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RNA sequencing from human neutrophils
reveals distinct transcriptional differences
associated with chronic inflammatory states
Kaiyu Jiang1†, Xiaoyun Sun2†, Yanmin Chen1, Yufeng Shen2,3* and James N. Jarvis1*

Abstract

Background: The transcriptional complexity of mammalian cells suggests that they have broad abilities to respond
to specific environmental stimuli and physiologic contexts. These abilities were not apparent a priori from the
structure of mammalian genomes, but have been identified through detailed transcriptome analyses. In this study,
we examined the transcriptomes of cells of the innate immune system, human neutrophils, using RNA sequencing
(RNAseq).

Methods: We sequenced poly-A RNA from nine individual samples corresponding to specific phenotypes: three
children with active, untreated juvenile idiopathic arthritis (JIA)(AD), three children with the same disease whose
disease was inactive on medication (CRM), and three children with cystic fibrosis (CF).

Results: We demonstrate that transcriptomes of neutrophils, typically considered non-specific in their responses
and functions, display considerable specificity in their transcriptional repertoires dependent on the pathologic
context, and included genes, gene isoforms, and long non-coding RNA transcripts. Furthermore, despite the small
sample numbers, these findings demonstrate the potential of RNAseq approaches to biomarker development in
rheumatic diseases.

Conclusions: These data demonstrate the capacity of cells previously considered non-specific in function to adapt
their transcriptomes to specific biologic contexts. These data also provide insight into previously unrecognized
pathological pathways and show considerable promise for elucidating disease and disease-state specific regulatory
networks.

Background
Neutrophils are the most common leukocytes in the
human circulation and an important sentinel for recog-
nizing invading micro-organisms and tissue damage.
Thus, they are an important component of the acute re-
sponse to infection and tissue injury. However, in recent
years, we have also demonstrated that neutrophils show
transcriptional aberrations in chronic childhood inflam-
matory diseases, including juvenile idiopathic arthritis
(JIA) [1] and juvenile dermatomysositis [2]. In JIA, these
transcriptional aberrations do not correct with therapy

[3] and are associated with specific perturbations in
cellular metabolic function [1]. Thus, in addition to their
role in acute infectious and inflammatory disease,
neutrophils appear to play important roles in chronic,
indolent human inflammatory diseases.
The gene expression data used to elucidate the above

findings were generated using conventional hybridization-
based gene microarrays. The limits of hybridization-
based microarrays are well documented [4]. Furthermore,
hybridization-based arrays fail to capture the full com-
plexity of the transcriptome, including novel alternatively
spliced isoforms and non-coding RNAs. Therefore, gene
microarrays have serious limits from the standpoint of
understanding the transcriptional-rewiring [5] that very
likely underlies many complex human diseases.
RNA sequencing techniques carry the promise of

revolutionizing our understanding of the transcription
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processes that underlie phenotypes [6]. As data from
projects like ENCODE [7] reveal the complexities of the
transcriptome in eukaryotic cells, it is becoming clear
that, in order to fully understand human pathological
cellular networks, we are going to need more detail of the
transcriptional events that underlie disease phenotypes.
Neutrophils are a particularly challenging cell with

which to work. The presence of endonucleases within
human neutrophils, a part of the host defense against
bacteria [8], presents particular challenges to preparing
high-quality nucleic acid for sequencing studies. Neu-
trophils are thus conspicuously absent from both the
ENCODE and Roadmap Epigenomics data sets. The
studies we report here were undertaken to determine
the specificity of neutrophil transcriptomes to specific
human illnesses or disease states, a prerequisite for bio-
marker development, by examining specific phenotypes
that show subtle differences from one another.

Methods
Patients and patient samples
Neutrophils were collected from nine children after in-
formed consent was obtained from their parents accord-
ing to a protocol approved by the University of Oklahoma
Health Sciences Center Institutional Review Board. Three
of the samples were from children (ages 5–10 years, all
girls) with newly-diagnosed, untreated polyarticular ju-
venile idiopathic articular arthritis (JIA). Samples were
also obtained from 3 patients; also girls aged 5–10, who
fit criteria for clinical remission on medication (CRM).
That is, these children had normal physical exams, no
symptoms of arthritis (morning stiffness, gait disturbance,
fatigue) and normal laboratory studies (complete blood
counts, erythrocyte sedimentation rate) and had main-
tained this state for at least 6 continuous months. In
addition, a control population consisting of 3 children
with cystic fibrosis (CF) (ages 6–21 years, all boys) was
also studied. The latter group is an important and seldom
used-control; children with CF have chronic, indolent
inflammation in the lung, and thus allow us to discern
disease-specific characteristics in JIA from those that
might be seen in any chronic, sub-acute inflammatory
state. Children with CF were seen during routine follow-
up and were stable from the standpoint of pulmonary
symptoms at the time they were studied.

Cell isolation
Whole blood was drawn into 10 mL CPT tubes (Becton
Dickinson, Franklin Lakes, NJ), which is an evacuated
blood collection tube system containing sodium citrate
anticoagulant and blood separation media composed of a
thixotropic polyester gel and a FICOLL™ Hypaque™ solu-
tion. Cell separation procedures were started within 1 h
from the time the specimens were drawn. Neutrophils

were separated by density-gradient centrifugation at
1,700× g for 20 min. After removing red cells from
neutrophils by hypotonic lysis, neutrophils were then
immediately placed in TRIzol® reagent (Invitrogen,
Carlsbad, CA) and stored at −80 °C until used for
RNA isolation. Cells prepared in this fashion are more
than 98 % CD66b + by flow cytometry and contain no
contaminating CD14+ cells, as previously reported [9].
Thus, although these cell preparations contained small
numbers of other granulocytes, they will be referred to
here as “neutrophils” for brevity and convenience.

