http://www.columbia.edu/~rm3122/research.html. The results are encapsulated below:

• There were many cases for which the penalized SDP relaxation with ε = 0 had a rank-1

solution. This means that the unpenalized SDP relaxation was able to find a global solution

of OPF in many cases.

• There were cases for which the numerical solution of the SDP relaxation was not rank 1,

but the penalized SDP relaxation produced a rank-1 solution for a very small number ε. For

example, this occurs for the IEEE-30 bus system with ck = 1 for which Wopt has two non-zero

eigenvalues 32.3437 and 0.0112, while Wopt
ε has only one nonzero eigenvalue equal to 32.3433

for ε = 10−5. Under this circumstance, the SDP relaxation has multiple solutions, including

a hidden rank-1 solution that can be obtained through the penalized SDP relaxation with a

very small ε.

• In many cases, there exists an ε1 > 0 such that the penalized SDP relaxation always yields a

rank-1 solution for every ε > ε1 and that there exists an interval (ε1, ε2) in which the resulting

cost changes very slightly (as shown in Figures 3.6 and 3.7). Although the cost can increase

http://www.columbia.edu/~rm3122/research.html
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dramatically for ε > ε2, like the case shown in Figure 3.6(c), we observed that the interval

(ε1, ε2) of interest is relatively large and an ε inside that interval can be spotted with 2 or 3

trial and errors.

• Whenever the SDP relaxation failed to work for each of the generated cases (counting over

7000 OPFs), the penalized SDP relaxation always had a rank-1 solution with a carefully

chosen ε. In addition, the recovered near-optimal solution of OPF almost satisfied the KKT

conditions (subject to some small error) in 100%, 96.6% and 95.8% of cases for IEEE 14, 30

and 57-bus systems, respectively. This means that these sub-optimal points would be almost

globally optimal.

3.6 Summary

It has been shown recently that the semidefinite programming (SDP) can be used to find a global

solution of the OPF problem for IEEE benchmark power systems. Although the exactness of the

SDP relaxation for acyclic networks has been successfully proved, a recent work has witnessed the

failure of this technique for a three-bus cyclic network. Inspired by this observation, this chapter

is concerned with understanding the limitations of the SDP relaxation for cyclic power networks.

First, it is shown that the injection region of a weakly-cyclic network with cycles of size 3 is convex

in the lossless case and has a convex Pareto front in the lossy case. It is then proved that the

SDP relaxation works for this type of network. This result implies that the failure of the SDP

relaxation for a three-bus network recently reported in the literature can be fixed by utilizing a

good modeling of the line capacity. As a more general result, it is then shown that whenever the

SDP relaxation does not work, it is expected to have a low-rank solution in practice. Finally, a

penalized SDP relaxation is proposed from which a near-global solution of OPF may be recovered.

The performance of this method is tested on IEEE systems with over 7000 different cost functions.
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Chapter 4

Promises of Conic Relaxation for

Contingency-Constrained Optimal

Power Flow Problem

This chapter is concerned with the security-constrained optimal power flow (SCOPF) problem,

where each contingency corresponds to the outage of an arbitrary number of lines and generators.

The problem is studied by means of a convex relaxation, named semidefinite program (SDP). The

existence of a rank-1 SDP solution guarantees the recovery of a global solution of SCOPF. We

prove that the rank of the SDP solution is upper bounded by the treewidth of the power network

plus one, which is perceived to be small in practice. We then propose a decomposition method

to reduce the computational complexity of the relaxation. In the case where the relaxation is not

exact, we develop a graph-theoretic convex program to identify the problematic lines of the network

and incorporate the loss over those lines into the objective as a penalization (regularization) term,

leading to a penalized SDP problem. We perform several simulations on large-scale benchmark

systems and verify that the global minima are at most 1% away from the feasible solutions obtained

from the proposed penalized relaxation.
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4.1 Introduction

The classical optimal power flow (OPF) problem aims to find a steady-state operating point of

a power system that minimizes a desirable cost function, e.g. power loss or generation cost, and

satisfies network and physical constraints on loads, powers, voltages and line flows [Momoh, 2001].

The OPF problem is not only non-convex but also NP-hard, due to its possible reduction to the

(0,1)-quadratic optimization. Started by the work [Carpentier, 1962] in 1962, many of the existing

optimization techniques have been studied for the OPF problem, leading to algorithms based on

linear programming, Newton Raphson, quadratic programming, nonlinear programming, Lagrange

relaxation, interior point method, artificial intelligence, artificial neural network, fuzzy logic, genetic

algorithm, evolutionary programming and particle swarm optimization [Pandya and Joshi, 2008].

Due to the non-convexity of OPF, these algorithms are not robust, lack performance guarantees,

and may not find a global optimum.

Followed by the idea proposed in [Bai et al., 2008] and by exploiting the physical properties

of transmission lines, it has been argued in the series of work [Lavaei and Low, 2010; Lavaei

and Low, 2012; Sojoudi and Lavaei, 2014; Lavaei et al., 2012; Low, 2014; Zhang and Tse, 2013;

Bose et al., 2011] that the classical OPF problem corresponding to a practical power system may

be convexified and solved efficiently through a semidefinite programming (SDP) relaxation. In

particular, the paper [Sojoudi and Lavaei, 2012] shows that the SDP relaxation is exact in two

cases under certain technical assumptions: (i) for acyclic networks, (ii) for cyclic networks after

relaxing the angle constraints. However, the SDP relaxation is not always exact for a general mesh

network [Lesieutre et al., 2011; Bukhsh et al., 2013; Gopalakrishnan et al., 2011; Phan, 2012]. This

issue has been discussed extensively in the literature and several test cases have been contrived that

witness the failure of SDP relaxation in obtaining a global optimal solution of the OPF problem

[Bukhsh et al., 2013; Louca et al., 2014]. To ameliorate the issue, we have shown in chapter 3 that:

(i) the exactness of the SDP relaxation depends on the formulation of the line capacity constraints,

and (ii) the penalization of total reactive loss may enable the recovery of a near-global solution

(i.e., a solution that is measurably close to a global minimum) for modest-sized systems (as verified

in over 7000 simulations).

The major drawback of representing the optimal power flow problem as a semidefinite program

is the requirement of defining a square matrix variable, which makes the number of scalar variables
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of the problem quadratic with respect to the number of network buses. This may yield a very

high-dimensional SDP problem for a real-world network. To address this issue, the papers [Lam et

al., 2012b; Zhang et al., 2015; Molzahn et al., 2013] have leveraged the sparsity of power networks in

order to break down the large-scale semidefinite constraint into small-sized constraints. Similarly,

the papers [Andersen et al., 2014], [Jabr, 2012] and [Molzahn and Hiskens, 2015] have exploited the

general technique proposed in [Fukuda et al., 2001; Nakata et al., 2003] to reduce the complexity of

the SDP relaxation of the OPF problem. The simulations performed in those papers suggest that

the SDP relaxation would fail to work properly for large-scale systems [Molzahn et al., 2013].

Although OPF is a fundamental problem studied extensively in the literature for power systems,

a real-world power flow optimization is based on a set of coupled OPFs with a variety of constraints

and variables. The latter problem is named security-constrained OPF (SCOPF) [Capitanescu et

al., 2007; Wood and Wollenberg, 1996]. The SCOPF problem is important in practice, since

independent system operators tend to design an operating point that satisfies the demand and

network constraints not only under normal operation but also under pre-specified contingencies

such as line outages. Depending on the network characteristics, one may adopt preventive or

corrective approaches for the SCOPF problem. In the preventive formulation of SCOPF, the

under-design state of each generator (e.g., production level) is considered identical for the pre- and

post-contingency scenarios. This reflects the fact that mechanical facilities may not be able to

respond to the changes in the network fast. In the corrective approach, limited changes in certain

control parameters are permitted after the network experiences a fault. SCOPF is more challenging

than the conventional OPF problem for two reasons. First, the size of the optimization could be

prohibitive, depending on the number of contingencies. Second, SCOPF is obtained by coupling a

group of non-convex OPF problems associated with different contingencies and therefore its non-

convexity would be much higher than an individual OPF problem. The purpose of this work is to

propose an efficient computational method that can be applied to not only OPF but also SCOPF.

In this chapter, we study the SCOPF problem—as a general version of OPF—through a convex

relaxation. First, we propose an SDP relaxation for this problem. The existence of a rank-1 SDP

solution guarantees the recovery of a global solution of SCOPF. We prove that the relaxation has

a matrix solution whose rank is at most the treewidth of the pre-contingency network plus one.

The treewidth of real-world networks is perceived to be small due to their (almost) planarity and
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sparsity [Fomin and Thilikos, 2006]. For example, the treewidth of the graph corresponding to a

peak hour setup of a Polish system with over 3000 buses is less than 25. Second, we reduce the

computational complexity of the SDP problem using a tree decomposition method to arrive at a

decomposed SDP relaxation with a set of small-sized SDP matrices as opposed to a full-scale SDP

matrix. We show that the full-scale SDP relaxation has a solution whose rank is upper bounded by

the ranks of the small-sized matrices of the decomposed SDP relaxation. By working on the ranks

of these small matrices, we propose a technique to identify the problematic lines of the network for

each contingency that may contribute to the inexactness of the SDP relaxation for SCOPF. This

diagnosis method may enable us to develop a heuristic method, named penalized SDP relaxation,

to find a near-global solution of the problem by penalizing the loss over the problematic lines for

each contingency. Note that a certain line may be problematic with respect to one contingency

and not problematic with respect to another contingency. It is suggested to define the penalty

term as a summation of all loss functions for problematic lines under each contingency. Note that

a uniform penalty—consisting of losses over all lines for all contingencies—also work for all test

systems studied in this chapter, but the resulting SDP solution would have a lower global optimality

guarantee compared to the case where the loss over only problematic lines is penalized. We test

our method on several benchmark systems with as high as 3000 buses and find a solution with a

global optimality guarantee of at least 99% for each case.

Notations: R, C, and Hn denote the sets of real numbers, complex numbers, and n×n Hermitian

matrices, respectively. The m by n rectangular identity matrix whose (i, j) entry is equal to the

Kronecker delta δij is denoted by Im×n. The notations Re{W}, Im{W}, and rank{W} denote

the real part, imaginary part, and rank of a scalar/matrix W, respectively. The notation W � 0

means that W is Hermitian and positive semidefinite. The notation ]x denotes the angle of a

complex number x. The notation “i” is reserved for the imaginary unit. The superscripts (·)∗ and

(·)T represent the conjugate transpose and transpose operators, respectively. Given a matrix W,

its (l,m) entry is denoted as Wlm. The subscript (·)opt is used to show the optimal value of an

optimization parameter. Given a matrix M, its Moore Penrose pseudoinverse is denoted as M+.

Given a simple graph H, its vertex and edge sets are denoted by VH and EH, respectively. Given

two sets S1 and S2, the notation S1\S2 denotes the set of all elements of S1 that do not exist in

S2. Given a scalar m and a real-valued set S, define S +m as a set obtained by adding m to every
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element of S. Given a Hermitian matrix M and two sets of natural numbers S1 and S2, define

M{S1,S2} as a submatrix of M obtained through two operations: (i) removing all rows of M

whose indices do not belong to S1, and (ii) removing all columns of M whose indices do not belong

to S2. For instance, M {{1,2}, {2,3}} is a 2× 2 matrix with the entries M12,M13,M22,M23.

4.2 Problem Formulation

Consider a power network with the set of busesN := {1, 2, ..., n} and the set of flow lines L ⊆ N×N .

With no loss of generality, each line (l,m) ∈ L of the network is modeled as a series admittance

ylm. Suppose that a known constant-power load with the complex value SDk
= PDk

+ QDk
i is

connected to bus k ∈ N , where PDk
, QDk

∈ R. Given a nonnegative integer c, consider a set

of c contingencies, where each contingency corresponds to an arbitrary number of pre-specified

line/generator outages. In this work, we model a line outage by removing the line from the base

case and model a generator outage by enforcing its output to be zero. Define C := {0, 1, . . . , c} as

the set of all pre- and post-contingencies, where the base case is treated as contingency 0. Define

L(0) = L, and L(r) as the set of lines of the network under contingency r ∈ {1, 2, ..., c}.

Consider a contingency scenario r ∈ C. Assume that a generator is connected to each bus k ∈ N ,

whose unknown complex output is denoted as S
(r)
Gk

= P
(r)
Gk

+Q
(r)
Gk

i. Let f
(r)
k (·) be a convex function

representing the generation cost for generator k in the contingency case r ∈ C. The unknown

complex voltage at bus k ∈ N is denoted as V
(r)
k . Furthermore, define S

(r)
lm = P

(r)
lm + Q

(r)
lm i as the

unknown complex power transferred from bus l ∈ N to the rest of the network through the line

(l,m) ∈ L(r). Define:

P
(r)
G ,

[
P

(r)
G1
, . . . , P

(r)
Gn

]T
, Q

(r)
G ,

[
Q

(r)
G1
, . . . , Q

(r)
Gn

]T
,

PD ,
[
PD1 , . . . , PDn

]T
, QD ,

[
QD1 , . . . , QDn

]T
,

V(r) ,
[
V

(r)
1 , . . . , V (r)

n

]T
.

Given the known vectors PD and QD, SCOPF minimizes the generation cost over the unknown

parameters V(r), P
(r)
G and Q

(r)
G for r = 0, 1, ..., c subject to the power balance equations at all buses

and certain network constraints. SCOPF is formalized below.
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Figure 4.1: A minimal tree decomposition for a ladder
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Figure 4.2: The IEEE 14-bus test case and its minimal tree decomposition

SCOPF problem: Minimize ∑
r∈C

∑
k∈N

f
(r)
k

(
P

(r)
Gk

)
(4.1)

over the variables P
(0)
G ,P

(1)
G , . . . ,P

(c)
G ∈ Rn, Q

(0)
G ,Q

(1)
G , . . . ,Q

(c)
G ∈ Rn and V(0),V(1), . . . ,V(c) ∈ Cn,
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subject to

P
(r)
Gk
− PDk

=
∑
l∈N (r)

k

Re
{
V

(r)
k

(
V

(r)
k − V (r)

l

)∗
y∗kl

}
(4.2a)

Q
(r)
Gk
−QDk

=
∑
l∈N (r)

k

Im
{
V

(r)
k

(
V

(r)
k − V (r)

l

)∗
y∗kl

}
(4.2b)

P
(r)
k;min ≤ P

(r)
Gk
≤ P (r)

k;max (4.2c)

Q
(r)
k;min ≤ Q

(r)
Gk
≤ Q(r)

k;max (4.2d)

V
(r)
k;min ≤ |V

(r)
k | ≤ V

(r)
k;max (4.2e)

|]V (r)
l − ]V (r)

m | ≤ θ
(r)
lm;max (4.2f)(

P
(r)
lm

)2
+
(
Q

(r)
lm

)2
≤
(
S
(r)
lm;max

)2
(4.2g)

|P (r)
Gk
− P (0)

Gk
| ≤ ∆P

(r)
k;max (4.2h)

|Q(r)
Gk
−Q(0)

Gk
| ≤ ∆Q

(r)
k;max (4.2i)∣∣∣|V (r)

k |
2 − |V (0)

k |
2
∣∣∣ ≤ (∆V

(r)
k;max

)2
(4.2j)

for every k ∈ N , r ∈ C and (l,m) ∈ L(r), where

• N (r)
k denotes the set of all neighboring nodes of bus k ∈ N for contingency r.

• (4.2a) and (4.2b) are the power balance equations accounting for the conservation of energy

at bus k.

• (4.2c), (4.2d) and (4.2e) restrict the active power, reactive power and voltage magnitude at

bus k for contingency r, given the limits P
(r)
k;min, P

(r)
k;max, Q

(r)
k;min, Q

(r)
k;max, V

(r)
k;min and V

(r)
k;max.

• Each line (l,m) ∈ L(r) of the network is subject to two capacity constraints. The constraint

(4.2f) restricts the voltage phase difference of buses l and m with the limit θ
(r)
lm;max ∈ [0, 90◦].

Moreover, (4.2g) restricts the apparent power flow |S(r)
lm | with the line capacity S

(r)
lm;max.

• Given the limits ∆P
(r)
k;max, ∆Q

(r)
k;max and ∆V

(r)
k;max, the constraints (4.2h), (4.2i) and (4.2j) en-

sure that the potentially controllable parameters P
(r)
Gk

, Q
(r)
Gk

and |V (r)
k | vary within permissible

ranges after a contingency occurs.
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Note that a generator outage can be modeled as

P
(r)
k;min = P

(r)
k;max = Q

(r)
k;min = Q

(r)
k;max = 0. (4.3)

4.2.1 Convex Relaxation for SCOPF

The SCOPF problem includes quadratic constraints such as (4.2a) and (4.2b). Nevertheless, all

constraints of (4.2) can be expressed linearly in terms of the entries of the matrix variable W

defined as W , VV∗, where V denotes a column vector obtained by stacking the voltage vectors

V(0),V(1), . . . ,V(c). On the other hand, the variable V can be dropped from the optimization

problem by equivalently replacing the consistency constraint W = VV∗ with two new constraints:

(i) W � 0, and (ii) rank{W} = 1. Observe that Constraint (ii) is the only non-convex constraint

of the reformulated SCOPF problem. Motivated by this fact, the SDP relaxation of SCOPF is

defined as the optimization problem reformulated in terms of W under the additional constraint

W � 0 without incorporating the rank constraint rank{W} = 1. To formalize this relaxation, let

W(r) ∈ Hn denote the submatrix of W in the intersection of rows rn+ 1, ..., rn+ n with columns

rn+ 1, ..., rn+ n.

Relaxed SCOPF: Minimize ∑
r∈C

∑
k∈N

f
(r)
k

(
P

(r)
Gk

)
(4.4)

over the parameters P
(0)
G ,P

(1)
G , . . . ,P

(c)
G ∈ Rn, Q

(0)
G ,Q

(1)
G , . . . ,Q

(c)
G ∈ Rn and W ∈ Hn(c+1), subject
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to

P
(r)
Gk
− PDk

=
∑
l∈N (r)

k

Re
{(
W

(r)
kk −W

(r)
kl

)
y∗kl

}
(4.5a)

Q
(r)
Gk
−QDk

=
∑
l∈N (r)

k

Im
{(
W

(r)
kk −W

(r)
kl

)
y∗kl

}
(4.5b)

P
(r)
k;min ≤ P

(r)
Gk
≤ P (r)

k;max (4.5c)

Q
(r)
k;min ≤ Q

(r)
Gk
≤ Q(r)

k;max (4.5d)(
V

(r)
k;min

)2
≤W (r)

kk ≤
(
V

(r)
k;max

)2
(4.5e)

Im
{
W

(r)
lm

}
≤ Re

{
W

(r)
lm

}
tan

(
θ
(r)
lm;max

)
(4.5f)(

P
(r)
lm

)2
+
(
Q

(r)
lm

)2
≤
(
S
(r)
lm;max

)2
(4.5g)

|P (r)
Gk
− P (0)

Gk
| ≤ ∆P

(r)
k;max (4.5h)

|Q(r)
Gk
−Q(0)

Gk
| ≤ ∆Q

(r)
k;max (4.5i)∣∣∣W (r)

kk −W
(0)
kk

∣∣∣ ≤ (∆V
(r)
k;max

)2
(4.5j)

W � 0 (4.5k)

for every k ∈ N , r ∈ C and (l,m) ∈ L(r).

The relaxed SCOPF is alternatively referred to as SDP relaxation henceforth. Let fopt and

fr−opt denote the optimal objective values of the SCOPF and relaxed SCOPF. As shown in [Lavaei

and Low, 2012] and [Lavaei, 2011], the relaxed SCOPF is equivalent to the dual of the dual of

the SCOPF problem and therefore it provides a lower bound fr−opt on the globally minimum

solution fopt of the original problem (4.2). Hence, fopt − fr−opt represents the duality gap for the

non-convex SCOPF problem, which is not necessarily zero or even small [Lesieutre et al., 2011;

Bukhsh et al., 2013; Louca et al., 2014]. Zero duality gap is a favorable property because of two

reasons: (i) it guarantees the existence of a rank-1 solution Wopt, (ii) it attains the optimal objective

value of the SCOPF problem. If Wopt is obtained numerically, an optimal vector of voltage phasors

Vopt can then be constructed through the decomposition Wopt = VoptV
∗
opt. It has been shown in

[Lavaei, 2011] that whenever the duality gap of the classical OPF problem is zero for a specific power

network, the SCOPF problem also possesses zero duality gap, leading to the presence of a rank-1

solution for the relaxed SCOPF. As investigated in [Gan et al., 2012] and [Sojoudi and Lavaei, 2012],
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the duality gap for the OPF problem (without any contingency scenarios) is highly correlated with

the topology of the network. In addition, the gap heavily depends on the mathematical formulation

of the line capacity constraints as shown in chapter 3. Since a power network has a sparse graph

in general, the relaxed SCOPF problem may have infinitely many solutions. As an extreme case,

the duality gap could be zero and yet there exist a set of rank-1 and higher-rank solutions for the

relaxed problem. To alleviate this issue, the paper [Lavaei and Low, 2012] suggests adding a small

resistance (10−5 per unit) to every ideal transformer with zero resistance.

Using a graph-theoretic approach combined with the SDP relaxation, we aim to study three

problems:

• Since the dimension of the matrix variable W is prohibitive for a large-scale network, how

can the computational complexity of the relaxed SCOPF be reduced?

• What is the rank of an optimal solution Wopt of the relaxed SCOPF and how does it relate

to the topology of the power grid?

• If the rank of Wopt is not 1, how can a near-global solution be recovered for the non-convex

SCOPF problem?

4.3 Low-rank SDP Solutions

In this section, the objective is twofold. First, the computational complexity of the relaxed SCOPF

will be reduced. Second, the rank of its lowest-rank solution will be studied.

4.3.1 Reduction of Computational Complexity

Definition 22 (Treewidth). Given a graph H = (VH, EH), a tree T is called a tree decomposition

of H if it satisfies the following properties:

1. Every node of T corresponds to and is identified by a subset of VH.

2. Every vertex of H is a member of at least one node of T .

3. Tk is a connected graph for every k ∈ VH, where Tk denotes the subgraph of T induced by all

nodes of T containing the vertex k of H.
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4. If (i, j) ∈ EH, then the subgraphs Ti and Tj have at least one node in common.

Each node of T is a bag (collection) of vertices of H and hence it is referred to as bag. The width

of T is the cardinality of its biggest bag minus one. The treewidth of H is the minimum width over

all possible tree decompositions of H and is denoted by tw(H).

Note that the treewidth of a tree is equal to 1. Figure 6.1 shows a graph H with 6 vertices

named a, b, c, d, e, f , together with its minimal tree decomposition T . Every node of T is a set

containing three members of VH. The width of this decomposition is therefore equal to 2. The

graph of the IEEE 14-bus system and its minimal tree decomposition are depicted in Figure 4.2.

As shown in Table 4.1, the treewidth of IEEE systems and various setups of Polish systems with

as high as 3000 buses is at most 24. This empirical evidence signifies that real-world power grids

may have a small treewidth, which is leveraged in this work to solve the SCOPF problem.

Definition 23 (Sparsity graph). The sparsity graph of the relaxed SCOPF problem is defined

as a graph with n(c + 1) vertices such that (i, j) is an edge of the graph whenever i 6= j, i, j ∈

{1, 2, ..., n(c + 1)} and Wij appears in either of the constraints (4.5a) and (4.5b) with a nonzero

coefficient.

Consider a tree decomposition of the power network in the pre-contingency case and denote its

bags (nodes) as J (0)
1 ,J (0)

2 , ...,J (0)
p ⊆ N .

