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ABSTRACT

Combing Heterogeneous Databases to Detect Adverse Drug Reactions

Ying Li

Adverse drug reactions (ADRs) cause a global and substantial burden accounting for
considerable mortality, morbidity and extra costs. In the United States, over 770,000 ADR
related injures or deaths occur each year in hospitals, which may cost up to $5.6 million each
year per hospital. Unanticipated ADRs may occur after a drug has been approved due to its use
or prolonged use on large, diverse populations. Therefore, the post-marketing surveillance of
drugs is essential for generating more complete drug safety profiles and for providing a decision
making tool to help governmental drug administration agencies take an action on the marketed
drugs. Analysis of spontaneous reports of suspected ADRs has traditionally served as a valuable
tool in pharmacovigilance. However, because of well-known limitations of spontaneous reports,
observational healthcare data, such as electronic health records (EHRs) and administrative claims
data, are starting to be used to complement the spontaneous reporting system. Synthesizing ADR
evidence from multiple data sources has been conducted by human experts on an at hoc basis.
However, the amount of data from both spontaneous reporting systems (SRSs) and observational
healthcare databases is growing exponentially. The revolution in the ability of machines to
access, process, and mine databases, making it advantageous to develop an automatic system to

obtain integrated evidence by combining them.



Towards this goal, this dissertation proposes a framework consisting of three components that
generates signal scores based on data an EHR system and of an SRS system, and then integrates
two signal scores into a composite one. The first component is a data-driven and regression-
based method that aims to alleviate confounding effect and detect ADR based on EHRs. The
results demonstrate that this component achieves comparable or slightly higher accuracy than
those trained with experts and existing automatic methods. The second component is also a data-
driven and regression-based method that aims to reduce the effect of confounding by co-
medication and confounding by indication using primary suspected, secondary suspected,
concomitant medications and indications on the basis of a SRS. This study demonstrates that it
could accomplish comparable or slightly better accuracy than the cutting edge algorithm Gamma
Poisson Shrinkage (GPS), which uses primary suspected medications only. The third component
is a computational integration method that normalizes signal scores from each data source and
integrates them into a composite signal score. The results achieved by the method demonstrate
that the combined ADR evidence achieve better accuracy of drug-ADR detection than individual
systems based on either an SRS or an EHR. Furthermore, component three is explored as a tool
to assist clinical assessors in pharmacovigilance practice.

The research presented in this dissertation has produced several novel insights and provided new
solutions towards the challenging problem of pharmacovigilance. The method of reducing
confounding effect can be generalizable to other EHR systems and the method for integrating
ADR evidence can be generalizable to include other data sources. In conclusion, this dissertation
develops a method to reduce confounding effect in both EHRs and SRSs, and a combined system
to synthesize evidence, which could potentially unveil drug safety profiles and novel adverse

events in a timely fashion.
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CHAPTER 1 Introduction

1.1 Problem and Significance

It is perhaps a fundamental truth in medicine that there is no medication that is without risk
(Coloma 2012). Even with the most rigorous efforts in drug approval and regulation,
unanticipated adverse drug reactions (ADRs) may occur. In the 1960s, the thalidomide disaster
affected nearly 10,000 people around the globe. Post-marketing surveillance, also referred to as
pharmacovigilance, has drawn a great deal of attention from the public ever since.

The burden of ADRs worldwide is high, accounting for considerable morbidity, mortality, and
extra costs. The Institute of Medicine reported in January of 2000 that an estimated 7,000 deaths
per year occur due to ADRs (Kohn, Corrigan et al. 2000). Another study conducted based on
hospitalized patient populations estimate that 6.7% of hospitalized patients had a serious adverse
drug reaction with a mortality rate of 0.32% (Lazarou, Pomeranz et al. 1998). Also, it was
estimated that over 350,000 ADRs occur in U.S. nursing homes each year (Gurwitz, Field et al.
2000). Meanwhile, one estimate of the cost of drug-related morbidity and mortality is $136
billion annually, which is more than the total cost of cardiovascular or diabetic care in the United
States (Johnson and Bootman 1995). In addition, studies indicated that national hospital expenses
to treat patients who suffer ADRs are estimated between $1.56 and $5.6 billion annually (Bates,
Cullen et al. 1995, Bates, Spell et al. 1997, Raschke, Gollihare et al. 1998, Thomas, Studdert et

al. 1999).



1.2 Challenges

Randomized controlled trials (RCTs) are considered to be the “gold standard” for determining a
cause-and-effect relationship between a medication and an outcome, however, these trials are
rarely large enough to accurately measure infrequent adverse outcomes (Black 1996). Once
drugs are on the market, they are used on a much larger and more diverse population, often with
prolonged periods and sometimes with a wider range of therapeutic indications (Amery 1999,
Berlin, Glasser et al. 2008), and consequently unanticipated ADRs may occur. Therefore, post-
marketing surveillance of approved drugs is essential for generating more complete drug safety
profiles. Extending resources to observational data and methods represent a set of
complementary approaches that could potentially augment ADR detection (Olsson 1998, Ahmad
2003).

Post-marketing drug safety surveillance has traditionally been conducted by systematic manual
review of reports of suspected ADRs in spontaneous reporting systems (SRSs), which are mainly
described by healthcare professionals, consumers, and pharmaceutical manufacturers (Hauben,
Madigan et al. 2005). It is impractical to manually review the reports due to a large amount of
reports as well as the continuous influx of new drugs. For the past decades, various automatic
signal detection methods have been developed on the basis of SRSs to supplement qualitative
clinical evaluation (van Puijenbroek, Bate et al. 2002). The success of current pharmacovigilance
systems, however, is hampered by limitations inherent in the SRS databases, such as
underreporting and the pitfalls of automatic signal detection methods, such as not appropriately
dealing with confounding. It has shown that ADRs may be detected and acted upon too late
(Topol 2004). The withdrawal of rofecoxib, together with other significant safety issues, when

millions of persons have already been exposed, have stimulated initiatives worldwide to explore



new methods to facilitate earlier detection of novel ADRs. A recent resource involves mining of
observational healthcare data, including routinely-collected, longitudinal electronic healthcare
records (EHRs) and longitudinal billing oriented claims data. Different research groups have
carried out considerable studies on the basis of large-scale EHRs or claims data and have
demonstrated that observational healthcare database can augment existing pharmacovigilance
systems (Coloma 2012).

Given the relative maturity of the pharmacovigilance based on SRS, the rapid development of
ADR detection on the basis of observational healthcare data, and vast improvements in
computing capabilities, the time is ripe to develop methods for integrating ADR evidence from
two or more resources. Towards this goal, we develop a method to synergistically combine ADR
signals mined from complementary data sources and demonstrate the potential of the method
using a published reference standards. The quality of signals generated by the combination
system depends on the quality of their counterparts produced by each individual source. It is well
known that confounding effect is one of the most challenging problems leading to high false
positive rates, therefore we developed two methods for controlling complex confounding effect

in the EHR and SRS,

1.3 Research Hypotheses

This dissertation has three aims. First, to develop novel methods for alleviating confounding
effect in observational health data, such as EHR, so that EHR-based pharmacovigilance method
can be improved. Second, to develop novel methods for reducing confounding by indication and

concomitant medications based on SRSs. Third, to develop novel methods that leverage ADR



evidence from multiple databases synergistically so that the combined method could detect
ADRs more effectively than the individual data sources.

Specifically:

1. Detecting ADR signals from the observational healthcare databases, such as a single facility
EHR, is challenging due to the existence of complex confounding effect that leads to the high
false positive rate. The proposed data-driven and regression-based method could effectively
reduce the confounding issue resulting in the improvement of ADR detection accuracy compared
with other existing methods.

2. Leveraging information of concomitant medications and indications in FDA adverse event
reporting system (FAERS) can improve ADR detection performance compared with the
traditional measurements produced by disproportionality analyses, which are solely based on
information of primary suspected medications.

3. Computationally integrating ADR evidence generated by the FDA adverse event reporting
system (FAERS) and observational healthcare data can result in a more accurate and sensitive

ADR detection system than systems based on individual sources.

1.4 Thesis Overview

In this dissertation, we develop an integrative system synthesizing ADR evidence from multiple
heterogeneous databases, which includes the following components: (1) a data-driven and
regression-based method for reducing confounding effect and therefore improving ADR signal
detection in NYP/CUMC EHR; (2) a data-driven and regression-based method leveraging
primary suspected medications, concomitant medications and indications, and alleviating

confounding effect in FAERS. (3) a computational method to automatically integrate evidence



on the basis of data from observational healthcare data and FAERS, which can serve as a tool for
clinical assessors in actual pharmacovigilance practice.

Chapter 2 contains background material associated with pharmacovigilance, including a) a
survey of current databases, algorithms and reference standards used for post-marketing
surveillance of drug safety, b) a review of relevant studies, and ¢) a summary of related
techniques including natural language processing and biomedical terminologies.

Chapter 3 describes a data driven method to detect ADR signals using primarily inpatient data
associated with a single hospital visit as well as evaluation of the method based on a reference
standard consisting of two serious ADRs and drugs known to cause them. The method includes
the following five steps: 1) data collection and preparation; 2) identification of candidate drug
safety signals; 3) identification of confounders for specific medications; 4) estimation of the
medication—ADR associations adjusting for potential confounders; 5) determination of the
adjusted medication-ADR signals. The evaluation involves a reference standard consisted of
1,055 known positive drugs for two serious ADRs, and focuses on the precision of detecting
known drug-ADR signals and on comparison with other existing methods using the precision as
an assessment metric.

Chapter 4 presents a study of the effect of data characteristics on ADR detection methods when
the resource is FAERS. In this work, we explore the use of concomitant medication and
indication information in addition to primary suspected information to improve the performance
of ADR detection. For evaluation, a reference standard comprising 165 positive and 234 negative
drug-ADR pairs is utilized and the major assessment metric is the area under a receiver operating

characteristic curve (AUC).



Chapter 5 develops a computational method to combine signals from observational healthcare
databases and FAERS. In this work, we conduct three experiments involving combining FAERS
with a single facility small-scale EHR, a larger-scale network-based EHR, and a much larger-
scale healthcare claims database. The evaluation uses a reference standard comprising 165
positive and 234 negative drug-ADR pairs, and focuses on the AUC. Furthermore, we
demonstrate that the proposed system can serve as a tool for synthesizing ADR evidence under
two different scenarios that generally occur in actual pharmacovigilance practice, namely when
two data sources provide either consistent or inconsistent information about particular drug-ADR
pairs.

Chapter 6 summarizes and discusses the contributions and significance of the overall framework
for reducing confounding effect, generating ADR signals and integrating ADR evidence, and

presents the limitations, future work and overall conclusions.



CHAPTER 2 Background

In this chapter, we provide an overview of the key data sources for pharmacovigilance, survey
methods that are state of the art, describe reference standards centering on these data. We also
review relevant work concerning synthesizing evidence from multiple data sources, and describe

related techniques for conducting studies discussed in this thesis.

2.1 Overview

Pharmacovigilance (PhV), also referred to as drug safety surveillance, has been defined as “the
pharmacological science relating to the detection, assessment, understanding and prevention of
adverse effects, particularly long term and short term side effects of medicines”. The collection
of PhV information starts at the pre-approval stage, such as phase I-III of clinical trials, and
continues in the post-approval stage and throughout a drug’s life on the market. Typical
databases used in the post-marketing stages include spontaneous reporting systems,
observational healthcare databases and prescription event monitoring databases. More recently,
biomedical literature and data produced by the Internet have caught researchers’ attention. With
a rapid increase of the data size, automatic methods to deal with data and generate ADR signals

have been studied and developed.

2.2 Data source used in support of Pharmacovigilance

2.2.1 Spontaneous reporting systems

In the aftermath of the thalidomide tragedy in the late1960s, the United States Food and Drug

Administration (FDA), the World Health Organization (WHO), and the European Agency for the



Evaluation of Medical Products (EMEA) and other governmental drug administration agencies
independently set up spontaneous reporting systems (SRSs) designated for the collection and
subsequent analysis of post-marketing safety information (Coloma, Trifird et al. 2013). In the
United States, the FDA Adverse Event Reporting System (FAERS) is the primary surveillance
database used for the identification of safety problems of marketed drugs. Since its inception on
1969, a list of drugs has been removed from the market or restricted to special requirements for
prescription due to safety problems, representing 1% of marketed drugs (Wysowski and Swartz
2005). Currently, FAERS contains over 5 million spontaneous reports of suspected ADRs, and
receives an average of 300,000 reports per year among which the majority - 66% - come from
the US (Coloma, Trifiro et al. 2013).

