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ABSTRACT
Probing circuits for spinal motor control
Timothy Aloysius Machado

Spinal circuits can generate locomotor output in the absence of sensory or descending
input, but the principles of locomotor circuit organization remain unclear. We sought
insight into these principles by considering the elaboration of locomotor circuits across
evolution. The identity of limb-innervating motor neurons was reverted to a state re-
sembling that of motor neurons that direct undulatory swimming in primitive aquatic
vertebrates, permitting assessment of the role of motor neuron identity in determining
locomotor pattern. Two-photon imaging was coupled with spike inference to measure
locomotor firing in hundreds of motor neurons in isolated mouse spinal cords. In wild
type preparations we observed sequential recruitment of motor neurons innervating
flexor muscles controlling progressively more distal joints. Strikingly, after reversion

of motor neuron identity virtually all firing patterns became distinctly flexor-like.

Our interneuron imaging experiments demonstrate a new approach for functionally
mapping the types of inputs that motor neurons might receive during locomotor
firing. These data revealed that Enl-derived inhibitory spinal interneuron activity
appears to be dominated by a flexor-like pattern across the ventrolateral extent of the
lumbar spinal cord—even in the regions surrounding flexor and extensor motor pools.
Together, these findings show that motor neuron identity directs locomotor circuit

wiring, and indicate the evolutionary primacy of flexor pattern generation.



Table of Contents

List of Figures

1 Introduction: The functional organization of pattern generating cir-

cuits

1.1 Understanding recurrent dynamics in neural circuits . . . . . . . . . .

1.2 The organization of spinal interneuron circuits . . . . . . . .. .. ..

1.3

1.2.1

1.2.2
1.2.3

Spinal circuits for processing sensory information and produc-
ing motor output . . . . . ...
The physiology of premotor interneuron networks . . . . . . .

The sufficiency of spinal networks for motor behavior . . . . .

Understanding recurrent network activity in spinal locomotor circuits

1.3.1
1.3.2
1.3.3

The molecular logic of spinal interneuron circuits . . . . . . .
Enumerating elements of locomotor circuits in the spinal cord

The modulation of intrinsic activity via sensory and descending

vii

14
15
16
21



2 Optical imaging of neuronal firing in locomotor circuits 27
2.1 Introduction . . . . . . ... 27
2.1.1 Limitations of conventional methods in understanding motor

neuron activity . . . . ..o oo 27
2.1.2 Interrogating spinal circuits with C'a®**-based imaging techniques 28
2.1.3 Difficulties in quantifying burst timing using optical imaging data 31
22 Results. . . . . . 34
2.2.1 Using high-speed two-photon microscopy to characterize motor
neuron activity . . . ... oo 34
2.2.2  Driving expression of genetically encoded C'a®*" indicator in de-
fined neuronal subtypes . . . ... ... ... ... ... ... 39
2.2.3 Quantifying features of motor neuron firing using C'a®>" imaging 42
2.2.4 Antidromic calibration to relate fluorescence to neuronal spiking 48
2.3 Discussion . . . . . .. 51
2.3.1 Necessity of large-scale calibration methods . . . . . .. . .. 51

2.3.2 New computational and genetic tools make large-scale imaging

possible . . ... 52

2.3.3 A population readout of motor pattern . . . . . ... ... .. 52

3 Analysis of large-scale optical imaging datasets 55
3.1 Introduction . . . . . . . . .. ... 55

3.1.1 Understanding firing dynamics across large neuronal ensembles 55
3.1.2 Difficulties in analyzing large-scale imaging datasets . . . . . . 59

3.1.3 New methods for measuring and analyzing population dynamics 59

3.2 Results. . . .. .. 60
3.2.1 Automated processing of large-scale imaging datasets . . . . . 60
3.2.2 Improved algorithms for spike inference . . . . . . . .. . ... 64
3.2.3 Clustered factor analysis of multi-neuronal spike data . . . . . 69

3.2.4 Robust and scalable Bayesian analysis of spatial neural data . 82

il



3.3 DiIscussion . . . . . ..o

3.3.1
3.3.2
3.3.3

88

A lack of standardization in the analysis of optical imaging data 88

Development of open source data analysis tools . . . . .. ..

Spike inference as preprocessing . . . . . . .. ...

4 Measuring the grain of intrinsic locomotor pattern

4.1

4.2

4.3

Introduction . . . . . . . ..

4.1.1

The organization of motor neurons respects the structure of the

Lmb . . .

4.1.2 Isolated mammalian spinal cord can produce patterned motor
output . . . ..o
4.1.3 Measuring the fundamental grain of motor pattern . . . . . .
Results . . . . . . . . .
4.2.1 Motor neuron firing phase at cellular resolution . . . . . . ..
4.2.2 Reproducibility and consistency in locomotor firing . . . . . .
4.2.3 Synergy group-specific locomotor firing . . . . . ... ... ..
4.2.4  Structure in synchronous firing patterns within and between
motor pools . . . . . ...
4.2.5 Positional order and the sequential activation of flexor synergy
GTOUPS « « « v v e e e e e
4.2.6 Locomotor firing intensity varies as a function of motor pool
identity . . . . . ...
Discussion . . . . . . . . .
4.3.1 Elements of in vivo locomotor pattern retained in an isolated
preparation . . . . . .. ...
4.3.2 Locomotor pattern complexity in the isolated neonatal rodent
preparation . . . ... ..o
4.3.3 Future applications of thisassay . . . . . ... ... ... ...

il

38



5 Flexor primacy in intrinsic locomotor firing 134

5.1 Introduction . . . . . . ... 134
5.1.1 The diversification of motor neuron identity across evolution . 135
5.1.2 In the absence of FoxrP1, motor neuron identity is reverted to

an ancestral state . . . . .. ..o 140
5.1.3  The recognition of motor neurons by interneurons . . . . . . . 142

52 Results . . . . . . . 144
5.2.1 Locomotor firing after reversion of motor neuron identity . . . 144
5.2.2  Loss of motor neuron identity induces flexor-like locomotor firing147
5.2.3 Motor neuron firing is precisely flexor-like in Fox P1MN4 prepa-

rations . . . . ... 151
5.3 Discussion . . . . . . .. 155
5.3.1 Relating our in vitro results to the in vivo behavior of Fox P1MNA
MICE . v v v v v e e e e e e e e e 155
5.3.2  The recognition of flexor and extensor motor neurons . . . . . 158
5.3.3 The evolutionary primacy of flexor pattern generation . . . . . 160
6 Functionally defining premotor interneuron circuits 162

6.1 Introduction . . . . . . . . ... 162
6.1.1 The functional organization of spinal interneurons is unknown 163
6.1.2 Enl-derived inhibitory interneurons are heterogeneous and spa-

tially organized . . . . . . .. ..o 168
6.1.3 Premotor interneuron activity must be measured with respect

to pool target . . . . . ..o 170
6.1.4  Controlling the firing of motor neurons with different patterns

of presynaptic input . . . .. .. ..o 173

6.2 Results. . . . . . .. 178
6.2.1 A wide-field imaging approach for quantifying locomotor pat-

tern complexity . . . . .. ..o 178

v



6.2.2 The large-scale structure of inhibitory interneuron activity . . 183
6.2.3 The structure of inhibitory interneuron activity as a function

of pool target . . . . . . . .. 191

6.3 Discussion . . . . . . ... 198
6.3.1 A lack of spatial and temporal structure in inhibitory interneu-

ron activity . . ... oo oo 198

6.3.2 Constraining new models of locomotor circuits . . . . . . . .. 198

6.3.3 The role of reciprocal inhibition in flexor-extensor alternation 201

General discussion 202
7.1 Motor pattern as a readout of computation in the nervous system . . 202
7.2 Defining the grain of intrinsic locomotor pattern . . . . . . . . .. .. 203
7.3 Future directions . . . . . . . . . ... 204

7.3.1 Simultaneous measurement of motor neurons and interneurons 204

7.3.2 New methods for the induction and manipulation of locomotor

firing . . . ... 209
7.4 Conclusions . . . . . . .. 213
Experimental procedures 215
8.1 Retrograde labeling of motor neurons . . . . . . . ... .. ... ... 215
8.2 Spinal cord isolation . . . . .. ..o 215
8.3 Ventral root recording and stimulation . . . . . ... ... ... ... 216
8.4 Two-photon microscopy . . . . . . . . . ... 217
8.5 Image segmentation and preprocessing . . . . . . ... .. ... ... 219
8.6 Spike inference . . . . . ..o 220
8.7 Validating the use of a linear model of Ca?* dynamics . . . . .. .. 224
8.8 Ventral root burst identification and phase estimation . . . . . . . .. 225
8.9 Quantification of phase estimation error . . . . . . .. ... ... .. 226
8.10 Generation of spatial maps of phase tuning . . . . . . . .. ... ... 228



8.11 Phase synchronization . .

8.12 Cycle-triggered firing rates

8.13 Analysis of motor pattern complexity . . . . . .. .. ... ... ...

Bibliography

vi



List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1

2.2

2.3
2.4
2.5
2.6

The cytoarchitectural organization of spinal circuits . . . . . . . . ..
Models of spinal locomotor circuits . . . . . . ... .. .. ... ...
An asymmetric, flexor-biased model for limb control . . . . . . . . ..
Locomotor circuits consist of four cardinal subtypes of interneurons

Summary of locomotor phenotypes after perturbations to interneurons
Perturbation to proprioceptive feedback selectively causes deficits in

certain locomotor tasks . . . . . . . ...

Optical characterization of motor neuron activity using fluorescence
MICTOSCOPY .+« « v v v e e e e e e e e e e e
Estimating the timing of neuronal firing is necessary in some experi-
mental contexts . . . ...
Experimental preparation for optical imaging of locomotor activity
Optical readout of action potential firing in motor neurons . . . . . .
Quantifying features of motor neuron firing using Ca®* imaging

Spike inference permits estimation of motor neuron firing . . . . . . .

vil

23

26

30

33
38
41
45



2.7 Antidromic calibration to relate fluorescence to neuronal spiking . . . 47
2.8 Variation in Ca?* transient decay rates between preparations . . . . . 50
2.9 Motor neuron phase tuning is organized across space . . . .. .. .. 54
3.1 The scale of neural data is growing exponentially . . . . . . .. ... 58
3.2 Data analysis workflow for large-scale spinal cord imaging data . . . . 62
3.3 Semi-automatic neuron identification and image segmentation . . .. 63
3.4 Application of the constrained deconvolution algorithm to in witro
spinal cord data . . . . . . ... 68
3.5 Finding clusters of neurons in simulated data . . . . . . ... ... .. 76
3.6 Isolated spinal cord preparation used for evaluating the mixPLDS model 80
3.7 Application of the mixPLDS model to spinal cord imaging data . . . 81
3.8 Optimal Bayesian inference of motor neuron phase tuning . . . . . . . 87
3.9 Spike inference implementation for SIMA . . . . . ... .. ... ... 91
4.1 Motor neuron pools are positioned with respect to the limb . . . . . . 95
4.2 Isolated mammalian spinal cord can produced patterned motor output 99
4.3 EMG recordings obtained during locomotion in the cat reveal temporal
sequencing in leg muscle recruitment . . . . .. ..o oL L. 101
4.4  Measuring locomotor firing from motor neuron Ca®** sensitive fluores-
CENCE .+ v v v v v e e e e e e 104
4.5 Stability of phase tuning over time . . . . . .. ... ... 106
4.6 Consistency of burst frequency across preparations . . . . .. .. .. 107
4.7 Uniformity in phase tuning across identified synergy groups . . . . . . 110
4.8 Spatial maps of motor neuron phase tuning across the LMC . . . . . 112
4.9 Correlation between signal quality and phase tuning strength . . . . . 113
4.10 Antiphase firing patterns coexist along the rostrocaudal axis . . . . . 114
4.11 Spatial organization of CTB-labeled motor neurons . . . . . .. ... 115
4.12 Assessment of synchrony in locomotor firing . . . . . ... ... ... 117

viil



4.13

4.14

4.15

4.16

5.1
5.2

5.3

5.4

5.5
5.6
5.7
5.8

5.9

5.10
5.11
5.12

6.1

Cycle-averaged firing of identified motor neurons reveals sequential re-
cruitment of flexor synergy groups . . . . . . .. ... ... 121
Mean firing rates during fictive locomotion vary as a function of pool
identity . . . . .. 125
Spatial maps of mean firing rate reveal the organization of motor neu-
ron activation intensity across space . . . . . . . . . ... 127

