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ABSTRACT

Two Essays in Financial Engineering

Linan Yang

This dissertation consists of two essays in financial engineering: one on credit valuation

adjustment and the other on stock trading with realization utility.

In the first part of this dissertation, we investigate the potential impact of wrong-way

risk on calculating credit valuation adjustment (CVA) to a derivatives portfolio. A credit

valuation adjustment (CVA) is an adjustment applied to the value of a derivative contract

or a portfolio of derivatives to account for counterparty credit risk. Counterparty credit

risk measurement integrates two sources of risk: market risk, which determines the size of

a firm’s exposure to a counterparty, and credit risk, which reflects the likelihood that the

counterparty will default on its obligations. Measuring CVA requires combining models of

market and credit risk to estimate the counterparty’s risk of default together with the market

value of the firm’s exposure to the counterparty at default. Wrong-way risk refers to the

possibility that a counterparty’s likelihood of default increases with the market value of the

exposure.

We develop a method for bounding wrong-way risk, holding fixed marginal models for

market and credit risk and varying the dependence between them. Given simulated paths

of the two models, we solve a linear program to find the worst-case CVA resulting from

wrong-way risk. We analyze properties of the solution and prove convergence of the esti-

mated bound as the number of paths increases. The worst case can be overly pessimistic,

so we extend the procedure by constraining the deviation of the joint model of market and



credit risk from a reference model. Measuring the deviation through relative entropy leads to

a tractable convex optimization problem that can be solved through the iterative proportional

fitting procedure. By varying the penalty for deviations, we can sweep out the full range of

possible CVA values for different degrees of wrong-way risk. Here, too, we prove conver-

gence of the resulting estimate of the penalized worst-case CVA and the joint distribution

that attains it. We consider extensions with additional constraints and illustrate the method

with examples. Our method addresses an important source of model risk in counterparty risk

measurement.

In the second part, we study investors’ trading behavior in a model of realization utility.

We assume that investors’ trading decisions are driven not only by the utility of consump-

tion and terminal wealth, but also by the utility burst from realizing a gain or a loss. More

precisely, we consider a dynamic trading problem in which an investor decides when to pur-

chase and sell a stock to maximize her wealth utility and realization utility with her reference

points adapting to the stock’s gain and loss asymmetrically.

We study, both theoretically and numerically, the optimal trading strategies and asset

pricing implications of two types of agents: adaptive agents, who realize prospectively the

reference point adaptation in the future, and naive agents, who fail to do so. We find that

an adaptive agent sells the stock more frequently when the stock is at a gain than a naive

agent does, and that the adaptive agent asks for a higher risk premium for the stock than

the naive agent does in equilibrium. Moreover, compared to a non-adaptive agent whose

reference point does not change with the stock’s gain and loss, both the adaptive and naive



agents sell the stock less frequently, and the naive agent requires the same risk premium as

the non-adaptive agent does.
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1

Chapter 1

Overview

This dissertation consists of two parts in which we utilize various methods in applied proba-

bility, optimization, and stochastic control to solve two problems in the areas of counterparty

credit risk and behavioral finance: credit valuation adjustment (CVA) with wrong-way risk

and stock trading with realization utility.

In Chapter 2, we focus on credit valuation adjustment and wrong-way risk. Research on

counterparty credit risk dated back to nineties, but it takes on heightened importance since

the financial crisis in 2008. Counterparty credit risk is taken on by an entity entering an over-

the-counter (OTC) contract with a counterparty which has a relevant default probability; if

the counterparty were to default, the expected value of all future net payments to this entity

turn into a loss for this entity. Counterparty credit risk is associated with all OTC transactions

with a defaultable counterparty, and all the agents taking OTC transactions need to take care

of counterparty credit risk regardless of the type of transactions.

Credit valuation adjustment (CVA) has become an important tool for managing counter-
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party credit risk. CVA measures the value of counterparty credit risk, and is contracted as a

credit derivative that can be traded and hedged, although most banks take it as a reserve and

do not manage it actively. With CVA, an agent doing OTC transactions can focus on their

major market risk and transfer counterparty credit risk to another agent, who is specialized

in trading CVA, by paying a CVA premium. The OTC transactions can be deemed as coun-

terparty risk free as the second agent would meet the payment obligation if the counterparty

were to default.

Although conceptually simple, calculating CVA of a typical portfolio is not an easy task.

It is similar as pricing a complex illiquid instrument, and needs to take into account three

factors. The first factor is the value of the underlying portfolio, which may consist of multiple

transactions across different markets with various counterparties. Portfolio valuation itself

can be complicated because multiple market factors and pricing models may be involved.

The second factor is the collateral rule, netting agreement, and recovery at default. The

first two factors together determine the exposure of the portfolio holder to its counterparties,

which may turn into a loss at counterparty’s default. The third factor is the credit quality of

the counterparty.

Furthermore, co-dependency generally exists between the portfolio exposure and coun-

terparty’s credit quality, which brings in further complexity in calculating CVA. The possibil-

ity that market risk and counterparty credit risk move together, so that the market exposure

increases just as the counterparty’s risk of default increases, is referred to as wrong-way

risk. Wrong-way risk arises, for example, if one bank sells credit default swap protection

on another bank with a similar profile. The value of the credit protection increases when the
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second bank faces financial difficulties; this is likely to be a scenario in which the bank that

sold the protection is also at greater risk of default. In practice, the sources and nature of

wrong-way risk are often less obvious.

In this dissertation we introduce a method for bounding wrong-way risk in CVA calcula-

tion — that is, for finding the largest CVA that is consistent with fixed models for market risk

of the portfolio and credit risk of the counterparty, letting the dependence between market

and credit risk vary. Our approach builds on a standard simulation framework for CVA calcu-

lation: paths of underlying market risk factors are simulated over time; a portfolio is revalued

(often using approximations) at fixed dates along each path of the market risk factors; the

counterparty’s time to default is either simulated from a credit risk model or extracted from

a credit curve. Given a set of paths of portfolio exposures and the distribution of the time to

default, we find the worst-case CVA by solving a linear programming problem. The linear

program finds the assignment of default times to paths that results in the largest possible

CVA, given the constraints on the default time distribution and the set of paths simulated

from the market model. As a byproduct, the dual variables associated with the constraints

on the marginal default time distribution provide sensitivities of the worst-case CVA to the

default probabilities.

A strength of this approach is that it yields the largest possible CVA value consistent with

given models for market and credit risk. Because it finds the worst-case wrong-way risk,

this approach can also be too conservative. We then extend the method by constraining the

deviation of the joint model of market and credit risk from a reference model, or equivalently

by penalizing deviations from a reference model and finding the resulting tempered CVA. A
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natural choice for the reference model is to take market and credit risk to be independent

of each other.1 By varying the penalty for deviations, we can sweep out the full range of

potential CVA values from the independent case to the worst-case wrong-way risk. The

penalized problem can no longer be solved through linear programming, but we formulate

it as a tractable convex optimization problem. The special structure of this problem leads to

a convenient solution through iterative rescaling of the rows and columns of a matrix. Dual

variable are obtained through the iterative rescaling process, providing sensitivity result for

the tempered CVA to the default probability.

The result obtained from above optimization method is an estimator of CVA based on

simulation outcomes of the market factors and empirical default distribution of the counter-

party. We then establish the consistency of this estimator for both worst-case and tempered

CVA. In other words, we show that as the sample size of market paths increases, the esti-

mated CVA converges to its true value. At last, we extend the model to include the martingale

property of the market risk factors by adding additional equality constraints. We also show

that this model can be easily extended to bilateral CVA in which the agent’s self-default is

also considered in CVA calculation.

To summarize, our model provides a very general framework for CVA calculation to ac-

count for the impact of wrong-way risk. It applies to both single transactions and portfolios.

In addition, it is computationally efficient, because it reuses simulated exposure paths that

need to be generated anyway to estimate CVA even ignoring wrong-way risk.

In Chapter 3, we study investors’ trading behavior in a model of realization utility. In

1The Basel III standardized approach for CVA assumes independence and then multiplies the resulting CVA
by a factor of 1.4.
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neoclassical finance, investors are assumed to maximize the utility of their consumption and

wealth. Economic models in this regard, however, cannot explain many empirical findings;

see for instance Barberis and Thaler [5] and Campbell [20]. For example, Shefrin and Stat-

man [51] find that individual investors are reluctant to sell stocks trading at a loss relative to

the price at which they were purchased, a phenomenon called disposition effect, for which

models in neoclassical finance fail to provide a satisfactory explanation. Recently, Barberis

and Xiong [6] propose a model of realization utility to explain the disposition effect.

Barberis and Xiong [6] assume that investors experience utility directly from realizing

a gain or a loss on the sale of the risky assets (e.g., stocks) they hold. As defined by Bar-

beris and Xiong [6], realization utility is a consequence of two cognitive processes: First,

instead of viewing their investment history in terms of the investment return, investors of-

ten think about it as a series of investment episodes. Second, an investor feels good, i.e.,

receives positive realization utility, when she sells a stock at a gain because she is creating a

positive investment episode; on the other hand, she feels bad, i.e., experiences negative real-

ization utility, when she sells the stock at a loss because she is creating a negative investment

episode. Barberis and Xiong [6] employs cumulative prospect theory (Tversky and Kahne-

man [40, 53]) with a piece-wise linear utility function to measure the realization utility of a

gain or a loss. Ingersoll and Jin [38] extends Barberis and Xiong [6] by using an S-shaped

utility function.

In this dissertation, we extend the works by Barberis and Xiong [6] and Ingersoll and

Jin [38] in two aspects. First, in addition to realization utility, the agent in our model also

experiences utility from her terminal wealth. As in neoclassical finance, we use the classical
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expected utility theory to model the terminal wealth utility. Second, the reference point of

the agent, which decides whether the agent is experiencing a gain or a loss at the current

stock price, is assumed to be the purchase price at the time of purchase and then adapt to the

stock’s gain and loss, and the adaptation to the gain is more than to the loss. Instead, Barberis

and Xiong [6] assume the reference point to be the purchase price growing at the risk-free

rate, and Ingersoll and Jin [38] assume the reference point to be fixed at the purchase price.

Experimental evidence in Baucells et al. [9] and Arkes et al. [1, 2] reveals that when selling

a stock, most investors choose their reference points to be the purchase price plus a portion

of the prior paper gain and loss of the stock. Moreover, the reference point adapts more to

a prior gain than to a comparable prior loss. Therefore, our model is more consistent with

individuals’ behavior observed in the literature.

More precisely, we consider a dynamic trading problem in which an agent decides when

to purchase and sell a stock to maximize her realization utility with her reference point

adapting to the stock’s gain and loss asymmetrically. We formulate the trading problem

as an optimal stopping problem and solve it completely. We study, both theoretically and

numerically, the optimal trading strategies and asset pricing implications of two types of

agents: adaptive agents who realize prospectively the reference point adaptation in the future,

and naive agents who fail to do so. We have three main findings: First, when becoming more

concerned with the terminal wealth utility, both the naive and adaptive agents sell the stock

less frequently and ask for a higher risk premium for the stock in equilibrium. Second, an

adaptive agent sells the stock more (less) frequently when the stock is at a gain (at a loss)

than a naive agent does, and the adaptive agent asks for a higher risk premium for the stock
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than the naive agent does in equilibrium. Third, compared to a non-adaptive agent whose

reference point does not adapt to the stock’s gain and loss, both the adaptive and naive agents

sell the stock less frequently, and the naive agent requires the same risk premium as the non-

adaptive agent does.

Chapter 2 and Chapter 3 are self-contained and independent of each other.
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Chapter 2

Credit Valuation Adjustment and

Wrong-Way Risk

2.1 Introduction

When a firm enters into a swap contract, it is exposed to market risk through changes in

market prices and rates that affect the contract’s cash flows. It is also exposed to the risk that

the party on the other side of the contract may default and fail to make payments due on the

transaction. Thus, market risk determines the magnitude of one party’s exposure to another,

and credit risk determines the likelihood that this exposure will become a loss. Derivatives

counterparty risk refers to this combination of market and credit risk, and proper measure-

ment of counterparty risk requires integrating market uncertainty and credit uncertainty.

The standard tool for quantifying counterparty risk is the credit valuation adjustment,

CVA, which can be thought of as the price of counterparty risk. Suppose firm A has entered
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into a set of derivative contracts with firm B. From the perspective of firm A, the CVA for

this portfolio of derivatives is the difference between the value the portfolio would have if

firm B were default-free and the actual value taking into account the credit quality of firm B.

More precisely, this is a unilateral CVA; a bilateral CVA adjusts for the credit quality of both

firms A and B.

Counterparty risk generally and CVA in particular have taken on heightened importance

since the failures of major derivatives dealers Bear Stearns, Lehman Brothers, and AIG Fi-

nancial Products in 2008. A new CVA-based capital charge for counterparty risk is among

the largest changes to capital requirements under Basel III for banks with significant deriva-

tives activity (BCBS [8]). CVA calculations are significant consumers of bank computing re-

sources, typically requiring simulation of all relevant market variables (prices, interest rates,

exchanges rates), valuing every derivative at every time step on every path, and integrating

these market exposures with a model of credit risk for each counterparty. See Canabarro and

Duffie [21] and Gregory [34] for background on industry practice.

Our focus in this chapter is on the effect of dependence between market and credit risk.

Wrong-way risk refers to the possibility that a counterparty will become more likely to de-

fault when the market exposure is larger and the impact of the default is greater; in other

words, it refers to positive dependence between market and credit risk. Wrong-way risk

arises, for example, if one bank sells put options on the stock of another similar bank. The

value of the options increases as the price of the other bank’s stock falls; this is likely to be

a scenario in which the bank that sold the options is also facing financial difficulty and is
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less likely to be able to make payment on the options. In practice, the sources and nature of

wrong-way risk may be less obvious.

Holding fixed the marginal features of market risk and credit risk, greater positive de-

pendence yields a larger CVA. But capturing dependence between market and credit risk is

difficult. There is often ample data available for the separate calibration of market and credit

models but little if any data for joint calibration. CVA is calculated under a risk-adjusted

probability measure, so historical data is not directly applicable. In addition, for their CVA

calculations banks often draw on many valuation models developed for trading and hedging

specific types of instruments that cannot be easily integrated with a model of counterparty

credit risk. CVA computation is much easier if dependence is ignored. Indeed, the Basel III

standardized approach for CVA assumes independence and then multiplies the result by a

factor of 1.4; this ad hoc factor is intended to correct for several sources of error, including

the lack of dependence information.

Models that explicitly describe dependence between market and credit risk include in

CVA calculation include Brigo, Capponi, and Pallavicini [17], Crépey [25], Hull and White

[37], and Rosen and Saunders [46]; see Brigo, Morini, and Pallavicini [18] for an extensive

overview of modeling approaches. Dependence is usually introduced by correlating default

intensities with market risk factors or through a copula. A direct model of dependence is,

in principle, the best approach to CVA. However, correlation-based models generally pro-

duce weak dependence between market and credit risk, and both techniques are difficult to

calibrate.

In this chapter, we develop a method to bound the effect of dependence, holding fixed
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marginal models of market and credit risk. Our approach uses simulated paths that would be

needed anyway for a CVA calculation without dependence. Given paths of market exposures

and information (simulated or implied from prices) about the distribution of time to the

counterparty’s default, we show that finding the worst-case CVA is a linear programming

problem. The linear program is easy to solve, and it provides a bound on the potential

impact of wrong-way risk. We view this in-sample bound based on a finite set of paths

as an estimate of the worst-case CVA for a limiting problem and prove convergence of the

estimator. The limiting problem is an optimization over probability measures with given

marginals. We also show that the LP formulation has additional useful features. It extends

naturally to a bilateral CVA calculation, and it allows additional constraints. Moreover, the

dual variables associated with constraints on the marginal default time distribution provide

useful information for hedging purposes.

The strength of the LP solution is that it yields the largest possible CVA value — the

worst possible wrong-way risk — consistent with marginal information about market and

credit risk. This is also a shortcoming, as the worst case can be too pessimistic. We therefore

extend the method by constraining or penalizing deviations from a nominal reference model.

The reference model could be one in which marginals are independent or linked through

some simple model of dependence. A large penalty produces a CVA value close to that

obtained under the reference model, and with no penalty we recover the LP solution. Varying

the penalty parameter allows us to “interpolate” between the reference model and the worst-

case joint distribution.

To penalize deviations from the reference model, we use a relative entropy measure be-
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tween probability distributions, also known as the Kullback-Leibler divergence. Once we

add the penalty, finding the worst-case joint distribution is no longer a linear programming

problem, but it is still convex. Moreover, the problem has a special structure that allows

convenient solution through iterative rescaling of the rows and columns of a matrix. This

iterative rescaling projects a starting matrix onto the convex set of joint distributions with

given marginals. Here, too, we prove convergence of the in-sample solution to the solution

of a limiting problem as the number of paths increases.

The problem of finding extremal joint distributions with given marginals has a long and

rich history. It includes the well-known Fréchet bounds in the scalar case and the mul-

tivariate generalization of Brenier [16] and Rüschendorf and Rachev [49]; see the books

by Rüschendorf [48] and Villani [54] for detailed treatments and historical remarks. In fi-

nance, related ideas have been used to find robust or model-free bounds on option prices;

see Cox [23] for a survey. In some versions of the robust pricing problem, one observes

prices of simple European options and seeks to bound prices of path-dependent or multi-

asset options given the European prices, as in Carr, Ellis, and Gupta [22], Brown, Hobson,

and Rogers [19], and Tankov [52], among many others. This has motivated the study of mar-

tingale optimal transport problems in Dolinsky and Soner [29], Beiglböck and Juillet [10],

Henry-Labordère and Touzi [36]. The literature on price bounds focuses on extremal solu-

tions and does constrain or penalize deviations from a reference model.

Our focus is not on pricing but rather risk measurement. Within the risk measurement

literature, questions of joint distributions with given marginals arise in risk aggregation; see,

for example, Bernard, Jiang, and Wang [12], Embrechts and Puccetti [31], and Embrechts,



13

Wang, and Wang [32]. A central problem in risk aggregations is finding the worst-case

distribution for a sum of random variables, given marginals for the summands.

Our work differs from earlier work in several respects. We focus on CVA, rather than

option pricing or risk aggregation. Our marginals may be quite complex and need not be

explicitly available — they are implicitly defined through marginal models for market and

credit risk. Given the generality of the setting, we do not seek to characterize extremal

joint distributions but rather to estimate bounds using samples generated from the marginals.

We temper the bounds by constraining deviations from a reference model, drawing on the

idea of robustness as developed in economics in Hansen and Sargent [35] and distributional

robustness as developed in the optimization literature in Ben-Tal et al. [11] and references

there. The methods we develop are easy to implement in practice. The main contribution lies

in the formulation and in the convergence analysis. Our general approach to convergence is

to use primal and dual optimization problems to get upper and lower bounds.

The rest of the chapter is organized as follows. In Chapter 2.2, we introduce the problem

setting, and in Chapter 2.3 we introduce the optimization formulation for the worst case CVA

bound and show convergence of the bound estimator. In Chapter 2.4, we extend the problem

to a robust formulation with a relative entropy constraint, and we provide numerical exam-

ples in Chapter 2.5. In Chapter 2.6, we extend the model further to incorporate expectation

constraints.
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2.2 Problem Formulation

To help fix ideas, we start with an example. Consider a T -year foreign exchange forward

contract between a U.S. bank, which receives U.S. dollar payments, and a foreign bank which

receives its local currency. The contract has forward exchange rate K and notional size S. If

the foreign currency weakens against the dollar, the foreign bank’s credit quality is likely to

deteriorate with its currency, just as the U.S. bank’s exposure increases, so this transaction

exhibits evident wrong-way risk.

Let Ut be the exchange rate, measured as the number of units of the foreign currency paid

in exchange for one U.S. dollar at time t. Assume this exchange rate follows an Ornstein-

Uhlenbeck process,

dUt = κ(Ū − Ut)dt+ σdWt,

where Ū is the level toward which the exchange rate mean-reverts, and Wt is a standard

Brownian motion.

CVA measures the discounted expected loss of a portfolio at the counterparty’s default, so

its calculation involves the default time of the counterparty and the discounted exposure value

of the portfolio of derivatives with this counterparty at the time of its default. Let τ denote

counterparty’s default time, and let V (τ) denote the discounted portfolio exposure at the

time of counterparty’s default. We assume that V (τ) accounts for all netting and collateral

agreements, as well as recovery. The portfolio exposure could be positive or negative, but

only the positive part leads to a loss at default, so the loss at default is denoted as V +(τ).
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The CVA for a time horizon T is the expected exposure at default,

CVA = E[V +(τ)1{τ ≤ T}], (2.2.1)

given a joint law for the default time τ and the exposure V +. Our focus will be on uncertainty

around this joint law, but we first provide some additional details on the problem formulation.

CVA is customarily calculated over a finite set of dates 0 = t0 < t1 < · · · < td = T <

td+1 = ∞; for example, the dates can be monthly or quarterly, or the payment dates of the

underlying contracts. We limit τ to values in {t1, . . . , td, td+1} and let qj , j = 1, . . . , d + 1,

denote the probability that default occurs at tk, or, more precisely that it occurs in the interval

(tk−1, tk]. The distribution of the counterparty’s default time τ may be extracted from credit

default swap spreads, or it may be the result of a more extensive credit risk model — for

example, a stochastic intensity model.

An underlying simulation of market risk factors generates paths of all relevant market

variables and is used to generate exposure paths (V +(t1), . . . , V +(tK)). In our foreign ex-

change example,

V (tj) = e−δtj(1−R) · E[e−δ(T−tj)S(UT −K)/UT |Utj ]

where δ is the discount rate and R is the recovery rate. The expectation gives the expected

exposure of the contract at time tj , and this value is discounted to t0 and adjusted for partial

recovery. The market risk model (in this example the exchange rate dynamics) implicitly
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determines the law of the positive exposure path (V +(t1), . . . , V +(td)), and we denote this

law by a probability measure p on Rd.

Calculating these exposures is a demanding task because it requires valuing all instru-

ments in a portfolio with a counterparty in each market scenario at each date. In addition,

the calculation of each V (tj) needs to account for netting and collateral agreements with the

counterparty and recovery rates if the counterparty were to default. The method we develop

takes these calculations as inputs and assumes the availability of independent copies of the

exposure paths.

LetX denote this vector of positive exposures at the specified dates, and let Y be a vector

of default indicators,

X = (V +(t1), . . . , V +(td)) and Y = (1{τ = t1}, . . . ,1{τ = td}).

The problem of calculating CVA would reduce to the problem of calculating the expectation

of the inner product

< X, Y >=
d∑
j=1

V +(tj)1{τ = tj} = V +(τ)1{τ ≤ T},

if the joint law for X and Y were known.

However the joint law is in general unavailable and difficult to find because of limited

data on the dependence between market and credit risk. With the marginals fixed, we need to

assign a joint probability between X and Y to calculate CVA. As an upper bound, we seek
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to evaluate the worst-case CVA, defined by

CVA∗ := sup
µ∈Π(p,q)

∫
Rd×Rd

< x, y > dµ(x, y), (2.2.2)

where Π(p, q) denotes the set of probability measures on Rd × Rd with marginals p and q.

The characterization of extremal joint distributions with given marginals has a rich his-

tory; see Villani [54] and Rüschendorf [48] for recent treatments with extensive historical

remarks. In the scalar case d = 1, the largest value of (2.2.2) is attained by the comonotonic

construction, which sets X = F−1
p (U) and Y = F−1

q (U), where Fp and Fq are the cumula-

tive distribution functions associated with p and q, and U is uniformly distributed on [0, 1].

The smallest value of (2.2.2) is attained by setting Y = F−1
q (1 − U) instead. In the vector

case, a characterization of joint laws maximizing (2.2.2) has been given by Brenier [16] and

Rüschendorf and Rachev [49]. It states that under an optimal coupling, Y is a subgradient of

a convex function of X , but this provides more of a theoretical description than a practical

characterization. Our setting has the added complication that at least p (and possibly also q)

is itself unknown and only implicitly specified through a simulation model.

2.3 Worst-Case CVA

2.3.1 Estimation

We develop a simulation procedure to estimate (2.2.2). As we noted earlier, generating expo-

sure paths is the most demanding part of a CVA calculation. Our approach essentially reuses
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these paths to bound the potential effect of wrong-way risk at little additional computational

cost.

Let X1, . . . , XN be N independent copies of X , and let Y1, . . . , YN be N independent

copies of Y . Denote their empirical measures on Rd by

pN(·) =
1

N

N∑
i=1

1{Xi ∈ ·}, qN(·) =
1

N

N∑
i=1

1{Yi ∈ ·}, (2.3.1)

For notational simplicity, we will assume that p has no atoms so that, almost surely, there are

no repeated values in X1, X2, . . . . This allows us to identify the empirical measure pN on Rd

with the uniform distribution on the set {X1, . . . , XN} or on the set of indices {1, . . . , N}.

The assumption that p has no atoms is without loss of generality because we can expand the

dimension of X to include an independent, continuously distributed coordinate Xd+1 and

expand Y by setting Yd+1 ≡ 0 without changing (2.2.2).

Observe that Y is supported on the finite set {y1, . . . , yd+1}, with y1 = (1, 0, . . . , 0), . . . , yd =

(0, 0, . . . , 1), and yd+1 = (0, . . . , 0). Each yj has probability q(yj). These probabilities may

be known or estimated from simulation of N independent copies Y1, . . . , YN of Y , in which

case we denote the empirical frequency of each yj by qN(yj).

We will put a joint mass function PN
ij on the set of pairs {(Xi, yj), i = 1, . . . , N ,

j = 1, . . . , d + 1}. We restrict attention to the set Π(pN , qN) of joint mass functions with

marginals pN and qN . We estimate (2.2.2) using

ĈVA∗ = max
PN∈Π(pN ,qN )

N∑
i=1

d+1∑
j=1

PN
ij < Xi, yj > .
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Finding the worst-case joint distribution is a linear programming problem:

max
{Pij}

N∑
i=1

d+1∑
j=1

CijPij, (2.3.2)

subject to
d+1∑
j=1

Pij = 1/N, i = 1, ..., N, (2.3.3)

N∑
i=1

Pij = qN(yj), j = 1, ..., d+ 1 and (2.3.4)

Pij ≥ 0, i = 1, ..., N, j = 1, ..., d+ 1, (2.3.5)

with Cij =< Xi, yj >. Constraint (2.3.3) ensures that the paths X1, . . . , XN of market

factors get equal weight; constraint (2.3.4) ensures that the default-time distribution in the

joint model has the correct marginal distribution. In our running example, we have

Cij = (V i(tj))
+ = e−δtj(1−R) · E+[e−δ(T−tj)S(UT −K)/UT |U i

tj
].

In particular, this has the structure of a transportation problem, for which efficient algorithms

are available, for example a strongly polynomial algorithm; see Kleinschmidt and Schannath

[41]. Bilateral CVA, involving the joint distribution of market exposure and the default times

of both parties, admits a similar formulation.

