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ABSTRACT

Ranking Algorithms on Directed Configuration
Networks

Ningyuan Chen

In recent decades, complex real-world networks, such as social networks, the World Wide

Web, financial networks, etc., have become a popular subject for both researchers and

practitioners. This is largely due to the advances in computing power and big-data analytics.

A key issue of analyzing these networks is the centrality of nodes. Ranking algorithms

are designed to achieve the goal, e.g., Google’s PageRank. We analyze the asymptotic

distribution of the rank of a randomly chosen node, computed by a family of ranking

algorithms on a random graph, including PageRank, when the size of the network grows to

infinity.

The thesis is based on [Chen and Olvera-Cravioto, 2013; Chen et al., 2014; Chen and

Olvera-Cravioto, 2014; Chen and Olvera-Cravioto, 2015]. In [Chen and Olvera-Cravioto,

2013], we propose a configuration model generating the topological structure of a directed

graph given in- and out-degree distributions of the nodes. The algorithm guarantees the

generated graph to be simple (without self-loops and multiple edges in the same direction)

for a broad spectrum of degree distributions, including power-law distributions. Power-law

degree distribution is referred to as scale-free property and observed in many real-world

networks. On the random graph Gn = (Vn, En) generated by the configuration model, we

study the distribution of the ranks, which solves

Ri =
∑

j:(j,i)∈En

CjRj +Qi

for all node i, some weight Ci and personalization value Qi. In [Chen et al., 2014], we show

that as the size of the graph n→∞, the rank of a randomly chosen node converges weakly



to the endogenous solution of the stochastic fixed-point equation:

R D=
N∑
i=1
CiRi +Q,

where (Q,N , {Ci}) is a random vector and {Ri} are i.i.d. copies of R, independent of

(Q,N , {Ci}). This main result is divided into three steps. First, we show that the rank

of a randomly chosen node can be approximated by applying the ranking algorithm on

the graph for finite iterations. Second, by coupling the graph to a branching tree that is

governed by the empirical size-biased distribution, we approximate the finite iteration of

the ranking algorithm by the root node of the branching tree. Finally, we prove that the

rank of the root of the branching tree converges to that of a limiting weighted branching

process, which is independent of n and solves the stochastic fixed-point equation. The

technical detail of the third step and its generalization of coupling a sequence of branching

processes are presented in [Chen and Olvera-Cravioto, 2014]. Our result formalizes the well-

known heuristics, that a network often locally possesses a tree-like structure. We conduct a

numerical example showing that the approximation is very accurate for English Wikipedia

pages (over 5 million).

To draw a sample from the endogenous solution of the stochastic fixed-point equation,

one can run linear branching recursions on a weighted branching process. We provide an

iterative simulation algorithm based on bootstrap. Compared to the naive Monte Carlo, our

algorithm reduces the complexity from exponential to linear in the number of recursions.

We show that as the boostrap sample size tends to infinity, the sample drawn according to

our algorithm converges to the target distribution in the Kantorovich-Rubinstein distance

and the estimator is consistent.



Table of Contents

List of Figures iv

List of Tables v

1 Introduction 1

1.1 Directed random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Ranking algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Efficient simulation for branching linear recursions . . . . . . . . . . . . . . 11

I Directed random graphs 14

2 Directed random graphs with given degree distributions 15

2.1 Graphs and degree sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Algorithm to generate degree sequences . . . . . . . . . . . . . . . . 18

2.1.2 Asymptotic behavior of the degree sequence . . . . . . . . . . . . . . 19

2.2 The undirected configuration model . . . . . . . . . . . . . . . . . . . . . . 21

2.3 The directed configuration model . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Repeated directed configuration model . . . . . . . . . . . . . . . . . 24

2.3.2 Erased directed configuration model . . . . . . . . . . . . . . . . . . 28

II Ranking algorithms 30

3 Ranking algorithms on directed configuration networks 31

i



3.1 The directed configuration model . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Spectral ranking algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Definition of the rank vector . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Finitely many iterations . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Construction of the graph and coupling with a branching tree . . . . . . . . 39

3.3.1 Terminology and notation . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Construction of the coupling . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 The coupling lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.4 Computing the rank of nodes in the TBT . . . . . . . . . . . . . . . 47

3.4 Coupling with a weighted branching process . . . . . . . . . . . . . . . . . . 48

3.4.1 Weighted branching processes . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 The Kantorovich-Rubinstein distance . . . . . . . . . . . . . . . . . 51

3.4.3 Bounds for the Kantorovich-Rubinstein distance . . . . . . . . . . . 52

3.4.4 Convergence to the endogenous solution . . . . . . . . . . . . . . . . 54

3.4.5 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.6 Asymptotic behavior of the limit . . . . . . . . . . . . . . . . . . . . 60

3.5 Algorithm to generate bi-degree sequences . . . . . . . . . . . . . . . . . . . 61

3.6 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

III Simulation of branching recursions 71

4 Efficient simulation for branching linear recursions 72

4.1 Linear recursions on weighted branching processes . . . . . . . . . . . . . . 72

4.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Convergence and consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

IV Bibliography 85

Bibliography 86

ii



V Appendices 94

A Proofs of Chapter 2 95

A.1 Degree sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 Configuration model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B Proofs of Chapter 3 117

B.1 Proof of the coupling lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.2 Coupling of weighted branching processes . . . . . . . . . . . . . . . . . . . 121

B.3 Proof of the asymptotic behavior of R∗ . . . . . . . . . . . . . . . . . . . . 129

B.4 Proofs of properties of the IID Algorithm . . . . . . . . . . . . . . . . . . . 130

iii



List of Figures

3.1 Graph construction process. Unpaired outbound links are in blue. . . . . . 41

3.2 Weighted branching tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 The empirical CDFs of 1000 samples of R∗, R(n,∞)
1 , R(n,kn)

1 and R̂(n,kn) for

n = 10000 and kn = 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 The empirical CDFs of 1000 samples of R∗ and R
(n,∞)
1 for n = 10, 100 and

10000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 English wikipages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 German wikipages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 French wikipages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Italian wikipages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.9 Dutch wikipages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.10 Chinese wikipages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 The functions F10,1000(x), F̂10,200(x) and F̂10,1000(x). . . . . . . . . . . . . . 83

4.2 The functions 1 − F10,10000(x), 1 − F̂10,10000(x) and G10(x), where G10 is

evaluated only at integer values of x and linearly interpolated in between. . 84

iv



List of Tables

3.1 The number of nodes, average in(out)-degree, the standard deviation of in-

and out-degrees, and the correlation between in- and out-degrees. . . . . . . 67

v



Acknowledgments
Foremost, I would like to express my sincere gratitude to my advisor Prof. Mariana Olvera-

Cravioto for the continuous support of my Ph.D study and research. Her guidance helped

me in all the time of research and writing of this thesis. I could not have imagined having

a better advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Jose

Blanchet, Prof. Antonius Dieker, Prof. Predrag Jelenkovic, and Prof. Karl Sigman, for

their time to participate in my defense and insightful comments.

My sincere thanks also go to Prof. Mark Broadie, Prof. Guillermo Gallego, and Prof.

Steven Kou, for offering guidance in research projects. Their diligence, dedication shape

my way of doing research.

Last but not the least, I would like to thank my family: my parents Dongling Pan

and Zhenbao Shen, for giving birth to me at the first place and supporting me spiritually

throughout my life.

vi



I dedicate my thesis to my wife Fang Zhu, and my daughter
Ariel Yuzhu Chen.

vii
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Chapter 1

Introduction

The information age has seen a booming development of large real-world networks, such as

the World Wide Web (WWW), social networks, interbank financial networks. Thanks to

unprecedentedly intensive social and economic interactions, these networks usually possess

several common features: they are huge, having thousands or even millions of nodes and

edges; they are very dynamic, growing and adapting every day. Fortunately, advanced

computing and data-storage power makes it possible to analyze these networks.

Many methods that are used to deal with complex networks are deterministic, i.e. given

a particular graph structure (e.g., the adjacency matrix), those methods analyze the prop-

erties of the graph. However, deterministic methodologies have its limitations. First, the

study doesn’t tell how and why the network evolves to what it looks now. For example, how

does a superstar emerge on Twitter. Second, the similarity and distinction between net-

works make it difficult to generalize. For example, what is the difference between Facebook

and a collaboration network, can an algorithm designed for the former be applied to the

latter. Third, the sheer complexity due to the size of the networks makes many algorithms

infeasible. These difficulties popularize the study of random graph. Unlike deterministic

methodologies, random graph tries to focus on the construction of networks. Imagine nu-

merous parallel universes. In each universe we generate a Twitter network according to a

random mechanism. Would there be a universe in which the Twitter looks exactly (or very

similar to) the one we have? If the designed random mechanism can indeed describe how

Twitter is generated in our universe, then we can study the properties of the random graph
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instead, which may yield more general and deeper results. Random graph can usually give

insight about the evolution of the graph by specifying the random process that generates.

It also provides connections between complex networks: If two networks, even differing

tremendously in size, structure and application, are generated by the same mechanism,

then they may still be sharing some common features.

In the first part of the thesis, we introduce a directed random graph model. The model

describes how a graph can be constructed (randomly) according to our proposed mechanism

and what properties it has. More precisely, given the distributions of the in- and out-degrees

of the nodes (either p.m.f.s or realized observations), our model generates a directed graph

with no self-loops and multiple edges in the same direction between two nodes. The resulted

graph is uniformly distributed in the set of all such graphs with the same degrees. See

Section 1.1 for detailed introduction and literature review of this topic.

I then focus on the analysis of ranking algorithms on random networks. Ranking algo-

rithms output a value, the so-called rank, of a node in a graph, according to its topological

strucutre, i.e. how nodes are connected to each other. To demonstrate, in a star graph, the

central node will have a high rank compared to its leaves; in a complete graph, on the other

hand, all nodes will have the same rank. One of the most famous applications of ranking

algorithms is Google’s PageRank, which is used to rank webpages in the WWW. Some

webpages are more “important”, because a lot of other pages link to this page, e.g., the

frontpage of the Wall Street Journal. These important pages are ranked high when you use

Google to search relevant topics. Another example is social networks, in which celebraties

and sportstars have millions of followers and thus a huge impact on the community.

To rank the nodes according to their centrality, note that a node would be ranked high

if it is connected to a lot of other nodes, or its connected neighbors are important. Ranking

algorithms solve a linear equation system of the size of the network, and the solution (a

vector of the same size) represents the ranks of all nodes in the graph. Even though the

computation is not hard, it leaves open some interesting questions: How is the distribution

of the ranks related to the graph, what common attributes do those nodes of high ranks

have, how can we design customized ranking algorithms if we want the resulted rank to

follow a particular distribution.
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Random graph allows us to analyze the ranking algorithm from a new perspective:

Rather than concerning about the structure of the graph, it studies the underlying mecha-

nism that generates the graph, and hence greatly simplifies the computation of the ranks.

It is based on the heuristics that if we zoom in and analyze the local property of a network,

the structure resembles a branching process [Newman et al., 2001]. We can thus character-

ize the distribution of the rank of a randomly chosen node when the graph size grows to

infinity. See Section 1.2 for detailed introduction on this topic.

My last topic is efficient simulation of linear branching recursions. As appearing in the

asymptotic analysis of ranking algorithms, weighted branching process turns out to be a

useful tool for approximating graphs. The simulation of branching recursions allows us

to numerically compute the endogenous solution of a stochastic fixed-point equation on a

weighted branching process. However, naive Monte Carlo simulation is extremely time-

and memory-consuming, because of the exponential complexity due to branching. Our

algorithm can be used to approximately simulate the target distribution. See Section 1.3

for detailed introduction to the algorithm.

1.1 Directed random graphs

One of the earliest random graph models, the Erdős-Rényi model, can be dated back to

1960s [Erdős and Rényi, 1959]. In this model, given n nodes, any pair of nodes are connected

with probability p. The Erdős-Rényi graph yields many analytical properties, such as the

existence of large components, the connectedness of the graph, etc. However, a significant

drawback makes the model unfit for real-world networks: It doesn’t admit heavy tails of the

degrees, as is the case in many real networks. More precisely, it only gives Poisson degree

distribution when n→∞ and np remains fixed.

Starting from 1990s and 2000s, complex networks have attracted the attention of scholars

from biology, physics, computer science, and mathematics, e.g., [Albert and Barabási, 1999;

Watts and Strogatz, 1998; Albert and Barabási, 2002; Boccaletti et al., 2006]. Among them,

the Watts-Strogatz model [Watts and Strogatz, 1998] and Barabasi-Albert model [Albert

and Barabási, 2002] provide two popular alternatives of modeling random graphs. In the
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Watts-Strogatz model, an undirected graph is constructed given the number of nodes n and

mean degree k. The model first constructs a ring lattice, with each node connected to k

neighbors, k/2 on each side. Then for each node, we take each of its edge and rewire it

with probability β, where the new node is chosen uniformly from all possible values that

avoid self-loops. However, it is still unable to produce heavy-tail degree distributions. The

Barabasi-Albert model uses a preferential attachment mechanism and thus results in scale-

free networks, i.e., the degree distribution follows a power law. The network begins with an

initial connected network of n0 nodes. When a new node is added, it is connected to m of

the existing nodes, with a probability proportional to the number of edges the nodes already

have. The intuition is that a node with high degree is more likely to be connected to new

nodes, and hence the degree distribution has a heavy tail. However, the index of the power

law is always 3 and the inflexibility imposes a significant limitation of the model. Other

classical examples are the Chung-Lu model [Chung and Lu, 2002b], and the Configuration

Model [van der Hofstad, 2014, Chapter 7]. New models continue to appear, tuned to the

properties of specific networks. For example, an interesting “super-star” model was recently

developed to describe retweet graphs [Bhamidi et al., 2012]. We refer to [van der Hofstad,

2014; Durrett, 2007; Newman, 2010] for a more detailed discussion of random graph models

for complex networks.

To study the behavior of undirected random graphs with arbitrary degree distributions,

[Newman et al., 2001] introduce an intuitive and helpful heuristic that is consistent with

the motivation of our work. They avoid analyzing the “big picture” of the graph but rather

explore the graph from any single node. The depth-first exploration sequentially adds the

neighbors of the node, the neighbors of neighbors, etc. For huge networks, this exploration

may proceed for many layers until a cycle is encountered. In other words, a graph can be

regarded as a branching process, at least locally. This heuristic allows the authors to derive

moment generating functions of various quantities.

As mentioned, some of the models don’t have enough flexibility to model real-world

networks. The main reason is that their resulted graphs fail to match desired degree

distributions. In real-world networks, it is often found that the fraction of nodes with

(in- or out-) degree k is ≈ c0k
−α−1, usually α ∈ (1, 3) (e.g., [Kleinberg et al., 1999;
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Broder et al., 2000; Brin and Page, 1998; Newman, 2010]). The reason is simple: There

are usually “superstar” nodes in the graph that is far more influential than other nodes,

causing a heavy-tail degree distribution. Hence the ability to match degree distributions

to real graphs is perhaps the first one would desire from a random graph model. There

are several models that accomplish this for undirected graphs being proposed in the re-

cent literature [McKay and Wormald, 1990b; Chung and Lu, 2002b; Chung and Lu, 2002a;

Britton et al., 2006]. However not much has been done for the directed case, except in

[Amini et al., 2013] the authors briefly describe a directed configuration model and its

properties. Our work [Chen and Olvera-Cravioto, 2013] fills in the gap.

We first briefly introduce the undirected case in [Britton et al., 2006], which is closely

related to our directed model. Given a probability distribution F , the goal is to provide

an algorithm to generate a simple random graph (doesn’t have self-loops or multiple edges

between two nodes) whose degree distribution is approximately F . Two of the models

presented in [Britton et al., 2006], are in turn related to the well-known configuration model

[Wormald, 1978; Bollobás, 1980], where nodes are given stubs or half-edges according to a

degree sequence {di} and these stubs are then randomly paired to form edges. To obtain a

prescribed degree distribution, the degree sequence {di} is chosen as i.i.d. random variables

having distribution F . This method allows great flexibility in terms of the generality of F ,

which is very important in the applications we have in mind. The most general of the results

presented here require only that the degree distributions have finite (1 + ε)th moment, and

are therefore applicable to a great variety of examples, including the WWW.

For a directed random graph there are two distributions that need to be chosen, the

in-degree and out-degree distributions, denoted respectively F = {fk : k ≥ 0} and G = {gk :

k ≥ 0}. The in-degree of a node corresponds to the number of edges pointing to it, while the

out-degree is the number of edges pointing out. To follow the ideas from [van der Hofstad et

al., 2005; Britton et al., 2006], we propose to draw the in-degree and out-degree sequences

as i.i.d. observations from distributions F and G. Unlike the undirected case where the

only main problem with this approach is that the sum of the degrees might not be even,

which is necessary to draw an undirected graph, in the directed case the corresponding

condition is that the sum of the in-degrees and the sum of the out-degrees be the same.
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Since the probability that two i.i.d. sequences will have the same sum, even if their means

are equal, converges to zero as the number of nodes grows to infinity. [Chen and Olvera-

Cravioto, 2013] first focuses on how to construct valid degree sequences without significantly

destroying their i.i.d. properties. Once we have valid degree sequences the problem is how to

obtain a simple graph, since the random pairing may produce self-loops and multiple edges

in the same direction. This problem is addressed in two ways, the first of which consists

in showing sufficient conditions under which the probability of generating a simple graph

through random pairing is strictly positive, which in turn suggests repeating the pairing

process until a simple graph is obtained. The theoretical foundation of this method is laid

out in [Blanchet and Stauffer, 2013]. The second approach is to simply erase the self-loops

and multiple edges of the resulting graph. In both cases, one must show that the degree

distributions in the final simple graph remain essentially unchanged. In particular, if we let

f
(n)
k be the probability that a randomly chosen node from a graph of size n has in-degree

k, and let g(n)
k be the corresponding probability for the out-degree, then we will show that,

f
(n)
k → fk and g

(n)
k → gk,

as n→∞. We also prove a similar result for the empirical distributions.

The question of whether a given pair of in- and out-degree sequences ({mi}, {di}) is

graphical, i.e., from which it is possible to draw a simple directed graph, has been recently

studied in [Erdös et al., 2010], where algorithms to realize such graphs have also been

analyzed. Random directed graphs with arbitrary degree distributions have been studied

in [Newman et al., 2001] via generating functions, which can be used to formalize concepts

such as “in-components” and “out-components” as well as to estimate their average size.

Models of growing networks that can be calibrated to mimic the power-law behavior of the

WWW have been analyzed using statistical physics techniques in [Krapivsky et al., 2001;

Krapivsky and Redner, 2002]. The approach followed in [Chen and Olvera-Cravioto, 2013]

focuses on one hand on the generation of in- and out-degree sequences that are close to being

i.i.d. and that are graphical with high probability, and on the other hand on providing

conditions under which a simple graph can be obtained through random pairing. The

directed configuration model (DCM) with (close to) i.i.d. degree sequences, although not

a growing network model, has the advantage of being analytically tractable and easy to
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simulate. This topic is covered in Chapter 2.

1.2 Ranking algorithms

Based on the DCM proposed in Chapter 2, we are able to study the ranking of nodes

according to their centrality in a complex network such as the Internet, the World Wide Web,

and other social and biological networks. For a comprehensive overview of the vast literature

on rankings in networks we refer the reader to [Langville and Meyer, 2011], and more

recently to [Boldi and Vigna, 2014] for a thorough up-to-date mathematical classification

of centrality measures.

In this thesis we analyze a family of ranking algorithms which includes Google’s PageR-

ank, the algorithm proposed by Brin and Page [Brin and Page, 1998], and which is arguably

the most influential technique for computing rankings of nodes in large directed networks.

The original definition of PageRank is the following. Let Gn = (Vn, En) be a directed graph,

with a set of (numbered) vertices Vn = {1, . . . , n}, and a set of directed edges En. Choose a

constant c ∈ (0, 1), which is called a damping factor, and let q = (q1, q2, . . . , qn) be a person-

alization probability vector, i.e., qi ≥ 0 and
∑n
i=1 qi = 1. Denote by di = |{j : (i, j) ∈ En}|

the out-degree of node i ∈ Vn. Then the PageRank vector r = (r1, . . . , rn) is the unique

solution to the following system of linear equations:

ri =
∑

j:(j,i)∈En

c

dj
rj + (1− c)qi, i = 1, . . . , n. (1.1)

Google’s PageRank was designed to rank Web pages based on the network’s structure, rather

than their content. The idea behind (1.1) is that a page is important if many important

pages have a hyperlink to it. Furthermore, by tuning the personalization values, qi’s, one

can, for instance, give preference to specific topics [Haveliwala, 2002] or penalize spam pages

[Gyöngyi et al., 2004].

In the original definition, r is normalized so that ||r||1 = 1, where the norm ||x||1 =∑n
i=1 |xi| denotes the l1 norm in Rn. The vector r can be thought of as the stationary

distribution of a random walk on the graph. At any node, the random walk travels to all

the nodes that are connected from the current node with equal probability (summing up to

c), or restarts at a random nodes with probability (1 − c)q. Therefore, the rank of nodes
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has an intuitive interpretation: If in steady state, the random walk spends more time on a

node, then the node is deemed to have a higher rank.

Since the average PageRank in r scales as O(1/n), it is more convenient for our purposes

to work with a scaled version of PageRank:

nr =: R = (R1, R2, . . . , Rn).

Then, also using the notation Cj for c/dj , and notation Qi for n(1− c)qi, we rewrite (1.1)

to obtain

Ri =
∑

j:(j,i)∈En

Cj Rj +Qi, i = 1, . . . , n. (1.2)

Throughout the thesis, we will refer to R as the PageRank vector and to Q = (Q1, Q2, . . . , Qn)

as the personalization vector.

The basic definition (1.1) has many modifications and generalizations. Our analysis will

cover a wide range of them by allowing a general form of the coefficients in (1.2). For exam-

ple, our model admits a random damping factor as studied in [Constantine and Gleich, 2009].

Numerous applications of PageRank and its modifications include graph clustering [Ander-

sen et al., 2006], spam detection [Gyöngyi et al., 2004], and citation analysis [Chen et al.,

2007; Waltman and van Eck, 2010].

Note that to solve R from (1.2) for c, Q and a given graph, the PageRank is a linear

system of size n. Hence the solution of PageRank is not difficult, at least computationally.

However, an interesting phenomenon requires more effective analytical characterization of

the ranking vector: From the work of Pandurangan et al. [Pandurangan et al., 2002], and

many papers that followed, the following hypothesis has always been confirmed by the data.

The power law hypothesis: If the in-degree distribution in a network follows a power

law then the PageRank scores in this network will also follow a power law with the same

exponent.

The power law hypothesis is plausible because in (1.1) the number of terms in the

summation on the right-hand side is just the in-degree of i, so the in-degree provides a

‘mean-field’ approximation for PageRank [Fortunato et al., 2008]. However, this argument

is not exact nor accurate enough, which is confirmed by the fact that the top-ranked nodes in

PageRank are not exactly those with the largest in-degrees [Chen et al., 2007; Volkovich et
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al., 2009; Vigna, 2014]. Exact mathematical evidence supporting the power law hypothesis

is surprisingly scarce. As one of the few examples, [K. Avrachenkov, 2006] obtains the

power law behavior of average PageRank scores in a preferential attachment graph by using

Polya’s urn scheme and advanced numerical methods.

In a series of papers, Volkovich et al. [Litvak et al., 2007; Volkovich et al., 2007;

Volkovich and Litvak, 2010] suggested an analytical explanation for the power law behavior

of PageRank by comparing the PageRank of a randomly chosen node to the endogenous

solution of a stochastic fixed point equation (SFPE) that mimics (1.2):

R
D=

N∑
i=1

CiRi +Q. (1.3)

Here N (in-degree) is a nonnegative integer random variable having a power law distribu-

tion with exponent α, Q (personalization) is an arbitrary positive random variable, and

the Ci’s are random coefficients that in [Volkovich and Litvak, 2010] equal c/Di, with Di

being the out-degree of a node provided Di ≥ 1. The symbol D= denotes equality in distri-

bution. Assuming that N is regularly varying and using Laplace transforms, it was proved

in [Volkovich and Litvak, 2010] that R has a power law with the same exponent as N if N

has a heavier tail than Q, whereas the tail of R is determined by Q if it is heavier than N .

The same result was also proved independently in [Jelenković and Olvera-Cravioto, 2010]

using a sample-path approach.

However, the SFPE does not fully explain the behavior of PageRank in networks since it

implicitly assumes that the underlying graph is an infinite tree, a condition that is never true

in real-world networks. We complete the argument when the underlying network is a DCM

by showing that the distribution of the PageRank in the graph converges to the endogenous

solution of a SFPE. Our techniques are likely to be useful in the analysis of PageRank in

other locally tree-like graphs. Methodologically, our results provide insights in the following

respects. First, branching processes have been heuristically used to approximate graphs;

but very little is known about what types of graphs will suit this method. We show that the

DCM is a proper model that the heuristic can be applied to. Second, we provide a coupling

argument and show that the tree and the graph are likely to decouple at the size of O(
√
n).

This argument can be used to analytically justify the heuristic for other graph models.
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Third, we derive a bound for linear recursions on two weighted branching processes, given

that the branching vectors are close. For large networks, the previous coupling technique

leads to the analysis of weighted branching processes. The bound we derive ensures a

random variable that serves as the limit of a certain quantity on the graph, as its size grows

to infinity.

The proof of the main result consists of the following three steps:

1. Finite approximation (Section 3.2.2). Show that the class of rankings that we study

can be approximated in the DCM with any given accuracy by a finite (independent

of the graph size n) number of matrix iterations. The DCM plays a crucial role in

this step since it implies that the ranks of all the nodes in the graph have the same

distribution.

2. Coupling with a tree (Section 3.3). Construct a coupling of the DCM graph and a

“thorny branching tree” (TBT). In a TBT each node with the exception of the root

has one outbound link to its parent and possibly several other unpaired outbound

links. During the construction, all nodes in both the graph and the tree are also

assigned a weight. The main result in this section is the Coupling Lemma 12, which

states that the coupling between the graph and the tree will hold for a number of

generations in the tree that is logarithmic in n. The locally tree-like property of the

DCM is important for this step.

3. Convergence to a weighted branching process (Section 3.4). Show that the rank of the

root node of the TBT converges weakly to the SFPE. This last step requires the weak

convergence of the random distributions that define the TBT in the previous step. The

convergence requires explicit bounds for the Kantorovich-Rubinstein distance between

two random variables constructed according to the representation for the endogenous

solution to (1.3); these bounds are given in terms of the Kantorovich-Rubinstein

distance between their generic branching vectors. We then use these bounds to obtain

the convergence of a sequence of such random variables in the same distance.

This main result is derived in Chapter 3.
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1.3 Efficient simulation for branching linear recursions

Consider a general SFPE

R
D=

N∑
i=1

CiRi +Q. (1.4)

where (Q,N,C1, C2, . . . ) is a real-valued random vector with N ∈ N = {0, 1, 2, . . . } ∪ {∞},

{Ri}i∈N is a sequence of i.i.d. copies of R, independent of (Q,N,C1, C2, . . . ), and D= denotes

equality in distribution. In deriving the main result in Section 3.3, we generalize the idea

of coupling, which turns out to be of independent interest. Besides ranking algorithms, the

stochastic fixed-point equation (1.4) is closely related to the complexity analysis of divide

and conquer algorithms such as Quicksort [Rösler, 1991; Fill and Janson, 2001; Rösler and

Rüschendorf, 2001], in addition to the information ranking algorithm. More precisely, the

number of comparisons required in Quicksort for sorting an array of length n, properly

normalized, satisfies in the limit as the array’s length grows to infinity a distributional

equation of the form in (1.4).

As further motivation for the study of branching fixed-point equations, we mention the

maximum equation

R
D= Q ∨

N∨
r=1

CrRr, (1.5)

with (Q,N,C1, C2, . . . ) nonnegative, which has been shown to appear in the analysis of

the waiting time distribution in large queueing networks with parallel servers and synchro-

nization requirements [Karpelevich et al., 1994; Olvera-Cravioto and Ruiz-Lacedelli, 2014].

In this setting, W = logR represents the waiting time in stationarity of a job, that upon

arrival to the network, is split into a number of subtasks requiring simultaneous service

from a random subset of servers. Computing the distribution and the moments of W is

hence important for evaluating the performance of such systems (e.g., implementations of

MapReduce and similar algorithms in today’s cloud computing). We focus in this thesis

only on (1.4), but we mention that the algorithm we provide can easily be adapted to

approximately simulate the solutions to (1.5).

Although the study of (1.4) has received considerable attention in the recent years

[Rösler, 1991; Biggins, 1998; Fill and Janson, 2001; Rösler and Rüschendorf, 2001; Aldous

and Bandyopadhyay, 2005; Alsmeyer et al., 2012; Alsmeyer and Meiners, 2012; Alsmeyer
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and Meiners, 2013; Jelenković and Olvera-Cravioto, 2012b; Jelenković and Olvera-Cravioto,

2012a; Jelenković and Olvera-Cravioto, 2015], the current literature only provides results

on the characterization of the solutions to (1.4), the tail asymptotics, and in some instances,

their integer moments, which is not always enough for the applications mentioned above.

It is therefore of practical importance to have a numerical approach to estimate both the

distribution and the general moments of R.

As a mathematical observation, we mention that (1.4) is known to have multiple solu-

tions (see e.g. [Biggins, 1998; Alsmeyer et al., 2012; Alsmeyer and Meiners, 2012; Alsmeyer

and Meiners, 2013] and the references therein for the characterization of the solutions).

However, in applications we are often interested in the so-called endogenous solution. This

endogenous solution is the unique limit under iterations of the distributional recursion

R(k+1) D=
N∑
r=1

CrR
(k)
r +Q, (1.6)

where (Q,N,C1, C2, . . . ) is a real-valued random vector with N ∈ N, and {R(k)
i }i∈N is a

sequence of i.i.d. copies of R(k), independent of (Q,N,C1, C2, . . . ), provided one starts

with an initial distribution for R(0) with sufficient finite moments (see, e.g., Lemma 4.5 in

[Jelenković and Olvera-Cravioto, 2012a]). Moreover, asymptotics for the tail distribution

of the endogenous solution R are available under several different sets of assumptions for

(Q,N,C1, C2, . . . ) [Jelenković and Olvera-Cravioto, 2010; Jelenković and Olvera-Cravioto,

2012b; Jelenković and Olvera-Cravioto, 2012a; Olvera-Cravioto, 2012b].

As will be discussed later, the endogenous solution to (1.4) can be explicitly constructed

on a weighted branching process. Thus, drawing some similarities with the analysis of

branching processes, and the Galton-Watson process in particular, one could think of using

the Laplace transform of R to obtain its distribution. Unfortunately, the presence of the

weights {Ci} in the Laplace transform

ϕ(s) = E [exp (−sR)] = E

[
exp (−sQ)

N∏
i=1

ϕ(sCi)
]

makes its inversion problematic, making a simulation approach even more necessary.

The first observation we make regarding the simulation of R, is that when P (Q = 0) < 1

it is enough to be able to approximate R(k) for fixed values of k, since both R(k) and R can
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be constructed in the same probability space in such a way that the difference |R(k) − R|

is geometrically small. More precisely, under very general conditions, there exist positive

constants K <∞ and c < 1 such that

E

[∣∣∣R(k) −R
∣∣∣β] ≤ Kck+1. (1.7)

Our goal is then to simulate R(k) for a suitably large value of k.

The simulation of R(k) is not that straightforward either, since the naive approach of

simulating i.i.d. copies of (Q,N,C1, C2, . . . ) to construct a single realization of a weighted

branching process, up to say k generations, is of order (E[N ])k. Considering that in the

examples mentioned earlier we typically have E[N ] > 1 (N ≡ 2 for Quicksort, E[N ] ≈ 30

in many information ranking applications, and E[N ] in the hundreds for MapReduce im-

plementations), this approach is prohibitive. Instead, we propose in this thesis an iterative

bootstrap algorithm that outputs a sample pool of observations {R̂(k,m)
i }mi=1 whose em-

pirical distribution converges, in the Kantorovich-Rubinstein distance, to that of R(k) as

the size of the pool m → ∞. This mode of convergence is equivalent to weak conver-

gence and convergence of the first absolute moments (see, e.g., [Villani, 2009]). More-

over, the complexity of our proposed algorithm is linear in k. A variant of the algorithm

has been used in statistical physics [Abou-Chacra et al., 1973; Mézard and Parisi, 2001;

Mezard and Montanari, 2009], but to my knowledge, no previous results derive the explicit

bound for the error of the algorithm and point out the exact mode of convergence. The

detail of the algorithm is presented in Chapter 4.
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Part I

Directed random graphs
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Chapter 2

Directed random graphs with given

degree distributions

As mentioned in the introduction, the goal of this chapter is to provide an algorithm for

generating a random directed graph with n nodes with the property that its in-degrees and

out-degrees have some prespecified distributions F and G, respectively. Moreover, we would

like the resulting graph to be simple, that is, it should not contain self-loops or multiple

edges in the same direction. The two models that we propose are based on the so-called

configuration or pairing model, which produces a random undirected graph from a degree

sequence {d1, d2, . . . , dn}.

