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Accuracy of digital elevation models (DEMs) often depends on how features of different spatial scales are repre-
sented. Scale dependence is particularly important in low gradient coastal environments where small vertical er-
rors can affect large areas and where representation of fine scale topographic features can influence how DEMs
are used for modeling inundation. It is commonly observed that different types of DEMs represent larger,
coarse-scale topographic features similarly but differ in how they represent smaller, finer-scale features. The spa-
tial-scale dependence of DEM accuracy can be quantified in terms of the correlation scale (λC); the spatial wave-
length above which models agree with spectral coherency N0.5 and below which they differ. We compare cross
spectral analyses of the GDEM2 and SRTM global DEMs with 14,572 LiDAR-derived elevations along transects in
diverse coastal environments of New York City. Both global DEMs have positive bias relative to LiDAR ground el-
evations, but bias (μ) and uncertainty (σ) of GDEM2 (μ: 8.1 m; σ: 7.6 m) are significantly greater than those of
SRTM (μ: 1.9 m; σ: 3.6 m). Cross-spectral coherency between GDEM2 and the LiDAR DEM begins to roll-off at
scales of λ b ~3 km, while coherency between SRTM and the LiDAR DEM begins to roll-off at scales of
λ b ~1 km. The correlation scale below which coherency with LiDAR attains a signal to noise ratio of 1 is
~1 km for GDEM2 and ~0.5 km for SRTM; closely matching the divergence scales where the surface roughness
of the land cover exceeds the roughness of the underlying terrain.

© 2014 Published by Elsevier Inc.
1. Introduction

Hazard assessments and inundation modeling of coastal areas rely
heavily on both the accuracy and resolution of digital elevation models
(DEMs). In many coastal areas, global DEMs offer the most complete
representation of coastal elevations andmorphology available. Two dis-
tinct classes of global DEM are currently in widespread use: passive
source stereographic models derived from optical imagery like the
ASTER GDEM2 (Abrams et al., 2010) and active source ranging models
derived from synthetic aperture radar like the SRTM (Farr et al., 2007).
The accuracy of each model depends on multiple factors related to the
sensing modality, the procedure used to estimate elevations, and the
characteristics of the land surface (Farr et al., 2007; Lang & Welch,
1999). The recent release of full-resolution 30 m SRTM data for areas
outside the US (previously degraded to 90 m) prompts the question of
how the accuracy and effective spatial resolution of SRTM and GDEM2
compare, particularly in developed coastal environments where they
may be used for inundation modeling and hazard assessments.
nt Doherty Earth Observatory
The accuracy and resolution of DEMs in coastal environments, where
there are relatively small differences in elevation over large areas, are of
special interest. At low elevations and gradients the signal magnitude
approaches the noise level of the measurements, which can lead to
large errors in inundation extent forecasts. This issue is particularly im-
portant for developed coastal environments where the spatial extent of
inundation can have disproportionate consequences in terms of loss of
life and property. There have been several comparative analyses of glob-
al DEM vertical accuracy (e.g., Gesch et al., 2012; Meyer et al., 2012;
Tachikawa et al., 2011; Tadono et al., 2012; Smith & Sandwell, 2003).
Some analyses have included coastal areas (e.g., (Gorokhovich &
Voustianiouk, 2006; Hvidegaard et al., 2012), and some have incorpo-
rated land cover/use information (e.g., Gesch et al., 2012; Hofton et al.,
2006; Carabajal & Harding, 2006), but we are not aware of any that spe-
cifically consider the accuracy and spatial resolution of global DEMs in
developed coastal environments. As explained below, the scale and di-
versity of land cover in developed coastal areas is fundamentally differ-
ent from most of the environments where previous studies have
focused.

The objective of this analysis is to assess the accuracy and scale de-
pendence of the GDEM2 and SRTM global DEMs in developed coastal
environments. We address the issue by quantifying the scale depen-
dence of the agreement between these global DEMs and high-
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accuracy, high-resolution, LiDAR-derived elevations for a diverse varie-
ty of coastal environments within New York City (NYC). We quantify
the scale dependence by using cross-spectral analysis to estimate the
correlation scale (the length scale belowwhich two signals are uncorre-
lated) of each global DEM with a co-registered DEM and digital surface
model (DSM) derived from LiDAR. The LiDAR DEM (LDEM) and DSM
(LDSM) have been thoroughly validated throughout the study area
and thus provide high-quality benchmarks for the analysis. We focus
on quantifying the lateral length-scale atwhich the agreement between
two models becomes random. This is complementary to, but distinct
Fig. 1. Comparison of global elevationmodels (top)with full-resolution samples of the LiDARDS
of LiDAR sample shown by arrow and box on GDEM2 map.
from, previous studies that used point-to-point comparisons (e.g., GPS
or fiducial) to measure the absolute accuracy of the global DEMs. To
our knowledge, the only scale-dependent analyses of global DEMs are
those of (Smith & Sandwell, 2003; and Rodriguez et al., 2006) but nei-
ther focus on developed or coastal environments.

