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ABSTRACT

Probing circuits for spinal motor control

Timothy Aloysius Machado

Spinal circuits can generate locomotor output in the absence of sensory or descending

input, but the principles of locomotor circuit organization remain unclear. We sought

insight into these principles by considering the elaboration of locomotor circuits across

evolution. The identity of limb-innervating motor neurons was reverted to a state re-

sembling that of motor neurons that direct undulatory swimming in primitive aquatic

vertebrates, permitting assessment of the role of motor neuron identity in determining

locomotor pattern. Two-photon imaging was coupled with spike inference to measure

locomotor firing in hundreds of motor neurons in isolated mouse spinal cords. In wild

type preparations we observed sequential recruitment of motor neurons innervating

flexor muscles controlling progressively more distal joints. Strikingly, after reversion

of motor neuron identity virtually all firing patterns became distinctly flexor-like.

Our interneuron imaging experiments demonstrate a new approach for functionally

mapping the types of inputs that motor neurons might receive during locomotor

firing. These data revealed that En1-derived inhibitory spinal interneuron activity

appears to be dominated by a flexor-like pattern across the ventrolateral extent of the

lumbar spinal cord–even in the regions surrounding flexor and extensor motor pools.

Together, these findings show that motor neuron identity directs locomotor circuit

wiring, and indicate the evolutionary primacy of flexor pattern generation.
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1

Introduction: The functional organization of

pattern generating circuits

1.1 Understanding recurrent dynamics in neural circuits

A primary computational goal of the central nervous system is to transform sensory

input into motor output. For reflexive actions, the mapping between sensory input

and behavior may appear clear and nearly deterministic. But during more complex

behaviors, the relationship between stimulus and response may not be apparent at

all. Indeed, a key feature of many neural circuits is that they are capable of persistent

sustained activity, even in the absence of any external input. Such recurrent dynam-

ics are thought to underlie some forms of short-term memory [Seung et al., 2000],

evidence integration during decision making [Mante et al., 2013], and also movement

planning [Churchland et al., 2012]. Despite the ubiquity of persistent activity in

neural networks, the network mechanisms responsible are comparatively poorly un-

derstood.

In this thesis, we will focus on elucidating the organization of a specific type of

recurrent network: the spinal interneuron circuits involved in producing patterned
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motor neuron activity. Because these circuits are capable of producing stereotyped,

locomotor-like patterns of output in the absence of external drive, we can use them as

a model for understanding how neuronal ensembles can autonomously produce spe-

cific patterns of activity. To constrain this problem, we will first measure the patterns

produced by spinal interneuron networks and their manifestation across space by com-

prehensively monitoring locomotor firing across motor neurons at cellular resolution.

We will then use this approach to examine how spinal interneurons find appropriate

motor neuron targets during development in order to achieve appropriate patterns

of muscle recruitment during locomotor behavior. Finally, we will consider the logic

of interneuron circuits themselves, by directly measuring the activity of genetically

defined subsets of neurons that are rhythmically active during locomotion.

One advantage of our focus on locomotor circuits is that the activity and output of

these networks must be relatively stereotyped and predictable both to ensure smooth

movement but also to simplify the kinds of descending and sensory commands that

are necessary to modulate spinal network dynamics. This means the activity of indi-

vidual neurons is often fairly stereotyped and interpretable with respect to network

output. For this reason, a number of experimentally tractable motor systems com-

posed of small numbers of neurons have been developed. Perhaps the simplest of these

model circuits is the crab somatogastric ganglion (STG) [Marder & Bucher, 2007].

This neural circuit drives stomach muscles in the crustacean foregut to contract in a

precise sequence in order to grind food. Unlike many other recurrent networks that

contain large populations of interneurons whose activity is often not clearly related

to behavior, the motor neurons in the STG that innervate stomach muscles are also

directly connected to one another. As a result, intracellular recordings from motor

neurons provide a readout of network output, as well as of the dynamics in the re-

current network itself. Because this network consists of only approximately thirty

neurons that require no external input to function, and because the connectivity of
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the entire circuit has been reconstructed using electron microscopy [Bargmann &

Marder, 2013], the precise mechanisms by which rhythmic activity can be produced

in each neuron are mostly understood.

The use of a similar strategy for untangling the origins of rhythmic activity in

mammalian neural circuits has been more problematic, in part because they are hun-

dreds of times larger, suggesting that these larger circuits have many components

serving redundant functions during simple motor behaviors. Importantly, even the

small neural circuits in the STG appear to be highly redundant and robust. In prac-

tice, this redundancy means that many experimental perturbations to the STG have

no apparent effect (owing to homeostatic network mechanisms; [Marder, 2011]), or

have identical effects (owing to redundant mechanisms for controlling network output;

[Gutierrez et al., 2013]). These lessons are likely to hold in larger circuits as well, but

have been difficult to test, largely as a consequence of technical limitations.

In the past decade, new large-scale optical imaging and recording methods have

finally made it possible to apply network analyses previously restricted to small cir-

cuits like the STG to the mammalian CNS [Ohki et al., 2005; Harvey et al., 2012].

However, these methods can only currently scale to the analysis of local regions con-

sisting of approximately 1,000 neurons—not an entire mammalian brain. As a result,

this appears to be a uniquely appropriate time for studying mammalian spinal loco-

motor networks, as these central pattern generating (CPG) circuits can also function

in isolation to produce locomotor-like activity and therefore be used as a model in

a similar manner as the STG. But more importantly, locomotor circuits appear to

consist of similar microcircuit building blocks as other parts of the CNS, like those

in the neocortex [Yuste et al., 2005], and are thus likely to teach us about the basic

principles of neural computation.
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1.2 The organization of spinal interneuron circuits

1.2.1 Spinal circuits for processing sensory information and

producing motor output

In contrast with most other structures in the CNS, the spinal cord is involved in both

the processing of sensory input as well as the production of motor output (Figure

1.1A-C; [Rexed, 1952]). Cutaneous, proprioceptive, and nociceptive sensory neurons

residing in dorsal root ganglia directly send afferents onto many central neuron targets

residing in the spinal cord. Most of these sensory projections receive input from their

corresponding sensory organs in the periphery and then terminate onto interneurons

residing in the first five laminae that comprise the dorsal horn (Figure 1.1C; [Lalle-

mend & Ernfors, 2012]). In contrast, motor neurons residing in the ventral horn

(Lamina IX) most prominently receive local inputs from interneurons positioned in

the ventral spinal cord [Tripodi et al., 2011; Kjaerulff & Kiehn, 1996] and only re-

ceive monosynaptic sensory input from proprioceptive afferents that convey muscle

stretch information from muscle spindles (Figure 1.1C). Importantly, most other sen-

sory pathways and descending tracts indirectly relay their inputs to motor neurons

through the ventral spinal interneuron networks [Brownstone & Bui, 2010].

But even though some sensory and descending afferents directly contact motor

neurons, copies of those same signals are usually sent redundantly to ventral spinal

interneuron networks that relay the same information to motor neurons at longer

latencies. The presence of such feedback loops across different spatial scales is a com-

mon theme throughout the CNS [Azim et al., 2014; Swanson, 2012]. Also, different

types of feedback are biased towards different components of motor circuits. For ex-

ample, the vestibulospinal tract selectively excites extensor versus flexor motor pools

[Grillner et al., 1970]. As a consequence of this organization, it is important to think

about the production of motor pattern as a flexible process that is usually being mod-
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ulated by diverse feedback signals during behavior. To better understand how these

different kinds of feedback might influence motor output, we need to understand the

intrinsic dynamics of spinal circuits in the absence of such input.

In the subsequent chapters, we will focus on elucidating the features of motor

neuron pattern produced in the absence of input from these disparate sensory sources

such that the most basic dynamical activity in ventral spinal circuits that is capable

of producing locomotor-like motor neuron firing might become more clear.
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Figure 1.1: The cytoarchitectural organization of spinal circuits

(A) The laminar organization of a lumbar segment from the cat, as proposed by

[Rexed, 1952]. (B) Red boxed region from (A) as drawn five decades earlier by

Santiago Ramón y Cajal [Cajal, 1909]. Dorsally, commissural interneurons can be

seen. Ventrally, motor neurons innervating epaxial musculature send their axons out

through ventral roots. (C) Trajectories of sensory afferent inputs onto the different

spinal laminae. Panels A and B adapted from [Rexed, 1952]. Panel C adapted from

[Lallemend & Ernfors, 2012].
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1.2.2 The physiology of premotor interneuron networks

Elements of contemporary spinal network models date back to the work of Thomas

Graham Brown in the years before the First World War [Jones et al., 2011]. Brown’s

experiments in decerebrate cats revealed that even in the absence of descending in-

put from the brain, or peripheral sensory feedback from the limb, the spinal cord

was capable of producing a rhythmic alternating pattern between pairs of flexor and

extensor muscles (Figure 1.2A). In order to explain these observations, Brown de-

veloped the “half-center” model shown in Figure 1.2B. Although inhibition had only

recently been suggested as a feature of central circuits [Sherrington, 1913], his model

predicted that flexor-extensor alternation might be mediated by a mutual antagonism

between flexor and extensor subnetworks. At the time, this idea that spinal networks

could function in isolation to produce motor output was largely discounted, as sen-

sory input was thought to be necessary. Lord Adrian even argued that while Brown’s

work added to the “general store of information on the spinal reflexes. . . it cannot

be said to have had much influence on the progress of physiology” [Adrian, 1966;

Jones et al., 2011].

This sentiment was largely a consequence of the experimental methods available

at the time: a candidate cellular basis for these half-centers was not found for decades.

Finally in the 1940s, [Lloyd, 1943] showed that stimulation of a motor neuron evoked

monosynaptic excitation of other motor neurons that shared the same muscle target,

but also evoked inhibition in antagonist motor neurons. In the subsequent decades,

this reciprocal inhibition was found to be mediated by a set of inhibitory interneu-

rons that receive 1a afferent input [Hultborn, 1972], now referred to as 1a inhibitory

interneurons. Intracellular recordings from these putative 1a inhibitory interneurons

showed that they tend to fire in phase with their homonymous motor neurons—

presumably then inhibiting antagonist motor neurons during each step cycle to en-

sure that co-contraction of muscles on opposite sides of a joint does not occur (Figure
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1.2C; [Pratt & Jordan, 1987]). These discoveries led to a new appreciation for Graham

Brown’s early work and to the incorporation of half-center like circuits in contempo-

rary spinal circuit models [Alstermark et al., 2010].

In the subsequent decades, a number of generalizations have been made to the

basic half-center model. For example, to expand a half-center like circuit to control

an entire limb, the unit burst generator model was proposed. This model assumes

that the hindlimb might be controlled by a collection of many half-centers: one for

each joint [Grillner, 1981]. Other work by Grillner and others has shown half-center

like circuits to mediate more than just flexor-extensor alternation. Reciprocal inhibi-

tion has been shown to underlie left-right alternation in animals ranging from lamprey

[Grillner et al., 1995] and frogs [Moult et al., 2013] to mammals [Talpalar et al., 2013].

A modern spinal network model for controlling alternation at a joint, based

around a half-center like microcircuit, can be seen in (Figure 1.2D; [McCrea &

Rybak, 2008]). A key difference versus earlier models is that there is a two-layer

network providing input to the half-center that in turn provides monosynaptic in-

put to the motor neurons. These upstream networks are themselves driven to fire

by a combination of reciprocal interactions between flexor and extensor-firing in-

terneurons and proprioceptive sensory feedback. The presence of persistent conduc-

tances and other cell-intrinsic mechanisms is also thought to play a role in driv-

ing firing in these neurons in conjunction with network activity [Zhong et al., 2007;

Brocard et al., 2013].

In contrast to the model shown, some have argued that these top level “rhythm

generating” circuits involved might be asymmetric and mostly consist of neurons fir-

ing in a single flexor-like pattern (Figure 1.3; [Pearson & Duysens, 1976; Brownstone

& Wilson, 2008; Kwan et al., 2009]). Such models do not, however, argue that such
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asymmetries are present at the final half-center layer that is monosynaptic to each

motor neuron.

Independent of the architecture of the rhythm generating circuits, most contem-

porary spinal circuit models argue that there are at least two layers in the premotor

network. This conclusion has been reached as a consequence of analysis into how

motor neuron and interneuron activity changes when motor neurons skip a rhyth-

mic burst (so-called “deletions”; [Zhong et al., 2012]). Most of these deletions are

“non-resetting” meaning that the next motor burst will occur at the time expected

had it not failed on the previous cycle. Interestingly, there is an inherent asymme-

try in these deletions: if a flexor motor neuron fails to fire a burst, tonic activity in

extensor motor neurons is always seen. But if an extensor motor neuron fails to fire

a burst, flexor motor neurons continue their activity unabated. Similarly, deletions

in motor neuron activity do not affect all interneurons. Some interneurons display

missed bursts, just like the motor neurons, while others continue to fire unperturbed.

Based on this evidence, it has been suggested that spinal circuits consist of interneu-

rons that propagate a core rhythm (and thus when they miss a burst, a “resetting”

deletion is observed across the whole network), while missed bursts in downstream

pattern formation interneurons will only perturb a subset of the network and thus

cause “non-resetting” deletions.

A significant caveat in much of this work is that there is much evidence that loco-

motor circuits are very distributed and redundant [Guzulaitis et al., 2014; Kjaerulff

& Kiehn, 1996], and that cell-intrinsic mechanisms may play a dominant role in the

generation and maintenance of locomotor pattern. For instance, flexor-extensor al-

ternation can persist in the absence of all excitatory interneurons [Talpalar et al.,

2011], and rhythmic motor neuron activity that is locally coordinated will continue

even in the presence of TTX to block action potential firing [Tresch & Kiehn, 2000].
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Moreover, our knowledge of spinal interneurons is largely defined with respect to the

periphery: the 1a inhibitory interneuron is defined in part due to its sensory inputs,

and the Renshaw cell was located because it is inhibitory and post-synaptic to motor

neurons—and therefore the effects of its recurrent feedback onto motor neurons could

be observed when motor neurons are antidromically activated [Renshaw, 1941]. The

idea that these two microcircuits are the only ones involved in mediating inhibition

directly onto motor neurons seems unlikely. Instead, they are simply two microcir-

cuits that were amenable to observation with the recording techniques available in

past decades. The use of new methods that have different measurement biases are

likely to reveal new circuits that might have similar functions during locomotion.
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Figure 1.2 (preceding page): Models of spinal locomotor circuits

(A) Measurements of flexor and extensor nerve activity in a spinalized, deafferented

cat obtained by Thomas Graham Brown in 1911. (B) A schematic of Graham Brown’s

half-center model, published in [Brown, 1916]. (C) Illustration of a contemporary

multi-layer model for the control of a flexor-extensor pair of muscles. (D) Phase

tuning of an extensor-related (quadriceps in this case) Renshaw cell and 1a inhibitory

interneuron (1aIN) over a normalized step cycle. The step cycle was discretized into

ten bins, the first five during flexor activation, and the second five during extensor

activation. Panels A and B are from [Jones et al., 2011]. Panel C was adapted from

[McCrea & Rybak, 2008]. Panel D was adapted from [Pratt & Jordan, 1987].
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Figure 1.3: An asymmetric, flexor-biased model for limb control

Block diagram from [Pearson & Duysens, 1976] showing a schematic circuit for con-

trolling the limb of a cat or cockroach based on a “swing generator” circuit that

produces a flexor-like pattern by integrating descending and sensory inputs. Dur-

ing stance phase, extensor motor neurons are activated by post-inhibitory rebound,

excitatory central commands, and sensory feedback.
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1.2.3 The sufficiency of spinal networks for motor behavior

The ventral spinal cord consists of a heterogeneous set of motor neurons and in-

terneurons. Impinging upon this region is a diverse array of descending and sen-

sory inputs, but despite suggestions that some of this sensory feedback might be

necessary for generating appropriate patterns of motor output in vivo [Pearson,

2004], ventral spinal circuits alone are sufficient to produce robust locomotor-like

network activity [Dai et al., 2005; Kjaerulff & Kiehn, 1996; Cowley & Schmidt, 1997].

As we discussed above, this feature of spinal circuits was first explored in decere-

brate cat preparations that had also had sensory inputs blocked using pharmacolog-

ical agents, or physically cut [Grillner & Zangger, 1979; Grillner & Wallen, 1985;

Jones et al., 2011]. However, because it is technically difficult to obtain intracellular

recordings from interneurons in these semi-intact cat preparations and to perturb

circuit activity. As a consequence, new model systems needed to be developed.

In more recent years, the study of locomotor circuits has mostly focused on ro-

dents instead of cats [Kudo & Yamada, 1987b] owing in part to its genetic tractability

[Lanuza et al., 2004; Gosgnach et al., 2006; Crone et al., 2008; Zhang et al., 2008]. In

contrast to the decerebrate, deafferented cat preparation, rodent spinal circuits are

typically studied in vitro by isolating the the spinal cords of neonatal rats and mice

under oxygenated artificial cerebrospinal fluid (ACSF). In this controlled setting, the

activity of motor neurons can be monitored by obtaining recordings from ventral roots

or peripheral nerves. These experiments have shown that periodic locomotor-like fir-

ing can be induced by either the application of drugs, or by electrical stimulation of

sensory or descending projections [Kiehn & Kjaerulff, 1996; Cowley & Schmidt, 1997;

Talpalar et al., 2011; Beliez et al., 2014].

The work in this thesis will rely on this isolated neonatal rodent spinal cord

preparation to study locomotor circuits. But before we can generalize any findings
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from such experiments to our understanding of motor networks in general, we must go

beyond previous work [Kiehn & Kjaerulff, 1996; Kjaerulff & Kiehn, 1996] to determine

how similar the activity of a spinal cord in a dish can actually come to recapitulating

in vivo locomotor behavior. With that information in hand, we will be able to use our

knowledge of spinal cord circuit development to better take advantage of the genetic

tractability of the in vitro preparation.

1.3 Understanding recurrent network activity in spinal locomotor

circuits

As recurrent spinal interneuron circuits are sufficient for producing patterned loco-

motor output, and because they can be modulated by sensory inputs and descending

commands, they represent an ideal system for considering how recurrent neural net-

works generally solve computational tasks. But they are more than a model: in order

to approach the problem of how upstream circuits in the brainstem and cortex sculpt

motor output during behavior, we must first understand the types of dynamics that

these descending commands must engage with in spinal circuits themselves.

Unfortunately, spinal locomotor circuits are difficult to study for many of the

same reasons that other recurrent neural networks are difficult to decipher. Until

recently, the field of neuroscience has generally lacked the experimental and theoretical

means of functionally dissecting large, redundant, and recurrent networks. In recent

years, the development of new large-scale recording and data analytical techniques

has permitted significant advances. Our hope is that these new experimental and

analytical approaches that have become recently available will permit us to gain new

insight into longstanding questions about the neural control of movement.
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1.3.1 The molecular logic of spinal interneuron circuits

To constrain our investigation into the intrinsic activity of local spinal circuits, let

us review what is known about the development of locomotor networks, which are

predominantly located in the ventral spinal cord [Dai et al., 2005]. The identity of

different types of ventral spinal interneurons and motor neurons is specified by a

combination of environmental signals and cell-intrinsic gene expression patterns (Fig-

ure 1.4A-B; [Jessell, 2000; Dasen & Jessell, 2009; Goulding, 2009]). In particular,

a dorsoventral gradient of Sonic hedgehog (Shh) plays a key role. Shh is secreted

ventrally by the notochord and floor plate and acts by controlling the expression of

certain transcription factors in progenitor cells (Figure 1.4C; [Jessell, 2000]). This

Shh gradient induces the expression of Class I transcription factors while simultane-

ously repressing the expression of Class II transcription factors. Bone morphogenetic

proteins (BMPs) play a similar in defining transcription factor expression in dorsal

progenitor cells [Lee & Jessell, 1999].

Once distinct subsets of progenitor cells have been induced to express different

sets of these transcription factors, cross-repressive interactions between Class I and

Class II transcription factors further refine the spatial boundaries between different

progenitor domains along the dorsoventral axis. The resultant bands of progenitor

cells can then be observed to each express a distinct cohort of transcription factors.

On this basis, there are known to be six ventral progenitor domains (pV0-V3, pMN,

and the pdI6 interneurons that arise from the dorsal neural tube; shown in yellow in

Figure 1.4A). These domains in turn give rise to V0-V3 and dI6 interneurons as well

as motor neurons.

Based on immunohistochemical and anatomical studies of neurons that were lin-

eage traced from each of the ventral interneuron populations, the neurotransmitter

phenotype of each of these different domains is known, as well as the laterality of
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their axonal projection patterns [Stepien & Arber, 2008; Goulding, 2009]. Further

work studying the what is known about their functional roles during behavior will

be described in 1.3.2. These studies have provided the field with clues to begin the

process of defining the genetic identity and developmental provenance of functionally

distinct sets of interneurons that are necessary for controlling motor neuron activity

during behavior.

A different set of regulatory mechanisms drives cell type diversity along the ros-

trocaudal axis of the spinal cord (Figure 1.4B; [Dasen & Jessell, 2009]). In particular,

the genetic identity of motor neurons that innervate limb muscles (residing at brachial

and lumbar segmental levels) must be different from that of motor neurons at thoracic

levels that instead target axial musculature. These segmental-specific genetic iden-

tities are achieved through the differential expression of Hox transcription factors at

different spinal segments [Dasen et al., 2005; Dasen & Jessell, 2009]. As can be seen in

Figure 1.4D, the segmental expression of Hox genes is driven by rostrocaudal gradi-

ents of fibroblast growth factors (FGF), retinoic acid (RA), and Gdf11. Expression of

the first genes in the Hox gene cluster are induced most rostrally, while the last genes

are expressed most caudally. In a similar manner to how cross-repressive interactions

achieve spatial stratification between progenitor domain populations, similar inter-

actions between different Hox proteins enforce the development of sharp segmental

boundaries that have different Hox expression profiles.

Importantly, the action of the Hox regulatory network in defining motor neuron

identity is dependent on the presence of FoxP1, a Hox accessory factor. In mice lacking

FoxP1, limb innervating motor neurons (that together comprise the lateral motor col-

umn, or LMC) are reverted to an ancestral-like state resembling that seen innervating

the axial musculature of primitive aquatic vertebrates [Kusakabe & Kuratani, 2005;

Dasen et al., 2008]. The importance of the Hox network for defining interneuron
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identity is not currently well-understood but is also plausibly controlled by similar

mechanisms. Together the both the Shh and Hox pathways provide a system by

which the molecular identity of a spinal neuron can be defined by its position along

the dorsoventral and rostrocaudal axes.
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Figure 1.4 (preceding page): Locomotor circuits consist of four cardinal sub-

types of interneurons

(A) At embryonic day 11, there are eleven classes of postmitotic neuron in the spinal

cord: dorsal progenitors DI1-DI5 (gray), and classes DI6, V0-V3, and MN residing

ventrally (yellow). Different transcription factors expressed by each class are also

indicated. (B) At postnatal stages the ventral progenitor classes (DI6, V0-V3, and

MN) collectively give rise to locomotor circuits. In the schematized spinal cord, mo-

tor neurons (MN; yellow) innervate muscles and inhibitory Renshaw cells (RC, from

the V1 domain; green) while they receive input from sensory afferents (purple) and

inhibitory interneurons (1a and RC, from the V1 domain; green). Excitatory V0

interneurons project contralaterally (blue). The position of spinal laminae are shown

as Roman numerals. (C) Along the dorsoventral axis of the spinal cord, a gradient

Sonic hedgehog (Shh) controls the expression of Class I and Class II transcription

factors to define different progenitor domains of ventral interneuron. (D) Similarly,

along the rostrocaudal axis, gradients of retinoic acid (RA) and fibroblast growth

factors (FGFs), can induce the expression of Hox genes along the extent of the spinal

cord. Panels A and B were adapted from [Goulding, 2009]. Panels C and D are from

[Dasen & Jessell, 2009].
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1.3.2 Enumerating elements of locomotor circuits in the spinal cord

Over the last decade, a body of work has attempted to relate our knowledge of spinal

cord development to physiological data and locomotor circuit modeling studies. Much

of this work has focused on defining a functional role for each of the four cardinal

domains of spinal interneurons during locomotor firing. Based on histological and

genetic tracing studies, we know the neurotransmitter phenotype of each domain and

whether it contains only ipsilaterally projecting neurons or a mixture of ipsilateral

and contralaterally projecting neurons [Stepien & Arber, 2008]. In contrast, much

less is known about how physiological subtypes of interneuron like the 1a inhibitory

interneuron, or different layers of the pattern generating network, might relate to our

understanding of how interneurons diversify into genetically-distinct subpopulations

during development.

In many of the studies (e.g. [Lanuza et al., 2004; Gosgnach et al., 2006; Crone

et al., 2008; Zhang et al., 2008]), a popular approach was to pair methods for acute

genetic ablation with ventral root recordings obtained from isolated spinal cord prepa-

rations. For example, in [Gosgnach et al., 2006], interneurons from the En1-derived V1

domain were acutely ablated using various genetic methods (e.g. by using En1::Cre;

ROSA::DTA mice). These strains of mice were then characterized using an isolated

neonatal mouse spinal cord preparation induced to fire in a locomotor-like pattern by

the application of rhythmogenic drugs: NMDA, 5-HT, and/or DA. Following drug ap-

plication, suction electrode recordings obtained from multiple ventral roots revealed

rhythmic bursting activity at each lumbar segment (Figure 1.5A). As ventral roots

consist of the axons of the motor neurons present at their homonymous segment, and

because motor neurons sharing common muscle targets reside in stereotyped, spatially

coherent, positions called motor pools [Romanes, 1964], clear temporal structure can

be resolved from comparing the ventral root recordings obtained from different spinal

segments. For example, alternation can be observed between the left and the right
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side of the spinal cord preparation.

As can be seen from Figure 1.5, the genetic ablation of each cardinal domain of

interneurons appears to have had an effect on locomotor firing—causing changes to

either pattern frequency, deficits in burst robustness, or deficits in left-right alterna-

tion. These results are certainly interesting to consider, and perhaps most strikingly

in the case of the V0 domain which is involved in left-right alternation, they have

also provided a map forward for future studies [Talpalar et al., 2013]. However, this

ventral root recording assay is also insufficient for more detailed studies as its readout

is far too low dimensional. Ablation experiments affected each parameter that could

be quantified from this assay: burst shape, rhythm frequency, and alternation. It

seems unreasonable to assume that all possible phenotypes can be encompassed by

one of those three features.

In the subsequent chapters, we will discuss new approaches for moving beyond this

simple ventral root recording assay. For instance, a cellular-resolution motor neuron

assay would permit us to better understand how the isolated preparation is similar

and dissimilar from in vivo rodent preparations that are less amenable to large-scale

physiological measurements. If we understood the fundamental grain of locomotor

activity, in the absence of sensory or descending inputs, we would also be afforded

much greater resolution to assess subtle perturbations to the interneuron network.



23

rL
2

lL
2

V1
En1

V2a
Chx10

V3
Sim1

rL
2

lL
2

lanuza 2004

left-right alternation deficits

V0
Dbx1

E and I

I only

E only

E only

left-right alternation, burst robustness

crone 2008

rL
2

lL
2

gosgnach 2006

locomotor cycle frequency

C
h

x
1

0
-D

T
A

D
b

x
1

la
c
Z

/l
a
c
Z

rL
2

lL
2E
n

1
-D

T
A

rL
2

lL
2

S
im

1
-T

e
N

T

zhang 2008

burst robustness

A

B

WT

C

D

E

Figure 1.5: Summary of locomotor phenotypes after perturbations to in-

terneurons

(A) Filtered ventral root recordings obtained from ipsilateral ventral roots L2 and L5

showing characteristic antiphase alternation. (B-E) Filtered ventral root recording

data adapted from [Lanuza et al., 2004; Gosgnach et al., 2006; Crone et al., 2008;

Zhang et al., 2008], respectively. The scale bar in all panels denotes 5 seconds of time.
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1.3.3 The modulation of intrinsic activity via sensory and

descending inputs

Understanding how in vivo and isolated locomotor patterns differ for the sake of

building a better experimental assay for studying recurrent interneuron circuits is an

important goal in itself, but it is also significant for another reason. Upstream circuits

in the cortex and brainstem must structure their descending commands to interface

with the ongoing dynamics of spinal motor circuits in order to successfully control

movement. This is especially true in the rodent, where monosynaptic connections

from motor cortex onto motor neurons might not exist at all [Lemon & Griffiths,

2005]. Given our lack of mechanistic understanding of how even the simplest peri-

odic locomotor activities are produced by spinal circuits, we hope that the results

presented here might inform future studies in the spinal cord, and in other premotor

circuits.

While comparatively little is known about the structure of descending commands

onto the spinal cord, much work has examined the role of cutaneous and propriocep-

tive feedback onto spinal motor circuits during behavior. For example, the sequential

activation of flexor muscles during walking, and limb kinematics during swimming,

are selectively perturbed after proprioceptive muscle spindle afferents are ablated

(Figure 1.6; [Akay et al., 2014; Takeoka et al., 2014]. Similarly, severing nerves car-

rying cutaneous sensory information from the foot appears to selectively impair foot

placement during locomotor tasks—but most strikingly during walking on inclined

surfaces [Bouyer & Rossignol, 2003]. These studies illustrate how sensory feedback

can play a significant role in modulating organizing features of motor neuron recruit-

ment during locomotion.

In this context of modulation, a number of previous studies have examined the ef-

fects of different pharmocological agents and stimulation protocols on spinal network
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activity [Beliez et al., 2014; Taccola, 2011]. In [Frigon & Gossard, 2009], the authors

compared different mechanisms for inducing locomotor-like activity in a decerebrate

cat that lacked peripheral sensory feedback. When they compared the length of flexor

bursts to extensor bursts, they found that extensor bursting lasted longer than flexor

bursting across a range of gait speeds. This observation of “extensor dominance”

was seen during both spontaneous and drug-induced bouts of locomotor activity and

matches activity patterns seen in intact animals. In contrast, when locomotor ac-

tivity was induced with electrical stimulation to the mesencephalic locomotor region,

aberrant “flexor dominant” activity was seen. These results reveal an apparent asym-

metry in the default, spontaneously generated, pattern of activity in spinal networks

that can be reshaped by descending commands. Understanding more details like this

about what the default pattern of motor circuit activity looks like and how it is main-

tained will likely be critical for deciphering the logic of descending control signals in

premotor regions of the brain.

In this thesis, we will quantify the amount of variance in motor neuron firing pat-

terns that we observe across dozens of preparations and retrogradely labeled motor

neuron pools, during a drug-induced locomotor-like network state. After comparing

these activity patterns to those seen in knockout animals where the network struc-

ture has been perturbed, we will return to this idea of a “default” locomotor state to

consider what the fundamental grain of motor neuron firing might be: is it organized

at the level of single neurons, spinal segments, or muscle groups? Next, we will use

these data to examine how the interneuron networks responsible for producing differ-

ent patterns of motor neuron firing during locomotion might find their appropriate

motor neuron targets during development. This line of inquiry will lead us towards

the final chapter where we will present data suggesting how inhibitory interneurons

might be differentially recruited by functionally distinct groups of motor neurons.
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Figure 1.6: Perturbation to proprioceptive feedback selectively causes

deficits in certain locomotor tasks

(A) Kinematic and EMG data obtained from a wild type (left) and an Egr3−/− mouse

(right) that lacks proprioceptive muscle spindle afferents during treadmill walking.

(B) Format matches (A), but data was taken during swimming behavior. Figure

adapted from [Takeoka et al., 2014].
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Optical imaging of neuronal firing in locomotor

circuits

2.1 Introduction

2.1.1 Limitations of conventional methods in understanding motor

neuron activity

The sequence of muscle activation during locomotor behavior has been studied with

various methods for more than 100 years [Sherrington, 1906; Brown, 1914]1. In partic-

ular, electromyography (EMG), peripheral nerve recordings, and intracellular record-

ing techniques have been applied to great effect in describing the principles guiding

motor neuron recruitment under muscle load [Henneman et al., 1965], the circuits

underlying different spinal reflexes [Brown, 1914; Creed et al., 1932], the sequence

of muscle activation during varied gaits [Grillner, 1981; Krouchev et al., 2006], and

that isolated spinal circuits are sufficient to drive patterned motor neuron activity

[Grillner & Zangger, 1979].

1Portions of this chapter were derived from work in [Machado et al., 2015].
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However, none of these electrical recording methods permits the detailed measure-

ment of motor neuron pattern across space [Yakovenko et al., 2002]. Since the discov-

ery that motor neurons sharing common muscle targets are spatially segregated into

defined clusters called pools [Romanes, 1964], the question of whether spinal circuits

use motor neuron position as a guide during development has remained a persistent

question [Jessell et al., 2011]. To resolve this issue, we decided to take advantage

of recent advances in optical imaging methods for measuring neural activity. Such

methods permit the direct observation of motor neuron and interneuron activation

across space, as fluorescence fluctuations related to neuronal firing can be directly

observed in neuronal somata and processes.

2.1.2 Interrogating spinal circuits with Ca2+-based imaging

techniques

Ca2+ imaging has been used in neuroscience for decades. While the usage of Ca2+

sensors gained widespread popularity after the development of the first synthetic

small-molecule Ca2+ indicators [Tsien, 1988], the first reports of optical measurement

of Ca2+ flux during action potential firing date nearly as far back as the discovery

of the Ca2+-activated photoprotein aequorin [Ridgway & Ashley, 1967; Shimomura

et al., 1962; Llinas et al., 1972; Shimomura, 1995]. In the years following the initial

development of this methodology, it was successfully applied towards the study of

spinal circuits [O’Donovan et al., 1993]. However, due to a reliance on widefield epi-

fluorescence microscopy, these first imaging measurements lacked cellular resolution.

As a consequence these imaging studies in isolated spinal cord preparations could not

discern whether motor neuron pools fired as discrete units or rather as participants

in a larger wave-like pattern during rhythmic network activity [Bonnot et al., 2005;

O’Donovan et al., 2008] (see Figure 2.1).

Therefore, while Ca2+ imaging techniques have been applied towards the analysis
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of spinal circuits for nearly as long as synthetic Ca2+ indicators have existed, only re-

cently has it become possible to resolve the activation patterns of individual neurons

at high temporal fidelity. Recent advances have emerged due to the development

and application of two-photon laser scanning microscopy (reviewed in [Svoboda &

Yasuda, 2006]). This approach has been successfully used to measure the rhythmic

activity of genetically defined subpopulations of spinal interneurons that expressed

fluorescent markers like GFP [Kwan et al., 2009; Kwan et al., 2010].

In addition, over the last six years genetically encoded Ca2+ indicators (GECIs)

have improved to the point that they have surpassed synthetic Ca2+ indicators in both

signal sensitivity and strength [Chen et al., 2013; Horikawa et al., 2010]. In particular,

the GCaMP family of GECIs [Nakai et al., 2001] has been improved tremendously.