This chapter is organized as follows. In Section 2.1 we introduce a model to construct

in- and out-degree sequences that are very close to being two independent sequences of

i.i.d. random variables having distributions F and G, respectively, but whose sums are the

same; in the same spirit as the results in [Arratia and Liggett, 2005] we also show that the

suggested method produces with high probability a graphical pair of degree sequences. In

Section 2.3.1 we prove sufficient conditions under which the probability that the directed

configuration model will produce a simple graph will be bounded away from zero, and show

that conditional on the resulting graph being simple, the degree sequences have asymptot-

ically the correct distributions. In Section 2.3.2 we show that under very mild conditions,

the process of simply erasing self-loops and multiple edges results in a graph whose degree
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distributions are still asymptotically F and G.

2.1 Graphs and degree sequences

Following the same idea of using a sequence of i.i.d. random variables to generate the

degree sequence of an undirected graph, the natural extension to the directed case would

be to draw two i.i.d. sequences from given distributions F and G. We note that in the

undirected setting the two main problems with this approach are: 1) that the sum of the

degrees may be odd, in which case it is impossible to draw a graph, and 2) that there may

not exist a simple graph having the prescribed degree sequence. The first problem is easily

fixed by either sampling the i.i.d. sequence until its sum is even (which will happen with

probability 1/2 asymptotically), or simply adding one to the last random number in the

sequence. The second problem, although related to the verification of graphicality criteria

(e.g., the Erdös-Gallai criterion [Erdös and Gallai, 1960]), turns out to be negligible as the

number of nodes goes to infinity, as the work in [Arratia and Liggett, 2005] shows. For

directed graphs a graphicality criterion also exists, and the second problem turns out to be

negligible for large graphs just as in the undirected case. Nonetheless, the equivalent of the

first problem is now that the potential in-degree and out-degree sequences must have the

same sum, which is considerably harder to fix. Before proceeding with the formulation of

our proposed algorithm we give some basic definitions which will be used throughout the

chapter.

Definition 1. We denote by ~G(V, ~E) a directed graph on n nodes or vertices, V = {v1, v2, . . . , vn},

connected via the set of directed edges ~E.

Definition 2. We say that ~G(V, ~E) is simple if any pair of nodes are connected by at most

one edge in each direction, and if there are no edges in between a node and itself.

Definition 3. The in-degree mi, respectively, out-degree di, of node vi ∈ V is the total

number of edges from other nodes to vi, respectively, from vi to other nodes. The pair of

sequences (m,d) = ({m1,m2, . . . ,mn}, {d1, d2, . . . , dn}) of nonnegative integers is called a

bi-degree-sequence if mi and di correspond to the in-degree and out-degree, respectively, of

node vi.
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Definition 4. A bi-degree-sequence (m,d) is said to be graphical if there exists a simple

directed graph ~G(V, ~E) on the set of nodes V such that the in-degree and out-degree sequences

together form (m,d). In this case we say that ~G realizes the bi-degree-sequence.

In view of these definitions our goal is to generate the sequences {mi} and {di} from i.i.d.

samples of given distributions F = {fk : k ≥ 0} and G = {gk : k ≥ 0}, respectively. Both F

and G are assumed to be probability distributions with support on the nonnegative integers

with a finite common mean µ. Note that although the Strong Law of Large Numbers

(SLLN) guarantees that if we simply sample i.i.d. random variables {γ1, . . . , γn} from F

and, independently, i.i.d. random variables {ξ1, . . . , ξn} from G, then

P

(
lim
n→∞

1
n

n∑
i=1

γi = lim
n→∞

1
n

n∑
i=1

ξi

)
= 1,

it is also true that in general

lim
n→∞

P

(
n∑
i=1

γi −
n∑
i=1

ξi = 0
)

= 0.

One potential idea to fix the problem is to sample one of the two sequences, say the in-

degrees, as i.i.d. observations {γ1, . . . , γn} from F and then sample the second sequence

from the conditional distribution G given that its sum is Γn =
∑n
i=1 γi. This approach

has the major drawback that this conditional distribution may be ill-behaved, in the sense

that the probability of the conditioning event, the sum being equal to Γn, converges to

zero in most cases. It follows that we need a different mechanism to sample the degree

sequences. The precise algorithm we propose is described below; we focus on first sampling

two independent i.i.d. sequences and then add in- or out-degrees as needed to match their

sums.

The following definition will be needed throughout the rest of the chapter.

Definition 5. We say that a function L(·) is slowly varying at infinity if limx→∞ L(tx)/L(x) =

1 for all fixed t > 0. A distribution function F is said to be regularly varying with index

α > 0, F ∈ R−α, if F (x) = 1− F (x) = x−αL(x) with L(·) slowly varying.

We will also use the notation ⇒ to denote convergence in distribution, P−→ to denote

convergence in probability, and N = {1, 2, 3, . . . } to refer to the positive integers.
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2.1.1 Algorithm to generate degree sequences

We assume that the target degree distributions F and G have support on the nonnegative

integers and have common mean µ > 0. Moreover, suppose that there exist slowly varying

functions LF (·) and LG(·) such that

F (x) =
∑
k>x

fk ≤ x−αLF (x) and G(x) =
∑
k>x

gk ≤ x−βLG(x), (2.1)

for all x ≥ 0, where α, β > 1.

We refer the reader to [Bingham et al., 1987] for all the properties of slowly varying

functions that will be used in the proofs. However, we do point out here that the tail

conditions in (2.1) ensure that F has finite moments of order s for all 0 < s < α, and G

has finite moments of order s for all 0 < s < β. The constant

κ = min{1− α−1, 1− β−1, 1/2},

will play an important role throughout the chapter. The algorithm is given below.

1. Fix 0 < δ0 < κ.

2. Sample an i.i.d. sequence {γ1, . . . , γn} from distribution F ; let Γn =
∑n
i=1 γi.

3. Sample an i.i.d. sequence {ξ1, . . . , ξn} from distribution G; let Ξn =
∑n
i=1 ξi.

4. Define ∆n = Γn − Ξn. If |∆n| ≤ n1−κ+δ0 proceed to step 5; otherwise repeat from

step 2.

5. Choose randomly |∆n| nodes {i1, i2, . . . , i|∆n|} without remplacement and let

Mi = γi + τi, Di = ξi + χi, i = 1, 2, . . . , n,

where

χi =


1 if ∆n ≥ 0 and i ∈ {i1, i2, . . . , i∆n},

0 otherwise,
and

τi =


1 if ∆n < 0 and i ∈ {i1, i2, . . . , i|∆n|},

0 otherwise.
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Remark 1. (i) This algorithm constructs a bi-degree-sequence (M,D) having the property

that Ln =
∑n
i=1Mi =

∑n
i=1Di. (ii) Note that we have used the capital letters Mi and

Di to denote the in-degree and out-degree, respectively, of node i, as opposed to using the

notation mi and di from Definition 4; we do this to emphasize the randomness of the

bi-degree-sequence itself. (iii) Clearly, neither {M1, . . . ,Mn} nor {D1, . . . , Dn} are i.i.d.

sequences, nor are they independent of each other, but we will show in the next section that

asymptotically as n grows to infinity they have the same joint distribution as ({γi}, {ξi}).

(iv) Regarding the condition |∆n| ≤ n1−κ+δ0 in step 4, we note that it provides a way to

ensure that the number of in-degrees or out-degrees that we add in step 5 is negligible with

respect to n; the polynomial rate at which we are requiring |∆n|/n to converge to zero is

nevertheless not essential, but it has the advantage of allowing us to keep the calculations

throughout the chapter simple. We will show that the probability of satisfying |∆n| ≤ n1−κ+δ0

converges to one as n grows in the following section. (v) Note that we always choose to add

degrees, rather than fixing one sequence and always adjust the other one, to avoid having

problems with nodes with in- or out-degree zero.

2.1.2 Asymptotic behavior of the degree sequence

We now provide some results about the asymptotic behavior of the bi-degree-sequence

obtained from the algorithm we propose. The first thing we need to prove is that the

algorithm will always end in finite time, and the only step where we need to be careful

is in step 4, since it may not be obvious that we can always draw two independent i.i.d.

sequences satisfying |∆n| ≤ n1−κ+δ0 in a reasonable amount of time. The first lemma we

give establishes that this is indeed the case by showing that the probability of satisfying

condition |∆n| ≤ n1−κ+δ0 converges to one as the size of the graph grows. All the proofs in

this section can be found in Appendix A.

Lemma 1. Define Dn = {|∆n| ≤ n1−κ+δ0}, then

lim
n→∞

P (Dn) = 1.

We point out that it is possible to construct a bi-degree-sequence (M,D) such that

|∆n|/n converges to zero in probability under the weaker assumption that α, β ≥ 1 and
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F and G have finite mean. This weaker condition would also be necessary, since one can

construct examples where α = β = 1 and either F or G have infinite mean, such that ∆n/n

converges in distribution to a non-degenerate random variable. Our condition (2.1) with

α, β > 1 is therefore close to the best possible in terms of ensuring that |∆n|/n converges

to zero, and it is necessary to obtain the polynomial rate n−κ+δ0 , which greatly simplifies

the calculations throughout the chapter.

Since with our proposed construction the sums of the in-degrees and out-degrees are the

same, we can always draw a graph, but this is not enough to guarantee that we can draw

a simple graph. In other words, we need to determine with what probability will the bi-

degree-sequence (M,D) be graphical, and to do this we first need an appropriate criterion,

e.g., a directed version of the Erdös-Gallai criterion for undirected graphs. The following

result (Corollary 1 on p. 110 in [Berge, 1976]) gives necessary and sufficient conditions for

a bi-degree-sequence to be graphical; the original statement is for more general p-graphs,

where up to p parallel edges in the same direction are allowed. The notation |A| denotes

the cardinality of set A.

Theorem 2. Given a set of n vertices V = {v1, . . . , vn}, having bi-degree-sequence (m,d) =

({m1, . . . ,mn}, {d1, . . . , dn}), a necessary and sufficient condition for (m,d) to be graphical

is

1.
n∑
i=1

mi =
n∑
i=1

di, and

2.
n∑
i=1

min{di, |A− {vi}|} ≥
∑
vi∈A

mi for any A ⊆ V .

We now state a result that shows that for large n, the bi-degree-sequence (M,D) con-

structed in Section 2.1.1 is with high probability graphical. Related results for undirected

graphs can be found in [Arratia and Liggett, 2005], which includes the case when the degree

distribution has infinite mean.

Theorem 3. For the bi-degree-sequence (M,D) constructed in Section 2.1.1 we have

lim
n→∞

P ((M,D) is graphical) = 1.
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The second property of (M,D) that we want to show is that despite the fact that the

sequences {Mi} and {Di} are no longer independent nor individually i.i.d., they are still

asymptotically so as the number of vertices n goes to infinity. The intuition behind this

result is that the number of degrees that need to be added to one of the i.i.d. sequences

{γi} or {ξi} to match their sum is small compared to n, and therefore the sequences {Mi}

and {Di} are almost i.i.d. and independent of each other. This feature makes the bi-

degree-sequence (M,D) we propose an approximate equivalent of the i.i.d. degree sequence

considered in [Arratia and Liggett, 2005; van der Hofstad et al., 2005; Britton et al., 2006]

for undirected graphs.

Theorem 4. The bi-degree-sequence (M,D) constructed in Section 2.1.1 satisfies that for

any fixed r, s ∈ N,

(Mi1 , . . . ,Mir , Dj1 , . . . , Djs)⇒ (γ1, . . . , γr, ξ1, . . . , ξs)

as n→∞, where {γi} and {ξi} are independent sequences of i.i.d. random variables having

distributions F and G, respectively.

To end this section, we give a result that establishes regularity conditions of the bi-

degree-sequence (M,D) which will be important in the sequel.

Proposition 5. The bi-degree-sequence (M,D) constructed in Section 2.1.1 satisfies

1
n

n∑
k=1

1(Mk = i,Dk = j) P−→ figj , for all i, j ∈ N ∪ {0},

1
n

n∑
i=1

Mi
P−→ E[γ1], 1

n

n∑
i=1

Di
P−→ E[ξ1], and 1

n

n∑
i=1

MiDi
P−→ E[γ1ξ1],

as n→∞, and provided E[γ2
1 + ξ2

1 ] <∞,

1
n

n∑
i=1

M2
i

P−→ E[γ2
1 ], and 1

n

n∑
i=1

D2
i

P−→ E[ξ2
1 ],

as n→∞.

2.2 The undirected configuration model

In the previous section we introduced a model for the generation of a bi-degree-sequence

(M,D) that is close to being a pair of independent sequences of i.i.d. random variables, but
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yet has the property of being graphical with probability close to one as the size of the graph

goes to infinity. We now turn our attention to the problem of obtaining a realization of such

sequence, in particular, of drawing a simple graph having (M,D) as its bi-degree-sequence.

The approach that we follow is a directed version of the configuration model. The con-

figuration, or pairing model, was introduced in [Bollobás, 1980; Wormald, 1978], although

earlier related ideas based on symmetric matrices with {0, 1} entries go back to the early

70’s; see [Wormald, 1999; Bollobás et al., 2001] for a survey of the history as well as addi-

tional references. The configuration model is based on the following idea: given a degree

sequence d = {d1, . . . , dn}, to each node vi, 1 ≤ i ≤ n, assign di stubs or half-edges,

and then pair half-edges to form an edge in the graph by randomly selecting with equal

probability from the remaining set of unpaired half-edges. This procedure results in a

multigraph on n nodes having d as its degree sequence, where the term multigraph refers

to the possibility of self-loops and multiple edges. Although this algorithm does not pro-

duce a multigraph uniformly chosen at random from the set of all multigraphs having degree

sequence d, a simple graph uniformly chosen at random can be obtained by choosing a pair-

ing uniformly at random and discarding the outcome if it has self-loops or multiple edges

[Wormald, 1999]. The question that becomes important then is to estimate the probability

with which the pairing model will produce a simple graph. For the undirected graph setting

we have described, such results were given in [Bender and Canfield, 1978; Wormald, 1978;

Bollobás, 1980; McKay and Wormald, 1991] for regular d-graphs (graphs where each node

has exactly degree d), and in [McKay and Wormald, 1990a; McKay and Wormald, 1991;

van der Hofstad, 2014] for general graphical degree sequences. From the previous dis-

cussion, it should be clear that it is important to determine conditions under which the

probability of obtaining a simple graph in the pairing model is bounded away from zero as

n→∞. Such conditions are essentially bounds on the rate of growth of the maximum (min-

imum) degree and/or the existence of certain limits (see, e.g., [McKay and Wormald, 1990a;

McKay and Wormald, 1991; van der Hofstad, 2014]). The set of conditions given below is

taken from [van der Hofstad, 2014], and we include it here as a reference for the directed

version discussed in this chapter.

Condition 1. Given a degree sequence d = {d1, . . . , dn}, let D[n] be the degree of a randomly
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chosen node in the corresponding undirected graph, i.e.,

P (D[n] = k) = 1
n

n∑
i=1

1(di = k).

1. Weak convergence. There exists a finite random variable D taking values on the

positive integers such that

D[n] ⇒ D, n→∞.

2. Convergence of the first moment.

lim
n→∞

E[D[n]] = E[D].

3. Convergence of the second moment.

lim
n→∞

E[(D[n])2] = E[D2].

Remark 2. It is straightforward to verify that if the degree sequence is chosen as an i.i.d.

sample {D1, . . . , Dn} from some distribution F on the positive integers having finite first

moment, then parts (a) and (b) of Condition 1 are satisfied, and if F has finite second

moment then also part (c) is satisfied; the adjustment made to ensure that the sum of the

degrees is even, if needed, can be shown to be negligible.

Condition 1 guarantees that the probability of obtaining a simple graph in the pairing

model is bounded away from zero (see, e.g., [van der Hofstad, 2014]), in which case we can

obtain a uniformly simple realization of the (graphical) degree sequence {di} by repeating

the random pairing until a simple graph is obtained. When part (c) of Condition 1 fails, then

an alternative is to simply erase the self-loops and multiple edges. These two approaches

give rise to the repeated an erased configuration models, respectively.

2.3 The directed configuration model

Having given a brief description of the configuration model for undirected graphs, we will

now discuss how to adapt it to draw directed graphs. The idea is basically the same,

given a bi-degree-sequence (m,d), to each node vi assign mi inbound half-edges and di
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outbound half-edges; then, proceed to match inbound half-edges to outbound half-edges to

form directed edges. To be more precise, for each unpaired inbound half-edge of node vi
choose randomly from all the available unpaired outbound half-edges, and if the selected

outbound half-edge belongs to node, say, vj , then add a directed edge from vj to vi to the

graph; proceed in this way until all unpaired inbound half-edges are matched. The following

result shows that conditional on the graph being simple, it is uniformly chosen among all

simple directed graphs having bi-degree-sequence (m,d). All the proofs of Section 2.3 can

be found in Appendix A.

Proposition 6. Given a graphical bi-degree-sequence (m,d), generate a directed graph

according to the directed configuration model. Then, conditional on the obtained graph being

simple, it is uniformly distributed among all simple directed graphs having bi-degree-sequence

(m,d).

The question is now under what conditions will the probability of obtaining a simple

graph be bounded away from zero as the number of nodes, n, goes to infinity. When this

probability is bounded away from zero we can repeat the random pairing until we draw

a simple graph: the repeated model; otherwise, we can always erase the self-loops and

multiple edges in the same direction to obtain a simple graph: the erased model. These

two models are discussed in more detail in the following two subsections, where we also

provide sufficient conditions under which the probability of obtaining a simple graph will

be bounded away from zero.

We end this section by mentioning that another important line of problems related

to the drawing of simple graphs (directed or undirected) is the development of efficient

simulation algorithms, see for example the recent work in [Blitzstein and Diaconis, 2011]

using importance sampling techniques for drawing a simple graph with prescribed degree

sequence {di}; similar ideas should also be applicable to the directed model.

2.3.1 Repeated directed configuration model

In this section we analyze the directed configuration model using the bi-degree-sequence

(M,D) constructed in Section 2.1.1. In order to do so we will first need to establish sufficient
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conditions under which the probability that the directed configuration model produces a

simple graph is bounded away from zero as the number of nodes goes to infinity. Since

this property does not directly depend on the specific bi-degree-sequence (M,D), we will

prove the result for general bi-degree-sequences (m,d) satisfying an analogue of Condition

1. As one may expect, we will require the existence of certain limits related to the (joint)

distribution of the in-degree and out-degree of a randomly chosen node. Also, since the

sequences {mi} and {di} need to have the same sum, we prefer to consider a sequence of bi-

degree-sequences, i.e., {(mn,dn)}n∈N where (mn,dn) = ({mn1, . . . ,mnn}, {dn1, . . . , dnn}),

since otherwise the equal sum constraint would greatly restrict the type of sequences we can

use. For example, suppose that the bi-degree sequence ({m1, . . . ,mi}, {d1, . . . , di}) satisfies

the equal sums condition, then the only possible choice for the (i + 1)th node would be

mi+1 = di+1, so a bi-degree-sequence satisfying the equal sums condition would need to

have mi = di for all i ∈ N. Note that for the undirected case the equivalent condition would

be to require that the sum of the degrees is always even, a problem that can be avoided by

simply ignoring those values of n for which the sum of {d1, . . . , dn} is odd (e.g., in the case

of i.i.d. degrees, roughly half of the values of n). The use of a sequence of degree sequences

rather than a single degree sequence is nevertheless not new, even for undirected graphs

(see, e.g., [Molloy and Reed, 1995]).

The corresponding version of Condition 1 for the directed case is given below. We point

out that in [Blanchet and Stauffer, 2013], the sufficient and necessary condition of the degree

sequence is given for a similar result. We only give a sufficient condition because it already

allows us to find a large class of f and g that the repeated model can be used.

Condition 2. Given a sequence of bi-degree-sequences {(mn,dn)}n∈N satisfying
n∑
i=1

mni =
n∑
i=1

dni for all n,

let (M [n], D[n]) denote the in-degree and out-degree of a randomly chosen node, i.e.,

P ((M [n], D[n]) = (i, j)) = 1
n

n∑
k=1

1(mnk = i, dnk = j).

1. Weak convergence. There exist finite random variables γ and ξ taking values on the
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nonnegative integers and satisfying E[γ] = E[ξ] > 0 such that

(M [n], D[n])⇒ (γ, ξ), n→∞.

2. Convergence of the first moments.

lim
n→∞

E[M [n]] = E[γ] and lim
n→∞

E[D[n]] = E[ξ].

3. Convergence of the covariance.

lim
n→∞

E[M [n]D[n]] = E[γξ].

4. Convergence of the second moments.

lim
n→∞

E[(M [n])2] = E[γ2] and lim
n→∞

E[(D[n])2] = E[ξ2].

We now state a result that says that the number of self-loops and the number of multiple

edges produced by the random pairing converge jointly, as n→∞, to a pair of independent

Poisson random variables. As a corollary we obtain that the probability of the resulting

graph being simple converges to a positive number, and is therefore bounded away from

zero. The proof is an adaptation of the proof of Proposition 7.9 in [van der Hofstad, 2014].

Consider the multigraph obtained through the directed configuration model from the

bi-degree-sequence (mn,dn), and let Sn be the number of self-loops and Tn be the number

of multiple edges in the same direction, that is, if there are k ≥ 2 (directed) edges from

node vi to node vj , they contribute (k − 1) to Tn.

Proposition 7. (Poisson limit of self-loops and multiple edges) If {(mn,dn)}n∈N satisfies

Condition 2 with E[γ] = E[ξ] = µ > 0, then

(Sn, Tn)⇒ (S, T )

as n→∞, where S and T are two independent Poisson random variables with means

λ1 = E[γξ]
µ

and λ2 = E[γ(γ − 1)]E[ξ(ξ − 1)]
2µ2 ,

respectively.
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Since the probability of the graph being simple is P (Sn = 0, Tn = 0), we obtain as a

consequence the following theorem.

Theorem 8. Under the assumptions of Proposition 7,

lim
n→∞

P (graph obtained from (mn,dn) is simple) = e−λ1−λ2 > 0.

It is clear from Proposition 5 that Condition 2 is satisfied by the bi-degree-sequence

(M,D) proposed in Section 2.1.1 whenever F and G have finite variance. This implies that

one way of obtaining a simple directed graph on n nodes is by first sampling the bi-degree-

sequence (M,D) according to Section 2.1.1, then checking if it is graphical, and if it is, use

the directed pairing model to draw a graph, discarding any realizations that are not simple.

Alternatively, since the probability of (M,D) being graphical converges to one, then one

could skip the verification of graphicality and re-sample (M,D) each time the pairing needs

to be repeated. The algorithm is summarized below:

1. Generate bi-degree-sequence according to Section 2.1.1, with F and G having finite

variance.

2. (Optional) Verify graphicality using Theorem 2.

3. Randomly pair the in-degrees and out-degrees.

4. If the resulting graph is not simple, repeat from step 3 (or from step 1 if skipping step

2).

The last thing we show in this section is that the degree distributions of the resulting

simple graph will have with high probability the prescribed degree distributions F and G,

as required. More specifically, if we let (M(r),D(r)) be the bi-degree-sequence of the final

simple graph obtained through the repeated directed configuration model with bi-degree-

sequence (M,D), then we will show that the joint distribution

h(n)(i, j) = 1
n

n∑
k=1

P (M (r)
k = i,D

(r)
k = j) i, j = 0, 1, 2, . . . ,

converges to figj , and the empirical distributions,

f̂k
(n)

= 1
n

n∑
i=1

1(M (r)
i = k) and ĝk

(n) = 1
n

n∑
i=1

1(D(r)
i = k) k = 0, 1, 2, . . . ,
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converge in probability to fk and gk, respectively. The same result was shown in [Britton

et al., 2006] for the undirected case with i.i.d. degree sequence {Di}.

Proposition 9. For the repeated directed configuration model with bi-degree-sequence (M,D),

as constructed in Section 2.1.1 with F and G having finite variance, we have:

1. h(n)(i, j)→ figj as n→∞, i, j = 0, 1, 2, . . . , and

2. for all k = 0, 1, 2, . . . ,

f̂k
(n) P−→ fk and ĝk

(n) P−→ gk, n→∞.

Remark 3. Note that by the continuous mapping theorem, (a) implies that the marginal

distributions of the in-degrees and out-degrees,

f (n)(i) = 1
n

n∑
k=1

P (M (r)
k = i) and g(n)(j) = 1

n

n∑
k=1

P (D(r)
k = j),

converge to fi and gj, respectively. The same arguments used in the proof also give that the

joint empirical distribution converges to figj in probability.

2.3.2 Erased directed configuration model

In this section we consider the erased directed configuration model, which is particularly

useful when the probability of drawing a simple graph converges to zero as the number of

nodes increases, which could happen, for example, when F or G doesn’t have finite variance

and Condition 2 (d) fails. Given a bi-degree-sequence (m,d), the erased model consists in

first obtaining a multigraph according to the directed configuration model and then erase

all self-loops and merge multiple edges in the same direction into a single edge, with the

result being a simple graph. Note that the graph obtained through this process no longer

has (m,d) as its bi-degree-sequence. The algorithm is summarized below:

1. Generate bi-degree-sequence according to Section 2.1.1.

2. Randomly pair the in-degrees and out-degrees.

3. Erase self-loops and merge multiple edges in the same direction.
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As for the repeated model, let (M(e),D(e)) be the bi-degree-sequence of the simple graph

obtained through the erased directed configuration model with bi-degree-sequence (M,D).

Define the joint distribution

h(n)(i, j) = 1
n

n∑
k=1

P (M (e)
k = i,D

(e)
k = j) i, j = 0, 1, 2, . . . ,

and the empirical distributions,

f̂k
(n)

= 1
n

n∑
i=1

1(M (e)
i = k) and ĝk

(n) = 1
n

n∑
i=1

1(D(e)
i = k) k = 0, 1, 2, . . . .

The following result is the analogue of Proposition 9 for the erased model; note that in this

case we do not require F and G to have finite variance.

Proposition 10. For the erased directed configuration model with bi-degree-sequence (M,D),

as constructed in Section 2.1.1, we have:

1. h(n)(i, j)→ figj as n→∞, i, j = 0, 1, 2, . . . , and

2. for all k = 0, 1, 2, . . . ,

f̂k
(n) P−→ fk and ĝk

(n) P−→ gk, n→∞.
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Part II

Ranking algorithms
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Chapter 3

Ranking algorithms on directed

configuration networks

We first give an overview of this chapter. Let Gn = (Vn, En) be a directed graph. We

number the nodes Vn = {1, 2, . . . , n} in an arbitrary fashion and let R1 =: R(n)
1 denote the

PageRank of node 1, as defined by (1.2). The in-degree of node 1 is then a random variable

N1 picked uniformly at random from the in-degrees of all n nodes in the graph (i.e., from the

empirical distribution). Next, we use the notation Ni+1 to denote the in-degree of the ith

inbound neighbor of node 1 (i.e., (i+ 1, 1) ∈ En), and note that although the {Ni}i≥2 have

the same distribution, it is not necessarily the same of N1 since their corresponding nodes

implicitly have one or more out-degrees. More precisely, the distribution of the {Ni}i≥2

is an empirical size-biased distribution where nodes with high out-degrees are more likely

to be chosen. The two distributions can be significantly different when the number of

dangling nodes (nodes with zero out-degrees) is a positive fraction of n and their in-degree

distribution is different than that of nodes with one or more out-degrees. Similarly, let Q1

and {Qi}i≥2 denote the personalization values of node 1 and of its neighbors, respectively,

and let {Ci}i≥2 denote the coefficients, or weights, of the neighbors.

As mentioned in the introduction, we will assume throughout the chapter that Gn is

constructed according to the directed configuration model (DCM). To briefly explain the

construction of the DCM (the details can be found in Chapter 2 and Section 3.1) consider
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a bi-degree sequence (Nn,Dn) = {(Ni, Di) : 1 ≤ i ≤ n} of nonnegative integers satisfying∑n
i=1Ni =

∑n
i=1Di. To draw the graph think of each node, say node i, as having Ni

inbound and Di outbound half-edges or stubs, then pair each of its inbound stubs with a

randomly chosen outbound stub from the set of unpaired outbound stubs. The resulting

graph is in general what is called a multigraph, i.e., it can have self-loops and multiple edges

in the same direction.

Our main result requires us to make some assumptions on the bi-degree sequence used

to construct the DCM, as well as on the coefficients {Ci} and the personalization values

{Qi}, which we will refer to as the extended bi-degree sequence. The first set of assumptions

(see Assumption 1) requires the existence of certain limits in the spirit of the weak law of

large numbers, including 1
n

∑n
i=1D

2
i to be bounded in probability (which essentially imposes

a finite variance on the out-degrees). This first assumption will ensure the local tree-like

structure of the graph. The second set of assumptions (see Assumption 2 in Section ??)

requires the convergence of certain empirical distributions, derived from the extended bi-

degree sequence, to proper limits as the graph size goes to infinity. This type of weak

convergence assumption is typical in the analysis of random graphs [van der Hofstad, 2014].

We point out that the two sets of assumptions mentioned above are rather weak, and

therefore our result is very general. Moreover, as an example, we provide in Section 3.5 an

algorithm to generate an extended bi-degree sequence from a set of prescribed distributions

that satisfies both assumptions.

To state our main result let (N0,Q0) and (N ,Q, C) denote the weak limits of the joint

random distributions of (N1, Q1) and (N2, Q2, C2), respectively, as defined in Assumption

2. Let R denote the endogenous solution to the following SFPE:

R D=
N∑
j=1
CjRj +Q, (3.1)

where {Ri} are i.i.d. copies of R, independent of (N ,Q, {Ci}), and with {Ci} i.i.d. and

independent of (N ,Q). Our main result establishes that under the assumptions mentioned

above, we have that

R
(n)
1 ⇒ R∗, n→∞,
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where ⇒ denotes weak convergence and R∗ is given by

R∗ :=
N0∑
j=1
CjRj +Q0, (3.2)

where the {Ri} are again i.i.d. copies of R, independent of (N0,Q0, {Ci}), and with {Ci}

independent of (N0,Q0). Thus, R(n)
1 is well approximated by a linear combination of en-

dogenous solutions of a SFPE. Here R∗ represents the PageRank of node 1, and the Ri’s

represent the PageRank of its inbound neighbors. We give more details on the explicit

construction of R and comment on why it is called the “endogenous” solution in Section

3.4. Furthermore, since R has been thoroughly studied in the weighted branching processes

literature, we can establish the power law behavior of PageRank in a wide class of DCM

graphs.

The proof of our main result is given in several steps, each of them requiring a very

different type of analysis. For the convenience of the reader, we include in this section a

map of these steps.

We start in Section 3.1 by describing the DCM, which on its own does not require

any assumptions on the bi-degree sequence. Then, in Section 3.2 we define a class of

ranking algorithms, of which PageRank and its various modifications are special cases.

These algorithms produce a vector R(n) that is a solution to a linear system of equations,

where the coefficients are the weights {Ci} assigned to the nodes. For example, in the

classical PageRank scenario, we have Ci = c/Di, if Di 6= 0.

The proof of the main result consists of the following three steps:

1. Finite approximation (Section 3.2.2). Show that the class of rankings that we study

can be approximated in the DCM with any given accuracy by a finite (independent

of the graph size n) number of matrix iterations. The DCM plays a crucial role

in this step since it implies that the ranks of all the nodes in the graph have the

same distribution. A uniform bound on the sequence {CiDi} is required to provide a

suitable rate of convergence.

2. Coupling with a tree (Section 3.3). Construct a coupling of the DCM graph and a

“thorny branching tree” (TBT). In a TBT each node with the exception of the root
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has one outbound link to its parent and possibly several other unpaired outbound

links. During the construction, all nodes in both the graph and the tree are also

assigned a weight Ci. The main result in this section is the Coupling Lemma 12,

which states that the coupling between the graph and the tree will hold for a number

of generations in the tree that is logarithmic in n. The locally tree-like property of

the DCM and our first set of assumptions (Assumption 1) on the bi-degree sequence

are important for this step.

3. Convergence to a weighted branching process (Section 3.4). Show that the rank of the

root node of the TBT converges weakly to (3.2). This last step requires the weak

convergence of the random distributions that define the TBT in the previous step

(Assumption 2).

Finally, Section 3.5 gives an algorithm to construct an extended bi-degree sequence

satisfying the two main assumptions.

3.1 The directed configuration model

A formal analysis of the directed configuration model (DCM) with given in- and out-degree

distributions is recently presented by Chen and Olvera-Cravioto [Chen and Olvera-Cravioto,

2013] (see Chapter 2). In order to analyze the distribution of ranking scores on the DCM

we also need other node attributes besides the in- and out-degrees, such as the coefficients

and the personalization values. With this in mind we give the following definition.

Definition 6. We say that the sequence (Nn,Dn,Cn,Qn) = {(Ni, Di, Ci, Qi) : 1 ≤ i ≤

n} is an extended bi-degree sequence if for all 1 ≤ i ≤ n it satisfies Ni, Di ∈ N =

{0, 1, 2, 3, . . . }, Qi, Ci ∈ R, and is such that

Ln :=
n∑
i=1

Ni =
n∑
i=1

Di.