2. Data

The geological and geomorphic diversity of NYC includes a wide
range of developed and natural coastal environments and land
MandDEM (center) and coregistered profiles from eachmodel used for analysis. Location
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cover/use types. Four of NYC's five boroughs are islands. Included in
NYC's 837 km of coastline are beaches, barrier islands, tidal wet-
lands, estuarine marshes, rivers, channels and a variety of rein-
forced embankments on the shores of New York Harbor, Long
Island Sound, the Atlantic Ocean and the Hudson, Harlem and East
Rivers (Fig. 1).

The LiDAR DEM and DSM were produced from a 17-day airborne
campaign conducted by Sanborn Inc. in April 2010. The ALS-50 near in-
frared LiDAR instrumentwas flown at an altitude of 1100mwith a scan
angle of 28°. The 937 km2 collection of 15 × 109 elevation measure-
ments results in a point density of 8 to 12 points/m2. Comparison of
LiDAR elevations with 1722 survey elevations throughout NYC yields a
root mean square error (RMSE) of 0.075 m in elevation. Comparison
with 200 building corner points yields an RMSE of 0.33 m horizontal
error (Ahern & Ahn, 2011). Extraction of first and last returns from the
full waveform LiDAR allowed for better discrimination of true ground
elevations under tree canopies and semi-penetrable land cover types.
The LDSM measures tops of buildings, trees and infrastructure, as well
as ground elevationswhere sufficient skyview exists. Known ground el-
evations were used to extract the DEM from the LDSM and last returns.
The LDEM ground elevations under buildings are estimates based on
surrounding true ground elevations. Some residual building footprints
remain in the LDEM (Fig. 1), but their amplitude is generally b1 m.

The GDEM2 and SRTM (v2.1) DEMswere obtained from the USGS in
the form of 1 arc second (1″ = ~28 m at 40°N) resolution geographic
grids in the WGS84 horizontal and EGM96 vertical reference systems.
The LDEM and LDSMwere spatially averaged with a 1″ Gaussian kernel
and sampled at points coincident with the global DEMs along 6
Fig. 2.Density shaded scatterplots comparing global elevationmodelswith LiDAR elevations. Di
30m postings along transects shown in Fig. 1. Moments of distributions of differences between
dicate greater number of points.
transects (Fig. 1). Transects were chosen to maximize length, relief
and diversity of coastal environments. For each transect, two adjacent
rows (or columns) of the global DEMs were compared to check consis-
tency of spectral estimates for similar (but not identical) realizations of
the terrain. Transect WE1 extends westward from the East River
through midtown Manhattan where neither global DEM was able to
register accurate elevations because of the considerable height variabil-
ity resulting from tall buildings, as can be seen in the LiDAR DSM. The
NUM files that accompany SRTM v3 indicate that infill elevations were
used to fill coverage gaps in midtown Manhattan and one pol on
Jamaica Bay but not any other part of the transects selected for analysis.
We exclude midtown from our spectral analyses but include it in Fig. 1
to illustrate the infill elevations used to fill the gaps in DEM coverage.
Within the NYC study area, the SRTM grid used between one and four
(mode = 3) acquisitions and GDEM2 used between one and twelve
(mode = 7) acquisitions.