The third-generation variant of GCaMP, called GCaMP3 [Tian et al., 2009], repre-

sented an important milestone in the development of GECIs because it was finally

adequate to perform many experiments. It remained insensitive to small Ca2+ fluxes

associated with small bursts of spikes (less than 5 Hz), but importantly exhibited

large fluorescence transients after larger bursts of neural activity that could be de-

tected robustly even under in vivo conditions. More recently, the GCaMP6 series of

indicators was developed—enabling the optical measurement of single action poten-

tials from individual neurons [Chen et al., 2013].

In this work, we took advantage of both the high spatial resolution afforded by

two-photon microscopy as well as recent advances in the development of GECIs. This

allowed us to achieve high signal-to-noise measurements at high temporal resolution

with genetic specificity.



30

200 µm 100 µm

Fluorescence responseLateral side imaging

0 1

330 ms

Action potential

Electroporated indicator

Retrograde fill of indicator

A CB
A

n
ti
d
ro

m
ic

 s
ti
m

u
la

ti
o
n

Im
a
g
in

g
 d

u
ri

n
g

 l
o
c
o
m

o
to

r 
fi
ri

n
g

165 ms

LMC

MMC

LMC

MMC

L3 L4 L5

Ventral surface imaging
D E

Figure 2.1: Optical characterization of motor neuron activity using fluores-

cence microscopy

(A) Lateral view of lumbar segments L4-L6 in a neonatal mouse spinal cord prepa-

ration after electroporation with Calcium Green. (B) Normalized mean fluorescence

response during sustained ventral root L5 stimulation at 20 Hz. (C) Comparison of

responses to a single antidromic stimulus pulse. Mean fluorescence for electroporated

preparations was averaged across 5 preparations (green trace) and across 4 retro-

gradely labeled preparations (blue trace). Electrical responses were averaged across 7

neurons taken from 6 preparations. All means shown ± s.d. (D) Ventral view of lum-

bar segments L3-L5 after retrogradely loading of motor neurons with Calcium Green

dextran via ventral roots. Colored boxes represent regions of interest (ROIs) drawn

over the lateral and median motor columns (LMC and MMC, respectively). (E) Mean

fluorescence traces taken from colored ROIs in (D). Panels (A-C) were adapted from

[Bonnot et al., 2005]. Panels (D-E) were adapted from [O’Donovan et al., 2008].
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2.1.3 Difficulties in quantifying burst timing using optical imaging

data

Measurements of Ca2+-sensitive fluorescence transients are intrinsically noisy, espe-

cially when made at cellular resolution. Furthermore, the relationship between flu-

orescence and neuronal spiking is complex. As a consequence, many of the most

successful early experimental results to arise from the use of Ca2+ imaging methods

relied on experimental paradigms where the precise timing and strength of neuronal

responses did not need to be known. For example, one of the first papers to demon-

strate in vivo Ca2+ imaging presented moving grating stimuli at different orientations

to cats and mice in order to deduce the orientation selectivity of layer 2/3 neurons in

primary visual cortex ([Ohki et al., 2005], also see more recent data from [Chen et al.,

2013] demonstrating this assay in Figure 2.2A-B). Since each grating stimulus could

be displayed for ∼10 s, and because most neurons in layer 2/3 were already known

to selectively respond to a subset of orientations, data analysis in this experimental

setting was straightforward: it merely required thresholding fluorescence data to de-

cide whether a neuron was active or not during a given stimulus presentation. This

approach yielded spatial maps of orientation tuning, at cellular resolution.

In contrast, more recent work where layer 2/3 neurons were imaged in posterior

parietal cortex (PPC) [Harvey et al., 2012], provides an example of an imaging context

where the timing of neuronal activity was much more important to discern. In this

work, Harvey and colleagues trained mice to choose to turn left or right in a virtual

reality environment containing a T-maze, depending on the color of the walls (i.e.

white walls denoted “turn left” and green walls denoted “turn right”). They found

that some neurons in PPC seemed to encode the choice that the mouse would choose.

Quantifying this result was simple, the raw data during a trial could be thresholded

as in the drifting grating task (note the similarity in raw data between Figure 2.2B to

Figure 2.2C). However, when they examined their trial-averaged data, they noticed a
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subtle but robust trend: the collection of all left or right-preferring neurons spanned

the duration of the trial, with individual neurons active at distinct moments in time.

In order to more clearly understand this result, more complex state-space analyses

were necessary, and certain features of this timing result were not quantified owing

in part to a lack of knowledge of the relationship between neuronal firing and fluo-

rescence.

This second experimental example bears many similarities with our assay for mea-

suring locomotor-firing from an isolated spinal cord preparation. Because we obtained

detailed measurements of the relationship between firing and fluorescence in each ex-

periment, we were able to effectively leverage spike inference methods (described in

this chapter as well as Chapter 3). We found that the firing properties of motor neu-

rons during locomotor-firing were also well suited for characterization with optical

methods: bursts were big, the frequency of locomotor firing is slow relative to the

imaging rate (0.2 Hz bursting verses a 15 Hz imaging rate), and there is rich struc-

ture that can be extracted from the timing of motor neuron activity. Indeed, with

each subsequent improvement to the experimental preparation and methods described

here, we observed additional spatial structure in locomotor firing. This richness in

neuronal firing will be described in more detail in the subsequent chapters.
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Figure 2.2: Estimating the timing of neuronal firing is necessary in some

experimental contexts

(A) In vivo fluorescence imaging data obtained from [Chen et al., 2013] demonstrat-

ing the drifting gratings task. Data analysis only requires determining whether or not

a neuron was active or not during a given grating stimulus. (B) Example GCaMP6s

fluorescence responses from three neurons in response to eight different grating stim-

uli. (C) Example GCaMP3 data taken from three neurons imaged during a T-maze

exploration task [Harvey et al., 2012]. (D) Individual neurons were found to exhibit

activity peaks at each point during all three epochs of a trial (cue, delay, and end)—

structure that would have been missed by simply classifying neurons as responders

or non-responders. Panels A-B were adapted from [Chen et al., 2013]. Panels C-D

were adapted from [Harvey et al., 2012].
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2.2 Results

To measure the firing of motor neurons during locomotor-like network activity us-

ing optical methods, two technical concerns must be first considered. First, Ca2+

indicator (synthetic or genetic) must be selectively introduced into motor neurons.

The concentration of indicator within an individual neuron must be determined ap-

propriately. If too little indicator is present in a neuron, Ca2+-sensitive fluores-

cence transients will be too small to detect. If too much is present, then endoge-

nous Ca2+ buffering properties will be perturbed and fluorescence transients will

also be undetectable—despite bright baseline fluorescence [Helmchen & Tank, 2005;

Garaschuk et al., 2006]. Second, because we are concerned with action potential firing

rather than Ca2+ concentration per se, each measured Ca2+-sensitive fluorescence

transient must be quantitatively related to neuronal firing [Vogelstein et al., 2010;

Pnevmatikakis et al., 2015].

In this chapter, we describe our optical imaging setup, our means of delivering in-

dicator selectively to motor neurons, and methods for reliably relating Ca2+-sensitive

fluorescence to action potential firing in the face of indicator concentration variability

and imaging noise. Then we describe our methods for validating the relationship

between spiking and fluorescence for dozens of neurons in each experimental prepa-

ration.

2.2.1 Using high-speed two-photon microscopy to characterize

motor neuron activity

In widefield fluorescence microscopy, a large fraction of the sample below the micro-

scope objective lens is bathed in excitation light produced by a high-intensity light

source and resulting fluorescence emission is captured by a camera. Owing to the

light scattering properties of neural tissues, and the fact that excitation light cannot
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be restricted to the focal plane of the microscope, this approach lacks cellular resolu-

tion.

Instead, we must use a microscope that iteratively collects fluorescence from a

single point and focal plane at each moment in time by scanning an excitation laser

across space. There are two common types of laser scanning microscopes (LSM): con-

focal and two-photon. In confocal microscopy, the laser sequentially excites a cone of

light at a each X,Y position that extends far above and below the focal plane. How-

ever, because the current X,Y,Z location is known to the microscope, fluorescence

emitted from the sample can be collected through a pinhole positioned to reject emit-

ted fluorescence that did not originate from the current focal plane. Unfortunately,

this approach to light collection is highly inefficient in tissues that are ensheathed

in white matter which scatters the emitted fluorescence such that it does not pass

through the pinhole. This is the case in neonatal mouse spinal cords: even the most

superficial motor neurons are more than 100 µm deep relative to the lateral surface.

An alternative approach to is to simply restrict the excitation beam to only illu-

minate a single spot in X,Y and Z. In such a scheme, a pinhole is no longer needed

to block potentially out-of-focus fluorescence, because nearly all excited fluorescence

must have originated from the location of interest (Figure 2.3A). This type of mi-

croscope requires the use of a pulsed, long-wavelength, femtosecond laser to evoke

“two-photon” fluorescence. In this setting, two photons of excitation light are needed

to excite a single fluorophore instead of one. As a consequence, fluorophore excita-

tion probability diminishes quadratically above and below the focal point, effectively

creating a spatially restricted point of excitation, instead of an elongated cone of light

that extends broadly in the Z dimension [Svoboda & Yasuda, 2006]. In addition to

spatially restricting the area of excitation at each moment in time, the use of longer

wavelengths of excitation light that are not absorbed well by molecules and proteins
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that are intrinsic to neurons themselves results in reduced photodamage and there-

fore permits imaging data to be acquired from the same neurons for longer temporal

periods. For these reasons, we found two-photon LSM to be well-suited for use in

imaging isolated spinal cord preparations.

Unfortunately, one significant disadvantage of LSM is that the laser source must be

physically scanned across the tissue of interest by moving two galvanometer mirrors,

one on each the X and Y axes. Depending on the size of the galvanometer mirrors

themselves and the area to be scanned this process of scanning a whole imaging frame

can be quite slow (∼ 1 Hz). Since we want to describe the patterns of neural activity

at much faster time scales (ideally closer to 100 Hz), we solved this problem in two

ways. First, instead of scanning the X galvanometer mirror in successive lines we

jointly scanned the two mirrors in a spiral trajectory. This approach permits image

acquisition at speeds up to ∼8 Hz. Another solution takes advantage of the fact that

when an imaging field is scanned one line at a time, the X galvanometer must scan

quickly across each line while the Y galvanometer only needs to slowly step after each

line on the X axis has been acquired. Therefore we replaced the X axis galvanometer

with a “resonant” galvanometer capable of scanning across each line at a single high

resonant frequency: 8 kHz. This approach allowed us to acquire 256 x 256 pixel imag-

ing frames at 60 Hz. In practice we averaged across frames in these image sequences

to improve signal-to-noise, achieving an effective frame rate of 15 Hz. Scanning at

a high frame rate and then downsampling further reduced photodamage due to the

greatly reduced dwell time at each point in space [Varga et al., 2011].

We used this resonant-scanning LSM approach to characterize isolated neonatal

mouse spinal cords (aged 2-5 days) while suction electrode recordings were simulta-

neously obtained from multiple ventral roots (Figure 2.3B). We found that scanning

each preparation in the sagittal plane was more effective than imaging from the ven-
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tral surface. Sagittal imaging obviated the need to remove ventral roots, which would

otherwise occlude the imaging path and also allowed us to simultaneously view mul-

tiple motor neuron pools that were arranged along the dorsoventral axis of the spinal

cord. Owing to the size and position of the white matter tracts surrounding the spinal

cord, pools that were too deep to image from the sagittal plane were also too deep to

see from the ventral surface.
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Figure 2.3: Experimental preparation for optical imaging of locomotor ac-

tivity

(A) Diagram of optical layout of resonant galvanometer-equipped two-photon laser

scanning microscope used in experiments. (B) Schematic illustrating isolated neona-

tal mouse spinal cord preparation with a suction electrode positioned on ventral root

L2 and the laser scanning microscope positioned over the lateral white matter.
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2.2.2 Driving expression of genetically encoded Ca2+ indicator in

defined neuronal subtypes

We next turn our attention towards the task of selecting an appropriate Ca2+ indi-

cator and driving its expression selectively in motor neurons.

Over the course of this project, we evaluated three approaches for selectively de-

livering indicator to motor neurons. First, we tried direct application of Calcium

Green (Calcium Green-1 dextran 10,000 MW; Life Technologies) to ventral roots via

suction electrodes (Figure 2.4A). While this approach yielded nice dye filling, it re-

quired 8-10 hours of time. This required the experimental preparation to be isolated

and held under cold artificial cerebrospinal fluid (ACSF) overnight before an imaging

experiment could be conducted, resulting in diminished preparation viability once the

experiment could actually begin. The amplitude of fluorescence transients was also

highly variable from neuron to neuron, owing to variability in dye uptake by each

axon in the ventral root. This issue, combined with the fact that each ventral root

had to be independently filled with dye if we desired to label multiple spinal segments

with indicator, made this method inappropriate for our experimental needs. Conse-

quently, we were left with two remaining options: drive the expression of GCaMP

(the best GECI family available to us, we were unable to obtain useful data through

the use of GECOs [Zhao et al., 2011]) using either a viral vector or a transgenic mouse.

We evaluated both of these options. First, we attempted to use Cre dependent

adeno-associated virus (AAV) vectors. Either via muscle injection, or by direct spinal

cord injection into the neonatal mouse, we found that this approach was ineffective

due to the > 1 week latency between initial viral infection and robust GECI expres-

sion (Figure 2.4B). Instead, we found that glyocoprotein-deficient SAD-B19 rabies

viruses expressing GCaMP variants were able to drive robust levels of expression in

just 2-3 days following muscle or spinal cord injection (collaboration with TR Rear-
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don; protocol for production based on [Osakada et al., 2011]). Unfortunately, this

approach had two significant downsides: at 4-5 days post-infection, GCaMP+ motor

neurons became non-responsive and exhibited unusual morphological characteristics,

suggesting that rabies (or high levels of GCaMP) eventually had toxic effects on the

neurons. Additionally, rabies yielded sparse labeling of neuronal tissues after spinal

injection, and only a few infected neurons per muscle injection. Consequently, in

order to drive robust indicator expression at young postnatal ages across all motor

neurons, we decided to use conditional Rosa::GCaMP3 mice generated by the Allen

Institute (line Ai38; Figure 2.4C; [Zariwala et al., 2012]).

We also tested three different types of Ca2+ indicator: the synthetic indicator

Calcium Green and two GECIs: GCaMP3 and GCaMP6 (both the s and f vari-

ants). To evaluate the relationship between fluorescence and spiking for each of these

probes, three motor neurons (expressing Calcium Green, GCaMP3, and GCaMP6S,

respectively in panels D-F of Figure 2.4) were driven to fire in a sequence of dif-

ferent sized bursts (burst count indicated in numbers above each orange stimulus).

In response, clear fluorescence transients of varying magnitudes were observed (red

lines; spike inference appears as black bars; note variable scale bar size in each panel).

In the examples shown, both Calcium Green and GCaMP6S show clear fluorescence

transients to single spikes while the GCaMP3 expressing neuron only shows clear

responses above 10 Hz. In most of the experimental data in this thesis, we elected

to use GCaMP3 (since a conditional mouse was available) despite its insensitivity

to small numbers of action potentials because we were able to resolve bursting ac-

tivity during each cycle of locomotor firing in our data using this sensor. This is

consistent with published intracellular recording data obtained from motor neurons

during the same network state that shows bursting activity at high firing rates dur-

ing each burst—with nearly no activity out-of-cycle (e.g. in [Zhong et al., 2007;

Beliez et al., 2015]).
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Figure 2.4: Optical readout of action potential firing in motor neurons

(A-C) Ca2+ indicator was loaded into motor neurons, either via ventral root fill of

Ca2+ green (A), use of conditional transgenic mice (Olig2 :: Cre;Rosa :: GCaMP3;

B), or via viral injections (∆G − Rabies − GCaMP6S; C). (D-F) Action potential

firing was reflected in single-trial Ca2+-sensitive fluorescence time series data acquired

from single motor neuron somata (red traces) during antidromic stimulation of ven-

tral roots (orange bars) at different frequencies (numbers above orange bars). Inferred

action potential firing is shown below each red trace (black bars; amplitude is arbi-

trarily scaled). Note different scale bar sizes on fluorescence measurements between

panels D-F.
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2.2.3 Quantifying features of motor neuron firing using Ca2+

imaging

As is shown in Figure 2.5A-D, and in [Helmchen & Tank, 2005; Vogelstein et al., 2010;

Pnevmatikakis et al., 2015], the relationship between fluorescence and the spiking of

a single neuron can be approximated by convolving a spike train (simulated data

in Figure 2.5A) with a exponentially-decaying kernel with sharp rise and slow de-

cay, where the decay time constant is related to the concentration of Ca2+ indicator

(left panels of Figure 2.5B-C). Independent, Gaussian noise, can then be added at

each time step in the simulated calcium time series to generate simulated data that

approximates that measured from real motor neurons that were induced to fire in

rhythmic bursting activity (Figure 2.5E, red fluorescence time series data aligned to

a simultaneous recording from ventral root L2).

In this context it is straightforward to see that while the onset of neuronal spiking

(seen in Figure 2.5A) aligns clearly with a rise in fluorescence, neither burst peak

or burst duration (red and blue lines, respectively in Figure 2.5B-D) can be easily

inferred. There are two possible solutions to this problem. First, we could restrict

our analyses of neuronal firing to detecting burst onset and simply detect fluores-

cence rise times [Kwan et al., 2009]. Alternative, we could try to estimate the decay

rate of the Ca2+ indicator and try to estimate the timing of burst peaks and offsets,

either through the use of spectral methods [Kwan et al., 2010] or using spike infer-

ence algorithms to estimate the timing of neuronal spiking [Vogelstein et al., 2010;

Pnevmatikakis et al., 2015].

In this work, we chose to apply spike inference methods (as described in Chapter

3 and schematized in Figure 2.6A) to estimate the onset, offset, and duration of mo-

tor bursting from Ca2+ fluorescence data. However, we worried whether our simple

model of Ca2+ dynamics was adequate for describing our data. In particular, it is
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known that certain nonlinearities may exist in calmodulin-based sensors owing to the

structure of calmodulin itself [Crivici & Ikura, 1995]. Calmodulin can bind up to four

Ca2+ at two high-affinity binding sites and two low-affinity binding sites, plausibly

generating nonlinearities in the relationship between spiking and fluorescence when

using GCaMPs vs. other sensors that are not based on calmodulin [Greenberg, 2015].

Therefore, we explicitly validated the three assumptions that underlie the spike

inference model we used. First, we assume that the relationship between spiking and

fluorescence is linear, and can be modeled by simply convolving a spike train with a

kernel with instantaneous rise (relative to the imaging frame rate) and exponential

decay (red 1 in Figure 2.6A). We tested this assumption in Figure 2.6C-D by fitting a

nonlinear model to the data and observing that it did not produce appreciably better

fits to the data.

Second, we assume that the noise in our imaging measurements can be modeled

as a normally distributed random variable added to each fluorescence observation

(red 2 in Figure 2.6A). We validated this assumption on fluorescence measurements

when the actual spiking behavior of the neuron was known. By convolving the true

spike train of the neuron with an appropriate exponential kernel, we could create a

predicted noiseless calcium trace (Figure 2.7A-D). Testing this assumption, we found

that histograms of the difference between this “linear prediction” and the actual flu-

orescence observations (i.e. the residual error) clearly resembled normal distributions

(Figure 2.7D; as in [Vogelstein et al., 2010]).

Third, we needed to determine whether the actual output from the spike inference

algorithm closely matched the actual firing of the neuron (red 3 in Figure 2.6A). If it

did not, that could either be due to the fact that our inference algorithm has failed,

or because the sensitivity of our chosen Ca2+ indicator, GCaMP3, was inadequate to
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resolve features of the underlying neural activity. In the next section, we will pro-

vide validation for this third assumption. A detailed description of the development

and implementation of the spike inference algorithm is provided in Chapters 3 and 8.6.
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Figure 2.5: Quantifying features of motor neuron firing using Ca2+ imaging

(A-D) Schematic depicting the relationship between firing and Ca2+. (A) Model firing

rate with bursts peaking at 20 Hz (top) and underlying Poisson spike train (bottom).

The spike train is identical during both bursts. Extended vertical black lines indicate

the time of peak firing rate during each burst. (B) Convolving a fast-decaying Ca2+

kernel (black; left) with the spike train shown in (A) results in a Ca2+ time series

(cyan; right). Red bars denote the time of the Ca2+ peak. Blue lines indicate burst

duration as measured from the Ca2+ signal (defined as full width at half maximum

amplitude). (C) The convolution of the spike train from (A) with a slower-decaying

kernel (black; left) results in the time series shown (cyan; right). Variability in the

Ca2+ indicator decay rate makes the comparison of burst duration measurements

taken from different preparations difficult. (D) Gaussian noise was added to the Ca2+

time series from (B) in order to simulate noisy fluorescence measurements, in which

both the Ca2+ peak and duration are obscured. (E) Ca2+ sensitive fluorescence time

series data acquired from four motor neurons during locomotor firing (MN1-MN4)

aligned to a simultaneous electrical recording from ventral root L2.
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Figure 2.6: Spike inference permits estimation of motor neuron firing

(A) Our spike inference algorithm used a simple model that assumed fluorescence

measurements arose from a spike train convolved with a single-exponential kernel

(red 1; validated in panels C-D), with additive Gaussian noise (red 2; validated in

Figure 2.7D-E). The algorithm inverted this model (3; validated in Figure 2.8) to

find the most likely spike histogram underlying each fluorescence time series. (B)

Example showing performance of spike inference on simulated data (red) plotted

above the spike inference model fit (cyan) and inferred spikes (black bars). (C)

A fluorescence time series measured from a motor neuron (red), together with the

predicted Ca2+ signal derived from either a linear model of Ca2+ (cyan) or a nonlinear

model (black). (D) Histogram comparing the differences between linear and nonlinear

model fit quality, as measured using the Pearson correlation (Corr) between measured

fluorescence and model prediction. This difference, Corr(linear prediction, data) -

Corr(nonlinear prediction, data), is shown for 4944 neurons that were driven to fire

in defined patterns (see Figure 2.7D-E). Red bars show a subset of high SNR neurons

(n = 367) that were used to estimate the fluorescence transient decay rate.
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Figure 2.7: Antidromic calibration to relate fluorescence to neuronal spiking

(A) Sagittal view of L2 during antidromic stimulation taken under epifluorescence

illumination. The region responsive to antidromic stimulation is shown in red. (B)

Average response to the antidromic stimulus (orange; numbers show stimulation rate

during each stimulus train in Hz) across the red region shown in (A). The convolution

of the antidromic stimulus and an exponentially decaying kernel is superimposed

upon the average fluorescence time series (purple), and represents the predicted Ca2+

response to the antidromic stimulus under our Ca2+ model. (C) Two-photon imaging

field (dotted region in (A)) containing example motor neurons that were responsive

to antidromic stimulation (colored ROIs). (D) Fluorescence time series (black) from

three ROIs in (C) during antidromic stimulation (orange; numbers show stimulation

rate during each stimulus in Hz). The predicted Ca2+ response is shown in purple

and the inferred spikes underlying each fluorescence time series are shown as black

bars. (E) Histograms of the residual error between the fluorescence time series and

predicted Ca2+ response for each of the three responses shown in (D).
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2.2.4 Antidromic calibration to relate fluorescence to neuronal

spiking

The validity of our quantification neuronal activity depends on the ability of the

spike inference model to capture the relationship between firing and fluorescence.

The model was calibrated and its applicability evaluated by exploiting the fact that

motor neurons activated antidromically by ventral root stimulation fire in patterns

that match stimulus timing (Figure 2.7; see example data from [Bonnot et al., 2005]

in Figure 2.1A-C). For each experimental preparation, a fluorescence transient decay

time constant was computed using fluorescence measurements obtained during pat-

terned antidromic stimulation that mimic locomotor-like rhythmic burst firing.

Use of these time constant values corrected for decay time variation between prepa-

rations (Figure 2.8). Importantly, we noted a systematic bias in observed time con-

stant values as a function of Cre driver line (Figure 2.8A). Use of Olig2 :: Cre reliably

yielded preparations with average time constant values between 0.65-0.85 seconds. In

contrast, ChAT :: Cre preparations typically had time constant values closer to 1.0

seconds. This discrepancy likely results in part from the fact that ChAT expression

in motor neurons begins at embryonic day 12, while expression of Olig2 begins ear-

lier at embryonic day 11 (Nikolaos Balaskas, personal communication). Whatever

the mechanism, our ability to detect this difference underscores the importance of

being able to accurately estimate this time constant value in each preparation. Not

accounting for this variance results in apparent variance in phase tuning between dif-

ferent experimental preparations (Figure 2.8B-C; in particular compare the spread of

datapoints in 2.8C between peak detection and spike inference).

To assess the accuracy of spike inference, we examined phase tuning estimates

for individual motor neurons during antidromic stimulation (Figure 2.7D). Tuning

measurements derived from spike inference were nearly identical to values computed
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directly from antidromic stimuli (mean difference ± standard deviation (s.d.) = -2.0

± 10.7◦, n = 367 neurons; Figure 2.8B,C). Thus, spike inference permits accurate

estimation of motor neuron phase tuning.
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Figure 2.8: Variation in Ca2+ transient decay rates between preparations

(A) Estimated decay time constants in seconds for each dataset plotted in (C). Colors

correspond to different experimental conditions (legend in (C)). (B) Comparison of

peak detection and spike inference approaches to phase tuning estimation. Phase

tuning was estimated using a simple peak detection method (left), or using spike

inference (right). Phase tuning was estimated using fluorescence data taken from four

antidromic bursts (shown in the left panel of (Figure 2.7D)). The midpoint of each

burst was defined as 0◦. Histograms showing phase tuning estimation error from n =

29 motor neurons from a single Olig2 :: Cre mouse (top) and n = 24 motor neurons

from a single ChAT :: Cre mouse (bottom). (C) Error distributions for each mouse

preparation calibrated during antidromic stimulation using peak detection (left) or

spike inference (right) to estimate phase. Error bars span the mean ± s.e.m. This

analysis reveals that spike inference successfully reduces phase error that arises due

to the temporal delay between peak Ca2+ and peak firing rate, and due to variation

in Ca2+ decay rates between preparations.
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2.3 Discussion

2.3.1 Necessity of large-scale calibration methods

Many previous studies have examined the relationship between fluorescence and spik-

ing for individual neurons [Smetters et al., 1999; Bonnot et al., 2005; Kwan et al., 2009;

Vogelstein et al., 2010; Smith & Häusser, 2010]. However, this work is the first to our

knowledge to use antidromic stimulation or a similar method to measure the distri-

bution of fluorescence responses after inducing dozens of neurons of a single cell type

to fire in a particular pattern and then use that information to calibrate and evaluate

quantitative data analysis procedures. Because we repeated this calibration process

in each one of our experimental datasets, we were able to compensate for changes in

indicator expression level between preparations. The isolated neonatal mouse spinal

cord imaging preparation that we developed here represents a good test case for the

development of these methods because there is a significant amount of structure to

be uncovered in the timing of motor neuron recruitment.

In the future, antidromic calibration of Ca2+-sensitive fluorescence measurements

via electrical [Bonnot et al., 2005] or optogenetic [Li et al., 2015] stimulation of axons

might represent an important tool for assessing the relationship between fluorescence

and neuronal activity. Recently, a number of papers have presented experimental

schemes for “all-optical” recording and stimulation of individual neurons within neu-

ral circuits [Packer et al., 2014; Grosenick et al., 2015]. However, we will never have

truly reached this goal while we are still reliant on electrical recording methods to cal-

ibrate our measurements. Calibration experiments where spiking is measured with an

electrode during simultaneous imaging is always labor intensive and often impossible

in many deep in vivo imaging settings. Therefore, an important must be to develop

both experimental and theoretical methods for relating spiking to fluorescence that

can make use of even imperfect or incomplete calibration data. For example, direct
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optogenetic activation of a population of neurons using a sequence of light pulses with

increasing intensity would not deterministically evoke a specific spike train in all neu-

rons, but it could certainly be used to produce fluorescence imaging data where strong

prior information about the relative firing of the population is known–especially if this

procedure was repeated multiple times to permit averaging.

2.3.2 New computational and genetic tools make large-scale

imaging possible

Approximately 2,000 motor neurons innervate each hindlimb of the mouse [McHanwell

& Biscoe, 1981], yet the precise number of activation patterns produced by this set

of neurons during locomotion is unknown. In order to constrain the types of neural

computations that spinal locomotor circuits might need to perform to control a limb,

detailed measurements of neural activity during behavior would be ideally collected

from all of the motor neurons that control a limb. In this chapter, we discussed the

technical obstacles that needed to be first resolved before such measurements could be

obtained. With this combined genetic and computational approach in hand, we can

now generate nearly comprehensive maps of motor neuron activity during locomotor

firing.

2.3.3 A population readout of motor pattern

Earlier optical measurements of motor neuron activity across space lacked cellular

resolution and therefore were unable to determine whether individual motor neuron

pools had distinct firing patterns, or if all motor neurons participated in a single

wave-like pattern of activation [Bonnot et al., 2005; O’Donovan et al., 2008] (Fig-

ure 2.1).We obtained similar epifluorescence measurements from a mouse spinal cord

preparation positioned on its lateral side that expressed GCaMP3 in all motor neu-

rons (30 Hz acquisition rate). Figure 2.9 shows phase tuning estimates, relative to
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peak L2 ventral root activity, that were computed for individual pixels that are each

likely to contain many motor neurons.

This first experiment reveals clear, reproducible, spatial structure in the phase

tuning of motor neurons across space. Colored patches that represent groups of

motor neurons that are activated at similar times are strikingly present. However,

a gradient in phase tuning along the rostrocaudal axis is also apparent: light green

pixels that represent early-firing neurons can only be found rostrally, while dark blue

pixels representing later firing neurons predominate at more caudal segments. These

results seem to reproduce those reported in [O’Donovan et al., 2008] (where imaging

was conducted from the ventral surface). But how do these maps actually appear

at cellular resolution? Is there a wave of activity, or is such a pattern simply a

consequence of the spatial organization of motor neurons into pools? In the next

chapters, we will consider these questions in detail.
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Figure 2.9: Motor neuron phase tuning is organized across space

(A-B) Phase of locomotor firing was inferred pixelwise with respect to ventral root L2

for two 90s-long epifluorescence time series datasets taken from a single spinal cord

that expressed GCaMP3 solely in motor neurons (Olig2 :: Cre; Rosa :: GCaMP3).

Each panel shows a sagittal view of the spinal cord preparation (gray). The phase

tuning of the subset of all pixels with the brightest mean intensity is shown in colors

(see legend on bottom right).
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Analysis of large-scale optical imaging datasets

3.1 Introduction

Before we consider the structure of locomotor firing at cellular resolution, we will first

examine problems inherent in the analysis of large datasets containing measurements

from hundreds of neurons.1 Methods suitable for the analysis of recordings obtained

from individual neurons are inappropriate for understanding the aggregate activity

of thousands of neurons. We therefore present our approach towards the automated

analysis of large-scale imaging datasets as well as our contributions to other work that

developed statistical models to explain our high-dimensional data in a more intuitive

manner.

3.1.1 Understanding firing dynamics across large neuronal

ensembles

Since the 1960s, the number of transistors that can be fabricated per square inch

has doubled roughly every eighteen months [Moore, 1965]. This trend, known as

1This chapter in part details contributions made to: [Buesing et al., 2014], [Pnevmatikakis et al.,

2015], [Rad et al., 2015], and the SIMA toolbox introduced in [Kaifosh et al., 2014].
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Moore’s Law, has become somewhat self-fulfilling as semiconductor manufacturers

actually structure their hardware development plans such that this trend will con-

tinue. Indeed, because this trend has held for so long that software developers can

practically assume that it will continue for years into the future, and therefore design

new systems and algorithms of increasing complexity under the assumption that the

necessary hardware to run their software will exist soon. This expectation of expo-

nential gain over time has led to transformational changes in the manner in which we

interact with and use computational tools in our daily lives.

A similar trend of exponential growth can also be seen in the development of

new methods for simultaneously recording neurons (Figure 3.1; [Stevenson & Kord-

ing, 2011]). Our capability for measuring from neuronal populations roughly doubles

every 7.4 years. In contrast to Moore’s law, this trend is dictated mostly by exper-

imental need, rather than by market forces. Nevertheless, we have now approached

a point along this doubling curve that demands new approaches for data analysis.

Simply computing tuning curves, peri-stimulus time histograms, or other summary

statistics for each neuron is inadequate when you have simultaneous measurements

from 1,000+ cells for a simple reason: neurons exist in circuits and therefore their

activity patterns are often interdependent.

If an experimentalist only has access to the activity of a single neuron and a

stimulus or behavioral readout, there is not much to be done analytically beyond

relating the observed firing pattern to the provided stimulus. In contrast, if the ex-

perimentalist is recording from nearly all neurons in a local circuit, they can now ask

questions about which parts of the activity are driven by external input vs. recur-

rent interactions between the observed neurons. Unfortunately, asking such questions

about recurrent interactions quickly becomes computationally infeasible: instead of

computing a single summary statistic per neuron (which scales O(n)), examining just
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pairwise interactions scales quadratically and exponentially if higher order correla-

tions are considered. Simply interpreting large pairwise correlation matrices consist-

ing of hundreds of entries has become difficult. In this chapter, we will examine

new approaches for grappling with this sort of complexity both computationally and

intuitively.
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Figure 3.1: The scale of neural data is growing exponentially

(A) Measurements from simultaneously recorded neuronal populations plotted on

a logarithmic scale as a function of publication date. (B) The growth shown in

(A) can be attributed to the development of new recording methods over the past

half-century. In this work, we focus on large-scale data obtained from Ca2+ imaging

methods (red). Adapted from [Stevenson & Kording, 2011].
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3.1.2 Difficulties in analyzing large-scale imaging datasets

Aside from the choice of appropriate analysis techniques for understanding popula-

tion dynamics, large-scale imaging datasets also present a more practical problem:

manually processing each piece of data becomes infeasible. In this work, we typi-

cally recorded more than 50 image sequences each containing ∼ 50 neurons from each

mouse. Each of these image sequences then must be decomposed into groups of pixels

that contain individual neurons. Additionally, each image sequence had associated

ventral root recording data that needed to be filtered, processed, and aligned. Manu-

ally tracing 2,500 neurons and aligning associated electrophysiology data is not only

labor intensive, but it is error-prone and non-quantitative. In this chapter, we present

our methods for automatically processing our data.

3.1.3 New methods for measuring and analyzing population

dynamics

Ideally, the process of locating neurons within image sequences, extracting activity

events, and relating that collection of information towards the testing of hypotheses

about circuit function would all occur simultaneously in a single model fitting process.

While the bulk of our analysis resulted from the chaining of simple analysis procedures

into a single workflow, other approaches exist (e.g. [Pnevmatikakis et al., 2015]) that

combine these steps. This approach will be applied towards the analysis of axonal

imaging data in Chapter 6. Additionally, we will consider the question of whether

tuning functions (in this case phase tuning estimates, relative to ventral root activity)

should be computed for neurons individually, or whether we can take advantage of

the fact that adjacent neurons might have similar tuning preferences to achieve more

accurate measurements of phase tuning—using less data.
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3.2 Results

3.2.1 Automated processing of large-scale imaging datasets

In order to process our imaging data with minimal user intervention, we wrote a se-

ries of scripts to implement each step of the analysis workflow shown in Figure 3.2.