Theorem 17. The following statements hold:

i) The sparsity graph of the relaxed SCOPF problem has a tree decomposition with p(c+ 1) bags

given by the set: {
J (0)
m + nr

∣∣∣∣ m = 1, ..., p and r = 0, ..., c

}
(4.6)

ii) The optimal objective value of the relaxed SCOPF problem does not change if its constraint

W � 0 is replaced by

W
{
J (0)
m + nr,J (0)

m + nr
}
� 0 (4.7)

or equivalently

W(r)
{
J (0)
m ,J (0)

m

}
� 0 (4.8)

for every r ∈ C and m ∈ {1, . . . , p}.
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Proof. The proof of Part (i) follows from the fact that the sparsity graph of the relaxed SCOPF

problem is composed of c + 1 disconnected components, each corresponding to one of the contin-

gencies 0, 1, 2..., c. This is due to the fact that the constraints of the SCOPF problem can all be

described in terms of only those entries of W that appear in one of the submatrices W(0), ...,W(c).

Part (ii) is a direct consequence of Part (i) and the chordal theorem in [Grone et al., 1984].

Define decomposed relaxed SCOPF as a convex optimization obtained from the relaxed

SCOPF by replacing W � 0 with the constraints W(r)
{
J (0)
m ,J (0)

m

}
� 0 for every r ∈ C and

m ∈ {1, . . . , p}. Theorem 17 reduces the computational cost of the SDP relaxation dramatically

for a large-scale system with a relatively small treewidth. Note that many entries of the matrix

variable W may not appear in the objective or constraints of the decomposed relaxed SCOPF,

and those redundant entries can be eliminated. For example, the relaxed OPF for a Polish system

has about 9,000,000 scalar variables, while the decomposed relaxed OPF has only about 100,000

parameters. As will be illustrated later, this enables us to solve a large-scale problem efficiently.

4.3.2 Existence of Low-rank Solutions

Let Wref ∈ Hn(c+1) denote an arbitrary solution of the relaxed SCOPF or decomposed relaxed

SCOPF. Note that if Wref corresponds to the decomposed problem, its redundant entries may not

have been found by the numerical algorithm and are regarded as “missing”. The following question

arises: is it possible to fine-tune the entries of Wref or design its missing entries to arrive at a

different, but lower rank, solution of the (decomposed) relaxed problem? It is known that there

exists a polynomial-time algorithm to fill a partially-known real-valued matrix in such a way that

the rank of the resulting matrix becomes equal to the highest rank among all bags [Laurent, 2001;

Laurent and Varvitsiotis, 2014]. We extend this result to the complex domain by proposing an

iterative algorithm that transforms Wref into a solution Wopt whose rank is upper bounded by the

treewidth of the network plus one. To introduce our algorithm, consider a tree decomposition TC of

the sparsity graph of the relaxed SCOPF problem with the bags specified in (4.6). For simplicity,

we name the bags as J1,J2, ...,Jp(c+1).

Matrix completion algorithm:

1. Set T ′ := TC and W := Wref .
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2. If T ′ has a single node, then consider Wopt as W and terminate; otherwise continue to the

next step.

3. Choose a pair of bags Jx,Jy of T ′ such that Jx is a leaf of T ′ and Jy is its unique neighbor.

4. Define

A ,W{Jx ∩ Jy,Jx ∩ Jy} (4.9a)

Bx ,W{Jx \ Jy,Jx ∩ Jy} (4.9b)

By ,W{Jy \ Jx,Jx ∩ Jy} (4.9c)

X ,W{Jx \ Jy,Jx \ Jy} ∈ Cdx×dx (4.9d)

Y ,W{Jy \ Jx,Jy \ Jx} ∈ Cdy×dy (4.9e)

Sx , X−BxA
+B∗x = QxΛxQ

∗
x (4.9f)

Sy , Y −ByA
+B∗y = QyΛyQ

∗
y (4.9g)

where QxΛxQ
∗
x and QyΛyQ

∗
y denote the eigenvalue decompositions of Sx and Sy with the

diagonals of Λx and Λy arranged in descending order. Then, update a part of W as follows:

W{Jy \ Jx,Jx \ Jy} := ByA
+B∗x + Qy

√
Λy Idy×dx

√
Λx Q∗x

and update W{Jx \ Jy,Jy \ Jx} accordingly to preserve the Hermitian property of W.

5. Update T ′ by merging Jx into Jy, i.e., replace Jy with Jx ∪Jy and then remove Jx from T ′.

6. Go back to step 2.

Theorem 18. Consider an arbitrary solution Wref of the (decomposed) relaxed SCOPF problem.

The output of the matrix completion algorithm, denoted as Wopt, is a solution of the relaxed SCOPF

problem whose rank is smaller than or equal to:

max

{
rank

{
W

(r)
ref {J

(0)
m ,J (0)

m }
} ∣∣∣∣ 1 ≤ m ≤ p, r ∈ C

}
.

Proof. See Theorem 4 of Chapter 2 for the proof.

Note that Theorem 18 is valid for not only relaxed SCOPF but also decomposed relaxed SCOPF.

The following three results are the by-products of the above theorem.
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Corollary 10. If the relaxed SCOPF problem is feasible, then it has a solution Wopt whose rank

is upper bounded by the treewidth of the power network in the pre-contingency case plus 1.

Corollary 11. For every tree network, if the relaxed SCOPF problem is feasible, then it has a

solution Wopt whose rank is not greater than 2.

Corollary 12. The non-convex SCOPF problem has the same globally optimal value as that of the

(decomposed) relaxed SCOPF under the additional constraints

rank{W(r){J (0)
m ,J (0)

m }} = 1 (4.10)

for every r ∈ C and m ∈ {1, . . . , p}.

4.4 Recovery of a Near-global Solution

We explored the properties of the decomposed relaxed SCOPF in the preceding section. In this

part, we aim to address two problems: (i) how to find a tree decomposition of the power network

in order to be able to formulate the decomposed problem, (ii) how to recover a near-global solution

of the SCOPF problem through an SDP relaxation.

4.4.1 Tree Decomposition Algorithm

Although the problem of finding the treewidth of an arbitrary graph is known to be NP-hard, there

are many efficient algorithms in the literature that provide lower and upper bounds on treewidth

[Bodlaender and Koster, 2010; Bodlaender and Koster, 2011]. In what follows, we describe an

effective algorithm for finding a tree decomposition that is used in all of the simulations offered in

the next section. This algorithm combines the greedy degree and greedy fill-in algorithms presented

in [Bodlaender and Koster, 2010] in order to obtain a tree decomposition for a graph with a low

maximum clique order.

Consider a graph H = (VH, EH) together with an arbitrary vertex u of this graph. δH(u)

denotes the degree of u ∈ VH. The fill-in of u is defined as the number of edges whose addition

to the subgraph formed by the neighbors of u makes the resulting subgraph a clique (complete

subgraph). This number is denoted by φH(u). The vertex u is called simplicial if φH(u) = 0 (i.e.,

if the neighbors of u are all connected to one another).
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Greedy decomposition algorithm:

1. Consider α as an arbitrary constant and define H′ = H. Initialize T as a graph with no

nodes.

2. If H′ has a single vertex, then consider T as a graph with the single node VH and terminate;

otherwise continue.

3. Choose a vertex u in H′ according to the following rules:

• If H′ has a simplicial node, then set u as that vertex.

• Otherwise, set u as a (not necessarily unique) vertex of H′ that minimizes the function

φH′(u) + α× δH′(u).

4. Define U as the set of all neighboring vertices of u in H′. Add the bag U ∪{u} to T , and then

update the graph H′ by first connecting all vertices in U to each other and then removing u.

Jump to Step 2.

Based on [Bodlaender and Koster, 2010], it is straightforward to show that a set of edges can

be added to the nodes of T to make it a tree decomposition for H. Since the decomposed relaxed

SCOPF only needs the bags of T , it is unnecessary to find the edges of the tree decomposition.

4.4.2 Penalization Method

Consider the (decomposed) relaxed SCOPF. Since the mapping from W to the generating active

power levels P
(r)
Gk

’s is not bijective, there often exists a space of optimal matrix solutions with

disparate ranks. Under such circumstance, commonly-used numerical algorithms would normally

find the highest-rank SDP solution, although there may exist a hidden rank-1 solution. To address

this issue in the context of OPF, we proposed a method in chapter 3 to penalize the total reactive

power generation
∑

k∈N QGk
in the objective function of the SDP relaxation. This penalty term

aims to guide the numerical algorithm by speculating that the right operating point would yield a

small reactive loss.

Consider the case where the (decomposed) relaxed SCOPF has no rank-1 solution. Suppose

that it is possible to design a convex function g(W(0), ...,W(c)) such that the SDP relaxation admits
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a rank-1 solution whenever the objective of the relaxed SCOPF is replaced by this function. Then,

penalizing the objective of the relaxed SCOPF with ε × g(·) may lead to an approximate rank-1

SDP solution and subsequently a near-global SCOPF solution, for an appropriate choice of the

penalty coefficient ε.

Therefore, the main challenge is to seek a penalization function g(·). The recent literature of

compressed sensing suggests a penalty term consisting of a weighted sum of the diagonal entries

of W [Recht et al., 2010a]. However, this idea fails to work for SCOPF since all feasible solutions

of the SDP relaxation have similar diagonal values due to a tight voltage control in practice. We

propose a different penalty function in this chapter. Consider a positive semidefinite matrix X with

constant (fixed) diagonal entries X11, . . . , Xnn and variable off-diagonal entries. If we maximize a

weighted sum of the off-diagonal entries of X with positive weights, then the (l,m) entry of the

optimal solution would be Xlm =
√
XllXmm for all l,m ∈ {1, . . . , n}, in which case X becomes

rank-1. Motivated by this fact, we employ the idea of elevating the off-diagonal entries of W

to obtain a low-rank solution. For a lossless network, any decrease in the total reactive power

generation increases the weighted sum of the real parts of the off-diagonal entries of W. Likewise,

the penalization of the apparent power loss over the series impedance of the lines of the network

(without incorporating the shunt capacitors) plays a similar role for a lossy network. More precisely,

the penalization of the loss

L
(r)
lm ,

∣∣∣S(r)
lm + S

(r)
ml

∣∣∣
=
∣∣∣V (r)
l

(
V

(r)
l − V (r)

m

)∗
+ V (r)

m

(
V (r)
m − V (r)

l

)∗∣∣∣ |y∗lm|
=
∣∣∣W (r)

ll +W (r)
mm −W

(r)
lm −W

(r)
ml

∣∣∣ |y∗lm| (4.11)

associated with the line (l,m) for contingency r enforces the increase of the off-diagonal entries

W
(r)
lm and W

(r)
ml (relative to those of W

(r)
ll and W

(r)
mm). Therefore, this penalty term aims for a

low-rank solution.

Penalized SDP relaxation: This optimization is obtained from the (decomposed) relaxed SCOPF

problem by replacing its objective function with

∑
k∈N
r∈C

f
(r)
k

(
P

(r)
Gk

)
+ εb

∑
k∈N
r∈C

Q
(r)
Gk

+ εl
∑

(r,l,m)∈Lprob
L
(r)
lm (4.12)
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for given nonnegative numbers εb, εl and a set of triples Lprob ⊆
{

(r, l,m) | r ∈ C, (l,m) ∈ L(r)
}

,

where L
(r)
lm represents the apparent power loss over the series impedance of the line (l,m) for

contingency r.

Let Wopt and Wε denote arbitrary solutions of the SDP and penalized SDP relaxations, re-

spectively. Assume that Wopt does not have rank 1, whereas Wε has rank 1. By decomposing Wε

as VεV
∗
ε , a feasible solution Vε of the SCOPF can be obtained. In addition, the optimal value

fopt of the SCOPF problem is lower bounded by the optimal value fr-opt of the SDP relaxation and

upper bounded by fε, where fε is defined as the total generation cost associated with the operating

point Vε. Define global optimality guarantee as

100− fε − fr-opt
fε

× 100. (4.13)

This number shows the closeness of the feasible solution Vε to the unknown globally optimal

solution in terms of their costs (in percentage). For example, if the global optimality guarantee is

99%, then the cost associated with the global solution of SCOPF is at most 1% better than the

cost corresponding to the obtained feasible point. In summary, if the penalized SDP relaxation has

a rank-1 solution, then a feasible solution of SCOPF together with a global optimality guarantee

can be computed.

The success of the penalized SDP relaxation is in part related to the choice of Lprob. Some-

times, a good choice is to consider this set as the collection of all lines of the system in pre- and

post-contingency cases. In what follows, we propose an effective heuristic method for designing

Lprob. Consider a bag Ji of the tree decomposition TC together with a matrix W. Ji is called a

problematic bag associated with W if W{Ji,Ji} does not have rank 1. Any line of the pre- or

post-contingency network corresponding to an off-diagonal entry of W{Ji,Ji} is called a problem-

atic line associated with W. It follows from Theorem 18 and Corollary 12 that the SDP relaxation

is exact if there is no problematic bags/lines associated with the solution of the decomposed relaxed

SCOPF.

Problematic line selection algorithm: Consider the penalized SDP relaxation with εl = 0.

Using a bisection method, find a value for εb such that the number of problematic lines associated

with the penalized SDP solution is small (minimum). A candidate for Lprob is the set of resulting

problematic lines.
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Assume that the penalized SDP relaxation results in a rank-1 solution or a low-rank matrix so-

lution with a dominant nonzero eigenvalue. The next algorithm can be used to find an approximate

feasible solution of SCOPF.

Recovery algorithm: Given a low-rank solution Wopt of the penalized SDP relaxation, we obtain

an approximate solution for the SCOPF by recovering V(r) according to the following procedure

for every r ∈ C:

1. Set the voltage magnitude V
(r)
k equal to the square root of the (k, k) entry of W

(r)
opt for

k = 1, ..., n.

2. Find the phases of the entries of V(r) through a convex program by minimizing∑
(l,m)∈L(r)

∣∣∣](Wopt)
(r)
lm − ]V

(r)
l + ]V(r)

m

∣∣∣ (4.14)

over the variable ]V(r) ∈ [−π, π]n and subject to ]V (r)
1 = 0.

Note that the above recovery algorithm retrieves a globally optimal solution of the SCOPF

problem in the case where rank{Wopt} = 1. Under that circumstance, we have ](Wopt)
(r)
lm −

]V
(r)
l +]V

(r)
m = 0. If the rank of Wopt is not 1 but this matrix has a dominant nonzero eigenvalue,

the above recovery method aims to find a vector V for which the corresponding line angle differences

are as closely as possible to those suggested by the matrix Wopt.

4.5 Simulations Results

In what follows, we offer several simulations for OPF and SCOPF problems. We have written a

custom OPF Solver to perform these simulations [Madani et al., 2014a], which is based on CVX

and SDPT3.

For all of the cases that will be studied in this section, the penalized SDP has a rank-1 solution

with εb = 0, a roughly chosen εl, and

Lprob =
{

(r, l,m) | r ∈ C, (l,m) ∈ L(r)
}
. (4.15)

This means that the proposed method works at the first try with roughly chosen parameters,

leading to a near-optimal solution. Figures 4.3 and 4.4 demonstrate for multiple systems that the
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Test α TW Prob. εb εl Lower Upper Opt. Time

cases bags bound bound (sec)

Chow’s 9 bus 0 2 2 10 0 5296.68 5296.68 100% ≤ 5

IEEE 14 bus 0 2 0 0 0 8081.53 8081.53 100% ≤ 5

IEEE 24 bus 0 4 0 0 0 63352.20 63352.20 100% ≤ 5

IEEE 30 bus 0 3 1 0.1 0 576.89 576.89 100% ≤ 5

NE 39 bus 0 3 1 10 0 41862.08 41864.40 99.994% ≤ 5

IEEE 57 bus 0 5 0 0 0 41737.78 41737.78 100% ≤ 5

IEEE 118 bus 0 4 61 10 0 129654.61 129660.81 99.995% ≤ 5

IEEE 300 bus 0 6 7 0.1 100 719711.63 719725.10 99.998% 13.9

Polish 2383wp 0 ≤ 23 651 3500 3000 1861510.42 1874322.65 99.316% 529

Polish 2736sp 0 ≤ 23 1 1500 0 1307882.29 1308270.20 99.970% 701

Polish 2737sop 0 ≤ 23 3 1000 0 777626.26 777664.02 99.995% 675

Polish 2746wop 0 ≤ 23 1 1000 0 1208273.91 1208453.93 99.985% 801

Polish 2746wp 0 ≤ 24 1 1000 0 1631772.83 1632384.87 99.962% 699

Polish 3012wp 1 ≤ 24 605 0 10000 2587740.98 2608918.45 99.188% 814

Polish 3120sp -1.5 ≤ 24 20 0 10000 2140765.92 2160800.42 99.073% 910

Table 4.1: Performance of the penalization method for several benchmark systems.

near-optimal cost changes slowly by the increase of εl, which points to the high degree of freedom in

choosing εl. However, a careful choice of problematic lines and the regularization parameters εb and

εl using a bisection approach would lead to a better near-global solution. This will be elaborated

in the rest of this section.

3-bus system: Consider the 3-bus system presented in [Lesieutre et al., 2011]. The SDP relaxation

may not result in a rank-1 solution for this system if a certain line is under stress (i.e. the capacity

constraint of the line is binding at optimality). To address this issue, we use the penalized SDP

relaxation with the objective function (4.12), where the parameter εb is set to zero and the line

under stress is chosen for penalization. The resulting optimal cost is reported in Figure 4.3(a) for

different values of εl. It can be seen that there exists a relatively large interval for εl that makes

the penalized SDP relaxation posses a rank-1 solution with a fixed cost. This cost overlaps with

the globally optimal cost of the OPF problem. Hence, our method is able to bridge the duality gap

reported in [Lesieutre et al., 2011].
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Test Local Prob. εb εl Lower Upper Optimality

cases minima bags bound bound guarantee

WB2 2 0 0 0 877.78 877.78 100 %

WB3 2 0 0 0 417.25 417.25 100%

WB5 2 3 0 500 946.53 946.58 99.995%

WB5 Mod 3 0 0 0 1482.22 1482.22 100%

LMBM3 5 0 0 0 5694.54 5694.54 100%

LMBM3 50 2 2 0 500 5789.91 5823.86 99.807%

case22loop 2 0 0 0 4538.80 4538.80 100%

case30loop 2 0 0 0 2863.06 2863.06 100%

case30loop Mod 3 0 0 0 2861.88 2861.88 100%

case39 Mod4 3 4 1 0 557.08 557.15 99.999%

case118 Mod1 3 36 10 0 129624.98 129625.19 99.999%

case118 Mod2 2 42 1 0 85987.27 85987.59 100%

case300 Mod2 2 107 0.5 50 474625.99 474643.46 99.996%

Table 4.2: Performance of the penalization method on examples presented in [Bukhsh, 2012].

Test Prob. εb εl Lower Upper Solution of

cases bags bound bound interior point method

case14C 12 0.1 10000 6897.02 7289.62 7238.93

case34tree 1 0.1 100 14.49 24.38 24.38

Table 4.3: Performance of the penalization method on examples presented in [Louca et al., 2014].
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IEEE and Polish systems: As our second example, we evaluate the penalization method for the

OPF problem performed over benchmark systems. The results are reported in Table 4.1. For each

system, the following numbers are reported:

• Treewidth: exact treewidth or an upper bound on the treewidth (shown as “≤”) of the pre-

contingency network

• Problematic bags: number of problematic bags for the SDP relaxation with εb = εl = 0

• Lower bound: lower bound on the globally minimum cost of OPF, corresponding to the cost

of the SDP relaxation

• Upper Bound: upper bound on the globally optimal cost of OPF, corresponding to the solution

recovered from the penalized SDP problem

• Optimality guarantee: global optimality guarantee (in percentage)

• Computation time: the total computation time (in seconds) including those consumed towards

tree decomposition, solving the SDP relaxation, and recovering a solution (the simulations

were run on a desktop computer with an Intel Core i7 quad-core 3.4 GHz CPU and 16 GB

RAM).

For IEEE systems, we were able to verify that the obtained tree decompositions were all minimal.

Note that the permissible feasibility violation for the recovered solution was set to 10−6 for all cases

reported in Table 4.1, except for Polish 3012wp and Polish 3120sp for which the violation level was

set to 1.5× 10−5. For Polish 3012wp and Polish 3120sp, we penalized the apparent power loss over

all lines of each system. For IEEE 300 bus system, we penalized apparent power loss over two lines:

(i) line 38 between buses 9053 and 9533, (ii) line 402 between buses 7023 and 23. These lines are

problematic for the penalized SDP problem in the case εb = 0.1 and εl = 0.

Similarly, the apparent power loss penalization for Polish 2383wp system was performed over

problematic lines for the case εb = 3500 and εl = 0, leading to the following 9 lines: line 100

between buses 35 and 34, line 101 between buses 34 and 51, line 102 between buses 183 and 34, line

103 between buses 183 and 35, line 104 between buses 617 and 35, line 130 between buses 51 and

50, line 134 between buses 727 and 51, line 819 between buses 546 and 545, and line 821 between
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buses 727 and 545. It can be observed that the penalized SDP relaxation was able to find feasible

solutions with global optimality guarantee above 99% for many benchmark examples.

New England and IEEE 300 bus systems: In order to evaluate the sensitivity of the penaliza-

tion method to the choice of problematic lines and penalty parameters, we performed an experiment

on New England 39 bus and IEEE 300 bus systems for the case where εb = 0 and all lines of the

network were considered in the penalty factor as “problematic”. Figures 4.3(b) and (c) show the

performance of the penalized SDP relaxation for a wide range of values for εl. It can be seen that

it is possible to find a rank-1 solution with a high global optimality guarantee over a large interval

for εl. However, as shown in Table 4.1, a better optimality guarantee can be obtained by carefully

tuning the penalty parameters via solving multiple SDP problems.

Modified systems 1: We also tested the SDP relaxation method over some of the examples

presented in [Bukhsh, 2012]. The results are tabulated in Table 4.2, together with the minimum

number of local solutions for each system. For case WB5, line 5 (between buses 4 and 5) was

chosen for apparent power loss penalization. Interestingly, the penalization of a different line in the

objective function would result in the recovery of a local minimum as opposed to a global solution.

For the modified IEEE 300 bus system, the apparent power loss penalization was performed over

116 problematic lines of the network. For LMBM3 50, all lines of the networks were considered as

problematic.

Modified systems 2: Two OPF test cases have been recently proposed in [Louca et al., 2014],

for which the semidefinite relaxation is inexact. The penalization algorithm proposed here can find

a rank-1 solution for each of these cases, as reported in Table 4.3. The test system “case34tree”

is of particular interest due to its tree topology. We obtained a rank-1 solution by penalizing the

only problematic line of this network.

New England system with contingency constraints: Consider the New England test system

under 10 contingency scenarios, each representing the outage of one line as described in Table 4.4.

Suppose that the objective function of the SCOPF problem only includes the power generation cost

for the base case. The corrective active power production for each generator in case of contingency

is set to be within 2 MW away from the base case production level. We solve the penalized SDP

relaxation by setting εb to zero and minimizing the apparent power loss over all lines of the network.
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Figure 4.3: (a) The 3-bus system presented in ; (b) New England system; (c) IEEE 300 bus

system.
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Figure 4.4: (a) Contingency analysis of New England system; (b) contingency analysis of IEEE

300 bus system.

The result is depicted in Figure 4.4(a) for different values of the coefficient εl. It can be seen that

a near-global solution for the SCOPF problem is associated with the cost 45141.70. This SCOPF

cost is 7% higher than the optimal cost of the OPF problem with no contingency.

Contingency Line Initial Terminal

number number node node

1 1 1 2

2 2 1 39

3 3 2 3

4 4 2 25

5 6 3 4

6 7 3 18

7 15 7 8

8 20 10 32

9 40 25 26

10 45 28 29

Table 4.4: List of contingencies for New England test system.

IEEE 300 bus system with contingency constraints: Consider the 300 bus system with one

contingency scenario associated with the simultaneous outage of three highly congested lines of the

base OPF. These lines are listed in Table 4.5. The corrective active power production for each
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generator in case of contingency is set to be within 1 MW away from the base case production

level. We intend to minimize the pre-contingency power generation cost while being secure in the

post-contingency scenario. As before, we solve the penalized SDP relaxation by setting εb to zero

and minimizing the apparent power loss over all lines of the network. The result is depicted in

Figure 4.4(b). It can be seen that a near-global solution for the SCOPF problem is associated with

the cost 740493.80, which is 3% different from that of the OPF problem.

