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ABSTRACT

Heavy Tails and Instabilities in Large-Scale

Systems with Failures

Evangelia Skiani

Modern engineering systems, e.g., wireless communication networks, distributed computing

systems, etc., are characterized by high variability and susceptibility to failures. Failure

recovery is required to guarantee the successful operation of these systems. One straight-

forward and widely used mechanism is to restart the interrupted jobs from the beginning

after a failure occurs. In network design, retransmissions are the primary building blocks

of the network architecture that guarantee data delivery in the presence of channel failures.

Retransmissions have recently been identified as a new origin of power laws in modern

information networks. In particular, it was discovered that retransmissions give rise to

long tails (delays) and possibly zero throughput. To this end, we investigate the impact of

the ‘retransmission phenomenon’ on the performance of failure prone systems and propose

adaptive solutions to address emerging instabilities.

The preceding finding of power law phenomena due to retransmissions holds under the

assumption that data sizes have infinite support. In practice, however, data sizes are upper

bounded 0 ≤ L ≤ b, e.g., WaveLAN’s maximum transfer unit is 1500 bytes, YouTube videos

are of limited duration, e-mail attachments cannot exceed 10MB, etc. To this end, we first

provide a uniform characterization of the entire body of the distribution of the number of

retransmissions, which can be represented as a product of a power law and the Gamma

distribution. This rigorous approximation clearly demonstrates the transition from power

law distributions in the main body to exponential tails. Furthermore, the results highlight

the importance of wisely determining the size of data fragments in order to accommodate



the performance needs in these systems as well as provide the appropriate tools for this

fragmentation.

Second, we extend the analysis to the practically important case of correlated channels

using modulated processes, e.g., Markov modulated, to capture the underlying dependen-

cies. Our study shows that the tails of the retransmission and delay distributions are

asymptotically insensitive to the channel correlations and are determined by the state that

generates the lightest tail in the independent channel case. This insight is beneficial both for

capacity planning and channel modeling since the independent model is sufficient and the

correlation details do not matter. However, the preceding finding may be overly optimistic

when the best state is atypical, since the effects of ‘bad’ states may still downgrade the

performance.

Third, we examine the effects of scheduling policies in queueing systems with failures and

restarts. Fair sharing, e.g., processor sharing (PS), is a widely accepted approach to resource

allocation among multiple users. We revisit the well-studied M/G/1 PS queue with a new

focus on server failures and restarts. Interestingly, we discover a new phenomenon showing

that PS-based scheduling induces complete instability in the presence of retransmissions,

regardless of how low the traffic load may be. This novel phenomenon occurs even when

the job sizes are bounded/fragmented, e.g., deterministic. This work demonstrates that

scheduling one job at a time, such as first-come-first-serve, achieves a larger stability region

and should be preferred in these systems.

Last, we delve into the area of distributed computing and study the effects of commonly

used mechanisms, i.e., restarts, fragmentation, replication, especially in cloud computing

services. We evaluate the efficiency of these techniques under different assumptions on

the data streams and discuss the corresponding optimization problem. These findings are

useful for optimal resource allocation and fault tolerance in rapidly developing computing

networks.

In addition to networking and distributed computing systems, the aforementioned results

improve our understanding of failure recovery management in large manufacturing and



service systems, e.g., call centers. Scalable solutions to this problem increase in significance

as these systems continuously grow in scale and complexity. The new phenomena and

the techniques developed herein provide new insights in the areas of parallel computing,

probability and statistics, as well as financial engineering.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

This thesis focuses on addressing the challenges imposed by network design and large-scale

systems, within a multi-disciplinary framework, involving theoretical components that range

from the area of operations research to electrical engineering. The objective lies in improv-

ing systems design with respect to multiple parameters, such as throughput, robustness,

reliability, scalability, etc. To this end, it is crucial to analyze the asymptotic behavior

of large-scale systems and, most importantly, understand the underlying laws that govern

their performance. Special emphasis is placed on reexamining the existing design principles

inherent to all networking layers.

We study the retransmission phenomenon in failure prone channels, where the so-called

“restart mechanism” is deployed. This is the case for most wireless networks, where frequent

channel failures occur due to signal fading, multi-path effects, interference, node contention,

and other environmental changes. One of the most straightforward and widely used failure

recovery mechanism is to simply restart the system and all of the interrupted jobs from the

beginning after a failure occurs. Retransmissions represent one of the most fundamental

approaches in communication networks that guarantee data delivery in the presence of

channel failures. These types of mechanisms have an impact on the entire protocol stack:

• Physical layer. Wireless links, especially for low-powered sensor networks, exhibit

high error rates, thus resulting in long delays on the data link layer due to the packet



CHAPTER 1. INTRODUCTION 2

variability and channel failures. We stress the need for novel fragmentation techniques

and efficient coding schemes, since the results suggest that when codewords are much

smaller than the maximum size of the packets, the number of retransmissions could be

distributed as power laws, instead of geometrically, as the traditional models assume.

• Medium Access Control (MAC) layer. ALOHA is a widely used protocol that provides

a contention management scheme for multiple users that share the same medium.

Failures result from collisions due to the simultaneous attempts of multiple users to

access the common channel. Once a collision is detected, the users retransmit with

random (exponential) back-offs. Due to its simplicity and distributed nature, ALOHA

is the basis of many more sophisticated collision avoidance/resolution protocols, such

as CSMA/CD.

• Transport layer. Network protocols, like TCP, use end-to-end acknowledgements for

packets as an error control strategy. Namely, once the packet sent from the sender

to the receiver is lost due to, e.g., finite buffers or link failures, this packet will be

retransmitted by the sender. Furthermore, the number of hops that a packet traverses

on its path to the destination is random, e.g., an end-user that is surfing the Web might

download documents from diverse web sites. The delay for transversing paths with

random number of hops can be power law even if the system variables are exponential.

• Application layer. Application-layer protocols implement specific user applications

and other high-level functions. Many application protocols, e.g., HTTP, employ re-

transmissions of Internet files, such as webpages, as a primary failure recovery mecha-

nism. For example, when an HTTP request fails, e.g., a webpage is downloaded with

errors or the web server does not respond, the file is downloaded from scratch via a

new HTTP query.
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1.1 Related Work & Main Contribution

The preceding discussion reveals the significant impact of retransmission-based failure re-

covery mechanisms on existing networks, and clearly set the basis for more discoveries in

this domain along the vertical (protocol stack), temporal and spatial network dimensions.

Along these lines, we study the retransmission phenomenon in the presence of correlated

channels and data streams, bounded packets, as well as spatial and temporal interactions

of many channels.

Traditionally, retransmissions were thought to follow light-tailed, e.g., geometric, dis-

tributions. This is only true under the assumption that data sizes and transmission error

probability are independent. Nevertheless, these two are often highly correlated. It was first

recognized in [24, 26] that such mechanisms may result in long-tailed (power law) delays. In

modern communication systems, it has been shown that several well-known retransmission

based protocols in different layers of networking architecture can lead to power law delays,

e.g., ALOHA type protocols in MAC layer [12, 14] and end-to-end acknowledgments in

transport layer [11, 9] as well as in other layers [9, 10]. The preceding studies considered

distributions with infinite support.

In reality, data sizes are upper bounded by the maximum transmission unit. This situa-

tion results in “truncated” power laws for the number of retransmissions: such distributions

are characterized by a power law main body and an exponentially bounded tail; see Exam-

ple 3 in [9] and Example 2 in [12]. The retransmissions of bounded documents were further

studied in [39], where partial approximations of their distribution were derived. We estab-

lish a uniform approximation for the number of retransmissions [2, 1] when the data sizes

are bounded. In fact, this distribution can be represented as the product of a power law,

which dominates the main body, and the Gamma distribution, determining the exponential

tail.

This uniform approximation allows for a characterization of the entire body of the

distribution, so that we can explicitly estimate the region where the power law phenomenon
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arises and predict the tradeoff points between packet sizes and delays in these systems.

From an engineering perspective, these results further suggest that careful re-examination

and redesign of retransmission based protocols might be necessary. In infrastructure-less,

error-prone wireless systems, traditional approaches, e.g., blind data fragmentation, may be

insufficient for achieving a good balance between throughput and resource utilization. One

example of bad resource allocation is fragmenting a large data unit into many smaller ones

of the same header (needed to reassemble them). Smaller data sizes fail less frequently but

they result in unnecessary overhead and increased network traffic.

The preceding studies have considered an independent channel model. In practice,

communication channels are highly correlated in the sense that they switch between states

with different characteristics. We extend the previously studied independent model to

the dependent case where the availability periods depend on the channel state, i.e., the

channel is correlated [3, 6]. We introduce an underlying modulating process to capture the

channel dependencies. In this setting, we show that the tails of the retransmission and delay

distributions are asymptotically insensitive to the channel correlations and are determined

by the ‘best’ channel state, i.e., the one that generates the lightest asymptotics under the

independent channel model. Intuitively, as the channel switches between states, a large

data unit is more likely to be transmitted when the channel is in a ‘good’ state.

This optimistic best case scenario prediction and the apparent insensitivity to the struc-

ture of the channel correlations can be very promising in system analysis and design. The

result implies that the initial independent model might be sufficient for modeling, and can

also be extended to even more complex failure-prone networks. However, this is partially

true as there are certain circumstances under which this claim underestimates the intricacies

of the system. In particular, using the tail as a primary performance measure might result

in an overly optimistic design if the ‘best’ state is atypical, i.e., it occurs very rarely. In the

latter case, the main body of the distribution may be (much) heavier than the tail. The

results may also be applied in designing new protocols, or developing new fragmentation

schemes, specifically for correlated channels. In addition, combining this study with our
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results on bounded data units could provide an accurate estimate for the optimal sizes of

the packet fragments.

Apart from studying system performance under the aforementioned realistic assump-

tions for modern information networks, we are also interested in scheduling policies under

heavy-tailed service times induced by restart mechanisms for failure recovery. Sharing is

a primary approach to fair scheduling and efficient management of the available resources,

e.g., CDMA is a multiple access method used in communication networks, where several

users can transmit information simultaneously over a single channel via sharing the avail-

able bandwidth, Processor Sharing (PS) [36]/ Generalized PS (GPS) [32] scheduling, where

the capacity is equally shared between multiple classes of customers, Discriminatory PS

(DPS) [17, 23, 31] which is used to model the Weighted Round Robin (WRR) scheduling

and/or TCP connections, etc.

In general, PS-based scheduling disciplines have been widely used in computer and

communication networks. Early investigations of PS queues were motivated by applications

in multiuser computer systems [22]. The M/G/1 PS queue has been studied extensively

in the literature [35]. The importance of scheduling in the presence of heavy tails was

first recognized in [18], and later, in [29], the M/G/1 PS queue was studied assuming

subexponential job sizes; see also [29] for additional references. Herein, we evaluate the effect

of fair sharing on queueing systems with a new focus on failures and restarts. We discover

a new phenomenon: processor sharing with restarts is always unstable. The intuition is

the following. In a queueing system, if many packets of similar sizes arrive within a short

interval of time, sharing the total capacity of the channel will lead to longer individual

delays; these delays may be too long to allow for the queue to empty.

The above paradigms call for the thorough study of the resulting tradeoffs and the design

of new dynamic algorithms possibly exploiting the channel’s statistical characteristics. We

discuss failure recovery management in large distributed systems, such as massively parallel

computing, where scalable solutions to this problem increase in significance as networking

systems continuously grow in scale and complexity. Our theoretical work includes model
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formulation and system analysis through the utilization of probabilistic, statistical and

analytical tools. In addition, a large number of scenarios are evaluated via simulation.

Performance evaluation lends credence to our theoretical arguments and provides important

feedback to system design. This feedback is crucial since existing protocols are in dire

need of novel network algorithms that can demonstrate easy implementation, robustness,

adaptability and near-optimality under some analytical conditions.

1.2 Notation

Throughout this thesis, we use the following generic model to analyze a system with failures.

The most basic description of our model can be stated as follows. The system dynamics

is described as a process {A,Ai}i≥1 of i.i.d. available periods, where the channel is con-

tinuously available during periods Ai and fails between such periods. In each period of

time that the channel becomes available, we attempt to execute a job of random size B.

If B < Ai, the job is successfully completed; otherwise, we wait for the next period Ai+1

when the channel is available and attempt to retransmit the data from the beginning. This

model was first introduced in [24] in the computing context, and was later applied in the

context of networking [9, 10]. Throughout the thesis, the assumptions of this model may

change and the specifics will be provided in the corresponding chapters. A sketch of the

model depicting the system is drawn in Figure 1.1.

B
Failure-prone

system
{Ai}i≥1

Ai > B

restart no

Figure 1.1: Jobs executed in a system with failures.

We also define the complementary cumulative distribution functions for A and B, re-

spectively, as

Ḡ(x) := Pr(A > x) and F̄ (x) := Pr(B > x).
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Last, when jobs B refer to data units (packets) we use the variable L instead, which is

explicitly stated in the corresponding chapters.

1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2, we derive the distribution of the number

of retransmissions when data sizes are bounded [1, 2]. Chapter 3 extends the previously

studied i.i.d. channel model to the correlated case [3, 6], i.e., when the channel switches

between different states. Next, in Chapter 4 we evaluate the impact of scheduling policies

and, in particular, we discover a new phenomenon that fair sharing in queueing systems

with failures and restarts always leads to instability [4, 5, 8, 7]. Last, Chapter 5 concludes

the thesis and includes further extensions of this work in the area of cloud computing and

distributed systems.
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Chapter 2

Distribution of the Number of

Retransmissions of Bounded

Documents

Retransmission-based failure recovery represents a primary approach in existing communi-

cation networks that guarantees data delivery in the presence of channel failures. Recent

work has shown that [24, 25, 9, 10], when data sizes have infinite support, retransmissions

can cause long-tailed delays even if all traffic and network characteristics are light tailed. In

this chapter, we investigate the practically important case of bounded data units 0 ≤ Lb ≤ b

under the condition that the hazard functions of the distributions of data sizes and channel

statistics are proportional. To this end, we provide an explicit and uniform characterization

of the entire body of the retransmission distribution P[Nb > n] in both n and b. Our main

discovery is that this distribution can be represented as the product of a power law and

Gamma distribution. This rigorous approximation clearly demonstrates the coupling of a

power law distribution, dominating the main body, and the Gamma distribution, determin-

ing the exponential tail. Our results are validated via simulation experiments and can be

useful for designing retransmission-based systems with the required performance character-
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istics. From a broader perspective, this study applies to any other system, e.g., computing,

where restart mechanisms are employed after a job processing failure.

2.1 Introduction

Failure recovery mechanisms are employed in almost all engineering networks since complex

systems of any kind are often prone to failures. One of the most straightforward and widely

used failure recovery mechanism is to simply restart the system and all of the interrupted

jobs from the beginning after a failure occurs. It was first recognized in [24, 25] that such

mechanisms may result in long-tailed (power law) delays even if the job sizes and failure

rates are exponential. In [9], it was noted that the same mechanism is at the core of modern

communication networks where retransmissions are used on all protocol layers to guarantee

data delivery in the presence of channel failures. Furthermore, [9] shows that the power law

number of retransmissions and delay occur whenever the hazard functions of the data and

failure distributions are proportional. Hence, power laws may arise even if the data and

channel failure distributions are both Gaussian. In particular, retransmission phenomena

can lead to zero throughput and system instabilities, and therefore need to be carefully

considered for the design of fault tolerant systems.

More specifically, in communication networks, retransmissions represent the basic build-

ing blocks for failure recovery in all network protocols that guarantee data delivery in the

presence of channel failures. These types of mechanisms have been employed on all net-

working layers, including, for example, Automatic Repeat reQuest (ARQ) protocol (e.g.,

see Section 2.4 of [19]) in the data link layer where a packet is resent automatically in

case of an error; contention based ALOHA type protocols in the medium access control

(MAC) layer that use random backoff and retransmission mechanism to recover data from

collisions; end-to-end acknowledgment for multi-hop transmissions in the transport layer;

HTTP downloading scheme in the application layer, etc. It has been shown that several

well-known retransmission based protocols in different layers of networking architecture can
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lead to power law delays, e.g., ALOHA type protocols in MAC layer [12, 14] and end-to-end

acknowledgments in transport layer [11, 9] as well as in other layers [9]. For other (non-

retransmission) mechanisms that can give rise to heavy tails see [15] and the references

therein. In particular, the proportional growth/multiplicative models can result in heavy

tails [15, 16].

Traditionally, retransmissions were thought to follow light-tailed distributions (with

rapidly decaying tails), namely geometric, which requires the further assumption of in-

dependence between data sizes and transmission error probability. However, these two are

often highly correlated in most communication systems, meaning that longer data units

have higher probability of error, thus violating the independence assumption. Recent work

[9, 12, 11, 10] has shown that, when the data size distribution has infinite support, all

retransmission-based protocols could cause heavy-tailed behavior and possibly result in

zero throughput, regardless of how light-tailed the distributions of data sizes and channel

failures are. Nevertheless, in reality, data sizes are usually upper bounded. For example,

WaveLAN’s maximum transfer unit is 1500 bytes, YouTube videos are of limited duration,

e-mail attachments cannot exceed an upper limit, say 25MB, etc. This fact motivates us to

investigate the transmission of bounded data and approximate uniformly the entire body of

the resulting retransmission distribution as it transits from the power law to the exponential

tail.

We use the following generic channel with failures [9] to model the preceding situations.

This model was first introduced in [24] in a different application context. The channel

dynamics is described by the i.i.d. channel availability process {A, Ai}i≥1, where the

channel is continuously available during periods {Ai} and fails between these periods. In

each period of time that the channel becomes available, say Ai, we attempt to transmit

the data unit of random size Lb. We focus on the situation when the data size has finite

support on interval [0, b]. If Lb < Ai, we say that the transmission is successful; otherwise,

we wait for the next period Ai+1 when the channel is available and attempt to retransmit

the data from the beginning. It was first recognized in [24] that this model results in
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power law distributions when the distributions of L ≡ L∞ and A have a matrix exponential

representation, and this result was rigorously proved and further generalized in [9, 10, 26].

A related study when L = ` is a constant and failure/arrival rates are time-dependent

Poisson can be found in [27].

It was discovered in [9] that bounded data units result in truncated power law distri-

butions for the number of retransmissions, see Example 3 in [9]; see also Example 2 in

[12]. Such distributions are characterized by a power law main body and an exponentially

bounded tail. However, the exponential behavior appears only for very small probabilities,

often meaning that the number of retransmissions of interest may fall inside the region

where the distribution behaves as a power law. It was argued in Example 3 of [9] that

the power law region will grow faster than exponential if the distributions of A and Lb are

lighter than exponential. The retransmissions of bounded documents were further studied

in [39], where partial approximations of the distribution of the number of retransmissions

on the logarithmic and exact scales were provided in Theorems 1 and 3 of [39], respectively.

Herein, we present a uniform characterization of the entire body of such a distribution, both

on the logarithmic as well as the exact scale.

Specifically, let Nb represent the number of retransmissions (until successful transmis-

sion) of a bounded random data unit of size Lb ∈ [0, b] on the previously described channel.

In order to study the uniform approximation in both n and b we construct a family of

variables Lb, such that P[Lb ≤ x] = P[L ≤ x]/P[L ≤ b], for 0 ≤ x ≤ b when L = L∞ is

fixed. This scaling of Lb was also used in [39]. For the logarithmic scale, our result, stated

in Theorem 2.2, provides a uniform characterization of the entire body of logP[Nb > n],

i.e., informally

logP[Nb > n] ≈ −α log n+ n logP[A ≤ b]

for all n and b sufficiently large when the hazard functions of L and A are linearly related

as logP[L > x] ≈ α logP[A > x]; see Theorem 2.2 for the precise assumptions. Note that

the first term in the preceding approximation corresponds to the power law part n−α of
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the distribution, while the second part describes the exponential (geometric P[A ≤ b]n)

tail. Hence, it may be natural to define the transition point nb from the power law to the

exponential tail as a solution to nb logP[A ≤ b] ≈ α log nb.

In addition, under more restrictive assumptions, we discover a new exact asymptotic for-

mula for the retransmission distribution that works uniformly for all large n, b. Surprisingly,

the approximation admits an explicit form (see Theorems 2.3 and 2.4)

P[Nb > n] ≈ α

nα`(n ∧ P[A > b]−1)

∫ ∞
−n log P[A≤b]

e−zzα−1dz, (2.1)

where x∧y = min(x, y) and `(·) is a slowly varying function; note that the preceding integral

is the incomplete Gamma function Γ(x, α).

Clearly, when −n logP[A ≤ b] ↓ 0, the preceding approximation converges to a true

power law Γ(α + 1)/(`(n)nα). And, when −n log(P[A < b]) ↑ ∞, approximation (2.1),

by the property Γ(x, α) ∼ e−xxα−1 as x → ∞, has a geometric leading term P[A ≤ b]n.

Interestingly, for the special case when α is an integer and `(x) ≡ 1, one can compute the

exact expression for P[Nb > n], see Proposition 2.2. Furthermore, our results show that

the length of the power law region increases as the corresponding distributions of L and A

assume lighter tails. All of the preceding results are validated via simulation experiments

in Section 2.4. It is worth noting that our asymptotic approximations are in excellent

agreement with the simulations.

This uniform approximation allows for a characterization of the entire body of the

distribution P[Nb > n], so that one can explicitly estimate the region where the power law

phenomenon arises. Introducing the relationship between n and P[A > b] also provides an

assessment method of efficiency and is important for diminishing the power law effects in

order to achieve high throughput. Basically, when the power law region is significant, it

could lead to nearly zero throughput (α < 1), implying that the system parameters should

be more carefully adjusted in order to meet the new requirements. On the contrary, if

the exponential tail dominates, the system performance is more desirable. Our analytical
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work could be applicable in network protocol design, possibly including data fragmentation

techniques [13, 38, 37] and failure-recovery mechanisms.

Also, from an engineering perspective, our results further suggest that careful re-examination

and possible redesign of retransmission based protocols in communication networks might be

necessary. Specifically, current engineering trends towards infrastructure-less, error-prone

wireless technology encourage the study of highly variable systems with frequent failures.

In these types of systems, traditional approaches, e.g., blind data fragmentation, may be

insufficient for achieving a good balance between throughput and resource utilization. For

example, IP packets are lower bounded by the packet header of 20 bytes and cannot be

more than 1500 bytes. Thus, it is not efficient to create very small packets since the 20-byte

packet header carries no useful information. In fact, one may consider merging smaller

packets to reduce the overhead and, hence, increase the efficiency. Overall, we consider a

generic model when the maximum size of data units is limited, which, in general, can be

used towards improving the design of future complex and failure-prone systems in many

different applications.

The rest of the chapter is organized as follows. After a detailed description of the

channel model in the next Section 2.1.1, we present our main results in Section 2.2. Finally,

Section 2.4 contains simulation examples that verify our theoretical work, while Section 2.5

concludes the chapter.

2.1.1 Description of the Channel

In this section, we formally describe our model and provide necessary definitions and no-

tation. Consider transmitting a generic data unit of random size Lb over a channel with

failures. Without loss of generality, we assume that the channel is of unit capacity. As

stated in the introduction, the channel dynamics is modeled by the channel availability

process {A,Ai}i≥1, where the channel is continuously available during time periods {Ai}

whereas it fails between such periods. In each period of time that the channel becomes

available, say Ai, we attempt to transmit the data unit and, if Ai > Lb, we say that the
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transmission was successful; otherwise, we wait for the next period Ai+1 when the channel

is available and attempt to retransmit the data from the beginning. A sketch of the model

depicting the system is drawn in Figure 4.1.

Lb Failure-prone
channel
{An}

An > Lb

resend no

Figure 2.1: Documents sent over a channel with failures.

We are interested in computing the number of attempts Nb (retransmissions) that is

required until Lb is successfully transmitted, which is formally defined as follows.

Definition 2.1.1. The total number of retransmissions for a generic data unit of length Lb

is defined as

Nb , inf{n : An > Lb}.

We denote the complementary cumulative distribution functions for A and L, respec-

tively, as

Ḡ(x) , P[A > x] and F̄ (x) , P[L > x],

where L is a generic random variable that is used to define the distribution of Lb.

Throughout this section we assume that L and A are continuous (equivalently, F̄ (x)

and Ḡ(x) are absolutely continuous) and have infinite support, i.e., Ḡ(x) > 0 and F̄ (x) > 0

for all x ≥ 0. Then, the distribution of Lb is defined as

P[Lb ≤ x] =
P[L ≤ x]

P[L ≤ b]
, 0 ≤ x ≤ b. (2.2)

To avoid trivialities, we assume that b is large enough such that P[L ≤ b] > 0.

We use the following standard notations. For any two real functions a(t) and b(t) and

fixed t0 ∈ R
⋃
{∞}, we use a(t) ∼ b(t) as t→ t0 to denote limt→t0 a(t)/b(t) = 1. Similarly,

we say that a(t) & b(t) as t→ t0 if lim inft→t0 a(t)/b(t) ≥ 1; a(t) . b(t) has a complementary
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definition.

2.2 Main Results

In this section, we present our main results. Under mild conditions, we first prove a general

upper bound for the distribution of Nb on the logarithmic scale in Proposition 2.1. In

Theorem 2.2, we present our first main result, which under more stringent assumptions,

characterizes the entire body of the distribution on the logarithmic scale uniformly for all

large n and b, i.e., informally we show that

logP[Nb > n] ≈ −α log n+ n logP[A ≤ b],

as previously mentioned in the introduction. Roughly speaking, when − logP[A ≤ b] =

o(log n/n), P[Nb > n] is a power law of index α. Our results on the exact asymptotics

are given in the next Subsection 2.3 in Theorems 2.3 and 2.4; the results are stated in two

different theorems since Theorem 2.4 requires slightly stronger assumptions. The uniform

approximation implied by these two theorems is presented in (2.7), or previously in (2.1).

Recall that the distribution of Lb has finite support on [0, b], given by (2.2). First, we

prove the following general upper bound.

Proposition 2.1. Assume that

lim inf
x→∞

logP[L > x]

logP[A > x]
≥ α

and let b0 be such that P[L ≤ b0] > 0,P[A ≤ b0] > 0, then for any ε > 0, there exists n0,

such that, for all n ≥ n0, b ≥ b0,

logP[Nb > n] ≤ (1− ε) [n logP[A ≤ b]− α log n] .
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Remark 1. Note that this result can be restated as

P[Nb > n] ≤ P[A ≤ b]n(1−ε)n−α(1−ε),

for n, b sufficiently large. Hence, the distribution P[Nb > n] is bounded by the product of a

power law and a geometric term.