In this case, we call (Nn,Dn) a bi-degree sequence.

Formally, the DCM can be defined as follows.
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Definition 7. Let (Nn,Dn) be a bi-degree sequence and let Vn = {1, 2, . . . , n} denote the

nodes in the graph. To each node i assign Ni inbound half-edges and Di outbound half-edges.

Enumerate all Ln inbound half-edges, respectively outbound half-edges, with the numbers

{1, 2, . . . , Ln}, and let xn = (x1, x2, . . . , xLn) be a random permutation of these Ln numbers,

chosen uniformly at random from the possible Ln! permutations. The DCM with bi-degree

sequence (Nn,Dn) is the directed graph Gn = (Vn, En) obtained by pairing the xith outbound

half-edge with the ith inbound half-edge.

We point out that instead of generating the permutation xn of the outbound half-edges

up front, one could alternatively construct the graph in a breadth-first fashion, by pairing

each of the inbound half-edges, one at a time, with an outbound half-edge, randomly chosen

with equal probability from the set of unpaired outbound half-edges. In Section 3.3 we will

follow this approach while simultaneously constructing a coupled TBT.

We emphasize that the DCM is, in general, a multi-graph. It was shown in [Chen and

Olvera-Cravioto, 2013] that the random pairing of inbound and outbound half-edges results

in a simple graph with positive probability provided both the in-degree and out-degree

distributions possess a finite variance. In this case, one can obtain a simple realization after

finitely many attempts, a method we refer to as the repeated DCM, and this realization will

be chosen uniformly at random from all simple directed graphs with the given bi-degree

sequence. Furthermore, if the self-loops and multiple edges in the same direction are simply

removed, a model we refer to as the erased DCM, the degree distributions will remain

asymptotically unchanged.

For the purposes of this chapter, self-loops and multiple edges in the same direction

do not affect the main convergence result for the ranking scores, and therefore we do not

require the DCM to result in a simple graph. A similar observation was made in the paper

by van der Hofstad et al. [van der Hofstad et al., 2005] when analyzing distances in the

undirected CM.

Throughout the chapter, we will use Fn = σ((Nn,Dn,Cn,Qn)) to denote the sigma

algebra generated by the extended bi-degree sequence, which does not include information

about the random pairing. To simplify the notation, we will use Pn(·) = P (·|Fn) and En[·] =

E[·|Fn] to denote the conditional probability and conditional expectation, respectively,
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given Fn.

3.2 Spectral ranking algorithms

In this section we introduce the class of ranking algorithms that we analyze in this chapter.

Following the terminology from [Boldi and Vigna, 2014], these algorithms belong to the

class of spectral centrality measures, which ‘compute the left dominant eigenvector of some

matrix derived from the graph’. We point out that the construction of the matrix of weights

and the definition of the rank vector that we give in Section 3.2.1 is not particular to the

DCM.

3.2.1 Definition of the rank vector

The general class of spectral ranking algorithms we consider are determined by a matrix

of weights M = M(n) ∈ Rn×n and a personalization vector Q ∈ Rn. More precisely, given

a directed graph with (Nn,Dn,Cn,Qn) as its extended bi-degree sequence, we define the

(i, j)th component of matrix M as follows:

Mi,j =


sijCi, if there are sij edges from i to j,

0, otherwise.
(3.3)

The rank vector R = (R1, . . . , Rn) is then defined to be the solution to the system of

equations

R = RM + Q. (3.4)

Remark 4. In the case of the PageRank algorithm, Ci = c/Di, Qi = 1 − c for all i, and

the constant 0 < c < 1 is the so-called damping factor.

3.2.2 Finitely many iterations

To solve the system of equations given in (3.4) we proceed via matrix iterations [Langville

and Meyer, 2011]. To initialize the process let 1 be the (row) vector of ones in Rn and let

r0 = r01, with r0 ∈ R. Define

R(n,0) = r0,
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and for k ≥ 1,

R(n,k) = r0M
k +

k−1∑
i=0

QM i.

With this notation, we have that the solution R to (3.4), provided it exists, can be written

as

R = R(n,∞) =
∞∑
i=0

QM i.

We are interested in analyzing a randomly chosen coordinate of the vector R(n,∞). The

first step is to show that we can do so by using only finitely many matrix iterations. To

this end note that

R(n,k) −R(n,∞) = r0M
k −

∞∑
i=k

QM i =
(

r0 −
∞∑
i=0

QM i

)
Mk.

Moreover, ∣∣∣∣∣∣R(n,k) −R(n,∞)
∣∣∣∣∣∣

1
≤
∣∣∣∣∣∣r0M

k
∣∣∣∣∣∣

1
+
∞∑
i=0

∣∣∣∣∣∣QMk+i
∣∣∣∣∣∣

1
.

Next, note that for any row vector y = (y1, y2, . . . , yn),

||yM r||1 ≤
n∑
j=1
|y(M r)•j | ≤

n∑
j=1

n∑
i=1
|yi(M r)ij |

=
n∑
i=1
|yi|

n∑
j=1
|(M r)ij | =

n∑
i=1
|yi| · ||M r

i•||1

≤ ||y||1 ||M r||∞ ,

where Ai• and A•j are the ith row and jth column, respectively, of matrix A, and ||A||∞ =

max1≤i≤n ||Ai•||1 is the operator infinity norm. It follows that if we assume that max1≤i≤n |Ci|Di ≤

c for some c ∈ (0, 1), then we have

||M r||∞ ≤ ||M ||
r
∞ =

(
max

1≤i≤n
|Ci|Di

)r
≤ cr.

In this case we conclude that

∣∣∣∣∣∣R(n,k) −R(n,∞)
∣∣∣∣∣∣

1
≤ ||r0||1ck +

∞∑
i=0
||Q||1ck+i

= |r0|nck + ||Q||1
ck

1− c .
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Now note that all the coordinates of the vector R(n,k)−R(n,∞) have the same distribu-

tion, since by construction, the configuration model makes all permutations of the nodes’

labels equally likely. Hence, the randomly chosen node may as well be the first node, and

the error that we make by considering only finitely many iterations in its approximation is

bounded in expectation by

En
[∣∣∣R(n,k)

1 −R(n,∞)
1

∣∣∣] = 1
n
En
[∣∣∣∣∣∣R(n,k) −R(n,∞)

∣∣∣∣∣∣
1

]
≤ |r0|ck + En [||Q||1] ck

n(1− c)

=
(
|r0|+

1
n(1− c)

n∑
i=1
|Qi|

)
ck.

It follows that if we let

Bn =
{

max
1≤i≤n

|Ci|Di ≤ c,
1
n

n∑
i=1
|Qi| ≤ H

}
(3.5)

for some constants c ∈ (0, 1) and H <∞, then Markov’s inequality yields

P
(∣∣∣R(n,k)

1 −R(n,∞)
1

∣∣∣ > n−ε
∣∣∣Bn)

= 1
P (Bn)E

[
1(Bn)En

[
1
(∣∣∣R(n,k)

1 −R(n,∞)
1

∣∣∣ > n−ε
)]]

≤ 1
P (Bn)E

[
1(Bn)nεEn

[∣∣∣R(n,k)
1 −R(n,∞)

1

∣∣∣]]
≤
(
|r0|+

1
1− cE

[
1
n

n∑
i=1
|Qi|

∣∣∣∣∣Bn
])

nεck

≤
(
|r0|+

H

1− c

)
nεck. (3.6)

We have thus derived the following result.

Proposition 11. Consider the directed configuration graph generated by the extended bi-

degree sequence (Nn,Dn,Cn,Qn) and let Bn be defined according to (3.5). Then, for any

xn →∞ and any k ≥ 1, we have

P
(∣∣∣R(n,∞)

1 −R(n,k)
1

∣∣∣ > x−1
n

∣∣∣Bn) = O
(
xnc

k
)

as n→∞.

This completes the first step of our approach. In the next section we will explain how

to couple the graph, as seen from a randomly chosen node, with an appropriate branching

tree.
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3.3 Construction of the graph and coupling with a branching

tree

The next step in our approach is to approximate the distribution of R(n,k)
1 with the rank

of the root node of a suitably constructed branching tree. To ensure that we can construct

such a tree we require the extended bi-degree sequence to satisfy some further properties

with high probability. These properties are summarized in the following assumption.

Assumption 1. Let (Nn,Dn,Cn,Qn) be an extended bi-degree sequence for which there

exists constants H, νi > 0, i = 1, . . . , 5, with

µ := ν2/ν1, λ := ν3/ν1 and ρ := ν5µ/ν1 < 1,

0 < κ ≤ 1, and 0 < c, γ, ε < 1 such that the events

Ωn,1 =
{∣∣∣∣∣

n∑
r=1

Dr − nν1

∣∣∣∣∣ ≤ n1−γ
}
,

Ωn,2 =
{∣∣∣∣∣

n∑
r=1

DrNr − nν2

∣∣∣∣∣ ≤ n1−γ
}
,

Ωn,3 =
{∣∣∣∣∣

n∑
r=1

D2
r − nν3

∣∣∣∣∣ ≤ n1−γ
}
,

Ωn,4 =
{∣∣∣∣∣

n∑
r=1

D2+κ
r − nν4

∣∣∣∣∣ ≤ n1−γ
}
,

Ωn,5 =
{∣∣∣∣∣

n∑
r=1
|Cr|Dr − nν5

∣∣∣∣∣ ≤ n1−γ , max
1≤r≤n

|Cr|Dr ≤ c
}
,

Ωn,6 =
{

n∑
r=1
|Qr| ≤ Hn

}
,

satisfy as n→∞,

P (Ωc
n) = P

(( 6⋂
i=1

Ωn,i

)c)
= O

(
n−ε

)
.

It is clear from (3.5) that Ωn ⊆ Bn, hence Proposition 11 holds under Assumption 1.

We also point out that all six conditions in the assumption are in the spirit of the Weak

Law of Large Numbers, and are therefore general enough to be satisfied by many different
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constructions of the extended bi-degree sequence. As an example, we give in Section 3.5 an

algorithm based on sequences of i.i.d. random variables that satisfies Assumption 1.

In Sections 3.3.1–3.3.4 we describe in detail how to construct a coupling of the directed

graph Gn and its approximating branching tree. We start by explaining the terminology

and notation in Section 3.3.1, followed by the construction itself in Section 3.3.2. Then, in

Section 3.3.3 we present the Coupling Lemma 12, which is the main result of Section 3.3.

Finally, Section 3.3.4 explains how to compute the rank of the root node in the coupled

tree.

3.3.1 Terminology and notation

Throughout the remainder of the chapter we will interchangeably refer to the {Ni} as

the in-degrees/number of offspring/number of inbound stubs, to the {Di} as the out-

degrees/number of outbound links/number of outbound stubs, to the {Ci} as the weights,

and to the {Qi} as the personalization values. We will refer to these four characteristics of

a node as the node attributes.

The fact that we are working with a directed graph combined with the presence of

weights, means that we need to use a more general kind of tree in our coupling than the

standard branching process typically used in the random graph literature. To this end, we

will define a process we call a Thorny Branching Tree (TBT), where each individual (node)

in the tree has a directed edge pointing towards its parent, and also a certain number of

unpaired outbound links (pointing, say, to an artificial node outside of the tree). The name

‘thorny’ is due to these unpaired outbound links, see Figure 3.1. We point out that the

structure of the tree (i.e., parent-offspring relations) is solely determined by the number of

offspring.

The simpler structure of a tree compared to a general graph allows for a more natural

enumeration of its nodes. As usually in the context of branching processes, we let each

node in the TBT have a label of the form i = (i1, i2, . . . , ik) ∈ U , where U =
⋃∞
k=0(N+)k is

the set of all finite sequences of positive integers. Here, the convention is that N0
+ = {∅}

contains the null sequence ∅. Also, for i = (i1) we simply write i = i1, that is, without

the parenthesis. Note that this form of enumeration gives the complete lineage of each
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Figure 3.1: Graph construction process. Unpaired outbound links are in blue.

individual in the tree.

We will use the following terminology and notation throughout the chapter.

Definition 8. We say that a node i in the graph (resp. TBT) is at distance k of the first

(resp. root) node if it can reach the first (resp. root) node in k steps, but not in any less

than k steps.

In addition, for r ≥ 0, we define on the graph/tree the following processes:

• Ar: set of nodes in the graph at distance r of the first node.

• Âr: set of nodes in the tree at distance r of the root node (Âr is also the set of nodes

in the rth generation of TBT, with the root node being generation zero).

• Zr: number of inbound stubs of all the nodes in the graph at distance r of the first

node (Zr ≥ |Ar+1|).

• Ẑr: number of inbound stubs of all the nodes in generation r of the TBT (Ẑr = |Âr+1|).

• Vr: number of outbound stubs of all the nodes in the graph at distance r of the first

node.

• V̂r: number of outbound stubs of all the nodes in generation r of the TBT.

Finally, given the extended bi-degree sequence (Nn,Dn,Cn,Qn), we introduce two em-

pirical distributions that will be used in the construction of the coupling. The first one
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describes the attributes of a randomly chosen node:

f∗n(i, j, s, t) =
n∑
k=1

1(Nk = i,Dk = j, Ck = s,Qk = t)Pn(node k is sampled)

= 1
n

n∑
k=1

1(Nk = i,Dk = j, Ck = s,Qk = t). (3.7)

The second one, corresponds to the attributes of a node that is chosen by sampling

uniformly at random from all the Ln outbound stubs:

fn(i, j, s, t) =
n∑
k=1

1(Nk = i,Dk = j, Ck = s,Qk = t)Pn(an outbound stub from node k is sampled)

=
n∑
k=1

1(Nk = i,Dk = j, Ck = s,Qk = t)Dk

Ln
. (3.8)

Note that this is a size-biased distribution, since nodes with more outbound stubs are more

likely to be chosen, whereas nodes with no outbound stubs (dangling nodes) cannot be

chosen.

3.3.2 Construction of the coupling

Given an extended bi-degree sequence (Nn,Dn,Cn,Qn) we now explain how to construct

the graph Gn and its coupled TBT through a breadth-first exploration process. From this

point onwards we will ignore the implicit numbering of the nodes in the definition of the

extended bi-degree sequence and rename them according to the order in which they appear

in the graph exploration process.

To keep track of which outbound stubs have already been matched we borrow the

approach used in [van der Hofstad et al., 2005] and label them 1, 2, or 3 according to the

following rules:

1. Outbound stubs with label 1 are stubs belonging to a node that is not yet attached to

the graph.

2. Outbound stubs with label 2 belong to nodes that are already part of the graph but that

have not yet been paired with an inbound stub.

3. Outbound stubs with label 3 are those which have already been paired with an inbound

stub and now form an edge in the graph.
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The graph Gn is constructed as follows. Right before the first node is sampled, all

outbound stubs are labeled 1. To start the construction of the graph, we choose randomly

a node (all nodes with the same probability) and call it node 1. The attributes of this first

node, denoted by (N1, D1, C1, Q1), are sampled from distribution (3.7).

After the first node is chosen, its D1 outbound stubs are labeled 2. We then proceed

to pair the first of the Z0 = N1 inbound stubs of the first node with a randomly chosen

outbound stub. The corresponding node is attached to the graph by forming an edge

pointing to node 1 using the chosen outbound stub, which receives a label 3, and all the

remaining outbound stubs from the new node are labeled 2. Note that it is possible that

the chosen node is node 1 itself, in which case the pairing forms a self-loop and no new

nodes are added to the graph. We continue in this way until all Z0 inbound stubs of node

1 have been paired with randomly chosen outbound stubs. Since these outbound stubs are

sampled independently and with replacement from all the possible Ln outbound stubs, this

corresponds to drawing the node attributes independently from the random distribution

(3.8). Note that in the construction of the graph any unfeasible matches will be discarded,

and therefore the attributes of nodes in Gn do not necessarily have distribution (3.8), but

rather have the conditional distribution given the pairing was feasible. We will use the

vector (Ni, Di, Ci, Qi) to denote the attributes of the ith node to be added to the graph.

In general, the kth iteration of this process is completed when all Zk−1 inbound stubs

have been matched with an outbound stub, and the corresponding node attributes have

been assigned. The process ends when all Ln inbound stubs have been paired. Note that

whenever an outbound stub with label 2 is chosen a cycle or a double edge is formed in the

graph.

Next, we explain how the TBT is constructed. To distinguish the attribute vectors of

nodes in the TBT from those of nodes in the graph, we denote them by (N̂i, D̂i, Ĉi, Q̂i), i ∈

U . We start with the root node (node ∅) that has the same attributes as node 1 in the graph:

(N̂∅, D̂∅, Ĉ∅, Q̂∅) ≡ (N1, D1, C1, Q1), sampled from distribution (3.7). Next, for k ≥ 1, each

of the Ẑk−1 individuals in the kth generation will independently have offspring, outbound

stubs, weight and personalization value according to the joint distribution fn(i, j, s, t) given

by (3.8).
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Now, we explain how the coupling with the graph, i.e., the simultaneous construction

of the graph and the TBT, is done.

1) Whenever an outbound stub is sampled randomly in an attempt to add an edge to

Gn, then, independently of the stub’s label, a new offspring is added to the TBT. This

is done to maintain the branching property (i.i.d. node attributes). In particular, if

the chosen outbound stub belongs to node j, then the new offspring in the TBT will

have Dj−1 outbound stubs (which will remain unpaired), Nj inbound stubs (number

of offspring), weight Cj , and personalization value Qj .

2) If an outbound stub with label 1 is chosen, then both the graph and the TBT will

connect the chosen outbound stub to the inbound stub being matched, resulting in a

node being added to the graph and an offspring being born to its parent. We then

update the labels by giving a 2 label to all the ‘sibling’ outbound stubs of the chosen

outbound stub, and a 3 label to the chosen outbound stub itself.

3) If an outbound stub with label 2 is chosen it means that its corresponding node

already belongs to the graph, and a cycle, self-loop, or multiple edge is created. We

then relabel the chosen outbound stub with a 3. An offspring is born in the TBT

according to 1).

4) If an outbound stub with label 3 is chosen it means that the chosen outbound stub has

already been matched. In terms of the construction of the graph, this case represents

a failed attempt to match the current inbound stub, and we have to keep sampling

until we draw an outbound stub with label 1 or 2. Once we do so, we update the

labels according to the rules given above. An offspring is born in the TBT according

to 1).

Note that as long as we do not sample any outbound stub with label 2 or 3, the graph

Gn and the TBT are identical. Once we draw the first outbound stub with label 2 or 3

the processes Zk and Ẑk may start to disagree. The moment this occurs we say that the

coupling has been broken. Nonetheless, we will continue with the pairing process following

the rules given above until all Ln inbound stubs have been paired. The construction of the
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TBT also continues in parallel by keeping the synchronization of the pairing whenever the

inbound stub being matched belongs to a node that is both in the graph and the tree. If the

pairing of all Ln inbound stubs is completed after k iterations of the process, then we will

have completed k generations in the TBT. Moreover, up to the time the coupling breaks, a

node i ∈ Âk is also the jth node to be added to the graph, where:

j = 1 +
k−2∑
r=0

Ẑr +
ik−1−1∑
s=1

N̂(i1,...,ik−2,s) + ik,

with the convention that
∑b
r=a xr = 0 if b < a.

Definition 9. Let τ be the number of generations in the TBT that can be completed before

the first outbound stub with label 2 or 3 is drawn, i.e., τ = k if and only if the first inbound

stub to draw an outbound stub with label 2 or 3 belonged to a node i ∈ Âk.

The main result in this section consists in showing that provided the extended bi-degree

sequence (Nn,Dn,Cn,Qn) satisfies Assumption 1, the coupling breaks only after a number

of generations that is of order logn, which combined with Proposition 11 will allow us to

approximate the rank of a randomly chosen node in the graph with the rank of the root

node of the coupled TBT.

3.3.3 The coupling lemma

It follows from the construction in Section 3.3.2 that, before the coupling breaks, the neigh-

borhood of node 1 in Gn and of the root node in the TBT are identical. Recall also from

Proposition 11 that we only need a finite number k of matrix iterations to approximate the

elements of the rank vector to any desired precision. Furthermore, the weight matrix M is

such that the elements (M r)i,1, 1 ≤ i ≤ n, 1 ≤ r ≤ k, depend only on the k-neighborhood

of node 1. Hence, if the coupling holds for τ > k generations, then the rank score of node 1

in Gn is exactly the same as that of the root node of the TBT restricted to those same

k generations. The following coupling lemma will allow us to complete the appropriate

number of generations in the tree to obtain the desired level of precision in Proposition 11.

Its proof is rather technical and is therefore postponed to Appendix B.1.

Lemma 12. Suppose (Nn,Dn,Cn,Qn) satisfies Assumption 1. Then,
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• for any 1 ≤ k ≤ h logn with 0 < h < 1/(2 logµ), if µ > 1,

• for any 1 ≤ k ≤ nb with 0 < b < min{1/2, γ}, if µ ≤ 1,

we have

P (τ ≤ k|Ωn) =


O
(
(n/µ2k)−1/2

)
, µ > 1,

O
(
(n/k2)−1/2

)
, µ = 1,

O
(
n−1/2

)
, µ < 1,

as n→∞.

Remark 5. The constant µ was defined in Assumption 1, and it corresponds to the limiting

expected number of offspring that each node in the TBT (with the exception of the root node)

will have. The coupling between the graph and the TBT will hold for any µ > 0.

We conclude from Lemma 12 that if R̂(n,k) := R̂
(n,k)
∅ denotes the rank of the root node

of the TBT restricted to the first k generations, then, for any δ > 0,

P
(∣∣∣R(n,k)

1 − R̂(n,k)
∣∣∣ > n−δ

∣∣∣Ωn

)
≤ P (τ < k|Ωn) := ϕ(k, n).

Note that the super index n does not refer to the number of nodes in the tree, and is

being used only in the definition of the distributions f∗n and fn (given in (3.7) and (3.8),

respectively).

This observation, combined with Proposition 11, implies that if we let kn = dh logne,

when µ > 1, and kn = nε, when µ ≤ 1, where h = (1−ε)/(2 logµ) and 0 < ε < min{1/3, γ},

then

P
(∣∣∣R(n,∞)

1 − R̂(n,kn)
∣∣∣ > n−δ

∣∣∣Ωn

)
≤ P

(∣∣∣R(n,∞)
1 −R(n,kn)

1

∣∣∣ > n−δ/2
∣∣∣Ωn

)
+ P

(∣∣∣R(n,kn)
1 − R̂(n,kn)

∣∣∣ > n−δ/2
∣∣∣Ωn

)
= O

(
nδckn + ϕ(kn, n)

)
= O

(
nδ−h| log c| + n−ε/2

)
. (3.9)

In view of (3.9), analyzing the distribution of R(n,k)
1 in the graph reduces to analyzing

the rank of the root node of the coupled TBT, R̂(n,k). In the next section, we compute

R̂(n,k) by relating it to a linear process constructed on the TBT.
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Π∅ = 1

Π1 = C1 Π2 = C2 Π3 = C3

Π(1,1) = C(1,1)C1

Π(1,2) = C(1,2)C1

Π(2,1) = C(2,1)C2

Π(3,1) = C(3,1)C3

Π(3,2) = C(3,2)C3

Π(3,3) = C(3,3)C3

Figure 3.2: Weighted branching tree.

3.3.4 Computing the rank of nodes in the TBT

In order to compute R̂(n,k) we need to introduce a new type of weights. To simplify the

notation, for i = (i1, . . . , ik) we will use (i, j) = (i1, . . . , ik, j) to denote the index concatena-

tion operation; if i = ∅, then (i, j) = j. Each node i is then assigned a weight Π̂i according

to the recursion

Π̂∅ ≡ 1 and Π̂(i,j) = Π̂iĈ(i,j), i ∈ U .

Note that the Π̂i’s are the products of all the weights Ĉj along the path leading to node i,

as depicted in Figure 3.2.

Next, for each fixed k ∈ N and each node i in the TBT define R̂(n,k)
i to be the rank of

node i computed on the subtree that has i as its root and that is restricted to having only

k generations, with each of the |Âk| nodes having rank r0. In mathematical notation,

R̂
(n,k)
i =

N̂i∑
j=1

Ĉ(i,j)R̂
(n,k−1)
(i,j) + Q̂i, k ≥ 1, R̂

(n,0)
j = r0. (3.10)

Iterating (3.10) gives

R̂(n,k) =
∑
i∈Â1

Π̂iR̂
(n,k−1)
i + Q̂∅ =

∑
i∈Â1

Π̂i

 N̂i∑
j=1

Ĉ(i,j)R̂
(n,k−2)
(i,j) + Q̂i

+ Q̂∅

=
∑
i∈Â2

Π̂iR̂
(n,k−2)
i +

∑
i∈Â1

Π̂iQ̂i + Q̂∅ = · · · =
∑

i∈Âk

Π̂ir0 +
k−1∑
s=0

∑
i∈Âs

Π̂iQ̂i. (3.11)

The last step in our proof of the main result is to identify the limit of R̂(n,kn) as n→∞,

for a suitable chosen kn →∞. This is done in the next section.
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3.4 Coupling with a weighted branching process

The last step in the derivation of our approximation for the rank of a randomly chosen

node in the graph Gn is to substitute the rank of the root node in the TBT, which is

defined with respect to empirical distributions based on the extended bi-degree sequence

(Nn,Dn,Cn,Qn), with a limiting random variable independent of the size of the graph, n.

The appropriate limit will be given in terms of a solution to a certain stochastic fixed-

point equation (SFPE). The appeal of having such a representation is that these solutions

have been thoroughly studied in the WBPs literature, and in many cases exact asymptotics

describing their tail behavior are available [Jelenković and Olvera-Cravioto, 2010; Jelenković

and Olvera-Cravioto, 2012a; Olvera-Cravioto, 2012b]. We will elaborate more on this point

after we state our main result.

Our main result shows that

R
(n,∞)
1 ⇒ R∗

as n→∞, where R∗ can be written in terms of the so-called endogenous solution to a linear

SFPE. Before we write the expression for R∗ we will need to introduce a few additional

concepts.

3.4.1 Weighted branching processes

We first briefly describe what we will refer to as a weighted branching process. Then we

will also explain how to construct a variation of this process that appears in the analysis of

random graphs, and that will require a somewhat different treatment.

We start by letting N+ = {1, 2, 3, . . . } be the set of positive integers and setting

U =
⋃∞
k=0(N+)k to be the set of all finite sequences i = (i1, i2, . . . , in), n ≥ 0, where

by convention N0
+ = {∅} contains the null sequence ∅. To ease the exposition, for a se-

quence i = (i1, i2, . . . , ik) ∈ U we write i|n = (i1, i2, . . . , in), provided k ≥ n, and i|0 = ∅

to denote the index truncation at level n, n ≥ 0. Also, for i ∈ A1 we simply use the

notation i = i1, that is, without the parenthesis. Similarly, for i = (i1, . . . , in) we will use

(i, j) = (i1, . . . , in, j) to denote the index concatenation operation, if i = ∅, then (i, j) = j.

Next, let (Q,N,C1, C2, . . . ) be a real-valued vector with N ∈ N ∪ {∞}. We will refer
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to this vector as the generic branching vector. Now let {(Qi, Ni, C(i,1), C(i,2), . . . )}i∈U be a

sequence of i.i.d. copies of the generic branching vector. To construct a weighted branching

process we start by defining a tree as follows: let A0 = {∅} denote the root of the tree, and

define the nth generation according to the recursion

An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}, n ≥ 1.

Now, assign to each node i in the tree a weight Πi according to the recursion

Π∅ ≡ 1, Π(i,in) = C(i,in)Πi, n ≥ 1,

see Figure 3.2. Note that the tree’s structure, disregarding the weights, is a Galton-Watson

process with offspring distribution f(k) = P (N = k), provided P (N <∞) = 1.

Using the same notation described above, consider now constructing this process using a

generic branching vector of the form (Q,N,C), with N ∈ N, and a sequence of i.i.d. copies

{(Qi, Ni, Ci)}i∈U . As mentioned earlier, we will refer to this construction as a weighted

branching tree. The difference lies in the dependence structure that now governs the nodes

in the tree, since whereas in a usual weighted branching process the weight Ci of node i is

independent of (Qi, Ni), in a weighted branching tree it may not be. Another important

observation is that in a weighted branching tree the weights {Ci}i∈U are i.i.d. random

variables, unlike in a weighted branching process where the weights of “sibling” nodes are

arbitrarily dependent and not necessarily identically distributed. It follows from these

observations that when C is independent of (Q,N), the corresponding weighted branching

tree is a special case of a weighted branching process.

We will now explain how to construct the endogenous solution to the linear SFPE

R
D=

N∑
i=1

CiRi +Q, (3.12)

using a weighted branching process.
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3.4.1.1 The endogenous solution to the linear SFPE

For a weighted branching process with generic branching vector (Q,N,C1, C2, . . . ), define

the processes {W (j) : j ≥ 0} and {R(k) : k ≥ 0} as follows:

W (0) = Q0, W (j) =
∑
i∈Aj

QiΠi, j ≥ 1, (3.13)

R(k) =
k∑
j=0

W (j) =
k∑
j=0

∑
i∈Aj

QiΠi, k ≥ 0. (3.14)

By focusing on the branching vector belonging to the root node, i.e., (Q∅, N∅, C1, C2, . . . )

we can see that the processes {W (j)} and {R(k)} satisfy the distributional equations

W (j) =
N∅∑
r=1

Cr

 ∑
(r,i)∈Aj

Q(r,i)Π(r,i)/Cr

 D=
N∑
r=1

CrW
(j−1)
r , j ≥ 1, (3.15)

and

R(k) =
N∅∑
r=1

Cr

 k∑
j=1

∑
(r,i)∈Aj

Q(r,i)Π(r,i)/Cr

+Q∅
D=

N∑
r=1

CrR
(k−1)
r +Q, k ≥ 1, (3.16)

where W
(j−1)
r are i.i.d. copies of W (j−1) and R

(k−1)
r are i.i.d. copies of R(k−1), all in-

dependent of (Q,N,C1, C2, . . . ). Here and throughout the paper the convention is that

XY/Y ≡ 1 if Y = 0.

For the homogeneous case (Q ≡ 0 in (3.12)), assume the weights {Ci} are nonnegative

and redefine the {W (j)} process as

W (0) = 1, W (j) =
∑
i∈Aj

Πi, j ≥ 1.

In this case the processM (j) = W (j)/ρj , j ≥ 0, where ρ = E
[∑N

i=1Ci
]

defines a nonnegative

martingale. It follows that M (j) converges almost surely, as j → ∞, to a finite limit W

with E[W ] ≤ 1. Taking the limit as j →∞ in (3.15) then gives that W satisfies

W
D=

N∑
r=1

Cr
ρ
Wr ,

N∑
r=1

C ′rWr,

where the {Wr} are i.i.d. copies of W , independent of (N,C1, C2, . . . ). Hence, W is a solu-

tion to the homogeneous version of (3.12) and the generic branching vector is (N,C ′1, C ′2, . . . ).
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For the non homogeneous case (P (Q 6= 0) > 0), one can argue, as was done in [Jelenković

and Olvera-Cravioto, 2012a], that provided E
[∑N

i=1 |Ci|β
]
< 1 and E[|Q|β] < ∞ for some

0 < β ≤ 1, then the random variable R(k) converges almost surely, as k → ∞, to a finite

limit R. Taking the limit as k →∞ in (3.16) gives that R is a solution to (3.12). We refer

to the random variables W and R described above as the endogenous solutions to (3.12) in

the homogeneous and non homogeneous cases, respectively.

3.4.2 The Kantorovich-Rubinstein distance

Before proceeding to the main results in the paper we give a brief description of the

Kantorovich-Rubinstein. This distance on the space of probability measures is also known

as the minimal l1 metric or the Wasserstein distance of order one. For the purposes of this

paper, we consider the vector space of infinite real sequences R∞ having finite l1 norm, i.e.,

x ∈ R∞ such that

||x||1 =
∞∑
i=1
|xi| <∞.

Since our estimates will be given in terms of the distance between generic branching vectors,

it follows that when analyzing a weighted branching process with a generic branching vector

satisfying P (N ≤ m) = 1 for some m ∈ N, or when analyzing a weighted branching tree,

we do not need to consider the space of infinite sequences, rather only the spaces Rm+2 or

R3, respectively. In any case, it will become clear from the context whether we are working

on Rd or R∞, and ||x||1 will always refer to the corresponding l1 norm.

Now recall the definition of the Kantorovich-Rubinstein distance: Let M(µ, ν) denote

the set of joint probability measures on S × S (S = Rd or R∞) with marginals µ and ν.

Then, the Kantorovich-Rubinstein distance between µ and ν is given by

d1(µ, ν) = inf
π∈M(µ,ν)

∫
S×S
||x− y||1 dπ(x,y).

We point out that d1 is only strictly speaking a distance when restricted to the subset

of probability measures

P1(S) ,
{
µ ∈P(S) :

∫
S
||x||1 dµ(x) <∞

}
,
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where P(S) is the set of Borel probability measures on S. We refer the interested reader

to [Villani, 2009] for a thorough treatment of this distance, since the definition is only a

special case.

