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ABSTRACT 

Identifying and reducing inappropriate use of medication using electronic health records 

Hojjat Salmasian 

Inappropriate use of medications (IUM) is a global problem that can lead to unnecessary harm to 

the patients and unnecessary costs across the health care system. Identifying and reducing IUM 

has been a long-lasting challenge and currently, no systematic and automated solution exists to 

address it. IUM can be manually identified by experts using medication appropriateness criteria 

(MAC). 

In this research I first conducted a review of approaches used to identify IUM and reduce IUM. 

Next, I developed a conceptual model for representing the MAC, and then developed a tool and a 

workflow for translating the MAC into structured form. Because indications are an important 

component of the MAC, I conducted a critical appraisal of existing knowledge sources that can 

be used to that end, namely the medication-indication knowledge-bases. Finally, I demonstrated 

how these structured MAC can be used to identify patients who are potentially subject to IUM 

and evaluated the accuracy of this approach. 

This research identifies the knowledge gaps and technological challenges in identifying and 

reducing IUM and addresses some of these gaps through the creation of a representation for 

MAC, a repository of structured MAC, and a set of tools that can assist in evaluating the impact 

of interventions aimed to reduce IUM or assess its downstream effects. This research also 

discusses the limitations of existing methods for executing computable decision support rules 

and proposes solutions needed to enhance these methods so they can support implementation of 

the MAC.
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Chapter 1: Introduction and significance 

Inappropriate use of medications (IUM) is a serious issue of global concern. It has been reported 

in studies conducted in different countries such as Germany, United Kingdom (UK), Italy, 

Lebanon and the United States (US).1–5 IUM not only leads to a waste of healthcare resources, 

but also potentially harms the patients due to inadvertent side effects.6–8 

IUM is part of the general problem commonly known as unnecessary care or overuse. 

Unnecessary care is a well-known problem; it is estimated that in one in every three dollars spent 

on healthcare in the US is excess cost, and that approximately one-fourth of this excess cost is 

due to unnecessary care.9 However, the scope of IUM is not well understood. Previous studies 

have shown that several groups of medications are frequently subject to inappropriate use 

including antibiotics, antidepressants, antipsychotics, bronchodilators, cyclooxygenase-2 (COX-

2) inhibitors, non-steroidal anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPIs), 

and statins.10–14 Numerous studies have aimed to develop methods for identifying and reducing 

IUM, with the focus of their intervention spanning from healthcare professionals and patients, to 

financial, organizational, and regulatory approaches. However, many of these approaches rely on 

manual interventions and are difficult to automate. The problem of IUM is still considered 

understudied.15 

Identifying IUM depends on extracting certain information about the patient, the medication, and 

other treatments, and comparing them with guidelines that defines appropriate use; these 

reference standards are usually called “appropriateness criteria”.16 Traditionally, manual 

processes are used to extract the required information and compare them against the 

appropriateness criteria. However, the advent of informatics and the increased adoption of 
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electronic health record (EHR) systems provide an exceptional opportunity to automate these 

processes. 

Reducing IUM often involves some form of feedback to the providers. EHR systems can 

facilitate these types of interventions, for example through computerized decision support (CDS) 

via the computerized provider order entry (CPOE) component of the EHR. Currently, studies 

related to automated methods for identifying and reducing IUM through automated methods are 

scarce. 

In this thesis, I aimed to develop a framework for automated identification and reduction of 

IUM. This included developing methods for defining and quantifying IUM, formally 

representing them, and deploying them into a computable form. 

Root Causes of IUM 

The most common reasons for overtreatment at the level of provider include peer pressure, 

outdated knowledge (old habits), lack of expertise, education in tertiary centers and defensive 

medicine.17,18 Providers are also more likely to overuse diagnostic and therapeutic resources 

when they are more accessible to them.19 Additionally, lack of price transparency hinders both 

providers’ and patients’ perception of the true cost of care.20 Patients also play a significant role 

in the problem of medication overuse. Patient demand is considered a significant drive for 

unnecessary care.17,18 Previous studies have shown that patients equate more testing and 

treatment with better care,21 and providers believe patients are more likely to switch providers if 

they do not receive the care they want.18 

At the policy level, the fee-for-service payment model has been blamed for incentivizing 

providers to perform more unnecessary procedures, thereby contributing to the overuse 
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problem.22 Although this may not directly drive medication overuse (typically providers are not 

paid more if they prescribe more), it may still nurture a culture of overuse. Shapiro et al name 

various financial approaches to counteract this cultural effect, such as expenditure caps and 

global budgeting for hospitals.22 The effect of payment model on medication overuse is 

understudied, and previous studies with a broad focus on all types of overuse (including 

medications, diagnostics, etc.) have equivocal conclusions: some authors believe reducing 

overuse should be achieved through changing policies governing healthcare expenditure,23 while 

others argue the reduction of overuse is a prerequisite for – and not a result of – changes in 

policy,24 and that payment reform alone may not lead to significant improvements in healthcare 

expenditure.25 A recent systematic review of literature also identified studies that showed the rate 

of use of antibiotics was higher in managed care settings compared to the fee-for-service 

sector.26 Finally, policies regarding direct-to-consumer advertising of prescription drugs are also 

considered to have an influence on overuse of prescription medications.18 However, medication 

overuse is not exclusively controlled by policies and regulations. As an example, the rate at 

which proton pump inhibitors (PPIs) are overused is similar in the US, UK, Italy and Lebanon 2–5 

while these countries have different payment models and regulations regarding direct-to-

consumer advertisements. 

Appropriateness Criteria 

In the medical domain, the most common approach used for identifying IUM is via the 

application of “medication appropriateness criteria”. Appropriateness criteria are not unique to 

medications, and similar criteria also exist for assessing the appropriate use of other medical 

services, such as radiology tests,27 and other diagnostic procedures.28 
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Appropriateness criteria are developed using expert consensus and through review of literature.29 

These criteria are only available in free-text form, and, as shown later in this thesis, they 

commonly contain phrases that are context-dependent or vague, thereby allowing for differences 

in the interpretation of the criteria, which can lead to inconsistent application of the criteria. 

These factors limit the application of appropriateness criteria for automated identification of 

IUM. Additionally, even when used manually, the criteria can only identify those uses of 

medication that are potentially inappropriate; therefore, authors frequently used the phrase 

potentially inappropriate medications (PIMs) to describe IUM. 

Outline of Aims 

This thesis consists of four aims, as depicted in Figure 1. First, knowledge gaps are identified 

(Aim I, Chapter 2). Next, the most prominent knowledge gap is addressed (in Aim II, Chapter 3) 

by creating a structured representation for medication appropriateness criteria (MAC) and a 

workflow is created and evaluated for translating narrative MAC into computable form (Aim III, 

Chapter 4). Last, structured MAC are deployed using EHR data, and challenges in scaling this 

process using existing tools for automated implementation of guidelines and decision support 

systems are discussed (Aim IV, Chapter 5). 

In the next pages, the specific aims are described in more detail. Studies that address each aim 

are described in Chapters 2 to 5. 
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Figure 1 – Overview of the aims. 

Aim I: Identify the methods used for detecting and reducing IUM 

Objective: Identify the most commonly used methods for detecting IUM and the interventions 

that aim to reduce IUM. 

Research Questions: 

 What categories of IUM exist? 

 What methods are used to identify IUM? 

 What interventions are used to reduce IUM? 

 What are the current challenges in developing automated solutions for detecting and 

reducing IUM? 

Methods: 

The primary methodology of this aim was a systematic review of the literature. The reviewer 

focused on peer-reviewed articles describing original research that included (a) identifying IUM 
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and (b) interventions aimed to reduce IUM. A two stage process was used to identify articles. 

First, a search was performed in PubMed using appropriate keywords and relevant MeSH 

headings. This search produced a large number of results, which were then narrowed down to 

relevant articles by manual review. Other systematic reviews in this field were held out, so that 

their categorization of methods would not affect our results. Next, the methods used for 

identification and/or reduction of IUM were extracted from each original article. Finally, these 

methods were aggregated using thematic analysis through grounded theory, and the final 

classification was compared with other pertinent systematic reviews that were found in the 

original query, to ensure the completeness of the classification. 

Primary Findings: 

Three major categories of IUM were described in the literature: inappropriate by indication, 

inappropriate by population, and inappropriate by route/strength/frequency. Almost all studies 

used some form of “appropriateness criteria” for identifying IUM. These criteria could be 

implicit (i.e. a clinician would be asked to provide their personal judgment on appropriateness of 

the use of certain medication for a certain patient) or explicit (i.e. objective criteria were 

provided using which decision on appropriateness was made. The most commonly used form of 

implicit criteria is the Medication Appropriateness Index (MAI).30 Explicit criteria vary for 

different medications, and for some groups of medications multiple appropriateness criteria were 

found which at times were not completely congruent. The most well-known explicit criteria are 

those that target IUM in the elderly. They include the Beer’s criteria,31 and the screening tool of 

older person’s prescriptions (STOPP).32 

Thematic analysis showed that there are five types of interventions that are commonly used to 

reduce IUM. These include feedback to providers (which include academic detailing), provider 
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profiling, enforcing appropriate use guidelines, indication-based prescribing, and education 

approaches. 

The findings from literature review indicate that because the majority of the methods used for 

identifying IUM either partially or entirely rely on manual processes, automation of this process 

is not feasible unless objective appropriateness criteria are encoded into structured form. In 

contrast, some of the methods used for reducing IUM, e.g. indication-based prescribing, 

feedback to providers, and enforcement of guidelines have automated counterparts that are either 

currently in use in the modern EHR systems or at least theoretically feasible. The results of 

implementing these approaches for reducing IUM in an automated fashion, however, have been 

variable and not always successful. This could be in part due to the inaccuracy and lack of 

standardization of existing automated methods for identifying IUM. 

Aim II: Developing a conceptual model for medication appropriateness 

criteria (MAC) 

Objective: Develop a conceptual model for structured representation of medication 

appropriateness criteria (MAC). 

Hypothesis: A conceptual model can be developed that can represent the majority of existing 

MAC in a computable form. 

Research Questions: 

 What are the essential concepts that comprise the MAC? 

 What proportion of concepts that appear in the MAC can be represented using 

standardized objective medical concepts? 
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 What proportion of concepts that appear in the MAC is not explicitly defined (NED)? 

 Can an anonymous, iterative approach assist the experts with reaching consensus on the 

breakdown of concepts identified in the MAC? 

Methods: 

Aim II relied upon a qualitative approach in order to develop an understanding of what concepts 

comprise the MAC, as well as an assessment of existing knowledge-bases (KBs) that are used to 

represent the appropriate indications for medications. 

The analysis of existing KBs was again based on a systematic review of literature, and a critical 

appraisal of the KBs. PubMed was searched using suitable keywords to identify all studies in 

which a KB for medication indications was developed. The inclusion criteria was restricted to 

those articles that were describing a freely available resource. The methods used to develop each 

KB was qualitatively analyzed and thematically grouped. Using a survey, a group of domain 

experts (clinicians and pharmacists) were asked to identify examples of “challenging” 

indications, and the results were combined to create an assessment tool that was used to evaluate 

the KBs. Additionally, the coverage of, and overlap between various KBs was visualized using 

descriptive statistics and graphical visualizations, respectively. 

In another study, a randomly selected series of 40 MAC were analyzed manually by this author 

to identify the elements that comprise these MAC. These elements were then classified into the 

minimum sufficient number of categories to include them all, and relationships between these 

classes were defined. The entire conceptual model was then represented as a frame-based model, 

using Protégé, and was called Objective Medication Appropriateness Criteria (OMAC). This 

process is also described schematically in Figure 2. Next, an independent group of experts 
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evaluated a held-out set of MAC and identified the elements in a similar fashion. This data was 

used to evaluate OMAC for its completeness and accuracy. Then the conceptual model was 

qualitatively evaluated to assess whether all the elements identified by independent experts were 

included in the representation.  

Primary Findings: 

Seven publicly available medication-indication KBs were found that contained structured 

information regarding medications and their indications. There was a large amount of non-

overlap between existing medication-indication KBs. Furthermore, these KBs were limited 

because of lack of normalization of indication concepts into a structured form, lack of 

specification for preventive versus therapeutic indications, lack of information regarding 

appropriate dose forms and dosages of medication, lack of information regarding 

contraindications or the primary choice of therapy, lack of information regarding co-medications, 

or issues of granularity in the definition of indications. 

We also demonstrated that even though experts may have had internal disagreements in how they 

Figure 2 – Developing a formal representation for medical appropriateness criteria. 
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identified the concepts comprising the MAC, these disagreements could be resolved using an 

anonymous, iterative consensus-building process, and in our experience only two iterations were 

enough to reach consensus using this approach. 

OMAC, provided a conceptual framework that allowed representing all of the elements of MAC, 

as long as these concepts were objectively defined. Several instances of MAC were found where 

an ambiguous or context-dependent term was used; this signifies the need for a “translation” 

stage in which the MAC are first reviewed by the experts and all the necessary disambiguations 

are performed. The latter step leads to Aim III below. 

Aim III: Translating MAC into computable form 

Objective: Developing and demonstrating a workflow for translating MAC into computable 

form, including a process for substituting vague or context-dependent terms with explicit 

definitions. 

Hypothesis: Annotation of MAC into computable form can be facilitated using pre-annotation of 

the MAC through an automated process. 

Hypothesis: It is possible to develop a tool for domain experts to elicit objective and computable 

definitions for NED concepts in the MAC. 

Research Questions: 

 What proportion of concepts that appear in MAC can be represented using existing 

biomedical terminologies? 

 Can experts substitute all NED concepts that appear in MAC with explicit definitions 

based on concepts in existing terminologies? 
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 Can experts reach agreement in substituting NED concepts with explicit definitions using 

an anonymous, iterative consensus forming process? 

Methods: 

We aimed to create a workflow that would allow translating a large body of MAC into 

computable form, and demonstrate its usability in a lab study. This was achieved in multiple 

steps. First, we developed a workflow for anonymous, collaborate disambiguation of the MAC 

by experts. The workflow was based on the Delphi approach,33 and was originally implemented 

in form of an electronic survey tool. We used a randomly selected sample of existing MAC 

which spanned different medications, and asked a group of experts to disambiguate the concepts 

to the point that every concepts was a well-defined (objective) entity, such as a disease, a 

medication, a clinical metrics, a number, etc. We then qualitatively analyzed this process to 

identify the amount of time necessary for the experts to reach consensus, the areas in which 

consensus was easier or harder to achieve, and the proportion of concepts in the MAC that 

needed disambiguation. Using these findings, we then designed a prototype tool that aimed to 

facilitate the process of translating MAC into computable form, with the help of an interactive 

web-based tool. This tool, called MAC Annotator, uses on-the-fly natural language processing 

(NLP) capabilities of an online biomedical text annotation service, namely the NCBO Annotator, 

and facilitates the process of normalizing the concepts to those found in existing biomedical 

terminologies. Finally, we assessed the usability of this prototype by asking a group of experts to 

utilize it to disambiguate another held-out set of MAC and assessed various metrics such as 

inter-annotator agreement, and time needed to complete each task. 

Primary Findings: 



12 

 

We identified that many concepts found in MAC are already in an objective form and do not 

require disambiguation. However, MAC commonly contain context-dependent terms (such as 

“monotherapy”, “uncomplicated” or “long-term”) which require the use of external knowledge to 

be translated into a set of objective concepts that could be represented in OMAC. Additionally, 

certain concepts in the MAC which are supersets or subsets of concepts in existing terminologies 

may not be directly found in any terminology, indicating that issues of granularity with existing 

biomedical terminologies may prevent accurate representation of some of the MAC in structured 

form. Using the MAC Annotator, we noticed a high degree of agreement between annotators; 

this was also observed in the preceding study which used a survey tool, and we also showed that 

using only two iterations the experts could reach consensus about disambiguating the vague or 

context-dependent concepts. The average time spent for annotating the MAC, including all 

automated annotations that were suggested by the tool, was only a few minutes.  

Aim IV: Deploying structured MAC using EHR data 

Objective: Demonstrate the feasibility of implementing structured MAC by applying it to EHR 

data, and identify the associated challenges. 

Hypothesis: Once converted into structured form, the MAC can be applied to EHR data to 

identify patients who are potentially subject to IUM, with accuracy comparable to manual 

review. 

Research Questions: 

 Is it possible to identify IUM using structured MAC and data from the EHR with an 

accuracy comparable to the manual review of medical records and manual application of 

the MAC? 
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 What challenges exist in deploying the structured MAC and applying it to clinical data 

that is stored in the EHR? 

 Can the implementation of MAC be scaled using existing methods for automated 

guidelines or clinical decision support rules? 

Methods: 

In this aim, we first conducted a proof-of-concept study in which we demonstrated that it is 

possible to identify IUM in an automated way using structured MAC, in comparison to manual 

application of the same criteria through manual chart review by the experts. Next, we posited 

that the MAC can be viewed as a special form of clinical guidelines or decision support rules. 

Therefore, we assessed whether the deployment of MAC can be scaled using existing 

methodologies that are used for automated implementation of clinical guidelines and decision 

support rules. Specifically, we assessed whether MAC can be readily represented as guidelines 

using the Guideline Interchange Format (GLIF), and whether it can be readily represented using 

the free tools that are developed by the OpenCDS project. This involved a review of the internal 

structure of GLIF and OpenCDS along with their execution engines, and a comparison of their 

data models with what is necessary for structured representation of MAC. The latter studies were 

descriptive only, and the analyses were qualitative. 

Primary Findings: 

The proof-of-concept study showed that it is possible to identify IUM, at least for one specific 

test case, with a very high sensitivity and specificity, when using manual review as the gold 

standard. The manual review process was time-intensive, while the automated solution was 

feasible within a fraction of a second. However, this study also showed two challenges in 
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automated implementation of MAC. First, a notable amount of information that is needed to 

implement the MAC comes from unstructured data. In our case, because we used a state-of-the-

art NLP solution, this data was available to the automated solution, but this may not always be 

the case; for instance, social factors or other clinical factors that are not captured by NLP or are 

not documented at all may not be apparent to the automated solution, resulting in false positives 

or negatives. Second, manual reviewers occasionally used rules outside the original MAC to 

determine appropriateness. In other words, manual reviewers had a tendency to use “implicit” 

criteria in addition to explicit criteria to determine the appropriateness of medications, and 

because these implicit criteria were not available to the automated system, the results were not 

ideal. 

Finally, our analysis of GLIF and OpenCDS showed that both of these models use high-level 

approaches for representing the guideline and CDS rules. None of them had built-in support at 

the level of granularity that is needed to represent the MAC in structured form, indicating the 

need for at least two additional layers of abstraction before MAC can be implemented using 

either GLIF or OpenCDS. One layer of abstraction would be necessary to specify the necessary 

elements of MAC in a structured form; this may involve specifying a data model, developing 

validation methods to ensure the compliance of input data with the expected format, etc. A 

second layer of abstraction would also be needed to translate the clinical data form EHR into the 

specific format that each of these tools can accept as input. The latter may involve mapping 

between terminologies, use of natural language processing, use of phenotyping algorithms, and 

so on, and is outside the scope of this thesis. 
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Significance and Contributions 

Although the issue of IUM has been studied for decades and a few automated methods for 

reducing IUM have been developed, research on automated methods for identifying and reducing 

IUM remains scarce. Additionally, existing appropriateness criteria are usually difficult to 

automate. Finally, electronic methods that have been used to mitigate IUM are mainly 

interruptive and hard to generalize, and their scope is limited to specific types of IUM such as 

drug-drug interaction. The significance of this thesis is that it identifies two main sources of 

information that are necessary for computable applications targeting IUM (namely, medication 

appropriateness criteria and the medication-indication knowledge-bases), provides a formal 

representation for MAC, provides a critical appraisal tool for assessing medication-indication 

KBs, enables dissemination of a large number of computable criteria for identifying IUM, and 

should lead to improved medication safety and health care via incorporation into an EHR system. 