Most of case reports collected by the SRS centers are either required to be submitted by
pharmaceutical companies, or are voluntarily reported by healthcare professionals and
consumers. Each report usually includes one or more adverse events that appear to be associated
with the administration of a drug; in addition, concomitant medications, indications and limited
demographic information are also reported. Although case reports submitted to the SRSs do not
necessarily imply causal relationships, the scenario of multiple reports which are similar and
which independently originate from different sources raises the degree of suspicion, and
sometimes have been considered sufficient for regulatory decisions (Brewer and Colditz 1999).
SRSs can be effective in revealing unusual or rare adverse events that occur with the initial use
or short-term use of medications. For example, methods using an SRS rapidly identified that
temafloxacin was the cause for the ADR hemolytic anemia in otherwise healthy individuals
because hemolytic anemia was rare in the general population and occurred within 1 week of drug

use (Blum, Graham et al. 1994). However, SRSs do not rapidly lead to ADR detection if the



adverse event is relatively common but not necessarily drug-related in the general population
such as approximately 30-year gap between the detection of autoimmune like disorders
attributable to breast implant and its initial use(Kessler, Natanblut et al. 1993, Sanchez-Guerrero,
Colditz et al. 1995). The autoimmune like symptoms are relatively common in women without
implants and the recognition of this ADR is subjective, leading to underreporting when
physicians and patients lack the knowledge of connecting breast implant to autoimmune like
symptoms. Additional limitations of SRS include biased reporting influenced by media coverage
or the length of time on market (Eberth, Kline et al. 2014), incomplete, inaccurate and duplicate
reporting. For example, a study showed that patients were less likely to attribute an ADR to the
prescribed medication than an expert panel that reviewed the event forms (Mitchell, Henry et al.
1988), sampling biases whereas all the reports are related to corresponding ADRs so that
information on the number of patients who take a drug of interest but do not develop an ADR is
unknown (Brewer and Colditz 1999, Bate and Evans 2009), and duplicate reporting whereas
multiple reports referring to the same adverse events are collected from different sources such as

consumers, drug manufacturers and investigators (Sakaeda, Tamon et al. 2013).

2.2.2 Observational healthcare data

Based on the forgoing discussion, it is apparent that one of greatest limitations in the SRSs to
post-marketing safety surveillance is their passive property and therefore delaying ADR
detection. The imperative to shift the paradigm toward a more proactive approach calls for the
attention of regulators and researchers (Gagne, Glynn et al. 2012). A proactive approach is a
procedure that actively and routinely screen the data collected during the routine clinical care in

order to generate hypothesis about the association between certain medications and selected



ADRs. With the advance in information technology and increasing adoption across the world,
electronic health records incorporated with detailed clinical data has become potential resources
for proactive ADR detection (Psaty and Burke 2006, Stratton, Baciu et al. 2007, Platt, Wilson et
al. 2009).

An EHR is a longitudinal electronic record of patient information generated by one or more
encounters in routine clinical care. This record usually includes structured information such as
laboratory test results, medication orders and diagnostic codes for billing, and unstructured
information in narrative text such as patients’ signs and symptoms, disease status and severity,
and medical history. The EHR is initially designed and implemented to trace accurate, up-to-
date, and complete information about patients at the point of care. Nowadays, clinical researchers
are increasingly interested in the secondary use of clinical data, which are promising for
comparative effectiveness research, outcomes research, epidemiology, public health research and
drug surveillance (Hersh 2007, Safran, Bloomrosen et al. 2007). The function of drug
surveillance based on EHR was exemplified by an initial pilot project by Partners Healthcare -
Adverse Drug Events Spontaneous Triggered Event Reporting (ASTER), which allowed selected
physicians to report suspected ADRs in an automated way. The system prompted an alert for
reporting when the physician indicated in the EHR that a drug had been discontinued because of
an adverse event (Linder, Haas et al. 2010). However, upon the evaluation, they found that most
of the ADRs captured and reported to FDA are known events, for example, ADRs that are
included in product labeling, for the suspect drugs (Brajovic, Piazza-Hepp et al. 2012). In terms
of discovering novel ADRs, a study used the UK primary care databases IMS disease Analyzer
MediPlus to show how longitudinal data may facilitate early signal detection (Bate, Edwards et

al. 2004). Several studies showed the earlier detection of cardiovascular events associated with
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the use of cyclooxygenase-2 inhibitors (coxibs) within an EHR database (Curtis, Cheng et al.
2008). Moreover, a research explicitly demonstrated that when data were restricted to time prior
to a regulatory action, the potential signals were much stronger when using the EHR than using
SRSs (Patadia, Schuemie et al. 2014). However, EHRs introduce other challenges. First, usually
only researchers affiliated with a medical center can access clinical notes within the institution
even when they are de-identified (Friedman, Rindflesch et al. 2013), and consequently
jeopardize the procedure for accumulating data from multi-site medical centers in order to detect
rare events or study newly-marketed medications. Second, the data collection procedure and data
quality of EHR vary across different providers and hospitals. Third, medical records usually
mention the patient’s medications, symptoms, diseases, and procedures individually without
mentioning their relationships. Fourth, most of the information is buried in narrative clinical
notes, and is inaccessible for automated applications.

Similar to EHRs, linked administrative databases, such as Medicare and commercial healthcare
claims databases, are emerging as a source for ADR detection. In comparison to EHRs,
structured claims data, consisting of diagnosis codes, procedure codes and prescriptions, have
relatively low sensitivity for detecting ADRs, weaker coverage of symptomatology, and are
vulnerable to inaccuracies as they are oriented toward billing(Nadkarni 2010, Classen, Resar et

al. 2011).

2.2.3 Prescription event monitoring databases

Prescription-event monitoring (PEM) was first suggested 25 years ago as a way to monitor the
overall safety of newly marketed medicines as used in real-life clinical practice, usually in

cohorts of at least 10,000 patients. The number of 10,000 patients was chosen since it is
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estimated that a sample size of 10,000 patients should detect at least three ADRs with 85%
power even when ADR occurs at a rate of 1 in 2000 and assuming the background rate is zero
(Strom 2011). The United Kingdom was the first country to adopt PEM which actively solicit
information of suspected ADRs involving demography, indication, dose, reason for stopping
medication (if applicable), any events that had occurred since starting medication, whether any
events were suspected to be ADRs and whether events were reported to the UK Regulatory
Authority or manufacturer (Rawson, Pearce et al. 1990) (Bate and Evans 2009). A similar system
called Intensive Medicines Monitoring Programme is carried out in New Zealand which
monitors the first 10,000 patients exposed to a new drug for a mean of almost five years (Coulter
2000).

In general, prescription follow-up information provides a denominator - the number of patient
exposed and a numerator - the number of ADRs - for calculating ADR rates. Reporting rates are
hence much higher than voluntary reporting. An example of ADRs identified by PEM include
cough with captopril (Coulter and Edwards 1987). However, since PEM only contains details of
clusters of patients exposed to a particular drug, the lack of an adequate control group is a
limitation. For example, tolterodine did not show evidence of hallucinations as an ADR because
the control group contained patients prescribed other drugs known to cause hallucinations. When
the data from these patients were removed, an ADE signal for tolterodine was discovered

(Heeley, Wilton et al. 2002).

2.2.4 Other promising data sources for pharmacovigilance

Systematic review of biomedical literature is a comprehensive scientific evidence source to

confirm or reject a possible drug-ADR causal relationship. Shetty et al expedited this process by
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retrieving possible ADR case reports from MEDLINE on the basis of National Library of
Medicine’s (NLM) Medical Subject Headings (MeSH) index and a Lasso-based document
relevance classifier, and then applied a disproportionality analysis to identify statistically
significant drug-ADR associations(Shetty and Dalal 2011). Avillach et al. devised an ADR
identification process based entirely on MeSH annotations. The MeSH subheadings of
‘chemically induced’, ‘adverse effects’ and ‘pharmacological action” were used to link drugs and
medical conditions in an article as candidate drug-ADR pairs. They then identified a possible
drug-ADR association by using a threshold of three articles whose MeSH annotations contained
the studied drug-ADR pair (Avillach, Dufour et al. 2013). In contrast, Wang et al developed a
machine learning approach based on the text of the article from PubMed to support
pharmacovigilance for particular ADRs they were interested in (Wang, Haerian et al. 2011).

User-posted data on social media has become a useful resource for ADR monitoring. In terms of
sources, both health-related sites, such as PatientsLikeMe and DailyStrength, and general social
media data, such as Twitter, have been used for ADR detection. In a recent paper, Freifeld et al.
described an analysis of Twitter posts for references to drugs and adverse events, with
comparison to reporting patterns in the US FDA FAERS and showed that the Spearman rank
correlation rho of 0.75 (p < 0.0001) between Proto-AEs reported in Twitter and FAERS by SOC
(Freifeld, Brownstein et al. 2014). Health-related sources tend to contain higher proportions of
relevant data while the amount of data from general social media websites is significantly larger.
In terms of methods for detecting ADRs, Medawar et al. initiated a study in 2001, which
validated a relationship between suicidal thoughts and the antidepressant paroxetine by
reviewing posts to an online discussion board and emails sent to a major British Broadcasting

Corporation (BBC)-TV documentary programme (Medawar, Herxheimer et al. 2002). Lately,
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supervised classification techniques for detecting posts associated with ADR mentions, and
lexicon-based approaches for extracting ADR mentions from texts have become popular (Sarker,
Ginn et al. 2015). In parallel, the Internet search patterns have been explored for similar
purposes. For example, White et al. conducted two studies to examine the feasibility of a signal
detection system based on the web search logs (White, Tatonetti et al. 2013, White, Harpaz et al.

2014).

2.3 Methods applied in pharmacovigilance

2.3.1 Disproportionality analysis

Disproportionality analyses (DPA) are routinely applied to SRSs (A. Bate et al., 1998; W.
DuMouchel & Pregibon, 2001; W DuMouchel, 1999; Lindquist et al., 1999; Lindquist, Stahl,
Bate, Edwards, & Meyboom, 2000; Noren, Bate, Orre, & Edwards, 2006) to measure the
strength of reported drug-event associations. DPA involves calculating surrogate observed-to-
expected ratios in which each drug-ADR pair is compared to background across all other drugs
and events in the database. Two of the most widely cited measurements are the relative reporting
ratio (RRR) and reporting odds ratio (ROR). RRR is the ratio between the number of reports
concerning a particular drug-ADR combination to an expected number under the assumption that
the drug and ADR occur independently (Norén, Hopstadius et al. 2013). ROR considers SRS as
source data for a case-control study, under the assumption that the odds of the ADR are not
affected by the drug (Rothman, Lanes et al. 2004). Both RRR and ROR do not address the
sampling variance issue. Multi-item Gamma Poisson Shrinker (MGPS) and Bayesian confidence
propagation neural network (BCPNN, information component (IC) is the statistical score) adopt

Bayesian approaches to cope with sampling variance by shrinking RRR or IC towards a prior
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when less data concerning the drug-ADR pair is available (DuMouchel 1999). MGPS method is
the routine ADR detection algorithm used in the FDA FAERS, and BCPNN used to be the
routine ADR detection method applied in the WHO VigiBase, which was replaced by a much
simpler method developed by Noren et al recently (Norén, Hopstadius et al. 2013). Lately, the
DPA method was adapted to take temporal information into account to measure the drug-ADR
associations in observational healthcare databases, such as healthcare claims database and
structured electronic health records (Schuemie 2011, Zorych, Madigan et al. 2013). Meanwhile,
the DPA method was applied to measure the drug-ADR association on the basis of ADR case
reports in the MEDLINE database (Shetty and Dalal 2011).

However, all the above methods measure lower order associations, such as a single drug-ADR
pair without considering the effect of confounding factors. A confounder is an extraneous
variable, either observed or unobserved, that mediates an association between two other
variables. For example, alcoholism is a confounder that could lead to a suspicious relationship
between the medication Naltrexone and pancreatitis because Naltrexone treats alcoholism, which
often leads to pancreatitis. If not properly accounted for, confounding may lead to the discovery

of suspicious associations and therefore erroneous study conclusions.