First, we took ran our semi-automated source extraction algorithm on each fluores-

cence image sequence to identify the set of pixels within each imaging frame that

corresponded to each neuron (Figure 3.3A). To initialize this algorithm, we manually

identified the centroid of each motor neuron cell body in ImageJ and then automat-

ically extracted a “block” around each centroid of size 15 x 15 pixels x T images

(30 x 30 µm; Figure 3.3B). After this process, we were left with a single block for

each user-defined neuron. The set of pixels corresponding to each neuron were then

extracted by running a sparse PCA algorithm on each block, defining the positively

weighted-pixels in the first principal component as the initial spatial filter, and then

smoothing the resultant object with a morphological filter to remove noncontiguous

pixels. This process yielded well-defined spatial filters for each neuron and required

no manual modification of results—since each filter was “seeded” by the user’s deci-

sion to define that region as containing a neuron. At the end of this process, pixels

that were shared between neurons were assigned to belong to only a single neuron

based on whichever centroid was closest to that pixel. This process is described in

more detail in Chapter 8.5.

While various algorithms exist for automatically identifying the location and cardi-

nality of cell bodies within an image, these algorithms typically require some amount

of user intervention to validate and refine (e.g. [Kaifosh et al., 2014]). Addition-

ally, locating motor neurons within the spinal cord was somewhat difficult relative

to other brain structures, owing to the fact that the sagittal surface of the spinal

cord is not flat, nor is the thickness of the white matter along the dorsoventral axis.
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As a consequence, the effective depth of imaging (and therefore mean fluorescence

intensity) will vary considerably across a single sagittal imaging field. We found

that our approach of quickly identifying cell centroids by hand and then automati-

cally processing individual blocks robustly solved these problems. Imposing quality

thresholds on the extracted neuronal signals proved adequate for culling the subset of

neurons where this approach failed. Finally, because our approach for neuronal iden-

tification relies on independently processing small blocks of fluorescence data before a

later merge and de-duplication operation, this scheme is well-suited for parallelization

and thus integration into distributed computing frameworks such as Spark/Thunder

[Freeman et al., 2014]. Other groups have independently converged upon similar

semi-automated approaches wherein neuron locations are manually identified to seed

spatial filters [Chen et al., 2013], further suggesting the merits of this approach.

Once a single fluorescence time series had been successfully extracted from each

neuron, we then aligned each time series to simultaneously recorded ventral root

recording data and performed spike inference using methods described in the next

section (additional technical details can be found in Chapter 8.8).

While methods exist for jointly extracting sources and performing spike inference

[Pnevmatikakis et al., 2015], they are currently also much more computationally

intensive than performing each step separately. Therefore, we only employed them

for analysis of axonal imaging datasets that could not be processed using the method

described here (see Chapter 6).
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Figure 3.2: Data analysis workflow for large-scale spinal cord imaging data

(1) Sequences of fluorescence images are acquired from our isolated neonatal mouse

spinal cord preparations with simultaneous ventral root measurements. (2, bottom)

Individual neurons are identified within each image sequence and their locations are

used to extract a one-dimensional fluorescence time series for each cell. These fluo-

rescence time series data are then further processed using spike inference algorithms

to estimate the spiking activity of each neuron. (2, top) Alternatively, both cell

extraction and spike inference can be solved in a single step, using more advanced

computational methods (e.g. [Pnevmatikakis et al., 2015]). (3) Finally, a variety of

post-hoc analyses to examine the structure of neuronal firing, from the generation

of tuning curves, to state-space analyses, can be performed on the spike inference

obtained from each neuron with respect to the ventral root recording data.
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Figure 3.3: Semi-automatic neuron identification and image segmentation

(A) Example imaging field from an isolated spinal cord preparation expressing the

Ca2+ sensor GCaMP3 in all motor neurons. (B) Centroids of fluorescent motor

neurons were manually identified (denoted as dots). (C) Sparse PCA, followed by a

sequence of morphological operations (see text), was automatically applied to a block

of pixels surrounding each centroid to extract spatial regions encircling motor neuron

somata. Scale bar is 100 µm.
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3.2.2 Improved algorithms for spike inference

In Chapter 2, we described how spike inference algorithms can be used to precisely

quantify features of neuronal firing from Ca2+ imaging data and how to experimen-

tally validate these algorithms2. However, we did not discuss the implementation of

these algorithms, computational costs to consider, or justify the simple mathematical

structure of our model for relating fluorescence to spiking. We will address each of

these issues in this section.

The problem of deconvolving the neural activity from an one-dimensional fluores-

ence time series is achievable at high image acquisition rates, that is, when the time

between two consecutive measurements is small compared to the Ca2+ indicator de-

cay time constant. Modern resonant scanning [Rochefort et al., 2008], random access

microscopy [Reddy et al., 2008], and scanless imaging [Nikolenko et al., 2008] proto-

cols can allow for this by recording from neural ensembles at high temporal resolution.

Under this regime, we take a completely unsupervised approach for performing

deconvolution that can be summarized as follows. First, we estimate a parametric

model for the Ca2+ concentration transient response evoked by a single spike. Instead

of fitting a parametric model to isolated calcium transients evoked by single spikes

(often only available from dual recording and imaging experiments, as in [Grewe et al.,

2010]), we characterize the Ca2+ transient as the impulse response of an autoregres-

sive (AR) process of general order p (as schematized in the previous chapter), that

models the rise and decay time constants, and estimate it by adapting standard AR

estimation methods. After determining the shape of the Ca2+ transient we estimate

the spiking signal by solving a constrained, non-negative, sparse deconvolution prob-

lem. This approach finds the sparsest non-negative neural activity signal that will fit

the data up to a desired noise level of the observed fluorescence trace (implementation

2Portions of section 3.2.2 are derived from [Pnevmatikakis et al., 2015]
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details and methods for parameter estimation can be found in Chapter 8.6). Impor-

tantly, the noise level, and indicator decay rate can be robustly estimated from the

autocovariance and power spectral density (PSD) of each fluorescence time series (see

Chapter 8.6). Given these two parameters, the optimal spike inference solution can

be found using a convex optimization framework [Boyd & Vandenberghe, 2004]. This

computational approach is efficient, as its runtime scales linearly with the number of

observed time steps.

Using the antidromic stimulation protocol described in the previous chapter, we

tested the deconvolution method using an in vitro dataset of n = 63 spinal motor

neurons obtained from 7 sequentially acquired imaging fields in a single preparation.

The neurons expressed the GCaMP6s indicator (via a rabies vector provided by TR

Reardon) and were antidromically stimulated to reliably fire in patterns that matched

the stimulus pulses (as in GCaMP3 data presented in [Machado et al., 2015]); we treat

the antidromic stimulus spike times as ground truth in this setting. The imaging rate

was 14.6 Hz and a first order AR model (p = 1) was found to be sufficient to model

the Ca2+ dynamics in this case (see 2.6C-D in the previous chapter). To quantify

the performance we used a correlation measure between the true spiking signal (as

is defined by the stimulus timing) and the inferred spiking signal, binned at the res-

olution defined by the imaging rate or coarser. We compared our methods with a

computationally more intensive Markov Chain Monte Carlo (MCMC) method that

was first presented in [Pnevmatikakis et al., 2013].

As can be seen in Figure 1A, both methods have largely similar performance: the

reconstructed Ca2+ time series for the constrained deconvolution algorithm (blue)

and the mean Ca2+ time series obtained with 500 samples from the MCMC algo-

rithm (green) superimposed on the raw data (black dashed). The MCMC method

produces samples of spike trains with continuous time resolution, and thus it can
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provide further insight into the number of spikes produced at every time bin and the

uncertainty of these estimates due to noise and finite imaging rate. This is shown in

Figure 3.4B where the marginal posterior of the number of spikes at each time bin is

plotted and the true number of spikes is also shown (purple dots). This uncertainty

quantification is not available with the constrained deconvolution algorithm, which is

based on a convex optimization framework and thus provides just a single estimate

of the neural activity (up to a scaling constant and with no quantification of uncer-

tainty), binned at the imaging rate resolution. Nevertheless, the performance of the

two methods is largely equivalent (Figure 3.4C,E).

However, at native resolution (bin width = 1∆), significant dispersion is apparent

around the 45◦ degree line. This dispersion comes from the fact that the corre-

lation metric is sensitive to spike jitter, since it only compares the signal between

identical time bins and does not depend on the ordering. If the true spike train is

smoothed, this dispersion reduces significantly, and thus the quantified performance

increases, indicating that our constrained deconvolution method generally infers the

correct number of spikes at approximately the correct times in order to explain the

observed fluorescence data. Figure 3.4D displays the recovered traces and true an-

tidromic stimulus spikes in more detail, and finally a plot of the correlation values at

multiple bin widths for all cells is shown in Figure 3.4F. Therefore, we conclude that

our constrained deconvolution method is scalable and delivers quantitatively similar

spike inference output to more computationally intensive techniques like the MCMC

algorithm.
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Figure 3.4 (preceding page): Application of the constrained deconvolution

algorithm to in vitro spinal cord data

(A) Raw fluorescence data from a motor neuron (black) and reconstructed fluorescence

time series fit by the constrained deconvolution method (blue) and the MCMCmethod

(green) [Pnevmatikakis et al., 2013]. (B) Histogram of spike train samples obtained

from the MCMC method (plotted in color) verses the true number of antidromic

spikes during each time bin (open circles). Colors indicate the probability of a certain

number of spikes within a given time bin, illustrating the ability of the MCMCmethod

to quantify uncertainty and identify multiple spikes within a single time bin. (C)

Estimated neural activity (normalized) from the constrained deconvolution method

(blue) and mean of the posterior marginal per time bin with the MCMC method

(red) verses the true number of antidromic spikes during each time bin (purple dots).

(D) Zoomed in version of panel A. (E) Correlation values between true antidromic

spike times and the constrained deconvolution estimate using two different methods to

estimate the noise power: a method based on computing the power spectral density

(PSD; x-axis) and the MCMC approach (y-axis). Neural activity is binned at 3

different resolutions (∆, 3∆, and 5∆, where ∆ = 68.5 ms, the duration of a single

imaging frame at 14.6 Hz). (F) Correlation values for all 63 cells at various time bin

widths. The neuron used in panels A-D is highlighted with black markers.
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3.2.3 Clustered factor analysis of multi-neuronal spike data

Recent progress in large-scale techniques for recording neural activity has made it

possible to study the joint firing statistics of up to 105 cells at single-neuron reso-

lution.3 Such data sets grant unprecedented insight into the temporal and spatial

structure of neural activity and will hopefully lead to an improved understanding of

neural coding and computation.

These recording techniques have spurred the development of statistical analy-

sis tools which help to make accessible the information contained in simultaneously

recorded activity time series. Amongst these tools, latent variable models prove to

be particularly useful for analyzing such datasets [Smith & Brown, 2003; Jones et al.,

2007; Macke et al., 2011; Byron et al., 2009]. They aim to capture shared structure

in activity across different neurons and therefore provide valuable summary statistics

of high dimensional data that can be used for exploratory data analysis as well as

for visualization purposes. The majority of latent variable models, however, being

relatively general purpose tools, are not designed to extract additional structure from

the data. This leads to latent variables that can be hard to interpret biologically.

Furthermore, additional information from other sources, such as spatial structure or

genetic cell type information, cannot be readily integrated into these models.

An approach to leveraging simultaneous activity recordings that is complemen-

tary to applying unstructured factor models, is to infer detailed circuit properties

from the data. By modeling the detailed interactions between neurons in a local mi-

crocircuit, multiple tools aim at inferring the existence, type, and strength of synaptic

connections between neurons [Okatan et al., 2005; Mishchenko et al., 2011]. In spite

of algorithmic progress [Keshri et al., 2013], the feasibility of this approach has only

3Section 3.2.3 is derived from [Buesing et al., 2014]
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been demonstrated in circuits of up to three neurons [Gerhard et al., 2013], as large

scale data with ground truth connectivity is currently only rarely available. This lack

of validation data sets also makes it difficult to asses the impact of model mismatch

and unobserved, highly correlated noise sources (“common input”).

We therefore propose here a statistical tool for analyzing multi-cell recordings

that offers a middle ground between unstructured latent variable models and models

for inferring detailed network connectivity. The basic goal of the model is to cluster

neurons into groups based on their joint activity statistics. Clustering is a ubiquitous

and valuable tool in statistics and machine learning as it often yields interpretable

structure (a partitioning of the data), and is of particular relevance in neuroscience be-

cause neurons often can be categorized into distinct groups based on their morphology,

physiology, genetic identity or stimulus-response properties. In many experimental

setups, side information allowing for a reliable supervised partitioning of the recorded

neurons is not available. Hence, the main goal of this section is to develop a method

for clustering neurons based on their activity recordings.

We model the firing time series of a cluster of neurons using latent factors, as-

suming that different clusters are described by disjoint sets of factors. The re-

sulting model is similar to a mixture of factor analyzers [Tipping & Bishop, 1999;

Ghahramani et al., 1996] with Poisson observations, where each mixture component

describes a subpopulation of neurons. In contrast to a mixture of factor analyzers

model which assumes independent factors, we put a Markovian prior over the factors,

capturing temporal dependencies of neural activity as well as interactions between

different clusters over time. The resulting model, which we call mixture of Poisson

linear dynamical systems (mixPLDS) model, is able to capture more structure us-

ing the cluster assignments compared to latent variable models previously applied to

neural recordings, while at the same time still providing low-dimensional latent tra-



71

jectories for each cluster for exploratory data analysis and visualization. In contrast

to the lack of connectivity ground truth for neurons from large-scale recordings, there

are indeed large-scale activity recordings available that exhibit rich and biologically

interpretable clustering structure, allowing for a validation of the mixPLDS model in

practice.

MixPLDS model definition

Let ykt denote the observed spike count of neuron k = 1, . . . , K in time bin

t = 1, . . . , T . For the mixture of Poisson linear dynamical systems (mixPLDS) model,

we assume that each neuron k belongs to exactly one of M groups (subpopulations,

clusters), indicated by the discrete (categorical) variable sk ∈ {1, . . . ,M}.

The sk are modeled as i.i.d.:

p(s) =
K
∏

k=1

p(sk) =
K
∏

k=1

Disc(sk|φ0), (3.1)

where φ0 := (φ1
0, . . . , φ

M
0 ) are the natural parameters of the categorical distribution. In

the remainder of the paper we use the convention that the group index m = 1, . . . ,M

is written as superscript. The activity of each subpopulation m at time t is modeled

by a latent variable xm
t ∈ Rdm .

We assume that these latent variables (we will also call them factors) are jointly

normal and we model interactions between different groups by a linear dynamical

system (LDS) prior:

xt =











x1
t

...

xM
t











= Axt−1 + ηt =











A11 · · · A1M

...
...

AM1 · · · AMM





















x1
t−1

...

xM
t−1











+ ηt, (3.2)

where the block matrices Aml ∈ Rdm×dl capture the interactions between groups m

and l. The innovations ηt are i.i.d. from N (0, Q) and the starting distribution is given



72

by x1 ∼ N (µ1, Q1).

If neuron k belongs to group m, i.e. sk = m, we model its activity ykt at time t as

Poisson distributed spike count with a log-rate given by an affine combination of the

factors of group m:

zkt | sk = m = Cm
k:x

m
t (3.3)

ykt | zkt, sk ∼ Poisson(exp(zkt + bk)), (3.4)

where b ∈ RK captures the baseline of the firing rates.

We denote with Cm ∈ RK×dm the group loading matrix with rows Cm
k: for neurons

k in group m and fill in the remaining rows with 0s for all neurons not in group m.

We concatenate these into the total loading matrix C := (C1 · · · CM) ∈ RK×d, where

d :=
∑M

m=1
dm is the total latent dimension. If the neurons are sorted with respect

to their group membership, then the total loading C has block diagonal structure.

Further, we denote with yk: := (yk,1 · · · yk,T ) the activity time series of neuron k and

use an analogous notation for xm
n := (xm

n,1 · · · xm
n,T ) ∈ R1×T for n = 1, . . . , dm. The

model parameters are θ := (A,Q,Q1, µ1, C,b); we consider the hyperparameters φ0

to be given and fixed.

For known clusters s, the mixPLDS model can be regarded as a special case of

the Poisson linear dynamical system (PLDS) model [Macke et al., 2011], where the

loading C is block diagonal.

For unknown group memberships s, the mixPLDS model defined above is similar

to a mixture of factor analyzers (e.g. see [Tipping & Bishop, 1999; Ghahramani et al.,

1996]) with Poisson observations over neurons k = 1, . . . , K. In the mixPLDS model

however, we do not restrict the factors of the mixture components to be independent
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but allow for interactions over time which are modeled by a LDS.

When applying the mixPLDS model to data y, we are interested in inferring

the group memberships s and the latent trajectories x as well as estimating the

parameters θ. For known parameters θ, the posterior p(x, s|y, θ) (even in the special

case of a single mixture component M = 1) is not available in closed form and

needs approximating. Here we propose to approximate the posterior using variational

inference with the following factorization assumption:

p(x, s|y, θ) ≈ q(x)q(s). (3.5)

Further details about methods used for approximating this posterior distribution

(using variational inference techniques), as well as how to estimate the parameters of

the mixPLDS model, are contained in [Buesing et al., 2014].

MixPLDS application I: Artificial data

Here we validate the parameter estimation procedure for the mixPLDS model on

artificial data. We generate 35 random ground truth mixPLDS models with M = 3,

d1 = d2 = d3 = 2 and 20 observed neurons per cluster. We sampled from each

ground truth model a data set consisting of 4 i.i.d. trials with T = 250 time steps

each. Ground truth parameters were generated such that the resulting data was

sparse (12% of the bins non empty). We compared the ability of different clustering

methods to recover the 3 clusters from each data set. We report the results in Figure

3.5A in terms of the fraction of misclassified neurons (class labels were determined by

majority vote in each cluster). We applied k -means with careful initialization of the

cluster centers [Arthur & Vassilvitskii, 2007] to the data. For k -means, we prepro-

cessed the data in a standard way by smoothing (Gaussian kernel, standard deviation

10 time steps), mean centering and scaling (such that each dimension k = 1, . . . ,k

has variance 1). We found k -means yielded reasonable clusters when all populations

are one-dimensional (i.e. ∀m dm = 1, data not shown) but it fails when clustering
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multi-dimensional groups of neurons.

An alternative approach is to cluster the cross correlation matrix of neurons (com-

puted from preprocessed data as above) with standard spectral clustering [Ng et al.,

2002]. We found that this approach works well when all the factors have small vari-

ances, as in this case the link function of the observation model is only mildly nonlin-

ear. However, with growing variances of the factors (larger dynamic ranges of neurons)

spectral clustering performance quickly degrades. Standard sparse subspace cluster-

ing [Elhamifar & Vidal, 2013] on the spike trains (preprocessed as above) yielded

very similar results to spectral clustering. We found our novel Poisson subspace clus-

tering algorithm detailed in [Buesing et al., 2014] to robustly outperform the other

approaches, as long as reasonable amounts of data were available (roughly T > 100

for the above system).

The mixPLDS model initialized with Poisson subspace clustering consistently

yielded the best results, as it is able to integrate information over time and denoise

the observations. One advantage of the mixPLDS model is that it not only returns

cluster assignments for neurons but also provides a measure of uncertainty over these

assignments. However, variational inference tends to return overconfident posteriors

in general and the factorization approximation (Equation 3.5) might yield posterior

uncertainty that is uninformative.

To show that the variational posterior uncertainty is well-calibrated we computed

the entropy of the posterior cluster assignment q(sk) for all neurons as a measure

for assignment uncertainty. We binned the neurons according to their assignment

uncertainty and report the misclassification rate for each bin in Figure 3.5B. 89%

of the neurons have low posterior uncertainty and reside in the first bin having a

low misclassification rate of ≈ 0.1, whereas few neurons (5%) have an assignment
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uncertainty larger than 0.3 nats and they are misclassified with a rate of ≈ 0.4.
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Figure 3.5: Finding clusters of neurons in simulated data

(A) Performance of different clustering algorithms, reported in terms of frequency of

misclassified neurons, on artificial data sampled from ground truth mixPLDS mod-

els. Red bars indicate medians and blue boxes the 25% and 75% percentiles. Stan-

dard clustering methods (data plotted in black) such as k -means, spectral cluster-

ing (“specCl”), and subspace clustering (“subCl”) are substantially outperformed by

the two methods proposed here (data plotted in red). Poisson subspace clustering

(“PsubCl”) yielded accurate initial cluster estimates that were significantly improved

by application of the full mixPLDs model. (B) Misclassification rate as a function

of the cluster assignment uncertainty for the mixPLDS model. This shows that the

posterior over cluster assignments returned by the mixPLDS model is well calibrated,

as neurons with low assignment uncertainty as rarely misclassified.
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MixPLDS application II: Ca2+ imaging of spinal cord neurons

We tested the mixPLDS model on Ca2+ imaging data obtained from an in vitro,

neonatal mouse spinal cord that expressed the Ca2+ indicator GCaMP3 in all motor

neurons. When an isolated spinal cord is tonically excited by a cocktail of rhythmo-

genic drugs (5 µM NMDA, 10 µM 5-HT, 50 µM DA), motor neurons begin to fire

rhythmically. In this network state, spatially clustered ensembles of motor neurons

fire in phase with each other (Figure 3.6A). Since multiple ensembles that have dis-

tinct phase tunings can be visualized in a single imaging field, this data represents a

convenient setting for testing our algorithm. The data (90 second long movies) were

acquired at 15 Hz from a custom two-photon microscope equipped with a resonant

scanner (downsampled from 60 Hz to boost signal-to-noise). The frequency of the

rhythmic activity was typically 0.2 Hz. In addition, aggregate motor neuron activity

was simultaneously acquired with each movie using a suction electrode attached to

ventral root L2. This ventral root recording was used as an external phase reference

point to compute phase tuning curves for imaged neurons, which we used to validate

our mixPLDS results.

A deconvolution algorithm [Pnevmatikakis et al., 2015] was applied to the recorded

Ca2+ time series to estimate the spiking activity of 70 motor neurons. The output

of the deconvolution, a 70 × 1140 (neurons × frames) matrix of posterior expected

number of spikes, was used as input to the mixPLDS model. The non-empty bins of

the the first 500 out of the 1140 frames of input data (thresholded at 0.1) are shown

in Figure 3.6B.

We used a mixPLDS model with M = 2 groups with two latent dimensions each,

i.e. d1 = d2 = 2. We imposed the non-negativity constraints C ≥ 0 on the loading

matrix; these were found to be crucial for finding a meaningful clustering of the neu-

rons, as discussed above. The mixPLDS clustering reveals two groups with strongly
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periodic but phase shifted population activities, as can be seen from the inferred la-

tent factors shown in Figure 3.7A (middle panel, factors of cluster 1 shown in red,

factors of cluster 2 in blue). For each cluster, the model learned a stronger (higher

variance) latent factor (solid line) and a weaker one (dashed line); we interpret the

former as capturing the main activity structure in a cluster and the latter as describ-

ing deviations.

Based on the estimated mixPLDS model, we sorted the neurons for visualization

into two clusters according to their most likely cluster assignment argmaxsk=1,2 q(sk).

Within each cluster, we sorted the neurons according to the ratio of the loading coeffi-

cient onto the stronger factor over the loading onto the weaker factor. Replotting the

spike raster shown in with this sorting in Figure 3.7A (middle panel) reveals interest-

ing structure. First, it shows that the initial choice of two clusters was well justified

for this data set. Second, the sorting reveals that the majority of neurons tend to fire

at a preferred phase relative to the oscillation cycle, and the mixPLDS-based sort-

ing corresponds to an increasing ordering of preferred phases. Figure 3.7C shows the

loading matrix C of the mixPLDS, which is found to be approximately block diagonal.

On this data set we also have the opportunity to validate the unsupervised clus-

tering by taking into account the simultaneously recorded ventral root data. We

computed a phase tuning curve for each neuron against the last 80 time steps of the

ventral root recording data (estimated via L2 regularized generalized linear model

estimation, with an exponential-Poisson observation model). For each neuron, we

extracted the peak location of this phase tuning curve, which we call the preferred

phase. Figure 3.7B shows these preferred phases as a function of (sorted) neuron in-

dex, revealing that the two clusters found by the mixPLDS model coincide well with

the two modes of the bimodal distribution of preferred phases. Furthermore, within

each cluster, the preferred phases are (approximately) increasing, showing that the
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mixPLDS-sorting of neurons reflects the phase relationship of the neurons relative

to the global oscillatory activity reflected in the ventral root activity. We emphasize

that this ventral root recording was not used for fitting the mixPLDS and therefore

constitutes an independent validation of our results.

We conclude that the mixPLDS model successfully uncovered clustering structure

from the recordings that can be validated using the side information from electro-

physiological tuning, and furthermore allowed for a meaningful sorting within each

cluster capturing neural response properties. In addition, the mixPLDS model lever-

ages the temporal structure in recordings, automatically optimizing for the temporal

smoothness level and revealing the main time constants in the data (in the above

data set 1.8 and 6.5 sec) as well as main oscillation frequencies (0.2 and 0.45 Hz).

Furthermore, either the latent trajectories or the inferred firing rates shown in Figure

3.7A can be used as smoothed proxies for their corresponding population activities

for subsequent analyses.
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Figure 3.6: Isolated spinal cord preparation used for evaluating the mix-

PLDS model

(A) Schematic of in vitro isolated spinal cord preparation with ventral root recording

electrodes shown on segments L2 and L5. (B) 500 frames of spiking data inferred

from a fluorescence image sequence containing 70 motor neurons that were used as

input for testing the mixPLDS model.
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Figure 3.7: Application of the mixPLDS model to spinal cord imaging data

(A) Same data as in Figure 3.6B but rows are sorted by mixPLDS clusters and factor

loadings. Inferred latent factors (red: cluster 1, blue: cluster 2, solid: factor 1, dashed:

factor 2) are also shown. (B) Preferred phases shown as a function of (sorted) neuron

index and colored by posterior probability of belonging to cluster 1. Clearly visible

are two clusters as well as an (approximately) increasing ordering within a cluster.

(C) Loading matrix C of the mixPLDS model showing how factors 1,2 (corresponding

to cluster 1) and factors 3,4 (corresponding to cluster 2) influence the neurons.
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3.2.4 Robust and scalable Bayesian analysis of spatial neural data

A common analytical problem in neuroscience is the interpretation of neural activ-

ity with respect to sensory input or behavioral output.4 This is typically achieved

by regressing measured neural activity against known stimuli or behavioral variables

to produce a “tuning curve” for each neuron. Unfortunately, because this approach

handles neurons individually, it cannot take advantage of simultaneous measurements

from spatially adjacent neurons that often have similar tuning properties. At the same

time, sharing information between adjacent neurons can errantly degrade measure-

ments of tuning structure across space if there are sharp discontinuities in tuning

between nearby neurons. In this section, we develop a computationally efficient block

Gibbs sampler that effectively pools information between neurons to de-noise tuning

curve estimates while simultaneously preserving sharp discontinuities that might ex-

ist in the organization of tuning across space. This method is fully Bayesian and its

computational cost scales sub-quadratically with total parameter dimensionality. We

demonstrate the robustness and scalability of this approach by applying it to both

real and synthetic datasets.

Let us first consider example experimental data where the activity of n neurons

is measured across d trials of identical lengths where different stimuli are presented

during each trial. We can then model the response yi ∈ Rd of neuron i as a function of

a stimulus matrix Xi ∈ Rd×m. Each row of Xi corresponds to the stimulus projected

onto neuron i, at each of the d trials. In particular, the relationship between the

unobserved tuning function βi ∈ Rm and the observed activity yi at neuron i in

response to stimulus Xi can simply be modeled as:

yi = Xiβi + ǫi where ǫi ∼ N (0, σ2I).

The efficient statistical analysis and estimation of the unobserved tuning functions

4Section 3.2.4 is derived from [Rad et al., 2015].
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{βi} given the noisy observations {yi}, the stimulus set {Xi} is the standard tuning

curve estimation problem. In this setting, we can use maximum-likelihood estima-

tion to estimate tuning functions one neuron at a time (e.g., βi,ml := (X ′

iXi)
−1X ′

iyi).

However this model neglects a common feature of many neural circuits: the spatial

clustering of neurons sharing a similar information processing function. For example,

there are maps of tone frequency across the cortical surface in the auditory system

[Issa et al., 2014], visual orientation maps in both cortical [Ohki et al., 2005] and

subcortical brain regions [Feinberg & Meister, 2014], and maps respecting the spatial

organization of the body (somatotopy) in the motor system [Penfield & Rasmussen,

1950; Romanes, 1964]. As a consequence, neurons in close proximity often have simi-

lar tuning functions. In each of these cases, there are typically regions where this rule

is violated and largely smooth tuning maps are punctuated by jumps or discontinu-

ities. Therefore simply smoothing in all cases will erode the precision of any sharp

borders that might exist. Ideally, we would use an approach to estimate {βi} that

would smooth out the tuning map more in areas where there is evidence from the data

that nearby tuning functions are similar, while letting the data ‘speak for itself’ and

applying minimal smoothing in regions where adjacent neurons have tuning functions

that are very dissimilar.

To solve this problem, we propose a multivariate Bayesian extension of Lasso

[Tibshirani & Taylor, 2011] and total-variation regularization [Rudin et al., 1992]

that uses the following generalized Laplace prior:

p(β|λ, σ) ∝
∏

i∼j

( λ

2σ

)m
exp

(

−λ

σ

∥

∥

∥
βi − βj

∥

∥

∥

2

)

, (3.6)

where ‖u‖2 =
√

∑m
i=1

u2
i and i ∼ j if two cells i and j are spatially nearby. This prior

allows a diverse and flexible level of similarity between nearby tuning functions. For



84

example, contrary to a ‖βi − βj‖22 based prior:

∏

i∼j

( λ

2σ

)m
exp

(

−λ

σ

∥

∥

∥
βi − βj

∥

∥

∥

2

2

)

,

in the prior shown in (3.6) large local differences are penalized less, therefore pre-

serving sharp edge features in tuning maps. Intuitively, this prior encourages nearby

tuning functions to be similar while allowing for large occasional breaks or outliers

in the spatial map of the inferred tuning functions. Moreover, the conditioning of

the prior of β on σ guarantees the joint log-concavity of the posterior distribution of

(β, σ) (given λ and {yi,Xi}i=1,··· ,n) making it desirable for computational reasons.

Our approach is based on direct and efficient block Gibbs sampling from the poste-

rior. The computational bottleneck of our Gibbs sampler is bypassed using fast linear

equation solvers based on sparse banded precision matrices, making it scalable to high

dimensional data (> 106), while not imposing any overly restrictive constraints on

the inferred tuning function map that would lead to bias from oversmoothing. With

the aid of real experimental data, we demonstrate that this scalable method can dra-

matically reduce the experimental data required to estimate neural maps.

Further details about the model and our approach to statistical inference can be

found in [Rad et al., 2015].

Robust Bayesian analysis application: Ca2+ imaging of spinal cord

neurons

We will now test the algorithm’s performance on real neural imaging data obtained

from an isolated mouse spinal cord preparation. In these data, the fluorescent activity

sensor GCaMP3 was expressed in motor neurons that innervate leg muscles. After

application of a cocktail of rhythmogenic drugs, all motor neurons in the prepara-

tion fire in a periodic bursting pattern mimicking that seen during walking [Machado

et al., 2015]. Under these conditions, we acquired sequences of fluorescent images and
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then applied a model-based constrained deconvolution algorithm to infer the timing

of neuronal firing underlying each fluorescent activity time series extracted from the

pixels corresponding to individual neurons [Pnevmatikakis et al., 2015].

Each mouse leg is controlled by ∼ 50 different muscles, each of which is inner-

vated by ∼ 50 motor neurons that fire in distinct patterns during locomotor behavior

[Krouchev et al., 2006; Akay et al., 2014]. Furthermore, all motor neurons that share

common muscle targets are spatially clustered together into “pools” within the spinal

cord [Romanes, 1964]. Therefore, during the locomotor-like network state monitored

in these data, different spatially-distinct groups of motor neurons are recruited to fire

at each moment in time. When the activity of each motor neuron is summarized as

a single mean phase tuning value (representing the average phase angle of the ∼ 70

firing events detected per neuron, a clear spatial map can be derived (as will be seen

in more detail in the following chapter). Such maps appear smooth within pools, and

sharply discontinuous between pools.

While phase tuning can be reliably inferred one neuron at a time in these data,

fluorescent measurements from each neuron are not always of high quality. As a re-

sult, activity events cannot be reliably inferred without dozens of inferred spikes from

each neuron [Machado et al., 2015]. Additionally, more neurons could have been

observed in less experimental time if phase tuning were measured more efficiently.

Therefore we applied our robust and scalable Bayesian information sharing algorithm

to these data in an attempt to reduce measurement noise, and decrease the required

data necessary to attain precision tuning map measurements.

The ability of our method to recover the preferred phases from only a single de-

tected firing event from each neuron (∼ 70 firing events were typically inferred for

each neuron) is illustrated in Figure 3.8. Note that panel B produces a map that is
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very similar to that seen in panel C despite the fact that only a single inferred spike

time was available for each neuron. Phase tuning values plotted in panel C were

successfully computed one neuron at a time, but 73x as much data was available.

In the subsequent chapter, we will discuss the biological significance of our motor

neuron phase tuning results in more detail. Importantly, all results presented in that

chapter will have been derived from statistics computed one neuron at a time. We

decided to conservatively restrict ourselves to a simpler analysis because sufficient

data was available to make the Bayesian approach unnecessary. Indeed, we found

that as a function of increased data the optimal choice for the smoothing parameter

(λ) fell to zero (i.e. no smoothing) as dozens of spikes/neuron became available.
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Figure 3.8: Optimal Bayesian inference of motor neuron phase tuning

Maps of motor neuron phase tuning obtained from a single isolated spinal cord prepa-

ration (n = 695 neurons shown as colored dots). (A) Phase tuning map when only

single inferred spikes were used to estimate phase tuning for each neuron. (B) Phase

tuning map when information from single inferred spikes could be shared between

adjacent neurons according using our Robust Bayesian analysis method to generate

a phase tuning map using minimal data. (C) Phase tuning map generated using all

available data and maximum likelihood (ML) estimation to produce tuning estimates

for each neuron individually. Note similarity to panel (B) but with 73x more data.

Phase colorbar shown in inset.
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3.3 Discussion

3.3.1 A lack of standardization in the analysis of optical imaging

data

While Ca2+ imaging methods have been used in neuroscience for decades, because the

average dataset is growing increasingly large, data analysis problems are becoming

increasingly acute. In this chapter, we discussed a variety of methods and approaches

for processing, analyzing, and interpreting these data. However, we have yet to dis-

cuss a key problem: the amount of redundant effort involved in rewriting standard

algorithms for standard data processing tasks.