The biggest contribution of this investigation is the development of a computable framework for 

representing and implementing well-defined appropriateness criteria that can be incorporated 

into a clinical decision support system. In this thesis, the framework will be applied only to 

medication appropriateness criteria but the framework is general and could be applicable to other 

appropriateness criteria as well. Specific contributions include: (1) a conceptual model for 

defining explicit appropriateness criteria for medications, (2) a tool that facilitates translation of 

narrative MAC into structured form with the help of experts, (3) computable appropriateness 

criteria for different medications that are frequently overused, and (4) a tool within the EHR 

system that provides decision support about appropriateness of medications and facilitates 

pharmacist-mediated detailing. This investigation will also provide scientific evidence about the 

usability and efficacy of this tool in a controlled environment. 
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Limitations 

The scope of the current work is only limited to those medications for which MAC exists. While 

the approaches are designed to be generalizable, other forms of MAC that are developed in the 

future may require modifications in the representation, and may affect the process for the 

translation and localization steps, that are unforeseeable at the moment. 

Another limitation of the current work is that although it provides a framework for converting 

the MAC into structured form, it does not provide a repository of executable MAC. This can be 

addressed in future work, where the MAC is translated into executable cohort definitions that are 

encoded using a standard clinical database format such as that developed by the Observational 

Health Data Science and Informatics (OHDSI).34 
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Chapter 2: Methods used to identify and reduce IUM 

Background 

The first logical step in addressing the problem of IUM using automated solutions is to identify 

the existing methods that are used, whether manually or in automated form, to identify and 

reduce IUM. Our aim is to avoid reinventing existing solutions and to identify the knowledge 

gaps that need to be addressed. 

In this chapter, the current state of knowledge about identifying and reducing IUM is described 

using a rapid review approach. This chapter describes the current state of the art and concludes 

with recognizing the existing knowledge gaps in this domain. This serves as the cornerstone of 

the subsequent chapters, justifying their significance and explaining the choice of methods and 

material at the high level. 
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Study 1: Methods used to identify and reduce IUM 

Introduction 

As stated in Chapter 1, IUM is a global problem leading to unnecessary cost and harm to the 

patients and the health care system as a whole. With the wide adoption of EHR systems and as 

electronic health care data is becoming available, it is desirable to address the problem of IUM 

using automated solutions. The first step in developing automated solutions for identifying and 

reducing IUM using EHR data is to review the domain literature to identify previous work on 

these methods, including both manual and automated efforts that have been previously 

conducted. In this review, we identified and summarized the relevant published studies. By the 

end of this chapter, the reader should be familiarized with various types of approaches that have 

been used to identify and reduce IUM.  

This review summarizes existing approaches used to identify and reduce medication overuse, 

and intends to provide directions about the potential role of informatics in tackling this problem. 

Methods 

We conducted a rapid review of the literature during December 2012 and January 2013. A rapid 

review is defined as a “streamlined approach to synthesizing evidence in a timely manner”.35 

Rapid reviews exercise slightly different approaches compared to traditional systematic reviews 

(such as limiting search strategies or record screening processes) to produce overviews of 

evidence in shorter time frames.  

PubMed was searched through the end of 2013 to identify existing studies in the literature that 

discuss methods used for identifying or reducing IUM. The following search strategy was used: 

"Inappropriate Prescribing"[Mesh] OR overuse?[tiab] OR overtreat*[tiab] OR overutiliz*[tiab] 
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OR overutilis*[tiab] OR "utili?ation review"[tiab] OR "utilization review"[MeSH Terms]. We 

limited the scope of this review to original studies for which an English abstract and full text 

were available. 

We reviewed the titles and abstracts of the retrieved results, identified potentially relevant studies 

and obtained their full texts. Subsequently, relevant studies were identified by reviewing the full 

texts, and a six-phase thematic analysis approach was used to summarize these studies.36 The 

first phase of the thematic analysis focused on becoming familiar with the data and organizing 

the results into summaries. In the second phase, each article was assigned one or more codes 

based on its emerging theme; examples of these themes included ‘medication appropriateness 

index’, ‘academic detailing’, ‘physician auditing’ and ‘physician profiling’. In the third phase, 

subsequent queries were executed on PubMed using new keywords learned from the previous 

phase to identify any additional studies about the same themes and identify the overlaps between 

the themes. In the fourth phase, the themes were reviewed and those that were very closely 

related were combined (e.g. ‘physician auditing’ was combined into ‘physician profiling’). In the 

last two phases, the remaining themes were labeled and a definitions were provided. 

All review articles and editorials were excluded from the thematic analysis, to ensure that our 

thematic analysis would not be influenced by that of other researchers. After the thematic 

analysis was completed, a comparison was made between themes emerging from the current 

study and those mentioned in other review articles in this field. This allowed evaluating the 

completeness of this review, and also allowed for exploring changes in the trending topics over 

time. 
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Results 

Our search in PubMed generated 10718 citations, which were screened thoroughly by the first 

author to identify potentially relevant studies. Out of 1564 studies that were marked as possibly 

relevant, 181 original studies were included in the final review. After thematic analysis, two 

classifications were found for methods used in identifying IUM, and six major themes emerged 

among methods used to reduce IUM, as described below. 

Identifying IUM 

Identifying IUM is rarely a trivial task. In its simplest form, it involves ascertaining that a 

medication was utilized, identifying the reason for its utilization, and appraising whether the 

reason is appropriate. Most medications have more than one appropriate use (indication). For 

instance, proton pump inhibitors (PPIs) have numerous possible appropriate uses such as ‘stress 

ulcer prevention’, treatment of ‘gastrointestinal bleeding’, or as therapy for ‘Barrett syndrome’.37 

In addition, identifying IUM is more difficult when factors such as disease severity or the clinical 

context play a role in the appropriateness of therapy. For instance, ascertaining a diagnosis of 

“depression” may not be enough to ensure appropriate use of antidepressants, as their benefit is 

questionable in those with only mild or moderate depression.38 Similarly, other contextual 

information such as age, comorbidities, coexisting symptoms, frequency and dose of medication, 

route of administration, etc. can also contribute to the identification of IUM. In fact, patient age 

is very commonly listed as a criterion in tools focused on inappropriateness and several 

guidelines have been developed that specifically focus on the appropriate use of medication in 

the elderly.32,39,40 
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Methods used for identifying IUM may either focus on “inappropriateness” of the medication 

use – i.e. they would specify conditions in which the medication should be avoided, e.g. the 

Beer’s criteria31 – or on “appropriateness” of the medication use – i.e. listing all conditions in 

which its use is justified, e.g. the criteria by Ahrens et al on the use of PPIs41 – or would include 

items about both appropriate and inappropriate use of medications, e.g. the works of Oborne et 

al.40,42 

Figure 3 – The Medication Appropriateness Index (MAI).  
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Our thematic analysis showed that the major approaches in identifying IUM can be categorized 

with respect to two characteristics: focus, and formalism. Focus is based on the number of 

medications and types of populations that are targeted. For instance, Beers criteria consists of 

several items each focusing on conditions in which certain medications should be avoided in the 

elderly (inappropriate use), 39 while Ahrens et al provide a list of indications in which the use of 

PPIs is appropriate, therefore identifying overuse of PPIs by exclusion.41 The former focuses on 

a specific patient population and includes a large list of medications, while the latter doesn’t 

focus on any specific population but includes only one class of medications.  

Formalism can be described as a spectrum ranging from implicit to explicit. Implicit criteria are 

frequently used for manual chart review where a subjective judgment call is made by an expert 

about the appropriateness of the medication use. The most well-known example of implicit 

criteria is the Medication Appropriateness Index (MAI), a tool that was developed to help the 

clinicians in identifying IUM.30 MAI consists of 10 questions, each focusing on a different aspect 

of the appropriateness of medications (e.g. indication, effectiveness, dose, route, etc. as shown in 

Figure 3). Experts respond to each question based on their own judgment, and the tool does not 

specify which indications, doses, routes, etc. are acceptable or unacceptable for each medication. 

Explicit criteria more objectively specify the conditions that need to be met before the decision 

about appropriateness can be made. Each explicit criterion can contain specifications for the 

medication, the indications or contraindications, and other contextual information that affect the 

decision on appropriateness of the medication. Collections of explicit criteria for identifying 

IUM have been developed and verified by different groups of researchers, and examples include 

the Assessing Care Of the Vulnerable Elder (ACOVE) project, the Beer’s criteria, the Screening 

Tool of Older Person’s Prescriptions (STOPP), and the algorithms developed by C. Alice Oborne 
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and her colleauges.32,39,42,43 A listing of all explicit criteria for medication use that were found in 

this review is provided in Appendix 1. 

Previous studies have suggested that although implicit criteria are simpler to develop, their 

results are harder to reproduce, and may suffer from lower validity or reliability. Explicit criteria 

provide higher validity and reproducibility, but they are difficult to develop and are not readily 

available for many cases.44,45 

Reducing IUM 

Methods that have been employed to reduce IUM span from focusing on healthcare professionals 

and patients, to financial, organizational, and regulatory changes. After the thematic analysis 

reached saturation, six major categories were identified. Figure 4 shows how these themes align 

with the classifications found in previously published review articles in this field. It is notable 

that the use of informatics methods is described as a separate method in the newer review 

articles. In the following subsections, we describe each theme separately and provide a 

qualitative summary of the studies associated with that theme. 

Feedback to Providers 

The promise of this approach is to discourage IUM by providing feedback to the prescribing 

providers about the prescriptions that they make. Two main forms of feedback are generally 

used: passive feedback occurs when the feedback is not at the point of care (e.g. mailed 

feedback) or general feedback is provided about IUM (i.e. feedback is not specific to a particular 

prescription or medication), while active feedback occurs when feedback is specific and takes 

place at the time of care (e.g. face-to-face or through a phone call). 
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While passive feedback was effective in reducing overuse in some studies46–50 in other studies 

such impact was either not observed or was only short-term.51–55 In contrast, studies that used 

active feedback almost always resulted in improvements of outcomes.56–66 It should be noted, 

however, that many of these studies also used some of the subsequently described approaches 

(e.g. appropriate use guideline, etc.) to generate the feedback, so their effect may be a results of 

the bundled approach rather than just the use of active feedback.56–58,61,62,67 

Provider Profiling 

Also called physician profiling or physician audit, this method is focused on developing (usually 

graphical) profiles of the utilization of a certain resource by a certain provider, and comparing 

each provider with a predefined norm. The promise of this approach is that providers that are 

utilizing the resource more than the expected norm may be likely to change their behavior given 

this knowledge. These profiles are typically used as part of feedback to the providers.18,67,68 The 

effect of profiling has also been studied in combination with other methods such as provider 

education69,70 or appropriate use guidelines71,72 as well. While the majority of these studies 

reported a positive impact, one of the earliest studies signified that the effectiveness of this 

approach highly depends on obtained the providers’ “buy in”.73 

Figure 4 – Methods used to reduce IUM. 
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This approach is associated with two challenges. The first challenge is to define the norm with 

which providers are compared. This norm may differ among various disciplines (e.g. the norm 

for prescribing contraceptives by a cardiologist differs format that of a family physician), as well 

as within disciplines (e.g. the norm for prescribing contraceptives in a family physician focused 

on outpatient care differs from that of a similar physician focused on acute care). In most cases, 

such norms are not previously defined, and deriving them from past data is subject to various 

types of bias. Most of the existing studies define this norm using process outcomes such as total 

number of prescription69,70,74 or cost of care.17 This results in a second challenge: provider 

profiling promotes reduction in the overall utilization of a resource, and does not necessarily 

focus on inappropriate utilization alone. Therefore, this approach may reduce the quality of care 

if appropriate uses are inadvertently discouraged. 

Appropriate Use Guidelines 

Appropriate use guidelines are the most organized form of explicit criteria for identifying IUM. 

Several studies have utilized these guidelines, in combination with other approaches, to enforce 

appropriate use of medications. While earlier studies suggested that enforcing guidelines alone 

may not provide enough incentives for providers to change their behavior,75 subsequent studies 

that combined guidelines with various methods of feedback 56,57,59,60,64 and provider profiling 

22,71,72 unanimously showed a positive impact. 

The biggest challenge for this approach is that evidence-based appropriate use guidelines (and 

explicit criteria, as a whole) are only available for certain medication and patient populations, 

therefore the results of existing studies may not be generalizable. Additionally, these studies 

relied on manual implementation of the guidelines which is resource-intensive, and the cost-

benefit tradeoff was never studied. 
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Indication-based Prescribing 

The promise of this approach is that by requiring the providers to include an appropriate reason 

(indication) for each medication order at the time of prescription, unnecessary prescriptions will 

be discouraged and reduced. This method, which is usually implemented within the order form 

or the computerized provider order entry (CPOE) system, has been associated with mixed 

results. While some studies show this approach can capture the ‘indications’ with high accuracy 

and therefore reduce IUM,76,77 others have shown lower accuracy in capturing indications and no 

impact on IUM.78–81 

Although this approach may be less difficult to automate in CPOE systems, there are major 

challenges in its implementation. First, using mandatory indication fields can transform the 

problem into one of ‘over-diagnosis’; in other words, providers are more likely to complete the 

indication field inaccurately, to bypass the obtrusive mechanism that prevents ordering without a 

suitable indication. This is reflected by the low accuracy of the indications provided by 

prescribers when compared to a manual chart review.80 Using unobtrusive methods of collecting 

indications at the time of prescription avoids the previous problem but may hinder the possibility 

of accurately identifying IUM, especially when the indication data is not available in a 

computable form. Off-label use of medications introduces major challenges in using indication-

based prescribing as well. Off-label use often includes using a drug for a condition that is not 

among its approved indications, and while this can constitute appropriate use (based on the trade-

off of harms and benefits for the particular patient), using a hard-coded list of indications may 

lead to identifying off-label use as a form of inappropriate use (or conversely, considering a large 

list of off-label indications as acceptable indications may lead to low sensitivity in identifying 
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IUM). Due to these challenges and the scarcity of robust controlled studies, the effect of 

indication-based prescribing (particularly using unobtrusive approaches) is not known. 

Provider Education 

Numerous studies have evaluated the effect of educating providers on reducing IUM. Multiple 

mediums have been used for education (e.g. mail-in fliers, lectures during rounds, seminars, etc.) 

and some studies also evaluated multi-faceted approaches, for example by combining education 

with feedback regarding providers’ past prescriptions, profiling, and enforcement of guidelines. 

Many studies used the term academic detailing, to describe the educational outreach for the 

purpose of improving decision making regarding appropriate use of medications.82 

Overall, the majority of these studies reported a reduction in IUM after provider 

eduation.13,58,61,69,70,83–88 One study also showed that adding provider education (in the form of 

either a seminar or academic detailing sessions) to other interventions, namely audit and 

feedback, resulted in a significantly larger and more sustainable reduction in IUM.85 

Nevertheless, there are very few studies that compare different education approaches or make 

recommendations about the choice of education medium. 

Informatics Solutions 

Automated solutions have been tried to varying degrees in studies aimed at reducing IUM. Some 

of the aforementioned approaches have been implemented in CPOE systems (examples 

indication-based prescribing, and provider feedback in the form of electronic alerts), and other 

methods rely on the data obtained from EHR systems (e.g. provider profiling using EHR log 

data).89–98 Assuming that drug-drug interactions (DDI) can also be considered a predisposing 

factor for IUM (specifically, making a medication “inappropriate by population”), decision 
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support systems focused on DDI can also be considered as informatics solutions for a specific 

subset of IUM. Literature in DDI checking by clinical decision support is relatively rich, but 

many studies have shown that the majority of DDI decision support that is delivered as electronic 

alerts is overridden by the clinicians, the override rate can be as high as 90%,99,100 and the 

majority of these overrides were found to be appropriate.101 Various reasons for the high override 

rate has been proposed (including high false positive rate of the alerts, issues with delivery of the 

information, etc.) and recommendations have been made on how to improve DDI alerts and 

mitigate these issues.102 It should be noted that the majority of existing literature does not 

consider DDI a form of IUM. 

We did not identify any study that compared automated approaches with non-automated 

alternatives. On the other hand, electronic feedback to the providers, for example through 

mandatory indication fields or alerts, can potentially lead to alert fatigue.103 Additionally, relying 

on EHR data for automated identification of IUM can introduce challenges with the availability 

and accuracy of the data, a challenge that is well-known in clinical informatics.104,105 

Discussion 

There are many factors that contribute to the problem of IUM, and as a result, identifying and 

reducing overuse requires multiple initiatives. This review indicates the lack of a generic method 

for defining, identifying and measuring IUM, and scarcity of knowledge on how to model IUM 

in a computable form. 

We identified two general types of approaches to identifying IUM. The implicit approach cannot 

be automated because it relies on the judgement of an expert. Explicit solutions have the 

potential for automation, however structured versions of these criteria are not available to the 
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public. This review signified that further research is needed to develop a central repository of the 

explicit criteria, both in narrative and in structured form. Ideally, all components of the MAC 

should be described using standardized nomenclature. 

We identified six major themes in methods used to reduce IUM. The themes identified in this 

review align well with those identified by previous published reviews on related topics. Use of 

informatics solutions is a relatively emerging theme and has been noted in two of the more recent 

reviews in this domain as well. While each of the six methods used to reduce IUM have been 

associated with varying levels of success, overall the evidence suggests that bundled approaches 

involving more than one methods are associated with higher levels of success. 

For some of the methods described above, robust, controlled studies that would directly evaluate 

the outcomes or compare different approaches are scarce or do not exist. Consequently, it is 

difficult to draw generalizable conclusions about the factors that lead to success or failure of 

each approach. Moreover, the studied outcome in many of the existing studies constitutes only 

process measures such as rate of prescription or cost of care, and studies targeting patient 

outcomes and quality of care are needed. 

Limitations 

This study is not without limitations. We used a rapid review methodology, i.e. the search scope 

was limited to PubMed and excluded studies that were not in English; therefore, we 

acknowledge the possibility of publication and language bias. However, the results of our 

thematic analysis are in alignment with previous published reviews, some of which are 

systematic reviews; this suggests that the potential for those biases was minimal. 
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Appendix 1 

In this appendix, a listing of all explicit medication appropriateness criteria that were found in 

the review of literature is provided.  