Basic patterns extracted from in vitro neonatal mouse locomotor firing 131

Continuity of thoracic and flexor firing in the isolated rat spinal cord 138
Hypaxial musculature shares common developmental programs with
primitive axial muscles . . . . . . ... 139

In the absence of FoxP1, motor neuron identity is reverted to a default,

HMC-like ground state . . . . . . . . .. .. ... L. 141
Sensory afferents find postsynaptic motor neuron targets using posi-

tional information . . . . . . . . ... L 143
Spatial organization of CTB-labeled Fox P12 motor neurons . . . 145
Ventral root activity in wild type and Fox P1MN2 preparations . . . 146
Uniform motor neuron phase tuning in FoxP1MN2 cords . . . . . . . 149

A minority of ForP1MN2 MN fire out of phase with the dominant
pattern . . . . . ... L 150

Divergence in cycle-averaged firing between flexor and extensor motor

NEUTONS .« .« v v v e v e e e e e e e e e 153
Prevalence of flexor-like firing in Fox P12 motor neurons . . . . . 154
Behavior of Fox P1MNA mice in vivo . . . . . . ... .. .. .. ... 157
Motor neuron recognition in wild type and Fox P1MNM2 mice . . . . . 159

Spatial distributions of interneurons that are presynaptic to different

types of motor neurons . . . . .. .. .. 166

X



6.2

6.3

6.4
6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

7.1

7.2

7.3

The firing of spinal interneurons is not organized with respect to space
at fine spatial scales . . . . . . . ... ... 167
Enl-derived inhibitory interneurons are heterogeneous and spatially
organized . . . .. ... 169
Thoracic neurons are phasically active during rhythmic limb movements172
Different patterns of presynaptic input could underlie motor neuron
firing during locomotion . . . . .. ... ..o 177
Non-negative matrix factorization reveals pool-like structure in wide-
field motor neuron imaging datasets . . . . . .. ... ... 182

Homogeneity in Enl-derived inhibitory motor neuron activity across

lumbar segments . . . . . ... Lo 187
Extensor-like activity in putative Renshaw cells . . . . . . . . . . .. 189
Extensor-dominant activity in rostral sacral segments . . . . . . . .. 190

Flexor-biased inhibitory interneuron activity surrounds flexor motor
neuron somata . . ... ... oo L e e 195
Non-negative matrix factorization reveals antiphase inhibitory interneu-
ron activity around both flexor and extensor motor neurons . . . . . 197
Flexor-like wave of interneuron activity observed during fictive scratch-

inginthecat . . . . .. .. . L 200

Photoactivatable calcium integrators permit whole-brain activity char-
acterization using histological methods . . . . . . . . . . ... .. .. 208
Methods for evoking and perturbing locomotor-like network activity:
optogenetics and patterned electrical stimulation . . . . . . . .. . .. 211
Measuring and perturbing network activity in the embryonic zebrafish

during development . . . . . .. ... L 212



ACKNOWLEDGEMENTS

This work would not have been possible without the support, guidance, and gen-

erosity of a number of mentors, colleagues, and friends.

In particular, I owe a great debt to my advisor Thomas Jessell who afforded me
the opportunity to conduct this work. Over the last few years, I have grown greatly
as a scientist and much of this I owe to his scientific rigor, advice, and constructive
feedback. I have been privileged to work with him and with the talented members of

his laboratory.

I was also fortunate to work with my co-advisor, Liam Paninski. I have inter-
acted with him at each stage of my scientific career beginning as an undergraduate
student in E.J. Chichilnisky’s lab who wanted to learn about Bayesian methods for
data analysis, through my rotation projects, and into the thesis work described here.

At each step, I have benefitted greatly from his advice, ideas, and support.

My thesis committee, Charles Zuker, Attila Losonczy, and Mark Churchland, gen-
erously gave me their time and advice. Their guidance has certainly had a positive
impact on my project and development as a scientist. I am also grateful to my exter-
nal committee member, Ron Harris-Warrick, for being willing to read my thesis and

take part in the defense.

Andrew Miri played an instrumental role in this project, from early conversations

xi



that we had while I was conducting experiments, to later collaborative work with
some of the data analysis and with interpreting experimental findings. His involve-
ment in the writing and construction of the paper certainly had a positive impact on
the final product. I learned much about how to frame a scientific story from working

with him and am grateful to have had his involvement.

Eftychios Pnevmatikakis contributed his new and improved spike inference algo-
rithms and provided advice about how to best employ them on my data. I was also
lucky to work with Lars Buesing and Kamiar Rahnama Rad, who developed and

tested their respective computational modeling frameworks on data from this thesis.

I received constant support from Barbara Han (and more recently, Erica Famo-
jure), with developing the infrastructure necessary to do my experiments, building
my experimental apparatus, and making sure I had everything I needed in order to
succeed. Susan Morton was a good neighbor in room 1024 and provided me with
helpful advice and guidance. Kathy MacArthur provided crucial organizational assis-
tance and support. Monica Mendelsohn and Nataliya Zabello helped me manage my

mouse colony and taught me about mouse husbandry. David Wu assisted me with

genotyping.

My ability to perform electrophysiological and imaging experiments is a conse-
quence of the time that a number of people invested in teaching me. In particular,
George Mentis taught me all about the isolated spinal cord preparation. He instructed
me about how to perform ventral root recordings and fills, how to properly assemble
a rig, and talked with me at length about experimental design. I am very grateful for
his advice and assistance. Prior to joining the Jessell lab, I rotated in Rafael Yuste’s
lab where I was fortunate to learn about intracellular recordings and two-photon mi-

croscopy from Darcy Peterka, Elodie Fino, Adam Packer, and Tanya Sippy.

xii



The program directors of the Neurobiology and Behavior program: Darcy Kel-
ley, Carol Mason, and Ken Miller were a source of guidance. And our departmental
administrators Alla Kerzhner and Cecil Oberbeck ensured that I continued in the

program as a paid, consistently enrolled, student.

Each member of the Jessell lab played an important role in my project at some
point and I am grateful for each of my interactions with them. In particular, Andy
Murray taught me about cloning, cell culture, and viruses. Jay Bikoff taught me
about genetics and immunohistochemistry. Turgay Akay taught me about EMG.
Eiman Azim was always a source of good feedback. Laskaro Zagoraiou introduced
me to spinal cord circuits as my mentor during my rotation in the lab. Finally, An-
drew Fink showed me how to do surgery and provided me with a great deal of advice

on how to succeed as a graduate student in the lab.

I would also like to thank my friends, in particular, Matt Lovett-Barron, Shob-
hit Singla, Thomas Reardon, Amy Norovich, Alana Mendelsohn, Patrick Kaifosh,
Mariano Gabitto, Armen Enikolopov, Martin Vignovich, and especially my girlfriend
Myra Laird. They were a constant source of feedback and support. Finally, I would

like to thank my parents for everything over the years.

xiii



Xiv



Introduction: The functional organization of

pattern generating circuits

1.1 Understanding recurrent dynamics in neural circuits

A primary computational goal of the central nervous system is to transform sensory
input into motor output. For reflexive actions, the mapping between sensory input
and behavior may appear clear and nearly deterministic. But during more complex
behaviors, the relationship between stimulus and response may not be apparent at
all. Indeed, a key feature of many neural circuits is that they are capable of persistent
sustained activity, even in the absence of any external input. Such recurrent dynam-
ics are thought to underlie some forms of short-term memory [Seung et al., 2000],
evidence integration during decision making [Mante et al., 2013, and also movement
planning [Churchland et al., 2012]. Despite the ubiquity of persistent activity in
neural networks, the network mechanisms responsible are comparatively poorly un-

derstood.

In this thesis, we will focus on elucidating the organization of a specific type of

recurrent network: the spinal interneuron circuits involved in producing patterned



motor neuron activity. Because these circuits are capable of producing stereotyped,
locomotor-like patterns of output in the absence of external drive, we can use them as
a model for understanding how neuronal ensembles can autonomously produce spe-
cific patterns of activity. To constrain this problem, we will first measure the patterns
produced by spinal interneuron networks and their manifestation across space by com-
prehensively monitoring locomotor firing across motor neurons at cellular resolution.
We will then use this approach to examine how spinal interneurons find appropriate
motor neuron targets during development in order to achieve appropriate patterns
of muscle recruitment during locomotor behavior. Finally, we will consider the logic
of interneuron circuits themselves, by directly measuring the activity of genetically

defined subsets of neurons that are rhythmically active during locomotion.

One advantage of our focus on locomotor circuits is that the activity and output of
these networks must be relatively stereotyped and predictable both to ensure smooth
movement but also to simplify the kinds of descending and sensory commands that
are necessary to modulate spinal network dynamics. This means the activity of indi-
vidual neurons is often fairly stereotyped and interpretable with respect to network
output. For this reason, a number of experimentally tractable motor systems com-
posed of small numbers of neurons have been developed. Perhaps the simplest of these
model circuits is the crab somatogastric ganglion (STG) [Marder & Bucher, 2007).
This neural circuit drives stomach muscles in the crustacean foregut to contract in a
precise sequence in order to grind food. Unlike many other recurrent networks that
contain large populations of interneurons whose activity is often not clearly related
to behavior, the motor neurons in the STG that innervate stomach muscles are also
directly connected to one another. As a result, intracellular recordings from motor
neurons provide a readout of network output, as well as of the dynamics in the re-
current network itself. Because this network consists of only approximately thirty

neurons that require no external input to function, and because the connectivity of



the entire circuit has been reconstructed using electron microscopy [Bargmann &
Marder, 2013, the precise mechanisms by which rhythmic activity can be produced

in each neuron are mostly understood.

The use of a similar strategy for untangling the origins of rhythmic activity in
mammalian neural circuits has been more problematic, in part because they are hun-
dreds of times larger, suggesting that these larger circuits have many components
serving redundant functions during simple motor behaviors. Importantly, even the
small neural circuits in the STG appear to be highly redundant and robust. In prac-
tice, this redundancy means that many experimental perturbations to the STG have
no apparent effect (owing to homeostatic network mechanisms; [Marder, 2011]), or
have identical effects (owing to redundant mechanisms for controlling network output;
[Gutierrez et al., 2013]). These lessons are likely to hold in larger circuits as well, but

have been difficult to test, largely as a consequence of technical limitations.

In the past decade, new large-scale optical imaging and recording methods have
finally made it possible to apply network analyses previously restricted to small cir-
cuits like the STG to the mammalian CNS [Ohki et al., 2005; Harvey et al., 2012].
However, these methods can only currently scale to the analysis of local regions con-
sisting of approximately 1,000 neurons—not an entire mammalian brain. As a result,
this appears to be a uniquely appropriate time for studying mammalian spinal loco-
motor networks, as these central pattern generating (CPG) circuits can also function
in isolation to produce locomotor-like activity and therefore be used as a model in
a similar manner as the STG. But more importantly, locomotor circuits appear to
consist of similar microcircuit building blocks as other parts of the CNS, like those
in the neocortex [Yuste et al., 2005], and are thus likely to teach us about the basic

principles of neural computation.



1.2 The organization of spinal interneuron circuits

1.2.1  Spinal circuits for processing sensory information and

producing motor output

In contrast with most other structures in the CNS, the spinal cord is involved in both
the processing of sensory input as well as the production of motor output (Figure
1.1A-C; [Rexed, 1952]). Cutaneous, proprioceptive, and nociceptive sensory neurons
residing in dorsal root ganglia directly send afferents onto many central neuron targets
residing in the spinal cord. Most of these sensory projections receive input from their
corresponding sensory organs in the periphery and then terminate onto interneurons
residing in the first five laminae that comprise the dorsal horn (Figure 1.1C; [Lalle-
mend & Ernfors, 2012]). In contrast, motor neurons residing in the ventral horn
(Lamina IX) most prominently receive local inputs from interneurons positioned in
the ventral spinal cord [Tripodi et al., 2011; Kjaerulff & Kiehn, 1996] and only re-
ceive monosynaptic sensory input from proprioceptive afferents that convey muscle
stretch information from muscle spindles (Figure 1.1C). Importantly, most other sen-
sory pathways and descending tracts indirectly relay their inputs to motor neurons

through the ventral spinal interneuron networks [Brownstone & Bui, 2010].

But even though some sensory and descending afferents directly contact motor
neurons, copies of those same signals are usually sent redundantly to ventral spinal
interneuron networks that relay the same information to motor neurons at longer
latencies. The presence of such feedback loops across different spatial scales is a com-
mon theme throughout the CNS [Azim et al., 2014; Swanson, 2012]. Also, different
types of feedback are biased towards different components of motor circuits. For ex-
ample, the vestibulospinal tract selectively excites extensor versus flexor motor pools
[Grillner et al., 1970]. As a consequence of this organization, it is important to think

about the production of motor pattern as a flexible process that is usually being mod-



ulated by diverse feedback signals during behavior. To better understand how these
different kinds of feedback might influence motor output, we need to understand the

intrinsic dynamics of spinal circuits in the absence of such input.