At a recent meeting about Ca2+ imaging (Simons Foundation Calcium Imaging

Data Analysis Workshop, April 2015), many attendees remarked that they each spent

a large fraction of time developing data analysis pipelines during their respective ex-

perimental imaging projects. While variability between imaging datasets and exper-

imental preparations exists, making some fraction of this work necessary, there is no

reason for everything to be rewritten from scratch by every laboratory. This current

approach of reinvention is not only inefficient, it also makes interpretation of results

difficult. Methods sections of papers generally present data analysis algorithms in a

cryptic manner, and source code is rarely provided. Furthermore, not all laboratories

possess the technical expertise to implement state-of-the-art algorithms themselves

and are consequently forced to resort to the use of older, less effective techniques.

3.3.2 Development of open source data analysis tools

Moving forward, the field should agree on a standard set of algorithms and data anal-

ysis procedures for Ca2+ imaging data analysis. A standard open source toolbox that

contains implementations of commonly used techniques for neuron detection, motion
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correction, and spike inference should be adopted by experimentalists and used as a

platform for computationally-inclined users to build upon. In this vein, two some-

what complimentary projects have emerged over the past year to attempt solving

this issue: Sequential IMaging Analysis (SIMA) and Thunder [Kaifosh et al., 2014;

Freeman et al., 2014].

SIMA was developed by members of the Losonczy laboratory to implement a stan-

dard Ca2+ imaging data analysis workflow in Python. Each algorithm within their

analysis pipeline is compatible with a standardized set of data structures for reading

and manipulating the imaging data. In this way, different algorithms can be mixed

and matched at each step of analysis to suit most experimental settings. Since their

initial release of the toolbox, dozens of laboratories around the world have begun to

use their software.

However, SIMA is still a work in progress. While it contains automated algo-

rithms for neuron identification, none of these approaches will work in all settings.

Indeed, even more advanced methods that attempt to solve this problem in a gen-

eral manner run in to difficulties in some experimental settings [Pnevmatikakis et al.,

2015]. Therefore it is hoped that a large number of algorithms will be implemented in

toolboxes like SIMA or Thunder so that users can quickly try a variety of approaches

on their data and find an approach that works well.

In this spirit, we have implemented the spike inference algorithm that we used in

[Machado et al., 2015] for distribution within the SIMA toolbox. As we described

earlier in this chapter, one of the principal advances of this new algorithm is that

it provides more robust estimates of the underlying model parameters than previous

techniques (i.e. [Pnevmatikakis et al., 2015] vs. [Vogelstein et al., 2010]), simplifying

usage dramatically. An example that illustrates the functionality of our implementa-
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tion on simulated fluorescence data can be seen in Figure 3.9.
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Figure 3.9: Spike inference implementation for SIMA

(Top) Simulated fluorescence time series data (blue) with spike inference model fit

(red) superimposed. (Middle) True spike train underlying the data shown in the top

panel. (Bottom) Spike time histogram inferred by the spike inference algorithm. Dark

gray bars represent inferred spikes (proportional to the firing rate in each bin), light

gray bars true positive inferred spikes and red bars are false positive inferred spikes.
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3.3.3 Spike inference as preprocessing

As we have discussed in this chapter, there are many approaches towards the analysis

of large-scale imaging datasets. Because a set of assumptions is inherent in each data

analysis procedure, it seems prudent to take a conservative approach, and to only

apply data analysis techniques that are specifically necessary to arrive at a particular

answer to a biological question.

At the same time, it is important to remember that nearly every question that

one could ask using Ca2+ imaging methods involves assuming a particular relation-

ship between neuronal activity and Ca2+. We have covered many reasons why this

relationship is difficult to measure for a single neuron, and highly variable between

neurons. Therefore, it seems that relating fluorescence to spiking is a difficult, but core

problem of Ca2+ imaging data analysis—often implicitly when “simpler” approaches

like peak or onset finding methods are used. The spike inference methods presented

here each offer principled approaches towards this problem where the assumptions

made about Ca2+ fluorescence data are made explicit. Moving forward, once more

advanced methods and approaches towards inference validation can be developed, it

seems like transforming Ca2+ fluorescence data into spike train estimates should be

a default preprocessing step so that subsequent analysis can be performed in a more

intuitive setting where worries about the vagaries of Ca2+ can be forgotten.



4

Measuring the grain of intrinsic locomotor

pattern

4.1 Introduction

The mammalian nervous system is charged with the task of moving limbs — a chal-

lenge met through the construction of spinal circuits that coordinate interwoven pat-

terns of muscle activity.1 Spinal motor patterns reflect the activation of selected

pools of motor neurons sharing common muscle targets which, in turn, are driven by

descending commands, peripheral feedback, and input from spinal premotor interneu-

rons. Many studies have invoked the idea that local spinal circuits alone can sustain

motor neuron burst firing in patterns that resemble the rhythmic alternation of antag-

onist muscles during locomotion [Kiehn & Kjaerulff, 1996; Kudo & Yamada, 1987b;

Grillner & Zangger, 1979]. But the basic rules of spinal circuit organization that

govern the rhythmicity and alternation of locomotor output remain unclear.

1Portions of this chapter were derived from work in [Machado et al., 2015].
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4.1.1 The organization of motor neurons respects the structure of

the limb

One reason that uncertainty about the organization of mammalian locomotor cir-

cuits has persisted for so long is because the field has lacked an experimental means

for directly relating known information about motor neuron position, identity, and

activity to unravel the fundamental principles of locomotor circuit organization. Mo-

tor neurons that share common muscle targets are spatially segregated into pools,

and at a higher order, motor neuron pools that share common muscle group targets

are themselves organized clusters called “columels” [Vanderhorst & Holstege, 1997;

McHanwell & Biscoe, 1981; Romanes, 1964; Sürmeli et al., 2011]. The position of each

columel within the spinal cord corresponds to the position of its target muscle group

within the limb. Dorsal columels target distal musculature, while ventral columels

connect to proximal muscle targets (Figure 4.1). Analysis of proprioceptive affer-

ent innervation patterns in a mouse stripped of motor pool-specific genetic identity

revealed that this spatial organization appears instrumental in instructing the forma-

tion of appropriate sensory-motor neuron connectivity patterns. However, whether

position is also involved in the specification of pool-appropriate patterns of descend-

ing and interneuronal inputs remains unknown (see Chapter 5) [Sürmeli et al., 2011].

Examining the relevance of motor neuron position to the organization of locomotor

circuits requires first obtaining fine-grained measurements of locomotor firing both

before and after the correspondence between spatial organization, neuronal identity,

and locomotor firing has been perturbed.
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Figure 4.1: Motor neuron pools are positioned with respect to the limb

(A) Motor neuron cell bodies that innervate different muscles are spatially segre-

gated into rostrocaudally elongated clusters called pools. The position of pools

that share common muscle group targets are indicated in color. Light red/gluteal

(G), dark gray/proximal hip (PH), orange/hamstring (H), light green/adductors (A),

pink/quadriceps (Q), blue/anterior crural (AC), dark green/posterior crural (PC),

purple/foot (IF). (B) Cartoon of muscle groups of the leg represented in panel (A).

(C) Correlation between proximodistal position of muscle groups along the limb and

dorsoventral position of motor neurons within each corresponding pool. Colored con-

vex hulls correspond to muscle groups represented in (A-B). (D) Fluorescence image

showing two retrogradely labeled motor neuron pools labeled by CTB. Red G motor

neurons can be seen ventrally and blue AC motor neurons are positioned more dor-

sally. Panels A-C are adapted from [Sürmeli et al., 2011]. Panel C is derived from

data obtained in the cat.
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4.1.2 Isolated mammalian spinal cord can produce patterned

motor output

Attempts to delineate the spinal circuitry of mammalian locomotion have focused

largely on connections among interneurons with presumed roles in pattern genera-

tion. One long-held view proposes that the premotor circuits that direct the alter-

nation of antagonist flexor and extensor muscles exhibit an interdependence that is

achieved through reciprocal interneuronal connections [Brown, 1914; Zhang et al.,

2014; McCrea & Rybak, 2008; Talpalar et al., 2011]. Specifically, these models argue

that rhythm generation is grounded in an opponency between neuronal populations

controlling limb muscles with antagonist functions. These models rely on a symmet-

ric, mutually inhibitory interaction between two interneuron sub-circuits that govern

firing in motor pools innervating antagonist flexor and extensor muscles, respectively.

This mutual inhibition helps ensure rhythmic, inverse firing patterns in the two sub-

circuits, providing a foundation for the alternating activation of antagonist motor

pools observed experimentally. However, measurements during the spontaneous si-

lencing (“deletion”) of certain bursts during intrinsic locomotor firing appear incon-

sistent with symmetric models. When flexor motor neurons fail to burst, sustained

firing in extensor motor neurons can result.

These observations that rhythmic flexor or extensor motor output can occur

without activation of their antagonist pair have called into question the obligate

role of reciprocal connectivity implied by symmetric models [Burke et al., 2001;

Pearson & Duysens, 1976; Zhong et al., 2012]. Since spinal interneurons should

be capable of distinguishing the identity of flexor and extensor motor neurons, we

reasoned that new insight into the organization of locomotor circuits might emerge

from a focus on the recognition and selection of motor pools by premotor interneu-

rons, rather than on the intricacies of interneuron interconnectivity.
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To clarify the organization of these networks we needed to characterize the cor-

respondence between locomotor firing pattern and limb muscle target for motor neu-

rons in the absence of descending command and feedback control. Beginning in

the late 1980s (e.g. [Kudo & Yamada, 1987b]), this has been achieved by isolat-

ing neonatal rodent spinal cord preparations in artificial cerebrospinal fluid (ACSF)

and applying rhythmogenic agonists including NMDA, 5-HT, and DA. To moni-

tor the aggregate activity of motor neurons, ventral root recordings are then ob-

tained simultaneously from multiple lumbar spinal segments. This approach re-

vealed rhythmic bursting activity and alternation along the rostrocaudal axis (Figure

4.2A-B)—mirroring an observed a rostrocaudal bias in the position of flexor and

extensor motor neuron pools [Kiehn & Kjaerulff, 1996; Kudo & Yamada, 1987b;

Yakovenko et al., 2002]. As a consequence of this observation, motor neuron activity

in this preparation has been termed “fictive locomotion.”

However, the detailed relationship between this in vitro motor neuron firing pat-

tern and actual locomotor firing is difficult to determine using only ventral root record-

ings, as each root contains axons arising from many pools [Vanderhorst & Holstege,

1997]. To remedy this issue, peripheral nerve [Meehan et al., 2012], muscle [Kiehn

& Kjaerulff, 1996], and intracellular recordings [Lafreniere-Roula & McCrea, 2005]

can be performed. Each of these approaches is capable of revealing muscle specific

activation patterns (Figure 4.2C-D), however they are not able to resolve questions

about the organization of locomotor firing that relate to population activity across

space. For example, how much variance in activity exists within a single motor pool?

Is variance in motor firing pattern organized across space? Or do flexor and extensor-

like firing patterns coexist in discrete pools at each segment, in contrast to previous

reports of a “wave” of motor neuron activity that spreads across motor pool borders

[O’Donovan et al., 2008]? To address these questions, we developed a new cellular-

resolution approach that allows the activity of a large fraction of all limb-innervating
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motor neurons to be related to their positions in the spinal cord.
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Figure 4.2: Isolated mammalian spinal cord can produced patterned motor

output

(A) Schematic isolated mouse spinal cord preparation with suction electrodes po-

sitioned on lumbar ventral roots L2 and L5. (B) Representative dataset obtained

following the application of 5 µM NMDA, 10 µM 5-HT, 50 µM DA. Recordings (DC-

1 kHz) were obtained from ventral roots on both the ipsi- and contralateral sides of the

preparation, displaying characteristic alternation. (C) Schematic of isolated rat spinal

cord preparation with attached hindlimb and intramuscular recording electrodes. (D)

Representative recordings obtained from the iliopsoas (IL), semitendinosis (ST), and

vastus medialis (VM) muscles after 30 µM 5-HT was applied to evoke rhythmic ac-

tivity. Panels C-D are adapted from [Kiehn & Kjaerulff, 1996].
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4.1.3 Measuring the fundamental grain of motor pattern

We coupled two-photon imaging of a genetically encoded Ca2+ indicator with spike

inference (as described in 3) to measure the firing of hundreds of target-defined motor

neurons in an isolated neonatal mouse spinal cord preparation induced to locomotor-

like activity [Bonnot et al., 2002; Kwan et al., 2009]. This approach permitted us

to examine the relationship between motor neuron settling position, locomotor firing

pattern, and muscle target identity. While the existence of motor neuron pools has

been long known [Romanes, 1964], our optical assay permitted us to enumerate the

number of firing patterns within and between motor pools as well as their precise

manifestation across space.

Our analysis of wild type preparations revealed that motor pools innervating mus-

cles with synergistic functions at a joint fired synchronously with a characteristic

phase, and flexor pools were activated in a spatially-organized sequence that con-

forms to the order of activation of their target limb muscles in certain behavioral

contexts in vivo [Akay et al., 2014; Grillner, 1981]. Instead of finding only a sin-

gle flexor and extensor-like pattern (as in Figure 4.2), we found multiple flexor and

extensor patterns reminiscent of in vivo patterns of muscle recruitment during lo-

comotion (as in Figure 4.3). These results indicate that spinal premotor circuits

possess the capacity to direct the temporal activation of motor neurons in a man-

ner that reflects the functions of their target limb muscles [Krouchev et al., 2006;

Rasmussen et al., 1978].
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Figure 4.3: EMG recordings obtained during locomotion in the cat reveal

temporal sequencing in leg muscle recruitment

(A) Cartoon of color coded muscle groups in the hindlimb. (B) Step cycle-averaged

EMG traces obtained from hindlimb muscles. Data were obtained from cats during

forward, level walking at approximately 0.6 m/s. The height of each EMG trace

corresponds to increased recruitment normalized to its peak. 0% corresponds to the

onset of swing phase. The time of swing/stance transition is indicated by the vertical

line. Panel B was adapted from [Yakovenko et al., 2002], which aggregated EMG

data taken from many publications.
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4.2 Results

4.2.1 Motor neuron firing phase at cellular resolution

To specify in detail the influence of local premotor circuits in determining locomo-

tor firing pattern, we analyzed the activity of motor neurons innervating individual

muscle groups under conditions in which descending and peripheral sensory input has

been eliminated. To achieve this, Ca2+-sensitive fluorescence signals were monitored

in hindlimb-innervating motor neurons in isolated neonatal (postnatal day 2 to 5)

mouse spinal cord preparations induced to a state of locomotor-like activity by glu-

tamate and monoamine receptor agonists (5 µM NMDA, 10 µM 5-HT, 50 µM DA)

(Figure 4.4A-D; Kudo and Yamada, 1987). Motor neuron expression of the Ca2+

indicator GCaMP3 was achieved by crossing mice carrying a floxed ROSA-CAG-lsl-

GCaMP3 allele [Zariwala et al., 2012] with Olig2 :: Cre or ChAT :: Cre motor

neuron driver lines [Lowell et al., 2006; Sürmeli et al., 2011].

Twelve to twenty-four hours prior to imaging, groups of synergist muscles were

injected with Alexa 555- or 647-conjugated cholera toxin B subunit (CTB) to mark

the target identity of motor neurons. Two-photon microscopy was used to acquire

GCaMP3 fluorescence image sequences each lasting 90 s, assessing 22 to 64 sagittally-

oriented imaging fields (512 µm x 512 µm) that spanned lumbar segments L2 to L6.

Concurrent recordings of rhythmic activity from lumbar ventral roots L1, or more

typically L2, provided a reference signal for assessing motor neuron burst firing, with

the locomotor cycle defined as the interval between adjacent peaks of L1 or L2 ac-

tivity (L1 or L2 peaks = 0◦). Electrodes placed on caudal lumbar segments L4 or

L5 and contralateral L2 (Figure 4.2B, Figure 4.4B) provided a means of determining

whether the alternating burst firing characteristic of locomotor activity was evident

in each preparation [Kiehn & Kjaerulff, 1996; Kudo & Yamada, 1987b].
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To characterize differences in the locomotor burst firing of motor neurons that

innervate different target muscles we defined firing features through the analysis of

Ca2+-sensitive fluorescence from motor neuron cell bodies. But slow Ca2+ extru-

sion and noise in fluorescence measurements obscure prominent burst features such

as duration and the phase of peak firing [Helmchen & Tank, 2005]. To address this

problem we used a model-based statistical algorithm that infers the spike train most

likely to underlie each somatic fluorescence time series [Pnevmatikakis et al., 2015].

This algorithm fits fluorescence data using a model of spike-related fluorescence fluc-

tuations that assumes each action potential results in a fluorescence transient with

instantaneous rise and exponential decay, in the added presence of Gaussian noise

(see Section 8.6). For each somatic fluorescence time series, the algorithm yielded a

relative estimate of the number of spikes in each imaging frame. These normalized

spike counts were assembled into histograms that display the rhythmic burst firing of

each motor neuron during the image sequence (black bars in Figure 4.4E). To quan-

tify burst timing, the mean phase of each burst was calculated, and the median phase

value was defined as a neuron’s phase tuning (Figure 4.4D,F).
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Figure 4.4: Measuring locomotor firing from motor neuron Ca2+ sensitive

fluorescence

(A) Schematic of the neonatal whole-cord preparation used for imaging. LMC motor

pools and their corresponding roots are shown in color. (B) Ventral root recordings

(DC to 1 kHz) obtained from L2 and L5 roots during agonist-induced locomotor firing.

(C) Single imaging field containing GCaMP3-expressing motor neurons (green). (D)

ROIs for motor neurons in (C) colored according to phase tuning. Scale bars in (D)

and (G) are 100 µm. Phase color map is inset. (E) Fluorescence time courses (red) for

four motor neurons from (C) along with spike inference model fit (cyan) and inferred

spiking (black bars). (F) Inferred spike counts from a full 90 s image sequence are

plotted across the locomotor cycle (L2 root signal peaks = 0◦) for the four motor

neurons in (E), with the phase tuning of each neuron indicated (red arrows).
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4.2.2 Reproducibility and consistency in locomotor firing

In each spinal cord preparation, motor neurons are spread across many imaging fields,

and as such, neuron-by-neuron comparisons of phase tuning require that values are

stable over time. To assess tuning stability, we imaged a subset of fields in each

preparation at time points separated by 20 to 220 minutes. But even if tuning is

stable, errors intrinsic to the measurement of burst phase from inferred spiking will

result in variation in tuning estimates between time points. We estimated this error

by measuring the tuning of motor neurons imaged during antidromic activation, when

all neurons fire in synchrony. The distribution of the resulting tuning values indicated

that two separate estimates of the same underlying tuning would differ on average

by 10.1◦ (further details presented in Section 8.8). In comparison, temporally sepa-

rated estimates of motor neuron firing during agonist-induced locomotor-like activity

exhibited a median difference of only 12.0◦ (n = 1714 neuron pairs; Figure 4.5A-D).

Moreover, the slope of a linear regression fit indicated an incremental deviation of

tuning values of only 2.8◦ per hour. Finally, the mean burst frequency of each experi-

mental preparation was consistent across preparations (0.25 Hz, s.d. = 0.062 Hz, n =

15 spinal cords; Figure 4.6). Together, these findings establish that the phase tuning

of LMC motor neurons in individual preparations is relatively stable over the dura-

tion of data collection. Thus, phase tuning estimates are both accurate and stable,

enabling assessment of the relative tuning of motor neurons that innervate different

limb muscles.



106

A B

T
 =

 0
 m

in
u
te

s

T
 =

 7
7
 m

in
u
te

s

C D

M
N

 p
a
ir
s

M
e
a
n
 d

if
fe

re
n
c
e
 (

°)

Time between imaging

 sessions (m)

20 70 120 170 220
0

20

40

60

Phase change over time (°)

0

10

20

30

−180 0 180

Figure 4.5: Stability of phase tuning over time

(A-B) Phase tuning for motor neurons measured twice during an experiment (0 and

77 minutes later) to assess phase tuning stability. (C) Distribution of tuning changes

for all motor neurons (76 pairs) imaged in the preparation shown in (A-B). Mean

change = −2◦, standard deviation = 21◦. (D) Mean tuning difference versus the

interval between measurements for 15 mice (1714 neurons total). Dotted line indicates

predicted mean difference assuming stable phase tuning.
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Figure 4.6: Consistency of burst frequency across preparations

Average burst frequency during agonist-induced locomotor firing is shown for each

preparation. Dots are median frequency values derived from single image sequences.

Bars denote medians ± median absolute deviations across all image sequences from a

single preparation. For wild type preparations, mean burst frequency across all prepa-

rations = 0.25 Hz, s.d. = 0.062 Hz, n = 15 spinal cords. In FoxP1MN∆ preparations,

mean = 0.37 Hz, s.d. = 0.24 Hz, n = 4 spinal cords. Burst frequency distributions

from wild type and FoxP1MN∆ preparations were statistically indistinguishable (p

= 0.66, Wilcoxon rank sum test).
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4.2.3 Synergy group-specific locomotor firing

Pools of motor neurons that innervate muscles with similar functions at an individual

joint form functional synergy groups that are spatially clustered within the spinal

cord [McHanwell & Biscoe, 1981; Romanes, 1964; Vanderhorst & Holstege, 1997].

We therefore examined if the phase tuning of motor neurons segregates with syn-

ergy group identity. In each spinal cord preparation we analyzed between 400 and

1400 limb-innervating motor neurons that exhibited phasic firing (mean = 818 motor

neurons; Figure 4.9A-C; see Section 8.10 and [Berens, 2009; Zar, 1999]). From these

measurements we constructed spatial tuning maps in which the position of each motor

neuron in three-dimensional space was noted in a color scaled according to its tuning

value (Figure 4.8). Spatial tuning maps revealed numerous motor neurons with tun-

ing values close to the reference ventral root activity peak (L1 or L2 = 0◦), and many

others with near antiphase (≈ 180◦) tuning, at each lumbar segmental level (Figure

4.10). We observed that motor neurons with similar tuning values were arranged in

rostrocaudally-elongated clusters that formed relatively sharp boundaries with other

neuronal clusters that had distinct tuning values. These spatially coherent clusters

were reminiscent in shape and spatial extent to motor pool synergy groups, suggest-

ing a direct correspondence between synergy group identity and firing phase. These

findings contrast with prior reports of a wave-like rostrocaudal propagation of motor

neuron activity across the rostral LMC during locomotor firing [O’Donovan et al.,

2008], which could reflect a lack of cellular resolution in earlier Ca2+ imaging-based

measurements.

To probe further the correspondence between identity and firing phase we mea-

sured the phase tuning of motor neurons that had been assigned to particular syn-

ergy groups (Figure 4.7). CTB was injected into four muscle groups: the intrinsic

foot (IF), anterior crural (AC), quadriceps (Q), and gluteal (G) muscles, and the

tuning of retrogradely-labeled motor neurons was measured. Identified IF and AC
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motor neuron populations exhibited unimodal tuning distributions whereas Q and

G motor neuron populations displayed bimodal distributions (Figure 4.11). Among

Q motor neurons, the more lateral, presumptive rectus femoris (RF) motor neurons

were tuned near 0◦, whereas more medial, presumptive vastus (V) motor neurons were

tuned close to 180◦ [De Marco Garcia & Jessell, 2008; Vanderhorst & Holstege, 1997]

(Figure 4.11C). Similarly, for G motor neurons, a more rostral, presumptive tensor

fasciae latae (TFL) cluster was tuned near 0◦, whereas a caudal cluster containing the

three remaining gluteal motor pools (GM) was tuned around 180◦ (Figure 4.11D).

These results are consistent with functional definitions of RF and TFL as hip flexors,

and V and GM muscles as knee and hip extensors, respectively [Platzer & Spitzer,

2003]. The alignment of six synergy groups with phasically homogeneous clusters

seen in tuning maps supports the view that phase tuning is spatially organized in

register with synergy group identity.
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Figure 4.7: Uniformity in phase tuning across identified synergy groups

(A) Schematic leg showing the position of all muscle groups characterized using CTB.

(B) Top: transverse spinal cord section showing the position of corresponding motor

pools. (C) Top: sagittal image showing position of CTB-labeled IF neurons (red).

Bottom: ROIs for motor neurons with significantly phasic activity colored accord-

ing to phase tuning using the color scale indicated. Dotted line denotes a region

containing CTB-labeled IF motor neurons. (D-F) Same format as (C) but for three

additional muscle groups: (D) Anterior crural (AC), (E) Quadriceps (Q), and (F)

Gluteal (G). Scale bar in each image is 100 µm.
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Figure 4.8 (preceding page): Spatial maps of motor neuron phase tuning across

the LMC

(A,F,K,P) Maps showing phase tuning of motor neurons within the spinal cord as

viewed from the lateral side. Data were obtained from two different preparations

(1177 neurons in (A), 827 neurons in (F), 670 neurons in (K), and 1264 neurons

in (P)). Boundaries of the antidromically-activated segment are indicated by ver-

tical lines. Labels of other segments were drawn assuming equal segment widths.

(B,G,L,Q) Transverse projections for the rostrocaudal extent indicated in (A) and

(F), respectively. (C,H,M,R) Polar histogram showing the phase tuning of neurons

mapped in (A,F,K,P), respectively. The maximal number of neurons within a single

bin is shown to the left of each histogram. (D,I,N,S) Polar plot indicating the phase

tuning of all motor neurons mapped in (A,F,K,P), respectively, in gray. CTB-labeled

intrinsic foot (IF; D), anterior crural (AC; J), quadriceps (Q; O), and gluteal (G; T)

motor neurons are shown in black. The radial position of each point represents the

circular spread of its phase tuning. (E,J,O,T) Magnification of the boxed areas in

(A,F,K,P), respectively, show CTB-labeled neurons in detail.
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Figure 4.9: Correlation between signal quality and phase tuning strength

(A) Correlation between estimated signal-to-noise ratio (SNR) and the R statistic

from Rayleigh’s test of circular uniformity for all imaged motor neurons in a single

Olig2 :: Cre mouse. Red points denote imaged motor neurons that were excluded

from further analysis because they had Rayleigh’s test P values > 0.5. (B) Same

format as (A) in a FoxP1MN∆ preparation. (C) The correlation between R and

SNR was high in all wild type preparations (Pearson correlation = 0.54-0.80, mean

= 0.66, n = 15 wild type spinal cords) indicating that much of the pattern of motor

neuron firing is captured by its phase tuning. This correlation seen in wild type data

was statistically indistinguishable from the correlation measured in FoxP1MN∆ data

(Pearson correlation = 0.48-0.80, mean = 0.65, n = 4 spinal cords; comparison to

wild type: p = 0.94, two-sample, two-tailed t-test).
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Figure 4.10: Antiphase firing patterns coexist along the rostrocaudal axis

Maps of motor neuron activity matching the format and data from (A-E and P-T) of

the previous figure, but with phase tuning represented using only two colors: blue =

tuning closer to 0◦ and red = tuning closer to 180◦.
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Figure 4.11: Spatial organization of CTB-labeled motor neurons

Transverse projections (left) from rostrocaudal segments of individual spinal cords

with the phase tuning of CTB-labeled intrinsic foot (IF; A), anterior crural (AC; B),

quadriceps (V/RF; C), and gluteal (GM/TFL; D) motor neurons indicated in color.

For each cord, polar plots (right) show the phase tuning of all motor neurons (gray),

and all IF (A), AC (B), Q (C), and G (D) motor neurons identified by CTB-labeling

(black). The radial position of each point represents the circular spread around the

phase tuning. Middle subplots in C and D are similar to the adjacent transverse

projections, except CTB-labeled neurons are color coded red and blue according to

their assignment via k-means clustering into one of two groups: vastus (V) and rectus

femoris (RF) in (C), gluteus (GM) and tensor fasciae latae (TFL) in (D).
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4.2.4 Structure in synchronous firing patterns within and between

motor pools

If locomotor firing is synergy group-specific then covariation in burst firing phase

from cycle to cycle might be stronger within than between groups. To test this possi-

bility we evaluated burst phase covariation using a synchrony index that reflects the

across-cycle consistency of phase differences between pairs of motor neurons (Figure

4.12A-C) [Mormann et al., 2000]. We observed higher synchrony among motor neu-

rons assigned to the same synergy group by CTB labeling (Figure 4.12D, mean index

± standard error of the mean (s.e.m.) = 0.51 ± 0.007, n = 517 pairs; p < 10−10,

Wilcoxon test, see Extended Experimental Procedures), and lower synchrony among

motor neurons assigned to different synergy groups (Figure 4.12D, mean index ±
s.e.m. = 0.33 ± 0.026, n = 68 pairs; p = 4.2 x 10−7, Wilcoxon test; comparing with

synergist pairs p = 4.4 x 10−10, Wilcoxon test; p = 4.7 x 10−6 after controlling for

differences in proximity). Thus synergist motor neurons are preferentially synchro-

nized.

We also assessed the degree of phase synchrony for synergist motor neuron pairs

as a function of their separation. Synchrony indices did not vary significantly with

proximity along the rostrocaudal axis (Spearman correlation (ρ) = -0.07, p = 0.12;

Figure 4.12E). In contrast, we detected a shallow proximity-dependence along the

dorsoventral axis (ρ = -0.09, p = 0.04; Figure 4.12F), which may reflect slightly

elevated synchrony among motor neurons within the pools that comprise each synergy

group. Nevertheless, as a whole these findings indicate that the major determinant

of synchrony in motor neuron burst phase is synergy group membership.
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Figure 4.12: Assessment of synchrony in locomotor firing

(A) Normalized spike histograms of 44 simultaneously imaged motor neurons, il-

lustrating synchronized firing across locomotor cycles. The normalized spike count

computed for each imaging frame is indicated by a grayscale tick mark horizontally

spanning the frame duration. Wide gray bars at bottom denote periods of elevated

L2 ventral root activity. (B) Spike histograms for 8 simultaneously imaged AC motor

neurons. (C) Spike histograms for 6 simultaneously imaged G motor neurons. (D)

Cumulative histograms of phase synchronization indices computed for pairs of identi-

fied motor neurons within the same (black) or between different (red) synergy groups.

Phase synchronization was computed with (dotted) and without (solid) circular per-

mutation of one spike histogram relative to the other. (E-F) Phase synchronization

of normalized, unpermuted spike histograms for identified neurons within the same

synergy group versus proximity along the rostrocaudal (E) or dorsoventral (F) axes.

Pairs of motor neurons were divided into 7 equally sized groups according to pairwise

distance, data are plotted along the x-axis according to the mean pairwise distance

for each group, and error bars = mean ± s.e.m.
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4.2.5 Positional order and the sequential activation of flexor

synergy groups

Walking is characterized by the sequential activation of limb muscles, with a precision

in recruitment that reflects their biomechanical function [Rossignol, 1996]. In mice,

and in some cases in cats, flexor muscles are activated in a sequence that follows the

order of their target muscles along the proximodistal axis of the limb [Akay et al., 2014;

Grillner, 1981; Krouchev et al., 2006; Rasmussen et al., 1978].

To examine the degree to which the order of muscle recruitment can be imposed by

local spinal circuits we characterized the sequential activation of flexor synergy groups

innervating different limb joints. Normalized spike histograms were used to derive an

average firing rate across the locomotor cycle for individual motor neurons within

defined synergy groups (Figure 4.13A-F, gray time series in lower panels; Figure 4.7).

Because Q and G motor neurons display bimodal tuning we used k -means clustering

(k = 2) to separate the cycle-averaged firing rates of both groups, yielding distinct

RF and V pools at different mediolateral positions within the Q population, and ros-

trocaudally distinct TFL and GM pools within the G population (Figure 4.11C,D).

Synergy group averages of cycle-averaged firing rates showed that the phase of peak

firing and burst duration were consistent across preparations (Figure 4.13A-F, upper

panels; color time series in lower panels).

Strikingly, we found that the order at which firing rates attained 50% of their

eventual maxima, a measure of burst onset, correlated with the ventrodorsal position

of motor neurons within the LMC, and thus the proximodistal position of their target

muscles (Figure 4.13G,H). The synergy group-averaged firing of the ventral-most

motor neurons innervating the hip flexor TFL muscle had an onset at a cycle phase

of -43.8 ± 20.9◦ (median ± standard error of median, n = 34 neurons). The firing

of more dorsally positioned motor neurons innervating RF, a hip flexor with a more
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distal origin and insertion than TFL, had an onset at -33.0 ± 4.4◦ (n = 38). The firing

of still more dorsally positioned motor neurons innervating ankle flexor AC muscles

had an onset at -13.2 ± 2.2◦ (n = 106). Finally, the dorsal-most motor neurons,

which innervate toe flexor IF muscles, had an onset at 19.2 ± 2.6◦ (n = 72). The

correlations of both burst onset phase and peak firing phase with position were strong

(onset: ρ = 0.70, p < 10−10); peak: ρ = 0.69, p < 10−10); Figure 4G,H). Thus local

spinal circuits appear able to impose a motor neuron activation order reflective of

that observed in certain locomotor contexts in vivo.
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Figure 4.13 (preceding page): Cycle-averaged firing of identified motor neu-

rons reveals sequential recruitment of flexor synergy groups

(A-F) Bottom: cycle-averaged firing rates from individual CTB-labeled motor neu-

rons (gray) imaged in a single preparation. Colored traces represent their means.

Top: Mean cycle-averaged firing rates from CTB-labeled motor neurons in each of

three different preparations for each of the six different synergy groups analyzed. (G)

Synergy group-averaged firing rates ± s.e.m. for identified motor neurons pooled

across preparations. Colors correspond to those used in A-F. (H) Median burst peak

and burst onset times ± standard error of the median for four flexor synergy groups

ordered by dorsoventral position (inset).
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4.2.6 Locomotor firing intensity varies as a function of motor pool

identity

In addition to measuring the phase tuning and burst duration of motor neurons during

locomotor firing, we wondered if the number of spikes emitted by a given neuron over

the locomotor cycle varied systematically as a function of its muscle target identity.

Since our fast spike inference algorithm yields spike histograms that are only propor-

tional to the absolute number of spikes in each bin, and the multiplicative factor that

would relate spike histograms to the true firing rate is unknown and different for each

neuron, we needed to use a new approach to infer firing rates.

Therefore, we used a different spike inference algorithm that estimated firing rate

information, in addition to inferring the timing of spiking activity. Because this ap-

proach [Pnevmatikakis et al., 2013] estimates sequences of spike times, as opposed

to “spike histograms,” we can compute the number of inferred spikes/second across

each 90 s imaging session in order to produce a firing rate estimate for each neuron.

In order to determine whether these firing rate values made sense, we first looked

to see whether the firing rate of motor neurons declined over time. In contrast to

phase tuning, which appears stable for hours, fewer motor neurons exhibited strong

phasic modulation (and therefore met the Rayleigh test statistic threshold necessary

to appear in our phase tuning maps) at the end of an experiment than at the be-

ginning. This effect could be explained if the firing rate of individual motor neurons

declined as a function of preparation health–consistent with earlier observations that

motor neuron firing decreases when the spinal cord is exposed to hypoxic conditions

[Wilson et al., 2003].