Contingency Line Initial Terminal

number number node node

1

266 19 231

388 234 236

400 7130 130

Table 4.5: List of lines outages of the contingency scenario considered for IEEE 300 bus system.

4.6 Summary

This chapter studies the security-constrained optimal power flow (SCOPF) problem by means of a

semidefinite programming (SDP) relaxation. The existence of a rank-1 solution guarantees that this

convex program will find a globally optimal solution of the SCOPF problem. First, we prove that the

SDP relaxation has a solution whose rank is at most equal to the treewidth of the power network plus

one, which is expected to be very small for real-world systems. Second, we propose a decomposition

method to reduce the computational complexity of the SDP relaxation. In the case where the SDP

relaxation fails to work, we develop a graph-theoretic method to identify the problematic lines of

the network that make SCOPF difficult to solve. By penalizing the loss over those lines in the SDP

relaxation, we develop a rank-enforcing SDP relaxation. We test our relaxation method on several

benchmark examples and demonstrate its ability in finding feasible solutions with the property that

the global minima are at most 1% away from the obtained solutions.
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Chapter 5

Convexification of Power Flow

Problem over Arbitrary Networks

Consider an arbitrary power network with PV and PQ buses, where active powers and voltage

magnitudes are known at PV buses, and active and reactive powers are known at PQ buses. The

classical power flow (PF) problem aims to find the unknown complex voltages at all buses. This

problem is usually solved approximately through linearization or in an asymptotic sense using

Newton’s method, given that the solution belongs to a good regime containing voltage vectors with

small angles. The question arises as to whether the PF problem can be cast as the solution of

a convex optimization problem over that regime. The objective of this chapter is to show that

the answer to the above question is affirmative. More precisely, we propose a class of convex

optimization problems with the property that they all solve the PF problem as long as angles

are small. Each convex problem proposed in this work is in the form of a semidefinite program

(SDP). Associated with each SDP, we explicitly characterize the set of complex voltages that can

be recovered via that convex problem. Since there are infinitely many SDP problems, each capable

of recovering a potentially different set of voltages, designing a good SDP problem is cast as a

convex problem.
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5.1 Introduction

The flows in an electrical grid are described by nonlinear AC power flow equations. This chapter is

concerned with the problem of finding an unknown vector of complex voltages V ∈ Cn for an n-bus

power system to satisfy m quadratic constraints associated with m known quantities measured or

specified in the network. This general power flow problem can be formulated as

find V ∈ Cn

subject to 〈VV∗,Mi〉 = Xi, i = 1, . . . ,m, (5.1)

where 〈·, ·〉 represents the Frobenius inner product of matrices, M1, . . . ,Mm’s are certain n × n

Hermitian matrices obtained from the admittance matrix of the power network, and X1, . . . , Xm

represent specified physical quantities such as the net active power, reactive power or squared

voltage magnitude at a bus or the flow over a line of the network. Checking the existence of a

solution to the quadratic feasibility problem (5.1) is NP-hard for both transmission and distribution

networks due to their reduction to the subset sum problem [Lehmann et al., 2014; Verma, 2009].

Since problem (5.1) is central to the analysis and operation of power systems, its high com-

putational complexity motivates obtaining a tractable formulation of the power flow equations.

Addressing this problem facilitates performing several key tasks related to economic dispatch and

state estimation for power networks.

5.1.1 Semidefinite Programming Relaxation

To tackle the non-convexity of the feasible set of the power flow problem, the semidefinite pro-

gramming (SDP) relaxation technique could be deployed. By defining W , VV∗, the quadratic

equations in (5.1) can be linearly formulated in terms of W. Motivated by this exact linearization,

consider the matrix feasibility problem

find W ∈ H+
n

subject to 〈W,Mi〉 = Xi, i = 1, . . . ,m, (5.2)

where H+
n is the set of n × n Hermitian positive semidefinite matrices. Solving the non-convex

power flow problem (5.1) is tantamount to finding a rank-1 solution W for the above linear
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matrix inequality (because W could then be decomposed as VV∗). The problem (5.2) is re-

garded as a convex relaxation of (5.1) since it includes no restriction on the rank of W. Al-

though (5.1) normally has a finite number of solutions whenever m ≥ 2n − 1, its SDP relax-

ation (5.2) is expected to have infinitely many solutions because the matrix variable W includes

O(n2) scalar variables as opposed to O(n). However, under some additional assumptions, it

is known in some applications, such as phase retrieval, that the relaxed problem would have a

unique solution if m ≥ 3n, and that the solution has automatically rank-1 [Candes et al., 2013].

In the case where the relaxed problem does not have a unique solution, the literature of com-

pressed sensing substantiates that minimizing trace{W} over the feasible set of (5.2) may yield

a rank-1 matrix W under strong technical assumptions [Recht et al., 2010b; Candes et al., 2013;

Madani et al., 2014b]. The main purpose of this chapter is to study what objective function should

be minimized (instead of trace{W}) to attain a rank-1 solution for the power problem (5.2).

The potential of SDP relaxation for finding a global solution of the optimal power flow problem

has been manifested in [Lavaei and Low, 2012], with further studies conducted in [Lavaei, 2011;

Sojoudi and Lavaei, 2012]. In addition, recent advances in leveraging the sparsity of network graph

have made SDP problems computationally more tractable [Lam et al., 2012b; Zhang et al., 2015;

Molzahn et al., 2013; Andersen et al., 2014; Jabr, 2012; Madani et al., 2015]. In the case where

the SDP relaxation fails to work, we have developed a graph-theoretic penalized SDP problem

in chapters 3 and 4, which attempts to identify the problematic lines of the network (sources of

non-convexity) through a graph analysis and then penalize the loss over those lines in order to find

a near-global solution for the optimal power flow problem. The proposed approach was successful

in finding solutions with global optimality guarantees of at least 99% for IEEE and Polish test

systems.

5.1.2 Classical Power Flow Problem

Let N denote the set of buses of the power network under study, and let Pk and Qk represent

the net active and reactive power injections at every bus k ∈ N . The complex voltage phasor at

bus k is denoted by Vk, whose magnitude and phase are shown as |Vk| and ]Vk, respectively. One

special case of (5.1) is the classical power flow (PF) problem, for which the number of quadratic

constraints (namely m) is equal to 2n − 1. To formulate the problem, three basic types of buses
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are considered, depending on the parameters that are known at each bus:

• PQ bus: Pk and Qk are specified.

• PV bus: Pk and |Vk| are specified.

• The slack bus: |Vk| is specified.

Each PQ bus represents a load bus or possibly a generator bus, whereas each PV bus represents

a generator bus. In order to resolve the global phase ambiguity, ]Vk is set equal to zero at any

particular bus (for example, the slack bus). Given the specified parameters at every bus of the

network, the classical PF problem aims to solve the network equations in order to find an operating

point that fits the input values. This problem has been studied extensively for years, without

much success in designing an advanced computational method that is able to outperform Newton’s

method in polar coordinates [Tinney and Hart, 1967; Stott and Alsaç, 1974; Van Amerongen, 1989].

5.1.3 Contributions

This chapter is aligned with the recent body of work on investigating the remarkable promises of

SDP relaxations for power optimization problems. The major strength of Newton’s method and

similar traditional techniques is their local convergence property, meaning that the recovery of a

feasible solution is possible as long as the starting point is sufficiently close to a solution. The main

objective of this chapter is to develop a similar property for the SDP relaxation. We propose a

family of convex optimization problems of the form

minimize
W∈Hn

〈W,M〉 (5.3a)

subject to 〈W,Mi〉 = Xi, i = 1, . . . ,m, (5.3b)

W � 0, (5.3c)

where the matrix M ∈ H+
n is to be designed. Unlike the compressed sensing literature that assumes

M = I, we aim for systematically designing M such that the above problem yields a unique rank-

1 solution W from which a feasible solution for the power flow problem (5.1) can be recovered.

Notice that the existence of such a rank-1 solution depends in part on its input specifications

(X1, X2, ..., Xm).
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Definition 24. It is said that the SDP problem (5.3) solves the nonlinear power flow problem (5.1)

for the input (X1, X2, ..., Xm) if (5.3) has a unique rank-1 solution. Given M ∈ Hn, define

MX(M) ⊆ Rm as the set of all specification vectors (X1, ..., Xm) for which the SDP problem (5.3)

solves the nonlinear power flow problem (5.1).

Definition 25. Given M ∈ Hn, a voltage vector V is said be recoverable if W = VV∗ is a

solution of the SDP problem (5.3) for some (X1, ..., Xm) in MX(M). Define MV (M) as the set

of all recoverable vectors V.

Note that the SDP problem (5.3) can be used to find a solution of the nonlinear power flow

problem (5.1) if and only if the provided specification set (X1, X2, ..., Xm) belongs to MX(M). In

addition, the set MV (M) is indeed the collection of all possible operating points V that can be

found through (5.3) associated with different values of (X1, X2, ..., Xm). It is desirable to find out

whether there exists a matrix M for which the recoverable regionMV (M) covers a large subset of

Cn, that is relative to the practical solutions of power flow problem. Addressing this problem is

central to this chapter.

Our first contribution is related to the classical power flow problem. We aim to prove that if

the matrix M satisfies the three properties

• M � 0,

• 0 is a simple eigenvalue of M,

• The all-ones vector 1n belongs to the null space of M,

then the regionMV (M) contains the nominal point (1, 1, ..., 1) and a ball around it. In other words,

as long as the specifications X1, . . . , X2n−1 correspond to a vector of voltages with small angles, the

exact recovery of the solution is guaranteed through the proposed SDP problem, without requiring

any assumption on the network topology whatsoever. This implies that although the DC model

can be used to find an approximate solution around the nominal point, the SDP relaxation would

find an exact solution.

It is desirable to find a matrix M for which the recoverable set MV (M) is as large as possible

with respect to some meaningful measure. This design problem is cumbersome due to the non-

convexity of MV (M). However, we show that the problem of designing a matrix M for which

MV (M) contains a pre-specified set of voltage vectors V’s can be cast as a convex program.
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Although we develop our results in the context of the classical PF problem, they all hold in the

case where m > 2n− 1, corresponding to redundant specifications. In fact, the proposed approach

is flexible in terms of the choice for the types and number of equations, which makes is adoptable

for the specification problem. We will demonstrate in simulations that whenever extra equations

are available (i.e., m > 2n−1), the search for a feasible vector of voltages for problem (5.1) is more

likely to be successful via the convex program (5.3).

5.1.4 Notations

The symbols R and C denote the sets of real and complex numbers, respectively. Sn denotes the

space of n × n real symmetric matrices and Hn denotes the space of n × n complex Hermitian

matrices. Re{·}, Im{·}, rank{·}, trace{·}, and det{·} denote the real part, imaginary part, rank,

trace, and determinant of a given scalar/matrix. diag{·} denotes the vector of diagonal entries of

a matrix. ‖ · ‖F denotes the Frobenius norm of a matrix. Matrices are shown by capital and bold

letters. The symbols (·)T and (·)∗ denote transpose and conjugate transpose, respectively. Also, “i”

is reserved to denote the imaginary unit. The notation 〈A,B〉 represents trace{A∗B}, which is the

inner product of A and B. The notations ]x and |x| denote the angle and magnitude of a complex

number x. The notation W � 0 means that W is a Hermitian and positive semidefinite matrix.

Also W � 0 means that it is Hermitian and positive definite. The (i, j) entry of W is denoted

as Wij . 0n and 1n denote the n × 1 vectors of zeros and ones, respectively. 0m×n denotes the

m× n zero matrix and In×n is the n× n identity matrix. The notation |X | denotes the cardinality

of a set X . For an m × n matrix W, the notation W[X ,Y] denotes the submatrix of W whose

rows and columns are chosen form X and Y, respectively, for given index sets X ⊆ {1, . . . ,m} and

Y ⊆ {1, . . . , n}. Similarly, W[X ] denotes the submatrix of W induced by those rows of W indexed

by X . The interior of a set D ∈ Cn is denoted as int{D}.

5.2 Preliminaries

Define P = [P1 P2 · · · Pn]T and Q = [Q1 Q2 · · · Qn]T as the vectors containing net injected active

and reactive powers, respectively. Define also P, Q and V as the sets of buses for which active

powers, reactive powers and voltage magnitudes are known, respectively. Let O denote the set of all
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buses except the slack bus. The admittance matrix of the network is denoted as Y = G+Bi, where

G and B are the conductance and susceptance matrices, respectively. Although the results to be

developed in this chapter hold for a general matrix Y, we make a few assumptions to streamline

the presentation:

• The network is a connected graph.

• Every line of the network consists of a series impedance with nonnegative resistance and

inductance.

• The shunt elements are ignored for simplicity in studying the observability of the network,

which ensures that

Y × 1n = 0n. (5.4)

The following lemma reveals an interesting property of the matrix B, which will later be used in

the chapter.

Lemma 4. For every N ′ ⊆ N , we have

B[N ′,N ′] � 0 (5.5)

and B[N ′,N ′] is singular if and only if N ′ = N .

Proof. B is symmetric and according to (5.4), we have B1n = 0n and since every off-diagonal entry

of B is nonnegative, we have

−Bkk =
∑
k 6=l

Bkl ⇒ −Bkk ≥
∑
k 6=l
|Bkl| (5.6)

for every k ∈ {1, . . . , n}. Therefore −B is diagonally dominant and positive semidefinite and (5.5)

holds for every principal submatrix of B.

Since the network is connected by assumption and every entry of B corresponding to an existing

line of the network is positive, it follows from the Weighted Matrix-Tree Theorem [Duval et al.,

2009] that if |N ′| = n− 1, then det{B[N ′,N ′]} 6= 0 and consequently B[N ′,N ′] ≺ 0. In addition,

if |N ′| < n − 1, there exists a set N ′′ ⊂ N such that N ′ ⊂ N ′′ and |N ′′| = n − 1. According to

the Cauchy Interlacing Theorem, every eigenvalue of B[N ′,N ′] is less than or equal to the largest

eigenvalue of B[N ′′,N ′′], which implies that B[N ′,N ′] is non-singular.
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Recall that the power balance equations can be expressed as

P + iQ = diag{VV∗Y∗}. (5.7)

Hence, the SDP program (5.3) associated with the classical PF problem can be written as

minimize
W∈Hn

〈W,M〉 (5.8a)

subject to 〈W,Ek〉 = |Vk|2, k ∈ V (5.8b)

〈W,YQ;k〉 = Qk, k ∈ Q (5.8c)

〈W,YP ;k〉 = Pk, k ∈ P (5.8d)

W � 0 (5.8e)

where

Ek , eke
∗
k

YQ;k ,
1

2i
(Y∗eke

∗
k − eke∗kY)

YP ;k ,
1

2
(Y∗eke

∗
k + eke

∗
kY)

and e1, . . . , en denote the standard basis vectors in Rn. The problem (5.8) is in the canonical

form (5.3) after noticing that

• M1,M2, ...,Mm correspond to the m matrices E1,E2, ...,E|V|, YQ;1,YQ;2...,YQ;|Q| and

YP ;1,YP ;2, ..., YP ;|P|.

• The specifications X1, X2, ..., Xn correspond to |Vk|2’s, Qk’s, and Pk’s.

Since the voltage angle at the slack bus is set to zero, the operating point of the power system

can be characterized in terms of the real-valued vector

V ,
[
Re{V[N ]T} Im{V[O]T}

]T ∈ R2n−1.

Definition 26. Define the function s(V) : R2n−1 → Rm as the mapping from the state of the power

network V to the vector of specifications X. The i-th component of s(V) is given by

si(V) = 〈VV∗,Mi〉, i = 1, . . . ,m.
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Define also the sensitivity matrix Js(V) ∈ Rm×(2n−1) as the Jacobian of s(V) at point V, which is

equal to

Js(V) = 2
[
M1 V M2 V . . . Mm V

]
where

Mi ,

 Re{Mi[N ,N ]} −Im{Mi[N ,O]}

Im{Mi[O,N ]} Re{Mi[O,O]}


for every i = 1, . . . ,m.

5.3 Main Results

With no loss of generality, we focus on the classical PF problem in this section. Therefore, we

assume that P is the union of PQ and PV buses, Q is the set of PQ buses, and V consists of all

PV buses as well as the slack bus. Recall that m is equal to 2n− 1 for the classical PF problem.

5.3.1 Invertibility

The point V = 1n (associated with V = 1n) is often regarded as a convenient state for linearization

of the power network. According to the inverse function theorem, the invertibility of Js(1n) guar-

antees that the inverse of the function s(V) exists in a neighborhood of the point 1n. Similarly, it

follows from Kantorovich Theorem that, under the same invertibility assumption, the power flow

problem (5.1) can be solved using Newton’s method by starting from the initial point 1n, provided

that there exists a solution sufficiently close to this point. The invertibility of Js(1n) is beneficial

not only for Newton’s method but also for the SDP problem. This condition will be explored below.

Lemma 5. The matrix Js(1n) is non-singular.

Proof. It is straightforward to verify that

Js(1n) =

 2In×n[N ,V] B[N ,Q] G[N ,P]

0(n−1)×mV
−G[P,Q] B[P,P]

 .
By Gaussian elimination, Js(1n) reduces to the matrix

S ,

 B[Q,Q] G[Q,P]

−G[P,Q] B[P,P]

 .
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Hence, it suffices to prove that S is not singular. To this end, one can write

det{S} = det{S1}det{S2},

where S1 , B[P,P] and S2 is the Schur complement of S1 in S, i.e.,

S2 , B[Q,Q] + G[Q,P]B[P,P]−1G[P,Q].

On the other hand, S1 and S2 are both symmetric, and in addition Lemma 4 yields that S1 ≺ 0

and B[Q,Q] ≺ 0. This implies that S2 ≺ 0 according to the above equation, which leads to the

relation det{S} 6= 0.

Remark 5. It is straightforward to verify that Lemma 5 is true for arbitrary networks with shunt

elements as long as the matrix Y is generic. In other words, if Js(1n) is singular for an arbitrary

power network, an infinitesimal perturbation of the susceptance values of the existing lines makes

the resulting Js(1n) non-singular.

Definition 27. Define J as the set of all voltage vectors V for which Js(Vn) is non-singular.

5.3.2 Region of Recoverable Voltages

Given a matrix M, we intend to characterize MV (M), i.e., the set of all voltage vectors that can

be recovered using the convex problem (5.3). In what follows, we first explain the main results of

this work and then prove them in Subsection 5.3.3.

Definition 28. For every vector V ∈ J , define

Λ(V,M) , −2Js(V)−1M V (5.9)

where

M =

 Re{M[N ,N ]} −Im{M[N ,O]}

Im{M[O,N ]} Re{M[O,O]}

 .
Define also

f(V,M) ,M +
2n−1∑
i=1

Λi(V,M) Mi,

where Λi(V,M) denotes the ith entry of Λ(V,M).
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Definition 29. For every ε ≥ 0, define Dε as the set of all positive semidefinite Hermitian matrices

whose sum of two smallest eigenvalues is greater than ε. Also, denote D0 as D.

Since the sum of the two smallest eigenvalues of a Hermitian matrix variable is a concave

function of that matrix, the set D is convex. The first result of this work will be provided below.

Theorem 19. The interior of the set MV (M) can be characterized as

int{MV (M)} ∩ J = {V ∈ J | f(V,M) ∈ D}. (5.10)

The above theorem offers a nonlinear matrix inequality to characterize the interior of the set

of recoverable voltage vectors, except for a subset of measure zero of this interior at which the

Jacobian of s(V) loses rank. A question arises as to whether this interior is non-empty. This

problem will be addressed next.

Assumption 1. The matrix M satisfies the following properties:

• M � 0

• 0 is a simple eigenvalue of M

• The vector 1n belongs to the null space of M.

Theorem 20. Consider an arbitrary matrix M satisfying the Assumption 1. The region MV (M)

has a non-empty interior containing the point 1n.

Due to (5.4), if M is chosen as Y∗Y, it will satisfy the Assumption 1. In that case, the objective

of the convex problem (5.3) corresponds to |I1|2 + |I2|2 + · · ·+ |In|2, where Ik denotes the current

at bus k. In that case, Theorem 20 states that as long as the voltage angles are small enough, a

solution of the PF problem can be recovered exactly by means of an SDP relaxation whose objective

function reflects the minimization of nodal currents.

There are infinitely many M’s satisfying the Assumption 1, each resulting in a potentially

different recoverable set MV (M). To find the best M , one can search for a set MV (M) with the

maximum volume or containing the largest ball. However, these problems are indeed hard to solve

due to the non-convexity of MV (M). Another approach for seeking a good M is to first choose

a set of voltage vectors scattered in Cn and then find a matrix M (if any) whose recoverable set

MV (M) contains all these points. It turns out that this design problem is in fact convex.
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Theorem 21. Given r arbitrary points V̂1, V̂2, . . . , V̂r ∈ J , consider the problem

find M ∈ Hn (5.11a)

subject to f(V̂l,M) ∈ Dε, l = 1, 2, . . . , r (5.11b)

M ∈ Dε (5.11c)

M× 1n = 0n (5.11d)

where ε > 0 is an arbitrary constant. The following statements hold:

i) The feasibility problem (5.11) is convex.

ii) There exists a matrix M satisfying the Assumption 1 such that the associated recoverable set

MV (M) contains V̂1, V̂2, . . . , V̂r and a ball around each of these points if and only if the

convex problem (5.11) has a solution M.

5.3.3 Proofs

In this part, we will prove Theorems 19, 20 and 21. To this end, it is useful to derive the dual

of (5.3). This problem can be stated as

minimize
L∈R2n−1

XTL (5.12a)

subject to M +
2n−1∑
i=1

LiMi � 0 (5.12b)

where the dual variable L is the vector of all Lagrange multipliers L1, ..., L2n−1, and X = [X1 X2 · · · Xm]T .

For every L ∈ R2n−1, define

A(L) = M +

2n−1∑
i=1

LiMi. (5.13)

We need to develop three lemmas before proving Theorem 19.

Lemma 6. Consider two arbitrary vectors V ∈ J and L ∈ R2n−1. The relation

A(L)V = 0 (5.14)

holds if and only if L = Λ(V,M).
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Proof. Equation (5.14) can be rearranged as

[
M1 V M2 V . . . M2n−1 V

]
L = −M V. (5.15)

Hence, due to the invertiblity of Js(V) and Definition 28, Λ(V,M) is the unique solution of

(5.15).

The following Lemma studies the recoverability of a voltage vector V via the convex problem

(5.3).

Lemma 7. Assume that V is a feasible solution of the power flow problem (5.1) such that Js(V)

is invertible. Then, strong duality holds between the primal problem (5.3) and the dual problem

(5.12). In addition, the following two statements are equivalent:

i) VV∗ is an optimal solution for the primal problem (5.3).

ii) Λ(V,M) is a feasible point for the dual problem (5.12).

Proof. By assumption, the matrix VV∗ is a feasible point for the problem (5.3). In order to show

the strong duality, it suffices to build a strictly feasible point L̃ for the dual problem. To this

end, we set the Lagrange multipliers corresponding to active power, reactive power and voltage

magnitude specifications equal to 0, −1, and a constant c, respectively. Then, one can write

A(L̃)[Q,Q] = −B[Q,Q] (5.16)

A(L̃)[V,V] = c I|V|×|V| (5.17)

(recall that A(L̃)[Q,Q] denotes a submatrix of A(L̃) induced by the index set Q). Since V∪Q = N

and V has at least one member (the slack bus), B[Q,Q] is negative definite according to Lemma

4. Now, the strict positive definiteness of A(L̃) can be ensured by choosing a sufficiently large c.

(i) ⇒ (ii): Due to strong duality, if VV∗ is primal optimal, there exists a vector L′ ∈ R2n−1

that is dual feasible:

A(L′) � 0 (5.18)

and satisfies the complementary slackness:

〈VV∗,A(L′)〉 = 0. (5.19)
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Hence,

〈VV∗,A(L′)〉 = trace
{
VV∗A(L′)

}
= V∗A(L′)V = 0.