In the subsequent chapters, we will focus on elucidating the features of motor
neuron pattern produced in the absence of input from these disparate sensory sources
such that the most basic dynamical activity in ventral spinal circuits that is capable

of producing locomotor-like motor neuron firing might become more clear.



Proprioception
Mechanoreception
Nociception
Thermoception
Pruriception (itch)

- 1a afferents (muscle spindles)
--- || afferents (muscle spindles)
1b afferents (GTO)

AB-LTMR (Skin)

AS-LTMR (Skin)

C-LTMR (Skin)

A fibers (Skin)
Non-peptidergic C-fibers (Skin)
Peptidergic C-fibers (Skin)

Figure 1.1: The cytoarchitectural organization of spinal circuits

(A) The laminar organization of a lumbar segment from the cat, as proposed by
[Rexed, 1952]. (B) Red boxed region from (A) as drawn five decades earlier by
Santiago Ramén y Cajal [Cajal, 1909]. Dorsally, commissural interneurons can be
seen. Ventrally, motor neurons innervating epaxial musculature send their axons out
through ventral roots. (C) Trajectories of sensory afferent inputs onto the different
spinal laminae. Panels A and B adapted from [Rexed, 1952]. Panel C adapted from
[Lallemend & Ernfors, 2012].



1.2.2 The physiology of premotor interneuron networks

Elements of contemporary spinal network models date back to the work of Thomas
Graham Brown in the years before the First World War [Jones et al., 2011]. Brown’s
experiments in decerebrate cats revealed that even in the absence of descending in-
put from the brain, or peripheral sensory feedback from the limb, the spinal cord
was capable of producing a rhythmic alternating pattern between pairs of flexor and
extensor muscles (Figure 1.2A). In order to explain these observations, Brown de-
veloped the “half-center” model shown in Figure 1.2B. Although inhibition had only
recently been suggested as a feature of central circuits [Sherrington, 1913], his model
predicted that flexor-extensor alternation might be mediated by a mutual antagonism
between flexor and extensor subnetworks. At the time, this idea that spinal networks
could function in isolation to produce motor output was largely discounted, as sen-
sory input was thought to be necessary. Lord Adrian even argued that while Brown’s
work added to the “general store of information on the spinal reflexes...it cannot
be said to have had much influence on the progress of physiology” [Adrian, 1966;
Jones et al., 2011].

This sentiment was largely a consequence of the experimental methods available
at the time: a candidate cellular basis for these half-centers was not found for decades.
Finally in the 1940s, [Lloyd, 1943] showed that stimulation of a motor neuron evoked
monosynaptic excitation of other motor neurons that shared the same muscle target,
but also evoked inhibition in antagonist motor neurons. In the subsequent decades,
this reciprocal inhibition was found to be mediated by a set of inhibitory interneu-
rons that receive la afferent input [Hultborn, 1972, now referred to as la inhibitory
interneurons. Intracellular recordings from these putative la inhibitory interneurons
showed that they tend to fire in phase with their homonymous motor neurons—
presumably then inhibiting antagonist motor neurons during each step cycle to en-

sure that co-contraction of muscles on opposite sides of a joint does not occur (Figure



1.2C; [Pratt & Jordan, 1987]). These discoveries led to a new appreciation for Graham
Brown’s early work and to the incorporation of half-center like circuits in contempo-

rary spinal circuit models [Alstermark et al., 2010].

In the subsequent decades, a number of generalizations have been made to the
basic half-center model. For example, to expand a half-center like circuit to control
an entire limb, the unit burst generator model was proposed. This model assumes
that the hindlimb might be controlled by a collection of many half-centers: one for
each joint [Grillner, 1981]. Other work by Grillner and others has shown half-center
like circuits to mediate more than just flexor-extensor alternation. Reciprocal inhibi-
tion has been shown to underlie left-right alternation in animals ranging from lamprey

[Grillner et al., 1995] and frogs [Moult et al., 2013] to mammals [Talpalar et al., 2013].

A modern spinal network model for controlling alternation at a joint, based
around a half-center like microcircuit, can be seen in (Figure 1.2D; [McCrea &
Rybak, 2008]). A key difference versus earlier models is that there is a two-layer
network providing input to the half-center that in turn provides monosynaptic in-
put to the motor neurons. These upstream networks are themselves driven to fire
by a combination of reciprocal interactions between flexor and extensor-firing in-
terneurons and proprioceptive sensory feedback. The presence of persistent conduc-
tances and other cell-intrinsic mechanisms is also thought to play a role in driv-
ing firing in these neurons in conjunction with network activity [Zhong et al., 2007;

Brocard et al., 2013].

In contrast to the model shown, some have argued that these top level “rhythm
generating” circuits involved might be asymmetric and mostly consist of neurons fir-
ing in a single flexor-like pattern (Figure 1.3; [Pearson & Duysens, 1976; Brownstone

& Wilson, 2008; Kwan et al., 2009]). Such models do not, however, argue that such



asymmetries are present at the final half-center layer that is monosynaptic to each

motor neuron.

Independent of the architecture of the rhythm generating circuits, most contem-
porary spinal circuit models argue that there are at least two layers in the premotor
network. This conclusion has been reached as a consequence of analysis into how
motor neuron and interneuron activity changes when motor neurons skip a rhyth-
mic burst (so-called “deletions”; [Zhong et al., 2012]). Most of these deletions are
“non-resetting” meaning that the next motor burst will occur at the time expected
had it not failed on the previous cycle. Interestingly, there is an inherent asymme-
try in these deletions: if a flexor motor neuron fails to fire a burst, tonic activity in
extensor motor neurons is always seen. But if an extensor motor neuron fails to fire
a burst, flexor motor neurons continue their activity unabated. Similarly, deletions
in motor neuron activity do not affect all interneurons. Some interneurons display
missed bursts, just like the motor neurons, while others continue to fire unperturbed.
Based on this evidence, it has been suggested that spinal circuits consist of interneu-
rons that propagate a core rhythm (and thus when they miss a burst, a “resetting”
deletion is observed across the whole network), while missed bursts in downstream
pattern formation interneurons will only perturb a subset of the network and thus

cause “non-resetting” deletions.

A significant caveat in much of this work is that there is much evidence that loco-
motor circuits are very distributed and redundant [Guzulaitis et al., 2014; Kjaerulff
& Kiehn, 1996, and that cell-intrinsic mechanisms may play a dominant role in the
generation and maintenance of locomotor pattern. For instance, flexor-extensor al-
ternation can persist in the absence of all excitatory interneurons [Talpalar et al.,
2011], and rhythmic motor neuron activity that is locally coordinated will continue

even in the presence of TTX to block action potential firing [Tresch & Kiehn, 2000].
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Moreover, our knowledge of spinal interneurons is largely defined with respect to the
periphery: the la inhibitory interneuron is defined in part due to its sensory inputs,
and the Renshaw cell was located because it is inhibitory and post-synaptic to motor
neurons—and therefore the effects of its recurrent feedback onto motor neurons could
be observed when motor neurons are antidromically activated [Renshaw, 1941]. The
idea that these two microcircuits are the only ones involved in mediating inhibition
directly onto motor neurons seems unlikely. Instead, they are simply two microcir-
cuits that were amenable to observation with the recording techniques available in
past decades. The use of new methods that have different measurement biases are

likely to reveal new circuits that might have similar functions during locomotion.
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Figure 1.2 (preceding page): Models of spinal locomotor circuits

(A) Measurements of flexor and extensor nerve activity in a spinalized, deafferented
cat obtained by Thomas Graham Brown in 1911. (B) A schematic of Graham Brown’s
half-center model, published in [Brown, 1916]. (C) Illustration of a contemporary
multi-layer model for the control of a flexor-extensor pair of muscles. (D) Phase
tuning of an extensor-related (quadriceps in this case) Renshaw cell and la inhibitory
interneuron (1alN) over a normalized step cycle. The step cycle was discretized into
ten bins, the first five during flexor activation, and the second five during extensor
activation. Panels A and B are from [Jones et al., 2011]. Panel C was adapted from

[McCrea & Rybak, 2008]. Panel D was adapted from [Pratt & Jordan, 1987].



13

position

receptors

motoneurons

central l
command +
‘ swing
£ generator
‘ —
LS

= | (flexors)

—— swing

motoneurons
(extensors)

——— stance

T+

loading +——

Figure 1.3: An asymmetric, flexor-biased model for limb control

Block diagram from [Pearson & Duysens, 1976] showing a schematic circuit for con-

trolling the limb of a cat or cockroach based on a “swing generator” circuit that

produces a flexor-like pattern by integrating descending and sensory inputs. Dur-

ing stance phase, extensor motor neurons are activated by post-inhibitory rebound,

excitatory central commands, and sensory feedback.
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1.2.3 The sufficiency of spinal networks for motor behavior

The ventral spinal cord consists of a heterogeneous set of motor neurons and in-
terneurons. Impinging upon this region is a diverse array of descending and sen-
sory inputs, but despite suggestions that some of this sensory feedback might be
necessary for generating appropriate patterns of motor output in wvivo [Pearson,
2004], ventral spinal circuits alone are sufficient to produce robust locomotor-like
network activity [Dai et al., 2005; Kjaerulff & Kiehn, 1996; Cowley & Schmidt, 1997].
As we discussed above, this feature of spinal circuits was first explored in decere-
brate cat preparations that had also had sensory inputs blocked using pharmacolog-
ical agents, or physically cut [Grillner & Zangger, 1979; Grillner & Wallen, 1985;
Jones et al., 2011]. However, because it is technically difficult to obtain intracellular
recordings from interneurons in these semi-intact cat preparations and to perturb

circuit activity. As a consequence, new model systems needed to be developed.

In more recent years, the study of locomotor circuits has mostly focused on ro-
dents instead of cats [Kudo & Yamada, 1987b] owing in part to its genetic tractability
[Lanuza et al., 2004; Gosgnach et al., 2006; Crone et al., 2008; Zhang et al., 2008]. In
contrast to the decerebrate, deafferented cat preparation, rodent spinal circuits are
typically studied un wvitro by isolating the the spinal cords of neonatal rats and mice
under oxygenated artificial cerebrospinal fluid (ACSF). In this controlled setting, the
activity of motor neurons can be monitored by obtaining recordings from ventral roots
or peripheral nerves. These experiments have shown that periodic locomotor-like fir-
ing can be induced by either the application of drugs, or by electrical stimulation of
sensory or descending projections [Kiehn & Kjaerulff, 1996; Cowley & Schmidt, 1997;
Talpalar et al., 2011; Beliez et al., 2014].

The work in this thesis will rely on this isolated neonatal rodent spinal cord

preparation to study locomotor circuits. But before we can generalize any findings
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from such experiments to our understanding of motor networks in general, we must go
beyond previous work [Kiehn & Kjaerulff, 1996; Kjaerulff & Kiehn, 1996] to determine
how similar the activity of a spinal cord in a dish can actually come to recapitulating
in vivo locomotor behavior. With that information in hand, we will be able to use our
knowledge of spinal cord circuit development to better take advantage of the genetic

tractability of the in wvitro preparation.

1.3 Understanding recurrent network activity in spinal locomotor

circuits

As recurrent spinal interneuron circuits are sufficient for producing patterned loco-
motor output, and because they can be modulated by sensory inputs and descending
commands, they represent an ideal system for considering how recurrent neural net-
works generally solve computational tasks. But they are more than a model: in order
to approach the problem of how upstream circuits in the brainstem and cortex sculpt
motor output during behavior, we must first understand the types of dynamics that

these descending commands must engage with in spinal circuits themselves.

Unfortunately, spinal locomotor circuits are difficult to study for many of the
same reasons that other recurrent neural networks are difficult to decipher. Until
recently, the field of neuroscience has generally lacked the experimental and theoretical
means of functionally dissecting large, redundant, and recurrent networks. In recent
years, the development of new large-scale recording and data analytical techniques
has permitted significant advances. Our hope is that these new experimental and
analytical approaches that have become recently available will permit us to gain new

insight into longstanding questions about the neural control of movement.
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1.3.1 The molecular logic of spinal interneuron circuits

To constrain our investigation into the intrinsic activity of local spinal circuits, let
us review what is known about the development of locomotor networks, which are
predominantly located in the ventral spinal cord [Dai et al., 2005]. The identity of
different types of ventral spinal interneurons and motor neurons is specified by a
combination of environmental signals and cell-intrinsic gene expression patterns (Fig-
ure 1.4A-B; [Jessell, 2000; Dasen & Jessell, 2009; Goulding, 2009]). In particular,
a dorsoventral gradient of Sonic hedgehog (Shh) plays a key role. Shh is secreted
ventrally by the notochord and floor plate and acts by controlling the expression of
certain transcription factors in progenitor cells (Figure 1.4C; [Jessell, 2000]). This
Shh gradient induces the expression of Class I transcription factors while simultane-
ously repressing the expression of Class II transcription factors. Bone morphogenetic
proteins (BMPs) play a similar in defining transcription factor expression in dorsal

progenitor cells [Lee & Jessell, 1999].