Proof. By assumption, there exists 0 < ε < 1 such that for all x > xε ≥ b0 > 0,

F̄ (x) ≤ Ḡ(x)α(1−ε). (2.3)

Next, it is easy to see that P[Nb > n|Lb] = (1− Ḡ(Lb))
n, and thus,

P[Nb > n] = E[1− Ḡ(Lb)]
n

= E[1− Ḡ(Lb)]
n(1−ε+ε)

≤ (1− Ḡ(b))n(1−ε) [E[1− Ḡ(Lb)]
nε1(Lb ≤ xε) + E[1− Ḡ(Lb)]

nε1(Lb > xε)
]

≤ (1− Ḡ(b))n(1−ε)
[
(1− Ḡ(xε))

nε +

∫ b

xε

(
1− Ḡ(x)

)nε dF (x)

F (b)

]
≤ (1− Ḡ(b))n(1−ε)

[
ηnεxε +

∫ b

0

(
1− F̄ (x)

1
α(1−ε)

)nε dF (x)

F (b)

]
,

where ηxε = 1 − Ḡ(xε), and the last inequality follows from (2.3); in case xε ≥ b ≥ b0, the

integral in the second inequality is zero and the last inequality trivially holds. Now, by

extending the preceding integral to ∞, we obtain

P[Nb > n] ≤ 1

F (b)
(1− Ḡ(b))n(1−ε)

[
ηnεxεF (b) +

∫ ∞
0

(
1− F̄ (x)

1
α(1−ε)

)nε
dF (x)

]
=

1

F (b)
(1− Ḡ(b))n(1−ε)

[
ηnεxεF (b) + E

(
1− F̄ (L)

1
α(1−ε)

)nε]
≤ 1

F (b)
(1− Ḡ(b))n(1−ε)

[
ηnεxεF (b) + E e−F̄ (L)

1
α(1−ε) nε

]
,
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where we use the elementary inequality 1− x ≤ e−x, x ≥ 0, and thus

P[Nb > n] ≤ 1

F (b)
(1− Ḡ(b))n(1−ε)

[
ηnεxεF (b) + E e−U

1
α(1−ε) nε

]
,

by F̄ (L) = U , where U is uniformly distributed on [0, 1] by Proposition 2.1 in Chapter 10

of [21]. Hence,

P[Nb > n] ≤ 1

F (b)
(1− Ḡ(b))n(1−ε)

[
ηnεxεF (b) +

∫ 1

0
e−x

1
α(1−ε) nεdx

]
=

1

F (b)
(1− Ḡ(b))n(1−ε)

[
ηnεxεF (b) +

∫ nε

0

α(1− ε)
(nε)α(1−ε) e

−zzα(1−ε)−1dz

]
≤ 1

F (b)
(1− Ḡ(b))n(1−ε)

[
ηnεxεF (b) +

α(1− ε)
(nε)α(1−ε)

∫ ∞
0

e−zzα(1−ε)−1dz

]
=

1

F (b)
(1− Ḡ(b))n(1−ε)

[
ηnεxεF (b) +

α(1− ε)
(nε)α(1−ε) Γ(α(1− ε))

]
,

which follows from the definition of the Gamma function Γ(a) =
∫∞

0 e−tta−1dt. Therefore,

P[Nb > n] ≤ (1− Ḡ(b))n(1−ε)
[
ηnεxε +

α(1− ε)
F (b)(nε)α(1−ε) Γ(α(1− ε))

]
≤ (1− Ḡ(b))n(1−ε)

[
ηnεxε +

α(1− ε)ε−α(1−ε)

F (b0)nα(1−ε) Γ(α(1− ε))

]

= (1− Ḡ(b))n(1−ε)
[
ηnεxε +

Hε

nα(1−ε)

]
,

since b ≥ b0, whereas, in the last inequality, we set Hε = α(1− ε)ε−α(1−ε)Γ(α(1− ε))/F (b0).

Now, we can choose n0, such that for any ε > 0 and for all n ≥ n0, ηnεxε ≤ εHεn
−α(1−ε), so

that

P[Nb > n] ≤ (1− Ḡ(b))n(1−ε)
[
ε

Hε

nα(1−ε) +
Hε

nα(1−ε)

]
= (1− Ḡ(b))n(1−ε) Hε

nα(1−ε) (1 + ε),
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and by taking the logarithm in the preceding expression, we obtain

logP[Nb > n] ≤ log (Hε(1 + ε)) + n(1− ε) log(1− Ḡ(b))− α(1− ε) log n

= log (Hε(1 + ε)) + (1− ε)
[
n log(1− Ḡ(b))− α log n

]
.

Next, since −n log(1− Ḡ(b)) > 0 and α log n > 0, n > 1,

logP[Nb > n]

−n log(1− Ḡ(b)) + α log n
≤ log (Hε(1 + ε))

−n log(1− Ḡ(b)) + α log n
− (1− ε)

≤ log (Hε(1 + ε))

α log n
− (1− ε)

and α log n being increasing in n, we can choose n0 such that for any n ≥ n0,

log (Hε(1 + ε))

α log n
≤ ε.

Thus,

logP[Nb > n]

−n log(1− Ḡ(b)) + α log n
≤ −(1− 2ε),

which completes the proof by replacing ε with ε/2.

Next, we determine the region where the power law asymptotics holds on the logarithmic

scale.

Theorem 2.1. If

logP[L > x] ∼ α logP[A > x] as x→∞, (2.4)

α > 0, then, for any ε > 0, there exists positive n0, such that for all n ≥ n0, for which

n1+εP[A > b] ≤ 1, we have ∣∣∣∣− logP[Nb > n]

α log n
− 1

∣∣∣∣ ≤ ε. (2.5)

Note that this result appeared in Theorem 1 of [39]. The proof can be found in Section 4

of [2]; see also [1].

This result holds in the region n1+ε ≤ O(1/Ḡ(b)). Also, note that one can easily
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characterize the logarithmic asymptotics of the very end of the exponential tail of P[Nb > n]

for small b and large n. In particular, for fixed b, it can be shown that logP[Nb > n] ∼

n log(1 − Ḡ(b)) as n → ∞, see Theorem 1 in [39]. However, our objective is to determine

the entire body of the distribution of P[Nb > n] uniformly in n and b.

Next, we extend Theorem 2.1 to the entire region n ≥ n0, b ≥ b0, which includes the

geometric term P[A ≤ b]n. For this theorem, we need slightly more restrictive assumptions.

The reason why this is the case is that P[Nb > n] behaves like a power law in the region

where n = o(log n/Ḡ(b)), while for n >> log n/Ḡ(b), it follows essentially a geometric

distribution; see Theorem 2.2 below. Hence, more restrictive assumptions are required

since the geometric distribution is much more sensitive to the changes in its parameters

(informally, ((1 + ε)x)−α ≈ x−α but e−(1+ε)x 6≈ e−x).

Definition 2.2.1. A function `(x) is slowly varying if `(x)/`(λx) → 1 as x → ∞ for any

fixed λ > 0.

If not directly implied by our assumptions, `(x) is assumed positive and locally bounded.

Theorem 2.2. If P[L > x] = `(P[A > x]−1)P[A > x]α, for α > 0, `(x) slowly varying, then

for any ε > 0, there exist n0, b0, such that for all n ≥ n0, b ≥ b0,

∣∣∣∣ − logP[Nb > n]

−n logP[A ≤ b] + α log n
− 1

∣∣∣∣ ≤ ε. (2.6)

The proof appears in [1] as well as its extended version; see Section 4 of [2].

Remark 2. Note that the statement of this theorem can be formulated in an equivalent

form ∣∣∣∣ − logP[Nb > n]

nP[A > b] + α log n
− 1

∣∣∣∣ ≤ ε,
since −n logP[A ≤ b] ∼ nP[A > b] as b→∞.

Remark 3. This theorem extends Theorem 1 in [39]. In particular, it proves the result

uniformly in n and b, while Theorem 1 in [39] characterized the initial power law part of
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the distribution (n ≤ Ḡ(b)−η, 0 < η < 1) and the very end with exponential tail (fixed b,

n→∞).

2.3 Exact Asymptotics

In this section, we derive the exact approximation for P[Nb > n] that works uniformly for

all n, b sufficiently large (Theorems 2.3 and 2.4). As noted earlier in the introduction, this

characterization is explicit in that it is a product of a power law and the Gamma distribution

P[Nb > n] ≈ α

nα`(n ∧ P[A > b]−1)

∫ ∞
−n log P[A≤b]

e−zzα−1dz, (2.7)

where x∧y = min(x, y) and `(·) is slowly varying. Implicitly, the argument of `(x) is altered

depending on whether nP[A > b] ≤ C or nP[A > b] > C for some constant C. Hence, we

can choose C = 1 since `(n ∧ 1/P[A > b]) ≈ `(n ∧ C/P[A > b]) for large n, b. Note that

when −n logP[A ≤ b] ↓ 0, the power law dominates, whereas when −n logP[A ≤ b] → ∞,

the integral determines the tail with the geometric (exponential) leading term.

We would like to point out that approximation (2.7) actually works well when P[A > b]−1

is large rather than b; this can be concluded by examining the proofs of the theorems in this

section. Hence, formula (2.7) can be accurate for relatively small values of b provided that

A is light tailed. This may be the reason why we obtain accurate results in our simulation

examples in Section 2.4 for small values of b.

First, in Theorem 2.3, we precisely describe the region where the distribution of Nb

exhibits the power law behavior, nP[A > b] ≤ C, for any fixed constant C. Then, The-

orem 2.4 covers the remaining region, nP[A > b] > C, where P[Nb > n] approaches the

geometric tail. Additional discussion of the results and the treatment of some special cases

are presented at the end of this section; see Propositions 2.2 and 2.3.

Theorem 2.3. Let P[L > x]−1 = `(P[A > x]−1)P[A > x]−α, α > 0, x ≥ 0, and C > 0

be a fixed constant. Then, for any ε > 0, there exists n0 such that for all n > n0, and
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nP[A > b] ≤ C, ∣∣∣∣ P[Nb > n]nα`(n)

αΓ(−n logP[A ≤ b], α)
− 1

∣∣∣∣ ≤ ε, (2.8)

where Γ(x, α) is the incomplete Gamma function defined as
∫∞
x e−zzα−1dz.

Remark 4. Related result was derived in Theorem 3 of [39] where it was required that

n ≤ Ḡ(b)−η, 0 < η < 1. Note that here we broaden the region where the result holds

by requiring n ≤ C/Ḡ(b), which is larger than n ≤ Ḡ(b)−η. Furthermore, this is the

largest region where the exact power law asymptotics O(n−α/`(n)) holds since for nḠ(b) >

C,Γ(nḠ(b), α) ≤ Γ(C,α)→ 0 as C →∞.

Remark 5. Note here that the incomplete Gamma function Γ(α, x) =
∫∞
x zα−1e−zdz can

be easily computed using the well known asymptotic approximation (see Sections 6.5.32 in

[30]), as x→∞,

Γ(α, x) ∼ xα−1e−x
[
1 +

α− 1

x
+

(α− 1)(α− 2)

x2
+ . . .

]
.

Proof. This proof uses some of the ideas from the proof of Theorem 2.1 in [10]. However, it

is much more involved since one has to incorporate the assumption nP[A > b] ≤ C, which

ensures the power law body.

Let Φ(x) = `(x)xα. Then, Φ(x) is regularly varying with index α and, thus, for any

c > 0,

lim
x→∞

Φ(cx)

Φ(x)
= cα <∞,

and, in particular, we can choose c = e, which implies that there exists nε such that for

n/ek > nε,

Φ(n)

Φ(n/ek)
≤ ek(α+1). (2.9)

Without loss of generality, we may assume that Φ(.) is eventually absolutely continuous,

strictly monotone and locally bounded for x > 0 since we can always find an absolutely
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continuous and strictly monotone function

Φ∗(x) =


α
∫ x

1 Φ(s)s−1ds, x ≥ 1

0, 0 ≤ x < 1,

(2.10)

which for x large enough satisfies

F̄ (x)−1 = Φ(Ḡ(x)−1) ∼ Φ∗(Ḡ(x)−1).

This implies that, for any 0 < ε < 1 and x ≥ x0, we have

1/Φ←
(
(1 + ε)F̄ (x)−1

)
≤ Ḡ(x) ≤ 1/Φ←

(
(1− ε)F̄ (x)−1

)
, (2.11)

where Φ←(·) denotes the inverse function of Φ∗(·); note that the monotonicity of Φ∗(x),

for all x ≥ 1, guarantees that its inverse exists. To simplify the notation in this proof, we

shall use Φ(·) to denote Φ∗(·). Furthermore, Φ←(·) is regularly varying with index 1/α (see

Theorem 1.5.12 in [20]), implying that

Φ←((1 + ε)x) ∼
(

1 + ε

1− ε

)1/α

Φ←((1− ε)x),

as x→∞. Therefore, for ηε = η(ε) = [(1 + ε)/(1− ε)]2/α and x large,

η−1
ε Ḡ(x) ≤ 1/Φ←

(
(1 + ε)F̄ (x)−1

)
≤ 1/Φ←

(
(1− ε)F̄ (x)−1

)
≤ ηεḠ(x). (2.12)

First, notice that the number of retransmissions is geometrically distributed given the

data size Lb,

P[Nb > n] = E[1− Ḡ(Lb)]
n

= E[1− Ḡ(Lb)]
n1(Lb ≤ x0) + E[1− Ḡ(Lb)]

n1(Lb > x0). (2.13)
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We begin with the lower bound. For H > C and x0 as in (2.13), we choose xn > x0 such

that Φ←((1− ε)F̄ (xn)−1) = n/H, for n large, and thus,

P[Nb > n] = E[1− Ḡ(Lb)]
n

≥ E
[
(1− Ḡ(Lb))

n1(Lb > xn)
]

≥ E
[(

1− 1

Φ←((1− ε)F̄ (Lb)−1)

)n
1(Lb > xn)

]
=

∫ b

xn

(
1− 1

Φ←((1− ε)F̄ (x)−1)

)n dF (x)

F (b)
,

where we use our main assumption (2.11). Now, since F (b) ≤ 1 and using the continuity of

F (x) and change of variables z = n/Φ←((1− ε)F̄ (x)−1), we obtain,

P[Nb > n] ≥
∫ H

n/Φ←((1−ε)F̄ (b)−1)

(
1− z

n

)n Φ′(n/z)

Φ2(n/z)

(1− ε)n
z2

dz

≥
∫ H

ηεnḠ(b)

(
1− z

n

)n Φ′(n/z)

Φ2(n/z)

(1− ε)n
z2

dz,

where we use that ηεḠ(b) ≥ 1/Φ←((1 − ε)F̄ (b)−1) from (2.12), which holds for b large, or

equivalently n large by our assumption nḠ(b) ≤ C. Now, we consider two distinct cases:

If ηεnḠ(b) < h, where h > 0 is a small constant, then

P[Nb > n] ≥ (1− ε)
∫ H

h

(
1− z

n

)n Φ′(n/z)

Φ2(n/z)

n

z2
dz

≥ (1− ε)3/2 α

Φ(n)

∫ H

h

(
1− z

n

)n
zα−1dz,

where we use the properties of regularly varying functions that for all h ≤ z ≤ H and large

n,

Φ(n)

Φ(n/z)
≥ (1− ε)1/2zα,

and

Φ′(n/z)/Φ(n/z) =
αz

n
,
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for n > H [see (3.9)]. Next, using 1 − x ≥ e−(1+δ)x for δ > 0 and 0 ≤ x ≤ xδ, for n large

enough (n > H/xδ) we obtain

P[Nb > n] ≥ (1− ε)3/2 α

Φ(n)

∫ H

h
e−(1+δ)zzα−1dz

≥ (1− ε)3/2e−δH
α

Φ(n)

∫ H

h
e−zzα−1dz,

and by choosing δ > 1/H so that e−δH ≥ (1− ε)1/2, we have

P[Nb > n] ≥ (1− ε)2 α

Φ(n)

∫ H

h
e−zzα−1dz

≥ (1− ε)2 α

Φ(n)

[∫ H

nḠ(b)
e−zzα−1dz −

∫ h

nḠ(b)
e−zzα−1dz

]

≥ (1− ε)2 α

Φ(n)

[∫ H

nḠ(b)
e−zzα−1dz −

∫ h

0
e−zzα−1dz

]

≥ (1− ε)2 α

Φ(n)

[∫ ∞
nḠ(b)

e−zzα−1dz −
∫ ∞
H

e−zzα−1dz − hα

α

]

≥ (1− ε)2 α

Φ(n)

[∫ ∞
nḠ(b)

e−zzα−1dz − 2e−HHα−1 − hα

α

]

= (1− ε)2 α

Φ(n)
Γ(nḠ(b), α)

(
1− 2e−HHα−1 + hα/α

Γ(C,α)

)
,

where the second to last inequality follows from the approximation for the incomplete

gamma function for large H [see Remark 5 of Theorem 4.8] and the last inequality uses the

assumption nḠ(b) ≤ C. Now, picking H,h such that 2e−HHα−1 + hα/α ≤ εΓ(C,α), yields

P[Nb > n] ≥ (1− 3ε)
α

Φ(n)
Γ(nḠ(b), α).
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If h ≤ ηεnḠ(b) ≤ C, then

P[Nb > n] ≥ (1− ε)
∫ H

ηεnḠ(b)
e−z

Φ′(n/z)

Φ2(n/z)

n

z2
dz

≥ (1− ε)2 α

Φ(n)

∫ H

ηεnḠ(b)
e−zzα−1dz,

which follows from the regularly varying properties in the region h/ηε < nḠ(b) ≤ z ≤ H.

For the preceding integral, similarly as before, we have

∫ H

ηεnḠ(b)
e−zzα−1dz =

∫ H

nḠ(b)
e−zzα−1dz −

∫ ηεnḠ(b)

nḠ(b)
e−zzα−1dz

≥
∫ H

nḠ(b)
e−zzα−1dz −

∫ ηεnḠ(b)

nḠ(b)
zα−1dz

=

∫ H

nḠ(b)
e−zzα−1dz − (nḠ(b))α

ηαε − 1

α

≥
∫ ∞
nḠ(b)

e−zzα−1dz −
∫ ∞
H

e−zzα−1dz − Cα η
α
ε − 1

α

≥
∫ ∞
nḠ(b)

e−zzα−1dz − 2e−HHα−1 − 4εCα

α

= Γ(nḠ(b), α)

(
1− 2e−HHα−1 + 4εCα/α

Γ(C,α)

)
,

where we use the approximation for the incomplete gamma function for large H, that

ηαε − 1→ 4ε as ε→ 0 and nḠ(b) ≤ C. Now, letting H be such that 2e−HHα−1 + 4εCα/α ≤
√
εΓ(C,α) yields

P[Nb > n] ≥ (1− ε)2(1−
√
ε)

α

Φ(n)
Γ(nḠ(b), α).

Finally, since Ḡ(b) ≤ − log(1− Ḡ(b)), we obtain

P[Nb > n] ≥ (1− ε)2(1−
√
ε)

α

Φ(n)
Γ(−n log(1− Ḡ(b)), α), (2.14)

which proves the lower bound after replacing (1− ε)2(1−
√
ε) with 1− ε.
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Next, we derive the upper bound. Note that for x0 as in (2.13),

P[Nb > n] = E[1− Ḡ(Lb)]
n

≤ (1− Ḡ(x0))n + E[1− Ḡ(Lb)]
n1(Lb > x0)

≤ e−nḠ(x0) + E
(

1− 1

Φ←((1 + ε)F̄ (Lb)−1)

)n
1(Lb > x0), (2.15)

which follows from (2.11) and the elementary inequality 1 − x ≤ e−x. Now, for any H >

max (C, 1), we obtain

P[Nb > n] ≤ e−nḠ(x0) + E
(

1− 1

Φ←((1 + ε)F̄ (Lb)−1)

)n
1 (Lb > x0)

≤ e−nḠ(x0) + E
(

1− 1

Φ←((1 + ε)F̄ (Lb)−1)

)n
1

(
1

Φ←((1 + ε)F̄ (Lb)−1)
<
H

n

)

+

dlog(n/nε)e∑
k=blogHc

e−e
k
P
[
ek ≤ n

Φ←((1 + ε)F̄ (Lb)−1)
≤ ek+1

]
+ e−n/nε

, I0 + I1 + I2 + I3. (2.16)

First, we upper bound I1 in (2.16), which equals

I1 =
1

F (b)

∫ b

0

(
1− 1

Φ←((1 + ε)F̄ (x)−1)

)n
1

(
n

Φ←((1 + ε)F̄ (x)−1)
< H

)
dF (x)

=
1 + ε

Φ(n)F (b)

∫ H

n/Φ←((1+ε)F̄ (b)−1)

(
1− z

n

)n Φ(n)

Φ(n/z)

Φ′(n/z)

Φ(n/z)

n

z2
dz

≤ 1 + ε

Φ(n)F (b)

∫ H

nḠ(b)/ηε

(
1− z

n

)n Φ(n)

Φ(n/z)

Φ′(n/z)

Φ(n/z)

n

z2
dz,

where we use the change of variables z = n/Φ←((1 + ε)F (x)−1) and the absolute continuity

of F (x). For the last inequality, observe that 1/Φ←((1 + ε)F̄ (b)−1) ≥ Ḡ(b)/ηε from (2.12).

Now, similarly as before, we consider two cases:
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If nḠ(b) < ηεhε ≤ C, where hε > 0 is a small constant, I1 is upper bounded by

I1 ≤
1 + ε

F (b)Φ(n)

∫ H

hε

(
1− z

n

)n Φ(n)

Φ(n/z)

Φ′(n/z)

Φ(n/z)

n

z2
dz + P

(
n

Φ←((1 + ε)F̄ (Lb)−1)
< hε

)
.

(2.17)

Now, since Φ(.) is absolutely continuous and regularly varying, it follows that for all

hε ≤ z ≤ H,

Φ(n)

Φ(n/z)
≤ (1 + ε)1/2zα,

for large n, and, by (3.9),

Φ′(n/z)

Φ(n/z)
=
αz

n
,

for n > H.

Next, we compute the second term in (2.17) as

P
(
F̄ (Lb) <

1 + ε

Φ(n/hε)

)
≤
∫ ∞

0
1

(
F̄ (x) <

1 + ε

Φ(n/hε)

)
dF (x)

F (b)
=

1

F (b)
P
[
F̄ (L) <

1 + ε

Φ(n/hε)

]
≤ 1 + ε

F (b)Φ(n/hε)
≤ (1 + ε)2hαε

Φ(n)
,

which follows from the uniform distribution of F̄ (L) and using Φ(n)/Φ(n/hε) ≤ (1+ε)1/2hαε

for large n, along with F (b)−1 ≤ (1 + ε)1/2. Now, observe that the first term in (2.17) is

upper bounded by

α(1 + ε)2

Φ(n)

∫ H

hε

(
1− z

n

)n
zα−1dz ≤ α(1 + ε)2

Φ(n)

∫ H

nḠ(b)/ηε

(
1− z

n

)n
zα−1dz,

since nḠ(b) < hεηε. Also, for the integral we obtain



CHAPTER 2. DISTRIBUTION OF THE NUMBER OF RETRANSMISSIONS OF
BOUNDED DOCUMENTS 28

∫ H

nḠ(b)/ηε

(
1− z

n

)n
zα−1dz =

∫ H

nḠ(b)

(
1− z

n

)n
zα−1dz +

∫ nḠ(b)

nḠ(b)/ηε

(
1− z

n

)n
zα−1dz

≤
∫ H

nḠ(b)

(
1− z

n

)n
zα−1dz +

∫ nḠ(b)

nḠ(b)/ηε

zα−1dz

≤
∫ H

nḠ(b)

(
1− z

n

)n
zα−1dz + (nḠ(b))α(1− η−αε )/α

≤
∫ H

nḠ(b)

(
1− z

n

)n
zα−1dz + 5Cαε/α,

after observing that 1−η−αε → 4ε as ε→ 0. Now, by changing the variables 1−z/n = e−u/n,

we have

I1 ≤
α(1 + ε)2

Φ(n)

∫ H

nḠ(b)

(
1− z

n

)n
zα−1dz +

(1 + ε)25Cαε

Φ(n)
+

(1 + ε)2hαε
Φ(n)

≤ α(1 + ε)2

Φ(n)

∫ −n log(1−H/n)

−n log(1−Ḡ(b))
e−u(1− e−u/n)α−1nα−1e−u/ndu+

(1 + ε)2(5Cαε+ hαε )

Φ(n)

≤ α(1 + ε)2

Φ(n)

∫ ∞
−n log(1−Ḡ(b))

e−uuα−1du+
(1 + ε)2

Φ(n)
(5Cαε+ hαε )

≤ α(1 + ε)2

Φ(n)

∫ ∞
−n log(1−Ḡ(b))

e−uuα−1du

[
1 +

5Cαε+ hαε
αΓ(2C,α)

]
(2.18)

≤ α(1 + ε)2(1 +
√
ε)

Φ(n)

∫ ∞
−n log(1−Ḡ(b))

e−uuα−1du,

where, in the second inequality, we use e−u/n ≤ 1, the inequality 1 − e−x ≤ x, x ≥ 0 and

extend the integral to infinity. Last, we pick ε small, such that 5Cαε+ hαε ≤
√
εαΓ(2C,α).

Note that the preceding equation along with (2.14) imply that I1 is lower bounded as

I1 ≥ (1− ε)αΓ(2nḠ(b), α)/Φ(n) ≥ (α/2)Γ(2C,α)/Φ(n), for all n > n0 and ε < 1/2, by the

inequality 1− x ≥ e−2x for x ≥ 0 small, since by assumption nḠ(b) ≤ C, i.e., Ḡ(b) is small.

If hεηε ≤ nḠ(b) ≤ C, we have

I1 ≤
1 + ε

F (b)Φ(n)

∫ H

nḠ(b)/ηε

(
1− z

n

)n Φ(n)

Φ(n/z)

Φ′(n/z)

Φ(n/z)

n

z2
dz,

and, by the properties of regularly varying functions in the interval n/H ≤ n/z ≤ 1/Ḡ(b) ≤
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n/hε, for H > C, and using the same arguments as in (2.18), we have

I1 ≤
α(1 + ε)2

Φ(n)

∫ H

nḠ(b)/ηε

(
1− z

n

)n
zα−1dz

≤ α(1 + ε)2

Φ(n)

∫ ∞
−n log(1−Ḡ(b))

e−zzα−1dz

[
1 +

5Cαε

αΓ(2C,α)

]
≤ α(1 + ε)2(1 +

√
ε)

Φ(n)

∫ ∞
−n log(1−Ḡ(b))

e−zzα−1dz.

Therefore, from both cases, it follows that for all n > n0,

I1 ≤
α(1 + ε)

Φ(n)
Γ(−n log(1− Ḡ(b)), α), (2.19)

after replacing (1 + ε)2(1 +
√
ε) with 1 + ε.