RNA isolation and sequencing
Total RNA was extracted using Trizol® reagent according
to manufacturer’s directions. RNA was further purified
using RNeasy MiniElute Cleanup kit including a DNase
digest according to the manufacturer’s instructions (QIA-
GEN, Valencia, CA). RNA was quantified spectrophoto-
metrically (Nanodrop, Thermo Scientific, Wilmington,
DE) and assessed for quality by capillary gel electrophor-
esis (Agilent 2100 Bioanalyzer; Agilent Technologies,
Inc., Palo Alto, CA). Single-end cDNA libraries were pre-
pared for each sample and sequenced using the Illumina
TruSeq RNA Sample Preparation Kit by following the
manufacture’s recommended procedures and sequenced
using the Illumina HiSeq 2000. Library construction and
RNA sequencing were performed in the Columbia
Genome Center in Columbia University Medical Center.

Data processing and analysis
The short reads were mapped to the reference genome
(Human: NCBI/build37.2) using TopHat (version 2.0.4)
[10] with 4 mismatches (−−read-mismatches = 4) and 10
maximum multiple hits (−−max-multihits = 10). Tran-
scripts were assembled and the relative abundance (aka
expression level) of genes and splice isoforms were esti-
mated using Cufflinks in “fragments per kilobase of exon
model per million mapped reads” (FPKM) [11]. (version
2.0.2) with default settings. Differential expression genes
and exomes were tested using DEseq. To define signifi-
cantly differential expression genes/exomes, we used a
p-value < 0.05 as the cutoff. The Database for Annota-
tion, Visualization and Integrated Discovery (DAVID),
v6.7, (http://david.abcc.ncifcrf.gov/home.jsp) was used
for Gene Ontology (GO) analysis.

Ingenuity Pathway Analysis (IPA)
To identify upstream regulators of the differentially
expressed genes between AD and CRM or between AD
and CF, we used IPA software (Ingenuity Systems,
Redwood City, CA). Gene symbols were used as identi-
fiers and the Ingenuity Knowledge Base gene set as a ref-
erence for a pathway analysis. Identification of upstream
transcription regulator was assessed using IPA where the
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activation or inhibition of a transcription regulator was
determined from expression patterns of the transcription
factor and its downstream-regulated genes within the
differentially expressed list. The absolute value of the
z-score ≥ 2.0 was considered statistically significant with a
positive value indicating activation and a negative values
indicating inhibition of the transcription factor.

Differentially expressed genes and LncRNA expression
validation by quantitative real-time RT-PCR
Total RNA was reverse transcribed with iScript™ cDNA
synthesis kit according to the directions of the manufac-
turer (Bio-Rad, Hercules, CA, USA). Real-time RT-PCR
was performed using SYBR Green reagents on a StepOne
Plus (for the testing group; Applied Biosystems, Foster
City, CA, USA) as described previously [3]. Gene-specific
amplification was confirmed by a single peak in the ABI
Dissociation Curve software. Average threshold cycle
(Ct) values for GAPDH (run in parallel reactions to the
genes of interest) were used to normalize average Ct
values of the gene of interest. These values were used to
calculate averages for each group, and the relative ΔCt
was used to calculate fold-change values between the
groups. The nucleotide sequences of the primers are
listed in Table 1. All primers applied were tested to
display an efficiency of amplification approximate 98 %
(±SD 4.65 %).

Results
An overview of RNA-seq data
In this study, we conducted genome-wide RNA sequen-
cing for 9 individual samples corresponding to specific
phenotypes: 3 children with active, untreated juvenile
idiopathic arthritis (JIA), a common chronic disease in
children characterized by inflammation and hypertrophy
of synovial membranes [12, 13]. These subjects will be
referred to as AD. We also studied 3 children with the
same disease whose disease had been inactive and stable
for 6 continuous months on the anti-inflammatory, im-
munosuppressive drug, methotrexate. The children were
described as being in clinical remission on medication
(CRM) as defined by accepted international criteria [14].
Finally, we studied 3 children with cystic fibrosis (CF),
an autosomal recessively inherited disorder characterized
by chronic, indolent inflammation in the lungs. For all
3 AD samples, we generated an average of 19.35 million
101 bp reads per sample, and average number of reads
mapped to the genome was 13.59 millions. For the CRM
samples, the average number of reads per sample was
20.82 million, and average number of reads mapped to
the genome was 14.34 million. For the CF samples, an
average number of reads per sample was 20.53 million,
and the average number of reads mapped to genome
was 16.84 millions (Table 2). There were no significant

differences in the number of reads between AD and
CRM or CF samples. The sequencing performance and
library quality was further assessed using RNA-SeQC
v1.1.7 [15]. The results show that 76.8 % of reads mapped
to known exons, and ~18.7 % mapped to intronic regions.
These statistics indicate that the sequencing data is robust
(Table 3).