Once distinct subsets of progenitor cells have been induced to express different
sets of these transcription factors, cross-repressive interactions between Class I and
Class II transcription factors further refine the spatial boundaries between different
progenitor domains along the dorsoventral axis. The resultant bands of progenitor
cells can then be observed to each express a distinct cohort of transcription factors.
On this basis, there are known to be six ventral progenitor domains (pV0-V3, pMN,
and the pdI6 interneurons that arise from the dorsal neural tube; shown in yellow in
Figure 1.4A). These domains in turn give rise to V0-V3 and dI6 interneurons as well

as motor neurons.

Based on immunohistochemical and anatomical studies of neurons that were lin-
eage traced from each of the ventral interneuron populations, the neurotransmitter

phenotype of each of these different domains is known, as well as the laterality of
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their axonal projection patterns [Stepien & Arber, 2008; Goulding, 2009]. Further
work studying the what is known about their functional roles during behavior will
be described in 1.3.2. These studies have provided the field with clues to begin the
process of defining the genetic identity and developmental provenance of functionally
distinct sets of interneurons that are necessary for controlling motor neuron activity

during behavior.

A different set of regulatory mechanisms drives cell type diversity along the ros-
trocaudal axis of the spinal cord (Figure 1.4B; [Dasen & Jessell, 2009]). In particular,
the genetic identity of motor neurons that innervate limb muscles (residing at brachial
and lumbar segmental levels) must be different from that of motor neurons at thoracic
levels that instead target axial musculature. These segmental-specific genetic iden-
tities are achieved through the differential expression of Hox transcription factors at
different spinal segments [Dasen et al., 2005; Dasen & Jessell, 2009]. As can be seen in
Figure 1.4D, the segmental expression of Hox genes is driven by rostrocaudal gradi-
ents of fibroblast growth factors (FGF), retinoic acid (RA), and Gdf11. Expression of
the first genes in the Hox gene cluster are induced most rostrally, while the last genes
are expressed most caudally. In a similar manner to how cross-repressive interactions
achieve spatial stratification between progenitor domain populations, similar inter-
actions between different Hox proteins enforce the development of sharp segmental

boundaries that have different Hox expression profiles.

Importantly, the action of the Hox regulatory network in defining motor neuron
identity is dependent on the presence of FoxP1, a Hox accessory factor. In mice lacking
FoxP1, limb innervating motor neurons (that together comprise the lateral motor col-
umn, or LMC) are reverted to an ancestral-like state resembling that seen innervating
the axial musculature of primitive aquatic vertebrates [Kusakabe & Kuratani, 2005;

Dasen et al., 2008]. The importance of the Hox network for defining interneuron
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identity is not currently well-understood but is also plausibly controlled by similar
mechanisms. Together the both the Shh and Hox pathways provide a system by

which the molecular identity of a spinal neuron can be defined by its position along

the dorsoventral and rostrocaudal axes.
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Figure 1.4 (preceding page): Locomotor circuits consist of four cardinal sub-
types of interneurons

(A) At embryonic day 11, there are eleven classes of postmitotic neuron in the spinal
cord: dorsal progenitors DI1-DI5 (gray), and classes DI6, VO-V3, and MN residing
ventrally (yellow). Different transcription factors expressed by each class are also
indicated. (B) At postnatal stages the ventral progenitor classes (DI6, V0-V3, and
MN) collectively give rise to locomotor circuits. In the schematized spinal cord, mo-
tor neurons (MN; yellow) innervate muscles and inhibitory Renshaw cells (RC, from
the V1 domain; green) while they receive input from sensory afferents (purple) and
inhibitory interneurons (la and RC, from the V1 domain; green). Excitatory VO
interneurons project contralaterally (blue). The position of spinal laminae are shown
as Roman numerals. (C) Along the dorsoventral axis of the spinal cord, a gradient
Sonic hedgehog (Shh) controls the expression of Class I and Class II transcription
factors to define different progenitor domains of ventral interneuron. (D) Similarly,
along the rostrocaudal axis, gradients of retinoic acid (RA) and fibroblast growth
factors (FGFs), can induce the expression of Hoz genes along the extent of the spinal
cord. Panels A and B were adapted from [Goulding, 2009]. Panels C and D are from
[Dasen & Jessell, 2009).
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1.3.2 Enumerating elements of locomotor circuits in the spinal cord

Over the last decade, a body of work has attempted to relate our knowledge of spinal
cord development to physiological data and locomotor circuit modeling studies. Much
of this work has focused on defining a functional role for each of the four cardinal
domains of spinal interneurons during locomotor firing. Based on histological and
genetic tracing studies, we know the neurotransmitter phenotype of each domain and
whether it contains only ipsilaterally projecting neurons or a mixture of ipsilateral
and contralaterally projecting neurons [Stepien & Arber, 2008]. In contrast, much
less is known about how physiological subtypes of interneuron like the 1a inhibitory
interneuron, or different layers of the pattern generating network, might relate to our
understanding of how interneurons diversify into genetically-distinct subpopulations

during development.

In many of the studies (e.g. [Lanuza et al., 2004; Gosgnach et al., 2006; Crone
et al., 2008; Zhang et al., 2008]), a popular approach was to pair methods for acute
genetic ablation with ventral root recordings obtained from isolated spinal cord prepa-
rations. For example, in [Gosgnach et al., 2006], interneurons from the Enl-derived V1
domain were acutely ablated using various genetic methods (e.g. by using Enl::Cre;
ROSA::DTA mice). These strains of mice were then characterized using an isolated
neonatal mouse spinal cord preparation induced to fire in a locomotor-like pattern by
the application of rhythmogenic drugs: NMDA, 5-HT, and/or DA. Following drug ap-
plication, suction electrode recordings obtained from multiple ventral roots revealed
rhythmic bursting activity at each lumbar segment (Figure 1.5A). As ventral roots
consist of the axons of the motor neurons present at their homonymous segment, and
because motor neurons sharing common muscle targets reside in stereotyped, spatially
coherent, positions called motor pools [Romanes, 1964], clear temporal structure can
be resolved from comparing the ventral root recordings obtained from different spinal

segments. For example, alternation can be observed between the left and the right
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side of the spinal cord preparation.

As can be seen from Figure 1.5, the genetic ablation of each cardinal domain of
interneurons appears to have had an effect on locomotor firing—causing changes to
either pattern frequency, deficits in burst robustness, or deficits in left-right alterna-
tion. These results are certainly interesting to consider, and perhaps most strikingly
in the case of the VO domain which is involved in left-right alternation, they have
also provided a map forward for future studies [Talpalar et al., 2013]. However, this
ventral root recording assay is also insufficient for more detailed studies as its readout
is far too low dimensional. Ablation experiments affected each parameter that could
be quantified from this assay: burst shape, rhythm frequency, and alternation. It
seems unreasonable to assume that all possible phenotypes can be encompassed by

one of those three features.

In the subsequent chapters, we will discuss new approaches for moving beyond this
simple ventral root recording assay. For instance, a cellular-resolution motor neuron
assay would permit us to better understand how the isolated preparation is similar
and dissimilar from in vivo rodent preparations that are less amenable to large-scale
physiological measurements. If we understood the fundamental grain of locomotor
activity, in the absence of sensory or descending inputs, we would also be afforded

much greater resolution to assess subtle perturbations to the interneuron network.



23

rL2

NNANNNN
\NANAN NS

left-right alternation deficits

IL2

S NANNNANANNI
§
@ -
<
x
NNV W w v yiy
|
Eandl ©=
—_— lanuza 2004
C locomotor cycle frequency
o\l
5= WJ\NJ
Q
| only =
gosgnach 2006
D left-right alternation, burst robustness
L
|_
SRR VANAVAVAIV AV VAP
o
x
<9 JM\J\
—
Eony ©O=
— crone 2008
E burst robustness
Ea
Z
V3 R MJ\M\/J\JM
Sim1 —
€
|
E only » =

zhang 2008

Figure 1.5: Summary of locomotor phenotypes after perturbations to in-
terneurons

(A) Filtered ventral root recordings obtained from ipsilateral ventral roots L2 and L5
showing characteristic antiphase alternation. (B-E) Filtered ventral root recording
data adapted from [Lanuza et al., 2004; Gosgnach et al., 2006; Crone et al., 2008;

Zhang et al., 2008], respectively. The scale bar in all panels denotes 5 seconds of time.
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1.3.3 The modulation of intrinsic activity via sensory and

descending inputs

Understanding how in vivo and isolated locomotor patterns differ for the sake of
building a better experimental assay for studying recurrent interneuron circuits is an
important goal in itself, but it is also significant for another reason. Upstream circuits
in the cortex and brainstem must structure their descending commands to interface
with the ongoing dynamics of spinal motor circuits in order to successfully control
movement. This is especially true in the rodent, where monosynaptic connections
from motor cortex onto motor neurons might not exist at all [Lemon & QGriffiths,
2005). Given our lack of mechanistic understanding of how even the simplest peri-
odic locomotor activities are produced by spinal circuits, we hope that the results
presented here might inform future studies in the spinal cord, and in other premotor

circuits.

While comparatively little is known about the structure of descending commands
onto the spinal cord, much work has examined the role of cutaneous and propriocep-
tive feedback onto spinal motor circuits during behavior. For example, the sequential
activation of flexor muscles during walking, and limb kinematics during swimming,
are selectively perturbed after proprioceptive muscle spindle afferents are ablated
(Figure 1.6; [Akay et al., 2014; Takeoka et al., 2014]. Similarly, severing nerves car-
rying cutaneous sensory information from the foot appears to selectively impair foot
placement during locomotor tasks—but most strikingly during walking on inclined
surfaces [Bouyer & Rossignol, 2003]. These studies illustrate how sensory feedback
can play a significant role in modulating organizing features of motor neuron recruit-

ment during locomotion.

In this context of modulation, a number of previous studies have examined the ef-

fects of different pharmocological agents and stimulation protocols on spinal network
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activity [Beliez et al., 2014; Taccola, 2011]. In [Frigon & Gossard, 2009], the authors
compared different mechanisms for inducing locomotor-like activity in a decerebrate
cat that lacked peripheral sensory feedback. When they compared the length of flexor
bursts to extensor bursts, they found that extensor bursting lasted longer than flexor
bursting across a range of gait speeds. This observation of “extensor dominance”
was seen during both spontaneous and drug-induced bouts of locomotor activity and
matches activity patterns seen in intact animals. In contrast, when locomotor ac-
tivity was induced with electrical stimulation to the mesencephalic locomotor region,
aberrant “flexor dominant” activity was seen. These results reveal an apparent asym-
metry in the default, spontaneously generated, pattern of activity in spinal networks
that can be reshaped by descending commands. Understanding more details like this
about what the default pattern of motor circuit activity looks like and how it is main-
tained will likely be critical for deciphering the logic of descending control signals in

premotor regions of the brain.

In this thesis, we will quantify the amount of variance in motor neuron firing pat-
terns that we observe across dozens of preparations and retrogradely labeled motor
neuron pools, during a drug-induced locomotor-like network state. After comparing
these activity patterns to those seen in knockout animals where the network struc-
ture has been perturbed, we will return to this idea of a “default” locomotor state to
consider what the fundamental grain of motor neuron firing might be: is it organized
at the level of single neurons, spinal segments, or muscle groups? Next, we will use
these data to examine how the interneuron networks responsible for producing differ-
ent patterns of motor neuron firing during locomotion might find their appropriate
motor neuron targets during development. This line of inquiry will lead us towards
the final chapter where we will present data suggesting how inhibitory interneurons

might be differentially recruited by functionally distinct groups of motor neurons.
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Figure 1.6: Perturbation to proprioceptive feedback selectively causes
deficits in certain locomotor tasks

(A) Kinematic and EMG data obtained from a wild type (left) and an Egr3~/~ mouse
(right) that lacks proprioceptive muscle spindle afferents during treadmill walking.
(B) Format matches (A), but data was taken during swimming behavior. Figure

adapted from [Takeoka et al., 2014].
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Optical imaging of neuronal firing in locomotor

circuits

2.1 Introduction

2.1.1 Limitations of conventional methods in understanding motor

neuron activity

The sequence of muscle activation during locomotor behavior has been studied with
various methods for more than 100 years [Sherrington, 1906; Brown, 1914]'. In partic-
ular, electromyography (EMG), peripheral nerve recordings, and intracellular record-
ing techniques have been applied to great effect in describing the principles guiding
motor neuron recruitment under muscle load [Henneman et al., 1965], the circuits
underlying different spinal reflexes [Brown, 1914; Creed et al., 1932], the sequence
of muscle activation during varied gaits [Grillner, 1981; Krouchev et al., 2006], and
that isolated spinal circuits are sufficient to drive patterned motor neuron activity

[Grillner & Zangger, 1979].

