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ABSTRACT

The skill with which a coupled ocean–atmospheremodel is able to predict precipitation over a range of time

scales (days to months) is analyzed. For a fair comparison across the seamless range of scales, the verification

is performed using data averaged over time windows equal in length to the lead time. At a lead time of 1 day,

skill is greatest in the extratropics around 408–608 latitude and lowest around 208, and has a secondary local

maximum close to the equator. The extratropical skill at this short range is highest in the winter hemisphere,

presumably due to the higher predictability of winter baroclinic systems. The local equatorial maximum

comes mostly from the Pacific Ocean, and thus appears to be mostly from El Ni~no–Southern Oscillation

(ENSO). As both the lead time and averaging window are simultaneously increased, the extratropical skill

drops rapidly with lead time, while the equatorial maximum remains approximately constant, causing the

equatorial skill to exceed the extratropical at leads of greater than 4 days in austral summer and 1 week in

boreal summer. At leads longer than 2 weeks, the extratropical skill flattens out or increases, but remains

below the equatorial values. Comparisons with persistence confirm that the model beats persistence for most

leads and latitudes, including for the equatorial Pacific where persistence is high. The results are consistent

with the view that extratropical predictability is mostly derived from synoptic-scale atmospheric dynamics,

while tropical predictability is primarily derived from the response of moist convection to slowly varying

forcing such as from ENSO.

1. Introduction

Extratropical and tropical weather have different

characteristics. Extratropical weather is dominated by

baroclinic disturbances that obtain their energy from the

vertical shear in the mean flow and the available po-

tential energy associated with the horizontal tempera-

ture gradients that balance that shear (Charney 1947;

Lorenz 1955). Precipitation tends to be strongly forced

at large scales by isentropic uplift along fronts and

dynamical lifting due to the advection of quasi-balanced

upper-level potential vorticity anomalies (Bluestein

1993). Tropical weather exists in an environment of

much weaker pressure and temperature gradients and (at

least in the zones of greater climatological precipitation)

higher humidity (Charney 1963, 1969). Tropical pre-

cipitation is typically a result of deep convection and

closely associated stratiform rain (Schumacher and Houze

2003). The convection is often organized into wavelike

disturbances (Wheeler and Kiladis 1999), but it is un-

clear to what extent these disturbances are dynamically

independent entities that organize the convection (as is

the case for many extratropical disturbances) as opposed to

resulting from spontaneous ‘‘self-aggregation’’ (Mapes

1993; Bretherton et al. 2005) of the convection itself.
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The lead time at which tropical weather becomes in-

herently unpredictable is not well known, but is generally

thought to be shorter than that for extratropical weather

(Shukla 1989; Boer 1995).

At the same time, a substantial literature has estab-

lished that the tropics are the source of most potential

predictability globally on seasonal to interannual time

scales (Charney and Shukla 1981; Goddard et al. 2001).

There are some extratropical sources of predictability

on time scales of weeks to months, such as from strato-

spheric effects (Baldwin and Dunkerton 1999; Polvani

and Kushner 2002), snow cover (Cohen and Entekhabi

1999), sea ice (Holland et al. 2013), and soil moisture

(Koster and Suarez 2003). It appears, however, that

tropical sea surface temperature variations, particularly

those resulting from the El Ni~no–Southern Oscillation

(ENSO) phenomenon, have a greater impact on the

global climate (Hoerling and Kumar 2002). The impacts

of ENSO are felt strongly not only in the tropics, but also

in many extratropical regions (Kiladis and Diaz 1989),

because of atmospheric teleconnections (DeWeaver and

Nigam 2004). Of course, at seasonal-to-interannual time

scales one is not predicting the daily weather, but only the

averages over a month or a season.

The intraseasonal time scale lies between daily weather

and seasonal climate. On that intermediate time scale

we expect the Madden–Julian oscillation (MJO) to be

a source of predictability in the tropics (Waliser et al.

2006), while there may be some additional predictability

associated with low-frequency extratropical modes driven

by eddy–mean flow interactions (Baldwin et al. 2003).

We expect, then, that the extratropics are more pre-

dictable than the tropics at lead times of a day to a week,

while the tropics are more predictable at climate scales

of months to a year (Shukla 1989; Sobel 2012). Our in-

terest here is in testing whether that expectation is cor-

rect, and in studying the transition between the two time

scales, in both tropical and extratropical latitudes.