3. Analysis and results

We use scatterplots and moments of difference distributions to
quantify the point-to-point correspondence between the global DEMs
and the 14,572 LiDAR elevations. The results show closer agreement be-
tween LDEM and SRTM than between LDEM and GDEM2 (Fig. 2). In the
LDEM and SRTM comparison, 25% of the SRTM elevations underesti-
mate the LiDAR ground elevations while almost all of the GDEM2 eleva-
tions overestimate the LiDAR ground elevations. An important
difference between global DEMs is observed at the lowest elevations,
where GDEM2 always overestimates LDEM but SRTM often
stributions of 14,572 coregistered elevations are derived from 6 pairs of profiles sampled at
global models and LiDAR quantify model bias (μ) and uncertainty (σ). Warmer colors in-
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underestimates LDEM (Fig. 2). This difference is also illustrated by the
large, low elevation wetlands (e.g., Jamaica Bay and New Jersey Mead-
owlands) in Fig. 1. The 1st and 2ndmoments of the difference distribu-
tions give the bias (μ) and uncertainty (σ) of each global DEM relative to
the corresponding LiDARmodel. Both global DEMs have overall positive
bias relative to the LiDAR DEM, but GDEM2 bias and uncertainty are
much greater than those of SRTM (Fig. 2).

We conduct cross-spectral analyses of the four elevation models
along all 6 transects to assess the scale dependence of correlation.
Power spectral density, cross-spectral phase and spectral coherency
are estimated using the multitaper method (Thomson, 1982) with
adaptive weighting (Percival & Walden, 1993) and a time-bandwidth
product of eight. Multitaper estimation reduces the bias resulting from
spectral leakage while minimizing the information loss inherent in the
use of conventional tapers and avoiding the need for prewhitening
(Thomson, 1982). Adaptive weighting minimizes the mean square
error of the spectral estimates by determining the weights for each
taper using an iterative procedure that accounts for the (nonwhite)
spectral content of the data (Percival & Walden, 1993).

The power spectral density estimates show the relative amount of
variance over a range of spatial scales (wavelengths). Power spectra of
elevation data are often used to quantify scale dependent variance as a
proxy for topographic roughness (e.g., Fox & Hayes, 1985). The spectral
shape and roll-off of each transect are functions of the elevation profile
roughness (Fig. 3, top panels). For example, LDSM consistently hasmore
Fig. 3. Spectral analysis of elevationmodels along coastal transects. Power spectra (top) are distin
Spectral slopes at higher frequencies show rougher “tops” (DSM) and smoother “bottoms” (D
longer λ for GDEM2 than SRTM. The correlation scales λwhere coherency reaches 0.5 (boxes) c
the roughness of the underlying terrain (arrows).
power than LDEM at short wavelengths because the land cover upper
surface (e.g., buildings and trees) is rougher than the underlying topog-
raphy, especially in developed areas withmulti-story buildings. GDEM2
consistently has greater power than SRTM at short wavelengths, per-
haps because of noise in GDEM2 resulting from spectral heterogeneity
of land cover imaged by ASTER. Spectral power levels for all four eleva-
tion models are similar for length scales N~1 km but begin to diverge at
length scales of 0.5–1.0 km, where the relief associated with land cover
(e.g., buildings and trees) has greater variance than the smoother un-
derlying topography. We refer to this wavelength where the DSM and
DEM separate (shown by arrows in Fig. 3) as the surface-elevation di-
vergence scale (λD).

The cross-spectral analysis (Fig. 3, bottom panels) indicates that
both global DEMs become incoherent at spatial scales b~0.5 km. Coher-
ency, which estimates correlation as a function of spatial wavelength,
between GDEM2 and both LiDAR models begins to roll off for wave-
lengths b~3 km, while the coherency between SRTM and LDEM begins
to roll off for wavelengths b~ 1 km.We define the correlation scale (λC)
between two models as the length scale at which the coherency drops
below 0.5, a threshold value representing a signal-to-noise ratio of one
(Bendat & Piersol, 2010). We find that the correlation scale for GDEM2
relative to both LiDARmodels is between 1.4 and 0.7 km, while the cor-
relation scale for SRTM relative to LDEM is between 0.7 and 0.4 km.
These correlation scales (λC) are similar to the surface-elevation diver-
gence scales (λD) observed in the power spectra (Fig. 3). This indicates
ct for eachof the 6 transects but show similar relationships amongmodels for all transects.
EM). Spectra diverge for λ b ~1 km for all profiles but coherency begins to deteriorate at
orresponds to the divergence scaleλDwhere the roughness of land cover begins to exceed
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that the correlation scales where agreement among DEMs disappears
occurs at divergence scales where the surface roughness of the land
cover exceeds the roughness of the underlying terrain.

The cross-spectral analysis suggests that structure at scales b~1 km
is as likely to be noise as true elevation in both global DEMs. To illustrate
this, we filter all four DEMs for profile NS2 to remove incoherent struc-
ture at wavelengths b1 km (Fig. 4). The filtered profiles are in much
closer agreement than the raw profiles, especially for the SRTM and
LDEM, and the positive bias of GDEM2 is readily apparent.