2.3.2 Multiple regressions

Randomization is an experimental design to randomly allocate subjects to the treatment group
and other control groups so that the groups have similar distributions of age, gender, behaviors,
and virtually all known and unknown possible confounding factors. The data collected by the
randomization design are supposed to be free of confounding effect. However, as in the case of

SRS and observational healthcare databases where data have already been collected, the
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characteristics of patients in exposure or unexposed group could not be balanced through
randomization, confounding should be addressed in the analysis stage. Stratification is a standard
procedure to alleviate confounding effects but it is not effective in situations where a large
amount of potential confounders need to be examined. A more appropriate approach to handling
confounding is by the use of multiple logistic regression, or new extensions of logistic regression
to very-large-dimensional data, known as regularized or Bayesian logistic regression (BLR).
Caster et al. described an application of BLR to the WHO SRS, involving an attempt to address
confounding caused by co-medication and a “masking” effect (Caster, Norén et al. 2010).
Masking effect is the suppression of a statistical reporting association between a drug and an
adverse event due to large numbers of reports for that adverse event in connection with another
drug or drugs (Wang, Hochberg et al. 2010). For example, the association between the anti-
depressive drug venlafaxine and the ADR rhabdomyolysis were masked by media focus on the
withdrawal of a drug (cerivastatin) causing rhabdomyolysis (Caster, Norén et al. 2010). Later on,
regularized logistic regression is applied to the healthcare claims databases and EHRs to
eliminate confounders (Harpaz, Haerian et al. 2010, Ryan, Madigan et al. 2012, Li, Salmasian et
al. 2013). Propensity score (PS) method is another commonly used regression-based analytic
approach for controlling confounding in the analysis stage (Rosenbaum and Rubin 1983, Patrick,
Schneeweiss et al. 2011). Propensity scores combine information from a large number of
covariates into a single variable representing a subject’s probability of receiving a particular
treatment, given the measured characteristics. This score can be used for matching, stratification,
as a weighting factor, or as an adjustment factor in multivariable regression (Stiirmer, Joshi et al.
2006). Tatonetti et al used PS method to identify potential drug-drug interaction between

paroxetine and pravastatin that could possibly cause hyperglycemia (Tatonetti, Ye et al. 2012).
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2.3.3 Epidemiology design

Epidemiological methods, including cohort, case-control and self-controlled designs, have been
frequently applied to observational healthcare data. Cohort design identifies two subgroups of
the population on the basis of the presence or absence of the exposure (Rothman, Greenland et
al. 2008). The non-exposure group could consist of patients who did not take particular
medications or who took other medications whose indication is the same to the studied
medication. The association is measured by comparing the presence and the absence of the
outcome between two groups. A case-control study has the same specifications as a cohort study,
except that the roles of exposure and diseases are reversed (Rothman, Greenland et al. 2008).
The case group consists of patients developing the disease and the control groups consist of
patients who are free of the disease. The relationship is measured by the presence and absence of
exposure for individuals in both groups. The main advantage of case—control studies as
compared with alternative study designs such as cohort designs is their data efficiency, which
permits the study of rare events (Jewell 2003). Self-controlled design can produce results that are
statistically and clinically valid with far fewer patients than would otherwise be required by
using each patient as his or her own control. The self-controlled case series (SCCS) is a type of
self- controlled design which assumes that ADRs arise according to a nonhomogeneous Poisson
process, with each subject having an individual baseline of non-exposure event rate that is
constant over time, and with periods of exposure resulting in a multiplicative effect on the
baseline rate (Simpson 2011). The above three designs were intensively examined by OMOP on
the basis of five databases. In an experiment conducted by OMOP, high dimensional propensity
score based cohort study achieved a sensitivity of 56%, specificity of 82%, and positive

predictive value of 38% in the detection of 53 associations corresponding to true ADEs and
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negative controls. The implementation of a case—control design achieved close to 100%
sensitivity, but at the expense of extremely low specificity of 15% (Ryan, Madigan et al. 2012).
Self- controlled methods, such as self-controlled case series, temporal pattern discovery and self-
controlled cohort, had higher predictive accuracy than cohort and case—control methods across
all databases and outcomes. However, the distributions of point estimates across all analysis
methods for the negative controls, which are supposed to be centered on zero, were positively

biased. (Ryan, Stang et al. 2013).

2.3.4 Unsupervised machine-learning methods

Unsupervised machine-learning approaches, such as clustering, association rule mining and
network analysis, have been used for the identification of more complex or higher-dimensional
drug safety phenomena as well as for data abstraction and pattern discovery. In general, the
clustering algorithms could be used to group patients with similar symptoms or diagnoses, which
segment a large patient population to a smaller set of specific homogeneous subgroups (clusters)
without losing much information about the whole population. The drug-ADR associations could
further be calculated within these relatively homogeneous clusters and summarized using
techniques such as Cochran-Mantel-Haenszel method. Because of the heterogeneity between
clusters, this analysis can also be helpful in hypothesis development about the nature of the
variation between subgroups. For example, if a database contained details of different cardiac
pathologies (e.g. valvular heart disease) and medication (e.g. fenfluramine-phentermine),
clustering analysis may have segregated patients according to heart disease and identified

fenfluramine-phentermine as one of the main factors in this group. We could then explore the
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hypothesis of an association or causal link between cardiac valvular disease and fenfluramine-

phentermine (Wilson, Thabane et al. 2004).

2.4 Integration of ADR evidence from heterogeneous databases

Regulatory decision-making based on integrating available research data from multiple data
sources to determine whether a drug is safe is a complex process (Anello and O'neill 1996). The
main use case for leveraging multiple data modalities is to improve signal detection via evidence
combination. In this regard, the questions that need to be studied are whether we should use
some data sources for hypothesis generation while reserving others for confirmation, or combine
data sources in a novel way to generate hypothesis.

Tatonetti et al. discovered a potentially new drug-drug interaction, which can lead to unexpected
increases in blood glucose levels, between paroxetine and pravastatin based on SRS, and then
validated this interaction using multi-center EHRs (Tatonetti, Denny et al. 2011, Tatonetti,
Fernald et al. 2012). Duke et al. predicted probable novel myopathy-associated drug-drug
interactions based on the literature, and evaluated them using a large EHR database(Duke, Han et
al. 2012). Xu et al boosted drug-ADR pairs’ signals generated from FAERS by incorporating the
information about their MEDLINE occurrences. The key assumption in their study was that if a
drug-ADR pair appears in both MEDLINE and FAERS database, then this pair likely has a true
ADR relationship and if this pair also appears in FAERS many times, then the probability of it
being a true “drug CAUSE ADR” pair is high (Xu and Wang 2014). Harpaz et al. claimed that a
combinatorial investigation of SRS and the EHRs either lead to increased evidence or statistical
power of findings, or would facilitate new discoveries that may not be possible with either source

separately (Harpaz, Vilar et al. 2012). In particular, the study analyzed 4 million reports obtained
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from FAERS together with information extracted from 1.2 million EHR narratives using
disproportionality analysis to generate a list of ADRs and then re-ranked them on the basis of
signal strength calculated from the EHR. The results showed that the accuracy of signal
detection, measured by the ‘Precision at K’ metric (Baeza-Yates and Ribeiro-Neto 1999, Liu and
Zsu 2009), was improved. A reference standard of three serious adverse reactions and over 600
established and plausible ADRs was used to evaluate the proposed approach against the single
FAERS-based signal detection system. Established ADRs are drugs confirmed to be causally
related to the ADR and plausible ADRs are drugs that have a high likelihood of being causative.
The combined signaling system demonstrated a statistically significant large improvement over
the FAERS in the precision of top-ranked signals (i.e. from 31 % to almost threefold for different
evaluation categories). The study concluded with promising initial evidence that exploring
FAERS and EHR data in the scope of replicated signaling can improve the accuracy of signal
detection in specific cases. Vilar et al conducted two studies of re-ranking the ADR signals
mined from observational health databases. One was based on a single EHR system and the other
was based on a large-scale claims database using 2D structure similarity for enrichment analysis
(Vilar, Harpaz et al. 2011, Vilar, Ryan et al. 2014). However, the above studies used a single
data resource to generate ADR signals and then independently used another resource for
validation or enrichment analysis. Harpaz et al. proposed a Bayes model to computationally
combine ADR signals from a disparate SRS of about 5 million adverse event reports collected by
the FDA and from healthcare data corresponding to about 46 million patients from a healthcare
claims database, and the performance was measured based on a reference standard of 4 ADRs
and 399 test cases provided by OMOP (Harpaz, DuMouchel et al. 2013). The metrics used were

the area under receiver operation characteristic curve (AUC) and partial AUC. Results
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demonstrated that the proposed method led to a statistically significant and substantial
improvement in signal detection accuracy, averaging 40% over the use of each source
independently, and an area under the ROC curve of 0.87. Another advantage of this method is
that the method does not require labeled (training) samples whose availability is currently
limited. The study of Liu et al. also followed an integrative perspective for ADR detection by
utilizing chemical - e.g. compound fingerprints or substructures, biological — e.g. protein targets
and pathways, and phenotypic properties of drugs — e.g. indications and other known ADRs (Liu,
Wu et al. 2012). This integrative analysis was evaluated based on the prediction of 1,385 known
ADRs of 832 approved drugs, through five different analysis methods, namely logistic
regression, naive Bayes, K-nearest neighbor, random forest and support vector machine. The
detailed data were obtained from public databases, while the evaluation was based on accuracy,
precision, and recall, which were determined by the best operating points of the global ROC
curve on the basis of the prediction scores for all ADRs. The study indicated that from the three
types of information, phenotypic data were the most informative for ADR prediction. However,
when biological and phenotypic features were added to the baseline chemical information, the
proposed prediction model achieved significant improvements and successfully predicted ADRs
associated with the withdrawal of specific drugs.

Patadia et al evaluated performance of electronic healthcare records and spontaneous reporting
data in drug safety signal detection on the basis of ten events with known positive and negative
reference sets. Signals were identified when respective statistics exceeded defined thresholds.
The results showed that when using all cumulative data, signal detection in SRS data achieved
higher specificity and sensitivity than EHR data. However, when data were restricted to time

prior to a regulatory action, the appropriate use of healthcare data had an potential for earlier
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detection of drug safety signals before healthcare professionals report them to an SRS system
(Patadia, Schuemie et al. 2014).

It is believed that one of the next breakthroughs in pharmacovigilance depends on a
comprehensive approach that examines ADR-related information from a diverse set of
potentially complementing data sources such as SRS, electronic healthcare data, biomedical

literature, chemical information and phenotypic information, to detect and validate novel ADRs.

2.5 Reference standards used in Pharmacovigilance

A central challenge in ADR detection is the need for publically available and sufficiently large
reference standards to properly evaluate the performance characteristics of the data mining
algorithms when applied to various data sources. There have been previous attempts to develop
reference standards, however, the procedure to generate them was not transparent and
systematic, or lacked negative controls. For example, Lindquist et al. evaluated the performance
of the BCPNN based on the Martingdale and Physician Desk Reference compendium of drug
information(Lindquist, Stdhl et al. 2000). Hochberg et al. selected 27 drugs and classified
adverse events based on level of evidence from product labeling and literature review, and used
this reference event database to evaluate three algorithms (Hochberg, Hauben et al. 2009).
Pharmacovigilance research has become an important topic in the biomedical informatics field.
Wang et al. conducted a feasibility study of using NLP, Statistics, and EHRs for the
pharmacovigilance and selected seven drugs/drug classes with their 132 known ADRSs to
evaluate the system (Wang, Hripcsak et al. 2009). Harpaz et al and Li et al evaluated their

regression-based ADR detection systems on the basis of three ADRs — rhabdomyolysis,
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pancreatitis and QT prolongation (Harpaz, Haerian et al. 2010, Li, Salmasian et al. 2013). The
reference standard for the known drugs causing these three ADRs was created using evidence
from literature, Micromedex and drug labels, and was classified into two categories — established
and plausible (Harpaz, Vilar et al. 2012). LePendu et al evaluated their system using the
manually curated reference standard of 28 positive associations and 165 negative associations
spanning 78 drugs and 12 different events for single drug—adverse event associations (LePendu,
Iyer et al. 2013). Quite a few studies evaluated their systems using the popular database - Side
Effect Resource (SIDER), which is a publicly available knowledge base that contains a total of
99,423 drug-ADR pairs regarding 4192 ADRs and 996 drugs (Leaman, Wojtulewicz et al. 2010,
Nikfarjam and Gonzalez 2011, Shang, Xu et al. 2014). The information in SIDER is
automatically extracted from public documents and package inserts but SIDER does not
differentiate carefully the degree of certainty for a drug ADR signal when it is appearing in
different sections of the drug label, and therefore some drug ADR pairs could be false positive
signals. Other evaluations were performed via comparative analysis with findings from previous
studies, for example, Caster et al compared the ADR signals generated by Lasso Logistic
Regression (LLR) with the ones produced by the routine method information component (IC)
used in the Vigibase and found that LLR was able to detect some established drug safety issues
earlier than the IC (Caster 2007). Xu et al compared ADR signals detected by mining literature
with the ones mined from FAERS (Xu and Wang 2014).

Recent efforts made by the EU-ADR projects and OMOP have made substantial progress in
developing reference standards. The EU-ADR projects constructed a reference standard for ten
top-ranked events judged as important in pharmacovigilance. A stepwise approach was

employed to classify drug-ADR pairs to positive or negative test cases based on MEDLINE-
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indexed publications, drug product labels, spontancous reports made to the WHO’s
pharmacovigilance database, and expert opinion, resulting in 44 positive and 50 negative test
cases, with up to 5 positive and negative controls for 10 ADRs (Coloma, Avillach et al. 2013). In
its initial experiments, OMOP constructed a reference standard of 53 drug-ADR pairs which
were classified as 9 positive test cases and 44 negative test cases on the basis of product labeling
and expert consensus (Ryan, Madigan et al. 2012, Ryan, Schuemie et al. 2013). Later on, they
selected four ADRs and classified drugs associated with these ADRs on the basis of evidence
from product labeling, systematic review of the literature and a textbook about drug-induced
diseases resulting in 399 test cases — 165 are positive cases and 234 are negative controls(Ryan,
Schuemie et al. 2013).