To better understand the optimal solution joint probability, we can make the following

assumptions: without loss of generality, N is large enough and default time probabilities qj ,

for all j, are properly rounded to be multiple of 1/N . If we let i be row index and j be

column index, there is an optimal solution matrix P ∗ to the above linear program, which,

with proper order of rows, is a block diagonal matrix with nonzero values on the diagonal
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and zeros off the diagonal. This means that default probability is very concentrated for each

market scenario, and each exposure path gets assigned only one possible default time.

2.3.2 Sensitivity

To formulate the dual problem, let ai and bj be dual variables associated with constraints

(2.3.3) and (2.3.4), respectively. The dual problem is then

min
a∈RN ,b∈Rd+1

N∑
i=1

ai/N +
d+1∑
j=1

bjqN(yj)

subject to ai + bj ≥ Cij, i = 1, ..., N, j = 1, ..., d.

The dual variables are useful because they measure the sensitivity of the estimated worst-

case CVA to the marginal constraints. Consider any vector of perturbations (∆q1, . . . ,∆qd+1)

to the mass function qN with components that sum to zero. Suppose these perturbations are

sufficiently small to leave the dual solution unchanged. Then

∆ĈVA∗ =
d+1∑
j=1

bj∆qj.

In particular, we can calculate the sensitivity of the worst-case CVA to a parallel shift in the

credit curve by setting ∆qj = ∆, j = 1, . . . , d, and ∆qd+1 = −d∆, for sufficiently small ∆.

2.3.3 Convergence as N →∞

The solution to the linear program provides an estimate ĈVA∗ based on N simulated paths.

But we are ultimately interested in CVA∗ in (2.2.2), the worst-case CVA based on the true
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marginal laws for market and credit risk, rather than their sample counterparts. We show that

our estimate converges to CVA∗ almost surely as N increases.

Although in our application Y has finite support, we state the following result more

generally. For probability laws p and q on Rd, let pN and qN denote the corresponding

empirical laws in (2.3.1). Let Π(p, q), Π(pN , qN), and Π(pN , q) denote the sets of probability

measures on Rd × Rd with the indicated arguments as marginals.

Theorem 2.3.1. Let X and Y be d-dimensional random vectors with distributions p and q

respectively such that
∫
Rd ‖x‖

2dp(x) <∞, and
∫
Rd ‖y‖

2dq(y) <∞. Then

lim
N→∞

sup
µ∈Π(pN ,qN )

∫
Rd×Rd

< x, y > µ(dx, dy) = lim
N→∞

sup
µ∈Π(pN ,q)

∫
Rd×Rd

< x, y > µ(dx, dy)

= sup
µ∈Π(p,q)

∫
Rd×Rd

< x, y > µ(dx, dy).

The proof follows from results on optimal transport in Villani [54]; see Appendix A.1.

2.4 Robust Formulation with a Relative Entropy Constraint

The linear program (2.3.2)–(2.3.5) provides a simple way to bound the impact of wrong-way

risk and estimate a worst-case CVA, and Theorem 2.3.1 establishes the consistency of this

estimate as the number of paths grows. An attractive feature of this approach is that it reuses

simulated exposure paths that need to be generated anyway to estimate CVA even ignoring

wrong-way risk.

A drawback of the bound CVA∗ is that it may be too pessimistic: the worst-case joint

distribution may be implausible, even if it is theoretically feasible. To address this concern,
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we extend our analysis and formulate the problem of bounding wrong-way risk as a question

of robustness to model uncertainty. By controlling the degree of uncertainty we can temper

the bound on wrong-way risk.

2.4.1 Constrained and Penalized Problems

In this formulation, we start with a reference model for the dependence between the market

and credit models and control model uncertainty by constraining deviations from the refer-

ence model. To be concrete, we will assume that the reference model takes market and credit

risk to be independent, though this is not essential. We use ν to denote the corresponding

element of Π(p, q) that makes X and Y independent; in other words,

ν(A×B) = p(A)q(B),

for all measurable A,B ⊆ Rd. Under this reference model, we have the independent case

CVA given by

CVAν =

∫
Rd×Rd

< x, y > dν(x, y) =

∫
Rd×Rd

< x, y > dp(x)dq(y).

To constrain deviations from the reference model, we need a notion of “distance” be-

tween probability measures. Among the many candidates, relative entropy, also known as

the Kullback-Leibler divergence, is particularly convenient. For probability measures P and

F on a common measurable space and with F >> P , the relative entropy of P to F is
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defined as

D(P |F ) = EF
[
dP

dF
ln

(
dP

dF

)]
=

∫
ln

(
dP

dF

)
dP.

the subscripts indicating the measure with respect to which the expectation is taken. Relative

entropy is frequently used to quantify model uncertainty; see, for example, Hansen and Sar-

gent [35] and Ben-Tal et al. [11]. Relative entropy is not symmetric in its arguments, but this

is not necessarily a drawback because we think of the reference model as a favored bench-

mark. We are interested in the potential impact of deviations from the reference model, but

we do not necessarily view nearby alternative models as equally plausible. Relative entropy

D(P |F ) is convex in P , and this will be important for our application. Also, D(P |F ) = 0

only if P = F .

To find a tempered worst case for wrong-way risk, we maximize CVA with the marginal

models p and q held fixed and with a constraint η > 0 on the relative entropy divergence

from the reference joint model ν:

CVAη := sup
µ∈Π(p,q)

∫
Rd×Rd

< x, y > dµ(x, y), (2.4.1)

subject to
∫

ln(
dµ

dν
)dµ ≤ η. (2.4.2)

At η = 0, the only feasible solution is the reference model µ = ν. At η = ∞, the problem

reduces to the worst-case CVA of the previous section. Varying the relative entropy budget

η thus controls the degree of confidence in the reference model or the degree of wrong-way

risk.

We are actually interested in solving this problem for a range of η values to see how
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the potential impact of wrong-way risk varies with the degree of model uncertainty. For

this purpose, it will be convenient to work with a penalty on relative entropy rather than a

constraint. The penalty formulation with parameter θ > 0 is as follows:

sup
µ∈Π(p,q)

∫
Rd×Rd

< x, y > dµ(x, y)− 1

θ

∫
ln(

dµ

dν
)dµ. (2.4.3)

The penalty term subtracted from the linear objective is nonnegative because relative

entropy is nonnegative. At θ = 0, the penalty would be infinite unless µ = ν; at θ =

∞, the penalty drops out and we recover the worst-case linear program of Section 2.3. A

related problem appears in Bosc and Galichon [15], but without a reference model ν. The

correspondence between the constrained problem (2.4.1)–(2.4.2) and the penalized problem

(2.4.3) is established in the following result, proved in the Appendix A.2:

Proposition 2.4.1. For θ > 0, the optimal solution µθ to (2.4.3) is the optimal solution to

(2.4.1)–(2.4.2) with

η(θ) =

∫
ln(

dµθ

dν
)dµθ. (2.4.4)

The mapping from θ to η(θ) is increasing, and η(θ) ∈ (0, η∗] for θ ∈ (0,∞), where η∗ is

(2.4.4) evaluated at the solution to (2.2.2).

In the following, we write CVAθ instead of CVAη(θ) for θ ∈ (0,∞). To estimate CVAθ,

we form a sample counterpart, modifying the linear programming formulation (2.3.2)–(2.3.5).

We denote the finite sample reference joint probabilities by Fij . In the independent case,
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these are given by Fij = qN(yj)/N , i = 1, . . . , N , j = 1, . . . , d + 1. Let P θ denote the

optimal solution to the following optimization problem:

max
{Pij}

N∑
i=1

d+1∑
j=1

CijPij −
1

θ

N∑
i=1

d+1∑
j=1

Pij ln
(Pij
Fij

)
subject to (2.3.3)-(2.3.5). (2.4.5)

We estimate CVAθ by

ĈVAθ :=
N∑
i=1

d+1∑
j=1

CijP
θ
ij.

In the penalty formulation (2.4.3), if we let θ < 0 and replace sup by inf, we get CVA

with right-way risk, in which case the likelihood of default of the counterparty decreases

with the market value of exposure.

2.4.2 Iterative Proportional Fitting Procedure

The penalty problem (2.4.5) is a convex optimization problem and can be solved using gen-

eral optimization methods. However, the choice of relative entropy for the penalty leads to

a particularly simple and interesting method through the iterative proportional fitting pro-

cedure (IPFP). The method dates to Deming and Stephan [28], yet it continues to generate

extensions and applications in many areas.

To apply the method in our setting, we use as initial guess the N × (d + 1) matrix M θ

with entries

M θ
ij =

eθ·Cij · Fij∑N
i=1

∑d+1
j=1 e

θ·Cij · Fij
.

As before, Fij is the independent joint distribution with prescribed marginals pN and qN ,

which we take as reference model. Each Cij =< Xi, yj > is the loss on market risk path i
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if the counterparty defaults at time tj . With θ > 0, the numerator of M θ
ij puts more weight

on combinations that produce larger losses. In this sense, M θ
ij is designed to emphasize

wrong-way risk.

The denominator of M θ
ij normalizes the entries to sum to 1, but M θ will not in general

have the target marginals. The IPFP algorithm projects a matrixM with positive entries onto

the set of joint distribution matrices with marginals pN and qN by iteratively renormalizing

the rows and columns as follows:

(r) For i = 1, . . . , N and j = 1, . . . , d+ 1, set Mij ←MijpN(i)/
∑d+1

k=1Mik.

(c) For j = 1, . . . , d+ 1 and i = 1, . . . , N , set Mij ←MijqN(j)/
∑N

n=1 Mnj .

This iteration is also known as biproportional scaling, Sinkhorn’s algorithm, and the RAS

algorithm; see Pukelsheim [45] for an overview of the extensive literature on the theory and

application of these methods.

Write Φ(M) for the result of applying both steps (r) and (c) to M , and write Φ(n) for the

n-fold composition of Φ. For our setting, we need the following result:

Proposition 2.4.2. The sequence Φ(n)(M θ), n ≥ 1, converges to the solution P θ to (2.4.5).

Proof. It follows from Ireland and Kullback [39] that Φ(n)(M θ) converges to the solution of

min
P

N∑
i=1

d+1∑
j=1

Pij ln

(
Pij
M θ

ij

)
subject to (2.3.3)-(2.3.5).

In other words, the IPFP algorithm converges to the feasible matrix (in the sense of (2.3.3)-

(2.3.5)) that is closest to the initial matrix in the sense of relative entropy. For our particular
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choice ofM θ, this minimization problem has the same solution as the maximization problem

max
P

θ

N∑
i=1

d+1∑
j=1

CijPij −
N∑
i=1

d+1∑
j=1

Pij ln(
Pij
Fij

)−WN
θ subject to (2.3.3)-(2.3.5),

with WN
θ = ln

(∑N
i=1

∑d+1
j=1 e

θ·Cij · Fij
)

. This follows directly from the definition of M θ.

Because WN
θ does not depend on P , this maximization problem has the same solution as

(2.4.5). �

With θ < 0, the limit of IPFP algorithm solves the penalty problem (2.4.5) with max

replaced by min, corresponding to right-way risk in the sense that it minimizes the CVA

subject to the marginal constraints and the penalty on deviations from the reference model.

To summarize, we start with the reference model Fij , put more weight on adverse out-

comes to get M θ
ij , and then iteratively renormalize the rows and columns of M θ to match

the target marginals. This procedure converges to the penalized worst-case joint distribution

defined by (2.4.5) with penalty parameter θ.

2.4.3 Sensitivity Through Dual Variables

Consider the dual of the convex optimization problem in (2.4.5),

min
a∈RN ,b∈Rd+1

N∑
i=1

ai/N +
d+1∑
j=1

bjqN(yj) +
1

θ

N∑
i=1

d+1∑
j=1

Fije
θ(Cij−ai−bj). (2.4.6)

Let (a∗, b∗) denote the optimal dual solution, and consider a vector of small perturbations

(∆q1, . . . ,∆qd+1) to the marginal distribution qN with components that sum to zero. For

perturbations small enough to keep the dual solution unchanged, we can estimate the change
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in CVA, without resolving problem (2.4.5), using

∆ĈVAθ =
d+1∑
j=1

bj∆qj.

We can calculate the sensitivity to a parallel shift in the credit curve by setting ∆qj = ∆,

j = 1, . . . , d, and ∆qd+1 = −d∆, for sufficiently small ∆.

The dual solution can be obtained as a byproduct of the IPFP algorithm. The optimal

primal solution takes the form P θ
ij = Fije

θ(Cij−a∗i−b∗j ), where a∗ and b∗ are optimal dual

variables, so we can define scalars ui and vj such that

P θ
ij =

Mijw

uivj
,

where w = Fij
∑N

i=1

∑d+1
j=1 e

θ·Cij is the normalization term in Mij .

Let ri(n) be the i-th row sum of Φ(n)(M) and let cj(n) be the j-th column sum of

Φ(n)(M) after step (r) in the (n+ 1)-th iteration. By Pukelsheim [45],

ui = lim
n→∞

n∏
t=0

( ri(t)

pN(Xi)

)
and vj = lim

n→∞

n∏
t=0

( cj(t)

qN(yj)

)
.

The optimal dual variables are then given by a∗i = 1
θ

ln(ui)+
1
2

lnw and b∗j = 1
θ

ln(vj)+
1
2

lnw.

2.4.4 Convergence as N →∞

We now formulate a convergence result as the number of paths N increases. As before, let

Π(p, q) denote the set of probability measures on Rd×Rd with marginals p and q. Let pN , qN
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denote the empirical measures in (2.3.1), and let Π(pN , qN) denote the set of joint laws with

these marginals. The independent joint distributions are ν ∈ Π(p, q) and νN ∈ Π(pN , qN);

i.e., dν(x, y) = dp(x)dq(y) and dνN(x, y) = dpN(x)dqN(y).

Fix θ > 0 and define, for a probability measure µ on Rd × Rd,

G(µ, ν) =

∫
< x, y > dµ− 1

θ
D(µ|ν),

and define G(µ, νN) accordingly. To show that our simulation estimate of the penalized

worst-case CVA converges to the true value, we need to show that

∫
< x, y > dµ∗N →

∫
< x, y > dµ∗, a.s. (2.4.7)

where µ∗N ∈ Π(pN , qN) maximizes G(·, νN) and µ∗ ∈ Π(p, q) maximizes G(·, ν).

Theorem 2.4.1. Suppose the random vectors X and Y satisfy Eν [eθ<X,Y >] <∞ and that Y

has finite support. The following hold as N →∞.

1. max
µ∈Π(pN ,qN )

G(µ, νN) −→ sup
µ∈Π(p,q)

G(µ, ν), a.s.

2. The maximizer µ∗N ∈ Π(pN , qN) of G(·, νN) converges weakly to a maximizer µ∗ ∈

Π(p, q) of G(·, ν).

3. The penalized worst-case CVA converges to the true value, a.s.; i.e., (2.4.7) holds.

The proof is in Appendix A.3.
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2.5 Examples

2.5.1 A Gaussian Example

For purposes of illustration we begin with a simple example in whichX and Y are scalars and

normally distributed. This example is not intended to fit the CVA application but to illustrate

some features of the penalty formulation. It also lends itself to a simple comparison with a

Gaussian copula, which is another way of introducing dependence with given marginals.

Suppose then that X and Y have the standard normal distribution on R. Paralleling the

definition of the matrix M θ, consider the bivariate density

f0(x, y) = c′eθxyp(x)q(y) = ce−
1
2
x2− 1

2
y2+θxy, (2.5.1)

where c′ and c are normalization constants. This density weights the independent joint den-

sity at (x, y) by exp(θxy), so the product xy plays the role that Cij plays in the definition of

M θ.

The reweighting changes the marginals, so now we want to use a continuous version

of the IPFP algorithm to project f0 onto the set of bivariate densities with standard normal

marginals. The generalization of the algorithm from matrices to measures has been analyzed

in Rüschendorf [47]. The row and column operations become

f̂n(x, y)← fn(x, y)p(x)

/∫
fn(x, y) dy
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and

fn+1(x, y)← f̂n(x, y)q(y)

/∫
f̂n(x, y) dx .

An induction argument shows that

fn(x, y) = cne
−a

2
n
2
x2−a

2
n
2
y2+θxy,

for constants cn and an, so each fn is a bivariate normal density. Then an satisfies

a2
n =

(
1 +

θ2

a2
n−1

)
→ 1

2
+

1

2

√
1 + 4θ2, as n→∞.

Some further algebraic simplification then shows that the limit is a bivariate normal density

with standard normal marginals and correlation parameter

ρ =
2θ

1 +
√

1 + 4θ2
, θ =

ρ

1− ρ2
. (2.5.2)

This is the bivariate distribution with standard normal marginals that maximizes the expec-

tation of XY with a penalty parameter of θ on the deviation from independence as measured

by relative entropy.

Observe that ρ = 0 when θ = 0; ρ → 1 as θ → ∞; and ρ → −1 as θ → −∞.

Because θ penalizes deviations from independence, it controls the strength of the dependence

between X and Y . The relationship between ρ and θ allows us to reinterpret the strength of

dependence as measured by θ in terms of the correlation parameter ρ. This is somewhat

analogous to the role of a correlation parameter in the Gaussian copula, where it measures
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the strength of dependence but is not literally the correlation between the marginals except

when the marginals are normal.

The fact that the IPFP algorithm projects f0 to a bivariate normal is a specific feature of

the weight exp(θxy) in (2.5.1). For contrast, we consider the weight exp(θx2y). The result-

ing f0 is no longer integrable for θ > 0, so we work instead with truncated and discretized

marginal distributions and apply the IPFP numerically. The result is shown in Figure 2.1.

The resulting density has nearly standard normal marginals (up to truncation and discretiza-

tion), but the joint distribution is clearly not bivariate normal.
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Figure 2.1: Probability mass of joint truncated and discretized normal random variables X
and Y , with θ = 1 and initial weight exp(θx2y).

The dependence illustrated in the figure is beyond the scope of the Gaussian copula be-

cause any joint distribution with Gaussian marginals and a Gaussian copula must be Gaus-

sian. This example thus illustrates the broader point that our approach generates a wider

range of dependence than can be achieved with a specific type of copula. For examples of
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wrong-way risk CVA models based on the Gaussian copula, see Brigo et al. [18], Hull and

White [37], and Rosen and Saunders [46].

2.5.2 The Currency Swap Example

In this section, we apply the method on the example in Section 2.2. We take T = 10 years,

divide time into 20 time steps, and simulate 1000 market scenarios. Expected exposures are

adjusted for recoveries and discounted. The sample average positive expected exposure is

shown in Figure 2.2. For illustrative purpose, we assume that the counterparty’s default time

has an exponential distribution with hazard rate λ = 0.04. We use the following parameters:

(Ut0 , Ū ,K, κ, σ, λ, δ, S) = (1000, 1000, 1000, 0.3, 50, 0.04, 0.03, 106).
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Figure 2.2: Sample Average Positive Exposure

Figure 2.3 shows a CVA stress test for wrong-way risk. It plots CVA against the penalty

parameter θ. The numbers are normalized by dividing by the independent market-credit risk

CVA, so the independent case θ = 0 is presented as 100%. As θ increases, the positive

dependence between market and credit risk increases, approaching the worst-case bound,

which is over six times as large as the independent CVA. For θ < 0, we have right-way risk,
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and the CVA bound approaches zero as θ decreases. The parameter θ could be rescaled using

the transformation in (2.5.2) to allow a rough interpretation as a correlation parameter.
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Figure 2.3: CVA Stress Test

The Gaussian copula provides a simple alternative way to vary dependence and measure

wrong-way risk; see Rosen and Saunders [46] for details and applications. Figure 2.4 shows

how wrong-way risk varies in the Gaussian copula model as the correlation parameter ρ

varies from −1 to 1. Comparison with Figure 2.3 shows that constraining dependence to

conform to a Gaussian copula significantly underestimates the potential wrong-way risk.
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Figure 2.4: CVA Stress Test by Gaussian Copula Method

In Figure 2.5, we show the impact of varying the foreign exchange volatility σ, and the

counterparty default hazard rate. Increasing either of these parameters shifts the curve up for

θ > 0. In other words, increasing the volatility of the market exposure or the level of the
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credit exposure in this example increases the potential impact of wrong-way risk, relative to

the benchmark of independent market and credit risk.
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Figure 2.5: CVA with different volatility and hazard rate

2.5.3 Portfolio CVA

We next consider a 10 year fixed-for-floating cross currency swap, in which a U.S. bank

receives a fixed rate in dollars and pays a floating rate in foreign currency, with a notional

size of $5 million. At the same time, this U.S. bank enters a 3 year and a 6 year foreign

exchange forward contract with the same counterparty in the same currency, each with a

notional of $0.5 million. We use the Vasicek model for U.S. interest rate,

drt = κr(r̄ − rt)dt+ σrdW̃t,

with parameter values (r0, r̄, σr, κr) = (0.05, 0.05, 0.0005, 0.8).

We consider three different portfolios for the U.S. bank with the same counterparty. The

first two portfolios contain multiple transactions of different maturities. The third one con-

tains a single transaction with multiple cash flows.
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Portfolio 1 : $5 million 10 year cross currency swap, $0.5 million 3 year and 6 year foreign

exchange forwards. The U.S. bank is the U.S. dollar receiver in all transactions.

Portfolio 2 : $5 million 10 year cross currency swap, $0.5 million 3 year and 6 year foreign

exchange forwards. The U.S. bank is the U.S. dollar receiver in the cross currency

swap and the U.S. dollar payer in the 3 year and 6 year forward contracts.

Portfolio 3 : A simple interest rate swap with notional size $5 million. The U.S. bank re-

ceives the floating rate and pays a fixed rate rfix = 5%.

The sample average positive exposures for these three portfolios are shown in Figure 2.6.

In the top two panels, the average positive exposure increases with time because the largest

payments are exchanged at maturity. For portfolio 1, the drop in exposure at year 3 and

year 6 results from the expiration of the foreign exchange forward contracts. For portfolio

2, since the portfolio is more balanced, the exposure path is smoother. In the bottom panel,

for portfolio 3, the average positive exposure decreases to 0 at maturity because the total

exposure decreases with time in an interest rate swap.

Figure 2.7 shows CVA values as θ varies. We report CVA as a percentage of the portfolio

2 CVA in the independent case. Portfolio 1 has the greatest sensitivity to wrong-way risk

because all its transactions run in the wrong-way direction. Portfolio 2 is better diversified,

with both wrong-way and right-way transactions. Because the average positive exposure

for portfolio 1 is higher than that of portfolio 2, it has a higher CVA for all θ, and with θ

increasing, portfolio 1 attains much higher CVA values near the worst-case bound than does

the more diversified portfolio 2. For portfolio 3, because of its lower and less concentrated

positive exposure, the CVA bound is much lower compared with the other two portfolios.
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Figure 2.6: Sample Average Positive Exposures for Three Portfolios.

−10 −8 −6 −4 −2 0 2 4 6 8 10
  0%

100%

200%

300%

400%

500%

600%

700%

800%

Penalty parameter, θ

 

 
Portfolio 1
Portfolio 2
Portfolio 3

Figure 2.7: CVA Bounds for Three Portfolios.

Figure 2.8 shows the sensitivity of the CVA estimates to a change in the counterparty’s

default hazard rate. We increase the hazard rate by 1 basis point from λ = 0.04 to λ′ =

0.0401 and show the estimated change in CVA using dual variables and the actual difference
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based on resolving the optimization problem at each θ. To put these sensitivities in perspec-

tive, the CVA estimate at θ = 0 is $11,241, and at θ = 20, it is $62,659. The sensitivities

in Figure 2.8 are in dollars. Overall, the dual variables provide good estimates of the change

in CVA under a small change in the default probability. Compared with resolving the op-

timization problem at the perturbed λ, the dual variables slightly underestimate the change

in wrong-way scenarios (θ > 0) and overestimate the change in the right-way scenarios

(θ < 0).
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Figure 2.8: Change in CVA for a 1 basis point change in hazard rate at various levels of the
penalty parameter θ.

2.6 Adding Expectation Constraints

When additional information is available, we can often improve our CVA bound by incor-

porating the information through constraints on the optimization problem. Constraints on

expectations are linear constraints on joint distributions and thus particularly convenient in

our framework.

Recall that we think of the exposure path X as the output of a simulation of a mar-

ket model. Such a model generates many other market variables, and in specifying the
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joint distribution between the market and credit models, we may want to add constraints

through other variables. Constraints represent relationships between market and credit risk

that should be preserved as the joint distribution varies. To incorporate such constraints, we

expand the simulation output from X to (X,Z), where the random vector Z = (Z1, . . . , Zd)

represents a path of auxiliary variables. The joint law of (X,Z) is determined by the market

model. We want to add a constraint of the form E[Zτ1{τ ≤ td}] = z0, for given z0, when

the expectation is taken with respect to the joint law of the market and credit models. This is

a constraint on the expectation of < Z, Y >.

As a specific illustration, suppose Z̃ is a martingale generated by the market model and

we want to impose the constraint E[Z̃τ∧td ] = z0 on the joint law of Z̃ and τ . This is equivalent

to the constraint E[(Z̃td − Z̃τ )1{τ ≤ td}] = 0, so we can define Zj = Z̃d− Z̃j , j = 1, . . . , d,

and then impose the constraint E[< Z, Y >] = 0.

To incorporate constraints, we redefine p to denote the joint law of (X,Z) on Rd × Rd;

we continue to use q for the marginal law of Y . Let Π(p, q) be the set of probability measures

on (Rd×Rd)×Rd with the specified marginals of (X,Z) and Y . We denote by hX(x, z) = x

and hZ(x, z) = z the projections of (x, z) to x and z respectively. Set

Π̄(p, q) = {µ ∈ Π(p, q) :
∫

< hZ(x, z), y > dµ((x, z), y) = v0}. (2.6.1)

We will assume that Π̄(p, q) is nonempty so that the problem is feasible.

Given independent samples (Xi, Zi), i = 1, . . . , N , let pN denote their empirical mea-

sure. As before qN denotes the empirical measure for N independent copies of Y . Even if

Π̄(p, q) is nonempty, we cannot assume that the equality constraint in (2.6.1) holds for some
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element of Π(pN , qN), so for finite N we will need a relaxed formulation. Let Πε(pN , qN)

denote the set of joint distributions on {((Xi, Zi), yj), i = 1, . . . , N, j = 1, . . . , d + 1} with

marginals pN and q̃, where

max
1≤j≤d+1

|qN(yj)− q̃(yj)| < ε,

and define

Π̄ε(pN , qN) =

{
µ ∈ Πε(pN , qN) :

∣∣∣∣∫ < hZ(x, z), y > dµ((x, z), y)− v0

∣∣∣∣ < ε

}
. (2.6.2)

In our convergence analysis, we will let ε ≡ εN decrease to zero as N increases.

Let ν ∈ Π(p, q) denote the independent case dν((x, z), y) = dp(x, z)dq(y), and let

νN ∈ Π(pN , qN) denote the independent case dνN((x, z), y) = dpN(x, z)dqN(y). We will

assume that v0 is chosen so that ν ∈ Π̄(p, q). It then follows that νN ∈ Π̄ε(pN , qN) for all

sufficiently large N , for all ε > 0.