Next, we evaluate the second term in (2.16) as

I2 =

dlog(n/nε)e∑
k=blogHc

e−e
k
P
[
ek ≤ n

Φ←((1 + ε)F̄ (Lb)−1)
≤ ek+1

]

=

dlog(n/nε)e∑
k=blogHc

e−e
k
P
[
(1 + ε)/Φ

( n

ek+1

)
≤ F̄ (Lb) ≤ (1 + ε)/Φ

( n
ek

)]

≤
dlog(n/nε)e∑
k=blogHc

e−e
k

∫ ∞
0

1

(
F̄ (x) ≤ 1 + ε

Φ (n/ek)

)
dF (x)

F (b)

≤
∞∑

k=blogHc

e−e
k 1 + ε

F (b)Φ (n/ek)
,

which follows from the fact that the integral in the second inequality is equal to P[F̄ (L) ≤

(1 + ε)/Φ
(
n/ek

)
]/F (b) and F̄ (L) is uniform in [0, 1]. Thus,

I2 ≤
1 + ε

F (b)Φ(n)

∞∑
k=blogHc

e−e
k Φ(n)

Φ(n/ek)
≤ 1 + ε

F (b)Φ(n)

∞∑
k=blogHc

e−e
k
ek(α+1),

where we make use of (2.9). Since the preceding sum is finite, we obtain that for large H
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and all n > n0,

I2 ≤
ε

2
I1. (2.20)

Last, we observe that, for fixed x0, it follows that for n > n0,

I0 + I3 = e−nḠ(x0) + e−n/nε ≤ ε

2
I1. (2.21)

Finally, using (2.19)-(2.21), we obtain for (2.16) that for all n > n0,

P[Nb > n] ≤ (1 + ε)2 α

Φ(n)
Γ(−n log(1− Ḡ(b)), α),

which completes the proof after replacing (1 + ε) with (1 + ε)1/2.

The following corollary is an immediate consequence of Theorem 2.3 and it represents

a small generalization of Theorem 2.1 in [10].

Corollary 2.1. If P[L > x]−1 = `(P[A > x]−1)P[A > x]−α, x ≥ 0, α > 0, where `(x) is

slowly varying, then, as n→∞ and nP[A > b]→ 0,

P[Nb > n] ∼ Γ(α+ 1)

`(n)nα
. (2.22)

Now, we characterize the remaining region where nP[A > b] > C. Informally speaking,

this is the region where P[Nb > n] has a lighter tail converging to the exponential when

n >> Ḡ(b)−1. In the following theorem, we need more restrictive assumptions for `(x); see

the discussion before Theorem 2.2. In particular, we assume that `(x) is slowly varying and

eventually differentiable with `′(x)x/`(x)→ 0 as x→∞.

Theorem 2.4. Assume that P[L > x]−1 = `(P[A > x]−1)P[A > x]−α, α > 0, x ≥ 0, where

`(x) is slowly varying and eventually differentiable with `′(x)x/`(x)→ 0 as x→∞. Then,

for any ε > 0, there exist b0, n0, such that for all n > n0, b > b0, nP[A > b] > C,

∣∣∣∣P[Nb > n]nα`(P[A > b]−1)

αΓ(−n logP[A ≤ b], α)
− 1

∣∣∣∣ ≤ ε. (2.23)
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Remark 6. Observe that Theorems 2.3 and 2.4 cover the entire distribution P[Nb > n] for

all large n and b. Interestingly, the formula for the approximation is the same except for

the argument of the slowly varying part, which equals to n and P[A > b]−1, respectively.

Furthermore, when nP[A > b] = C the formulas are asymptotically identical as `(n) =

`(CP[A > b]−1) ∼ `(P[A > b]−1) as n→∞.

Remark 7. Note that most well known examples of slowly varying functions satisfy the con-

dition `′(x)x/`(x)→ 0 as x→∞, including logβ x, logβ(log x), β > 0, exp(log x/ log log x), exp(logγ x),

for 0 < γ < 1 [see Section 1.3.3 on p.16 in [20]].

Proof. Recall that

P[Nb > n] = E[1− Ḡ(Lb)]
n

=

∫ b

0

(
1− Ḡ(x)

)n dF (x)

F (b)

=

∫ x0

0

(
1− Ḡ(x)

)n dF (x)

F (b)
+

∫ b

x0

(
1− Ḡ(x)

)n dF (x)

F (b)
. (2.24)

Now, given that `(x) is eventually differentiable (x ≥ x0) and slowly varying with `′(x)x/`(x)→

0 as x→∞, it follows that dF̄ (x) = (1+o(1))αḠ(x)α−1`−1(1/Ḡ(x))dḠ(x) as x→∞. Thus,

for any 0 < ε < 1, we can select x0 large enough such that

P[Nb > n] ≤
(
1− Ḡ(x0)

)n − (1 + ε)1/2

∫ b

x0

(1− Ḡ(x))n
αḠ(x)α−1dḠ(x)

`(1/Ḡ(x))F (b)

=
(
1− Ḡ(x0)

)n
+ (1 + ε)1/2

∫ Ḡ(x0)

Ḡ(b)
(1− z)n αzα−1dz

`(1/z)F (b)
, (2.25)

which follows from the absolute continuity of G(x), i.e., Ḡ(A) is uniformly distributed in

[0,1].

Now, for α ≥ 1, we consider two different cases: (a) nḠ(b) ≥ log n and (b) C < nḠ(b) <

log n.

Case (a): nḠ(b) ≥ log n. Observe that, for any fixed H > α + 6, we can make HḠ(b)

small enough by picking b0 large. Now, by continuity of G(x), there exists x0 such that
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Ḡ(x0) = HḠ(b); we can choose x0 larger than in (2.25) by picking b0 large enough. Next,

using the elementary inequality 1−x ≤ e−x, x ≥ 0, we upper bound the preceding expression

by

P[Nb > n] ≤ e−nḠ(x0) +
α(1 + ε)1/2

F (b)

∫ HḠ(b)

Ḡ(b)
(1− z)n z

α−1dz

`(1/z)

≤ e−nHḠ(b) +
α(1 + ε)1/2

`(1/Ḡ(b))F (b)
sup

Ḡ(b)≤z≤HḠ(b)

`(1/Ḡ(b))

`(1/z)

∫ HḠ(b)

Ḡ(b)
(1− z)nzα−1dz

≤ e−nHḠ(b) +
α(1 + ε)

`(1/Ḡ(b))F (b)

∫ HḠ(b)

Ḡ(b)
(1− z)nzα−1dz

, I0 + I1, (2.26)

where, for the third inequality, by the uniform convergence theorem (see [20]) of `(x), Ḡ(b)−1

can be chosen large enough such that sup(HḠ(b))−1≤y≤Ḡ(b)−1 `(Ḡ(b)−1)/`(y) ≤ (1 + ε)1/2.

Now, we derive a lower bound for I1 in (2.26). Using the monotonicity of zα−1, α ≥ 1

and since F (b) ≤ 1, we obtain

I1 ≥
1

`(1/Ḡ(b))

∫ HḠ(b)

Ḡ(b)
(1− z)nzα−1dz

≥ 1

Ḡ(b)−ε
Ḡ(b)α−1

∫ HḠ(b)

Ḡ(b)
(1− z)ndz

=
1

n+ 1
Ḡ(b)α−1+ε(1− Ḡ(b))n+1

(
1−

(
1−HḠ(b))

1− Ḡ(b)

)n+1
)
,

where in the second inequality, we use the property of slowly varying functions `(x) ≤ xε

for x large enough. Now, observe that for all x ≥ 0 small enough, 1− x ≥ e−2x, yielding

I1 ≥
1

4n
Ḡ(b)αe−4nḠ(b),

where the last inequality follows from the fact that n/(n + 1) ≥ 1/2 for n ≥ 1 and
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Ḡ(b)α−1+ε ≥ Ḡ(b)α since ε < 1. We also note that

(
1−H ¯G(b)

1− Ḡ(b)

)n+1

≤
(
e−HḠ(b)/e−2Ḡ(b)

)n
= e−(H−2)nḠ(b) ≤ e−(H−2)C ≤ 1/2,

where we use our assumption nḠ(b) > C and choose H large enough. Finally, we obtain

I1 ≥
1

4n
Ḡ(b)αe−4nḠ(b). (2.27)

Now, we proceed with proving that I0/I1 in (2.26) is negligible as n→∞. To this end,

observe that

I0

I1
≤ 4

e−HnḠ(b)n

Ḡ(b)αe−4nḠ(b)
≤ 4

e−(H−4)nḠ(b)nα+1

(nḠ(b))α

≤ 4e−(H−4)nḠ(b)nα+1 ≤ 4e−(α+2) lognnα+1,

where we use our assumption that nḠ(b) ≥ log n > 1 for n > 2, whereas for the last

inequality, we also use the fact that H > α + 6. Thus, the preceding expression is upper

bounded by

I0

I1
≤ 4

n
≤ ε, (2.28)

for all n ≥ 4/ε.

Now, we upper bound I1 in (2.26) by changing the variables z = 1− e−u/n,

I1 =
α(1 + ε)

F (b)`(1/Ḡ(b))

∫ −n log(1−HḠ(b))

−n log(1−Ḡ(b))

e−u(n+1)/n(1− e−u/n)α−1

n
du

≤ α(1 + ε)

F (b)`(1/Ḡ(b))

∫ ∞
−n log(1−Ḡ(b))

e−u(1− e−u/n)α−1

n
du,
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where for the inequality we use e−u/n ≤ 1 and extend the integral to infinity. Thus, for

α ≥ 1, from the preceding expression using the inequality 1− e−x ≤ x, for x ≥ 0, we obtain

I1 ≤
α(1 + ε)

F (b)n`(1/Ḡ(b))

∫ ∞
−n log(1−Ḡ(b))

e−u
(u
n

)α−1
du

≤ α(1 + ε)

F (b)nα`(1/Ḡ(b))

∫ ∞
−n log(1−Ḡ(b))

e−uuα−1du

=
α(1 + ε)

F (b)nα`(1/Ḡ(b))
Γ(−n log

(
1− Ḡ(b)

)
, α). (2.29)

Combining (2.28) and (2.29), we obtain for (2.26) that for all n ≥ n0, b ≥ b0,

P[Nb > n] ≤ α(1 + ε)2

F (b)nα`(1/Ḡ(b))
Γ(−n log

(
1− Ḡ(b)

)
, α),

which completes the proof after replacing (1 + ε) with (1 + ε)1/2.

Case (b): C < nḠ(b) < log n. In this region, for any fixed H > 5, we choose the smallest

m ≥ 1 such that Hem − 4 ≥ (α + 2) log n/C, i.e., m = dlog ((α+ 2) log n/C + 4)− logHe.

Furthermore, it is important to note that this choice of m allows for HemḠ(b) to be small

enough, since HemḠ(b) ≤ Hem log n/n = O(log2 n/n) → 0, as n → ∞, by the assumption

that nḠ(b) < log n. Then, by continuity of G(x), there exists x0 such that Ḡ(x0) =

HemḠ(b) (larger than x0 in (2.25) for b0 large enough) and using the elementary inequality

1− x ≤ e−x, x ≥ 0, we upper bound the expression in (2.25) by

P[Nb > n]

≤ e−nḠ(x0) +
α(1 + ε)1/2

F (b)

[∫ HḠ(b)

Ḡ(b)
(1− z)n z

α−1dz

`(1/z)
+

m−1∑
k=0

∫ Hek+1Ḡ(b)

HekḠ(b)
e−nz

zα−1dz

`(1/z)

]

≤ e−nḠ(x0) +
α(1 + ε)1/2

F (b)

[
(1 + ε)1/2

`(1/Ḡ(b))

∫ HḠ(b)

Ḡ(b)
(1− z)nzα−1dz

+
m−1∑
k=0

(1 + ε)1/2

`(1/(ekḠ(b)))
(Hek+1Ḡ(b))α−1

∫ Hek+1Ḡ(b)

HekḠ(b)
e−nz

]
,

where the last inequality follows from the monotonicity of zα−1 for α ≥ 1 and the uniform
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convergence theorem of `(x), sup(HḠ(b))−1≤z≤1/Ḡ(b)) `(1/Ḡ(b))/`(z) ≤ (1 + ε)1/2, while for

the second term, note that sup(Hek+1Ḡ(b))−1≤z≤(HekḠ(b))−1 `(1/(ekḠ(b))/`(z) ≤ (1 + ε)1/2,

k = 0 . . . (m − 1), since HemḠ(b) is small enough. Now, since `(x)/`(x/e) ≤ e for x large,

it follows that

P[Nb > n] ≤ e−nHemḠ(b) +
α(1 + ε)

F (b)`(1/Ḡ(b))

∫ HḠ(b)

Ḡ(b)
(1− z)nzα−1dz

+
α(1 + ε)

F (b)n`(1/Ḡ(b))

m−1∑
k=0

eke−nHe
kḠ(b)(Hek+1Ḡ(b))α−1

, I0 + I1 + I2. (2.30)

Now, we derive a lower bound for I1 following similar arguments as in (2.27). Note that,

for x ≥ 0 small enough, 1− x ≥ e−2x, and thus, for H large enough, we have

`(1/Ḡ(b))F (b)

α(1 + ε)
I1 ≥ Ḡ(b)α−1

∫ HḠ(b)

Ḡ(b)
(1− z)ndz

≥ Ḡ(b)α−1 (1− Ḡ(b))n+1 − (1−H ¯G(b))n+1

n+ 1

= Ḡ(b)α−1 (1− Ḡ(b))n+1

n+ 1

(
1−

(
1−H ¯G(b)

1− Ḡ(b)

)n+1
)

≥ Ḡ(b)α−1

4n
e−4nḠ(b), (2.31)

where the expression in brackets is bounded from below by 1/2 as in (2.27).

Now, we prove that I0/I1 in (2.30) is negligible as n→∞. To this end, observe that

I0

I1
≤ 4F (b)

α(1 + ε)

e−He
mnḠ(b)`(1/Ḡ(b))n

Ḡ(b)α−1e−4nḠ(b)
,

where we use (2.31). Next, since α ≥ 1, F (b) ≤ 1, and using the standard property of slowly

varying functions that `(x) ≤ x for large x (see Theorem 1.5.6 on page 25 of [20]), we obtain

I0

I1
≤ 4

e−(Hem−4)nḠ(b)n

Ḡ(b)α
,
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and since nḠ(b) > C, we have

I0

I1
≤ 4

e−(Hem−4)nḠ(b)nα+1

(nḠ(b))α

≤ 4C−αe−(Hem−4)Cnα+1

≤ 4C−αe−(α+2) lognnα+1,

where the last inequality follows from the fact that m was chosen so that (Hem − 4) ≥

(α+ 2) log n/C. Thus, the preceding expression can be rewritten as

I0

I1
≤ 4

Cαn
≤ ε/2, (2.32)

for all n ≥ 8C−α/ε.

Next, for the ratio I2/I1 we proceed similarly as before

I2

I1
=

4
∑m−1

k=0 e
ke−nHe

kḠ(b)(Hek+1Ḡ(b))α−1

Ḡ(b)α−1e−4nḠ(b)

≤ 4
m−1∑
k=0

eke−(Hek−4)nḠ(b)(Hek+1)α−1,

≤ 4Hα−1
m−1∑
k=0

eke−(Hek−4)Ceα(k+1)−k−1

≤ 4Hα−1e−HC
∞∑
k=0

e−5(ek−1)C+α(k+1)−1 ≤ ε/2, (2.33)

where for the last inequality we use H > 5. Now, we further observe that the preceding

sum is finite and thus, letting H → ∞, the above ratio converges to 0, i.e., I2 ≤ εI1/2 for

large H.

Hence, since the upper bound for I1 from (2.29) holds in this case as well, by putting

(2.32) and (2.33) together, we obtain for (2.30) that for all n ≥ n0, b ≥ b0,

P[Nb > n] ≤ α(1 + ε)2

F (b)nα`(1/Ḡ(b))
Γ(−n log

(
1− Ḡ(b)

)
, α),
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which completes the proof after replacing (1 + ε) with (1 + ε)1/2.

Last, we prove the lower bound for nḠ(b) > C; here, we do not need to distinguish two

cases. Thus, starting from (2.24) and proceeding with similar arguments as in the proof for

the upper bound, we obtain

P[Nb > n] ≥ −(1− ε)1/2

∫ b

x0

(1− Ḡ(x))n
αḠ(x)α−1dḠ(x)

`(1/Ḡ(x))F (b)

= (1− ε)1/2

∫ HḠ(b)

Ḡ(b)
(1− z)n αzα−1dz

`(1/z)F (b)

≥ α(1− ε)
F (b)`(1/Ḡ(b))

∫ −(n+1) log (1−HḠ(b))

−(n+1) log(1−Ḡ(b))

e−u(1− e−
u
n+1 )α−1

n+ 1
du,

where we use the uniform convergence theorem of slowly varying functions (Theorem 1.2.1

on page 6 of [20]) and pick x0 < b such that Ḡ(x0) = HḠ(b). Next, using the inequality

1− e−x ≥ (1− δ)x, for some δ > 0 and all x ≥ 0 small enough, we have

P[Nb > n− 1] ≥ α(1− ε)(1− δ)α−1

F (b)`(1/Ḡ(b))n

∫ −n log(1−HḠ(b))

−n log(1−Ḡ(b))
e−u

(u
n

)α−1
du

≥ α(1− ε)2

F (b)nα`(1/Ḡ(b))

∫ HnḠ(b)

−n log(1−Ḡ(b))
e−uuα−1du

=
α(1− ε)2

F (b)nα`(1/Ḡ(b))

[∫ ∞
−n log(1−Ḡ(b))

e−uuα−1du−
∫ ∞
HnḠ(b)

e−uuα−1du

]

, I1 − I2,

where, in the second inequality, we choose δ > 0 small enough such that (1−δ)α−1 ≥ (1−ε)

and note that −n log(1 − HḠ(b)) ≥ HnḠ(b). Next, we proceed with showing that I2/I1

is negligible for large n. Note that −n log(1 − Ḡ(b)) ≤ 2nḠ(b), which follows from the

elementary inequality e−2x ≤ 1− x for all x ≥ 0 small enough. Thus,

I2

I1
≤

∫∞
HnḠ(b) e

−uuα−1du∫∞
2nḠ(b) e

−uuα−1du

≤ 2(HnḠ(b))α−1e−HnḠ(b)

(2nḠ(b))α−1e−2nḠ(b)
,
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where we use the approximation for the incomplete gamma function for large H [see Re-

mark 5 of Theorem 2.3]. Now, using the main assumption nḠ(b) > C, we obtain

I2

I1
≤ 2Hα−1e−(H−2)C ≤ ε,

for H large enough. Then, using the preceding observation, we obtain

P[Nb > n] ≥ α(1− 3ε)

nα`(1/Ḡ(b))
Γ(−n log

(
1− Ḡ(b)

)
, α),

which completes the proof after replacing ε with ε/3.

Now, if α < 1, the proof uses almost identical arguments coupled with the fact that

uα−1 is a decreasing function. We omit the details to avoid unnecessary repetitions.

Remark 8. From the preceding two theorems we observe that P[Nb > n] behaves as a true

power law of index α when −n logP[A ≤ b] → c, 0 ≤ c < ∞, and has an exponential tail

(geometric) when nP[A > b]→∞ (n >> P[A > b]−1). More specifically:

(i) If −n logP[A ≤ b]→ c, then by Theorem 2.3, as n→∞, nP[A > b]→ c,

P[Nb > n] ∼ α

`(n)nα
Γ(c, α).

(ii) If nP[A > b] → ∞, then −n logP[A ≤ b] → ∞ and thus, as n → ∞, b → ∞, nP[A >

b]→∞,

P[Nb > n] ∼ α

`(1/Ḡ(b))n
Ḡ(b)α−1(1− Ḡ(b))n,

which follows from Theorem 2.4 and the asymptotic expansion of the Gamma function (see

Remark 5 of Theorem 2.3).

Interestingly, one can compute the distribution of P[Nb > n] exactly for the special case

when the parameter α takes integer values and `(x) ≡ 1.
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Proposition 2.2. If P[L > x] = P[A > x]α, for all x ≥ 0 and α is a positive integer, then

P[Nb > n] =
1

P[L ≤ b]

α∑
i=1

α! n! P[A > b]α−i

(α− i)!(n+ i)!
P[A ≤ b]n+i.

Proof. It follows directly from (2.24) using integration by parts.

Finally, in the following proposition, we describe the tail of P[Nb > n] for fixed and

possibly small b. This complements the conclusion of Remark 8(ii), however, we need

`(x) ≡ 1.

Proposition 2.3. Let b be fixed. If P[L > x] = P[A > x]α, α > 0, x ≥ 0, then

P[Nb > n] ∼ αP[A > b]α−1

P[L ≤ b]
P[A ≤ b]n+1

n+ 1
as n→∞.

Proof. See Section 4 in [1].

2.4 Simulation Experiments

In this section, we illustrate the validity of our theoretical results with simulation experi-

ments. In all of the experiments, we observed that our uniform exact asymptotics is literally

indistinguishable from the simulation. In the following examples, we present the simula-

tion experiments resulting from 108 (or more) independent samples of Nb,i, 1 ≤ i ≤ 108.

This number of samples was needed to ensure at least 100 independent occurrences in the

lightest end of the tail that is presented in the figures (Nb,i ≥ nmax), thus providing a good

confidence interval.

Example 1. This example illustrates the uniform exact asymptotics presented in

Theorems 2.3 and 2.4, i.e., approximation (2.7), which combines the results from both

theorems. We assume that L and A follow exponential distributions with parameters λ = 2

and µ = 1, respectively. It is thus clear that F̄ (x) = e−2x = Ḡ(x)α, where α = 2 and `(x) ≡

1. Now, approximation (2.7) states that P[Nb > n] is given by (1− e−2b)−12n−2Γ(ne−b, 2).
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Figure 2.2: Example 1(a). Exact asymptotics
for α > 1.
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Figure 2.3: Example 1(b). Exact asymptotics
for α < 1.

Note that we added a factor P[L ≤ b]−1 = (1− e−2b)−1, as in Propositions 2.2 and 2.3, for

increased precision when b is small; we add such a factor to approximation (2.7) in other

examples as well. We simulate different scenarios when the data sizes Lb are upper bounded

by b equal to 1, 2 and 4. The simulation results are plotted on log-log scale in Fig. 2.2.

From Fig. 2.2, we observe that the numerical asymptote approximates the simulation

exactly for all different scenarios, even for very small values of n (large probabilities). We

further validate our approximation by considering scenarios where L,A are exponentially

distributed but α < 1; in fact, this case tends to induce longer delays due to larger average

data size compared to the channel availability periods. In this case, we obtain α = 0.5 by

assuming λ = 1 and µ = 2. Again, the simulation results and the asymptotic formulas are

basically indistinguishable for all n, as illustrated in Fig. 2.3.

For both cases, we deduce that for b small the power law asymptotics covers a smaller

region of the distribution of Nb and, as n increases, the exponential tail becomes more

evident and eventually dominates. As b becomes large - recall that b → ∞ corresponds to

the untruncated case where the power law phenomenon arises - the exponential tail becomes

less distinguishable.

Example 2. This example demonstrates the exact asymptotics for the exponential tail
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Figure 2.4: Example 2. Power law vs. expo-
nential tail asymptotics.
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Figure 2.5: Example 3. Power law region in-
creases for lighter tails of L,A.

as n → ∞ and b is fixed, as in Proposition 2.3. Note that this proposition gives the exact

asymptotic formula for the region n� 1/Ḡ(b) and lends merit to our Theorems 2.2 and 2.4.

Informally, we could say that a point nb such that −nb log(1 − Ḡ(b)) ≈ nbḠ(b) = α log nb

represents the transition from power law to the exponential tail. We assume that L,A

are exponentially distributed with λ = 2 and µ = 1 (as in the first case of Example 1).

Roughly speaking, we can see from Fig. 2.4 that the exponential asymptote appears to fit

well starting from nb ≈ αeb, i.e., nb ≈ 6, 15, 100 for b = 1, 2, 4, respectively.

Example 3. This example highlights the impact of the distribution type of channel

availability periods Ḡ(x) = P[A > x]. We consider some fixed b, namely b = 8, and assume

that the matching between data sizes and channel availability, as defined in Theorems 2.3

and 2.4, is determined by the parameter α = 4. We assume Weibull1 distributions for L,A

with the same index k and µL, µA respectively, such that α = (µA/µL)k. The simulations

include three different cases for the aforementioned distributions: Weibull with index k = 1

(exponential) where µL = 1 and µA = 4, Weibull (normal-like) with index k = 2 (µL =

1, µA = 2) and Weibull with k = 1/2 (µL = 1, µA = 16). Fig. 2.5 illustrates the exact

asymptotics from equation (2.7), shown with the lighter dashed lines; the main power law

asymptote appears in the main body of all three distributions. We observe that heavier
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distributions (Weibull with k = 1/2) correspond to smaller regions for the power law main

body of the distribution P[Nb > n]. On the other hand, the case with the lighter Gaussian

like distributions for k = 2 follows almost entirely the power law asymptotics in the region

presented in Fig. 2.5. This increase in the power law region can be inferred from our

theorems, which show that the transition from the power law main body to the exponential

tail occurs roughly at nb ≈ Ḡ(b)−1. Hence, the lighter the tail of the distribution of A, the

larger the size of the power law region.
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Figure 2.6: Example 4(a). Exact asymptotics
for the case where L follows the Gamma dis-
tribution.
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Figure 2.7: Example 4(b). The asymptotes
from Theorems 2.3 & 2.4 for Gamma dis-
tributed L.

Example 4. In this last example, we study the case where there is a more general func-

tional relationship between the distributions of availability periods A and data sizes L, as

Theorems 2.3 and 2.4 assume. In particular, we consider the case F̄ (x) = Ḡ(x)α/`(Ḡ(x)−1),

where `(x) is slowly varying. We validate the approximation (2.7) in this more general set-

ting.

In particular, the availability periods A are exponentially distributed with parameter µ

while the data sizes L follow the Gamma distribution with parameters (λ, k); the tail of the

Gamma distribution function is defined as λkΓ(k)−1
∫∞
x e−λxxk−1dx = Γ(λx, k)/Γ(k) and,

1In general, a Weibull distribution with index k has a complementary cumulative distribution function

P[X > x] = e−(x/µ)k , where µ is the parameter that determines the mean.
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therefore, the tail distribution of L can be approximated by F̄ (x) ∼ (λk−1/Γ(k)) xk−1e−λx

for large x.

We can easily verify that F̄ (x) = f(µ−1 log Ḡ(x)−1)Ḡ(x)α, where α = λ/µ and

f(x) = λk−1Γ(k)−1

∫ ∞
0

e−z(z/λ+ x)k−1dz.

Hence, the slowly varying function in Theorems 2.3 and 2.4 is `(x) = 1/f(µ−1 log x).

From the preceding integral representation for f(x), it can be easily shown that `(x) ≈

Γ(k)α1−k log1−k x, which is indeed slowly varying, and

F̄ (x) ≈ (αk−1/Γ(k)) log(Ḡ(x)−1)k−1Ḡ(x)α.

We take λ = 2, k = 2 and µ = 2 and run simulations for b = {2, 3, 4}. In Fig. 2.6, we

demonstrate the results using the approximation (2.7). Interestingly, our analytic approxi-

mation works nicely even for small values of n and b although the conditions in our theorems

require n and b to be large.