The resulting reference standards are by no means definitive, however, and should be seen as
dynamic. As knowledge on drug safety evolves over time and new issues in drug safety arise,
these reference standards should be re-evaluated and expanded. Therefore, the temporal
information is essential about when a true positive drug-ADR signal becomes known or up to
when there is no supporting evidence about a drug causing an ADR. Harpaz designed a time-
index reference standard, which was systematically curated from drug labeling revisions, such as
new warnings, which were issued and communicated by the US Food and Drug Administration
in 2013. The reference standard includes 62 positive test cases and 75 negative controls, and
covers 44 drugs and 38 events(Harpaz, Odgers et al. 2014). However, the date of revising
labeling, are unlikely to truly represent the time of first detection of a new safety signal. For
example, Niu et al claimed that the use of data mining with the Vaccine Adverse Event
Reporting System (VAERS), the US surveillance system for monitoring vaccine safety, had

detected a signal for intussusception earlier than approved drug label (Niu, Erwin et al. 2001). In
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fact, the first indication of a potential signal actually occurred prior to approval and was
described in the original package insert before it became publicly available. The common

evaluation metrics of evaluation are recall, precision, F-score, AUC and partial AUC.

2.6 Related Work

2.6.1 Natural language processing

The key challenge in using clinical information for pharmacovigilance is that they are
represented in free-text. With the emergence of high throughput technologies, natural language
processing (NLP) has been applied in biomedicine. A typical procedure to process the free-text
clinical notes comprised several NLP subtasks, including named entity recognition, negation
detection and relation extraction. A brief description of these tasks is provided by Friedman and
Elhadad (Friedman and Elhadad 2014)and Nadkarni (Nadkarni, Ohno-Machado et al. 2011) et al.
The commonly used systems in biomedical domain include MetaMap, MedLEE, BioMedLEE
and MGrep (Aronson 2001, Chen and Friedman 2004, Friedman, Shagina et al. 2004, Jonquet,
Shah et al. 2009). Medical Language Extraction and Encoding (MedLEE) is a natural language
processing system that has been used to extract and encode information in clinical narratives for
a large number of different applications and studies. For a given report, MedLEE produces a set
of findings, such as problem, procedure, device, and medication, along with associated
modifiers, such as certainty, degree, status, body location, and section.

NLP was initially proposed to be applied for the active computerized pharmacovigilance by
Wang et al (Wang, Hripcsak et al. 2009). They demonstrated that the framework based on NLP,
EHR and statistics could potentially unveil drug safety profiles throughout their entire market

life. Haerian et al applied the NLP and a knowledgebase to exclude cases in which the patient’s
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disease was responsible for the event rather than a drug, which is crucial for mining EHR for the
detection of ADR (Haerian, Varn et al. 2012). LePendu et al developed a high-throughput NLP
tool to transform clinical notes into a feature matrix encoded using medical terminologies, and

then used statistical method to detect ADRs (LePendu, Iyer et al. 2013).

2.6.2 Biomedical ontologies

The Unified Medical Language System (UMLS) is one of the major resources, which comprise
three components: the Metathesaurus, the Semantic Network, and the SPECIALIST Lexicon.
The UMLS Metathesaurus is a compendium of over 150 controlled vocabularies or ontologies
containing 3 million biomedical concepts that are associated with synonyms, semantic groups
and relationships between two concepts (Bodenreider 2004). In addition, the UMLS uses the
concept unique identifier (CUI) to link terms with the same meaning together. Among all the
contributing sources are two vocabularies utilized commonly in the NLP task for this
dissertation. RxNorm (Liu, Ma et al. 2005) is an initiative for creating standard names for
clinical drugs, and defining several types of relationships between concepts that are related to
generic classes and trade names of drugs, such as tradename of and has tradename, which are
used to map all trade name to their generic names (http://www.nlm.nih.gov/research/umls/ , Liu
S 2005, Chen, Hripcsak et al. 2008). The UMLS Semantic Network provides a semantic
categorization of the UMLS concepts and includes a set of 135 semantic types such as Disease
or symptom (T047) and Pharmacologic Substance (T121), as well as semantic relations defining
relations between these types.

Search tool for interactions of chemicals (STITCH) integrates information about interactions

from metabolic pathways, crystal structures, binding experiments and drug—target relationships.
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STITCH maintains synonym lists for chemicals, and relationships between drugs and their
chemical compounds. (Kuhn, von Mering et al. 2008) For example, quinapril hydrochloride and
Hemokvin are mapped to the main ingredient quinapril. STITCH was used to link drug brand

names to their chemical compound names.
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CHAPTER 3 A method for controlling complex confounding effects in the detection of

adverse drug reactions using electronic health records

3.1 Introduction

EHRs contain comprehensive patient information collected during routine practice (Cox, Martin
et al. 2009). Unlike spontaneous reporting systems, they are not subjective regarding ADRs.
However, EHRs introduce other challenges. First, most of the information is buried in narrative
clinical notes, and is inaccessible for automated applications. This can be addressed by using
natural language processing (NLP) systems, which encode narrative clinical notes (Meystre,
Savova et al. 2008, Savova, Masanz et al. 2010, Xu, Stenner et al. 2010). Second, the vast
amount of clinical narrative information in the EHR exacerbates the problem of confounding by
introducing many conditions. Third, records usually mention the patient’s medications,
symptoms, diseases, and procedures individually without mentioning their relationships.
Therefore, statistical methods are needed to obtain associations, which do not denote
relationships. For example, a statistical association between a medication and a condition may be
a treatment, an ADR, or an indirect association stemming from another event, for example, a
confounder (Cao, Hripcsak et al. 2007, Wang, Hripcsak et al. 2009). Since ADRs occur rarely,
most associations are due to confounding. For instance, when certain serious ADRs were
identified using abnormal laboratory signals (ALS), 70% were not drug-related, but
corresponded to spurious associations between drugs and the adverse events (Ramirez, Carcas et

al. 2009). ADR signals detected in the EHR are likely to be confounded by co-medication, by
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indication, by comorbidity, or any combination of the three. Confounding by co-medication
occurs when two or more medications are frequently prescribed together, but only one causes the
ADR of interest. For example, Rosinex causes nausea, but because Rosinex and Ganclex are
frequently prescribed together, a spurious association between Ganclex and nausea may also
occur (Hauben, Madigan et al. 2005). Confounding by indication occurs when medications are
prescribed to treat symptoms or manifestations of an ADR before the ADR is diagnosed. For
example, the medication fentanyl may be prescribed for patients who have severe pain before the
diagnosis of the condition responsible for the pain. Confounding by comorbidity occurs when an
ADR is associated with the disease which the medication is used to treat. For example,
Naltrexone may be associated with pancreatitis because it treats alcoholism, which often leads to
pancreatitis. In this study, we focus on eliminating confounding by co-morbidity.

To ascertain a causal relationship between a drug and an ADR, confounders need to be identified
and removed from the observed marginal associations. A marginal association is a relationship
between two variables in the marginal table, and can be used to test for marginal independence
between two variables while ignoring the third. Removing confounding effect is critical for
observational studies, where the data are collected without randomization or strict
inclusion/exclusion criteria (Greenland and Morgenstern 2001, Brookhart, Stiirmer et al. 2010).
A study conducted by Harpaz et al selected potential confounders which were highly associated
with the outcome ADR and then determined whether an association between a medication and an
ADR existed based on changes in association strengths with and without the
confounders.(Harpaz, Haerian et al. 2010) These identified confounders are actually more similar
to risk factors (RFs) for an ADR (hereafter Harpaz’s method is referred to as RF). The

propensity score method (PSM) also controls for confounding, and has been applied to health
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claims databases for drug effectiveness comparative studies (Schneeweiss and Avorn 2005,
Schneeweiss, Rassen et al. 2009, Brookhart, Stiirmer et al. 2010) and ADR detection. (Caster
2007, Caster, Norén et al. 2010, Tatonetti, Ye et al. 2012) The PSM estimates each patient’s
probability of the exposure of medication, which it uses as a surrogate to mitigate confounding.
The RF method identifies the confounders only by their associations with the ADR, while the
PSM selects confounders based only on their associations with the medication. In addition to
that, PSM selects potential confounders on an individual basis that are often correlated with each
other. However, some conditions no longer confound the drug-AE association in the presence of
other conditions. Including these unnecessary conditions in the analysis leads to increased
uncertainty and decreased statistic power. The algorithm we propose takes both types of
associations into account, which helps avoid detecting inappropriate confounders. We apply our
method to two serious ADRs, rhabdomyolysis and pancreatitis, to study performance, but it is

generalizable and can be used to detect other ADRs.

3.2 Method

3.2.1 Study setting

The study was conducted at Columbia University Medical Center/New York Presbyterian
Hospital (CUMC/NYPH), after Institutional Review Board approval. EHR data consisted of
retrospective narrative outpatient visits, admission notes, discharge summaries, and structured
medication orders and laboratory results from 2004 to 2010. Narrative reports and structured
medication orders were used to obtain the patients’ medical conditions and medications, and

laboratory data was used to detect ADR occurrences.
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3.2.2 Methodological Framework

Figure 3.1 is an overview of the methodology, which consists of 5 steps: 1) collecting the
appropriate EHRs and performing NLP of the narrative notes to obtain structured coded data; 2)
creating each ADR case group, generating the 2x2 contingency tables, and identifying initial
candidate drug safety signals; 3) identifying potential confounders; 4) estimating medication-

ADR associations while adjusting for confounders; and 5) determining medication-ADR signals.

Figure 3.1 Methodological Framework

1. Data collection and preparation

b

2. Identity candidate drug safety signals

b

3. Identify medication specific confounders

L

4. Estimate the medication-ADR associations adjusting for
potential confounders

b

5. Determine the adjusted medication-ADR signals

3.2.2.1 Data collection and preparation

An NLP system, MedLEE, was used to structure and encode the narrative notes. (Friedman,
Shagina et al. 2004) MedLEE identified medical concepts, such as medications, diseases and
symptoms, and mapped the concepts to the Unified Medical Language System (UMLS) concept

unique identifiers (CUIs) to standardize them. (Bodenreider 2004). MedLEE also identified
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modifiers of the medical concepts, such as time and negation. By using them, events that were
not experienced by the patient or that occurred in the past were excluded.(Chapman, Bridewell et
al. 2001) For example, chest pain in the sentence “The patient had 3 admissions in the past for
chest pain”, was excluded as a current problem. Medication names were normalized to their
generic names. As mentioned in Chapter 2, the UMLS Metathesaurus includes relationships
among concepts drawn from its various source terminologies, and the hierarchic relations
provide a basis for normalizing drug brand names to generics and linking specific drugs to drug
classes. We retrieved all the “isa,” “inverse isa,” “has_tradename,” and “tradename_of” relations
of each extracted drug concept to create the hierarchy, and also used ‘“has ingredient” and
“has_active ingredient” relations to help determine whether a concept is a drug or a drug class.
For example, the trade name Lipitor (UMLS id entifier C0593906) was normalized to the generic
atorvastatin (UMLS identifier C0286651). Finally, we captured temporal information
corresponding to dates of the laboratory tests, dates of admission and discharge for inpatients,
and dates of office visit for outpatients.

3.2.2.2 Identify candidate drug safety signals

The two ADR groups were identified based on abnormal laboratory tests. Rhabdomyolysis was
based on a serum CK >= 1000 U/L, (and pancreatitis was based on an amylase >= 300 U/L or
lipase >= 120 U/L. The control groups for each ADR consisted of patients in the same
population without the particular ADR. We analyzed associations of ADRs by considering
medications that were mentioned before the ADR occurred as the exposure should always
precede the ADR. We utilized two criteria to select medications in the case group: 1)
medications mentioned in a clinical note were included if the note was written before the initial

date of the abnormal lab signal (ALS), or 2) only medications mentioned in the sections
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Medications on Admission or Current Medications were included if the note was written during
the same admission or office visit corresponding to the date of the first ALS because these
sections generally specify medications taken prior to the ADR. In contrast, all the medications
for the control patients were collected. Subsequently, we constructed 2x2 contingency tables for
each medication-ADR pair, as shown in Table 3.1.

Table 3.1 Two by two contingency table

ADR No ADR

(Present of outcome) | (Absence of outcome)
Medication a b (atb)
(Exposure)
No medication c d (ct+d)

(No exposure)

(atc) (b+d) (all patients)

Using formula 3.1 we calculated the Odds Ratio (OR) for each contingency table to obtain an
initial set of drugs associated with the ADR. An OR >1 indicates that the chance for developing
an ADR is higher for those who took the medication than who did not. We used the Fisher’s
exact test(Upton 1992) to test whether the ORs were significantly larger than 1, and ranked the
resulting p-values from smallest to largest. We selected the top K drugs using a family-wise
False Discovery Rate (FDR) (Benjamini and Hochberg 1995) controlled at 5%.

