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Abstract

Imposing a separability assumption on the joint surplus in tranfer-
able utility matching models has proved very useful in empirical work.
Yet when only “who matches whom” is observed, the distributions of
unobserved heterogeneity cannot be identified separately. This note
derives the distribution of equiilibrium transfers and shows that if the
distribution of transfers within cells is observed, the distribution of
heterogeneity can often be recovered, separability can be tested, and
complementarities in surplus inferred.

1 Matching with Separable Surplus

We impose throughout this note the central assumption introduced by Choo
and Siow (2006), which Chiappori-Salanié-Weiss (2014, hereafter CSW) and
Galichon-Salanié (2014, hereafter GS) call “separability”. To define it, as-
sume a population of men m = 1, . . . ,M and a population of women w =
1, . . . ,W (the terms “men” and “women” are only for concreteness; they
should be adapted to fit other one-to-one matching contexts.)

A hypothetical match between man m and woman w generates a joint
surplus Φ̃mw. While these are known to all participants in the market, the
analyst only observes that nx men have characteristic x, my women have
characteristics y, and µxy marriages between x-men and y-women took place.
By subtraction, nx −

∑
y µxy remain single; we use the standard convention

of matching them with 0. In the rest of this note summations over y typically
also include the 0 term. Similar notation is used for single women.
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Our problem is to identify as much as we can of the matrix Φ̃mw while
observing only the numbers nx,my, and µxy; and possibly some data on trans-
fers. As it is, this is clearly a hopeless task: there are many more unknown
numbers than observations. To reduce the degree of underidentification, we
impose:

Assumption S (separability) for all m ∈ x and w ∈ y,

Φ̃mw = Φxy + εmy + ηwx.

Assumption S requires that conditional on observables, the partners’ un-
observables do not interact in creating joint surplus.

2 Identification without transfers

As proved in CSW and in GS, assumption S implies that there exist two
matrices

Uxy + Vxy = Φxy

such that man m chooses the characteristic of his partner y by solving

max
y

(Uxy + εmy)

and woman w chooses the characteristic of her partner x by solving

max
x

(Vxy + ηwx)

Moreover, Galichon and Salanié prove that in large markets1, the matrices
U and V are just identified if the analyst knows the distributions of the
unobserved heterogeneities.

More precisely, denote

• Px the distribution of the vector (εmy)y conditional on m ∈ x

• and Qy the distribution of the vector (ηwx)x conditional on w ∈ y;

and for any matrix Ux· = (Uxy)y,

Gx (Ux·) = EPx max
y

(Uxy + εmy)

1That is, if the numbers nx and my are very large for every x and y—see GS for a
precise statement.
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the expected maximized utility of men of characteristic x under Ux·. Now
define the Legendre–Fenchel transform over the marriage patterns µ·|x =
(µy|x)y of men of characteristic x:

G∗x(µ·|x) = max
Ux·

(∑
y

µy|xUxy −Gx(Ux·)

)
.

GS proves that in equilibrium,

Uxy =
∂G∗x
∂µy|x

.

A similar equality obtains for V , replacing Px with Qy, Gx with Hy, etc.
Therefore observing the marriage patterns µ identifies U , V and their sum

Φ = U+V , provided that surplus is separable and we know the distributions
Px and Qy. The latter assumption is clearly very strong. It was imposed
in Choo and Siow 2006, who specified these distributions as products of iid
standard type I extreme value distributions. Relaxing it has been a priority
of more recent literaure.

A first possibility is to use data on several “similar” submarkets. CSW
used data on thirty cohorts of men and women in the US to identify the
heteroskedasticity of Px and Qy, while still maintaining the type I EV as-
sumption and independence2.

This note proposes a second approach, which relies on observing data on
transfers. We will explore two extreme cases:

• Case 1: the analyst only observes the mean value of the transfer t̃mw

in each “cell” (x, y)—that is, she observes

txy = E
(
t̃mw|x, y

)
where the expectation is over realized matches of m ∈ x and w ∈ y.

• Case 2: for each realized match, the analyst observes the value of the
transfer t̃mw.

We will always assume that pre-transfer utilities are themselves separable, so
that the post-transfer utility of man m ∈ x in a match with woman w ∈ y is

axy + εamy + ηawx − t̃mw

2Fox and Yang (2013) show that one can sometimes identify the distribution of unob-
served heterogeneity using data on many markets, even without separability. To do so,
they impose restrictions on what we called Φxy.
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and that of his partner is

bxy + εbmy + ηbwx + t̃mw,

with a+ b ≡ Φ, εa + εb ≡ ε, and ηa + ηb ≡ η.