Any construction on the same probability space of the joint vector (X,Y), where X has

marginal distribution µ and Y has marginal distribution ν, is called a coupling of µ and ν.

In this notation we can rewrite d1 as

d1(µ, ν) = inf
X,Y

E [||X−Y||1] ,

where the infimum is taken over all couplings of µ and ν.

It is well known that d1 is a metric on P1 and that the infimum is attained, or equiva-

lently, that an optimal coupling (X,Y) such that

d1(µ, ν) = E [||X−Y||1]

always exists (see, e.g., [Villani, 2009], Theorem 4.1). This optimal coupling, nonetheless, is

not in general explicitly available. One noteworthy exception is when µ and ν are probability

measures on the real line, in which case we have that

d1(µ, ν) =
∫ 1

0
|F−1(u)−G−1(u)|du =

∫ ∞
−∞
|F (x)−G(x)|dx,

where F and G are the cumulative distribution functions of µ and ν, respectively, and

f−1(t) = inf{x ∈ R : f(x) ≥ t} denotes the pseudo-inverse of f . It follows that the optimal

coupling is given by (X,Y ) = (F−1(U), G−1(U)) for U uniformly distributed in [0, 1].

Another important property of the Kantorovich-Rubinstein distance is that if {µk}k∈N
is a sequence of probability measures in P1, then convergence in d1 to a limit µ ∈ P1 is

equivalent to weak convergence. Furthermore, it satisfies the useful duality formula:

d1(µ, ν) = sup
||ψ||Lip≤1

{∫
S
ψ(x)dµ(x)−

∫
S
ψ(x)dν(x)

}
for all µ, ν ∈ P1(S), where the supremum is taken over all Lipschitz continuous functions

ψ : S → R with Lipschitz constant one (see Remark 6.5 in [Villani, 2009]).

3.4.3 Bounds for the Kantorovich-Rubinstein distance

We first present two sets of results; the first one provides explicit bounds for the Kantorovich-

Rubinstein distance between two versions of the processes {W (j) : j ≥ 0} (as defined
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by (3.13)) constructed on weighted branching processes, respectively weighted branching

trees, using different generic branching vectors. These bounds are given in terms of the

Kantorovich-Rubinstein distance between the two generic branching vectors. The second

set of results apply the explicit bounds to a sequence of processes {W (n,j) : j ≥ 0} and

{R(n,k) : k ≥ 0} for n ≥ 1, to obtain the convergence in the Kantorovich-Rubinstein

distance to the endogenous solution to (3.12) in a limiting weighted branching process. The

results for weighted branching trees are then used to show that R(n,∞)1 ⇒ R∗ in the analysis

of the ranking algorithm.

Let {W (j) : j ≥ 0} and {Ŵ (j) : j ≥ 0} be defined according to (3.13) on two different

weighted branching processes using the generic branching vectors (Q,N,C1, C2, . . . ) and

(Q̂, N̂ , Ĉ1, Ĉ2, . . . ), respectively. As our result will show, it is enough to consider generic

branching vectors of the form (Q,B1, B2, . . . ) and (Q̂, B̂1, B̂2, . . . ) where Bi = Ci1(N ≥ i)

and B̂i = Ĉi1(N̂ ≥ i) for all i ∈ N+. Let µ denote the probability measure of (Q,B1, B2, . . . )

and let µ̂ denote the probability measure of (Q̂, B̂1, B̂2, . . . ). We assume throughout the

paper that ∫
S
||x||1dµ(x) <∞ and

∫
S
||x||1dµ̂(x) <∞. (3.17)

To construct the two processes on the same probability space, let π denote any coupling

of µ and µ̂ and let {(Qi, B(i,1), B(i,2), . . . , Q̂i, B̂(i,1), B̂(i,2), . . . )}i∈U be a sequence of i.i.d. ran-

dom vectors distributed according to π. Then, use the vectors {(Qi, B(i,1), B(i,2), . . . )}i∈U to

construct {W (j) : j ≥ 0}, as described in Section 3.4.1, and the vectors {(Q̂i, B̂(i,1), B̂(i,2), . . . )}i∈U
to construct {Ŵ (j) : j ≥ 0}. Our first result is stated below.

Throughout the paper, we use x∧y and x∨y to denote the minimum and the maximum,

respectively, of x and y, x+ = max{0, x}, and we use the convention that
∑b
i=a xi ≡ 0 if

b < a. The notation Eπ[·] means that the expectation is taken with respect to the coupling

π.

Proposition 13. For any coupling π of µ and µ̂, and any j ≥ 0,

E
[∣∣∣Ŵ (j) −W (j)

∣∣∣] ≤
ρ̂j + E[|Q|]

j−1∑
t=0

ρtρ̂j−1−t

 E ,
where ρ = E

[∑N
i=1 |Ci|

]
, ρ̂ = E

[∑N̂
i=1 |Ĉi|

]
and E = Eπ

[
|Q̂−Q|+

∑∞
i=1 |B̂i −Bi|

]
.
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We point out that the bound provided by Proposition 13 is also a bound for the

Kantorovich-Rubinstein distance between Ŵ (j) and W (j), and if we take π to be the op-

timal coupling of µ and µ̂ then we have E = d1(µ̂, µ). It is also worth mentioning that if

we let ν and ν̂ be the probability measures of (Q,N,C1, C2, . . . ) and (Q̂, N̂ , Ĉ1, Ĉ2, . . . ),

respectively, and assume that E[N + N̂ ] < ∞, then d1(µ, µ̂) can be small even if d1(ν, ν̂)

is not. This is due to the observation that, in general, large disagreements between Cr and

Ĉr for values of r for which P (N > r) and P (N̂ > r) are negligible do not affect d1(µ, µ̂),

whereas they do adversely affect d1(ν, ν̂).

Our next result provides a similar bound for the case when Ŵ (j) and W (j) are con-

structed on weighted branching trees using the generic branching vectors (Q̂, N̂ , Ĉ) and

(Q,N,C), respectively. As before, let ν̂ and ν denote the probability measures of (Q̂, N̂ , Ĉ)

and (Q,N,C). Because of the different dependence structure they generate on the tree,

we allow the coupling used for the root nodes to be different than all other nodes, i.e., the

two trees are constructed using the sequence of i.i.d. vectors {(Qi, Ci, Ni, Q̂i, Ĉi, N̂i)}i∈U,i6=∅
distributed according to a coupling π of ν and ν̂, while (Q∅, N∅, Q̂∅, N̂∅) is independent of

the previous sequences and is distributed according to a coupling π∗ of ν∗ and ν̂∗, where ν∗

is the probability measure of (Q,N) and ν̂∗ is that of (Q̂, N̂). We have ignored C∅ and Ĉ∅

since they do not appear in the definitions of W (j) and Ŵ (j).

Proposition 14. For any coupling π of ν and ν̂ and any coupling π∗ of ν∗ and ν̂∗,

E
[∣∣∣Ŵ (0) −W (0)

∣∣∣] ≤ E∗
and for j ≥ 1,

E
[∣∣∣Ŵ (j) −W (j)

∣∣∣] ≤ (E[N̂ ] ∨ E[N ]E[|CQ|]
ρ

)j−1∑
t=0

ρ̂tρj−1−t

 E + E[|Q|]ρ̂j−1E∗,

where ρ = E[N |C|], ρ̂ = E[N̂ |Ĉ|],

E∗ = Eπ∗
[
|Q̂−Q|+ |N̂ −N |

]
and E = Eπ

[
|ĈQ̂− CQ|+

∞∑
i=1
|Ĉ1(N̂ ≥ i)− C1(N ≥ i)|

]
.

3.4.4 Convergence to the endogenous solution

Our second set of results considers a sequence of weighted branching processes (respec-

tively, weighted branching trees), each constructed using a generic branching vector having



CHAPTER 3. RANKING ALGORITHMS ON DIRECTED CONFIGURATION
NETWORKS 55

probability measure νn, n ≥ 1. In other words, for weighted branching processes, νn is the

probability measure of a vector of the form (Q(n), N (n), C
(n)
1 , C

(n)
2 , . . . ), while for weighted

branching trees it corresponds to a vector of the form (Q(n), N (n), C(n)). On each of them

we define the processes {W (n,j) : j ≥ 0} and {R(n,k) : k ≥ 0} according to (3.13) and

(3.14), and we are interested in providing conditions under which W (n,j) (suitably scaled)

and R(n,k) will converge, as n, j, k go to infinity, to the endogenous solution of a linear SFPE

of the form in (3.12).

The main conditions for the convergence we seek will be in terms of the sequence of

probability measures {µn}n≥1, where µn is the probability measure of the vector

(Q(n), C
(n)
1 1(N (n) ≥ 1), C(n)

2 1(N (n) ≥ 2), . . . )

for weighted branching processes, and of

(C(n)Q(n), C(n)1(N (n) ≥ 1), C(n)1(N (n) ≥ 2), . . . )

for weighted branching trees.

In both cases, we assume that there exists a probability measure µ such that d1(µn, µ)→

0. We point out that for a weighted branching process, µ is always the probability measure

of a generic branching vector, since each of the µn is. However, this is not the case for a

weighted branching tree. In order for µ to define a weighted branching process we need

C to be independent of (Q,N), in which case the limiting weighted branching process

has a generic branching vector of the form (Q,N,C1, C2, . . . ) with the {Ci}i≥1 i.i.d. and

independent of (Q,N); condition (3.17) implies that E[N ] <∞.

We refer to the case where we analyze a sequence of weighted branching processes

as Case 1, and to the case where we analyze a sequence of weighted branching trees as

Case 2. For Case 2, in addition to the measure µn defined above, we define ν∗n to be

the probability measure of the vector (Q(n), N (n)) and ν∗ to be the probability measure of

(Q,N). The symbol ⇒ denotes convergence in distribution and d1−→ denotes convergence

in the Kantorovich-Rubinstein distance.

Theorem 15. Define the processes {W (n,j) : j ≥ 0}, n ≥ 1, and {W (j) : j ≥ 0} according

to (3.13). Suppose that as n→∞,

d1(µn, µ)→ 0 (Case 1) or d1(ν∗n, ν∗) + d1(µn, µ)→ 0 (Case 2).
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Then, for any fixed j ∈ N

Ŵ (j) d1−→W (j), n→∞.

Moreover, if Q(n) = Q ≡ 1, and C
(n)
j , Cj are nonnegative for all n and j, then for any

jn ∈ N such that jn →∞ and

jn d1(µn, µ)→ 0 (Case 1) or d1(ν∗n, ν∗) + jn d1(µn, µ)→ 0 (Case 2),

as n→∞, we have
W (n,jn)

ρjnn
⇒W and W (n,jn)

ρjn
⇒W,

where W is the a.s. limit of W (j)/ρj as j →∞.

As pointed out in Section 3.4.1.1, W is the endogenous solution to the SFPE

W D=
N∑
i=1

Ci
ρ
Wi,

where the {Wi} are i.i.d. copies of W, independent of (N,C1, C2, . . . ). See [Liu, 1998] for

conditions on when the random variableW, which satisfies E[W] ≤ 1, is non-trivial, as well

as characterizations of its tail behavior. Furthermore, when E[W] = 1 we can replace the

convergence in distribution with convergence in the Kantorovich-Rubinstein distance, i.e.,

W (n,jn)

ρjnn

d1−→W and W (n,jn)

ρjn
d1−→W, n→∞.

We now give a similar result for the non homogeneous equation.

Theorem 16. Define the processes {R(n,k) : k ≥ 0}, n ≥ 1, and {R(k) : k ≥ 0} according

to (3.14). Suppose that as n→∞,

d1(µn, µ)→ 0 (Case 1) or d1(ν∗n, ν∗) + d1(µn, µ)→ 0 (Case 2).

Then, for any fixed k ∈ N,

R(n,k) d1−→ R(k), n→∞.

Moreover, if ρ < 1, then for any kn ∈ N such that kn →∞ as n→∞, we have

R(n,kn) d1−→ R, n→∞,

where R =
∑∞
k=0

∑
i∈Ak ΠiQi is the a.s. limit of R(k) as k →∞.
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In this case, R is the endogenous solution to the SFPE

R
D=

N∑
i=1

CiRi +Q, (3.18)

where the {Ri} are i.i.d. copies of R, independent of (Q,N,C1, C2, . . . ). Moreover, the

asymptotic behavior of P (R > x) as x → ∞ can be described for several different as-

sumptions on the generic vector (Q,N,C1, C2, . . . ). We refer the reader to [Jelenković and

Olvera-Cravioto, 2012a] and [Olvera-Cravioto, 2012a] for the precise set of theorems.

Note that in Case 1, the convergence of R(n,k) as k → ∞ for a fixed n is guaranteed

whenever E
[∑N(n)

i=1 |C
(n)
i |β

]
< 1 for some 0 < β ≤ 1 (see Lemma 4.1 in [Jelenković and

Olvera-Cravioto, 2012a]), and its limit, R(n) would be the endogenous solution to

R(n) D=
N(n)∑
i=1

C
(n)
i R

(n)
i +Q(n). (3.19)

For Case 2, on the other hand, an adaptation of the proof of Lemma 4.1 in [Jelenković and

Olvera-Cravioto, 2012a] would give that R(n,k) converges a.s. to

R(n) =
∞∑
j=0

W (n,j),

as k →∞, with R(n) finite a.s., provided E
[
N (n)|C(n)|β

]
< 1 for some 0 < β ≤ 1. However,

this random variable R(n) would not necessarily have the interpretation of being a solution

to (3.19).

We end this section with a result for the weighted branching tree setting that states that

d1(µn, µ) converges to zero whenever d1(νn, ν) and the moments of Q(n)C(n) and N (n)C(n)

do. However, the rates at which d1(νn, ν) and d1(µn, µ) converge could be different.

Lemma 17. For Case 2, suppose that as n→∞, d1(νn, ν)→ 0, E[|C(n)Q(n)|]→ E[|CQ|]

and E[|C(n)|N (n)]→ E[|C|N ]. Then,

d1(µn, µ)→ 0, n→∞.

3.4.5 Main Result

We are now ready to state the main result of this chapter, which establishes the convergence

of the rank of a randomly chosen node in the DCM to a non-degenerate random variable

R∗.
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We first give the required assumption. With some abuse of notation, for joint dis-

tribution functions Fn, F ∈ Rd we write d1(Fn, F ) to denote the Kantorovich-Rubinstein

distance between their probability measures µn and µ. The symbol P→ denotes convergence

in probability.

Assumption 2. Given the extended bi-degree sequence (Nn,Dn,Cn,Qn) define

F ∗n(m, q) := 1
n

n∑
k=1

1(Nk ≤ m,Qk ≤ q) and Fn(m, q, x) :=
n∑
k=1

1(Nk ≤ m,Qk ≤ q, Ck ≤ x)Dk

Ln
.

Suppose there exist random vectors (N0,Q0) and (N ,Q), and a random variable C, such

that

d1(F ∗n , F ∗)
P→ 0 and d1(Fn, F ) P→ 0,

as n→∞, where

F ∗(m, q) := P (N0 ≤ m,Q0 ≤ q) and F (m, q, x) := P (N ≤ m,Q ≤ q)P (C ≤ x).

Remark 6. Note that Assumption 2 and the duality formula imply that

sup
{
En
[
ψ(N̂1, Q̂1, Ĉ1)

]
− E[ψ(N ,Q, C)] : ψ is bounded and continuous

}
converges to zero in probability, and therefore, by the bounded convergence theorem,

E
[
ψ(N̂1, Q̂1, Ĉ1)

]
→ E[ψ(N ,Q, C)], n→∞,

for any bounded and continuous function ψ, or equivalently, (N̂1, Q̂1, Ĉ1) ⇒ (N ,Q, C);

similarly, (N̂∅, Q̂∅) ⇒ (N0,Q0). The duality formula, combined with Assumption 1, also

implies that E[N0] = ν1, E[N ] = µ and E[C] = ν5/ν1.

Theorem 18. Suppose the extended bi-degree sequence (Nn,Dn,Cn,Qn) satisfies Assump-

tions 1 and 2. Then,

R
(n,∞)
1 ⇒ R∗

as n → ∞, where R∗ is defined as in (??) with the weights {Ci} i.i.d. and independent of

(N0,Q0), respectively of (N ,Q) in (3.1).
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Proof. Define Ωn according to Assumption 1 and note that P (Ωc
n) = O(n−ε), so it suffices

to show that R(n,∞)
1 , conditional on Ωn, converges weakly to R∗. Note that by Assumption

1, ρ = E[N ]E[|C|] = ν5µ/ν1 < 1, which is a sufficient condition for R to be well defined

(see Lemma 4.1 in [Jelenković and Olvera-Cravioto, 2012a]). First, when µ > 1, fix 0 < δ <

| log c|/(2 logµ) and let kn = s logn, where δ/| log c| < s < 1/(2 logµ). Next, note that by

the arguments leading to (3.9),

P
(∣∣∣R(n,∞)

1 − R̂(n,kn)
∣∣∣ > n−δ

∣∣∣Ωn

)
= O

(
nδckn + (µ2kn/n)1/2

)
= O

(
nδ−s| log c| + n(2s logµ−1)/2

)
= o(1)

as n → ∞. When µ ≤ 1 we can take kn = nε, with ε < min{1/2, γ}, to obtain that the

probability converges to zero. We then obtain that conditionally on Ωn,

∣∣∣R(n,∞)
1 − R̂(n,kn)

∣∣∣⇒ 0.

That R̂(n,kn) ⇒ R∗ conditionally on Ωn will follow from Theorem 16 and Lemma 17 in

Chapter ?? and Assumption 2 once we verify that, as n→∞,

En
[
N̂1|Ĉ1|

]
P→ E[N ]E[|C|] and En

[
|Q̂1Ĉ1|

]
P→ E[|Q|]E[|C|]. (3.20)

To show that (3.20) holds define φK(q, x) = (|q| ∧K)(|x| ∧ 1) for K > 0, and note that

since φK is bounded and continuous, Assumption 2 and Remark 6 imply that

En
[
φK(Q̂1, Ĉ1)

]
P→ E[φK(Q, C)] = E[|Q| ∧K]E[|C|], n→∞.

Next, fix ε > 0 and choose K such that E[|Q|1(|Q| > K)] < ε/4. Then,

∣∣∣En [|Q̂1Ĉ1|
]
− E[|QC|]

∣∣∣ ≤ ∣∣∣En [φK(Q̂1, Ĉ1)
]
− E[φK(Q, C)]

∣∣∣
+ En

[
(|Q̂1| −K)+|Ĉ1|

]
+ E[(|Q| −K)+|C|]

≤
∣∣∣En [φK(Q̂1, Ĉ1)

]
− E[φK(Q, C)]

∣∣∣+ cEn
[
(|Q̂1| −K)+

]
+ cε/4,

where we used that both |Ĉ1| and |C| are bounded by c < 1. It follows that

lim
n→∞

P
(∣∣∣En [|Q̂1Ĉ1|

]
− E[|QC|]

∣∣∣ > ε
)
≤ lim

n→∞
P
(
En
[
(|Q̂1| −K)+

]
> ε/2

)
.
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To show that this last limit is zero note that (|x|−K)+ is Lipschitz continuous with Lipschitz

constant one, so by the duality formula we obtain

En
[
(|Q̂1| −K)+

]
P→ E[(|Q| −K)+] < ε/4

as n→∞, which gives the desired limit.

The proof for En
[
|N̂1Ĉ1|

]
follows the same steps and is therefore omitted.

3.4.6 Asymptotic behavior of the limit

We end this section by giving a limit theorem describing the tail asymptotics of R∗; its

proof is given in Appendix B.3. This result covers the case where the weights {Ci} are

nonnegative and either the limiting in-degree N or the limiting personalization value Q have

a regularly varying distribution, which in turn implies the regular variation of R. Then, we

deduce the asymptotics of R∗ using some results for weighted random sums with heavy-

tailed summands. The corresponding theorems can be found in [Olvera-Cravioto, 2012b;

Volkovich and Litvak, 2010].

Definition 10. We say that a function f is regularly varying at infinity with index −α,

denoted f ∈ R−α, if f(x) = x−αL(x) for some slowly varying function L; and L : [0,∞)→

(0,∞) is slowly varying if limx→∞ L(λx)/L(x) = 1 for any λ > 0.

We use the notation f(x) ∼ g(x) as x→∞ for limx→∞ f(x)/g(x) = 1.

Theorem 19. Suppose the generic branching vector (N ,Q, C1, C2, . . . ) is such that the

weights {Ci} are nonnegative, bounded i.i.d. copies of C, independent of (N ,Q), N ∈ N and

Q ∈ R. Define ρ = E[N ]E[C] and ρα = E[N ]E[Cα] and let R be defined as in (??).

• If P (N > x) ∈ R−α, α > 1, ρ ∨ ρα < 1, P (N0 > x) ∼ κP (N > x) as x → ∞ for

some κ > 0, E[Q], E[Q0] > 0, and E
[
|Q|α+ε + |Q0|α+ε] <∞ for some ε > 0, then

P (R∗ > x) ∼ (E[N0]E[Cα] + κ(1− ρα)) (E[Q]E[C])α

(1− ρ)α(1− ρα)P (N > x), x→∞.

• If P (Q > x) ∈ R−α, α > 1, ρ∨ ρα < 1, P (Q0 > x) ∼ κP (Q > x) as x→∞ for some

κ > 0, E[|Q|β + |Q0|β] < ∞ for all 0 < β < α, and E
[
|N |α+ε + |N0|α+ε] < ∞ for

some ε > 0, then

P (R∗ > x) ∼ (E[N0]E[Cα] + κ(1− ρα)) (1− ρα)−1P (Q > x), x→∞.
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Remark 7. (i) For PageRank we have Ci = c/Di and Qi = 1 − c, where c ∈ (0, 1) is the

damping factor. This leads to a limiting weight distribution of the form

P (C ≤ x) = lim
n→∞

1
Ln

n∑
i=1

1(c/Di ≤ x)Di,

which is not the limiting distribution of the reciprocal of the out-degrees, {c/Di}, but rather

a size-biased version of it.

(ii) Applying Theorem 19 to PageRank when P (N > x) ∈ R−α and P (N0 > x) ∼

κP (N > x) for some constant κ > 0 gives that

P (R∗ > x) ∼ κ′P (N > x) as x→∞,

where κ′ > 0 is determined by the theorem.

(iii) The theorem above only includes two possible cases of the relations between (N0,Q0)

and (N ,Q). The exact asymptotics of R∗ can be obtained from those of R in more cases

than these using the same techniques; we leave the details to the reader.

(iv) Theorem 19 requires the weights {Ci} to be nonnegative, which is not a condition

in Theorem 18. The tail asymptotics of R, and therefore of R∗, in the real-valued case are

unknown.

3.5 Algorithm to generate bi-degree sequences

As an example of an extended bi-degree sequence satisfying Assumptions 1 and 2, we give

in this section an algorithm based on sequences of i.i.d. random variables. The method

for generating the bi-degree sequence (Nn,Dn) is taken from [Chen and Olvera-Cravioto,

2013], where the goal was to generate a directed random graph with prescribed in- and

out-degree distributions.

To define the algorithm we need to first specify target distributions for the in- and

out-degrees, which we will denote by f in
k = P (N = k), and fout

k = P (D = k), k ≥ 0,

respectively. Furthermore, we will assume that these target distributions satisfy E[N ] =

E[D ],

F in(x) =
∑
k>x

f in
k ≤ x−αLin(x) and F out(x) =

∑
k>x

fout
k ≤ x−βLout(x),
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for some slowly varying functions Lin and Lout, and α > 1, β > 2. To the original construc-

tion given in [Chen and Olvera-Cravioto, 2013] we will need to add two additional steps to

generate the weight and personalization sequences Cn and Qn, for which we need two more

distributions F ζ(x) = P (ζ ≤ x) and FQ(x) = P (Q ≤ x) with support on the real line and

satisfying

P (|ζ| ≤ c) = 1 for some 0 < c < 1, and E[|Q|1+εQ ] <∞ for some 0 < εQ ≤ 1.

Let

κ0 = min{1− α−1, 1/2}.

The IID Algorithm:

1. Fix 0 < δ0 < κ0.

2. Sample an i.i.d. sequence {N1, . . . ,Nn} from distribution F in; let N n =
∑n
i=1 Ni.

3. Sample an i.i.d. sequence {D1, . . . ,Dn} from distribution F out, independent of {Ni};

let Dn =
∑n
i=1 Di.

4. Define ∆n = N n −Dn. If |∆n| ≤ n1−κ0+δ0 proceed to step 5; otherwise repeat from

step 2.

5. Choose randomly |∆n| nodes {i1, i2, . . . , i|∆n|} without replacement and let

Ni =


Ni + 1 if ∆n < 0 and i ∈ {i1, i2, . . . , i|∆n|},

Ni otherwise,

Di =


Di + 1 if ∆n ≥ 0 and i ∈ {i1, i2, . . . , i|∆n|},

Di otherwise.

6. Sample an i.i.d. sequence {Q1, . . . , Qn} from distribution FQ, independent of {Ni}

and {Di}.

7. Sample an i.i.d. sequence {ζ1, . . . , ζn} from distribution F ζ , independent of {Ni},

{Di} and {Qi}, and set Ci = ζi/Di if Di ≥ 1 or Ci = c sgn(ζi) otherwise.
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Remark 8. Note that since E[|N −D |1+a] <∞ for any 0 < a < min{α− 1, β − 1}, then

E[|N −D |1+(κ0−δ0)/(1−κ0)] <∞, and Corollary 32 in Appendix B gives

P
(
|∆n| > n1−κ0+δ0

)
= O

(
n−δ0(κ0−δ0)/(1−κ0)

)
(3.21)

as n→∞.

The two propositions below give the desired properties. Their proofs are given in Ap-

pendix B.4.

Proposition 20. The extended bi-degree sequence (Nn,Dn,Cn,Qn) generated by the IID

Algorithm satisfies Assumption 1 for any 0 < κ < β − 2, any 0 < γ < min{(κ0 − δ0)2/(1−

δ0), (β − 2 − κ)/β}, µ = ν1 = E[N ] = E[D ], ν2 = (E[D ])2, ν3 = E[D2], ν4 = E[D2+κ],

ν5 = E[|ζ|]P (D ≥ 1), H = E[|Q|] + 1, and some ε > 0.

Proposition 21. The extended bi-degree sequence (Nn,Dn,Cn,Qn) generated by the IID

Algorithm satisfies Assumption 2 with

F ∗(m, q) = P (N ≤ m)P (Q ≤ q) and

F (m, q, x) = P (N ≤ m)P (Q ≤ q)E[1(ζ/D ≤ x)D ]/µ.

3.6 Numerical examples

To complement the theoretical contribution of the chapter, we use the IID Algorithm de-

scribed in the previous section to provide some numerical results showing the accuracy of

the WBP approximation to PageRank. To generate the in- and out-degrees we use the zeta

distribution. More precisely, we set

Ni = X1,i + Y1,i, Di = X2,i + Y2,i,

where {X1,i} and {X2,i} are independent sequences of i.i.d. Zeta random variables with

parameters α + 1 and β + 1, respectively; {Y1,i} and {Y2,i} are independent sequences of

i.i.d. Poisson random variables with different parameters chosen so that N and D have
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equal mean. Note that the Poisson distribution has a light tail so that the power law tail

behavior of N and D is preserved and determined by α and β, respectively.

Once the sequences {Ni} and {Di} are generated, we use the IID Algorithm to obtain

a valid bi-degree sequence (Nn,Dn). Note that in PageRank, we have ζi = c and Qi =

1− c. Given this bi-degree sequence we next proceed to construct the graph and the TBT

simultaneously, according to the rules described in Section 3.3. To compute R(n,∞) we

perform matrix iterations with r0 = 1 until ‖R(n,k) −R(n,k−1)‖2 < ε0 for some tolerance

ε0. We only generate the TBT for as many generations as it takes to construct the graph,

with each generation corresponding to a step in the breadth first graph exploration process.

The computation of the root node of the TBT, R̂(n,k) is done recursively starting from the

leaves using

R̂
(n,0)
i = 1 for i ∈ Âk, R̂

(n,r)
i =

N̂i∑
j=1

c

D̂(i,j)
R̂

(n,r−1)
(i,j) + 1− c, for i ∈ Âr, 0 ≤ r < k.

To draw a sample from R∗, note that by Proposition 21, R∗ in the IID Algorithm has

the same distribution as R, i.e., the endogenous solution to the SFPE

R D=
N∑
i=1
CiRi + 1− c,

where P (C ≤ x) = E[1(c/D ≤ x)D ]/µ. To sample R we construct a WBP with generic

branching vector (N , 1− c, {Ci}), with the {Ci} i.i.d. and independent of N and proceed

as in the computation of R̂(n,k). To simulate samples of C we use the acceptance-rejection

method.

To show the convergence of R(n,∞)
1 to R∗, we let n = 10, 100 and 10000. The values of

the other parameters are α = 1.5, β = 2.5, E[N ] = E[D ] = 2, c = 0.3. For the TBT, we

simulate up to kn = blognc generations. For the WBP, we simulate 10 generations. For each

n, we draw 1000 samples of R(n,∞)
1 , R(n,kn)

1 , R̂(n,kn) and R∗, respectively, to approximate

the distribution of these quantities.

Figure 3.3 shows the empirical CDFs of 1000 i.i.d. samples of the true PageRank,

R
(n,∞)
1 ; finitely many iterations of PageRank, R(n,kn)

1 ; and the TBT approximation R̂(n,kn);

it also plots the distribution of the limit R∗ using 1000 simulations. The approximations

are so accurate that the CDFs are almost indistinguishable. Figure 3.4 illustrates the weak
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Figure 3.3: The empirical CDFs of 1000 samples of R∗, R(n,∞)
1 , R(n,kn)

1 and R̂(n,kn) for

n = 10000 and kn = 9.

convergence of PageRank on the graph, R(n,∞)
1 , to its limit R∗ as the size of the graph

grows.

To quantify the distance between the CDFs, we sort the samples in ascending order and

compute the mean squared error (MSE)
∑1000
i=1 (x(n)

i − yi)/1000, where yi is the sorted ith

sample of R∗ and x
(n)
i is the sorted ith sample of R(n,∞)

1 . For robustness, we discard the

squared error of the maximal value. As a result, the MSEs are 0.2950, 0.1813 and 0.0406

respectively for n = 10, 100 and 10000. It is clear that the approximation improves as n

increases.

We also test our algorithm on real networks. We use the dataset of all Wikipedia pages

in English, German, Italian, Chinese, French, and Dutch. Hence we have the information

of six huge networks. Table 3.1 gives some summary statistics of these graphs.

We then compute the PageRank of each graph. This boils down to running the PageR-

ank algorithm (3.3) on the graph for large enough times until the ranks converge. We
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Figure 3.4: The empirical CDFs of 1000 samples of R∗ and R
(n,∞)
1 for n = 10, 100 and

10000.

compare the PageRank to the WBP approximation. The figures are shown below. We

plot the tail empirical distributions in log-log scale. We can see that, even though the net-

work of wikipages contains much more information than the in- and out-degrees, the WBP

approximation of the PageRank turns out to be quite accurate.
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Language Node Avg Degree In-degree STD Out-degree STD Correlation

English 4212493 24.1 413.1 47.9 15%

German 1532978 24.0 247.6 43.8 30%

French 1352825 25.5 334.1 46.2 23%

Italian 1017953 25.2 343.2 49.4 17%

Dutch 1144615 14.0 273.5 36.1 14%

Chinese 663485 16.2 244.3 32.7 22%

Table 3.1: The number of nodes, average in(out)-degree, the standard deviation of in- and

out-degrees, and the correlation between in- and out-degrees.
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Figure 3.5: English wikipages.
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Figure 3.6: German wikipages.
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Figure 3.7: French wikipages.



CHAPTER 3. RANKING ALGORITHMS ON DIRECTED CONFIGURATION
NETWORKS 69

10-1 100 101 102 103 10410-7

10-6

10-5

10-4

10-3

10-2

10-1

100 itwiki

WBP
PR

Figure 3.8: Italian wikipages.
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Figure 3.9: Dutch wikipages.
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Figure 3.10: Chinese wikipages.
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Part III

Simulation of branching recursions
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Chapter 4

Efficient simulation for branching

linear recursions

This chapter is organized as follows. Section 4.1 describes the weighted branching process

and the linear recursion. The algorithm itself is given in Section 4.2 . Section 4.3 introduces

the Kantorovich-Rubinstein distance and proves the convergence properties of our proposed

algorithm. Numerical examples to illustrate the precision of the algorithm are presented in

Section 4.4.

4.1 Linear recursions on weighted branching processes

The endogenous solution to

R
D=

N∑
i=1

CiRi +Q, (4.1)

can be explicitly constructed on a weighted branching process. To describe the structure

of a weighted branching process, let N+ = {1, 2, 3, . . . } be the set of positive integers and

let U =
⋃∞
k=0(N+)k be the set of all finite sequences i = (i1, i2, . . . , in), n ≥ 0, where by

convention N0
+ = {∅} contains the null sequence ∅. To ease the exposition, we will use

(i, j) = (i1, . . . , in, j) to denote the index concatenation operation.