We study the relative skill of a particular prediction

system in predicting tropical versus extratropical weather

and climate across a range of time scales, from daily to

monthly. We use a coupled ocean–atmosphere ensem-

ble forecast system that is used operationally for pre-

diction on a range of time scales, from a few days to

seasons. We focus on precipitation as it is of interest and

has utility in both tropical and extratropical regions (as

opposed to pressure and temperature, which vary much

less in the tropics than extratropics and are therefore of

less interest there). The model used in the forecast sys-

tem contains some representation of the main sources

of predictability described above (Marshall et al. 2011,

2012, 2013; Wang et al. 2011; Cottrill et al. 2013; Hudson

et al. 2013), with the exception of the stratospheric

sources (Roff et al. 2011) and sea ice variations. Thus,

while this is not a true study of potential predictability

limits, the prediction skill from the current model should

be somewhat comparable to those limits, at least within

the realms of our current knowledge. Further, it is of

interest to determine the comparative prediction skill

that is currently available from an operational system.

The essence of our approach is as follows. We com-

pute the prediction skill at a range of lead times, from 1

day to 1 month. As the lead time increases, we also in-

crease the length of the timewindow over which the data

are averaged for verification. This is intended to capture

the fact that we are transitioning from weather to cli-

mate prediction as the lead time increases, and to allow

the transition to occur smoothly. The skill is computed

for both total precipitation and anomalies, and com-

parison is made with the skill achievable by a persistence

forecast of the precipitation anomalies. For comparison

we also evaluate the forecasts at varying lead time but

with a fixed verification window of 1 day.

2. Data and method

a. POAMA-2 ensemble forecast system

We use the Bureau of Meteorology’s dynamical Pre-

dictiveOceanAtmosphereModel forAustralia (POAMA;

Alves et al. 2003) version 2 configured for multiweek

predictions (‘‘POAMA-2 multi-week’’ is abbreviated to

P2-M; Hudson et al. 2013). Earlier versions of POAMA

were designed for seasonal forecasting; however, im-

provements to the generation of initial conditions to use

perturbed atmosphere and ocean initial conditions and

a burst ensemble (i.e., an ensemble starting from a single

initial time as opposed to a lagged ensemble), as well as

the use of three different model configurations to form

a multimodel ensemble, have made P2-M applicable for

shorter-range forecasts as well, especially at the intra-

seasonal time scale (Hudson et al. 2013).

The atmospheric component of P2-M is run in spectral

space with a triangular truncation at wavenumber 47

(approximately a 250-km grid) and 17 vertical levels. It

includes a land component that is a simple bucket for

soil moisture and three soil levels for temperature. The

ocean model has a zonal resolution of 28, a meridional

resolution of 0.58 within 88 of the equator increasing to

1.58 near the poles, and 25 levels. While the atmospheric

model has a relatively coarse resolution compared to

modern numerical weather prediction models, it is com-

parable to what has commonly been used for seasonal

prediction over the last decade and is considered ade-

quate to resolve the key sources of predictability dis-

cussed in the introduction. Further details of these model
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components are provided in Hudson et al. (2013) and

references therein.

Also important are the methods employed for pro-

ducing initial conditions and perturbations to the initial

conditions to generate a forecast ensemble. The un-

perturbed initial conditions are provided by separate

data assimilation schemes for the ocean versus the at-

mosphere and land. The atmosphere and land initial

conditions are created by nudging zonal wind, meridio-

nal wind, atmospheric temperature, and humidity in the

atmosphere–land component of the model (when run

prior to hindcasts or forecasts being made, and forced

with observed sea surface temperatures) toward an ob-

servationally based analysis (Hudson et al. 2011). The

analysis used is the 40-yr European Centre for Medium-

Range Weather Forecasts (ECMWF) Re-Analysis

(ERA-40; Uppala et al. 2005) for the period from 1980

to August 2002, and the Bureau of Meteorology’s op-

erational global numerical weather prediction (NWP)

analysis thereafter. Ocean initial conditions are derived

using a pseudoensemble Kalman filter data assimilation

system (Yin et al. 2011). In situ ocean temperature and

salinity observations are assimilated and corrections to

currents are generated based on the ensemble cross-

covariances with temperature and salinity.