Indeed, in both of the experimental datasets that we analyzed, we saw a signifi-
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cant, linear decrease in estimated neuronal firing over time (Figure 4.14A,B,D,E). In

one preparation, we found that firing rates decreased at a rate of -0.0041 Hz/minute,

and in the second preparation rates decreased by -0.0049 Hz/minute. These results

support our hypothesis that the firing rates of individual motor neurons decrease as

a function of time and preparation viability. Together with our earlier validation of

this firing rate estimation method (from Chapter 3), we therefore have confidence in

our ability to estimate firing rate from our motor neuron imaging data.

Next, we used these firing rate estimates to examine whether neurons innervat-

ing flexor, extensor, and foot muscles had systematically different median firing rates

over the locomotor cycle. We performed this analysis in two ways: either by using

CTB labeled populations of neurons, or by classifying neurons as flexor, extensor, or

foot-like on the basis of their phase tuning (|phase| < 10◦ was defined as flexor-like,

|phase| > 140◦ was defined as extensor-like, and 80◦ > phase > 40◦ was defined

as foot-like firing). To verify that this simple classification scheme would actually

isolate neurons in spatially segregated populations that contain flexor, extensor, and

foot motor pools, we simply plotted cluster identity in color on top of our motor

neuron position maps (Figure 4.15). This approach reveals a close correspondence

between the position of identified extensor (Figure 4.15A), and foot motor neurons

(Figure 4.15D) and our neuron classification scheme (Figure 4.15C,F).

We then examined the median firing rates of classified flexor, extensor, and foot-

like neurons. We found that foot-like firing neurons had the lowest median firing

rates (prep 1 = 0.73± .05 Hz; prep 2 = .42;±.05 Hz; median ± standard error of the

median), flexor-firing neurons fired at more intermediate rates (prep 1 = 0.91 ± .03

Hz; prep 2 = 0.74± .04 Hz), and extensor motor neurons had the highest firing rates

(prep 1 = 0.85± .04 Hz; prep 2 = 1.24± .06 Hz) (Figure 4.14C,F). In both prepara-

tions, foot-classified neurons had significantly lower firing rates than both flexor and
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extensor classified neurons (p < 0.005 for all individual comparisons; Wilcoxon rank

sum test). The difference in median firing between the flexor and extensor classes was

only significant in preparation 2 (p < 10−7; p > 0.5 in preparation 1). Importantly,

members of each of the three phase classes were imaged at each time point during

each experiment, making it unlikely that these results arose as a consequence of firing

rates declining over the duration of each experiment (Figure 4.14B,E).

This primary effect that we saw between foot-classified neurons and those with

other phase tunings also holds for CTB-labeled foot-innervating motor neurons (Fig-

ure 4.14F; Figure 4.15D,E). The median firing rate of all motor neurons was 0.73±.018

Hz in preparation 2. In contrast, the CTB-labeled foot flexor motor neurons identified

in that preparation fired at 0.35 ± .014 Hz (significantly lower than the distribution

of all neurons; p < 0.005). The median of the CTB-labeled foot motor neuron rate

distribution was indistinguishable from that of the foot-classified neuron distribution

(p > 0.5).

Similarly, we also observed that CTB-labeled gluteus motor neurons (G; an ex-

tensor muscle) fired at a significantly higher median rate than the distribution of all

active motor neurons (1.26±0.08 for backfilled G neurons vs. 0.81±.019 Hz for all neu-

rons; p < 10−6). However, the distribution of G motor neurons was also statistically

different from the distribution of all extensor-classified neurons (p < 0.005)—perhaps

reflecting the fact that different extensor motor pools each have their own distinct

firing rate distributions. Together these results indicate that different motor syn-

ergy groups not only fire at different times during locomotor firing, but at different

intensities as well.
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Figure 4.14: Mean firing rates during fictive locomotion vary as a function

of pool identity

(A,D) Histogram of all phasic neurons (Rayeligh test P < 0.5) from two preparations

(n = 1264 neurons in preparation 1; n = 1396 neurons in preparation 2). Colors

correspond to neurons identified as belonging to one of three clusters on the basis of

their phase tuning: cyan points denote flexor-like firing, red points denote extensor-

like firing, and blue points denote foot-like firing. Phase criteria for assignment to

each class is indicated in the text. (B,E) Firing rate of each phasic neuron (dots)

in each preparation as a function of time imaged. Colored dots were assigned to

one of the three clusters defined in (A,D). (C,F) Box plot displaying mean firing

rate distributions for all phasic neurons (all), backfilled neurons (gluteus/G in C;

foot/IF in F), or for each of the three identified clusters defined in (A,D). Horizontal

bars within boxes represent medians and edges of boxes represent the 25th and 75th

percentile mean rate value for each cell type. “+” points represent outlier neurons.
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Figure 4.15 (preceding page): Spatial maps of mean firing rate reveal the

organization of motor neuron activation intensity across space

(A,D) Phase tuning maps from two datasets analyzed in this firing rate analysis.

Phase tuning was computed using results from the fast spike inference algorithm (as in

Figure 4.8). Numbers above each histogram indicate the maximal number of neurons

in a single histogram bin. (B,E) The estimated mean firing rate is displayed for each

phasic neuron. Brighter colors indicate higher firing rates. Firing rate estimation

was accomplished using Markov Chain Monte Carlo-based spike inference methods

[Pnevmatikakis et al., 2013]. (C,F) Cluster identities were assigned according to mean

phase tuning, as described in the legend of Figure 4.14. (Arrows in D-F) Indicated

regions show the position of high firing rate extensor motor neurons (red arrows) and

low firing rate foot motor neurons (blue arrows).
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4.3 Discussion

The temporal features of motor neuron firing observed in neonatal spinal cord in

vitro exhibit distinctions from, and commonalities with, the pattern of activation of

their muscle targets in adults in vivo. Such a comparison indicates the sufficiency

of local circuits in conferring aspects of locomotor pattern, as well as their inherent

limitations.

4.3.1 Elements of in vivo locomotor pattern retained in an isolated

preparation

We note differences between motor neuron firing patterns observed in vitro when

compared with the activation of corresponding target muscles in vivo, with such

discrepancies implicating descending commands or sensory feedback in shaping loco-

motor pattern.

Included among the discrepancies are differences in the number and duration of

motor bursts. We observed that TFL and RF motor neurons burst only once per

locomotor cycle in vitro, yet their target muscles exhibit dual burst activity in many

locomotor contexts in vivo [Rossignol, 1996; Yakovenko et al., 2002]. This difference

likely reflects the influence of sensory feedback, inducing a second phase of motor

neuron bursting per cycle, or shifting the firing phase of a subset of neurons within

the TFL and RF pools [Loeb, 1985; Perret & Cabelguen, 1980]. A second distinction

is that flexor motor neurons exhibit relatively brief bursts in vitro, whereas flexor

muscle activation in vivo can occupy a much greater proportion of the locomotor

cycle. Studies in cat and mice in vivo suggest that the duration of muscle activation

is also governed by sensory feedback, in part through the regulation of muscle offset

timing [Akay et al., 2014; Lam & Pearson, 2001]. Together, these findings suggest

that premotor circuits are sufficient to produce a basic dynamical template of loco-
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motor activity that is subject to refinement through sensory feedback.

Nevertheless, conserved features emerge from a comparison of locomotor patterns

in vitro and in vivo, most clearly in the timing of recruitment of motor neurons that

innervate synergist muscles acting on different joints. Our findings indicate that local

circuits are sufficient to direct the activation of motor neurons innervating synergistic

flexor muscles, in a ventrodorsal sequence that matches the proximodistal positioning

of their muscle targets. EMG recordings from mouse hindlimb muscles during walk-

ing document the activation of hip, knee, and ankle flexor muscles in a similar proxi-

modistal order [Akay et al., 2014]. Even in cat, certain locomotor conditions reveal an

analogous proximal to distal activation sequence that extends from hip to toe synergy

groups [Rasmussen et al., 1978; Grillner, 1981; Krouchev et al., 2006], despite consid-

erable task-dependent variability in the order of muscle recruitment [Rossignol, 1996;

Yakovenko et al., 2002]. The mouse motor neuron activation sequence observed in

vitro implies that premotor interneurons are able to recognize and select from motor

synergy groups governing different limb joints.

Two-photon Ca2+ imaging reveals aspects of the organization of locomotor firing

across the LMC that could not have been discerned from motor nerve or muscle

recordings, which conflate the activity of individual motor neurons and pools. The

combined cellular and high spatial resolution afforded by imaging revealed that motor

neurons exhibit abrupt changes in firing at the boundaries between synergy groups.

The spatial resolution and broad coverage provided by our datasets were critical in

exposing spatially extended synchrony. Cellular resolution estimation of neuronal

firing was also necessary to delineate the precision of flexor firing that dominates

among FoxP1MN∆ motor neurons (see Chapter 5).
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4.3.2 Locomotor pattern complexity in the isolated neonatal rodent

preparation

At first glance, the heterogeneous firing patterns across different flexor synergy groups

appear inconsistent with a recent analysis of ventral root recordings from isolated

neonatal rat spinal cord [Dominici et al., 2011]. This prior study concluded that

locomotor output from neonatal preparations is well-approximated by two alternating

rhythmic patterns, in contrast to the greater complexity observed in EMG recordings

from behaving adults. This discrepancy prompted us to perform an analysis similar

to that of Dominici et al. but using the cycle-averaged firing rates of the many

motor neurons recorded in individual neonatal spinal cords. Non-negative matrix

factorization reveals that four components are needed to explain∼ 90% of the variance

in locomotor firing across the neonatal LMC, as in adult EMG (Figure 4.16A-E).

Similar results were obtained using principal components analysis (Figure 4.16F).

Thus the complexity of locomotor output from the isolated neonatal rodent spinal cord

preparation is similar to that generated in adults in vivo, contrary to the conclusion

of Dominici et al.
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Figure 4.16: Basic patterns extracted from in vitro neonatal mouse locomo-

tor firing

(A-D) Components resulting from non-negative matrix factorization (NMF) on the

cycle-averaged firing rates from 15 wild type datasets each decomposed into 4 com-

ponents. Gray lines represent components from individual datasets, colored lines

represent means across all datasets. (E) Cumulative variance (± s.d., n = 15 prepa-

rations) explained by adding additional components. Red lines indicate the number of

components necessary to account for approximately 90% of the cumulative variance.
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4.3.3 Future applications of this assay

Our imaging studies emphasize the inadequacy of monitoring ventral root activity as

a viable means of probing the logic of mammalian locomotor circuitry. Interpretations

of in vitro ventral root recordings have typically relied upon the notion that lumbar

L2 and L5 root activity peaks reflect, respectively, the phases of flexor and extensor

motor neuron firing. Yet our findings document that at each lumbar segment there

are sizable populations of motor neurons that exhibit distinct flexor or extensor firing

patterns. The basis of this discrepancy remains to be resolved, but most obviously

could reflect quantitative differences in the number of flexor and extensor motor neu-

rons at different segmental levels [Yakovenko et al., 2002] and/or differences in motor

neuron firing frequency. Whatever its basis, our findings illustrate that a reliance on

ventral root activity peaks ignores the extent of diversity in motor neuron activities

present at individual segmental levels of the spinal cord.

Moving forward, there are many applications for the assay presented here. Since

this approach permits the measurement of cellular-resolution activity patterns from

a large fraction of all limb innervating motor neurons to be measured during lo-

comotor firing, simply applying it to existing mouse strains that manipulated spinal

interneuron circuits will likely lead to fundamentally new interpretations of previously

described knockout phenotypes that have been described over the last decade [Lanuza

et al., 2004; Gosgnach et al., 2006; Crone et al., 2008; Zhang et al., 2008] (Figure 1.5).

While ablating any of these genetically defined subpopulations of neurons has an

impact on locomotor pattern output, recording from only two ventral roots is an

inadequate readout. In this chapter, we have shown a high degree of structure in

motor output that goes far beyond simple flexor-extensor alternation. The standard

ventral root recording assay can only assay deficits to alternation, burst robustness,

and burst frequency. Indeed, each of those phenotypes can be observed in the data
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presented in Figure 1.5. It seems highly unlikely that, given the structure that we

know exists at the level of single motor neuron firing, that there is nothing else to be

learned from these mutants.

In the next chapter, we will explore the locomotor firing of motor neurons in a

mutant mouse where the transcription factor FoxP1 has been selectively deleted from

all limb-innervating motor neurons. In the context of that manipulation, it will be

useful to consider why many of our observations would have been qualitatively differ-

ent had we lacked the spatial and cellular resolution afforded by the assay described

in this chapter.
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Flexor primacy in intrinsic locomotor firing

5.1 Introduction

The locomotor activity characterization in the previous chapter served as a reference

for analyzing how reversion of lumbar motor neuron identity to an ancestral state

might change locomotor pattern.1 In this chapter, we present evidence in support of

the concept of flexor primacy: the idea that the basic organization of flexor circuits

predates the emergence of extensor circuits, and therefore that modern flexor circuits

may have emerged by co-opting ancient axial circuits. Under this view, the reversion

of lateral motor column (LMC) neurons to an ancestral-like state might lead to their

recruitment of flexor-defining premotor inputs. To assess this possibility, we genet-

ically inactivated the FoxP1 transcription factor to convert limb-innervating motor

neurons to an HMC-like ground state [Dasen et al., 2008; Kusakabe & Kuratani, 2005;

Rousso et al., 2008]. In FoxP1 mutant preparations we find that virtually all limb-

innervating motor neurons – those innervating extensor as well as flexor limb muscles

– are activated with the precise temporal features of flexor motor neurons. Our ob-

servations show that the subtype identity of motor neurons profoundly influences the

1Portions of this chapter were derived from work in [Machado et al., 2015].
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pattern of motor output. They also lend credence to the idea that a flexor-like motor

pattern emerged during vertebrate evolution without reliance on a functionally op-

ponent extensor premotor circuit.

5.1.1 The diversification of motor neuron identity across evolution

The identities, muscle targets and functional specialization of motor neurons have

diversified greatly during vertebrate evolution, providing a potential means of ad-

dressing the influence of motor neuron identity on locomotor pattern. Within this

broad evolutionary context certain physiological studies have raised the possibility

that mammalian flexor networks evolved by co-opting a core axial motor circuit re-

sponsible for swimming in ancestral aquatic vertebrates. In primitive vertebrates, the

body undulations that underlie swimming reflect the wave-like recruitment of motor

neurons innervating segmentally-arrayed axial muscles [Grillner & Wallen, 1985].

A similar wave-like pattern of motor neuron activation is evident from ventral root

recordings at thoracic levels in the isolated neonatal rat spinal cord during locomotor-

like activity [Falgairolle & Cazalets, 2007], as can be seen in Figure 5.1. In the adapted

data, suction electrode recordings were simultaneous obtained from up to 16 ventral

roots during drug-induced fictive locomotion. When the mean phase tuning of each

thoracic segment was aggregated across experiments and plotted with a common

phase reference point (ventral root L2), a caudo-rostral wave in activity becomes ap-

parent (Figure 5.1B). Since limb innervating LMC motor neurons do not reside at

thoracic segments, this thoracic wave must reflect the firing of median (MMC) and

hypaxial (HMC) motor column neurons that innervate trunk (epaxial) and body wall

(hypaxial) muscles, respectively.

Intriguingly, the activity of rostral lumbar segments, which are known to fire in a
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flexor-like phase, form a caudal continuation of this thoracic activity wave, whereas

more caudal extensor-related segments burst in antiphase. This continuity of thoracic

and flexor firing may reflect the reappropriation of axial circuits for flexor pattern gen-

eration, and thus argues for the evolutionary primacy of the flexor system. In support

of this view, there is experimental data indicating that the developmental programs

controlling the growth of hypaxial musculature in mammals may be shared with those

that regulate the development of generic axial musculature in primitive jawless ver-

tebrates like lampreys (Figure 5.2).

In contrast to all extant jawed vertebrates (which belong to the infraphylum

Gnathostomata), lampreys lack paired appendages. They also lack a clear distinction

between dorsal epaxial and ventral hypaxial muscles which are typically separated

from each other along the dorsoventral axis of a gnathostome by a connective tis-

sue called the horizonatal myoseptum (Figure 5.2 B,D). This distinction between

lampreys and gnathostomes prompted developmental researchers to wonder whether

the muscles of lampreys were more similar to epaxial or hypaxial muscles in other

vertebrates [Kusakabe & Kuratani, 2005]. Because expression of gnathostome tran-

scription factor Pax3 is restricted to hypaxial muscles at late developmental stages,

and because Pax3 appears necessary for both limb and hypaxial muscle development

[Franz et al., 1993], Kusakabe and Kuratani examined whether the lamprey homolog

of Pax3, called LampPax3/7, was expressed in lamprey musculature (Figure 5.2 A,C).

They found that it was present, suggesting an evolutionary linkage between ancestral

axial and modern hypaxial muscles.

As we will see in section 5.1.2, this insight will prove valuable in interpreting com-

plementary studies of hypaxial (HMC) verses epaxial (MMC) motor neuron develop-

ment. Together, these results permit us to argue that a reversion of limb-innervating

(LMC) motor neurons to an HMC-like state is tantamount to an ancestral reversion,
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wherein we can examine the impact of motor neuron identity on locomotor circuit

organization and activity patterning.
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Figure 5.1: Continuity of thoracic and flexor firing in the isolated rat spinal

cord

(A) Ventral root recordings were simultaneously obtained from up to 16 thoracic,

lumbar, and sacral segments in order to accumulate phase tuning information from

each segment. (B) Mean phase tuning of each ventral root signal relative to L2. Data

represented as means ± s.e.m. Adapted from [Falgairolle & Cazalets, 2007].
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Figure 5.2: Hypaxial musculature shares common developmental programs

with primitive axial muscles

(A-B) Lateral view of a lamprey and a jawed vertebrate (gnathostomes, e.g. mam-

mals) showing the position of hypaxial (yellow) and epaxial (blue) musculature. (C)

Transverse view of a lamprey. Axial musculature (yellow) is innervated by motor

neurons in the spinal cord (green) and expresses LampPax3/7, the lamprey homolog

of mammalian Pax3. (D) Transverse view of a jawed vertebrate. Axial muscula-

ture in gnathostomes can be morphologically divided into dorsal epaxial (blue), and

ventral hypaxial (yellow) muscles. At late developmental stages, Pax3 expression is

restricted to hypaxial musculature, where its presence is necessary for normal limb

and hypaxial muscle development. Adapted from [Kusakabe & Kuratani, 2005].
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5.1.2 In the absence of FoxP1, motor neuron identity is reverted to

an ancestral state

Given that hypaxial – but not epaxial musculature – continues to rely on ancestral

axial developmental programs [Kusakabe & Kuratani, 2005], previous work also in-

vestigated whether similar results might hold for the development of motor neurons.

Simply mapping the results from [Kusakabe & Kuratani, 2005] onto motor neuron

development would predict that the development of hypaxial-innervating (HMC) neu-

rons would represent a default state that can be elaborated upon to produce epaxial

(MMC) or limb-innervating (LMC) motor neurons. Indeed, [Agalliu et al., 2009]

demonstrated that the development of MMC motor neurons was dependent on the

graded expression of Wnt genes along the dorsoventral axis of the spinal cord. Simi-

larly, [Dasen et al., 2008; Rousso et al., 2008] demonstrated that a rostrocaudal FGF

pathway was necessary to pattern Hox expression and instruct LMC and PGC devel-

opment. As predicted, in the absence of either Wnt or Hox activity, motor neuron

identity defaults to an HMC-like state (Figure 5.3A), further supporting the idea that

the HMC-like state represents an ancestral motor neuron identity.

Additionally, in mutant mice where FoxP1, a necessary Hox cofactor, has been

inactivated [Dasen et al., 2008], no motor neuron progenitors assume either an LMC

or PGC-like genetic identity. Instead, all non-MMC motor neurons are reverted to

an atavistic HMC-like state. Despite this, reverted motor neurons in lumbar seg-

ments still form functional synaptic contacts with limb muscles (Figure 5.3B). We

took advantage of this ancestral reversion of limb-innervating motor neurons in order

to examine the contribution of motor neuron identity in the organization of spinal

interneuron circuits that mediate locomotor behaviors.
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Figure 5.3: In the absence of FoxP1, motor neuron identity is reverted to a

default, HMC-like ground state

(A) During development, motor neuron progenitors (pMN) expressing Olig2 diversify

into members of one of four columns that each share different types of muscle targets:

MMC (epaxial; red), HMC (hypaxial; blue), PGC (sympathetic; orange), and LMC

(limb muscles; green). Development of MMC neurons is dependent on Wnt signaling.

FGF signaling and Hox transcription factor activity is required for development of

LMC and PGC neurons. (B) Top: The position of each motor column is noted in

a wild type mouse spinal cord. LMC motor neurons also have muscle-specific pool

identities (colored pools). Bottom: After FoxP1 inactivation, PGC and LMC motor

neurons are reverted to a generic HMC-like state. Panel (A) adapted from [Agalliu

et al., 2009]. Panel (B) adapted from [Dasen et al., 2008].
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5.1.3 The recognition of motor neurons by interneurons

The issue of spinal circuit organization as a function of changes to motor neuron

identity has been examined previously. In particular, [Sürmeli et al., 2011] examined

whether patterns of proprioceptive sensory input onto motor neurons were perturbed

in mutant mice where FoxP1 had been selectively removed from all motor neurons. In

the absence of such a genetic manipulation, proprioceptive sensory afferents arising

from a particular muscle contact their homonymous motor pool, as well as syner-

gist motor pools that reside in similar dorsoventral positions [Eccles et al., 1957;

Kudo & Yamada, 1987a] (Figure 5.4A). This specificity in sensory afferent targeting

with respect to pool identity and neuronal position urged a consideration of the mech-

anisms by which afferents found their appropriate postsynaptic motor neuron targets.

When FoxP1 was removed from motor neurons (termed FoxP1MN∆ mice), mus-

cles were still fully innervated, but the position of the identity-stripped motor neurons

that shared common pool targets was scrambled. Therefore, this experimental ma-

nipulation effectively decoupled the issue of motor neuron position from that of iden-

tity. In this context, [Sürmeli et al., 2011] found that proprioceptive afferents formed

synaptic partners with motor neurons at similar dorsoventral positions in both wild

type and FoxP1MN∆ mice. This result suggests that the dorsoventral position of

a motor neuron, independent of its genetic status, is sufficient for the formation of

functional sensory contacts (Figure 5.4B).

In this chapter, we examine the impact of this same genetic perturbation on

interneuron-motor neuron connectivity, finding that, in contrast to sensory inputs,

space is not sufficient for the maintenance of normal locomotor firing patterns.
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Figure 5.4: Sensory afferents find postsynaptic motor neuron targets using

positional information

(A) Proprioceptive 1a afferents target homonymous motor neurons in wild type mice.

(B) In FoxP1MN∆ mice, where motor neurons have been stripped of their pool specific

genetic identities, 1a afferents form synaptic contacts with the motor neurons that

now occupy the dorsoventral positions that their homonymous pool targets would

have occupied in wild type mice.
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5.2 Results

5.2.1 Locomotor firing after reversion of motor neuron identity

Are locomotor firing patterns modified by reverting motor neuron identity to an

ancestral-like state? To test this possibility, mice harboring a conditional FoxP1

allele were crossed with an Olig2 :: Cre driver line to generate motor neuron selec-

tive FoxP1MN∆ mutants [Dasen et al., 2008]. In FoxP1MN∆ mice, motor neurons

fail to acquire LMC columnar and pool-specific identities and instead assume many

of the functional features of thoracic HMC neurons. Transfated motor neurons in

FoxP1MN∆ mice fail to exhibit a stereotypic relationship between neuronal position

and muscle target (Figure 5.5), yet both flexor and extensor muscles are still inner-

vated. As a consequence, muscles co-contract, limbs are rigid and normal locomotion

is precluded [Sürmeli et al., 2011].

To assess the impact of the reversion of motor neuron identity on locomotor firing,

we first monitored lumbar ventral root activities. Induction of locomotor-like activ-

ity in isolated FoxP1MN∆ preparations elicited rhythmic root activity at frequencies

similar to those in wild type mice (Figure 4.6; p = 0.66, Wilcoxon test). However,

the normal ipsilateral alternation between L2 and L5 roots was no longer detected,

and both roots fired in near-synchrony (Figure 5.6A-C), even though alternation be-

tween contralateral roots was still evident (data not shown). Ventral root activity

measurements revealed that phase differences between T9-10 and L2 ventral root ac-

tivity peaks were similar in wild type and FoxP1MN∆ preparations (Figure 5.6D-F;

p = 0.85, two-sample, two-tailed t-test). Thus, the reversion of motor neuron colum-

nar fate abolishes rostrocaudal alternation in motor neuron burst firing. Nevertheless,

rostral lumbar ventral root activity still provides a valid phase reference.
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Figure 5.5: Spatial organization of CTB-labeled FoxP1MN∆ motor neurons

(A) Maximum intensity projection across a sagittally-oriented lumbar spinal cord im-

age stack from a wild type mouse. Identified anterior crural (AC) motor neurons (red)

are confined to a dorsal band above identified gluteal (G) motor neurons (blue). (B)

Transverse projection across the stack used in (A). (C-D) Maximum intensity projec-

tions across two sagittal image stacks from two different FoxP1MN∆ mice showing

labeled AC, G, and intrinsic foot (IF) motor neurons. Arrows in (D) denote ventrally

positioned AC motor neurons.
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Figure 5.6: Ventral root activity in wild type and FoxP1MN∆ preparations

(A-B; D-E) Filtered ventral root recordings from wild type (A,D) and FoxP1MN∆

mutant mice (B,E). (C) Phase differences between ventral root peaks measured be-

tween L5 and ipsilateral L2. Error bars represent the means ± s.e.m. computed for

45 90 s recordings from a wild type mouse (left) and 24 recordings from a FoxP1MN∆

mouse (right). (F) Phase differences between ventral root peaks measured between

thoracic segments and ipsilateral L2. Error bars represent the means ± s.e.m. com-

puted for 16 90 s recordings from a wild type mouse (left) and 28 recordings from a

FoxP1MN∆ mouse (right).
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5.2.2 Loss of motor neuron identity induces flexor-like locomotor

firing

To probe the cellular origins of changes in lumbar locomotor activity, we performed

GCaMP3 fluorescence imaging of motor neurons and ventral root recording in FoxP1MN∆

preparations. Motor neuron phase tuning maps (200-900 motor neurons/map; mean

= 656 motor neurons) revealed substantial differences from tuning in wild type prepa-

rations (Figure 5.7; p = 0.0002, K-S test). Motor neurons exhibited rhythmic firing

at a common phase, close to 0◦ (Figure 5.7C,H,M), with only ∼2% (29/1413) of

FoxP1MN∆ motor neurons bursting at phase values close to 180◦ (Figure 5.8). This

anomalous minority likely reflects the redundant functions of FoxP4 and thus the

preservation of LMC identity in a small fraction of limb-innervating motor neurons

[Dasen et al., 2008].

To exclude the possibility that motor neurons targeting certain muscles remain

silent in FoxP1MN∆ preparations, we analyzed the activity of identified motor neu-

rons. FoxP1MN∆ motor neurons retrogradely labeled by CTB injection into intrin-

sic foot (IF; toe flexors), anterior crural (AC; ankle flexors), gluteal (G; hip exten-

sor/flexor), and gastrocnemius (GS, ankle extensor) muscles exhibited highly over-

lapping tuning distributions (IF: -3 ± 21◦, mean ± s.d., n = 46 neurons; AC: 20 ±
26◦, n = 88; G: 13 ± 23◦, n = 8; GS: -19 ± 28◦, n = 33) in marked contrast to wild

type preparations. In particular, we noted a profound conversion of extensor (G and

GS) motor neuron firing to a flexor-like phase (Figure 5.7D,E,N,O). In addition, IF

motor neurons now fired slightly earlier than AC neurons, the inverse of their wild

type relationship. We conclude that the loss of FoxP1 erodes the normal synergy

group-specific patterns of motor neuron burst firing and promotes flexor monotony.
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Figure 5.7 (preceding page): Uniform motor neuron phase tuning in FoxP1MN∆

cords

(A,F,K) Map showing phase tuning of motor neurons within three FoxP1MN∆ spinal

cords as viewed from the lateral side (927 neurons in (A), 630 neurons in (F), and

859 neurons in (K)). Segmental boundaries of the antidromically-activated segment

are indicated by vertical lines. Labels of other segments were drawn assuming equal

segment widths. (B,G,L) Transverse projection for the rostrocaudal extent indicated

in (A,F,K). (C,H,M) Polar histogram showing phase tuning of neurons mapped in

(A,F,K). The maximal number of neurons within a single bin is shown to the left

of the histogram. (D) Polar plot indicating the phase tuning of all motor neurons

mapped in (A) plotted in gray with the tunings of all CTB-labeled anterior crural (AC,

black) and gluteal (G, red) motor neurons from the same preparation superimposed.

Similar plots for AC motor neurons and gastrocnemius (GS) motor neurons taken

from plots (A) and (F) are shown in (I) and (N), respectively. The radial position

of each point in (D,I,N) represents circular spread around its phase tuning. (E,J,O)

Boxed area in (A,F,K) with CTB-labeled motor neurons indicated.
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Figure 5.8: A minority of FoxP1MN∆ MN fire out of phase with the domi-

nant pattern

(A) Single imaging field from a FoxP1MN∆ spinal cord containing GCaMP3-

expressing motor neurons (green). Scale bar is 100 µm. (B) ROIs for motor neurons

in (A) colored according to phase tuning using the same color scale as (A,F,K) in Fig-

ure 5.7. (C) Fluorescence time courses (red) for three motor neurons from (B) along

with spike-induced fluorescence model fit (cyan) and inferred spikes (black bars). (D)

Inferred spike counts from a full 90 s image sequence plotted across the locomotor cy-

cle for the three motor neurons in (C), with the phase tuning of each neuron indicated

(red arrows). (E) Mean tuning difference versus the interval between measurements

for 4 FoxP1MN∆ mice (red) superimposed on values from 15 wild type mice (gray).

Dotted line indicates predicted mean difference assuming stable phase tuning.



151

5.2.3 Motor neuron firing is precisely flexor-like in FoxP1MN∆

preparations

We also examined the precision with which motor neurons adopted flexor-like firing

in FoxP1MN∆ preparations. Cycle-averaged firing rates of wild type motor neurons

could be separated into two sets using k -means clustering (Figure 5.96A,B), revealing

well-separated sets within individual preparations (clustering index mean ± s.e.m. =

3.99 ± 0.26, n = 12 spinal cords), and across different preparations (clustering index

= 3.85, n = 5967 neurons). One set of firing rates was characterized by brief bursts

(86.7 ± 24.0◦ duration, mean ± s.d., n = 4212 neurons) with phase tunings early

in the locomotor cycle (13.7 ± 27.5◦). The second set exhibited prolonged bursts

(165.7 ± 46.5◦ duration, n = 1755 neurons) tuned later in the locomotor cycle (166.2

± 46.1◦). We found that 99.4% (175/176) of identified motor neurons innervating

AC and IF muscles were included within the early firing set. This finding suggests

that early- and late-firing sets are comprised of flexor and extensor motor neurons,

respectively (Figure 5.9C,D).

An equivalent analysis of FoxP1MN∆ motor neurons revealed that the cycle-

averaged firing rates for virtually all neurons precisely matched those of wild type

flexor motor neurons, both in phase tuning and burst duration (Figure 5.10A-D). k -

means clustering failed to identify well-separated sets, either in individual FoxP1MN∆

preparations (clustering index mean ± s.e.m. = 0.48 ± 0.14, n = 4), or among neu-

rons aggregated across different FoxP1MN∆ preparations (cluster index = 0.27, n =

1413 neurons). Cluster separation was significantly less than for wild type firing rates

(p = 2.1 x 10-6, one-tailed unpaired t-test). Collectively, FoxP1MN∆ motor neurons

exhibited distributions of phase tuning (mean ± s.d. = 12.0 ± 42.2◦; Figure 5.106B)

and burst duration (90.7 ± 29.3◦) that were similar to those of the early firing wild

type set that comprises flexor motor neurons.
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Consistent with this, analysis of phase tuning and burst duration distributions

from FoxP1MN∆ mice revealed that firing exhibited 21-fold greater similarity to

that of wild type flexors than that of extensors. Overlaps between the joint phase

tuning and burst duration distributions were computed for motor neurons from each

FoxP1MN∆ cord (n = 4) and either the early or late firing sets of motor neurons

aggregated from all wild type cords. This computation quantified the similarity in

firing between FoxP1MN∆ motor neurons and wild type motor neurons assigned to

either set. Overlap with the early firing wild type set (62 ± 3%) was significantly

larger than with the late firing wild type set (3 ± 0.4%; p = 9.1 x 10-5, one-tailed

paired t-test). Moreover, distributions for CTB-labeled FoxP1MN∆ motor neurons

(Figure 5.10C,D) overlapped much more heavily with the early firing wild type set

(AC and IF overlap = 71%, GM and GS = 43%) than with the late firing wild type

set (AC and IF = 3%, GM and GS = 5%; p = 10−5, Monte Carlo test). Taken

together, our results indicate that almost all hindlimb-innervating motor neurons fire

in a precisely flexor-like pattern after genetic reversion of motor neuron columnar

identity.
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Figure 5.9: Divergence in cycle-averaged firing between flexor and extensors

motor neurons

(A) Cycle-averaged firing rates for 854 motor neurons obtained from one wild type

preparation. (B) Kernel density plots of the joint distribution of peak firing phase and

burst duration for 5967 motor neurons pooled across 14 preparations and clustered

into two groups. (C) Cycle-averaged firing rates for identified anterior crural (AC),

intrinsic foot (IF), and gluteal extensor (GM) motor neurons, pooled across all wild

type preparations. (D) Kernel density plots of the joint distribution of peak phase

and burst duration for identified wild type motor neurons.
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Figure 5.10: Prevalence of flexor-like firing in FoxP1MN∆ motor neurons

(A) Cycle-averaged firing rates for 339 motor neurons from one FoxP1MN∆ prepa-

ration. (B) Kernel density plots of the joint distribution of peak phase and burst

duration for 1413 imaged FoxP1MN∆ motor neurons pooled across 4 mice and clus-

tered into two groups. Overlaid in cyan is the 1/6th of maximum contour from cluster

1 derived from wild type data shown in Figure 5.9 (B). (C) Cycle-averaged firing rates

for identified anterior crural (AC), intrinsic foot (IF), gluteal (GM) or gastrocnemius

(GS) motor neurons in FoxP1MN∆ mice, pooled across 4 FoxP1MN∆ preparations.

(D) Kernel density plots of the joint distribution of peak phase and burst duration for

FoxP1MN∆ motor neurons retrogradely labeled from AC, IF, GM, and GS muscles.
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5.3 Discussion

Our analysis reveals that the subtype identity of motor neurons determines the tem-

poral features of locomotor pattern. Most critically, the reversion of LMC neurons

to an ancestral HMC-like columnar character induces essentially all limb-innervating

motor neurons to fire in a flexor-like pattern, a strong indication of the primacy of

flexor pattern generation. This finding has relevance for the current organizational

state of mammalian locomotor circuits.