Gene expression analysis
Overall, there were 12,050 genes expressed in neutro-
phils in at least one of nine subject with FPKM value >1.
Of these, 7734 genes identified as expressed in neutro-
phils were detected in all nine subjects (Additional file 1:
Table S1). As expected, these genes include transcripts
for cytokines/chemokines, cell-surface receptors, major
histocompatibility complex (MHC) proteins, apoptosis
regulators and adhesion molecules, and proteases, all
important to neutrophil function. In order to further
characterize these genes, we classified genes into three
groups based on their FPKM values: high expression
(top 25th percentile; FPKM > 36.84), medium expression
(middle 50th percentile; 5.63 < FPKM ≤ 36.84), and low
expression (bottom 25th percentile; FPKF ≤ 5.63). We
then carried out Gene Ontology (GO) analysis using the
Database for Annotation, Visualization and Integrated
Discovery (DAVID), v6.7, http://david.abcc.ncifcrf.gov/
home.jsp [16]. GO analysis is an additional useful bio-
informatics tool to categorize and group large gene sets
based on a known functional associations, as defined
by the Gene Ontology Consortium [17]. This analysis
revealed that high expression genes are enriched for
translational elongation (p = 6.90E-46, FDR = 1.28E-42),
immune responses (p = 8.73E-26, FDR = 1.62E-22), defense
responses (p = 1.75E-20, FDR = 3.25E-17), intracellular sig-
naling cascades (p = 3.03E-17, FDR = 5.63E-14), and inflam-
matory responses (p = 2.54E-14, FDR = 4.69E-11). Medium-
expression genes were enriched for transcripts involved in
protein catabolic processes (p = 2.00E-28, FDR = 3.74E-25),
cellular macromolecule catabolic processes (p = 2.10E-28,
FDR = 3.94E-25), and cellular protein catabolic process
(p = 4.93E-28, FDR = 9.24E-25). Low-expression genes
are involved in transcription (p = 6.52E-11, FDR = 1.17E-
07) and DNA metabolic processes (p = 9.66E-09, FDR =
1.73E-05). The top 5 categories of the GO analysis for
3 groups are presented in Table 4. All categories are
presented in Additional file 2: Table S2.
Long non-coding RNAs (lncRNAs) are defined as

transcripts of greater than 200 nucleotides without evi-
dent protein coding function [18]. Thus, lncRNA is a
broad definition that encompasses multiple different
classes of RNA transcripts, including enhancer RNAs,
small nucleolar RNA (snoRNA) hosts, intergenic tran-
scripts, and transcripts overlapping other transcripts in
either sense or antisense orientation. So far, only a few

Jiang et al. BMC Medical Genomics  (2015) 8:55 Page 3 of 13

http://david.abcc.ncifcrf.gov/home.jsp
http://david.abcc.ncifcrf.gov/home.jsp


RNA-Seq studies have detected or analyzed lncRNAs
[19]. We took advantage of our next generation RNA-
Seq data to identify all lncRNA expressed in neutrophils.
We mapped the RNA-seq data to a comprehensive com-
pendium of long non-coding RNAs (www.LNCipedia.org,
version 2.0). The current version of this long non-coding
RNA database contains 32,183 human annotated lncRNAs
[20]. We found 2981 lncRNAs were expressed in neu-
trophils in at least one of nine subjects (FPKM ≥ 1)
(Additional file 3: Table S3). As expected, these non-

coding transcript FPKM values were lower than protein
coding genes (Fig. 1). Multiple studies have shown that
lncRNA expression details vary for different classes [21, 22]
and there is evidence that lncRNAs participate in multiple
networks regulating gene expression and function [23].
LncRNAs also interact with multiple proteins, enabling
scaffolding functions and combinatorial control [24]. For
example, the recently identified lincRNA-Cox2 mediates
both the activation and repression of distinct classes of
immune genes [25]. However, the in vivo functions of most

Table 1 Primers used for real-time PCR and real-time PCR validation of RNA-seq results

Gene ID Primer
direction

Primers sequence (5′ ~ 3′) Fold change (AD vs CRM)