In Fig. 2.7, we elaborate on the preceding example. To this end, we plot two asymp-

totes: (i) the ‘Initial Asymptote’ corresponding to the power law asymptote provided by

Theorem 2.3 and (ii) the ‘Tail Asymptote’ from Theorem 2.4. Combining the two, we derive

the approximation (2.7), as we have already shown in Fig. 2.6. Hereby, we see from Fig. 2.7

that both asymptotes are needed to approximate the entire distribution well, i.e., the ‘Ini-

tial Asymptote’ fits well the first part of the distribution, whereas the ‘Tail Asymptote’ is

inaccurate in the beginning but works well for the tail. Recall that these two asymptotes

differ only in the argument of the slowly varying function `(·), which is equal to n for the

‘Initial Asymptote’ and Ḡ(b)−1 for the tail.
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2.5 Concluding Remarks

The uniform approximation presented in this chapter characterizes the entire body of the

distribution P[Nb > n], and provides an explicit estimate of the region where the power

law phenomenon arises. Therefore, it can be useful for diminishing the power law effects in

order to achieve high throughput in modern engineering systems. Basically, a large power

law region can lead to nearly zero throughput (α < 1), implying that the system parameters

should be carefully re-adjusted.

From an engineering perspective, our results further suggest that careful re-examination

and possible redesign of retransmission based protocols in communication networks might be

necessary. Specifically, current engineering trends towards infrastructure-less, error-prone

wireless technology encourage the study of highly variable systems with frequent failures.

In these types of systems, traditional approaches, e.g., blind data fragmentation, may be

insufficient for achieving a good balance between throughput and resource utilization. Our

analytical work could be applicable in network protocol design, e.g., data fragmentation

techniques [13, 38, 37] and failure-recovery mechanisms. Overall, our generic model can be

used towards improving the design of future complex and failure-prone systems in many

different applications.
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Chapter 3

Retransmissions over Correlated

Channels

Frequent failures characterize many existing communication networks, e.g., wireless ad-hoc

networks, where retransmission-based failure recovery represents a primary approach for

successful data delivery. Recent work has shown that retransmissions can cause power law

delays and instabilities even if all traffic and network characteristics are super-exponential.

While the prior studies have considered an independent model, in this chapter, we extend

the analysis to the practically important dependent case. We use modulated processes,

e.g., Markov modulated, to capture the channel dependencies. We study the number of

retransmissions and delays when the hazard functions of the distributions of data sizes and

channel statistics are proportional, conditionally on the channel state. Our results show

that the tails of the retransmission and delay distributions are determined by the state

that generates the lightest asymptotics. Informally, the ‘best case wins’ and the system is

insensitive to channel correlations. This insight is beneficial both for capacity planning and

channel modeling since we do not need to account for the correlation details. However, this

observation may be overly optimistic when the best state is infrequent, since the effects of

‘bad’ states may be prevalent for sufficiently long to downgrade the expected performance.
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3.1 Introduction

Recovery mechanisms are employed in almost all engineering systems that are prone to

failures. Restarting the interrupted jobs after a failure occurs is one of the most straight-

forward and widely used failure recovery mechanism. In modern communication networks,

retransmission mechanisms are particularly important on all protocol layers to guarantee

data delivery in the presence of channel failures. It was first recognized in [24, 25] that such

mechanisms may result in power law delays even if the job sizes and failure rates are light

tailed. In [9], it was shown that retransmission phenomena can lead to zero throughput and

system instabilities, and therefore need to be carefully considered for the design of fault

tolerant systems.

More specifically, it has been shown that power law delays arise in different layers of the

networking architecture, where retransmission-based protocols are used, e.g., ALOHA type

protocols in MAC layer [12, 14], end-to-end acknowledgements in transport layer [11, 9]

as well as in other layers [9]. For other (non-retransmission) mechanisms that can give

rise to heavy tails see [15] and the references therein. In particular, the proportional

growth/multiplicative models can result in heavy tails [15, 16].

Previous studies consider an i.i.d model that was first introduced in [24] and further

studied in [9, 10] to describe the channel dynamics. In practice, communication channels are

highly correlated in the sense that they switch between states with different characteristics.

We extend the previously studied model [9] to the dependent case where the availability

periods depend on the channel state. In order to capture the channel dependencies, we

introduce a modulating process. In general, the distributions of the channel availability

periods depend on the current state of the channel.

The proposed model is as follows. Let {Jn}n≥1 be a stationary and ergodic modulating

process with finitely many states {1, 2, . . . ,K}. Now, let {An(k), n ≥ 1, k = 1, . . . ,K}

be a family of independent random variables, independent of {Jn}, such that for fixed k,

{An(k)}n≥1 are identically distributed with Ḡk(x) = P(A1(k) > x). Then, we can construct
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a modulating process An such that An , An(Jn) and P(An > x|Jn = k) = Ḡk(x). At each

available period An, we transmit a generic data unit of size L; if An > L, the transmission is

successful, else we wait until the next period An+1 to retransmit. We study the asymptotic

properties of the distribution of the number of retransmissions N when

logP(L > x) ≈ αk logP(An > x|Jn = k), (3.1)

k = 1, . . . ,K; see Section 3.1.1 for a more detailed description of the preceding model.

We show that when the channel is correlated, or less formally, when it alternates be-

tween different states, the tail asymptotics is determined by the properties of the ‘best’

channel state, e.g., the state that generates the lightest asymptotics in the corresponding

independent channel model. Intuitively, as the channel switches between states, a large

data unit is more likely to be transmitted when the channel is ‘good’. Specifically, the

‘best’ availability periods correspond to the state with the largest αk [as defined in (3.1)]

among 1, . . . ,K. Undoubtedly, this is an optimistic observation which further implies that

instabilities can be eliminated as long as there exists at least one state with α > 1.

From an engineering perspective, this optimistic best case scenario prediction and the

apparent insensitivity to the structure of the channel correlations can be very promising in

system analysis and design. The result implies that the initial i.i.d. model might be suffi-

cient for modeling, and can also be extended to even more complex failure-prone networks.

However, this is partially true as there are certain circumstances under which this claim

underestimates the intricacies of the system.

Specifically, the light tail does not guarantee consistent good behavior for the entire

body of the delay distribution. As discussed in [1, 2] in a different context, the delay

distribution of bounded documents will always have a light exponential tail. However, the

main body of the distribution can be a power law which will determine the performance

in the relevant range of probabilities. Similarly here, the tail is determined by the lightest

power law (largest value of αk in (3.1)). However, when the corresponding channel state
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is rare, the main body of the retransmission distribution can be dominated by the heavier

power laws resulting from the ‘bad’ states. Hence, the system performance may be much

worse than the predicted by the tail. Therefore, when the best case scenario is atypical,

we need to pay closer attention to the channel correlations. We provide further discussions

and some preliminary analysis of this situation in Section 3.3.

Our results can be useful from an engineering perspective, both for modeling and system

design. The analysis can be extended to more complex networks or multi-channel systems

that are characterized by frequent failures and correlated states. The results may be applied

in designing new protocols, or developing new fragmentation schemes [13, 38, 37] specifically

for correlated channels. A dynamic fragmentation technique is more likely to work better

for a channel with high variability. In addition, the explicit approximation presented in

Chapter 2 could be combined with the the analytic results of this chapter in order to

accurately estimate the optimal sizes of the packet fragments.

The chapter is organized as follows. In the following Section 3.1.1, we formally describe

the model and introduce the necessary definitions and notation, while in Section 3.2, we

present our main theorems, on both the logarithmic and the exact scale. Next, Section 3.3

includes our simulation experiments that verify our analytic approximations. Last, in Sec-

tion 3.4, we discuss the engineering implications of our results and provide some insight on

the situation when the ‘best case’ scenario occurs rarely, while Section 3.5 contains some of

the proofs.

3.1.1 Description of the Channel

In this section, we formally describe our model and provide necessary definitions and no-

tation. Consider transmitting a generic data unit of random size L over a channel with

failures. Without loss of generality, we assume that the channel is of unit capacity. The

channel dynamics is modeled as follows. Let J , {Jn}n≥1 be a stationary and ergodic

modulating process with finitely many states {1, 2, . . . ,K}. Let πk = P(Jn = k) denote the

probability that the process is in state k, k = 1 . . .K; see Figure 3.1 for an illustration of
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the channel.

π1 π2 π1

t

Figure 3.1: Correlated channel dynamics.

Now, define a family of independent random variables {An(k), n ≥ 1, k = 1, . . . ,K},

independent of the modulating process {J}. In addition, for fixed k, {An(k)}n≥1 are iden-

tically distributed with Gk(x) = P(A1(k) ≤ x) and Ḡk(x) = 1−Gk(x). Then, we construct

a modulating process An such that An , An(Jn) and P(An > x|Jn = k) = Ḡk(x).

At each period of time that the channel becomes available, say Ai, we attempt to

transmit a generic data unit of size L. If Ai > L, we say that the transmission is successful;

otherwise, we wait until the next period Ai+1 when the channel is available and attempt

to retransmit the data from the beginning. A sketch of the model depicting the system is

drawn in Figure 3.2.

L Channel with
failures
{An(J), J}

Is An > L?

no

yes
success

Figure 3.2: Packets sent over a channel with failures.

We are interested in computing the number of attempts N (retransmissions) that are

required until L is successfully transmitted, which is formally defined as follows.



CHAPTER 3. RETRANSMISSIONS OVER CORRELATED CHANNELS 50

Definition 3.1.1. The total number of retransmissions for a generic data unit of length L

is defined as

N , inf{n : An > L}.

We denote the complementary cumulative distribution functions for {A(k)}k=1...K and

L, respectively, as

Ḡk(x) := P(An > x|Jn = k)

and

F̄ (x) := P[L > x].

We assume that L and A are continuous (equivalently, F̄ (x) and Ḡk(x) are absolutely

continuous) and have infinite support, i.e., Ḡk(x) > 0 and F̄ (x) > 0 for all x ≥ 0. We

use the following standard notations. For any two real functions a(t) and b(t) and fixed

t0 ∈ R
⋃
{∞}, we use a(t) ∼ b(t) as t → t0 to denote limt→t0 a(t)/b(t) = 1. Similarly, we

say that a(t) & b(t) as t → t0 if limt→t0 [a(t)/b(t)] ≥ 1; a(t) . b(t) has a complementary

definition.

3.2 Main Results

In this section, we present our main analytic results. In Theorem 3.1, we characterize the

tail distribution of the number of retransmissions on the logarithmic scale. In particular,

under the assumption that the hazard functions of the data sizes and channel statistics

are proportional, we show that the distribution exhibits a power law tail and the index is

determined by the channel state with the longest availability periods, e.g., the maximum

αk as defined in (3.1); the asymptotics is the same as in the case of the uncorellated channel

with Ḡ(x) = Ḡm(x), see Theorem 2 in [9].

Next, in Theorem 3.2, under more restrictive assumptions, we prove the result on the

exact scale. We derive the exact asymptotic tail of the number of retransmissions N , which

also depends on the steady state probability πm of the ‘best’ state m. The result shows
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that the smallest the values of πm, the longer it takes for the lightest tail to appear. In fact,

from the simulation results of Section 3.3, it becomes evident that the distribution transits

between power laws of different indices before the lighter one dominates. This is intuitive,

since if the ‘good’ periods are not frequent (πm → 0), we would expect a lot of failures

resulting from the other states with shorter availability periods.

Last, Theorem 3.3 presents the logarithmic asymptotics of the total delay distribution.

Theorem 3.1. Let {J, Jn}n≥1 be a stationary and ergodic process that takes values on the

positive integers k = 1 . . .K. Assume that for the family of random variables {A,An(k)},

logP(L > x) ∼ αk logP(A > x|J = k) as x→∞,

and P(|
∑n

i=1 1{Ji = k}−πkn| ≥ εn) = O(n−(αm+ε)/K), for positive ε and αm , max
k=1...K

αk >

0, then

lim
n→∞

logP(N > n)

log n
= −αm.

Remark 9. Throughout this chapter, we will use m to denote the index of the state with the

largest α among all states 1, 2, . . . ,K. This corresponds to the state m which dominates the

tail distribution of N and is responsible for the lighter asymptote for large n. Without loss of

generality, we assume that there is a unique m that achieves the maximum αm = max
k=1,...,K

αk,

i.e., αm > maxk 6=m αk. Otherwise, if there are more than one indices that attain the

maximum, we can merge the corresponding underlying states of the process {Jn}n≥1 into a

single one with the same property.

Remark 10. Note that the condition P(|
∑n

i=1 1{Ji = k}− πkn| ≥ εn) = O(n−(αm+ε)/K) is

satisfied for a large class of modulating processes Jn, i.e., semi-Markov processes where the

sojourn time distribution decays faster than O(1/n(αm+ε)/K+1).

Proof. By assumption, there exists 0 < ε < 1 such that for all x > x0,

F̄ (x)
1

αk(1−ε) ≤ Ḡk(x) ≤ F̄ (x)
1

αk(1+ε) , k = 1 . . .K. (3.2)
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Recall that {An(k)}n≥1 are conditionally independent given {J, Jn}n≥1 and thus P(An(k) >

x|Jn = k) = P(A1 > x|Jn = k) = Ḡk(x). Note that Ai(Ji) is independent of the past and

future states of the modulating process {Jj}j 6=i. Let Nk
n :=

∑n
i=1 1{Ji = k} be the number

of times that {Ji = k} is in the interval [1, n]; thus,
∑K

k=1N
k
n = n.

First, we establish the lower bound. It is easy to see that

P[N > n|L] = P[L > A1, L > A2 . . . , L > An]

= E[P(L > Aj , 1 ≤ j ≤ n|J1, . . . , Jn)]

= E

 n∏
j=1

P(L > Aj |Jj)


= E

 n∏
j=1

K∏
k=1

P(L > Aj |Jj = k)1{Jj=k}


= E

 n∏
j=1

K∏
k=1

P(L > A|J = k)1{Jj=k}


= E

[
K∏
k=1

P(L > A|J = k)N
k
n

]
. (3.3)

For the ergodic and stationary process {Jn}n≥1, by the strong law of large numbers, it

follows that

Nk
n

n
→ πk as n→∞,

for all k = 1 . . .K. Thus, for any ε > 0, we can choose n0, such that Nk
n ≤ (1 + ε)πkn, for

all n ≥ n0 and k = 1 . . .K. Therefore,

P(N > n|L) ≥ E

[
K∏
k=1

P(L > A|J = k)(1+ε)πkn1
{
Nk
n ≤ (1 + ε)πkn

}]

=
K∏
k=1

P(Nk
n ≤ (1 + ε)πkn)P(L > A|J = k)(1+ε)πkn
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≥ (1− ε)K
K∏
k=1

(1− Ḡk(L))(1+ε)πkn,

where we note that P(Nk
n ≤ (1 + ε)πkn)→ 1 as n→∞. Now, using our main assumption

(3.2) and the elementary inequality 1− x ≥ e−(1+ε)x for small x, we obtain

P(N > n) = E[P (N > n|L)]

≥ (1− ε)KE
K∏
k=1

(
1− F̄ (L)

1
αk(1+ε)

)πkn(1+ε)

1{L ≥ x0}

≥ (1− ε)KE
K∏
k=1

exp
(
−πkn(1 + ε)2F̄ (L)

1
αk(1+ε)

)
1{L ≥ x0},

for x0 as in (3.2). Now, observe that the integral in the preceding expression is

E

[
exp

(
−

K∑
k=1

πkn(1 + ε)2F̄ (L)
1

αk(1+ε)

)
1{L ≥ x0}

]

≥ E

[
exp

(
−

K∑
k=1

πkn(1 + ε)2U
1

αk(1+ε)

)]
− exp

(
−

K∑
k=1

πkn(1 + ε)2F̄ (x0)
1

αk(1+ε)

)

, I1 − I0, (3.4)

which follows from F̄ (L) = U , with U being uniformly distributed in (0, 1).

The first term in (3.4) is computed as

I1 =

∫ 1

0
exp

(
−

K∑
k=1

πkn(1 + ε)2u
1

αk(1+ε)

)
du

≥
∫ ε

0
exp

(
−n(1 + ε)2u

1
αm(1+ε)πm

1 +
K∑

k=1,k 6=m

πk
πm

u
1

αk(1+ε)
− 1
αm(1+ε)

 du

≥
∫ ε

0
exp

(
−n(1 + ε)2(1 + δ)u

1
αm(1+ε)πm

)
du,

after observing that for ε small enough,
∑K

k=1,k 6=m(πk/πm)u1/(αk(1+ε))−1/(αm(1+ε)) ≤ δ.
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Next, by change of variables z = nπm(1 + ε)2(1 + δ)u1/(αm(1+ε)), we have

I1 ≥
(1− δε)αm(1+ε)αm(1 + ε)

π
αm(1+ε)
m nαm(1+ε)

∫ nε1/αm (1−δε)πm

0
e−zzαm(1+ε)−1dz

≥ (1− δε)αm(1+ε)

π
αm(1+ε)
m nαm(1+ε)

Γ(αm(1 + ε) + 1),

where we use the definition of the gamma function for large n and set (1 − δε)−1 = (1 +

ε)2(1 + δ).

Now, for hε,δ = (1− ε)K(1− δε)αm(1+ε)Γ(αm(1 + ε) + 1)/π
αm(1+ε)
m , and, since x0 is fixed,

the second term in (3.4) is negligible, i.e., I0 → 0 as n→∞. Taking the logarithm yields

logP(N > n) ≥ log hε,δ − αm(1 + ε) log n,

and by picking n0 such that log hε,δ ≥ −αmε log n, we have

logP(N > n) ≥ −αm(1 + 2ε) log n.

After replacing ε with ε/2, we derive

logP(N > n)

log n
≥ −(1 + ε)αm. (3.5)

The remainder of the proof for the upper bound is deferred to Section 3.5.

Next, as briefly stated in the beginning of this section, we present our analytic approxi-

mation on the exact scale. In the following Theorem, we need more restrictive assumptions

and, in particular, we assume that the matching between the distribution of the data sizes

and the channel characteristics is described by a regularly varying function of index α. A

regularly function is defined as a function of the form `(x)x1/α, where `(·) is slowly varying.

Definition 3.2.1. A function `(x) is slowly varying if `(x)/`(λx) → 1 as x → ∞ for any

fixed λ > 0.
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We assume that functions `(x) are positive and bounded on finite intervals.

Theorem 3.2. Let m := arg max
k=1...K

αk. If F̄−1(x) = Φk(Ḡ
−1
k (x)), where Φk(x) = `(x)x1/αk ,

for all x ≥ 0, αk > 0, k = 1 . . .K, and P(|
∑n

i=1 1{Ji = k} − πkn| ≥ εn) = O(n−(αm+ε)/K),

ε > 0, then as n→∞,

P[N > n] ∼ Γ(αm + 1)

Φm(n)παmm
.

Proof. The proof is deferred to Section 3.5.

Last, we show that the distribution of the total transmission time also follows a power

law of the same index αm on the logarithmic scale.

Theorem 3.3. Under the same conditions as in Theorem 3.1 and E[A1+θ] < ∞ for some

θ > 0, then

lim
t→∞

logP(T > t)

log t
= −αm.

Proof. See Section 3.5.

3.3 Simulations

In this section, we present our simulation experiments. The results are derived fromN = 108

independent samples of our simulated model.

Example 1. In this example, we simulate a channel with two states, 1 and 2. At each

state, the availability periods are i.i.d. random variables exponentially distributed with

µ1 = 1/4 and µ2 = 1. Also, the data unit sizes are continuous random variables, following

the exponential distribution with mean 2 (λ = 1/2). Therefore, by definition, we have

α1 = 2 and α2 = 0.5. The transition probability from state i to state j is defined as pij so

that the steady state probabilities are given by πi = pji/(pij + pji). In Fig. 2.2, we present

the asymptotics of the number of retransmissions on the logarithmic scale for three values

of steady state probabilities: πm = 0.1, πm = 0.5 and πm = 0.9; recall that m is the index of

the state with the larger α. We plot the exact asymptotics from Theorem 3.2, where we note
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Figure 3.3: Example 1. Asymptotics of P[N > n] and transmission delay P[T > t] for a
two-state channel.

that the constant term Γ(αm+1)/παmm increases the precision of our logarithmic asymptotics

(Theorem 3.1). We observe that our simulation results are in excellent agreement with the

theoretical asymptote.

Next, for the same channel and two values of πm, namely 0.1, and 0.5, Fig. 3.3 demon-

strates the logarithmic asymptotics for P[T > t] obtained from Theorem 3.3.
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Figure 3.4: Example 2. Asymptotics of P[N > n] for a three-state channel.

Example 2. In this example, for completeness, we consider a three state channel, with

transition probabilities such that πm = 0.25 and πm = 0.75. The availability periods at each
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state are exponentially distributed with µ1 = 2, µ2 = 1/2 and µ3 = 1/4 and the data sizes

are exponential with unit mean. From Fig. 3.4, we observe that the lightest asymptotics

(power law with exponent α = 4) dominates the tail of P[N > n]. The power law tail

appears earlier when πm = 0.75 and is not affected by other states for large values of n.

Example 3. In our last example, we simulate a two-state channel where the packet sizes

and the availability periods are normally distributed and the channel alternates between

the two states with probability 1/2. Suppose that A and L take absolute values of zero

mean normal random variables, with σL = 5 and σA1 = 2, σA2 = 4, 6, 8, for states 1 and 2

respectively. Therefore, the asymptotic assumption of Theorem 3.1 is satisfied. In Fig 3.5,

we plot the logarithmic asymptotics for three different values of α = σ2
A/σ

2
L, as marked on

the graph.
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Figure 3.5: Example 3. Logarithmic asymptotics for a two-state channel where data sizes
and channel statistics are normally distributed.

3.4 Concluding Remarks

In this section, we discuss the engineering implications of our results. Previously, we showed

that when the channel is correlated, meaning that it switches between dependent states, the

‘best case’ scenario wins. This implies that the delay asymptotics and the stability condi-
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tions are determined by the state that generates the lightest tail supposing that the channel

is uncorrelated. This insensitivity to the detailed structure of the correlations as well as the

optimistic best case predictions are beneficial both for modeling and dimensioning/capacity

planning of such systems. In particular, our insights show that the independent channel

model might be sufficient. Furthermore, the analysis of the independent model is more

likely to be extended to more complex multi-channel and networking systems with failures.

3.4.1 A word of caution

However, in this subsection, we emphasize that a design relying on the best case scenario

may be overly optimistic and even completely wrong if the best state of the channel is

atypical, i.e., it occurs rarely. To illustrate this point, we study the following simplified

model that demonstrates the impact of the correlated channel states on the distribution of

N . In particular, we consider a channel with two states (K = 2), such that α1 > α2, and

we assume that π1 is very small (π1 � π2, π1 ≈ 0), i.e., state 1 is much less frequent than

state 2. In this case, the tail of the distribution is still a power law with index αm = α1.

However, there exists another power law asymptote that appears earlier and dominates the

body of the distribution for smaller values of n.

We herein characterize these two asymptotes with two equivalent explicit formulas that

approximate the retransmission distribution for large n (informal derivations are presented

in the Appendix):

P[N > n] ≈ α2

nα2πα2
2

∞∑
i=0

(−n1−δP2)iΓ(α2 + iδ)

i!
(3.6)

P[N > n] ≈ α1

nα1πα1
1

∞∑
i=0

(−n1−1/δP1)iΓ(α1 + i/δ)

i!
. (3.7)

Note that the sum in (3.6) is absolutely convergent since Γ(α2 + iδ) ≤ dα2 + iδe!. As
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we can easily infer from the first expression, when n1−δP2 � 1, the leading term dominates

and the initial part of the distribution is determined by the heavier power law O(n−α2)

with exponent α2 < α1. This is indeed the asymptote that works well for small values of n,

specifically when n1−δ � 1/P2, as will be evident in the forthcoming example. Accordingly,

the leading term of the second asymptote from (3.7) yields the correct tail asymptotics from

Theorem 3.2, which holds as n→∞.

In order to illustrate the results, we plot the exact asymptotes from equations (3.6) and

(3.7), in Fig. 3.6. In this example, we take α1 = 2 and α2 = 1/2 while the steady state

probabilities are π1 = 0.01 and π2 = 0.99. Specifically, we use five error terms for both

asymptotes. We observe that the precision of the first asymptote deteriorates after n ≈ 102

unless we increase the number of terms in expression (3.6). The leading term is a power law

of index 1/2, which leads to the heavier asymptote. On the other hand, the tail asymptote

derived in this section, even with few terms, fits perfectly for large values of n, which lends

credit to our main Theorem 3.2.
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Figure 3.6: Example (a). Exact asymptotes from (3.6) and (3.7) for a two state channel
where α1 = 2 and α2 = 1/2.

Next, we extend the preceding observation to a three-state channel where the availability

periods are exponentially distributed with parameters µ1 = 2, µ2 = 1 and µ3 = 0.5, and the

packet sizes are also exponential of unit mean. The steady state probabilities are π1 = 0.98,
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π2 = 0.01 and π3 = 0.01.
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Figure 3.7: Example (b). Asymptotics of P[N > n] for a three-state channel.

This scenario also corresponds to a channel that is dominated by the dynamics of the

‘bad’ state. In this case, the lighter asymptotic tail starts to fit later in the distribution. In

Fig. 3.7, we also observe transitions between power laws with different indices, determined

by the values of αk in (3.1). Although the ‘best case’ eventually dominates, the other states

are still present and affect the main body of the distribution of N . In the region n < 102,

the distribution is actually a power law with exponent α = 0.5, which would correspond to

an unstable system if the channel was uncorrelated.

The above discussion is potentially useful in engineering design. Our results imply that

the tail distribution of the delay in a dynamic channel will be light as long as there is at

least one state that generates light tail asymptotics. This claim might be unrealistic since,

as shown in this section, an optimistic design will expose the system to high variability if the

‘good’ state is relatively rare. The main body of the distribution is characterized by different

power laws and a mixture of distributions in between that are, in principle, much heavier

than the tail. This situation must be treated with caution in order to guarantee system

stability and smooth performance for all n. As illustrated in the last two examples, the main
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body can exhibit power law asymptotics with index α < 1; in practice, this corresponds to

a system with zero throughput. If the design does not account for this behavior, it is highly

likely that the system will achieve poor performance for a considerably long period of time.

In most cases, the system will transit to the lightest tail early enough to eliminate the

extreme phenomena resulting from heavier distributions. The best strategy under unpre-

dictable situations is to utilize channel feedback, possibly combined with dynamic fragmen-

tation based on the number of unsuccessful retransmission attempts.

3.5 Proofs

In this section, we present the proof for the upper bound of Theorem 3.1 as well as the

proofs of Theorems 3.2, 3.3.