5.3.1 Relating our in vitro results to the in vivo behavior of

FoxP1MN∆ mice

In [Sürmeli et al., 2011], EMG recordings were obtained from flexor and extensor

muscles during treadmill walking in adult FoxP1MN∆ mice (Figure 5.11). These

recordings revealed synchronous activation of ankle flexor and extensors, in paired

large and small amplitude bursts (Figure 5.11D). This result is consistent with our in

vitro observations that most FoxP1MN∆ motor neurons fire in the flexor phase while

a small minority fire in extensor phase, and that both motor neuron types innervate

each of the muscle groups we injected. That is, every muscle would receive strong

input during the flexor phase, and much weaker input during the extensor phase,

leading to both large and small activity peaks during each locomotor cycle.

Though the undulatory nature of the locomotor behavior in FoxP1MN∆ mice was

to some extent reminiscent of undulatory swimming, it was also idiosyncratic. We

hesitate to assert that this phenotype may be directly related to the motor neuron

activation patterns we observed in FoxP1MN∆ preparations because of the possibil-

ity that the undulation reflects a behavioral compensation driven by descending or

peripheral input that combats the loss of proper spinal locomotor patterning. Nev-

ertheless, the similarity between our in vitro results and those observed by [Sürmeli
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et al., 2011] suggests that the dominance of the flexor pattern may persist under

adult, in vivo conditions.
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Figure 5.11: Behavior of FoxP1MN∆ mice in vivo

(A,C) EMG recordings from right ankle flexor (tibialis anterior, TA) and right ankle

extensor (gastrocnemius, GS) muscles from wild type and FoxP1MN∆ mice during

swimming. (B,D) Autocorrelograms of muscle burst patterns of right TA with itself

(black), and right GS (red) in wild type and FoxP1MN∆ mice. Arrows denote

secondary peaks of activity in autocorrelogram. Adapted from [Sürmeli et al., 2011].
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5.3.2 The recognition of flexor and extensor motor neurons

What explains the finding that essentially all limb-innervating motor neurons fire in

a flexor-like pattern after FoxP1MN∆-mediated reversion of motor neuron identity?

One possibility is that LMC neurons have an active role in the differentiation or func-

tion of pattern-generating circuits (Figure 5.12, middle panel). The reversion of motor

neuron identity may undermine the formation of extensor circuits, leaving, by default,

a monophasic flexor system. Mechanistically, LMC neurons could be the source of

a secreted signal that instructs the assembly of extensor circuits. In fact there is

precedent for the secretion by LMC motor neurons of a signal, retinoic acid, which

drives the diversification of limb-innervating motor neurons [Sockanathan & Jessell,

1998]. Alternatively, synaptic feedback from LMC motor neurons may be necessary

for extensor pattern generation. Recruitment of Renshaw inhibitory or equivalent

excitatory interneurons by motor neuron axon collaterals might influence ongoing

interneuron network activity [Alvarez & Fyffe, 2007; Machacek & Hochman, 2006;

ODonovan et al., 2010].

A second scenario is suggested by the apparent ability of premotor interneurons

to discriminate flexor and extensor motor neurons (Figure 5.12, right panel). The

ancestral similarity of flexor LMC and HMCmotor neurons may lead to the expression

of shared surface recognition features on these two motor neuron classes, permitting

flexor but not extensor premotor interneurons to form connections with ancestrally-

reverted motor neurons. In this view, normal premotor activity would be preserved in

FoxP1MN∆ spinal cord, but extensor premotor interneurons would fail to recognize

HMC-like motor neurons. The finding that a small minority of motor neurons with

extensor-like firing are still present indicates that extensor premotor circuits are at

least in part preserved. Moreover, the scattered distribution of the few extensor-

tuned motor neurons in FoxP1MN∆ preparations implies that premotor interneurons

are able to select individual target motor neurons with precision.
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Figure 5.12: Motor neuron recognition in wild type and FoxP1MN∆ mice

(A) Interneuron-motor neuron connectivity in wild type circuits. (B) Two pos-

sibilities to explain the dominance of flexor firing in FoxP1MN∆ mice. Left:

Modified interneuron identity or activity. Right: Modified interneuron-motor neuron

connectivity.
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5.3.3 The evolutionary primacy of flexor pattern generation

Whether extensor pattern generation is diminished or HMC-like motor neurons re-

cruit only flexor interneuronal input, the prevalence of flexor firing in FoxP1MN∆

preparations provides strong support for the evolutionary primacy of flexor pattern

generation. In mammals the phasic continuity evident between limb flexor and tho-

racic ventral root activity, and the similarity between wave-like patterns in mam-

malian thoracic and primitive vertebrate motor output, are consistent with the idea

that flexor pattern generation emerged by co-opting a primitive swim circuit. This

implies that paired flexor and extensor patterns did not emerge jointly at the evo-

lutionary onset of limb-based locomotion. In the direct ancestors of tetrapods, the

extensor system may have evolved as a later elaboration of spinal circuitry, to pro-

mote ground repulsion through limb extension.

That the basic organization of modern flexor circuits predates the evolution-

ary emergence of extensor circuits further implies that the generation of flexor-

like pattern can occur without opponent input from extensor premotor circuits.

This view concurs with the subordinate nature of extensor pattern generation sug-

gested by certain observations. Notably, locomotor firing in mice and cats is sub-

ject to brief and sporadic periods of quiescence, termed ‘deletions’, that persist

for several cycles. Flexor burst deletions are accompanied by a corresponding pe-

riod of tonic extensor motor neuron firing, whereas flexor motor neuron bursting

continues unabated during extensor burst deletions [Duysens, 1977; Duysens, 2006;

Zhong et al., 2012]. Other studies have suggested that the rhythm of locomotor firing

is directed by populations of interneurons that burst exclusively in flexor phase and in

turn drive pattern forming circuits [Brownstone & Wilson, 2008; Pearson & Duysens,

1976], which could at least partly explain how flexor dominance is imposed. Taken

together with our findings, these results suggest that the late addition of extensor

pattern, coupled with the need for flexor-extensor coordination, led to an asymmetric
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dependence in pattern generating circuits, with flexor circuits having a dominant role.

Locomotor firing persists after the loss of any single cardinal interneuron popu-

lation ([Lanuza et al., 2004; Gosgnach et al., 2006; Crone et al., 2008; Zhang et al.,

2008]; also shown in Figure 1.5), suggesting that the generation of locomotor firing

may be achieved through a diverse array of interneuron network architectures. More-

over, modeling studies have shown that locomotor-like activity patterns can be read

out from neural networks permitted considerable flexibility in their connectivity, as

long as the network outputs are weighted appropriately [Sussillo & Abbott, 2009].

In this context, and with a new emphasis on motor neuron recognition, it is con-

ceivable that interneuronal connectivity is only weakly constrained, whereas output

connections with motor synergy groups are precisely specified.
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Functionally defining premotor interneuron

circuits

6.1 Introduction

In the data presented in previous chapters, we found striking diversity in locomotor

firing that went beyond simple flexor-extensor alternation in wild type mice. Our

analysis of FoxP1MN∆ mice revealed that motor neuron subtype identity was neces-

sary for the emergence of appropriate locomotor firing patterns. One interpretation

of this result is that interneurons identify their post-synaptic motor neuron targets

on the basis of their pool-specific gene expression patterns. Therefore homogenizing

motor neuron identity recruits homogenous patterns of premotor input. This idea

implies that there are distinguishable sets of interneurons that each have different

motor pool preferences.

In order to look for such functional diversity in the premotor interneuron net-

work, we developed methods for characterizing the activity arising from axons of a

subset of inhibitory spinal interneurons (those derived from the En1+ V1 domain)
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surrounding flexor versus extensor motor neuron pools. These experiments are also

designed to test another prediction implied by most models of locomotor circuits:

that motor neurons should receive inhibition exclusively in a reciprocal phase to

their firing pattern [Brown, 1914; McCrea & Rybak, 2008; Endo & Kiehn, 2008;

Talpalar et al., 2011]. That is, unless uncharacterized non-reciprocal inhibitory in-

terneurons play a significant role during locomotion [Brownstone & Bui, 2010], flexor

motor neurons should receive inhibition only in the extensor phase, and vice versa.

6.1.1 The functional organization of spinal interneurons is

unknown

Before we present our approach towards the measurement interneuronal firing, let

us first review what is already known about the activity of spinal interneurons dur-

ing locomotor activity. In the introduction we considered the development of spinal

interneuron circuits from four domains of progenitor cells, termed V0-V3. We also

considered previous genetic perturbation studies that examined the effect on loco-

motor firing of removing each neuronal lineage (see Figure 1.5). These perturbation

experiments were difficult to interpret, in part, due to the fact that the ventral root

recording assay is intrinsically low dimensional, but also because there is not thought

to be a clear one-to-one mapping between the V0-V3 domains and functional elements

of locomotor circuits.

In recent years, monosynaptic rabies tracing has been presented as a means of iden-

tifying a set of functionally related interneurons for study: those that share common

motor pool targets [Tripodi et al., 2011]. In brief, monosynaptic rabies tracing requires

the injection of two viral vectors into a muscle of interest: a replication-deficient rabies

vector carrying the gene for a fluorescent protein, and a second “helper virus” that

expresses the rabies glycoprotein gene. After muscle injection, both the rabies virus

and the helper virus infect a fraction of the motor neurons innervating the injected
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muscle. However, because the retrograde spread of rabies infection is dependent on

the presence of the glycoprotein gene delivered by the helper virus, the modified rabies

virus can jump to presynaptic interneurons only one time (here we will refer to these

last-order premotor interneurons as simply “premotor interneurons”). Despite some

technical complications with this approach [Zampieri et al., 2014], a number of papers

have used this approach to at least coarsely map the spatial distribution of spinal in-

terneurons that share common motor pool targets (Figure 6.1; [Tripodi et al., 2011;

Goetz et al., 2015]).

This approach revealed that limb-innervating motor pools each receive input from

broad, largely overlapping, spatial distributions of interneurons that span many spinal

segments. The differences seen in the spatial extent of pre-flexor versus pre-extensor

interneuron distributions were mostly seen in the dorsomedial cord—presumably

reflecting differential sensory inputs [Tripodi et al., 2011]. In contrast to limb-

innervating pools, epaxial (MMC) and hypaxial (HMC) motor pools receive differ-

ential amounts of contralateral interneuron input [Goetz et al., 2015]. Importantly,

the spatial distribution of inhibitory premotor interneurons was shown to look nearly

identical to the distribution of all premotor interneurons. Together, these findings

reveal the distributed, overlapping nature of premotor interneuron populations that

are presumably involved in different functions during motor behavior.

Given that interneurons monosynaptically connected to different pools appear to

be intermingled with other ventral interneurons, what is known about the activity

of spinal interneurons during locomotor firing? A series of recent papers used two-

photon Ca2+ imaging to examine the phase tuning of interneuron somata present

at rostral lumbar segments in isolated mouse spinal cord preparations across small

spatial scales (Figure 6.2; [Kwan et al., 2009; Kwan et al., 2010]). These experiments

revealed a flexor bias in the phase tuning of most interneurons (perhaps owing to
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the rostral position of the imaging measurements), as well as a lack of spatial mi-

crostructure in these firing patterns (Figure 6.2A-D). Importantly, when analysis was

restricted to only genetically defined subsets of interneurons known to be excitatory,

the flexor bias in phase tuning was still apparent (Figure 6.2E). These results showing

that a flexor-like pattern is stronger than an extensor-like pattern are consistent with

extracellular recording data obtained from decerebrate cats [Cuellar et al., 2009] and

isolated rat spinal cord preparations [Tresch & Kiehn, 1999].

In the context of these results, we are prompted to ask two questions: are the

inhibitory interneurons in this region firing in an antiphase pattern, as would be

predicted by half-center models? And are the firing patterns of the interneurons that

are monosynaptically connected to motor neurons different?
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Figure 6.1: Spatial distributions of interneurons that are presynaptic to dif-

ferent types of motor neurons

(A) Spatial distribution of interneurons that are monosynaptically connected to

quadriceps motor neurons after muscle injection of rabies virus into the quadriceps

muscle (knee extensor). (B) Contour map showing a mediolateral separation in the

spatial distribution of interneurons that are presynaptic to the gastrocnemius (GS;

extensor) and tibialis anterior muscles (TA; ankle flexor). (C-D) Distribution of in-

terneurons that are presynaptic to dorsal epaxial (MMC; panel C) or ventral hypaxial

motor neurons (HMC). In each panel, the right hand side is ipsilateral to the muscle

that was injected with rabies virus. Panels A,C, and D from [Goetz et al., 2015].

Panel B adapted from [Tripodi et al., 2011].
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Figure 6.2: The firing of spinal interneurons is not organized with respect

to space at fine spatial scales

(A) Phase tuning of ventral spinal interneurons of unknown genetic provenance mea-

sured in three different spinal cord preparations. (B) Phase tuning preference and

strength (coherence with respect to ventral root L2) do not correlate with cell-cell dis-

tance. (C-D) Phase tuning distributions for imaged spinal interneurons with respect

to ventral root L2. (E) Phase tuning distributions for identified excitatory interneu-

rons belonging to either the Hb9 or Chx10 (V2a) populations. Figure adapted from

[Kwan et al., 2010].
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6.1.2 En1-derived inhibitory interneurons are heterogeneous and

spatially organized

In contrast to the evidence just discussed arguing that functional subnetworks are

highly intermingled within spinal locomotor circuits, recent work from Jay Bikoff in

the Jessell laboratory indicates the presence of a high degree of diversity in the genetic

identity of En1-derived V1 inhibitory interneurons. Specifically, a microarray screen

designed to find transcription factors that were specifically enriched in V1 interneu-

rons revealed a number of genes that were expressed in only spatially restricted subsets

of the parental V1/En1+ population (Figure 6.3). While the functional consequences

of this result are not yet clear, it alone begs the question of whether functionally

distinct spinal interneuron microcircuits are organized across space. If this were true,

biases in activity during locomotor firing might be observable, even in isolated prepa-

rations.
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Figure 6.3: En1-derived inhibitory interneurons are heterogeneous and spa-

tially organized

Spatial distributions of En1-derived inhibitory interneurons at postnatal day 0. Each

panel represents the spatial distribution of lumbar interneurons expressing both the

transcription factor En1 and the gene indicated. Data provided by Jay Bikoff from

the Jessell Laboratory.
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6.1.3 Premotor interneuron activity must be measured with

respect to pool target

New work towards elucidating the architecture of spinal motor circuits must con-

tend with two issues. First, as we saw in the monosynaptic rabies tracing data, even

functionally unrelated interneurons that have antagonist motor pool targets are posi-

tioned in largely overlapping spatial distributions. Second, spinal locomotor circuits

are highly redundant and distributed. This has been appreciated by dozens of pa-

pers, perhaps most notably [Kjaerulff & Kiehn, 1996]. However, in the past year two

studies revealed that even thoracic networks appear to be involved in locomotor firing.

The first of these studies recorded intracellularly from motor neurons positioned at

mid-thoracic segment T7 during drug induced fictive locomotion [Beliez et al., 2015].

Importantly, application of the rhythmogenic agonists was restricted to lumbar seg-

ments by creating a barrier between lumbar and thoracic segments that restricted

the rostral diffusion of drugs. Nevertheless, robust oscillatory firing was observed

in intracellularly recorded motor neurons, suggesting that lumbar locomotor circuits

provided ascending rhythmic drive to thoracic segments (Figure 6.4A).

Consistent with these observations, a second study measured the locomotor fir-

ing of interneurons at thoracic segments in an ex vivo turtle carapace-spinal cord

preparation [Guzulaitis et al., 2014]. Because thoracic segments reside inside the

turtle’s shell where there is no musculature, no motor neurons are present. Surpris-

ingly, interneurons at thoracic segments were robustly active during fictive scratching

behavior—and they fired in phase with ipsilateral flexor muscles (Figure 6.4B).

Together, these new observations underscore the fact that interneuron activity

must be measured with respect to motor pool target. It seems likely that the “last

order” interneurons are spatially intermingled with all other locomotor-related in-
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terneurons. Because of this possibility that there is a lack of spatial structure in

interneuron activity, and because rhythmogenic drugs might induce firing in interneu-

rons that do not even normally fire during locomotor tasks [Brocard et al., 2013], we

developed a new approach for measuring interneuron activity with respect to motor

pool target, and found activity patterns that are inconsistent with a push-pull scheme

for controlling motor neuron firing.
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Figure 6.4: Thoracic neurons are phasically active during rhythmic limb

movements

(A) Intracellular recording from a thoracic motor neuron (from segment T7) in an

isolated neonatal rat spinal cord preparation where rhythmogenic drugs have been

applied solely to the lumbar segments. These observations indicate the presence of

ascending connections from lumbar locomotor circuits to thoracic motor neurons. (B)

Intracellular recordings reveal the cycle-averaged firing of 34 thoracic spinal interneu-

rons (from segment D4) in a turtle carapace-spinal cord preparation during fictive

scratching behavior. Importantly, thoracic neurons were rhythmically active despite

the lack of any motor neurons at those segments in the turtle. Panel A adapted from

[Beliez et al., 2015]. Panel B adapted from [Guzulaitis et al., 2014].
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6.1.4 Controlling the firing of motor neurons with different patterns

of presynaptic input

Let us now consider the different strategies by which presynaptic input can drive a

motor neuron to fire in a periodic bursting pattern that are schematized in Figure

6.5A. As we considered earlier, half-center models dating back to [Brown, 1914] argue

that reciprocal patterns of excitation and inhibition are responsible for the membrane

potential dynamics observed in motor neurons during rhythmic motor behaviors (see

the fourth trace in Figure 6.5A). Recently, a series of papers [Endo & Kiehn, 2008;

Petersen et al., 2014; Berg et al., 2007] has applied conductance decomposition tech-

niques to intracellular recording data obtained from motor neurons to try and infer

patterns of presynaptic input and thus test which of the four strategies might be used

rhythmic motor firing.

In [Petersen et al., 2014] and [Berg et al., 2007], intracellular recordings were ob-

tained from motor neurons in the turtle during tactile-induced shell scratching behav-

ior. During this rhythmic locomotor activity, their measurements of synaptic input

onto motor neurons revealed striking periods of concurrent excitatory and inhibitory

input—in conflict with traditional half-center like models (Figure 6.5A-C). When sim-

ilar methods were applied to the drug-induced isolated neonatal mouse spinal cord

preparation, a very different result was observed: reciprocal patterns of excitation

and inhibition (Figure 6.5D; [Endo & Kiehn, 2008]). Additionally, an asymmetry

was seen between flexor and extensor motor neurons. Inhibitory inputs appeared to

be much stronger than excitatory inputs onto extensor motor neurons (akin to the

“inhibition driven” scenario in 6.5A). A similar result was not seen in flexor motor

neurons. The differences between these two studies has been largely interpreted as

evidence that the [Berg et al., 2007] findings do not hold in mice and other mammals

[Grillner & Jessell, 2009].
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But there are also technical reasons suggesting that perhaps the two circuits

might actually behave similarly, despite the evidence to the contrary. First, stan-

dard methods for conductance decomposition ([Monier et al., 2008]) depend on the

assumption that the total input to the neuron consists of three components: exci-

tatory, inhibitory, and constant leak conductances. Owing to the fact that motor

neurons are very large and not at all electrotonically compact, it is unlikely that an

injected holding current (or command potential in voltage-clamp mode) will actually

have an effect over the entire spatial extent of the neuron ([Spruston et al., 1993;

Williams & Mitchell, 2008], Carl Schoonover, personal communication). Therefore,

the assumption of constant leak conductance over time is unlikely to be true under

all circumstances. Second, it has been observed that the presence of gap junctions

can confound conductance decomposition analysis [Berg & Ditlevsen, 2013]. This is

significant because in the P0-P4 age range where the [Endo & Kiehn, 2008] experi-

ments were conducted, it is known that strong coupling exists between motor neurons

[Personius et al., 2007]. On the other hand, some elements of the findings from [Endo

& Kiehn, 2008], particularly the differences seen between flexor and extensor motor

neurons, warrant further consideration. [Berg et al., 2007] and [Petersen et al., 2014]

only investigated the inputs onto flexor motor neurons in their preparation. It is

therefore possible that the flexor-extensor asymmetry observed in [Endo & Kiehn,

2008] holds in turtles and that antiphase inhibition plays a more dominant role in

controlling the firing of turtle extensor motor neurons.

In addition, the turtle and mouse studies are in agreement in another respect:

both [Petersen et al., 2014] and [Endo & Kiehn, 2008], provide evidence that recip-

rocal inhibition is present in their preparation (Figure 6.5C,E). Indeed, the idea that

reciprocal “push-pull” inhibition could give rise to alternating patterns of motor firing

is not controversial. The outstanding question is not whether reciprocal inhibition is

sufficient, but rather we would like to know what control scheme is actually dominant



175

during normal motor behaviors. In this chapter, we will address this question by first

enumerating the types of inhibitory interneuron firing patterns across the lumbar

spinal cord, and then examine which patterns appear in the inhibitory interneuron

processes that surround flexor and extensor motor pools.

In this chapter, we will present two novel approaches for addressing these ques-

tions using Ca2+ imaging: a wide-field imaging assay, and an approach for imaging

the axons of interneurons surrounding identified motor neuron pools. But first, we

must make a note of caution: the conclusions presented in this chapter should be in-

terpreted as more preliminary than the others presented in this thesis. Nevertheless,

we found that in contrast to our hypothesis, inhibitory interneuron activity does not

dramatically change in areas of neuropil surrounding flexor versus extensor motor

pools. Additionally, the activity of interneurons surrounding flexor motor neurons

looks mostly flexor-like—not exclusively extensor-like as predicted.
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Figure 6.5 (preceding page): Different patterns of presynaptic input could un-

derlie motor neuron firing during locomotion

(A) Four possible strategies for producing a periodic membrane potential (top) with

different combinations of excitatory (blue) and inhibitory (red) input. (B) Conduc-

tance decomposition performed on an intracellular recording taken from a turtle flexor

motor neuron during tactile induced scratching behavior (nerve activity in gray, top;

motor neuron activity in blue, middle; conductance decomposition shown on bottom

to show inferred presynaptic input). (C) Model illustrating possible circuit basis for

observations shown in (B). (D) Results from applying conductance decomposition

methods to data obtained from mouse flexor (top row) and extensor (bottom row)

motor neurons. The left panel shows the normalized time course of conductance

changes over a step cycle (dotted line = mean, solid lines = individual motor neu-

rons). The step cycle has been discretized into 10 bins: the first 5 bins correspond

to the time of flexor motor neuron firing, the second 5 bins to extensor firing. The

middle panel shows only the normalized time course of excitatory conductances. The

right panel shows the normalized time course of inhibitory conductances. (E) Model

presented to explain data shown in (D). Panels A-C adapted from [Petersen et al.,

2014]. Panels D-E adapted from [Endo & Kiehn, 2008].
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6.2 Results

6.2.1 A wide-field imaging approach for quantifying locomotor

pattern complexity

We first set out to enumerate the dominant patterns of En1-derived inhibitory in-

terneuron activity present in the ventral spinal cord. Because of the distributed

nature of locomotor circuits, the relevant networks span cubic millimeters of space.

Because of this fact, and due to small relative size of interneuron somata, we decided

to first develop a wide-field imaging assay to measure the dominant activity patterns

that might exist within inhibitory interneurons across the ventrolateral spinal cord.

In the next section, we will use wide-field epifluorescence microscopy to examine

isolated spinal cord preparations that express the Ca2+ indicator GCaMP6F selec-

tively in En1-derived interneurons. Because of a lack of optical sectioning ability, and

due to the low magnification of the objective used (4x), this technique cannot reveal

the activity of individual neurons. However, we can simultaneously monitor neural

activity across imaging fields that are approximately 2 mm2 in size. By computing

the phase tuning for individual pixels, that are each likely contain multiple neurons

we can derive large-scale, but low-resolution, maps of locomotor firing activity across

nearly the whole lumbar cord from single imaging fields. We can also apply non-

negative matrix factorization (NMF) algorithms to these data in order to decompose

them into multiple spatially-distinct components and thus reveal the types of locomo-

tor firing patterns that seem to predominate in the activity present in the inhibitory

network. This large-scale approach will let us assess the heterogeneity of firing pat-

tern across space in a reasonably unbiased way, such that we can appropriately focus

our high-resolution imaging efforts on areas of interest.

To first demonstrate the efficacy of this approach, we have applied it to wide-field
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imaging data obtained from a ChAT::Cre; ROSA::GCaMP3 mouse with retrogradely

labeled quadriceps (Q) and intrinsic foot (IF) synergist groups (Figure 6.6A). By

examining the phase tuning of individual pixels within this data, we can produce a

phase map that clearly resembles that seen in our two-photon imaging data (Figure

6.6B-C). Importantly, adjacent pixels tend to share similar phase tunings and regions

known to contain superficially positioned flexor or extensor motor neurons appear to

fire as expected. However, regions that contain multiple motor pools with different

tunings (see the middle of panel Figure 6.6B) appear less smooth. This is likely be-

cause the average phase tuning of a pixel that contains many neurons with multiple

phase tunings cannot be well-described by a single value.

To overcome this limitation of our phase maps, we can apply NMF in order to try

and decompose the whole dataset into a linear combination of time-varying activity

patterns, and spatial weights corresponding to the pixels where each activity pattern

resides. Based on our analysis of motor neuron firing in isolated preparations, such

an approach should reveal three dominant patterns: a flexor-like pattern, a phase-

lagged foot-like pattern, and an antiphase extensor-like pattern. As a sanity check

that our approach is working, the spatial footprints of each of these activity vectors

should correspond to the known anatomical position of flexor, extensor, and foot mo-

tor pools. Importantly, because both the spatial and temporal patterns extracted by

NMF are constrained to be positive, pairs of patterns cannot cancel each other out

and can therefore be interpreted independently.

The results from this analysis can be seen in Figure 6.6D-G. By applying NMF

to the data (k components = 5, 3 components shown, MATLAB function nmfnnls

from [Li & Ngom, 2013]), we were able to extract three spatially distinct sets of pixels

corresponding to the three temporal patterns shown in panel G. NMF 1 resembles a

flexor-like pattern, NMF 2 resembles late-flexor/foot-like activity, and NMF 3 is an
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extensor-like pattern. The two components that were not shown are more difficult to

interpret and appeared to resemble mixtures of firing signals and baseline fluorescence

drift. We examined the residual movie (i.e. data - 5 component NMF reconstruction)

and found that it lacked clear spatial or temporal structure, suggesting that k = 5

components is sufficient to explain this dataset.

Because we lack cellular resolution in this assay, these results are consistent with

intuition. The fact that small pixel weights are imposed on some dorsal regions in

NMF 3 (the extensor component) likely reflects contributions from deep, medially

positioned extensor motor pools that were too deep to resolve with cellular resolution

in our two-photon assay.
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Figure 6.6 (preceding page): Non-negative matrix factorization reveals pool-

like structure in wide-field motor neuron imaging datasets

(A) Sagittally-oriented mouse spinal cord expressing GCaMP3 (Ai38 reporter)in mo-

tor neurons under 4x magnification. Quadriceps (Q) and intrinsic foot (IF) motor

neurons were retrogradely labeled with CTB as shown in red and blue, respectively.

(B) Phase was computed relative to ventral root L2 peak for all bright green pixels

(indicating GCaMP expression). The phase tuning of each pixel is indicated in color

and is superimposed on the mean intensity projection of the image time series (imag-

ing rate = 30 Hz). (C) The phase tuning of each pixel is shown in polar space. The

radial position of each pixel represents the strength of its tuning. (D-F) The image

time series analyzed in (B) was decomposed into 5 components using non-negative

matrix factorization (NMF). The weights associated with three NMF components

are shown in (D-F). The time series corresponding to each of the NMF components

shown is plotted in panel (G) relative to detected L2 bursts (blue bars). The size of

the imaging field is 1.95 mm2.
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6.2.2 The large-scale structure of inhibitory interneuron activity

In the context of the motor neuron results, we can now apply this wide-field imaging

technique towards the analysis of inhibitory En1 interneuron activity and have confi-

dence that we will be able to successfully describe features of inhibitory interneuron

firing across space. We decided to focus on acquiring imaging data in the sagittal

plane in order to characterize the kinds of activity we can see in regions surrounding

different motor pools. Because GCaMP fluorescence signals can be detected from both

neuronal processes as well as somata, fluorescence activity averaged across a CTB-

labeled motor pool obtained from a mouse expressing GCaMP solely in inhibitory

interneurons is likely to, in part, reflect the activity of interneuronal axons that con-

tact that motor pool (this assumption is validated using two-photon microscopy in

Section 6.2.3 of this chapter).

In these experiments, we drove GCaMP6F expression in En1-derived inhibitory

interneurons by looking at the progeny arising from En1::Cre mice crossed to either

Ai95/ROSA::GCaMP6F or Ai93/TIGRE::GCaMP6F;ROSA::TTAmice obtained from

the Allen Institute [Madisen et al., 2015]. Qualitatively similar results were obtained

from both mice despite the fact that GCaMP expression was found in only a subset

of En1 neurons when using the Ai93 reporter. This is likely a consequence of the fact

that the Ai93 reporter is double conditional: GCaMP expression is dependent both

the Cre as well as the TTA system. However, reporter expression within GCaMP+

neurons was visibly brighter in Ai93 preparations.

Results from our wide-field imaging assay applied towards the study of En1 neu-

rons (using the Ai93 reporter) can be seen in Figure 6.7A-B. As can be seen from the

pixelwise phase map (panels B-C), this preparation displayed striking uniformity in

the average phase tuning of individual pixels across lumbar segments. Even in regions

on top of the CTB labeled gluteal (G) motor neurons (red), no apparent difference
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can be seen versus in the more dorsal region containing retrogradely labeled foot

motor neurons (IF; blue). Importantly, the phase tuning value that is shared across

space appears to correspond to late-flexor phase—the peak value typically seen in foot

motor neurons. The results from applying our NMF analysis to the data similarly

show a lack of firing pattern diversity. While three spatially distinct components were

extracted D-F), in each case, the corresponding activity exhibited periodic activity

that appears in phase with the flexor-related L2 ventral root signal (Figure 6.7G).

This observation of a dominant flexor-like firing pattern appear at odds with the idea

that flexor motor pools should be mostly receiving extensor-like inhibition during lo-

comotor firing.

Largely similar results can be seen in another preparation that was oriented at

a slightly different angle such that fluorescence emitted from the most ventrolateral

regions of the gray matter can be seen (Figure 6.8A-C). The pixelwise phase map

reveals that, much like in the previous figure, most of the ventral spinal cord has

peak activity during the flexor phase. However, it appears that a band of pixels in

the ventral cord has extensor tuning. To examine this more closely, we can examine

three NMF components that were found (Figure 6.8D-F). As suggested by the pixel-

wise phase tuning map, many of the dorsal pixels can be explained by two flexor-like

modes. In contrast, NMF 3 clearly shows a ventrally-positioned extensor component

that is positioned where Renshaw cells are known to be located.

Since Renshaw cells are En1-derived interneurons that receive input from motor

neurons directly, it would make sense that we would be able to resolve extensor pattern

in that region of the cord as we know that extensor motor pools providing input to

Renshaw cells reside in those segments. Our hypothesis that this extensor-like pattern

actually comes from Renshaw cells is supported by the fact that antidromic stimula-

tion of ventral roots before induction of locomotor firing robustly evoked fluorescence
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in a similar spatial region (data not shown). This observation of extensor-firing pu-

tative Renshaw cells does not help us explain flexor-extensor alternation because

Renshaw neurons are known to provide recurrent feedback onto the same motor neu-

rons that provide them input and a pharmacological blockade of their input from

motor neurons does not appear to abolish flexor-extensor alternation [Talpalar et al.,

2011].

A third example of locomotor firing can be seen in Figure 6.9A-D. The imaging

field shown from this preparation is caudal to the other wide-field images shown. The

blue IF pool which resides in L5/L6 ends in the region where the spatial footprint of

NMF component 3 peaks (Figure 6.9D). While no ventral root data is shown for this

preparation, it can be clearly seen that the rostrally positioned NMF components fire

synchronously and in short bursts (Figure 6.9B-C). In contrast, NMF component 3 is

positioned at segments L6/S1 and fires in an antiphase, broadly-tuned pattern—much

like extensor motor neurons.

As a whole, these results are surprisingly inconsistent with the idea that the

dominant mode of inhibition is to be active out of phase with motor neuron activity.

While we were able to detect extensor-like patterns, we found such patterns in both

caudal regions where we expect Renshaw cells to reside, as well as in sacral segments.

This flexor bias in inhibitory interneuron activity appears roughly consistent with

measurements from identified excitatory interneurons [Kwan et al., 2010]. These

observations suggest that excitatory and inhibitory interneuron firing are likely to be

highly similar across the spinal network. But what about the subset of interneurons

that actually form connections with flexor and extensor motor neurons? To examine

this question, we will now use two-photon imaging to measure locomotor firing pattern

in inhibitory processes that surround different retrogradely labeled motor pools.
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Figure 6.7 (preceding page): Homogeneity in En1-derived inhibitory motor

neuron activity across lumbar segments

(A) Sagittally-oriented mouse spinal cord expressing GCaMP6F (Ai93 reporter) in

En1-derived V1 inhibitory interneurons under 4x magnification and epifluorescence

illumination. Gluteus (G) and intrinsic foot (IF) motor neurons were retrogradely

labeled with CTB as shown in red and blue, respectively. (B) Phase was computed

relative to ventral root L2 peak for all bright green pixels (indicating GCaMP ex-

pression in interneurons). The phase tuning of each pixel is indicated in color and is

superimposed on the mean intensity projection of the image time series (imaging rate

= 30 Hz). (C) The phase tuning of each pixel is shown in polar space. The radial

position of each pixel represents the strength of its tuning. (D-F) The image time

series analyzed in (B) was decomposed into 5 components using non-negative matrix

factorization (NMF). The weights associated with three NMF components are shown

in (D-F). The time series corresponding to each of the NMF components shown is

plotted in panel (G) relative to detected L2 bursts (blue bars).
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Figure 6.8 (preceding page): Extensor-like activity in putative Renshaw cells

(A) Sagittally-oriented mouse spinal cord expressing GCaMP6F (Ai95 reporter) in

En1-derived V1 inhibitory interneurons under 4x magnification and epifluorescence

illumination. Gluteus (G) and intrinsic foot (IF) motor neurons were retrogradely

labeled with CTB as shown in red and blue, respectively. (B) Phase was computed

relative to ventral root L2 peak for all bright green pixels (indicating GCaMP ex-

pression in interneurons). The phase tuning of each pixel is indicated in color and is

superimposed on the mean intensity projection of the image time series (imaging rate

= 30 Hz). (C) The phase tuning of each pixel is shown in polar space. The radial

position of each pixel represents the strength of its tuning. (D-F) The image time

series analyzed in (B) was decomposed into 10 components using non-negative matrix

factorization (NMF). The weights associated with three NMF components are shown

in (D-F). The time series corresponding to each of the NMF components shown is

plotted in panel (G) relative to detected L2 bursts (blue bars).
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Figure 6.9: Extensor-dominant activity in rostral sacral segments

(A) Sagittally-oriented mouse spinal cord expressing GCaMP6F (Ai93 reporter) in

En1-derived V1 inhibitory interneurons under 4x magnification and epifluorescence

illumination. Gluteus (G) and intrinsic foot (IF) motor neurons were retrogradely

labeled with CTB as shown in red and blue, respectively. (B-D) An image time

series acquired from the field in (A) at 30 Hz and was decomposed into 5 components

using non-negative matrix factorization (NMF). The weights associated with three

NMF components are shown in (B-D). The time series corresponding to each of the

NMF components shown is plotted in panel (E). Note the more caudal position of

this imaging field relative to those shown from previous preparations: it stretches to

rostral S1.
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6.2.3 The structure of inhibitory interneuron activity as a function

of pool target

Our wide-field imaging data revealed a clear asymmetry in the activity of ventro-

lateral inhibitory interneurons present in lumbar spinal segments. Instead of seeing

a mixture of flexor-like and extensor-like patterns, we observed that inhibitory in-

terneuron activity appears to be dominated by a flexor-like firing pattern. However,

these data lacked the spatial resolution necessary to determine whether or not this

result was the consequence of biased firing in interneuron somata, processes, or both.