RNA-seq qPCR

DDX60 Forward GAA GCA GCA GGA AGC TGA A −5.73 −1.26

Reverse GGA TGT CTC TCA GTT GCT CAA A

IFIH1 Forward TTG GAT AAG TGC ATG GAG GAG −3.61 −1.53

Reverse CCT GTT TGA CGA AGA ACA TTC AG

IFITM3 Forward CCT GTT CAA CAC CCT CTT CA −5.30 −1.82

Reverse CAT GAG GAT GCC CAG AAT CA

IGHMBP2 Forward ACG AAC AGT CGA AAG GGA AC 2.99 1.10

Reverse AGC CAT CGA CAG ACT TGA TTT

MOV10 Forward GGG CTA TGA CCT GGA GTT AAG 1.44 −3.50

Reverse CAC CTC ATA GTT CCT CCA CTT C

OAS1 Forward GAA GCC TGT CAA AGA GAG AGA G −13.46 −1.24

Reverse GTT AGG TTT ATA GCC GCC AGT

PML Forward ACA ACA TCT TCT GCT CCA ACC −2.64 2.21

Reverse TGT CGC TGC TGG ATC TCT

RNF213 Forward CTG GTT GTG TCA CCT CCT AAC −3.07 1.46

Reverse GTC CTT GTG TCC ATG CAT CT

TNFAIP6 Forward GAT GGG ATG CCT ATT GCT ACA −2.79 −3.70

Reverse CGC TGA CCA TAC TTG AGT CTA AT

TRIM5 Forward GCA GGA AGC TGA AGA GTT AGA −1.33 −2.58

Reverse GAA TGT CTT CCT CCT CCT TCT C

lnc-CKAP2L-1 Forward GTTAAAGCTGCGAAGAACCTAAC 13.94 1.19

Reverse TTCCTGCCTCTTCCTACTCT

lnc-IFITM2-4 Forward GATCTTAGCCTTGGCCTCAC −7.98 −24.85

Reverse TACACCAGGCAACCACAAATA

lnc-IRS2-2 Forward GCTAGTTCAGCCTGTGAGATG 17.2 6.69

Reverse AGCAAGCAATCCAAGAGAGAG

lnc-PFDN4-1 Forward GGTGTTTGGAGACAAAGGAATAG 3.77 1.28

Reverse CTATCTCGTGCCGCTTAGTATC

lnc-PML-1 Forward TGTAGCACTCACGGCAAAT −6.16 −2.39

Reverse CGTGTCCAGAGTTTGTTCCT

lnc-RBL2-1 Forward TCCTGAGTAGCTGGGAT GTA −2.2 −1.61

Reverse GACCAGCCTAGCCAACATAAT

lnc-SLC2A13-1 Forward TAATGGCAGTGGAGGTTGTC −2.78 −3.39

Reverse GAACTTCCAGCATCTCCTTACA
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of the currently annotated lncRNAs have not been de-
termined, including the 2981 lncRNA we detected in
neutrophils.
We used Cufflinks to assemble transcripts and esti-

mate the abundance of isoforms. There are 31,046
isoforms expressed in neutrophils in at least one of nine
subjects with FPKM value >0 (Additional file 4: Table
S4). While the genes have several alternatively spliced
transcripts, their isoforms are not expressed at equiva-
lent levels. For most genes, one isoform is expressed
more highly than others (data not shown), a finding
compatible with what has been reported in B cells [11].

Identification of differentially expressed genes between
phenotypes
Although neutrophils are typically regarded as non-
specific mediators of inflammatory responses, data from
hybridization-based gene expression arrays suggest that
there may be subtle differences in neutrophil transcrip-
tomes that correlate with human disease phenotypes [26].
We used DESeq [27] to test the differential expression of

genes comparing the three phenotypes. When the ex-
pressed genes are defined as FPKM ≥1 in all 3 replicates,
there are 8597 expressed genes in the AD neutrophils,
8668 expressed genes in CRM neutrophils and 8102
expressed genes in the CF neutrophils, which were aligned
to the reference genome (data no shown).
One hundred fifty-nine genes showed differential ex-

pression when children with active juvenile arthritis (the
AD group) were compared to children with sustained, in-
active disease on medication (the CRM group - Additional
file 5: Table S5). Twenty of these genes were expressed
in higher levels in AD and 136 were expressed in lower
levels in AD compared with CRM (top 10 up and down
regulated DE genes in Table 5). There are two genes
(ADARB2, C20orf134) only expressed in AD and one gene,
FLJ31813 was expressed only in CRM. The ADARB2 gene
(RNA-specific adenosine deaminases, B2) is associated
with brain tumors [28] and a single nucleotide poly-
morphism (SNP) in ADARB2 is associated with metabolic
disorders [29]. An inflammatory/immune function for
ADARD2 is not known. Genes showing lower levels of
expression in AD included ICAM-1, IL-1B, CCR1, IFIH1,
SOCS1, TNFAIP3 and TNFSF13B, which are strongly
associated with acute and chronic inflammation and
adult rheumatoid arthritis. For example, SOCS1 was up-
regulated in the synovial membranes from patients with
RA when compared with osteoarthritis [30]. Interferon-
induced proteins (IFI35, IFI44, IFI44L, IFI6, IFIH1, IFIT2,
IFIT3, IFIT5, IFITM1, IFITM3) also show lower levels of
expression in neutrophils of children with AD, suggesting
that attenuated interferon responses may be an under-
lying aspect of the disease. In support of this idea was the
finding that Type I IFN response genes OAS1, OAS2 and
OAS3, were also expressed in lower levels in AD samples
compared with CRM. This finding corroborates studies
that have shown that, at least in adult patients with
rheumatoid arthritis, therapies with anti-TNF antibody, a
common treatment for severe forms of the disease,
induce significant increases in type I IFN response gene
activity [31]. Other genes expressed in lower levels in AD

Table 3 RNA-SeQC analysis of sequencing performance and library quality

Sample name Intragenic rate Exonic rate Intronic rate Intergenic rate Expression profiling efficiency Transcripts detected Genes detected

AD 1 0.954 0.758 0.196 0.046 0.758 85,660 15,787

AD 2 0.949 0.727 0.223 0.05 0.727 76,885 14,478

AD 3 0.956 0.78 0.176 0.043 0.78 72,871 13,783

CRM 1 0.956 0.766 0.19 0.043 0.766 81,034 15,094

CRM 2 0.953 0.767 0.186 0.046 0.767 72,810 13,772

CRM 3 0.956 0.78 0.176 0.044 0.78 77,082 14,628

CF 1 0.957 0.767 0.19 0.043 0.767 75,374 14,245

CF 2 0.958 0.78 0.178 0.041 0.78 85,761 16,101

CF 3 0.956 0.785 0.171 0.043 0.785 71,900 13,552

Table 2 RNA-Seq sequences reads mapping to NCBI human
genome build37.2 by TopHat (version.2.0.4)