'Portions of this chapter were derived from work in [Machado et al., 2015].
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However, none of these electrical recording methods permits the detailed measure-
ment of motor neuron pattern across space [Yakovenko et al., 2002]. Since the discov-
ery that motor neurons sharing common muscle targets are spatially segregated into
defined clusters called pools [Romanes, 1964], the question of whether spinal circuits
use motor neuron position as a guide during development has remained a persistent
question [Jessell et al., 2011]. To resolve this issue, we decided to take advantage
of recent advances in optical imaging methods for measuring neural activity. Such
methods permit the direct observation of motor neuron and interneuron activation
across space, as fluorescence fluctuations related to neuronal firing can be directly

observed in neuronal somata and processes.

2.1.2 Interrogating spinal circuits with Ca?*-based imaging

techniques

Ca®* imaging has been used in neuroscience for decades. While the usage of Ca?*
sensors gained widespread popularity after the development of the first synthetic
small-molecule C'a®>* indicators [Tsien, 1988], the first reports of optical measurement
of Ca®T flux during action potential firing date nearly as far back as the discovery
of the Ca®*-activated photoprotein aequorin [Ridgway & Ashley, 1967; Shimomura
et al., 1962; Llinas et al., 1972; Shimomura, 1995]. In the years following the initial
development of this methodology, it was successfully applied towards the study of
spinal circuits [O’Donovan et al., 1993]. However, due to a reliance on widefield epi-
fluorescence microscopy, these first imaging measurements lacked cellular resolution.
As a consequence these imaging studies in isolated spinal cord preparations could not
discern whether motor neuron pools fired as discrete units or rather as participants
in a larger wave-like pattern during rhythmic network activity [Bonnot et al., 2005;

O’Donovan et al., 2008] (see Figure 2.1).

Therefore, while Ca?* imaging techniques have been applied towards the analysis
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of spinal circuits for nearly as long as synthetic Ca®* indicators have existed, only re-
cently has it become possible to resolve the activation patterns of individual neurons
at high temporal fidelity. Recent advances have emerged due to the development
and application of two-photon laser scanning microscopy (reviewed in [Svoboda &
Yasuda, 2006]). This approach has been successfully used to measure the rhythmic
activity of genetically defined subpopulations of spinal interneurons that expressed

fluorescent markers like GFP [Kwan et al., 2009; Kwan et al., 2010].

In addition, over the last six years genetically encoded C'a®" indicators (GECIs)
have improved to the point that they have surpassed synthetic Ca®* indicators in both
signal sensitivity and strength [Chen et al., 2013; Horikawa et al., 2010]. In particular,
the GCaMP family of GECIs [Nakai et al., 2001] has been improved tremendously.
The third-generation variant of GCaMP, called GCaMP3 [Tian et al., 2009], repre-
sented an important milestone in the development of GECIs because it was finally
adequate to perform many experiments. It remained insensitive to small Ca?* fluxes
associated with small bursts of spikes (less than 5 Hz), but importantly exhibited
large fluorescence transients after larger bursts of neural activity that could be de-
tected robustly even under in vivo conditions. More recently, the GCaMP6 series of
indicators was developed—enabling the optical measurement of single action poten-

tials from individual neurons [Chen et al., 2013].

In this work, we took advantage of both the high spatial resolution afforded by
two-photon microscopy as well as recent advances in the development of GECIs. This
allowed us to achieve high signal-to-noise measurements at high temporal resolution

with genetic specificity.
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Figure 2.1: Optical characterization of motor neuron activity using fluores-
cence microscopy

(A) Lateral view of lumbar segments L4-L6 in a neonatal mouse spinal cord prepa-
ration after electroporation with Calcium Green. (B) Normalized mean fluorescence
response during sustained ventral root L5 stimulation at 20 Hz. (C) Comparison of
responses to a single antidromic stimulus pulse. Mean fluorescence for electroporated
preparations was averaged across 5 preparations (green trace) and across 4 retro-
gradely labeled preparations (blue trace). Electrical responses were averaged across 7
neurons taken from 6 preparations. All means shown + s.d. (D) Ventral view of lum-
bar segments L3-L5 after retrogradely loading of motor neurons with Calcium Green
dextran via ventral roots. Colored boxes represent regions of interest (ROIs) drawn
over the lateral and median motor columns (LMC and MMC, respectively). (E) Mean
fluorescence traces taken from colored ROIs in (D). Panels (A-C) were adapted from

[Bonnot et al., 2005]. Panels (D-E) were adapted from [O’Donovan et al., 2008].



31

2.1.3 Difficulties in quantifying burst timing using optical imaging
data

Measurements of Ca**-sensitive fluorescence transients are intrinsically noisy, espe-
cially when made at cellular resolution. Furthermore, the relationship between flu-
orescence and neuronal spiking is complex. As a consequence, many of the most
successful early experimental results to arise from the use of C'a®>" imaging methods
relied on experimental paradigms where the precise timing and strength of neuronal
responses did not need to be known. For example, one of the first papers to demon-
strate in vivo Ca®* imaging presented moving grating stimuli at different orientations
to cats and mice in order to deduce the orientation selectivity of layer 2/3 neurons in
primary visual cortex ([Ohki et al., 2005], also see more recent data from [Chen et al.,
2013] demonstrating this assay in Figure 2.2A-B). Since each grating stimulus could
be displayed for ~10 s, and because most neurons in layer 2/3 were already known
to selectively respond to a subset of orientations, data analysis in this experimental
setting was straightforward: it merely required thresholding fluorescence data to de-
cide whether a neuron was active or not during a given stimulus presentation. This

approach yielded spatial maps of orientation tuning, at cellular resolution.

In contrast, more recent work where layer 2/3 neurons were imaged in posterior
parietal cortex (PPC) [Harvey et al., 2012, provides an example of an imaging context
where the timing of neuronal activity was much more important to discern. In this
work, Harvey and colleagues trained mice to choose to turn left or right in a virtual
reality environment containing a T-maze, depending on the color of the walls (i.e.
white walls denoted “turn left” and green walls denoted “turn right”). They found
that some neurons in PPC seemed to encode the choice that the mouse would choose.
Quantifying this result was simple, the raw data during a trial could be thresholded
as in the drifting grating task (note the similarity in raw data between Figure 2.2B to

Figure 2.2C). However, when they examined their trial-averaged data, they noticed a



32

subtle but robust trend: the collection of all left or right-preferring neurons spanned
the duration of the trial, with individual neurons active at distinct moments in time.
In order to more clearly understand this result, more complex state-space analyses
were necessary, and certain features of this timing result were not quantified owing
in part to a lack of knowledge of the relationship between neuronal firing and fluo-

rescence.

This second experimental example bears many similarities with our assay for mea-
suring locomotor-firing from an isolated spinal cord preparation. Because we obtained
detailed measurements of the relationship between firing and fluorescence in each ex-
periment, we were able to effectively leverage spike inference methods (described in
this chapter as well as Chapter 3). We found that the firing properties of motor neu-
rons during locomotor-firing were also well suited for characterization with optical
methods: bursts were big, the frequency of locomotor firing is slow relative to the
imaging rate (0.2 Hz bursting verses a 15 Hz imaging rate), and there is rich struc-
ture that can be extracted from the timing of motor neuron activity. Indeed, with
each subsequent improvement to the experimental preparation and methods described
here, we observed additional spatial structure in locomotor firing. This richness in

neuronal firing will be described in more detail in the subsequent chapters.
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Figure 2.2: Estimating the timing of neuronal firing is necessary in some
experimental contexts

(A) In vivo fluorescence imaging data obtained from [Chen et al., 2013] demonstrat-
ing the drifting gratings task. Data analysis only requires determining whether or not
a neuron was active or not during a given grating stimulus. (B) Example GCaMP6s
fluorescence responses from three neurons in response to eight different grating stim-
uli. (C) Example GCaMP3 data taken from three neurons imaged during a T-maze
exploration task [Harvey et al., 2012]. (D) Individual neurons were found to exhibit
activity peaks at each point during all three epochs of a trial (cue, delay, and end)—
structure that would have been missed by simply classifying neurons as responders
or non-responders. Panels A-B were adapted from [Chen et al., 2013]. Panels C-D
were adapted from [Harvey et al., 2012].
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2.2 Results

To measure the firing of motor neurons during locomotor-like network activity us-
ing optical methods, two technical concerns must be first considered. First, Ca?"
indicator (synthetic or genetic) must be selectively introduced into motor neurons.
The concentration of indicator within an individual neuron must be determined ap-
propriately. If too little indicator is present in a neuron, Ca?'-sensitive fluores-
cence transients will be too small to detect. If too much is present, then endoge-
nous Ca?T buffering properties will be perturbed and fluorescence transients will
also be undetectable—despite bright baseline fluorescence [Helmchen & Tank, 2005;
Garaschuk et al., 2006]. Second, because we are concerned with action potential firing
rather than Ca®* concentration per se, each measured Ca®*-sensitive fluorescence
transient must be quantitatively related to neuronal firing [Vogelstein et al., 2010;

Pnevmatikakis et al., 2015].

In this chapter, we describe our optical imaging setup, our means of delivering in-
dicator selectively to motor neurons, and methods for reliably relating C'a®"-sensitive
fluorescence to action potential firing in the face of indicator concentration variability
and imaging noise. Then we describe our methods for validating the relationship
between spiking and fluorescence for dozens of neurons in each experimental prepa-

ration.

2.2.1 Using high-speed two-photon microscopy to characterize

motor neuron activity

In widefield fluorescence microscopy, a large fraction of the sample below the micro-
scope objective lens is bathed in excitation light produced by a high-intensity light
source and resulting fluorescence emission is captured by a camera. Owing to the

light scattering properties of neural tissues, and the fact that excitation light cannot
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be restricted to the focal plane of the microscope, this approach lacks cellular resolu-

tion.

Instead, we must use a microscope that iteratively collects fluorescence from a
single point and focal plane at each moment in time by scanning an excitation laser
across space. There are two common types of laser scanning microscopes (LSM): con-
focal and two-photon. In confocal microscopy, the laser sequentially excites a cone of
light at a each XY position that extends far above and below the focal plane. How-
ever, because the current X,Y,Z location is known to the microscope, fluorescence
emitted from the sample can be collected through a pinhole positioned to reject emit-
ted fluorescence that did not originate from the current focal plane. Unfortunately,
this approach to light collection is highly inefficient in tissues that are ensheathed
in white matter which scatters the emitted fluorescence such that it does not pass
through the pinhole. This is the case in neonatal mouse spinal cords: even the most

superficial motor neurons are more than 100 um deep relative to the lateral surface.

An alternative approach to is to simply restrict the excitation beam to only illu-
minate a single spot in X,Y and Z. In such a scheme, a pinhole is no longer needed
to block potentially out-of-focus fluorescence, because nearly all excited fluorescence
must have originated from the location of interest (Figure 2.3A). This type of mi-
croscope requires the use of a pulsed, long-wavelength, femtosecond laser to evoke
“two-photon” fluorescence. In this setting, two photons of excitation light are needed
to excite a single fluorophore instead of one. As a consequence, fluorophore excita-
tion probability diminishes quadratically above and below the focal point, effectively
creating a spatially restricted point of excitation, instead of an elongated cone of light
that extends broadly in the Z dimension [Svoboda & Yasuda, 2006]. In addition to
spatially restricting the area of excitation at each moment in time, the use of longer

wavelengths of excitation light that are not absorbed well by molecules and proteins
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that are intrinsic to neurons themselves results in reduced photodamage and there-
fore permits imaging data to be acquired from the same neurons for longer temporal
periods. For these reasons, we found two-photon LSM to be well-suited for use in

imaging isolated spinal cord preparations.