Citation Number of criteria Medication Population 

Ahrens et al 41 21 PPIs All 

Beers Criteria 106 57 Many Elderly 

Bashford et al 81 9 PPIs All 

Batty et al 107 1 Benzodiazepines All 

Batuwitage et al 108 6 PPIs All 

Bez et al 109 23 PPIs All 

Choudhry et al 110 13 PPIs All 

Craig et al 2 1 PPIs All 

Eid et al 5 19 PPIs All 

Elliott et al 59 1 Antithrombotic Drugs All 

Issa et al 4 8 PPIs All 

Khalili et al 86 14 PPIs All 

Larson et al 111 17 Vancomycin All 

Oborne et al 107 1 ACE Inhibitors Elderly 

Oborne et al 112 1 Neuroleptics Elderly 

Oborne et al 40 1 Amiodarone All 

Oborne et al 40 1 Aspirin All 

Oborne et al 40 1 Steroids All 

Parente et al 3 6 PPIs All 

Piallans et al 113 14 PPIs All 

Williams et al 114 2 NSAIDs, ESAs All 

START 115 22 Many Elderly 

STOPP 116 64 Many Elderly 
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Acronyms: 

ACE = Angiotensin Converting Enzyme 

ESAs = Erythropoiesis Stimulating Agents 

NSAIDs = Non-steroidal Anti-inflammatory Drugs 

PPIs = Proton Pump Inhibitors 

START = Screening Tool to Alert doctors to the Right Treatment 

STOPP = Screening Tool for Older Person’s Prescriptions 
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Conclusions 

Root causes of overuse are diverse, therefore diverse approaches have also been used to identify 

and reduce overuse. Studies combining multiple approaches are more frequently associated with 

successful outcomes. Nevertheless, more rigorous studies are needed to evaluate the impact of 

existing approaches, and a more objective representation of appropriate use is necessary. 
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Chapter 3: Developing a conceptual model for appropriateness 

criteria 

Background 

Inappropriate medication use can be broadly described by the following categories: (a) 

inappropriate for a specific clinical indication, or used in the absence of any appropriate 

indication, (b) inappropriate for clinical indication in a specific population, or (c) excessive 

duration or frequency, or excessively aggressive route of administration, given expected clinical 

benefit.16 

The first category describes the situation where the indication provided for the medication is not 

supported by scientific evidence; an example is the use of antibiotics for acute viral bronchitis.1 

The second category occurs when a medication that is appropriate for one population is used for 

another population (particularly a low-risk or high-risk population) in which case its harms 

outweigh its benefits; an example is the use of antidepressants in patients with only mild levels 

of depressive disorders.38,117 The last category describes the use of a medication in larger doses, 

for longer periods, or through more aggressive routes than necessary; examples include the use 

of intravenous medication when an oral counterpart can be used and has the same effectiveness,2 

or the use of antibiotics for longer periods than necessary.118 The first category is commonly 

titled “medication overuse”, while the last category is frequently referred to as “medication 

misuse”. 

It should be noted that these separate categories do not exist in isolation. For example, many 

patients who are subject to the overuse of PPIs, start receiving PPIs in the presence of an 

appropriate indication, but continue to receive the medication after that indication has been 
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resolved.41 While the problem of inappropriate use of PPIs is generally labeled as “overuse” 

because of the use of PPIs in the absence of an indication,5,10,119 it can also be described as 

excessive duration of the treatment. The most well-known definition for “overuse”, which is 

provided by the Institute of Medicine, avoids this problem by combining the three categories and 

defining overuse as any situation when “a health care service is provided under circumstances in 

which its potential for harm exceeds the possible benefit”.120 

Estimating the harm and benefit of prescribing a medication for an individual patient is a 

fundamental part of the practice of medicine. Spinewine et al emphasize that multiple values 

may need to be incorporated in this decision, including “scientific value, technical rationalism 

and the general good”.45 These abstract values are hard to quantify and typically require 

customization, rendering the decision about appropriateness complex. Evidence-based guidelines 

can assist the clinician in making an informed decision, but they are usually based on population 

averages, and need to be individualized for each patient.121 However, it is possible to identify the 

patients who are potentially at risk for IUM using the explicit criteria that define these at risk 

populations. Although these criteria only serve as guidelines and certain exceptions may exist, 

the ability to identify these at risk populations in an automated way is a crucial step in tackling 

the problem of IUM. 

One approach for identifying IUM is to identify patients who do not have any indications to 

receive a given medication. While we have shown that this approach can accurately identify 

overuse at least in the case of proton pump inhibitors,37 this approach is only scalable if complete 

knowledge-bases (KBs) for medication indications are available. The first study in this chapter 

evaluates the existing publication KBs for medication indications, while the second study 
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discusses forms of IUM which may not be captured only using medication-indication KBs and 

provides a conceptual framework for them. 

A conceptual model for appropriateness criteria should specify all the elements that are required 

to explain each of the different categories of IUM and the different concepts that are needed to 

quantify the appropriateness of medications. These concepts include but are not limited to: 

disease characteristics (which define the indications and their severity, as well as 

contraindications), patient characteristics (such as age and gender), concurrent medications 

(which provide the possibility for drug-drug interactions), characteristics of the treatment (such 

as its appropriate indications, and the definition of the intended population) and the dose, route 

and duration of medication use.  

Many of the published studies define and measure appropriateness of medications using implicit 

criteria, where the appropriateness is subjectively assessed by the expert reviewers.122,123 This 

impedes the possibility of designing an automated method for identifying IUM. Even in studies 

where explicit criteria are used to define appropriateness, these criteria usually do not include 

every detail about the criteria, as described above.5,28,60,124 In their review of the quantifiable 

metrics for measuring IUM, Chan et al conclude that the future of research on IUM relies on 

translating appropriateness criteria into measurable metrics.16 This further signifies the necessity 

of an objective representation for explicit appropriateness criteria.  
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Study 2: Medication-indication knowledge-bases: a review and critical 

appraisal 

Introduction 

With the wide adoption of electronic health records (EHR) there has been tremendous focus on 

developing automated solutions focused on the appropriate use of medications. Computerized 

clinical decision support (CDS) has been successfully used to prevent medication errors and 

adverse effects.125 Designing CDS solutions to promote appropriate medication use is faced by 

two challenges: to determine the reason for medication prescription, and to represent this 

information. Medications are prescribed to treat or prevent different signs, symptoms, diseases or 

conditions, which are collectively known as indications.126 While many indications are relatively 

simple to represent (e.g. insulin is indicated in patients with type I diabetes mellitus), some are 

more complex (e.g. bismuth subsalicylate is indicated in the treatment of Helicobacter pylori 

infection only when combined with antibiotics). At least one indication is listed on the drug label 

for each medication (on-label indications), but many medications are also used to treat or prevent 

conditions that are not explicitly listed on the drug label (off-label indications). It is estimated 

that 21% of medication prescriptions are for off-label use127,128 and this rate is estimated to be 

greater in the pediatric population.129,130 

Linking medications to their indications is essential to providing effective care. It has been 

shown that treatment outcome and healthcare quality may improve once such links are made, 

either manually or electronically.131,132 Medication-indication information is a necessary part of 

the information that is needed to determine appropriate use of medications. Medications can be 

deemed inappropriate for several other reasons such as allergies, drug interactions, side effects, 
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etc. However, it is essential to establish that a medication is being administered for an 

appropriate indication, to justify that there is at minimum a need for that drug. This depends on 

the availability of a comprehensive, structured KB of medications and their indications. Such a 

KB can be used to support order entry, for example through the use of indication-based 

prescribing.133 It can also be used to identify cases of potential overuse of medications.37 

While public resources containing medication-indication data have been available for a long time 

(including MedicineNet134 since 1996, DrugBank135 since 2006 and DailyMed136 since 2008), 

these resources only provide the indications in unstructured form (i.e. free-text). Several vendors 

have also developed proprietary datasets that include medication-indication data (examples 

include MediSpan®, Epocrates® and Lexicomp®) but these products are impractical to use for 

research due to associated costs and licensing restrictions. Consequently, there have been a 

number of efforts towards developing comprehensive KBs of on-label and off-label indications 

of medications for public use. 

We aimed to identify studies discussing the design and evaluation of medication-indication KBs, 

determine the similarities and differences of approaches used in these studies, and identify 

potential knowledge gaps. We accomplished this by conducting a systematic review of literature, 

and subsequently evaluating whether these KBs support the level of complexity necessary to 

comprehensively represent medication-indication information. 

Methods 

Systematic Review 

We searched the titles and abstracts of all articles cited by PubMed, PubMed Central, EMBASE 

and CINAHL through September 30, 2014 using the following search strategy: (medication$ OR 
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drug$) AND (indication$ OR "off-label") AND (resource$ OR knowledge$). The search strategy 

used ‘$’ as the wildcard character, and it was modified according to the specifications of each 

bibliographic database accordingly. 

We used the following inclusion and exclusion criteria for study selection: (i) studies without an 

English abstract were excluded (we did not impose any language restrictions to the full text of 

the article); (ii) only studies were included that described the design and/or evaluation of a 

medication-indication KB, terminology or database; (iii) only studies where the resource was 

publicly available were included. 

Titles and abstracts were reviewed independently by two authors (HS and CF), and 

disagreements were resolved using a third author (HC) as an arbitrator. We then obtained the full 

texts of all articles that were deemed as potentially relevant, and excluded articles that did not 

meet the above criteria. For each of the articles that were included, we also reviewed the 

reference list to identify any other relevant studies. 

Once the final list of included studies was populated, we extracted the following information 

from each article: name of resource discussed, methods used for developing/evaluating the 

resource, and the results of such evaluations. We grouped all studies that were about the same 

resource and analyzed them together. 

Evaluation of the KBs 

We obtained a copy of each resource identified in the previous step, and collected basic 

descriptive information, including the number and nature of entries, as well as representational 

characteristics and scope of the knowledge included in the KB. We compared the scope of the 

KBs in three different ways: based on the number of medications included, number of 
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indications included, and number of medication-indication pairs included. While some KBs 

defined the medications at the level of main ingredient (IN), others did at a finer level of 

granularity (i.e. specific dose forms). To be able to compare these KBs, we normalized them to 

the same level by mapping every medication concept to the main ingredient using RxNorm’s 

Application Programming Interface (RxNorm API).137 Details of this process are explained in   
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Appendix 1. Normalizing the indications was difficult not only because the KBs represented the 

indications in different forms (including UMLS concepts and free-text) but also because closely 

related indications which were coded (or worded) slightly differently may or may not need to be 

combined depending on the application. The choice of how to normalize the indications (e.g. 

using which natural language processing engine, which terminology, and so on) could introduce 

significant errors and bias into our analysis. Therefore, to bring all KBs to the same form, we 

stored all indications in free-text form and only aggregated exact matches. Further, we 

qualitatively evaluated whether the KB supports representation of complex indication 

information. In order to accomplish the latter, we asked a group of pharmacists and clinicians to 

provide us with a list of complex or challenging indications for commonly prescribed 

medications. We then organized these indications based on the type of complexity and identified 

eight different types of complexities; four corresponded to characteristics of the medication and 

four were associated with characteristics of the indication (Table 1). Finally, we evaluated 

whether the KBs could represent these complexities. 

Results 

Our electronic searches retrieved 3791 documents, of which 968 were duplicates (Figure 5). 

From the remainder, 2459 were excluded after reviewing the titles and abstracts, and 42 were 

marked as potentially relevant. By reviewing the full texts, eight articles were deemed 

relevant.138–145 Citation tracking yielded an additional seven  relevant articles.146–151 After 

applying the inclusion and exclusion criteria and consolidating multiple articles that were about 

the same resource, seven public medication-indication KBs were identified and included in this 

review (Table 2). 
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We proceeded by mapping all medication concepts to RxNorm at the main ingredient level as 

described above. The results of this process are explained in   

Figure 5 – Study selection process. 
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Appendix 1. In short, we identified the main ingredient for more than 80% of the unique 

medications in the KBs; in two KBs this number was 100% while in another two it was more 

than 98%. Note that our approach only identified one main ingredient for each medication 

concept, which would be incomplete for combination drugs. Only one resource (SIDER139) 

clearly marked combination drugs; it contained 4,567 unique structured product labels (SPLs) for 

combination drugs, and these SPLs represented 1,672 unique combination drugs (based on the 

ingredients). Other resources do include combination drugs, but identifying them requires using 

external knowledge. 

After the mapping, 9,134 unique medications and 7,362 unique indications were found in the 

union of all KBs, corresponding to 110,104 unique medication-indication pairs (see Table 3). 

The number of medications, indications, and medication-indication pairs that appeared in all 7 

resources was only 82, 32, and 1, respectively (Figure 6). This figure shows that the majority of 

medications, indications and medication-indication pairs are specified only in exactly one KB 

(i.e. they are unique to the KB in which they are defined).  

Figure 7, Figure 8 and Figure 9 show the overlap between KBs in terms of unique medications, 

indications and medication-indication pairs, respectively. The dome-shaped chords start and end 

in the same sector, and represent the entities that do not appear in any of the subsequent KBs. 

The relative size of the dome-shaped chords to the sector provides a rough estimate of the 

amount of information in each KB that is not shared with the subsequent KBs. Bigger domes in 

the bottom figure indicate that most of the medication-indication pairs are unique to the KBs in 

which they are defined. Further explanation about how to interpret the chord diagrams is 

provided in Appendix 2, and the overlap between the KBs is numerically summarized in Table 

4, Table 5 and Table 6. 
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 Complexity Example Description of the example 

Characteristics of the 

medication 

Dose forms Vancomycin for C. 

difficile infection 

Vancomycin is used intravenously for all of its indications, with 

the exception of recurrent C. difficile infection, in which case it 

is used orally. Therefore, the KB should associate the indication 

with the correct dose form of the medication. 

Route Heparin for venous 

thrombosis 

The route of administration of heparin is different when it is 

used for prevention of venous thrombosis (subcutaneously) 

versus for treatment of venous thrombosis (intravenously). 

Strength Heparin for 

prevention and 

treatment of venous 

thrombosis 

The dosage of heparin used for prevention of venous 

thrombosis is different (i.e. lower) that dosage used for 

treatment of venous thrombosis. 

Duration Cystitis versus 

recurrent cystitis 

The appropriate duration of antibiotic therapy for initial episode 

of cystitis (3 days) is different from the appropriate duration of 

therapy for treating recurrent cystitis (5-7 days). 

Characteristics of the 

indication 

Primary choice First line treatment 

for essential 

hypertension 

Thiazide diuretics, calcium channel blockers, and angiotensin 

converting enzyme inhibitors are the preferred medication as 

the initial therapy for essential hypertension. Other medications 

that lower blood pressure (such as direct vasodilators or alpha 

agonists) are not indicated as the first line therapy. 

Comorbidities Heart failure and 

asthma 

The indicated therapy for heart failure in patients with asthma is 

different than those without asthma, because non-selective beta-

blockers may cause bronchospasm and aggravate asthma. 

Prevention vs. 

treatment 

Aspirin for 

prevention of 

cardiovascular risk 

Aspirin is indicated in adults with risk factors for 

cardiovascular disease (CVD). The actual indication is 

preventative, and aspirin is prescribed in the context of other 

diseases that are risk factors for CVD, such as hypertension. 

Co-medication Bismuth for 

eradication of 

Helicobacter pylori  

Bismuth compounds are only used for eradication of H. pylori 

in conjunction with other medications, including two or more 

antibiotics. Bismuth is not indicated as monotherapy for H. 

pylori eradication 

Table 1 – Complex or challenging indications used to evaluate the medication-indication KBs. 
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 Scope Curation a 

 

Normalization Sources 

On-label Off-label  Medications Indications Medline SPL e Crowd Multiple EHR 

NDF-RT138 Yes Yes SA UMLS b UMLS b      

SIDER152 Yes No A SPL ID COSTART      

McCoy et al.140 Yes Yes SA None c None c      

Fung et al.141 Yes No A RxNorm UMLS      

MEDI142 Yes Yes A RxNorm ICD9      

Jung et al.143 No Yes A None d None d      

LabeledIn145 Yes No SA UMLS UMLS      

Table 2 – Description of the medication-indication KBs that are freely available to the public. 

a Curation method is categorized as automated (A) or semi-automated (SA) 

b Although NDF-RT itself uses its internal concept identifiers for the medications and indications, the version available through UMLS 

normalizes these concepts to UMLS concepts. 

c McCoy et al. used a numeric identifier for the medications and indications, but did not explain which coding system was used. 

d Although Jung et al. normalized the concepts to UMLS during the curation of their resource, the final resource only contains the 

free-text labels for medications and indications. 

e SPL: structured product labels. 
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 Medications Indications Medication-Indication 

Pairs 

Indications per Medication 

Unique Main Ingredient Range Mean (SD) a Median 

NDF-RT138 9,579 1,625 1,010 55,704 1 – 221 5.82 (7.74) 4 

SIDER152 18,334 1,307 2,194 165,920 1 – 129 8.93 (12.45) 19 

McCoy et al.140 2,537 2,230 1,580 11,166 1 – 122 4.40 (7.08) 6 

1,181 2,104 1,181 2,885 19,473 1 – 130 9.26 (12.56) 6 

MEDI142 2,897 2,162 4,352 65,535 1 – 314 22.02 (24.52) 3 

Jung et al.143 214 212 173 407 1 – 8 1.90 (1.31) 1 

LabeledIn145 2,376 251 626 19,599 1 – 144 8.29 (1.76) 3 

Table 3  – Number of unique concepts in medication-indication KBs. 

 

a SD: standard deviation 
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Figure 6 – Descriptive statistics about medication-indication knowledgebases. 
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Figure 7 – Overlap between medication-indication KBs (drugs). 
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Figure 8 – Overlap between medication-indication KBs (indications). 
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Figure 9 – Overlap between medication-indication KBs (medication-indication pairs). 
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 MEDI NDF-RT SIDER Fung et al McCoy et al LabeledIn Jung et al 

MEDI 2162 1410 1152 1114 580 251 210 

NDF-RT 1410 1625 984 934 521 227 179 

SIDER 1152 984 1307 979 541 247 199 

Fung et al 1114 934 979 1181 520 243 200 

McCoy et al 580 521 541 520 594 232 150 

LabeledIn 251 227 247 243 232 251 96 

Jung et al 210 179 199 200 150 96 212 

Table 4 – Overlap between medications included in the KBs (drugs). 

 MEDI Fung et al SIDER McCoy et al NDF-RT LabeledIn Jung et al 

MEDI 4352 1530 1666 324 887 550 162 

Fung et al 1530 2885 1309 253 605 565 148 

SIDER 1666 1309 2194 263 597 427 132 

McCoy et al 324 253 263 1580 162 130 61 

NDF-RT 887 605 597 162 1010 281 120 

LabeledIn 550 565 427 130 281 626 99 

Jung et al 162 148 132 61 120 99 173 

Table 5 – Overlap between medications included in the KBs (indications). 

 MEDI NDF-RT SIDER Fung et al McCoy et al LabeledIn Jung et al 

MEDI 40096 4388 9653 5756 783 1118 128 

NDF-RT 4388 35787 1260 1151 249 333 7 

SIDER 9653 1260 13947 487 560 861 71 

Fung et al 5756 1151 4827 12591 409 1115 41 

McCoy et al 783 249 560 409 5931 184 36 

LabeledIn 1118 333 861 1115 184 1348 7 

Jung et al 128 7 71 41 36 7 404 

Table 6 – Overlap between medications included in the KBs (medication-indication pairs). 
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To signify the issues with granularity of indications, we also visualized the indications for one 

randomly selected drug, Budesonide, which is a glucocorticoid commonly used for the treatment 

of asthma and other reactive airway diseases. This medication was randomly picked from the list 

of 82 medications that have at least one indication in every KB. Almost every KB lists asthma as 

an indication for Budesonide but only some resources include more granular terms such as 

intermittent asthma or chronic obstructive asthma, or less granular terms such as reactive airway 

disease. Similarly, while one KB lists sinusitis as an indication, another resource only lists more 

granular terms (i.e. chronic maxillary sinusitis, chronic frontal sinusitis¸ etc.) as indications. This 

signifies why normalizing and aggregating the indications can be challenging. Figure 10 

visualizes the indications for this drug and the overlap between the KBs, and Table 7 lists the 

indications and specifies the KBs in which they appeared. 

Below, we will first describe the resources based on the review of the literature, and then we will 

evaluate the content and structure of the resources as well as their strengths and weaknesses in 

representing complexities of medication indications. KBs are described in chronological order, 

based on the earliest publication found for each resource. 

Review of the literature 

The first public medication-indication KB discussed in the publications is the National Drug File 

– Reference Terminology (NDF-RT), which is developed by the United States Department of 

Veteran Affairs (VA).138 The medication-indication data in NDF-RT was initialized using a list 

of diseases and drugs frequently co-occurring in abstracts cited by MEDLINE (the list can be 

obtained from http://mbr.nlm.nih.gov/MRCOC.shtml), and subsequently screened by experts. 