Next, let (Q,N,C1, C2, . . . ) be a real-valued vector with N ∈ N. We will refer to this

vector as the generic branching vector. Now let {(Qi, Ni, C(i,1), C(i,2), . . . )}i∈U be a sequence
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of i.i.d. copies of the generic branching vector. To construct a weighted branching process

we start by defining a tree as follows: let A0 = {∅} denote the root of the tree, and define

the nth generation according to the recursion

An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}, n ≥ 1.

Now, assign to each node i in the tree a weight Πi according to the recursion

Π∅ ≡ 1, Π(i,in) = C(i,in)Πi, n ≥ 1,

see Figure 3.2. If P (N <∞) = 1 and Ci ≡ 1 for all i ≥ 1, the weighted branching process

reduces to a Galton-Watson process.

For a weighted branching process with generic branching vector (Q,N,C1, C2, . . . ), de-

fine the process {R(k) : k ≥ 0} as follows:

R(k) =
k∑
j=0

∑
i∈Aj

QiΠi, k ≥ 0. (4.2)

By focusing on the branching vector belonging to the root node, i.e., (Q∅, N∅, C1, C2, . . . )

we can see that the process {R(k)} satisfies the distributional equations

R(0) = Q∅
D= Q

R(k) =
N∅∑
r=1

Cr

 k∑
j=1

∑
(r,i)∈Aj

Q(r,i)Π(r,i)/Cr

+Q∅
D=

N∑
r=1

CrR
(k−1)
r +Q, k ≥ 1, (4.3)

where R(k−1)
r are i.i.d. copies of R(k−1), all independent of (Q,N,C1, C2, . . . ). Here and

throughout the paper the convention is that XY/Y ≡ 1 if Y = 0. Moreover, if we define

R =
∞∑
j=0

∑
i∈Aj

QiΠi, (4.4)

we have the following result. We use x ∨ y to denote the maximum of x and y.

Proposition 22. Let β ≥ 1 be such that E[|Q|β] < ∞ and E

[(∑N
i=1 |Ci|

)β]
< ∞. In

addition, assume either (i) (ρ1 ∨ ρβ) < 1 , or (ii) β = 2, ρ1 = 1, ρβ < 1 and E[Q] = 0.

Then, there exist constants Kβ > 0 and 0 < cβ < 1 such that for R(k) and R defined

according to (4.2) and (4.4), respectively, we have

sup
k≥0

E
[
|R(k)|β

]
≤ Kβ <∞ and E

[
|R(k) −R|β

]
≤ Kβc

k+1
β .
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Proof. For the case ρ1∨ρβ < 1, Lemma 4.4 in [Jelenković and Olvera-Cravioto, 2012a] gives

that for Wn =
∑

i∈An QiΠi and some finite constant Hβ we have

E
[
|Wn|β

]
≤ Hβ(ρ1 ∨ ρβ)n.

Let cβ = ρ1 ∨ ρβ. Minkowski’s inequality then gives

∣∣∣∣∣∣R(k)
∣∣∣∣∣∣
β
≤

k∑
n=0
||Wn||β ≤

∞∑
n=0

(
Hβc

n
β

)1/β
=

 Hβ

1− c1/β
β

1/β

, (Kβ)1/β <∞.

Similarly,

∣∣∣∣∣∣R(k) −R
∣∣∣∣∣∣
β
≤

∞∑
n=k+1

||Wn||β ≤
∞∑

n=k+1

(
Hβc

n
β

)1/β
= c

(k+1)/β
β

(
Hβ

1− (ρ1 ∨ ρβ)1/β

)1/β

=
(
Kβc

k+1
β

)1/β
.

For the case β = 2, ρ1 = 1, ρβ < 1 and E[Q] = 0 we have that

E
[
W 2
n

]
= E


N∅∑
r=1

CrWn−1,r

2
 = E

N∅∑
r=1

C2
r (Wn−1,r)2 +

∑
1≤r 6=s≤N∅

CrCsWn−1,rWn−1,s

 ,
where Wn−1,r =

∑
(r,i)∈An Q(r,i)Π(r,i)/Cr, and the {Wn−1,r}r≥1 are i.i.d. copies of Wn−1,

independent of (N∅, C1, C2, . . . ). Since E[Wn] = 0 for all n ≥ 0, it follows that

E[W 2
n ] = ρ2E[W 2

n−1] = ρn2E[W 2
0 ] = Var (Q)ρn2 .

The two results now follow from the same arguments used above with H2 = Var (Q) and

c2 = ρ2.

It follows from the previous result that under the conditions of Proposition 22, R(k)

converges to R both almost surely and in Lβ-norm. Similarly, if we ignore the Q in the

generic branching vector, assume that Ci ≥ 0 for all i, and define the process

W (k) =
∑

i∈Ak

Πi =
N∅∑
r=1

Cr

 ∑
(r,i)∈Ak

Π(r,i)/Cr

 D=
N∑
r=1

CrW
(k−1)
r ,

where the {W (k−1)
r }r≥1 are i.i.d. copies of W (k−1) independent of (N,C1, C2, . . . ), then it

can be shown that {W (k)/ρk1 : k ≥ 0} defines a nonnegative martingale which converges

almost surely to the endogenous solution of the stochastic fixed-point equation

W
D=

N∑
i=1

Ci
ρ1
Wi,
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where the {Wi}i≥1 are i.i.d. copies of W , independent of (N,C1, C2, . . . ). We refer to this

equation as the homogeneous case.

As mentioned in the introduction, our objective is to generate a sample of R(k) for values

of k sufficiently large to suitably approximate R. Our proposed algorithm can also be used

to simulate W (k), but due to space limitations we will omit the details.

4.2 The algorithm

Note that based on (4.2), one way to simulate R(k) would be to simulate a weighted branch-

ing process starting from the root and up to the k generation and then add all the weights

QiΠi for i ∈
⋃k
j=0Aj . Alternatively, we could generate a large enough pool of i.i.d. copies

of Q which would represent the Qi for i ∈ Ak, and use them to generate a pool of i.i.d.

observations of R(1) by setting

R
(1)
i =

Ni∑
r=1

C(i,r)R
(0)
r +Qi,

where {(Qi, Ni, C(i,1), C(i,2), . . . )}i≥1 are i.i.d. copies of the generic branching vector, inde-

pendent of everything else, and the R(0)
r are the Q’s generated in the previous step. We can

continue this process until we get to the root node. On average, we would need (E[N ])k

i.i.d. copies of Q for the first pool of observations, (E[N ])k−1 copies of the generic branching

vector for the second pool, and in general, (E[N ])k−j for the jth step. This approach is

equivalent to simulating the weighted branching process starting from the kth generation

and going up to the root, and is the result of iterating

R(k+1) D=
N∑
i=1

CiR
(k)
i +Q.

Our proposed algorithm is based on this “leaves to root” approach, but to avoid the

need for a geometric number of “leaves”, we will resample from the initial pool to obtain

a pool of the same size of observations of R(1). In general, for the jth generation we will

sample from the pool obtained in the previous step of (approximate) observations of R(j−1)

to obtain conditionally independent (approximate) copies of R(j). In other words, to obtain

a pool of approximate copies of R(j) we bootstrap from the pool previously obtained of
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approximate copies of R(j−1). The approximation lies in the fact that we are not sampling

from R(j−1) itself, but from a finite sample of conditionally independent observations that

are only approximately distributed as R(j−1). The algorithm is described below.

Let (Q,N,C1, C2, . . . ) denote the generic branching vector defining the weighted branch-

ing process. Let k be the depth of the recursion that we want to simulate, i.e., the algorithm

will produce a sample of random variables approximately distributed as R(k). Choose

m ∈ N+ to be the bootstrap sample size. For each 0 ≤ j ≤ k, the algorithm outputs

P(j,m) ,
(
R̂

(j,m)
1 , R̂

(j,m)
2 , . . . , R̂

(j,m)
m

)
, which we refer to as the sample pool at level j.

1. Initialize: Set j = 0. Simulate a sequence {Qi}mi=1 of i.i.d. copies of Q and let

R̂
(0,m)
i = Qi for i = 1, . . . ,m. Output P(0,m) =

(
R̂

(0,m)
1 , R̂

(0,m)
2 , . . . , R̂

(0,m)
m

)
and

update j = 1.

2. While j ≤ k:

i) Simulate a sequence {(Qi, Ni, C(i,1), C(i,2), . . . )}mi=1 of i.i.d. copies of the generic

branching vector, independent of everything else.

ii) Let

R̂
(j,m)
i =

Ni∑
r=1

C(i,r)R̂
(j−1,m)
(i,r) +Qi, i = 1, . . . ,m, (4.5)

where the R̂(j−1,m)
(i,r) are sampled uniformly with replacement from the pool P(j−1,m).

iii) Output P(j,m) =
(
R̂

(j,m)
1 , R̂

(j,m)
2 , . . . , R̂

(j,m)
m

)
and update j = j + 1.

Remark 9. To simulate an approximation for the endogenous solution to the maximum

equation (1.5), given by R =
∨∞
j=0

∨
i∈Aj QiΠi, simply replace (4.5) with

R̂
(j,m)
i = Qi ∨

Ni∨
r=1

C(i,r)R̂
(j−1,m)
(i,r) , i = 1, . . . ,m.

Bootstrapping refers broadly to any method that relies on random sampling with re-

placement [Efron and Tibshirani, 1993]. For example, bootstrapping can be used to esti-

mate the variance of an estimator, by constructing samples of the estimator from a number

of resamples of the original dataset with replacement. With the same idea, our algorithm
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draws samples uniformly with replacement from the previous bootstrap sample pool. There-

fore, the R̂(j−1,m)
(i,r) on the right-hand side of (4.5) are only conditionally independent given

P(j−1,m). Hence, the samples in P(j,m) are identically distributed but not independent for

j ≥ 1.

As we mentioned earlier, the distribution of the {R̂(j,m)
i } in P(j,m) are only approximately

distributed as R(j), with the exception of the {R̂(0,m)
i } which are exact. The first thing that

we need to prove is that the distribution of the observations in P(j,m) does indeed converge

to that of R(j). Intuitively, this should be the case since the empirical distribution of

the {R̂(0,m)
i } is the empirical distribution of m i.i.d. observations of R(0), and therefore

should be close to the true distribution of R(0) for suitably large m. Similarly, since the

{R̂(1,m)
i } are constructed by sampling from the empirical distribution of P(0,m), which is

close to the true distribution of R(0), then their empirical distribution should be close to the

empirical distribution of R(1), which in turn should be close to the true distribution of R(1).

Inductively, provided the approximation is good in step j − 1, we can expect the empirical

distribution of P(j,m) to be close to the true distribution of R(j). In the following section

we make the mode of the convergence precise by considering the Kantorovich-Rubinstein

distance between the empirical distribution of P(j,m) and the true distribution of R(j).

The second technical aspect of our proposed algorithm is the lack of independence among

the observations in P(k,m), since a natural estimator for quantities of the form E[h(R(k))]

would be to use
1
m

m∑
i=1

h(R̂(k,m)
i ). (4.6)

Hence, we also provide a result establishing the consistency of estimators of the form in

(4.6) for a suitable family of functions h.

We conclude this section by pointing out that the complexity of the algorithm described

above is of order km, while the naive Monte Carlo approach has order (E[N ])km. This is

a huge gain in efficiency.
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4.3 Convergence and consistency

In order to show that our proposed algorithm does indeed produce observations that are ap-

proximately distributed as R(k) for any fixed k, we will show that the empirical distribution

function of the observations in P(k,m) , i.e.,

F̂k,m(x) = 1
m

m∑
i=1

1(R̂(k,m)
i ≤ x)

converges as m→∞ to the true distribution function of R(k), which we will denote by Fk.

Recall the definition of the Kantorovich-Rubinstein distance d1, which is a metric on the

space of probability measures. In particular, convergence in this sense is equivalent to weak

convergence plus convergence of the first absolute moments.

We point out that d1 is only strictly speaking a distance when both µ and ν have finite

first absolute moments. Moreover, it is well known that

d1(µ, ν) =
∫ 1

0
|F−1(u)−G−1(u)|du =

∫ ∞
−∞
|F (x)−G(x)|dx, (4.7)

where F and G are the cumulative distribution functions of µ and ν, respectively, and

f−1(t) = inf{x ∈ R : f(x) ≥ t} denotes the pseudo-inverse of f . It follows that the optimal

coupling of two real random variables X and Y is given by (X,Y ) = (F−1(U), G−1(U)),

where U is uniformly distributed in [0, 1].

Remark 10. The Kantorovich-Rubinstein distance is also known as the Wasserstein metric

of order 1. In general, both the Kantorovich-Rubinstein distance and the more general

Wasserstein metric of order p can be defined in any metric space; we restrict our definition

in this paper to the real line since that is all we need. We refer the interested reader to

[Villani, 2009] for more details.

With some abuse of notation, for two distribution functions F and G we use d1(F,G) to

denote the Kantorovich-Rubinstein distance between their corresponding probability mea-

sures.

The following proposition shows that for i.i.d. samples, the expected value of the

Kantorovich-Rubinstein distance between the empirical distribution function and the true

distribution converges to zero.
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Proposition 23. Let {Xi}i≥1 be a sequence of i.i.d. random variables with common dis-

tribution F . Let Fn denote the empirical distribution function of a sample of size n. Then,

provided there exists α ∈ (1, 2) such that E [|X1|α] <∞, we have that

E [d1(Fn, F )] ≤ n−1+1/α
( 2α
α− 1 + 2

2− α

)
E[|X1|α].

Proposition 23 can be proved following the same arguments used in the proof of Theorem

2.2 in [del Barrio et al., 1999] by setting M = 1, and thus we omit it.

We now give the main theorem of the paper, which establishes the convergence of the

expected Kantorovich-Rubinstein distance between F̂k,m and Fk. Its proof is based on

induction and the explicit representation (4.7). Recall that ρβ = E
[∑N

i=1 |Ci|β
]
.

Theorem 24. Suppose that the conditions of Proposition 22 are satisfied for some β > 1.

Then, for any α ∈ (1, 2) with α ≤ β, there exists a constant Kα <∞ such that

E
[
d1(F̂k,m, Fk)

]
≤ Kαm

−1+1/α
k∑
i=0

ρi1. (4.8)

Proof. By Proposition 22 there exists a constant Hα such that

Hα = sup
k≥0

E
[
|R(k)|α

]
≤ sup

k≥0

(
E
[
|R(k)|β

])α/β
<∞.

Set Kα = Hα

(
2α
α−1 + 2

2−α

)
. We will give a proof by induction.

For j = 0, we have that

F̂0,m(x) = 1
m

m∑
i=1

1(Qi ≤ x),

where {Qi}i≥1 is a sequence of i.i.d. copies of Q. It follows that F̂0,m is the empirical

distribution function of R(0), and by Proposition 23 we have that

E
[
d1(F̂0,m, F0)

]
≤ Kαm

−1+1/α.

Now suppose that (4.8) holds for j−1. Let {U ir}i,r≥1 be a sequence of i.i.d. Uniform(0, 1)

random variables, independent of everything else. Let {(Qi, Ni, C(i,1), C(i,2), . . . )}i≥1 be a

sequence of i.i.d. copies of the generic branching vector, also independent of everything else.

Recall that Fj−1 is the distribution function of R(j−1) and define the random variables

R̂
(j,m)
i =

Ni∑
r=1

C(i,r)F̂
−1
j−1,m(U ir) +Qi and R

(j)
i =

Ni∑
r=1

C(i,r)F
−1
j−1(U ir) +Qi
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for each i = 1, 2, . . . ,m. Now use these random variables to define

F̂j,m(x) = 1
m

m∑
i=1

1(R̂(j,m)
i ≤ x) and Fj,m(x) = 1

m

m∑
i=1

1(R(j)
i ≤ x).

Note that Fj,m is an empirical distribution function of i.i.d. copies of R(j), which has been

carefully coupled with the function F̂j,m produced by the algorithm.

By the triangle inequality and Proposition 23 we have that

E
[
d1(F̂j,m, Fj)

]
≤ E

[
d1(F̂j,m, Fj,m)

]
+ E [d1(Fj,m, Fj)] ≤ E

[
d1(F̂j,m, Fj,m)

]
+Kαm

−1+1/α.

To analyze the remaining expectation note that

E
[
d1(F̂j,m, Fj,m)

]
= E

[∫ ∞
−∞
|F̂j,m(x)− Fj,m(x)|dx

]
≤ 1
m

m∑
i=1

E

[∫ ∞
−∞

∣∣∣1(R̂(j,m)
i ≤ x)− 1(R(j)

i ≤ x)
∣∣∣ dx]

= 1
m

m∑
i=1

E
[∣∣∣R̂(j,m)

i −R(j)
i

∣∣∣]

= 1
m

m∑
i=1

E

∣∣∣∣∣∣
Ni∑
r=1

C(i,r)(F̂−1
j−1,m(U ir)− F−1

j−1(U ir))

∣∣∣∣∣∣


≤ E
[
N∑
r=1
|Cr|

]
E
[
d1(F̂j−1,m, Fj−1)

]
,

where in the last step we used the fact that (Ni, C(i,1), C(i,2), . . . ) is independent of
{
U ir
}
r≥1

and of F̂j−1,m, combined with the explicit representation of the Kantorovich-Rubinstein

distance given in (4.7). The induction hypothesis now gives

E
[
d1(F̂j,m, Fj)

]
≤ ρ1E

[
d1(F̂j−1,m, Fj−1)

]
+Kαm

−1+1/α

≤ Kαm
−1+1/αρ1

j−1∑
i=0

ρi1 +Kαm
−1+1/α

= Kαm
−1+1/α

j∑
i=0

ρi1.

This completes the proof.

Note that the proof of Theorem 24 implies that R̂(j,m)
i → R

(j)
i =

∑Ni
r=1C(i,r)F

−1
j−1(U ir) +

Qi
D= R(j) in L1-norm for all fixed j ∈ N, and hence in distribution. In other words,

P
(
R̂

(k,m)
i ≤ x

)
→ Fk(x) as m→∞, (4.9)
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for all i = 1, 2, . . . ,m, and for any continuity point of Fk. This also implies that

E
[
F̂k,m(x)

]
= P

(
R̂

(k,m)
1 ≤ x

)
→ Fk(x) as m→∞, (4.10)

for all continuity points of Fk.

Since our algorithm produces a pool P(k,m) of m random variables approximately dis-

tributed according to Fk, it makes sense to use it for estimating expectations related to R(k).

In particular, we are interested in estimators of the form in (4.6). The problem with this

kind of estimators is that the random variables in P(k,m) are only conditionally independent

given F̂k−1,m.

Definition 11. We say that Θn is a consistent estimator for θ if Θn
P→ θ as n→∞, where

P→ denotes convergence in probability.

Our second theorem shows the consistency of estimators of the form in (4.6) for a broad

class of functions.

Theorem 25. Suppose that the conditions of Proposition 22 are satisfied for some β > 1.

Suppose h : R → R is continuous and |h(x)| ≤ C(1 + |x|) for all x ∈ R and some constant

C > 0. Then, the estimator

1
m

m∑
i=1

h(R̂(k,m)
i ) =

∫
R
h(x)dF̂k,m(x),

where P(k,m) =
(
R̂

(k,m)
1 , R̂

(k,m)
2 , . . . , R̂

(k,m)
m

)
, is a consistent estimator for E[h(R(k))].

Proof. For any M > 0, define hM (x) as

hM (x) = h(−M)1(x ≤ −M) + h(x)1(−M < x ≤M) + h(M)1(x > M),

and note that hM is uniformly continuous. We then have∣∣∣∣∫
R
h(x)dF̂k,m(x)−

∫
R
h(x)dFk(x)

∣∣∣∣ ≤ 2C
∫
|x|>M

(1 + |x|)dFk(x) + 2C
∫
|x|>M

(1 + |x|)dF̂k,m(x)

+
∣∣∣∣∫

R
hM (x)dF̂k,m(x)−

∫
R
hM (x)dFk(x)

∣∣∣∣ . (4.11)

Fix ε > 0 and choose Mε > 0 such that E
[
(|R(k)|+ 1)1(|R(k)| > Mε)

]
≤ ε/(4C) and such

that −Mε and Mε are continuity points of Fk. Define (R̂(k,m), R(k)) = (F̂−1
k,m(U), F−1

k (U)),
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where U is a uniform [0, 1] random variable independent of P(k,m). Next, note that g(x) =

1 + |x| is Lipschitz continuous with Lipschitz constant one and therefore∫
|x|>Mε

(1 + |x|)dF̂k,m(x) = (1 +Mε)
(
F̂k,m(−Mε) + 1− F̂k,m(Mε)

)
+
∫
x<−Mε

F̂k,m(x) dx+
∫
x>Mε

(1− F̂k,m(x))dx

≤ (1 +Mε)
(
F̂k,m(−Mε) + 1− F̂k,m(Mε)

)
+ d1(F̂k,m, Fk)

+
∫
x<−Mε

Fk(x) dx+
∫
x>Mε

(1− Fk(x))dx

= (1 +Mε)
(
F̂k,m(−Mε)− Fk(−Mε) + Fk(Mε)− F̂k,m(Mε)

)
+ d1(F̂k,m, Fk)

+ E
[
(|R(k)|+ 1)1(|R(k)| > Mε)

]
.

Finally, since hMε is bounded and uniformly continuous, then ω(δ) = sup{|hMε(x)−hMε(y)| :

|x− y| ≤ δ} converges to zero as δ → 0. Hence, for any γ > 0,∣∣∣∣∫
R
hMε(x)dF̂k,m(x)−

∫
R
hMε(x)dFk(x)

∣∣∣∣ ≤ E [∣∣∣hMε(R̂(k,m))− hMε(R(k))
∣∣∣∣∣∣ F̂k,m]

≤ ω(m−γ) +KεE
[
1
(
|R̂(k,m) −R(k)| > m−γ

)∣∣∣ F̂k,m]
≤ ω(m−γ) +Kεm

γd1(F̂k,m, Fk),

where 2Kε = sup{|hMε(x)| : x ∈ R}. Choose 0 < γ < 1− 1/α for the α ∈ (1, 2) in Theorem

24 and combine the previous estimates to obtain

E

[∣∣∣∣∫
R
h(x)dF̂k,m(dx)−

∫
R
h(x)dFk(dx)

∣∣∣∣]
≤ 2C(1 +Mε)

(
E[F̂k,m(−Mε)]− Fk(−Mε) + Fk(Mε)− E[F̂k,m(Mε)]

)
+ ε+ ω(m−γ) + (2C +Kεm

γ)E
[
d1(F̂k,m, Fk)

]
.

Since

E[F̂k,m(−Mε)]→ Fk(−Mε) and E[F̂k,m(Mε)]→ Fk(Mε)

by (4.10), and mγE
[
d1(F̂k,m, Fk)

]
→ 0 by Theorem 24, it follows that

lim sup
m→∞

E

[∣∣∣∣∫
R
h(x)dF̂k,m(dx)−

∫
R
h(x)dFk(dx)

∣∣∣∣] ≤ ε.
Since ε > 0 was arbitrary, the convergence in L1, and therefore in probability, follows.
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Figure 4.1: The functions F10,1000(x), F̂10,200(x) and F̂10,1000(x).

4.4 Numerical examples

This last section of the paper gives a numerical example to illustrate the performance of

our algorithm. Consider a generic branching vector (Q,N,C1, C2, . . . ) where the {Ci}i≥1

are i.i.d. and independent of N and Q, with N also independent of Q.

Figure 4.1 plots the empirical cumulative distribution function of 1000 samples of R(10,

i.e., F10,1000 in our notation, versus the functions F̂10,200 and F̂10,1000 produced by our

algorithm, for the case where the Ci are uniformly distributed in [0, 0.2], Q uniformly

distributed in [0, 1] and N is a Poisson random variable with mean 3. Note that we cannot

compare our results with the true distribution F10 since it is not available in closed form.

Computing F10,1000 required 883.3 seconds using Python with an Intel i7-4700MQ 2.40 GHz

processor and 8 GB of memory, while computing F̂10,1000 required only 2.1 seconds. We

point out that in applications to information ranking algorithms E[N ] can be in the thirties

range, which would make the difference in computation time even more impressive.

Our second example plots the tail distribution of the empirical cumulative distribution

function of R(10) for 10,000 samples versus the tail of F̂10,10000 for an example where N

is a zeta random varialbe with a probability mass function P (N = k) ∝ k−2.5, Q is an

exponential random variable with mean 1, and the Ci have a uniform distribution in [0, 0.5].
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Figure 4.2: The functions 1−F10,10000(x), 1−F̂10,10000(x) and G10(x), where G10 is evaluated

only at integer values of x and linearly interpolated in between.

In this case the exact asymptotics for P (R(k) > x) as x→∞ are given by

P (R(k) > x) ∼ (E[C1]E[Q])α

(1− ρ1)α
k∑
j=0

ρjα(1− ρk−j1 )αP (N > x),

where P (N > x) = x−αL(x) is regularly varying (see Lemma 5.1 in [Jelenković and Olvera-

Cravioto, 2010]), which reduces for the specific distributions we have chosen to

G10(x) , (0.25)2.5

(1− (0.49))2.5

10∑
j=0

(0.07)j(1− (0.49)10−j)2.5P (N > x) = (0.365)P (N > x).

Figure 4.2 plots the complementary distributions of F10,10000, F̂10,10000 and compares them

to G. We can see that the tails of both F10,10000 and F̂10,10000 approach the asymptotic

roughly at the same time.
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Appendix A

Proofs of Chapter 2

We give the proofs of all the results in the paper. We divide the proofs into two subsec-

tions, one containing those belonging to Section 2.1 and those belonging to Section 2.3.

Throughout the remainder of the paper we use the following notation: g(x) ∼ f(x) if

limx→∞ g(x)/f(x) = 1, g(x) = O(f(x)) if lim supx→∞ g(x)/f(x) < ∞, and g(x) = o(f(x))

if limx→∞ g(x)/f(x) = 0.

A.1 Degree sequences

This section contains the proofs of Lemma 1, Theorems 3 and 4, and Proposition 5.

Proof of Lemma 1. Let Zi = γi − ξi and note that the {Zi} are i.i.d. mean zero random

variables. If E[Z2
1 ] <∞, then Chebyshev’s inequality gives

P (Dcn) = P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > n1/2+δ0

)
≤ nVar (Z1)

n1+2δ0
= O(n−2δ0) = o(1)

as n→∞.

Suppose now that E[Z2
1 ] = ∞, which implies that κ = 1 − max{α−1, β−1} ∈ (0, 1/2].

Let θ = max{α−1, β−1}, define tn = nθ+ε, 0 < ε < min{δ0, θ
−1 − θ}, and let {Z̃i} be a

sequence of i.i.d. random variables having distribution P (Z̃1 ≤ x) = P (Z1 ≤ x||Z1| ≤ tn).
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Then,

P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > n1−κ+δ0

)

= P

(∣∣∣∣∣
n∑
i=1

Z̃i

∣∣∣∣∣ > n1−κ+δ0

)
P (|Z1| ≤ tn)n + P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > n1−κ+δ0 , max
1≤i≤n

|Zi| > tn

)

≤ P
(∣∣∣∣∣

n∑
i=1

Z̃i − nE[Z̃1]
∣∣∣∣∣+ n|E[Z̃1]| > n1−κ+δ0

)
+ P

(
max

1≤i≤n
|Zi| > tn

)
.

By the union bound,

P

(
max

1≤i≤n
|Zi| > tn

)
≤ nP (|Z1| > tn) ≤ nP (γ1 + ξ1 > tn) ≤ nP (γ1 > tn/2) + nP (ξ1 > tn/2)

≤ n(tn/2)−αLF (tn/2) + n(tn/2)−βLG(tn/2)

= O
(
n1−α(θ+ε)LF (tn) + n1−β(θ+ε)LG(tn)

)
= O

(
n−αεLF (tn) + n−βεLG(tn)

)
as n→∞, which converges to zero by basic properties of slowly varying functions (see, e.g.,

Proposition 1.3.6 in [Bingham et al., 1987]). Next, note that since E[Z1] = 0,

|E[Z̃1]| = |E[Z11(|Z1| > tn)]|
P (|Z1| ≤ tn)

≤ E[|Z1|1(|Z1| > tn)]
P (|Z1| ≤ tn) ≤ (1 + o(1))

(
tnP (|Z1| > tn) +

∫ ∞
tn

P (|Z1| > z)dz
)
,

where in the last inequality we used integration by parts for the numerator and the fact

that P (|Z1| ≤ tn) = 1 + o(1) as n→∞. To estimate the integral note that∫ ∞
tn

P (|Z1| > z)dz ≤
∫ ∞
tn

(P (γ1 > z/2) + P (ξ1 > z/2))dz

≤ 2
∫ ∞
tn/2

(
u−αLF (u) + u−βLG(u)

)
du

∼ 2
(
(α− 1)−1(tn/2)−α+1LF (tn/2) + (β − 1)−1(tn/2)−β+1LG(tn/2)

)
= O

(
n−(α−1)(θ+ε)LF (tn) + n−(β−1)(θ+ε)LG(tn)

)
,

where in the third step we used Proposition 1.5.10 in [Bingham et al., 1987]. Now note that

min{(α− 1)(θ + ε), (β − 1)(θ + ε)} = (θ−1 − 1)(θ + ε) = κ+ ε(θ−1 − 1),

from where it follows that

|E[Z̃1]| = O
(
n−κ−ε(θ

−1−1)(LF (tn) + LG(tn))
)

= o
(
n−κ+δ0

)
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as n→∞. In view of this, we can use Chebyshev’s inequality to obtain

P

(∣∣∣∣∣
n∑
i=1

Z̃i − nE[Z̃1]
∣∣∣∣∣+ n|E[Z̃1]| > n1−κ+δ0

)
≤ Var (Z̃1)
n1−2(κ−δ0)(1 + o(1))

. (A.1)

Finally, to see that this last bound converges to zero note that

Var (Z̃1) ≤ E[Z̃2
1 ] = 1

P (|Z1| ≤ tn)E[Z2
11(|Z1| ≤ tn)] ≤ (1 + o(1))E

[
|Z1|θ

−1−ε
]
t2−θ

−1+ε
n ,

where we used again the observation that P (|Z1| ≤ tn) = 1 + o(1) and the inequality

|Z1|2 = |Z1|θ
−1−ε|Z1|2−θ

−1+ε ≤ |Z1|θ
−1−εt2−θ

−1+ε
n

for |Z1| ≤ tn. Next note that by the remark following (2.1), E[|Z1|θ
−1−ε] < ∞. Hence, we

conclude that (A.1) is of order

O
(
t2−θ

−1+ε
n n2(κ−δ0)−1

)
= O

(
n(θ+ε)(2−θ−1+ε)+2(κ−δ0)−1

)
= o

(
n−2(δ0−ε)

)
= o(1)

as n→∞. This completes the proof.

Before giving the proof of Theorem 3 we will need the following preliminary lemma.

Lemma 26. Let {X1, . . . , Xn} be an i.i.d. sequence of nonnegative random variables having

distribution function V , and let X(i) denote the ith order statistic. Then, for any k ≤ n,
n∑

i=n−k+1
E
[
X(i)

]
≤
∫ ∞

0
min

{
nV (x), k

}
dx.

Proof. Note that

E
[
X(i)

]
=
∫ ∞

0
P (X(i) > x) dx =

∫ ∞
0

n∑
j=n−i+1

(
n

j

)
V (x)jV (x)n−jdx,

from where it follows
n∑

i=n−k+1
E
[
X(i)

]
=

n∑
i=n−k+1

n∑
j=n−i+1

(
n

j

)∫ ∞
0

V (x)jV (x)n−jdx

=
n∑
j=1

min{j, k}
(
n

j

)∫ ∞
0

V (x)jV (x)n−jdx

=
∫ ∞

0
E
[
min{B(n, V (x)), k}

]
dx,



APPENDIX A. PROOFS OF CHAPTER 2 98

where B(n, p) is a Binomial(n, p) random variable. Since the function u(t) = min{t, k} is

concave, Jensen’s inequality gives

E
[
min{B(n, V (x)), k}

]
≤ min

{
E[B(n, V (x))], k

}
= min

{
nV (x), k

}
.

Proof of Theorem 3. Since by construction
∑n
i=1Mi =

∑n
i=1Di, it follows from Theorem 2

that it suffices to show that

lim
n→∞

P

max
A⊆V

∑
vi∈A

Mi −
n∑
i=1

min{Di, |A− {vi}|}

 > 0

 = 0.