It follows from this equation and (5.18) that A(L′)V = 0. The, according to Lemma 6, we have

L′ = Λ(V,M), which implies that Λ(V,M) is dual feasible.

(ii)⇒ (i): It is shown in Lemma 6 that A(Λ(V,M))V = 0. Therefore,

〈VV∗,A(Λ(V,M))〉 = 0.

As a result, Λ(V,M) acts as a dual certificate for the optimality of VV∗.

Lemma 8. Suppose that zero and δ > 0 are the two smallest eigenvalues of an m × m matrix

A1 ∈ D. Then, for every matrix A2 ∈ Hm with 0 as its eigenvalue, the relation A2 ∈ D holds if

‖A1 −A2‖F <
√
δ.

Proof. Let Q∆Q∗ denote the eigenvalue decomposition of A1 such that ∆mm = 0. One can

decompose ∆ and A2 as

∆ =

 ∆1 0

0 0

 and Q∗A2Q =

 ∆2 u

u∗ u

 , (5.20)

for some matrices ∆1,∆2 ∈ Hm−1, u ∈ Cm−1 and u ∈ R. Then, for every vector x ∈ Cm−1 of

length 1, one can write

x∗∆2x = x∗∆1x− x∗(∆1 −∆2)x (5.21)

≥ δ − ‖∆1 −∆2‖2F (5.22)

≥ δ − ‖A1 −A2‖2F > 0 (5.23)

It can be concluded from the above equation that ∆2 � 0. On the other hand, according to Schur

complement, we have

0 = det{A2} = det{∆2} × det{u− u∗∆−12 u}, (5.24)

which implies that u−u∗∆−12 u = 0. Using Schur complement once more, it can be concluded that

A2 � 0. Moreover,

rank{A2} = rank{∆2}+ rank{u− u∗∆−12 u} = n− 1,

implying that A2 ∈ D.
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Proof of Theorem 19: We first need to show that {V ∈ J | f(V,M) ∈ D} is an open set.

Consider a vector V such that f(V,M) ∈ D and let δ denote the second smallest eigenvalue of

f(V,M). Due to the continuity of det{Js(·)} and f(·,M), there exists a neighborhood B ∈ Cn

around V such that for every V′ within this neighborhood, f(V′,M) is well defined (i.e., V′ ∈ J )

and

‖f(V′,M)− f(V,M)‖F <
√
δ. (5.25)

Hence, according to Lemma 8, we have f(V′,M) ∈ D for every V′ ∈ B. This proves that {V ∈

J | f(V,M) ∈ D} is an open set.

Now, consider a vector V ∈ J such that f(V,M) ∈ D. The objective is to show that V ∈

int{MV (M)}. Notice that since f(V,M) is assumed to be in the set D, the vector Λ(V,M) is a

feasible point for the dual problem (5.12). Therefore, it follows from Lemma 7 that the matrix VV∗

is an optimal solution for the primal problem (5.3). In addition, every solution W must satisfy

〈f(V,M),W〉 = 0. (5.26)

According to Lemma 6, V is an eigenvector of f(V,M) corresponding to the eigenvalue 0. There-

fore, since f(V,M) � 0 and rank{f(V,M)} = n − 1, every positive semidefinite matrix W satis-

fying (5.26) is equal to cVV∗ for a nonnegative constant c. This concludes that VV∗ is the unique

solution to (5.3), and therefore V belongs to MV (M). Since {V ∈ J | f(V,M) ∈ D} is shown to

be an open set, the above result can be translated as

{V ∈ J | f(V,M) ∈ D} ⊆ int{MV (M)} ∩ J . (5.27)

In order to complete the proof, it is required to show that int{MV (M)} ∩ J is a subset of

{V ∈ J | f(V,M) ∈ D}. To this end, consider a vector V ∈ int{MV (M)} ∩ J . This means

that VV∗ is a solution to (5.3), and therefore f(V,M) � 0, due to Lemma 7. To prove the

aforementioned inclusion by contradiction, suppose that f(V,M) /∈ D, implying that 0 is an

eigenvalue of f(V,M) with multiplicity at least 2. Let U denote a second eigenvector corresponding

to the eigenvalue 0 such that V∗U = 0. Since Js(V) 6= 0, in light of the inverse function theorem,

there exists a constant ε0 > 0 with the property that for every ε ∈ [0, ε0], there is a vector Tε ∈ Cn

satisfying the relation

s(Tε) = s(V) + εs(U) (5.28)
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where the function s(·) is defined in Definition 26. This means that the rank-2 matrix

W = VV∗ + εUU∗ (5.29)

is a solution to the problem (5.3) associated with the dual certificate Λ(V,M), and therefore

Tε /∈ MV (M). This contradicts the previous assumption that V ∈ int{MV (M)}. Therefore, we

have f(V,M) ∈ D, which completes the proof. �

Proof of Theorem 20: It can be inferred from Lemma 5 that 1n ∈ J . On the other hand, since

M× 1n = 0, we have

Λ(1n,M) = 02n−1, (5.30)

which concludes that

f(1n,M) = M ∈ D. (5.31)

Therefore, it follows from Theorem 19 that 1n ∈ int{MV (M)}. �

Proof of Theorem 21: Part (i) is proved by noting that the sum of the two smallest eigenvalues

of a matrix is a concave function and that f(V̂l,M) is a linear function with respect to M.

Part (ii) follows immediately from Theorems 19 and 20. �

5.4 Illustrative Examples

Figure 5.1: These plots show the outcome of the convex problem (5.3) for Example 1. (a): the

angle region that can be recovered via problem (5.3), (b): the power region that can be recovered

via problem (5.3), (c): the entire feasible power region for the 3-bus system.
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Figure 5.2: These plots show the outcome of the convex problem (5.3) for Example 2. (a): the

angle region that can be recovered via problem (5.3), (b): the power region for which problem (5.3),

(c): the entire power region for the 3-bus system.

Figure 5.3: These plots show the outcome of the convex problem (5.3) for Example 3. (a): the

angle region that can be recovered via problem (5.3), (b): the power region that can be recovered

via problem (5.3), (c): the entire feasible power region for the 3-bus system.

Example 1: Consider a 3-bus power network with the line admittances

y12 = −2i,

y13 = −1i,

y23 = −3i.

(5.32)

Assume that the voltage magnitudes are all equal to 1, and that the active powers P1, P2, P3 are

all given. The PF problem aims to find the complex voltage vector V. To this end, let V be

parameterized as

V =
[

1 e−θ2i e−θ3i
]∗
, (5.33)

where θ2, θ3 ∈ [−180◦, 180◦]. Consider the convex problem (5.3) with M equal to Y∗Y. This

optimization solves the PF problem exactly if and only if (θ2, θ3) belongs to the region depicted in

Figure 5.1(a). Alternatively, the above convex optimization finds a solution of the PF problem if
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and only if (P1, P2) is contained in the region provided in Figure 5.1(b). On the other hand, the set

of all feasible vectors (P1, P2) for the power network specified by (5.32) is drawn in Figure 5.1(c).

By comparing Figures 5.1(b) and 5.1(c), it can be concluded that the convex optimization (5.3)

finds a solution of PF for every feasible vector (P1, P2, P3) (note that P3 = −P1 − P2). However,

the reason why the angle region in Figure 5.1(a) is not the entire box [−180, 180] × [−180, 180] is

that some instances of the PF problem have multiple solutions (multiple values for the pair (θ2, θ3))

and the proposed convex optimization finds just one of those solutions.

Example 2: This example is similar to Example 1 with the only difference that y12 is changed

to 2i. The outcomes are plotted in Figure 5.2. It can be seen in Fig 5.2(a) that the set of

values for (θ2, θ3) that can be successfully recovered by the convex optimization (5.3) is connected

but non-convex. Although this non-convexity is observed here for a non-realistic (negative) line

impedance in a 3-bus network, the same phenomenon occurs for larger networks with legitimate

positive inductances.

Example 3: This example is similar to Example 1 with the only difference that y23 is changed

to 4i. The outcomes are plotted in Figure 5.3. It can be seen in Fig 5.3(a) that the set of values

for (θ2, θ3) that can be successfully recovered by the convex optimization (5.3) is disconnected.

5.5 Simulation Results
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Figure 5.4: These plots show the probability of success for Newton’s method, SDP relaxation, and

SDP relaxation with extra specifications for (a): IEEE 9-bus system, (b): New England 39-bus

system, and (c): IEEE 57-bus system.

In order to evaluate the performance of the SDP relaxation for the PF problem, we perform

numerical simulations on the IEEE 9-bus, New England 39-bus, and IEEE 57-bus systems [Zim-
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merman et al., 2009]. Three recovery methods are considered for each test case:

1. Newton’s method: We evaluate the probability of convergence for Newton’s method in

polar coordinates for the classical PF problem with 2n− 1 specifications, where the starting

point is Vk = 1∠0◦ for every k ∈ N .

2. SDP relaxation: The probability of obtaining a rank-1 solution for the SDP relaxation (5.3)

with M = Y∗Y is evaluated, where the same set of specifications as in Newton’s method is

used.

3. SDP relaxation with extra specifications: The probability of obtaining a rank-1 solution

for the SDP relaxation (5.3) with M = Y∗Y is evaluated, under extra specifications compared

to the classical PF problem. It is assumed that active powers are measured at PV and PQ

buses, reactive powers are measured at PQ buses, and voltages magnitudes are measured at

all buses (as opposed to only PV and slack buses).

For different values of θ, we generated 500 specification sets (X1, ..., Xm) by randomly choosing

voltage vectors whose magnitudes and phases are uniformly drawn from the intervals [0.9, 1.1] and

[−θ, θ], respectively. We then exploited each of the three above methods to find a feasible voltage

vector associated with each specification set. The results are depicted in Figure 5.4.

5.6 Summary

In this chapter, the classical power flow (PF) problem is studied by means of a semidefinite pro-

gramming (SDP) relaxation. The proposed method is based on lifting the nonlinear equations to

a higher dimension, where the equations can be cast linearly in terms of a positive semidefinite

and rank-one matrix variable. This leads to a family of convex optimization problems, each in

the form of a semidefinite program with a linear objective function that captures the rank-one

constraint as a proxy. The proposed convex optimization problems are guaranteed to solve the

PF problem if the voltage angles are small. The region of complex voltages that can be recovered

through each problem is characterized by a nonlinear matrix inequality. Moreover, the problem of

finding a convenient objective function for SDP that can recover a given set of voltage vectors and
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a neighborhood around each vector can itself be cast as a convex problem. The simulation results

show the superiority of the proposed method over the traditional Newton’s method.
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Part III

Distributed Control
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Chapter 6

Convex Relaxation for Optimal

Distributed Control Problem

This chapter is concerned with the optimal distributed control (ODC) problem for discrete-time

deterministic and stochastic systems. The objective is to design a fixed-order distributed controller

with a pre-specified structure that is globally optimal with respect to a quadratic cost functional.

It is shown that this NP-hard problem has a quadratic formulation, which can be relaxed to

a semidefinite program (SDP). If the SDP relaxation has a rank-1 solution, a globally optimal

distributed controller can be recovered from this solution. By utilizing the notion of treewidth, it

is proved that the nonlinearity of the ODC problem appears in such a sparse way that an SDP

relaxation of this problem has a matrix solution with rank at most 3. Since the proposed SDP

relaxation is computationally expensive for a large-scale system, a computationally-cheap SDP

relaxation is also developed with the property that its objective function indirectly penalizes the

rank of the SDP solution. Various techniques are proposed to approximate a low-rank SDP solution

with a rank-1 matrix, leading to recovering a near-global controller together with a bound on its

optimality degree. The above results are developed for both finite-horizon and infinite horizon

ODC problems. While the finite-horizon ODC is investigated using a time-domain formulation,

the infinite-horizon ODC problem for both deterministic and stochastic systems is studied via a

Lyapunov formulation. The SDP relaxations developed in this work are exact for the design of a

centralized controller, hence serving as an alternative for solving Riccati equations. The efficacy of
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the proposed SDP relaxations is elucidated in numerical examples.

6.1 Introduction

The area of decentralized control is created to address the challenges arising in the control of real-

world systems with many interconnected subsystems. The objective is to design a structurally

constrained controller—a set of partially interacting local controllers—with the aim of reducing

the computation or communication complexity of the overall controller. The local controllers of a

decentralized controller may not be allowed to exchange information. The term distributed control

is often used in lieu of decentralized control in the case where there is some information exchange

between the local controllers (possibly distributed over a geographical area). It has been long

known that the design of a globally optimal decentralized (distributed) controller is a daunting

task because it amounts to an NP-hard optimization problem in general [Witsenhausen, 1968;

Tsitsiklis and Athans, 1984]. Great effort has been devoted to investigating this highly com-

plex problem for special types of systems, including spatially distributed systems [D’Andrea and

Dullerud, 2003; Bamieh et al., 2002; Langbort et al., 2004; Motee and Jadbabaie, 2008; Dullerud

and D’Andrea, 2004], dynamically decoupled systems [Keviczky et al., 2006; Borrelli and Ke-

viczky, 2008], weakly coupled systems [Siljak, 1996], and strongly connected systems [Lavaei, 2012].

Another special case that has received considerable attention is the design of an optimal static

distributed controller [Fardad et al., 2009; Lin et al., 2011]. Early approaches for the optimal

decentralized control problem were based on parameterization techniques [Geromel et al., 1994;

Date and Chow, 1993], which were then evolved into matrix optimization methods [Scorletti and

Duc, 2001; Zhai et al., 2001]. In fact, with a structural assumption on the exchange of information

between subsystems, the performance offered by linear static controllers may be far less than the

optimal performance achievable using a nonlinear time-varying controller [Witsenhausen, 1968].

Due to the recent advances in the area of convex optimization, the focus of the existing research

efforts has shifted from deriving a closed-form solution for the above control synthesis problem to

finding a convex formulation of the problem that can be efficiently solved numerically [de Castro

and Paganini, 2002; Bamieh and Voulgaris, 2005; Qi et al., 2004; Dvijotham et al., 2013; Matni

and Doyle, 2013]. This has been carried out in the seminal work [Rotkowitz and Lall, 2006] by
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deriving a sufficient condition named quadratic invariance, which has been specialized in [Shah

and Parrilo, 2013] by deploying the concept of partially order sets. These conditions have been

further investigated in several other papers [Lessard and Lall, 2012; Lamperski and Doyle, 2013;

Rotkowitz and Martins, 2012]. A different approach is taken in the recent papers [Tanaka and

Langbort, 2011] and [Rantzer, 2012], where it has been shown that the distributed control problem

can be cast as a convex optimization for positive systems.

There is no surprise that the decentralized control problem is computationally hard to solve.

This is a consequence of the fact that several classes of optimization problems, including polyno-

mial optimization and quadratically-constrained quadratic program as a special case, are NP-hard

in the worst case. Due to the complexity of such problems, various convex relaxation methods

based on linear matrix inequality (LMI), semidefinite programming (SDP), and second-order cone

programming (SOCP) have gained popularity [Vandenberghe and Boyd, 1996b; Boyd and Van-

denberghe, 2004]. These techniques enlarge the possibly non-convex feasible set into a convex

set characterizable via convex functions, and then provide the exact or a lower bound on the

optimal objective value. The effectiveness of these techniques has been reported in several pa-

pers. For instance, [Goemans and Williamson, 1995] shows how SDP relaxation can be used to

find better approximations for maximum cut (MAX CUT) and maximum 2-satisfiability (MAX

2SAT) problems. Another approach is proposed in [Goemans and Williamson, 2004] to solve the

max-3-cut problem via a complex SDP. The approaches in [Goemans and Williamson, 1995] and

[Goemans and Williamson, 2004] have been generalized in several papers, including [Nesterov, 1998;

He et al., 2010].

Semidefinite programming relaxation usually converts an optimization with a vector variable

to a convex optimization with a matrix variable, via a lifting technique. The exactness of the

relaxation can then be interpreted as the existence of a low-rank (e.g., rank-1) solution for SDP

relaxation. Several papers have studied the existence of a low-rank solution to matrix optimizations

with linear or nonlinear (e.g., LMI) constraints. For instance, the papers [Pataki, 1998; Madani

et al., 2014b] provide upper bounds on the lowest rank among all solutions of a feasible LMI

problem. A rank-1 matrix decomposition technique is developed in [Sturm and Zhang, 2003]

to find a rank-1 solution whenever the number of constraints is small. It has been shown in

[Lavaei and Low, 2012] and [Sojoudi and Lavaei, 2012] that SDP relaxation is able to solve a
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large class of non-convex energy-related optimization problems performed over power networks.

They related the success of the relaxation to the hidden structure of those optimizations induced

by the physics of a power grid. Inspired by this positive result, they developed the notion of

“nonlinear optimization over graph” in [Sojoudi and Lavaei, 2014; Sojoudi and Lavaei, 2013a;

Sojoudi and Lavaei, 2013b]. The technique maps the structure of an abstract nonlinear optimization

into a graph from which the exactness of SDP relaxation may be concluded. By adopting the graph

technique developed in [Sojoudi and Lavaei, 2014], the objective of the present work is to study the

potential of SDP relaxation for the optimal distributed control problem.

In this chapter, we cast the optimal distributed control (ODC) problem as a non-convex opti-

mization problem with only quadratic scalar and matrix constraints, from which an SDP relaxation

can be obtained. The goal is to show that this relaxation has a low-rank solution whose rank de-

pends on the topology of the controller to be designed. In particular, we prove that the design of

a static distributed controller with a pre-specified structure amounts to a sparse SDP relaxation

with a solution of rank at most 3. This positive result is a consequence of the fact that the sparsity

graph associated with the underlying optimization problem has a small treewidth. The notion of

“treewidth” used in this chapter could potentially help to understand how much approximation is

needed to make the ODC problem tractable. This is due to a recent result stating that a rank-

constrained optimization problem has an almost equivalent convex formulation whose size depends

on the treewidth of a certain graph [Bienstock and Munoz, 2015]. In this work, we also discuss how

to round the rank-3 SDP matrix to a rank-1 matrix in order to design a near-global controller.

The results of this work hold true for both a time-domain formulation corresponding to a finite-

horizon control problem and a Lyapunov-domain formulation associated with an infinite-horizon

deterministic/stochastic control problem. We first investigate the ODC problem for the determin-

istic systems and then the ODC problem for stochastic systems. Our approach rests on formulating

each of these problems as a rank-constrained optimization from which an SDP relaxation can be

derived. With no loss of generality, this chapter focuses on the design of a static controller. Since

the proposed relaxations with guaranteed low-rank solutions are computationally expensive, we

also design computationally-cheap SDP relaxations for numerical purposes. Afterwards, we de-

velop some heuristic methods to recover a near-optimal controller from a low-rank SDP solution.

Note that the computationally-cheap SDP relaxations associated with the infinite-horizon ODC are
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exact in both deterministic and stochastic cases for the classical (centralized) LQR and H2 prob-

lems. Although the focus of the chapter is static controllers, its results can be naturally generalized

to the dynamic case as well.

We conduct case studies on a mass-spring system and 100 random systems to elucidate the

efficacy of the proposed relaxations. In particular, the design of many near-optimal structured

controllers with global optimality degrees above 99% will be demonstrated. An additional study is

conducted on electrical power systems in our paper [Kalbat et al., 2014].

This work is organized as follows. The problem is introduced in Section 6.2, and then the SDP re-

laxation of a quadratically-constrained quadratic program (QCQP) is studied via a graph-theoretic

approach. Three different SDP relaxations of the finite-horizon deterministic ODC problem are

presented for the static controller design in Section 6.3. The infinite-horizon deterministic ODC

problem is studied in Section 6.4. The results are generalized to an infinite-horizon stochastic

ODC problem in Section 6.5, followed by a brief discussion on dynamic controllers in Section 6.6.

Various experiments and simulations are provided in Section 7.5. Concluding remarks are drawn

in Section 7.6.

6.1.1 Notations

R, Sn and S+n denote the sets of real numbers, n × n symmetric matrices and n × n positive

semidefinite matrices, respectively. The m by n rectangular identity matrix whose (i, j) entry is

equal to the Kronecker delta δij is denoted by Im×n or alternatively In when m = n. rank{W}

and trace{W} denote the rank and trace of a matrix W . The notation W � 0 means that W

is symmetric and positive semidefinite. Given a matrix W , its (l,m) entry is denoted as Wlm.

Given a block matrix W, its (l,m) block is shown as Wlm. Given a matrix M , its Moore Penrose

pseudoinverse is denoted as M+. The superscript (·)opt is used to show a globally optimal value of

an optimization parameter. The symbols (·)T and ‖ · ‖ denote the transpose and 2-norm operators,

respectively. The symbols 〈·, ·〉 and ‖·‖F denote the Frobenius inner product and norm of matrices,

respectively. The notation |.| shows the size of a vector, the cardinality of a set or the number of

vertices a graph, depending on the context. The expected value of a random variable x is shown as

E{x}. The submatirx of M formed by rows form the set S1 and columns from the set S2 is denoted

by M{S1,S2}. The notation G = (V, E) implies that G is a graph with the vertex set V and the
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edge set E .

6.2 Preliminaries

In this chapter, the Optimal Distributed Control (ODC) problem is studied based on the following

steps:

• First, the problem is cast as a non-convex optimization problem with only quadratic scalar

and/or matrix constraints.

• Second, the resulting non-convex problem is formulated as a rank-constrained optimization.

• Third, a convex relaxation of the problem is derived by dropping the non-convex rank con-

straint.

• Last, the rank of the minimum-rank solution of the SDP relaxation is analyzed.

Since there is no unique SDP relaxation for the ODC problem, a major part of this work is devoted

to designing a sparse quadratic formulation of the ODC problem with a guaranteed low-rank SDP

solution. To achieve this goal, a graph is associated to each SDP, which is then sparsified to contrive

a problem with a low-rank solution. Note that this chapter significantly improves the recent result

in [Lavaei, 2013].

6.2.1 Problem Formulation

The following variations of the Optimal Distributed Control (ODC) problem are studied in this

work.

6.2.1.1 Finite-horizon Deterministic ODC Problem

Consider the discrete-time system

x[τ + 1] = Ax[τ ] +Bu[τ ], τ = 0, 1, . . . , p− 1 (6.1a)

y[τ ] = Cx[τ ], τ = 0, 1, . . . , p (6.1b)

with the known matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n, and x[0] = x0 ∈ Rn, where p is the

terminal time. The goal is to design a distributed static controller u[τ ] = Ky[τ ] minimizing a
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quadratic cost function under the constraint that the controller gain K must belong to a given

linear subspace K ⊆ Rm×r. The set K captures the sparsity structure of the unknown constrained

controller and, more specifically, it contains all m × r real-valued matrices with forced zeros in

certain entries. The cost function

p∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α‖K‖2F (6.2)

is considered in this work, where α is a nonnegative scalar, and Q and R are positive-semidefinite

matrices. This problem will be studied in Section 6.3.

Remark 6. The third term in the objective function of the ODC problem is a soft penalty term

aimed at avoiding a high-gain controller. Instead of this soft penalty, we could impose a hard

constraint ‖K‖F ≤ β, for a given number β. The method to be developed later can be adopted for

the modified case.

6.2.1.2 Infinite-horizon Deterministic ODC Problem

The infinite-horizon ODC problem corresponds to the case p = +∞ subject to the additional

constraint that the controller must be stabilizing. This problem will be studied through a Lyapunov

domain formulation in Section 6.4.