The worst-case CVA with an auxiliary constraint on Z is

c∞ = sup
µ∈Π̄(p,q)

∫
(Rd×Rd)×Rd

< hX(x, z), y > dµ((x, z), y) (2.6.3)

The corresponding estimator is

cN,ε = max
µ∈Π̄ε(pN ,qN )

N∑
i=1

d+1∑
j=1

< Xi, yj > µ((Xi, Zi), yj). (2.6.4)
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This is a linear programming problem: the objective and the constraints are linear in the

variables µ((Xi, Zi), yj). The following result establishes convergence of the estimator.

Theorem 2.6.1. Suppose the following conditions hold:

(i)
∫
Rd×Rd ‖hX(x, z)‖2dp(x, z) <∞ and

∫
Rd×Rd ‖hZ(x, z)‖2dp(x, z) <∞;

(ii) Π̄(p, q) contains the independent joint distribution ν.

Then with εN = 1/Nα for any α ∈ (0, 1/2), the finite sample estimate converges to the

constrained worst-case CVA for the limiting problem; i.e., cN,εN → c∞, a.s.

We define a penalty formulation with θ > 0 for the limiting problem,

sup
µ∈Π̄(p,q)

G(µ, ν) = sup
µ∈Π̄(p,q)

∫
(Rd×Rd)×Rd

< hX(x, z), y > dµ((x, z), y)− 1

θ
D(µ|ν),

and with (2.6.2) for the finite problem,

max
µ∈Π̄ε(pN ,qN )

G(µ, ν) = max
µ∈Π̄ε(pN ,qN )

N∑
i=1

d+1∑
j=1

< hX(Xi, Zi), yj > µN((Xi, Zi), yj)−
1

θ
D(µN |νN).

The corresponding convergence result given by the following theorem.

Theorem 2.6.2. Suppose the following conditions hold:

(i)
∫
Rd×Rd ‖hX(x, z)‖2dp(x, z) <∞,

∫
Rd×Rd ‖hZ(x, z)‖2dp(x, z) <∞, and

Eν [eθ<hX(X,Z),Y >] <∞;

(ii) Π̄(p, q) contains the independent joint distribution ν.

Then with εN = 1/Nα for any α ∈ (0, 1/2), the following hold,



42

1. max
µ∈Π̄εN (pN ,qN )

G(µ, νN) −→ sup
µ∈Π̄(p,q)

G(µ, ν), a.s.

2. The maximizer µ̄∗N ∈ Π̄εN (pN , qN) of G(·, νN) converges weakly to a maximizer µ̄∗ ∈

Π̄(p, q) of G(·, ν).

3. The penalized worst-case CVA converges to the true value, a.s.; i.e.,

∫
< x, y > dµ̄∗N →

∫
< x, y > dµ̄∗, a.s. (2.6.5)

2.7 Bilateral CVA

In previous sections, the CVA bound we discussed is for unilateral CVA. In this section we

show that this methodology extends easily to bilateral CVA.

We keep the existing notations, and in addition let τs denote the default time of the agent

itself. Then the bilateral CVA for a time horizon T is the expected positive exposure at the

default of the counterparty, which happens before the default of the agent itself,

BCVA = E[V +(τ)1{τ ≤ τs ∧ T}],

given joint law for the default times τ and τs, and the exposure V +(t).

There are two ways to approach this problem with different levels of information. If the

joint distribution of the counterparty’s default time τ and the agent’s self-default time τs is

known, or if it is the result of a more extensive credit model, then we define

X = (V +(t1), . . . , V +(td)) and Y = (1{τ = t1, τs ≥ t1}, . . . ,1{τ = td, τs ≥ td}).
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Note that Y has the support of the finite set {y1, . . . , yd+1}, with y1 = (1, 0, . . . , 0), . . . , yd =

(0, 0, . . . , 1), and yd+1 = (0, . . . , 0). Each yj has probability q(yj) = P (τ = tj, τs ≥ tj) for

j = 1, ..., d, and q(yj) = 1−
∑d

k=1 q(yj) for j = d + 1. These probabilities may be known

or estimated from simulation of N independent copies Y1, . . . , YN of Y , in which case we

denote the empirical frequency of each yj by qN(yj). Then the bilateral CVA formulation for

the worst-case and penalty case follow the same as earlier discussed, except for the changes

in Y ’s definition and marginal.

The joint distribution of default times of both parties is usually not available. In a more

general case, we define

X = (V +(t1), . . . , V +(td)) , Y = (1{τ = t1}, . . . ,1{τ = td}),

and

W = (1{τs ≥ t1}, . . . ,1{τs ≥ td}).

The problem of calculating bilateral CVA reduce to the problem of calculating the ex-

pectation of the following function,

C(X, Y,W ) ≡
d∑
j=1

XjYjWj =
d∑
j=1

V +(tj)1{τ = tj}1{τs ≥ tj} = V +(τ)1{τ ≤ τs ∧ T},

if the joint law for X , Y and W were known.

We continue to use p and q to denote the marginal law of X and Y , and let qs to denote

marginal of W . Furthermore, note that W is supported on the finite set {w1, . . . , wd}, with

w1 = (1, 0, . . . , 0), w2 = (1, 1, 0, . . . , 0), . . . wd = (1, 1, . . . , 1). Each wj has probability
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qs(wj) = P (τs = tj) for j = 1, ..., d − 1 and qs(wj) = P (τs ≥ tj) for j = d. Define

Π(p, q, qs) to be the set of probability measures on Rd×Rd×Rd with marginals p, q and qs.

With marginals fixed but the joint law unknown, we define the worst-case bilateral CVA

by

BCVA∗ := sup
µ∈Π(p,q,qs)

∫
Rd×Rd×Rd

C(x, y, w)dµ(x, y, w). (2.7.1)

We extend the CVA formulation to 3-dimensional, by including the self-default time of

the agent, for bilateral CVA. IPFP algorithm still applies to the tempered bilateral CVA.

2.8 Concluding Remarks

We have focused in this chapter on the problem of bounding wrong-way risk in CVA cal-

culation, taking the marginal models for market and credit risk as given and varying the

dependence between the two. Put more generally, the problem we have addressed is one of

bounding the expected inner product between two random vectors with fixed marginals. A

key feature of our setting is that these marginals need not be known explicitly. Instead, they

are outputs of the simulation of potentially very complex models, of the type used to model

asset prices and default times.

Calculating the worst-case bound for the exact marginal distributions is typically infea-

sible. But using simulated outcomes, the problem reduces to a tractable linear program-

ming problem. We extend this formulation by penalizing deviations from a reference model,
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which results in a convex optimization problem. In both cases, we prove convergence of

the solutions calculated from simulated outcomes to the corresponding solutions using exact

distributions as the sample size grows. The approach is sufficiently general and flexible to

be applicable to many other settings in which the nature of dependence between different

model components is unknown.

An important practical problem is the choice of the penalty parameter θ, which reflects

the user’s confidence in the reference model. A large θ leads to more conservative values;

a small θ produces values very close to the reference model. Inevitably, the choice of θ

involves some judgment. However, this judgment is best anchored in observable data. In

our examples, each value of θ implies some level of correlation between the exchange rate

and the credit spread for the counterparty. This correlation is a limited measure that cannot

determine the full dependence between the market and credit risk models, but it can help pin

down an appropriate value for θ.
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Chapter 3

Realization Utility with Adaptive

Reference Point

3.1 Introduction

In neoclassical finance, investors trade financial assets to maximize their utility of con-

sumption or utility of terminal wealth. Optimal trading in this regard has been studied for

decades. Recently, it has been found that in addition to intermediate consumption and termi-

nal wealth, investors are also sensitive to trading gains and losses; see for example Barberis

and Huang [4], Barberis and Xiong [6] and Ingersoll and Jin [38].

Realization utility is first explicitly modeled by Barberis and Xiong [6]. They assume that

investors think of their investing experience as a series of separate episodes, and they receive

utility burst when a gain or a loss is realized. Assuming a piecewise linear realization utility

function, the authors find that the investors never voluntarily sell a stock at a loss. Ingersoll
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and Jin [38] extend the model by assuming an S-shaped realization utility function and find

that the investors voluntarily sell a stock both at a gain and at a loss.

In this chapter, we extend the works by Barberis and Xiong [6] and Ingersoll and Jin [38]

in two aspects: First, in addition to realization utility, the agent in our model also experiences

utility from her terminal wealth. The terminal wealth utility is modeled by the expected

utility theory. Second, the reference point that decides whether a payoff is experienced by

the agent as a gain or as a loss is assumed to adapt to the stock’s prior gain and loss, and the

adaptation to the gain is more than to the loss. By contrast, Ingersoll and Jin [38] assume

the reference point to be fixed at the purchase price, and Barberis and Xiong [6] assume the

reference point to be the purchase price growing at the risk-free rate. Experimental evidence

in Baucells et al. [9] and Arkes et al. [1, 2] reveals that when selling a stock, most investors

choose their reference points to be the purchase price plus a portion of the prior paper gain

and loss of the stock. Moreover, the reference point adapts more to a prior gain than to a

prior loss. Therefore, our model is more consistent with individuals’ behavior observed in

the literature.

We assume that the agent can trade one risk-free asset and multiple stocks with the same

constant expected return and volatility, but she can only invest in one of these assets at one

time. In other words, the agent can only switch her position between the risk-free asset and

a stock. We formulate the agent’s trading problem as an optimal stopping problem. We

first provide sufficient and necessary conditions under which the optimal value of the agent’s

trading problem is finite. We then find the optimal purchase time of the stock: the agent

either immediately or never re-purchases the stock after selling it. We also prove that it is
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optimal to hold the stock if it is already at a deep loss. Finally, we prove that the value

function of the trading problem is the unique solution to a variational inequality, and we

develop an efficient algorithm to solve the value function and the optimal trading strategy.

In the study of trading strategies and asset pricing, we distinguish two types of agents:

adaptive agents and naive agents. An adaptive agent knows today that her reference point

in the future will adapt to the prior gain and loss of the stock, and thus knows today that

the gain and loss she will experience in the future will change accordingly. When making

decisions today, the adaptive agent already takes this knowledge into account. For a naive

agent, her reference point in the future will also adapt to the stock’s gain and loss, but she

doesn’t realize it prospectively: the naive agent wrongly believes that her reference point will

remain constant over time. Therefore, the naive agent plans her trading strategy based on this

wrong belief. At each time in the future, however, the naive agent realizes retrospectively that

her reference point has changed, but she still fails to realize prospectively that her reference

point will continue to adapt to the stock’s gain and loss. Because the reference point has

changed, when re-examining the trading problem, the naive agent finds that the strategy that

was planned before is no longer optimal and thus changes to a new strategy. As time goes

by, the naive agent changes her strategy constantly.

Note that the inconsistency in the liquidation strategy between the selves of the naive

agent at different times arises from the adaptation of the reference point to the stock’s gain

and loss. Inconsistent dynamic decisions have been extensively observed and studied in the

literature as a result of hyperbolic discounting (O’Donoghue and Rabin [43]), probability

weighting (Barberis [3]), and mean-variance criteria (Basak and Chabakauri [7]). As far as
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we know, our work is the first one to show that time-varying reference points can also lead

to dynamic inconsistency. The naive agent studied in this dissertation is similar to those

considered in the dynamic inconsistency literature.

We have the following three main findings in the trading strategies of the adaptive and

naive agents: First, the adaptive agent sells the stock more (less) frequently when the stock

is at a gain (at a loss) than the naive agent does. When comparing to a non-adaptive agent

whose reference point does not adapt to the stock’s gain and loss, the naive agent sells the

stock less frequently both at a gain and at a loss. The adaptive agent sells the stock at a loss

less frequently than the non-adaptive agent does as well.

Second, when the reference point adapts more to stock’s gain, the naive agent sells the

stock at a gain less frequently because she actually experiences less gain for the same amount

of increase in stock’s price. The naive agent’s selling policy when the stock is at a loss,

however, is unaffected. Similarly, when the reference point adapts more to the stock’s loss,

the naive agent sells the stock at a loss less frequently, but the selling policy at a gain does not

change. For the adaptive agent, when the reference point adapts more to the stock’s gain, she

sells the stock at a loss less frequently. When the reference point adapts more to the stock’s

loss, the adaptive agent sells the stock at a loss more frequently, which is the opposite to the

behavior of the naive agent.

Third, when becoming more concerned with the terminal wealth utility, both the adaptive

and naive agents sell the stock less frequently both at a gain and at a loss. In the extreme

case in which the agents are only concerned with their terminal wealth utility, they will never

trade the stock because trading incurs transaction costs without improving wealth (because
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the stock’s expected return and volatility are assumed to be constant). Therefore, trading is

generated in our model because of realization utility.

We also study asset pricing implications of our model. For each stock in the market, we

define the equilibrium risk premium of the stock as the expected excess return such that the

investors in the market are indifferent between the stock and the risk-free asset. We consider

two markets: one with investors that are homogeneous adaptive agents, and the other with

investors that are homogeneous naive agents. We have four main findings: First, adaptive

agents require a higher risk premium than naive agents do.

Second, when the reference point adapts more to the stock’s gain, the adaptive agent asks

for a higher risk premium for the stock because the same increase in the stock price leads

to less realization utility in this case. Similarly, when the reference point adapts more to the

stock’s loss, the stock is rewarded with a lower risk premium because the same decrease in

the stock price yields less realization disutility. On the other hand, the risk premium required

by the naive agent is insensitive to the degree to which the reference point adapts to the

stock’s gain or loss. This is because the naive agent does not realize prospectively that her

reference point will change in the future. As a result, when buying the stock, the value of the

stock from the naive agent’s perspective does not depend on how the reference point actually

changes in the future.

Third, the risk premium becomes higher when the naive and adaptive agents become

more concerned with the terminal wealth utility. This is because both agents become more

risk averse in this case.

Fourth, the risk premium can be positive or negative and can be increasing or decreas-
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ing with respect to the stock volatility, depending on the type of agents in the market and

on model parameter values. Thus, our model can generate different patterns of return-risk

tradeoffs for stocks.

The remainder of this chapter is organized as follows: In Chapter 3.2, we propose our

model and formulate the trading problem. In Chapter 3.3, we solve the trading problem. In

Chapter 3.4, we compare the trading strategies of the naive and adaptive agents and study

the sensitivity of the strategies with respect to model parameters. In Chapter 3.5, we study

the asset pricing implications of our model. Chapter 3.6 provides extensions of our model

and Chapter 3.7 concludes. Appendix B contains all the proofs and Appendix C provides the

algorithm used to solve the trading problem.

3.2 Model

Consider an agent who makes a sequence of purchase and sale decisions to take positions in

stocks. Following Barberis and Xiong [6] and Ingersoll and Jin [38], we assume that at any

time the agent can invest her money only in one of the stocks or in a risk-free asset. In other

words, the agent does not diversify her portfolio and only decides in which asset she invests

her money.

The risk-free rate is assumed to be constant r. The prices of the stocks that the agent can

trade are assumed to follow geometric Brownain motions with the same appreciation rate µ

and volatility σ (though the prices can be driven by different Brownain motions). Because

the agent can invest only in one asset at one time, we can simply assume that the agent

can only trade one stock with price dynamics dSt = µStdt + σStdWt, where {Wt}t≥0 is a
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standard Brownian motion. Note that this setting is the same as in Barberis and Xiong [6]

and Ingersoll and Jin [38].

We assume a proportional transaction cost kp of buying the stock and a proportional

transaction cost ks of selling the stock. Consequently, x dollars to be invested in the stock

becomes x/(1 + kp) dollars value of stock after the purchase cost is deducted and y dollars

value of the stock position becomes y(1 − ks) dollars after the position is liquidated. We

assume no transaction cost of buying and selling the risk-free asset.

The investment horizon of the agent is a Poisson shock time τ̃ that is independent of the

Brownain motion {Wt}t≥0 that drives the stock price. In other words, τ̃ is exponentially dis-

tributed and we assume its rate parameter to be ρ. Consequently, the mean of the investment

horizon is 1/ρ. When the shock time arrives, the agent has to liquidate all the assets she

holds.

In the following, we denote Ft as the information available at time t, i.e., Ft is the σ-

algebra generated by Ws and 1{τ̃>s}, s ≤ t, and denote Et as the expectation conditioning

on Ft.

The agent experiences the utility of her wealth at the end of the investment horizon.

In addition, the agent also experiences realization utility every time she sells the stock, no

matter the sale is voluntary before the shock time τ̃ or is forced at τ̃ . We use expected utility

theory (EUT) to model the terminal wealth utility. Suppose the current time is t and the

wealth at τ̃ > t is X , then the utility of this wealth is defined to be Et[e−δ(τ̃−t)UW (X)],
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where

UW (x) = θxβ. (3.2.1)

Here, δ > 0 is a discount factor for utility and β ∈ (0, 1] determines the relative risk aversion

of the agent regarding random wealth. Later on, we will aggregate the terminal wealth utility

and realization utility by adding them together, so parameter θ ≥ 0 represents the relative

weight of the terminal wealth utility to the latter. If θ = 0, the agent does not experience

terminal wealth utility, and if θ → +∞, realization utility disappears.

On the other hand, we use cumulative prospect theory (CPT; Tversky and Kahneman

[40, 53]) to model realization utility. Suppose the current time is t and the agent sells the

stock at τ > t. Then, the realization utility of this sale is Et[e−δ(τ−t)U(Gτ−, Rτ−)]. Here,

we use the same discount factor δ as for the discounting of the terminal wealth utility. Gτ−

stands for the gain and loss experienced by the agent for realization utility when she sells

the stock at τ , and Rτ− is the reference point the agent uses at τ to determine that gain and

loss. The function U is S-shaped with respect to G and satisfies U(0, R) = 0, as suggested

in CPT. We will model Gτ− and Rτ− momentarily.

Let Xt be the agent’s wealth, i.e., the book value of the agent’s position in the stock or

in the risk-free asset. Between a purchase time ζi of the stock and the following sale time τi,

Xt grows in the same way as the stock price, i.e.,

dXt = µXt dt+ σXt dWt, t ∈ [ζi, τi).
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Between a sale time τi of the stock and the following purchase time ζi+1, Xt grows at the

risk-free rate, i.e.,

dXt = rXt dt, t ∈ [τi, ζi+1).

Furthermore, {Xt} jumps downwards at each purchase and sale times due to the transaction

cost, i.e.,

Xζi =
1

1 + kp
·Xζi−, Xτi = (1− ks) ·Xτi−.

Note that we choose the right-continuous version of X , so if there is a purchase or sale at t,

Xt and Xt− stand for the agent’s wealth after and before the transaction cost being deducted,

respectively.

Next, let us specify the reference point and the gain and loss of the agent at each sale

time. Denote Pt as the purchase price at the latest purchase time prior to t, i.e., Pt := Xζi

for t ∈ [ζi, ζi+1) and two consecutive purchase times ζi < ζi+1. Ingersoll and Jin [38]

assume that the agent uses the purchase price Pt as the reference point. Barberis and Xiong

[6] assume that the reference point is the purchase price growing at the risk-free rate, i.e.,

Pte
r(t−ζi) for t ∈ [ζi, ζi+1).

Experimental evidence in Baucells et al. [9] and Arkes et al. [1, 2], however, reveals that

individuals adapt their reference points to prior paper gains and losses of the asset they trade

and the adaptation to a gain is more than to a comparable loss. Therefore, we model the
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reference point as follows:

Rt = R(Xt, Pt) :=


Pt + γ+(Xt − Pt), Xt ≥ Pt,

Pt + γ−(Xt − Pt), Xt < Pt.

Note that Xt−Pt stands for the paper gain and loss of the stock since the last purchase time,

so γ± ∈ [0, 1] model the asymmetric adaptation of the reference point to the stock’s gain

and loss. Consequently, the reference point the agent employs to calculate realization utility

when selling the stock at τi is Rτi− and the resulting gain or loss is Gτi− = Xτi− −Rτi−.

We assumeU(G,R) to be homogeneous of degree β ∈ (0, 1], i.e, U(G,R) = RβU (G/R, 1).

Note that β here is the same as the relative risk aversion index of the utility function UW for

terminal wealth. Denote u(x) := U(x, 1), x ∈ R. We assume that u(·) is strictly increasing

and u(0) = 0. Furthermore, we assume u(x) is concave for x ≥ 0 and convex for x ≤ 0,

representing the agent’s risk averse attitude regarding gains and risk seeking attitude regard-

ing losses. Finally, the same amount of gain G > 0 yields less utility when the reference

point R is higher and the same loss G < 0 yields more disutility when the reference point R

is lower. Thus, we assume that U(G,R) is decreasing in R when G > 0 and is increasing in

R when G < 0. It is straightforward to show that this assumption is equivalent to assuming

xu′(x)/u(x) ≥ β, x 6= 0. (3.2.2)



56

For example, the following function

u(x) = [(x+ bG)αG − bαGG ]1{x≥0} − λ [(−x+ bL)αL − bαLL ]1{x<0} (3.2.3)

with λ > 0, αG, αL ∈ [β, 1], and bG, bL ≥ 0 satisfies (3.2.2). Ingersoll and Jin [38] consider

cases of bG, bL both equal to 0 and both equal to 1. If bG = bL = 0 and αG = αL = β,

U(G,R) = Gβ1{G≥0} − λ(−G)β1{G<0}, which is the same as the utility function used in

Tversky and Kahneman [53]. On the other hand, the piece-wise exponential utility function,

i.e., u(x) = (1− e−αGx)1{x≥0} − λ(1− eαLx)1{x<0} for some αG, αL ≥ 0, does not satisfy

(3.2.2).

Because R(Xt, Pt) = PtR(Xt/Pt, 1), we have

U(Gt, Rt) = Rβ
t u(Gt/Rt) = P β

t R(Xt/Pt, 1)βu

(
Xt −Rt

Rt

)
= P β

t R(Xt/Pt, 1)βu

(
Xt

Pt

1

R(Xt/Pt, 1)
− 1

)
.

Therefore, if we denote

ū(x) := R(x, 1)βu

(
x

R(x, 1)
− 1

)
=


(1 + γ+(x− 1))βu

(
(1−γ+)(x−1)
1+γ+(x−1)

)
, x ≥ 1,

(1 + γ−(x− 1))βu
(

(1−γ−)(x−1)
1+γ−(x−1)

)
, x < 1,

we have U(Gt, Rt) = P β
t ū(Xt/Pt). In addition, note that ū(x) is increasing and continuous

in x ≥ 0.
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Define

α := lim
x→+∞

xu′(x)

u(x)
, ᾱ := lim

x→+∞

xū′(x)

ū(x)
=


α γ+ = 0,

β γ+ > 0,

(3.2.4)

assuming the limit exist. Because u(x) is concave for x ≥ 0 and u(0) = 0, we have u(x) ≥

xu′(x), showing that α ≤ 1. On the other hand, condition (3.2.2) leads to α ≥ β. For u(·)

defined as in (3.2.3), α = αG.

Suppose right before time t, the agent is holding the stock. Then, the agent’s decision

is {Fs}-stopping times t ≤ τ1 ≤ ζ2 ≤ τ2 ≤ ζ3 ≤ . . . , where ζk’s and τk’s are purchase

and sale times of the stock, respectively. The agent faces the following optimal liquidation

problem1

sup
t≤τ1≤ζ2≤τ2≤...

Et
[∑∞

i=1 e
−δ(τi−t)U(Gτi−, Rτi−)1{τi<τ̃}

+e−δ(τ̃−t)UW (Xτ̃−)
∑∞

i=1 1{τi<τ̃≤ζi+1}

+e−δ(τ̃−t)
(
UW ((1− ks)Xτ̃−) + U(Gτ̃−, Rτ̃−)

)∑∞
i=1 1{ζi<τ̃≤τi}

]
subject to dXs =

∑∞
i=1

[
(µXs ds+ σXs dWs)1{s∈[ζi,τi)} + rXs ds1{s∈[τi,ζi+1)}

−ksXs−1{s=τi} −
kp

1 + kp
Xs−1{s=ζi+1}

]
, s ≥ t,

Ps = Xζi , s ∈ [ζi, ζi+1), i ≥ 2, Xt− = x, Ps− = p, s ∈ [t, ζ2],

Rs = R(Xs, Ps), Gs = Xs −Rs, s ≥ t.

(3.2.5)

The first term in the objective function of (3.2.5) stands for the realization utility when a sale

1Here, we set ζ1 := −∞.
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τi occurs before the shock time (i.e., the terminal time) τ̃ . The second term is the utility of

wealth at the terminal time if the agent is holding the risk-free asset then. The third term is

the realization utility and the utility of wealth at the terminal time if the agent is holding the

stock then. Note that in this case, the wealth that after the stock is sold is (1− ks)Xτ̃−. The

agent’s wealth grows in the same way as the stock does when the agent is holding the stock,

i.e., when s ∈ [ζi, τi), and grows at the risk-free rate when the agent is holding the risk-free

asset, i.e., when s ∈ [τi, ζi+1). In addition, the wealth decreases by factors ks and kp/(1+kp)

at each sale and purchase times, respectively, due to the transaction cost. The purchase price

is re-adjusted to the agent’s wealth at each purchase time of the stock and remains at constant

until the next purchase time.

On the other hand, if the agent is holding the risk-free asset right before time t, the agent’s

decision is {Fs}-stopping times t ≤ ζ1 ≤ τ1 ≤ ζ2 ≤ τ2 ≤ ζ3 ≤ . . . , where ζk’s and τk’s are

purchase and sale times of the stock, respectively. In this case, the agent faces the following



59

optimal purchase problem2

sup
t≤ζ1≤τ1≤ζ2≤τ2≤...

Et
[∑∞

i=1 e
−δ(τi−t)U(Gτi−, Rτi−)1{τi<τ̃}

+e−δ(τ̃−t)UW (Xτ̃−)
∑∞

i=0 1{τi<τ̃≤ζi+1}

+e−δ(τ̃−t)
(
UW ((1− ks)Xτ̃−) + U(Gτ̃−, Rτ̃−)

)∑∞
i=1 1{ζi<τ̃≤τi}

]
subject to dXs =

∑∞
i=1

[
(µXs ds+ σXs dWs)1{s∈[ζi,τi)} + rXs ds1{s∈[τi−1,ζi)}

−ksXs−1{s=τi} −
kp

1 + kp
Xs−1{s=ζi}

]
, s ≥ t,

Ps = Xζi , s ∈ [ζi, ζi+1), i ≥ 1, Xt− = x,

Rs = R(Xs, Ps), Gs = Xs −Rs, s ≥ τ1.

(3.2.6)

Finally, the optimal liquidation and purchase problems can be formulated similarly when

there is no shock time, i.e., when ρ = 0. Indeed, in this case, we simply replace the objective

functions in (3.2.5) and (3.2.6) with Et
[∑∞

i=1 e
−δ(τi−t)U(Gτi−, Rτi−)1{τi<+∞}

]
. Note that

we allow the stopping times to take +∞, which stands for the case in which the agent never

purchases or voluntarily sells the stock.