Proof of Theorem 3.1. Here, we prove the upper bound. Similarly as before

P[N > n|L] = E

[
K∏
k=1

P(L > A|J = k)N
k
n

]

≤ E

[
K∏
k=1

P(L > A|J = k)(1−ε)πkn1
{
Nk
n ≥ (1− ε)πkn

}
+

K∏
k=1

1
{
Nk
n ≤ (1− ε)πkn

}]

=

K∏
k=1

P(Nk
n ≥ (1− ε)πkn)P(L > A|J = k)(1−ε)πkn +

K∏
k=1

P
(
Nk
n ≤ (1− ε)πkn

)
,

where P(Nk
n ≥ (1 − ε)πkn) → 1, implied by ergodicity and stationarity, whereas, from our

main assumption,
∏K
k=1 P(Nk

n ≤ (1− ε)πkn) = O(1/nαm+ε). Thus,

P(N > n) = E[P(N > n|L)]

≤ (1 + ε)KE
K∏
k=1

(
1− F̄ (L)

1
αk(1−ε)

)πkn(1−ε)
1{L ≥ x0}

+ (1 + ε)K
K∏
k=1

(
1− F̄ (x0)

1
αk(1−ε)

)πkn(1−ε)
+

ε

nαm+ε
,

where x0 is such that (3.2) holds. Now using the elementary inequality 1− x ≤ ex, and by
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picking n0 large so that (1 + ε)K
(

1− F̄ (x0)
1

αk(1−ε)
)n(1−ε)

≤ ε/nαm+ε, for n ≥ n0, we obtain

P(N > n) ≤ (1 + ε)KE
K∏
k=1

exp
(
−πkn(1− ε)F̄ (L)

1
αk(1−ε)

)
1{L ≥ x0}+

2ε

nαm+ε

= (1 + ε)KE

[
exp

(
−

K∑
k=1

πkn(1− ε)U
1

αk(1−ε)

)]
1{L ≥ x0}+

2ε

nαm+ε
,

where the first integral, by picking x0 large, is derived similarly as before. Thus

P(N > n) ≤ hεΓ(αm(1− ε) + 1)

(πmn)αm(1−ε) +
2ε

nαm+ε

≤ hεΓ(αm(1− ε) + 1)

(πmn)αm(1−ε) +
2ε

(πmn)αm(1−ε) .

Next, we set Hε = (hεΓ(αm(1− ε) + 1) + 2ε)/π
αm(1−ε)
m , and after taking the logarithm,

we obtain

logP(N > n) ≤ logHε − αm(1− ε) log n,

and by picking n0 such that logHε ≤ αmε log n, we have

logP(N > n) ≤ −αm(1− 2ε) log n.

Last, replacing ε with ε/2 yields

logP(N > n)

log n
≤ −(1− ε)αm. (3.8)

Letting ε→ 0 in both (3.5) and (3.8) completes the proof. �

Proof of Theorem 3.2. Without loss of generality, we may assume that a regularly varying

Φ(.) is eventually absolutely continuous, strictly monotone and locally bounded for x > 0
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since we can always find an absolutely continuous and strictly monotone function such that

Φ∗(x) =


α
∫ x

1 Φ(s)s−1ds, x ≥ 1

0, 0 ≤ x < 1,

(3.9)

which for x large enough satisfies Φ(x) ∼ Φ∗(x). For the rest of the proof, we will use Φ(x)

to denote Φ∗(x).

We also note that for positive h,H we have the following properties, for all h ≤ z ≤ H

and large n,

Φ(n)

Φ(n/z)
≥ (1− ε)zα and Φ′(n/z)/Φ(n/z) =

αz

n
, (3.10)

for n > h.

Therefore, for any 0 < ε < 1 and x ≥ x0, we have

1/Φ←k
(
(1 + ε)F̄ (x)−1

)
≤ Ḡk(x) ≤ 1/Φ←k

(
(1− ε)F̄ (x)−1

)
, (3.11)

where Φ←k (x) denotes the inverse function of Φ∗k(·); since Φ∗k(x) is monotone, for all x ≥ 1,

its inverse exists.

We begin with the lower bound. Following the same arguments as in the proof of

Theorem 3.1, we obtain

P[N > n|L] = P[L > A1, L > A2 . . . , L > An]

= E[P(L > Aj , 1 ≤ j ≤ n|J1, . . . , Jn)]

= E

[
K∏
k=1

P(L > A|J = k)N
k
n

]

≥ E

[
K∏
k=1

P(L > A|J = k)(1+ε)πkn1
{
Nk
n ≤ (1 + ε)πkn

}]

≥ (1− ε)K
K∏
k=1

(1− Ḡk(L))(1+ε)πkn,
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which follows from recalling that P(Nk
n ≤ (1 + ε)πkn) = 1 for n ≥ n0. Next, using our main

assumption and the elementary inequality 1− x ≥ e−(1+ε)x for small x, we obtain

P[N > n] = E[P (N > n|L)]

≥ (1− ε)KE
K∏
k=1

(
1− 1

Φ←k ((1− ε)F̄ (L)−1)

)πkn(1+ε)

1{L ≥ xn}

where, we can choose xn such that Φ←((1− ε)F̄ (xn)−1) = n/H, for n large and H > 0, and

thus

P[N > n] ≥ (1− ε)KE
K∏
k=1

exp

(
− nπk(1 + ε)2

Φ←k ((1− ε)U−1)

)
1{U ≤ F̄ (xn)}

= (1− ε)K
∫ F̄ (xn)

0
exp

(
−n

K∑
k=1

πk(1 + ε)2

Φ←k ((1− ε)u−1)

)
du

≥ (1− ε)K
∫ F̄ (xn)

0
exp

(
− n(1 + ε)3πm

Φ←m ((1− ε)u−1)

)
du,

where we observe that F̄ (L) = U , where U is uniform in (0, 1), and that for large n,∑
k 6=m πkΦ

←
m ((1 − ε)u−1)/πmΦ←k ((1− ε)u−1) ≤ ε, for small u. Next, by changing the vari-

ables z = n/Φ←m ((1− ε)u−1), we obtain for small h > 0,

P[N > n] ≥ (1− ε)K+1

∫ H

h
e−(1+ε)3πmzΦ′m(n/z)

Φ2
m(n/z)

n

z2
dz,

and by the properties of regularly varying functions [see (3.10)], it follows that

P[N > n] ≥ (1− ε)K+1αm
Φm(n)

∫ H

h
e−(1+ε)3πmzzαm−1dz

≥ (1− ε)αm
παmm Φm(n)

∫ Hπm

h
e−yyαm−1dy,

which is derived after replacing (1−ε)K+1/(1+ε)3αm with (1−ε) and by change of variables.
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Last, letting H →∞ and h→ 0, we obtain

P[N > n] ≥ (1− ε)Γ(αm + 1)

παmm Φ(n)
, (3.12)

which proves the lower bound.

For the upper bound, similarly as before, we obtain

P[N > n|L] ≤ E

[
K∏
k=1

(1− Ḡk(L))(1−ε)πkn1
{
Nk
n ≥ (1− ε)πkn

}]
+ E

[
K∏
k=1

1
{
Nk
n ≤ (1− ε)πkn

}]

≤ (1 + ε)K
K∏
k=1

(1− Ḡk(L))(1−ε)πkn +

K∏
k=1

P
(
Nk
n ≤ (1− ε)πkn

)
,

where, by ergodicity and stationarity, we recall that P(Nk
n ≥ (1− ε)πkn)→ 1 whereas, from

our main assumption,
∏K
k=1 P(Nk

n ≥ (1− ε)πkn) = O(1/nαm+ε). Thus,

P(N > n) = E[P(N > n|L)]

≤ (1 + ε)KE
K∏
k=1

(
1− 1

Φ←k ((1 + ε)F̄ (L)−1)

)πkn(1−ε)
1{L ≥ x0}

+ (1 + ε)KE
K∏
k=1

(
1− Ḡk(x0)

)πkn(1−ε)
+ o

(
1

nαm+ε

)
:= I1 + o

(
1

nαm+ε

)
,

where we pick x0 such that (1 + ε)K
(
1− Ḡ(x0)

)πkn(1−ε) ≤ o(1/nαm+ε), for n ≥ n0. Now

using the elementary inequality 1− x ≤ ex, we have

I1 ≤ (1 + ε)KE exp

(
−

K∑
k=1

πkn(1− ε)
Φ←k ((1 + ε)F̄ (L)−1)

)

≤ (1 + ε)K
∫ 1

0
exp

(
−

K∑
k=1

πkn(1− ε)
Φ←k ((1 + ε)/u)

)
du

≤ (1 + ε)K
∫ 1

0
exp

(
− πmn(1− ε)2

Φ←m ((1 + ε)/u)

)
du,
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where we argue similarly as in the preceding proof for the lower bound. Then, changing the

variables z = n/Φ←m ((1 + ε)/u) yields

I1 ≤ (1 + ε)K
∫ 1/Φm(n/em)

1/Φm(n/h)
exp

(
− πmn(1− ε)2

Φ←m ((1 + ε)/u)

)
du

+

dlog(n/nε)e∑
k=m

e−πme
k
P
[
ek ≤ n

Φ←m ((1 + ε)U−1)
≤ ek+1

]
+ e−n/nε

:= I11 + I12 + I10.

First, we compute I11 as

I11 ≤ (1 + ε)K+1

∫ em

h
e−πm(1−ε)2z Φ′m(n/z)n

Φ2
m(n/z)z2

dz

≤ (1 + ε)K+1αm
Φm(n)

∫ em

h
e−πm(1−ε)2zzαm−1dz

≤ (1 + ε)αm
παmm Φm(n)

∫ em

h(1−ε)2πm
e−zzαm−1dz,

where we replace (1 + ε)K+1/(1− ε)2αm with (1 + ε). Now, I12 becomes

I12 ≤
dlog(n/nε)e∑

k=m

e−πme
k

Φm(n/ek+1)
≤
dlog(n/nε)e∑

k=m

e−πme
k
(1 + ε)k+1

Φm(n)
≤ o

(
1

Φm(n)

)
,

since the preceding sum is finite and Φ(n)/Φ(n/ek) ≤ (1 + ε)k for all n ≥ n0.

Last, I10 = o(1/nαm+ε) = o(1/Φm(n)) from our main assumption. Therefore,

P[N > n]Φm(n)παmm ≤ (1 + ε)αm

∫ em

0
e−zzαm−1dz + o(1). (3.13)

Note that passing m→∞ in the first term of (3.13), yields that for all n ≥ n0,

P[N > n]Φm(n)παmm
Γ(αm + 1)

≤ 1 + 2ε.
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After replacing 2ε with ε/2, we obtain the upper bound

P[N > n] ≤ (1 + ε)
Γ(αm + 1)

παmm Φm(n)
, (3.14)

which, along with (3.12), finishes the proof. �

Proof of Theorem 3.3. In the following proof, we use the notation (x ∧ y) = min(x, y) to

refer to the minimum of x and y. First we prove the upper bound.

For any 0 < δ < 1, we have

P[T > t] = P

[
N−1∑
i=1

Ai + L > t

]

≤ P

[
N−1∑
i=1

(Ai ∧ L) > (t− t1−δ), L ≤ t1−δ
]

+ P[L > t1−δ]

≤ P

[
N∑
i=1

(Ai ∧ t1−δ) > (t− t1−δ)

]
+ P[L > t1−δ]

≤ P

[
N∑
i=1

(Ai ∧ t1−δ) > (1− ε)t,N ≤ t1−δ
]

+ P
[
N > t1−δ

]
+ P[L > t1−δ]

, I1 + I2 + I3,

where in the third inequality, we use t−t1−δ ≈ (1−ε)t for large t. First, I3 is upper bounded

by

I3 ≤
E[Lαm1{L > t1−δ}]

tαm(1−δ) = o(1/tαm(1−δ)), (3.15)

since the condition E(A1+θ) <∞, together with our main assumption, imply that for x0 as

in (3.2),

E[Lαm ] = x0 +

∫ ∞
x0

P[Lαm > x]dx ≤ x0 +

∫ ∞
x0

P[A > x1/αm |J = m]αm(1−ε)dx

≤ x0 +

∫ ∞
x0

(
EA1+θ

)αm(1−ε)

x(1+θ)(1−δ)(1−ε) dx <∞,
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as t→∞ for 1 + θ > 1/(1− δ)(1− ε).

Next, for I1, we have

I1 = EP

t1−δ∑
i=1

(Ai ∧ t1−δ) > (1− ε)t|J1, J2, . . . , Jbt1−δc


≤ Ee−θ(1−ε)tE exp

t1−δ∑
i=1

θ(Ai ∧ t1−δ) > (1− ε)t|J1, J2, . . . , Jbt1−δc


= Ee−θ(1−ε)t

t1−δ∏
i=1

E exp
[
θ(Ai ∧ t1−δ)|Ji

]
,

which follows by applying the exponential Chebyshev’s inequality for θ > 0. Now, observe

that E[Ai|Ji] ≤ max
k=1,...,K

E[A|J = k] =: µm and using the inequality ex ≤ 1 + xey, 0 ≤ x ≤ y,

we upper bound the exponential moments of Xi := (Ai ∧ t1−δ|Ji) by

E exp
[
θ(Ai ∧ t1−δ)|Ji

]
≤ 1 + eθt

1−δ
θE(Ai|Ji) ≤ 1 + eθt

1−δ
θµm ≤ exp

(
θµme

θtδ−1
)
,

which renders

I1 ≤ e−θ(1−ε)t exp
(
t1−δθµme

θtδ−1
)

= e−(1−ε)tδeµme ≤ o
(
t−αm(1−δ)

)
, (3.16)

where we pick θ = tδ−1.

From Theorem 3.2, we recall that for 0 < δ < 1,

lim
t→∞

logP
[
N > t1−δ

]
log t

= −(1− δ)αm,

which, along with (3.15) and (3.16), and passing δ → 0, imply

lim sup
t→∞

logP[T > t]

log t
≤ −αm. (3.17)
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Next, we establish the lower bound. It follows easily that

P[T > t] = P

[
N−1∑
i=1

Ai + L > t

]

≥ P

[
N−1∑
i=1

Ai > t,N ≥ t1+δ + 1

]

≥ P
[
N ≥ t1+δ + 1

]
− P

t1+δ∑
i=1

Ai ≤ t


≥ P

[
N ≥ t1+δ + 1

]
− E

P
t1+δ∑
i=1

Ai ≤ t|J1, J2, . . . , Jbt1−δc


:= I1 − I2.

Now, we can show that I2 ≤ o(t−αm(1+δ)), by similar arguments as in the proof of (3.16)

for the proof for the upper bound; we omit the details.

Regarding I1, we recall from Theorem 3.1 that for 0 < δ < 1, we have

lim
t→∞

logP
[
N > t1+δ + 1

]
log t

= −(1 + δ)αm,

and thus, by passing δ → 0,

lim inf
t→∞

logP[T > t]

log t
≥ −αm. (3.18)

Finally, combining (3.17) and (3.18) concludes the proof.
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Appendix

In this Appendix, we provide the informal derivation of formulas (3.6) and (3.7) of Sec-

tion 3.4.1.

Proof of (3.6) and (3.7). Starting from equation (3.3), assuming that F̄ (x) ≈ Ḡk(x)αk , k =

1, 2, and using similar arguments as in the derivation of (3.3)-(4.7), we informally argue

that

P[N > n] ≈ E[(1− Ḡ1(L))π1n(1− Ḡ2(L))π2n]

≈ E[(1− F̄ (L)1/α1)π1n(1− F̄ (L)1/α2)π2n]

≈ E[(1− U1/α1)π1n(1− U1/α2)π2n]

≈ E[e−π1nU
1/α1−π2nU1/α2

],

since F̄ (L) = U , where U is uniformly distributed in (0,1). Thus,

P[N > n] ≈
∫ 1

0
e−π1nu

1/α1−π2nu1/α2du (3.19)

=
α2

nα2πα2
2

∫ nπ2

0
e
−z− π1nz

α2/α1

(nπ2)
α2/α1 zα2−1dz,

which follows by changing the variables z = π2nu
1/α2 . Now, let δ := α2/α1 < 1 and
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P2 := π1/π
δ
2, so that

P[N > n] ≈ α2

nα2πα2
2

∫ nπ2

0
e−z−n

1−δP2zδzα2−1dz

=
α2

nα2πα2
2

∫ nπ2

0
e−zzα2−1

(
1− n1−δP2z

δ +
(n1−δP2)2z2δ

2
− · · ·+ (−n1−δP2)iziδ

i!
+ . . .

)
dz,

by the Taylor expansion of the function ex =
∑1

i=0 x
i/i!. Now by extending the integral to

infinity we have

P[N > n] ≈ α2

nα2πα2
2

∫ ∞
0

e−zzα2−1

(
1− n1−δP2z

δ +
(n1−δP2)2z2δ

2
− · · ·+ (−n1−δP2)iziδ

i!
+ . . .

)
dz

=
α2

nα2πα2
2

(∫ ∞
0

e−zzα2−1dz − n1−δP2

∫ ∞
0

e−zzα2+δ−1dz +
(n1−δP2)2

2

∫ ∞
0

e−zzα2+2δ−1dz−

· · ·+ (−n1−δP2)i

i!

∫ ∞
0

e−zzα2+iδ−1dz + . . .

)
=

α2

nα2πα2
2

(
Γ(α2)− n1−δP2Γ(α2 + δ) +

(n1−δP2)2Γ(α2 + 2δ)

2
− · · ·+ (−n1−δP2)iΓ(α2 + iδ)

i!
+ . . .

)
,

which follows immediately from the definition of the gamma function Γ(α) =
∫∞

0 e−zzα−1dz.

This yields the explicit form

P[N > n] ≈ α2

nα2πα2
2

∞∑
i=0

(−n1−δP2)iΓ(α2 + iδ)

i!
.

By the same approach, starting from (3.19) and changing of variables as z = nπ1u
α1 ,

we obtain

P[N > n] ≈
∫ 1

0
e−π1nu

1/α1−π2nu1/α2du

=
α1

nα1πα1
1

∫ nπ1

0
e
−z− π2nz

α1/α2

(nπ1)
α1/α2 zα1−1dz.
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Now, for P1 := π2/π
1/δ
1 and using Taylor expansion of ex, we have

P[N > n] ≈ α1

nα1πα1
1

∫ nπ1

0
e−z−n

1−1/δP1z1/δzα1−1dz

≈ α1

nα1πα1
1

∫ ∞
0

e−zzα1−1

(
1− n1−1/δP1z

1/δ +
(n1−1/δP1)2z2/δ

2
− · · ·+ (−n1−1/δP1)izi/δ

i!
+ . . .

)
dz,

for large n. By identical arguments as before,

P[N > n] ≈ α1

nα1πα1
1

(
Γ(α1)− n1−1/δP1Γ(α1 + 1/δ) +

(n1−1/δP1)2Γ(α1 + 2/δ)

2
− . . .

· · ·+ (−n1−1/δP1)iΓ(α1 + i/δ)

i!
+ . . .

)
,

which yields the explicit form

P[N > n] ≈ α1

nα1πα1
1

∞∑
i=0

(−n1−1/δP1)iΓ(α1 + i/δ)

i!
.
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Chapter 4

Instability of Sharing Systems in

the Presence of Retransmissions

Retransmissions represent a primary failure recovery mechanism on all layers of communi-

cation network architecture. Similarly, fair sharing, e.g. processor sharing (PS), is a widely

accepted approach to resource allocation among multiple users. In previous chapters, it has

been shown that retransmissions in failure-prone, e.g. wireless ad hoc, networks can cause

heavy tails and long delays. In this chapter, we discover a new phenomenon: PS-based

scheduling induces complete instability in the presence of retransmissions, regardless of the

job sizes and the traffic intensity. This phenomenon occurs even when the job sizes are

bounded/fragmented, e.g., deterministic. Our work demonstrates that scheduling one job

at a time, such as first-come-first-serve, achieves a larger stability region and should be

preferred in these systems.

4.1 Introduction

High variability and frequent failures characterize the majority of large-scale systems, e.g.,

infrastructure-less wireless networks, cloud/parallel computing systems, etc. The nature of

these systems imposes the employment of failure recovery mechanisms to guarantee their
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good performance. One of the most straightforward and widely used recovery mechanisms is

to simply restart all the interrupted jobs from the beginning after a failure occurs. In com-

munication systems, restart mechanisms lie at the core of the network architecture where

retransmissions are used on all protocol layers to guarantee data delivery in the presence

of channel failures, e.g., automatic repeat request (ARQ) protocol [19], contention based

ALOHA type protocols in the medium access control (MAC) layer, end-to-end acknowl-

edgements in the transport layer, HTTP downloading scheme in the application layer, and

others.

Furthermore, sharing is a primary approach to fair scheduling and efficient management

of the available resources. Fair allocation of the network resources among different users

can be highly beneficial for increasing throughput and utilization. For instance, CDMA is a

multiple access method used in communication networks, where several users can transmit

information simultaneously over a single channel via sharing the available bandwidth. An-

other example is Processor Sharing (PS) scheduling [36] where the capacity is equally shared

between multiple classes of customers. In Generalized PS (GPS) [32], service allocation is

done according to some fixed weights. The related Discriminatory PS (DPS) [17, 23, 31] is

used in computing to model the Weighted Round Robin (WRR) scheduling, while it is also

used in communications, as a flow level model of heterogenous TCP connections. Similarly,

fair queuing (FQ) is a scheduling algorithm where the link capacity is fairly shared among

active network flows; in weighted fair queuing (WFQ), which is the discretized version of

GPS, different scheduling priorities are assigned to each flow.

In general, PS-based scheduling disciplines have been widely used in computer and

communication networks. Early investigations of PS queues were motivated by applications

in multiuser computer systems [22]. The M/G/1 PS queue has been studied extensively in

the literature [35]. In the case of the M/M/1 PS system, the conditional Laplace transform

of the waiting time was derived in [22]. The importance of scheduling in the presence of

heavy tails was first recognized in [18], and later, in [29], the M/G/1 PS queue was studied

assuming subexponential job sizes; see also [29] for additional references.
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In [34], it was proven that, although there are policies known to optimize the sojourn

time tail under a large class of heavy-tailed job sizes (e.g., PS and SRPT) and there are

policies known to optimize the sojourn time tail in the case of light-tailed job sizes, e.g.,

first-come-first-serve (FCFS), no policies are known to optimize the sojourn time tail across

both light and heavy-tailed job size distributions. Indeed, such policies must “learn” the job

size distribution in order to optimize the sojourn time tail. In the heavy-tailed scenarios,

any scheduling policy that assigns the server exclusively to a very large job, e.g., FCFS,

may induce long delays, in which case, sharing guarantees better performance.

With regard to retransmissions, it was first recognized in [24, 25, 26, 9] that restart

mechanisms may result in heavy-tailed (power law) delays even if the job sizes and failure

rates are light-tailed. In [9], it was shown that the power law delays arise whenever the

cumulative hazard functions of the data and failure distributions are proportional.

In this chapter, we study the effects of sharing on the system performance when restarts

are employed in the presence of failures. We revisit the well-studied M/G/1 PS queue with

a new focus on server failures and restarts. We use the following generic model, which was

first introduced in [24] in the application context of computing. The system dynamics is

described as a process {An}n≥1, where An correspond to the periods when the system is

available. {An}n≥1 is a sequence of i.i.d random variables, independent of the job sizes.

In each period of time that the system is available, say An, we attempt to execute a job

of random size B. If An > B, we say that the job is successfully completed; otherwise,

we restart the job from the beginning in the following period An+1 when the channel is

available.

In this work, our main contributions are the following. First, we prove that the M/G/1

PS queue is always unstable, regardless of how light the load is and how small the job sizes

may be, see Theorems 4.1 and 4.2 in Section 4.3. This is a new phenomenon, since, contrary

to the conventional belief, sharing the service even between very small deterministic jobs

can render the system completely unstable when retransmissions/restarts are employed.

This instability is strong, in the sense of system having zero throughput. The intuition
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is the following. If a large number of jobs arrives in a short period of time, then under

the elongated service time distribution induced by sharing, coupled with retransmissions,

the queue will keep accumulating jobs that will equally share the capacity, which further

exacerbates the problem. Every time a failure occurs, the system resets and the service

requirement for each job elongates as the queue size increases. The expected delay until

the system clears becomes increasingly long and, consequently, the queue will continue

to grow leading to instability. This result also applies to the discriminatory PS (DPS)

queue, where the service is not shared equally but according to some fixed weights. Next,

we remove the Poisson assumption and extend our results to general renewal arrivals in

Section 4.4. This demonstrates that instability arises from the interplay between sharing and

retransmission/restart mechanisms, rather than any specific characteristics of the arrival

process and/or service distribution.

We would also like to emphasize that job fragmentation cannot stabilize the system

regardless of how small the fragments are made, since Theorem 4.2 shows instability for

any minimum job size β > 0. Similarly, the system cannot be stabilized by checkpointing

regardless of how small the intervals between successive checkpoints are chosen. In our

experimental results, we make an interesting observation on the system behavior before it

saturates. There exists a transient period, during which the queue appears as if it were

stable. Although it may occasionally accumulate a substantial number of jobs, it returns to

zero and starts afresh. However, there exists a time when the queue reaches a critical size

after which the service rate of the jobs reduces so much that neither of them can depart.

Hence, as the queue continues to increase in size, the system becomes unstable.

To contrast these results, in Section 4.3.2, we study the stability of a non-preemptive

policy that serves one job at a time under more specific assumptions of Poisson failure rates.

To this end, Theorem 4.3 shows that when jobs are bounded, serving one job at a time,

e.g., FCFS, always has a non-empty stability region and, thus, performs better than PS.

In order to gain further insight into the system, we then focus on its transient behavior

and study the properties of the completion time of a finite number of jobs with no future
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arrivals. Specifically, we compare two work-conserving policies: scheduling one job at a time,

e.g., FCFS, and PS. Overall, we discover that serving one job at a time exhibits uniformly

better performance than PS; compare Theorems 4.7 and 4.8, respectively. Furthermore,

under more technical assumptions, and for light-tailed job/failure distributions, we show

that PS performs distinctly worse compared to the heavy-tailed ones, and that PS is always

unstable.

From an engineering perspective, our results indicate that traditional approaches in

existing systems may be inadequate in the presence of failures. This new phenomenon

demonstrates the need of revisiting existing techniques to large-scale failure-prone systems,

where PS-based scheduling may perform poorly. For example, since PS is unstable even for

deterministic jobs, packet fragmentation, which is widely used in communications, cannot

alleviate instabilities. Indeed, fragmentation can only postpone the time when the instability

occurs, but cannot eliminate the phenomenon; see Example 1 in Section 4.6. Therefore,

serving one job at a time, e.g., FCFS, is highly advisable in such systems; see Section 4.3.2.

The chapter is organized as follows. In Section 4.2, we introduce the model along with

the necessary definitions and notation. Next, in Section 4.3, we present our main results on

the M/G/1 PS queue, which are further extended in Section 4.4 to general renewal arrivals.

On the other hand, in Section 4.3.2 we study the stability of non-preemptive policies that

serve one job at a time, e.g., FCFS. Later, in Section 4.5, we analyze the transient behavior

of the system under two different scheduling policies, e.g., serving one job at a time and PS.

Last, Section 4.6 presents our simulation experiments that validate our main theoretical

findings, while Section 4.7 concludes the chapter.

4.2 Definitions and Notation

First, we provide the necessary definitions and notation assuming that the jobs are served

individually. Consider a generic job of random size B, B > 0 a.s., requesting service in

a failure-prone system. Without loss of generality, we assume that the system is of unit
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capacity. Its dynamics is described as a process {An}n≥1 of i.i.d availability periods, where

at the end of each period An, the system experiences a failure, as shown in Figure 4.1. The

channel/server statistics {An}n≥1 are independent of the job size B.