6.2.1.3 Infinite-horizon Stochastic ODC Problem

Consider the discrete-time stochastic system

x[τ + 1] = Ax[τ ] +Bu[τ ] + Ed[τ ], τ = 0, 1, . . . (6.3a)

y[τ ] = Cx[τ ] + Fv[τ ], τ = 0, 1, . . . (6.3b)

with the known matrices A, B, C, E, and F , where d[τ ] and v[τ ] denote the input disturbance and

measurement noise, which are assumed to be zero-mean white-noise random processes. The ODC

problem for the above system will be investigated in Section 6.5.

The extension of the above results to the design of dynamic controllers will be briefly discussed

in Section 6.6.
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Figure 6.1: A minimal tree decomposition for a ladder graph.

6.2.2 Graph Theory Preliminaries

Definition 30. For two simple graphs G1 = (V, E1) and G2 = (V, E2) with the same set of vertices,

their union is defined as G1 ∪ G2 = (V, E1 ∪ E2).

Definition 31. The representative graph of an n×n symmetric matrix W , denoted by G(W ), is a

simple graph with n vertices whose edges are specified by the locations of the nonzero off-diagonal

entries of W . In other words, two disparate vertices i and j are connected if Wij is nonzero.

Consider a graph G identified by a set of “vertices” and a set of edges. This graph may have

cycles in which case it cannot be a tree. Using the notion to be explained below, we can map G

into a tree T identified by a set of “nodes” and a set of edges where each node of T contains a

group of vertices of G.

Definition 32 (Treewidth). Given a graph G = (V, E), a tree T is called a tree decomposition of

G if it satisfies the following properties:

1. Every node of T corresponds to and is identified by a subset of V.

2. Every vertex of G is a member of at least one node of T .

3. For every edge (i, j) of G, there should be a node in T containing vertices i and j simultane-

ously.

4. Given an arbitrary vertex k of G, the subgraph induced by all nodes of T containing vertex k

must be connected (more precisely, a tree).

Each node of T is a bag (collection) of vertices of G and hence it is referred to as bag. The width

of T is the cardinality of its biggest bag minus one. The treewidth of G is the minimum width over

all possible tree decompositions of G and is denoted by tw(G).
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Every graph has a trivial tree decomposition with one single bag consisting of all its vertices.

Figure 6.1 shows a graph G with 6 vertices named a, b, c, d, e, f , together with its minimal tree

decomposition T . Every node of T is a set containing three members of V. The width of this

decomposition is therefore equal to 2. Observe that the edges of the tree decomposition are chosen

in such a way that every subgraph induced by all bags containing each member of V is a tree (as

required by Property 4 stated before).

Note that if G is a tree itself, it has a minimal tree decomposition T such that: each bag

corresponds to two connected vertices of G and every two adjacent bags in T share a vertex in

common. Therefore, the treewidth of a tree is equal to 1. The reader is referred to [Bodlaender,

1994] for a comprehensive literature review on treewidth.

6.2.3 SDP Relaxation

The objective of this subsection is to study SDP relaxation of a quadratically-constrained quadratic

program (QCQP) using a graph-theoretic approach. Consider the standard nonconvex QCQP

problem

minimize
x∈Rn

f0(x) (6.4a)

subject to fk(x) ≤ 0, k = 1, . . . , q, (6.4b)

where fk(x) = xTAkx+ 2bTk x+ ck for k = 0, . . . , q. Define

Fk ,

 ck bTk

bk Ak

 . (6.5)

Each fk has the linear representation fk(x) = 〈Fk,W 〉 for the following choice of W :

W , [x0 xT ]T [x0 xT ] (6.6)

where x0 is considered as 1. On the other hand, an arbitrary matrix W ∈ Sn+1 can be factorized

as (6.6) if and only if it satisfies three properties: W11 = 1, W � 0, and rank{W} = 1. In this

representation of QCQP, the rank constraint carries all the nonconvexity. Neglecting this constraint
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yields the convex problem

minimize
W∈Sn+1

〈F0,W 〉 (6.7a)

subject to 〈Fk,W 〉 ≤ 0 k = 1, . . . , q, (6.7b)

W11 = 1, (6.7c)

W � 0, (6.7d)

known as a semidefinite programming (SDP) relaxation of the QCQP (6.4). The existence of a

rank-1 solution for an SDP relaxation guarantees the equivalence of the original QCQP and its

relaxed problem.

6.2.4 Connection Between Rank and Sparsity

To explore the rank of the minimum-rank solution of SDP relaxation, define G = G(F0) ∪ · · · ∪

G(Fq) as the sparsity graph associated with the problem (6.7). The graph G describes the zero-

nonzero pattern of the matrices F0, . . . , Fq, or alternatively captures the sparsity level of the QCQP

problem (6.4). Let T = (VT , ET ) be a tree decomposition of G. Denote its width as t and its bags

as B1,B2, ...,B|T |. It is known that given such a decomposition, every solution W ref ∈ Sn+1 of

the SDP problem (6.7) can be transformed into a solution W opt whose rank is upper bounded by

t+ 1 [Madani et al., 2014b]. To perform this transformation, a suitable polynomial-time recursive

algorithm will be proposed below.

Rank reduction algorithm:

1. Set T ′ := T and W := W ref .

2. If T ′ has a single node, then consider W opt as W and terminate; otherwise continue to the

next step.

3. Choose a pair of bags Bi,Bj of T ′ such that Bi is a leaf of T ′ and Bj is its unique neighbor.
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4. Using the notation W{·, ·} introduced in Section 6.1.1, define

O ,W{Bi ∩ Bj ,Bi ∩ Bj} (6.8a)

Vi ,W{Bi \ Bj ,Bi ∩ Bj} (6.8b)

Vj ,W{Bj \ Bi,Bi ∩ Bj} (6.8c)

Hi ,W{Bi \ Bj ,Bi \ Bj} ∈ Rni×ni (6.8d)

Hj ,W{Bj \ Bi,Bj \ Bi} ∈ Rnj×nj (6.8e)

Si , Hi − ViO+V T
i = QiΛiQ

T
i (6.8f)

Sj , Hj − VjO+V T
j = QjΛjQ

T
j (6.8g)

where QiΛiQ
T
i and QjΛjQ

T
j denote the eigenvalue decompositions of Si and Sj with the

diagonals of Λi and Λj arranged in descending order. Then, update a part of W as follows:

W{Bj \ Bi,Bi \ Bj} := VjO
+V T

i +Qj
√

Λj Inj×ni

√
Λi Q

T
i

and update W{Bi \ Bj ,Bj \ Bi} accordingly to preserve the Hermitian property of W .

5. Update T ′ by merging Bi into Bj , i.e., replace Bj with Bi ∪ Bj and then remove Bi from T ′.

6. Go back to step 2.

Theorem 22. The output of the rank reduction algorithm, denoted as W opt, is a solution of the

SDP problem (6.7) whose rank is smaller than or equal to t+ 1.

Proof. See Theorem 4 of Chapter 2 for the proof.

6.3 Finite-horizon Deterministic ODC Problem

The primary objective of the ODC problem is to design a structurally constrained gain K. Assume

that the matrix K has l free entries to be designed. Denote these parameters as h1, h2, . . . , hl. To

formulate the ODC problem, the space of permissible controllers can be characterized as

K ,

{
l∑

i=1

hiNi

∣∣∣∣∣ h ∈ Rl
}
, (6.9)
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for some (fixed) 0-1 matrices N1, . . . , Nl ∈ Rm×r. Now, the ODC problem can be stated as follows.

Finite-Horizon ODC Problem: Minimize

p∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α‖K‖2F (6.10a)

subject to

x[0] = x0 (6.10b)

x[τ + 1] = Ax[τ ] +Bu[τ ] τ = 0, 1, . . . , p− 1 (6.10c)

y[τ ] = Cx[τ ] τ = 0, 1, . . . , p (6.10d)

u[τ ] = Ky[τ ] τ = 0, 1, . . . , p (6.10e)

K = h1N1 + . . .+ hlNl (6.10f)

over the variables {x[τ ] ∈ Rn}pτ=0, {y[τ ] ∈ Rr}pτ=0, {u[τ ] ∈ Rm}pτ=0, K ∈ Rm×r and h ∈ Rl.

6.3.1 Sparsification of ODC Problem

The finite-horizon ODC is naturally a QCQP problem. Consider an arbitrary SDP relaxation of

the ODC problem and let G be the sparsity graph of this relaxation. Due to existence of nonzero

off-diagonal elements in Q and R, certain edges (and probably cycles) may exist in the subgraphs of

G associated with the state and input vectors x[τ ] and u[τ ]. Under this circumstance, the treewidth

of G could be as high as n. To understand the effect of a non-diagonal controller K, consider the

case m = r = 2 and assume that the controller K under design has three free elements as follows:

K =

 K11 K12

0 K22

 (6.11)

(i.e., h1 = K11, h2 = K12 and h3 = K22). Figure 6.2 shows a part of the graph G. It can be

observed that this subgraph is acyclic for K12 = 0 but has a cycle as soon as K12 becomes a free

parameter. As a result, the treewidth of G is contingent upon the zero pattern of K. In order to

guarantee existence of a low rank solution, we diagonalize Q, R and K through a reformulation of

the ODC problem. Note that this transformation is redundant if Q, R and K are all diagonal.

Let Qd ∈ Rn×n and Rd ∈ Rm×m be the respective eigenvector matrices of Q and R, i.e.,

Q = QTd ΛQQd, , R = RTd ΛRRd (6.12)
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(a) (b)

Figure 6.2: Effect of a nonzero off-diagonal entry of the controller K on the sparsity graph of

the finite-horizon ODC: (a) a subgraph of G for the case where K11 and K22 are the only free

parameters of the controller K, (b) a subgraph of G for the case where K12 is also a free parameter

of the controller.

where ΛQ ∈ Rn×n and ΛR ∈ Rm×m are diagonal matrices. Notice that there exist two constant

binary matrices Φ1 ∈ Rm×l and Φ2 ∈ Rl×r such that

K =
{

Φ1diag{h}Φ2 | h ∈ Rl
}
, (6.13)

where diag{h} denotes a diagonal matrix whose diagonal entries are inherited from the vector

h [Lavaei and Aghdam, 2008]. Now, a sparse formulation of the ODC problem can be obtained in

terms of the matrices

Ā , QdAQ
T
d , B̄ , QdBR

T
d ,

C̄ , Φ2CQ
T
d , x̄0 , Qdx0,

and the new set of variables x̄[τ ] , Qdx[τ ], ȳ[τ ] , Φ2y[τ ] and ū[τ ] , Rdu[τ ] for every τ = 0, 1, . . . , p.

Reformulated Finite-Horizon ODC Problem: Minimize

p∑
τ=0

(
x̄[τ ]TΛQx̄[τ ] + ū[τ ]TΛRū[τ ]

)
+ α‖h‖22 (6.14a)
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subject to

x̄[0] = x̄0 × z2 (6.14b)

x̄[τ + 1] = Āx̄[τ ] + B̄ū[τ ] τ = 0, 1, . . . , p− 1 (6.14c)

ȳ[τ ] = C̄x̄[τ ] τ = 0, 1, . . . , p (6.14d)

ū[τ ] = RdΦ1diag{h}ȳ[τ ] τ = 0, 1, . . . , p (6.14e)

z2 = 1 (6.14f)

over the variables {x̄[τ ] ∈ Rn}pτ=0, {ȳ[τ ] ∈ Rl}pτ=0, {ū[τ ] ∈ Rm}pτ=0, h ∈ Rl and z ∈ R.

To cast the reformulated finite-horizon ODC as a quadratic optimization, define

w ,
[
z hT x̄T ūT ȳT

]T ∈ Rnw (6.15)

where x̄ ,
[
x̄[0]T · · · x̄[p]T

]T
, ū ,

[
ū[0]T · · · ū[p]T

]T
, ȳ ,

[
ȳ[0]T · · · ȳ[p]T

]T
and nw , 1 + l +

(p+ 1)(n+ l+m). The scalar auxiliary variable z plays the role of number 1 (it suffices to impose

the additional quadratic constraint (6.14f) as opposed to z = 1 without affecting the solution).

6.3.2 SDP Relaxations of ODC Problem

In this subsection, two SDP relaxations are proposed for the reformulated finite-horizon ODC

problem given in (6.14). For the first relaxation, there is a guarantee on the rank of the solution.

In contrast, the second relaxation offers a tighter lower bound on the optimal cost of the ODC

problem, but its solution might be high rank and therefore its rounding to a rank-1 solution could

be more challenging.

6.3.2.1 Sparse SDP Relaxation

Let e1, . . . , enw denote the standard basis for Rnw . The ODC problem consists of nl , (p+1)(n+ l)

linear constraints given in (6.14b), (6.14c) and (6.14d), which can be formulated as

DTw = 0 (6.16)

for some matrix D ∈ Rnw×nl . Moreover, the objective function (6.14a) and the constraints in

(6.14e) and (6.14f) are all quadratic and can be expressed in terms of some matrices M ∈ Snw ,

{Mi[τ ] ∈ Snw}i=1,...,m; τ=0,1,...,p and E , e1eT1 . This leads to the following formulation of (6.14).
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Sparse Formulation of ODC Problem: Minimize

〈M,wwT 〉 (6.17a)

subject to

DTw = 0 (6.17b)

〈Mi[τ ], wwT 〉 = 0 i = 1, . . . ,m, τ = 0, 1, . . . , p (6.17c)

〈E,wwT 〉 = 1 (6.17d)

with the variable w ∈ Rnw .

For every j = 1, . . . , nl, define

Dj = D:,je
T
j + ejD

T
:,j (6.18)

where D:,j denotes the j-th column of D. An SDP relaxation of (6.17) will be obtained below.

Sparse Relaxation of Finite-Horizon ODC: Minimize

〈M,W 〉 (6.19a)

subject to

〈Dj ,W 〉 = 0 j = 1, . . . , nl (6.19b)

〈Mi[τ ],W 〉 = 0 i = 1, . . . ,m, τ = 0, 1, . . . , p (6.19c)

〈E,W 〉 = 1 (6.19d)

W � 0 (6.19e)

with the variable W ∈ Snw .

The problem (6.19) is a convex relaxation of the QCQP problem (6.17). The sparsity graph of

this problem is equal to

G =G(D1) ∪ . . . ∪ G(Dnl
) ∪ G(M1[0]) ∪ . . . ∪ G(Mm[0]) ∪ . . . ∪ G(M1[p]) ∪ . . . ∪ G(Mm[p])

where the vertices of G correspond to the entries of w. In particular, the vertex set of G can be

partitioned into five vertex subsets, where subset 1 consists of a single vertex associated with the
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Figure 6.3: Sparsity graph of the problem (6.19) (some edges of vertex z are not shown to improve

the legibility of the graph).

variable z and subsets 2-5 correspond to the vectors x̄, ū, ȳ and h, respectively. The underlying

sparsity graph G for the sparse formulation of the ODC problem is drawn in Figure 6.3, where each

vertex of the graph is labeled by its corresponding variable. To maintain the readability of the

graph, some edges of vertex z are not shown in the picture. Indeed, z is connected to all vertices

corresponding to the elements of x̄, ū and ȳ due to the linear terms in (6.17b).

Theorem 23. The sparsity graph of the sparse relaxation of the finite-horizon ODC problem has

treewidth 2.

Proof. It follows from the graph drawn in Figure 6.3 that removing vertex z from the sparsity

graph G makes the remaining subgraph acyclic. This implies that the treewidth of G is at most 2.

On the other hand, the treewidth cannot be 1 in light of the cycles of the graph.

Consider the variable W of the SDP relaxation (6.19). The exactness of this relaxation is

tantamount to the existence of an optimal rank-1 solution W opt for (6.19). In this case, an optimal

vector wopt for the ODC problem can be recovered by decomposing W opt as (wopt)(wopt)T (note

that w has been defined in (6.15)). The following observation can be made.

Corollary 13. The sparse relaxation of the finite-horizon ODC problem has a matrix solution with

rank at most 3.

Proof. This corollary is an immediate consequence of Theorems 22 and 23.
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Remark 7. Since the treewidth of the sparse relaxation of the finite-horizon ODC problem (6.19)

is equal to 2, it is possible to significantly reduce its computational complexity. More precisely, the

complicating constraint W � 0 can be replaced by positive semidefinite constraints on certain 3× 3

submatrices of W , as given below:

W{Bi,Bi} � 0, k = 1, . . . , |T | (6.20)

where T is an optimal tree decomposition of the sparsity graph G, and B1, . . . ,B|T | denote its bags.

After this simplification of the hard constraint W � 0, a quadratic number of entries of W turn

out to be redundant (not appearing in any constraint) and can be removed from the optimization

[Fukuda et al., 2001; Madani et al., 2014b].

6.3.2.2 Dense SDP Relaxation

Define D⊥ ∈ Rnw×(nw−nl) as an arbitrary full row rank matrix satisfying the relation DTD⊥ = 0.

It follows from (6.17b) that every feasible vector w satisfies the equation w = D⊥w̃, for a vector

w̃ ∈ R(nw−nl). Define

M̃ = (D⊥)TMD⊥ (6.21a)

M̃i[τ ] = (D⊥)TMi[τ ]D⊥ (6.21b)

Ẽ = (D⊥)T e1e
T
1D
⊥. (6.21c)

The problem (6.17) can be cast in terms of w̃ as shown below.

Dense Formulation of ODC Problem: Minimize

〈M̃, w̃w̃T 〉 (6.22a)

subject to

〈M̃i[τ ], w̃w̃T 〉 = 0 i = 1, . . . ,m; τ = 0, 1, . . . , p (6.22b)

〈Ẽ, w̃w̃T 〉 = 1 (6.22c)

over w̃ ∈ R(nw−nl).

The SDP relaxation of the above formulation is provided next.
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Dense Relaxation of Finite-Horizon ODC: Minimize

〈M̃, W̃ 〉 (6.23a)

subject to

〈M̃i[τ ], W̃ 〉 = 0 i = 1, . . . ,m; τ = 0, 1, . . . , p (6.23b)

〈Ẽ, W̃ 〉 = 1 (6.23c)

W̃ � 0 (6.23d)

over W̃ ∈ S(nw−nl).

Remark 8. Let Fs and Fd denote the feasible sets for the sparse and dense SDP relaxation problems

in (6.19) and (6.23), respectively. It can be easily seen that

{D⊥W̃ (D⊥)T | W̃ ∈ Fd} ⊆ Fs (6.24)

Therefore, the lower bound provided by the dense SDP relaxation problem (6.23) is equal to or

tighter than that of the sparse SDP relaxation (6.19). However, the rank of the SDP solution of the

dense relaxation may be high, which complicates its rounding to a rank-1 matrix. Hence, the sparse

relaxation may be useful for recovering a near-global controller, while the dense relaxation may be

used to bound the global optimality degree of the recovered controller.

6.3.3 Rounding of SDP Solution to Rank-1 Matrix

LetW opt either denote a low-rank solution for the sparse relaxation (6.19) or be equal toD⊥W̃ opt(D⊥)T

for a low-rank solution W̃ opt (if any) of the dense relaxation (6.23). If the rank of W opt is 1, then

W opt can be mapped back into a globally optimal controller for the ODC problem through an

eigenvalue decomposition W opt = wopt(wopt)T . Assume that W opt does not have rank 1. There are

multiple heuristic methods to recover a near-global controller, some of which are delineated below.

Direct Recovery Method: If W opt had rank 1, then the (2, 1), (3, 1), . . . , (|h| + 1, 1) entries of

W opt would have corresponded to the vector hopt containing the free entries of Kopt. Inspired

by this observation, if W opt has rank greater than 1, then a near-global controller may still be

recovered from the first column of W opt. We refer to this approach as Direct Recovery Method.
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Penalized SDP Relaxation: Recall that an SDP relaxation can be obtained by eliminating a

rank constraint. In the case where this removal changes the solution, one strategy is to compensate

for the rank constraint by incorporating an additive penalty function, denoted as Ψ(W ), into the

objective of SDP relaxation. A common penalty function Ψ(·) is ε× trace{W}, where ε is a design

parameter. This problem is referred to as Penalized SDP Relaxation throughout this chapter.

Indirect Recovery Method: Define x as the aggregate state vector obtained by stacking x[0], ..., x[p].

The objective function of every proposed SDP relaxation depends strongly on x and only weakly

on k if α is small. In particular, if α = 0, then the SDP objective function is not in terms of K.

This implies that the relaxation may have two feasible matrix solutions both leading to the same

optimal cost such that their first columns overlap on the part corresponding to x and not the part

corresponding to h. Hence, unlike the direct method that recovers h from the first column of W opt,

it may be advantageous to first recover x and then solve a second convex optimization to generate

a structured controller that is able to generate state values as closely to the recovered aggregate

state vector as possible. More precisely, given an SDP solution W opt, define x̂ ∈ Rn(p+1) as a vector

containing the entries (|h|+ 2, 1), (|h|+ 3, 1), . . . , (1 + |h|+n(p+ 1), 1) of W opt. Define the indirect

recovery method as the convex optimization problem

minimize

p∑
τ=0

‖x̂[τ + 1]− (A+BKC)x̂[τ ]‖2 (6.25a)

subject to K = h1M1 + . . .+ hlMl (6.25b)

with the variables K ∈ Rm×r and h ∈ Rl. Let K̂ denote a solution of the above problem. In the

case where W opt has rank 1 or the state part of the matrix W opt corresponds to the true solution of

the ODC problem, x̂ is the same as xopt and K̂ is an optimal controller. Otherwise, K̂ is a feasible

controller that aims to make the closed-loop system follow the near-optimal state trajectory vector

x̂. As tested in [Kalbat et al., 2014], the above controller recovery method exhibits a remarkable

performance on power systems.

6.3.4 Computationally-Cheap SDP Relaxation

Two SDP relaxations have been proposed earlier. Although these problems are convex, it may be

difficult to solve them efficiently for a large-scale system. This is due to the fact that the size of

each SDP matrix depends on the number of scalar variables at all times from 0 to p. There is an
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efficient approach to derive a computationally-cheap SDP relaxation. This will be explained below

for the case where Q and R are non-singular and r,m ≤ n.

Notation 1. For every matrix M ∈ Rn1×n2, define the sparsity pattern of M as follows

S(M) , {S ∈ Rn1×n2 | ∀(i, j) Mij = 0⇒ Sij = 0} (6.26)

With no loss of generality, we assume that C has full row rank. There exists an invertible

matrix Φ ∈ Rn×n such that CΦ =
[
Ir 0

]
. Define also

K2 , {Φ1SΦT
1 | S ∈ S(Φ2Φ

T
2 )}. (6.27)

Indeed, K2 captures the sparsity pattern of the matrix KKT . For example, if K consists of block-

diagonal (rectangular) matrix, K2 will also include block-diagonal (square) matrices. Let µ ∈ R be

a positive number such that Q � µ× Φ−TΦ−1, where Φ−T denotes the transpose of the inverse of

Φ. Define

Q̂ := Q− µ× Φ−TΦ−1. (6.28)

Using the slack matrix variables

X , [x[0] x[1] . . . x[p]] , (6.29a)

U , [u[0] u[1] . . . u[p]] , (6.29b)

an efficient relaxation of the ODC problem can be obtained.

Computationally-Cheap Relaxation of Finite-Horizon ODC: Minimize

trace{XT Q̂X + µ W22 + UTRU}+ α trace{W33} (6.30a)
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subject to

x[τ + 1] = Ax[τ ] +Bu[τ ], τ = 0, 1, . . . , p− 1, (6.30b)

x[0] = x0, (6.30c)

W =


In Φ−1X [K 0]T

XTΦ−T W22 UT

[K 0] U W33

 , (6.30d)

K ∈ K, (6.30e)

W33 ∈ K2, (6.30f)

W � 0, (6.30g)

over K ∈ Rm×r, X ∈ Rn×(p+1), U ∈ Rm×(p+1) and W ∈ Sn+m+p+1 (note that W22 and W33 are

two blocks of the variable W).

Note that the above relaxation can be naturally cast as an SDP problem by replacing each

quadratic term in its objective with a new variable and then using the Schur complement. We refer

to the SDP formulation of this problem as computationally-cheap SDP relaxation.