Our model differs from those in Ingersoll and Jin [38] and Barberis and Xiong [6] mainly

in two aspects: First, the agent in our model experiences terminal wealth utility in additional

to realization utility. Second, the agent’s reference point in our model adapts to the stock’s

prior gain and loss. A detailed comparison is provided in Table 3.1.

2Here, we set τ0 = −∞.
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Table 3.1: Comparison of the model settings in the present dissertation and in Ingersoll and
Jin [38] and Barberis and Xiong [6].

Model Settings
The present
dissertation

Ingersoll and Jin Barberis and Xiong

Realization
Utility Function

S-shaped S-shaped Piece-wise linear

Reference Point
Adapted to
gains and losses

Purchase price
Purchase price
growing with the
risk free rate.

Shock Time Yes No Yes
Terminal Wealth Yes No No
Trading
Strategies

Yes Yes Yes

Asset Pricing Yes No Yes

3.3 Solution

3.3.1 Well-Posedness Condition

Denote V (x, p) and V̄ (x) as the optimal values of (3.2.5) and (3.2.6), respectively. We first

show the condition for problems (3.2.5) and (3.2.6) to have finite optimal values. To this

end, define K := (1− ks)/(1 + kp).

Proposition 3.3.1. 1. If δ + ρ > max{βr, βµ − β(1−β)
2

σ2, ᾱµ − ᾱ(1−ᾱ)
2

σ2} and K < 1,

then V (x, p) < +∞ and V̄ (x) < +∞ for any x ≥ 0, p > 0.

2. Suppose ρ > 0 and θ > 0. If δ + ρ < max{βr, βµ− β(1−β)
2

σ2, ᾱµ− ᾱ(1−ᾱ)
2

σ2}, then

V (x, p) = V̄ (x) = +∞ for any x > 0 and p > 0.

3. Suppose ρ = 0. If δ + ρ < max{βr, βµ− β(1−β)
2

σ2, ᾱµ− ᾱ(1−ᾱ)
2

σ2}, then V (x, p) =

V̄ (x) = +∞ for any x > 0 and p > 0.
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4. Suppose ρ > 0 and θ = 0. If δ+ ρ < ᾱµ− ᾱ(1−ᾱ)
2

σ2, then V (x, p) = V̄ (x) = +∞ for

any x > 0 and p > 0.

Proposition 3.3.1 provides a sufficient condition for the optimal values of problems

(3.2.5) and (3.2.6) to be finite, and this condition is nearly necessary in the case in which

ρ > 0 and θ > 0 and in the case in which ρ = 0. To understand this condition, we regard

δ + ρ, the sum of the discount rate of the agent’s utility and the shock rate, as the effective

discount rate of the agent. Suppose ρ > 0 and θ > 0. We can consider βr to be the growth

rate of the agent’s terminal wealth utility if she holds the risk-free asset. For the optimal

values of problems (3.2.5) and (3.2.6) to be finite, it is necessary that this growth rate is

smaller than the effective discount factor. Similarly, βµ − β(1−β)
2

σ2 and ᾱµ − ᾱ(1−ᾱ)
2

σ2 can

be understood as the growth rates of the agent’s terminal wealth utility and realization utility,

respectively, if she holds the stock. Thus, it is also necessary that these two growth rates are

less than the effective discount rate.

In the case in which ρ = 0, for the optimal values of problems (3.2.5) and (3.2.6) to be

finite, it is also necessary that the growth rate of the agent’s realization utility ᾱµ− ᾱ(1−ᾱ)
2

σ2

is smaller than the discount rate δ. On the other hand, βr needs to be smaller than δ as well;

otherwise, the agent can hold the risk-free asset to let her wealth grow to infinity and finally

invest in the stock to receive positive realization utility for each unit of her wealth. Similarly,

βµ− β(1−β)
2

σ2 must be smaller than δ too; otherwise, the agent can hold the stock to let her

wealth grow to infinity.

Note that the optimal liquidation problem studied by Ingersoll and Jin [38] is a special

case of our model with δ = 0 and γ± = 0. Ingersoll and Jin [38, Section C] provide a
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necessary condition under which the value of their problem is finite, but sufficient conditions

are not provided.

In the case in which ρ > 0 and θ = 0, there is a gap between the sufficient and necessary

conditions, but the gap is small. Indeed, with reasonable parameter values (e.g., µ−1
2
σ2 ≥ r),

we have max{βr, βµ− β(1−β)
2

σ2, ᾱµ− ᾱ(1−ᾱ)
2

σ2} = ᾱµ− ᾱ(1−ᾱ)
2

σ2 because ᾱ ≥ β.

Finally, 1 −K stands for the transaction cost of buying and selling the stock once. The

presence of transaction cost, i.e., assuming K < 1, prevents the agent from trading the stock

for infinite number of times in a finite time interval.

In view of Proposition 3.3.1, the following assumption is in force throughout the rest of

this chapter:

Assumption 3.3.1. Assume K < 1 and δ + ρ > max{βr, βµ− β(1−β)
2

σ2, ᾱµ− ᾱ(1−ᾱ)
2

σ2}.

3.3.2 Optimal Purchase Time

We first show the continuity of the value functions V (x, p) and V̄ (x) and the following

dynamic programming principle.

Proposition 3.3.2. V̄ (x) and V (x, p) are homogeneous of degree β. Moreover, V (x, 1) is

continuous in x ≥ 0 and |V (x, 1)| ≤ C(1 + xα̃),∀x ≥ 0 for some C > 0 and α̃ ∈ [ᾱ, 1].
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Furthermore, the following dynamic programming principle holds:

V (x, p) = sup
τ≥t

Et
[
e−δ(τ−t)(U(Gτ−, Rτ−) + V̄ ((1− ks)Xτ−))1{τ<τ̃}

+e−δ(τ̃−t)(U(Gτ̃−, Rτ̃−) + UW ((1− ks)Xτ̃ ))1{τ̃≤τ}

]
,

subject to dXs = µXs ds+ σXs dWs, s ≥ t, Xt− = x,

Rs = R(Xs, p), Gs = Xt − p, s ≥ t,

(3.3.1)

V̄ (x) = sup
ζ≥t

Et
[
e−δ(ζ−t)V ( 1

1+kp
Xζ−,

1
1+kp

Xζ−)1{ζ<τ̃}

+e−δ(τ̃−t)UW (Xτ̃−)1{τ̃≤ζ}

]
,

subject to dXs = rXs ds, s ≥ t, Xt− = x.

(3.3.2)

Suppose the agent knows the optimal strategy if she is holding the risk-free asset, i.e.,

the optimal solution to problem (3.2.6). When the agent is holding the stock, she only needs

to decide the first sale time τ . If τ is before the shock time τ̃ , the agent receives realization

utility at τ , her wealth becomes (1− ks)Xτ− in the risk-free asset after the sale of the stock,

and the optimal aggregate utility she can receive afterwards is V̄ ((1− ks)Xτ−). If the shock

time occurs first, then the agent is forced to liquidate the stock and receives realization utility

and terminal wealth utility. Similarly, if the agent knows the optimal strategy if she is holding

the stock, she only needs to decide when to purchase the stock. Therefore, problems (3.3.1)

and (3.3.2) are coupled.

In the following, we denote Θ := ρθ(1− ks)β/(ρ+ δ − βr).
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Proposition 3.3.3. The optimal value of problem (3.3.2) is

V̄ (x) = (1− ks)−β max(KβV (1, 1),Θ)xβ. (3.3.3)

Furthermore,

1. If V (1, 1) > ΘK−β , ζ = t is optimal to problem (3.3.2).

2. If V (1, 1) < ΘK−β , ζ = +∞ is optimal to problem (3.3.2).

3. If V (1, 1) = ΘK−β , any stopping time ζ ≥ t is optimal to problem (3.3.2).

Proposition 3.3.3 shows that when holding the risk-free asset, it is either optimal to im-

mediately re-purchase the stock or optimal to hold the risk-free asset forever. In other words,

the stock is more valuable than the risk-free asset if and only if V (1, 1) > ΘK−β , i.e., if and

only if the optimal utility of holding the stock exceeds some threshold.

3.3.3 Liquidation at A Deep Loss

Note that the objective function in the optimal liquidation problem (3.2.5) is homogeneous in

(x, p) of degree β for each fixed decision t ≤ τ1 ≤ ζ2 ≤ . . . Therefore, we can set p = 1 in

problem (3.2.5) without loss of generality. In this regard, Xt stands for the wealth-purchase

price ratio, and in view of Proposition 3.3.3, we can rewrite the optimal liquidation problem
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as

v(x) = sup
τ≥t

Et
[
e−δ(τ−t)

(
ū(Xτ−) + max

(
Kβv(1),Θ

)
Xβ
τ−

)
1{τ<τ̃}

+e−δ(τ̃−t)
(
ū(Xτ̃−) + θ(1− ks)βXβ

τ̃−

)
1{τ̃≤τ}

]
,

subject to dXs = µXs ds+ σXs dWs, s ≥ t, Xt− = x,

(3.3.4)

where v(x) := V (x, 1).

The following proposition shows that it is optimal to hold the stock at a deep loss.

Proposition 3.3.4. There exist ε > 0 such that it is optimal to hold the stock when the

wealth-purchase price ratio Xt/Pt is less than ε. Moreover,

lim
x↓0

v(x) =
ρ

δ + ρ
ū(0) =

ρ

δ + ρ
(1− γ−)βu(−1).

When the agent’s position in the stock is at a deep loss, i.e., when the agent nearly loses

all her investment in the stock, the agent’s wealth is nearly zero. If the agent liquidates

the stock in this case, she will experience negative realization utility immediately, reset the

reference point, and experience realization utility and terminal wealth utility in the future.

Because the agent’s wealth is nearly zero, the utility in the future is also nearly zero, so the

total utility of the agent if she liquidates the stock in deep loss is approximately the negative

realization utility that will be immediately experienced by the agent at the liquidation time.

If the agent does not liquidate the stock, e.g., holds the stock until the shock time, the only

possible negative utility that will be experienced by the agent is at the shock time. This utility

is less magnificent than the realization utility experienced by the agent if she liquidates the
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stock immediately for two reasons: First, the agent discounts utility over time (e.g., δ > 0);

Second, the possible loss at the shock time is unlikely to be larger than the paper loss today

(because the agent already loses nearly all her wealth today). Therefore, liquidating the stock

at a deep loss is always strictly suboptimal.

In the model proposed by Barberis and Xiong [6], the agents do not voluntarily sell at

any loss level. In the model proposed by Ingersoll and Jin [38], the authors did not discuss

specifically whether the agent sells at a deep loss.

3.3.4 Variational Inequality

We first derive the variational inequality satisfied by v(·) heuristically. Comparing two strate-

gies, selling and not selling the stock in [t, t+dt], and noting that τ̃ < t+dt with probability

ρdt, we conclude

v(x) = max
{
ū(x) + xβmax

{
Kβv(1) ,Θ

}
,

(1− ρ dt)Et[e−δ dtv(Xt+dt)] + ρ dt[ū(x) + θ(1− ks)βxβ]
}
.

Because

(1− ρ dt)Et[e−δ dtv(Xt+dt)] = (1− ρ dt)(1− δ dt)(v + µxvx dt+
1

2
σ2x2vxx dt)

= v − (ρ+ δ)v dt+ µxvx dt+
1

2
σ2x2vxx dt,
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We conclude that

0 = min
{
v(x)−

(
ū(x) + xβmax

{
Kβv(1) , Θ

})
,

− 1

2
σ2x2vxx(x)− µxvx(x) + (ρ+ δ)v(x)− ρ(ū(x) + θ(1− ks)βxβ)

}
.

(3.3.5)

In the following theorem, we prove that value function v(x) of problem (3.3.4) is indeed

the unique viscosity solution to the variational inequality (3.3.5).3

Theorem 3.3.1. Value function v(x) of problem (3.3.4) is the unique continuous viscosity

solution with linear growth to variational inequality (3.3.5).

3.4 Trading Strategies

3.4.1 Two Types of Agents

Adaptive Agents

In this section, we discuss the trading strategies of two types of agents: adaptive agents and

naive agents. An adaptive agent knows today that her reference point in the future will adapt

to the stock’s gain and loss, and thus knows today that the gain and loss she will experience in

the future are benchmarked to this adaptive reference point. Therefore, the adaptive agent’s

trading strategy follows the optimal solutions to problems (3.2.5) and (3.2.6).

The optimal purchase time of the stock for the adaptive agent has been solved in Propo-

sition 3.3.3: it is either optimal to immediately buy the stock or optimal never to buy it. The

optimal sale time of the stock for the adaptive agent is the solution to problem (3.3.4). Recall

3For the notion of viscosity solutions, one can refer to Crandall, Ishii and Lions [24].
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that the value function v(x) of problem (3.3.4) is continuous and is the unique viscosity solu-

tion to the variational inequality (3.3.5). In addition, function ū(x) + max
(
Kβv(1) ,Θ

)
xβ ,

which stands for the immediate payoff if the agent sells the stock, is also continuous. Denote

H as the holding region, i.e.,

H := {x > 0|v(x) > ū(x) + max
(
Kβv(1) ,Θ

)
xβ}.

Then, the standard optimal stopping theory shows that the optimal sale time of the stock, i.e.,

the optimal solution to problem (3.3.1), is the first time when the wealth-purchase price ratio

Xt/Pt exits the holding region.

Figure 3.1 illustrates the value function v(x) and the holding region; the parameter values

used for this figure are provided in Section 3.4.2. In this illustration, the holding region is

disconnected: it consists of a neighbourhood of 0 and a neighbourhood of 1. In other words,

the agent holds the stock if the stock is at a deep loss (corresponding to the neighbourhood

of 0) and if the stock’s gain and loss are very small (corresponding to the neighbourhood of

1). Note that the wealth-purchase price ratio Xt/Pt is 1 at the purchase time and evolves

continuously in time. Therefore, the optimal sale time, which is the first time when the

wealth-purchase price ratio exits the holding region, becomes the first time for this ratio to

exit the neighbourhood of 1; the other part of the holding region, i.e., the neighbourhood of

0, does not play a role.

In general, we define

xu := sup{x ≥ 1|[1, x) ⊆ H}, xd := inf{x ≤ 1|(x, 1] ⊆ H}.
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Figure 3.1: Value function, immediate payoff, and holding region. The solid line stands for
the optimal value function v(x) of problem (3.3.4) and the dashed line, which is partially cov-
ered by the solid line, stands for the immediate payoff function ū(x)+max

(
Kβv(1) ,Θ

)
xβ .

Two graphs in the lower panel are zoom-ins of the circled areas in the upper graph. The
holding region is the area in which the dashed line is strictly below the solid line, and it
consists of two intervals, one in the neighbourhood of 1 and the other in the neighbourhood
of 0. The upper and lower liquidation points xu and xd are the end points of the interval in
the neighbourhood of 1.

Then, the optimal sale time is the first time when the wealth-purchase price ratio exits the

interval (xd, xu), and we call xu and xd the upper and lower liquidation points, respectively.

Figure 3.1 illustrates the upper and lower liquidation points; in that case, the holding region

is disconnected, so we have xd > 0. If the holding region is connected, then xd = 0, because

it is optimal to hold the stock at a deep loss.
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Naive Agents

For a naive agent, her reference point in the future will also adapt to the stock’s gain and loss,

but she doesn’t realize it prospectively: the naive agent wrongly believes that her reference

point will remain constant over time. At each purchase time ζ , the naive agent’s reference

point is the purchase price. The naive agent then believes that her reference point in the

future (before selling the asset) will still be this purchase price. Consequently, she believes

that her optimal strategy is the optimal solution to problem (3.3.1) with γ+ = γ− = 0 (so

that the reference point does not adapt to the stock’s gain and loss as believed by the agent).

Denote the corresponding upper and lower liquidation points with γ+ = γ− = 0 as x0
u and

x0
d, respectively. Then, the naive agent believes that it is optimal to sell the stock when

the wealth-purchase price ratio {Xs/Ps} first exits (x0
u, x

0
d). In particular, the naive agent

believes, at the purchase time ζ , that she will sell the stock at time t > ζ if and only if

Xt/Pt /∈ (x0
u, x

0
d).

Now, consider some time t in the future when the naive agent is still holding the stock.

Suppose the naive agent re-examines whether she needs to sell the stock. At that time, the

naive agent’s reference point actually becomes Rt = Pt + γ+(Xt − Pt)1{Xt≥Pt} + γ−(Xt −

Pt)1{Xt<Pt}, which was not expected by the agent at the purchase time but is recognized

by the agent retrospectively at time t. However, the naive agent still holds the wrong belief

that her reference point will remain constant in the future. Consequently, she believes that

her optimal strategy is the optimal solution to problem (3.3.1) with γ+ = γ− = 0 and with

p = Rt; i.e., she believes that it is optimal to sell the stock when the wealth-reference price
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ratio {Xs/Rs} first exits (x0
u, x

0
d). In particular, the naive agent sells the stock at time t if

and only if Xt/Rt /∈ (x0
u, x

0
d)

Note that the strategy planned by the naive agent at the purchase time ζ is different

from her strategy at the future time t when she re-examines the liquidation problem: at

time ζ the agent believes that it is optimal for her to sell the stock at time t if and only if

Xt/Pt /∈ (x0
u, x

0
d), but at time t, she actually sells the stock if and only if Xt/Rt /∈ (x0

u, x
0
d).

Note that Rt = Pt + γ+(Xt − Pt)1{Xt≥Pt} + γ−(Xt − Pt)1{Xt<Pt} is different from Pt.

Therefore, the naive agent is inconsistent in the liquidation strategy between herselves at

different times.

We assume the naive agent re-examines the optimal liquidation problem at any time after

the purchase time. We further assume that the naive agent is extremely naive in the sense that

she knows retrospectively that her reference point has adapted to the stock’s prior gain and

loss but never realizes prospectively the adaptation of her reference point to the stock’s gain

and loss in the future. We then study the strategy that is actually implemented by the naive

agent. From the above discussion, we observe that the naive agent implements the following

strategy: sell the stock at the first time when Xt/Rt exits (x0
u, x

0
d). Denote

xnu : = +∞1{γ+≥1/x0u} + x0
u

1− γ+

1− γ+x0
u

1{γ+<1/x0u}, (3.4.1)

xnd : = x0
d

1− γ−
1− γ−x0

d

1{γ−<1/x0d}. (3.4.2)

Eventually, the naive agent sells the stock at the first time when Xt/Pt exits (xnu, x
n
d).
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Dynamic Inconsistency

Note that the inconsistency in the trading strategy between the selves of the naive agent at

different times arises from the adaptation of the reference point to the stock’s gain and loss.

Inconsistent dynamic decisions have been extensively observed and studied in the literature.

For instance, in a decision problem formulated by O’Donoghue and Rabin [43], the agent

exhibits dynamic inconsistency due to hyperbolic discounting. In a casino gambling model

proposed by Barberis [3], the gambler is dynamically inconsistent regarding the gambling

strategy because of probability weighting. In Basak and Chabakauri [7], the authors show

that a mean-variance maximizer is dynamically inconsistent. As far as we know, our work

is the first one to show that time-varying reference points can also lead to dynamic inconsis-

tency.

The naive agent in our model seems to be unrealistic because she knows retrospectively

that her reference point has changed but never realizes prospectively that the reference point

will adapt to the stock’s gain and loss. However, this agent is the same type of naive agents as

defined and studied in the dynamic inconsistency literature; see e.g., O’Donoghue and Rabin

[43] and Barberis [3]. On the other hand, another type of agents, named sophisticated agents,

are studied in the literature; see for instance O’Donoghue and Rabin [43] (where these agents

are called sophisticates) and Barberis [3] (where these agents are called sophisticated agents

without pre-commitment). The adaptive agent is related to but different from sophisticated

agents. Both these two types of agents anticipate the change of their preferences in the

future and thus make their decisions today accordingly. In addition, their strategies are both

dynamically consistent. For a sophisticated agent, she realizes her decision in the future does
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not follow the optimal plan set up today. By anticipating the strategy she will implement in

the future, which is not optimal today, the sophisticated agent revises her strategy today

accordingly. For the adaptive agent in our model, she realizes prospectively the reference

point adaptation in the future, and thus anticipates correctly the gain and loss that she will

actually experience in the future. As a result, she makes the decision today based on this

anticipation. Note that the adaptive agent does not need to anticipate the decisions of her

selves in the future in order to make a decision today.

Finally, another type of agents, named pre-committing agents, are studied in the litera-

ture; see for instance Barberis [3] (where these agents are called sophisticated agents with

pre-commitment). A pre-committing agent realizes that the optimal strategy set up today

is no longer optimal to her future selves, but she is able to commit future selves to today’s

optimal strategy usually with the help of commitment device. Such agents are unrealistic in

our stock liquidation problem, so we do not consider them. Indeed, in our problem, if an

agent realizes that her reference point in the future will adapt to the stock’s gain and loss, she

should realize immediately that the gain and loss that she will experience are benchmarked

to the adaptive reference point. Thus, she will not commit herself to follow the strategy that

is optimal under the wrong assumption that the reference point does not adapt to the stock’s

gain and loss.

3.4.2 Comparison of Trading Strategies

In this section we numerically compute the trading strategies of the naive and adaptive

agents. Table 3.2 lists the default values we use for the model parameters. Here, we as-
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Table 3.2: Values for model parameters.
µ σ r kp ks δ ρ θ

9% 30% 3% 1% 1% 5% 0.1 1
αG αL bG bL λ β γ+ γ−
0.5 0.5 0 0 2.5 0.3 0.6 0.3

sume that the realization utility function is as in (3.2.3). Note that we use the same values

as in Ingersoll and Jin [38] for parameters µ, σ, δ, kp, ks, αG, αL, bG, bL, β, and λ. On the

other hand, Ingersoll and Jin [38] do not consider the shock time, terminal wealth utility,

and reference point adaptation, so parameters ρ, θ, and γ± are not present therein. We imply

the values for γ± from the experimental results in Arkes et al. [1]: in that paper, the authors

designed several experiments to test the subjects’ reference point adaptation to $6 gain or

loss. In the gain situation, the reference point shifted upwards by an amount between $3.8 to

$5.8 and in the loss situation, the reference point shifted downwards by an amount between

$1.5 to $3.1. The choice of γ+ = 0.6 and γ− = 0.3 is consistent with these experimental

results. Following Barberis and Xiong [6], we set ρ = 0.1, so that the average shock time is

10 years. Finally, there is no clear benchmark for the value of θ. We set θ = 1 for illustration

purpose only.

Recall that the strategy implemented by the naive agent is to sell the stock when Xt/Pt

exits (xnu, x
n
d) and the strategy of the adaptive agent is to sell the stock when Xt/Pt exits

(xu, xd). Figure 3.2 illustrates the upper and lower liquidation points for the strategies of the

naive agent (dashed lines) and of the adaptive agent (solid lines) with respect to µ, σ, δ, kp,

ks, αG, αL, β, and λ, respectively. To compare our results to the literature such as Barberis

and Xiong [6] and Ingersoll and Jin [38], we also compute the strategy of a non-adaptive

agent whose reference point does not adapt to the stock’s gain and loss (i.e., whose γ± = 0),
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and plot the corresponding liquidation points x0
u and x0

d in Figure 3.2 (using dotted lines).

As discussed in Section 3.4.1, this strategy is the same as the one planned by the naive agent

immediately after she purchases the stock.
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Figure 3.2: Upper and lower liquidation points for the naive agent (dashed lines), adaptive
agent (solid lines), and non-adaptive agent (dotted lines) with respect to parameters µ, σ, δ,
kp, ks, αG, αL, β, and λ. The model parameters take values in Table 3.2.

In each panel of Figure 3.2, we study the sensitivity of the liquidation points with respect
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to one parameter while assuming default values for other parameters. For all the parameter

values used in Figure 3.2, Assumption 3.3.1 is satisfied. In some panels, there is a break

point of the curve of the lower or upper liquidation point with respect to certain parameter,

and this indicates that there is no lower or upper liquidation point when the parameter value

is beyond this break point.

We observe from Figure 3.2 that when comparing the strategies of the naive and adaptive

agents, except for the cases of a small αG and a large αL, both of the lower and upper

liquidation points for the adaptive agent are lower than that for the naive agent. In other

words, the adaptive agent sells the stock more frequently at a gain and less frequently at a

loss than the naive agent does.

In Figure 3.2, the upper liquidation point of the non-adaptive agent (whose γ± = 0) is

almost identical to and thus covered by the upper liquidation point of the adaptive agent.

We observe from Figure 3.2 that the naive agent sells the stock less frequently than the non-

adaptive agent does both at a gain and at a loss. This can also be seen analytically from

(3.4.1) and (3.4.2). The adaptive agent sells the stock at a loss less frequently than the non-

adaptive agent does as well.

The sensitivity of the naive, adaptive, and non-adaptive agents’ strategies with respect

to parameters µ, σ, δ, kp, ks, αG, αL, β, and λ is similar to the findings in Ingersoll and

Jin [38, Figure 5]. First, the upper liquidation point is close to one and the lower liquidation

point is much smaller than one and is even zero, showing that the agents sell the stock at a

gain much more frequently than at a loss. Second, the upper liquidation point is much less

affected by parameter changes than the lower liquidation point. Third, the lower liquidation
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point is decreasing with respect to µ, σ, αG, λ, β, kp, and ks, and is increasing with respect

to αL and δ. In other words, the agents hold the stock at a loss longer if the stock has a

higher expected return or a higher volatility, or if the agents are less risk averse with respect

to gains, more risk seeking with respect to losses, more loss averse, less risk averse with

respect to terminal wealth, or more patient, or if the transaction cost is higher.

In panel 3 of Figure 3.2, we observe that it is optimal for the adaptive and naive agents

not to sell the stock at a gain if αG is close to one. To explain this observation, we consider

an agent whose αG = 1 and αL is much smaller than 1. We further assume γ± = 0 for

simplicity. If the agent sells the stock at a gain, she will reset her reference point. Because

αG = 1, the increase in the realization utility due to $1 increase in the stock price is the

same before and after the reference point is reset. The reduction in the realization utility due

to $1 decrease in the stock price, however, is much larger after the reference point is reset.

This is because αL is small and thus the sensitivity of the realization utility with respect to

$1 loss is much higher when the agent is at the break-even point than when she is at a gain.

As a result, the agent is unwilling to reset the reference point, i.e., unwilling to sell the stock,

when the stock is at a gain. In the models proposed by Barberis and Xiong [6] and Ingersoll

and Jin [38], it is assumed that αG = αL = 1 and that ρ = 0, respectively, so it is optimal for

the agent in their models to voluntarily sell at certain gain.