Apart from indications, NDF-RT provides additional information about medications, including 

but not limited to contraindications, interactions with other medications, pharmacokinetics, 
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physiologic effect and therapeutic class. NDF-RT is now included in the Unified Medical  

Language System (UMLS)153, which can facilitate linking NDF-RT concepts to concepts in other 

medication related terminologies – such as RxNorm154 – or disease related vocabularies – such as 

SNOMED CT.155 NDF-RT has also been incorporated into RxNorm since June 2010.156  

  

Figure 10 – Overlap between indications listed in the KBs for Budesonide. 
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 Fung et al Jung et al LabeledIn McCoy et al MEDI NDF-RT SIDER 
asthma 1 0 1 1 1 1 1 

death (finding) 1 0 0 0 1 0 1 

long qt syndrome 2 1 0 0 0 0 0 0 

short qt syndrome 2 (disorder) 1 0 0 0 0 0 0 

rhinitis, allergic, perennial 1 0 1 0 1 1 0 

nose symptoms 1 0 0 0 0 0 0 

bronchitis 0 1 0 0 1 0 0 

sinusitis 0 1 0 0 0 0 0 

bronchial spasm 0 1 0 0 1 0 1 

bronchial diseases 0 1 0 0 0 0 0 

hay fever 0 0 1 0 1 0 0 

crohn disease 0 0 1 0 1 0 0 

crohn's disease 0 0 0 1 0 0 0 

reactive airway disease 0 0 0 1 0 0 0 

chronic obstructive pulmonary disease 0 0 0 1 0 0 0 

intermittent asthma 0 0 0 1 0 0 0 

difficulty breathing (dyspnea) 0 0 0 1 0 0 0 

chronic obstructive asthma 0 0 0 1 0 0 0 

emphysema 0 0 0 1 0 0 0 

idiopathic pulmonary fibrosis 0 0 0 1 0 0 0 

shortness of breath 0 0 0 1 0 0 0 

chronic maxillary sinusitis 0 0 0 1 0 0 0 

chronic frontal sinusitis 0 0 0 1 0 0 0 

chronic ethmoidal sinusitis 0 0 0 1 0 0 0 

chronic pansinusitis 0 0 0 1 0 0 0 

eosinophilic esophagitis 0 0 0 1 0 0 0 

pain 0 0 0 0 1 0 0 

allergic rhinitis (disorder) 0 0 0 0 1 0 0 

bronchitis, chronic 0 0 0 0 1 0 0 

chronic obstructive airway disease 0 0 0 0 1 0 0 

lung diseases 0 0 0 0 1 0 0 

ulcerative colitis 0 0 0 0 1 0 0 

inflammatory bowel diseases 0 0 0 0 1 0 0 

symptoms 0 0 0 0 1 0 0 

syncope 0 0 0 0 1 0 0 

fever 0 0 0 0 1 0 0 

swelling 0 0 0 0 1 0 0 

body weight decreased 0 0 0 0 1 0 0 

dyspnea 0 0 0 0 1 0 0 

diarrhea 0 0 0 0 1 0 0 

nasal polyps 0 0 0 0 1 1 1 

rhinitis 0 0 0 0 1 0 1 

rhinitis, vasomotor 0 0 0 0 1 0 1 

severe asthma 0 0 0 0 1 0 0 

hypersensitivity 0 0 0 0 1 0 0 

pulmonary emphysema 0 0 0 0 1 0 0 

autopsy 0 0 0 0 1 0 0 

swyer-james syndrome 0 0 0 0 1 0 0 

asthma attack 0 0 0 0 1 0 0 

inflammation 0 0 0 0 0 0 1 

polyps 0 0 0 0 0 0 1 

cancer remission 0 0 0 0 0 0 1 

unresponsive behavior 0 0 0 0 0 0 1 

Table 7 – List of indications depicted in Figure 10. 
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Side Effect Report (SIDER), which was first introduced in 2010,139 is a KB of medications and 

their adverse effects which also includes indication data.152 Medications are represented using 

their structured product label (SPL) identifiers, and side effects and indications are coded using 

the Coding Symbols for a Thesaurus of Adverse Reaction Terms (COSTART). Indication 

information were automatically extracted from the SPLs by performing a simple free-text search 

in the “indications” section of the SPLs for a list of terms from COSTART which were assigned 

a semantic type of “Anatomical Abnormality”, “Finding” or “Natural Phenomenon or Process” 

in the UMLS.157 The method used for identifying these concepts in the SPLs was based on 

straightforward string matching (e.g. it did not account for negation or other contextual 

information), and detailed metrics about the accuracy of this method are not available, although a 

manual review conducted by the authors on a subset of SPLs showed that this method had a 

sensitivity of 79% in identifying the concepts mentioned in the “Adverse Reactions” section of 

the SPL (specificity was not reported).  

McCoy et al. used a crowdsourcing approach to infer medication-problem relationships.140 They 

used data from an EHR system where the prescribers were required to connect the medications to 

one of patient’s problems at the time of prescription. The authors used frequently co-occurring 

concepts to develop a medication-indication KB based on their assumption that frequently 

recorded medication-problem pairs are likely valid medication-indication pairs. They evaluated 

the accuracy of the KB using a subset of 100 randomly selected medication-indication pairs, 

using LexiComp® as the reference standard. They also assessed the impact of two covariates on 

the accuracy of the medication-indication pairs: patient link (i.e. number of unique patients for 

whom a specific medication-indication pair was recorded in the EHR), and link ratio (i.e. number 

of unique patients for whom a specific medication-indication pair was recorded, divided by the 
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number of unique patients for whom that medication and that problem where recorded [but not 

necessarily connected in the prescription]). The authors concluded that using any of the 

following criteria, they can acquire medication-indication pairs that are at least 95% correct: 

patient link ≥ 10, patient link ≥ 2 and link ratio ≥ 0.2, or patient link ≥ 3 and link ratio ≥ 0.1. 

These pairs were included in the final KB, and they accounted for 76.47% of all medication-

problems found in their EHR. 

Fung et al. used natural language processing (NLP) to extract drug indication information from 

SPLs downloaded from the DailyMed website.141 They configured their approach towards higher 

sensitivity. After manual evaluation of the results for 300 drugs (corresponding to approximately 

3500 medication-indication pairs), the authors concluded that their approach achieved a 

sensitivity of 95% and specificity of 77% in extracting the indications from drug labels. Primary 

reasons for errors in specificity included identification of the wrong concept by the NLP system 

and identifying all disease mentions as indications (including those that are explained in the 

indication section of the label as comorbidities, exceptions, etc.) 

Wei et al.142 developed an ensemble medication-indication KB called MEDI, using four 

knowledge sources as input: (i) NDF-RT; (ii) SIDER; (iii) MedlinePlus158 – a website 

maintained by the National Library of Medicine (NLM) offering health information to 

consumers; and (iv) Wikipedia159 – a collaborative encyclopedia on the Internet. The authors 

determined the accuracy of the KB through manual review by expert physicians, and identified 

that medication-indication data found in all four resources had a the highest precision (100%) but 

a very low sensitivity (2%), while data found in only one resource had a lower precision (56% to 

97%). No single resource had high sensitivity (20% to 51%). Authors noted that medication-

indication pairs appearing in at least two resources had an average precision of 92% and marked 
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them as the “high-precision subset”. This subset had a precision comparable to that of NDF-RT 

but provided 66% more medication-indication pairs. In a later study, Wei et al. used a large 

clinical dataset and showed that for 97.25% of medications used in outpatient and inpatient 

settings, MEDI contains at least one indication (the figure was 93.80% for the high-precision 

set), and medications that were not covered consisted mostly of vaccines, probiotics, nutrition 

and inert ingredients.160 Authors did not report for how many of these prescriptions, an indication 

could actually be found in the medical record. 

Jung et al. recently published a study which focused on automated detection of novel off-label 

drug use.143 They used a large clinical dataset and explored co-mentions of drugs and diseases in 

the same clinical record. They used a support vector machine classifier to identify positive cases 

of drug usage, and subsequently removed all known on-label and off-label drug uses (i.e. those 

medication-indication pairs that were already listed by NDF-RT or MediSpan®) to limit the 

scope of their study to novel off-label uses only. They also used the side effects list included in 

the SIDER dataset to remove drug-disease pairs that were likely co-occurring frequently because 

the disease is a known adverse effect (and not the indication) for the medication. Authors 

identified 6,142 drug-disease relationships that were categorized as high confidence novel off-

label uses of medications. The authors then assessed whether the same indication had been listed 

in the FDA’s Adverse Effect Reporting System (FAERS) data; although FAERS is a resource 

primarily used for collecting data about adverse effects of medications, the report also includes a 

field where the intended use of the reported medication can be specified. Previous research had 

shown that this data can be leveraged to identify indication data.144 The authors also assessed 

whether the novel off-label indications have ever appeared in MEDLINE abstracts and reported 

that out of the 6,142 novel off-label uses found using their method, 766 (12.5%) appeared 10 or 
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more times in the FAERS reports, and 537 (8.7%) were also co-mentioned in 2 or more abstracts 

indexed by MEDLINE. However, the final set of novel off-label uses was not manually validated 

by experts. 

Most recently, a group of researchers developed and published a new medication-indication KB 

called LabeledIn, which tries to address some of the limitations of previous resources.145 

LabeledIn is curated using a semi-automated approach, where NLP is used to facilitate manual 

annotation of SPLs. They used MetaMap161 to process all SPLs found in DailyMed, and 

subsequently presented the results to two professional biomedical annotators in a color coded 

form. Researchers showed that this process significantly reduces the time needed for annotation, 

and that agreement between annotators was high (κ = 88.35%). LabeledIn lists the medication-

indication relationships not only at the level of the active ingredient, but also at finer levels of 

granularity, including dose form and drug strength. An evaluation on the completeness of 

LabeledIn using SIDER 2 as the reference standard showed that out of all indications found for a 

random subset of 50 drug labels, 47.5% appeared in both resources, 10.1% only appeared in 

LabeledIn, and 42.4% were only found in SIDER; the majority of indications that were only 

found in SIDER were attributed to the use of less specific terms to describe indications in SIDER 

(.e.g. “infarction” in SIDER versus “myocardial infarction” in LabeledIn). 

Analysis of the KBs 

NDF-RT data can also be acquired through UMLS or through RxNorm; we used the version 

included in UMLS 2014AA, in which medications and indications are both normalized to UMLS 

concepts. NDF-RT uses an internal unique identifier for medications and indications, called 

NDF-RT unique identifier (NUI).  Two types of relationships can be used to identify indications; 

they include may_treat and may_prevent. Overall, 55,704 medication-indication pairs, 1,010 



 

58 

 

unique indications and 9,579 unique medication concepts were included in NDF-RT, and the 

medications were mapped to 1,625 main ingredients. For each medication an average of 5.82 

indications are listed (range = 1 – 221, SD = 7.74, median = 4). All medications are represented 

at the main ingredient level. 

We used the latest version of SIDER that was available on the web by the end of 2014.152 This 

version of SIDER includes information extracted from 18,334 SPLs (which were mapped to 

1,307 main ingredients), 165,920 unique label-indication pairs and 2,194 unique indications. 

SIDER indications are only provided at the SPL level, and searching at the level of main 

ingredient will require an additional step for mapping the SPL identifiers to the medication 

concepts.162 Approximately 18.6% of the indication entries were duplicates (e.g. “infection” and 

“infections” are both listed as indications for the same SPL, and they are both mapped to the 

same UMLS concept identifier, i.e. C0021311). After removing duplicates, each medication was 

associated with an average of 8.93 indications (range = 1 – 129, SD = 12.45, median = 19). 

SIDER frequently uses nonspecific terms as indications; for instance, wherever rheumatic fever 

was listed as an indication, the nonspecific concept fever was also listed as an indication 

(examples include but are not limited to Azithromycin, Cefprozil, and Cefazolin). 

The resource provided by McCoy et al. contains 11,166 medication-indication entries, 

corresponding to 2,537 unique medication concepts and 1,580 unique indications. Medications 

concepts are defined at the level of dose form and strength (e.g. “Atenolol 50 MG Oral Tablet”), 

and were mapped to 594 unique main ingredients. For each medication concept an average of 

4.40 indications are reported (range = 1 – 122, SD = 7.08, median = 6). Redundancy is observed 

in the indications; e.g. “Fever (Symptom)” and “Fever (On Exam)” are two separate indications, 

and no medication is associated to both of these. Redundancy was also observed among 
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medications (generic and brand names were both present) and several items could not be 

considered medications (e.g. “Rapid Bacterial Antigen Ident Kit” or “OneTouch Test In Vitro 

Strip”). 

The resource provided by Fung et al. contains 19,473 medication-indication pairs, corresponding 

with 2,885 unique indications and 2,104 unique medications (which mapped to 1,181 unique 

main ingredients). Medications are represented using RxNorm concepts at the level of semantic 

clinical dose form (SCDF). Indications are represented in this resource using UMLS concepts. 

For 3,468 entries a third column indicates whether the medication-indication pair was deemed 

correct, nearly correct, or incorrect by manual review. On average, for each medication 9.26 

indications are reported (range = 1 – 130, SD = 12.56, median = 6). Since medications are 

represented using their RxNorm identifier, indications are also defined at the level of dose form; 

for example, separate entries for indications of ‘alprazolam disintegrating tablet’, ‘alprazolam 

extended release tablet’, ‘alprazolam oral solution’ and ‘alprazolam oral tablet’ could be found, 

each being associated with a different number of indications. 

MEDI contains 65,535 medications-indication relationships, corresponding to 2,897 unique 

medications and 4,352 unique indications. Medications are represented using both their name 

and the corresponding RxNorm concept identifier, and they mapped to 2,162 unique main 

ingredients. Indications are represented using their name, the corresponding UMLS concept 

identifier and the corresponding concept(s) from International Classification of Diseases, version 

9 (ICD9). Each medication is associated with an average of 22.02 indications (range = 1 – 314, 

SD = 24.52, median = 3). There is no consistency in the use of lower or uppercase letters in the 

names of diseases and drugs, and some entries are blank. For each medication-indication pair, 

this resource also specifies how many of the four original resources that were used to create 
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MEDI had mentioned that specific pair, although the particular resources that are used are not 

specified. 

Jung et al. included 407 off-label medication-indication pairs in their data set, corresponding to 

173 unique indications and 214 unique medications (mapped to 212 unique main ingredients). 

They represented the medications and indications only using their names. For each medication-

indication relationship they also listed the number of supportive artifacts found in FAERS and in 

MEDLINE, as well as the cost index and risk index calculated for the respective medication. All 

medications are represented at the main ingredient level. While Jung et al. used UMLS CUIs to 

represent the medications and indications (as described in their paper), UMLS unique identifiers 

are not included in the final resource. Although Jung et al. collected data about the known uses, 

they did not provide that data because it was outside the scope of their study. As a result, the 

resource provided by Jung et al. only lists an average of 1.90 indications per medication (range = 

1 – 8, SD = 1.31, median = 1). 

LabeledIn contains 19,599 unique medication-indication relationships, corresponding to 626 

unique indications and 2,376 unique medication concepts, which mapped to 251 unique active 

ingredients. The data itself comes from 500 labels, but for each label, additional RxNorm 

identifiers are assigned to the medication when applicable. Each medication concept is 

associated with an average of 8.29 indication concepts (range = 1 – 144, SD = 11.76, median = 

3). Medications are defined using RxNorm concepts, at the level of dose form and strength. 

Therefore, similar to the resource by Fung et al. LabeledIn lists different indications for 

medications that are essentially different dose forms or strengths of the same ingredient. 

However, in addition to the previous, the indications are also defined at higher levels, including 

the main ingredient. Khare et al. reviewed SIDER as part of their evaluation on LabeledIn, and 
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concluded that a lot of the mismatches between SIDER and LabeledIn were because SIDER uses 

nonspecific terms for indications,145 a finding that we also observed in our analysis of this KB. 

We also analyzed if each KB can represent various types of challenging or complex indications 

(Table 8). Most resources did not distinguish preventive and therapeutic indications from each 

other. Only three resources could specify indications specific to a particular dose form or route of 

administration (namely, McCoy, Fung et al, and LabeledIn). NDF-RT is the only resource which 

also specifies contraindications. 

Discussion 

Out of the seven KBs included in this study, independent assessments were found only for NDF-

RT and SIDER. Evaluations of NDF-RT show that it has limitations in drug class information 

and alignment of its concepts with those in other terminologies such as RxNorm.147,149 

Additionally, the majority of concepts marked as “Chemical & Drugs” in NDF-RT are not 

associated with an indication,150 and some researchers have found NDF-RT complex to use for 

reasons such as lack of meta-data annotations and the use of unfamiliar drug classifications.151 

Khare et al. evaluated SIDER and showed that the use of nonspecific terms as indications in 

SIDER can lead to alignment issues with other resources. 145  

None of the KBs reported the recency of the information they contained, and only SIDER and 

NDF-RT have been updated by the time of this review. This limits their usefulness, as many of 

these resources have been developed several years ago, and may now contain outdated 

information. It should be noted thought that Khare et al have proposed a plan for updating 

LabeledIn on a regular basis and have estimated the amount of work needed to be minimal.145



 

 

 

6
2
 

 
NDF-RT SIDER McCoy et al. Fung et al. MEDI Jung et al. LabeledIn 

Therapy + + + + + + + 

Prevention a + +/– +/– +/– +/– +/– +/– 

Co-medication – – – – – – – 

Dose forms – – + + – – + 

Route – – + + – – + 

Strength – – + – – – + 

Duration – – – – – – – 

Primary choice – – – – – – – 

Contraindication + – – – – – – 

Table 8 – Capability of medication-indication KBs to represent complex indications. 

a Although several resources contain examples of preventative indications in their data, only NDF-RT specifies whether an indication 

is preventative or therapeutic. Those resources that do not make this delineation are marked as +/–.
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Most of the KBs represent the medications only at the level of main ingredient. This can be 

challenging when different dose forms or strengths of the same medication have different 

indications. Similarly, resources varied in their support for medications with multiple active 

ingredients. While in theory KBs that defined the medications at the level of SPLs or using 

SCDF identifiers from RxNorm should have no difficulty in this regard (because medications 

with multiple ingredients generally have a separate label identifier and RxNorm identifier 

associated with them) only one resource clearly marked combination drugs. Another challenge 

arose concerning medications used in primary or secondary prevention of disease (e.g. vaccines, 

or atorvastatin as a secondary prevention of cardiovascular disorder). Although some of the KBs 

did contain preventive indications, only NDF-RT discriminated between may_treat and 

may_prevent associations. 

The granularity of concepts used to describe indications is directly associated with the choice of 

terminologies. For instance, oral vancomycin is used to treat recurrent infection with Clostridium 

difficile, and it is not indicated in non-recurrent infections. Since terminologies such as 

SNOMED CT or ICD9 do not have a separate concept for the recurrent form of this infection, 

resources using these terminologies cannot accurately specify the use of vancomycin for this 

infection. Issues with granularity also present themselves at the level of normalization to unique 

concepts of diverse terms used to describe a disease or condition. For example, most KBs listed 

myocardial infarction or another synonymous term as an indication for the drug nitroglycerine 

but because the relationship was defined at this level, these KBs were unable to represent the 

very important exception, i.e. right-sided myocardial infarction which can lead to lethal 

hypotension when using nitroglycerine. Terminologies such as SNOMED CT or ICD9 do have 
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the level of granularity necessary for this example, but the KBs used a coarser concept to 

represent the indication. A relevant problem occurs for those pathologies that have a spectrum; in 

this case the challenge would be to include various stages of disease as an indication. For 

example, Barrett esophagus is commonly treated with proton pump inhibitors (PPIs), but none of 

the KBs included the association between PPIs and Barret esophagus; some of them, however, 

included Erosive Esophagitis or a synonymous term as an indication for PPIs, which is the 

pathophysiological state before Barrett esophagus occurs. 