Perturbations to the initial conditions of the central

member are generated using a coupled breeding scheme

that produces perturbations to all components of the

coupled system in a consistent fashion. Ten different

perturbed states are produced, which, together with

the unperturbed central member, provides for 11 dif-

ferent initial states from which to start a burst ensemble

(Hudson et al. 2013).

In addition to the perturbed initial states, which allow

for an estimate of forecast uncertainty due to sensitivity

to initial condition errors, a multimodel ensemble com-

prising three different model configurations is used to

provide a sample of model uncertainty. The three con-

figurations are differentiated by their use of 1) standard

physics with no flux correction, 2) bias correction of fluxes

at the air–sea interface, and 3) as in version 1, except with

modified atmospheric physics in the form of an alterna-

tive shallow convection parameterization. Each model

configuration is runwith the 11 different initial conditions

to provide a 33-member ensemble. The coupled breeding

of initial states uses the first version. The climate drift and

seasonal prediction skill of each model configuration are

discussed in Lim et al. (2009, 2010).

The above description of the P2-M system applies to

both the hindcasts (i.e., forecast runs that are started

using initial states from previous times) as well as fore-

casts run in real time. In this work we analyze the skill of

the hindcasts only. However, given the same configuration

of the hindcast and real-time systems, we expect that the

skill of the hindcasts should be comparable to a suitably

large sample of real-time forecasts, assuming a relatively

stable climate. The hindcasts we analyze have start times

on the first, 11th, and 21st days of each month of the

year. To match the period of available global daily

precipitation observations (see section 2b), we analyze

the period between 1996 and 2009 only.

b. Observations

The observational dataset for verification in this paper

is the Global Precipitation Climatology Project (GPCP)

daily precipitation with 18 resolution (Huffman et al.

2001). The GPCP data are a blended product derived

from both station observations and satellite measure-

ments. The satellite data are sourced from both geo-

stationary and polar-orbiting platforms. When this work

commenced, the available dailyGPCP data (version 1.1)

extended from October 1996 to August 2009, which is

the period we have chosen to evaluate the model hind-

casts. We map the GPCP data to the model grid by first

interpolating the GPCP data to a 0.58 grid, and then

averaging in the zonal and meridional directions to

match the POAMA grid spacing. Our analysis therefore

concentrates on precipitation that is area averaged over

a scale of about 250 km, providing a reasonable repre-

sentation of most synoptic-scale weather. Known prob-

lems exist in the GPCP data at high latitudes (Bolvin

et al. 2009); however, our results and survey of the lit-

erature give us enough confidence to show the skill

calculations to a latitude of 808.

c. Measures of prediction skill

We assess skill by comparing the P2-M forecasts with

the verifying GPCP observations. We computed a num-

ber of different verification measures, each having dif-

ferent strengths andweaknesses (not shown), and verified

that the conclusions are not sensitive to which ones we

use. We therefore choose to show the simplest measures

for this paper: the correlation of the ensemble mean

total precipitation with the observed verification data

(hereafter CORt) and the correlation of the ensemble

mean precipitation anomalies with the observed anom-

alies (hereafter CORa). These correlations are com-

puted over time (i.e., using data from many different

verification windows), separately for each grid point

and each lead time. In the case of CORt, this measure is

affected by both the model’s ability to accurately rep-

resent the climatological seasonal cycle in its forecasts,

and the variability. In the case of CORa, the seasonal

cycles are removed from both the observations and

forecasts by removing their respective climatologies.

For the model this is the hindcast climatology, which is
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a function of both lead time and start day and month.

CORa therefore is affected only by themodel’s ability to

forecast the variability about that climatology.

Computing and showing CORt is a more usual prac-

tice for the weather prediction community (e.g., Ebert

2001), whereas concentrating on anomalies (i.e., CORa)

is more usual for the seasonal prediction community

(e.g., Cottrill et al. 2013). This is partly because users of

weather information are more interested in total pre-

cipitation, whereas users of climate information are

more interested in whether future conditions may be

wetter or drier than normal (i.e., anomalies). Another

reason is that the numerical weather prediction com-

munity tend not to produce large hindcast datasets

(which are necessary for computing a model climatol-

ogy) whereas seasonal prediction systems require hind-

casts to assess and remove the climate drift that becomes

noticeable at longer lead times (Stockdale 1997). Per-

haps the main disadvantage of these two verification

measures is that they ignore the probabilistic nature of

the ensemble. Their other disadvantage is that the cor-

relation is insensitive to mean bias. However, noting that

in this work we are more interested in the relative skill

between regions and lead times, we feel that their sim-

plicity outweighs these disadvantages.