Unfortunately, one significant disadvantage of LSM is that the laser source must be
physically scanned across the tissue of interest by moving two galvanometer mirrors,
one on each the X and Y axes. Depending on the size of the galvanometer mirrors
themselves and the area to be scanned this process of scanning a whole imaging frame
can be quite slow (~ 1 Hz). Since we want to describe the patterns of neural activity
at much faster time scales (ideally closer to 100 Hz), we solved this problem in two
ways. First, instead of scanning the X galvanometer mirror in successive lines we
jointly scanned the two mirrors in a spiral trajectory. This approach permits image
acquisition at speeds up to ~8 Hz. Another solution takes advantage of the fact that
when an imaging field is scanned one line at a time, the X galvanometer must scan
quickly across each line while the Y galvanometer only needs to slowly step after each
line on the X axis has been acquired. Therefore we replaced the X axis galvanometer
with a “resonant” galvanometer capable of scanning across each line at a single high
resonant frequency: 8 kHz. This approach allowed us to acquire 256 x 256 pixel imag-
ing frames at 60 Hz. In practice we averaged across frames in these image sequences
to improve signal-to-noise, achieving an effective frame rate of 15 Hz. Scanning at
a high frame rate and then downsampling further reduced photodamage due to the

greatly reduced dwell time at each point in space [Varga et al., 2011].

We used this resonant-scanning LSM approach to characterize isolated neonatal
mouse spinal cords (aged 2-5 days) while suction electrode recordings were simulta-
neously obtained from multiple ventral roots (Figure 2.3B). We found that scanning

each preparation in the sagittal plane was more effective than imaging from the ven-
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tral surface. Sagittal imaging obviated the need to remove ventral roots, which would
otherwise occlude the imaging path and also allowed us to simultaneously view mul-
tiple motor neuron pools that were arranged along the dorsoventral axis of the spinal
cord. Owing to the size and position of the white matter tracts surrounding the spinal
cord, pools that were too deep to image from the sagittal plane were also too deep to

see from the ventral surface.



38

940 nm
Excitation

Resonant
&M \ Scanner
< Scan Lens

<> Tube Lens

GaAsP . .
\ Dichroic

Objective

Imaging Field

Spinal Cord Preparation

Figure 2.3: Experimental preparation for optical imaging of locomotor ac-
tivity

(A) Diagram of optical layout of resonant galvanometer-equipped two-photon laser
scanning microscope used in experiments. (B) Schematic illustrating isolated neona-
tal mouse spinal cord preparation with a suction electrode positioned on ventral root

L2 and the laser scanning microscope positioned over the lateral white matter.
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2.2.2 Driving expression of genetically encoded Ca*" indicator in

defined neuronal subtypes

We next turn our attention towards the task of selecting an appropriate Ca** indi-

cator and driving its expression selectively in motor neurons.

Over the course of this project, we evaluated three approaches for selectively de-
livering indicator to motor neurons. First, we tried direct application of Calcium
Green (Calcium Green-1 dextran 10,000 MW; Life Technologies) to ventral roots via
suction electrodes (Figure 2.4A). While this approach yielded nice dye filling, it re-
quired 8-10 hours of time. This required the experimental preparation to be isolated
and held under cold artificial cerebrospinal fluid (ACSF) overnight before an imaging
experiment could be conducted, resulting in diminished preparation viability once the
experiment could actually begin. The amplitude of fluorescence transients was also
highly variable from neuron to neuron, owing to variability in dye uptake by each
axon in the ventral root. This issue, combined with the fact that each ventral root
had to be independently filled with dye if we desired to label multiple spinal segments
with indicator, made this method inappropriate for our experimental needs. Conse-
quently, we were left with two remaining options: drive the expression of GCaMP
(the best GECI family available to us, we were unable to obtain useful data through

the use of GECOs [Zhao et al., 2011]) using either a viral vector or a transgenic mouse.

We evaluated both of these options. First, we attempted to use Cre dependent
adeno-associated virus (AAV) vectors. Either via muscle injection, or by direct spinal
cord injection into the neonatal mouse, we found that this approach was ineffective
due to the > 1 week latency between initial viral infection and robust GECI expres-
sion (Figure 2.4B). Instead, we found that glyocoprotein-deficient SAD-B19 rabies
viruses expressing GCaMP variants were able to drive robust levels of expression in

just 2-3 days following muscle or spinal cord injection (collaboration with TR Rear-
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don; protocol for production based on [Osakada et al., 2011]). Unfortunately, this
approach had two significant downsides: at 4-5 days post-infection, GCaM Pt motor
neurons became non-responsive and exhibited unusual morphological characteristics,
suggesting that rabies (or high levels of GCaMP) eventually had toxic effects on the
neurons. Additionally, rabies yielded sparse labeling of neuronal tissues after spinal
injection, and only a few infected neurons per muscle injection. Consequently, in
order to drive robust indicator expression at young postnatal ages across all motor
neurons, we decided to use conditional Rosa::GCaMP3 mice generated by the Allen

Institute (line Ai38; Figure 2.4C; [Zariwala et al., 2012]).

We also tested three different types of Ca®* indicator: the synthetic indicator
Calcium Green and two GECIs: GCaMP3 and GCaMP6 (both the s and f vari-
ants). To evaluate the relationship between fluorescence and spiking for each of these
probes, three motor neurons (expressing Calcium Green, GCaMP3, and GCaMP6S,
respectively in panels D-F of Figure 2.4) were driven to fire in a sequence of dif-
ferent sized bursts (burst count indicated in numbers above each orange stimulus).
In response, clear fluorescence transients of varying magnitudes were observed (red
lines; spike inference appears as black bars; note variable scale bar size in each panel).
In the examples shown, both Calcium Green and GCaMP6S show clear fluorescence
transients to single spikes while the GCaMP3 expressing neuron only shows clear
responses above 10 Hz. In most of the experimental data in this thesis, we elected
to use GCaMP3 (since a conditional mouse was available) despite its insensitivity
to small numbers of action potentials because we were able to resolve bursting ac-
tivity during each cycle of locomotor firing in our data using this sensor. This is
consistent with published intracellular recording data obtained from motor neurons
during the same network state that shows bursting activity at high firing rates dur-
ing each burst—with nearly no activity out-of-cycle (e.g. in [Zhong et al., 2007;
Beliez et al., 2015]).
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Figure 2.4: Optical readout of action potential firing in motor neurons

(A-C) Ca®T indicator was loaded into motor neurons, either via ventral root fill of
Ca** green (A), use of conditional transgenic mice (Olig2 :: Cre; Rosa :: GCaM P3;
B), or via viral injections (AG — Rabies — GCaM P6S; C). (D-F) Action potential
firing was reflected in single-trial C'a®*-sensitive fluorescence time series data acquired
from single motor neuron somata (red traces) during antidromic stimulation of ven-
tral roots (orange bars) at different frequencies (numbers above orange bars). Inferred
action potential firing is shown below each red trace (black bars; amplitude is arbi-
trarily scaled). Note different scale bar sizes on fluorescence measurements between

panels D-F.
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2.2.3 Quantifying features of motor neuron firing using Ca**
imaging

As is shown in Figure 2.5A-D, and in [Helmchen & Tank, 2005; Vogelstein et al., 2010;
Pnevmatikakis et al., 2015], the relationship between fluorescence and the spiking of
a single neuron can be approximated by convolving a spike train (simulated data
in Figure 2.5A) with a exponentially-decaying kernel with sharp rise and slow de-
cay, where the decay time constant is related to the concentration of Ca?* indicator
(left panels of Figure 2.5B-C). Independent, Gaussian noise, can then be added at
each time step in the simulated calcium time series to generate simulated data that
approximates that measured from real motor neurons that were induced to fire in
rhythmic bursting activity (Figure 2.5E, red fluorescence time series data aligned to

a simultaneous recording from ventral root L2).

In this context it is straightforward to see that while the onset of neuronal spiking
(seen in Figure 2.5A) aligns clearly with a rise in fluorescence, neither burst peak
or burst duration (red and blue lines, respectively in Figure 2.5B-D) can be easily
inferred. There are two possible solutions to this problem. First, we could restrict
our analyses of neuronal firing to detecting burst onset and simply detect fluores-
cence rise times [Kwan et al., 2009]. Alternative, we could try to estimate the decay
rate of the C'a® indicator and try to estimate the timing of burst peaks and offsets,
either through the use of spectral methods [Kwan et al., 2010] or using spike infer-
ence algorithms to estimate the timing of neuronal spiking [Vogelstein et al., 2010;

Pnevmatikakis et al., 2015].

In this work, we chose to apply spike inference methods (as described in Chapter
3 and schematized in Figure 2.6A) to estimate the onset, offset, and duration of mo-
tor bursting from Ca?* fluorescence data. However, we worried whether our simple

model of C'a?t dynamics was adequate for describing our data. In particular, it is
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known that certain nonlinearities may exist in calmodulin-based sensors owing to the
structure of calmodulin itself [Crivici & Ikura, 1995]. Calmodulin can bind up to four
Ca*" at two high-affinity binding sites and two low-affinity binding sites, plausibly
generating nonlinearities in the relationship between spiking and fluorescence when

using GCaMPs vs. other sensors that are not based on calmodulin [Greenberg, 2015].

Therefore, we explicitly validated the three assumptions that underlie the spike
inference model we used. First, we assume that the relationship between spiking and
fluorescence is linear, and can be modeled by simply convolving a spike train with a
kernel with instantaneous rise (relative to the imaging frame rate) and exponential
decay (red 1 in Figure 2.6A). We tested this assumption in Figure 2.6C-D by fitting a
nonlinear model to the data and observing that it did not produce appreciably better

fits to the data.

Second, we assume that the noise in our imaging measurements can be modeled
as a normally distributed random variable added to each fluorescence observation
(red 2 in Figure 2.6A). We validated this assumption on fluorescence measurements
when the actual spiking behavior of the neuron was known. By convolving the true
spike train of the neuron with an appropriate exponential kernel, we could create a
predicted noiseless calcium trace (Figure 2.7A-D). Testing this assumption, we found
that histograms of the difference between this “linear prediction” and the actual flu-
orescence observations (i.e. the residual error) clearly resembled normal distributions

(Figure 2.7D; as in [Vogelstein et al., 2010]).

Third, we needed to determine whether the actual output from the spike inference
algorithm closely matched the actual firing of the neuron (red 3 in Figure 2.6A). If it
did not, that could either be due to the fact that our inference algorithm has failed,

or because the sensitivity of our chosen C'a?* indicator, GCaMP3, was inadequate to
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resolve features of the underlying neural activity. In the next section, we will pro-
vide validation for this third assumption. A detailed description of the development

and implementation of the spike inference algorithm is provided in Chapters 3 and 8.6.
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Figure 2.5: Quantifying features of motor neuron firing using Ca?" imaging
(A-D) Schematic depicting the relationship between firing and C'a®*. (A) Model firing
rate with bursts peaking at 20 Hz (top) and underlying Poisson spike train (bottom).
The spike train is identical during both bursts. Extended vertical black lines indicate
the time of peak firing rate during each burst. (B) Convolving a fast-decaying Ca*"
kernel (black; left) with the spike train shown in (A) results in a Ca® time series
(cyan; right). Red bars denote the time of the C'a® peak. Blue lines indicate burst
duration as measured from the C'a®T signal (defined as full width at half maximum
amplitude). (C) The convolution of the spike train from (A) with a slower-decaying
kernel (black; left) results in the time series shown (cyan; right). Variability in the
Ca®t indicator decay rate makes the comparison of burst duration measurements
taken from different preparations difficult. (D) Gaussian noise was added to the C'a**
time series from (B) in order to simulate noisy fluorescence measurements, in which
both the Ca** peak and duration are obscured. (E) Ca?* sensitive fluorescence time
series data acquired from four motor neurons during locomotor firing (MN1-MN4)

aligned to a simultaneous electrical recording from ventral root L2.
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Figure 2.6: Spike inference permits estimation of motor neuron firing

(A) Our spike inference algorithm used a simple model that assumed fluorescence
measurements arose from a spike train convolved with a single-exponential kernel
(red 1; validated in panels C-D), with additive Gaussian noise (red 2; validated in
Figure 2.7D-E). The algorithm inverted this model (3; validated in Figure 2.8) to
find the most likely spike histogram underlying each fluorescence time series. (B)
Example showing performance of spike inference on simulated data (red) plotted
above the spike inference model fit (cyan) and inferred spikes (black bars). (C)
A fluorescence time series measured from a motor neuron (red), together with the
predicted C'a®" signal derived from either a linear model of Ca®* (cyan) or a nonlinear
model (black). (D) Histogram comparing the differences between linear and nonlinear
model fit quality, as measured using the Pearson correlation (Corr) between measured
fluorescence and model prediction. This difference, Corr(linear prediction, data) -
Corr(nonlinear prediction, data), is shown for 4944 neurons that were driven to fire
in defined patterns (see Figure 2.7D-E). Red bars show a subset of high SNR neurons