The issues associated with the granularity of concepts used to represent the indications are 

summarized in Table 9.  

Finally, it would be impossible to capture all the possible variables of medication-indication 

knowledge in all circumstances and as a result, any CDS system should allow for exceptions to 

the rule. Patients with refractory diseases, those who have allergies or contraindications for the 

“indicated” therapy, and those who have rare diseases for which no drug therapy is established 

yet (e.g. Ebola infection, for which treatments are all in the experimental stage) may benefit from 

receiving prescriptions that may contradict with the information in the medication-indication 

KBs. Additionally, medication-indication KBs are meant to provide evidence-based knowledge, 

but there will always be new knowledge which may not be incorporated into these resource but 

still qualify as appropriate use of medications.  

Recommendations for future research 

One of the key limiting aspects of many of the existing medication-indication KBs is the use of 

simple binary relationships that do not capture characteristics of the medication or indication. 

This challenge is partly addressed in those resources that define the medication concepts at a 

finer level of granularity (e.g. dose form and strength), or use different relationship types to 
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discriminate between preventive and therapeutic indications. Nevertheless, certain nuances of 

indication knowledge (such as co-medication, co-morbidities or primary choice of therapy) are 

still not captured by any of the existing resources, indicating that there is a knowledge gap on 

how to capture this information in an automated way. 

Various data sources that have been leveraged to identify adverse effect information may 

potentially be used to extract indication data as well. Harpaz et al recently published a review of 

various data sources used for extracting adverse effect information.163 Previous studies have 

leveraged patient-generated data on the internet to identify adverse effects of medications, for 

example by analyzing the Internet search logs164, Twitter posts165, or user contributions to online 

health communities.166,167 Similar data sources and approaches may be plausible for identifying 

Complexity Example Description of the example 

Location Left-sided 

myocardial 

infarction 

Nitrates are indicated in the treatment of 

myocardial infraction, except in right-sided 

myocardial infarction in which they are 

contraindicated (because they can cause severe 

hypotension). If the indications for nitrates are 

defined at a coarse level, they may not capture 

this complexity. 

Recurrence Recurrent infection 

with Clostridium 

difficile 

Initial infection with C. difficile is treated with 

metronidazole, but recurrent infection is treated 

with oral vancomycin. If “recurrence” is not 

captured in the indication, the KB may wrongly 

imply that vancomycin is indicated in any C. 

difficile infection. 

Symptoms Acetaminophen for 

fever 

Although fever is not a disease itself, 

acetaminophen is indicated in patients with 

fever when it is necessary to alleviate their 

symptom. 

 

Table 9 – Issues with granularity of the concepts used to represent the indications. 
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off-label uses of medications, or other types of information about medication indications, such as 

their effects on various symptoms.168 Additionally, while the FAERS database is primarily 

designed to collect and store adverse effect data, it can be leveraged to extract the “use” 

information included in the adverse effect reports to identify true indications for medications.144 

Limitations 

Our work has several limitations. First, we restricted our literature review to studies with 

electronic full texts in English, and only searched PubMed, PubMed Central, EMBASE or 

CINAHL. Other medication-indication KBs that did not meet our inclusion and exclusion criteria 

were not reviewed in this study, and the results of our review may not be generalizable to those 

resources. Our review only includes those publications that are about a publicly available KB for 

medication indications. In other words, we did not evaluate proprietary KBs that contain 

medication-indication information, and the strengths and weaknesses of those resources may be 

different than those described here. Also, we excluded those publications from our review that 

only discuss a method for developing a medication-indication KB but do not actually provide the 

resulting KB, because the scope of this review was to compare the KBs not the methods; 

examples of excluded papers include the works by Wright et al148 and Chen et al.146 Second, the 

method we used for analyzing the limitations of KBs in representing complex or challenging 

indications was based only on an informal query sent to a small group of clinicians and 

pharmacists. It is possible that other categories of complex or challenging indications exist that 

were not studied in this work. This signifies the need for developing quality metrics for 

evaluation of medication-indication KBs. Finally, the normalization of medication concepts into 

main ingredients was not perfect, and it did not handle combination medications properly. 

Similarly, we aggregated the indications in free-text form, which is not ideal. Moreover, multiple 
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indications that are assigned different concept identifiers may actually reflect the same true 

indication (e.g. “depressive episode, unspecified” and “major depressive disorder, single 

episode, unspecified”) and closely related indications may need to be aggregated (see examples 

provided in Results section). Further work is needed to normalize all indications, and to 

aggregate the relevant indications.169 

Conclusions 

Medication-indication KBs are important resources for data-driven research on appropriate uses 

and adverse effects of medications, as well as for providing automated decision support 

regarding appropriate use of medications. Each of the KBs reviewed above is a significant step 

forward in developing a comprehensive computable medication-indication public knowledge. 

This review also identifies some of the key gaps in the KBs at the level of representation and 

content, with the aim of motivating researchers to address these important limitations in future 

research. Characteristics of the ideal KB depend on the task at hand, but the results of this review 

can help the reader decide which KB meets their needs the most. 
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Appendix 1 

The medication-indication knowledge-bases (KBs) included in this study used various methods 

to represent the medications, including RxNorm identifiers, UMLS concepts, and free-text. 

Additionally, those which used RxNorm identifiers or UMLS concepts did not do it identically: 

some represented the medications at the level of main ingredient (IN), while others represented 

at the level of specific dose forms (SCDF). 

In order to be able to compare these KBs, we normalized them to the same level by mapping 

every medication concept to the main ingredient using RxNorm’s Application Programming 

Interface (RxNorm API) available at http://rxnav.nlm.nih.gov/RxNormAPIs.html as explained 

below: 

Methods 

Whenever the KB defined the medications at the dose form level, we used the allRelated 

function from RxNorm API to identify the main ingredient (TTY = IN). For instance, the result 

of the query http://rxnav.nlm.nih.gov/REST/rxcui/373222/allrelated indicates that the RxNorm 

identifier for the main ingredient is 40790, where 373222 and 40790 represent Pantoprazole 

Delayed Release Oral Tablet and Pantoprazole, respectively. 

Whenever the KB defined the medications using UMLS concepts, we used the idtype parameter 

in RxNorm API to find the RxNorm identifier for the medication; then we applied the procedure 

above to find the main ingredient. For example, the result of the query 

http://rxnav.nlm.nih.gov/REST/rxcui/?idtype=UMLSCUI&id=C0012772 indicates that the 

RxNorm identifier for that concept is 3554, where C0012772 and 3554 both represent 

Disulfiram. In this case, Disulfiram is the main ingredient itself. 

http://rxnav.nlm.nih.gov/RxNormAPIs.html
http://rxnav.nlm.nih.gov/REST/rxcui/373222/allrelated
http://rxnav.nlm.nih.gov/REST/rxcui/?idtype=UMLSCUI&id=C0012772
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Whenever the KB defined the medications in text form, we used the approximateTerm function 

of RxNorm API to identify the main ingredient. If the resource defined the medications using 

their dose forms, we first preprocessed the list of medications by removing the suffixes that 

specify the dose form, including “Oral”, “Tablet”, “Capsule”, etc. as well as numerical values 

and units (such as “81 MG”, etc.). This was done using a set of regular expressions. Finally, the 

list of medications was fed into the RxNorm API to get the RxNorm identifiers. For example, the 

query http://rxnav.nlm.nih.gov/REST/approximateTerm?maxEntries=1&term=venlafaxine will 

return a list of RxNorm identifiers matched for the string “venlafaxine”. We then used the 

methods described above to map these to the main ingredient (which in this example led us to 

concept identifier 39786). 

Finally, SIDER defines the medications using their structured product label identifier (SPL ID). 

SIDER also provides a mapping from SPL IDs to the generic name of the medication or its 

ingredients, as a file hosted on their website 

(http://sideeffects.embl.de/media/download/label_mapping.tsv.gz). We used this mapping to map 

the SPL IDs to text form, then used the procedures explained above to find the main ingredient. 

Results 

The table above shows the type of mapping done for each resource, and the percentage of unique 

medication concepts that were successfully mapped to main ingredients in RxNorm. For two 

resources, mapping was 100% possible. For two other resources (Fung et al and LabeledIn) 

mapping was more than 98% accurate. Medication concepts in these two KBs that failed to map 

to main ingredients were all interpreted as invalid identifiers by the current version of RxNorm 

API. 

http://rxnav.nlm.nih.gov/REST/approximateTerm?maxEntries=1&term=venlafaxine
http://sideeffects.embl.de/media/download/label_mapping.tsv.gz
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Manual review of the medication concepts from NDF-RT, that did not map to RxNorm identifier 

showed that while some of them were actual medications (e.g. C0981111 representing Vitamin E 

13500 U/mL Topical Cream), others were prescribable items that do not contain any active 

ingredients (such as Toothpaste) or classes of chemical substances which cannot be mapped to an 

active ingredient (such as Triglycerides). 

Manual review of the medication concepts from McCoy et al that did not map to RxNorm 

showed that a notable fraction belonged to non-medication concepts (such as test strips, syringes, 

and blood pressure kits) and many of the concepts that were actual medications were mentioned 

using a brand name that was potentially not recognized by the RxNorm API. 

 

 From To Total Mapped (%) 

NDF-RT UMLS RxNorm IN 9579 8076 (84.3%) 

SIDER SPL ID RxNorm IN 18334 14866 (81.1%) 

McCoy et al Free text RxNorm IN 2537 2230 (87.9%) 

Fung et al RxNorm RxNorm IN 2104 2071 (98.4%) 

MEDI RxNorm RxNorm IN 2897 2897 (100%) 

Jung et al Free text RxNorm IN 214 214 (100%) 

LabeledIn UMLS RxNorm IN 2376 2354 (99.1%) 

Table 10 – Result of normalizing medication to RxNorm. 

Manual review of the medication concepts from SIDER that did not map to RxNorm showed that 

almost all of them were combination drugs. The mapping provided on the SIDER website lists 
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all ingredients of a combination drug next to its SPL. However, RxNorm did not return any 

concepts for these drugs because the search string contained more than one drug name. 

Limitations 

The main limitation of our approach above is that when more than one main ingredient was 

returned for a medication, we only used the first one. This fails to capture the complete data for 

combination drugs. 
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Appendix 2 

In order to visualize the information from Tables S1-S3 above, we used chord diagrams (see 

Figure 7, Figure 8 and Figure 9). The figure consists of three diagrams (top, middle and 

bottom) showing the overlap for medications, indications, and medication-indications pairs, 

respectively. The knowledgebases are consistently color-coded in all the three parts (e.g. NDF-

RT is always shown in red, MEDI in green, and so forth). 

For each diagram, we first ordered the resources based on the unique number 

of items in them. Then we drew a properly colored sector on the outside of 

the circle. For instance, in the middle diagram, MEDI is shown first because it 

has the largest number of unique indication. 

Each sector has tick marks to help the reader visually comprehend the size of 

that resource. For example, tick marks on the example on the right show that it has a size of 6. 

Similarly, the tick marks on the MEDI sector in the Figure 8 indicated that MEDI contains 

between 4,000 and 4,500 unique indications; the actual number is mentioned in Table S2 which 

is 4,352. 

Next, we compared each sector with its subsequent 

sectors. The comparison is unidirectional to enhance 

visibility. If a KB had overlap with its subsequent KBs it 

was shown using chords. The example on the right is for 

demonstration. It visualizes four hypothetical resources 

(shown in green, red, blue and orange). In this figure, not 

all chords are shown: only chords that are associated with 
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the first resource (green sector) are shown for demonstration purposes. Two types of chords can 

be seen: those connecting the green sector to another sector (in this case red and blue) and those 

connecting it to itself (resembling a green dome). The interpretation of this example will be as 

follows: the green sector contains 6 items; 4 of those items are unique to the green sector, 1 

appears in the red sector as well, and 1 appears not in the red sector but in the blue sector. Note 

that the origin of the bands (on the green sector) is non-overlapping. It means there may be items 

in the green sector that appear both in the blue and the red sector, but they will not be counted 

twice in this diagram. 

Similarly, Figure 8 shows that about 2,000 of the unique indications from MEDIE don’t appear 

in any of the subsequent resources, about 1,600 of them appear in SIDER, about 1,500 of them 

appear not in SIDER but in Fung et al, and so forth. 

One of the most important aspects of the chord diagrams are the chords that start and end in the 

same sector (dome shaped chords). These represent the items that do not appear in any of the 

subsequent resources. In Figure 7 and Figure 8, these domes are relatively half the size of the 

corresponding sectors, indicating that about half of the medications and indications found in each 

KB are unique to that KB. In the bottom diagram, the domes are significantly larger, showing 

than the majority of medication-indication pairs in each KB are unique to that KB. This is also 

reflected in Figure 6 above. The first bar in each diagram in that figure shows the number of 

medications, indications, and medication-indications to appear exactly in one KB (i.e. they are 

unique to the KB in which they appear). This bar is always significantly larger than the 

subsequent bars in the same bar graph.  
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Study 3: Developing a Formal Representation for Medication 

Appropriateness Criteria 

Introduction 

Identification of IUM requires extracting information about the patient, the medication, and other 

treatments, and comparing them with the MAC.16 Consequently, developing automated solutions 

to reduce IUM entails two requirements: a framework to represent the medication 

appropriateness criteria formally, and methods to extract the information needed to compute 

these criteria. This article focuses on developing a framework for formal representation of 

medication appropriateness criteria.  

Previous researchers have identified several medication appropriateness criteria and metrics 

through systematic review of the literature.44,45 These criteria can be categorized into three 

groups: the first group enumerates the conditions in which the use of medication is appropriate 

(e.g. see Choudhrey et al.’s criteria for appropriate use of proton pump inhibitors [PPIs]),110 the 

second group lists conditions in which the use of medication is deemed inappropriate (e.g. see 

the Beers’ criteria),39 and the third group provides a combination of both (e.g. see Oborne 

et al.’s criteria on appropriate use of neuroleptics).112 Since older adults are frequently subject to 

polypharmacy and therefore more likely to experience the negative impacts of IUM (e.g. drug-

drug interactions, adverse drug reactions and increased risk of hospitalization)170–172 larger 

collections of medication appropriateness criteria exist for the geriatric population. Examples 

include the Beers’ criteria39 and the Screening Tool of Older Persons’ potentially inappropriate 

Prescriptions (STOPP)116 which aim to reduce inappropriate use of medications (overuse), and 
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the Screening Tool to Alert doctors to Right, i.e. appropriate indicated Treatment (START)115 

which promotes appropriate use of medications that are omitted (underuse). 

Medication appropriateness criteria can be described as a special form of clinical guidelines, 

although they have distinct features that separate them from the majority of clinical guidelines. 

Clinical guidelines provide best practices for diagnosis and therapy of diseases, but medication 

appropriateness criteria are focused on proper utilization of a resource (namely, medications). 

Clinical guidelines are primarily developed by major medical associations, are organized in a 

common format and are hosted on repositories such as the National Guideline Clearinghouse;173 

in contrast, medication appropriateness criteria are mostly developed by independent groups of 

researchers and distributed without using a common format or central repository. 

Medication appropriateness criteria are currently only available in narrative form, and 

transforming them into a computable format is challenging because a formal representation for 

the components of medication appropriateness criteria does not exist. Different criteria have 

varying levels of granularity and specificity in defining the medications, diagnoses, and 

symptoms; in addition, some but not all of the criteria are accompanied by information regarding 

the level of evidence, target population, or extent of clinical relevance. A framework in which 

these criteria can be explicitly and comprehensively represented is needed. We developed such a 

representation framework, which we call the Objective Medication Appropriateness Criteria 

(OMAC). 

Methods 

In order to study existing medication appropriateness criteria, we started by identifying these 

criteria by searching PubMed using the following keywords and their variations to identify 
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published medication appropriateness criteria: inappropriate prescribing, overuse, overtreatment, 

overutilization, and utilization review. We grouped the relevant studies based on the actual 

criteria they used to identify IUM. We then curated a collection of published medication 

appropriateness criteria and used a random subset of those to develop OMAC (for examples, see 

Table 11). To ensure that we didn’t have any biases in our component selection and semantic 

aggregation of the concepts, we used another independent set of criteria for evaluation of 

OMAC.  

Developing OMAC 

The purpose of OMAC is to provide a formal representation for appropriateness criteria. We 

manually analyzed a randomly selected subset of medication appropriateness criteria to identify 

their components. Each criterion can be described as one or more rules, and We semantically 

grouped the components we found in the sample criteria to define concepts that comprise the 

criteria, including high-level elements (such as the general sections of a criterion) and low-level 

elements (such as modifiers, identifiers, names, etc.) and we also identified the relationships 

between these concepts and represented them in OMAC. 

Different medical concepts are frequently mentioned in the medication appropriateness criteria, 

such as medications and diseases. OMAC is only a formal representation model and is not a 

vocabulary itself, therefore we ensured that OMAC takes advantage of previously developed 

ontologies and terminologies, by linking to external ontologies and terminologies to the extent 

possible. This will also ensure the concepts are defined in a standard way that can be reused by 

others. We saved OMAC using frames and properties in Protégé version 3.5. 

Evaluating OMAC 
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After the initial design of OMAC was completed, we presented a separate set of 10 randomly 

selected MAC to a group of domain experts (physicians and pharmacists) in form of a 

questionnaire, asking them to identify and categorize the components of these criteria 

independently. Each item in the questionnaire consisted of one medication appropriateness 

criterion statement in its original narrative form, and requested that the participant break the 

statement into basic elements (such as medication names, medication class names, disease 

names, logical statements, or temporal modifiers). Disagreements in the experts’ responses were 

identified through qualitative analysis of the responses. Three types of disagreements were 

considered: differences in the classification of the same word or phrase (e.g. classifying 

“hypertension” as a disease versus a problem), differences in specification of the elements in the 

statements (e.g. considering “severe hypertension” as two separate concepts versus one), and 

classification of terms into concepts that are not explicit (e.g. classifying “long-term use of drug 

X” as one concept of type “overuse”). In a subsequent questionnaire, we presented the experts 

with the same narrative criteria but clearly marked these areas of disagreement and asked the 

experts to translate those terms and phrases into more detailed, explicitly defined concepts. Note 

that the purpose of this process was not to reach perfect agreement, but rather to identify what 

“elements” constitute the criteria and also to describe the elements so that they are well-defined, 

so that we can evaluate OMAC’s coverage for those elements.  

Subsequently, we evaluated whether OMAC could represent all of the explicitly defined 

concepts provided by the experts. We froze the development of OMAC before we started 

sending out the questionnaires, to ensure that our knowledge of the results of the previous step 

would not affect our evaluation of OMAC’s completeness. We planned to correct OMAC for any 
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areas of deficiency that would be found throughout this evaluation, only after the evaluation was 

completed. 