Furthermore, we assume that the first failure occurs at time A0 ≥ 0, which is indepen-

dent of {An}n≥1 and B. When A0 is equal in distribution to the excess/residual distribution

of A1, {An}n≥0 will be in stationarity. Throughout the chapter, we will use different as-

sumptions on A0, e.g., A0 ≡ 0, which will be explicitly stated in the corresponding results.

Let A be a generic random variable that is equal in distribution to A1. We denote the

complementary cumulative distribution functions for A and B, respectively, as

Ḡ(x) , P(A > x) and F̄ (x) , P(B > x).

A0 A1 A2

t

Figure 4.1: System with failures.

At each period of time that the system becomes available, say An, we attempt to process

a generic job of size B. If An > B, we say that the job is completed successfully; otherwise,

we wait until the next period An+1 when the channel is available and restart the job. A

sketch of the model depicting the system is drawn in Figure 4.2.

The number of restarts, N , and the total service time, S, for a job of size B, whose service

begins immediately after a first failure A0 and is served in isolation without preemption are

defined as follows.

Definition 4.2.1. The number of restarts for a generic job of size B is defined as

N , inf{n ≥ 1 : An > B}.
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B Failure-prone
system
{An}

An > B

restart no

Figure 4.2: Jobs executed in a system with failures.

Definition 4.2.2. The service time is the total time until a generic job of size B is suc-

cessfully completed and is denoted as

S ,
N−1∑
i=1

Ai +B.

Note that the preceding definitions will be different when jobs are sharing a server, as

in the Processor Sharing discipline. In general, a job B will successfully complete service

during an availability period An+1 if there exists t ≤ An+1, such that

∫ Tn+t

Tn

CBu du = B,

where CBu is the service rate that job B receives at time u and Tn is the time of the nth

failure, Tn =
∑n

i=0Ai, n ≥ 0. Note that in general CBu depends on the number of jobs

at time Tn, the arrival process and the service discipline. We use Bj to denote the service

requirement of job j where {Bj}j≥1 is an i.i.d process equal in distribution to B. The failure

times {An}n≥0, job requirements {Bj}j≥1 and the arrival process are mutually independent.

Throughout the chapter, we use the following standard notation. For any two real

functions f(x) and g(x) and fixed x0 ∈ R ∪ {∞}, we say f(x) ∼ g(x) as x→ x0, to denote

limx→x0 f(x)/g(x) = 1.

4.3 M/G/1 Queue with Restarts

In this section, we discuss the stability of the M/G/1 queue under two scheduling disciplines:

Processor Sharing (PS) and non-preemptive one job at a time policy. Throughout this
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section, we assume that the arrival process is Poisson with rate λ > 0. In the following

subsection, we show in Theorem 4.2 that the M/G/1 PS queue is unstable under considerable

generality. Next, in subsection 4.3.2, we derive the necessary and sufficient condition for

the system to be stable when the jobs are processed one at a time and the failure rates are

Poisson.

4.3.1 Instability of Processor Sharing Queue

In this section, we show in Theorems 4.1 and 4.2 that the M/G/1 PS queue is unstable when

jobs need to restart after failures. We consider a general renewal failure process as defined in

Section 4.2. First, in Proposition 4.1, we show that for some initial condition on the queue

size, the probability that no job completes service approaches 1, under the mild assumption

that jobs are bounded from below by some positive constant β. This is a natural assumption

for communication or computing applications where jobs, e.g., files, packets, threads, must

have a header to contain the required information, such as destination address, thread id,

etc. Hence, the job sizes, in practice, cannot be smaller than a positive constant.

Next, in Theorem 4.1, without any initial condition on the queue size, we prove that

after some finite time, no job ever leaves the system; this result is stronger than standard

stability theorems. Then, in Corollary 4.1, we draw a weaker conclusion that the queue

size grows to infinity, which is also stated in Theorem 4.2. Nevertheless, the latter does not

require the assumption on the minimum job size.

We begin with the following proposition. As previously mentioned, in this section we

assume a general renewal failure process {An}n≥0, as defined in Section 4.2. In the following

proposition, we assume that the first failure occurs at t = 0, i.e. A0 = 0. The remaining

results (Theorems 4.1 and 4.2) allow for an arbitrary delay until the first failure, 0 ≤ A0 <

∞; this assumption includes the stationary version of {An}n≥0, when A0 has the excess

distribution of A.

Proposition 4.1. Assume that a failure occurs at time t = 0, i.e. A0 ≡ 0, and there are

Q0 ≥ k jobs in the M/G/1 PS queue. If EA < ∞ and P[B ≥ β] = 1, β > 0, then there
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exists θ > 0, such that for all k ≥ 1

P[no job ever completes service] ≥ 1−O(EA1(A ≥ βk) + e−θk). (4.1)

Proof. Let T1 =
∑ck

i=1Ai be the cumulative time that includes the first ck failures for t > 0;

to simplify notation we write
∑y

x to denote
∑byc
dxe, where dxe is the smallest integer ≥ x

and byc is the largest integer ≤ y. Now, define the event A1 ≡ A1(k) , {A1 < βk,A2 <

βk, . . . , Ack < βk}. On this event, no job can leave the system since Q0 ≥ k and all of them

are at least of size β. Thus, if they were served in isolation, they could not have completed

service in the first ck attempts.

Now, let E1 denote the event that there is no departure in the first ck service attempts

and there are at least k arrivals in (0, T1]; we use Z(t0,t1] to denote the number of Poisson

arrivals in the interval (t0, t1], whereas we simply write Zt for intervals (0, t]. Formally,

E1 ⊃ E1 , {ZT1 ≥ k,A1},

on the set {Q0 ≥ k}. Note that E1 is clearly a subset of E1, since there may be many other

scenarios when no jobs leave the queue either because jobs are larger than β or more than

k jobs are sharing the server. Now, observe that

P(E1) ≥ P(ZT1 ≥ k, T1 ≥ 2k/λ,A1)

≥ P(Z2k/λ ≥ k, T1 ≥ 2k/λ,A1)

≥ P(Z2k/λ ≥ k)P(T1 ≥ 2k/λ,A1),

since Poisson arrivals are independent of the failure process. Thus,

P(E1) ≥ P(Z2k/λ ≥ k) (P(A1)− P(T1 < 2k/λ)) .
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First, note that

P(Z2k/λ ≥ k) = 1− P(Z2k/λ < k) = 1− P(2k − Z2k/λ > k)

≥ 1− e−θkEeθ(2k−Z2k/λ) = 1− eθkEe−θZ2k/λ ,

by Cramer’s bound for θ > 0. Next, observe that Z2k/λ is Poisson with mean 2k and thus

P(Z2k/λ ≥ k) ≥ 1− eθke2(e−θ−1)k = 1− e−θ1k,

where θ1 = 2(1− e−θ)− θ > 0, for θ small.

Second, observe that

P(T1 < 2k/λ) = P

(
ck∑
i=1

Ai < 2k/λ

)
= P

(
ck∑
i=1

(Ai − EA) < 2k/λ− ckEA

)

≤ P

3k/λEA∑
i=1

(EA−Ai) > k/λ

 ,

by picking c , 3/(λEA). Now, let Xi , EA − Ai, which are bounded from above since

Xi ≤ EA < ∞, from our main assumption. Therefore, Cramer’s large deviation bound

implies that

P(T1 < 2k/λ) ≤ P

3k/λEA∑
i=1

Xi > k/λ

 ≤ H2e
−θ2k,

for some H2, θ2 > 0.

Therefore,

P(E1) ≥ (1− e−θ1k)
(
P(A1)−H2e

−θ2k
)

≥ P(A < βk)ck − (e−θ1k +H2e
−θ2k −H2e

−(θ1+θ2)k)

≥ (1− P(A ≥ βk))ck −He−θk,
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where θ = min(θ1, θ2) and H > 0 such that H < (1 + H2). Next, using 1 − x ≥ e−2x for

small x, we have for all k ≥ k0

P(E1) ≥ e−2ckP(A≥βk) −He−θk

≥ 1− 2ckP(A ≥ βk)−He−θk

≥ e−4ckP(A≥βk)−2He−θk .

Next, at time T1 = T1, on event E1, the queue has at least 2k jobs, i.e., QT1 ≥ 2k,

and no jobs have departed. Similarly as before, let T2 =
∑3ck

i=ck+1Ai be the cumulative

time that includes the next 2ck failures, and define A2 ≡ A2(k) = {Ack+1 < 2βk,Ack+2 <

2βk, . . . , A3ck < 2βk}. Now, if E2 is the event that there is no departure in the next 2ck

attempts and there are at least 2k arrivals in (T1, T2], then E2 ⊃ E2 , {ZT2 ≥ 2k,A2} on

{QT1 ≥ 2k}; note that E2 is independent of E1. Then, the probability that no job departs

in (0, T2], where T2 = T1 + T2, is lower bounded by

P(no job departs in (0, T2]) ≥ P(E1 ∩ E2)

≥ P(ZT1 ≥ k,A1, QT1 ≥ 2k, Z(T1,T2] ≥ 2k,A2)

≥ P(ZT1 ≥ k,A1, ZT2 ≥ 2k,A2) = P(E1)P(E2), (4.2)

since {QT1 ≥ 2k} ⊇ {ZT1 ≥ k,A1} on the set {Q0 ≥ k}; the remaining statements in this

proof should all be considered on {Q0 ≥ k}.

Next, via identical arguments as before, we obtain

P(E2) ≥ P(ZT2 ≥ 2k, T2 ≥ 4k/λ,A2)

≥ P(Z4k/λ ≥ 2k) (P(A2)− P(T2 < 4k/λ)) ≥ e−8ckP(A≥2βk)−2He−2θk
.

Therefore, at time T2, on event E1 ∩ E2, there are at least 4k jobs.
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In general, for any n, we can extend the reasoning from (4.2) to obtain

P(no job departs in (0, Tn]) ≥ P(E1 ∩ E2 ∩ · · · ∩ En)

≥ P(ZT1 ≥ k,A1, ZT2 ≥ 2k,A2, . . . , ZTn ≥ 2n−1k,An)

= P(E1 ∩ E2 ∩ · · · ∩ En),

where Tn =
∑n

i=1 Ti, Tn =
∑(2n−1)ck

i=(2n−1−1)ck+1
Ai, En is the event that there are no departures

during 2n−1ck attempts and there are at least 2n−1k arrivals in (Tn−1, Tn), and En = {ZTn ≥

2n−1k,An}. Similarly as before,

P(En) ≥ e−2n+1ckP(A≥2n−1βk)−2He−θ2
n−1k

.

Hence, using the preceding inequality and the independence of Ei’s, we obtain

P(E1 ∩ E2 ∩ · · · ∩ En) ≥ P(E1 ∩ E2 ∩ · · · ∩ En) = P(E1)P(E2) · · ·P(En)

≥
n∏
i=1

e−2i+1ckP(A≥2i−1βk)−2He−2i−1θk

= e−4
∑n−1
i=0 2ickP(A≥2iβk)−2H

∑n−1
i=0 e

−2iθk

≥ e−4
∑∞
i=0 2ickP(A≥2iβk)−2He−θk

∑∞
i=0 e

−(2i−1)θk
.

Now, observe that
∑∞

i=0 e
−(2i−1)θk <∞, and thus we can pick H such that

P(E1 ∩ E2 ∩ · · · ∩ En) ≥ e−4
∑∞
i=0 2ickP(A≥2iβk)−He−θk .

Furthermore, we observe that

∞∑
i=0

2ickP(A ≥ 2iβk) ≤ c

β

∞∑
i=0

βk

∫ 2i+1

2i
P(A ≥ xβk)dx

≤ c

β
βk

∫ ∞
1

P(A ≥ xβk)dx =
c

β

∫ ∞
βk

P(A ≥ y)dy =
c

β
EA1(A ≥ βk),
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and thus

P(E1 ∩ E2 ∩ · · · ∩ En) ≥ e−4cβ−1EA1(A≥βk)−He−θk ≥ 1−H(EA1(A ≥ βk) + e−θk).

Last, note that, on {Q0 ≥ k},

P(no job ever completes service) ≥ P(∩∞i=1Ei) = lim
n→∞

P(E1 ∩ E2 ∩ · · · ∩ En)

≥ 1−H(EA1(A ≥ βk) + e−θk),

where the first inequality follows by definition and the second equality from monotone

convergence.

Hence, we proved that the statement holds for all k ≥ k0. Last, for k < k0, we can

choose H > 1/(EA1(A ≥ βk0) + e−θk0), such that P(no job ever completes service|Q0 ≥

k) ≥ 0 ≥ 1−H(EA1(A ≥ βk0)+e−θk0) ≥ 1−H(EA1(A ≥ βk)+e−θk) and thus (4.1) holds

trivially.

We proceed with our main theorem which shows that, after some finite time, no job will

ever depart.

Theorem 4.1. In the M/G/1 PS queue, if EA < ∞, 0 ≤ A0 < ∞ a.s., and P[B ≥ β] =

1, β > 0, then

lim
t→∞

P(no job ever completes service after time t) = 1.

Remark 11. Note that Theorem 4.1 is stronger than standard stability theorems, since it

also implies that eventually no job ever leaves the system.

Proof. For any k ≥ 1, let Tk be the first time that there are k jobs in the queue and a failure

occurs. Tk is almost surely finite since it is upper bounded by the time T̄k that there are

at least k arrivals in an open interval of size β just before a failure; note that 0 ≤ A0 <∞

a.s. The probability of this event is P(Zβ ≥ k) > 0.

Let B , {BTk
1 , . . . , BTk

QTk
} denote the job sizes that are present in the queue at time Tk.
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From Proposition 4.1, we have

P(no job leaves after Tk|QTk ,B) ≥ 1−H(EA1(A ≥ βk) + e−θk) ≥ 1− ε, (4.3)

for all k ≥ k0, since θ > 0 and EA1(A ≥ βk)→ 0 as k →∞.

Now, for any fixed time t, we obtain

P(no job leaves after time t) ≥ P(Tk ≤ t,no job leaves after Tk)

= E[P(Tk ≤ t|QTk ,B)P(no job leaves after Tk|QTk ,B)]

≥ P(Tk ≤ t)(1− ε),

which follows from (4.3); the equality follows from the fact that the event {no job leaves

after Tk} is independent of the past, e.g., Tk ≤ t, given QTk ,B. Next, recall that Tk is

almost surely finite, i.e. limt→∞ P(Tk ≤ t) = 1, and thus taking the limit as t→∞ yields

limt→∞P(no job leaves after time t) ≥ 1− ε.

Last, letting ε ↓ 0 finishes the proof.

Corollary 4.1. Under the conditions in Theorem 4.1, we have as t ↑ ∞,

Qt ↑ ∞ a.s.

Proof. Note that the number of arrivals Zt ↑ ∞ as t ↑ ∞ a.s. Thus, without loss of

generality, we can assume that Zt(ω) ↑ ∞ as t ↑ ∞ for every ω (by excluding the set of zero

probability). Then, for any v > 0,

Uv , {no job ever completes service after time v} ⊂ {Qt ↑ ∞ as t ↑ ∞}.

Now, if ω ∈ Uv, then for t ≥ v,Qt(ω) is non-decreasing. Furthermore, since there are no
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departures, the rate of increase of Qt is equal to the arrival rate, and thus Qt ↑ ∞. Hence,

P(Qt ↑ ∞ as t ↑ ∞) ≥ P(no job ever completes service after time v)

which, by Theorem 4.1, implies

P(Qt ↑ ∞ as t ↑ ∞) = lim
v→∞

P(no job ever completes service after time v) = 1.

Finally, we show instability, in general, without the condition P[B ≥ β] = 1. However,

the conclusion is slightly weaker than in Theorem 4.1, and is the same as in Corollary 4.1.

Basically, one cannot guarantee that no job ever completes service, since jobs can be arbi-

trarily small.

Theorem 4.2. In the M/G/1 PS queue, if EA < ∞ and 0 ≤ A0 < ∞ a.s., we have as

t ↑ ∞,

Qt ↑ ∞ a.s.

Proof. First, by assumption, we can pick β > 0 such that P[B ≥ β] > 0. Then, for any

time t, let Qβt be the number of jobs whose size is at least β and qβt be the number of jobs

that are smaller than β. Hence,

Qt = Qβt + qβt ≥ Qβt ,

where Qβ
t

is the queue in a system with the same arrival process where only jobs of size

B ≥ β are served and the smaller ones are discarded. By Corollary 4.1, Qβ
t
↑ ∞ a.s., and,

therefore, we obtain Qt ↑ ∞ a.s.



CHAPTER 4. INSTABILITY OF SHARING SYSTEMS IN THE PRESENCE OF
RETRANSMISSIONS 88

Extension to DPS

In modern system design, PS cannot capture the heterogeneity of users and services, which

is associated with unequal sharing of resources. Hence, we discuss the DPS queue which

is a multi-class generalization of the PS queue: all jobs are served simultaneously at rates

that are determined by a set of weights wi, i = 1, . . . ,K. If there are nj jobs in class j, each

class-k job receives service at a rate ck = wk/
∑K

j=1wjnj .

DPS has a broad range of applications. In computing, it is used to model Weighted-

Round-Robin (WRR) scheduling. In communication networks, DPS is used for modeling

heterogenous, e.g., with different round trip delays, TCP connections. Despite the fact that

the PS queue is well understood, the analysis of DPS has proven to be very hard; yet, our

previous results on PS are easily extended to DPS in the corollary below.

Corollary 4.2. Under the conditions in Theorems 4.1 and 4.2, the discriminatory processor

sharing (DPS) queue is also always unstable, with the same conclusion as in Theorems 4.1

and 4.2, respectively.

Proof. Without loss of generality, assume that the set of weights is ordered such that w1 ≤

w2 · · · ≤ wK . In the M/G/1 DPS queue, the service allocation at any given time t for a

single customer in class k is given by

ck(t) =
wk∑K

i=1wini(t)
≤ wk

w1
∑K

i=1 ni(t)
≤ wK
w1Qt

.

Note that c(t) = wK/(w1Qt) is the service rate in a PS queue with capacity c = wK/w1 ≥ 1.

Therefore, each class-k job, k = 1 . . .K, in the DPS queue is served at a lower rate than

the rate c of the PS queue. Hence,

QDPSt ≥ QPS(c)
t ,

and since, under the conditions in Theorem 4.1, the PS queue is always unstable, it follows

that the DPS queue is also unstable.
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4.3.2 Stability of One Job at a Time Non-Preemptive Policy

In this section, we study the stability of service disciplines where jobs are processed one

at a time in a non-preemptive fashion, e.g., FCFS. The stability results will be derived for

exponentially distributed availability period A with rate µ. This assumption is needed to

ensure the memoryless property of the system after each job completion.

Under such policies, the expected service time for a single job from Definition 4.2.2 is

given by

E[S] = E

[
N−1∑
i=1

Ai +B

]
.

Note that N , inf{n ≥ 1 : An > B} is a well defined stopping time for the process

(A, {An}n≥1), and thus the expected service time follows from Wald’s identity as

E[S] = E

[
N∑
i=1

Ai −AN +B

]

= E[N ]E[A]− E[AN ] + E[B].

Now, assuming that the availability period A is exponentially distributed with rate µ (Pois-

son failures), the expected service time is given by

E[S] = E[N ]E[A]− (E[A] + E[B]) + E[B]

= (E[N ]− 1)E[A], (4.4)

since E[AN ] = E [E[A|A > B]] = E[A+B] = E[A] + E[B], due to the memoryless property

of the exponential distribution.

The necessary and sufficient condition for the stability of the non-preemptive M/G/1
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queue with failures is

λE[S] < 1.

Next, we derive an explicit formula for E[N ] by observing that

P[N > n|B] = P(A ≤ B|B)n = G(B)n.

Thus, using the exponential distribution of A, the expected number of restarts is

E[N ] = E[E[N |B]] = E

[ ∞∑
n=0

P[N > n|B]

]
= E

[ ∞∑
n=0

G(B)n

]
= E

[
Ḡ(B)−1

]
= E[eµB].

Hence, plugging the preceding expression in (4.4), we obtain

E[S] = (E[eµB]− 1)µ−1,

which yields the following theorem.

Theorem 4.3. If {An}n≥0 is Poisson with rate µ, arrivals are Poisson with rate λ > 0,

and B is a typical job size, then the queue, for any non-preemptive policy that serves one

job at a time, e.g., FCFS, is stable iff

λE[S] = λµ−1(E[eµB]− 1) < 1. (4.5)

Note that, for exponential job sizes, the mean service time is finite and equal to 1/(1/E[B]−

µ) if and only if E[B] < 1/µ, and the stability region is given by λ/(1/E[B] − µ) < 1. On

the other hand, if B does not have exponential moments, then E[S] = ∞, i.e. any non-

preemptive policy will be unstable. Furthermore, the stability region for the system with

failures is strictly smaller than in the traditional M/G/1 queue, since E[S] > µ−1µE[B] =

E[B]. In addition, since ex − 1 − x is increasing in x for x > 0, the stability region
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shrinks as the jobs grow in size. Alternatively, as the job sizes are decreasing, e.g., applying

fragmentation/checkpointing techniques, the stability region of a system with failures can

approach the one of the traditional M/G/1 queue. Specifically, if B = β is deterministic,

λµ−1(eµβ − 1) ∼ λβ as β → 0, where λβ < 1 is the stability region of the ordinary M/G/1

queue without failures.

Remark 12. Note that the preceding result can be derived alternatively by noticing that

for deterministic job sizes, B = β, the service time S behaves exactly the same as a busy

period in an M/D/∞ queueing system with arrival rate µ and service time B, which yields

E[S] = (eµβ−1)/µ. This line of argument extends to random job sizes B, as in Theorem 4.3.

4.4 GI/G/1 PS Queue with Restarts

In the previous section, we show that PS is unstable assuming Poisson arrivals. Here, we

show that this result can be extended to more general arrival distributions, e.g., renewal

processes. However, to avoid technical complications we assume that the failure process

is Poisson or rate µ, i.e. the availability periods Ai are exponential. To this end, we use

M(t0,t1] to denote the number of Poisson failures in (t0, t1] and write Mt for intervals of

the form (0, t]. Let (τ, {τn}n≥1) be an i.i.d. sequence, where τn represent the interarrival

times of the renewal process. Similarly as in the definition of the general failure process in

Section 4.2, we assume that the first arrival occurs at time τ0 ≥ 0. When τ0 has the residual

distribution of τ1, then {τn}n≥0 will be in stationarity.

The main purpose of this section is to show that there is nothing special about the

Poisson arrival assumption that leads to instability. Instead, the instability results from

the interplay between sharing and retransmission/restart mechanisms. First, we prove the

following proposition using similar arguments as in Proposition 4.1. However, we embed the

proof at the points of arrivals instead of failures. In the following proposition, we assume

that the first arrival occurs at t = 0, i.e. τ0 = 0. The remaining results allow for an

arbitrary delay until the first arrival, 0 ≤ τ0 <∞; these results imply the stationary version
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of {τn}n≥0, when τ0 has the excess distribution of τ1.

Proposition 4.2. Assume that a new job arrives at time t = 0, i.e. τ0 = 0, and there are

Q0 ≥ k jobs in the GI/G/1 PS queue with remaining service ≥ β. If failures are Poisson,

EA <∞, Eτ1+δ <∞, 0 < δ < 1 and P[B ≥ β] = 1, β > 0, then for all k ≥ 1

P[no job ever completes service] ≥ 1−O(EA1(A ≥ βk) + k−δ).

Proof. Let T1 =
∑k

i=1 τi be the cumulative time that includes the first k arrivals for t > 0

and MT1 be the number of failures in (0, T1). Now, define the event A1 ≡ A1(k) , {A1 <

βk,A2 < βk, . . . , AMT1
< βk}. On this event, no job can leave the system since Q0 ≥ k

and all of them are at least of size β. Thus, if they were served in isolation, they could not

have completed service in the first MT1 attempts.

Now, with a small abuse of notation, let E1 denote the event that there is no departure

in the first MT1 attempts and there are at most ck failures in (0, T1]. Formally,

E1 ⊃ E1 , {MT1 ≤ ck,A1},

on the set {Q0 ≥ k}. Now, observe that

P(E1) = P(MT1 ≤ ck,A1 < βk,A2 < βk, . . . , AMT1
< βk)

≥ P(MT1 ≤ ck,A1 < βk,A2 < βk, . . . , Ack < βk)

≥ P(A1 < βk)ck − P(MT1 > ck).

Next, note that

P(MT1 > ck) = P
(
MT1 > ck, T1 ≤

3kEτ
2

)
+ P

(
MT1 > ck, T1 >

3kEτ
2

)
≤ P

(
M 3kEτ

2
> ck

)
+ P

(
T1 >

3kEτ
2

)
,
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where the first term is negligible for c > 2µEτ since the expected number of failures is

3kµEτ/2. Now, observe that

P(T1 >
3kEτ

2
) = P

(
k∑
i=1

τi >
3kEτ

2

)
= P

(
k∑
i=1

(τi − Eτ) >
3kEτ

2
− kEτ

)
.

Now, let Xi , τi − Eτ , and by choosing h = 2−δ(Eτ)1+δ and y = Eτ/4 in Lemma 1 of [9],

we obtain

P

(
k∑
i=1

Xi > kEτ/2

)
≤ kP(X1 > kEτ/4) +

hk

2−δ(kEτ)1+δ

≤ kP(τ1 > kEτ/4 + Eτ) +
1

kδ

≤ k Eτ1+δ

(kEτ/4 + Eτ)1+δ
+ k−δ ≤ 2k−δ.

Therefore,

P(E1) ≥ (1− P(A ≥ βk))ck − 2k−δ,

where using 1− x ≥ e−2x for small x, we have for all k ≥ k0

P(E1) ≥ e−2ckP(A≥βk) − 2k−δ ≥ 1− 2ckP(A ≥ βk)− 2k−δ

≥ e−4ckP(A≥βk)−4k−δ .

Next, at time T1 = T1, on event E1, the queue has at least 2k jobs, i.e., QT1 ≥ 2k,

and no jobs have departed. Similarly as before, let T2 =
∑3k

i=k τi be the cumulative time

that includes the next 2k arrivals, and define A2 ≡ A2(k) = {AMT1
+1 < 2βk,AMT1

+2 <

2βk, . . . , AMT1+T2
< 2βk}. The probability that no job departs in (0, T2], where T2 = T1+T2,
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is lower bounded by

P(no job departs in (0, T2]) ≥ P(MT1 ≤ ck,A1, QT1 ≥ 2k,M(T1,T2] ≤ 2ck,A2)

≥ P(MT1 ≤ ck,A1,M(T1,T2] ≤ 2ck,A2), (4.6)

since {QT1 ≥ 2k} ⊇ {MT1 ≤ ck,A1} on the set {Q0 ≥ k}; to avoid repetitions, the following

statements are all on Q0 ≥ k.

Now, if E2 is the event that there is no departure in the next MT2 attempts and there

are at most 2ck failures in (T1, T2], then E2 ⊃ E2 , {MT2 ≤ 2ck,A2}; note that E2 is

independent of E1 due to Poisson memoryless property. Via identical arguments as before,

we obtain

P(E2) ≥ P(MT2 ≤ 2ck,Ack+1 < βk, . . . , A3ck < βk)

≥ e−8ckP(A≥2βk)−4(2k)−δ .