Next, we discuss the impact of parameters γ±, θ, ρ, and r on trading strategies. Note that

such impact is not discussed in Barberis and Xiong [6] or Ingersoll and Jin [38]. Similar as in

Figure 3.2, we illustrate the naive, adaptive, and non-adaptive agents’ strategies by plotting

the corresponding upper and lower liquidation points with respect to γ±, θ, ρ, and r in Figure
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3.3 (dash lines for the naive agent’s strategy, solid lines for the adaptive agent’s strategy, and

dotted lines for the non-adaptive agent’s strategy). We have the following observations:
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Figure 3.3: Upper and lower liquidation points for the naive agent (dashed lines), adaptive
agent (solid lines), and non-adaptive agent (dotted lines) with respect to parameters γ±, θ, ρ,
and r. The model parameters take values in Table 3.2.

First, for the naive agent’s strategy, the lower liquidation point is independent of γ+ while

the upper liquidation point is increasing with respect to γ+. This can be seen from (3.4.1)

and (3.4.2). Similarly, the lower liquidation point is decreasing with respect to γ− and the

upper liquidation point is independent of γ−.

Second, for the adaptive agent, the lower liquidation point is decreasing with respect to
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γ+ and increasing with respect to γ−. If the agent voluntarily sells the stock to realize a loss,

she will experience negative realization utility and then reset the reference point. Note the

agent’s realization utility is less sensitive with respect to $1 increase in the stock price when

she is at a loss than when she is at the break-even point because the diminishing sensitivity

of S-shaped utility functions. Thus, the agent is willing to sell the stock so as to reset the

reference point. With a larger γ+, the sensitivity of the agent’s realization utility with respect

$1 increase in the stock price, when she is at the break-even point, becomes smaller, so the

agent is less motivated to reset the reference point. Consequently, the agent is less willing to

sell the stock at a loss. Similarly, with a larger γ−, the sensitivity of the agent’s realization

utility with respect $1 increase in the stock price, when she is at a loss, becomes smaller, so

the agent is more willing to sell the stock at a loss and to reset the reference point.

Third, with a large γ+ and a small γ−, both the upper and lower liquidation points are

smaller for the adaptive agent than for the naive agent. In other words, compared to the naive

agent, the adaptive agent sells the stock more frequently at a gain and less frequently at a

loss. Note that for most individuals, their reference points adapt more to stock gains than

to stock losses, i.e., γ+ is large and γ− is small. On the other hand, with a small γ+ and a

large γ−, which, however, is not true for a typical investor, the adaptive agent sells the stock

at a loss more frequently than the naive agent does. When γ+ becomes even smaller and

γ− becomes even larger, the adaptive agent sells the stock at a loss more frequently than the

non-adaptive agent does as well.

Fourth, a larger θ makes all of the adaptive, naive, and non-adaptive agents less willing

to sell the stock, i.e., leads to a wider holding region. Note that trading the stock boosts the
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realization utility but reduces the terminal wealth utility because of transaction costs. When

θ is larger, the agents focus more on the terminal wealth utility, so they trade the stock less

frequently. When θ exceeds certain threshold, the adaptive agent does not voluntarily sell

the stock at all.

Fifth, the lower liquidation boundary of each of the adaptive, naive, and non-adaptive

agents is increasing with respect to ρ. Note that if the agent does not sell the stock at any

loss, she will hold the stock until voluntarily selling it at a gain or forcefully selling it at the

shock time. The sale at the shock time can be possibly at a loss. With a smaller ρ, the shock

time becomes longer, and thus the agent experiences less realization disutility of the loss at

the shock time because of discounting. Therefore, the agent becomes more willing to hold

the stock at a loss today.

Finally, the risk-free rate r has no effect on the upper and lower liquidation points. In-

deed, with the parameter values used here, the agent re-purchases the stock immediately

after selling it, so the return rate of the risk-free asset does not affect the agent’s liquidation

policy.

3.5 An Asset Pricing Model

Following Barberis and Xiong [6], we consider a market in which the participants are homo-

geneous adaptive agents. We define the equilibrium expected return of the stock for adaptive

agents as the value of µ such that the adaptive agents in the market are indifferent between
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the stock and the risk-free asset. According to Theorem 3.3.3, this is the case if and only if

v(1) = K−βΘ. (3.5.1)

We can then solve the equilibrium expected return for adaptive agents from (3.5.1).

Similarly, we can also consider a market with homogeneous naive agents, and define

the equilibrium expected return of the stock for naive agents as the value of µ such that the

naive agents in the market are indifferent between the stock and the risk-free asset. Recall

that at the purchase time, a naive agent believes that her reference point does not change in

the future and plans her strategy accordingly. Thus, when deciding whether to purchase the

stock, the naive agent also believes that her reference point does not change in the future.

Consequently, the equilibrium expected return of the stock for naive agents can be solved

from (3.5.1) by setting γ+ = γ− = 0.

In the following, we compute the equilibrium risk premium of the stock, i.e., the equi-

librium expected return of the stock in excess of the risk-free rate, for naive and adaptive

agents. We use the same parameter values as in Table 3.2, except that we reset θ = 15 for

illustration purpose. Figure 3.4 shows the risk premium, denoted as µex, as functions of the

stock volatility for different values of γ± and θ. We have the following observations:

First, the risk premium required by an adaptive agent is increasing with respect to γ+ and

decreasing with respect to γ−. With a larger γ+, the same increase in the stock price leads

to less realization utility of the agent. Consequently, the stock becomes less attractive to the

agent and thus is rewarded a higher risk premium in equilibrium. Similarly, with a larger γ−,
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Figure 3.4: Equilibrium risk premium from the perspectives of naive agents (left panel) and
adaptive agents (right panel) with respect to parameters γ± and θ. The default values for
model parameters are given as in Table 3.2 except that θ = 15.

the adaptive agent experiences less realization disutility of a loss of the stock, so the stock is

more attractive and thus only rewarded with a lower risk premium.

Second, for reasonable values of γ±, i.e., for γ+ > γ−, adaptive agents ask for a higher

risk premium than naive agents do. When γ+ is much smaller than γ−, e.g., γ+ = 0 and

γ− = 0.3, adaptive agents ask for a lower risk premium than naive agents do.
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Third, the risk premium is increasing with respect to θ for both naive and adaptive agents.

A larger θ implies that the agents are more concerned with their terminal wealth. Because

the agents are more risk averse regarding terminal wealth than regarding trading gains and

losses, focusing more on the terminal wealth leads to a higher risk premium.

Fourth, the risk premium can be negative for both naive and adaptive agents. Each of the

naive and adaptive agents experiences terminal wealth utility and realization utility. Since

an agent is risk averse with respect to her terminal wealth, the negative risk premium is a

result of the agent’s risk seeking behavior related to the realization utility of trading gains

and losses. Negative risk premium are also observed in Barberis and Xiong [6].

Fifth, the risk premium can be increasing or decreasing with respect to the stock volatility,

depending on the type of agents in the market and on the values of other parameters.4 In

Barberis and Xiong [6], the risk premium is negative and decreasing with respect to the

stock volatility. Thus, our model generates more patterns of return-risk tradeoffs for stocks.

Actually, with certain parameter values, our model can also generate a risk premium curve

that is first increasing and then decreasing with respect to the stock volatility, and the risk

premium is positive for high-volatility stocks, see Figure 3.5.

Finally, we illustrate the sensitivity of the risk premium with respect to other parameters

in Figures 3.6–3.7.

4In Figure 3.4, the risk premium is negative when the stock’s volatility tends to zero. This is because
in our model the agent’s reference point is the purchase price of the stock without growing at the risk-free
rate. As a result, if the stock has a positive return, which can be lower than the risk-free return, the agent
still experiences positive realization utility. When holding the risk-free asset, however, the agent does not
experience any realization utility. Consequently, a zero-volatility stock can have negative risk premium.
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Figure 3.5: Equilibrium risk premium under parameter values µ = 9%, σ = 30%, r = 3%,
kp = ks = 1%, δ = 5%, ρ = 0.05, θ = 52, αG = αL = 0.35, bG = bL = 0, λ = 1, β = 0.3,
γ+ = γ− = 0. Because we choose γ+ = γ− = 0, the naive and adaptive agents are the same.

3.6 Extensions

3.6.1 Transaction Cost Effect

In the previous analysis, we use the post-transaction cost purchase price Pt and pre-transaction

cost wealth Xt in the calculation of the gain and loss Gt experienced by the agent. In other

words, we assume that the agent leaves out the transaction cost of buying and selling the

stock in assessing her gain and loss. In the following, we discuss the cases in which the

transaction cost is taken into account in the calculation of the agent’s gain and loss.

Denote P̃t := (1 +kp)Pt as the pre-transaction cost purchase price and X̃t := (1−ks)Xt

as the post-transaction cost wealth. None, or one, or both of the buying cost and selling cost

of the stock can be taken into account when the agent assesses her gain and loss. Thus, we

have four combinations, as listed below.

1. Post-transaction cost purchase price Pt and pre-transaction cost wealth Xt.
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Figure 3.6: Equilibrium risk premium from the perspectives of naive agents (left panel) and
adaptive agents (right panel) with respect to parameters r, kp, ks, δ, and ρ. The default values
for model parameters are given as in Table 3.2 except that θ = 15.
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Figure 3.7: Equilibrium risk premium from the perspectives of naive agents (left panel) and
adaptive agents (right panel) with respect to parameters αG, αL, β, and λ. The default values
for model parameters are given as in Table 3.2 except that θ = 15.
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In this case, the agent ignores the buying and selling costs of the stock in assessing her

gain and loss. Consequently, a sale immediately after a purchase has zero realization

utility. This case is explicitly modeled in section 3.2 and analyzed in the previous

sections.

2. Pre-transaction cost purchase price P̃t and pre-transaction cost wealth Xt.

In this case, the agent ignores the selling cost but takes the buying cost into account

when assessing her gain and loss. In other words, the reference point Rt is given as

R(Xt, P̃t) in the calculation of the agent’s gain and loss. The realization utility can

then be written as

U(Gt, Rt) = P̃ β
t ū(Xt/P̃t) = (1 + kp)

βP β
t ū((1 + kp)

−1Xt/Pt). (3.6.1)

Therefore, the agent’s optimal sale time can be solved from (3.3.4) with ū(x) replaced

by (1+kp)
βū((1+kp)

−1x). We can see that in this case, selling the stock immediately

after buying it incurs negative realization utility.

3. Post-transaction cost purchase price Pt and post-transaction cost wealth X̃t.

In this case, the agent ignores the buying cost but takes the selling cost into account

when assessing her gain and loss. Consequently, the reference point Rt is given as

R(X̃t, Pt), and the realization utility is

U(Gt, Rt) = P β
t ū(X̃t/Pt) = P β

t ū((1− ks)Xt/Pt). (3.6.2)

Therefore, the agent’s optimal liquidation time can be solved from (3.3.4) with ū(x)
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replaced by ū((1 − ks)x). Again, in this case, selling the stock immediately after

buying it incurs negative realization utility.

4. Pre-transaction cost purchase price P̃t and post-transaction cost wealth X̃t.

In this case, the agent takes both the buying and selling costs into account when as-

sessing her gain and loss, and thus the reference point Rt is given as R(X̃t, P̃t). Then,

the realization utility is

U(Gt, Rt) = P̃ β
t ū(X̃t/P̃t) = (1 + kp)

βP β
t ū(KXt/Pt).

The agent’s optimal liquidation time can be solved from (3.3.4) with ū(x) replaced

by (1 + kp)
βū(Kx). Again, in this case, selling the stock immediately after buying it

incurs negative realization utility.
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Figure 3.8: Upper and lower liquidation points for the naive agent (left panel) and for the
adaptive agent (right panel) when the agents include none, one, or both of the buying and
selling costs of the stock in assessing their gains and losses. The parameter values used here
are given as in Table 3.2.

Figure 3.8 shows the liquidation points of the naive and adaptive agents. The parameter
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Figure 3.9: Equilibrium risk premium from the perspectives of the naive agent (left panel)
and of the adaptive agent (right panel) when the agents include none, one, or both of the
buying and selling costs of the stock in assessing their gains and losses. The parameter
values used here are given as in Table 3.2 except that θ = 15.

values used here are given as in Table 3.2. The message is clear: the more cost the agent

takes into account in assessing her gain and loss, the less frequently she trades the stock both

at a gain and at a loss.

Figure 3.9 shows the equilibrium risk premium from the perspectives of the naive agent

and of the adaptive agent. The parameter values used are given as in Table 3.2 except that

θ = 15. We can observe that the more cost the agents internalizes in determining their gains

and losses, the higher risk premium they require for the stock.

3.6.2 Different Choices of Utility Functions

As observed in Ingersoll and Jin [38], with bG = bL = 0, the realization utility is extremely

sensitive to a small increase in the stock price when the agent is break even (i.e., the derivative

of u(x) is infinity at x = 0). Thus, the agent is willing to realize very small gains frequently;

i.e., she sets the upper liquidation point very close to one. Ingersoll and Jin [38] set bG =

bL = 1 in their model and find that the resulting upper liquidation point becomes much
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higher than in the case bG = bL = 0. We compute the trading strategies and equilibrium risk

premium in the previous sections for the case bG = bL = 1, and find that compared to the

case bG = bL = 0, for both naive and adaptive agents, the upper liquidation point is evidently

higher, the lower liquidation point is lower, and the equilibrium risk premium for the stock

is higher.

3.7 Conclusions

In this chapter, we have proposed a trading model in which an agent decides when to sell

a stock to maximize her realization utility and terminal wealth utility. Our model extends

those by Barberis and Xiong [6] and Ingersoll and Jin [38] in two aspects: First, in addi-

tion to realization utility, the agent in our model also experiences utility from her terminal

wealth. Second, the reference point in our model adapts to the stock’s gain and loss, and the

adaptation to the gain is more than to the loss.

We have proved sufficient and necessary conditions under which the optimal value of the

agent’s trading problem is finite. We have also found the optimal purchase time of the stock:

the agent either immediately or never re-purchases the stock after selling it. We have proved

that it is optimal to hold the stock if it is already at a deep loss. We have proved that the

value function of the trading problem is the unique solution to a variational inequality.

We have considered two types of agents, adaptive agents and naive agents, in the study of

trading strategies and asset pricing. An adaptive agent knows today that her reference point

in the future will adapt to the prior gain and loss of the stock, but a naive agent fails to do

so. We have found that the adaptive agent sells the stock more (less) frequently when the



91

stock is at a gain (at a loss) than the naive agent does. Moreover, when the reference point

adapts more to the stock’s loss (gain), the naive agent sells the stock at a loss (at a gain) less

frequently. The adaptive agent, however, sells the stock at a loss more frequently when the

reference point adapts more to the stock’s loss. We have also found that when becoming

more concerned with the terminal wealth utility, both the adaptive and naive agents sell the

stock less frequently both at a gain and at a loss.

We have also studied the risk premium of the stock in equilibrium. We have found that

the adaptive agent requires a higher risk premium than the naive agent does. In addition,

when the reference point adapts more to the stock’s gain (loss), the adaptive agent asks for

a higher (lower) risk premium. The risk premium required by the naive agent, however,

is insensitive to the degree to which the reference point adapts to the stock’s gain or loss.

Finally, the risk premium becomes higher when the naive and adaptive agents become more

concerned with the terminal wealth utility.
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Appendix A

Additional Proofs for Chapter 2

A.1 Proof of Theorem 2.3.1

The Wasserstein metric of order 2 between probability measures p and q on Rd is W2(p, q),

where

W 2
2 (p, q) = inf

π∈Π(p,q)

∫
Rd×Rd

‖x− y‖2 dπ(x, y)

=

∫
Rd
‖x‖2 dp(x) +

∫
Rd
‖y‖2 dq(y) (A.1)

−2 sup
π∈Π(p,q)

∫
Rd×Rd

< x, y > dπ(x, y).

The empirical measures pN and qN converge weakly to p and q, respectively, a.s., so it fol-

lows from Corollary 6.11 of Villani [54] thatW 2
2 (pN , qN)→ W 2

2 (p, q), a.s., andW 2
2 (pN , q)→

W 2
2 (p, q), a.s. Under the assumed square-integrability conditions, we also have

∫
Rd
‖x‖2 dpN(x)→

∫
Rd
‖x‖2 dp(x), a.s.,
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and similarly for qN . The theorem now follows from (A.1). �

A.2 Proof of Proposition 2.4.1

Problem (2.4.3) is equivalent to

− inf
µ∈Π(p,q)

1

θ

∫
ln
( dµ

exp(θ < x, y >)dν

)
dµ. (A.1)

Theorem 3 of Rüschendorf and Thomsen [50] implies the existence of a unique optimal

solution to (A.1), which we denote by µθ.

First we show that µθ is optimal for (2.4.1)–(2.4.2) with η = η(θ). Suppose µθ is not

optimal, then there exists µη(θ) such that

∫
Rd×Rd

< x, y > dµη(θ)(x, y) >

∫
Rd×Rd

< x, y > dµθ(x, y),

and ∫
ln(

dµη(θ)

dν
)dµη(θ) ≤

∫
ln(

dµθ

dν
)dµθ.

But then

∫
< x, y > dµη(θ)(x, y)−1

θ

∫
ln(

dµη(θ)

dν
)dµη(θ) >

∫
< x, y > dµθ(x, y)−1

θ

∫
ln(

dµθ

dν
)dµθ,

which contradicts the optimality of µθ for the penalty problem (2.4.3).

Next we show that the mapping from θ to η(θ) is increasing. For any θ2 > θ1 > 0, let
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µθ1 and µθ2 denote optimal solution to the penalty problem with θ1 and θ2 respectively. If

µθ1 = µθ2 , then η(θ1) = η(θ2). If µθ1 6= µθ2 , then, by unique optimality of µθ2 , it holds that

∫
< x, y > dµθ2(x, y)−1

θ 2

∫
ln(

dµθ2

dν
)dµθ2 >

∫
< x, y > dµθ1(x, y)−1

θ 2

∫
ln(

dµθ1

dν
)dµθ1 .

(A.2)

Compare the first term on each side. If
∫
Rd×Rd < x, y > dµθ2(x, y) ≤

∫
Rd×Rd < x, y >

dµθ1(x, y), then
∫

ln(dµ
θ2

dν
)dµθ2 <

∫
ln(dµ

θ1

dν
)dµθ1 by (A.2). Adding (1

θ 2
− 1

θ 1
)
∫

ln(dµ
θ2

dν
)dµθ2

to the left side and (1
θ 2
− 1

θ 1
)
∫

ln(dµ
θ1

dν
)dµθ1 to the right side of (A.2), the sign does not

change, which means µθ2 is optimal for the penalty problem with θ1. However that contra-

dicts the unique optimality of µθ1 . We conclude that

∫
Rd×Rd

< x, y > dµθ2(x, y) >

∫
Rd×Rd

< x, y > dµθ1(x, y).

Now compare the second term on each side. If
∫

ln(dµ
θ2

dν
)dµθ2 ≤

∫
ln(dµ

θ1

dν
)dµθ1 , then

the unique optimality of µθ1 is again contradicted, so we have

η(θ2) > η(θ1).

Next we show η(θ) ∈ (0, η∗] for θ ∈ (0,∞). Since the relative entropy
∫

ln(dµ
θ

dν
)dµθ

is nonnegative and equals 0 only if µθ = ν, we have η(θ) > 0 for θ > 0. Let µ∗ denote

optimal solution to (2.2.2) and let η∗ =
∫

ln(dµ
∗

dν
)dµ∗. Since problem (2.2.2) is a relaxation



99

of problem (2.4.1)–(2.4.2), we conclude that for all θ > 0,

∫
Rd×Rd

< x, y > dµ∗(x, y) ≥
∫
Rd×Rd

< x, y > dµθ(x, y). (A.3)

Suppose there exists θ∗ > 0 such that η(θ∗) =
∫

ln(dµ
θ∗

dν
)dµθ

∗
> η∗. By adding − 1

θ∗
η∗ to the

left and − 1
θ∗
η(θ∗) to the right of (A.3), the inequality does not change, which contradicts the

optimality of µθ∗ . Thus η(θ) ≤ η∗. �

A.3 Proof of Theorem 2.4.1

We divide the proof into several parts, starting with the convergence of the objective function

value asserted in part (i) of the theorem.

A.3.1 Convergence of the Optimal Objective Value

We will first show that for any feasible solution to the limiting problem, we can construct

a sequence of approximating solutions that approach the limiting objective function from

above. To get the reverse inequality we will use a dual formulation of the limiting objective

and show that it is approached from below.

Since Y has finite support, we may assume without loss of generality that q(yj) > 0

for all j. If we had q(yj) = 0 for some j, we could reformulate an equivalent problem by

removing the marginal constraint on yj .

Let µ ∈ Π(p, q) be any feasible solution to the limiting problem. Write µ(dx, y) =

p(dx)q(y|x), and define the following mass function on the pairs (Xi, yj), i = 1, . . . , N ,
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j = 1, . . . , d+ 1:

µN(Xi, yj) =
1

N
q(yj|Xi). (A.1)

If we sum over the yj for any Xi, we get

d+1∑
j=1

µN(Xi, yj) =
1

N

d+1∑
j=1

q(yj|Xi) =
1

N
.

If we sum over the Xi for any yj , we get

N∑
i=1

µN(Xi, yj) =
1

N

N∑
i=1

q(yj|Xi) =: q̄N(yj).

We will not in general have q̄N = qN , so µN is not in general a feasible solution to

the finite problem, in the sense that µN 6∈ Π(pN , qN). However, by the strong law of large

numbers for {X1, X2, . . . }, for each yj , j = 1, . . . , d+ 1,

q̄N(yj) =
1

N

N∑
i=1

q(yj|Xi)→
∫
q(yj|x) dp(x) = q(yj), a.s.,

because µ ∈ Π(p, q). Also by the strong law of large numbers, we have qN(yj) → q(yj),

a.s. We will therefore consider a relaxed constraint. Let Πε(pN , qN) denote the set of joint

distributions on Rd × Rd with marginals pN and q′, where |q′(yj) − qN(yj)| ≤ ε, j =

1, . . . , d+ 1.
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Lemma A.3.1. As N →∞,

lim
N→∞

max
µ∈Π(pN ,qN )

G(µ, νN) ≥ sup
µ∈Π(p,q)

G(µ, ν).

Proof: For each N , we are maximizing a concave function over a compact convex set,

so the maximum is indeed attained. Write cN for maxµ∈Π(pN ,qN ) G(µ, νN) and cN,ε for

maxµ∈Πε(pN ,qN ) G(µ, νN). For any µ ∈ Π(p, q), define µN as in (A.1). Then µN ∈ Πε(pN , qN)

for all sufficiently large N , a.s., and

cN,ε ≥
N∑
i=1

d+1∑
j=1

µN(Xi, yj) < Xi, yj > −
1

θ
D(µN |νN)

=
N∑
i=1

d+1∑
j=1

q(yj|Xi)

N
< Xi, yj > −

1

θ

N∑
i=1

d+1∑
j=1

ln

(
q(yj|Xi)/N

qN(yj)/N

)
q(yj|Xi)

N
.

By the strong law of large numbers, almost surely,

N∑
i=1

d+1∑
j=1

q(yj|Xi)

N
< Xi, yj >→

∫ d+1∑
j=1

< x, yj > q(yj|x)dp(x) =

∫
< x, y > dµ(x, y)

and

N∑
i=1

d+1∑
j=1

ln

(
q(yj|Xi)

qN(yj)

)
q(yj|Xi)

N
→
∫ d+1∑

j=1

ln

(
q(yj|x)

q(yj)

)
q(yj|x)dp(x) =

∫
ln(

dµ

dν
)dµ.

Since this holds for any µ ∈ Π(p, q),

lim
N→∞

cN,ε ≥ c∞ ≡ sup
µ∈Π(p,q)

G(µ, ν). (A.2)
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Recall cN = maxµ∈Π(pN ,qN ) G(µ, νN). We claim that

cN,ε ≤ cN + εKN , (A.3)

for

KN = K1 · max
i=1,...,N

max
j=1,...,d+1

| < Xi, yj > |+
1

θ
·K2,

where K1 and K2 are constants. We prove (A.3) in Appendix A.3.3.

Under our assumption that Eν [exp(θ < X, Y >)] < ∞, the sequence KN satisfies

KN/N
α → 0, for any α ∈ (0, 1/2). Set εN = 1/Nα so εNKN → 0. By the law of the

iterated logarithm, with probability 1,

max
1≤j≤d+1

|qN(yj)− q(yj)| < εN/2 and max
1≤j≤d+1

|q̄N(yj)− q(yj)| < εN/2

for all sufficiently large N , and then

max
1≤j≤d+1

|q̄N(yj)− qN(yj)| < εN

as well. In other words, for any µ ∈ Π(p, q), we have µN ∈ ΠεN (pN , qN) for all sufficiently

large N , a.s. We can therefore strengthen (A.2) to

lim
N→∞

cN,εN ≥ c∞.
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But

lim
N→∞

cN,εN ≤ lim
N→∞

cN +KNεN = lim
N→∞

cN .

So we have shown that

lim
N→∞

cN ≥ c∞.

�

We now establish the reverse inequality.

Lemma A.3.2. As N →∞,

lim
N→∞

max
µ∈Π(pN ,qN )

G(µ, νN) ≤ sup
µ∈Π(p,q)

G(µ, ν), a.s.

Proof: The supremum of G(µ, ν) over µ ∈ Π(p, q) can be written as

− 1

θ
inf

µ∈Π(p,q)

∫
ln

(
dµ(x, y)

exp{θ < x, y >}dν(x, y)

)
dµ(x, y) =

1

θ
sup

µ∈Π(p,q)

−D(µ|eθ<x,y>ν).

(A.4)

By Theorem 3 of Rüschendorf and Thomsen [50], the optimum in (A.4) is attained at a

solution of the form

dµ∗(x, y) = ea(x)+b(y)+θ<x,y> dν(x, y), (A.5)

for some functions a and b on Rd. Similarly, for finite N , the optimizer of G(µ, νN) over
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µ ∈ Π(pN , qN) has the form

dµ∗N(x, y) = eaN (x)+bN (y)+θ<x,y> dνN(x, y).

For the rest of the proof, we will work with the formulation in (A.4), omitting the constant

factor of 1/θ. We will apply a dual formulation of Bhattacharya [13]. To this end, consider

the set Π∗ of functions h : Rd × Rd → R of the form h(x, y) = h1(x) + h2(y) with

∫
h1(x) dp(x) +

∫
h2(y) dq(y) ≥ 0.

The convex cone Π∗ is contained within the dual cone of Π(p, q), which is the set of functions

h : Rd × Rd → R that have nonnegative expectations with respect to all µ ∈ Π(p, q). We

consider the dual problem

inf
h∈Π∗

ln

∫
eh1(x)+h2(y)+θ<x,y> dν(x, y).