4. Implications

Our results quantify the correlation scales of the GDEM2 and SRTM
global elevationmodels for both developed and natural coastal environ-
ments in NYC. In general, we find that the global DEMs accurately re-
solve features with length scales N ~1 km, but at shorter length-scale
noise overwhelms the elevation signal. The correlation scale for SRTM
extends to shorter length scales (~500 m) compared to GDEM2
(~1 km), and GDEM2 exhibits a systematic, ~8m positive bias through-
out the study area (Figs. 1 and 2). This may be due, in part, to vertical
reference error in GDEM2.

The power spectra and correlation scales vary somewhat among the
profiles, with most differences occurring at spatial scales finer than
~1 km where the land cover and the underlying topography signals
begin to diverge. The accuracy of the global DEMs begins to deteriorate
at about the same length-scale where heterogeneous land cover associ-
ated with developed environments becomes the dominant signal. The
consistently higher variance (power) and lower coherencieswe observe
for GDEM2 compared to SRTM for length scales of 0.5–3 km suggest that
heterogeneous land cover in developed areas introduces more noise
into GDEM2elevation estimates compared to SRTMelevation estimates.

The scale and diversity of urban land cover poses challenges to stere-
ography using decameter resolution imagery. Comparative multi-scale
analyses of meter to decameter resolution optical imagery of urban en-
vironments reveal considerable intra-urban spectral diversity with
characteristic spatial scales of 20 to 50 m (Small, 2009). The spectral di-
versity and scale-dependent spectral mixing endemic to urban land
Fig. 4. Comparison of raw and filtered elevations. Profile NS2 illustrates the effects of removal o
SRTM agree well in most areas. The GDEM2model retains some short wavelength (λ b−3 km
features of DSM.
cover violates the assumptions of spectral homogeneity and Lambertian
scattering that are implicit to stereography (Lang & Welch, 1999). As a
result, the 20–30 m spatial resolution of the ASTER sensor is not well
suited to stereography in heterogeneous urban environments with
abundant specular reflectors. However, this does not imply that
GDEM2 is not well suited to more spectrally homogeneous environ-
ments with greater topographic relief. GDEM2 is an important comple-
ment to SRTM because it provides coverage at higher latitudes and in
areas of very steep terrain and sand dunes where SRTM often contains
voids (Farr, 2006).

The correlation scales of the SRTMand LDEMare consistentwith, but
larger than, previous studies that quantify scale-dependent resolution
of SRTM. The continental-scale structure function analyses conducted
by Rodriguez et al. (2006) find height error correlation functions
dropping rapidly for scales b~500 m. The cross spectral analysis of
LiDAR and SRTM for Mojave Desert terrain conducted by Smith and
Sandwell (2003) found average spectral coherence of 0.5 at scales of
~200 m. The effective spatial resolution of the stereographic and syn-
thetic aperture radar algorithms is generally coarser than the 30 m
grid resolutions but finer than the 0.5 to 1 km correlation scales ob-
served in this study. The larger correlation scales found in this study
suggest that global DEMs may have lower effective spatial resolution
(or that noise levels are correspondingly higher) in developed coastal
environments compared to continental averages and mountainous,
high desert, environments. We conjecture that the lower effective spa-
tial resolutions of both global DEMs in developed coastal environments
is a result (at least in part) of the heterogeneity of land cover with char-
acteristic spatial scales comparable to the IFOV of the sensors used for
the global models.

Overall, both global DEMs arewell within their stated accuracy spec-
ifications and appear to have closer agreement to measured elevations
than in some previous studies cited above. However, in addition to the
apparently random errors discussed above, we do observe some sys-
tematic errors when comparing full 2D DEMs at 1″ resolution. The larg-
est and most obvious errors in both models occur in areas of high relief
at pixel scales (e.g., buildings in Manhattan). Both global DEMs overes-
timate ground elevation and underestimate building top heights by
f incoherent short wavelength (λ b 1 km) variance from all 4 models. The LiDAR DEM and
) artifacts and positive bias relative to the LiDAR DSM. Note GDEM amplification of short λ
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N10 m in most areas where buildings exceed tree height. Consistent
with the findings of (Hofton et al., 2006), SRTMoverestimates elevation
in areas of dense, closed canopy forestwhere the phase center lies with-
in the canopy. GDEM2 also overestimates surface elevations in some
wetlands.
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