Sample name Number of
raw reads

Number of
mapped reads

Mapped
reads %

AD 1 21,363,317 14,752,865 69.06

AD 2 14,740,041 10,415,236 70.66

AD 3 21,940,589 15,601,068 71.11

Average 19,347,982 13,589,723 70.27

CRM 1 22,302,984 15,579,477 69.85

CRM 2 18,410,947 12,278,180 66.69

CRM 3 21,735,005 15,170,922 69.80

Average 20,816,312 14,342,859 68.78

CF 1 16,607,430 13,228,449 79.65

CF 2 20,084,504 16,607,129 82.69

CF 3 24,909,069 20,696,538 83.09

Average 20,533,668 16,844,038 81.81
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are associated with immune responses or responses to
viruses. The C5orf56 gene also showed lower expression
in AD. This gene is of special interest, as, in a recent
GWAS for the juvenile arthritis phenotype studied here,
SNPs within the C5orf56 region had one of the strongest
associations with genetic risk among the regions identi-
fied [32]. The PAM gene (Peptidylglycine alpha-amidating
monooxygenase) was up-regulated in AD. PAM cleaves
immature adrenomedullin (an antiapoptotic peptide) to
the mature peptide. PAM also expressed rheumatoid
arthritis fibroblast-like synoviocyte and osteoarthritis
fibroblast-like synoviocyte [33].
In order to characterize the differentially expressed

genes, we conducted a Gene-Ontology analysis using
DAVID as described above. Unsurprisingly, the top three
functional groups enriched in differentially expressed
genes are: (a) immune response (p-value = 4.34E-13,
FDR = 7.06E-10), including 28 differentially expressed
genes; (b) response to viral infection (p-value = 4.33E-10,
FDR = 7.04E-7), including 12 genes, and (c) host defense
responses (p value = 1.65E-4, FDR = 0.2682), including
15 genes (Fig. 2).
We further examined the specificity of neutrophil tran-

scriptomes by examining another phenotype characterized

by chronic, soft tissue inflammation. CF is an autosomal-
recessively inherited disease caused by mutations in the
CFTR gene that lead to abnormal ion transport in respira-
tory epithelial cells [34, 35]. These abnormalities are asso-
ciated with chronic, indolent inflammation in the small
airways and lung parenchyma, due, in part, to chronic
infection/colonization with pseudomonas aerigninosa as
well as other bacteria [36]. Lungs of affected patients show
a characteristic neutrophilic infiltrate and high concentra-
tions of tumor necrosis factor-alpha (TNF-a), which amp-
lifies the inflammatory process by stimulating release of
IL-1, IL-6, IL-8 [37, 38]. CF thus presents a good control
and comparison group to children with JIA, as it allows us
to identify transcriptional reorganization that is disease-
specific and distinguish it from changes that are generic to
chronic inflammation in soft tissues.
Because the CF patients consisted entirely of males,

while the JIA patients were females, we excluded genes
on either sex chromosome that showed differential ex-
pression in the comparison of CF and JIA patients. There
were 113 genes that showed differential expression with
at least 1.9-fold change (p < 0.05) when neutrophils from
children with untreated arthritis were compared with
those from children with CF (Additional file 5: Table S5).
Forty of these gene transcripts were found in greater
abundance in the neutrophils from children with un-
treated arthritis and 70 were found in higher in the
neutrophils from CF (top 10 up and down regulated DE
genes in Table 6). There are two genes (MYH6, PPP4R4)
expressed only in CF and gene ELOVL2 expressed only in
AD. Predictably, many of the DE genes are involved
inflammatory responses (KLRG1, CCR5, C4A, CCR4,
CFD, SPP1) and immune responses (CCR5, C4A, IFITM2,
CCR4, MSH2, FCGR2C, TREM1, CFD). Interestingly,
there are ten DE genes that are associated with cell cycle
regulation (CDKN1A, PLK3, ZC3HC1, MSH2, CYP26B1,
KIF20B, CENPV, G0S2, CDK6, AHR).
To confirm the differences in gene expression between

AD and CRM observed in the RNA-seq experiments, we
performed real-time qRT-PCR. Ten genes that showed
significant differentially expressed between AD and CRM
in the RNA-seq analysis (DDX60, IFH1, IFITM3, IGHMBP,
MOV10, OAS1, PML, RNF213, TNFAIP6, TRIM5) were
analyzed by real-time qRT-PCR in an independent patient
cohort. Table 1 shows that seven of ten genes differentially
expressed in the RNAseq analysis were also differentially
expressed in the real-time qRT-PCR.

Sample reproducibility
To assess reproducibility of gene expression of biological
represents in neutrophils, Principal Component Analysis
(PCA) and sample pairwise correlation coefficient cal-
culation are performed to obtain an overview of gene
expression for the three conditions (AD, CRM, CF). A