(n = 367) that were used to estimate the fluorescence transient decay rate.
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Figure 2.7: Antidromic calibration to relate fluorescence to neuronal spiking
(A) Sagittal view of L2 during antidromic stimulation taken under epifluorescence
illumination. The region responsive to antidromic stimulation is shown in red. (B)
Average response to the antidromic stimulus (orange; numbers show stimulation rate
during each stimulus train in Hz) across the red region shown in (A). The convolution
of the antidromic stimulus and an exponentially decaying kernel is superimposed
upon the average fluorescence time series (purple), and represents the predicted Ca**
response to the antidromic stimulus under our C'a** model. (C) Two-photon imaging
field (dotted region in (A)) containing example motor neurons that were responsive
to antidromic stimulation (colored ROIs). (D) Fluorescence time series (black) from
three ROIs in (C) during antidromic stimulation (orange; numbers show stimulation
rate during each stimulus in Hz). The predicted Ca?' response is shown in purple
and the inferred spikes underlying each fluorescence time series are shown as black
bars. (E) Histograms of the residual error between the fluorescence time series and

predicted C'a®T response for each of the three responses shown in (D).
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2.2.4 Antidromic calibration to relate fluorescence to neuronal
spiking

The validity of our quantification neuronal activity depends on the ability of the
spike inference model to capture the relationship between firing and fluorescence.
The model was calibrated and its applicability evaluated by exploiting the fact that
motor neurons activated antidromically by ventral root stimulation fire in patterns
that match stimulus timing (Figure 2.7; see example data from [Bonnot et al., 2005]
in Figure 2.1A-C). For each experimental preparation, a fluorescence transient decay

time constant was computed using fluorescence measurements obtained during pat-

terned antidromic stimulation that mimic locomotor-like rhythmic burst firing.

Use of these time constant values corrected for decay time variation between prepa-
rations (Figure 2.8). Importantly, we noted a systematic bias in observed time con-
stant values as a function of Cre driver line (Figure 2.8A). Use of Olig2 :: C're reliably
yielded preparations with average time constant values between 0.65-0.85 seconds. In
contrast, ChAT :: Cre preparations typically had time constant values closer to 1.0
seconds. This discrepancy likely results in part from the fact that ChAT expression
in motor neurons begins at embryonic day 12, while expression of Olig2 begins ear-
lier at embryonic day 11 (Nikolaos Balaskas, personal communication). Whatever
the mechanism, our ability to detect this difference underscores the importance of
being able to accurately estimate this time constant value in each preparation. Not
accounting for this variance results in apparent variance in phase tuning between dif-
ferent experimental preparations (Figure 2.8B-C; in particular compare the spread of

datapoints in 2.8C between peak detection and spike inference).

To assess the accuracy of spike inference, we examined phase tuning estimates
for individual motor neurons during antidromic stimulation (Figure 2.7D). Tuning

measurements derived from spike inference were nearly identical to values computed
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directly from antidromic stimuli (mean difference + standard deviation (s.d.) = -2.0
+ 10.7°, n = 367 neurons; Figure 2.8B,C). Thus, spike inference permits accurate

estimation of motor neuron phase tuning.
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Figure 2.8: Variation in Ca?" transient decay rates between preparations

(A) Estimated decay time constants in seconds for each dataset plotted in (C). Colors
correspond to different experimental conditions (legend in (C)). (B) Comparison of
peak detection and spike inference approaches to phase tuning estimation. Phase
tuning was estimated using a simple peak detection method (left), or using spike
inference (right). Phase tuning was estimated using fluorescence data taken from four
antidromic bursts (shown in the left panel of (Figure 2.7D)). The midpoint of each
burst was defined as 0°. Histograms showing phase tuning estimation error from n =
29 motor neurons from a single Olig2 :: Cre mouse (top) and n = 24 motor neurons
from a single ChAT :: Cre mouse (bottom). (C) Error distributions for each mouse
preparation calibrated during antidromic stimulation using peak detection (left) or
spike inference (right) to estimate phase. Error bars span the mean + s.e.m. This
analysis reveals that spike inference successfully reduces phase error that arises due
to the temporal delay between peak C'a®>" and peak firing rate, and due to variation

in Ca®* decay rates between preparations.
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2.3 Discussion

2.3.1 Necessity of large-scale calibration methods

Many previous studies have examined the relationship between fluorescence and spik-
ing for individual neurons [Smetters et al., 1999; Bonnot et al., 2005; Kwan et al., 2009;
Vogelstein et al., 2010; Smith & Hausser, 2010]. However, this work is the first to our
knowledge to use antidromic stimulation or a similar method to measure the distri-
bution of fluorescence responses after inducing dozens of neurons of a single cell type
to fire in a particular pattern and then use that information to calibrate and evaluate
quantitative data analysis procedures. Because we repeated this calibration process
in each one of our experimental datasets, we were able to compensate for changes in
indicator expression level between preparations. The isolated neonatal mouse spinal
cord imaging preparation that we developed here represents a good test case for the
development of these methods because there is a significant amount of structure to

be uncovered in the timing of motor neuron recruitment.

In the future, antidromic calibration of C'a®"-sensitive fluorescence measurements
via electrical [Bonnot et al., 2005] or optogenetic [Li et al., 2015] stimulation of axons
might represent an important tool for assessing the relationship between fluorescence
and neuronal activity. Recently, a number of papers have presented experimental
schemes for “all-optical” recording and stimulation of individual neurons within neu-
ral circuits [Packer et al., 2014; Grosenick et al., 2015]. However, we will never have
truly reached this goal while we are still reliant on electrical recording methods to cal-
ibrate our measurements. Calibration experiments where spiking is measured with an
electrode during simultaneous imaging is always labor intensive and often impossible
in many deep in vivo imaging settings. Therefore, an important must be to develop
both experimental and theoretical methods for relating spiking to fluorescence that

can make use of even imperfect or incomplete calibration data. For example, direct
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optogenetic activation of a population of neurons using a sequence of light pulses with
increasing intensity would not deterministically evoke a specific spike train in all neu-
rons, but it could certainly be used to produce fluorescence imaging data where strong
prior information about the relative firing of the population is known—especially if this

procedure was repeated multiple times to permit averaging.

2.3.2 New computational and genetic tools make large-scale
imaging possible

Approximately 2,000 motor neurons innervate each hindlimb of the mouse [McHanwell
& Biscoe, 1981], yet the precise number of activation patterns produced by this set
of neurons during locomotion is unknown. In order to constrain the types of neural
computations that spinal locomotor circuits might need to perform to control a limb,
detailed measurements of neural activity during behavior would be ideally collected
from all of the motor neurons that control a limb. In this chapter, we discussed the
technical obstacles that needed to be first resolved before such measurements could be
obtained. With this combined genetic and computational approach in hand, we can
now generate nearly comprehensive maps of motor neuron activity during locomotor

firing.

2.3.3 A population readout of motor pattern

Earlier optical measurements of motor neuron activity across space lacked cellular
resolution and therefore were unable to determine whether individual motor neuron
pools had distinct firing patterns, or if all motor neurons participated in a single
wave-like pattern of activation [Bonnot et al., 2005; O’Donovan et al., 2008] (Fig-
ure 2.1).We obtained similar epifluorescence measurements from a mouse spinal cord
preparation positioned on its lateral side that expressed GCaMP3 in all motor neu-

rons (30 Hz acquisition rate). Figure 2.9 shows phase tuning estimates, relative to
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peak L2 ventral root activity, that were computed for individual pixels that are each

likely to contain many motor neurons.

This first experiment reveals clear, reproducible, spatial structure in the phase
tuning of motor neurons across space. Colored patches that represent groups of
motor neurons that are activated at similar times are strikingly present. However,
a gradient in phase tuning along the rostrocaudal axis is also apparent: light green
pixels that represent early-firing neurons can only be found rostrally, while dark blue
pixels representing later firing neurons predominate at more caudal segments. These
results seem to reproduce those reported in [O’Donovan et al., 2008] (where imaging
was conducted from the ventral surface). But how do these maps actually appear
at cellular resolution? Is there a wave of activity, or is such a pattern simply a
consequence of the spatial organization of motor neurons into pools? In the next

chapters, we will consider these questions in detail.
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Figure 2.9: Motor neuron phase tuning is organized across space

(A-B) Phase of locomotor firing was inferred pixelwise with respect to ventral root L2
for two 90s-long epifluorescence time series datasets taken from a single spinal cord
that expressed GCaMP3 solely in motor neurons (Olig2 :: Cre; Rosa :: GCaM P3).
Each panel shows a sagittal view of the spinal cord preparation (gray). The phase
tuning of the subset of all pixels with the brightest mean intensity is shown in colors

(see legend on bottom right).
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Analysis of large-scale optical imaging datasets

3.1 Introduction

Before we consider the structure of locomotor firing at cellular resolution, we will first
examine problems inherent in the analysis of large datasets containing measurements
from hundreds of neurons.? Methods suitable for the analysis of recordings obtained
from individual neurons are inappropriate for understanding the aggregate activity
of thousands of neurons. We therefore present our approach towards the automated
analysis of large-scale imaging datasets as well as our contributions to other work that
developed statistical models to explain our high-dimensional data in a more intuitive

manner.

3.1.1 Understanding firing dynamics across large neuronal

ensembles

Since the 1960s, the number of transistors that can be fabricated per square inch

has doubled roughly every eighteen months [Moore, 1965]. This trend, known as

IThis chapter in part details contributions made to: [Buesing et al., 2014, [Pnevmatikakis et al.,

2015], [Rad et al., 2015], and the SIMA toolbox introduced in [Kaifosh et al., 2014].
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Moore’s Law, has become somewhat self-fulfilling as semiconductor manufacturers
actually structure their hardware development plans such that this trend will con-
tinue. Indeed, because this trend has held for so long that software developers can
practically assume that it will continue for years into the future, and therefore design
new systems and algorithms of increasing complexity under the assumption that the
necessary hardware to run their software will exist soon. This expectation of expo-
nential gain over time has led to transformational changes in the manner in which we

interact with and use computational tools in our daily lives.

A similar trend of exponential growth can also be seen in the development of
new methods for simultaneously recording neurons (Figure 3.1; [Stevenson & Kord-
ing, 2011]). Our capability for measuring from neuronal populations roughly doubles
every 7.4 years. In contrast to Moore’s law, this trend is dictated mostly by exper-
imental need, rather than by market forces. Nevertheless, we have now approached
a point along this doubling curve that demands new approaches for data analysis.
Simply computing tuning curves, peri-stimulus time histograms, or other summary
statistics for each neuron is inadequate when you have simultaneous measurements
from 1,000+ cells for a simple reason: neurons exist in circuits and therefore their

activity patterns are often interdependent.

If an experimentalist only has access to the activity of a single neuron and a
stimulus or behavioral readout, there is not much to be done analytically beyond
relating the observed firing pattern to the provided stimulus. In contrast, if the ex-
perimentalist is recording from nearly all neurons in a local circuit, they can now ask
questions about which parts of the activity are driven by external input vs. recur-
rent interactions between the observed neurons. Unfortunately, asking such questions
about recurrent interactions quickly becomes computationally infeasible: instead of

computing a single summary statistic per neuron (which scales O(n)), examining just
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pairwise interactions scales quadratically and exponentially if higher order correla-
tions are considered. Simply interpreting large pairwise correlation matrices consist-
ing of hundreds of entries has become difficult. In this chapter, we will examine
new approaches for grappling with this sort of complexity both computationally and

intuitively.
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Figure 3.1: The scale of neural data is growing exponentially

(A) Measurements from simultaneously recorded neuronal populations plotted on
a logarithmic scale as a function of publication date. (B) The growth shown in
(A) can be attributed to the development of new recording methods over the past
half-century. In this work, we focus on large-scale data obtained from Ca?" imaging

methods (red). Adapted from [Stevenson & Kording, 2011].
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3.1.2 Difficulties in analyzing large-scale imaging datasets

Aside from the choice of appropriate analysis techniques for understanding popula-
tion dynamics, large-scale imaging datasets also present a more practical problem:
manually processing each piece of data becomes infeasible. In this work, we typi-
cally recorded more than 50 image sequences each containing ~ 50 neurons from each
mouse. Each of these image sequences then must be decomposed into groups of pixels
that contain individual neurons. Additionally, each image sequence had associated
ventral root recording data that needed to be filtered, processed, and aligned. Manu-
ally tracing 2,500 neurons and aligning associated electrophysiology data is not only
labor intensive, but it is error-prone and non-quantitative. In this chapter, we present

our methods for automatically processing our data.