Equation 3.1 Odds Ratio

OR B Odds(ADR = 1|Rx = 1) here 0dds(X) = Pr(x)
ADRRx = 0 0ds(ADR = 1|Rx = 0) ¢ ¢ VS =T 000

Rx represents the drug of interest
3.2.2.3 Identify confounders for specific medications
Potential confounders included diseases and symptoms of individual patients. We calculated the

OR of each condition with the drug (61), and with the ADR (62), and identified a condition as a
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confounder for the drug-ADR association if: (1) both 81 >1 and 62 >1, and (2) In(6:1x62) > 0.2.
The rationale is that a confounder could falsely amplify the ADR signal if and only if it is
positively associated with both the drug and the ADR, and the associations are strong. For
example, as shown in Figure 3.2, alcoholism was positively associated with both Naltrexone (01
= 58.8), and pancreatitis (02 = 4.09), and the associations were strong (In(0:1x02) = 5.74).
Therefore, alcoholism was considered a potential confounder for Naltrexone-pancreatitis.

Figure 3.2 Example of confounding by comorbidity

alcoholism
(confounder)

Naltrexone
(exposure)

pancreatitis
(outcome)

3.2.2.4 Estimate the medication-ADR associations adjusting for potential confounders
We fit the logistic regression model shown in formula 3.2 to re-evaluate the drug-ADR

association while adjusting for the identified confounders simultaneously.
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Equation 3.2 Logistical regression model
M
logit{prob(ADR = 1)} = a + BRx + Z i C;
i=1
Rx represents the medication of interest
B is the effect of the medication associated with the ADR after adjusting for all the Cis
Vi is the effect of the i-th confounder C concerning the ADR
In last step, the potential confounders Ci were identified on an individual basis, and were often
correlated with each other. Hence some conditions no longer confounded the drug-AE
association in the presence of other conditions. Including irrelevant items could inflate the
estimation variability and undermine the statistical power for detecting ADR associations. To
address such over-controlling, we incorporated a Least Absolute Shrinkage and Selection
Operator (LASSO) type regularization into the estimation of the model which automatically
selected the significant Ci’s (Tibshirani 1996, Zou and Hastie 2005). The LASSO involves a

turning parameter A, which controls the penalty on the model complexity. We selected an

optimal A by ten-fold cross-validation.

To relieve the computational burden, we included the conditions into formula 3.2 in groups
instead of all at once. Specifically, we ranked the Ci’s by the strength of their association with
the ADR (02). Instead of including all the Ci’s at once, we only included the top 500
confounders, and then used LASSO to eliminate the insignificant conditions. We repeated this
procedure by iteratively adding the next 500 confounders. The method stopped and the drug-
ADR association was rejected if after adding confounders, there was no association between
medication and ADR. However, if after adding all confounders, the association still existed, this
was considered a possible ADR signal.

3.2.2.5 Determine the adjusted medication-ADR signals
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For each drug-ADR association, we tested the null hypothesis B =0 using the Wald test
(Gourieroux, Holly et al. 1982). If B =0 was accepted, it implied that the observed marginal
drug-ADR association was due to the existing confounding conditions; otherwise, the medication

was considered to be associated with the ADR even after adjusting for the confounders.

3.2.3 Evaluation Design

3.2.3.1 Reference standard

The reference standard consisted of drugs implicated in causing rhabdomyolysis and pancreatitis.
It was constructed independently by a pharmacological expert using Micromedex, literature
reviews and published reports, and ADRs listed in the Medi-Span adverse drug effects databases,
and is described in more detail in another paper (Harpaz, Vilar et al. 2013).

3.2.3.2 Comparisons

Four methods were compared with ours in this study: 1) a baseline method, which only used
steps 1 and 2 of the proposed method where confounding was not considered 2) a knowledge-
based method where a knowledgebase, developed by clinical experts containing comprehensive
non-drug related risk factors for rhabdomyolysis and pancreatitis was applied to exclude patients
with predisposing conditions, which eliminated confounders from the population regardless of
medication exposures. The thabdomyolysis knowledgebase was previously established and is in
the supplemental data of Haerian’s publication,(Haerian, Varn et al. 2012) and the one for
pancreatitis is available in Table 3.2. After excluding patients with underlying conditions for
developing ADRs, we performed step 2 of the proposed method. 3) the RF method proposed by
Harpaz et al. was utilized where the shrinkage parameter was selected based on a conjecture that

a size of between 20 and 40 conditions was reasonable, however, we used cross-validation to
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select the shrinkage parameter since this was more reproducible. 4) the PSM proposed by
Tatonetti et al was replicated, except that for each medication, we only used the top 200

associated conditions, based on their phi coefficients, to generate the propensity score for each

patient.
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Table 3.2 Medical conditions that were found to be risk factors for pancreatitis

UMLSID | UMLS PREFERRED TERM | UMLS ID | UMLS PREFERRED TERM | UMLS ID | UMLS PREFERRED TERM

C0085762 | alcohol abuse C0008340 | choledochal cyst C0023891 | liver cirrhosis, alcoholic

C0001957 | alcohol withdrawal delirium malignant neoplasm of

C0701818 | Choledocholithiasis C0346647 | pancreas
C0236663 | alcohol withdrawal
syndrome C0008350 | Cholelithiasis C0877425 | mass of pancreas
C0156076 | alcoholic gastritis C0008370 | Cholestasis C0333027 | Microlithiasis
C0001973 | alcoholic intoxication,
chronic C0009438 | common bile duct calculi C0085407 | Microsporidiosis

C0267931 | bile duct cysts C1397941 | gallbladder distension C0008313 | cholangitis, sclerosing

C0005411 | biliary atresia C0860209 | gallbladder sludge C0008320 | cholecystectomy procedure

C0242216 | biliary calculi C0744257 | gallbladder wall thickening C0008325 | Cholecystitis

C0151824 | biliary colic C0521614 | gallstone pancreatitis C0149520 | cholecystitis, acute

C0282074 | biliary sludge C0019187 | hepatitis, alcoholic C0947622 | Cholecystolithiasis

C0597984 | biliary stricture C0020437 | Hypercalcemia C0026780 | Mumps

C1167663 | Biloma C0020502 | Hyperparathyroidism C0400976 | obliterative cholangitis

C0206698 | Cholangiocarcinoma C0020557 | Hypertriglyceridemia C0747181 | pancreas head mass

C0008311 | Cholangitis C0022354 | jaundice, obstructive C0235974 | pancreatic carcinoma
primary sclerosing

C0030283 | pancreatic cyst C0030297 | pancreatic neoplasm C0566602 | cholangitis

C0267919 | primary cholangitis C0030299 | pancreatic pseudocyst C0149783 | steroid therapy

38




3.3 Results

3.3.1 Data collection and cohort characteristics

Data was collected for 264,155 patients accounting for 6,221 unique generic drugs and 32,122
unique medical conditions. The characteristics of patients who had rhabdomyolysis and
pancreatitis are shown in Table 3.3. There were more men than women, and more African-
Americans than other ethnic groups developing rhabdomyolysis as expected because baseline
CK levels are higher in men than in women, and higher in African-Americans than in the other
groups (Neal, Ferdinand et al. 2009). There were almost equal numbers of men and women, and
no ethnic predisposition for pancreatitis. There is no evidence that ethnicity or age affect the

chance of developing pancreatitis (Santhi Swaroop Vege).

Table 3.3 Demography of patient population

Variable Unique Patients | Rhabdomyolysis | Pancreatitis
N 264,155 3,670 6,294
Mean Age

50.9(+£23.9) 57.6(£21.8) 57.9(+22)
(£SD)
Sex (Male) 42.5% 68.2% 50.3%
Race (% of group)
White 27.7% 26.1% 26.2%
Hispanic 30% 22.4% 29.4%
Black 14% 23.8% 19.3%
Asian 2% 2.2% 2%
Other/Undocumented | 26.3% 25.5% 23.1%

39



3.3.2 Reference Standard

Table 3.4 shows statistics and examples of the reference standard.

Table 3.4 The statistics and examples of reference standard

Rhabdomyolysis Pancreatitis

Total # of drugs 618 436

Examples acetaminophen, simvastatin, amiodarone, omeprazole,
candesartan, iotrolan meloxicam, zidovudine

3.3.3 Statistics of detected drug-safety signals

True positive signals signify that the signals are in the reference whereas false positive signals
signify that those signals are not. Precision is measured as the ratio of true positive signals
divided by the sum of true positive and false positive signals. Table 3.5 shows precision for the
five methods. Among them, the proposed method performed significantly better than the other
four methods for rhabdomyolysis, with a precision of 83.3% compared to 72.7% for PSM, 50%
for RF, 58% for knowledge-based method and 38.7% for crude marginal association. For
pancreatitis, the proposed method demonstrated similar precision compared with the PSM, as
depicted by a precision of 60.8% and 66.2% respectively. The performance of the RF method
was comparable to the knowledge-based method, and was worse than the PSM and the proposed
methods. The knowledge-based method was significantly better than the baseline method,
demonstrating that medical knowledge is effective in identifying confounders, but not as
effective as the PSM and proposed models. The number of signals retrieved by each of the five

methods is shown in Table 3.6. It is also apparent that the PSM had higher recall than the
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proposed methods in terms of more signals detected. The upper bound of the recall for PSM and
the proposed model were 0.15 and 0.02 for rhabdomyolysis respectively, and were 0.21 and 0.07

for pancreatitis correspondingly.

Table 3.5 The precision of five methods

ADR Crude Knowledge- RF method Propensity Proposed
marginal based method (only considers score method method
association conditions for (only considers | (considers
(does not deal developing conditions for conditions both
with ADR) prescribing to prescribe
confounder) medications) medications

and develop
ADR)

Rhabdomyolysis | 38.7% 58.0% 50.0% 72.7% 83.3%
[33.5%,43.7%)] | [48.3%,67.7%] | [10.0%,90.0%] [65.0%,80.4%] | [62.2%,100%]

Pancreatitis 27.7% 32.8% 42.9% 66.2% 60.8% *
[24.3%,31.1%] | [28.5%,37.2%] | [6.2%,79.5%)] [58.4%,74.0%] | [47.4%,74.2%)]

The number in the brackets is the confidence interval (CI) for the precision (p)

Cl=p+196+* ’p * I_Tp , 1 is the number of signals retrieved by a method

* This precision can be improved to 70.5% [57.0%, 83.9%] by removing medications treating symptoms of

pancreatitis
Table 3.6 The number of signals retrieved by five methods

ADR Crude Knowle | RF Propensity score Proposed method
marginal dge- method method (considers conditions
association based (only considers | (only considers both to prescribe
(does not deal method conditions for conditions for medications and
with developing prescribing develop ADR)
confounders) ADR) medications)

Rhabdomyolysis 364 100 6 128 12

Pancreatitis 666 437 7 142 51

Table 3.7 lists the true and false positive signals obtained by the proposed method for
rhabdomyolysis and pancreatitis. The false positive signals could be classified as due to 1) co-
medication confounding, 2) indication confounding, 3) comorbidity confounding, and 4) possible

true signals not in the reference standard.
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Table 3.7 ADR signals detected by the regression-based method and compared with reference standard

Rhabdomyolysis Pancreatitis
TP | established | gemfibrozil, olanzapine, aluminum hydroxide, calcitriol, didanosine, furosemide, pentamidine,
atorvastatin propofol, sulfamethoxazole, trimethoprim, lisinopril, stavudine, folate,
lansoprazole, lamivudine, caspofungin, omeprazole, nelfinavir mesylate,
imatinib mesylate
plausible aspirin, lorazepam, lisinopril, ergocalciferol, famotidine, fluconazole, gemfibrozil, nadolol, prednisone,
sulfamethoxazole, zidovudine, sodium chloride, ondansetron, pantoprazole, mycophenolate mofetil,
sirolimus, labetalol levofloxacin, atorvastatin, rabeprazole, esomeprazole,
1 calcium acetate, NA
mycophenolate mofetil
Fp 2 NA clonidine, fentanyl, meperidine, metoclopramide, norepinephrine, nystatin,
simethicone, vancomycin, sodium acetate, calcium acetate
3 NA insulin, nph insulin, ursodeoxycholate, ursodiol, midazolam, lorazepam
4 NA levodopa, sildenafil citrate, lepirudin, sevelamer carbonate

TP: true positive; FP: false positive; False positive signals are likely due to confounding by 1 co-medication; 2 indication; 3 co-
morbidity, and 4 possible true signals not in the reference standard. NA: not applicable
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3.4 Discussion

Our results demonstrate that the proposed method is effective for dealing with confounders from

EHR reports, and either outperforms or has similar performance as the four other comparators.

3.4.1 Qualitative Analysis of Results

3.4.1.1 False positive signals

Only two false positive signals were obtained for rhabdomyolysis likely due to confounding by
co-medication. For example, calcium acetate treats patients who have transplants or end stage
renal disease, and consequently are on multiple drug regimens, such as prednisone and
tacrolimus, both of which are known to cause rhabdomyolysis. Our method currently does not
handle confounding by co-medication, but will address it in future work.