Table 4 Gene ontology analysis of genes expressed in
neutrophils

Category Term Count P value

High expression genes

GO:0006414 Translational elongation 72 6.90E-46

GO:0006955 Immune response 169 8.73E-26

GO:0006952 Defense response 145 1.75E-20

GO:0006412 Translation 91 2.00E-17

GO:0007242 Intracellular signaling cascade 230 3.03E-17

Medium expression genes

GO:0030163 Protein catabolic process 238 2.00E-28

GO:0044265 Cellular macromolecule catabolic process 266 2.10E-28

GO:0051603 Proteolysis involved in cellular protein
catabolic process

231 4.93E-28

GO:0043632 Modification-dependent macromolecule
catabolic process

223 1.07E-27

GO:0019941 Modification-dependent protein catabolic
process

223 1.07E-27

Low expression genes

GO:0006350 Transcription 268 6.52E-11

GO:0006974 Response to DNA damage stimulus 70 2.42E-09

GO:0006259 DNA metabolic process 85 9.66E-09

GO:0006281 DNA repair 56 2.03E-08

GO:0045449 Regulation of transcription 302 8.31E-08

Genes were classified into three groups, high-expression (25 %), medium-
expression (50 %) and low expression (25 %). Gene ontology analysis was
performed using DAVID. Top 20 categories for each group was presented here
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PCA scatter plot (Fig. 3a) and heat map of heat map of
sample distance based on Jensen Shannon entropy over
gene counts (Fig. 3b) show that the three groups (AD,
CRM, CF) formed three distinct clusters. While the
sample designated AD1 appears to be somewhat distinct
in the heat map, this sample still clusters closest with
the other 2 AD samples. This sample was from a 10 year
old girl, while the other 2 were from 5 and 6 year old
girls. It is possible that early pre-pubertal changes may
have had an effect on gene expression in this patient.
Thus, although the differences in the three phenotypes
are relatively subtle from an immunologic standpoint,
neutrophils in each show subtle specificity that suggests
fine-tuning of the transcriptome in response to specific
inflammatory environments, or, in the case of JIA, as a re-
sult of immune suppressive/anti-inflammatory therapies.

Transcription factor networks
A long-term goal of our work is to understand how
cellular networks are perturbed in chronic inflammatory
diseases and the effects of therapy on restoring normal
transcriptional wiring. We therefore undertook network
analysis of RNA expression in the samples we had
subjected to RNAseq. Upstream regulator analysis in
IPA allowed the identification and determination of the
state of activation of upstream regulators that might be

responsible for the observed gene expression changes
between different groups. We identified 2 transcription
factors (TFs), GFI1 and NUPR1, from 131 differentially
expressed genes between AD and CF, which were iden-
tified as being inhibited. GFI1 regulates genes CDKN1A,
EGR3, PCOLCE2, PLOD1 and SPP1; while NURP1
regulates genes FLVCR1, FUCA1, HBEGF, PLK3 and
TMEM158. Analysis of the 159 genes differentially
expressed between AD and CRM identified 121 TFs.
Twelve of the 121 TFs (EGR1, BRCA1, IRF1, IRF7, IRF3,
IRF5, NFATC2, NFKB1, SMARCB1, STAT1, STAT2 and
STAT3) were identified as being inhibited (Fig. 4a), and
4 TFs (GFI1, MYC, NKX1-3 and TRIM24) were identi-
fied as activated (Fig. 4b). These TFs regulate more than
5 genes in a single overlapping regulatory network
(Fig. 4). Signal Transducer and Activator of Transcrip-
tion (STATs) have numerous functions in innate immun-
ity [39, 40]. Specifically, STATs have key functions for
neutrophils and regulate gene transcription by alter-
native proteolytic processing [41, 42]. NF-κB is also in-
cluded is this network. The NF-κB pathway is induced
by a wide variety of stimuli, including cytokines such as
the tumor necrosis factor-alpha and interleukin-1β, both
of which are the targets of biologic therapies used to
treat rheumatoid arthritis and juvenile idiopathic arth-
ritis [43, 44]. The involvement of the oncogenes MYC in

Fig. 1 A comparison of expression level of protein coding genes and non-coding transcripts. The expression levels of non-coding transcript were
lower than of protein coding genes. a the box plot indicates expression level (log FPKM) of all protein-coding genes in neutrophils as compared
to that expression level of all non-coding genes in neutrophils. b Kernel density plot of FPKM in log scale for protein coding genes and lncRNAs
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gene regulation in JIA is consistent with what we
have previously reported in gene expression analyses
of neutrophils [26].

Differential usage of exons
We applied DEXSeq [45] to test for differential exon
usage in RNA-seq data. The DEXSeq analysis revealed
that there were 204 significantly differential exon usages
(p < 0.01) between AD and CRM (Additional file 6: Table
S6). These differential exon usages were distributed in
179 genes. Of 179 genes demonstrating differential exon

usage, 7 genes (BTN3A2, IFI44L, IFIT3, LOXHD1, PAM,
RNF213, SH3RF3) also showed differential expression
between AD and CRM at the gene level.
We also found 838 genes that demonstrated significant

differential exon usage (p < 0.01) when we compared AD
and CF (Additional file 7: Table S7). Differential exon
usage was distributed in 678 genes. Of 678 genes de-
monstrating differential exon usage, 6 genes (IFITM2,
LOXHD1, MSH2,, RPH3A, SH3RF3, ZNF107) also showed
differential expression between AD and CF at the gene
level.