With a and b as in (A.5), set

h∗1(x) = a(x) + c/2, h∗2(x) = b(x) + c/2,

where

c = −
∫

[a(x) + b(y)] dµ∗(x, y).
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Observe that ∫
h∗1(x) dp(x) +

∫
h∗2(y) dq(y) = 0,

so this (h∗1, h
∗
2) is dual feasible. Moreover, with this choice of h∗1, h

∗
2, the dual objective

function value is

ln

∫
ea(x)+b(x)+c+θ<x,y> dν(x, y) = ln

∫
ec dµ∗(x, y) = c. (A.6)

The primal objective in (A.4) evaluated at (A.5) yields

−D(µ∗|eθ<x,y>ν) = −
∫

[a(x) + b(y)] dµ∗(x, y) = c,

so the primal and dual objective values agree. It follows from Theorem 2.1 of Bhattacharya

[13] that this choice of (h∗1, h
∗
2) is optimal for the dual objective.

Parallel results hold for finite N as well. The maximal value of G(·, νN) is 1/θ times the

dual optimum

cN = inf
h1,h2

ln

∫
eh1(x)+h2(y)+θ<x,y> dνN , (A.7)

s.t.
∫
h1(x) dpN(x) +

∫
h2(y) dqN(y) ≥ 0.

For ε ≥ 0, define

cε∞ := inf
h1,h2

ln

∫
eh1(x)+h2(y)+θ<x,y> dν, (A.8)

s.t.
∫
h1(x) dp(x) +

∫
h2(y) dq(y) ≥ ε.
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The infimum is finite because the integral is finite for any constant h1, h2. Let (hε1, h
ε
2) be

feasible for (A.8) and satisfy

ln

∫
eh

ε
1(x)+hε2(y)+θ<x,y> dν ≤ cε∞ + ε.

Then, with probability 1,

∫
hε1(x) dpN(x) +

∫
hε2(y) dqN(y) =

1

N

N∑
i=1

(hε1(Xi) + hε2(Yi))

→
∫
hε1(x) dp(x) +

∫
hε2(y) dq(y) ≥ ε,

so, for all sufficiently large N ,

∫
hε1(x) dpN(x) +

∫
hε2(y) dqN(y) ≥ 0.

In other words, (hε1, h
ε
2) is feasible for (A.7) for all sufficiently large N , so

cN ≤ ln

∫
eh

ε
1(x)+hε2(y)+θ<x,y> dνN → ln

∫
eh

ε
1(x)+hε2(y)+θ<x,y> dν ≤ cε∞ + ε.

Hence,

lim
N→∞

cN ≤ cε∞ + ε.

By construction, ∫
h∗1(x) dp(x) +

∫
h∗2(y) dq(y) = 0,
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so (h∗1 + ε/2, h∗2 + ε/2) is feasible for (A.8) and then

cε∞ ≤ ln

∫
eh
∗
1(x)+h∗2(y)+ε+θ<x,y> dν

and

lim
ε↓0

ln

∫
eh
∗
1(x)+h∗2(y)+ε+θ<x,y> dν = c,

with c as in (A.6). Thus, since ε > 0 can be taken arbitrarily small,

lim
N→∞

cN ≤ c.

�

Combining Lemmas A.3.1 and A.3.2 proves part (i) of the theorem.

A.3.2 Weak Convergence of Optimal Solutions

Define

ΠN = Π(p, q) ∪
(
∪

n≥N
Π(pn, qn)

)

We will show that, almost surely, ΠN is compact (with respect to the topology of weak

convergence on Rd × Rd) for all sufficiently large N . It will follow that any sequence of

optimizers {µ∗n} is then eventually contained within a compact set, so every subsequence

has a convergent subsequence.

Lemma A.3.3. ΠN is compact for all sufficiently large N , a.s.

Proof: By Prohorov’s Theorem (Billingsley [14], p.37) the set ΠN is compact if it is uni-
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formly tight, meaning that for all ε > 0 we can find a compact subset A of Rd×Rd such that

µ(A) ≥ 1− ε, for all µ ∈ ΠN . Let A1, A2 be compact subsets of Rd such that

P (X ∈ A1) =

∫
A1

dp(x) ≥ 1− ε/4, P (Y ∈ A2) =

∫
A2

dq(x) ≥ 1− ε/4.

Then, for any µ ∈ Π(p, q),

∫
1
¯{(x,y)6∈A1×A2} dµ(x, y) ≤ P (X 6∈ A1) + P (Y 6∈ A2) ≤ ε/2.

With probability 1, for all sufficiently large N and µ ∈ Π(pN , qN),

∫
1{(x,y)6∈A1×A2} dµ(x, y) ≤ 1

N

N∑
i=1

(
1{Xi 6∈A1} + 1{Yi 6∈A2}

)
≤ ε.

Thus, with probability 1, ΠN is uniformly tight for all sufficiently largeN , and thus compact.

�

The optimizers µ∗N are contained in the sets Π(pN , qN), so for all sufficiently large N ,

the sequence µ∗n, n ≥ N , is contained in a compact set ΠN , and then every subsequence has

a further subsequence that converges weakly.

Suppose the subsequence µ∗nk converges, say µ∗nk ⇒ µ̃. The marginals of µ∗nk converge

to p and q, so µ̃ ∈ Π(p, q), making µ̃ feasible for the limiting problem. We claim that it is

optimal. We have, a.s.,

∫
eθ<x,y> dµ∗nk ≤

∫ d+1∑
j=1

eθ<x,yj> dpnk(x)→
∫ d+1∑

j=1

eθ<x,yj> dp(x),
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by the strong law of large numbers, because the condition Eν [eθ<x,y>] <∞ implies that the

limit is finite. This is then more than sufficient to ensure that

∫
< x, y > dµ∗nk(x, y)→

∫
< x, y > dµ̃(x, y). (A.9)

Moreover, relative entropy is lower semi-continuous with respect to weak convergence (Dupuis

and Ellis [30], Lemma 1.4.3), so

D(µ̃|ν) ≤ lim
k→∞

D(µ∗nk |νnk)

and then

G(µ̃, ν) ≥ lim
k→∞

G(µ∗nk , νnk) = sup
µ∈Π(p,q)

G(µ, ν),

by part (i) of the theorem. Thus, µ̃ is optimal. Using the equivalence between the optimiza-

tion of G(·, ν) and (A.4), we know from Theorem 3 of Rüschendorf and Thomsen [50] that

the maximum is uniquely attained by some µ∗, and thus µ̃ = µ∗.

We have shown that every subsequence of µ∗n has a further subsequence that converges to

µ∗. It follows that µ∗n ⇒ µ∗. This proves part (ii) of the theorem. The uniform integrability

needed for (2.4.7) follows as in (A.9), which proves part (iii).

A.3.3 Proof of Inequality (A.3)

It remains to prove (A.3). First we construct a feasible solution µ̂N of maxµ∈Π(pN ,qN ) G(µ, νN)

by modifying the optimal solution µ∗N,ε of the relaxed problem maxµ∈Πε(pN ,qN ) G(µ, νN).



110

Then we use the difference between G(µ̂N , νN) and G(µ∗N,ε, νN) to bound the difference

between cN and cN,ε.

Define εNj =
∑N

i=1 (µ∗N,ε)ij − qN(yj), which is the difference between the Y marginal of

µ∗N,ε and the empirical distribution of Y . Note that |εNj | ≤ ε for j = 1, ..., d + 1. We claim

that there exists {ε∗ij} for which

(µ̂N)ij := (µ∗N,ε)ij − ε
∗
ij, i = 1, ..., N and j = 1, ..., d+ 1,

satisfies the following conditions:

µ̂N ∈ Π(pN , qN), (A.10)

∑N
i=1

∑d+1
j=1 |ε∗ij| ≤ (d+ 1)ε, (A.11)

−CN · ε · 1
N
≤ ε∗ij ≤ CN · ε · (µ∗N,ε)ij, (A.12)

where CN = maxj=1,··· ,d+1{1/qN(yj)}. Since q(yj) > 0 for j = 1, · · · , d + 1, we know

qN(yj) > 0 for all j and N large enough, and CN is well defined.

To see that such {ε∗ij} exist, rearrange {εNj } in descending order {εNjk} for k = 1, · · · , d+

1, and let m denote number of nonnegative elements. Note that εNjk ≥ 0 for k = 1, · · · ,m,

and εNjk < 0 for k = m+ 1, · · · , d+ 1, and
∑m

k=1 ε
N
jk

= −
∑d+1

k=m+1 ε
N
jk

. Let

ε∗i,jk =
(µ∗N,ε)i,jk∑N
i=1 (µ∗N,ε)i,jk

· εNjk
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for i = 1, · · · , N and k = 1, · · · ,m. Let

Si =
m∑
k=1

ε∗i,jk

for i = 1, · · · , N . Let

ε∗i,jk =
εNjk

|
∑d+1

l=m+1 ε
N
jl
|
· Si

for i = 1, · · · , N and k = m+ 1, · · · , d+ 1.

We verify (A.10)-(A.12) for {ε∗ij}. Since (A.10) is equivalent to
∑N

i=1 ε
∗
i,jk

= εNjk for

k = 1, · · · , d+ 1, we know that by construction it holds for {ε∗ij}. Next,

N∑
i=1

d+1∑
j=1

|ε∗ij| =
N∑
i=1

d+1∑
k=1

|ε∗i,jk |

=
N∑
i=1

m∑
k=1

ε∗i,jk −
N∑
i=1

d+1∑
k=m+1

ε∗i,jk

=
N∑
i=1

m∑
k=1

(µ∗N,ε)i,jk∑N
i=1 (µ∗N,ε)i,jk

· εNjk −
N∑
i=1

d+1∑
k=m+1

εNjk
|
∑d+1

l=m+1 ε
N
jl
|
· Si

=
m∑
k=1

εNjk −
d+1∑

k=m+1

εNjk

≤ (d+ 1)ε

The last equality follows by
∑N

i=1 Si =
∑m

k=1 ε
N
jk

= |
∑d+1

l=m+1 ε
N
jl
|. Thus {ε∗ij} satisfy

(A.11).

For k = 1, · · · ,m,

0 ≤ ε∗i,jk =
(µ∗N,ε)i,jk

qN(yjk) + εNjk
· εNjk ≤

(µ∗N,ε)i,jk
qN(yjk)

· εNjk ≤ CN · ε · (µ∗N,ε)i,jk
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For k = m+ 1, · · · , d+ 1,

0 ≥ ε∗i,jk ≥ −Si ≥ −CN · ε ·
m∑
k=1

(µ∗N,ε)i,jk
≥ −CN · ε ·

1

N

Thus {ε∗ij} satisfy (A.12).

Because µ̂N is feasible but not necessarily optimal, we have

G(µ̂N , νN) ≤ cN ≤ cN,ε.

We will show that

cN,ε −G(µ̂N , νN) ≤ εKN , (A.13)

for

KN = (d+ 1) · max
i=1,...,N

max
j=1,...,d+1

| < Xi, yj > |+
1

θ
·K2,

where K2 is a constant. It then follows that

cN,ε − cN ≤ εKN .

To show (A.13), write

cN,ε −G(µ̂N , νN) =
( ∫

< x, y > dµN,ε −
∫

< x, y > dµ̂N
)

−1

θ

∫ (dµN,ε
dνN

ln(
dµN,ε
dνN

)− dµ̂N
dνN

ln(
dµ̂N
dνN

)
)
dνN .
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The first part has upper bound

(d+ 1) · max
i=1,...,N

max
j=1,...,d+1

| < Xi, yj > | · ε.

Let x = dµN,ε/dνN and x−∆x = dµ̂N/dνN . Drop the factor −1/θ and rewrite the second

part as follows:

∫
x lnx− (x−∆x) ln(x−∆x) dνN

=

∫
x lnx− x ln(x−∆x) + ∆x ln(x−∆x) dνN

=

∫
−x ln(1− ∆x

x
) + ∆x ln(x−∆x) dνN

≥
∫
−x · (−∆x

x
) dνN +

∫
∆x ln(x−∆x) dνN

=

∫
∆x dνN +

∫
1{∆x≥0}∆x ln(x−∆x) dνN +

∫
1{∆x<0}∆x ln(x−∆x) dνN

= 0 +

∫
1{∆x≥0}

∆x

x−∆x
(x−∆x) ln(x−∆x) dνN +

∫
1{∆x<0}∆x ln(x−∆x) dνN

≥
∫

1{∆x≥0}
∆x

x−∆x
(x−∆x− 1) dνN +

∫
1{∆x<0}∆x(x−∆x− 1) dνN

=

∫
1{∆x≥0}∆x(1− 1

x−∆x
) dνN +

∫
1{∆x<0}(∆x · x− (∆x)2 −∆x) dνN

≥
∫

1{∆x≥0}(−
∆x

x−∆x
) dνN − C2

Nε− C3
N(d+ 1)ε2

≥
∫

1{∆x≥0}(−
CN · ε

(1− CN · ε)
) dνN − C2

Nε− C3
N(d+ 1)ε2

≥ − CN
(1− CN · ε)

· ε− C2
Nε− C3

N(d+ 1)ε2

= −
( CN

(1− CN · ε)
+ C2

N + C3
N(d+ 1)ε

)
· ε

:= −KCN ,ε · ε

We explain the inequalities in turn. The first inequality follows from lnx ≤ x− 1 for x ≥ 0,
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and the second inequality follows from both lnx ≤ x − 1 for x ≥ 0 and x lnx ≥ x − 1 for

x ≥ 0. The third inequality follows by dropping a positive term ∆x in the first integral and

noting that

∫
1{∆x<0}∆x · x dνN =

∫
1{dµN,ε−dµ̂N<0}

dµN,ε − dµ̂N
dνN

· dµN,ε
dνN

dνN

=
∑
ij

1{ε∗ij<0}ε
∗
ij

1
N
qN(yj)

· (µN,ε)ij

≥
∑
ij

−C2
N · ε · (µN,ε)ij = −C2

N · ε, by (A.12),

and

∫
1{∆x<0}(−∆x)2 dνN ≥ −

∫
∆x2 dνN = −

∑
ij

(ε∗ij)
2

1
N
qN(yj)

≥ −
∑
ij

C2
N( 1

N
)2ε2

1
N
qN(yj)

, by (A.12),

≥ −C3
N(d+ 1)ε2.

The fourth inequality holds because ∆x ≤ x · CN · ε for ∆x ≥ 0, by (A.12).

The coefficient KCN ,ε is increasing in both CN and ε. Since qN(yj)→ q(yj) as N →∞,

CN → maxj=1,··· ,d+1{1/q(yj)} as N → ∞, thus we can find a constant C ≥ CN for all N .

On the other hand, without loss of generality we can assume that ε is small enough, such that

1− C · ε > 1/2, i.e. ε < 1/(2C). Choose K2 = KC,1/(2C). Then

∫
x lnx− (x−∆x) ln(x−∆x) dνN ≥ −K2 · ε
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for all N and ε small enough. We thus have

cN,ε −G(µ̂N , νN) ≤ (d+ 1) · max
i=1,...,N

max
j=1,...,d+1

| < Xi, yj > | · ε+
1

θ
K2 · ε

= KN · ε,

and ((A.13)) is proved. �

A.4 Proof of Theorem 2.6.1

Let µ ∈ Π̄(p, q) be any feasible solution to the limiting problem. Write µ((dx, dz), y) =

p(dx, dz)q(y|x, z), and define the mass function µN on ((Xi, Zi), yj), i = 1, . . . , N , j =

1, . . . , d+ 1, by setting

µN((Xi, Zi), yj) =
1

N
q(yj|(Xi, Zi)).

For each yj , we get the marginal probability

q̄N(yj) =
N∑
i=1

µN((Xi, Zi), yj) =
1

N

N∑
i=1

q(yj|(Xi, Zi)).

The expectation of < Zi, yj > with respect to µN is given by

v̄N0 =
N∑
i=1

d+1∑
j=1

< Zi, yj > µN((Xi, Zi), yj).
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By the strong law of large numbers for the i.i.d. sequence (Xi, Zi), i = 1, . . . , N , we have

(q̄N(y1), . . . , q̄N(ym))→ (q(y1), . . . , q(ym)), a.s., and also

v̄N0 =
1

N

N∑
i=1

d+1∑
j=1

< Zi, yj > q(yj|(Xi, Zi)) →
∫ d+1∑

j=1

< hZ(x, z), yj > q(yj|(x, z)) dp(x, z)

=

∫
< hZ(x, z), y > dµ((x, z), y) = v0,

where v0 is the value in the constraint (2.6.1) because µ ∈ Π̄(p, q). In fact, by the law of the

iterated logarithm, if we set εN = 1/Nα with 0 < α < 1/2, then, with probability 1,

max
1≤j≤d+1

|q̄N(yj)− q(yj)| < εN , max
1≤j≤d+1

|q̄N(yj)− qN(yj)| < εN

and, under our square-integrability condition on Z,

|v̄N0 − v0| < εN ,

for all sufficiently large N . It follows that µN ∈ Π̄εN (pN , qN), for all sufficiently large N .

A.4.1 Upper Bound

Because µN is feasible for all sufficiently large N , it provides a lower bound on the optimal

value cN,εN in (2.6.4),

cN,εN ≥
N∑
i=1

d+1∑
j=1

µN((Xi, Zi), yj) < Xi, yj >=
1

N

N∑
i=1

d+1∑
j=1

q(yj|(Xi, Zi)) < Xi, yj > .
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By the strong law of large numbers

1

N

N∑
i=1

d+1∑
j=1

q(yj|(Xi, Zi)) < Xi, yj > →
∫
Rd×Rd

d+1∑
j=1

q(yj|(x, z)) < hX(x, z), yj > dp(x, z)

=

∫
(Rd×Rd)×Rd

< hX(x, z), y > dµ((x, z), y).

So

lim
N→∞

cN,εN ≥
∫

(Rd×Rd)×Rd
< hX(x, z), y > dµ((x, z), y)

And since this holds for any µ ∈ Π̄(p, q),

lim
N→∞

cN,εN ≥ c∞. (A.1)

A.4.2 Lower Bound

To prove a lower bound, we formulate a dual problem for the relaxed finite-N problem

(2.6.4) with objective value dN,ε, and we formulate a dual for the limiting problem (2.6.3)

with objective value d∞.

The relaxed finite problem in (2.6.4) is a linear program. Its dual can be written as

dN,ε ≡ min
Φ,Ψ1,Ψ2,ξ1,ξ2

{FN(Φ,Ψ1,Ψ2, ξ1, ξ2) + εK(Ψ1,Ψ2, ξ1, ξ2)} (A.2)

with

FN(Φ,Ψ1,Ψ2, ξ1, ξ2) =
1

N

N∑
i=1

Φi +
d+1∑
j=1

(Ψ1j + Ψ2j) · qN(yj) + (ξ1 + ξ2)v0
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and

K(Ψ1,Ψ2, ξ1, ξ2) =
d+1∑
j=1

(Ψ1j −Ψ2j) + (ξ1 − ξ2),

the infimum taken over Φ ∈ R, Ψ1j ≥ 0, Ψ2j ≤ 0, ξ1 ≥ 0, ξ2 ≤ 0, satisfying

Φi + Ψ1j + Ψ2j + (ξ1 + ξ2)· < Zi, yj > ≥ < Xi, yj >,

for i = 1, ..., N , and all j = 1, ..., d+ 1 with qN(yj) > 0. We have already seen that problem

(2.6.4) is feasible for all sufficiently large N , and once it is feasible cN,ε = dN,ε by standard

linear programming duality.

We define the dual of the limiting problem (2.6.3) by setting

d∞ = inf
φ,ψ,ξ

F (φ, ψ, ξ)

with

F (φ, ψ, ξ) =

∫
φ(x, z) dp(x, z) +

d+1∑
j=1

ψ(yj)q(yj) + ξv0,

the infimum taken over functions φ : Rd × Rd → R, ψ : Rd → R, and a scalar ξ ∈ R,

satisfying, for all (x, z) in the support of p and all y in the support of q,

φ(x, z) + ψ(y) + ξ < z, y > ≥ < x, y >,

with φ ∈ L1(p).
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For any ε̃ > 0, we may pick φε̃, ψε̃, and ξε̃ feasible for the limiting dual and for which

F (φε̃, ψε̃, ξε̃) ≤ d∞ + ε̃.

We may then define a feasible solution to (A.2) by setting Φi = φε̃(Xi, Zi), Ψ1j = ψ+
ε̃ (yj),

Ψ2j = −ψ−ε̃ (yj), ξ1 = ξ+
ε̃ , and ξ2 = −ξ−ε̃ . By the strong law of large numbers, this choice

yields

FN(Φ,Ψ1,Ψ2, ξ1, ξ2)→ F (φε̃, ψε̃, ξε̃), a.s.

For any ε̄ > 0, there is a stochastic N(ε̃, ε̄) such that for all N > N(ε̃, ε̄),

FN(Φ,Ψ1,Ψ2, ξ1, ξ2) ≤ F (φε̃, ψε̃, ξε̃) + ε̄, a.s.,

and this N(ε̃, ε̄) does not depend on the ε that defines the relaxation (A.2). Thus, we have,

for all sufficiently large N ,

dN,ε ≤ d∞ + ε̃+ ε̄+K(Ψ1,Ψ2, ξ1, ξ2)ε;

and, because N(ε̃, ε̄) does not depend on ε,

dN,εN ≤ d∞ + ε̃+ ε̄+K(Ψ1,Ψ2, ξ1, ξ2)εN ,

for all N > N(ε̃, ε̄), so

lim
N→∞

dN,εN ≤ d∞ + ε̃+ ε̄.
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Because ε̃ > 0 and ε̄ > 0 are arbitrary,

lim
N→∞

dN,εN ≤ d∞.

We have already noted that dN,εN = cN,εN by ordinary linear programming duality. In

Appendix A.4.3 we show that that

d∞ = c∞. (A.3)

Thus,

lim
N→∞

cN,εN = lim
N→∞

dN,εN ≤ d∞ = c∞,

which, together with (A.1) proves the result.

A.4.3 A Duality Result

In this section, we prove the equality c∞ = d∞ used in Appendix A.4.2. The result follows

from Theorem 5.10 of Villani [54], once we show that we can transform the primal problem

to an equivalent problem that satisfies the conditions of the theorem. We formulate the

equivalent problem using a result of Luenberger [42], for which we adopt his notation.

Let X be the vector space of signed finite measures µ on (Rd × Rd)× Rd satisfying

∫
Rd×Rd

‖u‖µ(dx,Rd) <∞.

Let Ω ⊂ X be the subset of probability measures with marginals p and q, which is a convex
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set. For µ ∈ X , let

f(µ) =

∫
(Rd×Rd)×Rd

− < hX(x, z), y > dµ((x, z), y).

Let G(·) be a mapping from X to R defined by

G(µ) =

∫
< hZ(x, z), y > dµ((x, z), y)− v0.

The primal problem is

c∞ = − inf
µ∈Ω,G(µ)=0

f(µ).

Define

L(ξ) = inf
µ∈Ω

{∫
− < hX(x, z), y > dµ((x, z), y) + ξ ·G(µ)

}
. (A.4)

Now apply Theorem 1 of Section 8.6 of Luenberger [42] (with the extension in problem 7 of

Section 8.8) to conclude that

inf
µ∈Ω,G(µ)=0

f(µ) = max
ξ∈R

L(ξ),

and there exists ξ∗ such that L(ξ∗) = −c∞.
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Drop the constant term −ξ∗ · v0 in L(ξ∗), and denote it by L∗, so

L∗ = inf
µ∈Π(p,q)

∫
− < hX(x, z), y > dµ((x, z), y) + ξ∗ ·

∫
< hZ(x, z), y > dµ((x, z), y)

= inf
µ∈Π(p,q)

∫ (
− < hX(x, z), y > +ξ∗· < hZ(x, z), y >

)
dµ((x, z), y)

Define the dual problem DL∗,

DL∗ = sup
(φ,ψ)∈L1(p)×L1(q); −φ−ψ≤−c+ξ∗·v

−
∫
Rd×Rd

φ(x, z)dp(x, z)−
d+1∑
j=1

ψ(yj)q(yj),

where c((x, z), y) =< hX(x, z), y >, and v((x, z), y) =< hZ(x, z), y >.

Let a(x, z) = 1
2
< (x, ξ∗z), (x, ξ∗z) > and b(y) = 1

2
< y, y >. We have

− < hX(x, z), y > +ξ∗· < hZ(x, z), y > ≥ − a(x, z)− b(y).

By condition (i) in Theorem 2.6.1, a ∈ L1(p) and b ∈ L1(q). It follows from Theorem 5.10

of Villani [54] that strong duality holds, i.e. L∗ = DL∗.

Since L∗ < +∞ and − < hX(x, z), y > +ξ∗· < hZ(x, z), y > ≤ a(x, z) + b(y), it

follows from part (iii) of Theorem 5.10 of Villani [54] that solutions exists for both problems.

Let (φ∗, ψ∗) denote an optimal solution to DL∗, then (φ∗, ψ∗, ξ∗) is a feasible solution to the

dual problem

d∞ = inf
φ(x,z)+ψ(y)+ξv((x,z),y)≥c((x,z),y)

∫
Rd×Rd

φ(x, z)dp(x, z) +
d+1∑
j=1

ψ(yj)q(yj) + ξv0.

Let d∗ denote the objective value by substituting (φ∗, ψ∗, ξ∗) in the objective function. Note
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that d∗ = −DL∗+ ξ∗v0 = −L∗+ ξ∗v0 = c∞, so (φ∗, ψ∗, ξ∗) is optimal for the dual problem

d∞, and strong duality holds d∞ = c∞. �

A.5 Proof of Theorem 2.6.2

We show the convergence result for the penalty problems with the auxiliary constraints in

(2.6.1) as N →∞. We start with the convergence of the objective function value asserted in

part (i) of the theorem.

A.5.1 Convergence of the Optimal Objective Value

Let G∞ denote the optimal value of the penalty limit problem,

G∞ = sup
µ∈Π̄(p,q)

G(µ, ν) = sup
µ∈Π̄(p,q)

∫
< x, y > dµ− 1

θ

∫
ln(

dµ

dν
) dµ. (A.1)

Let GN,ε be the optimal value of the penalty finite relaxed problem with sample size N ,

GN,ε = sup
µ∈Π̄ε(pN ,qN )

G(µ, νN) = sup
µ∈Π̄ε(pN ,qN )

∫
< x, y > dµ− 1

θ

∫
ln(

dµ

dνN
) dµ. (A.2)

Lemma A.5.1. limN→∞GN,εN ≥ G∞, for εN = 1/Nα and α ∈ (0, 1/2).

Proof: Let µ ∈ Π̄(p, q) be any feasible solution to the limiting problem. Define a mass

function on the pairs ((Xi, Zi), yj), i = 1, · · · , N , j = 1, · · · , d+ 1:

µN((Xi, Zi), yj) =
1

N
q(yj|(Xi, Zi)).
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From the argument in Appendix A.4, we know that µN ∈ Π̄N
εN

, so

GN,εN ≥
N∑
i=1

d+1∑
j=1

µN((Xi, Zi), yj) < Xi, yj > −
1

θ
D(µN |νN)

=
1

N

N∑
i=1

d+1∑
j=1

q(yj|(Xi, Zi)) < Xi, yj > −
1

θ

1

N

N∑
i=1

d+1∑
j=1

ln(
q(yj|(Xi, Zi))

q(yj)
)q(yj|(Xi, Zi))

→
∫

< x, y > dµ((x, z), y)− 1

θ

∫
ln(

dµ

dν
)dµ,

the limit following from the strong law of large numbers. Thus, limN→∞GN,εN ≥ G∞. �

We have shown that the limiting objective value is a lower bound for the sequence in part

(i) of Theorem 2.6.2. We will use a dual formulation to show the reverse inequality. The

argument requires several lemmas.