Among the false positive signals for pancreatitis, six were likely due to confounding by co-
morbidity. For example, ursodeoxycholate and ursodiol are used to treat gallstones, common
bile duct calculi, and biliary cirrhosis, which are risk factors for pancreatitis. After controlling for
these confounders, the association still existed between pancreatitis and those two medications.
This could be due to inherent limitations of EHR documentation, NLP errors produced during
data preparation, or using incorrect time sequences in patients with only a single visit.

The other 10 false positive signals, such as fentanyl, were likely due to confounding by
indication. According to our criteria, these drugs should have been excluded as the exposures
occurred after the ALS. However, for some cases the first measurement for amylase/lipase

occurred after the drugs were ordered, which mainly happened because treatment for pancreatitis
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was started based on early symptoms before the ALS was obtained, or because of the data

characteristics, which is explained below. Such false positives are categorized in Table 3.8.

Sevelamer carbonate, lepirudin, sildenafil citrate and levodopa are four candidates for which

physicians could not find confounding or other reasons to relate with pancreatitis.  Further

investigation of these drugs will be performed in future work.

In this study, we compared results to a reference standard but did not look at individual cases to

determine what the actual causes of the ADR were for the individual patients, therefore some

true positive signals may be false when applied to patients.

Table 3.8 Error analysis for false positive signals associated with pancreatitis

Possible relationship with pancreatitis Medication

Treatment for comorbidity of pancreatitis

1. Treatment for gallstones that can cause pancreatitis ursodiol,
ursodeoxycholate

2. Treatment for stopping alcoholic abuse that can cause pancreatitis lorazepam,
midazolam

3. Treatment for hypertriglyceridemia that can cause acute pancreatitis
or pancreatic problem induced diabetes mellitus

insulin, nph insulin

Treatment for symptoms of pancreatitis or pancreatitis-induced
problems

4. Treatment for pain associated with pancreatitis

fentanyl, meperidine

5. Treatment for pancreatitis-induced vasodilatory shock

norepinephrine

6. Treatment for pancreatitis-induced infections

nystatin, vancomycin

7. Treatment to reduce pancreatic juice secretion. It could be also used
to treat a stress situation in pancreatitis with high catecholamine levels.

clonidine

8. Regulation of sodium and calcium disorders associated to pancreatitis

sodium acetate,
calcium acetate

9. Used as an antiemetic in patients with pancreatitis.

metoclopramide

10. Reduction of bloating in patients with pancreatitis.

simethicone
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3.4.1.2 False negative signals
False negative signals signify that the signals were not detected by the method but are in the
reference standard. There were two reasons for false negative signals: insufficient data and over-

adjusting.

Having a large enough set of patients is critical for detecting ADRs, especially rare cases
(Makuch 2006). For example, in order to detect chloroquine-induced rhabdomyolysis (incidence
rate between 3% and 5%), at least 100 patients must take this medication (Tisdale and Douglas
2010). However, in our data set, there were only 37 patients on chloroquine. An insufficient

number of patients for certain medications seemed to be the primary reason for false negatives.

False negative signals also occurred due to over-adjusting, where the proposed method selected
more confounders than it should have. For example, amlodipine, which causes pancreatitis
between 1% and 4% of the time, was prescribed to 28,832 unique patients in our data, but the
proposed method did not detect this since it adjusted for several superfluous confounders such as
cytomegalovirus infection. In the future we will explore considering conditions based on smaller

p-values to address this problem.

3.4.2 The characteristic of the data set and the inherent nature of the two ADRs

The results showed that the proposed method obtained better precision for rhabdomyolysis than
for pancreatitis, which is due both to the characteristic of the data and to the nature of the ADRs.
About 42% of the data set we used consists of patients with only a single visit. In such a case,
when the ALS is reported, the corresponding clinical note frequently mentions the ADR, which

is a diagnosis based on the ALS. In that sense the ALS and ADR are synonymous, and the ADR
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is not a confounding condition. For example, a patient with an elevated CK test is likely to have
rhabdomyolysis mentioned in their note. Therefore, we eliminated use of the conditions
rhabdomyolysis and pancreatitis respectively when they occurred in the note associated with the
same hospitalization as the ALS. The strategy worked well for rhabdomyolysis but not for
pancreatitis because rhabdomyolysis is typically an acute event. In contrast, pancreatitis could
also be chronic, and chronic pancreatitis may lead to an ALS, or a predisposition for acute
episodes. Therefore, removing mentions of pancreatitis reduced our method’s ability to detect it
as a confounder, leading to reduction in precision for detecting the ADR pancreatitis. If the EHR
included more instances of multiple visits, we should have been able to differentiate chronic
from acute conditions. We subsequently explored the false positive medication signals by
allowing pancreatitis to be a confounder if it met the criteria of confounding for category 2 and 3
of Table 3.5, and eight false positive signals were removed which are displayed in Table 3.9,
improving the precision of the proposed method from 60.8% to 70.5% [57.0%, 83.9%].
Although we were aware of the problem caused by single visits, we included them in the data set
because it was critical to obtain as many medication events as possible. Another difference
between the two ADRs is that confounding by indication does not occur for rhabdomyolysis
because medications are not used to treat it, but confounding by indication must be handled for
pancreatitis since medications are used to treat it.

Table 3.9 The eliminated drug safety signals after the post hoc analysis for the pancreatitis

The category of false positive signals | Medications

2 clonidine, meperidine, metoclopramide,
nystatin, simethicone, vancomycin

3 nph insulin, lorazepam
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3.4.3 Comparison of methods

Apart from performance, the proposed method has the advantage of generalizability over the
knowledge-based method. Generalizability is important because different facilities may have
different populations. For example, Ramirez et al/ identified burn as a major cause for
rhabdomyolysis in their population;(Ramirez, Carcas et al. 2009) in contrast, Haerian et a/ found
that myocardial infarction was a major cause for elevated Creatine Kinase (CK, the laboratory
test for rhabdomyolysis) in their population (Haerian, Varn et al. 2012). Developing knowledge
specific to each population requires that expertise and manual review of patient charts to select
risk factors, which is costly. In comparison, the proposed method automatically identifies and
adjusts for confounders. In addition, the proposed method determines confounders in a data-
driven fashion, which allows for finding proxy variables for the confounders, whereas the
confounders must be predetermined when using knowledge. For example, in the association
between aspirin and rhabdomyolysis, our method correctly identified ST-elevation myocardial
infarction (STEMI) as a confounder (myocardial infarction also causes elevated CK), but also
identified chest pain and increased sweating as confounders, which are common symptoms of
myocardial infarction (MI). Our method was capable of adjusting for the confounding effect of
MI using these proxy variables. Similarly, our method listed agitation and confusion as
confounders of the association between lorazepam, which is used to treat cocaine abuse, and
rhabdomyolysis. Cocaine abusers usually present with agitation and confusion, and are also
associated with elevated CK (Warrian, Halikas et al. 1992).

The proposed method has two advantages over the PSM. First, it has the power to detect drug
safety signals when it mixes with the effect of comorbidity on the ADR outcome. For example,

sevelamer is uniquely prescribed to patients on dialysis, which predisposes them to pancreatitis.
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The PSM eliminates the effect of sevelamer on pancreatitis due to the effect of a variety of
kidney problems, while the proposed method adjusts for the appropriate confounders including
kidney failure, but retains the effect of sevelamer on pancreatitis. Another advantage is the
informative clinical knowledge displayed by the confounders identified by the model. For each
medication-ADR pair, the proposed method generates a set of confounders, which describes the
effect or non-effect of a medication when taking several conditions into account. These
conditions provide informative clinical knowledge useful for further analysis of the data. For
example, chronic pancreatitis should have been a qualified confounder, but was missing from the
pancreatitis model, as explained above. Therefore, we could re-analyze by including pancreatitis
in the model. In contrast, the PSM is a black box and is not capable of providing insight
concerning confounders. PSM has higher recall while lower precision than the proposed method.
In terms of identifying true positive signals in the upper bound level, PSM identifies 83 and 63
more signals than the proposed method for thabdomyolysis and pancreatitis respectively. Higher
recall is important for some ADR tasks, such as early ADR detection, but higher precision is

important for others, such as re-ranking potential signals.

3.4.4 Use of EHR narratives

There are several advantages to using EHR narratives for detecting ADR signals. It is possible to
obtain more comprehensive and finer grained medical information than the International
Classification of Disease, Version 9 (ICD-9) codes assigned for billing purposes (Trifiro,
Fourrier-Reglat et al. 2009, Ryan, Madigan et al. 2012). Based on our data, patients had about
46 medical conditions on average per year based on their notes, while they only had about 9

ICD-9 codes on average per year. Moreover, had an ICD-9 code, such as cardiac valve fibrosis.
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3.4.5 Limitations

One limitation of this study concerns time intervals relevant to ADR detection. Currently, the
method retrieved all medications prior to an ADR without considering time windows. For
instance, a patient who took a drug in 2004 may have discontinued it in the same year, and may
have developed an ADR in 2010. Our method counted this patient in the case group but that
time interval may be inappropriate. However, note that one general time window cannot be used
for detecting all ADRs as previous studies have shown that the window between first drug
exposure and the incidence of drug-induced pancreatitis can range between 1 and 1,000 days
depending on the drug (Badalov, Baradarian et al. 2007). Also, we confronted the challenge of
inadequate documentation or of an incomplete record of patients’ health events.

Second, our method did not deal well with other confounding issues, such as protopathic bias,
particularly when patients had only a single visit. Protopathic bias occurs when a drug is
prescribed for an early manifestation of a disease that has not yet been diagnosed. We plan on
collaborating with researchers at other facilities to collect more longitudinal EHR data, which
will allow us to obtain more time information.

Third, we used abnormal lab results as surrogates for determining rhabdomyolysis and
pancreatitis, which is common in pharmacovigilance, but an abnormal CK could be due to
strenuous exercise and not to rhabdomyolysis, and an increased amylase could be due to an

inflamed parotid gland, and not to pancreatitis.

3.5 Summary

We proposed a novel data-driven method to control for the problem of confounding when using

comprehensive EHR data, and demonstrated that the method achieved either a higher or similar
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precision in detecting signals for two serious ADRs rhabdomyolysis and pancreatitis when
compared to the four other methods while providing insight into confounders for each specific
medication-ADR pair. This method is likely to perform better with a larger patient population
with more longitudinal data, can be generalized to detect other ADRs while taking into account

either an acute or chronic status, and can be easily adapted to other EHR systems.
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CHAPTER 4 A Study of the Effect of Data Characteristics on Adverse Drug Reaction

Detection Algorithms in Pharmacovigilance

4.1 Introduction

In the United States, the Food and Drug Administration (FDA) maintains the Adverse Event
Reporting System (FAERS), consisting of suspected ADR case reports. Among drugs
mentioned in a case report, only one is assigned as primary suspected drug and others are
assigned as secondary suspected, interactive, or concomitant drugs. Some case reports also
provide indications for primary suspected medication and patient demographics. Indications and
ADRs are coded using the Medical Dictionary for Regulatory Activities (MedDRA)
terminology. For example, the MedDRA term diabetes mellitus is encoded as an ADR for the
medication diazoxide and as an indication for the medication sitagliptin.

Automated methodology has become a standard tool to discover ADR signals from a collection
of case reports (Hauben, Madigan et al. 2005, Harpaz, DuMouchel et al. 2012).
Disproportionality analysis (DPA) is the main algorithm to detect ADRs, and quantifies the
interestingness of each drug ADR pair in the data (van Puijenbroek, Bate et al. 2002, Zorych,
Madigan et al. 2013). The most widely cited measurements include relative reporting ratio
(RRR), reporting odds ratio (ROR), the geometric mean of empirical Bayes posterior distribution
of the “true” RRR (EBGM) produced by Multi-item Gamma Poisson Shrinker (MGPS) and
information component (IC) produced by Bayesian confidence propagation neural network
(BCPNN). However, the above methods usually include drugs listed as primarily suspected of

having caused an ADR without considering concomitant drugs (Caster, Norén et al. 2010,
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Tatonetti, Patrick et al. 2012). This situation may vary and include concomitant medications in
addition to primary suspected medications for the disproportionality analysis. Drugs usually
listed as primary suspects may be reported more often for well-known ADRs. Additionally, these
measures do not consider the impact of other variables, which may adversely affect signal
detection. For example, indirect associations between a drug and an ADR may result when a
drug is frequently co-reported with another drug that causes the ADR. For example, darunavir,
which is not known to cause acute renal failure (ARF), is frequently co-prescribed with tenofovir
disoproxil, which does cause ARF. An indirect association may also occur when a drug, such as
acarbose, treats a condition leading to an increased risk for developing the ADR. For example,
acarbose treats diabetes, which predisposes patients to developing ARF. These situations are
known as confounding effects of variables not accounted for in the analysis. Therefore, a method
that can adjust or control for confounding provided by co-medications and indications should be
valuable for ADR detection.