Fig. 2 Functional enrichment analysis results for differentially expressed genes between AD and CRM

Table 5 Top 10 up and down regulated differentially expressed genes in neutrophils in juvenile idiopathic arthritis with active status
compared with in juvenile rheumatoid arthritis with clinical remission on medicine status

Gene symbol Base Mean_all Base Mean_AD Base Mean_CRM p value Fold change (AD vs CRM)

LOC100652901 2.584163876 4.893556785 0.274770967 0.028780503 17.80958462

APOBEC3B 83.15003176 153.1234541 13.17660941 0.046805157 11.620854

AASS 4.098483224 7.372653548 0.824312901 0.03030685 8.943998745

ELF5 5.151781844 8.903353288 1.400210399 0.009241724 6.358582465

COL4A3 4.238990844 7.254099279 1.223882409 0.035842855 5.927121121

ZNF772 8.041388866 13.0963408 2.986436929 0.027467532 4.385272857

PAM 185.1146538 300.6639308 69.56537684 0.035123308 4.3220341

RNU5A-1 13.32454668 21.2148916 5.434201748 0.009970308 3.903957304

CEACAM19 12.44161404 19.01848534 5.864742738 0.035882882 3.242850743

LOC100128028 9.96808427 15.18599541 4.75017313 0.038699912 3.196935142

IFI44 1090.259979 234.9096707 1945.610288 0.034410811 −8.282376295

OAS3 3312.067396 599.3511189 6024.783673 0.012004606 −10.05217723

OAS2 1177.854158 208.429431 2147.278884 0.045495414 −10.30218657

PGM5 60.33985892 10.55582037 110.1238975 0.027057445 −10.43252856

IFI44L 1221.349953 203.5852067 2239.1147 0.013271076 −10.99841554

TIAF1 2.970579096 0.413585692 5.5275725 0.029142879 −13.36499935

OAS1 675.8399068 93.42104659 1258.258767 0.00911317 −13.46868626

LY6E 887.4348129 108.049892 1666.819734 0.022952433 −15.42638964

LILRB5 3.535606771 0.413585692 6.657627849 0.044736858 −16.09733601

FAM21B 36.36690516 4.133439531 68.60037079 0.022509698 −16.59643749
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The comparison of AD vs. CRM reveals a neutrophil
response to therapeutic intervention and thus may be
somewhat artificial. In contrast, the CF and AD situa-
tions are rather similar (chronic inflammation in soft
tissues), and subtle re-organization of the transcriptome
in these parallel but slight different scenarios is actually
quite interesting.

Differentially expressed lncRNA
As noted above, we identified 2981 lncRNAs expressed
in neutrophils in at least one of nine subjects. We ap-
plied differential expression analysis of all the lncRNAs
that were expressed in all the libraries using DESeq. The
analysis revealed there are 38 lncRNAs that showed dif-
ferential expression when the AD group was compared
with CRM. There were 30 lncRNAs that showed de-
tectable differences in expression between AD and CF.
There were 63 DE lncRNAs in CRM vs CF comparison
(Additional file 8: Table S8). These results show that
lncRNA expression is disease and disease-state specific.
To validate the RNA-seq data, we chose randomly 7 of

38 DE lncRNAs between AD and CRM, and performed
real-time PCR in an independent patient cohort. Table 1
shows that 7 lncRNAs differentially expressed in the
RNA-seq analysis were also differentially expressed in

real-time PCR. It is interesting to note that two of
these lncRNA, lncIFITM-4 and lncPML-1, are adjacent to
differentially-expressed genes (IFITM3 and PML, respect-
ively), suggesting that these transcripts may act directly in
to regulate gene expression in neutrophils and fine-tune
transcriptional responses to specific inflammatory/disease
states. As the functions of lncRNAs are largely unknown,
an approach for inferring putative functions of long
ncRNAs is to examine protein-coding genes located near
ncRNAs of interest [46, 47]. We examined the expression
pattern of paired neighbor protein-coding genes of differ-
ential expressed lncRNAs between AD and CRM. Inter-
estingly, we found that six neighbor protein-coding genes
(CHSY1, IFITM3, LILRA5, PGM5, PML, ZCCHC2) of
these DE lncRNAs were also differentially expressed at
same direction. Of these 5 genes, IFITM3 mRNA and
PML mRNA are known to be upregulated in labial minor
salivary glands and associated with in primary Sjogren’s
syndrome [48].

Discussion
We have demonstrated the feasibility of preparing high-
quality RNA from human neutrophils in sufficient quan-
tity to perform RNA-Seq in the context of different
human phenotypes. Furthermore, we have demonstrated

Table 6 Top 10 up and down regulated differentially expressed genes in neutrophils in juvenile idiopathic arthritis with active status
compared with in neutrophils in cystic fibrosis

Gene symbol Base Mean_all Base Mean_AD Base Mean_CF p value Fold change

(AD vs CF)