We reformulate the problem of maximizing G(·, ν) as

−1

θ
min

µ∈Π̄(p,q)

∫ (
dµ((x, z), y)

exp(θ < x, y >)dν((x, z), y)

)
dµ((x, z), y) = −1

θ
min

µ∈Π̄(p,q)
D(µ|e(θ<x,y>)ν).

(A.3)

Dropping the constant factor −1/θ from (A.3), we get the equivalent problem

P∞ = min
µ∈Π̄(p,q)

D(µ|e(θ<x,y>)ν) (A.4)

Define Π̄∗(p, q) to be the set of functions h : (Rd × Rd)× Rd → R of the form

h((x, z), y) = h1(x, z) + h2(y) + h3v((x, z), y)− h4
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where

v((x, z), y) =< hZ(x, z), y >=< z, y >,

with ∫
h((x, z), y)dµ((x, z), y) ≥ 0, for all µ ∈ Π̄(p, q).

Lemma A.5.2. Let D∞ be the dual problem to P∞, defined as

D∞ = inf
h∈Π̄∗(p,q)

ln

∫
eh((x,z),y)+θ<x,y> dν((x, z), y), (A.5)

The following statements hold:

(i) The optimal solution to the primal problem is

dµ∗((x, z), y) = ea(x,z)+b(y)+ξv((x,z),y)+θ<x,y> dν((x, z), y). (A.6)

(ii) The optimal solution to the dual problem is

h∗((x, z), y) = h∗1(x, z) + h∗2(y) + h∗3v((x, z), y)− h∗4,

h∗1(x, z) = a(x, z), h∗2(x) = b(x), h∗3 = ξ,

h∗4 =

∫
a(x, z) + b(y) + ξ · v((x, z), y) dµ∗((x, z), y).

(iii) Strong duality holds, P∞ = −D∞.
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Proof: Conclusion (i) follows Theorem 3 of Rüschendorf and Thomsen [50].

To apply the dual formulation in Bhattacharya, we consider the set Π̄∗(p, q) of functions

h : (Rd × Rd)× Rd → R of the form

h((x, z), y) = h1(x, z) + h2(y) + h3v((x, z), y)− h4

with, for any µ ∈ Π̄(p, q)

∫
h((x, z), y)dµ((x, z), y) =

∫
h1(x, z) dp((x, z)) +

∫
h2(y) dq(y) + h3v0 − h4

≥ 0.

Observe that (the convex cone) Π̄∗(p, q) is contained within the dual cone of Π̄(p, q). We

consider the dual problem

inf
h∈Π̄∗

ln

∫
eh((x,z),y)+θ<x,y> dν((x, z), y).

With µ∗, a(x, z), b(x), ξ as in (A.6), set

h∗1(x, z) = a(x, z), h∗2(x) = b(x), h∗3 = ξ,

h∗4 = c ≡
∫
a(x, z) + b(y) + ξ · v((x, z), y) dµ∗((x, z), y).
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Observe that

∫
h∗((x, z), y)dµ((x, z), y) =

∫
h∗1((x, z)) dp((x, z)) +

∫
h∗2(y) dq(y) + h∗3v0 − h∗4 = 0,

for all µ ∈ Π̄(p, q), so this (h∗1, h∗2, h∗3, h∗4) is dual feasible. Moreover, with this choice of h∗1,

h∗2, h∗3, h∗4, the dual objective function value in (A.5) is

D∞ = ln

∫
ea(x,z)+b(y)+ξv((x,z),y)−c+θ<x,y> dν((x, z), y) = ln

∫
e−c dµ∗(x, y) = −c.

The primal objective function value is

P∞ = D(µ∗|eθ<x,y>ν) =

∫
a(x, z) + b(y) + ξv((x, z), y) dµ∗((x, z), y) = c.

It follows from Theorem 2.1 of Bhattacharya that this choice of (h∗1, h
∗
2, h
∗
3, h
∗
4) is optimal

for the dual problem (A.5), and strong duality holds P∞ = −D∞. �

Next we establish a similar result for the discrete problem. Define Π̄∗εN (pN , qN) to be set

of functions h : (Rd × Rd)× Rd → R of the form

h((x, z), y) = h1(x, z) + h2(y) + h3v((x, z), y)− h4

with ∫
h((x, z), y)dµN((x, z), y) ≥ 0,

for all µN ∈ Π̄εN (pN , qN).
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Lemma A.5.3. For the primal problem

PN,εN = min
µ∈Π̄εN (pN ,qN )

∫ (
dµ((x, z), y)

exp(θ < x, y >)dνN((x, z), y)

)
dµ((x, z), y), (A.7)

define the dual

DN,εN = inf
h∈Π̄∗εN (pN ,qN )

ln

∫
eh((x,z),y)+θ<x,y> dνN((x, z), y). (A.8)

The following statements hold:

(i) The optimal solution to the primal problem takes the form

dµ∗N((x, z), y) = ea
N (x,z)+bN1 (y)+bN2 (y)+ξN1 v((x,z),y)+ξN2 v((x,z),y)+θ<x,y> dνN((x, z), y),

where bN1 (y) ≤ 0, bN2 (y) ≥ 0, ξN1 ≤ 0, ξN2 ≥ 0.

(ii) A feasible solution to the dual is h̃,

h̃((x, z), y) = h̃1(x, z) + h̃2(y) + h̃3v((x, z), y)− h̃4, where

h̃1(x, z) = a(x, z), h̃2(x) = b1(x) + b2(x), h̃3 = ξ1 + ξ2,

h̃4 =

∫
a(x, z) dpN(x, z) +

∫
(b1(y) + b2(y)) dqN(y) + (ξ1 + ξ2)v0

+
d+1∑
j=1

(b1(yj)− b2(yj))εN + (ξ1 − ξ2)εN
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where b1(y) = b(y)−, b2(y) = b(y)+, and ξ1 = ξ−, ξ2 = ξ+, for a(x, z), b(x), ξ as in (A.6).

(iii) D∞ ≥ lim
N→∞

DN,εN .

Proof: Conclusion (i) is the discrete form of part (i) in Lemma A.5.2. For (ii), we consider

the dual problem

inf
h∈Π̄∗εN (pN ,qN )

ln

∫
eh((x,z),y)+θ<x,y> dνN((x, z), y).

Let h̃1(x, z) = a(x, z), h̃2(x) = b1(x) + b2(x), h̃3 = ξ1 + ξ2 and

h̃4 = c̃ ≡
∫
a(x, z) dpN(x, z) +

∫
b1(y) + b2(y) dqN(y) + (ξ1 + ξ2)v0

+
d+1∑
j=1

(b1(yj)− b2(yj))εN + (ξ1 − ξ2)εN

where b1(y) = b(y)−, b2(y) = b(y)+, and ξ1 = ξ−, ξ2 = ξ+, for a(x, z), b(x), ξ as in (A.6).

Notice that
d+1∑
j=1

(b1(yj)− b2(yj))εN + (ξ1 − ξ2)εN ≤ 0.
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For any µN ∈ Π̄εN (pN , qN),

∫
h̃(x, y)dµN((x, z), y) =

∫
h̃1(x, z) dpN(x, z)

+

∫ (
h̃2(y) + h̃3v((x, z), y)

)
dµN((x, z), y)− h̃4

≥
∫
h̃1(x, z) dpN(x, z) +

∫
h̃2(y) dqN(y) + h̃3v0 − h̃4

+
d+1∑
j=1

(b1(yj)− b2(yj))εN + (ξ1 − ξ2)εN

=

∫
a(x, z) dpN(x, z) +

∫
b1(y) + b2(y) dqN(y) + (ξ1 + ξ2)v0

+
d+1∑
j=1

(b1(yj)− b2(yj))εN + (ξ1 − ξ2)εN − h̃4

= 0

so this (h̃1, h̃2, h̃3, h̃4) is feasible for the dual problem (A.8).

For (iii), let D̃N,εN denote the objective value in (A.8) with solution h̃. Since h̃ is dual

feasible,

D̃N,εN ≥ DN,εN
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We show that D̃N,εN → D∞ as N →∞. Substituting h̃ in (A.8)

D̃N,εN = ln
N∑
i=1

d+1∑
j=1

exp
(
a(Xi, Zi) + b(yj) + ξv((Xi, Zi), yj)−

1

N

N∑
i=1

a(Xi, Zi)

−
∫
b(y) dqN(y)− ξv0 −

d+1∑
j=1

|b(yj)|εN − |ξ|εN + θ < Xi, yj >
)
· 1

N
· qN(yj)

= ln exp
(
− 1

N

N∑
i=1

a(Xi, Zi)−
∫
b(y) dqN(y)− ξv0 −

d+1∑
j=1

|b(yj)|εN − |ξ|εN
)

+ ln
1

N

N∑
i=1

d+1∑
j=1

exp
(
a(Xi, Zi) + b(yj) + ξv(Xi, yj) + θ < Xi, yj >

)
qN(yj)

=
(
− 1

N

N∑
i=1

a(Xi, Zi)−
1

N

N∑
j=1

b(Yj)− ξv0 −
d+1∑
j=1

|b(yj)|εN − |ξ|εN
)

+ ln
( 1

N2

N∑
i=1

N∑
j=1

exp(a(Xi, Zi) + b(Yj) + ξv((Xi, Zi), Yj) + θ < Xi, Yj >)
)

−→ −
∫
a(x, z) dp(x, z)−

∫
b(y) dq(y)− ξv0 + ln

∫
ea(x,z)+b(y)+ξv((x,z),y)+θ<x,y> dν

= D∞

so D∞ ≥ lim
N→∞

DN,εN . �

Lemma A.5.4. G∞ ≥ lim supN GN,εN .

Proof: From strong duality of the continuous problem (A.4) and (A.5) in Lemma A.5.2, we

have G∞ = −1
θ
P∞ = 1

θ
D∞. By weak duality of the finite relaxed problem (A.7) and (A.8),

we have 1
θ
DN,εN ≥ −1

θ
PN,εN = GN,εN . Therefore by Lemma A.5.3, we have

G∞ =
1

θ
D∞ ≥ lim sup

N

1

θ
DN,εN ≥ lim sup

N
GN,εN .

�
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Combining Lemma A.5.1 and Lemma A.5.4 proves part (i) of Theorem 2.6.2.

A.5.2 Weak Convergence of Optimal Solutions

The argument is similar to that of Section A.3.2. Define

Π̄N = Π̄(p, q) ∪
(
∪

n≥N
Π̄εn(pn, qn)

)
.

By the argument used in Lemma A.3.3, we have

Lemma A.5.5. Π̄N is compact for all sufficiently large N, a.s.

The optimizers µ̄∗N are contained in the sets Π̄εN (pN , qN), so for all sufficiently large N ,

the sequence µ̄∗n, n ≥ N , is contained in a compact set Π̄N , and then every subsequence has

a further subsequence that converges weakly.

Suppose the subsequence µ̄∗nk converges, say µ̄∗nk ⇒ µ̃. The marginals of µ̄∗nk converge

to p and q, and limk→∞
∫
v((x, z), y) dµ̄∗nk = v0, so µ̃ ∈ Π̄(p, q), making µ̃ feasible for the

limiting problem. We claim that it is optimal. We have, a.s.,

∫
eθ<hx(x,z),y> dµ̄∗nk ≤

∫ d+1∑
j=1

eθ<hx(x,z),yj> dpnk(x, z)→
∫ d+1∑

j=1

eθ<hx(x,z),yj> dp(x, z),

by the strong law of large numbers, because the condition Eν [eθ<hx(x,z),y>] <∞ implies that

the limit is finite. This is then more than sufficient to ensure that

∫
< hx(x, z), y > dµ̄∗nk((x, z), y)→

∫
< hx(x, z), y > dµ̃((x, z), y). (A.9)
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Moreover, relative entropy is lower semi-continuous with respect to weak convergence (Dupuis

and Ellis [30], Lemma 1.4.3), so

D(µ̃|ν) ≤ lim
k→∞

D(µ̄∗nk |νnk)

and then

G(µ̃, ν) ≥ lim
k→∞

G(µ̄∗nk , νnk) = sup
µ∈Π̄(p,q)

G(µ, ν),

by part (i) of the theorem. Thus, µ̃ is optimal. Using the equivalence between the optimiza-

tion of G(·, ν) and (A.4), we know from Theorem 2.1 of Csiszár [26] that the maximum is

uniquely attained by some µ̄∗, and thus µ̃ = µ̄∗.

We have shown that every subsequence of µ̄∗n has a further subsequence that converges to

µ̄∗. It follows that µ̄∗n ⇒ µ̄∗. This proves part (ii) of the theorem. The uniform integrability

needed for (2.6.5) follows as in (A.9), which proves part (iii). �
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Appendix B

Additional Proofs for Chapter 3

B.1 Proof of Proposition 3.3.1

We prove the Proposition for the case of V (x, p); the case of V̄ (x) is similar. For each given

decision t ≤ τ1 ≤ ζ2 ≤ τ2 ≤ ζ3 ≤ . . . , denote

µ̃s :=
∞∑
i=1

[
µ1{s∈[ζi,τi)} + r1{s∈[τi,ζi+1)}

]
, σ̃s :=

∞∑
i=1

[
σ1{s∈[ζi,τi)}

]
, s ≥ t,

and

dZs := µ̃sZsds+ σ̃sZsdWs, s ≥ t, Zt = 1.
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Then, for s ∈ (ζi, τi], we have

Xs− = xKi−1Zs, s ∈ (ζi, τi], Xs− = xKi−1(1− ks)Zs, s ∈ (τi, ζi+1], i ≥ 1,

Ps− = p, s ∈ [t, ζ2], Ps− = Xζi =
Xζi−

1 + kp
= xKi−1Zζi , s ∈ (ζi, ζi+1], i ≥ 2.

Part one: We prove that V (x, p) is finite if δ+ρ > max{βr, βµ− β(1−β)
2

σ2, ᾱµ− ᾱ(1−ᾱ)
2

σ2}.

We prove it only for the case of ρ > 0; the case of ρ = 0 is similar.

We first show that there exists α̃ ∈ [ᾱ, 1] such that ū(x) ≤ C(1 + xα̃), ∀x > 0 for some

C > 0 and ρ + δ > α̃
(
µ− 1−α̃

2
σ2
)
. This is true when ᾱ < 1 because ᾱ = limx→+∞

xū′(x)
ū(x)

and ρ + δ > ᾱ
(
µ− 1−ᾱ

2
σ2
)
. When ᾱ = 1, we set α̃ = 1, and then we have ρ + δ >

α̃
(
µ− 1−α̃

2
σ2
)
. In addition, in the case that γ+ = 0 we have ū(x) = u(x) ≤ C(1+x),∀x >

0 for some C > 0 because of the concavity of u(x) in x > 1, and in the case that γ+ > 0, we

also have ū(x) ≤ C(1 + x), ∀x > 0 for some C > 0.

Observe that U(Gt, Rt) = P β
t ū(Xt/Pt) ≤ CP β

t

(
1 + (Xt/Pt)

α̃
)
. Therefore, for any

stopping times t ≤ τ1 ≤ ζ1 ≤ τ2 ≤ · · · , each i ≥ 2, and each T ≥ t, we have

Et[e−δ(τi−t)U(Gτi−, Rτi−)1{τi<τ̃}|τ̃ = T ]

≤Et[e−δ(τi−t)CP β
τi−
(
1 + (Xτi−/Pτi−)α̃

)
)1{τi<τ̃}|τ̃ = T ]

=Et[e−δ(τi−t)C
(
xKi−1Zζi

)β (
1 + (Zτi/Zζi)

α̃
)
)1{τi<T}]

=Cxβ(Kβ)i−1Et[e−δ(τi−t)Zβ
ζi

(
1 + (Zτi/Zζi)

α̃
)
)1{τi<T}].
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On the one hand,

Et[e−δ(τi−t)Zβ
ζi
1{τi<T}]

=Et
[

exp
(
− δ(τi − t) + β

∫ ζi

t

µ̃sds−
1

2
β(1− β)

∫ ζi

t

σ̃2
sds

− 1

2
β2

∫ ζi

t

σ̃2
sds+ β

∫ ζi

t

σ̃sdWs

)
1{τi<T}

]
≤Et

[
exp

(
− δ(ζi − t) + max

(
βµ− 1

2
β(1− β)σ2, βr

)
(ζi − t)

− 1

2
β2

∫ ζi

t

σ̃2
sds+ β

∫ ζi

t

σ̃sdWs

)
1{τi<T}

]
≤ exp

[
max

(
−δ + max

(
βµ− 1

2
β(1− β)σ2, βr

)
, 0

)
(T − t)

]
× Et

[
exp

(
− 1

2
β2

∫ ζi

t

σ̃2
sds+ β

∫ ζi

t

σ̃sdWs

)
1{τi<T}

]
≤ exp

[
max

(
−δ + max

(
βµ− 1

2
β(1− β)σ2, βr

)
, 0

)
(T − t)

]
× Et

[
exp

(
− 1

2
β2

∫ ζi∧T

t

σ̃2
sds+ β

∫ ζi∧T

t

σ̃sdWs

)]
= exp

[
max

(
−δ + max

(
βµ− 1

2
β(1− β)σ2, βr

)
, 0

)
(T − t)

]
:= exp[ρ1(T − t)].
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On the other hand, similar calculation yields

Et[e−δ(τi−t)Zβ
ζi

(Zτi/Zζi)
α̃1{τi<T}]

=Et
[

exp
(
− δ(τi − t) + β

∫ ζi

t

µ̃sds−
1

2
β(1− β)

∫ ζi

t

σ̃2
sds−

1

2
β2

∫ ζi

t

σ̃2
sds+ β

∫ ζi

t

σ̃sdWs

+ α̃

∫ τi

ζi

µ̃sds−
1

2
α̃(1− α̃)

∫ τi

ζi

σ̃2
sds−

1

2
α̃2

∫ τi

ζi

σ̃2
sds+ α̃

∫ τi

ζi

σ̃sdWs

)
1{τi<T}

]
≤ exp

[
max

(
−δ + max

(
βµ− 1

2
β(1− β)σ2, βr, α̃µ− 1

2
α̃(1− α̃)σ2

)
, 0

)
(T − t)

]
:= exp[ρ2(T − t)].

Because δ + ρ > max{βr, βµ − β(1−β)
2

σ2, α̃µ − α̃(1−α̃)
2

σ2} and ρ > 0, we conclude that

ρ > ρi, i = 1, 2. Consequently,

Et[e−δ(τi−t)U(Gτi−, Rτi−)1{τi<τ̃}]

=

∫ ∞
t

Et[e−δ(τi−t)U(Gτi−, Rτi−)1{τi<τ̃}|τ̃ = T ]ρe−ρ(T−t)dT

≤Cxβ(Kβ)i−1

∫ T

t

[exp[ρ1(T − t)] + exp[ρ2(T − t)]] ρe−ρ(T−t)dT

=Cxβ
(

ρ

ρ− ρ1

+
ρ

ρ− ρ2

)
(Kβ)i−1.
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Similarly, one can show that

Et[e−δ(τ1−t)U(Gτ1−, Rτ1−)1{τ1<τ̃}]

≤ Et[e−δ(τ1−t)CP β
τ1−(1 + (Xτ1−/Pτ1−)α̃)1{τ1<τ̃}]

= Et[e−δ(τ1−t)Cpβ(1 + (x/p)α̃Zα
τ1

)1{τ1<τ̃}]

= CpβEt[e−δ(τ1−t)1{τ1<τ̃}] + Cpβ(x/p)α̃Et[e−δ(τ1−t)Z α̃
τ1
1{τ1<τ̃}]

≤ Cpβ(1 + (x/p)α̃
ρ

ρ− ρ3

),

where ρ3 := max
(
− δ +

(
α̃µ− 1

2
α̃(1− α̃)σ2

)
, 0
)
< ρ. Consequently,

Et
[ ∞∑
i=1

e−δ(τi−t)U(Gτi−, Rτi−) · 1{τi<τ̃}
]

≤Cxβ(
ρ

ρ− ρ1

+
ρ

ρ− ρ2

) · Kβ

1−Kβ
+ Cpβ(1 + (x/p)α̃ · ρ

ρ− ρ3

).

Using the same argument, we can show that

Et
[
e−δ(τ̃−t)

(
UW (Xτ̃ ) + U(Gτ̃−, Rτ̃−) ·

∞∑
i=1

1{ζi<τ̃≤τi}
)]

≤ θxβρ

ρ− ρ1

+ Cxβ(
ρ

ρ− ρ1

+
ρ

ρ− ρ2

) + Cpβ(1 + (x/p)α̃ · ρ

ρ− ρ3

).

Therefore, we conclude that

V (x, p) ≤
[

θρ

ρ− ρ1

+ C(
ρ

ρ− ρ1

+
ρ

ρ− ρ2

)
1

1−Kβ

]
xβ

+ 2Cpβ(1 + (x/p)α̃ · ρ

ρ− ρ3

) < +∞.
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Part two: We prove V (x, p) = +∞ for any x > 0 and p > 0 under certain conditions.

We first consider the case in which ρ > 0 and θ > 0. If δ + ρ < βr, we consider the

strategy of holding the risk-free asset until the shock time. The terminal wealth utility for

this strategy is

Et[e−δ(τ̃−t)UW (Xτ̃ )] = Et[e−δ(τ̃−t)θ(1− ks)βxβeβr(τ̃−t)]

= ρθ(1− ks)βxβ
∫ ∞

0

e(βr−(δ+ρ))t dt

=∞.

If δ + ρ < βµ − β(1−β)
2

σ2, we consider the strategy of holding the stock until the shock

time. The terminal wealth utility for this strategy is

Et[e−δ(τ̃−t)UW ((1− ks)Xτ̃−)]

=Et[e−δ(τ̃−t)θ(1− ks)βxβeβ(µ− 1
2
σ2)(τ̃−t)+βσ(Wτ̃−Wt)]

=θ(1− ks)βxβEt[e−δ(τ̃−t)eβµ(τ̃−t)− 1
2
β(1−β)σ2(τ̃−t)] · Et[e−

1
2
β2σ2(τ̃−t)+βσ(Wτ̃−Wt)]

=θ(1− ks)βxβEt[e−δ(τ̃−t)eβµ(τ̃−t)− 1
2
β(1−β)σ2(τ̃−t)]

=ρθ(1− ks)βxβ
∫ ∞

0

exp(−(δ + ρ)t+ (βµ− 1

2
β(1− β)σ2)t) dt

=∞.

If δ + ρ < ᾱµ − ᾱ(1−ᾱ)
2

σ2, we consider the strategy of holding the stock until the shock

time and compute the realization utility experienced by the agent at the shock time. Because

δ + ρ < ᾱµ − ᾱ(1−ᾱ)
2

σ2, there exists α̂ < ᾱ such that δ + ρ < α̂µ − α̂(1−α̂)
2

σ2. Because
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ū(x) ≥ ū(0) = −λ(1 − γ−)β for x ≥ 0 and ᾱ = limx→+∞
xū′(x)
ū(x)

, there exists C1 > 0

and C2 > 0, such that ū(x) ≥ C1(xα̂ − C2), ∀x ≥ 0. Consequently, the realization utility

experienced by the agent at the shock time is

Et[e−δ(τ̃−t)U(Gτ̃−, Rτ̃−)] = Et[e−δ(τ̃−t)P β
τ̃−ū(Xτ̃−/Pτ̃−)]

=Et[e−δ(τ̃−t)pβū((x/p)Zτ̃−)] ≥ Et[e−δ(τ̃−t)pβC1((x/p)α̂Z α̂
τ̃− − C2)]

=pβC1(x/p)α̂Et
[
e−δ(τ̃−t)Z α̂

τ̃−
]
− pβC1C2Et[e−δ(τ̃−t)]

=pβC1(x/p)α̂Et
[
e−δ(τ̃−t)e(α̂µ− α̂(1−α̂)

2
σ2)(τ̃−t)

]
− pβC1C2

ρ

ρ+ δ

=∞.

Next, we consider the case in which ρ = 0. If δ < βµ − β(1−β)
2

σ2, consider the fol-

lowing strategy: τ1 = inf{s ≥ t|Zs/Zt ≥ Λ}, ζi = τi−1, τi = inf{s ≥ ζi|Zs/Zζi ≥ Λ},

i ≥ 2, for some Λ > 1. Denote g(Λ) := Et
[
e−δτ11{τ1<+∞}

]
. Then, g(Λ) = Λκ, where

κ := σ−2
[
µ− (1/2)σ2 −

√
(µ− (1/2)σ2)2 + 2δσ2

]
. Furthermore, we have Et[e−δ(τi−t)] =

g(Λ)i. Now, straightforward computation yields that the realization utility experienced by
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the agent is

Et
[ ∞∑
i=1

e−δ(τi−t)U(Gτi−, Rτi−)1{τi<+∞}

]
=Et

[
e−δ(τ1−t)pβū((x/p)Zτ1)1{τ1<+∞} +

∞∑
i=2

e−δ(τi−t)(xKi−1Zζi)
βū(Zτi/Zζi)1{τi<+∞}

]
=Et

[
e−δ(τ1−t)pβū((x/p)Λ)1{τ1<+∞} +

∞∑
i=2

e−δ(τi−t)(xKi−1Λi−1)βū(Λ)1{τi<+∞}

]
=pβū((x/p)Λ)g(Λ) + g(Λ)xβū(Λ)

∞∑
i=2

(g(Λ)KβΛβ)i−1

=pβū((x/p)Λ)g(Λ) + g(Λ)xβū(Λ)
∞∑
i=2

(KβΛβ+κ)i−1.

Because δ < βµ− β(1−β)
2

σ2, we conclude that β + κ > 0. Then, we can choose Λ > 1 such

that KβΛβ+κ > 1. Consequently,
∑+∞

i=2 (KβΛβ+κ)i−1 = +∞, i.e., the agent experiences

infinite realization utility.

If δ < ᾱµ − ᾱ(1−ᾱ)
2

σ2, consider the following strategy: τ1 = inf{s ≥ t|Zs/Zt ≥ Λ},

ζ2 = +∞. Then, the realization utility experienced by the agent is

Et
[
e−δ(τ1−t)U(Gτ1−, Rτ1−)1{τ1<+∞}

]
= pβū((x/p)Λ)g(Λ).

Recall that we can find α̂ < ᾱ such that δ < α̂µ− α̂(1−α̂)
2

σ2 and ū(x) ≥ C1(xα̂−C2),∀x ≥ 0

for some C1 > 0, C2 > 0. Then, we can conclude that

Et
[
e−δ(τ1−t)U(Gτ1−, Rτ1−)1{τ1<+∞}

]
≥ C1p

β(x/p)α̂Λα̂+κ − C1C2p
βg(Λ)

≥ C1p
β(x/p)α̂Λα̂+κ − C1C2p

β.
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Because δ < α̂µ − α̂(1−α̂)
2

σ2, we can show that α̂ + κ > 0. Consequently, the realization

utility of the agent goes to infinity as Λ→ +∞.