3 Transfers are Separable

Given the results in GS, post-transfer utilities in a match (m ∈ x,w ∈ y)
equal

∂G∗x
∂µy|x

+ εmy

and
∂H∗y
∂µx|y

+ ηwx.

Equating these expressions to those in section 2 shows that

ηawx − εbmy − t̃mw

can only be a function of (x, y); that is, it cannot depend on the identity of
m ∈ x and w ∈ y. It follows that we must have

t̃mw = Txy + ηawx − εbmy (1)

for some matrix Txy. This proves that the separability of pre-transfer utilities
implies the separability of equilibrium transfers.

In equilibrium, a man m ∈ x who marries a woman w ∈ y faces competi-
tion from all other men of characteristic x who value woman w; given prefect
competition, this implies that he will have to pay her a salary that is shifted
up by ηamy. By a similar argument, the salary woman w receives is shifted
down by the value of εbmy.

Moreover, we have

Uxy = axy − Txy =
∂G∗x
∂µy|x

(2)

and

Vxy = bxy + Txy =
∂H∗y
∂µx|y

(3)

so that

Txy = axy −
∂G∗x
∂µy|x

=
∂H∗y
∂µx|y

− bxy. (4)
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4 The Equilibrium Value of Transfers

Given a specified model and the observed (or simulated) matching patterns,
formulas (1) and (4) can be used to compute equilibrium transfers.

4.1 An Example

As a simple example, take the TU analog of Agarwal’s (2014) matching mar-
ket, in which one side of the market agrees on the ranking of all individuals
on the other side. In my notation, say that all men agree on how to rank all
women. This can only hold if pre-transfer utilities of men have εamy ≡ 0 and
ηawx ≡ ηw. Then in equilibrium in large markets, the results in GS imply that

t̃mw = axy −
∂

∂µy|x
max
Ux·

(∑
z

µz|xUxz − EPx max
z

(
Uxz + εbmz

))
− εbmy.

Why this may seem complicated, it is often easy to evaluate in closed form.
If for instance the εbmy are type I extreme value G(−γ, σ2

x), then

t̃mw = axy − σx log µy|x − εbmy.

4.2 A Test for Separability

In addition, these formulas generate a simple prediction of separability (when
conjoined with perfect competition, the absence of frictions and large mar-
kets): if m and m′ share the same x and women w and w′ share the same y,
then

tmw + tm′w′ = tmw′ + tm′w.

In Case 1, this is non-testable since we only observe average transfers for
each (x, y)-cell. But in case 2, this generates a testable prediction. As a
deterministic equality on observables, it will of course be rejected by any data
set. It is more useful to consider (1) as an approximation, and to evaluate its
quality. A simple way to do so is to regress transfers on interacted dummies:

t̃mw = dxy + dmy + dwx + ξmw.

The R2 of this regression is a measure of how well separability fits the data.

5 The Identifying Power of Transfers

Now let us go beyond Choo and Siow by letting the distributions of εamy, ε
b
my, η

a
wx

and ηbwx depend on unknown parameters θ. Our identifying equations are (1),
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(2), and (3), and the RHS in the latter two now depend on θ. We wish to
identify θ, a, b, and T .

First note that from the results in GS, given any value of θ,

axy − Txy =
∂G∗x
∂µy|x

(µ·|x; θ)

and

bxy + Txy =
∂H∗y
∂µx|y

(µ·|y; θ)

are just identified from the matching patterns. In addition, we now know
observe the realized transfers

t̃mw = Txy + ηawx − εbmy

in Case 2, and the average transfers

txy = Txy + E
(
ηawx − εbmy|x, y

)
in Case 1.

5.1 Restrictions on Pre-transfer Utilities

In some applications, the analyst will be able to assume that the matrices
a and b are restricted in some way; this would help her identify θ. This is
already true for models in which we do not observe transfers, and we do not
pursue it further.

5.2 Restrictions on Unobserved Components

A particularly simple case is that in which the components εb and ηa are
known to be identically zero. Then t̃mw is simply Txy; so that Txy is just-
identified in Case 1, and massively over-identified (and testable) in Case 2.

In Case 1 as in Case 2, the knowledge of T also gives us a and b for any
given θ; on the other hand, we cannot use the observability of transfers to
learn about θ.