HRK 3.254095483 6.295412043 0.212778924 0.00913228 29.58663351

ZNF724P 2.434400622 4.65602232 0.212778924 0.038928663 21.88197136

DUOX2 4.06892349 7.551846549 0.58600043 0.007728683 12.8871007

LOC145474 3.478432752 6.32498152 0.631883985 0.015249855 10.00971962

CFD 1673.012068 2996.168793 349.8553432 0.00893998 8.56402182

COL5A3 8.493207647 14.96975153 2.016663769 0.029568293 7.423027953

KIF21A 7.226812819 12.17829939 2.275326247 0.043226873 5.35233108

KLRG1 14.29693321 23.81752942 4.77633699 0.022752462 4.986568048

EFHA2 6.265641701 10.20362082 2.327662587 0.04898428 4.383633984

TRIM36 9.077531529 14.75361951 3.401443553 0.026681604 4.337458282

LOC285847 2.582363565 0.443745708 4.720981423 0.047502758 −10.63893428

PGM5 70.05844466 11.57358217 128.5433071 0.015904627 −11.10661377

LOC100133207 3.462096626 0.458530446 6.465662806 0.033308951 −14.10083641

LRRC32 2.183632721 0.229265223 4.138000219 0.042150439 −18.04896602

RPH3A 234.0009908 24.42986525 443.5721163 0.0438117 −18.15696123

FAM21B 44.9347236 4.54591393 85.32353326 3.54E-07 −18.76928041

PCOLCE2 3.287165275 0.229265223 6.345065326 0.021037444 −27.67565548

GLIS3 6.916159962 0.229265223 13.6030547 0.000110398 −59.33326704

CYP26B1 85.98114317 2.337885371 169.624401 4.17E-14 −72.55462697

TMTC1 285.5146376 6.717864103 564.3114112 0.002300462 −84.00161161
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that such studies can be undertaken even with the rela-
tively small amounts of human blood available for trans-
lational studies in children. Finally, we demonstrate that
neutrophil transcriptomes show subtle variations that
correspond to specific human phenotypes and inflamma-
tory conditions.
Neutrophils are a critical cell in human defense, and

depletion of neutrophils from peripheral blood, whether
as a consequence of therapeutic efforts or human dis-
ease, has almost immediate adverse consequences [49].
Furthermore, neutrophils play a critical role in their
ability to direct and instruct the adaptive immune sys-
tem [50]. Despite the importance of these cells, they are
conspicuously absent from the both ENCODE and Road-
map Epigenomics data sets. Thus, we know little of the
functional genomics of these cells and how neutrophil
genomes adapt to regulate transcription in response to
external signals and disease states.
Like most leukocyte genomes, neutrophils show sub-

stantial transcriptional complexity. Although most tran-
scripts were expressed at low levels (compared with
lymphocytes, for example) we found that more than 7700
genes, or about 30 % of all the known protein-coding
genes, were detected in all nine samples. Furthermore,
isoform usage was extensive, with more than 9500 de-
tected in each of the three different phenotypes. While

extensive RNA splicing is known to characterize adaptive
immune responses [51], these findings suggest that even
neutrophils carry the capacity for supple, threat-specific
adaptations to host injury or infection. The latter point is
corroborated by the subtle differences in the transcrip-
tomes of the three different childhood phenotypes that
we studied.
Because of the differences between the three different

phenotypes, our studies suggest that RNAseq may be a
substantial improvement over hybridization-based gene
expression arrays for the development of informative
biomarkers in human disease. As gene expression micro-
arrays became widely available and affordable, there was
considerable excitement about their use in developing
predictive or diagnostic biomarkers [4]. It was disap-
pointing, then, when biomarkers identified in one cohort
(e.g., for prediction of response to therapy) showed little
or overlap with biomarkers developed in independent
cohorts [52, 53]. While there have been successful at-
tempts to corroborate gene array data in independent
patient cohorts [3], the limited dynamic range and
considerable technical variation (large batch effects) of
hybridization-based arrays will very likely continue to
limit their utility for medical purposes. With next-gen
sequencing costs continuing to fall, the possibility of
developing “personalized transcriptomes” for diagnosis

Fig. 3 Sample reproducibility. a Principal Component Analysis (PCA) was performed based on differentially expressed genes (p < 0.05) to obtain
an overview for the three conditions (AD, CRM, CF) on gene expression. The PCA scatter plot showed that the three groups (AD, CRM, CF) is the
best separation and formed three distinct clusters. b Heat map of sample distance based on Jensen Shannon entropy over gene counts. The
result showed three groups were able to be separated
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or prognosis (e.g., predicting therapeutic response) seems
an achievable goal.
This sample size is too small to make broad inferences

about the pathogenesis of JIA, although some interesting
findings emerge from these data. For example, we
have previously reported the involvement of interferon
gamma in gene expression networks constructed from
gene microarray data in JIA neutrophils [9]. The current
data suggest an attenuation of type 1 interferon responses
in JIA neutrophils, a new finding and not one that we have
previously discerned in expression data in JIA neutrophils
[1, 3, 26], although we see decreased expression of numer-
ous pro-inflammatory genes in JIA neutrophils using this
approach. These findings are probably medically relevant:
a recent study shows that IFN-response gene expression
levels in neutrophils in adult RA correlates with a good
response to TNF inhibitor therapy [54]. While we believe
that our findings support efforts to continue biomarker
development from human neutrophils in chronic inflam-
matory diseases, it is unlikely that, by itself, neutrophil
transcriptome profiling will not be sufficient to crisply
elucidate the pathogenesis of JIA or other complex traits
characterized by chronic, indolent inflammation.
RNAseq also allowed us to characterized the expres-

sion of lncRNAs in neutrophils in CF patients and JIA
patients with different disease states. Our results demon-
strate a large number of lncRNAs commonly expressed
in neutrophils, and these data thus provide a useful
resource for lncRNA expression in human neutrophils.
We also analyzed differential expression analysis of the
lncRNAs between diseases or disease states and identi-
fied 38 differentially expressed lncRNAs in AD vs CRM
comparison, and 30 in AD vs CF. These results provide
further evidence that neutrophils exhibit considerable
adaptability in their transciptomes and that gene and
transcript expression is disease or disease state specific.

Conclusions
Human neutrophils exhibit surprising specificity in their
transcriptional responses, which vary both between spe-
cific diseases and even with specific disease states. These
findings were observed for genes, gene isoforms, and non-
coding transcripts. Furthermore, our findings show that
RNA sequencing may be a useful method for investigating
the connections between gene/transcript expression and
human phenotypes, including disease phenotypes.
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