In order to address this question, we used two-photon microscopy to examine

fluorescent activity arising from interneuron cell bodies and processes that surround

CTB-labeled flexor and extensor motor neurons. Example imaging fields taken from

two preparations with retrogradely labeled anterior crural motor neurons (AC, an-

kle flexors) can be seen in Figure 6.10A-B. The panels in the third column of the

figure show the pixelwise phase tuning of the most phasically active pixels in each

movie with phase tuning denoted in color (peak ventral root L2 activity was defined

as 0◦). These same tuning values are also represented in the polar plots shown in

the fourth column. As can be seen from the first example dataset shown in the top

row of the figure, phasic pixels with flexor-like tuning values appear to surround an

AC cell body. In contrast, the bottom two rows show that there are interneuron cell

bodies surrounding AC motor neurons with both flexor-like and extensor-like tunings.

These results are consistent with our wide-field imaging data: in both cases a clear

bias towards flexor-like firing can be seen. While the bias towards flexor activity is

not absolute and some pixels with extensor-like tuning were also detected, the fact

that we do not see a significant bias in the opposite direction towards antiphase in-

hibition is inconsistent half-center models. Additionally, this data serves to validate
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our assumption that some of the wide-field signals that we measured may have arisen

from fluorescence fluctuations in neuronal processes verses just somata.

To further illustrate the fact that both flexor and extensor-like signals can be

extracted from the inhibitory neuropil surrounding flexor motor neurons, we again

applied non-negative matrix factorization. Because we were interested in determining

whether a given pixel was active in a flexor-like pattern or an extensor-like pattern we

used a constrained NMF algorithm that favored solutions where the spatial footprints

of NMF components tended to be sparse (i.e. we encouraged small weights on pixels

to be pushed to zero using MATLAB function sparsenmfnnls from [Li & Ngom, 2013];

k components = 3). When this approach is applied to an example imaging field ob-

tained from a region surrounding flexor motor neurons, we were able to successfully

extract both flexor-like and extensor-like activity modes (Figure 6.11A-F).

We then applied the same NMF analysis to data acquired from a preparation with

labeled gluteal motor neurons (G; hip extensor). Half-center models would predict

that flexor-like inhibitory inputs would converge on extensor-like motor neurons. In

contrast, if the same principle of in phase inhibition seen around flexor motor neurons

were to hold, we might expect to see extensor-biased inhibitory activity. As can be

seen from Figure 6.11G-J, the pixelwise phase tuning map reveals a broad distribution

of phase tunings. However, applying sparse NMF to these data only reveals flexor-like

firing patterns, as would be expected from the half-center model and [Endo & Kiehn,

2008].

Together these results from our two-photon imaging assay appear to support the

findings we saw in our wide-field imaging assay. Inhibitory interneuron activity ap-

pears to be dominated by a flexor-like pattern across the ventrolateral extent of the

lumbar spinal cord–even in the regions surrounding flexor and extensor motor pools.
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While we cannot rule out the fact that there are strongly different patterns of input

onto distal motor neuron dendrites than onto perisomatic regions, our results still

appear inconsistent with an exclusively “push-pull” scheme of reciprocal inhibition

suggested by half-center models to explain flexor-extensor alternation. Our observa-

tions that the types of interneuron firing patterns do not appreciably change as one

looks at regions around extensor motor neurons instead of flexor motor neurons might

also hint at some asymmetry in the circuit mechanisms for controlling the firing of

extensor versus flexor motor neuron firing, as also argued in [Endo & Kiehn, 2008].
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Figure 6.10 (preceding page): Flexor-biased inhibitory interneuron activity

surrounds flexor motor neuron somata

(A) Left Panels: Mean intensity projection across two image time sequences acquired

from an Ai93 GCaMP6F; En1::Cre spinal cord preparation extracted at postnatal day

3. GCaMP6F (green) can be seen in axons, while retrogradely labeled anterior crural

(ankle flexor; AC) motor neurons can be seen in red. Middle panels: Mean intensity

projection of only the green GCaMP6F channel. Right Panels: Phase tuning of the

most phasic subset of pixels is shown in color. Polar plots: each dot represents the

phase tuning of a pixel from the adjacent panel. (B) Format matches (A) except

maps were taken from a second preparation that relied on the Ai95 reporter, instead

of the Ai93 reporter, to express GCaMP6F. The second preparation was extracted at

postnatal day 5. Scale bar shown in middle panels 20 µm. 0◦ in phase tuning plots

was defined as the time of peak L2 ventral root activity.
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Figure 6.11 (preceding page): Non-negative matrix factorization reveals an-

tiphase inhibitory interneuron activity around both flexor and extensor

motor neurons

(A) Mean intensity projection across two image time sequences acquired from an

Ai95 GCaMP6F; En1::Cre spinal cord preparation extracted at postnatal day 3.

GCaMP6F (green) can be seen in axons, while retrogradely labeled anterior crural

(ankle flexor; AC) motor neurons can be seen in red. (B) Mean intensity projection

of only the green GCaMP6F channel. (C) Phase tuning of the most phasic subset

of pixels is shown in color. (D) each dot represents the phase tuning of a pixel from

the adjacent panel. (E) Two extracted NMF components (red and green lines; sparse

NMF was used to find k = 3 components) relative to detected L2 bursts (blue bars).

(F) Spatial extent of each NMF component. Red corresponds to NMF component 1,

green to NMF component 2. (G-L) Format matches (A-F) except maps were taken

from a second preparation where CTB was used to label gluteal motor neurons (blue;

hip extensor). This preparation used the Ai93 reporter, instead of the Ai95 reporter,

to express GCaMP6F and was extracted at postnatal day 4. Scale bar shown in

middle panels 20 µm.
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6.3 Discussion

6.3.1 A lack of spatial and temporal structure in inhibitory

interneuron activity

These interneuron imaging experiments demonstrate a new approach for functionally

mapping the types of inhibitory inputs that motor neurons in different pools might

receive during locomotor firing. The fact that we failed to to see homogeneous an-

tiphase firing amongst inhibitory interneuron axons surrounding a given pool prompts

a reconsideration of the kinds of circuits that could be mediating flexor-extensor alter-

nation. While we do not dispute the idea that reciprocal inhibition may play a role,

these observations suggest that it may not be the only type of inhibition impinging

upon motor neurons during locomotor firing.

Our motor neuron imaging data suggests that the activity during a locomotor

state may be more complex than a collection of reciprocal flexor-extensor patterns

suggested by models assuming that there is a dedicated flexor-extensor circuit for the

control of each limb joint. Our interneuron imaging results are similarly inconsistent

with such models as there appears to be little diversity in the activity patterns of

inhibitory interneurons across space.

6.3.2 Constraining new models of locomotor circuits

As we considered in the introduction of this chapter, in both in vivo preparations as

well as in the drug-induced locomotor preparation, it is possible that many rhyth-

mically active ventral interneurons are neither necessary or even related to the pro-

duction of motor output. Because of this, it is difficult to unambiguously interpret

the gross patterns of interneuron activity that we observed in our wide-field data.

Nevertheless, these observations appear similar to other measurements from spinal
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interneurons described in the literature, particularly studies from the decerebrate cat

[Cuellar et al., 2009; Pérez et al., 2009], and isolated mouse spinal cord [Zhong et al.,

2012].

In the Figure 6.12, data adapted from [Pérez et al., 2009] shows an apparent ros-

trocaudal “wave” of interneuron activity in the cat during fictive scratching behavior.

This interneuron activity appears to be flexor-like, both in terms of its activation

time as well as in the duration of each burst of activity. The similarity between these

results and ours may be coincidental, but in either case, it suggests that interneuron

activity in mammalian spinal circuits might be largely dominated by a single pat-

tern of activity that arises through a combination of network factors and cell-intrinsic

mechanisms [Brocard et al., 2013; Zhong et al., 2007].

The model constructed in [Pérez et al., 2009] to explain their observations is con-

sistent with this idea, except it still relies on a half-center like readout layer to connect

the interneuron networks that fire in the wave-like patterns to motor pools (similar to

the one shown in Figure 6.5E). In contrast, [Petersen et al., 2014] presents the connec-

tions between the CPG and motor neurons as more complex. In addition to reciprocal

inhibition between motor pools, there is also a recurrent network of both excitatory

and inhibitory interneurons that are presynaptic to each motor pool (Figure 6.5C).

Given that we observe clear on-phase inhibitory interneuron activity surrounding each

motor pool, our observations appear more consistent with the [Petersen et al., 2014]

model as it permits both on- and off-phase inhibition to each motor neuron. How-

ever, we also observed a surprising lack of diversity in the firing patterns of inhibitory

interneurons, suggesting that both CPG and downstream premotor networks might

actually be interconnected into a single dense, and distributed network (as suggested

for CPG networks alone in [Guzulaitis et al., 2014]). With enough neurons and con-

nections, it seems possible that a single network might be effectively multi-layer, in
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Figure 6.12: Flexor-like wave of interneuron activity observed during fictive

scratching in the cat

(Top) Extracellular field recordings obtained from lumbar spinal segments in decer-

ebrate cats revealed sinusoidal activity from dorsal horn and intermediate zone in-

terneurons. The phase of this pattern changed as a function of rostrocaudal position.

(Bottom) Simultaneous nerve recordings obtained from the tibialis anterior muscle

(flexor) and the gastrocnemius muscle (extensor). Figure adapted from [Pérez et al.,

2009].

that motor output would be robust to local perturbations to interneuron activity.

Clearly there must be differences in the types of inputs seen to flexor versus extensor

motor neurons, but there might also be much shared common input onto all pools

from this dense, rhythmically active, network.
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6.3.3 The role of reciprocal inhibition in flexor-extensor alternation

Our results suggest that both on-phase and off-phase inhibitory inputs onto motor

neurons may exist during locomotor activity. Reciprocal inhibition may still play

a necessary role in mediating flexor-extensor alternation, but may be only one of

many inhibitory elements involved. Given the importance the nervous system must

place on controlling motor output, it would be reasonable to redundantly employ

a number of circuit mechanisms for enforcing that muscles do not inappropriately

co-contract. In isolated spinal cord preparations that lack sensory feedback it would

also make sense that reciprocal inhibition, which is classically defined with respect

to proprioceptive inputs, might play a less dominant role. Similarly, because our

imaging assays are biased towards observing superficially positioned interneurons,

rather than to see microcircuits that receive sensory input, it makes sense that our

use of new methods might reveal previously unappreciated aspects of the circuit. In

future experiments, many questions regarding the organization of these interneuron

networks will hopefully be resolved more clearly—perhaps by combining the imaging

assays introduced in this chapter with recently developed non-toxic rabies tracing

techniques [Reardon et al., in preparation].
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General discussion

7.1 Motor pattern as a readout of computation in the nervous

system

In this thesis, we explored the structure of motor neuron and interneuron firing at

cellular resolution. Because these experiments were performed in spinal cord prepa-

rations that were isolated from descending or peripheral inputs, we were able to test

the intrinsic capacity of local spinal circuits to generate patterned motor output.

These measurements yielded insight into the structure and function of the neural

circuitry underlying locomotor behavior, but they also provide an important context

for considering the functional roles of unobserved sensory and descending signals. In

particular, descending commands from motor cortex and the brainstem do not exist

in isolation. The structure of such commands is derived in part from feedback aris-

ing in spinal circuits, permitting these inputs to engage with the ongoing dynamics

present in their target spinal circuits in order to successfully “command” motor out-

put. In this way, we can consider knowledge of intrinsic spinal cord network dynamics

as necessary for deciphering the logic of upstream motor circuits–especially in non-

primates where monosynaptic cortical input onto motor neurons is either sparse, or
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non-existent [Lemon & Griffiths, 2005].

At another level, spinal locomotor circuits represent an ideal test case for testing

new ideas and hypotheses about how to generally approach the study of recurrent

neural networks. Unlike most other recurrent circuits in the mammalian central

nervous system, the computational goal of spinal locomotor circuits is intuitively clear:

to produce patterned motor output. This simple fact along with the positioning of

these networks at both the sensory and motor periphery has been exploited for decades

in neuroscience, yet in recent decades much basic work about neural circuits has been

conducted in other systems. Owing to the intuitive tractability of spinal circuits,

a renewed focus on the spinal cord as a model system by the circuit neuroscience

community at large might be warranted.

7.2 Defining the grain of intrinsic locomotor pattern

Our measurements of motor neuron activity permitted us to infer new constraints on

the types of interneuron circuits that could mediate the coordinated firing of motor

neurons during locomotor behaviors. We found sharp discontinuities in motor neuron

phase tuning at the borders between synergy groups. This observation falsifies the

possibility that “locomotor” firing in isolated preparations is the consequence of a

sequential wave-like recruitment of motor neurons across space with disregard to mo-

tor pool borders. In combination with our analysis of FoxP1MN∆ mice, this type of

structure implies that the cohort of interneurons that is presynaptic to a given motor

neuron is dependent on motor neuron identity.

The observation that locomotor firing in FoxP1MN∆ mice collapsed to a nearly

homogeneous flexor-like firing pattern suggests an even more specific linkage between

motor neuron identity and firing pattern: a default, hypaxial-like, identity recruits

interneurons that drive a specifically flexor-like pattern of firing. In addition to sug-
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gesting the evolutionary primacy of flexor circuits, this result argues that future

studies should focus on the mechanisms that match spinal interneurons with different

motor pool targets.

Another major conclusion of this work is that the isolated neonatal rodent spinal

cord preparation produces a more complicated locomotor pattern than was previously

appreciated in the literature (e.g. in [Dominici et al., 2011]). Therefore, a more de-

tailed interrogation of firing in motor neurons and interneurons in this preparation is

warranted. In Chapter 6, we explored a novel approach for examining the activity of

genetically defined interneurons with respect to different motor pool targets. How-

ever, that assay represents only a single approach. Here we will briefly consider other

possible avenues for exploration that have become recently possible due to the devel-

opment of new genetic and optical tools for both measuring and perturbing neural

activity.

7.3 Future directions

7.3.1 Simultaneous measurement of motor neurons and

interneurons

In Chapter 6, we measured Ca2+-sensitive fluorescent transients that arose from in-

terneuron axons around retrogradely labeled motor neuron cell bodies. To relate these

data to our measurements of motor neuron recruitment during locomotor firing, we

computed phase tuning values with respect to ventral root L2. This approach suffers

from two primary shortcomings. First, because we do not simultaneously measure

the cellular resolution activity of motor neurons and interneurons, we must rely on

separate motor neuron imaging experiments to interpret the phasic activation pat-

terns that we observe in axons. Second, our measurements might be contaminated

by dendrites, cell bodies, or axons of passage as GCaMP expression is not restricted
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to axons and synapses. Based on histological and anatomical evidence, the regions

around motor pools appear to mostly contain processes rather than cell bodies in

En1::Cre mice, but it would be better to only measure fluorescence directly from

presynaptic terminals.

Both of these problems could be solved by using two newly developed tools. In

particular, a synaptophysin-GCaMP fusion protein has been developed [Pech et al.,

2015]. This would permit exclusive measurement of fluorescent transients in presy-

naptic terminals. Using a transgenic mouse or conditional viral vector expressing

this indicator might work particularly well in the isolated spinal cord preparation. A

complimentary approach to this would be to use a postsynaptic activity sensor like

the intensity-based glutamate-sensing fluorescent reporter, iGluSnFR [Marvin et al.,

2013]. In theory, iGluSnFR could be expressed sparsely in motor neurons and a red-

shifted GECI or synaptophysin-GCaMP is expressed in a subset of interneurons in

the same preparation. Such an approach has been tested in C. elegans [Marvin et al.,

2013] and in the mouse retina [Borghuis et al., 2013]. Importantly, Cre dependent

reporter mice that express iGluSnFR have already been developed by the Allen Brain

Institute [Madisen et al., 2015].

A third approach for imaging interneurons that are presynaptic to defined motor

pools would rely on the use of new highly efficient, nearly-non-toxic, virulent rabies

strains developed by TR Reardon and A Murray in the Jessell laboratory [Reardon et

al., in preparation]. Earlier in this thesis, we described our successful usage of SAD-

B19 rabies containing GCaMP6 to image interneurons and motor neurons. However,

we were not able to use this approach for transynaptic tracing because the poor ef-

ficiency of the retrograde spread from the muscle into motor neurons meant that

muscle injections of virus yielded few infected motor neurons. Next, the presynaptic

jump from these “starter” motor neurons into interneuron network was also inefficient
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due to the efficiency of the SAD-B19 virus strain and because we used a conditional

Rosa::Rabies-SAD-B19-Glycoprotein mouse rather than a viral vector to selectively

drive glycoprotein expression in motor neurons (as the AAV based approaches took

too long for us to carry out a physiology experiment in the P1-P5 age range).

New strains of virus developed from the virulent N2C strain of rabies appear to

have improved transynaptic spreading efficiency by ∼50x and also massively reduced

toxicity issues [Reardon et al., in preparation]. Injecting this vector into the leg

muscles of a hypothetical Rosa::Rabies-N2C-Glycoprotein; ChAT::Cre mouse would

permit direct and exclusive measurement of activity from interneurons that are presy-

naptic to muscles of interest. Mixing the rabies virus with CTB conjugated to Alexa

647 would allow disambiguation of motor neurons from interneurons. Finally, ex-

pressing tdTomato in different subtypes of interneurons using already developed Flp

lines would allow subtypes of excitatory and inhibitory premotor interneurons to be

identified in the same preparation.

Through the use of these three approaches, it seems likely that comprehensive

activity measurements of interneuron activity can be obtained and related to the

postsynaptic motor neuron firing patterns that we described in detail in this the-

sis. However, the isolated neonatal spinal cord preparation is obviously limited in its

ability to tell us about how spinal locomotor circuits might operate in adult, in vivo

conditions. Unfortunately, because the spinal cord moves with respect to the verte-

bral column during behavior, in vivo fluorescent imaging at cellular resolution during

locomotion is technically difficult. Even if a robust method for in vivo imaging of the

ventral horn could be developed, it would only permit the measurement of activity

of network activity from at best, a fraction of a single spinal segment.

An simpler in vivo approach to complement our large-scale measurements of ac-
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tivity in the neonatal preparation could come through the use of the new photoac-

tivatable calcium integrator protein, CaMPARI [Fosque et al., 2015]. In principle,

this indicator can be used in a similar manner to immediate early gene expression,

except with a much more clear relationship between reporter intensity and neural

activity. CaMPARI is an engineered fusion protein made from the photoconvert-

ible EosFP (which irreversibly converts from a red to a green fluorophore following

photoactivation) and Calmodulin. Consequently, a neuron expressing CaMPARI can

be photoactivated during behavior, and if it is active, it will be irreversibly photo-

converted to red. This permits histological methods to be used to map the spatial

organization of neuronal activity during the specific epoch of a behavioral task where

the photoconversion light source was activated, as illustrated in Figure 7.1.

This approach seems ideal for the characterization of intact spinal circuits in adult

mice during behavior. As long as light fibers or LEDs can be surgically implanted such

that the ventral spinal cord can be exposed to 405 nm light, interneurons activated

during locomotor tasks can be mapped. For example, the photoconversion light

source could be triggered by an EMG recording from a hindlimb extensor muscle. In

this way, the 3D spatial distribution of interneurons activated concurrently with that

muscle could be mapped in vivo and potentially across the whole spinal cord and

brainstem. While photoconversion takes many seconds of exposure to the excitation

light source, the light could be applied potentially dozens of times during detected

muscle contraction to yield robust photoconversion in the activated neurons.
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Figure 7.1: Photoactivatable calcium integrators permit whole-brain activ-

ity characterization using histological methods

(A) Pan-neuronal CaMPARI expression in a transgenic zebrafish larva (5 days post

fertilization). (B) Experimental setup with a freely moving zebrafish and photocon-

version (PC) light source. (C) Confocal images of zebrafish larvae exposed to 10

seconds of PC light during different behavioral conditions. Scale bar is 500 µm in (A)

and 100 µm in (C). Figure adapted from [Fosque et al., 2015].
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7.3.2 New methods for the induction and manipulation of

locomotor firing

In addition to employing new approaches for measuring spinal network activity dur-

ing locomotor firing, the work presented in this thesis could be extended by simply

repeating the motor neuron and imaging assays developed here during electrical and

optogenetic perturbations. Importantly, locomotor firing was induced in each of the

in vitro experiments described in this thesis using the same pharmocological cocktail:

5 µM NMDA, 10 µM 5-HT, 50 µM DA. However, other combinations of NMDA, 5-

HT, NE, and/or DA [Beliez et al., 2014], dorsal root stimulation [Taccola, 2011], and

even ventral root stimulation [ODonovan et al., 2010] can evoke similarly “locomotor-

like” network activity.

While most stimulation protocols appear to generate roughly similar patterns of

activity as measured from ventral roots [Beliez et al., 2014], one study electrically

stimulated dorsal roots with rhythmically patterned stimuli as opposed to the stan-

dard sequence of square-wave pulses (Figure 7.2A-B; [Taccola, 2011]). Under condi-

tions of rhythmic dorsal root stimulation that attempted to mimic real proprioceptive

feedback, the observed locomotor output was considerably more robust and long last-

ing. Obtaining motor neuron firing maps using the imaging methods developed here

during different types of patterned electrical stimulation might reveal how incoming

sensory information is interpreted and integrated by spinal locomotor circuits.

In addition to the use of electrical stimulation, patterned optical stimulation of

defined interneuron populations would also be a useful technique. [Hägglund et al.,

2013] demonstrated the viability of this approach by expressing the light-gated cation

channel channelrhodopsin in excitatory interneurons. When different subsets of in-

terneurons were activated with light, simultaneous ventral root recordings revealed

that locomotor firing was not necessarily all-or-nothing (Figure 7.2C). Instead, it
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appeared that some light stimuli evoked locomotor firing in only a subset of motor

pools. However, because ventral root or nerve recordings were only obtained from 2-4

sites at a time in this study, it was not possible to know precisely which pools were

activated. If imaging were used instead (with red-shifted opsins as to not interfere

with imaging), the precise spatiotemporal footprint of motor neuron activation could

be assessed systematically as a function of light stimulus.

Another source of ideas for perturbation experiments that could be performed in

the isolated neonatal spinal cord preparation is the zebrafish. In contrast to mam-

malian spinal cord development, the critical step of zebrafish development where

spinal networks transition from spontaneous bouts of asynchronous activity to rhyth-

mic locomotor-like firing occurs over a period of ∼2 hours (Figure 7.3; [Warp et al.,

2012]). Therefore, questions about the role of activity during development can be

directly tested by using GCaMP3 to monitor the activity of nearly all spinal neurons

during that interval of development, and then repeating the experiment under condi-

tions where the interneuron activity has been optically perturbed.

Owing to differences in development, as well as the larger size of mammalian

circuits, this particular experiment is not feasible in the neonatal mouse preparation.

However, it might be possible to perform a conceptually similar experiment by taking

advantage of the fact that flexor-extensor alternation does not appear to arise until

around the time of birth [Nishimaru & Kudo, 2000]. Given that isolated preparations

are viable for upwards of 12 hours in the E18.5-P0 age window, it might be possible

to observe the emergence of flexor-extensor alternation in vitro. If this were seen,

perturbation experiments similar to [Warp et al., 2012; Hägglund et al., 2013] could

be employed to clarify our understanding of the circuits responsible for alternation.
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Figure 7.2: Methods for evoking and perturbing locomotor-like network ac-

tivity: optogenetics and patterned electrical stimulation

(A) Activity evoked by sustained square-wave stimulation of dorsal root (DR) L5. (B)

Activity evoked via patterned, locomotor-like, stimulation of dorsal root L5. (C) Ac-

tivity evoked via channelrhodopsin photoactivation of VGluT2 expressing interneu-

rons in the lumbar spinal cord. Panels (A-B) were adapted from [Taccola, 2011].

Panel (C) was adapted from [Hägglund et al., 2013].
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Figure 7.3: Measuring and perturbing network activity in the embryonic

zebrafish during development

(A) Imaging field of GCaMP3 expressing spinal neurons obtained from a paralyzed

zebrafish embryo at 18 hours post-fertilization (hpf). (B) Detected fluorescence events

from regions denoted in (A). (C) Imaging field from same zebrafish obtained two

hours later at 20 hpf. (D) Detected fluorescence events from regions in (C). Figure

was adapted from [Warp et al., 2012].
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7.4 Conclusions

While we have only begun to elucidate the mechanisms underlying motor neuron

firing in the isolated spinal cord preparation, this thesis prompts a reconsideration

of the way forward. Many previous studies have demonstrated that the pattern

generating circuits in the thoracolumbar spinal cord are both redundant and dis-

tributed across many spinal segments [Kjaerulff & Kiehn, 1996; Beliez et al., 2015;

Guzulaitis et al., 2014]. However, because most previous work relied on intrinsically

low-dimensional methods for reading out motor and interneuron pattern, it has been

difficult to understand how spinal interneuron activity might be organized across a

local region containing even just a few hundred neurons. Here we have introduced

a new assay for measuring the nearly complete pattern of motor neuron activity as

well as a complimentary approach for measuring interneurons with respect to defined

patterns of motor output. Moving forward, future studies should be pursued using

similarly high-dimensional recording methods for interrogating and perturbing these

neural circuits.

At a more conceptual level, our findings argue that the isolated mouse spinal

cord preparation represents an opportunity to dissect pattern generating circuits one

synapse at a time—rather than all at once. As we considered in Chapter 6, in both

in vivo preparations as well as in the drug-induced locomotor preparation, it is likely

that many rhythmically active ventral interneurons are neither necessary or even re-

lated to the production of motor output. As a consequence, the activity of individual

interneurons must be interpreted with respect to their position within the broader

locomotor circuit. Given our lack of knowledge about the precise organization of

motor circuits, a logical place to begin is to consider the population of interneurons

that are presynaptic to functionally distinct motor pools. Once we have character-

ized those patterns in detail, it might be more clear how to interpret the activity of

interneurons that are not monosynaptically connected to motor neurons. In parallel,
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developmental studies of the mechanisms mediating appropriate interneuron-motor

neuron activity must be performed to gain knowledge of the principles that define

spinal interneuron connectivity. Once we can discern the differences in premotor ac-

tivity and connectivity that underlie different locomotor firing patterns, we will be

able to more clearly consider the kinds of network commands that might be used by

descending systems to sculpt motor behavior.
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Experimental procedures

All experiments and procedures were performed according to NIH guidelines and ap-

proved by the Institutional Animal Care and Use Committee of Columbia University.1

8.1 Retrograde labeling of motor neurons

Motor neurons were retrogradely labeled in vivo at P1-P3 via intramuscular injections

of cholera toxin B subunit (CTB) conjugated to Alexa 555 or 647 (0.1% w/v in PBS;

obtained from Life Technologies) [Sürmeli et al., 2011]. This approach was used to

label up to two different muscle groups in the same mouse. Imaging experiments were

conducted 24-48 h after tracer injection. Injected hindlimbs were dissected under

fluorescence guidance after each experiment to verify that the diffusion of injected

CTB conjugate was restricted to the targeted muscle group.

8.2 Spinal cord isolation

Mice, aged 2-5 days postnatal, were rapidly decapitated and the vertebral column

was removed and pinned ventral side up in a Sylgard-lined (Dow Corning) dissection

1Sections 8.1 to 8.13 of this chapter were derived from work in [Machado et al., 2015].
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dish perfused with ACSF (125 mM NaCl, 25 mM NaHCO3, 1.25 mM NaH2PO4,

2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, and 25 mM D-glucose, 315 mOsm,

equilibrated with 95% O2 and 5% CO2) held at 4◦ C with a feedback control system

(ECO RE 415 S, Lauda) that cooled a brass holder encircling the dissection dish (G.

Johnson, Columbia University). A ventral laminectomy was performed and dorsal

and ventral roots were disconnected from their respective dorsal root ganglia and

surrounding connective tissue. The isolated spinal cord was then transferred to a

custom recording chamber mounted under a two-photon microscope and allowed to

equilibrate for at least 30 minutes. The temperature of the ACSF in the recording

chamber was held constant at 24− 25◦ C using an inline heater (Warner). ACSF was

recirculated throughout the experiment using a peristaltic pump (Gilson) with a flow

rate of 9-10 mL/min.

8.3 Ventral root recording and stimulation

After equilibration, spinal cords were pinned with the left lateral side positioned

upwards. Suction electrodes were mounted on custom miniature manipulators that

attached to the edges of the recording chamber. These electrodes were positioned

around ventral roots L1 or L2 and L4 or L5 on both the left and right sides of the

cord. Additional suction electrodes used for stimulation were placed on dorsal roots

L4 or L5. By stimulating dorsal roots at different intensities (8-20 µA), we were able

to evoke monosynaptic responses (assessed based on latency) between homonymous

pairs of dorsal and ventral roots as well as longer latency polysynaptic responses

between heteronymous pairs of roots [Mentis et al., 2011]. These measurements were

used to verify that electrodes were positioned correctly on the relevant roots and

that we could resolve signals from each one. Electrodes were also positioned on

ventral roots L3 or L4 for antidromic motor neuron stimulation. Collectively, these

electrodes served to stabilize the preparation mechanically, minimizing flow-induced

motion artifacts during imaging. Ventral root activity was recorded (DC-4 kHz) using
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a multichannel amplifier and signal conditioner (CyberAmp 380, Molecular Devices),

digitized at 10 kHz (Digidata 1440A, Molecular Devices), and recorded in Clampex

(v. 10.3, Molecular Devices).

8.4 Two-photon microscopy

We used a Prairie Technologies Ultima microscope constructed using an Olympus

BX-51 chassis with a 20x objective (1.0 numerical aperture, 2 mm working distance;

XLUMPLFLN, Olympus) to acquire all fluorescence images (256x256 pixels/frame).

Excitation light was controlled with an electro-optical modulator (Model 302 RM,

Con-Optics). We excited GCaMP3 and CTB − Alexa555 at 940 nm (Chameleon

Ultra II laser; Coherent), separated emitted fluorescence with a 560 nm dichroic

(Chroma), and collected through separate emission filters (525/50 for GCaMP3 and

595/50 for CTB − Alexa555). CTB − Alexa647 was excited at 780 nm, and its flu-

orescence was separated with a 640 nm dichroic (Chroma) and collected through a

660/40 emission filter (Chroma). We detected fluorescence using two non-descanned

multi-Alkali photomultiplier tubes (Hamamatsu R3896, used for CTB−Alexa555 and

CTB−Alexa647 imaging) and one GaAsP detector (Hamamatsu 7422PA-40, used for

GCaMP3 imaging). We delivered 100-200 mW (at 940 nm excitation) and 100-300

mW (at 780 nm) to the back aperture of the objective during image acquisition. In

17 of 19 preparations from the motor neuron imaging project, the two-photon laser

was raster scanned across the preparation at 60 Hz using a resonant galvanometer.

These signals were downsampled to 15 Hz to increase the signal-to-noise ratio. In the

remaining 2 of 19 preparations, the laser was scanned at 8 Hz with conventional 6

mm galvanometers in a spiral trajectory.

At the beginning of each motor neuron imaging experiment, ventral root L3

or L4 was stimulated via a suction electrode to activate motor neurons antidromi-

cally [Bonnot et al., 2005; Lev-Tov & O’Donovan, 1995]. Using square pulses (0.2
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ms duration), we drove motor neurons to fire in a rhythmic pattern that resem-

bled activity observed during agonist-induced locomotor firing [Cazalets et al., 1996;

Hochman & Schmidt, 1998]. The antidromic stimulus consisted of ten 1.5 s long

bursts, where each burst consisted of 9-25 pulses. These burst stimuli were deliv-

ered at a frequency of 0.22 Hz, approximating the 0.25 Hz average burst frequency

we observed during agonist-induced locomotor firing. An identical stimulus wave-

form was used in every experiment. Stimulus intensity was 60 µA, approximately 5

times greater than the minimum intensity needed to evoke an antidromic response

(cf. [Bonnot et al., 2005]). This supramaximal stimulus intensity was chosen to yield

a maximal number of responsive neurons, such that larger stimulation intensities

would not recruit more neurons or change the observed pattern of antidromic activa-

tion. The region containing responsive motor neurons was first identified through the

BX-51 epifluorescence path using a 4x Olympus objective (UPlanFL, 0.13 numerical

aperture) and an EM-CCD (Hamamatsu C9100-13; 30 ms exposure per frame). We

then acquired two-photon image sequences from 4-8 imaging fields within this region

during stimulation.

The membrane voltage of motor neurons during antidromic stimulation in a nearly

identical experimental preparation, together with earlier intracellular recordings from

motor neurons, suggest that motor neurons reliably spike following each antidromic

stimulation pulse when stimulated at suprathreshold intensities (G.Z. Mentis, per-

sonal communication; [Bonnot et al., 2005; Brock et al., 1952]). In rare instances,

individual antidromic pulses sometimes induce multiple spikes, but there is no indi-

cation that the overall shape of induced bursts during antidromic stimulation would

be, on average, biased such that our validation procedure would errantly validate our

phase tuning estimation methods. Furthermore, our observation of phase stability

over time across hundreds of motor neurons suggests that even if some bias were to

exist in our phase tuning measurements, it is at least consistent over time.
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After optically recording antidromic responses, we applied a rhythmogenic agonist

cocktail (5 µM NMDA, 10 µM 5-HT, 50 µM DA) to induce locomotor firing. One

hour after application, we began acquiring image sequences in fields collectively span-

ning the three-dimensional extent of the lateral motor column within the mediolateral

depth imageable in our preparation. To choose these imaging fields, we first man-

ually chose 6-8 overlapping fields that collectively spanned 2370-3330 µm along the

rostrocaudal axis of the lumbar spinal cord, or approximately the whole rostrocaudal

extent of the LMC. Starting from the position of each of these fields, we then chose 6-8

imaging fields equally spaced across 120-140 µm along the mediolateral axis, starting

at the most lateral extent of the motor column and descending medially. Imaging

fields were then visited consecutively in a pseudo-random order, and image sequences

were acquired from each field for 90 s. A subset of fields were imaged a second time

(6-28 locations; mean = 15) to assess stability in phase tuning over time.