Results 

We identified 110 medication appropriateness criteria through literature review, and used a 

random subset of 40 to develop OMAC. We designed OMAC such that each criterion in this 

subset could be represented using four functional types of information: ‘trigger’, ‘rules’, 

‘action’, and ‘meta-data’. A trigger may consist of one or more medications that are the primary 

focus of the criterion (when prescribing these medications the criterion would be triggered) or 

one or more clinical conditions in which the use of a certain medication is desirable (in this case 

the criterion would focus on underuse). Rules specify the conditions that a patient must meet to 

be eligible for the criterion (such as age limit, past medical history, medications prescribed, 

symptoms, or paraclinical findings). Action specifies the recommendation that the criterion 

makes once the patient meets all the rules; generally, actions are in two forms, either to avoid 

prescribing a medication or to consider prescribing a medication. Meta-data includes all the 

additional information that is used to describe the criterion (examples include a name or unique 

identifier, references to citations, or a justification or concern). As an example, Beers’ criteria not 

only lists medications or combinations of drugs that should be avoided in the elderly, but also 

specifies what “concern” exists around using these medications, and also provides a “severity 

rating” for this concern (low vs. high) to help the clinicians determine the importance of each 

item in this criteria and provides the relevant citations (Table 11).39. We represented the trigger, 

action and meta-data components using properties for the “criterion” class (Figure 11, right). We 

used a more complex classification as described below to represent the rules. 
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Each criterion can contain one or more rules, and there are various types of rules in different 

criteria. These include ‘medication rules’ which specify the medication that is the subject of the 

criterion as well as co-prescribed medications that need to be considered, and ‘clinical rules’ 

which specify the diseases, symptoms, laboratory tests results, and demographics that have to be 

present or that should be absent for the patient to meet the criterion. This can be clarified using 

the third example shown in Table 11: “TCA’s with cardiac conductive abnormalities”; this item 

from STOPP criteria states that in elderly patients who have cardiac conductive abnormalities, 

tricyclic antidepressants (TCAs) should be avoided because of their pro-arrhythmic effects.32 To 

apply this criterion to a patient, three rules must be satisfied: (i) the patient must belong to the 

‘elderly’ demographic group (formally defined as age ≥ 65 years), (ii) the patient must have been 

diagnosed with a cardiac conductive disorder (including, but not limited to Type I heart block, 

Type II heart block, or right bundle branch block), and (iii) the patient must have been prescribed 

a medication that belongs to the TCA class. The first two rules in this example are clinical rules, 

and the latter is a medication rule. 

Clinical and medication rules have different properties: clinical rules may focus on the 

existence, temporality and duration of a clinical finding or condition (including but not 

limited to diseases, signs and symptoms, allergies, and contraindications), or the result of 

a measurement (such as a lab test or imaging study), but medication rules may specify the 

dose, route, frequency and form of a medication. Both clinical and medication rules may 

include concepts that are externally defined in other ontologies or terminologies (Table 

12). In the example provided above, “cardiac conductive abnormalities” can be 

represented as a clinical rule, which can refer to a pertinent concept in International 
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Classification of Diseases, version 10 (ICD-10) or Systematized Nomenclature of 

Medicine, Clinical Terms (SNOMED CT), and thus, it is possible to link the concept to a 

standardized external knowledge source. A link to an external concept consists of four 

parts: the name of the concept as mentioned in the criteria (e.g. ‘cardiac conductive 

abnormalities’), the name of the external ontology or terminology and its version number 

(e.g. ICD-10), URL of the external ontology or terminology (e.g., 

http://purl.bioontology.org/ontology/ICD10) and the unique identifier of the 

corresponding concept in that external ontology or terminology (in this case ‘I44’). 

 

 

 

Source Narrative criterion 

1 2002 Beers’ criteria Disease: Seizures or epilepsy 

Drug: Clozapine, chlorpromazine, thioridazine, and thiothixene 

Concern: May lower seizure thresholds 

Severity Rating: High 

2 STOPP, section A, item 2 Loop diuretic for dependent ankle edema only i.e. no clinical signs 

of heart failure 

2 STOPP, section B, item 3 TCA’s with cardiac conductive abnormalities 

3 STOPP, section A, item 6 Beta-blocker in combination with verapamil 

4 STOPP, section A, item 7 Use of diltiazem or verapamil with NYHA Class III or IV heart 

failure 

5 STOPP, section B, item 9 Use of aspirin and warfarin in combination without histamine H2 

receptor antagonist (except cimetidine because of interaction with 

warfarin) or proton pump inhibitor 

Table 11 – Examples of MAC previously published in the literature. 

 

Concept Type External ontology or terminology 

Medication RxNorm, ATC, NDC 

Disease ICD, SNOMED CT 

Symptom SNOMED CT, Symptom Ontology 

Procedure CPT, ICD-9 or ICD-10, SNOMED CT 

Table 12 – Examples of external terminologies used to define concepts in MAC. 
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Figure 11 – Main concepts in the OMAC (left) and the properties of the criterion class (right). 

 

Clinical and medication rules can be combined with each other using ‘logical rules’. 

Each logical rule has a mandatory field which specifies the Boolean operator it is 

representing (‘AND’, ‘OR’, or ‘NOT’). In the example above, the clinical and medication 

rules are combined using a logical rule with ‘AND’ logic (i.e. the patient must be among 

the elderly AND have a cardiac conductive disorder to be eligible for this criterion). 

We grouped all the three aforementioned types of rules under a parent class called ‘rules’ 

(Figure 11¸ left). To represent complex statements, these rules can be nested to create 

‘rule trees’. Clinical and medication rules can only appear as the leaves of the rule tree. 

Logical rules appear as branches of the tree, and each logical rule references one or more 

rules of any type. The latter enables nested rules which allow representation of complex 

logical statements. The last example in Table 11 (item B9 from STOPP) demonstrates a 

criterion with a complex logic. This complex statement can be encoded through nesting 

different types of rules, as shown in Figure 12. 
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Evaluating OMAC 

Eight domain experts collaborated in the first questionnaire. There was no disagreement 

among experts in their responses for simple and well-defined criteria; for instance, all 

collaborators described STOPP criteria item A6 (Table 11) using similar components. We 

observed disagreements with concepts that are not explicitly defined (NED); for example, 

there was lower agreement on how the terms ‘dependent ankle edema’ and ‘no clinical 

sign of heart failure’ were categorized by different experts. When experts clarified the 

areas of vagueness using detailed explicit concepts, we noticed that although they 

clarified these vague terms using different sets of explicit concepts, they used similar 

‘types’ of concepts to describe them. For example, each expert used a different set of 

‘signs’, ‘symptoms’ and ‘paraclinical findings’ to describe the phrase ‘clinical signs of 

heart failure’, but all experts used exactly those three types of information. 

 

Figure 12 – Nesting logical statements representing a complex criterion. 
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All of the types of information that experts used to transform the vague phrases into explicit 

forms were consistent with the types of information that we had already incorporated into 

OMAC’s clinical or medication rules. In other words, OMAC had complete coverage for all of 

the criteria that were coded by the experts, and as a result we did not modify OMAC after this 

evaluation. 

Discussion 

Developing a representation format for medication appropriateness criteria is the first step 

towards developing computable, interchangeable and reusable solutions to prevent inappropriate 

medications use. OMAC formally defines the structure of explicitly defined medication 

appropriateness criteria, and allows referencing to external ontologies and terminologies when 

applicable. 

The results of our questionnaire study indicate that at least some of the medication 

appropriateness criteria are defined using vague terms that were interpreted differently by the 

experts. These criteria only provide guidelines for appropriate use of medications, and variability 

in the application of guidelines is a well-established phenomenon in health care practice; 

however, ideally the guideline itself should be interpreted identically by all of its users so that  

the variability should be only due to the specific characteristics of the patient or the settings in 

which the guideline is used, and not due to different interpretations of the appropriate care.174,175 

Although our questionnaire study has a small sample size, it signifies the need for well-defined 

medication appropriateness criteria. OMAC can facilitate this process, as encoding the criteria 

into OMAC requires translating all terms into explicitly defined medication, clinical or logical 

rules. 
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OMAC is designed to be flexible, and allow for multiple ways of defining concepts and their 

relationships. Its design does not limit it only to medication appropriateness criteria; other 

appropriateness criteria (e.g. those for appropriate use of tests and procedures) can also be 

formally represented using the same approach. Through the use of logical rules, it is possible to 

model the steps that are used to implement medication appropriateness criteria in clinical 

practice and encode these steps in a computable way. When a clinical or medication concept is in 

fact referring to a class of diseases or medications, logical steps can be used to internally define 

these sets instead of referencing external knowledge sources, which is important when defining a 

concept that does not exist in any external knowledge source. Therefore, the user has the choice 

of either specifying a medication class by referencing an external entity, or by defining external 

references to each member of that class and then combining them using an ‘OR’ logic (Figure 

13). Each approach has its own advantages: using an external reference for each of the elements 

in that class makes the local definition of the criteria more explicit, while using an external 

reference for the class itself reduces the amount of effort needed to encode the criteria in OMAC. 

Using an external ontology or terminology to define the concepts in OMAC also has the 

advantage of reusing knowledge that has been vetted by a group of experts, but a suitable 

external knowledge source may not be available in all cases, or it may not be as accurate or 

complete. In addition, not all of the concepts that are found in medication appropriateness criteria 

can be identically found in external knowledge sources. For instance, one medication 

appropriateness criteria may specify the severity levels for heart failure using the classification 

provided by the New York Health Association, but this classification may not be already defined 

in any existing disease ontologies and terminologies. OMAC flexibly supports defining these 
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complex concepts either by external links (when possible) or locally, and the users can choose 

their preferred method based on the task at hand (Figure 13). 

OMAC is different from a guideline representation language. While medication appropriateness 

criteria can be described as a special form of guidelines, guideline representation languages (e.g. 

GEM176, GLIF177, EON178, PROforma179, and SAGE,180 among others) do not enforce the 

mandate level of detail in their formalism that is needed for representing medication 

appropriateness criteria. Guideline representation languages provide a structured way to encode 

the “flow” of decisions in a guideline. However, to ensure that they can support different types of 

decision and various forms of guidelines, they provide a significant amount of flexibility as to 

how each decision step is defined. Previous research has shown that these guideline 

representation models have limitations when applied to medication related guidelines used for 

chemotherapy, and that representing medication related guidelines as rules can address this 

limitation.181 OMAC combines this rule-based approach with specific features of guideline 

representation language (such as the inclusion of meta-data about provenance of the guidelines), 

to provide a more strict structure to represent the medication appropriateness criteria than 

guideline representation models, thereby providing a common framework for encoding all such 

criteria in a similar, interchangeable way. In that sense, OMAC complements the guideline 

representation languages by providing the formalism that is necessary for a certain type of 

decisions, namely the decision about appropriateness of medications. 

One potential challenge in interchanging OMAC-encoded criteria is that a criterion may be 

encoded using an external ontology or terminology which may be different from what is 

desirable for a second user of the criterion. This challenge can be addressed by creating cross-

walks between these external knowledge sources; in many cases, this can be easily possible 
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using the Unified Medical Language System (UMLS). Finally, our study is also limited in that 

we did not conduct a large scale evaluation of the completeness of OMAC. We intend to address 

this limitation in future research. We also intend to use OMAC to develop structured 

representations of well-established medication appropriateness criteria and then export them into 

a format supported by HL7 Clinical Decision Support (CDS) standards. Namely, we intend to 

use the virtual medical record (vMR) format182 to represent the patient data, and use the 

OpenCDS platform183 to integrate the computable medication appropriateness criteria with the 

medical records and evaluate the accuracy and impact of using this approach to provide decision 

support regarding appropriateness of medications. 

Conclusions 

OMAC provides the necessary flexibility for defining concepts using external ontologies or 

terminologies whenever applicable, and through the use of rules, it enforces the necessary 

formalism to ensure that all essential concepts of the medication appropriateness criteria are 

Figure 13  – Linking concepts to external terminologies. 
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represented using a common structure. To the best of our knowledge OMAC is the first 

framework that specifies encoding the medication appropriateness criteria into a formal, 

structured form, which is necessary to incorporate a decision support component aimed at 

reducing IUM. 
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Chapter 4: Translating appropriateness criteria into the formal 

representation 

Background 

Once the formal representation for MAC was developed, the next challenge was to develop a 

workflow through which existing narrative can be accurately translated into structured form. 

However, as shown in previous chapters, the translation task is often non-trivial. Narrative 

MACs commonly contain not explicitly defined (NED) concepts and therefore translating them 

into the formal representation will require input from domain experts (pharmacists and 

clinicians). 

In this chapter, we describe a tool called MAC Annotator which was designed particularly for 

that purpose. We demonstrate that using a simple but real-time natural language processing 

approach can assist with translating of some but not all of the concepts in the MAC, and that 

using a real-time search feature that allows domain experts to browse existing biomedical 

terminologies can further facilitate the translation process. 
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Study 4: Translating MAC into structured form using MAC Annotator 

Introduction 

Medication appropriateness criteria (MAC) are narrative guidelines that are used to identify 

inappropriate use of medication (IUM). Currently, MAC are only available in narrative form, 

therefore automated implementation of them is limited. Ideally, a repository of MAC in 

computable form is needed for scaling the automated application of MAC for real clinical 

settings, but creating such a repository would be practical only if a process exists that would 

facilitate translating the MAC into computable form. 

In our previous work, we showed that each MAC is comprised of four major components: 

trigger, rules, action, and meta-data (see Chapter 3).184 While the trigger, action and meta-data 

are generally easy to represent, translating rules into computable form introduces challenges. We 

have shown that the rules can ultimately be represented as logical statements (combined using 

Boolean operators AND, OR, and NOT), and the elements of the logic consist of either clinical 

rules, medication rules, or another logical rule. The latter will allow nesting of logical rules, 

which is essential for the formal representation of the MAC. We have also shown that the 

medical rules – in which patient characteristics, indications, contraindications, symptoms, etc. 

are mentioned – and the medication rules – in which the specific therapy and other co-

medications are explained – frequently contain concepts that are not explicitly defined (NED); 

these terms may be vague (e.g. “long-term”) or context dependent (e.g. “monotherapy”) which 

need to be substituted with explicit definitions before the MAC can be completely represented in 

computable form. 
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In our previous work we also showed that using the help of experts it is possible to translate the 

MAC into a computable form and implement it to identify IUM with high accuracy.37 In that 

study, one of the rate limiting factors in the implementation of MAC was the process of 

translating the narrative MAC into computable form. Specifically, the approach used in that 

study included focus group sessions between domain experts and separate meetings between 

clinical and informatics experts. During the focus group sessions, domain experts would review 

the narrative MAC and resolve issues with NED, add any clinical details that were necessary for 

implementation of the MAC, and resolve all disagreements. In a subsequent meeting between 

clinical and informatics experts, the vetted MAC was then translated from narrative form into 

computable form. Because this process was serialized and required several iterations until the 

translation process was complete, it was not efficiently scalable. 

In this study, we developed and validated a tool we call MAC Annotator, which is an interactive 

tool for annotation of MAC. This tool allows domain experts (clinicians and pharmacists) to 

annotate all clinical concepts in the narrative MAC in a quick and easy way. This tool allows the 

domain experts to not only resolve issues with the NED, but also involves them in the translation 

of concepts into computable form, by linking them to concepts defined in existing biomedical 

terminologies. We assessed whether this novel tool and workflow would enable faster translation 

of MAC into computable form, thereby mitigating this bottleneck in the automated application of 

MAC. 

Methods 

MAC Annotator is a client-side web-based program that is programmed using the jQuery 

JavaScript library (https://jquery.com/) and the Bootstrap framework (http://getbootstrap.com/). 

It allows the user to highlight parts of the narrative MAC and to associate each part with a 

https://jquery.com/
http://getbootstrap.com/
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concept in an existing biomedical terminology. It provides basic editing capabilities to add, 

modify and remove annotations, and a real-time search feature allowing the users to browse 

concepts in existing biomedical terminologies. 

To access the existing biomedical terminologies, MAC Annotator interacts with the NCBO 

Annotator application programming interface (API) using asynchronous JavaScript and XML 

(AJAX) calls. MAC Annotator first uses the API to “pre-annotate” the narrative MAC by 

identifying mentions of medications, diseases, signs, symptoms and problems using only three 

terminologies (MeSH, RxNorm and SNOMED CT). Pre-annotated terms are then highlighted in 

the text (Figure 14) and the interface allows the user to review those annotations and verify that 

they are correct. MAC Annotator also allows users to add, modify or delete annotations, and 

facilitates this by providing a straightforward search mechanism for all terminologies available 

(Figure 15). Ideally, all of the clinical and medication concepts in the narrative MAC will be 

annotated by the end of this process. 

To evaluate MAC Annotator, we asked a group of experts to annotate a set of narrative MAC 

using this tool, and we made several measurements throughout this process. The measurements 

made in this study are summarized in Table 13. First, we measured how many of the concepts in 

the MAC could be automatically identified using the pre-annotation. To determine the accuracy 

of the pre-annotation we measured how many of the pre-annotated concepts needed to be 

modified or deleted by the annotators. We also measured how many of the concepts could only 

be annotated by the user (i.e. they were not identified in pre-annotation), and how many had to 

be defined manually (i.e. could not be associated with a concept in any existing terminology). 

Additionally, we measured the time spent for each of these activities. 
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In order to ensure that MAC Annotator facilitates achieving consensus on the definitions of the 

MAC, we also measured agreement between annotations. Each narrative MAC was annotated by 

two independent annotators, and we measured the agreement between annotators by dividing 

twice the number of concepts that were identically annotated by both annotators at the end of 

annotation to the total number of concepts identified by both annotators. This proportion can 

range between 0 to 100%, where higher numbers indicate more agreement between annotations. 

We also manually analyzed the types of disagreements in annotations. 

Results 

Six experts (including three pharmacists and three physicians) each annotated six narrative MAC 

using MAC Annotator. The average time spent to complete each annotation task was 121 

seconds, including 0.50 seconds spent for automated pre-annotation. Pre-annotation resulted in 

identification of 75 concepts, from which experts modified seven (9%) and accepted the 

remainder (91%) as correct annotations. In the end, 180 concepts were annotated in the MAC, of 

which 107 (91%) were associated to a concept in an existing biomedical terminology while the 

remainder (9%) were manually defined by the experts. The agreement between annotations was 

77.3%. 

1 Number of concepts in the MAC that could be automatically identified 

2 Number of pre-annotated concepts that needed to be modified or deleted. 

3 Number of concepts that could only be identified through manual annotation 

4 Number of concepts that could not be associated with existing standard terminologies 

5 Time spent for each annotation activity 

Table 13 – Measurements conducted in study 4. 
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Agreement between annotators was 100% for medication names, and 100% for medication class 

names. With regard to diseases and problems, agreement was exactly 50%, i.e. half of the 

concepts identified by one annotator were not identically annotated by the other annotator. The 

most common reason for disagreement was that annotators used different approaches when the 

disease was mentioned along with a modifier. For instance, one annotator broke down the phrase 

New York Heart Association Class III or IV heart failure to several concepts so that heart failure  

could be associated with the respective concept in SNOMED, while the other annotator used a 

manual definition for the entire phrase and therefore did not link it to any concepts in existing 

biomedical terminologies. Similarly, one annotator provided a manual definition for the term 

uncomplicated pulmonary embolus while the other annotator mapped pulmonary embolus to 

SNOMED and provided an explanation for the modifier uncomplicated. 

For all context-dependent terms, annotators were asked to provide a manual definition that would 

allow substituting the concept with a set of context-independent terms in a second round of 

annotations. For instance, the modifiers uncomplicated (as a modifier before a disease name) or 

monotherapy (which can be translated as “excluding other therapies for the same disease”, where 

the other therapies change for each disease) could be annotated with a manual definition listing 

all the complications and all the other therapies, respectively. While some annotators provided 

such definitions, others provided abstract definitions (e.g. defining uncomplicated as “with no 

complication”) that would be context-agnostic but not objective or computable. 
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Figure 14 – Screenshot of MAC Annotator after completion of pre-annotation. 

 

 

 

Figure 15 – Screenshot of MAC Annotator during manual annotation. 
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Discussion 

MAC Annotator facilitated the annotation of MAC through the pre-annotation step, and by 

providing an easy to use, interactive interface for searching existing biomedical terminologies for 

relevant concepts. It also helped identify concepts that were not well-defined in the original 

narrative MAC. 

Our results indicate that MAC Annotator can facilitate rapid annotation of MAC by domain 

experts, without the need to use any other software. Our results also indicate that different 

experts may interpret the MAC inconsistently when the MAC contain concepts that are context-

dependent or not well-defined. 