For both CORt and CORa the correlation is calcu-

lated at each grid point as

COR5
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where x is the ensemble mean forecast precipitation

(using totals for CORt and anomalies for CORa), y is

the observed precipitation value (totals or anomalies),

and n is the number of verification times; each sum is

calculated over n values.

To study the differences in skill between different

seasons, we show computations of CORt and CORa for

the contrasting seasons of December–February (DJF)

and June–August (JJA) for which n is 117 and 108 re-

spectively (13 or 12 years 3 3 months per season 3 3

forecast starts per month). When computing the corre-

lation for a particular season, one may at first think that

CORt will be equal to CORa since the correlation au-

tomatically removes the respective time mean values

from the two fields that are being correlated. However,

the seasonal cycle is not constant across a 3-month season,

so in practice CORt and CORa are not the same.

Further details on the calculation of the climatological

season cycles are as follows: For both the observed and

model forecast precipitation, the exact same years are used

to compute the climatology (i.e., October 1996–August

2009). We are also careful to use the exact same days of

the year from the verifying observations as from the

model. For example, consider the forecast of the second

week from the initial condition of 11 December 2001.

The dates of the second week are 19–25 December 2001.

The observed climatology for this forecast is computed

by averaging the precipitation data for 19–25 December

for all 13 years (i.e., 7 3 13 days of observed data). The

model climatology for this forecast is computed by av-

eraging the model precipitation for 19–25 December

from all 33 ensemblemembers of all 13 years of forecasts

that were initialized from 11 December (i.e., 7 3 33 3
13 days of model data). Note that unlike Hudson et al.

(2013) we do not need to compute different hindcast

climatologies for each of the three different model con-

figurations because the resulting ensemblemean anomaly

is the same with our use of a multimodel climatology.

d. Forecast time window definition

As stated in the introduction, we take the approach of

widening the time averagingwindow of the forecasts and

verifying observations when looking at progressively

longer lead times. For example, for a forecast lead time

of 1 day we use an averaging window of 1 day, and for

a lead time of 1 week we use a window of 1 week. A

schematic of this approach and the terminology we use

to label it is provided in Fig. 1. Our intention is to pro-

vide a seamless transition from weather to climate pre-

diction in this analysis of skill. Note that ‘‘1d1d’’ is what

is usually called ‘‘day 2’’ in other papers, and ‘‘1w1w’’ is

what is usually called ‘‘week 2.’’ The longest window

and lead time combination we consider is 4 weeks (i.e.,

4w4w); 4w4w is roughly equivalent to ‘‘month 2’’ in other

papers, noting that a month is roughly 4 weeks long. We

also study the intermediate window/lead times of 2d2d,

4d4d, and 2w2w, providing a total of six different time

scales. Later in the paper we also evaluate forecasts using

the more traditional approach of varying the lead time

but with a fixed verification window of 1 day. Using the

terminology discussed above, this latter analysis focusses

on forecasts for 1d0d to 1d2w, where 1d0d is equivalent to

the first 24 h of the forecast (see Fig. 9).

e. Seasonal definition

We show our computations of CORt and CORa for

the seasons of DJF and JJA only (as described above).

Note that we use the starting date (i.e., initial condition)

of the model forecasts to determine the season rather

than the verifying time. This means that for the 4w4w

calculations the verification times extend up to;7 weeks

after the end of each season (noting that the latest hind-

cast each season is initialized on the 21st of the month).
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For example, the 4w4w calculations for JJA will include

verifying data from 30 June to 16 October.