Theorem 24. The problem (6.30) is a convex relaxation of the ODC problem. Furthermore,

the relaxation is exact if and only if it possesses a solution (Kopt, Xopt, Uopt,Wopt) such that

rank{Wopt} = n.

Proof. It is evident that the problem (6.30) is a convex program. To prove the remaining parts

of the theorem, it suffices to show that the ODC problem is equivalent to (6.30) subject to the

additional constraint rank{W} = n. To this end, consider a feasible solution (K,X,U,W) such

that rank{W} = n. Since In has rank n, taking the Schur complement of the blocks (1, 1), (1, 2),

(2, 1) and (2, 2) of W yields that

0 = W22 −XTΦ−T (In)−1Φ−1X (6.31)

Likewise,

0 = W33 −KKT (6.32)

On the other hand,
p∑

τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
= trace{XTQX + UTRU} (6.33)
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It follows from (6.31), (6.32) and (6.33) that the ODC problem and its computationally cheap

relaxation lead to the same objective at the respective points (K,X,U) and (K,X,U,W). In

addition, it can be concluded from the Schur complement of the blocks (1, 1), (1, 2), (3, 1) and

(3, 2) of W that

U = [K 0]Φ−1X = KCX (6.34)

or equivalently

u[τ ] = KCx[τ ] for τ = 0, 1, . . . , p (6.35)

This implies that (K,X,U) is a feasible solution of the ODC problem. Hence, the optimal objective

value of the ODC problem is a lower bound on that of the computationally-cheap relaxation under

the additional constraint rank{W} = n.

Now, consider a feasible solution (K,X,U) of the ODC problem. Define W22 = XTΦ−TΦ−1X

and K2 = KKT . Observe that W can be written as the rank-n matrix WrW
T
r , where

Wr =
[
In Φ−1X [K 0]T

]T
(6.36)

Thus, (K,X,U,W) is a feasible solution of the computationally-cheap SDP relaxation. This im-

plies that the optimal objective value of the ODC problem is an upper bound on that of the

computationally-cheap SDP relaxation under the additional constraint rank{W} = n. The proof

is completed by combining this property with its opposite statement proved earlier.

The sparse and dense SDP relaxations were both obtained by defining a matrix W as the

product of two vectors. However, the computationally-cheap relaxation of the finite-horizon ODC

Problem is obtained by defining W as the product of two matrices. This significantly reduces

the computational complexity. To shed light on this fact, notice that the numbers of rows for the

matrix variables of sparse and dense SDP relaxations are on the order of np, whereas the number

of rows for the computationally-cheap SDP solution is on the order of n+ p.

Remark 9. The computationally-cheap relaxation of the finite-horizon ODC Problem automatically

acts as a penalized SDP relaxation. To explain this remarkable feature of the proposed relaxation,

notice that the terms trace{W22} and trace{W33} in the objective function of the relaxation in-

herently penalize the trace of W. This automatic penalization helps significantly with the reduction
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of the rank of W at optimality. As a result, it is expected that the quality of the relaxation will be

better for higher values of α and µ.

Remark 10. Consider the extreme case where r = n, C = In, α = 0, p =∞, and the unknown con-

troller K is unstructured. This amounts to the famous LQR problem and the optimal controller can

be found using the Riccati equation. It is straightforward to verify that the computationally-cheap

relaxation of the ODC problem is always exact in this case even though it is infinite-dimensional.

The proof is based on the following facts:

• When K is unstructured, the constraint (6.30e) and (6.30f) can be omitted. Therefore, there

is no structural constraint on W33 and W31 (i.e., the (3, 1) block entry).

• Then, the constraint (6.30d) reduces to W22 = XTΦ−TΦ−1X due to the term trace{W22} in

the objective function. Consequently, the objective function can be rearranged as
∑∞

τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
.

• The only remaining constraints are the state evolution equation and x[0] = x0. It is known

that the remaining feed-forward problem has a solution (Xopt, Uopt) such that Uopt = KoptXopt

for some matrix Kopt.

6.3.5 Stability Enforcement

The finite-horizon ODC problem studied before had no stability conditions. It is verified in some

simulations in [Kalbat et al., 2014] that the closed-loop stability may be automatically guaranteed

for physical systems, provided p is large enough. In this subsection, we aim to directly enforce

stability by imposing additional constraints on the proposed SDP relaxations.

Theorem 25. There exists a controller u[τ ] = Ky[τ ] with the structure K ∈ K to stabilize the

system (6.1) if and only if there exist a (Lyapunov) matrix P ∈ Sn, a matrix K ∈ Rm×r, and
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auxiliary variables L ∈ Rm×n and G ∈ S2n+m such that P − In AP +BG32

PAT + G23B
T P

 � 0, (6.37a)

K ∈ K, (6.37b)

G � 0, (6.37c)

G33 ∈ K2, (6.37d)

rank{G} = n, (6.37e)

where

G ,


In Φ−1P [K 0]T

PΦ−T G22 G23

[K 0] G32 G33

 (6.38)

Proof. It is well-known that the system (6.1) is stable under a controller u[τ ] = Ky[τ ] if and only

if there exists a positive-definite matrix P ∈ Sn to satisfy the Lyapunov inequality:

(A+BKC)TP (A+BKC)− P + In � 0 (6.39)

or equivalently  P − In AP +BKCP

PAT + PKTCTBT P

 � 0 (6.40)

Due to the analogy between W and G, the argument made in the proof of Theorem 24 can be

adopted to complete the proof of this theorem (note that G32 plays the role of KCP ).

Theorem 25 translates the stability of the closed-loop system into a rank-n condition. Consider

one of the aforementioned SDP relaxations of the ODC problem. To enforce stability, it results

from Theorem 25 that two actions can be taken: (i) addition of the convex constraints (6.37a)-

(6.37d) to SDP relaxations, (ii) compensation for the rank-n condition through an appropriate

convex penalization of G in the objective function of SDP relaxations. Note that the penalization

is vital because otherwise G22 and G33 would grow unboundedly to satisfy the condition G � 0.
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6.4 Infinite-horizon Deterministic ODC Problem

In this section, we study the infinite-horizon ODC problem, corresponding to p = +∞ and subject

to a stability condition.

6.4.1 Lyapunov Formulation

The finite-horizon ODC was investigated through a time-domain formulation. However, to deal with

the infinite dimension of the infinite-horizon ODC and its hard stability constraint, a Lyapunov

approach will be taken here. Consider the following optimization problem.

Lyapunov Formulation of ODC: Minimize

xT0 Px0 + α‖K‖2F (6.41a)

subject to 
G G (AG+BL)T LT

G Q−1 0 0

AG+BL 0 G 0

L 0 0 R−1

 � 0, (6.41b)

P In

In G

 � 0, (6.41c)

K ∈ K, (6.41d)

L = KCG, (6.41e)

over K ∈ Rm×r, L ∈ Rm×n, P ∈ Sn and G ∈ Sn.

It will be shown in the next theorem that the above formulation is tantamount to the infinite-

horizon ODC problem.

Theorem 26. The infinite-horizon deterministic ODC problem is equivalent to finding a controller

K ∈ K, a symmetric Lyapunov matrix P ∈ Sn, an auxiliary symmetric matrix G ∈ Sn and an

auxiliary matrix L ∈ Rm×n to solve the optimization problem (6.41).
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Proof. Given an arbitrary control gain K, we have:

∞∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
= x[0]TPx[0] (6.42)

where

P = (A+BKC)TP (A+BKC) +Q+ (KC)TR(KC) (6.43a)

P � 0 (6.43b)

On the other hand, it is well-known that replacing the equality sign “=” in (6.43a) with the in-

equality sign “�” does not affect the solution of the optimization problem [Boyd and Vandenberghe,

2004]. After pre- and post-multiplying the Lyapunov inequality obtained from (6.43a) with P−1

and using the Schur complement formula, the constraints (6.43a) and (6.43b) can be combined as
P−1 P−1 ST P−1(KC)T

P−1 Q−1 0 0

S 0 P−1 0

(KC)P−1 0 0 R−1

 � 0 (6.44)

where S = (A + BKC)P−1. By replacing P−1 with a new variable G in the above matrix and

defining L as KCG, the constraints (6.41b) and (6.41e) will be obtained. On the other hand,

(6.41c) implies that G � 0 and P � G−1 . Therefore, the minimization of xT0 Px0 subject to

the constraint (6.41c) ensures that P = G−1 is satisfied for at least one optimal solution of the

optimization problem.

Theorem 27. Consider the special case where r = n, C = In, α = 0 and K contains the set of

all unstructured controllers. Then, the infinite-horizon deterministic ODC problem has the same

solution as the convex optimization problem obtained from the nonlinear optimization (6.41) by

removing its non-convex constraint (6.41e).

Proof. It is easy to verify that a solution (Kopt, P opt, Gopt, Lopt) of the convex problem stated

in the theorem can be mapped to the solution (Lopt(Gopt)−1, P opt, Gopt, Lopt) of the non-convex

problem (6.41) and vice versa (recall that C = In by assumption). This completes the proof.
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6.4.2 SDP Relaxation

Theorem 27 states that a classical optimal control problem can be precisely solved via a convex

relaxation of the nonlinear optimization (6.41) by eliminating its constraint (6.41e). However,

this simple convex relaxation does not work satisfactorily for a general control structure K =

Φ1diag{h}Φ2. To design a better relaxation, define

w =
[
1 hT vec{Φ2CG}T

]T
(6.45)

where vec{Φ2CG} is an nl × 1 column vector obtained by stacking the columns of Φ2CG. It is

possible to write every entry of the bilinear matrix term KCG as a linear function of the entries of

the parametric matrix wwT . Hence, by introducing a new matrix variable W playing the role of

wwT , the nonlinear constraint (6.41e) can be rewritten as a linear constraint in term of W.

Notation 2. Define the sampling operator samp : Rl×nl → Rl×n as follows:

samp{X} =
[
Xi,(n−1)j+i

]
i=1,...,l; j=1,...,n

. (6.46)

Now, one can relax the non-convex mapping constraint W = wwT to W � 0 and another

constraint stating that the first column of W is equal to w. This yields the following convex

relaxation of problem (6.41).

SDP Relaxation of Infinite-Horizon Deterministic ODC: Minimize

xT0 Px0 + α trace{W33} (6.47a)
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subject to 
G G (AG+BL)T LT

G Q−1 0 0

AG+BL 0 G 0

L 0 0 R−1

 � 0, (6.47b)

P In

In G

 � 0, (6.47c)

L = Φ1 × samp{W32}, (6.47d)

W =


1 vec{Φ2CG}T hT

vec{Φ2CG} W22 W23

h W32 W33

 , (6.47e)

W � 0, (6.47f)

over h ∈ Rl, L ∈ Rm×n, P ∈ Sn, G ∈ Sn and W ∈ S1+l(n+1).

If the relaxed problem (6.47) has the same solution as the infinite-horizon ODC in (6.41), the

relaxation is exact.

Theorem 28. The following statements hold regarding the relaxation of the infinite-horizon deter-

ministic ODC in (6.47):

i) The relaxation is exact if it has a solution (hopt, P opt, Gopt, Lopt,Wopt) such that rank{Wopt} =

1.

ii) The relaxation always has a solution (hopt, P opt, Gopt, Lopt,Wopt) such that rank{Wopt} ≤ 3.

Proof. Consider a sparsity graph G of (6.47), constructed as follows. The graph G has 1 + l(n+ 1)

vertices corresponding to the rows of W. Two arbitrary disparate vertices i, j ∈ {1, 2, . . . , 1 +

l(n+ 1)} are adjacent in G if Wij appears in at least one of the constraints of the problem (6.47)

excluding the global constraint W � 0. For example, vertex 1 is connected to all remaining vertices

of G. The graph G with its vertex 1 removed is depicted in Figure 6.4. This graph is acyclic and

therefore the treewidth of G is at most 2. Hence, it follows from Theorem 1 that (6.47) has a matrix

solution with rank at most 3.
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Theorem 28 states that the SDP relaxation of the infinite-horizon ODC problem has a low-rank

solution. However, it does not imply that every solution of the relaxation is low-rank. Theorem 1

provides a procedure for converting a high-rank solution of the SDP relaxation into a low-rank one.

6.4.3 Computationally-Cheap Relaxation

The aforementioned SDP relaxation has a high dimension for a large-scale system, which makes it

less interesting for computational purposes. Moreover, the quality of its optimal objective value

can be improved using some indirect penalty technique. The objective of this subsection is to offer

a computationally-cheap SDP relaxation for the ODC problem, whose solution outperforms that of

the previous SDP relaxation. For this purpose, consider again a scalar µ such that Q � µ×Φ−TΦ−1

and define Q̂ according to (6.28).

Computationally-Cheap Relaxation of Infinite-horizon Deterministic ODC: Minimize

xT0 Px0 + α trace{W33} (6.48a)

subject to 
G− µW22 G (AG+BL)T LT

G Q̂−1 0 0

AG+BL 0 G 0

L 0 0 R−1

 � 0, (6.48b)

P In

In G

 � 0, (6.48c)

W =


In Φ−1G [K 0]T

GΦ−T W22 LT

[K 0] L W33

 , (6.48d)

K ∈ K, (6.48e)

W33 ∈ K2, (6.48f)

W � 0, (6.48g)

over K ∈ Rm×r, L ∈ Rm×n, P ∈ Sn, G ∈ Sn and W ∈ S2n+m.

The following remarks can be made regarding (6.48):
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Figure 6.4: The sparsity graph for the infinite-horizon deterministic ODC in the case where K

consists of diagonal matrices (the central vertex corresponding to the constant 1 is removed for

simplicity).

• The constraint (6.48b) corresponds to the Lyapunov inequality associated with (6.43a), where

W22 in its first block aims to play the role of P−1Φ−TΦ−1P−1.

• The constraint (6.48c) ensures that the relation P = G−1 occurs at optimality (at least for

one of the solution of the problem).

• The constraint (6.48d) is a surrogate for the only complicating constraint of the ODC problem,

i.e., L = KCG.

• Since no non-convex rank constraint is imposed on the problem to maintain the convexity of

the relaxation, the rank constraint is compensated in various ways. More precisely, the entries

of W are constrained in the objective function (6.48a) through the term α trace{W33}, in the

first block of the constraint (6.48b) through the term G− µW22, and also via the constraint

(6.48e) and (6.48f). These terms aim to automatically penalize the rank of W indirectly.

• The proposed relaxation takes advantage of the sparsity of not onlyK, but alsoKKT (through

the constraint (6.48f)).

Theorem 29. The problem (6.48) is a convex relaxation of the infinite-horizon ODC problem. Fur-

thermore, the relaxation is exact if and only if it possesses a solution (Kopt, Lopt, P opt, Gopt,Wopt)

such that rank{Wopt} = n.

Proof. The objective function and constraints of the problem (6.48) are all linear functions of the

tuple (K,L, P,G,W). Hence, this relaxation is indeed convex. To study the relationship between

this optimization problem and the infinite-horizon ODC, consider a feasible point (K,L, P,G) of

the ODC formulation (6.41). It can be deduced from the relation L = KCG that (K,L, P,G,W)
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is a feasible solution of the problem (6.48) if the free blocks of W are considered as

W22 = GΦ−TΦ−1G, W33 = KKT (6.49)

(note that (6.41b) and (6.48b) are equivalent for this choice of W). This implies that the problem

(6.48) is a convex relaxation of the infinite-horizon ODC problem.

Consider now a solution (Kopt, Lopt, P opt, Gopt,Wopt) of the computationally-cheap SDP relax-

ation such that rank{Wopt} = n. Since the rank of the first block of Wopt (i.e., In) is already n,

a Schur complement argument on the blocks (1, 1), (1, 3), (2, 1) and (2, 3) of Wopt yields that

0 = Lopt − [Kopt 0](In)−1Φ−1Gopt (6.50)

or equivalently Lopt = KoptCGopt, which is tantamount to the constraint (6.41e). This implies

that (Kopt, Lopt, P opt, Gopt) is a solution of the infinite-horizon ODC problem (6.41) and hence the

relaxation is exact. So far, we have shown that the existence of a rank-n solution Wopt guarantees

the exactness of the relaxation. The converse of this statement can also be proved similarly.

The variable W in the first SDP relaxation (6.47) had 1 + l(n + 1) rows. In contrast, this

number reduces to 2n+m for the matrix W in the computationally-cheap relaxation (6.48). This

significantly reduces the computation time of the relaxation.

Corollary 14. Consider the special case where r = n, C = In, α = 0 and K contains the set of

all unstructured controllers. Then, the computationally-cheap relaxation problem (6.48) is exact for

the infinite-horizon ODC problem.

Proof. The proof follows from that of Theorem 27.

6.4.4 Controller Recovery

In this subsection, two controller recovery methods will be described. With no loss of generality,

our focus will be on the computationally-cheap relaxation problem (6.48).

Direct Recovery Method for Infinite-Horizon ODC: A near-optimal controller K for the

infinite-horizon ODC problem is chosen to be equal to the optimal matrix Kopt obtained from the

computationally-cheap relaxation problem (6.48).
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Indirect Recovery Method for Infinite-Horizon ODC: Let (Kopt, Lopt, P opt, Gopt, Wopt)

denote a solution of the computationally-cheap relaxation problem (6.48). Given a pre-specified

nonnegative number ε, a near-optimal controller K̂ for the infinite-horizon ODC problem is recov-

ered by minimizing

ε× γ + α‖K‖2F (6.51a)

subject to 
(Gopt)−1 −Q+ γIn (A+BKC)T (KC)T

(A+BKC) Gopt 0

(KC) 0 R−1

 � 0 (6.51b)

K = h1N1 + . . .+ hlNl. (6.51c)

over K ∈ Rm×r, h ∈ Rl and γ ∈ R. Note that this is a convex program. The direct recovery method

assumes that the controller Kopt obtained from the computationally-cheap relaxation problem

(6.48) is near-optimal, whereas the indirect method assumes that the controller Kopt might be

unacceptably imprecise while the inverse of the Lyapunov matrix is near-optimal. The indirect

method is built on SDP relaxation by fixing G at its optimal value and then perturbing Q as

Q − γIn to facilitate the recovery of a stabilizing controller. The underlying idea is that the SDP

relaxation depends strongly on G and weakly on P (note that G appears 9 times in the formulation,

while P appears only twice to indirectly account for the inverse of G). In other words, there might

be two feasible solutions with similar costs for the SDP relaxation whose G parts are identical while

their P parts are very different. Hence, the indirect method focuses on G.

6.5 Infinite-Horizon Stochastic ODC Problem

This section is mainly concerned with the stochastic optimal distributed control (SODC) problem,

which aims to design a stabilizing static controller u[τ ] = Ky[τ ] to minimize the cost function

lim
τ→+∞

E
(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α‖K‖2F (6.52)

subject to the system dynamics (6.3) and the controller requirement K ∈ K, for a nonnegative

scalar α and positive-definite matrices Q and R. Define two covariance matrices as

Σd = E{Ed[0]d[0]TET } Σv = E{Fv[0]v[0]TF T } (6.53)
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Consider the following optimization problem.

Lyapunov Formulation of SODC: Minimize

〈P,Σd〉+ 〈M +KTRK,Σv〉+ α‖K‖2F (6.54a)

subject to 
G G (AG+BL)T LT

G Q−1 0 0

AG+BL 0 G 0

L 0 0 R−1

 � 0, (6.54b)

P In

In G

 � 0, (6.54c)

 M (BK)T

BK G

 � 0, (6.54d)

K ∈ K (6.54e)

L = KCG (6.54f)

over the controller K ∈ Rm×r, Lyapunov matrix P ∈ Sn and auxiliary matrices G ∈ Sn, L ∈ Rm×n

and M ∈ Sr.

Theorem 30. The infinite-horizon SODC problem adopts the non-convex formulation (6.54).

Proof. It is straightforward to verify that

x[τ ] = (A+BKC)τx[0] +
τ−1∑
t=0

(A+BKC)τ−t−1(Ed[t] +BKFv[t]) (6.55)

for τ = 1, 2, . . . ,∞. On the other hand, since the controller under design must be stabilizing,

(A + BKC)τ approaches zero as τ goes to +∞. In light of the above equation, it can be verified

that

E
{

lim
τ→+∞

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)}
= E

{
lim

τ→+∞
x[τ ]T

(
Q+ CTKTRKC

)
x[τ ]

}
+ E

{
lim

τ→+∞
v[τ ]TF TKTRKFv[τ ]

}
= 〈P,Σd〉+ 〈(BK)TP (BK) +KTRK,Σv〉 (6.56)



CHAPTER 6. CONVEX RELAXATION FOR OPTIMAL DISTRIBUTED CONTROL
PROBLEM 161

where

P =
∞∑
t=0

(
(A+BKC)t

)T
(Q+ CTKTRKC)(A+BKC)t

Similar to the proof of Theorem 26, the above infinite series can be replaced by the expanded

Lyapunov inequality (6.44): After replacing P−1 and KCP−1 in (6.44) with new variables G and

L, it can be concluded that:

• The condition (6.44) is identical to the set of constraints (6.54b) and (6.54f).

• The cost function (6.56) can be expressed as

〈P,Σd〉+ 〈(BK)TG−1(BK) +KTRK,Σv〉+ α‖K‖2F

• Since P appears only once in the constraints of the optimization problem (6.54) (i.e., the

condition (6.54c)) and the objective function of this optimization includes the term 〈P,Σd〉,

an optimal value of P is equal to G−1 (Notice that Σd � 0).

• Similarly, the optimal value of M is equal to (BK)TG−1(BK).

The proof follows from the above observations.

The traditional H2 optimal control problem (i.e., in the centralized case) can be solved using

Riccati equations. It will be shown in the next proposition that dropping the nonconvex constraint

(6.54f) results in a convex optimization that correctly solves the centralized H2 optimal control

problem.

Proposition 1. Consider the special case where r = n, C = In, α = 0, Σv = 0, and K contains

the set of all unstructured controllers. Then, the SODC problem has the same solution as the

convex optimization problem obtained from the nonlinear optimization (6.54a)-(6.54) by removing

its non-convex constraint (6.54f).

Proof. It is similar to the proof of Theorem 27.

Consider the vector w defined in (6.45). Similar to the infinite-horizon ODC case, the bilinear

matrix term KCG can be represented as a linear function of the entries of the parametric matrix

W defined as wwT . Now, a convex relaxation can be attained by relaxing the constraint W = wwT

to W � 0 and adding another constraint stating that the first column of W is equal to w.
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Relaxation of Infinite-Horizon SODC: Minimize

〈P,Σd〉+ 〈M +KTRK,Σv〉+ α trace{W33} (6.57a)

subject to 
G G (AG+BL)T LT

G Q−1 0 0

AG+BL 0 G 0

L 0 0 R−1

 � 0, (6.57b)

P In

In G

 � 0, (6.57c)

K = Φ1diag{h}Φ2, (6.57d) M (BK)T

BK G

 � 0, (6.57e)

L = Φ1samp{W32}, (6.57f)

W =


1 vec{Φ2CG}T hT

vec{Φ2CG} W22 W23

h W32 W33

 , (6.57g)

W � 0, (6.57h)

over the controller K ∈ Rm×r, Lyapunov matrix P ∈ Sn and auxiliary matrices G ∈ Sn, L ∈ Rm×n,

M ∈ Sr, h ∈ Rl and W ∈ S1+l(n+1).

Theorem 31. The following statements hold regarding the convex relaxation of the infinite-horizon

SODC problem:

i) The relaxation is exact if it has a solution (hopt,Kopt, P opt, Gopt, Lopt,Mopt,Wopt) such that

rank{W opt} = 1.

ii) The relaxation always has a solution (hopt,Kopt, P opt, Gopt, Lopt,Mopt,Wopt) such that rank{W opt} ≤

3.

Proof. The proof is omitted (see Theorems 28 and 30).
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As before, it can be deduced from Theorem 31 that the infinite-horizon SODC problem has a

convex relaxation with the property that its exactness amounts to the existence of a rank-1 matrix

solution Wopt. Moreover, it is always guaranteed that this relaxation has a solution such that

rank{Wopt} ≤ 3.