Therefore, at time T2, on event E1 ∩ E2, there are at least 4k jobs.

In general, for any n, we can extend the reasoning from (4.6) to obtain

P(no job departs in (0, Tn]) ≥ P(MT1 ≤ ck,A1,MT2 ≤ 2ck,A2, . . . ,MTn ≤ 2n−1k,An)

= P(E1 ∩ E2 ∩ · · · ∩ En),

where Tn =
∑n

i=1 Ti, Tn =
∑(2n−1)k

i=(2n−1−1)k+1
τi, En denotes the event that there is no depar-

ture in MTn attempts and there are at most 2n−1 failures in (Tn−1, Tn], and En = {MTn ≤

2n−1ck,An}. Similarly,

P(En) ≥ e−2n+1ckP(A≥2n−1βk)−4(2n−1k)−δ .
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Hence, we obtain

P(E1 ∩ E2 ∩ · · · ∩ En) ≥
n∏
i=1

e−2i+1ckP(A≥2i−1βk)−4(2i−1k)−δ

= e−4
∑n−1
i=0 2ickP(A≥2iβk)−4k−δ

∑n−1
i=0 (2i)−δ

≥ e−4
∑∞
i=0 2ickP(A≥2iβk)−4k−δ

∑∞
i=0 2−δi .

Now, observe that
∑∞

i=0 2−δi <∞, and thus we can pick H > 0 such that

P(E1 ∩ E2 ∩ · · · ∩ En) ≥ e−4
∑∞
i=0 2ickP(A≥2iβk)−Hk−δ .

The remainder of the proof follows identical arguments as Proposition 4.1. Thus, on

{Q0 ≥ k},

P(no job ever completes service) ≥ 1−H(EA1(A ≥ βk) + k−δ).

Theorem 4.4. In the GI/G/1 PS queue, if failures are Poisson, 0 ≤ τ0 <∞ a.s., Eτ1+δ <

∞, 0 < δ < 1 and P[B ≥ β] = 1, β > 0, then

lim
t→∞

P(no job ever completes service after time t) = 1.

Proof. Similarly to the proof of Theorem 4.1, we observe the system at time Vk when there

are k jobs in the queue and a failure occurs. Since the arrivals are non Poisson, we need

additional reasoning to ensure that Vk <∞ a.s. In this regard, let us consider a time interval

T1 =
∑k

i=1 τi when the first k arrivals occur. Then, let tk be such that P(T1 < tk) > 0 and

divide tk into smaller intervals of size β. Now, consider the probability that {T1 < tk} and

there is at least one failure in each of the small intervals of size β. Since the failures are

Poisson, this event has a positive, albeit extremely small, probability. If this event occurs,
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then Vk ≤ T1 <∞ a.s. Otherwise, repeat the procedure on the next interval T2 =
∑2k

i=k+1 τi.

Since the arrivals are renewal and failures are Poisson, the desired event in interval T2 is

independent and has the same probability as in T1. Hence, after a geometric number of

attempts, the queue will have at least k jobs at the time of failure, implying that Vk < ∞

a.s.

Now, the remainder of the proof follows the same arguments as in Theorem 4.1 of

Section 4.3. We omit the details.

Similarly to Theorem 4.2 of Section 4.3, we drop the condition P[B ≥ β] = 1 and prove

general instability.

Theorem 4.5. In the GI/G/1 PS queue, if failures are Poisson, 0 ≤ τ0 < ∞ a.s., and

Eτ1+δ <∞, 0 < δ < 1, we have as t ↑ ∞,

Qt ↑ ∞ a.s.

The proof is similar to the proof of Theorem 4.2 and thus is omitted. Furthermore,

the equivalent results could be stated for the DPS scheduler as well. Last, the preceding

findings could be further extended to both non Poisson arrivals and non Poisson failures.

However, the proofs would be much more involved and complicated; here, we avoid such

technicalities.

4.5 Transient Behavior - Scheduling a Finite Number of Jobs

In the previous sections, we focus on the steady state behavior of the M/G/1 queue with

restarts and prove that PS is always unstable for failure distributions with finite first mo-

ment. We also show instability for the GI/G/1 PS queue, assuming Poisson failures. In this

section, in order to gain further insight into this system, we study its transient behavior.

In this regard, we consider a queue with a finite number of jobs and no future arrivals and

compute the total time until all jobs are completed. In Subsections 4.5.1 and 4.5.2, we
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analyze the system performance when the jobs are served one at a time and when Processor

Sharing (PS) is used, respectively. More precisely, for a finite number of jobs with sizes

Bi, 1 ≤ i ≤ m, and assuming no future arrivals, we study the completion time Θm, until all

m jobs complete their service. Throughout this section, we assume that service starts at

t = 0 and A0 ≡ 0; furthermore, we assume that the distribution functions Ḡ(x) and F̄ (x)

are absolutely continuous for all x ≥ 0.

Note that in the case of traditional work conserving scheduling systems the completion

time does not depend on the scheduling discipline and is always simply equal to
∑m

i=1Bi.

However, in channels with failures there can be a stark difference in the total completion

time depending on the scheduling policy. This difference can be so large that in some

systems the expected completion time can be infinite while in others finite, or even having

many high moments.

Overall, we discover that, with respect to the distribution of the total completion time

Θm, serving one job at a time exhibits uniformly better performance than PS; see The-

orems 4.7 and 4.8. Furthermore, when the cumulative hazard functions of the job and

failure distributions are proportional, i.e. log F̄ (x) ∼ α log Ḡ(x), we show that PS performs

distinctly worse for the light-tailed job/failure distributions as opposed to the heavy-tailed

ones, see parts (i) and (ii) of Theorem 4.8.

Before presenting our main results, we state the following theorem on the logarithmic

asymptotics of the time S̄ =
∑N

i=1Ai = S + (AN − B), where S is from Definition 4.2.2.

Note that S̄ includes the remaining time (AN−B) until the next channel availability period,

thus representing a natural upper bound for S. In the following, let ∨ ≡ max.

Theorem 4.6. If log F̄ (x) ∼ α log Ḡ(x) as x→∞, α > 1, E[Bα+δ] <∞, and E[A1∨α] <∞

for some δ > 0, then

lim
t→∞

logP[S̄ > t]

log t
= −α. (4.7)

Proof. By Theorem 6 in [9], when specialized to the conditions of this theorem, we obtain

that logP[S > t] → −α log t as t → ∞. This immediately yields the lower bound for
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S̄ = S + (AN − B) ≥ S. For the upper bound, S̄ = S + (AN − B) and the union bound

result in

P[S̄ > 2x] ≤ P[S > x] + P[AN −B > x].

Hence, in view of Theorem 6 in [9], we only need to bound P[AN − B > x]. To this end,

observe that

P[AN −B > x] = P[AN > B + x] =
∞∑
i=1

P[Ai > B + x,N = i]

=

∞∑
i=1

P[Ai > B + x,A1 < B, . . . , Ai−1 < B]

=
∞∑
i=1

E
[
P (Ai > B + x|B)P (A1 < B|B)i−1

]
= E

[
Ḡ(B + x)

Ḡ(B)

]
≤ Ḡ(x)E[N ],

since E[N ] = E(1/Ḡ(B)). Now, the condition α > 1 guarantees that E[N ] < ∞ whereas

E[Aα] <∞ implies that Ḡ(x) = O(1/xα). Thus, (4.7) is satisfied.

4.5.1 One Job at a Time Non-Preemptive Policy

In this subsection, we consider the failure-prone system that was introduced in Section 4.2,

with unit capacity. The jobs are served one at a time, e.g., FCFS. Herein, we analyze the

performance of this system assuming that, initially, there are m jobs in the queue and there

are no future arrivals. Specifically, we study the total completion time, which is defined

below.

Definition 4.5.1. The total completion time is defined as the total time until all the jobs

are successfully completed and is denoted as

Θm ,
m∑
i=1

Si,

where m is the total number of jobs in the system and Si is the service requirement for each
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job.

In the following theorem, we prove that the tail asymptotics of the total completion

time, from Definition 4.5.1, under this policy is a power law of the same index as the service

time of a single job.

Theorem 4.7. If log F̄ (x) ∼ α log Ḡ(x) as x → ∞, α > 1, A0 = 0,E[Bα+δ] < ∞, and

E[A1∨α] <∞ for some δ > 0, then

lim
t→∞

logP[Θm > t]

log t
= −α.

Proof. Recall that the service requirement for a job Bi was previously defined as Si =∑Ni−1
j=1 Aj +Bi.

For the lower bound, we observe that

P[Θm > t] ≥ P[S1 > t],

since the total completion time is at least equal to the service time of a single job. By

taking the logarithm and using Theorem 6 in [9], we have

logP[Θm > t]

log t
≥ −(1 + ε)α. (4.8)

For the upper bound, we compare Θm with the completion time in a system where the

server is kept idle between the completion time of the previous job and the next failure.

Clearly,

Θm ≤ Θ̄m ,
m∑
i=1

S̄i,

where S̄i ,
∑Ni

j=1Aj are the service times that include the remaining availability period

ANi .
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Then, we argue that

P[Θm > t] ≤ P

[
m∑
i=1

S̄i > t

]
≤ mP

[
S̄1 >

t

m

]
,

which follows from the union bound. By taking the logarithm and using Theorem 4.6, we

have

logP[Θm > t]

log t
≤ −α(1− ε) +

logm

log t
≤ −(1− 2ε)α, (4.9)

where we pick t large enough such that log t ≥ logm/(αε).

Letting ε→ 0 in both (4.8) and (4.9) finishes the proof.

4.5.2 Processor Sharing Discipline

In this subsection, we analyze the Processor Sharing discipline where m jobs share the (unit)

capacity of a single server. We present our main theorem on the logarithmic scale, which

shows that the tail asymptotics of the total completion time is determined by the shortest

job in the queue. In particular, under our main assumptions, this time is a power law,

but it exhibits a different exponent depending on the job size distribution, as our results

demonstrate; see Theorem 4.8 and the proof.

• If the jobs are subexponential (heavy-tailed) or exponential, the total delay is simply

determined by the time required for any single job to complete its service, as if it were

the only one present in the queue.

• If the jobs are superexponential (light-tailed), the total delay is determined by the

service time of the shortest job. This job generates the heaviest asymptotics among

all the rest.

Our main result, stated in Theorem 4.8 below, shows that on the logarithmic scale the dis-

tribution of the total completion time ΘPS
m is heavier by a factor mγ−1 for superexponential
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jobs relative to the subexponential or exponential case, when the cumulative hazard func-

tions F and G are proportional. Therefore, in systems with failures and restarts, sharing

the capacity among light-tailed jobs induces long delays, whereas, for heavy-tailed ones, PS

appears to perform as good as serving the jobs one at a time. Interestingly enough, this

deterioration in performance is determined by the time it takes to serve the shortest job in

the system.

Note that in a PS queue with no future arrivals, the shortest job will depart first.

Immediately after this, the server will continue serving the remaining m − 1 jobs, and,

similarly, the shortest job, i.e. the second shortest among the original m jobs, will depart

before all the others. This pattern will continue until the departure of the largest job, which

is served alone.

Theorem 4.8. Assume that the cumulative hazard function − log F̄ (x) is regularly varying

with index γ ≥ 0. If log F̄ (x) ∼ α log Ḡ(x) as x → ∞, α > 1, A0 = 0,E[Bα+δ] < ∞, and

E[A1∨α] <∞ for some δ > 0, then

1. if γ ≤ 1, i.e. B is subexponential or exponential, then

lim
t→∞

− logP[ΘPS
m > t]

log t
= α,

2. if γ > 1, i.e. B is superexponential, then

lim
t→∞

− logP[ΘPS
m > t]

log t
=

α

mγ−1
< α.

Remark 13. When α > 1, we easily verify that E[ΘPS
m ] < ∞ in case (i); if the jobs are

superexponential, e.g., case (ii), then E[ΘPS
m ] =∞ if α < mγ−1.

Proof. Let B(1) ≤ B(2) ≤ · · · ≤ B(m) be the order statistics of the jobs B1, B2, . . . , Bm.

The assumption that − log F̄ (x) is regularly varying with index γ implies that

log F̄ (λx) ∼ λγ log F̄ (x), (4.10)
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for any λ > 0.

We begin with the lower bound.

(i) Subexponential or exponential jobs (γ ≤ 1).

The total completion time is lower bounded by the time required for a single job to depart

when it is exclusively served, e.g., if the total capacity of the system is used. Hence, it

follows that

P[ΘPS
m > t] ≥ P[S1 > t], (4.11)

where S1 is the service time of a single job of random size B1, when there are no other jobs

in the system. Now, recalling Theorem 6 in [9], it holds that

lim
t→∞

logP[S1 > t]

log t
= −α.

By taking the logarithm in (5.5), the lower bound follows immediately.

(ii) Superexponential jobs (γ > 1).

The total completion time is lower bounded by the delay experienced by the shortest job,

and hence,

P[ΘPS
m > t] ≥ P[SPS1 > t],

where SPS1 is the service time of job B(1). First, note that the distribution of B(1) is given

by

P(B(1) > x) = P(B1 > x,B2 > x, . . . , Bm > x)

= P(B1 > x)P(B2 > x) · · ·P(Bm > x)

= P(B1 > x)m = F̄ (x)m, (4.12)

since Bi, i = 1, . . . ,m, are independent and identically distributed. Now, using (4.12) and
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(4.10), together with our main assumption, we observe that

logP(mB(1) > x) = m log F̄
( x
m

)
∼ m1−γ log F̄ (x) ∼ αm1−γ log Ḡ(x);

note that we compute the distribution of mB(1) since B(1) receives 1/m fraction of the

service. Then, Theorem 6 in [9] applies with α/mγ−1 ≤ α, i.e.

lim
t→∞

logP[SPS1 > t]

log t
= − α

mγ−1
.

Next, we derive the upper bound. To this end, we consider a system where the server is

kept idle after the completion of each job until the next failure occurs. At this time, all the

remaining jobs are served under PS until the next shortest one departs. If there are more

than one jobs of the same size, only one of these departs. Under this policy, it clearly holds

that

ΘPS
m ≤

m∑
i=1

S̄PSi ,

where S̄PSi corresponds to the service time of the ith smallest job and includes the time

until the next failure.

Using the union bound, we obtain

P[ΘPS
m > t] ≤ P

[
m∑
i=1

S̄PSi > t

]
≤ (1 + ε)

m∑
i=1

P
(
S̄PSi >

t

m

)
. (4.13)

It is easy to see that the service time of the ith smallest job B(i) depends on the number

of jobs that share the server, i.e. m − i + 1, since m − i jobs have remained in the queue.
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Now, the distribution of the ith shortest job is derived as

P(B(i) > x) =
i−1∑
k=0

(
m

k

)
P(B1 ≤ x)kP(B1 > x)m−k

∼
(

m

i− 1

)
P(B1 > x)m−i+1 ∼ F̄ (x)m−i+1. (4.14)

Next, starting from (4.14), it easily follows that

logP
(

(m− i+ 1)B(i) > x
)
∼ log F̄

(
x

m− i+ 1

)m−i+1

∼ (m− i+ 1)1−γ log F̄ (x)

∼ α(m− i+ 1)1−γ log Ḡ(x),

where we use (4.10) and our main assumption and define αi , α/(m− i+ 1)γ−1; here, we

compute the distribution of (m− i+ 1)B(i) since the B(i) job receives 1/(m− i+ 1) fraction

of the service.

Now, recalling Theorem 4.6, we have

logP[S̄PSi > t]

log t
→ αi as t→∞,

and thus (4.13) yields

logP[ΘPS
m > t]

log t
≤ −(1− ε) min

i=1...m
αi,

for all t ≥ t0.

(i) Subexponential or exponential jobs (γ ≤ 1).

Observe that min
i=1...m

αi = α, and thus

logP[ΘPS
m > t]

log t
≤ −(1− ε)α. (4.15)

(ii) Superexponential jobs (γ > 1).
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In this case, min
i=1...m

αi = α/mγ−1, and thus

logP[ΘPS
m > t]

log t
≤ −(1− ε) α

mγ−1
. (4.16)

Letting ε→ 0 in (4.15) and (4.16), we obtain the upper bound.
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Figure 4.3: Example 1. Jobs completed over time.

4.6 Simulation

In this section, we present our simulation experiments in order to demonstrate our theoret-

ical findings. All the experiments result from N = 108 (or more) samples of each simulated

scenario; this guarantees the existence of at least 100 occurrences in the lightest end of

the tail that is presented in the figures. First, we illustrate the instability results from

Sections 4.3 and 4.4.

Example 1. M/G/1 PS is unstable. In this example, we show that the PS queue

becomes unstable by simulating the M/G/1 PS queue for different arrival rates λ > 0,

which all satisfy the stability condition for the non-preemptive M/G/1 queue, when jobs

are served one at a time. In this regard, we assume constant job size β = 1 and Poisson
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failures of rate µ = 1/20. Therefore, by evaluating (4.5), we obtain

λE[S] = λµ−1(eµ − 1) = 20(e0.05 − 1)λ = 1.025λ < 1,

or equivalently the stability region for the non-preemptive queue is given by Λ = {λ ≤ 0 :

λ < 0.9752}. Hence, in this example, we use λ from the preceding stability region, λ ∈ Λ.
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(b) Queue size for small t

Figure 4.4: Example 1. Queue size evolution. Subfigure (b) zooms in the time range [0, 106] of
Fig. 4.4; Qt (y-axis) is shown on the logarithmic scale.

In Fig. 4.3, we plot the number of jobs that have received service up to time t. We

observe that the cumulative number of served jobs always converges to a fixed number and

does not increase any further. This happens after some critical time when the queue starts

to grow continuously and is unable to drain. For larger values of λ, the system saturates

faster meaning that the cumulative throughput at the saturated state is lower.

Furthermore, we observe from the simulation that the system behaves as if it were stable

until some critical time or queue size after which it is unable to drain. From Fig. 4.3, we

can see that the case λ = 10−1 saturates at time t = 106 and the total number of served

jobs reaches 105. Hence, the departure rate until saturation time is 105/106 = 10−1, which

is exactly equal to the arrival rate λ = 10−1, corresponding to the departure rate of a stable

queue. This further emphasizes the importance of studying the stability of these systems

since, at first glance, they may appear stable.
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Figure 4.5: (a) Example 1. Queue size over time parameterized by fragment length; β =
2, λ = 0.1. (b) Example 2. Queue size over time parameterized by job size; β = 4.

Fig. 4.4 demonstrates the queue size evolution over time. Similarly as in Fig. 4.3, we

observe that for any arrival rate λ, there is a critical time after which the queue continues

to grow and never empties. This time varies depending on the simulation experiment; yet,

on average, we observe that the queue remains stable for longer time when λ is smaller.

Now, we zoom in on the queue evolution on the logarithmic scale in Fig. 4.4(b). Again, we

observe that the queue looks stable until some critical time/queue size.

Last, in Fig. 4.6, we plot the queue evolution for different job sizes, namely β = 1, 1.2, 1.5

and 2. We observe that larger job fragments cause instability much faster than the smaller

units. For example, β = 2 leads to instability almost immediately, while β = 1.5 renders the

queue unstable after 104 time units. Similarly, reducing the fragment size by 60% delays

the process by an additional 3× 104 units. Last, cutting the jobs in half causes instability

after approximately 13× 104 time units. This implies that one should apply fragmentation

with caution in order to select the appropriate fragment size that will maintain good system

performance for the longest time.

Example 2. General arrivals. In this example, we consider non Poisson arrivals.

We assume that the failure distribution is exponential with mean EA = 10 and that jobs

interarrival times follow the Pareto distribution with α = 2 and mean Eτ = 10.1. Similarly
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as in the previous example, Fig. 4.6 shows the queue evolution with time for different job

sizes β.

Next, we validate the results on the transient analysis from Section 4.5.

Figure 4.6: Example 3. Non-preemptive policy: Logarithmic asymptotics when α = 2 for
exponential, superexponential (γ > 1) and subexponential (γ < 1). distributions.

Example 3. Non-preemptive policy: Always the same index α. In this example, we

consider a queue of m = 10 jobs, which are served First Come First Serve (FCFS), i.e. one

at a time. The logarithmic asymptotics from Theorem 4.7 implies that the tail is always a

power law of index α = 2.

In Fig. 4.6, we plot the distribution of the total completion time in a queue with 10 jobs

that are processed one at a time. On the same graph, we plot the logarithmic asymptotics

(dotted lines) that correspond to a power law of index α = 2. We consider the following

three scenarios:

1. Weibull distributions with γ = 2. The failures A are distributed according to Ḡ(x) =

e−(x/µ)2 with mean E[A] = µΓ(1.5) = 1.5, and jobs B also follow Weibull distributions

with F̄ (x) = e−(x/λ)2 , λ = µ/
√

2. In this case, it is easy to check that the main

assumption of Theorem 4.7 is satisfied, i.e.

log F̄ (x) = −(x/λ)2 = α log Ḡ(x), α = (µ/λ)2.
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2. Exponential distributions. Failures are exponential with E[A] = 2, Ḡ(x) = e−x/2, and

the jobs B are also exponential of unit mean, i.e. F̄ (x) = e−x. Then, trivially,

log F̄ (x) = 2 log Ḡ(x).

3. Weibull distributions with γ = 0.5. A’s are Weibull with Ḡ(x) = e−
√
x/2, i.e., E[A] =

8. Also, we assume Weibull jobs B with F̄ (x) = e−
√
x. Thus,

log F̄ (x) = −
√
x = 2 log Ḡ(x).

In all three cases, we obtain α = 2. Yet, we observe that the tail asymptotics is the same

regardless of the distribution of the job sizes. For the subexponential jobs (case 3: Weibull

with γ < 1), the power law tail appears later compared to the case of superexponential

jobs. This is because the constant factor of the exact asymptotics is different for each case,

and it depends on the mean size of A, E[A].
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Figure 4.7: (a) Example 4. Logarithmic asymptotics for different number of superexpo-
nential jobs when α = 4 under PS and FCFS discipline. (b) Example 5. Logarithmic
asymptotics under FCFS, PS with subexponential and superexponential jobs.

Example 4. PS: The effect of the number of jobs. In this example, we consider a PS

queue with m = 5 and m = 2 superexponential jobs, and compare it against a FCFS queue
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with m = 5 jobs. We assume superexponential job sizes B’s and A’s, namely Weibull with

γ = 2; see case 1 of Example 3. Here α is taken equal to 4. The logarithmic asymptotics is

given in Theorems 4.7 and 4.8.

In Fig. 4.6, we demonstrate the total completion time ΘPS
m , for different number of jobs,

when γ = 2. Theorem 4.8(ii) states that α(m) = α/mγ−1 and, thus, for γ = 2 we have

α(m) = α/m, e.g., we expect power law asymptotes with index α/m for the different values

of m. On the same figure, we also plot the FCFS completion time Θm, which is always a

power law of index α = 4, as we previously observed in Example 3. It can be seen that

PS generates heavier power laws, for superexponential jobs. In particular, PS with m = 2

results in power law asymptotics with α(2) = 2, while PS with m = 5 jobs leads to infinite

expected delay since α(5) = 4/5 < 1.

Example 5. PS: The effect of the distribution type. In this example, for completeness,

we evaluate the impact of the job distribution on the total completion time under both

heavy and light-tailed job sizes. To this end, we consider the PS queue from Example 4,

with m = 5 jobs, and compare it against FCFS. In Fig. 4.6, we re-plot the logarithmic

asymptotics of the total completion time P(ΘPS
m > t), for different distribution types of the

failures/jobs and index α = 4, as before. In particular, we consider Weibull distributions as

in Example 3 with γ = 1/2 < 1 and γ = 2 > 1 for the subexponential and superexponential

cases, respectively.

On the same graph, we plot the distribution of the completion time Θm in FCFS, which

is always a power law of the same index, as illustrated in Example 3. By fixing the number

of jobs to be m = 5, Fig. 4.6 shows that when the jobs are superexponential, PS yields

the heaviest asymptotics among all three scenarios; for subexponential jobs, PS generates

asymptotics with the same power law index as in FCFS, albeit with a different constant

factor.

Example 6. Limited queue: Throughput vs. overhead tradeoff. In practice, job and

buffer sizes are bounded and therefore the queue may never become unstable. However, our

results indicate that the queue may lock itself in a ‘nearly unstable’ state, where it is at
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Figure 4.8: Example 6. Throughput vs. utilization tradeoff.

its maximum size and the throughput is very low. Here, we would like to emphasize that,

unlike in the case of unlimited queue size, job fragmentation can be useful for increasing the

throughput and the efficiency of the system. In this case, one has to be careful about the

overhead cost of fragmentation. Basically, each fragment requires additional information,

called the ‘header’ in the context of communications, which contains details on how it

fits into the bigger job, e.g., destination/routing information in communication networks.

Hence, if the fragments are too small, there will be a lot of overhead and waste of resources.

In view of this fact, one would like to optimize the fragment sizes by striking a balance

between throughput and utilization.

In this example, we demonstrate the tradeoff between throughput and generated over-

head, assuming limited queue size q∗. If the newly arriving job does not fit in the queue,

i.e. the number of jobs currently in the queue is equal to q∗, it is discarded. We define

throughput as the percentage of the jobs that complete service among all jobs that arrive at

the M/G/1 PS queue. It basically corresponds to the total work that is carried out in the

system. On the other hand, we define utilization as the useful work that is served over the

aggregated load in the system. Specifically, we consider jobs that require a minimum size

b, where b represents the overhead, e.g., the packet header, thread id, etc. The remaining
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job size, β − b, represents the useful information.

We consider different job sizes β from 0.4 up to 5 bytes, with overhead b = 0.2. We

simulate the M/G/1 PS queue with maximum queue size q∗ = 10 jobs for a fixed time

T = 108 time units. The arrivals are Poisson with rate 1/10 and the failures are exponential

of the same rate. Clearly, in the case of fixed job sizes β, throughput γ is lower bounded

by the throughput of the system when it performs at the limit, i.e. when the queue is full.

This state corresponds to the worst overall performance and can be easily computed. On

average, for a fixed period of time T , q∗ jobs will complete service every E[Sq∗ ] time units,

while the total jobs that arrive in the system is λT . In this case, the lower bound for the

throughput is given by

γ = q∗
T

E[Sq∗ ]

1

λT
=

q∗

λE[Sq∗ ]
,

and in the particular case of exponential failures, using (4.5) we derive

γ =
q∗

λµ−1(eµq∗β − 1)
.

Using this observation, throughput will be suboptimal when γ < 1. Thus, for job sizes

larger than β∗ = log(µq∗λ−1 + 1)/(µq∗), the throughput starts decreasing.