Note that εb ≡ 0, for instance, implies that all women of characteristics y
are indifferent (pre-transfer) as to which man of characteristics x they may
end up marrying: if they were offered a different x-husband with the same
transfer, they would be equally happy. This sounds rather implausible.

The polar assumption, on which we focus from now on, would have εa

and ηb be identically zero: all men of characteristics x agree in the way they
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rank (pre-transfer) the women of type y, and all women of characteristics
y agree in the way they rank (pre-transfer) the men of type x. Then the
distribution of t̃mw conditional on a match (m ∈ x,w ∈ y) is the distribution
of

Txy + ηawx − εbmy

conditional on
∂G∗x
∂µz|x

(µ·|x; θ) + εbmz (5)

being maximal in z = y and

∂H∗y
∂µz|y

(µ·|y; θ) + ηawz

being maximal in z = x. In Case 2, we observe this entire conditional
distribution; and in Case 1 we only observe its mean.

5.2.1 An Illustrative Example

Let us take a simple example that minimally generalizes Choo and Siow 2006.
As in CSW, we assume that the εbmy (resp. the ηawx) are type I EV iid with
scale parameter σx (resp. τy.) Therefore θ = ((σx)x, (τy)y).

The special properties of the type I EV distribution3 imply that the distri-
bution of the maximum in (5) is the original type I EV distribution translated
by the expected maximum utility,

σx log
∑
z

exp(Uxz/σx) = −σx log µ0|x.

In addition, the results in GS show that

∂G∗x
∂µy|x

(µ·|x; θ) = σx log
(
µy|x/µ0|x

)
.

Putting this together, t̃mw should be distributed as the difference of Txy and
two independent type I EV distributions,

• one with location parameter −τy log µx|y and scale parameter τy

• one with location parameter −σx log µy|x and scale parameter σx.

3See de Palma-Kilani 2007.
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In Case 1, we obtain equivalently

txy = Txy − τy log µx|y + σx log µy|x

= axy − τy log µx|y + σx log µ0|x

= σx log µy|x − τy log µ0|y − bxy.

in which the terms Txy, axy, bxy, σx and τy are unknown. Jointly with

axy + bxy = σx log
(
µy|x/µ0|x

)
+ τy log

(
µx|y/µ0|y

)
,

this is the empirical content of the model. Given the structure of these
equations, it is clear that we cannot identify θ.

On the other hand, in Case 2 we can identify the scale parameters σx
and τy. They are in fact just identified from the second- and third-order
moments of t̃; and they are overidentified using higher-order moments, so
that the specification is testable. It would even be possible to allow for some
mismeasurement of transfers.

While this is only an illustrative example, it is interesting to note that it
is exactly the model in CSW. Observing the distribution of transfers in every
cell therefore substitutes for the repeated cross-sections they used4.

5.2.2 A More General Treatment

For any non-negative integer k, define

cky = E
(
εkmy11 (Uxy + εmy ≥ Uxz + εmz for all z)

)
.

Note that each cky is a random function of the differences of utilities (Uxy −
Uxz) and of θ. Moreover, c0y is simply the probability that y is chosen by
m ∈ x, which is µy|x. Therefore the equation

c0y = µy|x

simply rewrites equation (2). Solving these equations for all values of y gives
us the differences of utilities as a function of θ. Moreover, the conditional
moments of εmy given that the maximum is achieved in y are simply the
cky/c0y for k ≥ 1; and since we already solved for the differences of utilities,
these are functions of θ only.

In Case 1, we only observe txy, which is the sum of Txy, of c1y/c0y and of
the equivalent term for η. This is essentially uninformative on θ.

4It does a little more, in fact, since it identifies the general scale of utilities.
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In Case 2, we know the distribution of transfers for (x, y) matches. In
particular, we know its moments of all orders; but these are functions of the
unknown Txy, of the conditional moments cky/c0y of ε, and of those of η.
Therefore we have an infinity of equations to solve for θ, and a tempting
conjecture is that any finite-dimensional θ is overidentified.

While we do not have a proof for this conjecture, some more special results
are easily obtained. Consider for instance the case in which the shape of the
distribution for each gender is known but its scale parameter is not; then
θ = ((σx), (τy)). It is easy to see that the cky scale as σk

x with the difference
utilities divided by σx:

E
(

(σxεmy)
k 11 (Uxy + σxεmy ≥ Uxz + σxεmz for all z)

)
= σk

xE

(
εkmy11

(
Uxy

σx
+ εmy ≥

Uxz

σx
+ εmz for all z

))
.