A computationally-cheap SDP relaxation for the SODC problem will be derived below. Let µ1

and µ2 be two nonnegative numbers such that

Q � µ1 × Φ−TΦ−1, Σv � µ2 × Ir (6.58)

Define Q̂ := Q− µ1 × Φ−TΦ−1 and Σ̂v := Σv − µ2 × Ir.

Computationally-Cheap Relaxation of Infinite-Horizon SODC: Minimize

〈P,Σd〉+ 〈M,Σv〉+ 〈KTRK, Σ̂v〉+ 〈µ2R+ αIm,W33〉 (6.59a)

subject to 
G− µ1W22 G (AG+BL)T LT

G Q̂−1 0 0

AG+BL 0 G 0

L 0 0 R−1

 � 0, (6.59b)

P In

In G

 � 0, (6.59c)

 M (BK)T

BK G

 � 0, (6.59d)

W =


In Φ−1G [K 0]T

GΦ−T W22 LT

[K 0] L W33

 , (6.59e)

K ∈ K, (6.59f)

W33 ∈ K2, (6.59g)

W � 0, (6.59h)

over K ∈ Rm×r, P ∈ Sn, G ∈ Sn, L ∈ Rm×n, M ∈ Sr and W ∈ S2n+m.
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It should be noted that the constraint (6.59d) ensures that the relation

M = (BK)TG−1(BK) (6.60)

occurs at optimality.

Theorem 32. The problem (6.59) is a convex relaxation of the SODC problem. Furthermore, the

relaxation is exact if and only if it possesses a solution (Kopt, Lopt, P opt, Gopt, Mopt,Wopt) such

that rank{Wopt} = n.

Proof. Since the proof is similar to that of the infinite-horizon case presented earlier, it is omitted

here.

For the retrieval of a near-optimal controller, the direct recovery method delineated for the

infinite-horizon ODC problem can be readily deployed. However, the indirect recovery method

requires some modifications, which will be explained below. Let (Kopt, Lopt, P opt, Gopt,Mopt,Wopt)

denote a solution of the computationally-cheap relaxation of SODC. A near-optimal controller K

for SODC may be recovered by minimizing

〈KT (BT (Gopt)−1B +R)K,Σv〉+ α‖K‖2F + ε× γ (6.61a)

subject to 
(Gopt)−1 −Q+ γIn (A+BKC)T (KC)T

(A+BKC) Gopt 0

(KC) 0 R−1

 � 0 (6.61b)

K ∈ h1N1 + . . .+ hlNl. (6.61c)

over K ∈ Rm×r, h ∈ Rl and γ ∈ R, where ε is a pre-specified nonnegative number. This is a convex

program.

6.6 Extension to Dynamic Controllers

Consider the problem of finding an optimal fixed-order dynamic controller with a pre-specified

structure. To formulate the problem, denote the unknown controller as zc[τ + 1] = Aczc[τ ] +Bcy[τ ]

u[τ ] = Cczc[τ ] +Dcy[τ ]
(6.62)
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where zc[τ ] ∈ Rnc represents the state of the controller, and nc denotes its known degree. The un-

known quadruple (Ac, Bc, Cc, Dc) must belong to a given polytope K. More precisely, Ac, Bc, Cc,

and Dc are often required to be block matrices with certain forced zero blocks. It is shown in [Lavaei

and Aghdam, 2007] how the design of a fixed-order distributed controller for an interconnected sys-

tem adopts the above formulation. The augmentation of the system (6.1) with the above unknown

controller leads to the closed-loop system x̃[τ+1] = Ãx̃[τ ], where x̃[τ ] =
[
x[τ + 1]T zc[τ + 1]T

]T
and

Ã =

 A+BDcC BCc

BcC Ac

 (6.63)

Note that this closed-loop system reduces to x[τ + 1] = (A + BKC)x[τ ] in the static case. Since

Ã is a linear structured matrix with respect to (Ac, Bc, Cc, Dc), the state evolution equation x̃[τ +

1] = Ãx̃[τ ] is bilinear, similar to its static counterpart x[τ + 1] = (A + BKC)x[τ ]. Hence, the

parameterized matrix Ã plays the role of A+BKC, which makes it possible to naturally generalize

all results of this work to the dynamic case in both finite- and infinite-horizon cases. Note that the

existence of a Lyapunov matrix guarantees the stability of Ã or the internal stability of the system.

6.7 Numerical Examples

In what follows, we offer multiple experiments on random systems and mass-spring systems. More

simulations are provided in [Kalbat et al., 2014].

6.7.1 Random Systems

Consider the system (6.1) with n = 5 and m = r = 3. The goal is to design a decentralized static

controller u[τ ] = Ky[τ ] (i.e., a diagonal matrix K) minimizing the cost function(
20∑
τ=0

x[τ ]Tx[τ ] + u[τ ]Tu[τ ]

)
+ 10−3‖K‖F (6.64)

This function accounts for the state regulation, input energy, and controller gain. The SDP relax-

ation problems (6.19), (6.23) and (6.30) have a 235× 235, 168× 168 and 29× 29 matrix variables,

respectively. According to Corollary 13, it is guaranteed that the sparse SDP relaxation problem

(6.19) has a solution W opt with rank at most 3 (i.e., at least 233 eigenvalues of this solution must

be zero), independent of the values of the matrices A, B, C, and x[0]. Note that this result does
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not imply that all solutions of problem (6.19) have rank at most 3, but Theorem 22 can be used to

find such a low-rank solution.
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Figure 6.6: Optimal degrees of different relaxations for 100 random systems.
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Since real-world systems are normally highly structured in many ways, we consider some struc-

ture for the system under study by assuming that B can be expressed as [b b b] for some vector

b ∈ R5. Assume that A, b, and x[0] are normal random variables with the standard deviations 0.2,

1, and 1, respectively, while C is equal to [I3 03×2]. We generated 100 random systems according

to the above probability distributions for the parameters of the system and checked the rank of

a low-rank solution of the sparse, dense, and computationally-cheap SDP relaxation problems for

every trial. Let λ1 and λ2 denote the largest and the second largest eigenvalues of W opt associ-

ated with the dense relaxation. We arranged the obtained 100 ratios λ2
λ1

in ascending order and

subsequently labeled their corresponding trials as 1, 2, . . . , 100. Figure 6.5 plots the ratio λ2
λ1

for

the ordered trials. It can be observed that this ratio is equal to 0 for 53 trials, implying that the

dense SDP relaxation has found the solution of the ODC problem for 53 samples of the system. In

addition, λ2λ1 is less than 0.1 in 95 trials. Also, three near-global solutions of the ODC problem were

found using different relaxations in all 100 cases. Figure 6.6 (a) depicts the (global) optimality

degrees of these solutions after re-arranging the trials based on their associated optimality degrees

for the dense SDP relaxation problem. Optimality degree is defined as

Optimality degree (%) = 100− upper bound - lower bound

upper bound
× 100

where “upper bound” and ‘lower bound” denote the cost of the near-global controller recovered

using the direct method and the optimal SDP cost, respectively. The optimality degree is an upper

bound on the closeness of the cost of the near-optimal controller to the minimum cost, which

is expressed in percentage. Notice that the employed optimality measure evaluates the global

performance within the specified set of controllers. For example, the optimality degree of 100%

means that a globally optimal controller is found among all linear static structured controllers.

As an alternative, we solved a penalized SDP relaxation with the penalty term Ψ(W ) =

0.5 trace{W} added to the objective of the SDP relaxation. Interestingly, the matrix W̃ opt be-

came rank 1 for all of the 100 trials. Figure 6.6 (b) depicts the optimality degrees associated with

the penalized dense SDP relaxation problem of the 100 random systems. It can be seen that the

optimality degree is greater than 99.8% for 69 trials and is never less than 98.2%.
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Figure 6.7: Mass-spring system with two masses

6.7.2 Mass-Spring Systems

In this subsection, the aim is to evaluate the performance of the developed controller design tech-

niques in Lyapunov domain on the Mass-Spring system, as a classical physical system. Consider

a mass-spring system consisting of N masses. This system is exemplified in Figure 6.7 for N = 2.

The system can be modeled in the continuous-time domain as

ẋc(t) = Acxc(t) +Bcuc(t) (6.65)

where the state vector xc(t) can be partitioned as [o1(t)
T o2(t)

T ] with o1(t) ∈ Rn equal to the

vector of positions and o2(t) ∈ Rn equal to the vector of velocities of the N masses. We assume

that N = 10 and adopt the values of Ac and Bc from [Lin et al., 2013]. The goal is to design a static

sampled-data controller with a pre-specified structure (i.e., the controller is composed of a sampler,

a static discrete-time structured controller and a zero-order holder). Consider two different control

structures shown in Figure 6.8. The free parameters of each controller are colored in red in this

figure. Notice that Structure (a) corresponds to a fully decentralized controller, where each local

controller has access to the position and velocity of its associated mass. In contrast, Structure (b)

allows limited communications between neighboring local controllers. Two ODC problems will be

solved for these structures below.

Infinite-Horizon Deterministic ODC: In this experiment, we first discretize the system with the

sampling time of 0.1 second and denote the obtained system as

x[τ + 1] = Ax[τ ] +Bu[τ ], τ = 0, 1, . . . (6.66)

It is aimed to design a constrained controller u[τ ] = Kx[τ ] to minimize the cost
∑∞

τ=0(x[τ ]Tx[τ ] +

u[τ ]Tu[τ ]). Consider 100 randomly-generated initial states x[0] with entries drawn from a normal

distribution. We solved the computationally-cheap SDP relaxation of the infinite-horizon ODC

problem combined with the direct recovery method to design a controller of Structure (a) mini-

mizing the above cost function. The optimality degrees of the controllers designed for these 100

random trials are depicted in Figure 6.9. As can be seen, the optimality degree is better than 95%
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(a) (b)

Figure 6.8: (a) Decentralized (b) Distributed. Two different structures (decentralized and dis-

tributed) for the controller K: the free parameters are colored in red (uncolored entries are set to

zero).

Figure 6.9: Optimality degree (%) of the decentralized controller K̂ for a mass-spring system

under 100 random initial states.

for more than 98 trials. It should be mentioned that all of these controllers stabilize the system.

Infinite-Horizon Stochastic ODC: Assume that the system is subject to both input disturbance and

measurement noise. Consider the case Σd = In and Σv = σIr, where σ varies from 0 to 5. Using the

computationally-cheap relaxation problem (6.59) in conjunction with the indirect recovery method,

a near-optimal controller is designed for each of the aforementioned control structures under various

noise levels. The results are reported in Figure 6.10. The designed structured controllers are all

stable with optimality degrees higher than 95% in the worst case and close to 99% in many cases.
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(a)

(b)

Figure 6.10: (a) Optimality degree (b) Cost of near-optimal controller. The optimality degree and

optimal cost of the near-optimal controller designed for the mass-spring system for two different

control structures. The noise covariance matrix Σv is assumed to be equal to σIr, where σ varies

over a wide range.
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6.8 Summary

This chapter studies the optimal distributed control (ODC) problem for discrete-time deterministic

and stochastic systems. The objective is to design a fixed-order distributed controller with a pre-

determined structure to minimize a quadratic cost functional. Both time domain and Lyapunov

domain formulations of the ODC problem are cast as rank-constrained optimization problems with

only one non-convex constraint requiring the rank of a variable matrix to be 1. We propose

semidefinite programming (SDP) relaxations of these problems. The notion of tree decomposition

is exploited to prove the existence of a low-rank solution for the SDP relaxation problems with

rank at most 3. This result can be a basis for a better understanding of the complexity of the

ODC problem because it states that almost all eigenvalues of the SDP solution are zero. Moreover,

multiple recovery methods are proposed to round the rank-3 solution to rank 1, from which a

near-global controller may be retrieved. Computationally-cheap relaxations are also developed for

finite-horizon, infinite-horizon, and stochastic ODC problems. These relaxations are guaranteed to

exactly solve the LQR and H2 problems for the classical centralized control problem. The results are

tested on multiple examples. In [Kalbat et al., 2014], we have conducted a case study on electrical

power systems to further evaluate the performance of the methods proposed in this chapter.
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Part IV

Parallel Computing
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Chapter 7

ADMM for Sparse Semidefinite

Programming

This chapter designs a distributed algorithm for solving sparse semidefinite programming (SDP)

problems, based on the alternating direction method of multipliers (ADMM). It is known that

exploiting the sparsity of a large-scale SDP problem leads to a decomposed formulation with a

lower computational cost. The algorithm proposed in this work solves the decomposed formula-

tion of the SDP problem using an ADMM scheme whose iterations consist of two subproblems.

Both subproblems are highly parallelizable and enjoy closed-form solutions, which make the itera-

tions computationally very cheap. The developed numerical algorithm is also applied to the SDP

relaxation of the optimal power flow (OPF) problem, and tested on the IEEE benchmark systems.

7.1 Introduction

While small- to medium-sized semidefinite programs (SDP) are efficiently solvable by second-order-

based interior point methods in polynomial time up to any arbitrary precision [Vandenberghe and

Boyd, 1996a], these methods are impractical for solving large-scale SDPs due to computation time

and memory issues. A promising approach for solving large-scale SDP problems is the alternating

direction method of multipliers (ADMM), which is a first-order optimization algorithm proposed

in the mid-1970s by [Gabay and Mercier, 1976] and [Glowinsk and Marroco, 1975]. While second-

order methods are capable of achieving high accuracy via expensive iterations, a modest accuracy



CHAPTER 7. ADMM FOR SPARSE SEMIDEFINITE PROGRAMMING 174

can be achieved through tens of ADMM’s low-complex iterations. In order to reach high accuracy

in reasonable number of iterations, great effort has been devoted to accelerating ADMM through

Nesterov’s scheme [Goldstein et al., 2014; Nesterov, 1983]. Because of the sensitivity of the gradient

methods to the condition number of the problem’s data, diagonal rescaling is proposed in [Giselsson

and Boyd, 2014] for a class of problems to improve the performance of ADMM. The O( 1
n) worst-

case convergence rate of ADMM is proven in [He and Yuan, 2012; Monteiro and Svaiter, 2013]

under certain assumptions.

In light of the scalability of ADMM, the main objective of this work is to design an ADMM-based

parallel algorithm for solving sparse large-scale SDPs, with a guaranteed convergence under very

mild assumptions. We start by defining a representative graph for the large-scale SDP problem,

from which a decomposed SDP formulation is obtained using a tree/chordal/clique decomposition

technique. This decomposition replaces the large-scale SDP matrix variable with certain submatri-

ces of this matrix. In order to solve the decomposed SDP problem iteratively, a distributed ADMM-

based algorithm is derived, whose iterations comprise entry-wise matrix multiplication/division and

eigendecomposition on certain submatrices of the SDP matrix. By finding the optimal solution for

the distributed SDP, one could recover the solution to the original large-scale SDP formulation

using an explicit formula.

This work is related to and improves upon some recent papers in this area. [Wen et al., 2010]

applies ADMM to the dual SDP formulation, leading to a centralized algorithm that is not paral-

lelizable and is computationally expensive for large-scale SDPs. [Fukuda et al., 2001] decomposes a

sparse SDP into smaller-sized SDPs through a tree decomposition, which are then solved by interior

point methods. However, this approach is limited by the large number of consistency constraints.

Using a first-order splitting method, [Sun et al., 2014] solves the decomposed SDP problem created

by [Fukuda et al., 2001], but the algorithm needs to solve an optimization subproblem at every

iteration. In contrast with the above papers, the algorithm proposed in this work is composed

of low-complex and parallelizable iterations, which run fast if the treewidth of the representative

graph of the SDP problem is small. Since this treewidth is low for real-world power networks, our

algorithm is well suited for the SDP relaxation of power optimization problems, and indeed this is

the main motivation behind this work. This will be explained below.

This chapter is organized as follows. Some preliminaries and definitions are provided in Sec-



CHAPTER 7. ADMM FOR SPARSE SEMIDEFINITE PROGRAMMING 175

tion 7.2. An arbitrary sparse SDP is converted into a decomposed SDP in Section 7.3, for which

a numerical algorithm is developed in Section 7.4. The application of this algorithm for OPF is

investigated and numerical examples are given in Section 7.5, followed by concluding remarks in

Section 7.6.

Notations: R, C, and Hn denote the sets of real numbers, complex numbers, and n×n Hermitian

matrices, respectively. The notation X1 ◦X2 refers to the Hadamard (entrywise) multiplication of

matrices X1 and X2. The symbols 〈·, ·〉 and ‖ · ‖F denote the Frobinous inner product and norm of

matrices, respectively. The notation ‖v‖2 denotes the `2-norm of a vector v. The m×n rectangular

identity matrix, whose (i, j) entry is equal to the Kronecker delta δij , is denoted by Im×n. The

notations Re{W}, Im{W}, rank{W}, and diag{W} denote the real part, imaginary part, rank,

and diagonal of a Hermitian matrix W, respectively. Given a vector v, the notation diag{v}

denotes a diagonal square matrix whose entries are given by v. The notation W � 0 means that

W is Hermitian and positive semidefinite. The notation “i” is reserved for the imaginary unit. The

superscripts (·)∗ and (·)T represent the conjugate transpose and transpose operators, respectively.

Given a matrix W, its (l,m) entry is denoted as Wlm. The subscript (·)opt is used to show the

optimal value of an optimization variable. Given a matrix W, its Moore-Penrose pseudoinverse is

denoted as pinv{W}. Given a simple graph H, its vertex and edge sets are denoted by VH and EH,

respectively. Given two sets S1 and S2, the notation S1\S2 denotes the set of all elements of S1 that

do not exist in S2. Given a Hermitian matrix W and two sets of positive integer numbers S1 and

S2, define W{S1,S2} as a submatrix of W obtained through two operations: (i) removing all rows

of W whose indices do not belong to S1, and (ii) removing all columns of W whose indices do not

belong to S2. For instance, W {{1,2}, {2,3}} is a 2×2 matrix with the entries W12,W13,W22,W23.

7.2 Preliminaries

Consider the semidefinite program

minimize
X∈Hn

〈X,M0〉 (7.1a)

subject to ls ≤ 〈X,Ms〉 ≤ us, s = 1, . . . , p, (7.1b)

X � 0. (7.1c)
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where M0,M1, . . . ,Mp ∈ Hn, and

(ls, us) ∈ ({−∞} ∪ R)× (R ∪ {+∞})

for every s = 1, . . . , p. Notice that the constraint (7.1b) reduces to an equality constraint if ls = us.

Problem (7.1) is computationally expensive for a large n due to the presence of the positive

semidefinite constraint (7.1c). However, if M0,M1, . . . ,Mp are sparse, this expensive constraint can

be decomposed and expressed in terms of some principal submatrices of X with smaller dimensions.

This will be explained next.

7.2.1 Representative Graph and Tree Decomposition

In order to leverage any possible sparsity of problem (7.1), a simple graph shall be defined to

capture the zero-nonzero patterns of M0,M1, . . . ,Mp.

Definition 33. Define G = (VG , EG) as the representative graph of the SDP problem (7.1), which

is a simple graph with n vertices whose edges are specified by the nonzero off-diagonal entries of

M0,M1, . . . ,Mp. In other words, two arbitrary vertices i and j are connected if the (i, j) entry of

at least one of the matrices M0,M1, . . . ,Mp is nonzero.

Using a tree decomposition algorithm (also known as chordal or clique decomposition), we can

obtain a decomposed formulation for problem (7.1), in which the positive semidefinite requirement

is imposed on certain principal submatrices of X as opposed to X itself.

Definition 34 (Tree decomposition). A tree graph T is called a tree decomposition of G if it satisfies

the following properties:

1. Every node of T corresponds to and is identified by a subset of VG.

2. Every vertex of G is a member of at least one node of T .

3. Tk is a connected graph for every k ∈ VG, where Tk denotes the subgraph of T induced by all

nodes of T containing the vertex k of G.

4. The subgraphs Ti and Tj have a node in common for every (i, j) ∈ EG.

Each node of T is a bag (collection) of vertices of G and hence it is referred to as a bag.
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Let T = (VT , ET ) be an arbitrary tree decomposition of G, with the set of bags VT = {C1, C2, . . . , Cq}.

As discussed in the next section, it is possible to cast problem (7.1) in terms of those entries of X

that appear in at least one of the submatrices

X{C1, C1},X{C2, C2}, . . . ,X{Cq, Cq},

These entries of X are referred to as important entries. Once the optimal values of the important

entries of X are found using an arbitrary algorithm, the remaining entries can be obtained from an

explicit (recursive) formula to be stated later.

Among the factors that may contribute to the computational complexity of the decomposed

problem are: the size of the largest bag, the number of bags, and the total number of important

entries. Finding a tree decomposition that leads to the minimum number of important entries

(minimum fill-in problem) or possesses the minimum size for its largest bag (treewidth problem)

is known to be NP-hard. Nevertheless, there are many efficient algorithms in the literature that

find near-optimal tree decompositions (specially for power networks due to their near planarity)

[Bodlaender and Koster, 2010; Bodlaender and Koster, 2011].

7.2.2 Sparsity Pattern of Matrices

Let Fn denote the set of symmetric n × n matrices with entries belonging to the set {0, 1}. The

distributed optimization scheme to be proposed in this work uses a group of sparse slack matrices.

We identify the locations of nonzero entries of such matrix variables using descriptive matrices in

Fn.

Definition 35. Given an arbitrary matrix X ∈ Hn, define its sparsity pattern as a matrix N ∈ Fn

such that Nij = 1 if and only if Xij 6= 0 for every i, j ∈ {1, ..., n}. Let |N| denote the number of

nonzero entries of N. Also, define S(N) as

S(N) , {X ∈ Hn | X ◦N = X}.

Due to the Hermitian property of X, if d denotes the number of nonzero diagonal entries of N,

then every X ∈ S(N) can be specified by (|N|+ d)/2 real-valued scalars corresponding to Re{X}

and (|N| − d)/2 real scalars corresponding to Im{X}. Therefore, S(N) is |N|-dimensional over R.
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Definition 36. Suppose that T = (VT , ET ) is a tree decomposition of the representative graph G

with the bags C1, C2, . . . , Cq.

• For r = 1, . . . , q, define Cr ∈ Fn as a sparsity pattern whose (i, j) entry is equal to 1 if

{i, j} ⊆ Cr and is 0 otherwise for every i, j ∈ {1, ..., n}.

• Define C ∈ Fn as an aggregate sparsity pattern whose (i, j) entry is equal to 1 if and only if

{i, j} ⊆ Cr for at least one index r ∈ {1, . . . , p}.

• For s = 0, 1, . . . , p, define Ns ∈ Fn as the sparsity pattern of Ms.

The sparsity pattern C, which can also be interpreted as the adjacency matrix of a chordal extension

of G induced by T , captures the locations of the important entries of X. The matrix C will later

be used to describe the domain of definition for the variable of decomposed SDP problem.

7.2.3 Indicator Functions

To streamline the formulation, we will replace any positivity or positive semidefiniteness constraints

in the decomposed SDP problem by the indicator functions introduced below.

Definition 37. For every l ∈ {−∞} ∪ R and u ∈ R ∪ {+∞}, define the convex indicator function

Il,u : R→ {0,+∞} as

Il,u(x) ,

 0 if l ≤ x ≤ u

+∞ otherwise

Definition 38. For every r ∈ {1, 2, . . . , q}, define the convex indicator function Jr : Hn → {0,+∞}

as

Jr(X) ,

 0 if X{Cr, Cr} � 0

+∞ otherwise
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7.3 Decomposed SDP

Consider the problem

minimize
X∈S(C)

〈X,M0〉 (7.2a)

subject to ls ≤ 〈X,Ms〉 ≤ us, s = 1, . . . , p, (7.2b)

X{Cr, Cr} � 0, r = 1, . . . , q (7.2c)

which is referred to as decomposed SDP throughout this chapter. Due to the chordal theorem [Grone

et al., 1984], problems (7.1) and (7.2) lead to the same optimal objective value. Furthermore, if

Xref ∈ S(C) denotes an arbitrary solution of the decomposed SDP problem (7.2), then there exists

a solution Xopt to the SDP problem (7.1) such that Xopt ◦C = Xref .