In Fig. 4.8, we observe that for small job sizes, the throughput is 100% and it deteriorates

as the job size β increases. In particular, when the job size exceeds 1.5, the throughput

drops exponentially. Utilization exhibits a different behavior; it is low when the job size

is small, i.e. the useful job size is comparable to the overhead b, and reaches its peak at

β ≈ 1.7. After this, it starts decreasing following similar trend as the throughput. In this

case, β− b ≈ 1.5 appears to be the optimal size for the job fragments. This phenomenon of

combining limited queue size with job fragmentation may require further investigation.
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4.7 Concluding Remarks

Retransmissions/restarts represent a primary failure recovery mechanism in large-scale en-

gineering systems, as it was argued in the introduction. In communication networks, re-

transmissions lie at the core of the network architecture, as they appear in all layers of

the protocol stack. Similarly, PS/DPS based scheduling mechanisms, due to their inherent

fairness, are commonly used in computing and communication systems.

However, our results show that PS/DPS scheduling in systems with retransmissions is

always unstable. Furthermore, this instability cannot be resolved by job fragmentation

techniques or checkpointing. On the contrary, serving one job at a time, e.g., FCFS, can

be stable and its performance can be further enhanced with fragmentation. Interestingly,

systems where jobs are served one at a time can highly benefit from fragmentation and, in

fact, their performance can approach closely the corresponding system without failures.

Overall, using PS in combination with retransmissions in the presence of failures dete-

riorates the system performance and induces instability. In addition, our findings suggest

that further examination of existing techniques is necessary in the failure-prone environment

with retransmission/restart failure recovery and sharing, e.g., see Example 6.
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Chapter 5

Future Work & Conclusion

This chapter provides new directions and insights based on the main results of the preced-

ing chapters. First, we motivate future work in the area of networking as well as cloud

computing services. To this end, we present our preliminary findings in Sections 5.1 and

5.2. Next, we conclude the thesis by summarizing the impact of our results on modern

engineering design and discussing the extension of our analytical work, as well as the tools

developed herein, to other research areas in Section 5.3.

5.1 Towards Stabilizing Sharing Systems

In this section, we present a thorough discussion of the limited queue size scenario that was

presented in Chapter 4; see Example 6 of Section 4.6. To this end, we study the properties

of the queue size evolution process and analyze the system throughput, which provides a

typical performance measure.

We assume that the queue is limited in size by k and jobs are all of fixed size β > 0.

If the newly arriving job does not fit in the queue, i.e. the number of jobs currently in the

queue is equal to k, it is discarded. The analysis to follow will make use of more restrictive

assumptions on the queue behavior. These assumptions are required in order to construct

events that represent renewal points in the process. Hence, we observe the queue at the
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time of one of the following events: (a) the queue empties or (b) a failure occurs. We study

the dynamics of the queue size {Qn}n≥0, where Qn is the queue size at the time of the nth

event. We further assume that only jobs that are present in the queue at the time of the

nth event, i.e., Qn jobs, are allowed to receive service until the next event occurs. Last, we

assume that an empty queue Q0 = 0 transits immediately to state Q1 = 1.

Under the preceding assumptions, we compute the queue size after the first event occurs

in the following cases:

• if Q0 = 0, then the system transits to Q1 = 1 with probability one.

• if Q0 > 0, then (a) if jobs are completed before the next failure occurs, i.e., βQ0 ≤ A,

then the queue size is equal to the number of arrivals in the interval of size βQ0, i.e.,

ZβQ0 ; (b) if a failure occurs before jobs are completed, i.e., βQ0 > A, then the queue

size equals the number of new arrivals in the interval A plus the initial workload Q0,

i.e., ZA +Q0.

In the bounded queue case, the queue size is the minimum of Q1 and k; we use the notation

x ∧ y to denote the minimum of x and y. Also, if Q0 = k, then the queue either remains

the same, if a failure occurs before jobs are completed, or it empties; note that jobs depart

all at once, since they are all of size β. Hence, we formulate the queue size evolution as

follows.

(i) Unbounded Queue (Q)

Q1 = [1(βQ0 ≤ A)ZβQ0 + 1(βQ0 > A)(Q0 + ZA)] 1(Q0 > 0) + 1(Q0 = 0)

(ii) Bounded Queue (Q ≤ k)

Q1 = [1(βQ0 ≤ A)ZβQ0 ∧ k + 1(βQ0 > A)(Q0 + ZA) ∧ k] 1(0 < Q0 < k)

+ 1(Q0 = 0) + (k1(βk > A))1(Q0 = k)
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Next, we compute the transition probabilities for the special case when k = 2 in the

bounded queue scenario. We assume Poisson arrivals with rate λ and exponential failures

with rate ν. Due to the memoryless property of Poisson arrivals and failures, the system is

Markovian and thus it is sufficient to compute the transition matrix, denoted as P.

Proposition 5.1. Consider the M/G/1 PS queue limited by 2 jobs. If arrivals and failures

are Poisson with rate λ and ν, respectively, and jobs are all of size β > 0, then the transition

matrix is given by

P =

 1 0 0

e−(λ+ν)β λβe−(λ+ν)β + ν(1− e−(λ+ν)β)/(λ+ ν) 1− P10 − P11

e−2νβ 0 1− e−2νβ


Table 5.1: Transition matrix P

Proof. We begin with the first row and compute the probability of transition from Q0 = 0

to Q1 = i, i = 0 . . . 2. By assumption, we have

P(Q1 = 1|Q0 = 0) = 1, P(Q1 = 0|Q0 = 0) = P(Q1 = 2|Q0 = 0) = 0.

We continue with the second row. Observe that the queue resets to zero if there is no failure

before the job departs.

P(Q1 = 0|Q0 = 1) = E[1(β ≤ A)1(Zβ = 0)] = P(A > β)P(Zβ = 0) = e−νβe−λβ = e−(λ+ν)β

Note that the queue remains the same when either (a) the job is completed and a new one

arrived in the meantime, or (b) there is a failure before the completion of this job.

P(Q1 = 1|Q0 = 1) = E[1(β ≤ A)1(Zβ = 1)] + E[1(β > A)1(ZA = 0)]

= e−νβP(Zβ = 1) + E[e−λA1(A < β)] = λβe−(λ+ν)β + ν(1− e−(λ+ν)β)/(λ+ ν)
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Last, the queue ends up at capacity when either (a) the job is completed before the next

failure and more than two new jobs arrived, or (b) a failure occurred and one or more new

jobs arrived.

P(Q1 = 2|Q0 = 1) = E[1(β ≤ A)1(Zβ ≥ 2)] + E[1(β > A)1(ZA ≥ 1)]

= e−νβP(Zβ ≥ 2) + E[(1− e−λA)1(A < β)]

= e−νβ(1− e−λβ − λβe−λβ) + 1− e−νβ − ν(1− e−(λ+ν)β)/(λ+ ν)

= λ/(λ+ ν)− λe−(λ+ν)β/(λ+ ν)− λβe−(λ+ν)β.

Finally, we compute the probability of transition from Q0 = 2 to Q1 = i, i = 0 . . . 2. In this

case, the queue either returns to zero, or it remains at the same state, i.e., if a failure occurs

before the next departure.

P(Q1 = 0|Q0 = 2) = P(2β ≤ A) = e−2νβ

P(Q1 = 2|Q0 = 2) = P(A < 2β) = 1− e−2νβ

P(Q1 = 1|Q0 = 2) = 0.

By combining the preceding results, we obtain the transition matrix in Table 5.1.

The transition probabilities can be similarly derived for any k; these derivations require

tedious calculations and are out of the scope of this thesis.

Drift Analysis

In this subsection, we present additional results on the drift for the queue evolution {Qn}n≥0

process.

Proposition 5.2. Assume that there are Q0 jobs of fixed size β > 0 in the queue, arrivals

are Poisson with rate λ and failures are exponential with rate µ. Then, the drift of the
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queue size, denoted as d(Q0), is given by

E[Q1|Q0]−Q0 = λµ−1 − e−µβQ0(Q0 + λµ−1)

and achieves its minimum at Q0∗ = 1
βµ(1− λβ).

Proof.

d(Q0) := E[Q1|Q0]−Q0 = E[ZβQ01(A > βQ0)] + E[(ZA +Q0)1(A ≤ βQ0)]−Q0

= λβQ0P(A > βQ0) + λE[A1(A ≤ βQ0)]−Q0P(A > βQ0)

= λβQ0e
−µβQ0 + λ(µ−1 − βQ0e

−µβQ0 − µ−1e−µβQ0)−Q0e
−µβQ0

= λµ−1 − e−µβQ0(Q0 + λµ−1).

This function achieves its minimum at

d(d(Q0))

dQ0
= e−µβQ0µβ(Q0 + λµ−1)− e−µβQ0 = 0

d2(d(Q0))

dQ2
0

= −e−µβQ0(λµ−1 + 1) < 0.

⇒ Q0∗ =
1

βµ
(1− λβ).

From a design perspective, we can choose k ≤ kmax such that for given λ, β and µ, the

queue size has negative drift. After some time, if the system is allowed to exceed kmax, it

will always have positive drift and the queue will start growing to infinity.

5.1.1 Throughput

In the preceding section, we computed the transition matrix and the drift of the queue

evolution process. Here, we analyze the throughput of the M/G/1 PS queue with limited

capacity. This is defined as the percentage of the jobs that complete service among all jobs
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that arrive at the queue. Informally, this corresponds to the total work that is carried out

in the system. First, we prove the following proposition.

Proposition 5.3. In the M/G/1 PS queue, where Q ≤ k and failures are exponential with

rate µ, there exists λ0 such that for all λ ≥ λ0,

γ(k) ∼ µβke−µβk as k →∞. (5.1)

Remark 14. This result implies that the throughput decays exponentially at k with rate µβ,

and it achieves its maximum when µβk = 1.

Proof. Note that when the queue always resets to zero, the system starts afresh, and thus

the process is renewal. It is therefore sufficient to compute the average work between

renewal points. The expected service time for Poisson failures and k jobs of size β is given

(Theorem 4.3 of Chapter 4) by

E[Sk] = µ−1(eµβk − 1) ∼ µ−1eµβkas k →∞ (5.2)

Now, let Tk be the time to reach k jobs after the queue resets to 0. Then, the renewal

cycle is equal to Tk +Sk, where Sk is the service requirement for k jobs. The workload that

is served in a renewal cycle equals the workload that has arrived minus the work that is lost.

The rate of lost work is the expected work that arrives when the queue is at capacity, i.e.,

λβE[Sk] over the expected length of the renewal cycle E[Tk] +E[Sk]. Then, the throughput

is computed as follows

γ(k) = λβ − λβE[Sk]

E[Tk] + E[Sk]
= λβ

E[Tk]

E[Tk] + E[Sk]
. (5.3)

It can be proved that for λ large enough, E[Tk] is of the order O(k), e.g., the queue grows

linearly in k with rate equal to the rate of arrival. Thus, one can show that E[Tk] ∼ k/λ as

k →∞. Therefore, (5.2) yields
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γ(k) ∼ λβ k/λ

k/λ+ µ−1eµβk
= λβ

1

1 + µ−1eµβk

k/λ

∼ µβke−µβk. (5.4)

Simulation Examples

In order to verify our analytical findings, we simulate the M/G/1 PS queue with limited

capacity k. This setup allows us to evaluate the configuration of different parameters,

e.g., arrival/failure rate, job size, etc. Similarly as in previous chapters, our simulation

experiments result from at least 108 samples of the simulated scenarios.
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Figure 5.1: Example 1(a). Throughput γ(k); the dotted line is the approximation from
(5.4)

Example 1. Throughput decay. Our first example focuses on the tail behavior of the

throughput as k increases. We simulate a PS queue with limited capacity k, arrival rate

λ = 10, job size β = 2 and variable failure rates. As it was previously discussed, the

system can be stabilized for kµβ = 1, e.g., FCFS, but its performance will deteriorate for
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larger k. In the infinite queue case, the time when the queue starts growing to infinity

is not deterministic; yet, there exists a region where the system remains stable. Fig. 5.1

demonstrates the exponential decay of the throughput with respect to k for different failure

rates µ.

As we can easily infer from Fig. 5.1, the throughput decays exponentially at different

rates, which depend on µ. In particular, the tail is exponential with rate µβ = 2µ, i.e., the

decay is faster for higher failure rates. The approximation from (5.4) fits the throughput

tail even for smaller k, e.g., k < 50. In fact, when the system experiences frequent failures,

sharing the service among more than one jobs is not always preferable since the probability

of failure increases as the service requirement is prolonged. Under these conditions, serving

one job at a time guarantees stability. On the other hand, if failures are not very frequent,

then serving only one job at a time can be suboptimal, especially when the arrival rate

is high. This is why it is crucial to understand the significance of carefully adjusting the

system parameters in sharing systems.
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Figure 5.2: Example 1(b). Throughput γ(k) for different failure rates µ.

Next, we simulate the PS queue assuming jobs of size β = 1 and arrival rate λ = 1. We
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plot the throughput on the exact scale to clearly demonstrate where the maximum values

are achieved. In Fig. 5.2, we observe that the throughput is not always optimal for k = 1 but

instead it may reach a higher value as k increases. This results from the fact that more jobs

are dropped while serving the existing one, especially when the queue has very low capacity.

Hence, it is preferable to allow more than one jobs to share the service by increasing the

queue capacity to k∗ = 1/(µβ), or at least by picking k around this value. In Fig. 5.2,

we observe that initially the throughput increases as k grows, then it remains high around

k∗ = 1/(µβ) = 1/µ and eventually starts decaying exponentially to zero. The expected

criticality point is attained around k∗ = 2, 5 and 8 for µ = {1/2, 1/5, 1/8}, respectively.

Example 2. Queue Instability. In our second example, we discuss the results from Sec-

tion 5.1. To this end, we plot the drift function d(Q) for different values of queue sizes.

We set λ = µ = 1 and β = 1/10, which yield d(Q0) = 1 − e−Q0/10(Q0 + 1). Fig. 5.3

demonstrates the detrimental effects of allowing more than a few jobs, e.g., 40 or more, to

share the service in this system.
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Figure 5.3: Example 2. Drift for different initial queue sizes Q0.

Specifically, the function achieves its minimum around Q0 = 10 and beyond this point,

it is monotonically increasing. It is evident that the drift hits zero when Q+
0 = 38, as

marked on the Figure, and it remains positive for Q0 > 38, eventually converging to 1.

Beyond this point, the queue will become unstable since its size will continuously grow.
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During the transient period before this happens, the system can jump to a state with more

than Q+
0 jobs and positive drift or it could remain in the seemingly “stable” state before it

accumulates this critical number of jobs.

5.2 Reliability Tradeoffs in Cloud Computing

In this section, we study the tradeoffs between parallel processing and redundancy in large-

scale distributed systems, with a special emphasis on cloud computing services. In modern

engineering design, failure recovery is based on data replication, i.e., a large number of

servers execute identical copies of the original job in parallel. Another widely accepted

technique is to split the each job smaller ones and distribute the fragments to the available

servers, e.g., each fragment is assigned to exactly one server. In both cases, the server needs

to restart the job execution after a failure occurs. We evaluate the performance of these

approaches under different assumptions on the failure and job distributions.

5.2.1 Fragmentation

Here, we study the asymptotics of the total number of restarts for a job of random size B

which is split into k fragments. The total completion time of a job B is determined by the

maximum delay of each of the fragments of size B/k. In this analysis, we show that under

our main assumptions, the number of restarts behaves as a power law, but it exhibits a

different index which depends on the distribution type.

We restate the following theorem that appears in [9] and describes the tail asymptotics

of the number of restarts N for a single job; the notation is borrowed from previous chapters,

e.g., see also Section 1.2.

Theorem 5.1. Assume that log F̄ (x) ∼ α log Ḡ(x) for all x ≥ 0, α > 0, then

lim
n→∞

− logP[N > n]

log n
= α.

Remark 15. Note that when α < 1, then EN =∞, i.e., N does not have any moments.
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The preceding theorem provides the logarithmic asymptotics for the number of restarts

of a job of size B without fragmentation. In the following theorem, we assume that the

initial job is divided into k fragments and derive the logarithmic asymptotics of the tail

distribution for the total delay, denoted as Tk.

Theorem 5.2. Assume that the hazard function − log F̄ (x) is regularly varying with index

β ≥ 0. If log F̄ (x) ∼ α log Ḡ(x),E[A1+θ] <∞ for all x ≥ 0, then

lim
t→∞

− logP(Tk > t)

log t
= kβα.

Remark 16. When α > 1, we easily verify that E[Tk] <∞ and fragmentation reduces the

delay tail kβ times. Basically, if jobs are (super)exponential (β ≥ 1) then we gain kβα− 1

extra moments. For subexponential jobs, fragmentation is not as beneficial and, in fact, as

β ↓ 0, the asymptotic behavior approaches the no-fragmentation case.

Proof. We begin with the lower bound. The total delay for k fragments Tk is lower bounded

by the service time of any single fragment. Hence, it follows that

P[Tk > t] ≥ P[T1 > t], (5.5)

where T1 is the delay of one job fragment of size B/k. Now, observe that

logP(B/k > x) = kβ log F̄ (x) ∼ αkβ log Ḡ(x),

which follows from our main assumption and the fact that − log F̄ (x) is regularly varying

with index β, i.e., log F̄ (λx) ∼ λβ log F̄ (x), for any λ > 0. Then, Theorem 6 in [9] applies

with kβα and thus

lim
t→∞

− logP[T1 > t]

log t
= kβα.

By taking the logarithm in (5.5), the lower bound follows immediately.
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Next, we derive the upper bound. Here, by the union bound we obtain

P[Tk > t] ≤ kP[T1 > t],

which yields the desired logarithmic asymptotics.

5.2.2 Replication

In this section, we study the effects of data replication in large distribution centers under

different assumptions on the failure/job statistics. In particular, we are interested in com-

puting the tail asymptotics of the delay when jobs are replicated, i.e., k independent copies

of the jobs are assigned to k different servers.

First, we prove the following Theorem which demonstrates the tail insensitivity of the

delay to the number of copies k.

Theorem 5.3. Assume that log F̄ (x) ∼ α log Ḡ(x) as x→∞, and E[A1+θ] <∞, then

lim
t→∞

− logP(Tk > t)

log t
= α.

Sketch of the proof. Note that the delay is defined as the minimum delay induced by each

of the k copies. Therefore,

P[Tk > t|B] = P[ min
i=1...k

Ti > t|B] = P[T1 > t|B]k,

since the k servers are independent conditionally on the job size B. Note also that the k

servers are identical, i.e., they have the same failure distribution.

Next, taking the expectation with respect to B and the logarithm in the preceding

expression yields

lim
t→∞

− logP[Tk > t]

log t
= α, (5.6)

which finishes the proof.



CHAPTER 5. FUTURE WORK & CONCLUSION 126

In the following Proposition, we derive the exact asymptotics for the number of restarts

of a job of size B, denoted as Nk. The proof follows similar arguments as the preceding

Theorem and thus is omitted.

Proposition 5.4. If log F̄ (x) = α log Ḡ(x) for all x ≥ 0, then as n→∞

P(Nk > n) ∼ Γ(α+ 1)

kαnα
.

The preceding results indicate that the delay does not depend on whether the dis-

tributions of failures/jobs are light or heavy-tailed. Specifically, replication leads to an

improvement of α − 1 extra moments for the tail of the delay distribution, albeit with a

different constant factor which depends on the number of replicas.

5.2.3 Simulation Examples

In this subsection, we present a set of simulation examples that validate the preceding

findings.

Example 1. Light-tailed distributions. In this example, we simulate a light-tailed scenario

with the following assumptions. The failures are Weibull distributed, i.e., Ḡ(x) = e−(x/µ)β

whereas the jobs follow the same distribution albeit with a different scale parameter, i.e.,

F̄ (x) = e−(x/λ)β . Note that, under these conditions, our main assumption holds since

log F̄ (x) = −xβ/λβ = (µ/λ)β log Ḡ(x) = α log Ḡ(x).

First, we run simulations for β = 2 and α = (20/19)β = 1.108 for different number of

fragments/replicas k. From Fig. 5.4, we conclude that fragmentation has significant impact

on the power law tail of P(Tk > t) and P(Nk > n) as k increases. Also, we can easily verify

that the index of the power law tail in the case of replication remains the same regardless

of the number of replicas k. However, we observe that both distributions move to the

left as k increases. For the case of replication, this improvement comes from the smaller
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Figure 5.4: Example 1. P(Tk > t) and P(Nk > n) for different number of fragments/replicas
k.

constant factor Γ(α + 1)/kα. On the other hand, when fragmentation is applied, the tail

index becomes k2α and the slope changes.

Example 2. Heavy vs. Light-tailed distributions. In this example, we consider the family

of Weibull-type distributions of Example 1 and evaluate the impact of the shape parameter

β on the tail behavior of the delay both for fragmentation and replication. In particular,

we compare the performance of these techniques for light-tailed (β ≥ 1) and heavy-tailed

distributions (β < 1). To this end, we fix the number of fragments/replicas to k = 5 and

set α ≈ 1.4 as follows: (i) β = 0.2: λ = 1, µ = 5, (ii) β = 0.5: λ = 1, µ = 2 and (iii) β = 1

(exponential case): λ = 1, µ = 1.4.

We plot the distribution of N5 for fragmentation/replication and different β parameters.

As shown in Fig. 5.5, the performance of fragmentation deteriorates as β decreases. In

the special case when β → 0, fragmentation becomes as good as replication, as shown in

Theorem 5.2. When β is close to zero, we observe that fragmentation is always worse than

replication. This is due to the fact that the power law tail is approximately the same but

the constant term is different for replication; see Proposition 5.4. In addition, we make the

following observations:

• In the case of replication, the tail in unaffected by changes in β. In the case of

fragmentation, larger values for β guarantee lighter power law tails, and, specifically
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Figure 5.5: Example 2. P(N5 > n) for different distribution types.

in this example, we obtain k = 50.8 ≈ 3.6 times better tail index as β increases from

0.2 to 1, which is verified by the change of the slope.

• For β large enough, there exists a region when replication outperforms fragmentation

but eventually fragmentation becomes more efficient. Initially, the delay distribution

with replication lies below the main body of P(Nk > n) for fragmentation but, as

β increases, the break-even point moves to the left, implying that lighter distribu-

tions will benefit from fragmentation faster. Eventually, fragmentation outperforms

replication since it guarantees a lighter tail.

In general, there is no superior technique that guarantees optimality across the entire

delay distribution. Therefore, the situation must be treated with caution so that discrep-
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ancies in performance are prevented. Once there is a good understanding of the behavior of

each technique in a given range of probabilities, one could choose between the two in order

to obtain the best possible results.
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Figure 5.6: Example 3. E[Tk] for different types of distributions.

Example 3. Mean Value Analysis. In our last example, we study the expected delay for

fragmentation and replication and compare the values across different distribution types.

To this end, we compute the mean delay for α = 1.44 and various β values. Specifically, we

consider heavy-tailed (β = 0.5), exponential (β = 1) and light-tailed distributions (β = 2).

Fig. 5.6 demonstrates the mean delay for different number of fragments/replicas. When

β = 0.5, replication is always faster than fragmentation, despite the heavier tail asymptotics;

see Example 2(ii). For the exponential case (β = 1), the average delay is the same for small

k, e.g., k = 1, 2 but as k increases, replication outperforms fragmentation. Last, for larger

values of β, replication demonstrates longer average delays for small k, but eventually, it
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achieves the same performance as fragmentation. Overall, from a mean value perspective,

as k increases, replication is at least as good as fragmentation.

5.2.4 Replication Or Fragmentation?

In the preceding results, we discover a dichotomy between replication and fragmenta-

tion based on the distribution of failures and job sizes, as well as the number of frag-

ments/replicas. Overall,

(i) Superexponential or exponential jobs (β ≥ 1)

If β ≥ 1 then fragmentation leads to a power law tail with index kβα > α, where α is

the power law index corresponding to data replication.

(ii) Subexponential jobs (β < 1)

For subexponential jobs, fragmentation yields power law delays with kβα → α as

β → 0, meaning that replication might lead to better improvement (due to the lower

constant factor) and should be preferred in that case.

It is therefore unclear which technique is preferable unless there is prior information on

the distribution of the job sizes/failure statistics. Conditionally on this, one should perform

careful computations to decide whether fragmentation or replication should be applied to

deal with instabilities in large-scale distributed systems.

5.3 Concluding Remarks

The main contribution of this thesis is summarized as follows:

• The instability result from Chapter 4 reveals a new phenomenon: processor sharing

is always unstable when restarts are employed. We also emphasize that job fragmen-

tation cannot stabilize the system regardless of how small the fragments are made.

Indeed, fragmentation can only postpone the time when the instability occurs, but

cannot eliminate the phenomenon; serving one job at a time (e.g., FCFS) is highly



CHAPTER 5. FUTURE WORK & CONCLUSION 131

advisable in such systems. Similarly, the system cannot be stabilized by checkpointing

regardless of how small the intervals between successive checkpoints are chosen. From

an engineering perspective, our results indicate that traditional approaches in existing

systems may be inadequate in the presence of failures. This new phenomenon demon-

strates the need of revisiting existing techniques in large-scale failure-prone systems,

where PS-based scheduling may perform poorly.

• The uniform approximation that was presented in Chapter 2 characterizes the entire

body of the distribution for the number of retransmissions, which takes the form of

the product of power law and Gamma distributions, thus allowing for an accurate es-

timation of the power law region. It also provides an assessment tool for efficiency and

is applicable in modern network protocol design, e.g., retransmission based protocols

in communication networks, where traditional approaches, e.g., blind data fragmenta-

tion, may be insufficient for achieving a good balance between throughput and resource

utilization. Last, our model is generic and thus can be used towards improving the

design of future complex and failure-prone systems in a variety of applications.

• The study of retransmissions over correlated channels in Chapter 3 shows that when

the channel is correlated, or less formally, when it alternates between states of differ-

ent quality, the tail asymptotics is determined by the properties of the ‘best’ channel

state, e.g., the state that generates the lightest asymptotics in the corresponding in-

dependent model. This insensitivity to the detailed structure of the correlations as

well as the optimistic best case predictions are useful both for modeling and dimen-

sioning/capacity planning of such systems. However, a design relying on the best case

scenario may be overly optimistic and even completely wrong if the best state of the

channel is atypical. Last, the explicit approximation presented in Chapter 2 could be

combined with these results in order to improve fragmentation techniques.

Furthermore, the observations and insights provided in Sections 5.2 and 5.1, could drive

future research in the area of cloud computing where resource allocation and high through-
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put algorithms are still in a developing stage. The main objective of this thesis is to gear the

attention towards potential problems that arise in designing or analyzing modern large-scale

systems. We have shown that traditional methodologies may fail due to the complexity and

variability of such systems. Nevertheless, our novel approach and intuition has enabled us

to uncover the underlying laws that govern their behavior and discover new phenomena via

developing new analytical techniques or exploiting existing ones.

The aforementioned results also demonstrate the applicability of this work in various

fields, beyond electrical engineering. We strongly believe that the tools and methodolo-

gies developed herein can be extended to other areas and disciplines, such as economics,

statistics, operations research, computer science, applied math, etc., where phenomena of

a similar flavor could be investigated. Hence, we are optimistic that the contents of this

thesis will inspire modern engineering design and possibly help to solve existing problems

in large-scale complex systems.
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[5] Jelenković, P.R., Skiani, E.D.: Instability of Sharing Systems in the Presence of Re-

transmissions. Queueing Systems, 2015.
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