Fix 0 < ε < min{β − 1, α− 1, 1/2} and use the union bound to obtain

P

max
A⊆V

∑
vi∈A

Mi −
n∑
i=1

min{Di, |A− {vi}|}

 > 0


≤ P

 max
A⊆V,|A|≤n(1+ε)/β

∑
vi∈A

Mi −
n∑
i=1

min{Di, |A− {vi}|}

 > 0

 (A.2)

+ P

 max
A⊆V,|A|>n(1+ε)/β

∑
vi∈A

Mi −
n∑
i=1

min{Di, |A− {vi}|}

 > 0

 . (A.3)

By conditioning on how many of the Di are larger than n(1+ε)/β we obtain that (A.3) is

bounded by

P

 max
A⊆V,|A|>n(1+ε)/β

∑
vi∈A

Mi −
n∑
i=1

min{Di, |A− {vi}|}

 > 0, max
1≤i≤n

Di ≤ n(1+ε)/β


+ P

(
max

1≤i≤n
Di > n(1+ε)/β

)

≤ P

 max
A⊆V,|A|>n(1+ε)/β

∑
vi∈A

Mi −
n∑
i=1

Di

 > 0

+ P

(
max

1≤i≤n
Di > n(1+ε)/β

)

= P

(
max

1≤i≤n
(ξi + χi) > n(1+ε)/β

∣∣∣∣Dn) ,
where Dn was defined in Lemma 1 and we use the fact that, by construction, Di has the

same distribution as ξi + χi conditional on the event Dn. (We use this observation several
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times throughout the paper.) Now note that by the union bound we have

P

(
max

1≤i≤n
(ξi + χi) > n(1+ε)/β

∣∣∣∣Dn) ≤ 1
P (Dn) · P

(
max

1≤i≤n
(ξi + χi) > n(1+ε)/β

)
≤ 1
P (Dn)

n∑
i=1

P
(
ξi + χi > n(1+ε)/β

)
≤ 1
P (Dn) · n

(
n(1+ε)/β − 1

)−β
LG

(
n(1+ε)/β − 1

)
= O

(
n−εLG

(
n(1+ε)/β

))
= o(1),

as n→∞, where the last step follows from Lemma 1 and basic properties of slowly varying

functions (see, e.g., Chapter 1 in [Bingham et al., 1987]).

Next, to analyze (A.2) let kn = bn(1+ε)/βc and note that we can write it as

P

 max
A⊆V,|A|≤kn

∑
vi∈A

Mi −
n∑
i=1

min{Di, |A− {vi}|}

 > 0


≤ P

(
max

{
max

A⊆V, 2≤|A|≤kn

∑
vi∈A

Mi −
n∑
i=1

min{Di, 1}

 ,
max

1≤j≤n

(
Mj −

n∑
i=1

min{Di, |{vj} − {vi}|}
)}

> 0
)

= P

max


n∑

i=n−kn+1
M (i), (M +D)(n)

−
n∑
i=1

min{Di, 1} > 0

 ,
where x(i) is the ith smallest of {x1, . . . , xn}. Now let a0 = E[min{ξ1, 1}] = G(0) > 0 and

split the last probability as follows

P

max


n∑

i=n−kn+1
M (i), (M +D)(n)

−
n∑
i=1

min{Di, 1} > 0


≤ P

max


n∑

i=n−kn+1
M (i), (M +D)(n)

 > a0n− n1/2+ε,
n∑
i=1

min{Di, 1} ≥ a0n− n1/2+ε


(A.4)

+ P

(
n∑
i=1

min{Di, 1} < a0n− n1/2+ε
)
. (A.5)
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To bound (A.5) use Di ≥ ξi for all i = 1, . . . , n and Chebyshev’s inequality to obtain

P

(
n∑
i=1

min{Di, 1} < a0n− n1/2+ε
)
≤ 1
P (Dn)P

(
n∑
i=1

(a0 −min{ξi, 1}) > n1/2+ε
)

≤ nVar (min{ξ1, 1})
P (Dn)n1+2ε = O

(
n−2ε

)
,

while the union bound gives that (A.4) is bounded by

P

max


n∑

i=n−kn+1
M (i), (M +D)(n)

 > bn


≤ P

 n∑
i=n−kn+1

M (i) > bn

+ P
(
(M +D)(n) > bn

)
,

where bn = a0n− n1/2+ε. For the second probability the union bound again gives

P
(
(M +D)(n) > bn

)
≤ P

(
M (n) > bn/2

)
+ P

(
D(n) > bn/2

)
≤ 1
P (Dn)

(
P

(
max

1≤i≤n
(γi + τi) > bn/2

)
+ P

(
max

1≤i≤n
(ξi + χi) > bn/2

))
≤ n

P (Dn) (P (γ1 + τ1 > bn/2) + P (ξ1 + χ1 > bn/2))

≤ n

P (Dn)
(
(bn/2− 1)−αLF (bn/2− 1) + (bn/2− 1)−βLG(bn/2− 1)

)
= O

(
n−α+1LF (n) + n−β+1LG(n)

)
= o(1)

as n→∞. Finally, by Markov’s inequality and Lemma 26,

P

 n∑
i=n−kn+1

M (i) > bn

 ≤ 1
bn

n∑
i=n−kn+1

E
[
M (i)

]
≤ 1
bnP (Dn)

n∑
i=n−kn+1

E[γ(i) + 1]

≤ 1
bnP (Dn)

(∫ ∞
0

min
{
nF (x), kn

}
dx+ kn

)
= a−1

0 (1 + o(1))
∫ ∞

0
min

{
F (x), n(1+ε)/β−1

}
dx+ o(1)

≤ a−1
0 (1 + o(1))

(
n(1+ε)/β−1 +

∫ ∞
1

min
{
Kx−α+ε, n(1+ε)/β−1

}
dx

)
+ o(1)

= o(1) +O

(∫ ∞
1

min
{
x−α+ε, n(1+ε)/β−1

}
dx

)
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as n→∞, where K = supt≥1 t
−εLF (t) <∞. Since∫ ∞

1
min

{
x−α+ε, n(1+ε)/β−1

}
dx

= n(1+ε)/β−1(n(β−1−ε)/(β(α−ε)) − 1) +
∫ ∞
n(β−1−ε)/(β(α−ε))

x−α+εdx

= O
(
n−(β−1−ε)(α−1−ε)/(β(α−ε))

)
= o(1),

the proof is complete.

The last two proofs of this section are those of Theorem 4 and Proposition 5.

Proof of Theorem 4. Let u : Nr+s → [−M,M ], M > 0, be a continuous bounded function,

and let ∆n,Dn be defined as in Lemma 1. Then,

|E [u(Mi1 , . . . ,Mir , Dj1 , . . . , Djs)]− E [u(γ1, . . . , γr, ξ1, . . . , ξs)]|

= |E [u(γi1 + τi1 , . . . , γir + τir , ξj1 + χj1 , . . . , ξjs + χjs)|Dn]− E [u(γi1 , . . . , γir , ξj1 , . . . , ξjs)]|

≤ |E [u(γi1 + τi1 , . . . , γir + τir , ξj1 + χj1 , . . . , ξjs + χjs)− u(γi1 , . . . , γir , ξj1 , . . . , ξjs)|Dn]|

(A.6)

+ |E [u(γi1 , . . . , γir , ξj1 , . . . , ξjs)|Dn]− E [u(γ1, . . . , γr, ξ1, . . . , ξs)]| . (A.7)

Let T =
∑r
t=1 τit +

∑s
t=1 χjs . Since u is bounded then (A.6) is smaller than or equal to

E [ |u(γi1 + τi1 , . . . , γir + τir , ξj1 + χj1 , . . . , ξjs + χjs)− u(γi1 , . . . , γir , ξj1 , . . . , ξjs)| 1 (T ≥ 1)| Dn]

≤ 2MP (T ≥ 1| Dn) ≤ 2M
(

r∑
t=1

P (τit = 1|Dn) +
s∑
t=1

P (χjt = 1|Dn)
)

= 2M
P (Dn)

(
r∑
t=1

E[1(τit = 1,Dn)] +
s∑
t=1

E[1(χjt = 1,Dn)]
)
.

To compute the last expectations let Fn = σ(γ1, . . . , γn, ξ1, . . . , ξn) be the σ-algebra gener-

ated by the γi’s and ξi’s and note that

E[1(χjt = 1,Dn)] = E[1(Dn)E[1(χjt = 1)|Fn]] = E

[
1(Dn,∆n ≥ 0)

( n−1
∆n−1

)( n
∆n

) ]

= E

[
1(Dn,∆n ≥ 0)∆n

n

]
,

and symmetrically,

E[1(τit = 1,Dn)] = E

[
1(Dn,∆n < 0) |∆n|

n

]
,
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from where it follows that (A.6) is bounded by

2M
(

r∑
t=1

E

[∆n

n
1(∆n ≥ 0)

∣∣∣∣Dn]+
s∑
t=1

E

[ |∆n|
n

1(∆n < 0)
∣∣∣∣Dn]

)
≤ 2M(r + s)n−κ+δ0 = o(1)

as n→∞. To analyze (A.7) we first note that by Lemma 1, P (Dn)→ 1 as n→∞, hence

E [u(γi1 , . . . , γir , ξj1 , . . . , ξjs)|Dn] = 1
P (Dn)E [u(γ1, . . . , γr, ξ1, . . . , ξs)1(Dn)]

= E [u(γ1, . . . , γr, ξ1, . . . , ξs)1(Dn)] + o(1).

Therefore, (A.7) is equal to

|E [u(γ1, . . . , γr, ξ1, . . . , ξs)1(Dcn)] + o(1)| ≤MP (Dcn) + o(1)→ 0

as n→∞, which completes the proof.

Proof of Proposition 5. Fix ε > 0 and let Dn = {|∆n| ≤ n1−κ+δ0}. For the first limit fix

i, j = 0, 1, 2, . . . and note that by the union bound,

P

(∣∣∣∣∣ 1n
n∑
k=1

1(Mk = i,Dk = j)− figj

∣∣∣∣∣ > ε

)

≤ P
(∣∣∣∣∣ 1n

n∑
k=1

(1(γk + τk = i, ξk + χk = j)− 1(γk = i, ξk = j))
∣∣∣∣∣ > ε/2

∣∣∣∣∣Dn
)

+ P

(∣∣∣∣∣ 1n
n∑
k=1

1(γk = i, ξk = j)− figj

∣∣∣∣∣ > ε/2
∣∣∣∣∣Dn

)

≤ P
(

1
n

n∑
k=1
|1(γk + τk = i, ξk + χk = j)− 1(γk = i, ξk = j))| > ε/2

∣∣∣∣∣Dn
)

+ 1
P (Dn)n(ε/2)2 Var (1(γ1 = i, ξ1 = j)),

where in the last step we used Chebyshev’s inequality. Clearly, Var (1(γ1 = i, ξ1 = j)) =

figj(1−figj), and since by Lemma 1 P (Dn)→ 1 as n→∞, then the second term converges
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to zero. To analyze the first term note that at most one of χk or τk can be one, hence,

P

(
1
n

n∑
k=1
|1(γk + τk = i, ξk + χk = j)− 1(γk = i, ξk = j))| > ε/2

∣∣∣∣∣Dn
)

≤ P
(

1
n

n∑
k=1

(|1(ξk + χk = j)− 1(ξk = j)|+ |1(γk + τk = i)− 1(γk = i)|) > ε/2
∣∣∣∣∣Dn

)

≤ P
(

1
n

n∑
k=1

(1(χk = 1) + 1(τk = 1)) > ε/2
∣∣∣∣∣Dn

)

= P

( |∆n|
n

> ε/2
∣∣∣∣Dn)

≤ 1(n−κ+δ0 > ε/2)→ 0

as n→∞.

Next, for the average degrees we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Mi − E[γ1]
∣∣∣∣∣ > ε

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

(γi + τi)− E[γ1]
∣∣∣∣∣ > ε

∣∣∣∣∣Dn
)

≤ P
(∣∣∣∣∣ 1n

n∑
i=1

γi − E[γ1]
∣∣∣∣∣+ |∆n|

n
> ε

∣∣∣∣∣Dn
)

≤ 1
P (Dn)P

(∣∣∣∣∣ 1n
n∑
i=1

γi − E[γ1]
∣∣∣∣∣+ n−κ+δ0 > ε

)
, (A.8)

symmetrically,

P

(∣∣∣∣∣ 1n
n∑
i=1

Di − E[ξ1]
∣∣∣∣∣ > ε

)
≤ 1
P (Dn)P

(∣∣∣∣∣ 1n
n∑
i=1

ξi − E[ξ1]
∣∣∣∣∣+ n−κ+δ0 > ε

)
, (A.9)

and since τiχi = 0 for all 1 ≤ i ≤ n,

P

(∣∣∣∣∣ 1n
n∑
i=1

MiDi − E[γ1ξ1]
∣∣∣∣∣ > ε

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

(γiξi + τiξi + γiχi − E[γ1ξ1]
∣∣∣∣∣ > ε

∣∣∣∣∣Dn
)

≤ P
(∣∣∣∣∣ 1n

n∑
i=1

γiξi − E[γ1ξ1]
∣∣∣∣∣+

n∑
i=1

(τiξi + γiχi) > ε

∣∣∣∣∣Dn
)

≤ 1
P (Dn)P

(∣∣∣∣∣ 1n
n∑
i=1

γiξi − E[γ1ξ1]
∣∣∣∣∣+ n−κ+δ > ε

)
(A.10)

+ P

(
1
n

n∑
i=1

(τiξi + γiχi) > n−κ+δ
∣∣∣∣∣Dn

)
, (A.11)

for any δ0 < δ < κ. By Lemma 1, P (Dn) converges to one, and by the Weak Law of

Large Numbers (WLLN) we have that each of (A.8), (A.9) and (A.10) converges to zero as
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n→∞, as required. To see that (A.11) converges to zero use Markov’s inequality to obtain

P

(
1
n

n∑
i=1

(τiξi + γiχi) > n−κ+δ
∣∣∣∣∣Dn

)
≤ E[τ1ξ1 + γ1χ1|Dn]

n−κ+δ = E[(τ1ξ1 + γ1χ1)1(Dn)]
P (Dn)n−κ+δ .

(A.12)

Now let Fn = σ(γ1, . . . , γn, ξ1, . . . , ξn) to compute

E[(τ1ξ1 + γ1χ1)1(Dn)] = E[(ξ1E[τ1|Fn] + γ1E[χ1|Fn])1(Dn)]

≤ E
[
(ξ1 + γ1) |∆n|

n
1(Dn)

]
≤ 2µn−κ+δ0 ,

which implies that (A.12) converges to zero.

Finally, provided that E[γ2
1 + ξ2

1 ] < ∞, the WLLN combined with the arguments used

to bound (A.11) give

P

(∣∣∣∣∣ 1n
n∑
i=1

M2
i − E[γ2

1 ]
∣∣∣∣∣ > ε

)
≤ 1
P (Dn)P

(∣∣∣∣∣ 1n
n∑
i=1

γ2
i − E[γ2

1 ]
∣∣∣∣∣+ 1

n

n∑
i=1

(2γiτi + τ2
i ) > ε,Dn

)

≤ 1
P (Dn)P

(∣∣∣∣∣ 1n
n∑
i=1

γ2
i − E[γ2

1 ]
∣∣∣∣∣+ n−κ+δ > ε

)

+ P

(
1
n

n∑
i=1

(2γiτi + τ2
i ) > n−κ+δ

∣∣∣∣∣Dn
)

≤ o(1) + E[(2γ1 + 1)τ1|Dn]
n−κ+δ

≤ o(1) + E[2γ1 + 1]
P (Dn)nδ−δ0

,

and symmetrically,

P

(∣∣∣∣∣ 1n
n∑
i=1

D2
i − E[ξ2

1 ]
∣∣∣∣∣ > ε

)
→ 0,

as n→∞.

A.2 Configuration model

This section contains the proofs of Proposition 6, which establishes the uniformity of simple

graphs, Propositions 7 and 9, which concern the repeated directed configuration model, and

Proposition 10 which refers to the erased directed configuration model.

Proof of Proposition 6. Suppose m and d have equal sum ln, and number the inbound and

outbound half-edges by 1, 2, . . . , ln. The process of matching half edges in the configuration
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model is equivalent to a permutation (p(1), p(2), . . . , p(ln)) of the numbers (1, 2, . . . , ln)

where we pair the ith inbound half-edge to the p(i)th outbound half-edge, with all ln!

permutations being equally likely. Note that different permutations can actually lead to the

same graph, for example, if we switch the position of two outbound half-edges of the same

node, so not all multigraphs have the same probability. Nevertheless, a simple graph can

only be produced by
∏n
i=1 di!mi! different permutations; to see this note that for each node

vi, i = 1, . . . , n, we can permute its mi inbound half-edges and its di outbound half-edges

without changing the graph. It follows that since the number of permutations leading to

a simple graph is the same for all simple graphs, then conditional on the resulting graph

being simple, it is uniformly chosen among all simple graphs having bi-degree-sequence

(m,d).

Next, we give the proofs of the results related to the repeated directed configuration

model. Before proceeding with the proof of Proposition 7 we give the following preliminary

lemma, which will be used to establish that under Condition 2 the maximum in- and out-

degrees cannot grow too fast.

Lemma 27. Let {ank : 1 ≤ k ≤ n, n ∈ N} be a triangular array of nonnegative integers,

and suppose there exist nonnegative numbers {pj : j ∈ N ∪ {0}} such that
∑∞
j=0 pj = 1,

lim
n→∞

1
n

n∑
k=1

1(ank = j) = pj , for all j ∈ N∪{0} and lim
n→∞

1
n

n∑
k=1

ank =
∞∑
j=0

jpj <∞.

Then,

lim
n→∞

max
1≤k≤n

ank
n

= 0.

Proof. Define

F (x) =
bxc∑
j=0

pj and Fn(x) = 1
n

n∑
k=1

1(ank ≤ x)

and note that F and Fn are both distribution functions with support on the nonnegative

integers. Define the pseudoinverse operator h−1(u) = inf{x ≥ 0 : u ≤ h(x)} and let

Xn = F−1
n (U) and X = F−1(U),



APPENDIX A. PROOFS OF CHAPTER 2 106

where U is a Uniform(0,1) random variable. It is easy to verify that Xn and X have

distributions Fn and F , respectively. Furthermore, the assumptions imply that

Xn → X a.s.

as n→∞ and

E[Xn] =
∞∑
j=0

j
1
n

n∑
k=1

1(ank = j) = 1
n

n∑
k=1

∞∑
j=0

j1(ank = j) = 1
n

n∑
k=1

ank → E[X]

as n→∞, where the exchange of sums is justified by Fubini’s theorem. Now note that by

Fatou’s lemma,

lim inf
n→∞

E[Xn1(Xn ≤
√
n)] ≥ E

[
lim inf
n→∞

Xn1(Xn ≤
√
n)
]

= E[X],

which implies that

lim
n→∞

E[Xn1(Xn >
√
n)] = 0.

Finally,

E[Xn1(Xn ≥ n)] =
∞∑

j=b
√
nc+1

j
1
n

n∑
k=1

1(ank = j)

= 1
n

n∑
k=1

∞∑
j=b
√
nc+1

j1(ank = j) = 1
n

n∑
k=1

ank1(ank >
√
n),

from where it follows that

lim
n→∞

max
1≤k≤n

ank1(ank >
√
n)

n
= 0,

which in turn implies that

lim
n→∞

max
1≤k≤n

ank
n
≤ lim

n→∞

(√
n

n
+ max

1≤k≤n

ank1(ank >
√
n)

n

)
= 0.

Proof of Proposition 7. Following the proof of Proposition 7.9 in [van der Hofstad, 2014], we

define the random variable T̃n to be the total number of pairs of multiple edges in the same

direction, e.g., if from node vi to node vj there are k ≥ 2 edges, their contribution to T̃n is(k
2
)
. Note that Tn ≤ T̃n, with strict inequality whenever there is at least one pair of nodes
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having three or more multiple edges in the same direction. We claim that T̃n− Tn
P−→ 0 as

n→∞, which implies that

if (Sn, T̃n)⇒ (S, T ), then (Sn, Tn)⇒ (S, T )

as n→∞. To prove the claim start by defining indicator random variables for each of the

possible self-loops and multiple edges in the same direction that the multigraph can have.

For the self-loops we use the notation u = (r, t, i) to define

Iu := 1(self-loop from the rth outbound stub to the tth inbound stub of node vi),

and for the pairs of multiple edges in the same direction we use w = (r1, t1, r2, t2, i, j) to

define

Jw := 1(rsth outbound stub of node vi paired to tsth inbound stub of node vj , s = 1, 2).

The sets of possible vectors u and w are given by

I = {(r, t, i) : 1 ≤ i ≤ n, 1 ≤ r ≤ dni, 1 ≤ t ≤ mni}, and

J = {(r1, t1, r2, t2, i, j) : 1 ≤ i 6= j ≤ n, 1 ≤ r1 < r2 ≤ dni, 1 ≤ t1 6= t2 ≤ mnj},

respectively. It follows from this notation that

Sn =
∑
u∈I

Iu and T̃n =
∑

w∈J
Jw.

Next, note that by the union bound,

P
(
T̃n − Tn ≥ 1

)
≤ P (at least two nodes with three or more edges in the same direction)

≤
∑

1≤i 6=j≤n
P (three or more edges from node vi to node vj)

≤
∑

1≤i 6=j≤n

dni(dni − 1)(dni − 2)mnj(mnj − 1)(mnj − 2)
ln(ln − 1)(ln − 2)

≤
( 1√

n
max

1≤i≤n
dni

)( 1√
n

max
1≤j≤n

mnj

)(
n

ln − 2

)3
· 1
n

n∑
i=1

d2
ni ·

1
n

n∑
j=1

m2
nj

= o(1)

as n → ∞, where for the last step we used Condition 2 and Lemma 27. It follows that

T̃n − Tn
P−→ 0 as claimed.
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We now proceed to prove that (Sn, T̃n) ⇒ (S, T ), where S and M are independent

Poisson random variables with means λ1 and λ2, respectively. To do this we use Theorem

2.6 in [van der Hofstad, 2014] which says that if for any p, q ∈ N

lim
n→∞

E
[
(Sn)p(T̃n)q

]
= λp1λ

q
2,

where (X)r = X(X − 1) · · · (X − r+ 1), then (Sn, T̃n)⇒ (S, T ) as n→∞. To compute the

expectation we use Theorem 2.7 in [van der Hofstad, 2014], which gives

E
[
(Sn)p(T̃n)q

]
=

∑
u1,...,up∈I

∑
w1,...,wq∈J

P
(
Iu1 = · · · = Iup = Jw1 = · · · = Jwq = 1

)
, (A.13)

where the sums are taken over all the p-permutations, respectively q-permutations, of the

distinct indices in I, respectively J .

Next, by the fact that all stubs are uniformly paired, we have that

P
(
Iu1 = · · · = Iup = Jw1 = · · · = Jwq = 1

)
,= 1∏p+2q−1

i=0 (ln − i)

unless there is a conflict in the attachment rules, i.e., one stub is required to pair with two

or more different stubs within the indices {u1, . . . ,up} and {w1, . . . ,wq}, in which case

P
(
Iu1 = · · · = Iup = Jw1 = · · · = Jwq = 1

)
= 0. (A.14)

Therefore, from (A.13) we obtain

E[(Sn)p(T̃n)q] ≤
∑

u1,...,up∈I

∑
w1,...,wq∈J

1∏p+2q−1
i=0 (ln − i)

= |I|(|I| − 1) · · · (|I| − p+ 1)|J |(|J | − 1) · · · (|J | − q + 1)
ln(ln − 1) · · · (ln − (p+ 2q − 1)) , (A.15)

where |A| denotes the cardinality of set A. Now note that

|I| =
n∑
i=1

mnidni, and

|J | =
∑

1≤i 6=j≤n

dni(dni − 1)
2 mnj(mnj − 1)

= 1
2

(
n∑
i=1

mni(mni − 1)
)(

n∑
i=1

dni(dni − 1)
)
− 1

2

n∑
i=1

mni(mni − 1)dni(dni − 1).
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By Lemma 27 and Condition 2 we have
n∑
i=1

mni(mni − 1)dni(dni − 1) ≤
(

max
1≤i≤n

mni

)(
max

1≤i≤n
dni

) n∑
i=1

mnidni = o(n2)

as n→∞. Hence, it follows from Condition 2 that

|I|
n

= E[γξ] + o(1),

|J |
n2 = 1

2E[γ(γ − 1)]E[ξ(ξ − 1)] + o(1), and
n

ln
= 1
µ

+ o(1)

as n→∞. Since p and q remain fixed as n→∞, we have

lim sup
n→∞

E[(Sn)p(T̃n)q] =
(

lim
n→∞

|I|
n

)p (
lim
n→∞

|J |
n2

)q (
lim
n→∞

n

ln

)p+2q

= (E[γξ])p
(
E[γ(γ − 1)]E[ξ(ξ − 1)]

2

)q ( 1
µ

)p+2q
= λp1λ

q
2.

To prove the matching lower bound, we note that (A.14) occurs exactly when there is a

conflict in the attachment rules. Each time a conflict happens, the numerator of (A.15)

decreases by one. Therefore,

E
[
(Sn)p(T̃n)q

]
= |I|(|I| − 1) · · · (|I| − p+ 1)|J |(|J | − 1) · · · (|J | − q + 1)

ln(ln − 1) · · · (ln − (p+ 2q − 1))

−
∑

u1,...,up∈I

∑
w1,...,wq∈J

1(u1, . . . ,up,w1, . . . ,wq have a conflict)∏p+2q−1
i=0 (ln − i)

= λp1λ
q
2 −

1
(µn)p+2q

∑
u1,...,up∈I

∑
w1,...,wq∈J

1(u1, . . . ,up,w1, . . . ,wq have a conflict) + o(1)

as n→∞. To bound the total number of conflicts note that there are three possibilities:

1. a stub is assigned to two different self-loops, or

2. a stub is assigned to a self-loop and a multiple edge, or

3. a stub is assigned to two different multiple edges.

We now discuss each of the cases separately. For conflicts of type (a) suppose there is

a conflict between the self-loops ua and ub; the remaining p − 2 self-loops and q pairs

of multiple edges can be chosen freely. Then the number of such conflicts is bounded by
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|I|p−2|J |q = O
(
np+2q−2), hence it suffices to show that the total number of conflicting pairs

(ua,ub) is o(n2) as n → ∞. Now, to see that this is indeed the case, first choose the node

vi where the conflicting pair is; if the conflict is that an outbound stub is assigned to two

different inbound stubs then we can choose the problematic outbound stub in dni ways and

the two inbound stubs in mni(mni−1) ways, whereas if the conflict is that an inbound stub

is assigned to two different outbound stubs then we can choose the problematic inbound

stub in mni ways and the two outbound stubs in dni(dni− 1) ways. Thus, the total number

of conflicting pairs is bounded by
n∑
i=1

(dnim2
ni +mnid

2
ni) ≤

(
max

1≤i≤n
mni + max

1≤i≤n
dni

)
2

n∑
i=1

mnidni

= o(n3/2) = o(n2).

For conflicts of type (b) suppose there is a conflict between the self-loop ua and the

pair of multiple edges wb; choose the remaining p − 1 self-loops and q − 1 multiple edges

freely. Then, the number of such conflicts is bounded by |I|p−1|J |q−1 = O
(
np+2q−3), and it

suffices to show that the number of conflicting pairs (ua,wb) is o(n3) as n→∞. Similarly

as in case (a), an outbound stub of node vi can be paired to a self-loop and a multiple edge

to node vj in dnimnimnj(dni − 1)(mnj − 1) ways, and an inbound stub of node vi can be

paired to a self-loop and a multiple edge from node vj in mnidnidnj(mni− 1)(dnj − 1) ways,

and so the total number of conflicting pairs is bounded by
n∑
i=1

n∑
j=1

(d2
nimnim

2
nj +m2

nidnid
2
nj) ≤

(
max

1≤i≤n
mni + max

1≤i≤n
dni

)
2
(

n∑
i=1

m2
ni

)(
n∑
i=1

d2
ni

)

= o(n5/2) = o(n3).

Finally, for conflicts of type (c) we first fix wa and wb and choose freely the remaining p

self-loops and q−2 multiple edges, which can be done in less than |I|p|J |q−2 = O
(
np+2q−4)

ways. It then suffices to show that the number of conflicting pairs (wa,wb) is o(n4) as

n→∞. A similar reasoning to that used in the previous cases gives that the total number
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of conflicting pairs is bounded by

2
n∑
i=1

n∑
j=1

n∑
k=1

(d3
nim

2
njm

2
nk +m3

nid
2
njd

2
nk)

≤ 2
(

max
1≤i≤n

mni + max
1≤i≤n

dni

) n∑
i=1

d2
ni

(
n∑
i=1

m2
ni

)2

+
n∑
i=1

m2
ni

(
n∑
i=1

d2
ni

)2


= o(n7/2) = o(n4).

We conclude that in any of the three cases the number of conflicts is negligible, which

completes the proof.

Proof of Proposition 9. Let Sn be the event that the resulting graph is simple, and note

that the bi-degree-sequence (M(r),D(r)) is the same as (M,D) given Sn.

To prove part (a) note that for any i, j = 0, 1, 2, . . . ,

h(n)(i, j) = 1
n

n∑
i=1

P (Mk = i,Dk = j|Sn) = 1
P (Sn)P (M1 = i,D1 = j,Sn),

since the {(Mk, Dk)}nk=1 are identically distributed. Now let Gn = σ(M1, . . . ,Mn, D1, . . . , Dn)

and condition on Gn to obtain

P (M1 = i,D1 = j,Sn) = E[1(M1 = i,D1 = j)P (Sn|Gn)],

from where it follows that

∣∣∣h(n)(i, j)− figj
∣∣∣ ≤ ∣∣∣∣E[1(M1 = i,D1 = j)(P (Sn|Gn)− P (Sn))]

P (Sn)

∣∣∣∣+ |P (M1 = i,D1 = j)− figj |

≤ E
[∣∣∣∣P (Sn|Gn)

P (Sn) − 1
∣∣∣∣]+ |P (M1 = i,D1 = j)− figj | .

Theorem 4 gives that the second term converges to zero, and for the first term use Theorem

8 to obtain that both P (Sn) and P (Sn|Gn) converge to the same positive limit, so by

dominated convergence,

lim
n→∞

E

[∣∣∣∣P (Sn|Gn)
P (Sn) − 1

∣∣∣∣] ≤ E [ lim
n→∞

∣∣∣∣P (Sn|Gn)
P (Sn) − 1

∣∣∣∣] = 0.

For part (b) we only show the proof for ĝk(n) since the proof for f̂k
(n)

is symmetrical.

Note that ĝk(n) is a quantity defined on Sn; recall that Dn =
{
|∆n| ≤ n1−κ+δ0

}
and that
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Di has the same distribution as ξi + χi conditional on the event Dn. Fix ε > 0 and use the

union bound to obtain

P
(∣∣∣ĝk(n) − gk

∣∣∣ > ε
∣∣∣Sn) ≤ 1

P (Sn)P
(∣∣∣∣∣ 1n

n∑
i=1

1(Di = k)− gk

∣∣∣∣∣ > ε

)

≤ 1
P (Sn)P

(
1
n

n∑
i=1
|1(ξi + χi = k)− 1(ξi = k)| > ε/2

∣∣∣∣∣Dn
)

(A.16)

+ 1
P (Sn)P (Dn)P

(∣∣∣∣∣ 1n
n∑
i=1

1(ξi = k)− gk

∣∣∣∣∣ > ε/2
)
. (A.17)

By Theorem 8 and Lemma 1, P (Sn) and P (Dn) are bounded away from zero, so we only

need to show that the numerators converge to zero. The arguments are the same as those

used in the proof of Proposition 5; for (A.17) use Chebyshev’s inequality to obtain that

P

(∣∣∣∣∣ 1n
n∑
i=1

1(ξi = k)− gk

∣∣∣∣∣ > ε/2
)
≤ Var (1(ξ1 = k))

n(ε/2)2 = O(n−1),

as n→∞, and for (A.16)

P

(
1
n

n∑
i=1
|1(ξi + χi = k)− 1(ξi = k)| > ε/2

∣∣∣∣∣Dn
)
≤ P

(
1
n

n∑
i=1

1(χi = 1) > ε/2
∣∣∣∣∣Dn

)

≤ P
( |∆n|

n
> ε/2

∣∣∣∣Dn) ≤ 1(n−κ+δ0 > ε/2),

which also converges to zero. This completes the proof.

Finally, the last result of the paper, which refers to the erased directed configuration

model, is given below. Since the technical part of the proof is to show that the probability

that no in-degrees or out-degrees of a fixed node are removed during the erasing procedure,

we split the proof of Proposition 10 into two parts. The following lemma contains the more

delicate step.