3. Results

a. CORt—Correlation with the ensemble mean totals

Maps of CORt for the contrasting seasons of DJF and

JJA and for the window/lead time combinations of 1d1d,

1w1w, and 4w4w are displayed in Fig. 2. Positive values

indicate positive skill in the sense that there is an in-

phase relationship between the forecast and observed

values. For 1d1d, a positive skill is achieved everywhere

except over the subtropical dry zones over Africa, and

the eastern Atlantic and eastern Pacific Oceans. In DJF

the highest large-scale 1d1d CORt (.0.5) is achieved

over the North Pacific and North Atlantic, whereas in

JJA the region of highest large-scale CORt is over the

midlatitudes of the Southern Hemisphere. This is con-

sistent with previous work (Ebert et al. 2003) that shows

that extratropical precipitation is generally easier to

predict for short lead times in winter when it is associ-

ated mainly with synoptic-scale systems such as fronts,

whereas in summer it is more often associated with

convective systems such as thunderstorms that are harder

to predict. (This short-range seasonality in the extratropics

will become more apparent in the zonally averaged skill

plots in Figs. 3, 6, and 10.)

Interestingly, the 1d1d CORt maps (Fig. 2) also in-

dicate some patches of very high skill in the equatorial

zone, especially over the Indian and Pacific Ocean sec-

tors in DJF. This was not initially anticipated given our

review of published papers as discussed in the introduction.

We did not expect such high skill in the tropics at short

lead times.

At the longer window/lead time scales of 1w1w and

4w4w, the CORt maps of Fig. 2 indicate greatest skill

(CORt. 0.7) over the tropical Pacific, especially in DJF.

This appears to be the result of the predictability pro-

vided by ENSO. Greatest precipitation skill (CORt $

0.9) is achieved over the central-eastern equatorial Pa-

cific because this is where precipitation is most strongly

related to the SST variations of ENSO (Weare 1987).

Indeed, these maps look much like the maps of SST skill

for POAMA provided in Cottrill et al. (2013). Further,

DJF is when ENSO events typically reach their peak

SST anomaly, so greater precipitation prediction skill

from forecasts initialized in DJF is somewhat expected.

Elsewhere in the tropics there is moderate skill (CORt

. 0.5) over the Indian Ocean and just to the north of the

MaritimeContinent, especially inDJF, which appears to

be at least partially a result of the MJO (cf. Fig. 8 of

Marshall et al. 2011).

A further interesting feature from Fig. 2 is the band of

CORt. 0.3 extending around the globe at the latitudes

of 508–658S for 4w4w in DJF. Our initial thought was

that this may be related to the southern annular mode

and its relationshipwithENSO (L’Heureux andThompson

2006). This relationship is known to be strongest in DJF.

However, as we will show later, this signal mostly dis-

appears when the skill associated with the climatological

seasonal cycle is removed (using CORa), indicating that

it stems from a pronounced seasonal cycle that is well

represented by the model during DJF for those latitudes.

Information from the intermediate window/lead times

is presented in Fig. 3, which shows the zonally averaged

CORt for themodel forecasts for six different lead times

and averaging windows, extending from 1d1d to 4w4w.

In the extratropics at short lead times, greater skill in

winter than summer, as discussed above, is readily ap-

parent. In both the Northern and Southern Hemisphere

the zonally averaged CORt is greater than 0.5 in winter

and less than 0.5 in summer (1d1d window/lead time).

FIG. 1. Schematic of the time window and lead time definitions used in this analysis. The

horizontal axis represents forecast time from the initial condition. The expression ‘‘1d1d’’ re-

fers to an averaging window of 1 day at a lead time of 1 day. Similarly, ‘‘2d2d’’ represents an

averaging window of 2 days at a lead time of 2 days, and so on. Note that 1d1d is what is usually

called ‘‘day 2’’ in other papers, and 1w1w is what is usually called ‘‘week 2.’’
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As the window/lead time increases, the CORt skill in the

extratropics generally decreases until 2w2w, at which

point it appears to approximately level off such that the

4w4w CORt is on average somewhat higher. Inter-

estingly, at the 4w4w time scale, the CORt in DJF is on

average higher than that in JJA in both hemispheres

(and in the tropics).

Turning now to the deep tropics (i.e., within about

108 of the equator), the variation of skill with increasing

window/lead times is much different from that de-

scribed above for the extratropics. Indeed, Fig. 3 nicely

shows how the skill remains remarkably constant with

increasing window/lead time in the tropics. In fact, the

skill increases somewhat with window/lead time during

DJF.