To understand how Xopt can be constructed from Xref , observe that those entries of X corre-

sponding to the zeros of C are 0 due to the relation Xref ∈ S(C). These entries of the matrix

variable X that are needed for SDP but have not been found by decomposed SDP are referred

to as missing entries. Several completion approaches can be adopted in order to recover these

missing entries. An algorithm is proposed in [Fukuda et al., 2001; Nakata et al., 2003] that obtains

a completion for Xref within the set

{X ∈ Hn |X ◦C = Xref , X � 0}

whose determinant is maximum. However such a solution may not be favorable for applications

that require a low-rank solution such as an SDP relaxation. It is also known that there exists

a polynomial-time algorithm to fill a partially-known real-valued matrix in such a way that the

rank of the resulting matrix becomes equal to the highest rank among all bags [Laurent, 2001;

Laurent and Varvitsiotis, 2014]. In chapter 2, we extended this result to the complex domain

by proposing a recursive algorithm that transforms Xref ∈ S(C) into a solution Xopt for the

original SDP problem (7.1) whose rank is upper bounded by the maximum rank among the matrices

Xref{C1, C1},Xref{C2, C2}, . . . ,Xref{Cq, Cq}. This algorithm is stated below for completeness.

Matrix completion algorithm:

1. Set T ′ := T and X := Xref .
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2. If T ′ has a single node, then consider Xopt as X and terminate; otherwise continue to the

next step.

3. Choose a pair of bags Cx, Cy of T ′ such that Cx is a leaf of T ′ and Cy is its unique neighbor.

4. Define

K , pinv{X{Cx ∩ Cy, Cx ∩ Cy}} (7.3a)

Gx , X{Cx \ Cy, Cx ∩ Cy} (7.3b)

Gy , X{Cy \ Cx, Cx ∩ Cy} (7.3c)

Ex , X{Cx \ Cy, Cx \ Cy} ∈ Cdx×dx (7.3d)

Ey , X{Cy \ Cx, Cy \ Cx} ∈ Cdy×dy (7.3e)

Sx , Ex −GxKG∗x = QxDxQ
∗
x (7.3f)

Sy , Ey −GyKG∗y = QyDyQ
∗
y (7.3g)

where QxDxQ
∗
x and QyDyQ

∗
y denote the eigenvalue decompositions of Sx and Sy with the

diagonals of Dx and Dy arranged in descending order. Then, update a part of X as follows:

X{Cy \ Cx, Cx \ Cy} := GyKG∗x + Qy

√
Dy Idy×dx

√
Dx Q∗x

and update X{Cx \ Cy, Cy \ Cx} accordingly to preserve the Hermitian property of X.

5. Update T ′ by merging Cx into Cy, i.e., replace Cy with Cx ∪ Cy and then remove Cx from T ′.

6. Go back to step 2.

Theorem 33. Consider an arbitrary solution Xref of the decomposed SDP problem (7.2). The

output of the matrix completion algorithm, denoted as Xopt, is a solution of the original SDP

problem (7.1). Moreover, the rank of Xopt is smaller than or equal to:

max

{
rank {Xref{Cr, Cr}}

∣∣∣∣ r = 1, . . . , q

}
.

Proof. See Theorem 4 of Chapter 2 for the proof.
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7.4 Alternating Direction Method of Multipliers

Consider the optimization problem

minimize
x∈Rnx

y∈Rny

f(x) + g(y) (7.4a)

subject to Ax + By = c. (7.4b)

where c ∈ Rnc , A ∈ Rnc×nx and B ∈ Rnc×ny are given matrices. Also f : Rnx → R ∪ {+∞} and

g : Rny → R ∪ {+∞} are given convex functions. Notice that the variables x and y are coupled

through the linear constraint (7.4b) while the objective function is separable.

The augmented Lagrangian function for problem (7.4) is equal to

Lµ(x,y, λ) = f(x) + g(y) + +λT(Ax + By − c) + (µ/2)‖Ax + By − c‖22, (7.5a)

where λ ∈ Rnc is the Lagrange multiplier associated with the constraint (7.4b), and µ ∈ R is a

fixed parameter. ADMM is one approach for solving problem (7.4), which performs the following

procedure at each iteration [Boyd et al., 2011]:

xk+1 = arg min
x∈Rnx

Lµ(x,yk, λk), (7.6a)

yk+1 = arg min
y∈Rny

Lµ(xk+1,y, λk), (7.6b)

λk+1 = λk + µ(Axk+1 + Byk+1 − c). (7.6c)

where k = 0, 1, 2, ..., for an arbitrary initialization (x0,y0, λ0). In these equations, “argmin” means

an arbitrary minimizer of a convex function and does not need any uniqueness assumption. Notice

that each of the updates (7.6a) and (7.6b) is an optimization sub-problem with respect to either x

and y, by freezing the other variable at its latest value. We employ the energy sequence {εk}∞k=1

proposed in [Goldstein et al., 2014] as measure for convergence:

εk+1 = (1/µ)‖λk+1 − λk‖22 + µ‖B(yk+1 − yk)‖22 (7.7)

ADMM is particularly interesting for the cases where (7.6a) and (7.6b) can be performed effi-

ciently through an explicit formula. Under such circumstances, it would be possible to execute a

large number of iterations in a short amount of time. In this section, we first cast the decomposed

SDP problem (7.2) in the form of (7.4) and then regroup the variables into two blocks P1 and P2

playing the roles of x and y in the ADMM algorithm.
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7.4.1 Projection Into Positive Semidefinite Cone

The algorithm to be proposed in this work requires the projection of q matrices belonging to

H|C1|,H|C2|, . . . ,H|Cq | onto the positive semidefinite cone. This is probably the most computationally

expensive part of each iteration.

Definition 39. For a given Hermitian matrix Ẑ, define the unique solution to the optimization

problem

minimize
Z∈Hm

‖Z− Ẑ‖2F (7.8a)

subject to Z � 0 (7.8b)

as the projection of Ẑ onto the cone of positive semidefinite matrices, and denote it as Ẑ+.

The next Lemma reveals the interesting fact that problem (7.8) can be solved through an

eigenvalue decomposition of Ẑ.

Lemma 9. Let

Ẑ = Q× diag{(ν1 . . . , νm)} ×Q∗

denote the eigenvalue decomposition of Ẑ. The solution of the projection problem (7.8) is given by

Ẑ+ = Q× diag{(max{ν1, 0}, . . . ,max{νm, 0})} ×Q∗

Proof. See [Higham, 1988] for the proof.

7.4.2 ADMM for Decomposed SDP

We apply ADMM to the following reformulation of the decomposed SDP problem (7.2):

minimize
X∈S(C)

{XN ;s∈S(Ns)}ps=0

{XC;r∈S(Cr)}qr=1

{zs∈R}ps=0

z0 +

p∑
s=1

Ils,us(zs) +

q∑
r=1

Jr(XC;r)

subject to X ◦Cr = XC;r, r = 1, 2, . . . , q, (7.9a)

X ◦Ns = XN ;s, s = 0, 1, . . . , p, (7.9b)

zs = 〈Ms,XN ;s〉, s = 0, 1, . . . , p. (7.9c)
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If X is a feasible solution of (7.9) with a finite objective value, then

Jr(X) = Jr(X ◦Cr)
(7.9a)

= Jr(XC;r) = 0

which concludes that X{Cr, Cr} � 0. Also,

Ils,us(〈X,Ms〉) = Ils,us(〈X ◦Ns,Ms〉)
(7.9b)

= Ils,us(〈XN ;s,Ms〉)
(7.9c)

= Ils,us(zs) = 0

which yields that ls ≤ 〈X,Ms〉 ≤ us. Therefore, X is a feasible point for problem (7.2) as well,

with the same objective value. Define

1. ΛC;r ∈ S(Cr) as the Lagrange multiplier associated with the constraint (7.9a) for r =

1, 2, . . . , q,

2. ΛN ;s ∈ S(Ns) as the Lagrange multiplier associated with the constraint (7.9b) for s =

0, 1, . . . , p,

3. λz;s ∈ R as the Lagrange multiplier associated with the constraint (7.9c) for s = 0, 1, . . . , p.

We regroup the primal and dual variables as

(Block 1) P1 = (X, {zs}ps=0)

(Block 2) P2 = ({XC;r}qr=1, {XN ;s}ps=0)

(Dual) D = ({ΛC;r}qr=1, {ΛN ;s}ps=0, {λs}
p
s=0) .

Note that “block 1”, “block 2” and “D” play the roles of x, y and λ in the standard formulation

of ADMM, respectively. The augmented Lagrangian can be calculated as

(2/µ)Lµ(P1,P2,D) = LD(D)/µ2 + ‖z0 − 〈M0,XN ;0〉+ (1 + λz;0)/µ‖2F (7.11a)

+

p∑
s=1

‖zs − 〈Ms,XN ;s〉+ λz;s/µ‖2F + Ils,us(zs) (7.11b)

+

q∑
r=1

‖X ◦Cr −XC;r + (1/µ)ΛC;r‖2F + Jr(XC;k) (7.11c)

+

p∑
s=1

‖X ◦Ns −XN ;s + (1/µ)ΛN ;s‖2F (7.11d)



CHAPTER 7. ADMM FOR SPARSE SEMIDEFINITE PROGRAMMING 184

where

LD(D) =− (1 + λz;0)
2 −

p∑
s=1

λ2z;s −
q∑
r=1

‖ΛC;r‖2F −
p∑
s=1

‖ΛN ;s‖2F (7.12)

Using the blocks P1 and P2, the ADMM iterations for problem (7.9) can be expressed as follows:

1. The subproblem (7.6a) in terms of P1 consists of two parallel steps:

(a) Minimization in terms of X: This step consists of |C| scalar quadratic and unconstrained

programs. It possesses an explicit formula that involves |C| parallel multiplication op-

erations.

(b) Minimization in terms of {zs}ps=0: This step consists of p+ 1 scalar quadratic programs

each with a box constraint. It possesses an explicit formula that involves p+ 1 parallel

multiplication operations.

2. The subproblem (7.6b) in terms of P2 also consists of two parallel steps:

(a) Minimization in terms of {XC;r}qr=1: This step consists of q projection problems of the

form (7.8). According to Lemma 9, this reduces to q parallel eigenvalue decomposition

operations on matrices of sizes |Cr| × |Cr| for r = 1, . . . , q.

(b) Minimization in terms of {XN ;s}ps=0: This step consists of p unconstrained quadratic

programs of sizes |Ns| for s = 0, 1, . . . , p. The quadratic programs are parallel and each

of them possesses an explicit formula that involves 2|Ns| multiplications.

3. Computation of the dual variables at each iteration, in equation (7.6c), consists of three

parallel steps:

(a) Updating {ΛC;r}qr=1: Computational costs for this step involves no multiplications and

is negligible.

(b) Updating {ΛN ;s}ps=0: Computational costs for this step involves no multiplications and

is negligible.

(c) Updating {λz;s}ps=0: This step is composed of p+ 1 parallel inner product computations,

each involving |Ns| multiplications for s = 0, 1, . . . , p.
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The fact that every step of the above algorithm has an explicit easy-to-compute formula makes the

algorithm very appealing for large-scale SDPs.

Notation 3. For every D,E ∈ Hn, the notation D�C E refers to the entrywise division of those

entries of D and E that correspond to the ones of C i.e.,

(D�C E)ij ,

 Dij/Eij if Cij = 1

0 if Cij = 0.

Theorem 34. Assume that Slater’s conditions hold for the decomposable SDP problem (7.2) and

consider the iterative algorithm given in (7.19). The limit of Xk at k = +∞ is an optimal solution

for (7.2).

Proof. The convergence of both primal and dual variables is guaranteed for a standard ADMM

problem if the matrix B in (7.4b) has full column rank [He and Yuan, 2014]. After realizing that

(7.19) is obtained from a two-block ADMM procedure, the theorem can be concluded form the fact

that the equivalent of B for the algorithm (7.19) is a mapping from the variables {XC;r}qr=1 and

{XN ;s}ps=0 to

{XC;r}qr=1, {XN ;s}ps=0 and {〈Ms,XN ;s〉}ps=0

which is not singular, i.e., it has full column rank. The details are omitted for brevity.

In what follows, we elaborate on every step of the ADMM iterations:

Block 1: The first step of the algorithm that corresponds to (7.6a) consists of the operation

Pk+1
1 := arg min Lµ(P1,Pk2 ,Dk).

Notice that the minimization of Lµ(P1,Pk2 ,Dk) with respect to P1 is decomposable in terms of the

real scalars

Re{Xij} for i = 1, . . . , n; j = i, . . . , n (7.14a)

Im{Xij} for i = 1, . . . , n; j = i+ 1, . . . , n (7.14b)

zs for s = 1, . . . , p (7.14c)

which leads to the explicit formulas (7.19a), (7.19b) and (7.19c).
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Block 2: The second step of the algorithm that corresponds to (7.6b) consists of the operation

Pk+1
2 = arg min Lµ(Pk+1

1 ,P2,Dk)

Notice that the minimization of Lµ(P1,Pk2 ,Dk) with respect to P1 is decomposable in terms of the

matrix variables

XC;r for r = 1, 2, . . . , q (7.16a)

XN ;s for s = 0, 1, . . . , p. (7.16b)

Hence, the update of XC;r reduces to the problem (7.8) for Ẑ = XC;r{Cr, Cr}. As shown in Lemma

9, this can be performed via the eigenvalue decomposition of a |Cr| × |Cr| matrix. In addition, the

updated value of XN ;s is a minimizer of the function

LN ;s(Z) =‖zs − 〈Ms,Z〉+ λz;s/µ‖2F + ‖X ◦Ns − Z + (1/µ)ΛN ;s‖2F (7.17)

By taking the derivatives of this function, it is possible to find an explicit formula for Zopt. Define

L′N ;s(Z) ∈ S(Ns) as the gradient of LN ;s(Z) with the following structure:

L′N ;s(Z) ,

[
∂LN ;s

∂Re{Zij}
+ i

∂LN ;s

∂Im{Zij}

]
i,j=1,...,n

Then, we have

L′N ;s(Z)/2 = Z−X ◦Ns − (1/µ)ΛN,s + (−zs + 〈Ms,Z〉 − λz;s/µ)Ms.

Therefore,

Zopt = X ◦Ns + (1/µ)ΛN,s + ysMs, (7.18)

where ys , zs − 〈Ms,Z
opt〉+ λz;s/µ. Hence, it only remains to derive the scalar ys, which can be

done by inner multiplying Ms to the both sides of the equation (7.18). This leads to the equations

(7.19e) and (7.19f).

ADMM for Decomposed SDP:

Block 1:

Xk+1 :=

[
q∑
r=1

Cr ◦ (Xk
C;r −Λk

C;r/µ) +

p∑
s=1

Ns ◦ (Xk
N ;s −Λk

N ;s/µ)

]
�C

[
q∑
r=1

Cr +

p∑
s=1

Ns

]
(7.19a)

zk+1
0 := 〈M0,X

k
N ;0〉 − (λkz;0 + 1)/µ (7.19b)

zk+1
s := max{min{〈Ms,X

k
N ;s〉 − λkz;s/µ, us}, ls} for s = 1, 2, . . . , p (7.19c)
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Test cases p q Maximum Running time of

size of bags 1000 iterations (sec)

Chow’s 9 bus 27 7 3 6.18

IEEE 14 bus 42 12 3 9.96

IEEE 30 bus 90 18 4 14.66

IEEE 57 bus 171 26 6 21.25

IEEE 118 bus 354 66 5 53.13

IEEE 300 bus 900 111 7 98.95

Table 7.1: Running time of the proposed algorithm for solving the SDP relaxation of OPF problem

on IEEE test cases.

Block 2:

Xk+1
C;r := (Xk+1 ◦Cr + Λk

C;r/µ)+ for r = 1, 2, . . . , q (7.19d)

yk+1
s :=

zk+1
s + λkz;s/µ− 〈Ms,Ns ◦Xk+1 + Λk

N ;s/µ〉
1 + ‖Ms‖2F

for s = 0, 1, . . . , p (7.19e)

Xk+1
N ;s := Ns ◦Xk+1 + Λk

N,s/µ+ yk+1
s Ms for s = 0, 1, . . . , p (7.19f)

Dual:

Λk+1
C;r := Λk

C;r + µ(Xk+1 ◦Cr −Xk+1
C;r ) for r = 1, 2, . . . , q (7.19g)

Λk+1
N ;s := Λk

N ;s + µ(Xk+1 ◦Ns −Xk+1
N ;s ) for s = 0, 1, . . . , p (7.19h)

λk+1
z;s := λkz;s + µ(zk+1

s − 〈Ms,X
k+1
N ;s 〉) for s = 0, 1, . . . , p (7.19i)

7.5 Simulation Results

In this section, we evaluate the performance of the proposed algorithm for solving the SDP re-

laxation of OPF over IEEE test cases. All simulations are run in MATLAB using a laptop with

an Intel Core i7 quad-core 2.5 GHz CPU and 12 GB RAM. As shown in Figure 7.1, the energy

function εk (as defined in (7.7)) is monotonically decreasing for all simulated cases. In addition,

the utmost accuracy of 10−25 is ultimately achievable for all these systems. The time per 1000

iteration is between 6.18 and 100 seconds in a MATLAB implementation, which can be reduced

significantly in C++ and parallel computing. We have verified that these numbers diminish by
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Figure 7.1: These plots show the convergence behavior of the energy function εk for IEEE test

cases. (a): Chow’s 9 bus, (b): IEEE 14 bus, (c): IEEE 30 bus, (d): IEEE 57 bus, (e): IEEE 118

bus, (f): IEEE 300 bus.

at least a factor of 3 if certain small-sized bags are combined to obtain a modest number of bags.

This shows a trade-off between the chosen granularity for the algorithm and its computation time

for a serial implementation (as opposed to a parallel implementation). To elaborate on the algo-

rithm, note that every iteration amounts to a basic matrix operation or an eigendecomposition

over matrices of size at most 7× 7 for the IEEE 300-bus system. Efficient preconditioning methods

could dramatically reduce the number of iterations (as OPF is often very ill-conditioned due to

high inductance-to-resistance ratios), and this is left for future work.

7.6 Summary

Motivated by the application of sparse semidefinite programming (SDP) to power networks, the

objective of this work is to design a fast and parallelizable algorithm for solving sparse SDPs. To this

end, the underling sparsity structure of a given SDP problem is captured using a tree decomposition
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technique, leading to a decomposed SDP problem. A highly distributed/parallelizable numerical

algorithm is developed for solving the decomposed SDP, based on the alternating direction method

of multipliers (ADMM). Each iteration of the designed algorithm has a closed-form solution, which

involves multiplications and eigenvalue decompositions over certain submatrices induced by the tree

decomposition of the sparsity graph. The proposed algorithm is applied to the classical optimal

power flow problem, and also evaluated on IEEE benchmark systems.
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Chapter 8

Conclusions

This dissertation aims to study real-world nonlinear optimization problems through semidefinite

programming (SDP) relaxations combined with graph-theoretic algorithms. First, a method is

proposed to study how the underlying structure of an optimization problem reduces the computa-

tional complexity of the problem. For this purpose, the structure of the optimization problem is

mapped into a graph and it is shown that its SDP relaxation has a solution whose rank can be

characterized in terms of the sparsity level of the problem. Two engineering applications of these

results in power systems and distributed control are discussed in details. Moreover, a numerical

method is developed to answer the need for solving large scale semidefinite programs resulting from

the proposed methods.

8.1 Part I: Rank and Sparsity

Part I of this dissertation intends to develop a mathematical foundation for studying nonconvex

quadratic optimization problems through a graph theoretic scheme. We cast the problems of

interest as finding low-rank solutions of sparse linear matrix inequalities (LMI) and use graph

theoretic notions, such as tree decomposition, minimum semidefinite rank, OS-vertex and positive

semidefinite zero forcing, for designing convex programs with upper bounds on the rank of every

solution. A convex program is also proposed for real-valued problems, which does not rely on any

computationally-expensive graph analysis and is always polynomial-time solvable. The implications

of this work are also discussed for three applications: minimum-rank matrix completion, conic
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relaxation for polynomial optimization, and affine rank minimization.

8.2 Part II: Power Networks

The operation planning of large scale power networks is considered in Part II of this dissertation.

The problem of optimal power flow (OPF) is studied in Chapter 3 and a theoretical guarantee

is developed for the exactness of SDP relaxation of this problem for mesh networks with certain

properties. It has been reported in the literature that the SDP relaxation technique can fail even for

very basic 3 bus networks. Motivated by this fact, we have shown in Chapter 3 that the performance

of SDP relaxation for the OPF problem is highly formulation dependent, and only one of them

results in an exact relaxation among equivalent capacity constraints for the original problem. For

cases where SDP relaxation fails, an upper bound on the rank of the solution is offered in this

work, and then a penalization heuristic is proposed from which a near-global solution of OPF may

be recovered. The performance of this method is tested on IEEE systems with over 7000 different

cost functions

In chapter 4, the problem of security-constrained optimal power flow (SCOPF) is studied for

large scale systems. First, we prove that the SDP relaxation has a solution whose rank is at most

equal to the treewidth of the power network plus one, which is expected to be very small for real-

world systems. We offer a network decomposition scheme in order to i) reduce the computational

cost of solving SDP for large scale systems and ii) to identify lines in the network that result in

inexactness of SDP relaxation. We show that for the cases that SDP relaxation fails, a near globally

optimal solution may be obtained by penalizing the loss over certain lines of the network. We test

our relaxation method on several benchmark examples and demonstrate its ability in finding feasible

solutions of SCOPF that are at least 99% globally optimal.

The classical power flow (PF) problem is studied in Chapter 5. We design a family of convex

optimization problems, each in the form of a semidefinite program with a linear objective function

that captures the rank-one constraint as a proxy. The proposed convex optimization problems are

guaranteed to solve the PF problem if the voltage angles are small. The region of complex voltages

that can be recovered through each problem is characterized by a nonlinear matrix inequality.

The problem of finding a convenient objective function for SDP that can recover a given set of
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voltage vectors and a neighborhood around each vector can itself be cast as a convex problem.

The simulation results show the superiority of the proposed method over the traditional Newton’s

method.

8.3 Part III: Distributed Control

The optimal distributed control (ODC) problem for discrete-time systems is studied in Part III

of this dissertation. The objective is to design a fixed-order distributed controller with a prede-

termined structure to minimize a quadratic cost functional. Multiple variations of this problem

including finite- and infinite-horizon ODC for both deterministic and stochastic systems are studied

in Chapter 6. The problem is studied by means of SDP relaxation and the notion of treewidth is

exploited to study the rank of the minimum-rank solution of the relaxed problem. A time domain

formulation is considered for finite-horizon ODC problem while the infinite-horizon ODC is studied

through a Lyapunov domain formulation. Although the problem of designing linear static controller

is only considered in this work, we show that the results are readily applicable to the problem of de-

signing dynamic controllers. Multiple heuristic methods are proposed to improve the performance

of SDP solution, and the developed results are tested on several random and mass-spring systems.

8.4 Part IV: Parallel Computing

Throughout this dissertation, multiple real-world optimization problems are studied by means

of semidefinite programming. Due to the high dimension of those problems, a fast and highly

parallelizable numerical algorithm is proposed in Part IV for solving sparse SDP problems. The

proposed algorithm is based on two block alternating direction method of multipliers (ADMM)

and can be applied on a decomposed formulation of the SDP problem induced from a given tree

decomposition. Each iteration involves scalar multiplication and eigenvalue decomposition and can

be performed in parallel through multiple agents. As demonstrated in the simulations section,

simple iterations of the proposed method enable us to proceed with thousands of iterations in a

few seconds, which makes the proposed algorithm a suitable candidate for solving large-scale SDP

problems.
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