Lemma 28. Consider the graph obtained through the erased directed configuration model

using as bi-degree-sequence (M,D), as constructed in Section 2.1.1. Let E+ and E− be

the number of inbound stubs and outbound stubs, respectively, that have been removed from

node v1 during the erasing procedure. Then,

lim
n→∞

P (E+ = 0) = 1 and lim
n→∞

P (E− = 0) = 1.
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Proof. We only show the result for E+ since the proof for E− is symmetric. Define the set

P+
n = {(i1, . . . , it) : 2 ≤ i1 6= i2 · · · 6= it ≤ n, 1 ≤ t ≤ n},

and note that in order for all the inbound stubs of node v1 to survive the erasing procedure,

it must have been that they were paired to outbound stubs of M1 different nodes from

{v2, . . . , vn}. Before we proceed it is helpful to recall some definitions from Section 2.1,

Ln =
∑n
i=1Mi =

∑n
i=1Di, Γn =

∑n
i=1 γi, Ξn =

∑n
i=1 ξi, ∆n = Γn − Ξn, and Dn = {|∆n| ≤

ns}, where s = 1 − κ + δ0; also, {γi} and {ξi} are independent sequences of i.i.d. random

variables having distributions F and G, respectively. Now fix 0 < ε < 1 − s and let

Gn = σ(M1, . . . ,Mn, D1, . . . , Dn). Then, since Di = ξi + χi ≥ ξi,

P
(
E+ = 0

)
= E

[
P
(
E+ = 0

∣∣∣Gn)] ≥ E [P (E+ = 0
∣∣∣Gn) 1(1 ≤M1 ≤ nε)

]
+ P (M1 = 0)

= E

1(1 ≤M1 ≤ nε)
Ln!

∑
(i1,i2,...,iM1 )∈P+

n

Di1Di2 · · ·DiM1
(Ln −M1)!

+ P (M1 = 0)

≥ E

 1(1 ≤ γ1 + τ1 ≤ nε)
Ln!

∑
(i1,i2,...,i(γ1+τ1))∈P+

n

ξi1ξi2 · · · ξi(γ1+τ1)(Ln − γ1 − τ1)!

∣∣∣∣∣∣∣Dn


+ P (M1 = 0)

≥ E

 1(1 ≤ γ1 ≤ nε)1(τ1 = 0)
(Ln)γ1

∑
(i1,i2,...,iγ1 )∈P+

n

ξi1ξi2 · · · ξiξ1

∣∣∣∣∣∣∣Dn
+ P (M1 = 0).

(A.18)

Next, condition on Fn = σ(γ1, . . . , γn, ξ1, . . . , ξn) and note that

P (τ1 = 0|Fn) = 1 (∆n ≥ 0) + Γn
Γn + |∆n|

1(∆n < 0) ≥ Γn
Γn + |∆n|

.

It follows that the expectation in (A.18) is equal to

E

P (τ1 = 0|Fn)1(1 ≤ γ1 ≤ nε)
(Ln)γ1

∑
(i1,i2,...,iγ1 )∈P+

n

ξi1ξi2 · · · ξiγ1

∣∣∣∣∣∣∣Dn


≥ E

 Γn
Γn + |∆n|

· 1(1 ≤ γ1 ≤ nε)
(Γn + |∆n|)γ1

∑
(i1,i2,...,iγ1 )∈P+

n

ξi1ξi2 · · · ξiγ1

∣∣∣∣∣∣∣Dn


≥ E

 1(1 ≤ γ1 ≤ nε)Γn
(Γn + ns)γ1+1

∑
(i1,i2,...,iγ1 )∈P+

n

ξi1ξi2 · · · ξiγ1

∣∣∣∣∣∣∣Dn
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= 1
P (Dn)E

1(1 ≤ γ1 ≤ nε)
∑

(i1,i2,...,iγ1 )∈P+
n

E

[ 1(Dn)Γn
(Γn + ns)γ1+1 · ξi1ξi2 · · · ξiγ1

∣∣∣∣ γ1

]
= 1
P (Dn)E

[
1(1 ≤ γ1 ≤ nε)

(n− 1)!
(n− 1− γ1)!nγ1

E

[ 1(Dn)Γnnγ1

(Γn + ns)γ1+1 · ξ1ξ2 · · · ξγ1

∣∣∣∣ γ1

]]
.

It follows by Fatou’s lemma, Lemma 1 and Theorem 4 that

lim inf
n→∞

P (E+ = 0) ≥ E
[
1(γ1 ≥ 1) lim inf

n→∞
E

[ 1(Dn)Γnnγ1

(Γn + ns)γ1+1 · ξ1ξ2 · · · ξγ1

∣∣∣∣ γ1

]]
+ P (γ1 = 0).

Next, define the function u+
n : N→ [0,∞) as

u+
n (t) = E

[
1(|Γn−1 + t− Ξn| ≤ ns)(Γn−1 + t)nt

(Γn−1 + t+ ns)t+1 · ξ1ξ2 · · · ξt

]
,

and note that it only remains to prove that for all t ∈ N, lim infn→∞ u+
n (t) = 1.

Now let 0 < a < µ and note that

u+
n (t) ≥ E

[1(|Γn−1 + t− Ξn| ≤ ns)
µt

· ξ1ξ2 · · · ξt
]
− P (Γn−1 < an)

− E
[
1(Γn−1 ≥ an)

∣∣∣∣∣ (Γn−1 + t)nt

(Γn−1 + t+ ns)t+1 −
1
µt

∣∣∣∣∣ ξ1ξ2 · · · ξt

]
.

The SLLN and bounded convergence give limn→∞ P (Γn−1 < an) = 0 and

lim sup
n→∞

E

[
1(Γn−1 ≥ an)

∣∣∣∣∣ (Γn−1 + t)nt

(Γn−1 + t+ ns)t+1 −
1
µt

∣∣∣∣∣ ξ1ξ2 · · · ξt

]

≤ E
[
ξ1ξ2 · · · ξt lim sup

n→∞

∣∣∣∣∣ (Γn−1 + t)nt

(Γn−1 + t+ ns)t+1 −
1
µt

∣∣∣∣∣
]

= 0,

from where it follows that

lim inf
n→∞

u+
n (t) ≥ lim inf

n→∞
E

[1(|Γn−1 + t− Ξn| ≤ ns)
µt

· ξ1ξ2 · · · ξt
]
.

The last step is to condition on ξ1, ξ2 . . . , ξt and use Fatou’s Lemma again to obtain

lim inf
n→∞

E

[1(|Γn−1 + t− Ξn| ≤ ns)
µt

· ξ1ξ2 · · · ξt
]

= lim inf
n→∞

E

[
ξ1ξ2 · · · ξt

µt
P (|Γn−1 + t− Ξn| ≤ ns|ξ1, . . . , ξt)

]
≥ E

[
ξ1ξ2 · · · ξt

µt
lim inf
n→∞

P (|Γn−1 + t− Ξn| ≤ ns|ξ1, . . . , ξt)
]
.
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Finally, by the same reasoning used in the proof of Lemma 1, we obtain

lim
n→∞

P (|Γn−1 + t− Ξn| ≤ ns|ξ1, . . . , ξt) = 1 a.s.

Since E[ξ1ξ2 · · · ξt]/µt = 1, this completes the proof.

Proof of Proposition 10. To prove part (a) note that since the {(M (e)
i , D

(e)
i )}ni=1 are identi-

cally distributed, then h(n)(i, j) = P (M (e)
1 = i,D

(e)
1 = j). It follows that∣∣∣h(n)(i, j)− figj

∣∣∣ ≤ ∣∣∣P (M (e)
1 = i,D

(e)
1 = j)− P (M1 = i,D1 = j)

∣∣∣+ |P (M1 = i,D1 = j)− figj | .

By Theorem 4 we have that |P (M1 = i,D1 = j)− figj | → 0, as n → ∞, and for the

remaining term note that∣∣∣P (M (e)
1 = i,D

(e)
1 = j)− P (M1 = i,D1 = j)

∣∣∣
≤ E

[∣∣∣1(M (e)
1 = i,D

(e)
1 = j)− 1(M1 = i,D1 = j)

∣∣∣]
≤ E

[∣∣∣1(D(e)
1 = j)− 1(D1 = j)

∣∣∣]+ E
[∣∣∣1(M (e)

1 = i)− 1(M1 = i)
∣∣∣] . (A.19)

To bound the expectations in (A.19) let E+ and E− be the number of inbound stubs and

outbound stubs, respectively, that have been removed from node v1 during the erasing

procedure. Then,

E
[∣∣∣1(D(e)

1 = j)− 1(D1 = j)
∣∣∣] ≤ P (E− ≥ 1

)
and

E
[∣∣∣1(M (e)

1 = i)− 1(M1 = i)
∣∣∣] ≤ P (E+ ≥ 1

)
.

By Lemma 28,

lim
n→∞

P (E− ≥ 1) = 0 and lim
n→∞

P (E+ ≥ 1) = 0,

which completes the proof of part (a).

For part (b) we only show the proof for ĝk(n), since the proof for f̂k
(n)

is symmetrical.

Fix ε > 0 and use the triangle inequality and the union bound to obtain

P (|ĝk(k)− gk| > ε) ≤ P
(∣∣∣∣∣ĝk(k)− 1

n

n∑
i=1

1(Di = k)
∣∣∣∣∣ > ε/2

)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

1(Di = k)− gk

∣∣∣∣∣ > ε/2
)
.
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From the proof of Proposition 9, we know that the second probability converges to zero as

n→∞, and for the first one use Markov’s inequality to obtain

P

(∣∣∣∣∣ĝk(k)− 1
n

n∑
i=1

1(Di = k)
∣∣∣∣∣ > ε/2

)
≤ P

(
1
n

n∑
i=1

∣∣∣1(D(e)
i = k)− 1(Di = k)

∣∣∣ > ε/2
)

≤ 2
ε
E
[∣∣∣1(D(e)

1 = k)− 1(D1 = k)
∣∣∣]

≤ 2
ε
P (E− ≥ 1)→ 0,

as n→∞, by Lemma 28.
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Appendix B

Proofs of Chapter 3

The last section of the paper contains most of the proofs. For the reader’s convenience

we have organized them in subsections according to the order in which their corresponding

statements appear in the paper.

B.1 Proof of the coupling lemma

Recall from Section 3.3 that N̂∅ denotes the number of offspring of the root node in the

TBT (chosen from distribution (3.7)) and N̂1 denotes the number of offspring of a node

chosen from distribution (3.8). Throughout this section we will also need to define

µ∗n = En
[
N̂∅
]

=
∑
i,j,s,t

if∗n(i, j, s, t) = 1
n

n∑
k=1

Nk = Ln
n
,

and

µn = En
[
N̂1
]

=
∑
i,j,s,t

ifn(i, j, s, t) = 1
Ln

n∑
k=1

NkDk.

Before we give the proof of the Coupling Lemma 12 we will need the following estimates

for the growth of the process {Ẑk}.

Lemma 29. Suppose (Nn,Dn,Cn,Qn) satisfies Assumption 1 and recall that µ = ν2/ν1.

Then, for any constants K > 0, any nonnegative sequence {xn} with xn → ∞ and any

k = O(nγ),

P

(
max

0≤r≤k

Ẑr
µr

> Kxn

∣∣∣∣∣Ωn

)
= O

(
x−1
n

)
, n→∞.
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Proof. Start by noting that for any r = 0, 1, 2, . . . ,

En[Ẑr] = µ∗nµ
r
n. (B.1)

Moreover, on the event Ωn,

µn = nν2(1 +O(n−γ))
nν1(1 +O(n−γ)) = µ(1 +O(n−γ)), and

µ∗n = nν1(1 +O(n−γ))
n

= ν1(1 +O(n−γ)).

Next, note that conditionally on Fn, the process

Xr = Ẑr
µ∗nµ

r
n

= 1
µ∗nµ

r
n

∑
i∈Âr−1

N̂i, r ≥ 1, X0 = N̂∅
µ∗n

is a nonnegative martingale with respect to the filtration σ (Fr ∪Fn), where Fr = σ
(
N̂i :

i ∈ Âs, s ≤ r
)
. Therefore, we can apply Doob’s inequality, conditionally on Fn, to obtain

P

(
max

0≤r≤k

Ẑr
µr

> Kxn

∣∣∣∣∣Ωn

)
= P

(
max

0≤r≤k

Xrµ
∗
nµ

r
n

µr
> Kxn

∣∣∣∣Ωn

)
= P

(
max

0≤r≤k
Xrν1(1 +O(n−γ))r+1 > Kxn

∣∣∣∣Ωn

)
≤ 1
P (Ωn)E

[
1(Ωn)En

[
1
(

max
0≤r≤k

Xr >
Kxn

ν1(1 +O(n−γ))k+1

)]]
≤ 1
P (Ωn)E

[
1(Ωn)En[Xk]ν1(1 +O(n−γ))k+1

Kxn

]

= ν1(1 +O(n−γ))k+1

Kxn
(since En[Xk] = 1).

Noting that (1+O(n−γ))k = eO(kn−γ) = O(1) as n→∞ gives that this last term is O(x−1
n ).

This completes the proof.

We now give the proof of the coupling lemma.

Proof of Lemma 12. Start by defining

xn =


(n/µ2k)1/2, µ > 1,

(n/k2)1/2, µ = 1,

n1/2, µ < 1,

and Fk =
{

max
0≤r≤k

Ẑr
µr
≤ xn

}
.
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Note that xn → ∞ as n → ∞ for all 1 ≤ k ≤ h logn when µ > 1 and for all 1 ≤ k ≤ nb,

b < min{1/2, γ}, when µ ≤ 1. The constraint b < γ will allow us to use Lemma 29.

Next, note that the jth inbound stub of node i ∈ As (where the label i refers to the

order in which the node was added to the graph during the exploration process) will be the

first one to be paired with an outbound stub having label 2 or 3 with probability

1
Ln

(
s−1∑
r=0

V̂r +
i−1∑
t=1

Dt + (j − 1)
)
≤ 1
Ln

s∑
r=0

V̂r =: Ps.

It follows that,

P (τ = s|Ωn) ≤ P (τ = s, Fk|Ωn) + P (τ = s, F ck |Ωn)

≤ P (Bin(Ẑs, Ps) ≥ 1, Fk|Ωn) + P (τ = s, F ck |Ωn),

where Bin(n, p) is a Binomial random variable with parameters (n, p). It follows that if we

let Fk = σ(Ẑr, V̂r : 1 ≤ r ≤ k), then

P (τ ≤ k|Ωn) =
k∑
s=0

P (τ = s|Ωn)

≤
k∑
s=0

{
P
(

Bin(Ẑs, Ps) ≥ 1, Fk
∣∣∣Ωn

)
+ P (τ = s, F ck |Ωn)

}

≤
k∑
s=0

E
[
1(Fk)P (Bin(Ẑs, Ps) ≥ 1|Fk)

∣∣∣Ωn

]
+ P (F ck |Ωn)

≤
k∑
s=0

E
[
1(Fk)ẐsPs

∣∣∣Ωn

]
+ P (F ck |Ωn) ,

where in the last step we used Markov’s inequality. Now, use the bound for Ẑs implied by

Fk and recall that |Âr| = Ẑr−1 to obtain

E
[
1(Fk)ẐsPs

∣∣∣Ωn

]
≤ E [µsxnPs|Ωn] (B.2)

= µsxn
ν1n

s∑
r=0

E
[
V̂r
∣∣∣Ωn

]
(1 +O(n−γ))

= µsxn
ν1n

{
E
[
V̂0
∣∣∣Ωn

]
+

s∑
r=1

E
[
En
[
V̂r|Ẑr−1

]∣∣∣Ωn

]}
(1 +O(n−γ))

= µsxn
ν1n

{
E [µ∗n|Ωn] +

s∑
r=1

E
[
Ẑr−1λn

∣∣∣Ωn

]}
(1 +O(n−γ)),
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where in the first equality we used that on the set Ωn we have Ln = ν1n(1 +O(n−γ)), and

on the second equality we used the observation that

En
[
V̂0
]

= En
[
D̂∅
]

= µ∗n, En
[
V̂r
∣∣∣ Ẑr−1

]
= Ẑr−1λn, r ≥ 1,

where λn = En[D̂1]. Moreover, on the set Ωn we have that

λn = 1
Ln

n∑
k=1

D2
k = nν3(1 +O(n−γ))

nν1(1 +O(n−γ)) = λ(1 +O(n−γ)),

so we obtain

E
[
1(Fk)ẐsPs

∣∣∣Ωn

]
≤ µsxn

ν1n

{
ν1 +

s∑
r=1

λE
[
Ẑr−1

∣∣∣Ωn

]}
(1 +O(n−γ))

= µsxn
ν1n

{
ν1 +

s∑
r=1

λE
[
µ∗nµ

r−1
n

∣∣∣Ωn

]}
(1 +O(n−γ)) (by (B.1)).

Using the observation that E
[
µ∗nµ

r−1
n

∣∣Ωn
]

= ν1µ
r−1(1 + O(n−γ))r−1 (see the proof of

Lemma 29), and the condition r − 1 < s ≤ k = O(nγ), gives

P (τ ≤ k|Ωn) ≤ (1 +O(1))(λ+ 1)xn
n

k∑
s=0

s∑
r=0

µs+r + P (F ck |Ωn).

Note that we did not compute E
[
ẐsPs

∣∣∣Ωn

]
in (B.2) directly, since that would have led

to having to compute En
[
Ẑ2
s−1

]
and neither N̂0 nor N̂1 are required to have finite second

moments in the limit. Now, since by Lemma 29 we have that P (F ck |Ωn) = O
(
x−1
n

)
, and

k∑
s=0

s∑
r=0

µs+r ≤


µ2(k+1)/(µ− 1)2, µ > 1,

(k + 1)(k + 2)/2, µ = 1,

1/(1− µ), µ < 1,

we conclude that

P (τ ≤ k|Ωn) =


O
(
xnµ

2kn−1 + x−1
n

)
= O

(
(n/µ2k)−1/2

)
, µ > 1,

O
(
xnk

2n−1 + x−1
n

)
= O

(
(n/k2)−1/2

)
, µ = 1,

O
(
xnn

−1 + x−1
n

)
= O

(
n−1/2

)
, µ < 1,

as n→∞. This completes the proof.
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B.2 Coupling of weighted branching processes

We first prove Proposition 13, which bounds the Kantorovich-Rubinstein distance of the

linear processes on two coupled weighted branching processes, by the same distance of their

generic branching vectors.

Proof of Proposition 13. Define E = Eπ
[
|Q̂−Q|+

∑∞
i=1 |B̂i −Bi|

]
, where the vector

(Q,B1, B2, . . . , Q̂, B̂1, B̂2, . . . ) is distributed according to π. Recall that the weights Πi and

Π̂i follow the recursions

Π(i,j) = ΠiB(i,j) and Π̂(i,j) = Π̂iB̂(i,j),

with Π∅ = Π̂∅ = 1. Now note that for j = 0 we have

E
[∣∣∣Ŵ (0) −W (0)

∣∣∣] = E
[∣∣∣Q̂−Q∣∣∣] ≤ E .

To analyze the expression for j ≥ 1, define for r ≥ 1, W (j−1)
r =

∑
(r,i)∈Nj+

Q(r,i)Π(r,i)/Br and

Ŵ
(j−1)
r =

∑
(r,i)∈Nj+

Q̂(j,i)Π̂(r,i)/B̂r. We then have

Ŵ (j) =
∞∑
r=1

B̂rŴ
(j−1)
r and W (j) =

∞∑
r=1

BrW
(j−1)
r .

Next, note that

E
[∣∣∣Ŵ (j) −W (j)

∣∣∣] ≤ ∞∑
r=1

E
[∣∣∣B̂rŴ (j−1)

r −BrW (j−1)
r

∣∣∣]
≤
∞∑
r=1

{
E
[∣∣∣W (j−1)

r (B̂r −Br)
∣∣∣+ ∣∣∣B̂r (Ŵ (j−1)

r −W (j−1)
r

)∣∣∣]}
≤
∞∑
r=1

E
[∣∣∣B̂r −Br∣∣∣]E [∣∣∣W (j)

r

∣∣∣]+
∞∑
r=1

E
[
|B̂r|

]
E
[∣∣∣Ŵ (j)

r −W (j)
r

∣∣∣]
≤ E

[∣∣∣W (j−1)
∣∣∣] E + ρ̂E

[∣∣∣Ŵ (j−1) −W (j−1)
∣∣∣] ,

where we used the independence of the root vectors and their offspring, the observation

that the random variables {W (j−1)
r }r≥1 are i.i.d. with the same distribution as W (j−1) and

{(Ŵ (j−1)
r −W (j−1)

r )}r≥1 are i.i.d. with the same distribution as Ŵ (j−1)−W (j−1). Moreover,

E
[∣∣∣W (j−1)

∣∣∣] ≤ E [|Q|]
∑

i∈Nj−1
+

E [|Πi|] = E [|Q|] ρj−1.
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It follows that

E
[∣∣∣Ŵ (j) −W (j)

∣∣∣] ≤ E [|Q|] ρj−1E + ρ̂E
[∣∣∣Ŵ (j−1) −W (j−1)

∣∣∣] after (j − 1) iterations

≤

ρ̂j + E [|Q|]
j−1∑
t=0

ρtρ̂j−1−t

 E .
This completes the proof.

Similarly we can prove an upper bound for weighted branching trees.

Proof of Proposition 14. We construct the processes Ŵ (j) andW (j) on two weighted branch-

ing trees using a coupled vector (Q∅, N∅, Q̂∅, N̂∅) for the root nodes ∅, distributed according

to π∗, and a sequence of i.i.d. random vectors {(Qi, Ni, Ci, Q̂i, N̂i, Ĉi))}i∈U,i6=∅, independent

of (Q∅, N∅, Q̂∅, N̂∅), distributed according to π for all other nodes.

Next, for i ∈ Nk+, k ≥ 1, let B(0)
i = CiQi, B̂

(0)
i = ĈiQ̂i, B

(j)
i = Ci1(Ni ≥ i), and

B̂
(j)
i = Ĉi1(N̂i ≥ i), for j ≥ 1, and note that

ΠiQi = Qi

k∏
r=1

Ci|r1(ir ≤ Ni|r−1) = 1(i1 ≤ N∅)
k−1∏
r=1

B
(ir+1)
i|r B

(0)
i ,

and similarly,

Π̂iQ̂i = 1(i1 ≤ N̂∅)
k−1∏
r=1

B̂
(ir+1)
i|r B̂

(0)
i ,

with the convention that
∏b
i=a xi ≡ 1 if b < a.

Let E∗ = Eπ∗ [|Q̂−Q|+ |N̂ −N |], where (Q,N, Q̂, N̂) is distributed according to π∗, and

E = Eπ[
∑∞
i=0 |B̂(i) − B(i)|], where (B(0), B(1), B(2), . . . , B̂(0), B̂(1), B̂(2), . . . ) is distributed

according to π. It follows that

E
[∣∣∣Ŵ (0) −W (0)

∣∣∣] = Eπ∗
[∣∣∣Q̂−Q∣∣∣] ≤ E∗,
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and for j ≥ 1,

E
[∣∣∣Ŵ (j) −W (j)

∣∣∣] = E


∣∣∣∣∣∣∣
∑

i∈Nj+

1(i1 ≤ N̂∅)
j−1∏
r=1

B̂
(ir+1)
i|r B̂

(0)
i −

∑
i∈Nj+

1(i1 ≤ N∅)
j−1∏
r=1

B
(ir+1)
i|r B

(0)
i

∣∣∣∣∣∣∣


≤
∑

i∈Nj+

E

∣∣∣∣∣∣1(i1 ≤ N̂∅)
j−1∏
r=1

B̂
(ir+1)
i|r

(
B̂

(0)
i −B(0)

i

)∣∣∣∣∣∣


+
∑

i∈Nj+

E

∣∣∣∣∣∣
(
1(i1 ≤ N̂∅)− 1(i1 ≤ N∅)

) j−1∏
r=1

B̂
(ir+1)
i|r B

(0)
i

∣∣∣∣∣∣


+
∑

i∈Nj+

E

∣∣∣∣∣∣1(i1 ≤ N∅)

j−1∏
r=1

B̂
(ir+1)
i|r −

j−1∏
r=1

B
(ir+1)
i|r

B(0)
i

∣∣∣∣∣∣


=
∑

i∈Nj+

P (N̂ ≥ i1)
j−1∏
r=1

E
[
|Ĉ|1(N̂ ≥ ir+1)

]
Eπ
[
|B̂(0) −B(0)|

]

+
∑

i∈Nj+

Eπ∗
[∣∣∣1(i1 ≤ N̂)− 1(i1 ≤ N)

∣∣∣] j−1∏
r=1

E
[
|Ĉ|1(N̂ ≥ ir+1)

]
E [|CQ|]

+
∑

i∈Nj+

P (N ≥ i1)E

∣∣∣∣∣∣
j−1∏
r=1

B̂
(ir+1)
i|r −

j−1∏
r=1

B
(ir+1)
i|r

∣∣∣∣∣∣
E[|CQ|],

where we have used the independence among the generic branching vectors of the weighted

branching trees. Moreover,

∑
i∈Nj+

P (N̂ ≥ i1)
j−1∏
r=1

E
[
|Ĉ|1(N̂ ≥ ir+1)

]
=
∞∑
i=1

P (N̂ ≥ i)
( ∞∑
k=1

E
[
|Ĉ|1(N̂ ≥ k)

])j−1

= E[N̂ ]ρ̂j−1,

where ρ̂ = E[N̂ |Ĉ|]. Similarly,
∞∑
i=1

Eπ∗
[∣∣∣1(i ≤ N̂)− 1(i ≤ N)

∣∣∣] =
∞∑
i=1

Eπ∗
[
1(N < i ≤ N̂) + 1(N̂ < i ≤ N)

]
= Eπ∗

[
|N̂ −N |

]
.

It follows that

E
[∣∣∣Ŵ (j) −W (j)

∣∣∣] ≤ E[N̂ ]ρ̂j−1Eπ
[
|B̂(0) −B(0)|

]
+ E[|CQ|]ρ̂j−1Eπ∗

[
|N̂ −N |

]
+ E[N ]E[|CQ|]

∑
(i2,i3,...,ij)∈Nj−1

+

E

∣∣∣∣∣∣
j−1∏
r=1

B̂
(ir+1)
(1,i2,...,ir) −

j−1∏
r=1

B
(ir+1)
(1,i2,...,ir)

∣∣∣∣∣∣
 .
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To analyze the last expectation let aj =
∑

(i2,i3,...,ij)∈Nj−1
+

E
[∣∣∣∏j−1

r=1 B̂
(ir+1)
(1,i2,...,ir) −

∏j−1
r=1B

(ir+1)
(1,i2,...,ir)

∣∣∣]
for j ≥ 2, and a1 = 0. It follows that for j ≥ 2,

aj ≤
∑

(i2,i3,...,ij)∈Nj−1
+

E

∣∣∣∣∣∣
j−2∏
r=1

B̂
(ir+1)
(1,i2,...,ir) −

j−2∏
r=1

B
(ir+1)
(1,i2,...,ir)

∣∣∣∣∣∣
∣∣∣B̂(ij)

(1,i2,...,ij−1)

∣∣∣


+
∑

(i2,i3,...,ij)∈Nj−1
+

E

∣∣∣∣∣∣
j−2∏
r=1

B
(ir+1)
(1,i2,...,ir)

∣∣∣∣∣∣
∣∣∣B̂(ij)

(1,i2,...,ij−1) −B
(ij)
(1,i2,...,ij−1)

∣∣∣


= aj−1

∞∑
ij=1

E
[
|Ĉ|1(N̂ ≥ ij)

]
+

∑
(i2,i3,...,ij)∈Nj−1

+

j−2∏
r=1

E [|C|1(N ≥ ir+1)]Eπ
[∣∣∣B̂(ij) −B(ij)

∣∣∣]

= ρ̂ aj−1 + ρj−2
∞∑
i=1

Eπ
[∣∣∣B̂(i) −B(i)

∣∣∣] ,
where ρ = E[N |C|]. Iterating this recursion j − 2 times gives

aj ≤ ρ̂j−1a1 +
j−2∑
t=0

ρ̂tρj−2−t
∞∑
i=1

Eπ
[∣∣∣B̂(i) −B(i)

∣∣∣] =
j−2∑
t=0

ρ̂tρj−2−t
∞∑
i=1

Eπ
[∣∣∣B̂(i) −B(i)

∣∣∣] .
We conclude that for j ≥ 1,

E
[∣∣∣Ŵ (j) −W (j)

∣∣∣] ≤ E[N̂ ]ρ̂j−1Eπ
[
|B̂(0) −B(0)|

]
+ E[|CQ|]ρ̂j−1Eπ∗

[
|N̂ −N |

]
+ 1(j ≥ 2)E[N ]E[|CQ|]

j−2∑
t=0

ρ̂tρj−2−t
∞∑
i=1

Eπ
[∣∣∣B̂(i) −B(i)

∣∣∣]

≤
(
E[N̂ ] ∨ E[N ]E[|CQ|]

ρ

)j−1∑
t=0

ρ̂tρj−1−t

 E + E[|CQ|]ρ̂j−1E∗.

We now proceed to prove the two main theorems of the paper, Theorems 15 and 16.

Proof of Theorem 15. Case 1: Weighted branching processes.

Choose a coupling π of µn and µ such that Eπ
[ ∣∣∣Q−Q(n)

∣∣∣ +
∑∞
j=1

∣∣∣Bj −B(n)
j

∣∣∣ ] =

d1(µ, µn). If we construct both WBPs based on this optimal coupling, then by Proposi-

tion 13,

E
[∣∣∣W (n,j) −W (j)

∣∣∣] ≤
ρjn + E [|Q|]

j−1∑
t=0

ρtρj−1−t
n

 d1(µ, µn)

≤ (E[|Q| ∨ ρ)(j + 1)ρj−1
(

1 ∨ ρn
ρ

)j
d1(µ, µn).
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For fixed j ≥ 1 note that |ρn − ρ| ≤ d1(µ, µn), and hence (1 ∨ (ρn/ρ))j → 1 as n→∞,

which in turn implies that E
[∣∣∣W (n,j) −W (j)

∣∣∣]→ 0.

Assume now Q(n) = Q ≡ 1, and {C(n)
j , Cj} are nonnegative for all n, j; suppose jn →∞

and jnd1(µ, µn) → 0 as n → ∞. First note that {W (j)/ρj} is a mean one nonnegative

martingale with respect to the filtration generated by Gj = σ((B(i,1), B(i,2), . . . ) : i ∈ Nr+, 0 ≤

r < j), G0 = σ(∅). Therefore,

E

[∣∣∣∣∣W (n,jn)

ρjnn
− W (jn)

ρjn

∣∣∣∣∣
]
≤ E

[
1
ρjnn

∣∣∣W (n,jn) −W (jn)
∣∣∣]+ E

[
W (jn)

ρjn

∣∣∣∣∣
(
ρ

ρn

)jn
− 1

∣∣∣∣∣
]

≤ (1 ∨ ρ)
ρ

(jn + 1)
(
ρ

ρn

)jn (
1 ∨ ρn

ρ

)jn
d1(µ, µn) +

∣∣∣∣∣
(
ρ

ρn

)jn
− 1

∣∣∣∣∣
≤ (1 ∨ ρ)

ρ
(jn + 1)ejn(ρ/ρn−1)+

d1(µ, µn) + jn

∣∣∣∣ ρρn − 1
∣∣∣∣ e(jn−1)(ρ/ρn−1)+

,

where in the last step we used the inequalities

(x ∨ 1)j ≤ ej(x−1)+ and |xj − 1| ≤ j|x− 1|e(j−1)(x−1)+ for all x > 0, j ∈ N.

(B.3)

Since jnd1(µ, µn)→ 0 as n→∞, then so does jn|ρ/ρn−1| → 0 as n→∞, and we conclude

that the expected value converges to zero. Since by the martingale convergence theorem

W (jn)/ρjn →W almost surely, then

W (n,jn)

ρjnn
⇒W, n→∞.

If E[W] = 1 then E
[
|W (jn)/ρjn −W|

]
→ 0 and we can replace the convergence in distri-

bution to convergence in the Kantorovich-Rubinstein distance.

The last statement of the theorem for weighted branching processes follows from noting

that

1
ρj
E
[∣∣∣W (n,j) −W (j)

∣∣∣] ≤ ∣∣∣∣∣ 1
ρj
− 1
ρjn

∣∣∣∣∣E [|W (n,j)|
]

+ E

[∣∣∣∣∣W (n,jn)

ρjnn
− W (jn)

ρjn

∣∣∣∣∣
]

=
∣∣∣∣∣
(
ρ

ρn

)j
− 1

∣∣∣∣∣+ E

[∣∣∣∣∣W (n,jn)

ρjnn
− W (jn)

ρjn

∣∣∣∣∣
]
,

which were already shown to converge to zero for all 0 ≤ j ≤ jn. This completes the proof

for this case.

Case 2: Weighted branching trees.
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Construct versions of the processes {W (n,j) : j ≥ 0} and {W (j) : j ≥ 0} using a

sequence of coupled vectors {(Q(n)
i , N

(n)
i , C

(n)
i , Qi, Ni, Ci)}i∈U,i6=∅ according to the coupling

π satisfying d1(µn, µ) = Eπ
[
|C(n)Q(n) − CQ|+

∑∞
i=1 |C(n)1(N (n) ≥ i)− C1(N ≥ i)|

]
. Let

the root vector (Q(n)
∅ , N

(n)
∅ , Q∅, N∅) be distributed according to π∗, where d1(ν∗n, ν∗) =

Eπ∗
[
|Q(n) −Q|+ |N (n) −N |

]
, and be independent of all other nodes.