Traditionally, annotation of biomedical text is performed by a small number of expert annotators 

over extended periods of time.185 Previous work on creating structured versions of decision 

support rules also relies on manual annotation.186 MAC Annotator may help this process by 

speeding up the translation of these narratives into structured form. Pérez-Pérez et al have 

recently conducted a thorough review of public and well-known annotation tools used for 

biomedical text annotation.187 Compared to existing tools, MAC Annotator has the advantage of 

pre-annotating the text in a time-efficient manner with high accuracy, allowing annotators to 

define terms that are not explicit, and platform-agnostic design which doesn’t require any 

software installation by the user. 

This work is not without limitations. First, we only conducted one iteration of annotations. 

Disagreements in annotations could be resolved through multiple iterations of annotation, as we 

have shown in our previous work.184 However, the scope of this study was limited to facilitating 

each annotation session, and not the consensus building process across iterations of annotation. 
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Second, MAC Annotator can only access those biomedical terminologies that are available 

through NCBO Annotator. While this includes most of the commonly used biomedical 

terminologies (e.g. SNOMED, MeSH, RxNorm, or ICD-9) it does not include all existing 

biomedical terminologies, and it is possible that certain concepts in the MAC could be associated 

with concepts that are in the other terminologies. Third, MAC Annotator currently only defines 

the links to the concepts in the target terminology; ideally, the link should be expanded to also 

include the unique concept identifier for that concept as included in the Unified Medical 

Language System (UMLS) when possible. This can be addressed in future versions of the tool. 

Finally, the sample size in this study was small, and it is possible that other challenges with 

annotation of MAC might have been identified if a larger collection of MAC was analyzed. 

However, we have manually evaluated larger collections of MAC in our previous work and the 

challenges identified in the current study are in alignment with those identified in our previous 

studies.37,184 

Conclusions 

MAC Annotator facilitates the translation of MAC into structured form. It allows domain experts 

to more easily annotate the medical concepts in narrative MAC, and substitute the NED concepts 

with objective definitions. The use of a real-time NLP approach along with an interactive design 

enabled annotation of concepts in only a few minutes per MAC. 
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Chapter 5: Deploying computable appropriateness criteria 

Background 

Deploying computable appropriateness criteria can be discussed from three different 

perspectives. First are technical issues with deployment. While a formal representation of the 

appropriateness criteria is a necessary piece for deploying the MAC in an automated way, the 

data regarding the patient and the medication should also be delivered in a compatible format so 

that the appropriateness criteria can be applied to the data. This can be as simple as restructuring 

the data from one format to the other, or as complex as having to abstract certain variables from 

the data, e.g. using phenotype definitions or other complex information abstraction approaches. 

The second issue is with regard to deployment of the appropriateness criteria in a manner 

consistent with the clinical workflow. Review of literature shows that many methods of delivery 

have been studied for implementation of appropriateness criteria, both in a manual and an 

automated way (for citations please see Chapter 2). Last but not least, once the appropriateness 

criteria are deployed, their impact needs to be measured. These measurement should not only 

include verifying the accuracy of the appropriateness criteria in action, but also focus on changes 

in various process and clinical outcomes. 

Regardless of how the MAC are implemented, one of the key challenges in their implementation 

is to acquire the clinical data about the patient that are necessary for the rules in the MAC to be 

computed. This includes knowing where the information can be found and also knowing how to 

identify it in that source. For example, to implement a MAC targeting the use of antihypertensive 

drugs in the elderly, various types of information may need to be acquired and made available to 

the execution engine that runs the MAC; these include patient age (which can be calculated from 
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patient’s date of birth as long as that is available and is in structured form), information 

regarding the administration of the specific medications or classes that are subject to that MAC 

(which may include structured data from the EHR as well as unstructured data such as mentions 

of the medication in visit notes), and establishing the fact that the patient has hypertension.188 

The latter may require applying some form of phenotyping algorithm that would utilize various 

forms of structured and unstructured data (including problem lists, claims data, and observations) 

to accurately identify presence of hypertension. 

While the challenge of identifying and abstracting clinical data (including the use of phenotyping 

approaches) deserves tremendous attention, it is beyond the scope of this research. Nevertheless, 

to demonstrate that given suitable data extraction methods, it is possible to implement the MAC 

with high accuracy, we conducted a study in which the MAC for a single group of medications 

was used in computable form to identify IUM and the results were compared with manual chart 

review by the experts (Study 4). We used a very simple approach for identifying clinical data, 

which only relied on narrative reports. We also did not use the formal representation based on 

OMAC, but rather simply used a list of indications in computable form. However, we 

demonstrated that even a simple approach like this can achieve high accuracy. 

A number of automated approaches have been studied for reducing IUM, and achieved various 

levels of success.89 The mostly commonly used method is to provide decision support using 

electronic alerts within the CPOE; this method has been associated with variable levels of 

success in reducing IUM.89 Indication-based prescribing is another approach which relies on a 

mandatory “indication” field in the CPOE system; this approach has also been inconsistently 

effective in reducing IUM.80 The sole focus of these automated solutions is always the 

prescriber, and they all share an interruptive approach: the prescriber is interrupted during the 
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process of making prescriptions and required to address an alert about a potentially inappropriate 

prescription or specify the indication for said prescription. 

A review of the literature on studies aimed at reducing inappropriate medication use shows that 

while feedback to the provider is a common component in these studies, it does not need to be 

provided in an interruptive way at the time of prescription. “Academic detailing” is an alternative 

approach, which is carried out as part of the workflow of patient care, but not necessarily during 

the time prescriptions are made. It is a pharmacist-mediated approach that aims at educating 

providers towards more appropriate use of medication.82 Rigorous studies have proven that 

pharmacist intervention is an effective approach in reducing inappropriate prescribing189 and 

multiple studies have shown that academic detailing can successfully reduce IUM.67,85,190 

Developing automated interventions for reducing IUM can be challenging for at least two 

reasons: impact can vary among different patient populations, and a fully automated process can 

be difficult because the information necessary for this process may not readily available in a 

computable form. 

While inappropriate use of medications can increase the potential for harm and excessive cost in 

any patient, its effect may be difficult to measure among heterogeneous patient populations. One 

approach used in more recent studies is to narrow the focus of study to patients who are subject 

to polypharmacy, especially the elderly.191 Polypharmacy is commonly defined as receiving five 

or more medications.192–194 By focusing on older adults that are subject to polypharmacy, these 

studies target the portion of population that are more likely to suffer from negative impacts of 

IUM, including drug-drug interactions, adverse drug reactions and increased risk of 

hospitalization.170–172 
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Developing and implementing a fully automated solution for reducing IUM is difficult, because 

much of the information that needs to be incorporated into the automated process is not readily 

available in a structured form that computers can understand. As an example, despite the wide 

use of EHR systems that allow the storage of patient’s problems in a structured problem list, 

these problem lists are often incomplete, inaccurate and out of date.133,195 One potential solution 

to this problem is to use a semi-automated process, including an automated screening step 

followed by manual verification by experts. In the case of IUM in the inpatient setting, this can 

be achieved by using an automated approach to identify the patients that are potentially subject 

to IUM, and presenting this information to pharmacists to review and take action if necessary. In 

effect, this approach combines the benefits of an automated informatics solution and the process 

of “academic detailing”. Rigorous studies have demonstrated that pharmacist intervention is an 

effective approach in reducing inappropriate prescribing,189 and the semi-automated process 

involving pharmacists is also previously evaluated in one study, where it was effective in 

reducing medication underuse.196 However, this hybrid method has not been studied in reducing 

overuse or other types of IUM. 

It is critical that approaches used to reduce IUM are specific, and can capture the “alternative” 

forms of IUM that may take place when one specific form of IUM is subject to an intervention. 

For example, in a retrospective analysis of the effects of an electronic alert on reducing 

inappropriate use of PPIs in the intravenous (IV) form, we not only measured the reduction in the 

rate of intravenous PPI use but also measured if the total PPI use was changed, and whether a 

switch to other antacid drugs (namely, histamine 2 receptor blockers) happened after the 

initiation of the intervention.197 While we observed a decrease in the proportion of PPI orders 

made for the IV form (Figure X), the number of IV PPI orders that were appropriately indicated 
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was not significantly higher after the implementation of the alert (88.0% indicated after vs 74.0% 

before; p = 0.07) and we did not observe any concurrent change in the utilization of histamine 2 

receptor blockers in the same patients. 

On the back-end, various methods can be used to implement the appropriateness criteria which 

would then feed the information into any of the delivery methods described above. Because 

MAC can be inherently described both as a “guideline” for medication use and as a tool for 

“decision support”, we analyzed how guideline execution methods and decision support systems 

can be used to implement the MAC. Specifically, we looked at the Guideline Execution Engine 

(GLEE) and OpenCDS systems, as described in Study 5 below. 
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Study 5: Benchmark implementation of structured MAC 

Introduction 

Previous studies have shown that proton pump inhibitors (PPIs), antidepressants, antipsychotics, 

statins, non-steroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase-2 (COX-2) 

inhibitors are subject to widespread overuse.4–6 For the purpose of this study, we focused on the 

overuse of proton pump inhibitors (PPIs). PPIs are a group of gastric acid-suppressing drugs with 

high potency. Established indications for use include eradication of Helicobacter pylori in 

patients with peptic ulcers, prevention of gastric ulcers induced by NSAIDs, treatment of gastric 

ulcers, Zollinger-Ellison syndrome, acid-induced esophagitis, Barrett’s esophagitis and severe 

gastroesophageal reflux disease (GERD).7 Earlier studies showed that PPIs are more potent and 

effective than other acid-suppressing drugs;8,9 consequently, PPIs have gradually replaced 

histamine receptor antagonists (H2RAs) over the last two decades.10,11 In 2009, PPIs ranked third 

in the sales of medicines in the United States (US); in 2010 esomeprazole (Nexium®) was 

second in total sales among prescription drugs.12,13 In the US, some PPIs are now available 

without prescription, and their use is not reflected in the aforementioned statistics. 

PPIs are frequently overused and compliance to guidelines of appropriate use has been reported 

to be as low as 31-33%.4,14,15 Aside from the direct costs associated with overuse,16,17 serious 

adverse effects have been reported from long-term acid suppression with PPIs. Several studies 

have demonstrated associations between PPIs and Clostridium difficile colitis.18–20 Long-term 

use of PPIs may also lead to Vitamin B12 malabsorption,21 bone fractures,22–24 iron deficiency,25 

interstitial nephritis,26,27 and gastric carcinoids,28 although these associations are not supported 

by strong evidence.29 PPIs may increase the risk of pneumonia,30 and may decrease the 

effectiveness of clopidogrel – a frequently used anti-platelet agent – to cause fatal cardiovascular 
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events.31–33 Most of these side effects of PPIs arise after long-term use of these drugs; however, 

PPIs are very frequently used for long periods.4,34 Recent guidelines on PPI use include warnings 

regarding these long-term effects,7 and in February 2012 the Food and Drug Administration 

issued a warning specifically regarding the association between PPIs and C. difficile colitis.35 

Overuse of PPIs has been studied by manual review of patient records or via patient 

interviews.4,11,14,15,36,37 In all these studies, the primary method has been to rule out any 

established indication for PPI use, thereby identifying patients receiving the drug without an 

appropriate indication. This requires collecting a list of all existing conditions and diseases the 

patient has, and comparing it to the set of established indications. Although conditions and 

diseases affecting a patient can be recorded in the electronic health records (EHRs) in a 

structured form by means of electronic problem lists, studies have shown that these sources of 

information are neither comprehensive nor reliable.38–41 Thus the information needed to make the 

decision about the appropriateness of use of PPIs must be extracted from narrative, unstructured 

notes in a process that is typically difficult to automate. This issue is not unique to studies of 

overuse, and has been a well-known limitation for using electronic health records in clinical 

decision support (CDS).42,43 

Natural language processing (NLP) can be used to convert narrative information into a 

computable format and has been proven to be accurate and efficient in clinical studies.42,44 

Previous studies have shown that using an NLP engine can assist with automated generation of 

problem lists for patients with high accuracy.45,46 This study develops a framework for automated 

identification of patients who are potentially subject to medication overuse and applies the 

framework to the overuse of PPIs. We also aim to identify the potential challenges in 



 

104 

 

generalizing this framework to overuse associated with other groups of medications or other 

types of treatments. 

Methods 

Our framework consists of two arms (Figure 16): a knowledgebase of established indications for 

using a medication, and a list of current problems and conditions that a patient has. Here, we 

describe each of these components in more detail. Although we describe the process for the 

specific case of PPIs, the framework can similarly be used for other groups of medications. 

To develop the knowledgebase of indications (Figure 16, top-left), we began with collecting a 

list of medical conditions in which PPIs are used by reviewing drug labels and clinical 

guidelines. We also analyzed the reasons for PPIs use reported by healthcare professionals in the 

Food and Drug Administration (FDA) Adverse Effects Reporting System (FAERS).47 While the 

primary purpose for FAERS is to report adverse effects, one of the data fields in submissions to 

FAERS is the intended use of medication reported; we used this information to generate a list of 

common uses for PPIs. We also retrieved the indications listed for PPIs in the National Drug File 

Reference Terminology (NDF-RT).48 
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Figure 16 – The framework for identifying overuse of a medication. 

 

Subsequently, a committee of three attending faculty gastroenterology specialists reviewed the 

list of possible indications with respect to the scientific evidence behind them, and selected a 

smaller list of all appropriate on-label and off-label indications for PPI use in adults, which we 

refer to as “established indications”. Each of the established indications was mapped to a single 

corresponding concept in the Unified Medical Language System (UMLS). The UMLS is a 

compendium of numerous controlled vocabularies in the biomedical sciences where each 

concept (e.g. a disease, a drug, a procedure, or a gene) is identified using a unique identifier.49 

Mapping the indications to concepts in the UMLS ensures that these indications are coded in a 
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consistent form that can also be used to represent patient problems in the next step. The list of 

established indications of PPI use and the respective UMLS concepts is shown in Table 14. 

The other component of our framework is to collect current problems for patients who are 

receiving the medication in question (in this case, PPIs) using the EHR (Figure 16, top-right). 

We identified such patients by searching records of medication orders in the EHR, and retrieved 

the medical records collected for those patients during their hospitalization period. Depending on 

the availability and quality of the EHR data, patient problems can be obtained from structured 

problem lists or from narrative reports. In our data set, comprehensive and reliable problem lists 

were not available; therefore, we used narrative reports as the only source for obtaining patient 

problems. For the purpose of this study, we only used discharge summaries, and we used the 

MedLEE (Medical Language Extraction and Encoding) NLP system to extract the concepts in 

the notes. MedLEE is a rule-based NLP program that is especially designed to parse clinical 

texts, i.e. it takes natural language clinical text as an input, and represents the data in a 

standardized computable form as the output to facilitate accurate retrieval of information 50. It is 

capable of identifying negation and temporality identifiers, and of mapping the medical concepts 

found in the notes to the UMLS concepts. We generated a list of patient’s current conditions 

coded into UMLS concepts, taking care to exclude negated conditions, family history, and 

conditions strictly happening in the past (i.e. a past medical history of an acute disease was not 

considered as a current problem, but if a chronic problem such as diabetes mellitus was 

mentioned in the past medical history, we included it in the patient’s current problems). 

In a pilot study, the accuracy of our system in identifying indications in a training set of notes 

was measured by comparing it to manual review by the corresponding author. We estimated our 

method has an agreement of 75% in predicting overuse (95% CI = 63 – 86%), and used this 
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information in sample size calculation for the current study. Assuming a null accuracy of 50% 

(pure chance) and using sample size calculation for proportions, we determined that a total 

sample size of 115 was needed to be able to identify accuracy of 0.75 using a type-I error 

threshold of 0.05 and a statistical power threshold of 0.80. Since some of the exclusion criteria 

(see below) could only be assessed after the sampling was done, to allow for possible exclusions 

and subgroup analyses without critical decline in statistical power, we used a sample size of 200. 

The sample used in this study did not contain any of the records or patients included in the pilot 

phase. 

We used a computer program to randomly select 200 patients who were admitted to the New 

York Presbyterian Hospital in 2010 and had one or more orders to receive PPIs during 

admission. For patients with multiple hospitalizations in 2010, we used a computer program to 

randomly choose one of the hospitalizations in which PPIs were prescribed, and discarded the 

others. We used this data to evaluate our framework. Patients whose current conditions did not 

include an established indication for PPI use were classified as “overuse candidates”. We call 

them candidates because establishing overuse is not completely possible by reviewing discharge 

summaries alone (even by manual review) since a valid indication might not be documented 

properly in the discharge summary. We used a single inclusion criterion: to have an order in the 

EHR to receive any PPI during their hospitalization. Our exclusion criteria included not having a 

discharge summary recorded in the EHR (that is because discharge summaries are usually not 

recorded for hospitalizations shorter than two days at our center), history of intubation during the 

hospitalization, and age less than 18 years. 
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CUI Condition 

C0013295 Duodenal ulcer 

C0013298 Duodenitis 

C0013299 Duodenogastric reflux 

C0030920 Peptic ulcer 

C0030922 Peptic ulcer hemorrhage 

C0151966 Duodenal ulcer hemorrhage 

C0341245 Erosive duodenitis 

C0854225 Duodenal ulcer, obstructive 

C2741638 Stress ulcer 

C0004763 Barrett's esophagus 

C0014868 Esophagitis 

C0014869 Reflux esophagitis 

C0017168 Gastroesophageal reflux disease 

C0151970 Oesophageal ulcer 

C0155789 Oesophageal varices hemorrhage 

C0267055 Erosive esophagitis 

C0267075 Esophagitis ulcerative 

C0013395 Dyspepsia 

C0017181 Gastrointestinal hemorrhage 

C0038358 Gastric ulcer 

C0079487 Helicobacter infection 

C0235325 Gastric hemorrhage 

C0237938 Gastrointestinal ulcer 

C0267158 Reflux gastritis 

C0267166 Gastroduodenitis 

C0341163 Gastric ulcer perforation 

C0341164 Gastric ulcer hemorrhage 

C0343378 Helicobacter gastritis 

C2010560 Gastritis hemorrhagic 

C2243088 Gastritis erosive 

C0041909 Upper gastrointestinal hemorrhage 

 

Table 14 – Reference list of established indications for proton pump inhibitors. 

 

A gastroenterologist manually reviewed the notes and identified whether an established 

indication was present. A gastroenterology fellow independently reviewed 40 of these notes so 

that we could assess inter-rater reliability. We facilitated the review process by providing the 
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experts with an interface that helped them browse the notes in a secured and encrypted 

environment and record the indications they found in the notes using a free-text input box. Our 

reviewers were not involved in the development of the framework. We measured inter-rater 

reliability using concordance and Cohen’s Kappa.51 We finally compared the output of the 

framework with the results of manual review by the experts to calculate the sensitivity and 

specificity of our method. The Institutional Review Board of Columbia University approved the 

protocol of this study. 

Results 

From the original 200 notes selected for manual review by experts, 23 were excluded because 

they were associated with children. We also excluded 40 notes because they were associated 

with patients with a history of intubation. There is evidence suggesting that PPIs may be 

beneficial for preventing stress ulcers in patients receiving prolonged intubation 52, but 

guidelines are vague and the decision is generally made on a case-to-case basis. All remaining 

137 notes were manually reviewed by experts and categorized by them as either “appropriate 

use” or “overuse candidate”. The inter-rater reliability of two reviewers was high (agreement = 

92.1%, Cohen’s κ = 0.773). Table 15 summarizes the baseline characteristics of patients 

included in this study. It should be noted that distribution is impacted by the choice of PPI 

recommended by the hospital formulary. 