An adjustment by stratification to mitigate confounding effects was first proposed for pairwise
associations, which adjusts for age, gender and reporting trend, in case that a particular drug may
have different effects among patients with different ages (DuMouchel 1999). Nonetheless, this
is not feasible for moderate to large numbers of potential confounders and is only appropriate in
the absence of effect modification, which occurs when the effect of two variables are dependent
(DuMouchel 1999). Shrinkage regression, such as Bayesian logistic regression and LI
regularization, has been proposed to deal with a large number of potential confounders such as
confounding by co-reported medicines, and been demonstrated its success (Caster 2007, Caster,
Norén et al. 2010). Another method, named propensity scores (PS), uses co-medications and

indications to estimate each patient’s probability for the exposure of medication, and then
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matches against the case control group based on these scores to mitigate the confounding effect.
Tatonetti et al. used the PS method to detect drug-drug interactions in FAERS data, and
demonstrated that the method mitigated the confounding effect by showing that the distribution
of propensity score for prescribing a medication were balanced across different age and gender
groups (Tatonetti, Patrick et al. 2012). Unlike other methods, this PS method considered not only
primary suspected medications but also concomitant medications and indications.

Currently, there is no such a study systematically examining the accurateness of primary
suspected information delivered by reporters, and evaluating the effect on the ADR detection
when considering primary suspected information only or overall information.

This paper proposed a method of two-step LASSO regression to leverages primary suspected
medications with concomitant medications and indications. We studied the above two questions
by applying the proposed method and three other methods, which are frequency-based method,
ROR and GPS, to two data sets: one is on the basis of primary suspected medications
(indications for the proposed method), and the other is on the basis of primary suspected,
secondary suspected and concomitant medications (indications for the proposed method).

A reference standard was introduced as a benchmark against which four methods can be
measured and consequently the studied questions can be answered. The reference standard is
consisted of four ADRs: acute renal failure (ARF), acute liver injury (ALI), acute myocardial
infarction (AMI) and gastrointestinal bleeding (GI bleeding), and provided by Observational
Medical Outcomes Partnership (OMOP) group (Stang, Ryan et al. 2010)(Stang, Ryan et al.
2010)(Stang, Ryan et al. 2010). The area under the receiver operating characteristic (ROC) curve
(AUC) are the evaluation metric in this study, which are frequently used to evaluate accuracy of

a statistical model (Manning, Raghavan et al. 2008), (DeLong, DeLong et al. 1988).

53



4.2 Method

4.2.1 Study Setting

This study used the publicly available FAERS database from 2004 to 2010. Drugs are entered
into a report using free text, which can be brand or generic names, while suspected ADRs are
coded using MedDRA terms. In order to gain statistical power, we normalize drug names to
their chemical compounds using the STITCH database, which maintains synonym lists for
chemicals, and relationships between drugs and their chemical compounds (Kuhn, von Mering et
al. 2008). For example, quinapril hydrochloride and Hemokvin are mapped to the main
ingredient quinapril.

Two data sets were created to study the effect of primary suspected information on ADR
detection. The first data set was consisted of primary suspected medications and their
indications, and the second data set comprised the secondary suspected and concomitant
medications in addition to those had been included in data set 1. The confounding information is
represented by indications in data set 1 and signified by all medications and indications in data

set 2.

4.2.1 Methodology Framework

The proposed method was based on a previously published work conducted by our group which
included identifying confounders for specific medications using marginal odds ratios (ORs) and
estimating the drug-ADR associations using a least absolute shrinkage and selection operator
(LASSO) type regularization (Li, Salmasian et al. 2013). Results showed that the method
outperformed the high-dimensional propensity score method, but the resulting false positive rates

still exceeded the nominal level (Li, Salmasian et al. 2013). Therefore we revised the method in
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two aspects: (1) in the previously work, we only considered the potential confounders that were
significantly and positively associated with both the ADR and the medication. We now expanded
this list to include medical conditions that were significantly associated with the ADR and
medication in either a positive or negative direction. The rationale is that negatively associated
conditions could also bias the strength of association. (2) Standard LASSO implicitly assumes a
sparse structure in the covariates, and hence tends to select insufficient confounders in high-
dimensional regression, which in turn leads to inflated false positive rate. We adopted a two step
LASSOs (Belloni, Chernozhukov et al. 2013) for a better control of the false positive rate. In the
first step, shown in formula 4.1, standard LASSO is applied to select a set of potential
confounders associated with the ADR, denoted by S;; In the second step, shown in formula 4.2,
LASSO type regression is used again to select medical conditions that are highly associated with
the drug use, and denote them as S,. In both steps, we used 5-fold cross-validation to select
LASSO penalties. Finally, we estimate the conditional association between the ADR and drug
adjusting for all the confounders in (S; U S,). We then use one-sided p-values of the adjusted
log odds ratios (log ORs) in the last step as the signal scores, shown in formula 4.3.

Equation 4.1 The first step of two-step LASSOs
logit(prob(ADR = 1)) = a® + pWRx + Z yl.(l)Ci
ieM
Equation 4.2 The second step of two-step LASSOs

E[wRx] = a® + Z wyi(z)Ci where
ieM

w = \/prob(ADR = 1|Rx, C;) * (1 — prob(ADR = 1|Rx,(C;)) and i € S,

Equation 4.3 The logistic regression model when controlling for all confounders
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logit(prob(ADR = 1)) = a® + P Rx + Z v,

4.2.2 Comparators

We used three different methods to compare with the proposed method. The first method, called
FREQUENCY, is measured by the number of reports associated with a particular drug-ADR pair
and then normalized by the total number of reports corresponding to the same ADR. A higher
frequency for a particular drug-ADR pair represents more interestingness. The second is the
lower limits of 95% Empirical Bayes Geometric Mean of RRR, called EBO5 and the third is the
lower 2.5™ percentage of ROR distribution, called ROR05 Both the ROR05 and EB05 are DPA
methods only using primary suspected information, however, EB0O5 takes sampling variance into
account. RORO05 also represents unadjusted association - not controlling for confounders — of the
proposed method.

By comparing performances of different combinations of methods and data sets, we can study
the accuracy of primary suspected information described by reporters in terms of whether they

are confounded by indications and other medications besides the primary suspected one.
4.2.3 Evaluation Metrics

We use ROC and AUC to evaluate performance. An ROC is a graphical plot which illustrates
performance of a scoring system as its discrimination threshold is varied (Fawcett 2006). To
further compare different scoring systems we reduce ROC performance to a single scalar value
representing expected performance by calculating the AUC (Huang and Ling 2005). Both
metrics require ranking drug safety signals based on a specific association measurement.

Therefore, we generate ranked signals for all the methods for evaluation. We also test the two
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sided p-value for the hypothesis of no difference between two AUCs using DelLong’s non-
parametric approach for correlated ROCs (DeLong, DeLong et al. 1988). In order to make
impartial comparison, the score of 0 is assigned to each drug-ADR pair in cases where there are
no reports of explicitly corresponding to a specific drug ADR pair. However, if a drug ADR pair

has never occurred together in the data set 2, it will be removed from the evaluation.

4.3 Results

4.3.1 Data characteristics

In total, the accumulated data set from 2004 to 2010 in FAERS had 2,720,634 case reports. The
reference standard includes 365 test cases whereas the drug and the ADR are mentioned together
at least once. Table 1 shows the number of test cases for each ADR.

Table 4.1 Number of test cases in the reference standard for each ADR

ADR Positives Negatives
ARF 23 52
ALI 77 33
AMI 34 59
GIB 24 63

4.3.2 AUC:s for different methods and data sets
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Table 4.2 AUCs for each combination of ADR, methods and data sets

ADR Method PS Full
AKI FREQUENCY 78.68 71.49
GPS 82.36 79.18
RORO5 82.53 79.93
AdjustedOR05 81.52* 84.03
ALI FREQUENCY 88.63 80.20
GPS 86.58 75.48
RORO5 83.00 74.10
AdjustedOR05 83.16* 83.00
AMI FREQUENCY 62.74 55.41
GPS 64.46 64.26
RORO05 64.31 65.35
AdjustedORO5 62.51%* 67.65
Gl FREQUENCY 82.34 73.74
GPS 85.58 80.42
RORO5 87.96 80.75
AdjustedORO5 85.62* 80.75

PS: data consisted of primary suspected medications (indications is used only for AdjustedORO0S5)

Full: data consisted of primary suspected, secondary suspected and concomitant medications (indications is used
only for AdjustedORO05)

* AdjustedOROS regards indications as potential confounders
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Figure 4.1 AUCs of each method based on two different data sets for each ADR
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4.4 Discussion

4.4.1 Quality of primary suspected medication information

Using only primary suspected medications leads to higher AUC performance but it is not
significant than using overall medication information except for AdjustedOR05. FREQUENCY
achieves fairly good performance compared with other statistical methods, which signifies that
reporters are generally accurate when linking the ADR to its causative medication. RORO0S5
accomplishes better AUC than adjustedOROS indicating that confounding by indication is less of
a problem in data set 1. However, the criteria for constructing the reference standard, such as no
statistical evidence — EBO5 > 2 (similar to ROR05 when sample size was big) — in FAERS for a
negative test case, were correlated with tested methods and therefore could bias the results.

The performance for lower 2.5 percentile of relative reporting ratio (RRROS5) is almost identical
to RORO05. EBO5 is the Bayesian version of RRRO5 and has the similar performance with
ROROS5 expressing that the issue of small sampling variance is not substantial in this study.

All methods are more effective in identifying the other ADRs than AMI. No single method

performed consistently better than the other methods for the 4 ADRs based on two data sets.

4.4.2 Advantages of the proposed method

AdjustedOROS5 attains higher performance than ROR05 when applied to data set 2, which
possibly demonstrates the existence of confounding by co-medication but it could also signify
that the reference standard is less interrelated with ROROS.

AdjustedOROS5 is the best method among overall methods when using the full data set. In

addition, it achieves comparable performance with the cutting edge method EBOS5 on the basis of
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primary suspected medications. This is encouraging since AdjustedORO05 carries more
information since quite a few drug ADR pairs (128 pairs) were tied to each other at 0 using

information of primary suspected medication without sacrificing AUC performance.

4.4.3 limitations

One limitation of this study is that it uses a reference standard that is not independent from data
and some statistical methods, which may predispose methods using primary suspected
information to perform better. Moreover, confounding by unmeasured covariates remains a
potential source of misinterpretation that should always be considered in the analysis of
outstanding reporting patterns. Another limitation is that case reports in FAERS often contain
inaccurate information. For example, some reports mentioned that patients took more than 20
drugs, which may be caused by errors from reporters entering the medication history instead of
the medications taken at the time of the report. Finally, we did not deal with duplicate reports,

which are known to exist in FAERS and which could falsely lead to a signal.

4.5 Conclusion

This study adapts an existing method in a novel way to leverage primary suspected medications
with concomitant medications and indications. By comparing performance with three other
methods on different data characteristics, we demonstrated that the proposed method generally
achieved comparable performance with the state of art GPS method. Methods using primary
suspected information generally outperform methods that treat medications equally. However, no

single method performed best in detecting all four ADR signals.
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CHAPTER 5 A method to combine analyses from spontaneous reporting systems and

observational healthcare data to detect adverse drug reactions

5.1 Introduction

Analysis of spontaneous reports of suspected ADRs has traditionally served as a valuable tool in
the detection of previously unknown ADRs in post-market surveillance(Bate and Evans 2009,
Harpaz, DuMouchel et al. 2012). However, because of well-known limitations of spontaneous
reports, such as underreporting and biased reporting, reports (Alvarez-Requejo, Carvajal et al.
1998), electronic healthcare data, such as electronic health records (EHRs) and administrative
claims data, are starting to be used to complement the spontancous reporting system (SRS)
(Wang, Hripcsak et al. 2009, Stang, Ryan et al. 2010, Coloma, Schuemie et al. 2011, LePendu,
Iyer et al. 2013). However, observational healthcare data has its own limitations such as
confounding. Although both SRS and healthcare data represent unique challenges in their use,
some researchers believe that they complement each other along several dimensions that may
improve pharmacovigilance (Harpaz, DuMouchel et al. 2013, Patadia, Schuemie et al. 2014).
Another challenge accompanied with the richness of information for pharmacovigilance practice
occurs when these two resources provide conflicting or inconsistent information. Therefore, we
propose a methodological framework to integrate analyses generated from the FDA Adverse
Drug Event Reporting System (FAERS) and from healthcare data. Harpaz et al’s method also
combined signals from different sources but imposed the assumptions that the signals generated

from each data source be on approximately the same scale, and be log-normally distributed
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whereas our method does not impose these assumptions (Harpaz, DuMouchel et al. 2013). As
part of the methodological framework, we incorporate a method to deal with confounding effect
in NYP/CUMC EHR and the FAERS SRS. We apply the method to four clinically serious
ADRs: acute renal failure (ARF), acute liver injury (ALI), acute myocardial infarction (AMI),
and upper gastrointestinal bleeding (GIB) (Trifird, Pariente et al. 2009) with an aim of
demonstrating that signal detection performance can be improved by such an integrative strategy.
The proposed integrative method is studied using three different experiments aimed at exploring
the effect of data size and bias on the method: one where we combine FAERS with a single
small-scale EHR database NYP/CUMC, one where we combine FAERS with a large-scale
network-based EHR database GE, and one where we combine FAERS with a much larger-scale
claims database. We further evaluate the proposed system under the scenarios that the two

resources used in combining provide consistent/inconsistent information.