By Proposition 14 we have E
[∣∣∣W (n,0) −W (0)

∣∣∣] ≤ d1(ν∗n, ν∗) and

E
[∣∣∣W (n,j) −W (j)

∣∣∣] ≤ Kj(ρn ∨ ρ)j−1d1(µn, µ) +Kρj−1
n d1(ν∗n, ν∗), j ≥ 1,

with K = max{E[N (n)], E[|Q|]}. Note that

|ρn − ρ| =
∣∣∣∣∣
∞∑
i=1

E
[
C(n)1(N (n) ≥ i)− C1(N ≥ i)

]∣∣∣∣∣ ≤ d1(µn, µ).

The result for fixed j follows immediately.

Assume now that Q(n) = Q = 1, and {C(n), C} are nonnegative, and recall that C is

independent of (Q,N), and therefore defines a weighted branching process. This in turn

implies that {W (j)/ρj} is a nonnegative martingale with respect to the filtration generated

by Hj = σ((Ni, C(i,1), . . . , C(i,Ni)) : i ∈ Ar, 0 ≤ r < j), H0 = σ(∅). It follows that

E

[∣∣∣∣∣W (n,jn)

ρjnn
− W (jn)

ρjn

∣∣∣∣∣
]
≤ E

[∣∣∣W (n,jn) −W (jn)
∣∣∣] 1
ρjnn

+
∣∣∣∣∣
(
ρ

ρn

)jn
− 1

∣∣∣∣∣
≤ Kjn

(
ρ ∨ ρn
ρn

)jn
d1(µn, µ) + K

ρn
d1(ν∗n, ν∗) +

∣∣∣∣∣
(
ρ

ρn

)jn
− 1

∣∣∣∣∣
≤ Kjnejn(ρ/ρn−1)+

d1(µn, µ) + K

ρn
d1(ν∗n, ν∗) + jn

∣∣∣∣ ρρn − 1
∣∣∣∣ e(jn−1)(ρ/ρn−1)+

,

where in the last step we used the inequalities (B.3). This last expression converges to zero

since jnd1(µn, µ)→ 0 as n→∞.

The proof of the last statement is identical to that of Case 1 and is therefore omitted.

We now proceed to the non homogeneous case.

Proof of Theorem 16. Case 1: Weighted branching processes.

The result for fixed k follows from Theorem 16, since

∣∣∣R(n,k) −R(k)
∣∣∣ =

∣∣∣∣∣∣
k∑
j=0

(
W (n,j) −W (j)

)∣∣∣∣∣∣ ≤
k∑
j=0

∣∣∣W (n,j) −W (j)
∣∣∣ .



APPENDIX B. PROOFS OF CHAPTER 3 127

If in addition we have ρ < 1, then, by Proposition 13 (using the optimal coupling),

E
[∣∣∣R(n,kn) −R(kn)

∣∣∣] ≤ kn∑
j=0

E
[∣∣∣W (n,j) −W (j)

∣∣∣] ≤ kn∑
j=0

ρjn + E [|Q|]
j−1∑
t=0

ρtρj−1−t
n

 d1(µn, µ).

Now note that since |ρn−ρ| ≤ d1(µn, µ), then for any 0 < ε < 1−ρ we have that ρn < 1−ε

for all n sufficiently large. In this case,

E
[∣∣∣R(n,kn) −R(kn)

∣∣∣] ≤ ∞∑
j=0

(
(1− ε)j + E [|Q|] j(1− ε)j−1

)
d1(µn, µ)→ 0,

as n→∞ for any kn ≥ 1. Since we also have that

E
[∣∣∣R(kn) −R

∣∣∣] = E

∣∣∣∣∣∣
∞∑

j=kn+1
W (j)

∣∣∣∣∣∣
 ≤ ∞∑

j=kn+1
E[|Q|]ρj = E[|Q|]ρkn+1

1− ρ ,

then for any kn →∞,

R(n,kn) d1−→ R, n→∞.

Case 2: Weighted branching trees.

The proof of the result for fixed k follows from Theorem 15 as before. For kn and ρ < 1

we use Proposition 14 (using the optimal couplings π∗ and π) to obtain

E
[∣∣∣R(n,kn) −R(kn)

∣∣∣] ≤ kn∑
j=0

E
[∣∣∣W (n,j) −W (j)

∣∣∣]

≤ d1(ν∗n, ν∗) +K
kn∑
j=1

j−1∑
t=0

ρtnρ
j−1−td1(µn, µ) + ρj−1

n d1(ν∗n, ν∗)

 ,
with K = max{E[N (n)], E[|Q|]}. Using the same arguments from Case 1 note that for any

0 < ε < 1− ρ and n sufficiently large,

E
[∣∣∣R(n,kn) −R(kn)

∣∣∣] ≤ d1(ν∗n, ν∗) +K
∞∑
j=1

(
j(1− ε)j−1d1(µn, µ) + (1− ε)j−1d1(ν∗n, ν∗)

)
→ 0,

as n→∞ for any kn ≥ 1. The rest of proof is the same as that of Case 1 and is therefore

omitted.

The last result we need to prove in this section is Lemma 17
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Proof of Lemma 17. From the definition of the Kantorovich-Rubinstein metric and the fact

that the infimum is always attained (see, e.g., [Villani, 2009], Theorem 4.1), there exists a

coupling π of (N (n), Q(n), C(n), N,Q,C) such that

d1(νn, ν) = Eπ
[
|Q(n) −Q|+ |N (n) −N |+ |C(n) − C|

]
. (B.4)

Next, define the vectors

Yn = C(n)(Q(n), 1(N (n) ≥ 1), 1(N (n) ≥ 2), . . . ) and Y = C(Q, 1(N ≥ 1), 1(N ≥ 2), . . . ).

We will first show that ‖Yn − Y‖1
P→ 0 as n → ∞. To this end, let (Q̂, N̂ , Ĉ) =

(Q(n), N (n), C(n)) to simplify the notation and define Xn = ‖(N (n), Q(n), C(n))−(N,Q,C)‖1.

Note that (B.4) implies that Xn → 0 in mean, and therefore in probability. Now note that

‖Yn −Y‖1 = |Q̂Ĉ −QC|+
∞∑
i=1
|Ĉ1(N̂ ≥ i)− C1(N ≥ i)|

= |Q̂Ĉ −QC|+
∞∑
i=1

(
|Ĉ − C|1(i ≤ N̂ ∧N) + |Ĉ|1(N < i ≤ N̂) + |C|1(N̂ < i ≤ N)

)
= |Q̂Ĉ −QC|+ |Ĉ − C|(N̂ ∧N) + |Ĉ|(N̂ −N)+ + |C|(N − N̂)+

≤ |Ĉ||Q̂−Q|+ |Q||Ĉ − C|+ |Ĉ − C|(N̂ ∧N) + |Ĉ|(N̂ −N)+ + |C|(N − N̂)+

≤
(
2|C(n)|+ |Q|+N + |C|

)
Xn

P→ 0, n→∞,

by the converging together lemma. It remains to show that ‖Yn −Y‖1 → 0 in mean.

By the triangle’s inequality we have that

Qn , |‖Yn‖1 − ‖Y‖1| ≤ ‖Yn −Y‖1
P→ 0, n→∞.

Also, by assumption,

E [‖Yn‖1] = E

[
|Q̂Ĉ|+

∞∑
i=1
|Ĉ|1(N̂ ≥ i)

]
= E

[
|Q̂Ĉ|+ |Ĉ|N̂

]
→ E[|CQ|+ |C|N ] = E [‖Y‖1]

as n→∞, and therefore E[Qn]→ 0 (see, e.g., Theorem 5.5.2 in [Durrett, 2010]). Now note

that since ‖Yn −Y‖1 ≤ ‖Yn‖1 + ‖Y‖1 ≤ Qn + 2 ‖Y‖1, we have

E [‖Yn −Y‖1] ≤ E [‖Yn −Y‖1 1(Qn ≤ 1)] + E[Qn] + 2E [‖Y‖11(Qn > 1)] ,
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where ‖Yn −Y‖1 1(Qn ≤ 1) and ‖Y‖11(Qn > 1) are uniformly integrable by Theorem 13.3

in [Williams, 1991], and hence

lim
n→∞

E [‖Yn −Y‖1 1(Qn ≤ 1)] = lim
n→∞

E [‖Y‖11(Qn > 1)] = 0.

B.3 Proof of the asymptotic behavior of R∗

We give in this section the proof of Theorem 19 which describes the asymptotic behavior of

the limit R∗, which is essentially determined by the asymptotic behavior of the endogenous

solution R given in (??). The tail behavior of R is the main focus of the work in [Volkovich

and Litvak, 2010; Jelenković and Olvera-Cravioto, 2010; Jelenković and Olvera-Cravioto,

2012b; Jelenković and Olvera-Cravioto, 2012a; Olvera-Cravioto, 2012b].

Proof of Theorem 19. We consider the case when N is regularly varying first. By Theo-

rem 3.4 in [Olvera-Cravioto, 2012b] and the remarks that follow it (see also Theorem 4.1 in

[Volkovich and Litvak, 2010]),

P (R > x) ∼ (E[Q]E[C1])α

(1− ρ)α(1− ρα)P (N > x), x→∞,

and therefore, P (R > x) ∈ R−α. Next, since the {Ci} are i.i.d. and independent of N ,

Minkowski’s inequality gives for any β ≥ 1,

E

( N∑
i=1
Ci

)β = E

E
( N∑

i=1
Ci

)β∣∣∣∣∣∣N
 ≤ E [N βE[Cβ1 ]

]
. (B.5)

Applying Lemma 2.3 in [Olvera-Cravioto, 2012b] with β = 1+δ gives that E[|R|1+δ] <∞ for

all 0 < δ < α−1. By conditioning on the filtration Fk = σ
(
(Ni, C(i,1), C(i,2), . . . ) : i ∈ As, s < k

)
it can be shown that E

[∑
i∈Ak ΠiQi

]
= ρkE[Q], which implies that E[R] = (1−ρ)−1E[Q] >

0. Also, by Lemma 3.7(2) in [Jessen and Mikosch, 2006] we have

P

N0∑
i=1
Ci > x

 ∼ (E[C1])α P (N0 > x) ∼ κ(1− ρ)α(1− ρα)
(E[Q])α P (R > x).
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Using Theorem A.1 in [Olvera-Cravioto, 2012b] we conclude that

P (R∗ > x) ∼
(
E[N0]E[Cα1 ] + κ

(1− ρ)α(1− ρα)
(E[Q])α (E[R])α

)
P (R > x)

∼ (E[N0]E[Cα1 ] + κ(1− ρα)) (E[Q]E[C1])α

(1− ρ)α(1− ρα)P (N > x)

as x→∞.

Now, for the case when Q is regularly varying, note that E
[(∑N

i=1 Ci
)α+ε

]
< ∞ by

(B.5) and the theorem’s assumptions. Then, by Theorem 4.4 in [Olvera-Cravioto, 2012b]

(see also Theorem 4.1 in [Volkovich and Litvak, 2010]) we have

P (R > x) ∼ (1− ρα)−1P (Q > x), x→∞.

The same observations made for the previous case give E[|R|1+δ] <∞ for all 0 < δ < α−1.

In addition, note that the same argument used above gives E
[(∑N0

i=1 Ci
)α+ε

]
<∞. Also,

P (Q0 > x) ∼ κP (Q > x) ∼ κ(1− ρα)P (R > x).

It follows, by Theorem A.2 in [Olvera-Cravioto, 2012b], that

P (R∗ > x) ∼ (E[N0]E[Cα1 ] + κ(1− ρα))P (R > x)

∼ (E[N0]E[Cα1 ] + κ(1− ρα)) (1− ρα)−1P (Q > x)

as x→∞.

B.4 Proofs of properties of the IID Algorithm

Before giving the proofs of Propositions 20 and 21 we will need some general results for

sequences of i.i.d. random variables, which may be of independent interest. The first result

establishes a bound for the sum of the largest order statistics in a sample. The second result

is essentially an explicit version of the Weak Law of Large Numbers.

Lemma 30. Let X1, X2, . . . , Xn be i.i.d. nonnegative random variables satisfying E[X1+κ
1 ] <

∞ for some κ > 0, and let X(i) denote the ith smallest observation from the set {X1, X2, . . . , Xn}.

Let {π1, π2, . . . , πn} be any permutation of the set {1, 2, . . . , n}. Then, for any kn ∈ {1, 2, 3, 4, . . . , n}

we have

P

 n∑
i=n−kn+1

X(i) > n1−γ

 = O
(
kκ/(1+κ)
n n−(κ/(1+κ)−γ)

)
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as n→∞.

Proof. Note that, by Markov’s inequality,

P (X1 > x) ≤ E[X1+κ
1 ]x−1−κ,

and therefore,

P (Xi > x) ≤ P (Yi > x),

where {Y1, Y2, . . . , Yn} are i.i.d. Pareto random variables having distribution G(x) = 1 −

(x/b)−1−κ for x > b :=
(
E[X1+κ

1 ]
)−1/(1+κ)

. We then have that

P

 n∑
i=n−kn+1

X(i) > n1−γ

 ≤ P
 n∑
i=n−kn+1

Y(i) > n1−γ


≤ 1
n1−γ

n∑
i=n−kn+1

E[Y(i)],

where Y(i) is the ith smallest from the set {Y1, Y2, . . . , Yn}. Moreover, it is known (see

[Vännman, 1976], for example) that

E[Y(i)] = b · n!
(n− i)! ·

Γ(n− i+ 1− (1 + κ)−1)
Γ(n+ 1− (1 + κ)−1) ,

where Γ(·) is the Gamma function. By Wendel’s inequality [Wendel, 1948], for any 0 < s < 1

and x > 0, (
x

x+ s

)1−s
≤ Γ(x+ s)

xsΓ(x) ≤ 1,

and therefore, for i < n, and ϑ = (1 + κ)−1,

E[Y(i)] ≤ b ·
n!

Γ(n+ 1− ϑ) ·
1

(n− i)ϑ ≤ b
(
n+ 1− ϑ
n− i

)ϑ
.
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We conclude that

1
n1−γ

n∑
i=n−kn+1

E[Y(i)] ≤
b

n1−γ

 n−1∑
i=n−kn+1

(
n+ 1− ϑ
n− i

)ϑ
+ n!Γ(1− ϑ)

Γ(n+ 1− ϑ)


≤ b(n+ 1− ϑ)ϑ

n1−γ

 n−1∑
i=n−kn+1

( 1
n− i

)ϑ
+ Γ(1− ϑ)


≤ b(n+ 1)ϑ

n1−γ

kn−1∑
j=1

∫ j

j−1

1
tϑ
dt+ Γ(1− ϑ)


= b(n+ 1)ϑ

n1−γ

(
(kn − 1)1−ϑ

1− ϑ + Γ(1− ϑ)
)

= O

(
k1−ϑ
n

n1−ϑ−γ

)
,

where in the second inequality we used Wendel’s inequality. This completes the proof.

Lemma 31. Let {X1, X2, . . . , Xn} be i.i.d. random variables satisfying E[|X1|1+κ] < ∞

for some κ > 0 and µ = E[X1]. Set Sm = X1 + · · · + Xm and θ = min{1 + κ, 2}. Then,

for any K > 0, any nonnegative sequence {xn} such that xn → ∞ as n → ∞, and all

m = o
(
x1+κ
n

)
, there exists an n0 ≥ 1 such that for all n ≥ n0 ,

P (|Sm −mµ| > Kxn) ≤ E[|X1|θ]
( 2
K2 + 1

)
m

xθn
.

Proof. If κ ≥ 1, then Chebyshev’s inequality gives, for all m ≥ 1,

P (|Sm −mµ| > Kxn) ≤ mVar (X1)
K2x2

n

≤ mE[|X1|2]
K2x2

n

= mE[|X1|θ]
K2xθn

.

Suppose now that 0 < κ < 1 and let G(t) = P (|X1| ≤ t). Set t = xn and define

P (X̃i ≤ x) = P (Xi ≤ x|Xi ≤ t), and note that∣∣∣E[X̃1]− µ
∣∣∣ = |E[X11(|X1| ≤ t)]/G(t)− µ|

≤ 1
G(t) |E[X11(|X1| ≤ t)]− µ|+

|µ|G(t)
G(t)

= 1
G(t)

(
|E[X11(|X1| > t)]|+ |µ|G(t)

)
≤ 1
G(t)

(
tG(t) +

∫ ∞
t

G(x)dx+ |µ|G(t)
)

≤ E[|X1|1+κ]
G(t)

(
t−κ +

∫ ∞
t

x−1−κ dx+ |µ|t−1−κ
)

(by Markov’s inequality)

= E[|X1|1+κ]
G(t)

(1 + κ

κ
+ |µ|t−1

)
t−κ.



APPENDIX B. PROOFS OF CHAPTER 3 133

Then, for sufficiently large n, we obtain that

∣∣∣E[X̃1]− µ
∣∣∣ ≤ 2E[|X1|1+κ]

(1 + κ

κ
+ |µ|

)
t−κ , K ′t−κ = K ′x−κn .

It follows that for sufficiently large n and m = o(x1+κ
n ),

P (|Sm −mµ| > Kxn)

= P

(∣∣∣∣∣
m∑
i=1

(X̃i − µ)
∣∣∣∣∣ > Kxn

)
G(t)m + P

(∣∣∣∣∣
m∑
i=1

(Xi − µ)
∣∣∣∣∣ > Kxn, max

1≤i≤m
|Xi| > t

)

≤ P
(∣∣∣∣∣

m∑
i=1

(X̃i − E[X̃1])
∣∣∣∣∣+m

∣∣∣E[X̃1]− µ
∣∣∣ > Kxn

)
G(t)m + P

(
max

1≤i≤m
|Xi| > t

)

≤ G(t)m

(Kxn −K ′mt−κ)2 ·mVar (X̃1) + 1−G(t)m (by Chebyshev’s inequality)

≤ G(t)mmVar (X̃1)
K2x2

n(1−mx−1−κ
n K ′/K)2 +mG(t).

To estimate Var (X̃1) note that

Var (X̃1) ≤ E[X̃2
1 ] = E[X2

1 1(|X1| ≤ t)]
G(t) ≤ E[|X1|1+κ]t1−κ

G(t) ,

so using Markov’s inequality again to estimate G(t) gives us

P (|Sm −mµ| > Kxn) ≤ E[|X1|1+κ]
K2(1−mx−1−κ

n K ′/K)2 ·
mt1−κ

x2
n

+ E[|X1|1+κ]m
t1+κ

= E[|X1|1+κ]
(

1
K2(1−mx−1−κ

n K ′/K)2 + 1
)

m

x1+κ
n

= E[|X1|θ]
(

1
K2(1−mx−1−κ

n K ′/K)2 + 1
)
m

xθn
.

This completes the proof.

By setting m = n and xn = n1−γ we immediately obtain the following corollary.

Corollary 32. Let {X1, X2, . . . , Xn} be i.i.d. random variables satisfying E[|X1|1+κ] <∞

for some κ > 0 and µ = E[X1]. Set Sn = X1 + · · ·+Xn. Then, for any 0 ≤ γ < 1− 1/θ ,

θ = min{1 + κ, 2} and any constant K > 0, there exists an n0 ≥ 1 such that for all n ≥ n0

P
(
|Sn − nµ| > Kn1−γ

)
≤ E[|X1|θ]

( 2
K2 + 1

)
n−θ(1−1/θ−γ).
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We now proceed to prove that the extended bi-degree sequence generated by the IID

Algorithm satisfies Assumptions 1 and 2.

Proof of Proposition 20. It suffices to show that P
(
Ωc
n,i

)
= O(n−ε) for some ε > 0 and

i = 1, . . . , 6. Throughout the proof let En = {|∆n| ≤ n1−κ0+δ0} and recall that by (3.21)

P (Ecn) = O
(
n−δ0η

)
, where η = (κ0 − δ0)/(1− κ0).

We start with Ωn,2. Let ν2 = (E[D ])2 and define χi = Di−Di, τi = Ni−Ni. Note that

χi, τi ∈ {0, 1} for all i = 1, . . . , n; moreover, either all the {χi} or all the {τi} are zero, and

therefore χiτj = 0 for all 1 ≤ i, j ≤ n. We now have∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣ =
∣∣∣∣∣
n∑
i=1

DiNi − nν2 +
n∑
i=1

(Diτi + χiNi)
∣∣∣∣∣

≤
∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣+ max


n∑

i=n−∆n+1
D(i),

n∑
i=n−∆n+1

N(i)

 ,
where D(i) (respectively, N(i)) is the ith smallest value from the set {D1, . . . ,Dn} (respec-

tively, {N1, . . . ,Nn}). Since |∆n| ≤ n1−κ0+δ0 on En, we have

P (Ωc
n,2) = P

(∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣ > n1−γ
∣∣∣∣∣En

)

≤ 1
P (En)

{
P

(∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣ > n1−γ

2

)

+P

 n∑
i=n−bn1−η(1−κ0)c+1

D(i) >
n1−γ

2

+ P

 n∑
i=n−bn1−η(1−κ0)c+1

N(i) >
n1−γ

2

 .
Now apply Corollary 32 to Xi = DiNi, which satisfies E[(D1N1)1+η] = E[N 1+η

1 ]E[D1+η
1 ] <

∞, to obtain

P

(∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣ > n1−γ

2

)
= O

(
n−η+(1+η)γ

)
.

For the remaining two probabilities use Lemma 30 to see that

P

 n∑
i=n−bn1−η(1−κ0)c+1

D(i) >
n1−γ

2

+ P

 n∑
i=n−bn1−η(1−κ0)c+1

N(i) >
n1−γ

2


= O

(
n(1−η(1−κ0))η/(1+η)−(η/(1+η)−γ)

)
= O

(
n−η(κ0−δ0)/(1+η)+γ

)
.
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It follows from these estimates that

P (Ωc
n,2) = O

(
n−η(κ0−δ0)/(1+η)+γ

)
. (B.6)

Next, we can analyze Ωn,1,Ωn,3 and Ωn,4 by considering the sequence {Dϑ
i } where ϑ

can be taken to be 1, 2 or 2 + κ. Correspondingly, we have ν1 = E[D ], ν3 = E[D2] and

ν4 = E[D2+κ]. Similarly as what was done for Ωn,2, note that∣∣∣∣∣
n∑
i=1

Dϑ
i − nE[Dϑ]

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

Dϑ
i − nE[Dϑ]

∣∣∣∣∣+
n∑
i=1

(
(Di + χi)ϑ −Dϑ

i

)
≤
∣∣∣∣∣
n∑
i=1

Dϑ
i − nE[Dϑ]

∣∣∣∣∣+
n∑
i=1

ϑ(Di + 1)ϑ−1χi,

where we used the inequality (d+ x)ϑ − dϑ ≤ ϑ(d+ 1)ϑ−1x for d ≥ 0, x ∈ [0, 1] and ϑ ≥ 1.

Now note that E[(Dϑ)1+σ] < ∞ for any 0 < σ < (β − 2 − κ)/(2 + κ); in particular, since

γ < (β−2−κ)/β, we can choose γ/(1−γ) < σ < (β−2−κ)/(2+κ). For such σ, Corollary

32 gives

P

(∣∣∣∣∣
n∑
i=1

Dϑ
i − nE[Dϑ]

∣∣∣∣∣ > n1−γ

2

)
= O

(
n−σ+(1+σ)γ

)
.

For the term involving the {χi} we use again Lemma 30 to obtain

P

(
n∑
i=1

ϑ(Di + 1)ϑ−1χi >
n1−γ

2

)
≤ P

 n∑
i=n−dn1−ηe+1

ϑ(D(i) + 1)ϑ−1 >
n1−γ

2


= O

(
n(1−η)(1−1/2)−(1−γ−1/2)

)
= O

(
n−η/2+γ

)
.

It follows that

P (Ωc
n,i) ≤

1
P (En) ·O

(
n−σ+(1+σ)γ + n−η/2+γ

)
, i = 1, 3, 4. (B.7)

Now note that since |ζ| ≤ c < 1 a.s., then E[|ζ|2] <∞ and Corollary 32 gives

P (Ωc
n,5) = P

(∣∣∣∣∣
n∑
r=1
|ζr|1(Dr ≥ 1)− nν5

∣∣∣∣∣ > n1−γ
)

= P

(∣∣∣∣∣
n∑
r=1
|ζr|1(Dr ≥ 1)− nν5

∣∣∣∣∣+ c|∆n| > n1−γ
)

= O
(
n−1+2γ

)
. (B.8)
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Finally, by Corollary 32 and (3.21),

P (Ωc
n,6) ≤ P

(∣∣∣∣∣
n∑
r=1
|Qr| − nE[|Q|]

∣∣∣∣∣ > n

∣∣∣∣∣En
)

= O
(
n−εQ + n−δ0η

)
. (B.9)

Our choice of 0 < γ < min{η(κ0−δ0)(1+η), σ/(1+σ)} guarantees that all the exponents

of n in expressions (B.6) - (B.8) are strictly negative, which completes the proof.

Proof of Proposition 21. We will show that d1(F ∗n , F ∗) and d1(Fn, F ) converge to zero a.s.

by using the duality formula for the Kantorovich-Rubinstein distance. To this end, let

Sn =
∑n
i=1 Di, Ck = ζk/Dk1(Dk ≥ 1) + c sgn(ζk)1(Dk = 0), and fix ψ∗ : R2 → R and

ψ : R3 → R to be Lipschitz continuous functions with Lipschitz constant one. Then,

E0 :=
∣∣∣∣∣ 1n

n∑
k=1

ψ∗(Nk, Qk)−
1
n

n∑
k=1

ψ∗(Nk, Qk)
∣∣∣∣∣

≤ 1
n

n∑
k=1
|ψ∗(Nk + 1, Qk)− ψ∗(Nk, Qk)| 1(Nk = Nk + 1)

≤ 1
n

n∑
k=1

1(Nk = Nk + 1) ≤ |∆n|
n

,

and

E1 :=
∣∣∣∣∣
n∑
k=1

ψ(Nk, Qk, Ck)
Dk

Ln
−

n∑
k=1

ψ(Nk, Qk,Ck)
Dk

Sn

∣∣∣∣∣
≤

n∑
k=1

Dk

Sn
|ψ(Nk, Qk,Ck)− ψ(Nk, Qk,Ck)| 1(∆n ≤ 0)

+
n∑
k=1

Dk

Ln
|ψ(Nk, Qk, Ck)− ψ(Nk, Qk,Ck)| 1(∆n > 0)

+
n∑
k=1

∣∣∣∣ψ(Nk, Qk, ζk/Dk)
(
Dk

Ln
− Dk

Sn

)∣∣∣∣ 1(∆n > 0)

≤
n∑
k=1

Dk

Sn
1(Nk = Nk + 1) +

n∑
k=1

Dk

Ln
|ζk/(Dk + 1)− Ck| 1(Dk = Dk + 1)

+
n∑
k=1
|ψ(Nk, Qk,Ck)|

∣∣∣∣(Dk −Dk)Sn −Dk∆n

LnSn

∣∣∣∣ 1(∆n > 0),

where we used the fact that ψ∗ and ψ have Lipschitz constant one. To bound further E1

use the Cauchy-Schwarz inequality to obtain
n∑
k=1

Dk

Sn
1(Nk = Nk + 1) ≤ n

Sn

(
1
n

n∑
k=1

D2
k

)1/2 ( |∆n|
n

)1/2
.
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Now, use the observation that |ζk| ≤ c to obtain
n∑
k=1

Dk

Ln
|ζk/(Dk + 1)− Ck| 1(Dk = Dk + 1)

≤ c
n∑
k=1

1
LnDk

1(Dk = Dk + 1,Dk ≥ 1) +
n∑
k=1

1
Ln
|ζk − c sgn(ζk)| 1(Dk = Dk + 1,Dk = 0)

≤ c

Ln

n∑
k=1

1(Dk = Dk + 1) ≤ c|∆n|
Sn

.

Next, use the bound |ψ(m, q, x)| ≤ ||(m, q, x)||1 + |ψ(0, 0, 0)| and Hölder’s inequality to

obtain
n∑
k=1
|ψ(Nk, Qk,Ck)|

∣∣∣∣(Dk −Dk)Sn −Dk∆n

LnSn

∣∣∣∣ 1(∆n > 0)

≤
n∑
k=1
|ψ(Nk, Qk,Ck)|

1(Dk = Dk + 1)
Sn

+
n∑
k=1
|ψ(Nk, Qk,Ck)|

Dk|∆n|
S2
n

≤ 1
Sn

n∑
k=1
||(Nk, Qk, c)||1 1(Dk = Dk + 1) + |∆n|

S2
n

n∑
k=1

(NkDk + |Qk|Dk + c) + 2|ψ(0, 0, 0)∆n|
Sn

≤ n

Sn


(

1
n

n∑
k=1

N 1+δ
k

)1/(1+δ)

+
(

1
n

n∑
k=1
|Qk|1+δ

)1/(1+δ)

( |∆n|

n

)δ/(1+δ)

+ |∆n|
S2
n

n∑
k=1

(NkDk + |Qk|Dk) + H|∆n|
Sn

,

where 0 < δ < min{α− 1, εQ} and H = 2|ψ(0, 0, 0)|+ 2c. Now note that since the bi-degree

sequence is constructed on the event |∆n| ≤ n1−κ0+δ0 , we have that E0 ≤ n−κ0+δ0 a.s. To

show that E1 converges to zero a.s. use the Strong Law of Large Numbers (SLLN) (recall

that E[D2] < ∞ and that N ,D , Q are mutually independent) and the bounds derived

above.

Finally, by the SLLN again and the fact that E[||(N , Q,C )||1] <∞, we have

lim
n→∞

1
n

n∑
k=1

ψ∗(Nk, Qk) = lim
n→∞

1
n

n∑
k=1

ψ∗(Nk, Qk) = E[ψ∗(N , Q)] a.s.

and

lim
n→∞

n∑
i=1

ψ(Nk, Qk, Ck)
Di

Sn
= lim

n→∞

n∑
k=1

ψ(Nk, Qk,Ck)
Dk

Sn
= 1
µ
E[ψ(N , Q,C )D ] a.s.

The first limit combined with the duality formula gives that d1(F ∗n , F ∗) → 0 a.s. For the
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second limit we still need to identify the limiting distribution, for which we note that

1
µ
E[ψ(N , Q,C )D ] = 1

µ
E [E[ψ(N , Q,C )D |N , Q]] = 1

µ
E

[ ∞∑
i=1

∫ ∞
−∞

ψ(N , Q, z/i)i dF ζ(z)P (D = i)
]

= 1
µ
E

[ ∞∑
i=1

∫ ∞
−∞

ψ(N , Q, y)i dF ζ(yi)P (D = i)
]

=: E [ψ(N , Q, Y )] ,

where Y has distribution function

P (Y ≤ x) = 1
µ
E

[ ∞∑
i=1

∫ ∞
−∞

1(y ≤ x)i dF ζ(yi)P (D = i)
]

= 1
µ
E

[ ∞∑
i=1

iF ζ(ix)P (D = i)
]

= 1
µ
E[DF ζ(Dx)] = 1

µ
E[D1(ζ/D ≤ x)] = P (C ≤ x).

It follows that E[ψ(N , Q,C )D ]/µ = E[ψ(N , Q, C)], which combined with the duality

formula gives that d1(Fn, F )→ 0 a.s.


	List of Figures
	List of Tables
	1 Introduction
	1.1 Directed random graphs
	1.2 Ranking algorithms
	1.3 Efficient simulation for branching linear recursions

	I Directed random graphs
	2 Directed random graphs with given degree distributions
	2.1 Graphs and degree sequences
	2.1.1 Algorithm to generate degree sequences
	2.1.2 Asymptotic behavior of the degree sequence

	2.2 The undirected configuration model
	2.3 The directed configuration model
	2.3.1 Repeated directed configuration model
	2.3.2 Erased directed configuration model



	II Ranking algorithms
	3 Ranking algorithms on directed configuration networks
	3.1 The directed configuration model
	3.2 Spectral ranking algorithms
	3.2.1 Definition of the rank vector
	3.2.2 Finitely many iterations

	3.3 Construction of the graph and coupling with a branching tree
	3.3.1 Terminology and notation
	3.3.2 Construction of the coupling
	3.3.3 The coupling lemma
	3.3.4 Computing the rank of nodes in the TBT

	3.4 Coupling with a weighted branching process
	3.4.1 Weighted branching processes
	3.4.2 The Kantorovich-Rubinstein distance
	3.4.3 Bounds for the Kantorovich-Rubinstein distance
	3.4.4 Convergence to the endogenous solution
	3.4.5 Main Result
	3.4.6 Asymptotic behavior of the limit

	3.5 Algorithm to generate bi-degree sequences
	3.6 Numerical examples


	III Simulation of branching recursions
	4 Efficient simulation for branching linear recursions
	4.1 Linear recursions on weighted branching processes
	4.2 The algorithm
	4.3 Convergence and consistency
	4.4 Numerical examples


	IV Bibliography
	Bibliography

	V Appendices
	A Proofs of Chapter 2
	A.1 Degree sequences
	A.2 Configuration model

	B Proofs of Chapter 3
	B.1 Proof of the coupling lemma
	B.2 Coupling of weighted branching processes
	B.3 Proof of the asymptotic behavior of R*
	B.4 Proofs of properties of the IID Algorithm