3.1.3 New methods for measuring and analyzing population
dynamics

Ideally, the process of locating neurons within image sequences, extracting activity
events, and relating that collection of information towards the testing of hypotheses
about circuit function would all occur simultaneously in a single model fitting process.
While the bulk of our analysis resulted from the chaining of simple analysis procedures
into a single workflow, other approaches exist (e.g. [Pnevmatikakis et al., 2015]) that
combine these steps. This approach will be applied towards the analysis of axonal
imaging data in Chapter 6. Additionally, we will consider the question of whether
tuning functions (in this case phase tuning estimates, relative to ventral root activity)
should be computed for neurons individually, or whether we can take advantage of
the fact that adjacent neurons might have similar tuning preferences to achieve more

accurate measurements of phase tuning—using less data.
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3.2 Results

3.2.1 Automated processing of large-scale imaging datasets

In order to process our imaging data with minimal user intervention, we wrote a se-
ries of scripts to implement each step of the analysis workflow shown in Figure 3.2.
First, we took ran our semi-automated source extraction algorithm on each fluores-
cence image sequence to identify the set of pixels within each imaging frame that
corresponded to each neuron (Figure 3.3A). To initialize this algorithm, we manually
identified the centroid of each motor neuron cell body in ImageJ and then automat-
ically extracted a “block” around each centroid of size 15 x 15 pixels x T images
(30 x 30 pum; Figure 3.3B). After this process, we were left with a single block for
each user-defined neuron. The set of pixels corresponding to each neuron were then
extracted by running a sparse PCA algorithm on each block, defining the positively
weighted-pixels in the first principal component as the initial spatial filter, and then
smoothing the resultant object with a morphological filter to remove noncontiguous
pixels. This process yielded well-defined spatial filters for each neuron and required
no manual modification of results—since each filter was “seeded” by the user’s deci-
sion to define that region as containing a neuron. At the end of this process, pixels
that were shared between neurons were assigned to belong to only a single neuron
based on whichever centroid was closest to that pixel. This process is described in

more detail in Chapter 8.5.

While various algorithms exist for automatically identifying the location and cardi-
nality of cell bodies within an image, these algorithms typically require some amount
of user intervention to validate and refine (e.g. [Kaifosh et al., 2014]). Addition-
ally, locating motor neurons within the spinal cord was somewhat difficult relative
to other brain structures, owing to the fact that the sagittal surface of the spinal

cord is not flat, nor is the thickness of the white matter along the dorsoventral axis.
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As a consequence, the effective depth of imaging (and therefore mean fluorescence
intensity) will vary considerably across a single sagittal imaging field. We found
that our approach of quickly identifying cell centroids by hand and then automati-
cally processing individual blocks robustly solved these problems. Imposing quality
thresholds on the extracted neuronal signals proved adequate for culling the subset of
neurons where this approach failed. Finally, because our approach for neuronal iden-
tification relies on independently processing small blocks of fluorescence data before a
later merge and de-duplication operation, this scheme is well-suited for parallelization
and thus integration into distributed computing frameworks such as Spark/Thunder
[Freeman et al., 2014]. Other groups have independently converged upon similar
semi-automated approaches wherein neuron locations are manually identified to seed

spatial filters [Chen et al., 2013], further suggesting the merits of this approach.

Once a single fluorescence time series had been successfully extracted from each
neuron, we then aligned each time series to simultaneously recorded ventral root
recording data and performed spike inference using methods described in the next

section (additional technical details can be found in Chapter 8.8).

While methods exist for jointly extracting sources and performing spike inference
[Pnevmatikakis et al., 2015], they are currently also much more computationally
intensive than performing each step separately. Therefore, we only employed them
for analysis of axonal imaging datasets that could not be processed using the method

described here (see Chapter 6).
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1. Experiment 2. Core analysis pipeline 3. Post-hoc analysis
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Figure 3.2: Data analysis workflow for large-scale spinal cord imaging data
(1) Sequences of fluorescence images are acquired from our isolated neonatal mouse
spinal cord preparations with simultaneous ventral root measurements. (2, bottom)
Individual neurons are identified within each image sequence and their locations are
used to extract a one-dimensional fluorescence time series for each cell. These fluo-
rescence time series data are then further processed using spike inference algorithms
to estimate the spiking activity of each neuron. (2, top) Alternatively, both cell
extraction and spike inference can be solved in a single step, using more advanced
computational methods (e.g. [Pnevmatikakis et al., 2015]). (3) Finally, a variety of
post-hoc analyses to examine the structure of neuronal firing, from the generation
of tuning curves, to state-space analyses, can be performed on the spike inference

obtained from each neuron with respect to the ventral root recording data.
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Olig2::Cre; Rosa::GCaMP3 >

Figure 3.3: Semi-automatic neuron identification and image segmentation

(A) Example imaging field from an isolated spinal cord preparation expressing the
Ca?** sensor GCaMP3 in all motor neurons. (B) Centroids of fluorescent motor
neurons were manually identified (denoted as dots). (C) Sparse PCA, followed by a
sequence of morphological operations (see text), was automatically applied to a block
of pixels surrounding each centroid to extract spatial regions encircling motor neuron

somata. Scale bar is 100 pm.
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3.2.2 Improved algorithms for spike inference

In Chapter 2, we described how spike inference algorithms can be used to precisely
quantify features of neuronal firing from Ca?** imaging data and how to experimen-
tally validate these algorithms?. However, we did not discuss the implementation of
these algorithms, computational costs to consider, or justify the simple mathematical
structure of our model for relating fluorescence to spiking. We will address each of

these issues in this section.

The problem of deconvolving the neural activity from an one-dimensional fluores-
ence time series is achievable at high image acquisition rates, that is, when the time
between two consecutive measurements is small compared to the Ca®t indicator de-
cay time constant. Modern resonant scanning [Rochefort et al., 2008, random access
microscopy [Reddy et al., 2008], and scanless imaging [Nikolenko et al., 2008] proto-

cols can allow for this by recording from neural ensembles at high temporal resolution.

Under this regime, we take a completely unsupervised approach for performing
deconvolution that can be summarized as follows. First, we estimate a parametric
model for the C'a®* concentration transient response evoked by a single spike. Instead
of fitting a parametric model to isolated calcium transients evoked by single spikes
(often only available from dual recording and imaging experiments, as in [Grewe et al.,
2010]), we characterize the Ca®* transient as the impulse response of an autoregres-
sive (AR) process of general order p (as schematized in the previous chapter), that
models the rise and decay time constants, and estimate it by adapting standard AR
estimation methods. After determining the shape of the C'a®* transient we estimate
the spiking signal by solving a constrained, non-negative, sparse deconvolution prob-
lem. This approach finds the sparsest non-negative neural activity signal that will fit

the data up to a desired noise level of the observed fluorescence trace (implementation

2Portions of section 3.2.2 are derived from [Pnevmatikakis et al., 2015
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details and methods for parameter estimation can be found in Chapter 8.6). Impor-
tantly, the noise level, and indicator decay rate can be robustly estimated from the
autocovariance and power spectral density (PSD) of each fluorescence time series (see
Chapter 8.6). Given these two parameters, the optimal spike inference solution can
be found using a convex optimization framework [Boyd & Vandenberghe, 2004]. This
computational approach is efficient, as its runtime scales linearly with the number of

observed time steps.

Using the antidromic stimulation protocol described in the previous chapter, we
tested the deconvolution method using an in vitro dataset of n = 63 spinal motor
neurons obtained from 7 sequentially acquired imaging fields in a single preparation.
The neurons expressed the GCaMP6s indicator (via a rabies vector provided by TR
Reardon) and were antidromically stimulated to reliably fire in patterns that matched
the stimulus pulses (as in GCaMP3 data presented in [Machado et al., 2015]); we treat
the antidromic stimulus spike times as ground truth in this setting. The imaging rate
was 14.6 Hz and a first order AR model (p = 1) was found to be sufficient to model
the Ca?t dynamics in this case (see 2.6C-D in the previous chapter). To quantify
the performance we used a correlation measure between the true spiking signal (as
is defined by the stimulus timing) and the inferred spiking signal, binned at the res-
olution defined by the imaging rate or coarser. We compared our methods with a
computationally more intensive Markov Chain Monte Carlo (MCMC) method that

was first presented in [Pnevmatikakis et al., 2013).

As can be seen in Figure 1A, both methods have largely similar performance: the
reconstructed Ca?' time series for the constrained deconvolution algorithm (blue)
and the mean Ca?* time series obtained with 500 samples from the MCMC algo-
rithm (green) superimposed on the raw data (black dashed). The MCMC method

produces samples of spike trains with continuous time resolution, and thus it can
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provide further insight into the number of spikes produced at every time bin and the
uncertainty of these estimates due to noise and finite imaging rate. This is shown in
Figure 3.4B where the marginal posterior of the number of spikes at each time bin is
plotted and the true number of spikes is also shown (purple dots). This uncertainty
quantification is not available with the constrained deconvolution algorithm, which is
based on a convex optimization framework and thus provides just a single estimate
of the neural activity (up to a scaling constant and with no quantification of uncer-
tainty), binned at the imaging rate resolution. Nevertheless, the performance of the

two methods is largely equivalent (Figure 3.4C,E).

However, at native resolution (bin width = 1A), significant dispersion is apparent
around the 45° degree line. This dispersion comes from the fact that the corre-
lation metric is sensitive to spike jitter, since it only compares the signal between
identical time bins and does not depend on the ordering. If the true spike train is
smoothed, this dispersion reduces significantly, and thus the quantified performance
increases, indicating that our constrained deconvolution method generally infers the
correct number of spikes at approximately the correct times in order to explain the
observed fluorescence data. Figure 3.4D displays the recovered traces and true an-
tidromic stimulus spikes in more detail, and finally a plot of the correlation values at
multiple bin widths for all cells is shown in Figure 3.4F. Therefore, we conclude that
our constrained deconvolution method is scalable and delivers quantitatively similar
spike inference output to more computationally intensive techniques like the MCMC

algorithm.
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Figure 3.4 (preceding page): Application of the constrained deconvolution
algorithm to in witro spinal cord data

(A) Raw fluorescence data from a motor neuron (black) and reconstructed fluorescence
time series fit by the constrained deconvolution method (blue) and the MCMC method
(green) [Pnevmatikakis et al., 2013]. (B) Histogram of spike train samples obtained
from the MCMC method (plotted in color) verses the true number of antidromic
spikes during each time bin (open circles). Colors indicate the probability of a certain
number of spikes within a given time bin, illustrating the ability of the MCMC method
to quantify uncertainty and identify multiple spikes within a single time bin. (C)
Estimated neural activity (normalized) from the constrained deconvolution method
(blue) and mean of the posterior marginal per time bin with the MCMC method
(red) verses the true number of antidromic spikes during each time bin (purple dots).
(D) Zoomed in version of panel A. (E) Correlation values between true antidromic
spike times and the constrained deconvolution estimate using two different methods to
estimate the noise power: a method based on computing the power spectral density
(PSD; x-axis) and the MCMC approach (y-axis). Neural activity is binned at 3
different resolutions (A, 3A, and 5A, where A = 68.5 ms, the duration of a single
imaging frame at 14.6 Hz). (F) Correlation values for all 63 cells at various time bin

widths. The neuron used in panels A-D is highlighted with black markers.
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3.2.3 Clustered factor analysis of multi-neuronal spike data

Recent progress in large-scale techniques for recording neural activity has made it
possible to study the joint firing statistics of up to 10° cells at single-neuron reso-
lution.® Such data sets grant unprecedented insight into the temporal and spatial
structure of neural activity and will hopefully lead to an improved understanding of

neural coding and computation.

These recording techniques have spurred the development of statistical analy-
sis tools which help to make accessible the information contained in simultaneously
recorded activity time series. Amongst these tools, latent variable models prove to
be particularly useful for analyzing such datasets [Smith & Brown, 2003; Jones et al.,
2007; Macke et al., 2011; Byron et al., 2009]. They aim to capture shared structure
in activity across different neurons and therefore provide valuable summary statistics
of high dimensional data that can be used for exploratory data analysis as well as
for visualization purposes. The majority of latent variable models, however, being
relatively general purpose tools, are not designed to extract additional structure from
the data. This leads to latent variables that can be hard to interpret biologically.
Furthermo