5.2 Methodology

5.2.1 Data Sources

5.2.1.1 FAERS

The data were extracted from FAERS from 2004 to 2010 encompassing 2.7 million reports,
which comprised case reports mainly reported from pharmaceuticals, and to a lesser extent, from
healthcare professionals and consumers . We preprocessed and mapped the free-text drug names
to their ingredient level specification using the STITCH database(Kuhn, von Mering et al. 2008).
The ADRs in FAERS were already coded using MedDRA preferred terms. In this study, we did
not utilize the explicit relationships between drugs and ADRs and considered all relationships as
co-occurrence information. Consequently, we extended data to all medications mentioned in the

case reports including primary suspected, secondary suspected and concomitant, as well as
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indications. The signals from FAERS were obtained using the confounding adjustment method,
which is presented in the Methods section of Chapter 4.

5.2.1.2 NYP/CUMC EHR

The data, consisting of 0.3 million patients, were extracted from the single-hospital EHR system
at NYP/CUMC, after institutional review board approval. The data consisted of retrospective
narrative records of inpatient and outpatient visits from 2004 to 2010, including admission notes,
discharge summaries, lab tests, structured diagnoses in the form of International Statistical
Classification of Diseases, Version 9 (ICD9) codes and structured medication lists. The majority
of the data available for this study were from an inpatient population. Narrative reports were
used to obtain the patients’ medications, and the structured ICD9 diagnosis codes were used to
detect ADR events; these codes also served as surrogates of patient characteristics for
confounding adjustment analysis. Similar as for FAERS, the signals from the EHR were
computed using the confounding adjustment method proposed in this study, which is described
in the Methods section of Chapter 4.

5.2.1.3 GE EHR

The EHR database, GE MQIC (Medical Quality Improvement Consortium), represents a
longitudinal outpatient population of 11 million patients, and captures certain events in
structured form that occur in usual care, including patient problem lists, prescription of
medications, and other clinical observations as experienced in the ambulatory care setting. The
data were analyzed systematically under OMOP using seven commonly used methods for 399
drug-ADR pairs(Ryan, Stang et al. 2013). The resulting signal scores are reported and publicly
available in OMOP. The signal scores for this database were computed using the optimal

analytic method for each outcome as follows: self-controlled case series (SCCS) method for
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ARF (analysis-ID 1949010), self-control cohort (SCC) method for ALI (analysis-ID 409002),
and information component temporal pattern discovery (ICTPD) method for AMI and GIB
(analysis-IDs 3016001 and 3034001) (Ryan, Stang et al. 2013).

5.2.1.4 Claims data

In this study, we obtained signal scores associated with the largest claims database, MarketScan
Commercial Claims and Encounters (CCAE), which contains information on approximately 46
million patients. Similar to the GE data, CCAE data were extensively analyzed in OMOP for the
same drug-ADR pairs with various methods. The signal scores we used for this database were
computed by OMOP using the SCC method for ARF, ALI and AMI (Analysis-IDs 404002,
403002 and 408013), and the SCCS method for GIB (Analysis-ID 1931010) (Ryan, Stang et al.
2013).

5.2.1.4 Reference Standard

The reference standard was developed by OMOP. It contains 165 positive and 234 negative
controls, i.e., drugs for which there is or is no evidence for corresponding ADRs. This reference
set was established by OMOP based on natural language processing (NLP) of structured product
labels, systematic search of the scientific literature, and manual validation. The reference
standard comprises 181 drugs and four clinically important ADRs: acute renal failure (ARF),
acute liver failure (ALI), acute myocardial infarction (AMI), and upper gastrointestinal bleeding
(GIB). More details about the reference standard data collection, including drug names, can be
found in a previous publication (Ryan, Schuemie et al. 2013).

Other important research conducted by OMOP resulted in establishment of varied ADR
definitions, from narrow to broad, for each ADR outcome they studied (Harpaz, DuMouchel et

al. 2013, Reich, Ryan et al. 2013). Furthermore, the mapping between ICD-9 codes and
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corresponding MedDRA codes for each ADR outcome were also made available by OMOP. We

adopted these definitions to identify ADR case groups in NYP/CUMC EHR and in FAERS.

5.2.2 Cohort identification

In this study, we used the broad definitions of ICD-9 codes established by OMOP for identifying
ADR events in NYP/CUMC HER (Reich, Ryan et al. 2013). The same definitions were also
utilized in the GE EHR and the claims database. In addition, we used the corresponding
MedDRA codes (as determined by OMOP) for FAERS to identify patients with a particular
ADR. Our aim was to ensure that the ADRs are equivalent when using the different databases.
5.2.2.1 FAERS

Case reports, which have at least one applicable ADR MedDRA code for an ADR, were
identified as a case group, whereas the rest were used as a control group. The indications and all
the medications reported in case reports were included as candidate covariates for confounding
assessment.

5.2.2.2 NYP/CUMC EHR

The four ADR case groups were identified using their equivalent ICD9 codes. For each ADR,
the control group consisted of those patients without the particular ADR. A patient may have
multiple records in an EHR and therefore may have experienced an ADR several times, and may
have been on and off a particular medication. Only the first occurrence of an ADR was
considered and candidate medications were restricted to those that were mentioned before the
ADR. If a case patient did not have any medications mentioned before the ADR, or a control
patient did not have any medication recorded before 2010, they were excluded from the analysis.

We also applied a 180-day window before the latest medication prior to the ADR to retrieve
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medications and medical conditions (ICD-9 diagnosis codes). We assumed that anything prior to
that window are unlikely to be associated with the ADR. For example, a drug taken in 2004
unlikely leads to the development of an ADR in 2010. For the control groups, we used the latest
medication record before December 31%, 2010 as the anchor, and retrospectively drew a 180-day
window to select medications and ICD-9 diagnoses. Since our patient population was dominated
by inpatients with single hospitalization, the individual studying windows in the control groups
were evenly distributed from 2004 to 2010. However, the temporality between medications and
ADRs could be inaccurate since two types of information occur in the same visit note. Only
ICD-9 codes were included as possible confounder candidates. Figure 5.1 illustrates the data
extraction windows for cases and controls.

Figure 5.1 EHR cohort identification and candidate covariates selection
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Figure 5.2 Methodological Framework

e
m OMOP Result Sets

NYP/CUMC
EHR

(GE EHR and
CCAE)

1. Obtaining confounding-adjusted ADR signal

scores
l v

l 2. Standardizing ADR signal scores using p-value calibration

L |

Standardized Standardized ADR Standardized ADR
ADR signal scores signal scores signal scores based on
based on the EHR based on FAERS GE or CCAE

3. Combining FAERS 3. Combining FAERS | 3. Combining
and the NYP/CUMC and GE EHR FAERS and CCAE
EHR

! ., l
Evaluation using Evaluation using Evaluation using
Reference Set 1 Reference Set 2 Reference Set 3

As illustrated in Figure 5.2, our methodology comprises three steps: (1) Obtaining the
confounding adjusted signal score for each drug-ADR pair from individual health data; (2)
Calibrating the signal scores based on the empirical distribution derived from a set of reference
negative controls; (3) Combining calibrated signal scores from disparate databases. In what
follows, we elaborate the technical details in each of the three steps.

5.2.3.1 Obtaining confounding-adjusted ADR signal scores

For FAERS and NYP/CUMC EHR, we generated signal scores, which are signified by one-sided
p-values, using the adjusted log odds ratios (log ORs) and their standard errors calculated by the

equations 4.1 - 4.3.
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For GE EHR and claims data, the signal scores (one-sided p-values) were generated based on the
log relative risks (log RRs) and their standard errors provided by their optimal methods.
5.2.3.2 Standardizing ADR signal scores using p-value calibration
If there is no drug-ADR association, the signal scores using one-sided p-value should be
uniformly distributed over the interval (0, 1) in theory. In reality, that is often deviated and leads
to an inflated false discovery rate. We apply the estimation algorithm to a set of negative controls
in the reference standard, and estimate the empirical distribution of resulting signal scores
following formula (5.1), where g; represents a one-sided p-value of a negative control and n
represents the number of negative controls in the reference standard. F,(x) is then used as the
null distribution to calibrate signal scores. This calibration was ADR specific by assuming that
signal scores within similar groups have their inherent ranking. For example, a negative control
for ALI was not considered in the calibration of AMI. This procedure could be considered as a
supervised training procedure with the training set consisted of negative controls in the reference
standard. Since we did not use the overall reference standard for both training data and testing
data, over-fitting is less of a problem.

Equation 5.1 P-value adjustment using empirical distribution based on negative controls of

reference standard
n
- 1
E,(x) = ;Z I{x < q;}
i=1

5.2.3.3 Combining ADR signals from two heterogeneous databases.
Let p;;denote the i ADR signal-score computed from source 1, (e.g. the NYP/CUMC EHR),
and p;, denote the signal-score for the same drug-ADR pair computed from source 2 (e.g.

FAERS). We used the formula 5.2 to combine the signal scores from the two data sources.
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Equation 5.2 The composite signal calculated based on two equally contributed signals

—2 * [log(p;1) + log(piz)]~)((24) under the null hypothesis

5.2.3.4 Generalizing the combined method
In this work, we combined the signal scores from multiple data sources with equal weights. This
approach could be generalized to weighted combination. Formula 5.3 was used to compute a
weighted combined signal, where the weights are proportional to their precision associated with
the data set so that more weight was assigned when signal scores were more precise.

Equation 5.3 The composite signal calculated based on two weightily contributed signals

-2 * [wilog(p;1) + (1 —@;) * log(piz)]~)((2df*) under the null hypothesis

wiena = (var(o?)) " ((ver(e)) "+ (vr(e)) )

5.2.4 Evaluation Design

We used the reference standard developed by OMOP as described above to generate three
reference standards for our study. For reference standard 1, we restricted the evaluation to those
drug ADR pairs for which FAERS contained at least one case report and the NYP/CUMC EHR
contained at least five patients who were exposed to the studied medications and who were later
diagnosed with the studied ADR. For reference standard 2, we restricted the evaluation to those
drug-ADR pairs for which FAERS had at least one case report and the GE EHR had results

available in the OMOP result set. For reference standard 3, we restricted the evaluation to those
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drug ADR pairs for which FAERS had at least one case report and the CCAE had results
available in the OMOP result set.

Based on reference set 1, 2 or 3, the performance of the combined system was compared against
the performance of signal scores generated by each data source independently. Performance was
measured using the area under the receiver operator characteristics (ROC) curve (AUC). To test
if the differences of AUCs based on the different combination systems were statistically
significant, we computed a one-sided p-value for the hypothesis that the difference between the
AUC of the two systems was not equal to 0. The tests were computed using a bootstrapping
method. To ensure the p-values were computed based on large enough samples of signal-scores,
and to get a single answer representing all outcomes, the significant tests were based on overall
reference sets used in each experiment.

We further studied the nature and proper use of the combined system on the basis of four
scenarios that could occur in actual pharmacovigilance practice where clinical assessors deal
with frequently in their routine work. Using the cutoff p-value of 0.05, we considered a drug-
ADR pair as a signal if its p-value is less than 0.05. Accordingly, four scenarios are: (1) a drug-
ADR pair has p-value < 0.05 in both FAERS and healthcare databases meaning a consistent
signal is exhibited in both sources, (2) a drug-ADR pair has p-value > 0.05 in both data sources
meaning the lack of this signal in either source, (3) a drug-ADR signal appears in FAERS but not
in healthcare database meaning an inconsistent signal is exhibited and (4) a drug-ADR signal
appears in healthcare database but not in FAERS also meaning an inconsistent signal is
exhibited.

We also compared the AUC before and after confounding adjustment on the basis of the FAERS

and NYP/CUMC EHR respectively. Furthermore, we identified false positive signals in
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NYP/CUMC EHR by selecting those negative controls that produced a one-sided p-value < 0.05
in the confounding adjustment analysis. We identified false negative signals in EHR by selecting
those positive controls that had a one-sided p-value > 0.05 in the confounding adjustment
analysis. In addition, we compared the AUC performance of the confounding adjustment
method with the cutting-edge method Gamma Poisson Shrinkage (GPS) that produces signal
scores signified by lower 5th percentile of the posterior observed-to-expected