Another way to look at the variation of skill in the

tropics versus extratropics with increasing window/lead

time is presented in Fig. 4. In this figure we space the

FIG. 2. Maps of CORt for model forecasts at (top) 1d1d, (middle) 1w1w, and (bottom) 4w4w, for (left) DJF and (right) JJA.
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time scales along the x axis according to their logarithm.

We can now see more clearly that for the extratropics in

both hemispheres there tends to be a minimum in CORt

for the 2w2w time scale in all latitude bands in both

seasons, except for the 708–508S band in DJF (which has

its minimum at 1w1w). This indicates that the second

half of the first month (or equivalently weeks 3 and 4

together) are the most unpredictable when evaluated

this way. In contrast, the tropical latitudes show very

little variation of CORt with time scale.

b. CORa—Correlation with the ensemble
mean anomalies

As we described in section 2c, CORt may be influ-

enced by the ability of the model forecasts to represent

the observed seasonal cycle. If there is a strong seasonal

cycle that is accurately represented by the model then

CORt will be higher, but if the model gets the seasonal

cycle reversed, CORt will be lower. CORa, on the other

hand, removes the effects of the climatological seasonal

cycle, and it is the more usual way of showing the cor-

relation skill in seasonal prediction studies.

Comparing the CORa maps in Fig. 5 with the CORt

maps in Fig. 2, the most obvious difference is generally

lower values for CORa for 4w4w, but with very little

change for 1d1d. The reason for this difference is be-

cause a longer averaging window gets a greater con-

tribution to its total variance from the seasonal cycle.

Removing the contribution from the seasonal cycle

makes the model performance look worse for the longer

averaging windows, especially in regions away from the

ENSO-dominated tropical Pacific. The most obvious

location for this apparently lower skill (when looking at

CORa compared to CORt) is over the Southern Ocean

around 558S in DJF for 4w4w. As discussed in the pre-

vious section, we initially thought high CORt in this

region may be associated with the southern annular

mode (see also Lim et al. 2013). However, given the

absence of this signal in CORa, it appears to instead be

associated with an accurate representation of the sea-

sonal cycle. This reduction in apparent skill when mea-

sured with CORa is similar to the effect described by

Hamill and Juras (2006).

FIG. 3. Zonally averaged CORt for model forecasts at different

time window/lead combinations for (top) DJF and (bottom) JJA.
FIG. 4. Zonally averaged CORt over specified latitude ranges vs

forecast window/lead times from 1d1d to 4w4w for (top) DJF and

(bottom) JJA. Note that the spacing of the time scale is based on

the logarithm of the lead time.
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Looking at the maps of Fig. 5 in more detail, there are

a few regions of relatively high 1w1w and 4w4w skill that

stand out. In the tropics for 4w4w, the ENSO-dominated

signal in the equatorial Pacific extends westward into the

islands of Indonesia and Papua NewGuinea in JJA, and

more toward the Philippines to the north in DJF, con-

sistent with the empirical findings of McBride et al.

(2003). In theNorthernHemisphere there are patches of

relatively high 1w1w and 4w4w skill in the North Pacific

and western United States in DJF, consistent with

our expectation from knowledge of the Pacific–North

American (PNA) pattern (Kumar and Hoerling 1998).

In the Southern Hemisphere there is 4w4w skill in the

south Indian Ocean and Western Australia in DJF, and

easternAustralia in JJA. The latter is expected given the

known influence of ENSO in Australia (McBride and

Nicholls 1983). Importantly, the abovementioned regions

have greater skill than what is achievable from persistence

FIG. 5. As in Fig. 2, but for CORa.
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(Simmonds and Hope 1997; see also the next sub-

section). Other interesting patches of high CORa are in

northern Africa and the southeast Pacific for 4w4w in

JJA, and the western equatorial Indian Ocean for both

1w1w and 4w4w in DJF.

When viewing the zonally averaged CORa values (as

a function of latitude and window/lead time) in Fig. 6, a

conclusion is reached that is very similar to what we

obtained when looking at CORt. That is, that prediction

skill decreases with window/lead time in the extratropics

(outside of about 108 of the equator) but stays much the

same in the tropics. Similarly, when looking at the al-

ternative display of Fig. 7 we can see this variation with

window/lead time clearly. We can also see at what point

the skill in the tropics (when taken as a whole) begins to

exceed that in the extratropics: in DJF it first occurs for

4d4d, and in JJA it first occurs for 1w1w.

c. Comparison with persistence

An important component of predictability is the pre-

diction skill that can come from persistence, so it is of

interest to see how these results compare. Figure 8

presents the correlation skill for persistence forecasts for

four different time scales (labeled as P1d1d, P4d4d,

P2w2w, and P4w4w) and also shows the correlations

for the 1d1d and 4w4w model forecasts for comparison.