If δ < βr, consider the following strategy: τ1 = t, ζ2 = n+ t, τ2 = inf{s ≥ ζ2|Zs/Zζ2 ≥

Λ} for some Λ > 1. The agent’s utility for this strategy is

Et
[ ∞∑
i=1

e−δ(τi−t)U(Gτi−, Rτi−)1{τi<+∞}

]
=Et

[
e−δ(τ2−t)(xKZζ2)

βū(Zτ2/Zζ2)1{τ2<+∞}

]
=g(Λ)(xK)βe−(δ−βr)n,

which goes to infinity as n→ +∞.

Finally, we consider the case in which ρ > 0 and θ = 0. Using the same argument in the

case of ρ > 0 and θ > 0, we can show that V (x, p) = +∞ if δ + ρ < ᾱµ− ᾱ(1−ᾱ)
2

σ2. �

B.2 Proof of Proposition 3.3.2

Denote ξ = (τ1, ζ2, τ2, · · · ) and J(x, p, ξ) as the sequence of stopping times and the objective

function, respectively, in problem (3.2.5). Similarly, denote ξ̄ = (ζ1, τ1, ζ2, τ2, · · · ) and

J̄(x, ξ̄) as the sequence of stopping times and the objective function, respectively, in problem

(3.2.6).

By careful investigation, one can see that J̄(x, ξ̄) = xβJ̄(1, ξ̄). Therefore, V̄ (x) is homo-

geneous in x of degree β. Next, we prove (3.3.1), i.e., prove V (x, p) = supτ≥t Et[F (x, p, τ)],
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where

F (x, p, τ) :=e−δ(τ−t)
[
U(Gτ−, Rτ−) + V̄ ((1− ks)Xτ−)

]
1{τ<τ̃}

+ e−δ(τ̃−t) [U(Gτ̃−, Rτ̃−) + UW ((1− ks)Xτ̃ )]1{τ̃≤τ}.

On the one hand, applying the tower property of expectation operators, we conclude

J(x, p, ξ) =Et
[
e−δ(τ1−t)Eτ1 [H]1{τ1<τ̃} + e−δ(τ1−t)U(Gτ1−, Rτ1−)1{τ1<τ̃}

+ e−δ(τ̃−t)
(
UW ((1− ks)Xτ̃−) + U(Gτ̃−, Rτ̃−)

)
1{τ̃≤τ1}

]
,

where

H :=
∞∑
i=2

e−δ(τi−τ1)U(Gτi−, Rτi−)1{τi<τ̃} + e−δ(τ̃−τ1)UW (Xτ̃−)
∞∑
i=1

1{τi<τ̃≤ζi+1}

+e−δ(τ̃−τ1)
(
UW ((1− ks)Xτ̃−) + U(Gτ̃−, Rτ̃−)

) ∞∑
i=2

1{ζi<τ̃≤τi}.

Note that Xτ1 = (1 − ks)Xτ1− on {τ1 < τ̃}. In addition, {Wτ1+s}s≥0 is a standard Brow-

nian motion, so there exist {Fs}-stopping times t ≤ ζ̄1 ≤ τ̄1 ≤ ζ̄2 ≤ . . . such that

({Wτ1+s}s≥0, ζ2−τ1, τ2−τ1, ζ3−τ1, . . . ) is identically distributed as ({Wt+s}s≥0, ζ̄1−t, τ̄1−

t, ζ̄2 − t, . . . ). Therefore, denoting ξ̄ = (ζ̄1, τ̄1, ζ̄1, . . . ), we conclude, for each realization of

Xτ1−, that

Eτ1 [H]1{τ1<τ̃} = J̄((1− ks)Xτ1−, ξ̄)1{τ1<τ̃} ≤ V̄ ((1− ks)Xτ1−)1{τ1<τ̃}.
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Consequently,

J(x, p, ξ) ≤Et
[
e−δ(τ1−t)V̄ ((1− ks)Xτ1−)1{τ1<τ̃} + e−δ(τ1−t)U(Gτ1−, Rτ1−)1{τ1<τ̃}

+ e−δ(τ̃−t)
(
UW ((1− ks)Xτ̃−) + U(Gτ̃−, Rτ̃−)

)
1{τ̃≤τ1}

]

for any τ1 ≥ t, so we conclude V (x, p) ≤ supτ≥t Et[F (x, p, τ)].

On the other hand, for any ε > 0, there exist τ1 ≥ t such that

sup
τ≥t

Et[F (x, p, τ)]− ε ≤Et
[
F (x, p, τ1)

]
.

In addition, there exist ξ̄ = (ζ̄1, τ̄1, ζ̄1, . . . ) such that V (1)− ε ≤ J̄(1, ξ̄). Consequently,

F (x, p, τ1) =e−δ(τ1−t)
[
U(Gτ−, Rτ−) + ((1− ks)Xτ1−)βV̄ (1)

]
1{τ1<τ̃}

+ e−δ(τ̃−t) [U(Gτ̃−, Rτ̃−) + UW ((1− ks)Xτ̃ )]1{τ̃≤τ1}

≤e−δ(τ1−t)
[
U(Gτ−, Rτ−) + ((1− ks)Xτ1−)βJ̄(1, ξ̄)

]
1{τ1<τ̃}

+ e−δ(τ̃−t) [U(Gτ̃−, Rτ̃−) + UW ((1− ks)Xτ̃ )]1{τ̃≤τ1}

+ ε(1− ks)pe−δ(τ1−t)Xβ
τ1−1{τ1<τ̃}.

Note that we can find {Fs}-stopping times (ζ2, τ2, ζ3, . . . ) such that ({Wτ1+s}s≥0, ζ2 −

τ1, τ2 − τ1, ζ3 − τ1, . . . ) is identically distributed as ({Wt+s}s≥0, ζ̄1 − t, τ̄1 − t, ζ̄1 − t, . . . ).

Denote ξ = (τ1, ζ2, τ2, · · · ), then straightforward calculation yields

Et
[
F (x, p, τ1)

]
≥ Et

[
J(x, p, ξ)

]
+ ε(1− ks)pEt

[
e−δ(τ1−t)Xβ

τ1−1{τ1<τ̃}

]
.
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Following the proof of Proposition 3.3.1, C := supτ≥t Et
[
e−δ(τ−t)Xβ

τ−1{τ<τ̃}

]
< +∞, so

we have

sup
τ≥t

Et[F (x, p, τ)] ≤ Et
[
J(x, p, ξ)

]
+ (1 + C(1− ks)p)ε ≤ V (x, p) + (1 + C(1− ks)p)ε.

Because ε is arbitrary, we conclude that V (x, p) ≥ supτ≥t Et[F (x, p, τ)] and thus (3.3.1)

holds.

Similarly, we can verify that J(ax, ap, ξ) = aβJ(x, p, ξ) for any a > 0, so V (x, p) is

homogeneous of degree β. Using the same argument as in the proof of (3.3.1), we can prove

(3.3.2).

Next, we show that V (x, 1) is continuous in x ≥ 0. Recall {Zs}s≥t as defined in the

proof of Proposition 3.3.1. Then,

F (x, 1, τ) =e−δ(τ−t)
[
ū(Xτ−) + (1− ks)βXβ

τ−V̄ (1)
]
1{τ<τ̃}

+ e−δ(τ̃−t)
[
ū(Xτ̃−) + θ(1− ks)βXβ

τ̃

]
1{τ̃≤τ}

=e−δ(τ−t)
[
ū(xZτ−) + (1− ks)βxβZβ

τ−V̄ (1)
]
1{τ<τ̃}

+ e−δ(τ̃−t)
[
ū(xZτ̃−) + θ(1− ks)βxβZβ

τ̃

]
1{τ̃≤τ}.

Because ū(x) is continuous and increasing in x ≥ 0, F (x, 1, τ) is continuous and increasing

in x ≥ 0 for each τ ≥ t. Consequently, V (x, 1) = supτ≥t Et[F (x, 1, τ)] is increasing in

x ≥ 0. Moreover, the monotone convergence theorem shows that V (x, 1) is continuous in

x ≥ 0.

Finally, as in the proof of Proposition 3.3.1, there exist α̃ ∈ [ᾱ, 1] and C > 0 such that
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|ū(x)| ≤ C(1 + xα̃). Consequently.

|F (x, 1, τ)| ≤e−δ(τ−t)
[
C + Cxα̃Z α̃

τ− + (1− ks)βxβZβ
τ−V̄ (1)

]
1{τ<τ̃}

+ e−δ(τ̃−t)
[
C + Cxα̃Z α̃

τ̃− + θ(1− ks)βxβZβ
τ̃

]
1{τ̃≤τ}.

Following the same proof of Proposition 3.3.1, we can show that supτ≥t Et[e−δ(τ−t)Z α̃
τ 1{τ<τ̃}],

supτ≥t Et[e−δ(τ̃−t)Z α̃
τ̃ 1{τ̃≤τ}], supτ≥t Et[e−δ(τ−t)Zβ

τ 1{τ<τ̃}], and supτ≥t Et[e−δ(τ̃−t)Z
β
τ̃ 1{τ̃≤τ}]

are finite. Because α̃ ≥ ᾱ ≥ β, we conclude that V (x, 1) ≤ C ′(1 + xα̃) for some C ′ > 0.

�

B.3 Proof of Proposition 3.3.3

Recall that V (x, p) is homogeneous of degree β. Denote v(1) = V (1, 1) and recall Θ. For

any purchase time ζ , we have

Et
[
e−δ(ζ−t)V (

1

1 + kp
Xζ ,

1

1 + kp
Xζ) · 1{ζ<τ̃} + e−δ(τ̃−t)UW (Xζ) · 1{τ̃≤ζ}

]
= Et

[
e−δ(ζ−t)(

1

1 + kp
)βXβ

ζ v(1) · 1{ζ<τ̃} + e−δ(τ̃−t)UW (Xτ̃ ) · 1{τ̃≤ζ}
]

= Et
[
e−δ(ζ−t)(

1

1 + kp
)βxβeβr(ζ−t)v(1) · 1{ζ<τ̃} + e−δ(τ̃−t)UW (Xτ̃ ) · 1{τ̃≤ζ}

]
=

∫ ∞
t

Et
[
e−δ(s−t)(

1

1 + kp
)βxβeβr(s−t)v(1) · 1{s<τ̃}

+e−δ(τ̃−t)UW (Xτ̃ ) · 1{τ̃≤s}|ζ = s
]
dFζ(s)

=

∫ ∞
t

{
Et
[
e−δ(s−t)(

1

1 + kp
)βxβeβr(s−t)v(1) · 1{s<τ̃}

]
+Et

[
e−δ(τ̃−t)UW (Xτ̃ ) · 1{τ̃≤s}

]}
dFζ(s)
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where Fζ is the distribution function of ζ . The first term in the integral is

Et
[
e−δ(s−t)(

1

1 + kp
)βxβeβr(s−t)v(1) · 1{s<τ̃}

]
= e(βr−ρ−δ)(s−t)(

1

1 + kp
)βxβv(1).

The second term in the integral is

Et
[
e−δ(τ̃−t)UW (Xτ̃ ) · 1{τ̃≤s}

]
= Et

[
e−δ(τ̃−t)UW (xer(τ̃−t)) · 1{τ̃≤s}

]
=

∫ s

t

e−δ(u−t)θxβeβr(u−t)ρe−ρ(u−t) du

= xβθρ

∫ s

t

e−(ρ+δ−βr)(u−t) du

=
xβθρ

ρ+ δ − βr
(
1− e(βr−δ−ρ)(s−t)).

As a result,

Et
[
e−δ(ζ−t)V (

1

1 + kp
Xζ ,

1

1 + kp
Xζ) · 1{ζ<τ̃} + e−δ(τ̃−t)UW (Xζ) · 1{τ̃≤ζ}

]
= (1− ks)−βxβ

∫ ∞
t

(
e(βr−ρ−δ)(s−t)Kβv(1) +

(
1− e(βr−δ−ρ)(s−t))Θ)dFζ(s)

≤ (1− ks)−βxβ
∫ ∞
t

max
{
Kβv(1) ,Θ

}
dFζ(s)

= (1− ks)−βxβ max
{
Kβv(1) ,Θ

}
.

Furthermore, when Kβv(1) > Θ, the inequality becomes equality if and only if ζ = t with

probability 1; i.e., ζ = t is the unique optimal purchase time in this case. Similarly, when

Kβv(1) < Θ, ζ = +∞ is the unique optimal purchase time. Finally, when Kβv(1) = Θ,

any stopping time ζ ≥ t is optimal. �



148

B.4 Proof of Proposition 3.3.4

Denote g(x) as the objective value in (3.3.4) with τ = t (which stands for the immediate

liquidation strategy). Then, we have g(x) = ū(x)+xβmax
{
Kβv(1),Θ

}
. On the other hand,

denote h(x) as the objective value in (3.3.4) with τ = +∞ (which stands for the strategy of

holding the stock until the shock time). Then, we have

h(x) = Et[e−δ(τ̃−t)(ū(Xτ̃ ) + UW ((1− ks)Xτ̃−))].

It is straightforward to see that both g and h are continuous in x ≥ 0. Furthermore, we have

g(0) = ū(0) < 0, h(0) = Et[e−δ(τ̃−t)(ū(0) + UW (0))] =
ρ

δ + ρ
ū(0),

showing that h(0) > g(0). By the continuity of g and h, there exist ε > 0 such that h(x) >

g(x),∀x ≤ ε. Because v(x) ≥ h(x), we conclude v(x) > g(x),∀x ≤ ε. Thus, in the

liquidation problem (3.3.4), it is optimal to hold the stock when Xt ≤ ε.

Finally, we compute v(x) when x approaches zero. According to the general theory of

optimal stopping, the optimal stopping time to problem (3.3.4) is τ ∗ = inf{s ≥ t|g(Xs) =

v(Xs)}. Denote τε as the first hitting time of {Xs} to ε. Because v(x) > g(x),∀x ≤ ε, we

conclude that τ ∗ ≥ τε. Then,

lim
x↓0

P(τ ∗ < τ̃ |Xt = x, τ̃ > t) ≤ lim
x↓0

P(τε < τ̃ |Xt = x, τ̃ > t) = 0.

Consequently, straightforward calculation shows that limx↓0 v(x) = h(0) = ρ
δ+ρ

ū(0). �
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B.5 Proof of Theorem 3.3.1

For each a ∈ R and x ≥ 0, consider the following optimal stopping problem

sup
τ≥t

Et
[
e−δ(τ−t)

(
ū(Xτ−) + max

(
Kβa,Θ

)
Xβ
τ−

)
· 1{τ<τ̃}

+e−δ(τ̃−t)
(
ū(Xτ̃−) + θ(1− ks)βXβ

τ̃−

)
· 1{τ̃≤τ}

]
,

subject to dXs = µXs ds+ σXs dWs, s ≥ t, Xt− = x.

(B.1)

Denote the optimal value as v(x; a). Then, problem (3.3.4) is a special case of problem

(B.1) with a = v(1), and the value function of problem (3.3.4) v(x) = v(x; v(1)). Using

the same argument as in the proof of Proposition 3.3.2, we can show that for each a ∈ R,

v(x; a) is continuous in x ≥ 0 and there exist α̃ ∈ [ᾱ, 1] and C > 0 such that |v(x; a)| ≤

C(1 + xα̃),∀x ≥ 0. In addition, α̃ can be chosen arbitrarily close to ᾱ. In particular, v(x; a)

is of linear growth in x ≥ 0.

Because the shock time τ̃ is exponentially distributed and independent of τ and {Ws},

we can reformulate the objective function of problem (B.1) and rewrite this problem as

sup
τ≥t

E
[ ∫ τ

0
e−δ

′t · f(Xt) dt+ e−δ
′τ · g(Xτ ; a)|X0 = x

]
,

subject to dXt = µXt dt+ σXt dWt, t ≥ 0, X0 = x, x ≥ 0,

where δ′ := δ+ρ, f(x) := ρ
(
ū(x) + θ(1− ks)βxβ

)
, and g(x; a) := ū(x)+max

(
Kβa,Θ

)
·

xβ . In the proof of Proposition 3.3.1, we have shown that ū(x) is of linear growth in x ≥ 0.

Consequently, both f(x) and g(x; a) are of linear growth in x ≥ 0 for each a ∈ R. Applying

Theorem 5.2.1 in Pham [44], we conclude that for each fixed a ∈ R, v(x; a) is the unique
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viscosity solution of linear growth to following variational inequality1

min[δ′v(x)− Lv(x)− f(x), v(x)− g(x; a)] = 0, (B.2)

whereLv(x) := 1
2
σ2x2vxx(x)+µxvx(x). Recalling that the value function of problem (3.3.4)

v(x) = v(x; v(1)) and noting that equation (3.3.5) is the same as (B.2) with a = v(1), we

conclude that v is a viscosity solution of linear growth to equation (3.3.5).

Finally, we show that the solution to (3.3.5) is unique. Consider any a1 > a2 and the

viscosity solutions v(x; a1) and v(x; a2) to (B.2) with a = a1 and a = a2, respectively.

Because g(x; a1) ≥ g(x; a2) for any x ≥ 0, it immediately follows that v(x; a1) is a viscosity

super-solution to (B.2) with a = a2. By the comparison theorem in Pham [44, p. 98], we

conclude that v(x; a1) ≥ v(x; a2), ∀x ≥ 0.

Next, we define u2(x) = v1(x) − Kβ(a1 − a2)xβ and show that it is a viscosity sub-

solution to (B.2) with a = a2. Take any x0 > 0 and any test function φ2 ∈ C2(R) such that

0 = (u2− φ2)(x0) = maxx≥0(u2− φ2)(x). Define φ1(x) := φ2(x) +Kβxβ(a1− a2). Then,

max
x≥0

(v1 − φ1)(x) = max
x≥0

(u2 − φ2)(x) = (u2 − φ2)(x0) = (v1 − φ1)(x0) = 0.

Because v(x; a1) is the viscosity solution to (B.2) with a = a1, we conclude by the definition

1Theorem 5.2.1 in Pham [44] is presented in the setting in which the domain of the state process {Xt} is
the whole real line. However, all the proofs can be migrated to the setting in which the domain is the positive
real line.
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of viscosity solutions that

min
[
δ′φ1(x0)− Lφ1(x0)− f(x0), v1(x0)− g(x0; a1)

]
≤ 0. (B.3)

On one hand,

δ′φ2(x0)− Lφ2(x0)− f(x0)

=δ′φ1(x0)− Lφ1(x0)− f(x0)− (a1 − a2)xβ0K
β(δ′ − 1

2
σ2β(β − 1)− βµ)

≤(δ′φ1 − Lφ1 − f)(x0),

where the inequality is the case because of Assumption 3.3.1. On the other hand,

u2(x0)− g(x0; a2) = v1(x0)−Kβ(a1 − a2)xβ0 −
(
ū(x0) + max{Kβa2,Θ}xβ0

)
= v1(x0)− ū(x0)−max{Kβa1,Θ +Kβ(a1 − a2)}xβ0

≤ u2(x0)− g(x0; a1).

Therefore, we conclude from (B.3) that

min
[
δ′φ2(x0)− Lφ2(x0)− f(x0), v2(x0)− g(x0; a2)

]
≤ 0,

showing that u2 is a viscosity sub-solution to (B.2) with a = a2.

Now, by the comparison theorem in [44, p. 98], we conclude that u2(x) ≤ v2(x),∀x ∈
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R+ and, consequently,

0 ≤ v1(x)− v2(x) ≤ Kβxβ(a1 − a2). (B.4)

Denote X as the space of continuous functions on R+ with finite ‖ · ‖ norm, where

‖f‖ := supx≥0

∣∣max(x, 1)−1f(x)
∣∣. Note that any continuous function on R+ has finite ‖ · ‖

norm if and only if it is of linear growth, so X is the space of continuous functions of linear

growth. In particular, for each a ∈ R, the viscosity solution to (B.2) is in X.

Define the following mapping on (X, ‖ · ‖): for each v ∈ X, define F (v) as the solution

to (B.2) with a = v(1). We conclude from (B.4) that

max(x, 1)−1|F (v1)(x)− F (v2)(x)| ≤ Kβ max(x, 1)−1xβ|v1(1)− v2(1)|

≤ Kβ|v1(1)− v2(1)| ≤ Kβ‖v1 − v2‖, ∀x > 0.

Therefore, ‖F (v1)−F (v2)‖ ≤ Kβ‖v1− v2‖, showing that F is a contract mapping on X. If

we show that X is a complete normed space, then, by the Banach fixed-point theorem, F has

a unique fixed point. Because the solution to equation (3.3.5) is equivalent to the fixed point

of F , we conclude that the solution to equation (3.3.5) is unique. Therefore, in the following,

we show that X is complete; i.e., for any Cauchy sequence {fn}n∈N in X, we show that there

exists f ∈ X such that limn→∞ ‖fn − f‖ε = 0.

For each M > 0, denote XM as the normed space of continuous functions on [0,M ]

with norm ‖ · ‖. Then, XM is a complete normed space. Define a sequence {fMn }n∈N in XM
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with fMn (x) = fn(x) for x ∈ [0,M ]. Because XM is complete, this sequence has a limit

fM ∈ XM .

Note that for ∀M1 > 0,M2 > 0, fM1(x) = fM2(x) for x ∈ [0,M1 ∧ M2]. so f :=

limM→∞ f
M is well-defined and continuous on [0,∞). Moreover, it is not difficult to see

fn(x) converges to f(x) for each x ∈ R+.

We first show that f ∈ X, i.e., ‖f‖ < ∞. Because {fn} is a Cauchy sequence in X and

|‖fn‖−‖fm‖| ≤ ‖fn−fm‖, {‖fn‖} is also a cauchy sequence, and thus {‖fn‖} is bounded,

i.e., ‖fn‖ ≤ C, ∀n ∈ N for some C > 0. Now, for any M > 0,

‖fM‖ = lim
n→+∞

‖fMn ‖ ≤ lim
n→+∞

‖fn‖ ≤ C.

Consequently, ‖f‖ = limM→+∞ ‖fM‖ ≤ C < +∞.

Next, we show that limn→∞ ‖fn − f‖ = 0. For any ε > 0, there exists N such that

‖fn − fm‖ < ε for any n > N and m > N . Consequently, for any n > N and x ∈ R+,

max(x, 1)−1|fn(x)− f(x)| = lim
m→+∞

max(x, 1)−1|fn(x)− fm(x)| ≤ ε.

Consequently, ‖fn−f‖ = supx≥0 max(x, 1)−1|fn(x)−f(x)| ≤ δ for any n > N . Therefore,

fn converges to f in X. �
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Appendix C

Algorithm to Solve Variational Inequality

(3.3.5)

In this section we propose an algorithm to solve the variational inequality (3.3.5). In view of

the proof of Theorem 3.3.1, we only need to solve (B.1) for each a ∈ R.

Following the proof of Proposition 3.3.4, we can also show that v(0; a) = ρ
δ+ρ

ū(0). On

the other hand, recall δ + ρ > ᾱµ − ᾱ(1−ᾱ)
2

σ2, so we can choose ε such that 1 + ε > ᾱ and

δ + ρ > (1 + ε)µ + ε(1+ε)
2

σ2. Moreover, because 1 + ε > ᾱ, we conclude from the proof of

Theorem 3.3.1 that limx→+∞ v(x; a)/(1 + x)1+ε = 0.

C.1 Transformation

Instead of solving (B.1) directly, we apply a transformation first. Define y = x/(1 + x) and

v̄(y) := v(
y

1− y
; a)(1− y)1+ε =

v( y
1−y ; a)

(1 + y
1−y )1+ε

=
v(x; a)

(1 + x)1+ε
.
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Then, we have the following boundary conditions for v̄(y):

v̄(0) = v(0; a) =
ρ

δ + ρ
ū(0), v̄(1) = lim

x→+∞

v(x; a)

(1 + x)1+ε
= 0. (C.1)

On the other hand, tedious but straightforward calculation yields the following variational

inequality for v̄:

max{A1(y)y2v̄yy(y) + A2(y)yv̄y(y) + A3(y)v̄(y) + g(y), h(y)− v̄(y)} = 0, (C.2)

where

A1(y) =
1

2
σ2(1− y)2, (C.3)

A2(y) = (σ2 · ε · y + µ)(1− y), (C.4)

A3(y) =
1

2
σ2ε(1 + ε)y2 + µ(1 + ε)y − (ρ+ δ), (C.5)

g(y) = ρ
(
ū(

y

1− y
) + θ(1− ks)β(

y

1− y
)β
)

(1− y)1+ε, (C.6)

h(y) =
(
ū(

y

1− y
) + (

y

1− y
)β ·max{Kβ v̄(

1

2
)21+ε,Θ}

)
(1− y)1+ε. (C.7)

C.2 Penalty Method

Next, we solve the variational inequality (C.2) with boundary conditions (C.1). We apply

the penalty method (Dai et al. [27], Forsyth and Vetzal [33]): fix a penalization parameter P
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and solve

A1(y)y2v̄yy(y) + A2(y)yv̄y(y) + A3(y)v̄(y) + g(y) = −P ·
(
h(y)− v̄(y)

)+

. (C.1)

In the following, we use the implicit finite difference method to solve (C.1).

Consider an equally-spaced grid on [0, 1]: ∆y = 1/Ns and yi = i∆y for i = 0, · · · , Ns.

Plugging

vy(yi) ≈
v(yi+1)− v(yi−1)

2∆y
and vyy(yi) ≈

v(yi+1)− 2v(yi) + v(yi−1)

∆y2
.

into the left hand side of (C.1), we obtain

A1(yi)y
2
i v̄yy(yi) + A2(yi)yiv̄yi + A3(yi)v̄(yi) + g(yi)

≈(αi − βi)v̄(yi−1)− (2αi − γi)v̄(yi) + (αi + βi)v̄(yi+1) + gi,

where αi = A1(yi)i
2, βi = 1

2
A2(yi)i, γi = A3(yi) and gi = g(yi).

Denote hi = h(yi). Denote v̄ki as the k-th iteration value of v̄(yi), i = 0, 1, . . . , Ns.

When solving for v̄k+1
i , we approximate the right hand side of (C.1) by (hi − v̄k+1

i )Ihi−v̄ki >0.

Consequently, we have the following equations for v̄k+1
i

(αi + βi)v̄
k+1
i+1 − (2αi − γi)v̄k+1

i + (αi − βi)v̄k+1
i−1 + gi = −λ(hj − v̄k+1

i )Ihi−v̄ki >0. (C.2)

Together with the boundary conditions v̄k+1
0 = ρ

δ+ρ
ū(0) and v̄k+1

Ns
= 0, we can solve v̄k+1

i ’s

efficiently. Finally, we stop once v̄k+1
i and v̄ki are sufficiently close.
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