As a consequence, the conditional moments cky/c0y scale as σk
x, and knowl-

edge of the moments of t̃mw identifies the θ parameter. Thus the findings
reported in 5.2.1 for the type I EV distribution apply much more generally,
and scale parameters are identified.

6 Testing for Assortative Matching

Much attention has been devoted to “sorting” in matching markets. Eeck-
hout and Kircher (2011) for instance make the point that even in a frictionless
market like the one we consider, a given set of transfers may be the prod-
uct of very different surplus functions, only some of which involve positive
complementarities. In this section we are concerned about inferring com-
plementarities in surplus from the observed data. “Complementarities in
surplus” have a straightforward definition: we require that for the given or-
derings on the sets of men characteristics x and of women characteristics y,
the joint surplus be supermodular in (x, y).

To put it more formally, there are complementarities in surplus iff for all
men characteristics x and z and women characteristics y and t,

Φx∨z,y∨t + Φx∧z,y∧t ≥ Φxt + Φzy.

Complementarity in surplus is an ordinal property: it is invariant if x and y
are subjected to increasing transformations.

Take the CSW example of section 5.2.1. When the σx and τy parameters
all equal one (which defines the model of Choo and Siow 2006), then

Φxy = log
µy|x

µ0|x
+ log

µx|y

µ0|y
.
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Eliminating the terms that do not interact x and y, it is clear that Φ is
supermodular iff log µ is—a point already made by Siow (2009). Observing
transfers is not necessary to infer complementarities; the matching patterns
µ are all that is needed. Their log-supermodularity is equivalent to the
supermodularity of the joint surplus.

If we reintroduce the parameters σx and τy, then

Φxy = σx log
µy|x

µ0|x
+ τy log

µx|y

µ0|y
,

and the supermodularity of Φ is equivalent to that of the matrix

Mxy = (σx + τy) log µxy,

The supermodularity of M in turn depends on the logsupermodularity of µ,
but also on its monotonicity and on that of σx and τy. While the first two
are readily observed from the data, the latter is not; and inferring comple-
mentarities requires learning about the additional parameters σx and τy.

To illustrate this, suppose that we observe aggregate transfers as in case 1,
and that (a, b, σ, τ) rationalizes the data (t, µ), with

axy + bxy = σx log
µy|x

µ0|x
+ τy log

µx|y

µ0|y

txy = axy − τy log µx|y + σx log µ0|x

= σx log µy|x − τy log µ0|y − bxy.

Now pick any (δσx, δτy), and modify a and b as follows:

δaxy = δσx log µxy

δbxy = δτy log µxy.

It is easy to see that (a + δa, b + δb, σ + δσ, τ + δτ) rationalizes the same
data; and with these degrees of freedom we can easily make M supermodular,
submodular, or neither. The only exception is the intermediate case in which
we assume that σx is independent of x and τy is independent of y. Then we
can still conclude that Φ is supermodular iff log µ is..

The lesson from this exercise is that unless we restrict the pre-transfer
utilities a or b, their separate and unknown complementarities will defeat our
attempts to infer those of the joint surplus. Restrictions on a and b do not
yield that much, however. Assume that there are no interactions between x
and y in a (so that axy only depends on x, or on y.) Then t is supermodular
iff τy log µxy is; and M is supermodular if and only if

σx log µxy + txy
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is supermodular. If we knew the value of σx, then we would identify the
complementarities in surplus; but even an additional assumption that σx is
a constant σ will not allow us to conclude unless for instance log µ and t are
both supermodular.

Finally, remember from section 5.2.1 that in case 2, σx and τy are identi-
fied from the individual transfers; and therefore we can test for complemen-
tarities once we have recovered estimates of these parameters.

Conclusion

The results in this note are mixed. When the only information on transfers is
available at the “cell” level as in Case 1, then it will not allow us to identify
any parameter of the distribution of unobserved heterogeneity. On the other
hand, information on the distribution of transfers within each cell has the
potential to be very informative on this distribution under separability. It
also allows the analyst to test for separability without resorting to specific
assumptions on the distributions of heterogeneity.

While this note focused on the identifying power of transfers, in some
situations the analyst observes measurements of outcomes; these will be in-
formational on the joint surplus Φ̃mw, or on the way it is shared. In marriage
markets, such measurements could include divorces, children outcomes, or
allocation of household expenditure. In labor markets one could have mea-
surements of the productivity of a match. The survey by Graham (2011)
discusses this at greater length.

References

Agarwal, N. (2014), “An Empirical Model of the Medical Match”,
American Economic Review, forthcoming.
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