8.5 Image segmentation and preprocessing

Fluorescence image sequences were preprocessed in ImageJ using custom scripts. The

centroid of each motor neuron soma was manually identified, and a 15 x 15 pixel (30

x 30 µm) square region of interest (ROI) centered upon each of these centroids was

defined. Fluorescence from these ROIs over time (data arrays of size 15 x 15 x T time

steps) were then imported into MATLAB and processed further with custom scripts.

Motor neuron somata contained in ROIs were manually matched to CTB-labeled so-

mata apparent in static images acquired under 780 nm and 940 nm excitation from

the same imaging fields. All subsequent analysis described here was performed in

MATLAB.

Within each square ROI, we then found a set of pixels, called the spatial filter,

which corresponded to a single motor neuron soma. First, we took each data array
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and decomposed it using a low-rank approximate PCA method for which we specified

the decomposition rank to be 5 [Rokhlin et al., 2009]. We then defined the z-scores

of the first decomposition component to be our initial spatial filter and thresholded

the filter such that all positive pixel weights were set to be 1, and all negative weights

were set to 0. Finally, we smoothed the filter (MATLAB function bwmorph using

the “majority” option) and decomposed it into connected components, retaining only

the largest component (all other components were set to 0). If the largest component

contained fewer than 5% of the total pixels in the 15x15 pixel square, which is much

smaller than the average motor neuron soma area, we discarded that data array

from further analysis. The spatial filters chosen from all data arrays taken from the

same image sequence were subsequently compared to determine if any pixels had

been assigned to the spatial filters of multiple neurons. Pixels that were assigned

to multiple spatial filters were re-assigned to belong to only the spatial filter arising

from the nearest filter centroid. Each pixel time series in the data array was then

multiplied by its corresponding spatial filter weight and summed to yield a one-

dimensional fluorescence time series for each soma. Fluorescence time series were

scaled to be between zero and one (for use with our spike inference algorithm) or in

terms of ∆F/F for plotting. ∆F/F was defined as (f − f0)/f0), where f0 was the

10th percentile value of f). Fluorescence time series were temporally aligned with

ventral root recordings using frame acquisition times extracted from the voltage drive

signal to the electro-optical modulator, which were recorded in Clampex.

8.6 Spike inference

We used new model-based fluorescence deconvolution methods [Pnevmatikakis et al.,

2015] to estimate the spike train underlying each fluorescence time series. Intracellular

Ca2+ concentration c was approximated by a first-order autoregressive model:

c(t) = γc(t− 1) + s(t) (8.1)
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where s is the number of spikes that the neuron fired during the t-th time bin,

t = 1, . . . , T , and γ is related to the time constant,τ , of the Ca2+ indicator by

γ = 1 − ∆/τ , where the frame rate of acquisition in Hz is defined as 1/∆. Each

fluorescence time series f was then modeled as:

f(t) = αc(t) + b+ ǫt ∼ N(0, σ2) (8.2)

where α is a non-negative scalar and ǫ represents stationary Gaussian noise. This

first-order model assumes an instantaneous transient rise time because the rise time

of GCaMP3 in Ai38 reporter mice is roughly the same as our 67 ms/frame image

acquisition rate [Zariwala et al., 2012]. The baseline signal amplitude, b, was esti-

mated by taking the 10th percentile value of each fluorescence time series and was not

optimized further by the spike inference algorithm. This approach worked well with

our data, because each motor neuron was active for a large fraction of its fluorescence

time series.

To estimate τ , we used image sequences collected during antidromic stimulation.

We assumed that the binned spike train, s, underlying each fluorescence time series,

f , could be approximated by the antidromic stimulus. Using this assumption, both

the s and f are known. We then estimated a single τ for each antidromic image se-

quence using the fluorescence time series from all responsive motor neurons within it

(neuron selection criteria described in Quantification of phase estimation error below).

This calculation used the Multivariate Output-Error State-sPace (MOESP) systems

identification method [Verhaegen & Verdult, 2007] implemented in the n4sid function

in the MATLAB System Identification Toolbox. The median τ across all antidromic

image sequences collected from a given cord was used as τ for spike inference from

motor neurons from that cord. τ varied as a function of Cre driver strain used and

ranged from 0.67 - 1.10 seconds.
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Next, we estimated the noise power σ2 by assuming that the autocovariance func-

tion of each fluorescence signal f at lag t, Cf (t), satisfies the following equation:

Cf (1) = γCf (0)− σ2γ (8.3)

An alternative and more robust approach towards the estimation of σ2 comes from

examining the power spectral density (PSD) of f , as presented in [Pnevmatikakis

et al., 2015]. This method is somewhat less dependent on parametric model assump-

tions about the data. Due to the slow decay dynamics of the Ca2+ indicator, the

AR process acts typically as a low pass filter on incoming spikes, and therefore the

noiseless Ca2+ trace has very low power in the high frequency range. Since the noise

is assumed to be white, its PSD is flat across all frequencies. To estimate σ2 we can

therefore compute the PSD of f and average its value at the range of high frequencies

(e.g. in the range [(Fs/4, Fs/2]), where Fs = 1/∆, the imaging frame rate in Hz.

While equality (8.3) is only strictly true when neuronal spiking follows Poisson

statistics, we were able to use our antidromic data to verify that this approach is

approximately correct for our data. We achieved this by computing true σ2 values

directly from Gaussian fits to residual error histograms. Residual error was computed

by subtracting fluorescence data taken during antidromic stimulation from the convo-

lution of the antidromic stimulus and the calcium decay kernel (as defined in (8.2)).

True σ2 values closely matched those estimated using equation (8.3).

Given these parameter estimates for γ and σ2 , we then employed a constrained

non-negative deconvolution algorithm [Pnevmatikakis et al., 2015] that inferred the

most likely c and s underlying each fluorescence time series:

minimize
c,s

1⊤

T s,

subject to: s ≥ 0, s(t) = c(t)− γc(t− 1), ‖f− c− b1T‖ ≤ σ
√
T .

(8.4)
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In order to find the most likely sparse spiking pattern that is sufficient to explain

each fluorescence trace without overfitting, the convex program (8.4) was solved us-

ing the CVX computational package [Grant et al., 2008] or a non-negative least angle

regression algorithm [Pnevmatikakis et al., 2015]. The runtime of both algorithms

increased linearly with the number of time steps in the fluorescence data. The mag-

nitude of s at each time step represents a relative estimate of number of spikes that

occurred during each imaging frame. Each s value was then normalized by the max-

imum s for each neuron.

We also used our spike inference algorithm to estimate the signal-to-noise ratio

(SNR) for each neuron in our motor neuron imaging dataset. This quantity was

defined as:

10 log10
‖c‖
σ2T

, (8.5)

Our spike inference algorithm yielded spike histograms consisting of a sequence of

numbers between zero and one, each proportional to an estimate of neuronal firing

rate at a given imaging frame. A more accurate, but less efficient, spike inference

method returns continuously valued spike times, permitting the temporal pattern of

multiple spikes within individual imaging frames to be detected and also providing

uncertainty estimates (i.e. error bars) for all model parameters and spike inference

output [Pnevmatikakis et al., 2013]. In order to test whether the simpler algorithm

that we used in the analysis presented in this paper errantly biased our conclusions,

fluorescence data from two preparations were additionally analyzed with a different

spike inference algorithm that used this more complex algorithm. We found that both

methods yielded quantitatively similar results.
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8.7 Validating the use of a linear model of Ca2+ dynamics

To test whether the linear model used to relate c to s defined in section 8.6 was

adequate for relating fluorescence to spiking in our motor neuron imaging dataset,

we tested whether fluorescence may be better described as a nonlinear function of c

denoted n(t):

n(t) =
1

1 + exp(−β0 − β1c[t])
, (8.6)

so that observed fluorescence is now given by:

f(t) = αn(t) + b+ ǫt, (8.7)

where α,b and ǫ are defined as in the linear model (equation (8.2)). Such a model

can account for nonlinearity, such as that produced by the saturation of Ca2+ indica-

tor binding. We compared the ability of these two models to predict the structure of

actual fluorescence data acquired during antidromic stimulation. Model parameters

underlying the sigmoidal nonlinearity (β0, β1) and for scaling the data (a, b) could be

directly computed in this setting because the relationship between actual spiking and

fluorescence was known. For a given set of antidromic spike times [a1, a2, . . . , aK ], we

created the binned spike train s by assigning each spike time to a correct bin and

scaling it depending on how close it was to the end of the bin:

s(t) =
∑

i:ai∈[(t−1)∆,t∆)

i=1,...,K

exp(−t∆− ti
τ

), (8.8)

where τ = −∆/(γ − 1) and γ was derived using the system identification ap-

proach described in section 8.6. We then computed c (termed the linear prediction

in this context) given the binned antidromic stimulus, s, and the linear relationship

defined in equation (8.2). To generate the nonlinear prediction, we first computed

the parameters (β0, beta1, a, b) underlying the maximum likelihood nonlinearity by

solving:
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min
β0,β1,α,b

T
∑

t=1

(f [t]− n[t])2. (8.9)

With these parameters, we were able to use the binned antidromic stimulus,

s, and the relationship between n and s to produce our nonlinear prediction of

fluorescence data during the spike train s. To assess the goodness of fit of each

model, we computed the Pearson correlation between each the each model predic-

tion and our fluorescence data recorded during antidromic stimulation, f , termed

corr(linear, f) and corr(nonlinear, f). In nearly all cases, the difference between the

models corr(nonlinear, f) − corr(linear, f) was close to zero, suggesting the suffi-

ciency of the linear model for use in spike inference.

8.8 Ventral root burst identification and phase estimation

Raw ventral root recordings were first symmetrically band-pass filtered (1 Hz-1 kHz).

To make root activity peaks clearer, we filtered each resulting time series s(t) by

replacing its value at each time step with the standard deviation of s(t) from 5 ms

prior to 5 ms after that time step, and ignoring the first and last 5 ms of the time

series [Ahrens et al., 2012]. Finally, we convolved the result with a Gaussian kernel

(σ = 0.5s) to eliminate most local maxima and thus permit reliable peak detection.

Locomotor cycles were defined as the epochs between adjacent L1 or L2 peaks. Angle

gradations (0◦ − 360◦) were uniformly distributed within each cycle. Little variation

was observed between datasets referenced to L1 recordings and those referenced to

L2 recordings, consistent with previous observations [Falgairolle & Cazalets, 2007;

Kwan et al., 2009]. Circular statistics on phase measurements were implemented us-

ing the Circular Statistics toolbox [Berens, 2009; Zar, 1999].

To quantify burst firing phase, each nonzero spike count value was assigned to a

cycle phase based on its relative proximity to the root peaks immediately surround-
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ing it (i.e. the locomotor cycle in which it fell). For each motor neuron, the circular

mean of these phase values, weighted by the corresponding size of each inferred spike

count, was computed at each locomotor cycle. Spikes arising from locomotor cycles

that were greater than 10 s long or less than 2.5 s long (approximately 0.5x and 2.0x

the average locomotor burst frequency, respectively) were excluded from the phase

computation, as burst cycles of those lengths tended to arise from rare failures in peak

detection or transient interruptions in rhythmic network activity. A motor neurons

phase tuning was defined as the median of the resulting values, which approximated

the average phase of burst firing. We chose to quantify mean burst phase instead

of onset or offset, after evaluating each statistic for all identified ankle flexor motor

neurons recorded during locomotor firing and finding that the variance across the

population was slightly higher for both onset and offset.

The mean burst frequency of the locomotor rhythm was quantified for each imag-

ing field by computing the inter-burst interval time between adjacent L1 or L2 peaks

and taking the inverse of these mean inter-burst interval times. The average frequency

for each preparation was quantified by taking the median across all recordings.

8.9 Quantification of phase estimation error

Inferred spiking calculated from fluorescence collected during across four consecutive

antidromic bursts bursts was used to measure the error of phase tuning estimates.

These four bursts, which each consisted of 16-24 pulses over 1.5 seconds, equating

to an average pulse rate of 10-17 Hz, were chosen because the observed fluorescence

responses well approximated those seen during agonist-induced locomotor firing. We

analyzed only those motor neurons imaged during antidromic stimulation that had a

summed squared residual error value below an empirically determined threshold set

such that only neurons unambiguously responding to the stimulus were included (n

= 9 - 98 neurons per cord, mean = 26 neurons per cord, 367 neurons total; N = 14
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spinal cords). The summed squared residual error was computed for each neuron by

subtracting the normalized fluorescence data from the convolution of the antidromic

stimulus underlying the fluorescence data (binned into a histogram with the bin width

equal to the imaging frame rate) with an exponentially decaying kernel, k(t) = e−t/τ ,

where τ was estimated using our system identification approach described above.

We computed the phase tuning of each qualifying neuron following the same pro-

cedure used for neurons recorded during locomotor firing, except here the midpoint of

each antidromic stimulus burst was defined as 0◦ in each cycle. Since the antidromic

stimulus was assumed to be equal to the motor neuron spike train, in addition to

being a phase reference the midpoint of each antidromic burst is also the true phase

for each cell. The estimated phase tuning values here thus represent the errors asso-

ciated with estimating phase from fluorescence.

We compared the phase tuning error distributions obtained from the use of our

spike inference method to those obtained from a simpler method, termed peak de-

tection. In our peak detection algorithm, we symmetrically band-pass filtered the

fluorescence data from 0.1 Hz to 1 Hz with a 4th order Butterworth filter, and then

found the maxima of the filtered time series using the findpeaks MATLAB function

with a minimum peak height of 0.2 times the standard deviation of the filtered time

series. We also used the mean difference of the phase tuning error distributions to

derive a baseline value for assessing the stability of phase tuning over time. This

mean difference represents the expected difference between phase tuning measure-

ments taken at different time points under the assumption that phase tuning does

not change. The mean difference was estimated by taking 2/
√
π times the standard

deviation of the observed antidromic error in each dataset.
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8.10 Generation of spatial maps of phase tuning

A subset of all imaged motor neurons were included in the spatial maps of phase tun-

ing. Neurons were selected by performing Rayleighs test of circular uniformity on the

normalized spike histogram of each neuron. Motor neurons yielding p-values ≥ 0.5

were excluded, effectively eliminating the noisiest neurons while retaining broadly

tuned cells with weak signals but reliable phase tuning estimates. As imaging fields

were partially overlapping, individual neurons were sometimes found in multiple image

sequences. These duplicate neurons were located by finding pairs of neuron centroids

located within 20 µm of each other, where each centroid was from an overlapping pair

of imaging fields. Only one copy of each duplicate neuron was retained. Maps cre-

ated from data obtained from both Olig2::Cre and ChAT::Cre expressing mice were

quantitatively indistinguishable.

Since the variation in spinal cord thickness across segments caused the central

canal to not lie straight, we corrected the positional coordinates of imaged neurons

to compensate. We first fit a smoothing spline to the three dimensional positional

coordinates of motor neurons using the fit function in MATLAB with the smooth-

ness parameter set to 10−9. Then, we used the smoothing spline to generate a new

rostrocaudal coordinate for each neuron, given by the distance from the origin to

the neurons original rostrocaudal position as measured along the smoothing spline.

The mediolateral and dorsoventral coordinates were also re-centered around the fit-

ted smoothing spline by subtracting off the position of the smoothing spline in the

original coordinate space from each original mediolateral and dorsoventral neuronal

position.

To functionally identify the boundaries of certain spinal segments in these maps,

epifluorescence image sequence data acquired during antidromic stimulation (4x mag-

nification) were used. For each pixel in the imaging field, we computed the standard
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deviation of fluorescence across time and overlaid resulting values on their correspond-

ing positions within epifluorescence images showing CTB-labeled cells. The resulting

image showed the region of the lumbar spinal cord that had high standard deviation

values indicating that it was responsive to the antidromic stimulus. We manually

registered this image to our large-scale spatial maps of phase tuning by using the

rostrocaudal position of CTB-labeled motor neurons. We then defined the bound-

aries of the antidromically activated segment as the rostral and caudal edges of the

region containing responsive cells. In one case in which the caudal boundary was

obscured by the position of the ventral root in epifluorescence images, we used the

center position of the ventral root as the caudal segmental boundary.

8.11 Phase synchronization

Phase synchronization was computed using normalized spike histograms yielding a

Rayleigh test p-value < 0.05. This more stringent criterion was used to restrict our

analyses to neurons whose somatic fluorescence was recorded with a high signal-to-

noise ratio. Spike histograms, treated as time series vectors, were first band-pass

filtered between 0.1 and 1 Hz (4th order symmetric Butterworth filter, MATLAB

functions butter and filtfilt), in order to focus on the degree of synchronization at

the frequency of locomotor firing (mean ± s.d. = 0.25 ± 0.06 Hz, n = 15 spinal

cords). Filtered histograms were then expressed in terms of instantaneous phase by

taking their Hilbert transform (MATLAB function hilbert) and converting complex

values to phase angles. The first and last tenths of the resulting instantaneous phase

vectors were removed. To compute phase synchronization for a pair of N-element

instantaneous phase vectors, we first computed their relative phase by subtracting

them, yielding φ = [φ1 . . . φN ]. Phase synchronization is then the scalar R given by

[Mormann et al., 2000]:
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R =

∣

∣

∣

∣

∣

1

N

N
∑

j=1

eiφj

∣

∣

∣

∣

∣

(8.10)

To test for the significance of synchrony within and between synergy groups, we

used a Wilcoxon test to compare phase synchrony index distributions with their

equivalent calculated after circular permutation of one time series from each pair.

Because cycle periods vary, circular permutation should reduce synchrony to a level

approaching that expected by chance if the two time series were independent. Circular

permutation was performed by picking a random element in one of the time series,

removing the series of elements coming before it, and concatenating them to the end of

the remaining time series. We also used the Wilcoxon test to compare phase synchrony

index distributions within and between synergy groups. Here, we performed the test

both with and without a control for differences in the proximity of neuron pairs

within versus between synergist groups. In the controlled case, we first identified, for

each pair of non-synergist motor neurons, the pair of synergist motor neurons not

previously identified whose proximity was most similar. The Wilcoxon test was then

used to compare phase synchrony index distributions for non-synergist and identified

synergist pairs.

8.12 Cycle-triggered firing rates

Cycle-triggered firing rates were computed for cells whose spike histograms yielded a

Rayleigh test p-value < 0.05. The firing rate vectors were computed by generating a

100-bin histogram of inferred spike counts according to their locomotor phase, then

convolving these histograms with a Gaussian kernel (σ = 4 bins). Burst duration

was measured from cycle-averaged firing rates by identifying the last histogram bin

before, and first histogram bin after, the peak value at which the spike count is ≤
half of the peak value. Burst duration was the fraction of the histograms domain,

expressed in degrees, between these two bins. The last and first histogram bins were
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considered to be adjacent, as implied by the cyclic nature of the histograms domain.

After k-means clustering (k = 2) was performed on cycle-averaged firing rates, a

clustering index was calculated to quantify the separation between the resulting two

clusters. The clustering index was measured in terms of the phase of peak firing and

burst duration measured from cycle-averaged firing rates. To compute this index,

we first generated a two-element vector for each cycle-averaged firing rate in which

the first element was peak phase and the second element was burst duration. We

then computed the two-dimensional vector mean (centroid) for vectors assigned to

each cluster, resulting in the cluster centroids c1 = [c11 c12] and c2 = [c21 c22]. We then

measured the root-mean-squared distance between all vectors and their centroid for

each cluster, resulting in the cluster root-mean-squared distances r1 and r2. The

clustering index, CI, was defined as:

CI =
2
√

(c11c
2
1)

2 + (c12c
2
2)

2

r1 + r2
. (8.11)

The overlap between joint distributions of peak phase and burst duration was

measured by first estimating a kernel density function (using the MATLAB function

kde2d obtained from the MathWorks file exchange) defined across a grid to describe

each joint distribution. These density functions were normalized to ensure they inte-

grated to one. The overlap of two density functions was found by finding the lower

of the two densitys values at each grid point, then summing all of those lower values.

Fold difference in similarity for the joint distribution of FoxP1MN∆ motor neurons

was computed by dividing its overlap with the early firing wild type set with that

of the late firing wild type set. We tested for differences in overlap between CTB-

labeled FoxP1MN∆ motor neurons and early or late firing wild type clusters using

a Monte Carlo approach. The joint peak phase and burst duration distributions for

CTB-labeled FoxP1MN∆ motor neurons were bootstrap resampled 100,000 times and

overlap with both wild type clusters was computed each time. P-values measuring
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overlap differences were calculated as:

1 + # of bootstraps for which overlap with the late firing cluster was higher

100, 001
(8.12)

8.13 Analysis of motor pattern complexity

All cycle-triggered firing rates for neurons with Rayleigh test p-values < 0.05 from

each dataset were stored in matrices, denoted R, of size 100× n, where n = number

of neurons in the current dataset and 100 is the number of bins in our cycle-averaged

firing rates. Each of these matrices was then approximately factorized using non-

negative matrix factorization (using the MATLAB function nnmf; [Lee & Seung,

1999]). This method finds a pattern matrix P , and a weight matrix W , such that

R ≈ PW with all entries in P (size 100 × k) and W (size k × n) constrained to be

non-negative. k defines the number of patterns to use in the decomposition.

We factorized the R matrix for each dataset using this approach with k = 1− 6.

To guard against poor initial initializations for P and W leading to poor estimates,

we set the ‘replicates’ option to 10, so each factorization operation was repeated that

many times with the lowest-error replicate returned by the algorithm. As in [Dominici

et al., 2011], variance explained in the data by the P and W matrices resulting from

NMF at each k value was given by:
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Variance Explained = 1− SSE/SST (8.13a)

where: (8.13b)

SSE =
n

∑

i=1

100
∑

j=1

Li,j
2 (8.13c)

L = R− PW (8.13d)

SST =
n

∑

i=1

100
∑

j=1

Ri,j − R̄j
2

(8.13e)

(8.13f)

In addition, we performed a similar analysis using principal components analysis

implemented by the MATLAB function princomp. The amount of variance explained

by each principal component was simply returned by that function in the latent

argument.
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[Jessell et al., 2011] Jessell, T. M., Sürmeli, G., & Kelly, J. S. (2011). Motor neurons

and the sense of place. Neuron, 72(3), 419–424.

[Jones et al., 2011] Jones, J. G., Tansey, E., & Stuart, D. G. (2011). Thomas graham

brown (1882–1965): Behind the scenes at the cardiff institute of physiology. Journal

of the History of the Neurosciences, 20(3), 188–209.

[Jones et al., 2007] Jones, L. M., Fontanini, A., Sadacca, B. F., Miller, P., & Katz,

D. B. (2007). Natural stimuli evoke dynamic sequences of states in sensory cortical

ensembles. Proceedings of the National Academy of Sciences, 104(47), 18772–18777.

[Kaifosh et al., 2014] Kaifosh, P., Zaremba, J. D., Danielson, N. B., & Losonczy, A.

(2014). Sima: Python software for analysis of dynamic fluorescence imaging data.

Frontiers in Neuroinformatics, 8.

[Keshri et al., 2013] Keshri, S., Pnevmatikakis, E., Pakman, A., Shababo, B., &

Paninski, L. (2013). A shotgun sampling solution for the common input prob-

lem in neural connectivity inference. arXiv preprint arXiv:1309.3724.

[Kiehn & Kjaerulff, 1996] Kiehn, O. & Kjaerulff, O. (1996). Spatiotemporal charac-

teristics of 5-ht and dopamine-induced rhythmic hindlimb activity in the in vitro

neonatal rat. Journal of Neurophysiology, 75(4), 1472–1482.



245

[Kjaerulff & Kiehn, 1996] Kjaerulff, O. & Kiehn, O. (1996). Distribution of networks

generating and coordinating locomotor activity in the neonatal rat spinal cord in

vitro: a lesion study. The Journal of Neuroscience, 16(18), 5777–5794.

[Krouchev et al., 2006] Krouchev, N., Kalaska, J. F., & Drew, T. (2006). Sequential

activation of muscle synergies during locomotion in the intact cat as revealed by

cluster analysis and direct decomposition. Journal of Neurophysiology, 96(4), 1991–

2010.

[Kudo & Yamada, 1987a] Kudo, N. & Yamada, T. (1987a). Morphological and phys-

iological studies of development of the monosynaptic reflex pathway in the rat

lumbar spinal cord. The Journal of Physiology, 389(1), 441–459.

[Kudo & Yamada, 1987b] Kudo, N. & Yamada, T. (1987b). N-methyl-d, l-aspartate-

induced locomotor activity in a spinal cord-indlimb muscles preparation of the

newborn rat studied in vitro. Neuroscience Letters, 75(1), 43–48.

[Kusakabe & Kuratani, 2005] Kusakabe, R. & Kuratani, S. (2005). Evolution and

developmental patterning of the vertebrate skeletal muscles: perspectives from the

lamprey. Developmental Dynamics, 234(4), 824–834.

[Kwan et al., 2009] Kwan, A. C., Dietz, S. B., Webb, W. W., & Harris-Warrick,

R. M. (2009). Activity of Hb9 interneurons during fictive locomotion in mouse

spinal cord. The Journal of Neuroscience, 29(37), 11601–11613.

[Kwan et al., 2010] Kwan, A. C., Dietz, S. B., Zhong, G., Harris-Warrick, R. M., &

Webb, W. W. (2010). Spatiotemporal dynamics of rhythmic spinal interneurons

measured with two-photon calcium imaging and coherence analysis. Journal of

Neurophysiology, 104(6), 3323–3333.

[Lafreniere-Roula & McCrea, 2005] Lafreniere-Roula, M. & McCrea, D. A. (2005).

Deletions of rhythmic motoneuron activity during fictive locomotion and scratch



246

provide clues to the organization of the mammalian central pattern generator.

Journal of Neurophysiology, 94(2), 1120–1132.

[Lallemend & Ernfors, 2012] Lallemend, F. & Ernfors, P. (2012). Molecular inter-

actions underlying the specification of sensory neurons. Trends in Neurosciences,

35(6), 373–381.

[Lam & Pearson, 2001] Lam, T. & Pearson, K. G. (2001). Proprioceptive modulation

of hip flexor activity during the swing phase of locomotion in decerebrate cats.

Journal of Neurophysiology, 86(3), 1321–1332.

[Lanuza et al., 2004] Lanuza, G. M., Gosgnach, S., Pierani, A., Jessell, T. M., &

Goulding, M. (2004). Genetic identification of spinal interneurons that coordinate

left-right locomotor activity necessary for walking movements. Neuron, 42(3), 375–

386.

[Lee & Seung, 1999] Lee, D. D. & Seung, H. S. (1999). Learning the parts of objects

by non-negative matrix factorization. Nature, 401(6755), 788–791.

[Lee & Jessell, 1999] Lee, K. J. & Jessell, T. M. (1999). The specification of dorsal

cell fates in the vertebrate central nervous system. Annual review of Neuroscience,

22(1), 261–294.

[Lemon & Griffiths, 2005] Lemon, R. N. & Griffiths, J. (2005). Comparing the func-

tion of the corticospinal system in different species: organizational differences for

motor specialization? Muscle and Nerve, 32(3), 261–279.

[Lev-Tov & O’Donovan, 1995] Lev-Tov, A. & O’Donovan, M. J. (1995). Calcium

imaging of motoneuron activity in the en-bloc spinal cord preparation of the neona-

tal rat. Journal of Neurophysiology, 74(3), 1324–1334.



247

[Li et al., 2015] Li, N., Chen, T.-W., Guo, Z. V., Gerfen, C. R., & Svoboda, K. (2015).

A motor cortex circuit for motor planning and movement. Nature, 519(7541), 51–

56.

[Li & Ngom, 2013] Li, Y. & Ngom, A. (2013). The non-negative matrix factorization

toolbox for biological data mining. Source Code for Biology and Medicine, 8(1),

1–15.

[Llinas et al., 1972] Llinas, R., Blinks, J., & Nicholson, C. (1972). Calcium transient

in presynaptic terminal of auid giant synapse: Detection with aequorin. Science,

176(4039), 1127–1129.

[Lloyd, 1943] Lloyd, D. P. (1943). Neuron patterns controlling transmission of ipsi-

lateral hind limb reflexes in cat. Journal of Neurophysiology, 6(4), 293–315.

[Loeb, 1985] Loeb, G. E. (1985). Motoneurone task groups: coping with kinematic

heterogeneity. Journal of Experimental Biology, 115(1), 137–146.

[Lowell et al., 2006] Lowell, B., Olson, D., & Yu, J. (2006). Development and phe-

notype of ChAT-IRES-Cre mice. MGI Direct Data Submission:[MGI Ref ID J:

114556].

[Machacek & Hochman, 2006] Machacek, D. W. & Hochman, S. (2006). Nora-

drenaline unmasks novel self-reinforcing motor circuits within the mammalian

spinal cord. The Journal of Neuroscience, 26(22), 5920–5928.

[Machado et al., 2015] Machado, T., Pnevmatikakis, E., Paninski, L., Jessell, T., &

Miri, A. (2015). Primacy of flexor locomotor pattern revealed by ancestral reversion

of motor neuron identity. Cell.

[Macke et al., 2011] Macke, J. H., Buesing, L., Cunningham, J. P., Byron, M. Y.,

Shenoy, K. V., & Sahani, M. (2011). Empirical models of spiking in neural popu-

lations. In Advances in Neural Information Processing Systems (pp. 1350–1358).



248

[Madisen et al., 2015] Madisen, L., Garner, A. R., Shimaoka, D., Chuong, A. S.,

Klapoetke, N. C., Li, L., van der Bourg, A., Niino, Y., Egolf, L., Monetti, C., et al.

(2015). Transgenic mice for intersectional targeting of neural sensors and effectors

with high specificity and performance. Neuron, 85(5), 942–958.

[Mante et al., 2013] Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T.

(2013). Context-dependent computation by recurrent dynamics in prefrontal cor-

tex. Nature, 503(7474), 78–84.

[Marder, 2011] Marder, E. (2011). Variability, compensation, and modulation in neu-

rons and circuits. Proceedings of the National Academy of Sciences, 108(Supplement

3), 15542–15548.

[Marder & Bucher, 2007] Marder, E. & Bucher, D. (2007). Understanding circuit

dynamics using the stomatogastric nervous system of lobsters and crabs. Annual

Review of Physiology, 69, 291–316.

[Marvin et al., 2013] Marvin, J. S., Borghuis, B. G., Tian, L., Cichon, J., Harnett,

M. T., Akerboom, J., Gordus, A., Renninger, S. L., Chen, T.-W., Bargmann, C. I.,

et al. (2013). An optimized fluorescent probe for visualizing glutamate neurotrans-

mission. Nature Methods, 10(2), 162–170.

[McCrea & Rybak, 2008] McCrea, D. A. & Rybak, I. A. (2008). Organization of

mammalian locomotor rhythm and pattern generation. Brain Research Reviews,

57(1), 134–146.

[McHanwell & Biscoe, 1981] McHanwell, S. & Biscoe, T. (1981). The localization of

motoneurons supplying the hindlimb muscles of the mouse. Philosophical Transac-

tions of the Royal Society of London. B, Biological Sciences, 293(1069), 477–508.

[Meehan et al., 2012] Meehan, C. F., Grondahl, L., Nielsen, J. B., & Hultborn, H.

(2012). Fictive locomotion in the adult decerebrate and spinal mouse in vivo. The

Journal of Physiology, 590(2), 289–300.



249

[Mentis et al., 2011] Mentis, G. Z., Blivis, D., Liu, W., Drobac, E., Crowder, M. E.,

Kong, L., Alvarez, F. J., Sumner, C. J., & O’Donovan, M. J. (2011). Early func-

tional impairment of sensory-motor connectivity in a mouse model of spinal mus-

cular atrophy. Neuron, 69(3), 453–467.

[Mishchenko et al., 2011] Mishchenko, Y., Vogelstein, J. T., Paninski, L., et al.

(2011). A bayesian approach for inferring neuronal connectivity from calcium flu-

orescent imaging data. The Annals of Applied Statistics, 5(2B), 1229–1261.

[Monier et al., 2008] Monier, C., Fournier, J., & Frégnac, Y. (2008). In vitro and in

vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory

cortices. Journal Neuroscience Methods, 169(2), 323–365.

[Moore, 1965] Moore, G. E. (1965). Cramming more components onto integrated

circuits. Electronics, 38(8).

[Mormann et al., 2000] Mormann, F., Lehnertz, K., David, P., & E Elger, C. (2000).

Mean phase coherence as a measure for phase synchronization and its application to

the EEG of epilepsy patients. Physica D: Nonlinear Phenomena, 144(3), 358–369.

[Moult et al., 2013] Moult, P. R., Cottrell, G. A., & Li, W.-C. (2013). Fast silencing

reveals a lost role for reciprocal inhibition in locomotion. Neuron, 77(1), 129–140.

[Nakai et al., 2001] Nakai, J., Ohkura, M., & Imoto, K. (2001). A high signal-to-noise

Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnology,

19(2), 137–141.

[Ng et al., 2002] Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral

clustering: Analysis and an algorithm. Advances in Neural Information Processing

Systems, 2, 849–856.

[Nikolenko et al., 2008] Nikolenko, V., Watson, B. O., Araya, R., Woodruff, A., Pe-

terka, D. S., & Yuste, R. (2008). Slm microscopy: scanless two-photon imaging



250

and photostimulation with spatial light modulators. Frontiers in Neural Circuits,

2.

[Nishimaru & Kudo, 2000] Nishimaru, H. & Kudo, N. (2000). Formation of the cen-

tral pattern generator for locomotion in the rat and mouse. Brain Research Bulletin,

53(5), 661–669.

[O’Donovan et al., 2008] O’Donovan, M. J., Bonnot, A., Mentis, G. Z., Arai, Y.,

Chub, N., Shneider, N. A., & Wenner, P. (2008). Imaging the spatiotemporal

organization of neural activity in the developing spinal cord. Developmental Neu-

robiology, 68(6), 788–803.

[ODonovan et al., 2010] ODonovan, M. J., Bonnot, A., Mentis, G. Z., Chub, N.,

Pujala, A., & Alvarez, F. J. (2010). Mechanisms of excitation of spinal networks

by stimulation of the ventral roots. Annals of the New York Academy of Sciences,

1198(1), 63–71.

[O’Donovan et al., 1993] O’Donovan, M. J., Ho, S., Sholomenko, G., & Yee, W.

(1993). Real-time imaging of neurons retrogradely and anterogradely labelled with

calcium-sensitive dyes. Journal of Neuroscience Methods, 46(2), 91–106.

[Ohki et al., 2005] Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P., & Reid, R. C. (2005).

Functional imaging with cellular resolution reveals precise micro-architecture in

visual cortex. Nature, 433(7026), 597–603.

[Okatan et al., 2005] Okatan, M., Wilson, M. A., & Brown, E. N. (2005). Analyzing

functional connectivity using a network likelihood model of ensemble neural spiking

activity. Neural Computation, 17(9), 1927–1961.

[Osakada et al., 2011] Osakada, F., Mori, T., Cetin, A. H., Marshel, J. H., Virgen,

B., & Callaway, E. M. (2011). New rabies virus variants for monitoring and ma-

nipulating activity and gene expression in defined neural circuits. Neuron, 71(4),

617–631.



251

[Packer et al., 2014] Packer, A. M., Russell, L. E., Dalgleish, H. W., & Häusser,
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