These persistence calculations used precipitation anom-

alies (i.e., CORa), and like for the model forecasts an

averaging window equal in length to the lead time was

used. For example, the P1d1d calculation uses the ob-

served precipitation anomaly on the day before the model

initial condition as the forecast, whereas the P4w4w

calculation used the precipitation anomaly observed for

the 4 weeks leading up to the initial condition.

In general, it can be seen in Fig. 8 (and with compar-

ison to Fig. 6) that the zonally averaged CORa from the

model tends to be higher than that for persistence, es-

pecially for the shorter time scales. Viewing maps of the

persistence skill (not shown) confirms that this is gen-

erally the case for individual locations as well. Even at

the longer 4w4w time scale, the model CORa exceeds

or approximately equals the persistence skill (i.e., for

P4w4w) for most latitudes equatorward of 508. This is an
encouraging result for the model because persistence

has historically been difficult to beat at this range, as

discussed by Vitart (2004).

FIG. 6. As in Fig. 3, but for CORa. FIG. 7. As in Fig. 4, but for CORa.
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Poleward of 508, however, there are some notable

peaks in P4w4w that are not replicated in the model

forecasts, located around 708S in DJF, and 658S and

758N in JJA. The maps of persistence skill (not shown)

indicate that these peaks correspond to regions where

large and persistent anomalies in sea ice cover occur

(Parkinson and Cavalieri 2008; Wheeler 2008), and an

influence of sea ice on precipitation appears quite pos-

sible (Weatherly 2004). We note that POAMA-2 uses

prescribed sea ice from a multiyear climatology, so is

not able to reproduce this persistence skill, but it is

something that may be improved by the incorporation of

varying sea ice and sea ice anomalies in the initial con-

dition in future versions.

d. Fixed time-averaging window of 1 day

Instead of increasing the time window at the same rate

as the lead time, we now present the prediction skill as

a function of lead time and latitude for a fixed time

window of 1 day (see schematic of the new window and

lead time definitions in Fig. 9) in Figs. 10 and 11. In this

analysis we show CORt only. As expected, the skill

drops off much more rapidly (and monotonically) with

lead time with a fixed window than it does when the

window is increased. Importantly, however, the rate at

which the CORt skill drops is much less in the tropics

than the extratropics providing the same general con-

clusion as before, that is, that there is a general transfer

of skill from the extratropics to tropics as lead time is

increased. The lead time at which the skill in the tropics

tends to surpass the skill in the extratropics is shown to

be at about 4 days in DJF and about 2 weeks in JJA.

These values are respectively similar to and a little

longer than the values found when the window length

was varied as well (Figs. 4 and 7). Having a slightly

longer estimate from this 1-day window calculation

makes sense given the window/lead definitions used (cf.

Figs. 1 and 9). For example, 1d2w is equivalent to day 15

whereas 2w2w is equivalent to days 15–28.

4. Conclusions

We have analyzed the skill with which an operational

forecast system is able to predict precipitation over

FIG. 8. As in Fig. 6, but showing zonally averaged CORa for

persistence forecasts (labeled as P1d1d, P4d4d, P2w2w, P4w4w)

and the model forecasts of 1d1d and 4w4w for comparison (as in

Fig. 6).

FIG. 9. As in Fig. 1, but showing the window and lead time definitions used for the calculations

in Figs. 10 and 11 (i.e., with a fixed 1-day averaging window).
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a range of time scales from a day to months.We focus on

the contrasting results obtained for different latitude

bands and at different lead times. To emphasize the

seamless transition between weather and climate, we

have verified the model predictions after averaging both

the forecasts and observed verification data over a time

window equal to the forecast lead time. We performed

skill calculations both on the total fields, and on anom-

alies computed by removing the appropriate climato-

logical seasonal cycles from both the forecasts and the

verification data. The skill measures we present are

based on correlations between the forecasts and obser-

vations computed over time for each grid point. Cal-

culations are made for the contrasting DJF and JJA

seasons with ;13 years of model hindcasts.