Out of all 137 notes reviewed, only 43 contained an indication based on manual review. We 

measured the accuracy of the system using the well-known performance metrics sensitivity and 

specificity. Sensitivity is defined as TP/(TP+FN) where TP is the number of times the system 

correctly found that there is an appropriate indication, and FN is the number of times the system 

did not find an appropriate indication but manual review did. Likewise, specificity is defined as 
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TN/(TN+FP) where TN is the number of times the system correctly identified the absence of 

appropriate indications, and FP is the number of times the system found an appropriate 

indication but manual review did not. 

Demographics 

 

Age (years) 65.5 (19.8) 

Gender 

    Female 

    Male 

 

79 (58%) 

58 (42%) 

Ethnicity 

   African-American 

   Caucasian 

   Hispanic 

   Other* 

 

17 (12%) 

39 (28%) 

32 (23%) 

49 (36%) 

Medication use 

 

Esomeprazole 116 (85%) 

Pantoprazole 6 (4%) 

Omeprazole 2 (2%) 

Lansoprazole 1 (1%) 

Multiple PPIs 12 (9%) 

Total 137 (100%) 

Table 15 – Baseline characteristics of patients included in the study. 

 

Our framework identified indications in 37 of the notes and in comparison to the manual review 

it had a moderate sensitivity (74%, 95%CI = 59% – 86%) and a high specificity of (95%, 95%CI 

= 87% – 98%). In cases that were not classified as overuse candidates, the number of indications 

returned by our framework ranged from 1 to 4 (mean = 1.43, standard deviation = 0.74, median = 

1, mode =1). In 28 cases, only one indication was returned. In all true positive cases, the 

indication documented by manual review was correctly returned by the framework. There was no 

difference in the number of indications returned for true positives versus false positives (Mann-
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Whitney P-value = 0.3491). The main reasons for receiving PPIs included GERD (17 cases), 

gastrointestinal hemorrhage (13 cases) and peptic ulcer (4 cases). 

The mean ± standard deviation of the time spent by manual reviewers reviewing each discharge 

summary was 83 ± 52 seconds. Processing the same discharge summaries using the NLP system 

took 1.88 ± 1.38 seconds, and the matching query took 27 milliseconds on average (all 

measurements were done on a commodity server with 43 GB of memory and one 4-core 2.93 

GHz processor). 

Discussion 

We were able to create a framework using NLP that can be used for automated identification of 

established indications of medication use in narrative reports with high accuracy, and an 

automated framework to identify overuse candidates. The success of our approach is a product of 

the comprehensiveness of the list of indications, accuracy of extracting patients’ problems, 

completeness of documentation, and ability to translate the established indications determined by 

clinicians into unique concepts in the knowledgebase. 

Identifying the reasons for the prescription of a medication using NLP was previously studied by 

multiple groups of researchers as part of the Institute for Integrating Biology and the Bedside 

(I2B2) “medication extraction challenge”. Studies conducted in response to that challenge all 

showed a low performance in extracting the reasons for prescription of medications, with their F-

measure ranging from 0.03 to 0.525.53,54 In contrast, our system was able to identify the 

indications for PPI administration in adults with high sensitivity and specificity (F-measure = 

0.80). While our results are not directly comparable with those studies because they are obtained 

using different data sets, we believe the higher accuracy of our approach has in part resulted 
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from intentionally restricting our search for certain concepts (i.e. the list of established 

indications). Another study in which the search for medication-problem associations was limited 

to those previously described in a knowledgebase also yielded comparable results (sensitivity of 

67.5% and specificity of 86%).48 

Given the subjective nature of the task as illustrated by the inter-rater agreement of 92% on the 

reference standard, any system would be unlikely to be able to perform with 100% accuracy. 

Therefore, we further analyzed the output of our framework to investigate the false positives. We 

found that at least in 2 of the 5 false positive cases, a second reviewer could interpret the 

indication found by the system as appropriate. Other reasons for false positives included 

differential diagnoses that were suggested in one section of the note (e.g. “patient complained of 

epigastric pain during admission, likely secondary to GERD”) and ruled out later in the note, 

indicating that more complex reasoning concerning the section of note where the information 

occurred would be required to determine appropriateness of medication use. Another cause of 

error was the NLP errors in interpreting temporality (e.g. history of gastritis from several years 

ago was incorrectly identified as an ongoing chronic event). 

Similarly, false negatives were predominantly cases in which a manual reviewer documented an 

indication that was not in the original list of appropriate indications (e.g. hiatus hernia, 

coagulopathy, post-surgical ileus, and gastric outlet obstruction), an inevitable consequence of 

lack of expert agreement on an inclusive list of indications. Most of the remaining false negatives 

were the result of NLP limitations; for instance, the term “GI ulcer” was not recognized as 

“peptic ulcer disease” because it was not obvious to the NLP system that the location of bleed 

was in the upper gastrointestinal tract (as determined by the expert reviewers). Additionally, in 

some cases the decision about the appropriateness of PPI use was unusually too complex to be 
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implemented in our framework. For instance, in one patient who had a low risk for gastric ulcer, 

the expert reviewer determined that prescribing a PPI prophylactically would be appropriate 

because that patient was a Jehovah’s Witness who would be likely to refuse transfusions if 

significant gastric bleeding occurred. 

There were some limitations in our work. First, we processed only discharge summaries for 

possible indications. Further indications might be revealed in other documents such as admission 

notes or progress notes. Some researchers have also expanded the information used to identify 

indications by complementing the data from medical records with data collected directly from 

the patients, for example through interviews.4 While this may serve to eliminate under-

documentation of patient’s conditions, it introduces recall bias and precludes automation. 

Our method is unable to distinguish overuse from under-documentation. While the majority of 

indications for PPI use are severe and significant events (such as gastrointestinal bleeds, or 

peptic ulcers), one can still expect that some less serious indications (e.g. GERD) may not be 

documented in the medical records if they are not the primary reason for admission, or if the 

patient started receiving PPIs long before they were admitted to the hospital. However, this issue 

also affects manual review of the notes by experts, and should not affect the results of our 

evaluation. Last, our method currently ignores indirect indications; for instance, if the PPIs were 

prescribed solely to prevent or diminish the gastro-irritant effects of a co-prescribed medication 

(e.g. NSAIDs, steroids, aspirin, or alendronate) our framework would mark this as overuse. 

The performance of the system could be improved by promoting better documentation, 

extending the list of indications to include less frequent indications, and introducing more 

complex logic into the process of identifying patient problems. We also anticipate that the 

performance would be higher if structured problem lists were in use and were kept up to date.  In 
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future work, we will try to address these limitations and demonstrate the generalizability of this 

framework by applying it to other cases of overuse. 

In summary, our automated framework compares favorably with expert manual review. In the 

future, this framework could provide clinical decision support for identifying overuse of 

medications both to reduce overuse and to encourage better documentation of indications.  
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Study 6: Utilizing the Guideline Execution Engine (GLEE) and OpenCDS for 

implementation of structured MAC 

Background 

Clinical practice guidelines are intended to improve the quality and cost effectiveness of patient 

care by fostering best practices.198 Similarly, medication appropriateness criteria (MAC) intend 

to foster appropriate use of medications in ways that would lead to improve outcomes and reduce 

cost and harm. Therefore, it can be argued that MAC can be viewed as a special form of clinical 

guidelines. Under this proposition, it would be reasonable to consider representing the MAC 

using guideline representation languages. 

In this study, we intended to assess whether it is possible to represent the MAC using guideline 

representation languages, and if so, would representing the MAC in this form be efficient. We 

conducted this study using two guideline modeling methodologies, namely the Guideline 

Interchange Format (GLIF) Version 3199 and OpenCDS.183 These models were selected because 

we wanted to assess issues with representation of MAC as well as issues with implementation of 

MAC, since the latter is only possible if an interpreter for the guideline representation language 

is available. There is a proprietary interpreter for GLIF called Guideline Execution Engine 

(GLEE).177 In contrast, OpenCDS comes with a set of free and open-source tools for 

implementing the decision support guidelines. We had access to both these executables therefore 

we focused our study to guideline modeling methodologies that have the potential to be 

implemented in real clinical settings. 
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Methods 

We first analyzed the examples of guidelines that are bundled with GLIF version 3, as well as 

those described in the numerous publications about this resource.177,198–200 Subsequently, we 

assessed if and how MAC can be implemented into GLIF format. Our analysis focused on 

whether all aspects of MAC can be defined using GLIF, i.e. we identified which aspects of MAC 

are not readily captured by GLIF and therefore would require extending GLIF. Next, we 

analyzed how GLEE can be used to implement such guidelines. Here, our analysis focused on 

whether it is possible to link GLEE to an arbitrary data source, and specifications of the data that 

needs to be provided to GLEE. 

Similar steps were used for analyzing OpenCDS. We first started by analyzing the decision 

support rules that were already bundled with OpenCDS. Next we assessed whether all aspects of 

MAC can be defined using OpenCDS concepts and predicates. We also assessed how OpenCDS 

can connect to an arbitrary data source and the specifications of the data the needs to be provide 

to it. 

Results 

Analysis of GLIF 

In GLIF, guidelines are represented by nesting steps of a guideline where each step may 

constitute an action, decision, or branching/synchronization. When the steps are linked, they 

form an algorithm and each guideline itself may comprise of one or more algorithms 

(subguidelines). Figure 17 shows the components of the GLIF representation. 
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Figure 17 – Components of Guideline Interchange Format (GLIF).  

By design, GLIF focuses only on representing the guideline steps, and therefore it only defines 

the steps in the highest level (e.g. only discriminating between “decisions” and “actions”). For 

those steps that involved input of data (e.g. Patient State step and Decision step), a “variable” is 

defined in GLIF which would be later linked to a data source within GLEE. GLEE plays two 

roles: it walks through the guideline and executes each step (which includes executing the 

branching and synchronization steps), and it also reads the input from a data source and returns 

the output back to a similar data source. In its current version, GLEE can only read from and 

write into plain text files. For each variable defined in the guideline, one plain text file with a 

similar name must be placed in the appropriate directory. GLEE will take the contents of that file 

as an input; it can also apply simple arithmetic functions (such as equality, addition, subtraction, 

etc.) for numeric variables. Through the use of branching steps in GLIF, GLEE can also apply 

simple “AND” and “OR” logic to the steps. However, it cannot perform any higher level 

predicates (such as aggregation) nor does GLIF support any specification for the type of the data 

(e.g. it does not discriminate diagnoses from medications, and doesn’t verify if the type of 
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information passed in a variable matches the desired type). From GLEE’s perspective, variables 

can only contain numbers, strings or true/false statements. 

Figure 18 shows how GLIF could be used to represent the same criteria that were used in Study 

4 to identify inappropriate use of PPIs. The guidelines starts with a patient state step that is 

triggered when the patient receives an order for a PPI medication. The next step will search the 

patient records to identify any appropriate indications for PPI use. This is followed by a decision 

step which checks if at least one appropriate indications has been found. If none is found, an 

action step will be executed that will mark the patient is potentially subject to overuse of PPIs. 

Figure 18 – GLIF representation for guidelines for identifying IUM. 
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The decision step in the guideline above can be further represented using a sub-guideline that 

defines the indications and combines them using the “OR” operation. However, GLIF doesn’t 

enforce any specifications as to how the indications should be defined, and how the medication 

ordering event should be defined. For instance, if a more sophisticated guideline requires 

specifying the dose form or strength, GLIF does not have any built-in solutions for representing 

these modifiers and therefore needs to be extended to support them. 

OpenCDS takes a different approach in several ways. First, OpenCDS does not use a custom 

guideline representation model for medical concepts; instead, it uses an existing “business rule 

management” system called Drools,201 which is written in Java, and extends it to support medical 

concepts as input. Similar to GLIF and other guideline representation models, Drools allows 

defining a flow of decisions, with branching and synchronization steps. The Drools-based 

flowcharts in OpenCDS are encoded and executed using jBPM, which is an open-source 

workflow engine written in Java. Each of the steps in the workflow will then be linked to one or 

more “rules” that are specified using domain-specific language (DSL); the DSL is also adopted 

from Drools, but they have been expanded in the OpenCDS to also accept concepts from the 

OpenCDS terminology. 

Every medical concept is locally defined in an instance of the OpenCDS terminology. This 

terminology will also provide mappings to other known terminologies. This is notably different 

from GLIF where the only three data types (numeric, Boolean or string) are accepted as input. In 

OpenCDS medications, diseases, classes of drugs, patient characteristics, etc. can be defined 

using the OpenCDS terminology. OpenCDS also comes with an execution engine. This 

execution engine is capable of accepting data using web service calls using the Simple Object 

Access Protocol (SOAP). On the backend, the rules are compiled and stored as “knowledge 
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modules” each having a unique identifier. On the front-end, the program that accesses the web 

service should specify which version of which rule is intended to be called. The clinical data is 

also enclosed with the web service call using the Virtual Medical Records (VMR) format,182 

which is a standard data model for supporting clinical decision support that is sponsored by 

Health Level 7 (HL7). OpenCDS server can then parse the input in VMR format to extract all 

clinical data and extract the variables necessary for executing of the specified rules. 

As an example, to execute the criteria from Study 4 using the OpenCDS tools, first all medical 

records needed to be converted into the VMR format. Next, the criteria needed to be defined 

using DSLs in the OpenCDS. Unlike GLIF, the DSLs in OpenCDS do have built-in support for 

certain modifiers (such as time interval between two events), but they still do not have 

specifications for dose form, route, strength etc. In fact, the OpenCDS vocabulary only defines 

the medication as the main ingredient level, therefore its application for specific dose forms and 

strength requires expanding the vocabulary to contain those concepts. 

Discussion 

Our analysis of GLIF shows that while it can support representing the “flow” of decisions of a 

MAC, it does not provide the necessary level of detail that would be needed to represent MAC in 

structured form. In other words, because GLIF does not use any data models for clinical 

concepts, representing MAC using GLIF would require selecting such data models, and 

expanding GLIF specifications to include references to those data models. GLIF and GLEE will 

not be able to provide any data type validation beyond basic types, and unlike OpenCDS, GLEE 

is not capable of parsing clinical data in a conglomerate format (such as VMR). In summary, to 

encode MAC using GLIF and execute them using GLEE, two additional steps would be 

necessary: expanding GLIF to include specifications for the components of MAC, and adding 
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another layer between GLEE and the clinical data which would carry out the abstraction of 

clinical data and extraction of the variables used by GLEE. Arguably, the same amount of work 

can lead to creation of a novel, more consistent guideline execution system which completely 

supports representation and implementation of MAC. 

Our analysis of OpenCDS indicates that it has several advantages over GLIF, namely the use of a 

data model and the ability to process clinical data in form of VMR reports. However, because 

most clinical data repositories currently store data in formats other than the VMR format, using 

OpenCDS for implementing MAC will require adding an additional layer to the process which 

would access the clinical data in its original format and transform it into VMR format. Similarly, 

the output of OpenCDS is also in VMR form and the interfacing program will require to use 

some form of abstraction to identify the actionable pieces of this output (e.g. identify a textual 

recommendation and show it in an alert in the EHR). Finally, while OpenCDS allows for 

specifying various clinical concepts (such as medications, diseases, dose forms, etc.) these 

specifications are not part of the OpenCDS itself, but they are defined as DSL rules which then 

connect those concepts to the appropriate VMR data type. This means to encode MAC into 

OpenCDS in an efficient way, first a library of rules that define all of the elements of MAC 

(essentially, a DSL representation of OMAC) should be encoded into OpenCDS form and then 

used to represent the MAC itself.  

Overall, our analysis indicates that both GLIF and OpenCDS provide a solid abstraction at the 

higher level but do not provide the necessary details for representing and implementing MAC. In 

both cases, additional steps are necessary to augment these representations to support MAC. 



 

122 

 

Limitations 

The major limitation of this study is that it only uses one guideline modeling methodology 

(GLIF), and it could be argued that the results would differ using another methodology. 

However, a review by Peleg et al202 shows that six different commonly-used guideline modeling 

methodologies (namely, Asbru203, EON178, GLIF199, GUIDE204, PRODIGY205, and 

PROforma179) all use similar components to represent the actions, decisions, branching, etc. and 

therefore our results are potentially generalizable to those methodologies as well. 

Conclusions 

One of the key limitations of both GLIF and OpenCDS in our use case is that the components of 

MAC are not readily defined in either model. However, this can be addressed by using OMAC. 

An additional challenge is that both GLIF and OpenCDS expect the input data (clinical data) to 

be provided in a very specific format (i.e. plain text files containing variable values, and VMR 

artifacts, respectively). Therefore implementation of MAC would require creating tools that 

would translate the clinical data into the format accepted by the GLEE or OpenCDS. This is a 

classical interoperability challenge and falls outside the scope of this thesis.  
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Chapter 6: Conclusions and future work 

Conclusions 

This thesis investigates the problem of IUM and methods needed for automated identification of 

IUM using electronic health care data. While several approaches for reducing IUM exist 

(Chapter 2), demonstration of automated applications of all of those approaches relies on the 

availability of a common framework and formal representation for appropriateness criteria. In 

this thesis, such a formal representation model was created (Chapter 3). Using this framework, 

concepts in the MAC can be linked to existing standard biomedical terminologies, and the logic 

can be represented using standard logical statements.  

Additionally, because “indications” are an important part of MAC, we systematically reviewed 

public medication-indications KBs to identify the advantages and deficiencies of each KB. We 

identified the knowledge gaps that should be addressed in future work in that area. Some of these 

limitations can be addressed by using MAC instead of binary medication-indication KBs. This 

thesis provides the foundational work for implementing MAC in electronic form, into the clinical 

workflow. 

Additionally, a workflow was developed that facilitates translating the existing MAC into this 

formal structured representation as well as handling issues with concepts that are not explicitly 

defined (Chapter 4). The utility of formally represented MAC in clinical application was 

demonstrated (Chapter 5) and an analysis of advantages and limitations of existing informatics 

solutions for implementing the formally represented MAC, including guideline execution 

engines and clinical decision support systems, was conducted (Chapter 5). 
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Impact in Biomedical Informatics 

We developed a formal representation for appropriateness criteria. This representation model is 

primarily design for MAC, but can also be used for formal representation of other clinical 

appropriateness criteria. 

We developed an evaluation method for assessing the coverage of medication-indication 

knowledgebases for complexities of indication knowledge. This tool, along with the knowledge 

gaps identified in existing medication-indication KBs, can shed light on the future directions of 

research and development of such KBs. 

We developed a real-time annotation tool that can be used not only for translation of MAC into 

structured form, but also for annotating clinical guidelines, clinical trial eligibility criteria, and 

other similar biomedical narratives in a quick and easy way. 

We demonstrated the challenges and shortcomings of guideline representation models and 

clinical decision support tools in implementing the MAC. This enables enhancing these systems 

to gain better coverage for medication-indication KBs. 

Impact in Biomedicine 

We developed and demonstrated the complete workflow of translating MAC into computable 

form, implementing them in an automated way, and evaluating its accuracy and impact.37 Tools 

and methodologies that were developed as part of this research have contributed to clinical 

studies on evaluating the impact of electronic alerts in reducing IUM in real clinical setting,197 

and assessing the adverse effects associated with frequently overused medications.206 Finally, we 

curated a collection of published MAC, which can enhance clinical research on identification and 

reduction of IUM. 
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Future Work 

Although we developed a formal representation for MAC and developed a workflow for 

translating MAC into structured form, the structured MAC is still one step away from being 

executable. In future work, a repository of executable MAC should be developed to facilitate its 

implementation across different settings. Specifically, future work will include encoding the 

structured MAC into executable form using the tools from OHDSI. Each MAC will be encoded 

as a cohort definition where the concepts are normalized to the Observational Medical Outcome 

Partnership (OMOP) standard vocabulary, and the logic will be encoded as a cohort definition 

that is stored in JSON format inside the CIRCE tool (which is an OHDSI tool for cohort 

definitions). This allows plug-and-play use of the MAC in all data sources that have been 

exposed using the OHDSI data model. 
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