At a lead time of 1 day, prediction skill is greatest in

the extratropics around 408–608 latitude and lowest

around 208 latitude and poleward of 708, and has a sec-

ondary local maximum close to the equator. The extra-

tropical skill at this short range is highest in the winter

hemisphere, presumably due to the high day-to-day

predictability of winter baroclinic weather systems and

associated fronts. In the summer hemisphere extra-

tropics it is less, evidently due to the greater difficulty

in predicting summer thunderstorms and the weaker

summer baroclinic systems, but it still exceeds the 1-day

prediction skill near the equator. The local equatorial

maximum in the zonal mean is derived from the central

and eastern Pacific, and thus appears (even at 1-day lead

time) to be related to ENSO.

As both lead time and averaging window are simul-

taneously increased, the extratropical skill drops rapidly

for short to medium lead times, while the equatorial

maximum decreases much more slowly or stays ap-

proximately constant. The near-equatorial skill becomes

equal to or greater than that at any other latitude band at

around a 4-day time scale in DJF, and 1 week in JJA. At

longer lead times, the extratropical correlations even-

tually flatten out or increase with lead time, but remain

well below the near-equatorial values.

Importantly, the model prediction skill exceeds the

skill of a persistence (of anomalies) forecast in most lo-

cations, especially at shorter lead times. For predictions

FIG. 10. As in Fig. 3, but using a constant 1-day averaging window

as defined in Fig. 9.

FIG. 11. As in Fig. 4, but using a constant 1-day averagingwindow

as defined in Fig. 9. Note that in this figure a lead of 7 days is

equivalent to 1d1w and 14 days to 1d2w.
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of a 4-week average at a lead of 4 weeks (i.e., 4w4w) the

model skill remains better than persistence equatorward

of about 508, but is dramatically worse than persistence

in a few locations near the sea ice edges in theArctic and

Antarctic.

To compare with our method of using an increasing

window size with increasing forecast lead, we also

computed the skill for varying lead times but a fixed

averaging window of 1 day, a calculation more similar to

the typical practice in weather forecast verification. The

correlations at longer leads are smaller than those

computed at the same leads but with longer averaging

windows, as expected. However, perhaps more surpris-

ingly, the slower decay of equatorial skill found with

variable averaging windows is also found with the fixed

1-day averaging window, so that at sufficiently long

leads, of between 4 and 14 days depending on season, the

equatorial skill still exceeds that in the other latitude

bands.

The broad picture we are left with is that on time

scales of a few days or less, extratropical precipitation is

more predictable than tropical, while at time scales of

a week or longer, tropical precipitation, within about 108
of the equator, is more predictable than extratropical.

This broad picture is remarkably robust to the details of

how one does the calculations.While the absolute values

of the skill depends on season, and on whether the av-

eraging window is fixed or increasing with lead time, in

all cases the near-equatorial zone eventually becomes

more predictable than the extratropics at the lead times

we consider.

This picture appears consistent with the view that

extratropical predictability is mostly derived from the

model’s ability to simulate synoptic-scale atmospheric

dynamics with rapid growth of initial state error (Lorenz

1969), while predictability in the deep tropics is mostly

derived from the response of moist convection to slowly

varying forcing such as from sea surface temperature

(Charney and Shukla 1981) or the large-scale conver-

gence of tropical waves (Hendon and Salby 1994). If

there is any surprise here, it is that tropical influences

can provide greater predictability than extratropical

atmospheric dynamics at time scales as short as 4 days.

Finally, we advocate the usefulness of computing and

displaying forecast skill globally across a large range of

time scales as we have done here. Using precipitation as

the verifying variable provides what we think is a fair

comparison between the tropics and extratropics and

the technique of increasing the averaging window size at

the same rate as increasing the lead time provides the

fairest comparison between different time scales. Re-

cently, the need for seamless verification approaches has

been promoted by Ebert et al. (2013), and while other

approaches do exist (DelSole and Tippett 2009), we feel

the simplicity of our approach is an important advan-

tage. Future work is planned to analyze other forecast

systems (especially those employing amodel with higher

resolution) and to further investigate the skill as mea-

sured by verification measures that take into account

the probabilistic nature of the ensemble.
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